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Abstract

The purpose of this work has been to develop methods and parameterizations for gradient based
discrete material and thickness optimization of laminated composite structures. Here, special
attention has been on increasing the manufacturability of the optimized design by incorporating
so-called manufacturing constraints or design rules.

Up until now, researchers have proposed a wide variety of methods and parameterizations
for performing discrete material optimization of laminated composite structures. However, the
majority of these have focused on laminates with a fixed number of layers i.e., constant thick-
ness laminates. Still, for many high performance structures weight becomes an important design
parameter both with respect to performance and cost. Hence, determining both an optimum
material composition and thickness variation could further help manufacturers to design even
lighter structures, thereby increasing performance while reducing material expenses. It is there-
fore vital to develop new methods which simultaneously can determine both an optimum material
and thickness variation.

Because of the complexity associated with laminated composite structures, engineers typically
rely on finite element analysis using equivalent single layer shell formulations in order to validate
the integrity of the entire structure. These computationally efficient methods are, however, not
capable of predicting out-of-plane stress fields near e.g., a change in the thickness variation
which can lead to failure due to delamination. In order to avoid detailed modeling around
these critical regions, engineers can apply design rules which effectively reduce the influences
from these local effects. By incorporating these design rules into the optimization problem as
manufacturing constraints, engineers can avoid these undesired structural designs, and thereby
reduce the amount of time required for manual post-processing.

In this work, methods for performing simultaneous material and thickness optimization of
laminated composite structures are presented. The methods have been demonstrated for prob-
lems considering mass minimization including non-linear structural constraints on linearized
buckling load factors, natural eigenfrequencies, limited displacements, together with a series of
known manufacturing constraints.

A new type of parameterization is also introduced in the form of thickness filters. These
filters replace the previously applied layerwise density variables with continuous through-the-
thickness design variables. Besides a substantial reduction in the number of design variables,
the filters also eliminate the need for having explicit constraints for preventing intermediate void
from appearing in between layers of the laminate. New methods are also presented which makes
it possible for engineers to control the minimum size of the geometry and the material continuity
while the optimizer is free to determine which material to apply, together with the location,
shape, and size of the selected materials.

A total of three scientific journal papers have been produced which document the capabilities
of the presented methods and parameterizations.
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Dansk Resumé

Formålet med nærværende arbejde har været at udvikle nye metoder og parametriseringer til
diskret materiale- og tykkelsesoptimering af laminerede kompositkonstruktioner ved hjælp af
gradientbaserede metoder. Her har der været særlig fokus p̊a at gøre det lettere at fremstille de
optimerede konstruktioner ved at inkludere s̊akaldte designregler i optimeringsprocessen.

Hidtil har forskere foresl̊aet en lang række af metoder og parametriseringer til diskret mate-
rialeoptimering af laminerede kompositstrukturer. Imidlertid har de fleste af disse fokuseret p̊a
laminater med et fast antal lag, dvs. laminater med konstant tykkelse. Med den fortsatte ud-
vikling af stadig mere avancerede og højtydende konstruktioner bliver den samlede vægt dog en
kritisk designparameter b̊ade med hensyn til ydeevne og omkostninger. Det er derfor afgørende
at udvikle nye metoder, der simultant kan fastlægge b̊ade en optimal materialesammensætning
samt tykkelsesvariation. Dette vil kunne hjælpe producenter til at fremstille endnu lettere kon-
struktioner og derved øge disse konstruktioners ydeevne samt reducere materialeomkostninger.

P̊a grund af kompleksiteten forbundet med laminerede kompositkonstruktioner benytter in-
geniører sig typisk af elementmetoden sammen med homogeniserede skalformuleringer for at
analysere og validere integriteten af hele strukturen. Disse beregningsmæssige effektive metoder
er imidlertid ikke i stand til at forudsige spændingskoncentrationer nær strukturelle detaljer
s̊asom en lokal ændring i laminattykkelsen. Disse spændingskoncentrationer kan resultere i en
delaminering, hvilket kan have fatale konsekvenser til følge for konstruktionen. For at undg̊a
detaljerede modelleringer af disse kritiske omr̊ader kan ingeniører anvende s̊akaldte designregler,
som implicit tager højde for disse lokale effekter. Ved at inkludere disse designregler i optimer-
ingsproblemet som bi-betingelser kan ingeniører undg̊a disse uønskede strukturelle detaljer, og
derved reducere mængden af tid, der typisk kræves til manuel efterbehandling af det optimerede
design.

I det fortløbende arbejde præsenteres nye metoder, der simultant kan fastlægge b̊ade en
optimal materialesammensætning samt tykkelsesvariation med henblik p̊a optimalt design af
laminerede kompositkonstruktioner. Disse metoder er blevet demonstreret for problemer, hvor
den samlede strukturelle masse minimeres, og hvor der ligeledes er inkluderet strukturelle ikke-
lineære bi-betingelser for lineær buling, naturlige egenfrekvenser, begrænsning af flytninger, samt
en række af kendte designregler.

En ny parametrisering best̊aende af tykkelsesfiltre bliver ligeledes introduceret. Disse filtre
erstatter de tidligere anvendte lagvise densitetsvariable med kontinuerte designvariable, som
strækker sig ned igennem tykkelsen af laminatet. Foruden en væsentlig reduktion i antallet af
designvariable eliminerer filtrene behovet for at have eksplicitte bi-betingelser for at forhindre
tomrum i mellemliggende lag. Der præsenteres ogs̊a nye metoder, som gør det muligt at definere
minimumsgrænser for geometri- og materialekontinuitet, alt imens optimeringsalgoritmen frit
kan bestemme, hvilke materialer, der skal anvendes, samt disses placering og udformning.

I alt er der blevet udarbejdet tre videnskabelige tidsskriftsartikler, som dokumenterer de
udviklede metoder og parametriseringer.
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1 Introduction

In the following, a brief introduction to the main topics and objectives of the Ph.D., project
is presented. The topics include laminated composites, their use, production and modeling
methods, and subsequently how to optimize the performance of such structures.

1.1 Laminated composites

Composite materials are in short a mixture between two or more different materials where the
goal is to utilize the best properties of the applied constituents. A well-known example is concrete
which is composed of water, aggregate, and cement. When the cement is hardened it forms a
so-called matrix material which binds the aggregate materials together forming a solid composite
material. Another example is fiber reinforced materials where strong fibers such as carbon or
glass fibers are embedded in a light weight polymer matrix such as epoxy. By stacking and
bonding fiber reinforced plies on top of each other it is possible to form a laminated composite
structure. Because each ply can have a unique fiber orientation it is possible to tailor the material
properties for the specified application, typically resulting in a high stiffness to weight ratio. It
is also possible to combine fiber reinforced plies with blocks made of foam or wood, so to make a
lightweight sandwich structure. This design freedom has made laminated composites a more and
more popular alternative to conventional lightweight materials such as aluminium. Consequently,
laminated composites are today applied in a wide variety of high performance products ranging
from badminton rackets and mountain bikes, to automotive vehicles, aircraft fuselages, and wind
turbine blades. An example of a five layered laminated composite plate with a layup made from
Carbon and Glass Fiber Reinforced Polymer (CFRP/GFRP) plies separated by a foam core is
shown in Fig.1.1.

