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Abstract

This study is concerned with large populations of residential thermostatic loads (e.g.
refrigerators, air conditioning or heat pumps). The purpose is to gain control over the
aggregate power consumption in order to provide balancing services for the electrical
grid. Without affecting the temperature limits and other operational constraints, and
by using only limited communication, it is possible to make use of the individual
thermostat deadband flexibility to step-up or step-down the power consumption of
the population as if it were a power plant. The individual thermostatic loads experi-
ence no loss of service or quality, and the electrical grid gains a fast power resource
of hundreds of MW or more.

This study proposes and analyzes a mechanism that introduces random on/off
and off/on switches in the normal thermostat operation of the units. This mechanism
is called Switching Actuation. The control architecture is defined by parsimonious
communication requirements that also ensure a high level data privacy, and it fur-
thermore guarantees a robust and secure local operation. Mathematical models are
put forward, and the effectiveness is shown by numerical simulations. A case of 10000
residential refrigerators is used throughout the work.
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Synopsis

Denne undersøgelse omhandler store grupper af termostatiske belastninger (f.eks.
køleskabe, klimaanlæg eller varmepumper). Formålet er at få styr på det samlede ef-
fektforbrug og at forsyne elnettet med balanceringstjenester. Uden at påvirke temper-
aturgrænserne og andre operationelle begrænsninger, og ved hjælp af kun begrænset
kommunikation, er det muligt at udnytte den enkelte termostat fleksibilitet til at op-
trappe eller nedtrappe effektforbruget i den termostatiske gruppe, som om det var
et kraftværk. De enkelte termostatiske belastninger oplever intet tab af tjeneste eller
kvalitet, og elnettet får en hurtig effekt ressource på hundredvis af MW.

Denne undersøgelse foreslår og analyser en mekanisme, der introducerer tilfældige
on/off og off/on skift i normal termostat drift af enhederne. Denne mekanisme
kaldes Switching Aktivering. Kontrol arkitekturen er defineret ved sparsommelige
kommunikationsbehov, der også har et højt kvalitetsniveau med hensyn til datasikker-
hed. Desuden garanterer arkitekturen en robust og sikker lokalbetjening. Matema-
tiske modeller er fremsat, og effektiviteten er vist ved numeriske simuleringer. Et
case-studie af 10000 køleskabe anvendes gennem hele undersøgelsen.
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Presentations

This chapter presents the context, the problem and the approach.

1 Context and Motivation

1.1 Energy Balancing

For the most part, the electricity grid operates like a closed circuit that needs to be
in balance between power supply and demand (and line losses) at all times. If the
total consumption becomes larger than the generation, the grid frequency starts to
decrease from its nominal value. In the opposite case, if the generation exceeds the
consumption, the grid frequency starts to increase. In both cases, if the imbalance is
not quickly compensated, the grid is destabilized and subsystems start to collapse one
by one: generator units trip out, switches and transformers servicing the distribution
grid are disconnected, and the power is out.

Electricity Production
Electricity
Demand

!
Fig. 1: Electricity is a just-in-time product, and needs to be in a very close balance between production and
consumption at all times.

To assure the balance between the electrical supply and demand, a complex mech-
anism is in place with operations running at different time-scales. While the details
differ between grid systems from different regions or countries, the overall balancing
structure is essentially the same.

With a view on the long time-scale, large consuming entities, such big industries,
need to secure supply months or years in advance. Electricity purchase agreements
need to be made with the grid authority and/or with specific generators, to drive the
required infrastructure and investments.
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On a medium time-scale, the grid authority makes predictions about the con-
sumption, and schedules accordingly the generation plan for the next day(s). The
generation schedule is dispatched between the different generator units using a cost
minimization principle and taking into account the constraints of the transmission
network. This can be done either centrally or by means of a market system. Regard-
ing consumption predictions, these are made using historical data and taking into
account aspects such as the season and the day of the week, weather forecasts and a
variety of other factors, and are, in general, quite accurate.

In the shorter time scale, a service hierarchy with three main levels is in operation
at all times.

On a time scale of a few seconds, which can be considered as real-time, the in-
herent turbine inertia of the synchronous generator units and the automatic response
(droop speed control, [23, Chapter 11.1]) of specifically assigned generators unit coun-
teract imbalances by using measurements of the grid frequency. This mechanism is
active at all times, smooths out small deviations, caused for example by normal de-
mand fluctuations, and is referred to as primary or frequency control.

To compensate for imbalances that persist over the time scale of the primary con-
trol, the grid authority secures a quantity of additional or reserve power that can
respond fast (e.g. within 30 seconds) and is reliable to commands. This makes it pos-
sible to compensates for larger imbalances such as unexpected generator unit outages
or unusual demand fluctuations. Generator units running on fossil fuels are typical
providers because of their predictable and controllable characteristics. To provide this
service, they run under-capacity, an inefficient set-point, or in "spinning" mode i.e.,
producing but not connected to the grid. Additionally, very large consumers can also
provide reserve services by agreeing to cut a part of their consumption at notice. Re-
serve services need to be accounted on both the positive and negative direction, such
that balance can be restored for situation of both underproduction (overconsumption)
and overproduction (underconsumption). An important aspect is that the provision-
ing of secondary reserves has both stand-by and activation costs.

Finally, the grid authority also secures tertiary energy reserves. These have a
slower response, but longer activation time, and are used to relieve units providing
the secondary reserve in the case of prolonged system imbalances.

Introductory literature about the balancing services, together with a number of
other services required for maintaining the integrity, stability and power quality in an
electrical grid can be found, for example, in the beginning sections of [18](focus on
the European region), [20](US) and [15](Denmark).

1.2 Wind and Solar Generation

In many countries, sustainable generation of electrical energy using wind and solar
based technologies is increasing [16]. While the overall wind and solar power gener-
ation potential has the size needed to cover a significant percentage of the electrical
demand, see e.g. [24], large-scale integration in the power system is challenging. The
variable characteristic of these generators produces a balancing effort that cannot be
efficiently met by traditional solutions [5].

When looking at the medium time-scale, wind and solar generation are often
desirable because the marginal costs are low and operation is effectively pollution

4



1. Context and Motivation

free. These type of generators are also becoming competitive in terms of investment
costs compared to traditional generator technologies, and together with environment
considerations, this makes them an increasingly attractive option also at the planning
stage. However, one of the main disadvantages of the wind and solar generation is in
relation to the short time balancing problem.

Wind and solar generation have a stochastic and partially uncontrollable charac-
teristic. While averages over long time scales are predictable, on the shorter time scale
the generation output can exhibit rapid and large deviations from the scheduled plan.
This increases the real-time balancing effort, both in terms of frequency and reserves,
and can lead to the paradoxical situation of requiring more fossil-fuels generators to
provide stand-by capacity.

New generators are challenging the electricity grid in other ways too. Other im-
puted drawbacks are the lack of inherent inertia and the dispersed characteristic, both
challenges for the traditional power system architecture.

1.3 Energy Storage

An obvious solution to the energy balancing problem is the use of energy storages.
There are many different technologies, suitable for different time-scale operations.
The main examples are pumped hydroelectric stations, mechanical flywheels, differ-
ent type of chemical batteries, hydrogen and compressed air solutions, capacitors and
superconductive magnetic solutions, and, not least, different forms of thermal storage.
However, none of these solutions distinguishes itself as a clear winner for large-scale
adoption. Some of the disadvantages include very high investment and operation
costs, safety concerns, or low efficiency. In the near future, the more likely scenario is
that of a limited adoption of storage facilities, combined with a Smart Grid approach.

1.4 Smart Grid

A new investment cycle is approaching for most of the electrical infrastructure in the
world. Taking into account the forecasted needs for the next 30-40 years, as well as
the new climate context and pollution policies, the renewal process requires more
than simply replacing and rescaling of the system components. Transformations of
the electrical power system are needed, and they can be classified in three categories:
changes on the generation side, changes in the transmission and distribution network,
and changes on the consumption side.

Many power systems have already begun such transformation process. High lev-
els of wind generation are seen in the Danish grid (close to 39% of the total electrical
energy consumption 2014), and small, distributed photovoltaic generation has signif-
icantly increased in the German grid. On the consumption side, advanced household
metering infrastructure is being installed in various countries (among the forerunners
are Italy, UK, Denmark, USA) allowing users to better monitor their electricity con-
sumption, and incentivizing an efficient and economical use. On the distribution and
transmission levels, system upgrades including deployment of phasor measurement
units and construction of HVDC connection lines are improving the interconnectivity
between national and regional power systems. These can all be seen as the beginning
of the Smart Grid [17, 36].

5



"Smart Grid" is an umbrella term for a number of developing solutions (techno-
logical, but also socio-economical) that would make use of real-time information
exchange, distributed storages, systems interconnectivity and intelligent solu-
tions to transform the electrical grid. Smart Grids can facilitate the integration of
more variable and geographically dispersed generators, can improve the overall
efficiency of the electrical system by reducing the current needs for expensive
energy reserves, and can optimize infrastructure investments. These solutions
are enabled by the advancements in the information and communication tech-
nology, and by automation and control.

One of the main points of the Smart Grid agenda is the creation of mechanisms
for a cost-effective and agile way of handling the real-time balancing operations. The
European Smart Grid Strategic Research Agenda [40, 41] emphasizes that

"as many technologies as possible should serve the goal of a better electricity load-
generation balancing",

and lists energy storage solutions, construction of long distance interconnection links,
and enabling the flexibility of electricity consumption as challenges and priorities for
the near future. The latter category provides the main context and motivation for this
work, and will be elaborated in the next section.

1.5 Demand Side Management (DSM)

In the traditional grid the consumption side is, for the most part, a passive actor. As
discussed, at the planning level the supply is dispatched to meet the forecasted de-
mand, and in real-time operation the supply takes the main responsibility for energy
and power balance. The Smart Grid is pushing for developments on the demand-
side, with the aim of making the consumption side an active element of the grid. DSM

measures can be classified in four categories,

• efficiency measures,

• classical incentives and contracts,

• Demand Response (DR), and

• Dynamic Demand (DD).

The first two categories can be seen as conventional, while the last two categories are
novel.

Efficiency measures have the aim of reducing the amount of energy needed to ob-
tain the same amount of product and services. Even small improvements can lead to
significant overall benefits. For example, many countries have implemented programs
for phasing out incandescent light bulbs. In the European Union, it is estimated that
a total roll out of more efficient lighting alternatives will save about 40 TWh of en-
ergy per year, which is the equivalent to the total electrical energy consumption of a
country such as Romania [14]. Efficiency measures are not directly addressing the en-
ergy balancing problem, but are an indirect contributor, for example by reducing (or
stopping the increase) of the amount of energy that needs to be secured for reserves.
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1. Context and Motivation

Classical incentives and contracts refer to demand-side measures that have been
in use for a good number of years (or decades), and are not a novelty. Time-of-day (or
time-of-use) pricing, enabled by analog meters with time switches (preprogrammed
or with remote activation via e.g. radio), has been in use for both the residential and
the industrial sectors in many countries. It can be used to reshape the daily consump-
tion pattern and to reduce the peak load, helping the energy balancing problem at the
planning stage. Interruptible contracts offer pricing benefits in exchange for allowing
the grid some amount of direct control over consuming devices. For example, US
Florida residential customers have the possibility of enrolling air-conditioning, water
heaters and pool pumps to an automatic control program that can turn appliances off
for a limited period of time and for a maximum of 3-4 times a year [31]. Furthermore,
large industries can offer secondary reserve services by bidding or contracting their
availability to drop a large amount of consumption in specified time slots. Activation
takes place only when needed by the grid, according to a manual or automated com-
munication protocol. Interruptible contracts and consumption-side reserves help the
grid balancing operations in the shorter time scale.

As shown by classical incentives and interruptible contracts, the passive role of
the consumption-side is not intrinsic, and one of the main challenges of the Smart
Grid agenda is to enable a higher degree of consumption flexibility. The idea is
to encourage consumption when variable generation is high, and conversely, to re-
duce consumption when variable generation is low. Adapting the consumption to the
variability of the generation has obvious advantages, and the overall objective is not
necessarily to consume less, but to consume smarter.

1.6 Demand Response (DR) and Dynamic Demand (DD)

DSM solutions in which consumption is responsive to real-time signals are called
DR programs.

The DR concept is relatively new, and is motivated by the low cost, availability and
practical size of communication and computation platforms. There is a good amount
of white papers and theoretical work on different DR strategies, and demonstrations
are also starting to be reported in the literature. There are however no large-scale
deployment programs.

In this work, time-of-day pricing is not seen as a DR program, because tariffs are
fixed in advance and do not reflect the real-time state of the variable generation or the
balancing needs of the grid. Furthermore, the aforementioned interruptible contracts
are also not seen as DR programs. This is because an important assumption of the
contract is that the grid will not make frequent use of the control option, while DR
programs have an "at all times" or continuous availability characteristic. Furthermore,
an important principle of DR programs is nondisruptivness. DR programs should
not significantly interfere with the main products or services that power consuming
devices are providing. This is also the implied meaning of the word "flexibility".

"Demand response is clearly the killer application for the smart grid".
Jon Wellinghoff, Federal Energy Regulatory Commission, 2009
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DR strategies can be classified according to different criteria. One of the most
important classification is according to the response type. DR programs can be direct
or indirect.

In direct programs, the entity issuing the DR signal has decision making capabil-
ities over the consuming device(s). The DR signal is closely related to the physical
operation of the device(s), for example a turn on/turn off command, a setpoint, or
similar. In direct DR programs the response of the consumption to a particular signal
is predictable.

In indirect programs, the entity issuing the DR signal does not have decision mak-
ing capabilities over the consuming device. The DR signal has the characteristics of
an incentive or invitation, for example a price in explicit monetary units, or in levels:
high, normal or low. In indirect DR programs the response to a particular signal is
generally less predictable, and multiple negotiations or iterations might be needed to
obtain a desired outcome.

Another classification of DR programs is based on the sector criteria, allowing to
distinguish between the specific requirements in the context of industrial, residential,
or commercial (tertiary) sectors.

DD is a specific or restricted form of DR, where the external coordinating signal
is the grid frequency.

DD programs require individual consuming devices to be able to measure the grid
frequency directly and with good accuracy, and prescribe the response protocol or
algorithm that the device should execute based on the measurement result. DD is
thus a form of frequency control. DD was first proposed in in the late ’70s [37], but
the method never caught momentum for deployment. In the context of new grid
challenges, DD interest has restarted [6, 38, 45].

2 Demand Response of Thermostatic Loads

2.1 Themostatically Controlled Loads (TCLs)

TCLs are relatively small, residential and commercial appliances that perform a
cooling and/or heating task, and that have an on-off power consumption char-
acteristic driven by a thermostat.

In the context of power system operation and Smart Grid technologies, residential
TCLs such as refrigerators, air-conditioners, heat-pumps and water-boilers, and com-
mercial TCLs such as vending machines are a promising resource of demand response
services [13].