CFRP

GFRP

Foam

GFRP

CFRP

Fig. 1.1 Exploded view of a five layered laminated composite plate. The layup consists of carbon and
glass fiber reinforced polymer plies separated by a foam core.

Depending upon the size, shape, applied materials, and cost, different methods can be applied
for manufacturing of laminated composite structures. For large structures such as wind turbine
blades variations of Vacuum Assisted Resin Transfer Molding (VARTM) can be used. Here, the
dry fiber mats and core materials are positioned in a mold by hand and wrapped in a vacuum
bag. When the layup process is complete the mold is sealed and liquid resin/epoxy is sucked
through the fiber and core materials using a vacuum. When all the reinforcement materials have
been wetted by the resin the curing process is initiated. Fig.1.2(a) shows a wind turbine blade
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CHAPTER 1. INTRODUCTION

(a) A cured wind turbine blade manufactured
using the VARTM process

(b) Upraised part of a mold used for placing
the reinforcement materials

Fig. 1.2 Photographs courtesy of Siemens Wind Power A/S

which has been manufactured using this technique, and Fig.1.2(b) shows part of a mold used for
placing the reinforcement materials.

An essential part of the design process is to determine a suitable layup i.e., which materials
to apply, and also where to place them relative to each other. Here, accurate modeling and
simulation methods are required in order to determine how the structure responds to the applied
loads and boundary conditions. For structures which can be simplified as plates the Classical
Laminate Theory (CLT) can be applied, see e.g., Jones (1999). However, for structures which
have complex geometries and loading conditions engineers tend to apply Finite Element Analysis
(FEA) in order to validate the integrity of the entire structure. For small parts, an accurate
analysis can be made by modeling all layers with 3D solid elements, however, this approach
quickly become too computational expensive. In order to reduce the computational cost of the
analysis, equivalent single layer shell elements are typically applied. Still, for large structures
such as wind turbine blades where the number of layers may exceed several hundred at different
locations, determining a suitable layup can be an iterative and time consuming process. This has
led to an increasing interest within the field of numerical optimization methods as these methods
can aid engineers in determining a suitable layup during the design process.

1.2 Design and optimization

When designing laminated composite structures, engineers not only have to determine which
materials to apply, but also determine in which order they should be assembled or stacked, so
to obtain a suitable layup with the required structural characteristics. However, because of the
complex relationship between the layup and the structural response, it can be difficult to grasp
the consequences of changing the layup at various locations. This has lead to natural interest in
the development of robust numerical optimization methods to aid engineers in the design process.

Numerical optimization methods rely on two essential components, an analysis model and
an optimization algorithm. As previously mentioned, the analysis is typically conducted using a
finite element model which is capable of simulating the response of several structural criteria. The
analysis model is parameterized by assigning a series of design variables which can be adjusted
by an optimizer. In the context of laminated composites, these design variables are typically
related to the layup e.g., the number of plies, their material composition (GFRP/CFRP/foam),
orientation, and thickness.

2



1.2. DESIGN AND OPTIMIZATION

From a design perspective, applying fiber orientations and ply thicknesses as continuous de-
sign variables may lead to designs with excellent performance. However, from a manufacturing
perspective these designs may be difficult to realize. This is because some manufacturers only
apply a limited set of fiber mats each with a fixed orientation and thickness. The optimized de-
signs may therefore require a substantial amount of manual post-processing in order to determine
a layup which complies with both the available materials and the structural requirements. This
has lead to an increasing interest in multi-material parametrization and optimization methods
which can determine an optimum layup based on discrete sets of material candidates. Multi-
material optimization methods are at the center this work. Consequently, the most significant
of these methods are detailed in Section 2.1 for constant thickness designs, and in Section 2.2
for variable thickness designs.

Given the applied parametrization i.e., type of design variables, the optimizer can be con-
figured to either maximize or minimize an objective function which could represent a structural
property, response, or even cost. Besides the objective function, additional constraints may be
also necessary to include in order to satisfy specific performance demands. These constraints can
either be related to some structural criteria, such as the maximum displacement of a point, or
related to specific requirements regarding the production or design processes.

Generally, structural criteria can be divided into two categories i.e., global and local criteria.
Global criteria are related to the response of the entire structure e.g., mass, stiffness, buckling load
factors, or eigenfrequencies. In the context of laminated composites, the most commonly applied
setup of criteria functions are mass constrained minimization of compliance which has been
investigated by numerous authors. For gradient based multi-material optimization, examples
can be found in e.g., Stegmann and Lund (2005), Lund and Stegmann (2005) Bruyneel (2011),
Hvejsel et al. (2011), Hvejsel and Lund (2011), Gao et al. (2012), Sørensen and Lund (2013), and
Kennedy and Martins (2013). For examples regarding buckling load factors and eigenfrequencies
see e.g., Lund (2009), Kennedy and Martins (2013), Stegmann and Lund (2005), Niu et al.
(2010), and Blasques (2014).

Local criteria effect local quantities related to specific points on the structure e.g., displace-
ment constraints, fatigue limits, or in-plane failure criteria such as max strain, max stress, or the
Tsai-Wu criterium, see e.g., Tsai and Wu (1971), Kim et al. (1994), and Groenwold and Haftka
(2006). In the context of gradient based topology optimization with isotropic materials stress
constraints are rather well established, see e.g., Duysinx and Bendsøe (1998), Le et al. (2010),
Paŕıs et al. (2010), Bruggi and Duysinx (2012), or Holmberg et al. (2013). Recently, Holm-
berg et al. (2014) published a method for including high-cycle fatigue constraints for isotropic
topology optimization. In the context of laminated composite structures details regarding stress
constraints for multi-material optimization can be found in the ongoing work by Lund et al.
(2013)

Besides structural requirements, constraints can also be specified to take other considerations
into account such as the applied production methods and other design rules or guidelines. This
category of constraints is generally referred to as manufacturing constraints. By including such
manufacturing constraints in the design process, engineers may spent less time on manually
post-processing the optimized design. Ideally, the optimized design would thus be easier to
convey down the development process, and thereby reduce the overall cost associated with the
development. This specific category of constraints is one of the main topics of this thesis, and
it is therefore given special attention in Section 2.3 which goes through the current state-of-art
with respect to manufacturing constraints in the context of laminated composite structures.
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CHAPTER 1. INTRODUCTION

1.3 Objectives

The presented Ph.D. project is part of the research project entitled Optimal Design of Compos-

ite Structures Under Manufacturing Constraints. The research project has been conducted in
collaboration between the Department of Mechanical and Manufacturing Engineering, Aalborg
University and the Department of Wind Energy, DTU where Dr.techn. Mathias Stolpe and
Ph.D. Konstantinos Marmaras were project partners.

The overall objective of this work is to develop parameterizations and methods such that
manufacturing constraints and cost can be taken into account when designing and optimizing
laminated composite structures. The methods and parameterizations must be able to perform
multi-material optimization from a discrete set of candidates using efficient gradient based opti-
mization methods. Here the multi-material optimization approach by Hvejsel and Lund (2011)
serves as the foundation for the new parametrization. The ability to vary the thickness distribu-
tion of the laminate is essential in order to reduce the weight and thereby the material expenses.
Here, Sørensen and Lund (2013) extended the parametrization by Hvejsel and Lund (2011) so
to enable simultaneous multi-material and thickness optimization of laminated composite struc-
tures. With the above mentioned parameterizations the foundation for the work has been made.
The focus of this thesis is therefore to further develop these parameterizations and associated
methods, so to obtain an efficient general purpose method that is aimed at increasing the man-
ufacturability of the optimized design. In order to do so, the following sub-objectives need to be
addressed.