A TCL device has three main components: a power active component, a ther-
mally active component, and thermal loads or compartments. For example, the power
consumption of a domestic refrigerator is driven by the compressor component, the
thermally active component is the vapor-compression cycle, and the fresh-food and
freezer compartments, together with the stored items, are the thermal loads. A more
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2. Demand Response of Thermostatic Loads

detailed description of the main components in a domestic refrigerator is made in
App. Z, as this type of TCL is the case study of choice in this work.

TCLs are natural candidates for DR programs because of their inherent power con-
sumption flexibility.

An electrical load or appliance is (power) flexible if it is able to fulfill its nomi-
nal operational objectives under more than one power consumption pattern or
profile.

Fig. 2 shows two different power consumption patterns that both fulfill the thermal
requirements of normal service: the classical thermostat operation, and a modified
operation where switch-on and switch-off actions occur before the thermostat limits
are reached, in a seemingly random pattern that could be motivated by external grid
conditions. It is however difficult to see from Fig. 2 alone how the modified operation
can help the grid. To explain this, it is important to look at the power consumption
behavior of a large group of TCLs.
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Fig. 2: Two different power consumption patterns. A normal thermostat operation is shown in the left graphs,
where on/off switches occur at the upper and lower limits of the temperature band. On the right graphs,
switches can also occur when the temperature is inside the thermostat band.

Since an individual TCL has a very small energy storage capacity relative to the
scale of the power system operation, any relevant DR strategy requires the participa-
tion of a very large number of TCLs. Under normal conditions, the power consumption
of a TCL population, which is the aggregation of individual on/off power consump-
tions, is a relatively flat profile. This is because the switch-on and switch-off actions
of the TCLs are not synchronized within the population. In particular, the baseline
level b should be close in value to the product between the average duty-cycle d̄, the
average power rating p̄, and the number of loads n,

b ≈ d̄ p̄n, (1)

where the duty-cycle is defined as the fraction of time a unit is "on" in normal oper-
ation. By purposely modifying the switch-on and switch-off times of the individual
TCLs, it becomes possible to obtain useful power responses at the population level, see
Fig. 3.
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Fig. 3: Aggregated power consumption of a simulated fleet of 10000 refrigerators, manipulated around the
baseline level of approximately 100 kW, two examples.

The aggregated response shown in Fig. 3 is similar to a coherent, individual re-
sponse from a large energy asset such as a pumped storage unit, or a big industry
performing a load shifting action. TCLs can thus provide useful balancing services,
albeit only in the short and medium time scales (frequency, primary and secondary
reserves). Because of this, TCLs can be said to have electrical storage capacity or load
shifting capabilities (the ability to consume in advance or to postpone consumption).

But there are also some important differences. Firstly, the energy needs of a TCL

are more constrained than those of more typical storage systems such as electrical
batteries or hydro-pumping storage stations, and the energy levels are fluctuation on
a much fast time-scale compared to other thermal storages such as district water-
heating reservoir tanks or industrial cold storages.

At the same time, it is perhaps relevant to point out that TCLs do not have true
electrical energy storage properties. In the "on" part of the individual TCLs operation
cycle, electrical energy is used to pump heat into-to (in the case of a heating TCL) or
out-of (in the case of a cooling TCL) the thermal load compartments. It can be said
that the organized electron movement in the power supply cable is used to change
the average characteristic of the unorganized movement of molecules in the thermal
load compartments. But the energy transformation cannot be reversed: TCLs are not
equipped to transform the molecular kinetic energy back to electricity. The bidirec-
tionality of energy transformation, even though losses and other limitations must be
accounted for, is a highly desirable characteristic of storage systems. Examples of
a bidirectional storages are batteries, hydro-pumping stations, or high temperature,
closed thermal storage systems equipped with turbine generators [44].

Furthermore, it can be seen that TCLs do not have typical load shifting capabili-
ties. A washing machine, for example, can be connected to a Smart Grid plug and
instructed to perform a service cycle with a flexible start time, but no later than a hard
deadline. Within the hard deadline constraint, it can be considered that all starting
times (or waiting times) are equally good from the perspective of the service cycle to
be accomplished, and the grid has full liberty to choose. A similar flexibility example
is the charging process for an electrical vehicle battery. The power consumption flex-
ibility of a TCL is however more restrictive, and inherently more complex because of
the temperature dependence that cannot be directly expressed in time coordinates.
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2. Demand Response of Thermostatic Loads

Using terminology from [35], energy storage systems and load shifting systems
can be modeled as bucket, battery and bakery resources. The TCL requires a new type of
model, one that could be called a leaky bucket. While aggregation formulations have
been successfully investigated for bucket, bakery and battery models, it is not clear how
to aggregate leaky bucket models.

An important question about DR of TCLs is whether or not their cumulated ca-
pacity is significant enough for balancing operations? This work is not directly con-
cerned with planning studies, however, a simple back-of-the-envelope calculation for
Denmark, gives a positive response. Table 1 summarizes data from Danish statistical
sources [1, 2] and shows the baseline consumption of different residential TCLs. These
numbers are comparable with the average amount of traded energy reserves in 2012 in
Western Denmark1, approximately 58 MW for primary reserves, and approximately
180 MW for secondary reserves [11].At the same time, the DR potential of TCLs is also
supported by other works, for example [13], [25] or [39], where the latter makes a
rough estimation of 20 GW TCL power available for reserves in the USA. A detailed
analysis of the grid balancing relevance and capacity size of TCLs is made in [30] for
the California state.

Table 1: Statistical data on residential TCLs in Denmark

El. consumption [GWh/year] Average power [MW]
Fridges 525 59.85
Freezers 296 33.74
TOTAL 93.59 MW

Electric water heaters 497 56.65
Electric radiators 687 78.31

Heat-pumps (no data) (no data)
TOTAL 134.96 MW

2.2 Automated Direct Demand Response via Broadcast (ADDRB)

The main technical challenges of DR for TCLs are related to the large number of in-
dividual units and the distributed structure. Realistic solutions must keep computa-
tional complexity in check and use communication flows that are feasible under cost
and privacy criteria. As such, this work focuses on solutions that are aligned with
the following three principles. Similar principles have been discussed in other works,
e.g. [21]:

[P1] Actuation takes place via broadcast communication. The network requirements
for the actuation channel are reduced and the communication is fast, since the
same signal is sent to all units.

[P2] Actual physical decisions (switch-on and switch-off actions) take place at the
individual unit level and account for the local conditions. This guarantees a
robust, nondisruptive local operation.

1The Danish electrical system is divided between two control zones, the Western and the Eastern part.
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[P3] Measurements at the unit level area are used sparsely and anonymously. This
is to ensure that network requirements for the measurement channel are not
excessive, and that the overall solution is privacy friendly.

Together, these three principles will be called Automated Direct Demand Response
via Broadcast (ADDRB), see Fig. 4. It is highlighted that this is a direct type of demand
response, although it maintains the lightweight communication requirements of the
indirect type.
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Fig. 4: Schematic overview of the ADDRB approach. The command u is the same for all the units in the
population, and attempts to manipulate an aggregated property y, the power consumption. Information
about the system is gathered anonymously and only partially from the individual units Xi , i ∈ {1, . . . , N} and
sparsely in time.

It is mentioned that the ADDRB architecture could be studied and applied to other
types of loads, for example electrical vehicle batteries or non-thermostatic household
appliances such as washing machines and driers.

3 State of the Art for DR of TCLs

3.1 Cold Load Pickup

The systematic study of large groups of thermostatic loads started in the power system
and in the control literature in the ’80s with the works of Ihara and Schweppe [19] and
Malhame and Chong [28]. The interest was on modeling the oscillatory effects in the
power consumption after a planned (direct load control) or unplanned interruption
(black-out).

In normal operation, a population of thermostatic units operates in a desynchro-
nized manner, where some units are on and consuming power, and others are off.
The overall power consumption has an approximate flat profile (a baseline, like in the
beginning part of power trajectories from Fig. 3), because as some of the units turn
on, some will also turn off. However, after a period of interruption in the power sup-
ply, at restoration, a large percentage of units will start at the same time. This leads
to a period of synchronized operation, where units turn both on and off at approxi-
mately the same time, leading to big variations and oscillation in the overall power
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3. State of the Art for DR of TCLs

consumption, see Fig. 5. The period of synchronized operation can be significant,
until different sources of randomness have time to accumulate and desynchronize the
power consumption cycles.

In the power system literature, the oscillatory rebound effect in the power con-
sumption of a TCL population, as a result of a synchronization process (usually
a power interruption), is known as Cold Load Pickup. Despite the name, it is
relevant for both cooling and heating TCLs.
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Fig. 5: A simultaneous interruption in the power supply of the TCL population leads to a Cold Load Pickup
phenomenon. In the simulated trajectory, an one hour blackout occurs between 06:00 and 07:00 am. At least
two significant peaks and one valley can be seen in the transient period following the blackout.

The works [19], [28] and [27] put forward an analysis of the phenomenon by us-
ing a bottom-up and physically-based modeling strategy, and capture the oscillatory
behavior in both a qualitative and quantitative way. Each TCL unit is modeled in a
simplified manner, focusing only on the main features of the dynamical behavior, the
thermal dynamics as seen at by the thermostat mechanism, the on/off switching and,
optionally, stochastic disturbances.

These works then define probability quantities in connection with the temperature
and on/off mode states of an individual TCL. Working in the probability space gives a
way to directly aggregate individual units into a population model, under a statistical
independence assumption that is not restrictive. The aggregation is done by using
probability quantities as approximations for population fractions (percentages).

Making use of the bottom-up modeling approach, [32], [33] and [43] further con-
tribute with a focus on numerical simulations.

Overall, the works enumerated in this section put at the disposal of the grid tools
to predict and better plan load shedding and restoration procedures. This is especially
relevant for densely populated areas, with a high contribution of heat and cooling
loads, in the winter and summer time respectively.
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3.2 DR Actuation of TCLs

After three decades, TCLs come again into focus. Enabled by the low cost of comput-
ing and communication hardware, automated DR strategies can be developed. For
example, advanced thermostats able to communicate with the grid are being installed
at customer sites in the USA [4] as a part of various direct load control programs. Fur-
thermore, smart thermostats are becoming commercially available from a variety of
producers, for different customer segments, from private home users to HVAC system
developers and other commercial entities [3]. These smart thermostats provide ad-
ditional services (remote activation, preprogrammed profiles, auto-detection of open
windows, etc.), which can interest both the users and the grid. This context moti-
vates the development of control algorithms that can engage the power consumption
flexibility of TCLs at a large-scale, and beyond the simplistic load-shedding paradigm.

The following overview of the TCL DR literature is focused on presenting three
actuation strategies that fulfill the ADDRB principles, namely

• the Setpoint Actuation,

• the Toggle Control,

• and the Switching Actuations: the Switching-Fraction and the Switching-Rate.

An actuation strategy creates an input or control channel into/for the the TCL pop-
ulation. Signals can then be sent over the input channel to manipulate the state and
power output of the TCL population. Relevant signals can be created by a control
algorithm that uses a model of the TCL population system and measurements.

In 2009, Callaway [12] analyzes a method for influencing the power consumption
of a TCL population by using a common command signal to offsets the thermostat
setpoint of all units. The effect of this type of actuation is sketched in Fig. 6, showing
how the entire thermostat band of a TCL is shifted by the external signal, which can
be expressed in absolute or relative units.

Fig. 6: A change in the thermostat set-point value. The width of the thermostat band remains constant.

The Setpoint Actuation is a method for manipulating the aggregated power con-
sumption of a TCL population by simultaneously shifting the thermostat bands
of all units with the same (absolute or relative) amount, either in the positive or
in the negative direction.
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3. State of the Art for DR of TCLs

The probabilistic modeling from [28] is then used as an analysis framework, and a
linear input-output dynamic model is developed. The input is the thermostatic offset,
and the output is aggregated power consumption. The input-output model is used in
a control scheme that actively compensate for wind fluctuation with a TCL population
in a simulation scenario.

Control methods for the Setpoint Actuation are further developed by other works.
In [34], a control scheme based on a different linear input-output model is proposed.
In addition, because the thermostat mechanism is normally based on a low-resolution
temperature sensor, a demultiplex strategy is used to extend the Setpoint Actuation
by grouping TCLs into clusters. The clusters receive different, coarse-resolution set-
point changes, but in a such a way that the overall effect approximates a common,
fine-resolution setpoint change. In [7] and [8], the probabilistic modeling framework
is again used, this time to develop a more advanced, bilinear model of the input-
output dynamic model for the Setpoint Actuation. Based on this model, a nonlinear
sliding mode controller is designed. In [42], the authors add error boundaries to the
probabilistic model and set-up an Kalman estimation scheme.

Toggle-Control is proposed in [22, 29]. This method is based on partitioning the
thermostat temperature interval [Tmin, Tmax] into a relatively large number N of bins
(or cells). The command u sent to the TCL population consists of two vectors, say p
and p̄, each with N-elements. For p, each element pi ∈ [0, 1] represents a switch-on
probability, while for p̄, each element p̄i ∈ [0, 1] represents a switch-off probability.
Upon receiving the command, each unit in the population reacts in a probabilistic
manner. A power mode switch action is decided or not, according to a Bernoulli
trial with a success probability associated with its current temperature (and with the
switch direction). This actuation logic is sketched in Fig. 8.

Toggle Control is a method for manipulating the aggregated power consump-
tion of a TCL population by having units switch-on and/or switch-off according
to independent, temperature-parametrized probabilities. A vector of switch-on
and switch-off probabilities, in which elements are associated with specific tem-
perature intervals or bins, are communicated to each unit in the TCL population.
Units react as soon as they receive the signal, and thus the units with success-
ful random trials switch simultaneously (except for communication out-of-phase
effects).

Given a large enough population, this randomized actuation gives a predictable
and consistent result at the aggregate level. This actuation is advantageous because,
given the state of the population as a histogram of the temperatures and on/off power mode
in the population, the result of a particular actuation is intuitive, and easy to calculate
and predict, see Fig. 8, by moving indicated fractions of the bar quantities between
the on and off bins with the same temperature.

However there are some disadvantages. The broadcast signal has a large footprint
as it consists of one rational number for each of the bins, and the issue of the thermo-
stat’s low-resolution appears again. In principle, the TCLs need to be equipped with
high resolution temperature sensors to be able to distinguish between the narrow
temperature bins.

The Switching-Fraction actuation proposed in [46, 47] and by this work in Pa-
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Fig. 7: Overview of the Toggle Control logic at the unit level.
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pers A and B, can be seen as a particular form of Toggle Control where the communi-
cated probability values are the same for all the histogram bins with the same power
mode, p1 = p2 = p3 = . . ., and p̄1 = p̄2 = p̄3 = . . ., see Fig. 9. The switching signal
thus has only two components: one targeting units "on" with a "switch-off" probabil-
ity, and one targeting units "off" with a "switch-on" probability. This resolves the main
disadvantages of the toggle actuation, but creates a situation of underactuation in the
modeling. As a result, control algorithms are more challenging to design.
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Fig. 9: Overview of the Switching-Fraction actuation at the population level. Temperature safezones (ad-
dressed later in this work) are included in these graphs, by setting switch probabilities to zero.