• The method by Sørensen and Lund (2013) is intended for mass constrained minimization
of compliance problems, and the framework thus needs to be generalized in order to include
structural criteria functions like e.g., mass, buckling, displacement, and eigenfrequencies.

• The formulation by Sørensen and Lund (2013) introduces a relative large set of constraints
in order to prevent intermediate voids from appearing between layers. It is believed that
these constraints can be avoided by the use of so-called casting constraints or filters by Gers-
borg and Andreasen (2011). By formulating these filters such that they operate through
the thickness of the laminate, explicit constraints can be eliminated while also reducing the
total number of design variables presented to the optimizer.

• Currently, engineers tend to apply a so-called patch formulation in order to increase man-
ufacturability of the optimized design. Here, patches consist of design regions or domains
which can be influenced by the optimizer. By manually adjusting the size of these patches,
engineers can target the available production equipment and thereby increase the manu-
facturability of the optimized design. However, by prescribing a fixed patch layout the
design domain is effectively reduced. A poor patch layout could thus result in even worse
optimized laminate layups. In conventional topology optimization with isotropic materials,
engineers can impose a minimum length scale by use of various filtering techniques, see e.g.,
Sigmund (1997), Sigmund (2007), Wang et al. (2011), or Svanberg and Svärd (2013). By
generalizing these methods for multi-material and thickness optimization, the engineers can
control the size of the fiber mats by simply prescribing a minimum size for the material and
thickness variation, and consequently, avoid the time consuming process of determining a
suitable patch layout.

• The current formulation by Sørensen and Lund (2013) can produce external ply drops.
However, external ply drops are not desirable to apply as they increase the number of
free edges in the laminate. These free edges increase the risk of edge delamination due
to out-of-plane stresses near the free surface. It is believed that the constraints proposed

4



1.3. OBJECTIVES

by Sørensen and Lund (2013) can be reformulated such that only internal ply drops can
appear.
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2 State-of-the-art

This chapter describes the current state-of-the-art within the field of gradient based multi-
material and thickness optimization of laminated composite structures. It is recognized that
other parameterizations exists for optimizing laminated composite structures e.g., fiber orien-
tations, ply thicknesses, lamination parameters, and free material optimization. The interested
reader is here referred to the review papers by Ghiasi et al. (2009) and Ghiasi et al. (2010b) for
further information.

In this thesis, the research area is divided into three categories. The first category deals with
multi-material optimization of laminated composite structures with constant thickness. The
focus is thus on determining an optimum layup/stacking sequence for a predefined number of
layers through the thickness of the laminate. For the second category, the focus is on determining
both an optimum layup and thickness variation. The third and final category reviews commonly
applied manufacturing constraints in connection with both constant and variable thickness op-
timization.

2.1 Constant thickness optimization

Historically, the principles applied in gradient-based multi-material optimization have their ori-
gin in the field of classic topology optimization with isotropic materials. Therefore, the main
principles from this scientific field are briefly highlighted in the following.

2.1.1 Classic topology optimization

In classic topology optimization with isotropic materials, the goal is to determine an optimum
distribution of a single material candidate. It is therefore necessary to distinguish between two
material phases, solid and void. In a general finite element environment, using either 2D or 3D
solids, the design parameterization can be defined as

xe =

{

1 if there is material in element e

0 void

where each design variables, xe, can be interpreted as the density or influence associated with
each element. Consequently, whether or not the material properties associated with each element
should contribute or not thus depends upon the value of the design variable. To exemplify this,
the constitutive properties and the mass for each element should thus be parameterized as

Ee = xe E (2.1)

me = xe ̺ (2.2)

xe ∈ {0; 1}, ∀(e)

where E is the constitutive matrix and ̺ is the density associated with the applied material
candidate. Other problem dependent material parameters should of course also be parameterized
with the design variables, if required.

However, in order to apply efficient gradient-based optimization methods, the strict integer
definition of the design variables must be relaxed. This relaxation can be obtained by treating

7



CHAPTER 2. STATE-OF-THE-ART

the design variables as continuous variables, and thereby expand the design space by allowing
intermediate material phases to appear. This type of relaxation is generally referred to as the
density approach. However, as these intermediate material phases do not represent neither solid
nor void, the final solution should preferably be a discrete 0-1 solution, so a correct representation
of the material parameters can be obtained. In the case of mass constrained minimum compliance
problems, Bendsøe (1989) introduced the Solid Isotropic Material with Penalization (SIMP)
interpolation scheme.

Ee = xp
e E (2.3)

me = xe ̺ (2.4)

xe ∈]0; 1], ∀(e)

Here, all design variables are raised to some power p > 1 when interpolating the constitutive
properties. By doing so, intermediate valued design variables effectively reduce the constitutive
properties causing an implicit penalization of the compliance objective function. Notice that a
linear interpolation is still applied of the mass. Later, Stolpe and Svanberg (2001) argued to
apply an alternative to the SIMP method in the form of the Rational Approximation of Material
Properties (RAMP) interpolation scheme

Ee = E0 +
xe

1 + q (1− xe)
∆E (2.5)

xe ∈ [0; 1], ∀(e)

Here ∆E = E − E0 where E0 represents the stiffness of void, and has properties such that
E−E0 ≻ 0 and E0 ≻ 0. Intermediate valued design variables are effectively penalized for q > 0.
The major difference between the SIMP and RAMP schemes is that the RAMP scheme produces
non-zero sensitivities for q when xe = 0. Both interpolation schemes have been applied to a wide
variety of problems within the field of topology optimization, see e.g., Bendsøe and Sigmund
(2003), Rozvany (2009), and Deaton and Grandhi (2014) for a comprehensive review.

2.1.2 Multi-material optimization

From topology optimization with a single material candidate, Sigmund and Torquato (1997) and
Gibiansky and Sigmund (2000) proposed multi-material optimization for two material candidates
using the following material interpolation scheme.

Ee = (1− xp
e)E1 + xp

eE2 (2.6a)

= w1E1 + w2E2 (2.6b)

xe ∈ [0; 1], ∀(e)

Here, the selection between the two material candidates is determined by the value of a single
variable i.e., xe. The authors applied a SIMP like interpolation scheme in order to penalize
intermediate valued design variables. However, the proposed interpolation scheme is biased
towards the first material candidate when p > 1. This is illustrated in Fig.2.1(a) which shows
the two weight factors, w1 and w2, as a function of the design variable, xe. For p = 1 the scheme
is unbiased as the weight factors are evenly distributed around xe = 0.5. However, for increasing
values of p the intersection point, where the two weight factors are equal in magnitude, is moved
towards the right i.e., favoring the first weight factor over a larger interval. In order to make the
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Fig. 2.1 Distribution of weight factors associated with expressions (2.6) and (2.7).

scheme unbias for p > 1, the following modification can be applied.