The Switching-Fraction actuation is a method for manipulating the aggregated
power consumption of a TCL population by having units switch-on according to
a probability p ∈ [0, 1], and/or switch-off according to a probability p̄ ∈ [0, 1].
Units react as soon as they receive the signal, and thus the units with successful
random trials switch simultaneously (except for communication out-of-phase
effects).

A further form of Switching Actuation, the Switching-Rate, has been proposed
in Papers C and D. Instead of probabilities, switching-rates are communicated to the
units in the TCL population. This results in switching actions that are not simultaneous
but distributed in time, and is explained in more detail in the next chapters. The
Switching-Rate mechanism can be seen as similar to the DD random strategy from [6],
but the way it is integrated in the thermostat logic (hard limits are maintained) and
modeling elements (using the entire state distribution to characterize the population,
as opposed to only the temperature mean and variance) are different.
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It is important to point out that both the Toggle Control and the Switching Actua-
tions take place within the inherent flexibility of the thermostat, meaning that - unlike
the thermostat setpoint shift/offset control - the minimum and maximum tempera-
ture limits are not crossed during operation.

Other approaches to actuation exist in the literature. For example, [39] proposes
an open-loop actuation strategy, where predefined power responses can be triggered
without rebound oscillatory effects. The main idea is to avoid actions that create
"bulges and dents" (partial synchronization) in the underlying temperature distribu-
tions within the population, as these will propagate as a traveling wave and only
slowly decay. Three such safe protocols are proposed, some of them maintaining the
original thermostat band and others using a shift operation. This approach requires
a digital logic equipped with some memory functions and, as part of the protocol,
units can be requested to perform actions based on their individual temperature and
mode state at the beginning of the actuation cycle. Overall the approach presents
advantages, such as one way communication, and a predefined strategy for danger-
ous synchronizations, but can also be seen as less agile in using the available power
flexibility. Another desynchronzation algorithm is given in [10], this specific strategy
complements the thermostat setpoint actuation.

Recently, in [26] proposes and analyzes an actuation that symmetrically narrows
the deadband within the original thermostat limits.

A new direction for approaching the distributed, large-scale demand response
problems is through mean-field games. Similar to the ADDRB architecture, the setup
of a mean-field game consists of single shared signal needs to reach all individuals
within the population. The individuals then solve an optimization problem, in a
fully decentralized way. The objective of the individual optimization includes local
terms, a cross coupling term related to the shared signal (the population goal), and
a prediction of the behavior of the "rest of the crowd" to the current conditions. The
individual unit needs information about the population ("rest of the crowd"), but only
in an offline manner. For mean-field approaches to DR and DD of TCLs are presented
in [9, 21]. Different from the mean-field formulation, in the ADDRB setup presented
in this work the population knowledge is present only at a central level, and a more
direct command is sent to the individual units.

4 Content Outline

The Smart Grid context and the background for DR of TCLs have been presented. An
overview of the main modeling and computational tools used in this work follows,
including examples and comments for the TCL case. The the main contributions of
the work are then summarized, and concluding remarks are presented together with
a list of open issues. The main body of the work consists of four chapters organized
as scientific articles, Papers A, B, C and D. Papers A and B concern the Switching-
Fraction actuation, while papers C and D present the Switching-Rate actuation, in-
cluding motivation, modeling and control results. There are two appendices, one on
TCL duty-cycle calculations and one on modeling aspects for domestic refrigerators.
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Methodology

The chapter provides an overview of the main theoretical and computational tools used in this
work, and includes examples and comments related to the TCL case.

5 Stochastic Hybrid System (SHS)

5.1 Dynamical Systems

A dynamical system is a mathematical representation that captures the essential char-
acteristics of a natural or technological process in terms of describing the evolution
in time of key properties/states/variables. The mathematical representation can ex-
plain, predict and help the understanding of the process. Additionally, it is essential
when attempting to control the process.

Dynamical systems consists of

• a set of quantifiable properties/states/variables, and

• a set of rules describing how the states evolve/change in time.

The states of the system are chosen or processed to be in a numerical form, and
can be classified as continuous- or discrete-valued. For example, the temperature in
a particular point of a room is essentially a continuously-valued variable, meaning
that it can take any numerical real value within some interval. On the other hand, the
output of a digital thermometer is a discrete-valued variable because of the limited
resolution and the output nature of the digital equipment. States that are categorical
or ordinal in nature are processed into discrete-valued numerical data.

The dynamic rules can also take different forms. They can be deterministic, non-
deterministic or stochastic, and can use a time-based or an event-based description.

For systems with a deterministic dynamical rule, given the initial or the current
state, only a single future outcome is possible. In the case of non-deterministic sys-
tems, there can be more than one possible evolution path. Stochastic systems have
associated probabilities for each of the possible evolution paths.

The difference between a time-driven dynamic and an event-based dynamic is un-
derstood in the following way: in the case of a time-based dynamic rule, the evolution
of the state is directly related to a time variable2, and in the case of an event-driven
dynamic rule, the evolution of a state is not directly related to time, but to the occur-
rence or arrival of an event. Although there might be a timing mechanism behind the

2The time variable can be either continuously- or discrete-valued
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description of the event, this is not necessary or may not be explicit. Time-based dy-
namics are naturally related to continuous-valued states, while event-based dynamics
are naturally related to discrete-valued states, see also [7](Ch.1.3). Systems with an
interaction between the time-driven and event-driven dynamics, and with a coupling
of continuous- and discrete-valued states, are called hybrid systems.

The sections below will introduce hybrid systems, Markov chains, Stochastic Dif-
ferential Equations (SDEs), and Stochastic Hybrid Systems (SHSs). SHSs are the tool of
choice for describing Themostatically Controlled Loads (TCLs) in this work.

5.2 Hybrid Systems

The main characteristic of Hybrid Systems is the interaction of the time-driven and
event-driven dynamics. Time-driven dynamics are related to continuously-valued
states and are typically described by differential or difference equations. Event-
driven dynamics are related to discrete-valued states and are typically described by
automata3. There are different classes of hybrid systems, see e.g. [8], and this section
will introduce the broad class of hybrid automata.

5.2.1 Automata

An automaton is a mechanism for describing logical and discrete behaviors. It is also
known as a state machine, or as a state (transition) diagram, which is the graphical
representation of the automaton.

Definition (Automaton). A typical automaton consists of the following elements
(adapted from [7](Ch.2.2)):

• a set of discrete states or modes, Q = {q1, q2, . . .};

• a set of events E = {e1, e2, . . .};
The events can be thought of as external inputs, resulting from the inter-
action of the process with the environment or with another process4, or as
internal events inherent to the system.

• a transition function, which can be of two types:

– deterministic transition function φd that associates a start-state and
an event with an end-state,

φd : Q× E → Q, φd(q, e) ∈ Q,

where φd does not need to be defined on its entire domain (a partial
function);
This can be further clarified by introducing a helper function Γ, called
an active event function, that describes which events are defined, pos-

3Both time-driven dynamics and the event-driven dynamics can also be represented by other formalisms,
for example partial differential equations or a mixed system of dynamic and algebraic equations, and respec-
tively, Petri nets or other discrete mathematical modeling languages.
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5. Stochastic Hybrid System (SHS)

sible or allowed from each state,

Γ : Q → 2E , Γ(q) ⊆ E .

It is mentioned that the empty set ∅ and the E set itself are members
of the power set 2E , which is the set of all subsets of E . Within the
definition, it is possible to have different events leading to the same
end-state, or an end-state that is the same as the start state;

– non-deterministic transition function φn that associates a start state
and an event with a set of possible end-states,

φn : Q× E → 2Q, φn(q, e) ⊆ Q;

The active event function can be identically defined as above.

Alternatively, transitions can be specified as a set T ⊆ Q× E ×Q, where
each element consists of a start state, an event, and an end state. In this
case, the difference between a deterministic and a non-deterministic au-
tomaton can be made by inspecting the transition set T for the existence
of multiple elements with the same start-state and event pair.

Another observation is that non-determinism is caused when starting from
the same state, multiple end-destinations are possible using the same event.
The situation of different end-states by different events is not non-determinism
within this definition.

• an initial state q0 ∈ Q, or a set of possible initial states q0 ⊆ Q (a non-
deterministic feature);

• (optionally) a set of marked states, Qm ⊆ Q.

The definition of the automaton prescribes the logical rules and allowed order of
events or transitions for the evolution of the system, but no timing information.

TCL example. Using the automaton modeling, the logic of a thermostat can be
represented as in Fig. 10. There are two discrete states, Q = {q0 ≡ OFF, q1 ≡
ON} and two events E = {e0 ≡ TURNOFF, e1 ≡ TURNON}. The transition
function (or set) are deterministic. From the OFF state, only the TURNON event
is allowed (possible), and from the state ON only the TURNOFF event is al-
lowed. The trajectory (execution, or solution) of such a system thus consists
of alternating ON-OFF state sequences, and the acceptable ordered event list
is, similarly, an alternating sequence of TURNON and TURNOFF events. The
initial state determines the first element in these sequences.

The thermostat on/off logic is one of the simplest forms of automata, and not
truly and interesting object in this framework. The operations and tools of automaton
framework, such as model verification and the development of supervisory control,

4There exist frameworks for defining automata with outputs, not discussed here. This would then allow a
complete input/output design.
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q0 q1

e0

e1
Fig. 10: Simple automata with two discrete states, and two events.

are inconsequential for this example. At the same time, the automaton framework is
incomplete to model the thermostat logic. The next step is to extend the automaton
framework and combine the event-based dynamics with a simple form of time-driven
dynamics.

5.2.2 Timed Automata

Timed automata are a modeling framework for extending the logical descriptions
with clock or timing content. Clocks are the simplest form of time-driven dynamic. A
clock is a continuous variable c(t), c : R+ → R+, with a time-driven evolution given
by the ordinary differential equation

dc(t)
dt

= 1. (2)

A timed automaton based on clocks [2] will be presented next. The following
elements will be added to the logical automaton,

• a number of clock variables ck(t), where k is the index;

• guards or timing conditions that are prerequisites for transitions, these will be
defined in terms of the clock variables;

• invariant conditions that describe a type of transition forcing, again defined in
terms of the clock variables;

• clock reset actions consisting of the assignment ck(t) = 0, taking place at the
moment of the (instantaneous) transition.

Definition (Timed Automaton). A timed automaton with guards and invariants
consists of the following elements (adapted from [7](Ch.5.6)):

• a set of discrete states or modes, Q = {q1, q2, . . .};

• a set of events E = {e1, e2, . . .};

• a set of clocks C = {c1, c2, . . .};

• a set of transitions T ⊆ Q× E ×Q, where each transition element consists
of a start state, an event, and an end state;
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• guard conditions associated with each transition {gj, ∀j ∈ T }, taking val-
ues in a class of allowed clock constraints gj ∈ C(C) ∪ {∅};
The set of admissible constraints C(C) consists of inequality relations in-
volving the clock variables and a constant (rational) value. A transition
is not enabled unless the associated guard condition (if not equal to the
empty-set) is evaluated in to be true in clock-time logic.

Depending on the transition set T and the guard conditions {gj}, the au-
tomaton can be deterministic or non-deterministic. A non-deterministic
automaton has timed transitions with the same start-state, event pair, and
with guard conditions that are not mutually exclusive in the clock-timed
logic, leading to different end-states.

• a subset of clock variables associated with each transition, {Cj ⊂ C, ∀j ∈
T }, to be reset the moment of the (instantaneous) transition j;

• state invariant conditions defined via a partial function I : Q → C(C);
If an invariant condition is present for a state, the automaton can only
remain in the respective state as long as the condition is fulfilled. Before
the invariant condition expires, a transition must take place from the set of
available choices given by T .

• an initial mode q(0) = q0, and initial clock values, usually zero, ck(0) =
0, ∀k.

The definition of the clock variables introduced the concept of time as a positive
real number. The discrete state can now be considered as a function of time, q(t),
q : R+ → Q. Furthermore, the time just before a transition is denoted by t−, and
the time just after a transition is denoted by t+. This is necessary to consider because
the transitions are instantaneous. If a clock variable ck is first reset by the transition
taking place at time t, its value right before the transition ci(t−) = lim

s↗t
ck(s) = t and

right after the transition is ck(t+) = lim
s↘t

ck(s) = 0. A typical convention is to consider

the trajectory of the clock variables as càdlàg, i.e., right continuous with left limits,
ck(t) = ck(t+). Similarly, q(t) is càdlàg variable, and a transition from mode i to mode
j at time t is equivalent to q(t−) = i, q(t) = q(t+) = j.

TCL example. Using the timed automaton modeling framework, the thermostat
example can be extended. For example, minimum on-time and minimum off-
time conditions can be modeled as guards, see Fig 11. These conditions ensure
that frequent switching behavior is avoided. It would be desirable to also define
state invariant conditions. For example, taking the case of a cooling function, it
would be desirable to have the thermostat leave the OFF state before the temper-
ature becomes too high, and similarly, have the thermostat leave the ON state
before the temperature becomes too cold. The problem with introducing such
conditions is that the temperature is a not a clock variable. Within the formal-
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ism of timed automata with guards and invariants, forced transitions can only
be specified using an approximate timing design. For example, it can be as-
sumed that for a good operation under some known conditions, the OFF time
should not be longer than 60 minutes, and the ON time should not be longer
than 25 minutes.

e0, Guard [c1>M1]

e1, Guard [c0>M0]

q0
  Reset:C0=0

 Inv:C0<I0

q1
Reset:C1=0

Inv:C1<I1

Fig. 11: Timed automata with two clocks, c0 and c1, guard and invariant conditions. Values M0, M1, I0, I1 are
parameters.

5.2.3 Hybrid Automata

To introduce temperature conditions into the thermostat example, the automaton defi-
nition needs to be further extended. The required step is to replace the clock variables
with continuous-valued variables, xk(t) : R+ → R, with more general time-driven
dynamics. Furthermore, the reset actions and guard conditions will also be more
general.

Definition (Hybrid Automaton). A hybrid automaton can be defined in the fol-
lowing way (adapted from [7](Ch.5.7)):

• a set of discrete-states or modes, Q = {q1, q2, . . .};

• a set of events E = {e1, e2, . . .};

• a continuously-valued vector state-variable X ∈ X ⊆ Rn;

• a continuously-valued vector input-variable U ∈ U ⊆ Rm;

• dynamics of the continuous variable defined by a vector field

F : Q×X → Rn,
dX(t)

dt
= F(q(t), X(t));

It is furthermore possible to consider the case of dynamics with external
inputs.

• a transition set T ⊆ Q × E × Q, consisting of a discrete start-state, and
event, and a discrete end-state;

28



5. Stochastic Hybrid System (SHS)

• guard conditions associated with each transition, expressed as a sub-domain
of X , Gj ⊆ X , ∀j ∈ T ;

A transition j is active/allowed at time t only if the continuous state X(t) ∈
Gj.

• functions Rj associated with each transition j ∈ T , Rj : X × U → X ,
which define the reset or jump of the continuous state at the moment of
the transition;

The dependence of the discrete states and of the event is included by the
transition index j.