Ee = (1− xe)
p
E1 + xp

eE2 (2.7a)

= w1E1 + w2E2 (2.7b)

xe ∈ [0; 1], ∀(e)

With the above modification, the penalization scheme becomes unbiased as the two weight factors
are evenly distributed around xe = 0.5, for all p ≥ 1, see Fig.2.1(b).

Later, Stegmann and Lund (2005) proposed the Discrete Material Optimization (DMO)
method which can interpolate between an arbitrary number of material candidates using one
design variable for each candidate. Developed for multi-material optimization of laminated com-
posite structures, the constitutive properties for a given layer in a given shell element are inter-
polated as

Eel =

nc

∑

c=1



x
p
elc

nc

∏

j=1

[

1−
(

xel(j 6=c)

)p]



Ec (2.8a)

=

nc

∑

c=1

wcEc (2.8b)

xelc ∈]0; 1], ∀(e, l, c)

Here wc is the weight factor associated with the c’th material candidate. Similar to (2.6), the
DMO interpolation scheme, also labeled scheme 4 and DMO4, utilizes a self-balancing principle
where an increase in one design variable reduces the weight factors associated with other material
candidates. This dependency between the design variables is necessary in order to force the
optimizer to select just one material candidate. For p = 1, the dependency is linear i.e., an
increase in one design variable is followed by equal decrease in the remaining weight factors. The
DMO4 scheme has successfully been applied for maximizing the stiffness of laminated composite
structures using a discrete set of plies with different fiber orientations as material candidates, see
e.g., Stegmann and Lund (2005), Lund and Stegmann (2005).

When considering criteria functions such as buckling load factors, eigenfrequencies, or mass,
it is important that the weight factors sum to unity, so to have physically valid results for
intermediate valued design variables. When applying the DMO4 scheme the sum of weight
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factors will not necessarily equal unity for intermediate valued design variables i.e.,
∑nc

c=1 wc 6= 1.
Consequently, a normalized version of the DMO4 scheme, labeled scheme 5 or DMO5, was also
proposed by Stegmann and Lund (2005)

Eel =

nc

∑

c=1

1
∑nc

c=1wc



x
p
elc

nc

∏

j=1

[

1−
(

xel(j 6=c)

)p]



Ec (2.9a)

=

nc

∑

c=1

wc
∑nc

c=1wc

Ec (2.9b)

xelc ∈]0; 1[, ∀(e, l, c)

A drawback of the normalization is that the influence of the penalization is reduced. The
scheme may, therefore, not be able to push the design variables to a discrete solution. Another
approach could be to only apply scheme 5 for the stress stiffness and mass matrix whereas
the stiffness matrix could be interpolated using scheme 4. Nevertheless, the overall problem
is unavoidably non-convex when applying either scheme 4 or 5, and the best combination of
interpolation schemes will thus be problem dependent. Lund (2009) successfully applied scheme
5 in the context of maximizing minimum buckling load factors for laminated composite plates
applying orthotropic plies with different orientations as design variables. Niu et al. (2010) applied
the same setup but for minimizing the sound radiation of laminated composite plates. Later,
Lindgaard and Dahl (2012) investigated different interpolation schemes in the context of topology
optimization with linear and non-linear buckling objective functions.

Alternatively to the original DMO formulations, Hvejsel et al. (2011) applied a linear material
interpolation scheme combined with a series of sparse linear equality constraints.

Eel = E0 +

nc

∑

c=1

xelc∆Ec (2.10a)

nc

∑

c=1

xelc = 1, ∀(e, l) (2.10b)

xelc ∈ [0; 1], ∀(e, l, c)

By explicitly requiring that the sum of candidate material variables must equal one, an increase in
one design variable must be followed by an equal reduction in the others, thus creating a mutual
dependency between the design variables. Still, nothing prevents the optimizer for settling on a
non-discrete design. Based on the work by Borrvall and Petersson (2001), the authors applied
a non-linear in-equality constraint to gradually push the design variables towards a discrete
solution.

g (x) =

ne

∑

e=1

nl

∑

l=1

nc

∑

c=1

xelc (1− xelc) ≤ ε (2.11)

Here ε is a parameter prescribing the upper limit for the constraint, and ne, nl, nc is the number
of elements, layers, and material candidates, respectively. Initially, the parameter should be large
enough to ensure that the constraint is feasible, and afterwards gradually reduced towards zero
using a continuation strategy. Because continuation strategies naturally are dependent upon the
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2.1. CONSTANT THICKNESS OPTIMIZATION

specific problem at hand, some amount of problem dependent fine-tuning may be necessary. Nev-
ertheless, the authors successfully demonstrated the method on a series of minimum compliance
problems applying orthotropic plies with different orientations as material candidates.

Instead of applying a linear interpolation scheme combined with a non-linear constraint,
Hvejsel and Lund (2011) later introduced multi-material variations of the SIMP and RAMP
interpolation schemes.

Eel = E0 +

nc

∑

c=1

x
p
elc∆Ec, p ≥ 1 ∀(e, l, c) (SIMP) (2.12a)

Eel = E0 +

nc

∑

c=1

xelc

1 + q (1− xelc)
∆Ec, q ≥ 0 ∀(e, l, c) (RAMP) (2.12b)

nc

∑

c=1

xelc = 1, ∀(e, l) (2.12c)

xelc ∈ [0; 1], ∀(e, l, c)

Equivalent to the original SIMP and RAMP interpolation schemes, the proposed method makes
intermediate valued design variables unattractive by implicitly penalizing the constitutive prop-
erties. Again, the resource constraints in (2.12c) ensure that an increase in one design variables
must be followed by an equal reduction amongst the remaining design variables, thus creating
a dependency between the design variables. In order to gradually penalize intermediate valued
design variables, the authors recommended to apply a continuation strategy for the penalization
powers, p or q. Again, the authors demonstrated the method on minimum compliance problems
applying orthotropic plies with different orientations as design variables.

Similar to the non-linear constraint equation proposed by Hvejsel et al. (2011), Kennedy and
Martins (2013) proposed another explicit approach to make intermediate valued design variables
unattractive. The authors applied the same linear interpolation scheme for the constitutive
properties as proposed by Hvejsel et al. (2011), see (2.10a), however, they added a series of
non-linear equality constraints as a penalty term to the objective function. These non-linear
constraints are formulated with respect to the sum of material candidates for all layers in each
element.

nc

∑

c=1

x2
elc = 1, ∀(e, l) (2.13)

Using vector notation, the constraints can be expressed as cs(x) = e, where cs(x) is a vector
containing the current values of all the constrains, and e is a vector which represents all the
right hand sides of (2.13). Through a series of careful manipulations, it is possible to formulate a
penalty term on the basis of the quadratic resource constraints in (2.13). By adding the explicit
penalty term to the objective function, it is possible to reduce the non-discreteness of the design
variables through an augmented objective function Φ(x).

minimize Φ(x) = f(x) + γeT (e− cs(x)) (2.14)

s.t.

nc

∑

c=1

xelc = 1, ∀(e, l) (2.15)

xelc ∈ [0; 1], ∀(e, l, c)
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In the above, f(x) is the original objective function, and γ is a factor applied for scaling the
penalty term which describes the non-discreteness of the design variables. Similar to multi-
objective optimization, the specific weight factor applied for each objective dictates how impor-
tant each objective is relative to the others. The specific choice of γ thus dictates how important
non-discrete design variables are relative to the original objective function. Applying a too high
penalization factor, the optimizer may converge to a poor, but discrete solution, and vice versa
if the value is too low. In Kennedy and Martins (2013), the authors recommended to apply a
continuation strategy where the value of γ is increased gradually. The method was successfully
demonstrated for minimum compliance, and for maximizing buckling load factors. In both cases,
the design variables consisted of orthotropic plies with different orientations.