• state-invariant or domain conditions for each mode i ∈ Q, Ii ⊆ X ;

The system can remain in the discrete mode i only as long as the continu-
ous variable fulfills X(t) ∈ Ii.

• an initial discrete-state q(0) = q0, and an initial continuous-state X(0) =
X0.

TCL example. The thermostat logic can be described by the hybrid automaton in
Fig. 12.

Fig. 12: Hybrid automata description of a thermostat mechanism.

It is mentioned that there are other hybrid system/automata definitions in the lit-
erature. For example, [18] uses the notion of edges instead of events. This is because
the focus is on the state transitions themselves and not on the event trigger semantic.
Therefore, state transitions are identified only by the start-state and the end-state, and
there can be at most one edge between two states. Another example is the general
hybrid dynamical system definition [4], where in each discrete-mode an explicitly
distinguished continuous dynamical system is considered (with its own domain, in-
put space, and dynamic), and mode transitions are divided between an autonomous
(uncontrollable) set and a controllable set. And while the description in this section
has started from the discrete theory side with the automaton object, e.g. [12] puts for-
ward a modeling approach starting from mathematical analysis to formally discuss
the concept of solutions of a hybrid system and their properties. In all cases, there
are correspondences and (at least partial) equivalences between the different hybrid

29



system frameworks.
Finally, it is mentioned that there are two classes of problems or questions that can

be posed on hybrid systems/automata. The first class of problems are specific to the
Computer Science field, such as formal model verification and reachability analysis.
A state is called reachable if there exist a valid system evolution trajectory starting
from a given initial state or set of initial states. A valid trajectory fulfills all guard
and invariant conditions, and follows the transition set. Reachability questions are
essential for model verification. For example, safety analysis can be performed by
building an appropriate model and checking the reachability of the unsafe state(s).
Since the answer will obviously depend on the underlying system, the reachabil-
ity problem is asking whether an analysis can be performed algorithmically. This
question is answered negatively for the class of hybrid automata, meaning that it is
computationally infeasible to check reachability questions in general. However, there
exist subclasses of hybrid automata for which algorithmic reachability analysis is fea-
sible, such as Rectangular Hybrid Automata [14]. The second class of problems that
can be posed for hybrid system/automata are specific to System and Control Theory.
Stability analysis [18] is such an example. Control problems are difficult, but a vari-
ety of techniques are available. These include purely discrete methods (supervisory
control), game theoretic approaches, and optimal approaches.

5.3 Continuous-Time Markov Chains

Markov chains are dynamic processes with a discrete-valued domain, event-based
dynamic, and a stochastic timing mechanism associated with the events. The events
are not considered as external inputs, but are part of the internal description of the
system.

Definition (Markov Chain). A Markov chain consists of:

• a set of discrete states or modes, Q = {q1, q2, . . .};

• a set T of edges or state-transitions, each consisting of an ordered pair of
states, T ⊆ Q×Q;

Each transition can optionally be associated/labeled with an event symbol.
However, it is not the events themselves but the state transitions that are
the main working object. In the Markov chain framework it is not distin-
guished between events that cause the same transition. Furthermore, the
start-state and the end-state in a transition pair must be different.

• a non-negative transition rate (or intensity) associated with each edge (i, j) ∈
T . For time-homogeneous Markov chains the rate is a positive constant
λij > 0, while for time-inhomogeneous Markov chains, the rate is a non-
negative function of time λij : R+ → R+;

Rates with value 0 can be associated to pairs (i, j) /∈ T , i 6= j, and similarly
λij(t) = 0 means that at time t the transition (i, j) is not allowed/cannot
happen.
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• an initial state which is specified in the form of a random variable q0 with
the probability mass π0,

π0 : Q → [0, 1], π0(i) = Pr(q0 = i), ∑
i∈Q

π0(i) = 1.

The rest of this section will present the Markov (or memoryless) property, clar-
ify the stochastic transition mechanism, and introduce the Forward and Backward
propagation equations of the process. These topics are reviewed without presenting
measure theory foundations and general probabilistic theory and concepts.

A stochastic process can be seen as a collection of random variables indexed by
time. Markov chains are by definition stochastic processes, taking values on a dis-
crete domain Q, that satisfy the Markov property. This property alone gives a lot
of structure to the resulting process. In the following, the time index is taken to be
continuous, t ∈ [0,+∞), and the stochastic process is denoted {q(t)}, where q(t) is
the state of the Markov chain system at time t.

If for any ordered sequence of time points tk > tk−1 . . . > t1, and any sequence of
values (ik, . . . , i1), each in Q, the equality

Pr
[
q(tk) = ik

∣∣ q(tk−1) = ik−1, . . . , q(t1) = i1
]
= Pr

[
q(tk) = ik

∣∣ q(tk−1) = ik−1
]

(3)

holds, then {q(t)} is Markovian. The property expresses the fact that the evolution in
time of the process only depends on the present and not also on the past, or that the
dynamics never look back past the current state.

The Markov property leads to exponentially distributed state holding times.
State holding times are random variables Yi describing how long the process re-

mains in the same state i ∈ Q. Because the process {q(t)} is memoryless, the state
transitions cannot depend on past information, and thus they cannot depend on the
amount of time the process has been in a particular state. The state transitions must
therefore have the same chance of happening for case when the state holding time is
small as for when the state holding time is longer. This translates into the following
condition,

Pr
[
Yi > s + t

∣∣Yi > t
]
= Pr

[
Yi > s], (4)

and, using conditional probability definition/axiom Pr
[
a ∧ b

]
= Pr

[
a
∣∣ b
]
Pr
[
b
]

leads
to

Pr
[
Yi > s + t ∧Yi > t

]
= Pr

[
Yi > s]Pr

[
Yi > t]⇔

⇔ Pr
[
Yi > s + t] = Pr

[
Yi > s]Pr

[
Yi > t] . (5)

Because Pr
[
Yi > y] is a tail distribution (or complementary cumulative distribution),

it must also decrease monotonically, and have the boundary conditions Pr
[
Yi > 0] = 1

and lim
y→∞

Pr
[
Yi > y] = 0. The following exponential function satisfies these conditions,

Pr
[
Yi > y] = exp(−Λiy), Λ > 0 (6)

and furthermore, it can be shown that it is the only relevant function that does so.
Parameter Λ is called the rate.

31



Markov time-inhomogeneous processes have the memoryless property, the pro-
cess does not depend on its history, but the stochastic properties vary/are changing
in time. As such, the state holding time Yi still fulfills a memoryless property, but
needs to be specified together with the start moment of the timing,

Pr
[
Yi(t0) > s + t

∣∣Yi(t0) > t
]
= Pr

[
Yi(t0 + t) > s]. (7)

This leads to the following form of exponential distribution,

Pr
[
Yi(t0) > y] = exp

(
−
∫ t0+y

t0

Λi(τ)dτ
)
, (8)

where the rate parameter Λ can be time varying.
When the state holding time Yi expires, a new state is randomly chosen from the

set of allowed/defined transitions. If Qi ⊆ Q is the set of possible end-states from
i ∈ Q, as prescribed by T , then to each j element in Qi there corresponds a transition
probability ρij ∈ [0, 1], such that ∑

j
ρij = 1.

When defining the elements of a Markov chain, in the beginning of the section,
neither state-holding rates nor transition probabilities were used, but rather transition
rates λij. There is an equivalent relation between these elements.

The state-transition mechanism can be though of in the following way. From the
start-state i, a number of random state-transition events j ∈ Qi can take place. It
can be said that these are independent, and that the waiting times until their oc-
currence/arrival have the memoryless property, thus being exponentially distributed
with rates λij. Let Zij denote the random waiting time for the event that leads to
end-state j,

Pr
[
Zij > t

]
= exp(−λijt). (9)

The state-holding is the minimum of the Zij variables,

Pr
[
Yi > t

]
= Pr

[
Zij1 > t ∧ Zij2 > t ∧ . . .

]
= Π

j∈Qi
Pr
[
Zij > t

]
= Π

j∈Qi
exp(−λijt) = exp

(
− ∑

j∈Qi

λijt
)

(10)

Thus the state-holding rate is Λi = ∑
j∈Qi

λij. The transition probabilities can also be

expressed in terms of λij, namely, ρij =
λij
Λi

, see [7](Ch.6.8.2). For time-inhomogeneous
processes, the state holding rate is time-varying, Λi(t) = ∑

j∈Qi

λij(t).

In general, a stochastic process is completely specified only if the all the joint
probabilities are known. The Markov property leads to the joint probabilities being
expressed as

Pr
[
q(tk) = ik ∧ q(tk−1) = ik−1 ∧ . . . ∧ q(t1) = i1

]
= Pr

[
q(tk) = ik

∣∣q(tk−1) = ik−1
]
·

Pr
[
q(tk−1) = ik−1

∣∣q(tk−2) = ik−2
]
· . . . · Pr

[
q(t2) = i2

∣∣q(t1) = i1
]
· Pr
[
q(t1) = i1

]
,
(11)

where the conditional probability definition/axiom was used. This means that joint
probabilities are completely determined by arguably simpler objects, namely the tran-
sition functions pij(s, t) , Pr

[
q(t) = j

∣∣ q(s) = i
]

(and an initial condition).

32



5. Stochastic Hybrid System (SHS)

In the following, the relation between the transition functions pij(s, t) and the
transition rates λij is clarified, in order to conclude that the elements listed at the be-
ginning of the section are sufficient to completely specify the Markov chain stochastic
process.

In the transition function pij(s, t), the interval [s, t] can be decomposed by taking
a time point s < u < t and by using the law of total probability and the Markov
property. This leads to the following important relation,

pij(s, t) , Pr
[
q(t) = j

∣∣ q(s) = i
]
=

= ∑
r∈Q

Pr
[
q(t) = j

∣∣ q(u) = r, q(s) = i
]
· Pr
[
q(u) = r

∣∣ q(s) = i
]
=

= ∑
r∈Q

Pr
[
q(t) = j

∣∣ q(u) = r
]
· Pr
[
q(u) = r

∣∣q(s) = i
]
= ∑

r∈Q
prj(u, t)pir(s, u), (12)

which is known as the Chapman-Kolmogorov equation. This equation can be written
in a matrix form, by organizing the transition functions P(s, t) = {pij(s, t)} such that
elements with the same i index are on the same row and the elements with the same
j are on the same column,

P(s, t) = P(s, u)P(u, t), s ≤ u ≤ t. (13)

The relation can be further manipulated to obtain two differential forms.
First, using time indexes s ≤ t ≤ t + ∆t the Forward differential form is obtained,

P(s, t + ∆t) = P(s, t)P(t, t + ∆t)
∣∣∣∣− P(s, t)

P(s, t + ∆t)− P(s, t) = P(s, t)(P(t, t + ∆t)− I)
∣∣∣∣ 1
∆t

P(s, t + ∆t)− P(s, t)
∆t

= P(s, t)
P(t, t + ∆t)− I

∆t

∣∣∣∣ lim
∆t→0

∂P(s, t)
∂t

= P(s, t)A(t), (14)

where P(s, t) has been assumed to be differentiable in the second parameter and the
limit P(t,t+∆t)−I

∆t , A(t) has been assumed to exist. The well-behaved nature of the
P(s, t) and A(t) elements can be argued from the exponential form discussed above,
and the complete mathematical discussion pertains to the core of Markov theory.
Matrix A(t) is called the generator or the infinitesimal generator of the Markov process.

Secondly, using time indexes s ≤ s + ∆s ≤ t and the fact that lim
∆s→s

P(s, s + ∆s) =

P(s, s) = I, the Backward differential form is obtained,

P(s, t) = P(s, s + ∆s)P(s + ∆s, t)
∣∣∣∣− P(s, s + ∆s)P(s, t)

(I − P(s, s + ∆s))P(s, t) = P(s, s + ∆s)(P(s + ∆s, t)− P(s, t))
∣∣∣∣ 1
∆s

−P(s, s + ∆s)− I
∆s

P(s, t) = P(s, s + ∆s)
P(s + ∆s, t)− P(s, t)

∆s

∣∣∣∣ lim
∆s→0

∂P(s, t)
∂s

= −A(s)P(s, t). (15)

33



The transition functions P(s, t), together with the initial condition P(s, s) = I, can
be determined uniquely from the differential forms if matrix A(t) is known. There-
fore, full knowledge of the transition functions is contained in A(t).

In the case of a homogeneous Markov chain, P(s, t) = P(t − s), P(0) = I, and
A(t) = A, resulting in the following differential forms

Ṗ(t) = P(t)A, Ṗ(t) = −AP(t) , (16)

which has the solution P(t) = eAt = I + A + 1
2 A2 + . . .. In the case of the inhomo-

geneous chain, an P(s, t) can be represented using the product-integral, see. e.g. [15]
and references therein.

The last item to clarify is the relation between the generator matrix A(t) and the
transition probabilities λij as introduced above. The initial state probability has been
introduced in the Markov chain definition as π0. Notation πt will denote the state
probability mass vector at time t (as a row vector). Using the transition functions and
the law of total probability, it can be seen that

πt = π0P(0, t), (17)

and using the Forward differential form, it can be obtained that

dπt
dt

= πt A(t), (18)

also know as the master equation of the Markov chain. Element wise, the master
equation expresses the following relation,

Pr
[
q(t + h) = i

]
− Pr

[
q(t) = i

]
= h ∑

j∈Q
Pr
[
q(t) = j

]
· Aji(t), as h→ 0⇒

Pr
[
q(t + h) = i

]
= Pr

[
q(t) = i

]
·
(
1 + hAii(t)

)
+ h ∑

j∈Q−{i}
Pr
[
q(t) = j

]
· Aji(t),

as h→ 0. (19)

It can be seen that this description matches the infinitesimal understanding of the
transition rates λij. These have been introduced as the parameters for the exponential
random state-transition waiting times, Zij, i 6= j.

Pr
[
q(t + h) = j

∣∣ q(t) = i
]
= Pr

[
Zij < h

]
= 1− exp(−λijh) = λijh + o(h) (20a)

Pr
[
q(t + h) = i

∣∣ q(t) = i
]
= Pr

[
min
j 6=i

Zij > h
]
= exp(−Λih) = 1−Λih + o(h) (20b)

Thus the elements of the generator matrix A(t) are the transition rates, aij = λij, i 6= j,
and aii = −Λi = −∑

j 6=i
λij.

An observation is that the structural properties of a transition rate matrix are
therefore,

• square dimension;

• positive non-diagonal elements;

• columns that sum to 1.
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5. Stochastic Hybrid System (SHS)

Markov chains can be studied for both transient and steady-state analysis (more
results for time homogeneous processes), and furthermore a decision/control theory
exists. In this case, the transition rates are not fixed, but can be seen as a function of
the external inputs.

TCL example. In the thermostat example, a Markov chain behavior appears when
the Switching-Rate actuation is considered. The switching actuation consists of
the probabilistic transition rates behavior, over the simple discrete state space
of the thermostat, with Q = {q0 = OFF, q1 = ON}. The rates (or intensities)
λ01 , λ1 and λ10 , λ0 are externally prescribed, and thus influence the state
occupancy/probability trajectory πt.

5.4 Stochastic Differential Equations (SDEs)

5.4.1 Diffusion Processes

Stochastic processes with the Markov memoryless property can also take values in a
continuous set/space X ∈ Rn. When working on a discrete space, one of the main
probabilistic objects was the transition function Pr

[
q(t) = j

∣∣ q(s) = i
]
, s < t, i, j ∈

Q. For continuously-valued stochastic processes, the pointwise probabilities are all
essentially zero, and therefore the working object for transitions is instead

Pr
[
X(t) ∈ A

∣∣ X(s) = x
]
, s < t, A ⊂ X , x ∈ X .

More rigorously, the set A has to be part of a σ-algebra defined on X , generally the
Borel algebra B(X ).

The Markov property (eq. (3) for Markov chains) can be expressed as

Pr
[
X(tk) ∈ A

∣∣ X(tk−1) = xk−1, X(tk−2) = xk−2, X(t1) = x1
]
=

= Pr
[
X(tk) ∈ A

∣∣ X(tk−1) = xk−1
]
. (21)

The Chapman-Kolmogorov equation, as a result of the total probability law and
of the Markov property, is written for s < u < t as

Pr
[
X(t) ∈ A

∣∣ X(s) = x
]
=
∫
X

Pr
[
X(t) ∈ A

∣∣ X(u) = y
]
· Pr
[
X(u) ∈ dy

∣∣ X(s) = x
]
dy .

(22)

Furthermore, if the transition function admits a transition density function,

Pr
[
X(t) ∈ A

∣∣ X(s) = x
]
=
∫
A

f (z, t, x, s)dy, (23)

the Chapman-Kolmogorov equation can be written as

f (z, t, x, s) =
∫

C
f (z, t, y, u) f (y, u, x, s)dy. (24)

In a step that is correspondingly similar to the presentation of Markov chains,
the Chapman-Kolmogorov equation for transition densities can be manipulated to
yield two differential forms: a Forward and a Backward equation. To derive these
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differential forms more assumptions and analytic conditions on the Markov process
and its transition functions are required, see e.g. [11](Ch.3). The subclass of Markov
processes called diffusion processes is characterized by the following properties,

lim
t↘s

1
t− s

∫
|y−x|>ε

f (y, t, x, s)dy = 0, (25a)

lim
t↘s

1
t− s

∫
|y−x|<ε

(y− x) f (y, t, x, s)dy = A(x, s), (25b)

lim
t↘s

1
t− s

∫
|y−x|<ε

(y− x)2 f (y, t, x, s)dy = B(x, s) , (25c)

for all ε > 0, s > 0. These conditions force the underlying Markov process to have
continuous sample paths. The term A(x, s) is called the drift, and the term B(x, s) ≥ 0
is the diffusion coefficient. For multidimensional diffusion processes the notation
(y− x)2 is understood as (y− x)(y− x)T , and B(x, s) > 0 is a positive definite matrix.
If the diffusion coefficient is non-zero, the sample paths of the process are nowhere
differentiable.

For the class of diffusion processes, the Forward and Backward differential equa-
tions take the following form:

∂ f (z, t, x, s)
∂t

+ ∑
i

∂

∂zi

(
Ai(z, t) f (z, t, x, s)

)
=

1
2∑

i
∑

j

∂2

∂zi∂zj

(
Bij(z, t) f (z, t, x, s)

)
, (26)

∂ f (z, t, x, s)
∂s

= −∑
i

Ai(x, s)
∂ f (z, t, x, s)

∂xi
− 1

2∑
i
∑

j
Bij(x, s)

∂2 f (z, t, x, s)
∂xi∂xj

, (27)

where i and j are component indexes for an n−dimensional process. The Forward
equation for diffusion processes is also called the Fokker-Planck, Fokker-Planck-Kolmogorov,
or Forward-Kolmogorov. A more general differential form can be obtained for pro-
cesses with jump discontinuities, see e.g. [11](Ch.3).

TCL example. The temperature dynamics of a TCL will be described by diffusion
processes. The drift part will be given by a simplified physical law, used to
capture the systematic knowledge of the temperature variations from cold to
hot and from hot to cold, and the diffusion coefficient will account for random
variations around the systematic trajectory. The Forward differential equations
of the thermal dynamics will be the main tool used to describe a population of
TCLs. Additionally, App. Y shows how the Backward differential equation can
be used to calculate duty-cycle elements for a TCL with stochastic dynamics, and
how the duty-cycle elements are different from the case of deterministic dynam-
ics. This is an application of first-passage/first-hitting times type of problems.

5.4.2 Itô Stochastic Integration

Diffusion processes are often represented and studied with the tools of Itô stochastic
calculus. For this reason, the main concepts of Itô stochastic calculus will be intro-
duced next.
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5. Stochastic Hybrid System (SHS)

The building block for randomness with continuous sample paths is the Weiner
process.

Definition (Weiner process). A one-dimensional Weiner stochastic process W(t)
is defined by the following properties:

• W(0) = 0;

• Wt has continuous sample paths;

• the increment random variables ∆W(t1, t2) = W(t2)−W(t1) and ∆W(t3, t4) =
W(t4)−W(t3) are independent for any t1, t2, t3, t4 such that 0 ≤ t1 < t2 ≤
t3 < t4 (increment variables over non-overlapping time intervals);

• the increment process ∆Wt(h) = W(t + h)−W(t) is independent of t, i.e.
stationary, and thus ∆Wt(h) = ∆W(h) = W(h)−W(0);

• the increment process ∆W(h) has a Gaussian distribution with mean zero
and standard deviation

√
h, i.e.

Pr
[
∆W(h) < x

]
=

1
2

[
1 +

2√
π

∫ x√
2h

0
e−y2

dy
]

Pr
[
x < ∆W(h) < x + dx

]
= dx

1√
2πh

exp
(
− x2

2h

)
.

These properties can be shown to be coherent, meaning that they do not exclude
each other. Furthermore, they completely and consistently describe a Markov stochas-
tic process with transition function

Pr
[
X(s + h) ∈ A

∣∣X(s) = x
]
=
∫
A

1√
2πh

exp
(
− (y− x)2

2h

)
dy︸ ︷︷ ︸

f (y,t+h|x,t)

. (28)

The Gaussian property (the exponential form) is a consequence of imposing the
Markov property.

An important remark is that the transition density f (y, t + h, x, t) of the Weiner
process is the solution of the differential Forward and Backward equations (26) and
(27) with n = 1, drift term A = 0 and diffusion coefficient B = 1. A multidimensional
Weiner process W̄(t) ∈ Rm is understood as a stacked version of m independent
Weiner processes. In this case the drift term is A = 0m×1 and the diffusion coefficient
B = Im.

The next step is to introduce the concept of stochastic integration, see e.g. [11](ch.4),
[13](ch.2) or [21](ch.1.4) and the references within.

In the deterministic setting the integral of a function over a domain is seen as
the limit of a sum over an ever finer partition of the integration domain. In the one-
dimensional case, given a domain [a, b] and a function f : [a, b] → R, the Riemann
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integral
∫ b

a f (x)dx is introduced as:

∫ b

a
f (x)dx , lim

|x[a,b] |→0

N

∑
i=0

f (x̄i)(xi+1 − xi), (29)

where x[a,b] is a partition of the interval [a, b], x[a,b] = (x0 = a < x1 < x2 . . . < xN <
xN+1 = b), notation |x[a,b]| is used for maxi∈{0,N}(xi+1 − xi), and x̄i ∈ [xi, xi+1). Fur-
thermore, the Riemann-Stieltjes integral of a function f (the integrand) with respect
to another function g (the integrator),

∫ b
a f (x)dg(x), where both f and g are defined

over [a,b], is ∫ b

a
f (x)dg(x) , lim

|x[a,b] |→0

N

∑
i=0

f (x̄i) (g(xi+1)− g(xi)) . (30)

Similarly, stochastic integration is introduced by clarifying the meaning of
∫ b

a X(s)ds

and
∫ b

a X(s)dY(s), where X(s) and Y(s) are not deterministic functions, but stochastic
processes. The same principle of sums over ever finer partitions remains at the core
of the definition. However the analysis of conditions under which the convergence of
this sums is consistent brings more details in the formulation.

First, the convergence concept itself needs to be clarified for sequences of random
variables. The mean-square (ms) limit convergence is used,

XN
ms→ X ≡ lim

N→∞
E(|XN − X|2) = 0,

where Xn is the sequence of random variables.
Furthermore, in the deterministic case, the convergence of the partition sums is

independent of the choice of the points x̄i within in the interval [xi, xi+1]. This is not
the case for the stochastic integrals. In the Itô formulation, x̄i = xi.

Definition (Itô stochastic integral). In broad strokes, the Itô stochastic integral
is ∫ t

s
X(u)dY(u) ∆

= ms lim
N

∑
i=0

X(ui)
(
Y(ui+1)−Y(ui)

)
, (31)

where u[s,t] = (s = u0 < u1 < . . . < uN < uN+1 = t) is the ever finer partition of
the integration interval [s, t].

Among the properties of the stochastic integrals, linearity and additivity over
subintervals are maintained, similar to the case of the deterministic integral. Some
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5. Stochastic Hybrid System (SHS)

examples of stochastic integrals are:

∫ t

0
dW(u) = ms lim

N

∑
i=0

(
W(ui+1)−W(ui)

)
= W(t)−W(0) = W(t) (32a)

∫ t

0
dG(W(u)) = ms lim

N

∑
i=0

(
G(W(ui+1))− G(W(ui))

)
= G(W(t))− G(0) (32b)

∫ t

0
W(u)dW(u) = ms lim

N

∑
i=0

W(ui)
(
W(ui+1)−W(ui)

)
=

1
2

W2(t)− t
2

(32c)

∫ t

0
(dW(u))2 = ms lim

N

∑
i=0

(
W(ui+1)−W(ui)

)2
= t (32d)

∫ t

0
(dW(u))>2 = ms lim

N

∑
i=0

(
W(ui+1)−W(ui)

)>2
= 0 (32e)

∫ t

0
dudW(u) = ms lim

N

∑
i=0

(
ui+1 − ui

)(
W(ui+1)−W(ui)

)
= 0. (32f)

SDEs are a symbolic representation for the following expression composed of stochas-
tic integrals,

dX(t) = a(X(t), t)dt + b(X(t), t)dY(t), X(0) ≡

≡ X(t) = X(0) +
∫ t

0
a(X(u), u)du +

∫ t

0
b(X(u), u)dY(u) (33)

The multi-dimensional form is straightforward,

dX(t) = A(X(t), t)dt + B̄(X(t), t)dȲ(t), X(0) ≡

≡ X(t) = X(0) +
∫ t

0
A(X(u), u)du +

∫ t

0
B̄(X(u), u)dȲ(u), (34)

where X(t) ∈ Rn, and W̄(t) ∈ Rm.
Of interest for this work is only the case when the integrator random process Y(t)

is the Brownian motion, these leading to diffusion processes in the Markov sense dis-
cussed above. A physical interpretation of these SDEs is that they describe dynamics
with a deterministic drift component a(x, t) and a noisy component with variance
b2(x, t). The noise (white noise) is used to describe the infinitesimal behavior of the
Weiner process increment dW(t), that is a random, irregular and rapidly fluctuat-
ing contribution. For the multidimensional case, the diffusion coefficient used in the
differential Forward and Backward equations (26) and (27) is given by B = B̄B̄T .

An important tool in SDE calculus is the chain rule of derivation. This allows to
find solutions of complex equations building from simple results. The stochastic cal-
culus chain rule, also known as Itô rule or lemma, is different from the deterministic
case. Let a diffusion process x(t) be described by the general SDE

dX(t) = a(X(t), t)dt + b(X(t), t)dW(t), (35)
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and f (y, t) a differentiable function (twice in y, once in t). The differential expression
of G(t) = f (X(t), t), namely dG(t), is then given by:

dG(t) =
(

∂ f
∂t

(X(t), t) + a(X(t), t)
∂ f
∂y

(X(t), t) +
1
2

b2(X(t), t)
∂2 f
∂y2 (X(t), t)

)
dt+

+ b(X(t), t)
∂ f
∂y

(X(t), t)dW(t) . (36)

The multidimensional Itô lemma written for

dX(t) = A(X(t), t)dt + B̄(X(t), t)dW̄(t), (37)

is

dG(t) =
(

∂ f
∂t

(X(t), t) + ∑
i

Ai(X(t), t)
∂ f
∂yi

(X(t), t)+

+
1
2 ∑

i
∑

j
Bij(X(t), t)

∂2 f
∂yi∂yj

(X(t), t)
)

dt + ∑
i

∑
j

B̄ij(X(t), t)
∂ f
∂yi

(X(t), t)dWj(t), (38)

where B(X, t) = B̄(X(t), t)B̄T(X(t), t).

5.4.3 Ornstein-Uhlenbeck Process

A one-dimensional Ornstein-Uhlenbeck process is described by the following SDE,

dX(t) = (−aX(t) + b)dt + σdW(t), a > 0, σ > 0. (39)

This is a one-dimensional SDE, with an affine drift term and a constant diffusion
coefficient. It has the explicit solution

X(t) =
b
a
+ exp(−at)

(
X0 −

b
a

)
+ σ

∫ t

0
exp

(
− a(t− u)

)
dW(u) , (40)

which can be checked using the Itô lemma (36). The explicit solution can be processed
to characterize the mean and variance of the process over time as

E
[
x(t)

]
=

b
a
+ exp(−at)(E[X0]−

b
a
), (41)

same as for the ODE equivalent, and

Var
[
X(t)

]
= exp(−2at)Var[X0] + σ2

∫ t

0
exp(−2a(t− u))du =

= exp(−2at)(Var[X0]−
σ2

2a
) +

σ2

2a
. (42)

Furthermore, the time correlation is characterized by

E
[
X(t1)X(t2)

]
= exp(−a(t1 + t2))

(
Var[X0]−

σ2

2a

)
+

σ2

2a
exp(−a|t1 − t2|). (43)
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5. Stochastic Hybrid System (SHS)

These expressions have the following stationary forms,

lim
t→∞

E
[
X(t)

]
=

b
a

, (44)

lim
t→∞

Var
[
X(t)

]
=

σ2

2a
, (45)

lim
t1,t2→∞

E
[
X(t1)X(t2)

]
=

σ2

2a
exp(−a|t1 − t2|) . (46)

The above have been introduced as results of SDE calculus, but a parallel analy-
sis can be carried out using the corresponding Forward differential (Fokker-Planck)
equation describing the evolution in time of the probability density function,

∂ f (x, t, x0, 0)
∂t

= − ∂

∂x

(
(−ax + b) f (x, t, x0, t)

)
+

σ2

2
∂2 f (x, t, x0, 0)

∂x2 , (47)

and the tools of partial differential calculus.