As an alternative to the DMO parameterization, which requires one design variable for each
material candidate, Bruyneel (2011) introduced the Shape Function with Penalization (SFP)
method. Here, four node bi-linear finite element shape functions are applied to interpolate
between four material candidates by use of just two design variables i.e., the natural coordinates
(R,S) of the element, see Fig.2.2. In order to drive the design towards discrete selection of a

S

R

E1 E2

E3E4

(−1,−1) (1,−1)

(1, 1)(−1, 1)

Fig. 2.2 Four node finite element applied for interpolation four constitutive properties E1-E4

single candidate material, the authors propose to apply a SIMP like penalization scheme for the
weight factors associated with each candidate material. The constitutive properties for a given
layer in a given element are thus determined as

Eel = E0 +
4

∑

c=1

wp
c∆Ec (2.16)

w1 =
1

4
(1−R) (1− S) w3 =

1

4
(1 +R) (1 + S)

w2 =
1

4
(1 +R) (1− S) w4 =

1

4
(1−R) (1 + S) (2.17)

In Bruyneel et al. (2011), the authors extended the method by applying three node plane and
eight node brick elements to interpolate between three and eight material candidates, by use of
two and three design variables, respectively.
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2.2. VARIABLE THICKNESS OPTIMIZATION

Later Gao et al. (2012) introduced the Bi-valued Coding Parameterization (BCP). The BCP
scheme is a generalization of the SFP method as it can handle an arbitrary number of material
candidates. As the name suggests, the BCP scheme applies design variables that can attain
bi-values of either -1 or 1. For the BCP scheme, the number of design variables, nx, required to
interpolate nc material candidates is defined as an integer of the calling function of the binary
logarithm to the number of material candidates

nx = ⌈log2 (n
c)⌉ (2.18)

The relationship between the number of material candidates which can be interpolated for a
given number of design variables is

nc = [2(n
x−1) + 1, 2(n

x)] (2.19)

Consequently, with four design variables, nx = 4, the number of candidates which can be in-
terpolated is between 9 ≤ nc ≤ 16. The BCP scheme thus provides a substantial reduction
in the number of design variables when compared to the DMO method that has a one-to-one
relationship between the number of material candidates and design variables. Similar to the
SFP, the BCP method also applied a SIMP like penalization scheme on the individual weight
functions, see Gao et al. (2012) for details regarding the computation of the weight function
using the bi-valued design variables.

However, the author note that rearranging the material candidates between two otherwise
identical optimization problems can lead to two unique solutions. This sensitivity to the ordering
of the material candidates is generally not desirable. Because the BCP method is a generalization
of the SFP method, the SFP method will also be sensitive to the ordering of the material
candidates. Furthermore, for the example with four design variables, the BCP method can
interpolation between 9 and 16 material candidates. However, if only 9 candidates are applied,
the remaining 7 ”empty slots” must be occupied with some of the 9 candidates such that no
”slots” are empty. This repeating of candidates will also generate some bias in the results,
something that again is not desirable. Despite these undesirable effects, the BCP method is
indeed a great contribution to the field of gradient based multi-material optimization.

2.2 Variable thickness optimization

Thickness optimization of laminated composite structures is typically motivated by a desire to
reduce either the cost or weight of the structure. Throughout the literature, several approaches
has been suggested. Schmit and Farshi (1973), Mateus et al. (1991), Costin andWang (1993), and
Mateus et al. (1997) applied the thickness of each ply as a continuous design variable, however,
as mentioned in the introduction, the application of continuous thickness variables may require
considerable amount of time for manual post-processing. Later, Manne and Tsai (1998) applied
a similar approach, however, for the optimized design the authors applied a stepwise rounding
scheme which monitored if any constraints were violated during the rounding procedure.

For discrete design variables, consisting of ply orientations and the number of plies, direct
search or zero-order methods such as Genetic Algorithms (GA)’s are widely applied through
out the literature. These methods do not rely on gradient information from the objective and
constraints functions, but instead operate solely on their values and stochastic operators for
changing the design variables. These methods and algorithms are often referred to as ”global”
optimization methods which is quite a misleading label as no guarantees can be made with
respect to the quality of the solution i.e., the results may not be optimal at all. Despite this,
zero-order algorithms are quite useful when e.g., a non-differentiable or a so-called fuzzy/noizy
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function is applied. In Toropov et al. (2005) the authors applied a genetic algorithm for mass
minimization of composite wing panels using discrete ply orientations and the number of plies
as design variables.

Another popular approach is to decouple the different design variables by optimizing them
in two separate phases or levels. In Liu et al. (2000) the authors first optimized the number
of plies using a gradient based method followed by a stacking sequence optimization using a
genetic algorithm. The two stages were then repeated until the algorithm had converged. Liu
et al. (2011) applied a similar approach for mass minimization of composite structures. In the
commercial software OptiStruct by Altair Engineering the optimization procedure is split into
three distinct phases, see Zhou et al. (2011) and Zhou and Fleury (2012). A disadvantage of this
decoupling of the thickness and material problems is that the obtained results may be suboptimal.
This is because the structural response is dependent on both parameters simultaneously. In the
following section, the focus is therefore on methods which can perform simultaneous material
and thickness optimization using gradient based methods.

2.2.1 Simultaneous material and thickness optimization

By simultaneously optimizing both the material candidates and the thickness variations, the
optimizer has the full potential to utilize the complexity of the structural response associated
with laminated composites. The ability to take advantage of these mechanisms thus holds great
potential for further weight and cost savings. In this section, the presented methods are subdi-
vided into two categories. The first category focuses on methods for optimizing single layered
composites, and the second category focuses on methods for optimizing multi-layered laminated
composites.

Single layered composites

In the original formulation by Sigmund and Torquato (1997), Gibiansky and Sigmund (2000)
the proposed multi-material formulation included a topology variable to control the removal of
material. The scheme thus makes it possible to conduct simultaneous material and topology
optimization with two material candidates.

Ee = ρqe [(1− xp
e)E1 + xp

eE2] (2.20)

xe ∈ [0; 1], ∀(e)

ρe ∈]0; 1], ∀(e)

In order to push the continuous density variables towards a discrete value, a SIMP-like penal-
ization scheme was applied. Although not aimed at laminated composites, the parameterization
could be applied for single layered composites.

In the context of composite structures, Bruyneel (2011) presented a similar approach for the
SFP parameterization. Here, the author likewise added a so-called topology or density variable
to control the removal of material.

Ee = E0 + ρqe

4
∑

c=1

wp
c∆Ec (2.21)

ρe ∈ [0; 1], ∀(e)

The added density variable effectively scales the sum of candidate weight factors, making it
possible to remove a given layer. This type of parameterization is quite flexible when it comes
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to the distribution of the two different types of design variables. It is, e.g., possible to have
the material variables cover larger areas than the density variables i.e., the material candidate
variables may effect the entire span of the structure while the density variables can be distributed
on element level. The same can also be done for the opposite case i.e., the material candidate
variables could be distributed on element level, while the density variables could cover entire
layers.

Hvejsel and Lund (2011) also proposed a means for changing the topology of the structure
while simultaneously determining which material to apply. Instead for requiring that the sum
of candidate material variables must equal one, the authors proposed to change the equality
constraints to inequality constraints.

Ee = E0 +

nc

∑

c=1

xp
ec∆Ec, (2.22a)

nc

∑

c=1

xec ≤ 1, ∀(e) (2.22b)

xec ∈ [0; 1], ∀(e, c)

By not requiring that the sum of material variables must equal one at all times, the optimizer
can collectively set them to zero, and thereby change the topology of the structure without the
need of additional design variables. The proposed optimization problem is thus simpler than
what was proposed by Bruyneel (2011) which relies on a product between a density variable and
the candidate material variables. However, because the topology is dependent upon the material
variables alone, the proposed method is in it self incapable of obtain material and topology
variations on different scales i.e., having material variables cover larger areas than the variation
in topology, and vice versa. Nevertheless, from a computational aspect the method is quite
effective as the applied constraints are linear and can be set up in a sparse format.

Multi-layered laminated composites

Simultaneous material and thickness optimization of multi-layered laminated composite struc-
tures has recently been investigated by Sørensen and Lund (2013) who proposed a novel extension
to the DMO method. Here, the authors applied the multi-material parameterization by Hvejsel
and Lund (2011) combined with a layerwise topology or density variable to control the removal of
material in each layer. In order to push the design variables towards discrete values, the authors
applied the RAMP penalization scheme for both the density and candidate variables.

Eel = E0 +
ρel

1 + q (1− ρel)

nc

∑

c=1

xelc

1 + p (1− xelc)
∆Ec (2.23a)

nc

∑

c=1

xelc = 1, ∀(e, l) (2.23b)

xelc ∈ [0; 1], ∀(e, l, c)

ρel ∈ [0; 1], ∀(e, l)

The parameterization is thus similar to what was proposed by Bruyneel (2011), however, now
in the context of multi-layered structures. In order to obtain manufacturable designs when opti-
mizing the thickness variations of laminated composites, intermediate void through the thickness
of the laminate must be avoided, see Fig.2.3 for an illustration.
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Fig. 2.3 Illustrative example of a laminate with intermediate void. The laminate is modeled with five
elements each with five layers. The laminate consists of three different solid materials, and void. The
void regions are encapsulated between layers of solid material.

As can be seen from the figure, the presence of intermediate void through the thickness of the
laminate is not physically meaningful, and likewise makes it impossible to manufacture.

Consequently, the authors formulated and tested several so-called manufacturing constraints
to ensure a continuous presence of material uninterrupted by void. Intuitively, one of these
attempts simply prescribed that a layer on top of another layer should have a lower density i.e.,

ρe(l+1) ≤ ρel (2.24)

however, this formulation was unsuccessful as so-called density bands could appear. These density
bands consisted of non-discrete valued density variables distributed from the top layer to the
bottom layer. The constraints in (2.24) were feasible, however, the RAMP penalization scheme
could not push the layerwise density variables towards discrete values, despite the applied level
of penalization. The phenomenon was predominate for structures loaded in bending where high
moments of inertia are desirable.

As previously mentioned, several schemes were tested in order to remedy the problem. Ulti-
mately, the authors settled on following formulation

ρe(l+1) ≤ f (ρel, T ) (2.25)

where f (ρel, T ) is a function that specifies the maximum density a layer can attain based upon
the density of the layer below together with a threshold parameter, T . The function is composed
of two linear functions and is defined as

f(ρel, T ) =

{

T
1−T

ρel if ρel < (1 − T )
1−T
T

ρel +
2T−1

T
else

(2.26)

where 0 < T ≤ 0.5

The authors concluded that T = 0.1 was a good compromise between low measures of non-
discreteness and the computational cost. For increasing values e.g., T = 0.2 or T = 0.5, the
undesired density bands began to reappear. For smaller values e.g., T = 0.05 the density bands
became even less apparent, but with additional computational costs due to an increased number
of iterations required for convergence.

The conditional statement in (2.26) makes the overall function non-smooth, and the authors
concluded that a Sequential Linear Programming (SLP) optimizer was more effective than an
optimizer based on a Sequential Quadratic Programming (SQP) method. Consequently, the
upper bounds of the density variables have to be updated in each iteration, effectively limiting
the progression of the thickness variation by guiding the design in a stepwise manner.
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2.3. MANUFACTURING CONSTRAINTS

Although the parameterization in (2.23) is generic, the proposed method was specialized for
mass constrained minimization of compliance using an element-wise parameterization. Gener-
alizing the method so other constraints and objectives can be applied together with a patch
parameterization is the main topic of Paper 1, see Section 3.1 for a resume of the work.

Later, Gao et al. (2013) extended the BCP scheme to also include the possibility to terminate
individual plies. The authors applied a similar approach to Bruyneel (2011) and Sørensen and
Lund (2013) by adding a topology variable to scale the candidate weight factors, however, now
using a bi-valued format. However, the method lacks the ability to prevent intermediate void
from appearing through the thickness of the optimized laminate. The optimized designs may
thus not be manufacturable.

Throughout the literature, several authors have proposed to apply explicit manufacturing
constraints so to reduce the amount of time required for manual post-processing of the optimized
designs. In the following section, some of the most widely applied design rules within the field
of laminated composites are highlighted.

2.3 Manufacturing constraints

Typically, engineers rely on finite element analysis using equivalent single layer shell formulations
in order to validate the integrity of the structures. These methods are, however, not capable of
predicting out-of-plane stresses which may develop in areas where the structural stiffness changes
rapidly. In order to capture these local effects with a sufficient level of detail, higher order shell
formulations or 3D solid finite element models have to be applied. However, these methods
are generally not suitable in the context of optimization due to the substantial increase in the
computational requirements. In order to avoid such detailed models, engineers can apply design
rules, also known as ply book rules, so to implicitly considering these effects through explicit
mathematically formulated manufacturing constraints. By incorporating these manufacturing
constraints into the optimization problem, engineers can avoid these undesired structural designs,
and thereby reduce the amount of time required for manual post-processing.

Common types of manufacturing constraints which can be found in the literature are e.g.,
requirements for symmetric and balanced layups, contiguity constraints, adjacency or so-called
blending rules, and constraints limiting the thickness variation rate. Most of these constraints
have their origins in the aerospace industry, see e.g., Kassapoglou (2010). In the following
sections, the motivation and recent developments are presented for each of the mentioned con-
straints.

Symmetric and balanced laminates

Symmetric and balanced laminates are typically required if the bend-twist and shear-extension
couplings of a laminate plate must be avoided. This is typically exploited in the industry as such
layups present little distortion or spring back during manufacturing, see e.g., Jones (1999) and
Ghiasi et al. (2010a).