TCL example. The temperature dynamics of a TCL are modeled as

dT(t) =

{(
− aT(t) + b0

)
dt + σdW(t), when the power cycle is off(

− aT(t) + b1
)
dt + σdW(t), when the power cycle is on ,

(48)

where a = UA
C , b0 = UA

C Tamb, b1 = UA
C Tamb − COP·W

C , with UA, C, Tamb, COP,
and W standing in for physical coefficients, all positive. It can be seen that
each branch of the dynamic is an Ornstein-Uhlenbeck process. However this
is not enough to evaluate the overall solution or properties, since the stochastic
dynamic is interconnected with the logic of the power cycle on/off actions.

5.5 Stochastic Hybrid System (SHS)

The TCL dynamical behavior has both hybrid and probabilistic characteristics. This
work considers that both these traits are essential and need to be included in the
mathematical representation. This leads to the investigation of the Stochastic Hybrid
System (SHS), a framework that promises modeling, analysis and control tools. At the
same time, the framework is both relatively new and has a broad scope, leading to
results that are incomplete or restricted to particular cases and computational tools
that are modest [19]. The notion of General Stochastic Hybrid System (GSHS) [5, 6] is
introduced next.

Generalized Stochastic Hybrid Systems (GSHSs) allow for continuous dynamics
described by SDEs, discrete dynamics with both probabilistic transitions characterized
by rates (similar to the case of Markov chain transitions), forced transitions (similar to
the invariant concept of hybrid systems), and probabilistic resets of the continuous-
state as a result of the discrete transitions.
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Definition (Generalized Stochastic Hybrid System (GSHS)). A GSHS has the fol-
lowing elements:

• a domain for the discrete-state or mode, Q = {q1, q2, . . .};

• a set of (open) domains for the continuous-state, X q ⊆ Rn , one for each
discrete mode;

• the hybrid domain is composed of the union of the pairs of discrete-state
and the associated continuous domain H = (q1 ×X q1 ) ∪ (q2 ×X q2 ) ∪ . . .;

• for each mode q ∈ Q, the evolution of the continuous state Xq(t) ∈ X q is
driven by an SDE

dXq(t) = Aq(Xq(t))dt + B̄q(Xq(t))dW̄(t),

where Aq : X q → Rn is the drift vector field, W̄(t) is an m dimensional
Weiner process, and B̄q : X q → Rn×m;

• spontaneous transitions, described by two elements:

– state-dependent transition rate functions λij : X qi → R+;

– probability law (measure) for the continuous-state reset that takes
place at the same time as the discrete transition, Rλ

ij : X qi ×B(X qj )→
[0, 1];

The rate mechanism is similar to the time-inhomogeneous Markov chain
dynamic. The holding time in discrete-state state i, given that the system
entered this state at time t, the random variable Yi(t), is characterized by

Pr
[
Yi(t) > y

]
= exp

− ∫ t+y

t
∑

j
λij(X(τ))dτ

 ,

and the transition probabilities to a new mode j are also implicitly defined
by the transition rates λij. Let tij denote the transition time from mode i
to j, then the reset law assigns probabilities for the jump/transition of the
continuous-state, i.e.

Pr[Xqj (tij) ∈ A] = Rij(Xqi (t−ij ),A), A ⊂ X
qj

In [5] for example, the GSHS uses the equivalent state-holding rate Λi :
X qi → R+ and a more general probability law RΛ

i : X qi × H → [0, 1]
describing both the discrete transition choice and the continuous-state reset
at the same time.

An observation here is that, while transitions from mode i leading back to
i were not legal for Markov chains, these are allowed for GSHS because of
the continuous-state reset.
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5. Stochastic Hybrid System (SHS)

• forced transitions triggered when the continuous state is about to leave the
(invariant) domain,

– the domain of discrete state i is the open set X qi , and the trigger for
the forced transition is reaching in the limit the boundary of the set,
i.e. Xq(t−) ∈ ∂X qi ;

– discrete mode transition probabilities ρi : ∂X qi × Q → [0, 1] such
that ∑j∈Q ρi(X, j) = 1, and a probabilistic reset law for the continu-

ous state, R f
ij : ∂X qi × B(X qj ) → [0, 1] or equivalently, a more gen-

eral probability law describing the discrete-state and continuous state
transition at the same time, RF

i : ∂X qi ×H → [0, 1];

• initial values for the hybrid state, (q0, X0) as a random variable.

TCL example. The GSHS accommodates all of the features of the TCL dynamic:
noisy thermal dynamics, the thermostat logic and the logic of the minimum
on/off times, and the random nature of the switching actuation. The hybrid
state is composed of the on/off discrete-state q, the continuous state X = (T, c)
where T is the temperature state and c is state holding timer state.

The relevant GSHS elements capturing the TCL dynamic behavior with the
Switching-Rate actuation are:

• discrete-state domain Q = {q0 = OFF, q1 = ON};

• continuous-state domains, XOFF = (Tminmin, Tmax) × [0, ∞) ∈ R2, and
XON = (Tmin, Tmaxmax)× [0, ∞) ∈ R2, corresponding to the temperature
and timer states;

• spontaneous transitions elements are:

λOFF,ON
(
X = (T, c)

)
=

{
λ1, T ∈ [Tmin + ∆T1, Tmax) ∧ c > MOFF

0, otherwise
(49a)

λON,OFF
(
X = (T, c)

)
=

{
λ0, T ∈ (Tmin, Tmax − ∆T2) ∧ c > MON

0, otherwise
(49b)

Rλ
qi ,q1−i

(
X = (T, c),A

)
=

{
1, {T, 0} ∈ A;

0, otherwise
(49c)

The transition rates are piecewise constant on the continuous state-domain,
and the state reset is deterministic, the temperature is maintained and the
state holding timer state is reset to zero.
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The Switching-Rate demand response concept is based on the fact that
the transition rate parameters λ0 and λ1 are external inputs. Although the
GSHS definition does not explicitly include external inputs, this is a reason-
able concept addressed in the literature for other subclasses of SHSs such
as piecewise deterministic Markov processes and switching-diffusions.

• forced transitions occur at the temperature boundaries of the domains,
and have deterministic characteristics

ρOFF
(
(Tmax, c), ON

)
= 1,

R f
OFF,ON

(
(Tmax, c),A

)
=

{
1, (Tmax, 0) ∈ A
0, otherwise

(50a)

ρOFF
(
(Tminmin, c), OFF

)
= 1,

R f
OFF,ON

(
(Tminmin, c),A

)
=

{
1, (Tminmin, c) ∈ A
0, otherwise

(50b)

ρON
(
(Tmin, c), OFF

)
= 1,

R f
ON,OFF

(
(Tmin, c),A

)
=

{
1, (Tmin, 0) ∈ A
0, otherwise

(50c)

ρON
(
(Tmaxmax,c), ON

)
= 1,

R f
ON,ON

(
(Tmaxmax, c),A

)
=

{
1, (Tmaxmax, c) ∈ A
0, otherwise

(50d)

The above description includes the thermostat rules, the reset of the state
holding times, and a barrier or reflection mechanism at the temperature
points Tminmin and Tmaxmax. Referring to the latter, an alternative is to
define one-sided infinite domains for the temperature state, (−∞, Tmax),
and (Tmin,+∞).

A stochastic process {Z(t) = (q(t), X(t)} that evolves according to the rules of
GSHS dynamic is a concatenation of diffusion processes, and is a Markov process.
Similar to the other two classes of Markov processes presented above, Markov chains
and SDEs, GSHSs should allow for a form of Forward and Backward differential forms.
This is addressed in [6], and the Forward form in particular in [3].

TCL example. This work give an explicit form for the Forward differential form
of the TCL model with the Switching-Rate as a PDE system with boundary con-
ditions, see Paper C. Based on this formulation, analysis and control results are
obtained.

It is noted that the work of [1](Ch.1.3) argues for the elimination of the forced
transitions. This is done by introducing an approximation procedure using on addi-
tional state-dependent transition rates in increasing value as the state approaches the
triggering boundary. In this way, the deterministic rules are replaced by an approx-
imately equivalent stochastic mechanism, and it is argued that this leads to a model
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simplification. The approach was not analyzed in the current work.

6 Computational methods

6.1 Numerical Simulation of SHS

Simulations are an important tool in the process of understanding a particular sys-
tem and for validating design changes and control strategies in a fast and economic
way. In the case of the TCL population, the real system as such does not yet exist: A
communication infrastructure is not set up and local controllers with necessary func-
tionality are not present in large-scale for the TCLs currently connected to the grid.
Even if this was the case, it would be unwise to, for example, test the principle of
the Switching-Rate actuation on live conditions before it was validated in simulation.
This work uses a simulation of a TCL population that is composed a large number
of independent individual TCLs simulations, each build using a SHS model. This is
considered as a virtual replacement for a physical TCL population.

Simulation of SHS is not always straightforward, as some delicate points can
emerge from interplay of the continuous dynamics and discrete dynamics, such as
the issue of detecting boundary crossings.

6.1.1 Numerical Methods for SDE

Numerical methods for approximating the solution of SDE are based on stochastic
Taylor expansions [16, 21]. In general lines, this parallels the approach used for ap-
proximating the solution of an Ordinary Differential Equation (ODE). An informal
overview follows next.

For a deterministic dynamic characterized by

dx(t)
dt

= f (x, t), x(t0) = x0, (51)

numerical methods used to calculate x(t1) are based on the direct relation,

x(t1) = x(t0) +
∫ t1

t0

f (x(t), t)dt (52)

and a Taylor approximation for g(t) = f (x(t), t),

g(t) = g(t0) +
dg(t)

dt
∣∣
t=t0

(t− t0) + . . . +
1
k!

dkg(t)
dtk

∣∣
t=t0

(t− t0)
k + . . .

= g(t0) +

(
∂ f (x, t)

∂t
+

∂ f (x, t)
∂x

dx(t)
dt

) ∣∣
t=t0

(t− t0)+

+
1
2

(
∂2 f (x, t)

∂t2 + 2
∂2 f (x, t)

∂t∂x
dx
dt

+
∂ f 2(x, t)

∂x2

(
dx
dt

)2
+

∂ f (x, t)
∂x

d2x
dt2

) ∣∣
t=t0

(t− t0)
2 + . . . .

(53)

Approximation schemes with increasing order of accuracy can be obtained by keeping
more terms of the Taylor series in the final expression. The most simple choice, g(t) ≈
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g(t0) leads to the Euler method,

x̂(t1) = x(t0) + f (x(t0), t0)∆t1, (54a)

x̂(tk) = x̂(tk−1) + f (x̂(tk−1), tk−1)∆tk. (54b)

Mentioning the order of accuracy requires clarification. In the Euler truncation case,
the local order of accuracy is two, meaning that the local error |x(t1)− x̂(t1)| is pro-
portional to (∆t)2. The repeated recursion in constructing the solution x(tk) however
leads to a global order of accuracy one, meaning that global error |x(tk) − x̂(tk)| is
proportional to ∆t. There are two (independent) ways to obtain better numerical
approximations/solutions: decrease the time step ∆t, and choose a method with an
increased order of accuracy.

For a stochastic dynamic characterized by

dX(t) = a(X, t)dt + b(X, t)dW(t), X(t0) = x0, (55)

numerical methods used to calculate X(t1) are based on the direct relation,

X(t1) = X(t0) +
∫ t1

t0

a(X(t), t)dt +
∫ t1

t0

b(X(t), t)dW(t) (56)

and stochastic Taylor approximations for U(t) = a(X(t), t) and V(t) = b(X(t), t). The
trajectory of X(t) is continuous, but not differentiable, therefore a differential form of
the Taylor series cannot be used to expand U(t) and V(t). However, the Itô chain rule
of derivation (36) can be used on the terms a(y, t) and b(y, t),

dU(t) = da(X(t), t) =
(

∂a
∂t

+ a
∂a
∂y

+
1
2

b2 ∂2a
∂y2

)
(X(t), t)dt +

(
b

∂a
∂y

)
(X(t), t)dW(t) ≡

≡
∫ t

t0

da(X(t), t) = a(X(t), t)− a(X(t0), t0) =

=
∫ t

t0

(
∂a
∂u

+ a
∂a
∂y

+
1
2

b2 ∂2a
∂y2

)
(X(u), u)du +

∫ t

t0

(
b

∂a
∂y

)
(X(u), u)dW(u), (57)

b(X(t), t)− b(X(t0), t0) =

=
∫ t

t0

(
∂b
∂u

+ a
∂b
∂y

+
1
2

b2 ∂2b
∂y2

)
(X(u), u)du +

∫ t

t0

(
b

∂b
∂y

)
(X(u), u)dW(u). (58)

For the expansion of X(t1), this leads to

X(t1) = X(t0) +
∫ t1

t0

[
a(X(t0), t0) +

∫ t

t0

(
∂a
∂u

+ a
∂a
∂y

+
1
2

b2 ∂2a
∂y2

)
(X(u), u)du +

∫ t

t0

(
b

∂a
∂y

)
(X(u), u)dW(u)

]
dt+

+
∫ t1

t0

[
b(X(t0), t0) +

∫ t

t0

(
∂b
∂u

+ a
∂b
∂y

+
1
2

b2 ∂2b
∂y2

)
(X(u), u)du +

∫ t

t0

(
b

∂b
∂y

)
(X(u), u)dW(u)

]
dW(t) =

= X(t0) + a(X(t0), t0)
∫ t1

t0
dt + b(X(t0), t0)

∫ t1

t0
dW(t)+

+
∫ t1

t0

∫ t

t0

(
∂a
∂u

+ a
∂a
∂y

+
1
2

b2 ∂2a
∂y2

)
(X(u), u)dudt +

∫ t1

t0

∫ t

t0

(
b

∂a
∂y

)
(X(u), u)dW(u)dt+

+
∫ t1

t0

∫ t

t0

(
∂b
∂u

+ a
∂b
∂y

+
1
2

b2 ∂2b
∂y2

)
(X(u), u)dudW(t) +

∫ t1

t0

∫ t

t0

(
b

∂b
∂y

)
(X(u), u)dW(u)dW(t). (59)
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A first computation approximation for X(t1) is thus

X̂(t1) = X(t0) + a(X(t0), t0)∆t1 + b(X(t0), t0)∆W(t1) (60a)

X̂(tk) = X̂(tk−1) + a(X̂(tk−1), tk−1)∆tk + b(X̂(tk−1), tk−1)∆W(tk), (60b)

known as the Euler-Maruyama. Advanced computations use further expansions for
all or just some of the terms in the double integrals above. For example, expanding
only the dW(u)dW(t) term leads to the following computational approximation

X̂(t1) = X(t0) + a(X(t0), t0)∆t1 + b(X(t0), t0)∆W(t1)+

+
1
2

b(X(t0), t0)
∂b
∂y

(X(t0), t0)
(
∆W2(t1)− ∆t1

)
(61a)

X̂(tk) = X̂(tk−1) + a(X(tk−1), tk−1)∆tk + b(X(tk−1), tk−1)∆W(tk)+

+
1
2

b(X(tk−1), tk−1)
∂b
∂y

(X(tk−1), tk−1)
(
∆W2(tk)− ∆tk

)
, (61b)

known as the Milstein method.
To compare and decide on appropriate truncations, it is important to define the

(global) order of accuracy, similar to the deterministic case. The stochastic context
leads to two definitions. The strong order of accuracy γ is defined with respect to the
exact trajectory of the random process, such that the error quantity E

[
|X(tk)− X̂(tk)|

]
is proportional with (∆t)γ. The weak order of accuracy β is defined by a proxy, the
expected value of a function of the random process, such that the error

∣∣E[g(X(tk))
]
−

E
[
g(X(tk))

]∣∣ is proportional with (∆t)β, for any function g of an appropiate class.
Given a particular numerical approximation scheme, the strong order is always small
or equal to the weak order, γ ≤ β.