For constant thickness optimization, the requirements are typically enforced simply by mir-
roring, or linking, the design variables for half of the laminate and thus reducing the total
number of design variables by a factor of two. This linking of the design variables is thus com-
putational effective, and ensures that the optimized designs obey the requirements. In Grosset
et al. (2001), the authors proposed an approach where the objective function was penalized
when the constraints were violated. The authors concluded that the simple linking procedure
was considerably more effective than penalizing the objective function.
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However, for variable thickness optimization, the implementation becomes more complicated
as the material selection now depends upon the change in thickness and vice versa. Consequently,
explicit constraints have to be formulated in order to ensure that the requirements are satisfied.
Furthermore, because the thickness variation effects the response for the entire structure, simply
enforcing symmetry and balance on element level is insufficient i.e., the entire structure has to
be considered.

Contiguity

By limiting the number of unidirectional plies with identical fiber orientations that can be stacked
on top of each other, the risk of matrix failure through the thickness of the laminate can be re-
duced. This has lead to the development of contiguity constraints that can limit the number of
contiguous layers with the same fiber orientation. Here, Le Riche and Haftka (1993), Liu et al.
(1999), Seresta et al. (2007), Toropov et al. (2005), and Liu et al. (2011) investigated such con-
straints in the context of stacking sequence optimization applying genetic algorithms. Bruyneel
et al. (2012) presented an explicit constraint using the SFP parameterization for constant thick-
ness optimization. Later, Sørensen and Lund (2013) proposed a linear constraint formulation
applicable for the different DMO methods for both constant and variable thickness optimization.
Kennedy and Martins (2013) likewise proposed a non-linear variation applicable for the DMO
parameterizations.

Adjacency

The adjacency constraints limit the change in fiber directions between contiguous plies through
the thickness of the laminate, and thus reduce abrupt changes for the in-plane stiffness between
contiguous plies. Abrupt changes in stiffness can introduce large interlaminar and thus out-of-
plane stresses which ultimately can lead to failure due to edge delamination. These constraints
have recently been investigated by Bruyneel et al. (2012) and Kennedy and Martins (2013) in
the context of gradient based discrete material optimization.

Thickness variation rate

When varying the thickness of laminated composite structures, the number of plies which may
be terminated or dropped simultaneously should be limited. If too many plies are terminated
at one location, the associated change in stiffness can lead to delamination due to out-of-plane
stresses.

For continuous thickness optimization, Costin and Wang (1993) formulated two explicit thick-
ness constraints. The first controls the maximum allowable variation of ply thicknesses across the
laminate, and the second ensures that adjacent elements have continuity among the individual
ply thicknesses. However, the continuous thicknesses have to undergo manual post-processing in
order to translate these smooth transitions into either a termination or an addition of individual
plies.

For discrete thickness optimization, Sørensen and Lund (2013) developed a linear constraint
which limits the number of plies which can be dropped between adjacent design regions. This
method has been proven successful, however, combined with their applied material interpolation
scheme it is only capable of performing external ply drops. External ply drops are generally
undesirable from a manufacturing point of view as the laminate may have a high tendency for
edge delamination.
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3 Description of the papers

In the following, the papers which constitute the main contributions of the thesis are briefly
summarized.

3.1 Paper 1

In Sørensen and Lund (2013), the authors proposed a novel method for performing discrete ma-
terial and thickness optimization of laminated composite structures. However, the method was
specialized for mass constrained minimum compliance problems using an element-wise param-
eterization, where all the material candidates were limited to consist of the same orthotropic
material but with different fiber orientations. This limitation did, however, facilitate a linear
mass constraint which is desirable as it is both simple and computationally efficient. The lin-
earity of the mass constraint was utilized in the setup of the optimization procedures where the
constraint was approached in small increments. However, the method could thus not be applied
for e.g., sandwich structures as the addition of the core material would result in a bi-linear and
thus non-convex mass constraint.

In Paper 1, the optimization strategies developed by the previous authors were generalized
such that the proposed parameterization could be applied for other industrially relevant problems.
The focus of the work is therefore on the development of efficient gradient based optimization
strategies which can be applied for both non-linear and non-convex objective and constraint
functions. From a commercial aspect, cost and structural performance are considered as key
parameters. To reflect this, the method considers mass minimization with structural constraints
on linearized buckling load factors, natural eigenfrequencies, and limited displacements. Fur-
thermore, in order to increase the manufacturability of the optimized design, the manufacturing
constraints originally developed by Sørensen and Lund (2013) were included.

When minimizing the total mass of a structure, the ability to include structural non-linear
constraints is essential in order to maintain the integrity of the structure. However, as such
constraints may be infeasible to begin with, robust methods for handling infeasible non-linear
constraints must be included. Here, a so-called Merit function or elastic programming approach
was applied to ensure unconditional feasibility of the linearized optimization problem. The
applied approach was inspired by Svanberg’s work on the Method of Moving Asymptotes (MMA),
see e.g., Svanberg (1987).

The proposed method was demonstrated on a series of different parameterizations of a generic
main spar used in some designs of wind turbine blades. The different configurations demonstrated
the flexibility of the parameterization. Here, different sizes and shapes of candidate material and
geometry domains, also referred to as patches, could easily be configured so to comply with
the manufacturers production facilities and the available materials. The results did, however,
demonstrate the impact a poor patch layout can have on the performance of the optimized design.
Still, all the examples converged to solutions with feasible structural constraints within 28-142
design iterations which shows the effectiveness of the proposed method. In general, the results
obtained by the DMTO method can serve as a great source of inspiration for manufacturable
thickness variations and stacking sequences throughout the structure.
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CHAPTER 3. DESCRIPTION OF THE PAPERS

3.2 Paper 2

In Paper 2, the layerwise density variables introduced by Sørensen and Lund (2013) are replaced
with continuous through-the-thickness design variables. This was accomplished by utilizing so-
called casting constraints or filters originally proposed by Gersborg and Andreasen (2011). By
replacing the layerwise density variables with continuous through-the-thickness design variables,
the constraints for preventing intermediate void could be avoided. Similarly, the layerwise con-
straints limiting the thickness variation rate could instead be formulated on element level with
respect to the new variables. Consequently, the number of design variables and constraints pre-
sented to the optimizer could be significantly reduced when compared to the previous work, see
Table 3.1.

Paper 1 Paper 2

Topology variables ne · nl ne

Intermediate void constraints ne ·
(

nl − 1
)

0
Thickness variation rate constraints ne ·

(

nl − 1
)

ne

Table 3.1: Comparison between the number of topology variables and constraints for the original
DMTO method (Paper 1) and the proposed method in Paper 2. Number of elements: ne,
Number of layers: nl.

In order to further increase the manufacturability, and also avoid mesh dependent designs, a
standard in-plane density filter by Bruns and Tortorelli (2001) and Bourdin (2001) was applied.
By use of the filter radius, manufacturers can manipulate the size of the fiber mats, and ultimately
target the available materials and the production facilities. Because the in-plane density filter
is formulated with respect to the filtered through-the-thickness design variables, the ”physical”
layerwise density variables still have a high degree of discreteness; something generally not possi-
ble in classical topology optimization when applying a linear density filter. Because the density
filter relies on a linear formulation, the applied manufacturing constraints limiting the thickness
variation rate remain linear as well making them simple and computationally inexpensive.