It is well known that the Euler-Maruyama scheme has a strong order γ = 1
2 and

a weak order β = 1, while for the Milstein method γ = β = 1. Depending on the
objectives of the simulation (focus on individual trajectory simulation or focus on
statistical properties), either the strong order or the weak order is a more relevant
measure of accuracy. The choice of terms for expansion and the necessary truncation
terms in the Stochastic Taylor relation can be customized to yield desired strong/weak
accuracies. Similar to the derministic case, there are two (independent) ways to obtain
better numerical approximations/solutions: decrease the time step ∆t, and choose a
method with an increased order of accuracy.

TCL example. For the Ornstein-Uhlenbeck process as discussed in Sec. 5.4.3, the
Euler-Maruyama and the Milstein method are equivalent because the diffusion
term is a constant, b(X(t), t) = σ and the term ∂b

∂y is thus zero. The thermal
dynamics of the TCL can be simulated using this method leading to an accuracy
γ = β = 1. Alternatively, the explicit solution for this dynamic was given by (40),
and this can also be used for simulation. An observation is that the objective of
simulating a TCLs population is on generating individual trajectories (scenario
simulations) for each TCL (each with each own set of parameters in general).
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6.1.2 Simulation of Rate-based Events

For continuous-time Markov chains, the simulation consists of an event-based schedul-
ing scheme [7](Ch.10). Given an initial state, random trigger times are generated for
all possible events. The events are then sorted by the increasing ordered of their times,
and the first event is executed. This causes the system to change state. In the new
state, all events that are no longer feasible are canceled from the ordered list, and new
events that become available are added. The event with the smallest time is again
executed, leading to a new state.

Generating random trigger times is one of the main important tasks in this pro-
cess. For constant transition rates, the waiting time until a new event is exponentially
distributed with the given rate, leading to a simple procedure for generating a trigger
time using the inverse transform sampling method (see e.g [9]),

tei = t +
(
− 1

λi
ln(1−U)

)
≡ t +

(
− 1

λi
ln(U)

)
, (62)

where U is a uniform random variable with domain [0, 1].

TCL example. The Switching-Rate demand response mechanism introduces Markov-
chain-like stochastic jumps between the ON and OFF modes. Transition rates
are externally controlled, but have a piecewise constant profile in time. This is
in part a limitation of the broadcast channel, but can also be seen as an inherent
part of the design. The transition rates are in addition also piecewise constant
with respect to the temperature of the TCLs, see (49). The software/logic imple-
mentation of switching mechanism is the main part of the TCL local controller,
and can be based on the generation of exponentially distributed waiting times
with constant rates, as discussed above.

6.1.3 Simulation of SHS

The combination of continuous and discrete dynamics leads to two new simulation
issues: arrival of non-stochastic events when the continuous state reaches a domain
boundary, and transition rates with varying characteristics depending on the contin-
uous state.

Detection of boundary crossings and SDE simulation near the boundaries can in-
crease the error level in the simulation. This is because, near the boundaries, using
a relatively coarse time step ∆t can mask a crossing: the start state and the end
state are within the domain, but simulations with a finer step would have crossed
the boundary with a high probability. This aspect can be accounted for in different
ways, such as adapting to smaller time steps next to the boundary (reduce the chance
of missed detections) or using an auxiliary variable to explicitly track the boundary
hitting probability, see for example [20, 22] and reference within.

If transition rates are varying with the continuous-state, the mechanism for trig-
gering stochastic jumps needs to be adapted. Only constant rates were addressed in
the computational discussion for Markov chains in the above Sec. 6.1.2, but there ex-
ist a number of techniques available for generating events with time-inhomogeneous
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rates, such as the thinning method [9, 17]. This further requires an adaptation in the
SDE numerical integration scheme, to be able to evaluate the continuous-state at the
candidate times given by the thinning scheme (meaning not just at the equally spaced
time points tk).

TCL example. Simulation of the individual TCL dynamic behavior requires only
boundary crossing detection, both for the thermostat switching rule and for
the transition rates mechanism. For mode ON, crossings to detect are Tmin,
Tmax − ∆T2, Tmaxmax, and for mode OFF Tmax, Tmin + ∆T1, Tminmin. It can also
be said that the crossings of the reflective boundaries Tmaxmax and Tminmin are
highly unlikely if the diffusion coefficient is low or if these boundaries are rea-
sonably far away placed from the thermostat limit values. The timer state c(t)
has deterministic dynamics, meaning that its crossings are trivial to address.

TCL example. Alternatively, a more relaxed simulation strategy can be adopted
for the TCLs scenario. Provided that the time-step of the simulation is not too
coarse, the boundary crossing detection can be handled with the naive approach
of checking after each SDE integration step. This relaxed approach can be easily
justified if we consider that the TCL discrete dynamics are not time-synchronized
with the thermal dynamics, but are rather features build into a computer con-
troller and relying on a (low grade) sensor input. Thus, the boundary detection
cannot be expected to be sharp in the real system itself. Furthermore, the rate
switching can also be handled with a simplified approach that does not require
an event scheduling scheme. For a relatively small time step tc, the infinitesimal
description of the transition rates (20) can be used as a direct approximation in
deciding a transition,

Pr
[
TurnOFF | m = ON and T ∈ [Tmin, Tmax − ∆T2)

]
= min(λ0tc, 1)

Pr
[
TurnON | m = OFF and T ∈ (Tmin + ∆T1, Tmax]

]
= min(λ1tc, 1),

where λ0 and λ1 are the most recent rates received by the unit. This is reason-
able in both simulation and in the implementation of the TCL local controller.
Performing random number generation operations at a relatively fast time step
might be more simple than implementing an event scheduler scheme in the TCL

control software. This is was the chosen method in the simulations carried out
in this work.

6.2 PDE Numerical Integration

Finding exact, analytical solutions for partial differential equations is, in general, an
even more difficult task than for ODE (and SDEs). And similar to the ODE and SDE

cases, in practice and engineering, it is very useful to use numerical algorithms and
discretization to obtain approximate solutions.

Numerical methods for ODEs perform a discretization of the coordinate/variable
of the unknown function. For Partial Differential Equations (PDEs), there are multiple
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coordinates/variables that need to be discretized. On top of the discretization mesh
(or grid), approximate relations are used to transform differential equations into al-
gebraic forms. Given an initial value, the algebraic equations (either in a recursive or
in a closed system form) can be solved to obtain approximate solution values at the
points of the discretization partition.

There are three main types of discretization and numerical approximation meth-
ods for PDEs:

• Finite-Difference methods

• Finite-Volume methods, and

• Finite-Element methods.

An useful introductory reference is, for example, [10].

TCL example. The model of a TCL population used in this work consists of a PDE

system with coupling boundary conditions and terms. Each PDE is based on the
Forward differential equation associated with an Ornstein-Uhlenbeck process
(47). For this type of model, the Finite-Difference approach is the numerical tool
of choice reported in the TCL literature. In this work, the Finite-Volume approach
is used, and it is argued that it presents a number of advantages. The main
argument is that Forward differential equations are intrinsically conservation
laws, and the Finite-Volume approach is specifically designed to preserve the
conservation balance. This is discussed in Paper D.
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Summary of Contributions

This chapter summarizes the main contributions to the problem of enabling large-scale demand
response of Themostatically Controlled Loads (TCLs).

7 Switching-Fraction Actuation

Paper A argues for a distributed approach to the problem of Demand Response (DR)
from TCLs while maintaining the idea of a direct control, and in this way outlines the
Automated Direct Demand Response via Broadcast (ADDRB) principles. The approach
is realized by introducing the Switching-Fraction randomized actuation strategy, sup-
ported by a preliminary simulation. The Switching-Fraction actuation can be seen to
be closely related to, and a variation of, the "toggle control" as introduced in [2], but
with some clear advantages related to the practical implementation. In particular, the
footprint of the broadcast signal is much lower, and the resolution of the temperature
sensor does not need to be high.

The Switching-Fraction actuation, although not so named, is at the same time in-
troduced, modeled and elaborated by another group of authors in the works [1, 4].
Paper B performs a parallel modeling task, introduces the feature of temperature-safe
zones, and brings a control result based on numerical optimization. An standout fea-
ture is that both switch-on and switch-off actions are used at the same time. This
increases (although only slightly) the controllability of the system and has the ad-
vantage of making the non-convex optimization more numerically tractable. A key
conclusion is that the actuation offers partial control robustness to modeling inaccu-
racies such as population heterogeneity.

A schematic overview of Switching-Fraction actuation is given in Fig. 13. Each TCL

responds as soon as the command signal u = [p, p̄] ∈ [0, 1]2 is received by performing
a Bernoulli trial. The success rate of the trial is chosen between the values {0, p, p̄}
based on the current power mode m, temperature T, and mode counter/timer c. The
schematic implies a temperature-safe zone (Tmin, Tmax − ∆T1] for mode on, and a
temperature-safe zone [Tmin + ∆T0, Tmax) for mode off. Temperature-safe zones are
discussed also in Papers B and D. If the trail is successful, a mode switch action takes
place. Otherwise, the unit does not perform any action. The thermostat mechanism
itself is not part of the actuation, it is a part of the free/autonomous dynamics.

The modeling of the Switching-Fraction actuation at the population level is based
on the probabilistic method developed in [3] for TCLs without actuation as a Partial
Differential Equation (PDE) system. The PDE system is first discretized in its spatial
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Fig. 13: Overview of the Switching-Rate randomized actuation.

coordinates, and then in the time coordinate. The result is a medium/high (but finite)
dimensional linear system in discrete time. Because of its discrete-time nature, the
Switching-Fraction can be naturally introduced at this point. The Switching-Fraction
contributes with a bilinear input term to the discrete-time dynamic of the TCL popu-
lation.

8 Switching-Rate Actuation

Paper C introduces and models the Switching-Rate actuation. This extension is strongly
motivated by the existence of a short but very high power-peak occurring at the be-
ginning of the on-cycle in the TCL operation, see App. Z and Fig. D.1. The peak is
related to the operation of the single phase induction motor that powers the compres-
sor, namely the secondary or start-up winding mechanism. The power peak makes
the discrete-time and synchronized population response to the Switching-Fraction
signal undesirable. The Switching-Rate mechanism distributes the response of the
TCL population in time, in a way that remains highly controllable. Furthermore, the
overall response is more smooth than in the case of the Switching-Fraction actuation.

Under the Swiching-Rate actuation, the unit receives a command u = [λ, λ̄] ∈ R2
+,

consisting of rates instead of probabilities. The main idea is that the TCL does not
respond with a switching action as soon as the command is received, but instead
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8. Switching-Rate Actuation

performs a random sampling to select an appropriate waiting time, see Fig. 14. The
waiting time can be very long, such that the switch action may become invalid (e.g. the
unit already changed modes due to the thermostat), leading to a situation similar to a
failed Bernoulli trial in the case of the Switching-Fraction. As discussed in Sec. 6.1.3,
a complete algorithm for implementing the Switching-Rate actuation must include
further elements, such as detection of temperature and timer crossings from the safe-
zones to the "unsafe" zones, or, equivalently, a fast sample time.

Fig. 14: Random sampling of the waiting time for the Switching-Rate actuation.

The Switching-Rate actuation has a continuous-time characteristic. Modeling it
requires an extension of the original PDE system from [3]. This PDE system is the
Forward differential equation of the stochastic hybrid TCL model without actuation,
and is composed of individual Fokker-Planck equations with coupling boundary con-
ditions. Because of the design the Switching-Rate, the extension proves to be rela-
tively straightforward, consisting in the addition of bilinear input terms in the in-
dividual Fokker-Planck equations. The supplementary features of temperature-safe
zones and minimum on/off time are also clarified. The new PDE model can be spa-
tially discretized to give a medium/high (but finite) dimensional system with linear
autonomous dynamics and bilinear input terms. This serves as the control model.

Paper D puts the Switching-Actuation to use in a control loop design. Two control
algorithms are presented, and a state observation scheme. Using numerical simu-
lations, it is argued that the switching actuation is an efficient way of enabling the
power flexibility, as coherent aggregated power responses are obtained from the TCL

population. Furthermore, a case is made to favor Finite-Volume methods as numeri-
cal algorithms for the spatial discretization of the PDE system, due to its conservation
from. Special care must still be taken under the spatial discretization to preserve
other structural properties when needed, such as the transition-rate matrix form for
the continuous-time linear autonomous dynamics.
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Closing Remarks and Perspectives

This chapter concludes on the work, and lists some of the remaining open questions.

In recent years, appliance producers have been embedding possibilities for com-
munication and computation into their products for user functionality. It is believed
that embedding possibilities for communication and computation for grid functional-
ity, either as a free initiative incentivized by a new electricity markets or nudged by
upcoming grid regulations, is a logical next step.

The aim of this research has been to look at control methods for enabling large-
scale demand response from small appliances and devices, and in particular ther-
mostatic loads. Because of the truly large-scale and distributed aspect, the small
capacity of - and the small expected monetary gains rewarding power flexibility for
- the individual devices, and because of security and privacy concerns, it is believed
that realistic solutions must be content in the near future with only a fraction of the
communication and computation capabilities promised by the big Smart Grid pic-
ture. As a result, the parsimonious Automated Direct Demand Response via Broad-
cast (ADDRB) principles have been put forward in Sec. 2.2: broadcast command, local
decision making, and anonymous, infrequent centralization of local information.

The work then focused on developing a specific actuation, namely the Switching
Actuation, and associated modeling and algorithmic control tools. The Switching Ac-
tuation is a randomized form of direct control from a central entity that leaves part of
the decision making under the control of the individual units to allow for adaptation
to local conditions. At the same time, the control logic of the individual units is pre-
designed, and known at the central level. Through modeling and simulation, it was
shown that the approach is viable, and that the power flexibility of a Themostatically
Controlled Load (TCL) population can indeed be controlled. Furthermore, the switch-
ing actuation is in principle suitable for the design of large-scale demand response of
other types of on/off powered appliances, such as (electrical vehicle) batteries, dish-
washers, washing machines, dryers.

A natural direction for future work is to instrument and setup a small fleet of
refrigerators, to analyze the main sources of disturbance that could occur at the ag-
gregate level, and, more generally, gather field experience on the population system.

Furthermore, a number of questions about the TCL modeling and control problem
have been collected through the project work, but have not so far been addressed.