Two different casting filters, or thickness filters in this context, were presented. The first is a
direct application of the casting constraint presented by Gersborg and Andreasen (2011), whereas
the second was developed on the basis of the threshold projection filter byWang et al. (2011). The
proposed filters were tested on a series of numerical examples consisting of a clamped plate under
uniform pressure. For all examples, the objective was to minimize the total mass with a non-linear
structural constraint limiting the displacement of the plate center. The examples were subdivided
into two categories. For the first category steel was the only available material candidate, and
for the second category four GFRP plies with fiber orientations at {−45◦, 0◦, 45◦, 90◦} were
considered.

The results clearly demonstrated that the material interpolation scheme combined with the
thickness filters were able to provide near discrete designs for both material and density variables.
However, because the two thickness filters are non-linear functions, variations did appear in
the fiber layup and consequently also the thickness variation. Here, the second thickness filter
generally obtained the lowest mass while being within the prescribed infeasibility limit. For
both filters, the specified radius for the in-plane density filter was successfully transferred to the
underlying physical design.

In conclusion, the proposed method provides a substantial reduction in the number of design
variables and constraints when compared to the previous work. By combining the proposed
through-the-thickness design variables with a linear density filter, near discrete designs could be
obtained while still preserving the minimum length scale specified by the in-plane density filter.
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3.3. PAPER 3

This approach thus makes it possible for manufacturers to manipulate the geometric outcome
by specifying a minimum length scale through the in-plane density filter.

3.3 Paper 3

With the established methods from Paper 2, the geometry of the individual plies can be manip-
ulated by specifying a minimum length scale through the in-plane density filter. However, the
material distribution still relies on a patch approach. These patches effectively enforce a specific
length scale by grouping elements together and thereby avoid mesh dependent designs. Because
the shape and size of a patch are statically fixed they cannot be influenced by the optimizer.
Consequently, great insight and ingenuity are required in order to determine a good patch design.
It was, however, demonstrated in Paper 1 that what might seem as a good patch design could
still give unsatisfactory results with respect to the performance of the optimized layup.

In Paper 3, a method is presented for providing mesh independent designs without the use of
a restrictive patch layout. The proposed method combines the linear density filter by Bruns and
Tortorelli (2001) and Bourdin (2001) together with the threshold projection filter by Wang et al.
(2011). Here, the density filter is used to establish a dependence between neighboring design
variables within the specified filter radius, and the projection filter is used to push the design
variables towards their discrete bounds. However, because the projection filter is a non-linear
function in the design variables, the optimizer can potentially generate superior, but non-physical
pseudo-materials. In order to overcome this problem, the projected design variables are re-scaled
in a so-called normalization filter. By adjusting the filter radius, engineers can effectively specify
the smallest size an area must have with constant material continuity, while the optimizer is free
to determine which material to apply, together with the location, shape, and size of the selected
materials.

The method is demonstrated for a series of examples where the underlying problem consists
of a clamped plate under uniform pressure. The examples considered fiber angle optimization
for a single layered plate with respect to minimum compliance, and multi-material optimization
of a laminated sandwich plate with respect to minimum mass subject to a constraint on compli-
ance. The results show that the method is indeed capable of imposing the pre-specified material
continuity onto the optimized layup, while still providing near discrete designs.
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4 Concluding remarks

This chapter highlights the main contributions of the thesis and comments on related areas which
could be addressed in future work.

4.1 Conclusions and contributions

The overall objective of this work has been to develop parameterizations and methods such that
manufacturing constraints and cost could be taken into account when designing and optimizing
laminated composite structures. This lead to four sub-objectives from which three were addressed
in the attached journal papers. The proposed methods and parameterizations from these papers
stand as novel contributions to the field of multi-material and thickness optimization of laminated
composite structures. In the following, the main contributions from each paper are highlighted.

• In Paper 1, the proposed method by Sørensen and Lund (2013) was generalized such that
simultaneous material and thickness optimization can be conducted when including non-
linear and non-convex structural criteria. In order to test the capabilities of the method,
results from a series of numerical examples were presented. The examples consisted of a
generic main spar used in some designs of wind turbine blades. The results show that the
method is indeed capable of efficiently handling complicated problems with many non-linear
constraints.

• In Paper 2, the concept of thickness filters was introduced. These filters effectively replace
the previously applied layerwise density variables with continuous through-the-thickness
design variables. Consequently, the filters eliminate the need for having explicit constraints
for preventing intermediate void from appearing between layers of the laminate. The
number of design variables and constraints is thus significantly reduced when compared to
the previously applied methods. A quite elegant improvement over the previous methods is
made by combining the new through-the-thickness design variables with a standard linear
density filter. This combination makes it possible for engineers to control the size of the
geometry while still obtaining near discrete designs. Furthermore, because the applied
density filter is a linear function of the design variables, the constraints governing the
thickness variation rate also remain linear.

• In Paper 3, in-plane material filters are introduced for the discrete material optimization
method. Generally, when optimizing laminated composite structures the design variables
are typically defined on element level. However, doing so makes the problem mesh depen-
dent and decreases manufacturability of the optimized design. To overcome this problem,
the design variables can be assigned to groups of elements also referred to as patches. Still,
as the patch layout is fixed it cannot be influenced by the optimizer, and they therefore
effectively restrict the design possibilities. With the proposed in-plane material filters,
engineers can now specify a minimum length scale which governs the size of areas with
constant material continuity, thereby being able to target the available materials and pro-
duction facilities while the optimizer is free to determine which material to apply, together
with the location, shape, and size of the selected materials.
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CHAPTER 4. CONCLUDING REMARKS

4.2 Future work

In accordance with the project objectives, one problem still stands unsolved i.e., the support of
handling internal ply drops when conducting simultaneous material and thickness optimization.
This problem could be addressed by two different approaches. The first approach would be
to formulate explicit manufacturing constraints to ensure a continuous transition of material
candidates between adjacent layers where ply drops appear. However, this naturally leads to
dependence between the material selection in one area to the material and thickness variation in
adjacent areas. Because of this dependency between the thickness and material variables, it is
considered unlikely that such manufacturing constraints could be formulated as linear constraints.
Another approach could be to formulate a new type of density filter which operates across layers
between adjacent finite elements, using some of the same principles applied in Paper 3.

In Paper 2 and Paper 3, the applied density filters utilize a linear weight function based
on the Euclidian norm of the vector between the considered shell elements. This approach is
perfectly valid for flat geometries i.e., plates, however, for curved shell structures this approach is
inadequate. Here, the distance between adjacent elements must follow a path along the contours
of the structure. Determining these paths effectively in a general finite element framework still
needs to be investigated.

In Paper 3, the applied projection and normalization filters make the parameterization highly
non-linear. It could be of interest to investigate other formulations which could do the same,
but without making the design variables inevitably non-linear. This nonlinearity of the design
variables is not desirable when manufacturing constraints related to the choice of material are
applied. Another approach could be to generalize the method of Borrvall and Petersson (2001)
such that is could be applied for multi-material topology optimization. This was partially done
by Hvejsel et al. (2011), but the authors did not include a density filter to impose regulariza-
tion onto the problem. By formulating the non-linear penalty constraint with respect to the
filtered variables, defined through the density filter, the design variables would remain linear.
Consequently, linear manufacturing constraints would also remain linear, while still being able
to control the material continuity and obtaining near discrete designs.
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