• The switching actuations have been successfully used to control the power out-
put of a TCL population. In doing so, the overall system state is moved from
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equilibrium. Although the switching actuation can be used to keep the aggre-
gated power output close to the baseline value for an indefinite amount of time,
stopping the actuation when the system state is away from equilibrium will lead
to an oscillatory free response behavior. The TCL population naturally returns
to equilibrium, but it is of clear interest to investigate methods for minimizing
the transient period and the amplitudes. It is an open question how this can
be best achieved using the switching actuation. It is also possible to consider a
separate desynchronization/stabilization protocol, e.g. [1].

• The population model is based on a homogeneity assumption. As discussed in
Paper B, this is not a theoretical limitation, as the state-space can be extended
to account for parameters as states with dynamic zero. However, it leads to
a computational limitation. The spatial discretization in a multi-dimensional
space leads to exponentially larger systems. The homogeneity assumption is
reasonable for cases where there is a very small level of parameter heterogeneity
between the units in the population. With the increase in the heterogeneity
level, relatively fast aggregate measurements and the robustness properties of
the actuation and of a closed control loop start to play an important role. Instead
of relying on a relatively fast control loop, it would be desirable to rely on
a partial or approximate model for the heterogeneity effects. High levels of
heterogeneity require an explicit strategy, such as the clustering approach in [7],
which is essentially equivalent to a coarse spatial discretization of the parameter
space.

As such, the topic of partial or approximate models for heterogeneous TCL pop-
ulations is one of interest for capturing more accurately the dynamics of sub-
population clusters with moderate levels of heterogeneity. Two techniques are
present in literature. In [6], heterogeneity is approximated by an increase in
the diffusion coefficient of the thermal dynamics. This accounts for a higher
dampening factor in the power output oscillations of the free response evolu-
tion. However, this only improves the output modeling, and does not specifically
improve the state modeling. The control algorithms proposed in this work re-
quire state information to evaluate the amount of non-responsive units (units in
the "nonsafe" temperature and timer ranges) and to send out accurate switching
commands. In the original work [5], the authors propose a perturbation-based
analysis for the population of dynamical systems. Applied to linear systems,
this approach was found to work well only for low dimensional systems. Af-
ter the spatial discretization of the Partial Differential Equation (PDE) system
however, a large dimensional system is obtained (>100 states). The perturba-
tion approach has not so far been successful in these cases, as the numerical
results showed incorrect behaviors. A likely explanation is that perturbation
techniques [3] for large dimensional systems require a (too) large number of
Taylor terms to be considered before the results become appropriate.

• The population model as discussed in this work contains high dimensional ma-
trix elements. This is not a problem for the simple calculations required by
the control strategies proposed in this work. However, such a model is not
suitable for optimization tasks at a planning level. More specifically, it is not
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well suited for characterizing the overall flexibility of the TCL population and
planning reference trajectories in a scenario with many other assets. Such a
planning scenario is discussed in [2], where an heuristic "leaky-bucket" flexi-
bility model (without guarantees or theoretical properties) is proposed for the
TCL population asset. A flexibility model is a model that describes all (or a sub-
class) of tractable power references. The question of whether a given reference
is tractable or not depends on the initial state of the population, the population
parameters, and the control method.

• The average parameters of the TCL population were considered given/know
and fixed in this work. The issue of population parameter identification from
available data (aggregate measurements, and partial unit level measurements),
as well as adaptively adjusting these parameters in operation is of interest. A
recent work in this direction is [4].

References

[1] Jan Bendtsen and Srinivas Sridharan. Efficient desynchronization of thermostatically con-
trolled loads. arXiv preprint arXiv:1302.2384, 2013.

[2] Morten Juelsgaard, Luminita C Totu, S Ehsan Shafiei, Rafael Wisniewski, and Jakob Stous-
trup. Control structures for smart grid balancing. 2013.

[3] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer Science & Business
Media, 1976.

[4] Nariman Mahdavi, Cristian Perfumo, and Julio H Braslavsky. Bayesian parameter estimation
for direct load control of populations of air conditioners. In World Congress, volume 19, pages
9924–9929, 2014.

[5] Roland Malhame and Chee-Yee Chong. Electric load model synthesis by diffusion approx-
imation of a high-order hybrid-state stochastic system. Automatic Control, IEEE Transactions
on, 30(9):854–860, 1985.

[6] Scott Moura, J Bendtsen, and V Ruiz. Modeling heterogeneous populations of thermo-
statically controlled loads using diffusion-advection pdes. In Proceedings of the 2013 ASME
Dynamic Systems and Control Conference, Stanford, California, 2013.

[7] Wei Zhang, Jianming Lian, Chin-Yao Chang, and K. Kalsi. Aggregated modeling and con-
trol of air conditioning loads for demand response. Power Systems, IEEE Transactions on,
28(4):4655–4664, Nov 2013.

59



60



Part II

Publications

61





Paper A

Control for Large-Scale Demand Response of Thermostatic Loads

Luminit,a C. Totu, John Leth and Rafael Wisniewski

The paper has been published in the
proceedings of the American Control Conference, 2013



c© 2013 IEEE
The layout has been revised, and small editorial changes have been made. Content relavant
changes, if any, are marked with explicit footnotes.



1. Introduction

Abstract

Demand response is an important Smart Grid concept that aims at facilitating the integra-
tion of volatile energy resources into the electricity grid. This paper considers a residential
demand response scenario and specifically looks into the problem of managing a large number
thermostat-based appliances with on/off operation. The objective is to reduce the consumption
peak of a group of loads composed of both flexible and inflexible units. The power flexible units
are the thermostat-based appliances. We discuss a centralized, model predictive approach and
a distributed structure with a randomized dispatch strategy.

1 Introduction

In many countries including Denmark [1, 2], energy generation from volatile resources
such as wind or solar radiation is planned to increase. While these resources are sus-
tainable and have overall capacity to cover the growing energy demand and even
replace capacity currently served by fossil-fuels, large-scale use is challenging. This is
because the power system needs to be in balance between consumption and produc-
tion at all times. When a large percentage of the generation is volatile, the balancing
effort increases beyond the possibilities of the traditional grid.

Smart Grid is a developing technology that proposes real-time information ex-
change, distributed generation, distributed storages, and intelligent solutions for the
electrical network. It can facilitate the large-scale integration of volatile generation,
reduce infrastructure investments and decrease the need for large, stand-by energy re-
serves. An important Smart Grid concept is demand response, which can be described
as the active, continuous participation of the consumption in the energy balance: use
less electricity when it is scarce and difficult to produce, and more otherwise.

We present a demand response scenario where a large group of thermostat-based
appliances with on/off operation represent power flexible units. We can think of the
flexible units as many, small and "leaky" thermal storages.

Next, we briefly refer to works on a similar topic to outline our focus. Dynamic
demand, a concept closely related to demand response, is addressed in [4] for a pop-
ulation of domestic refrigerators acting as grid frequency stabilizers. In this case, and
in contrast to the demand response scenario, the units cannot be used for planning,
e.g., storing energy minutes or hours before a consumption peak.

The demand-side management structures in [12] and [5] are more appropriate for
operating appliances as distributed storages. Important techniques used here are ran-
domization and broadcasting. Furthermore, [10] discusses three different structures
for demand response (price signal, individual power reference, and individual tem-
perature reference) and concludes that a successful scheme must combine optimiza-
tion and feedback. It is on these four ideas that we build the distributed approach
proposed in this work.

We start by investigating centralized optimization techniques that are commonly
used for production planning [7, 9]. While these can offer an insight into the con-
sumption problem, such a direct approach alone is impractical. Due to non-convex
elements (the on/off device level control) and the large number of variables that need
to be communicated and computed, algorithms become impracticable. Consequently,
we propose a distributed structure with two levels: a supervisor center and local con-
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trollers. The supervisor center broadcasts a global coordination signal and uses power
measurements of the cumulated consumption as feedback. A modified thermostat al-
gorithm acts as the local controller of each appliance. The algorithm handles device
specific operation and responds to the coordination signal in a randomized manner.

The article is organized as follows. First, models based on physical principles are
introduced in Section 2. The centralized optimization is presented in Section 3, and
the distributed structure in Section 4. Simulations for both approaches are discussed
in Section 5, while Section 6 concludes and points to future work.

2 Models

We assume given N + M power consuming devices, where N units have thermal
storage capabilities and thermostat driven on-off behavior, and M units have a purely
stochastic, time-varying on-off behavior and no energy storage properties. We think
of the first type as refrigerators, heat-pumps, air-conditioning or water boilers, and
of the second type as lights, TVs, or ovens. With respect to the energy needed for
nominal operation, the devices of the first category have power flexibility and are
considered controllable, while those of the second category are power inflexible and
are considered uncontrollable. It is also assumed that power consumption is constant
during the on-cycle for all devices.

The aim is to control the N flexible devices, within the boundaries of their nominal
operation and in the presence of the M inflexible devices, such that the peak of the
cumulated consumption is reduced.

For both device categories, simplified physical models combined with stochastic
elements are used to capture the main behaviors related to power consumption. Es-
sential aspects of the problem are scale and variability: the objective is to manage a
very large number of units and to tolerate parameter variations.

2.1 Basic models for the flexible units

The flexible devices have an on/off consumption pattern based on thermostat control.
In the on-cycle, power is consumed and thermal energy (heat or "coldness") is stored.
In the off-cycle, the thermal energy is lost in the surrounding environment. Modeling
based on physical principles is described next.

The power active component (e.g. vapor-compression cycle, resistive heater, etc.)
is modeled with a constant coefficient of performance. A number of compartments of
uniform temperatures are modeled by heat balance affine differential equations. Since
the control and communication will be based on digital systems, it is natural to work
directly in discrete time. We will use models of the form (A.1) where the notation is
summarized in Table A.1. A random term is introduced in the dynamics. It can be
designed to account for the variety of disturbances coming from usage profiles and
the environment.

Fi :

{
Ti(k + 1) = AiTi(k) + biui(k) + ci + qi(k) (A.1a)

yi(k) = piui(k), (A.1b)

Nominal operation is the evolution of Fi within a set of constraints, e.g., tem-
perature ranges and minimum on and off times. The unit has operational flexibility

66



2. Models

Table A.1: Notation and symbols for models of flexible units

Signals

Ti(·) temperature vector for the compartments Rni

ui(·) on/off value of the power consuming comp. {0, 1}
u(·) collective on/off values {0, 1}N

yi(·) power consumption (Watts) R+

y(·) collective power consumption (Watts) RN
+

qi(·) random contributions Rni

Parameters

N number of flexible units N+

ni number of thermal compartments for a unit N+

Ai linear map, 2D-matrix Rni → Rni

bi, ci linear map, 1D-vector R→ Rni

pi power rating of the device (Watts) R+

p collective power ratings RN
+

DTi minimum down(off) time periods N+

UTi minimum up(on) time periods N+

Indexes

()i unit index 1, . . . , N
k discrete time index 1, 2, . . . , K

because there are different possibilities of controlling the on/off power cycle, i.e. the
ui signal, to maintain nominal operation, see Fig. A.3.

Next, we collect the ui and pi terms in the following notations, u(k) = (u1(k), . . . , uN(k)),
p = (p1, . . . , pN) and write the total consumption of the N flexible units at time k as

y(k) = 〈p, u(k)〉 ∆
=

N

∑
i=1

piui(k). (A.2)

2.2 Basic models for the inflexible units

Inflexible units have a stochastic on-off behavior with time varying properties. As ex-
ample, an indoor light appliance is more likely to be turned on in the early morning
and in the evening, and less at midday and after midnight. A natural choice for mod-
eling the random on/off behavior at the unit level is using the discrete-time Markov
chain formalism. We will use notations similar to [8].

Each inflexible unit j will be modeled as a discrete time Markov chain, with
Xj(k) ∈ {1(on), 0(off)} the random variable representing the state of the unit at time

k, Pj(k) = (pj
0(k), pj

1(k)) = (P[Xj(k) = 0], P[Xj(k) = 1]) the state probability row

vector at time k, and pj
01(k) and pj

10(k) time varying transition probabilities, "turn on"
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and ‘"turn off" respectively. The evolution in time of the state probability and the
power consumption output can be described as

Ij :

{
Pj(k + 1) = Pj(k)Mj(k)
wj(k) = p′jXj(k),

(A.3)

where Mj(k) =

[
1− pj

01(k) pj
01(k)

pj
10(k) 1− pj

10(k)

]
is the transition probability matrix.

This Markov chain is also depicted in Fig. A.1 and notation and symbols are sum-
marized in Table A.2. The transition probabilities can be parameterized to approxi-
mate usage patterns for different device types.

X(k)=0 X(k)=1
(off) (on)

Turn Off

Turn On

p01(k)

p10(k)

1-p01(k)

1-p10(k)

Fig. A.1: Markov chain for the inflexible units

We further collect the Xj and p′j terms in the notations, X(k) = (X1(k), . . . , XM(k))
and p′ = (p′1(k), . . . , p′M(k)) to compactly express the total power consumption of the
M inflexible units, a random process, as

w(k) =
〈

p′, X(k)
〉

. (A.4)

In this work, we use the probabilistic construction only for numerical simulations.
In the optimization formulation, a deterministic sequence w̄(k) is used as a forecast for
the expected power consumption of the inflexible units over a required time horizon.
This deterministic sequence is constructed by replacing each w(k) random variable
with its expected value, E[w(k)]. Given an initial state probability vector Pj(0) and
knowing the transition matrices Mj(k),

E[w(k)] =
M

∑
j=1

p′jPj(0)Mk
j
[
0 1

]T , (A.5)

where Mk
j = Mj(0)Mj(2) . . . Mj(k− 1).

Using the above models for the flexible and inflexible units, the total power con-
sumption of the N + M devices can be expressed, depending on the context, as one
of the following two random processes:

z(k) = y(k) + w(k) = 〈p, u(k)〉+
〈

p′, X(k)
〉

, (A.6a)

z̄(k) = y(k) + w̄(k) = 〈p, u(k)〉+ w̄(k). (A.6b)
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Table A.2: Notation and symbols for models of inflexible units

Signals

Pj(·) probabilities for Markov states on and off R1×2

Xj(·) random variable, state of the unit: on(1) or off(0) {0, 1}
wj(·) power consumption (Watts) R+

w(·) cumulated power consumption R+

w̄(·) forecast/mean consumption profile (Watts) R+

Parameters

M number of inflexible units N

Mj(·) right stochastic matrix, time varying R2×2

pj
xy(·) pr. of transition from state x to y, time varying [0, 1]

pj
x(·) pr. of being in state x [0, 1]

p′i power rating of the device (Watts) R+

p′ collective power ratings RM
+

Indexes

j unit index 1, . . . , M
k discrete time index 1, . . . , K

It is noted that while w̄(k) has been introduced as a deterministic sequence, z̄(k) re-
mains a random process for all practical cases. This is because the dynamics of the
flexible units are affected by noise, and this fact will reflect into the power consump-
tion, the term u(k).

3 A Centralized Approach

A straightforward approach to reduce the peak consumption is to employ optimiza-
tion techniques based on an objective, models and constraints to compute the on/off
controls for the flexible units. In this section, we formulate and analyze a mixed in-
teger linear optimization that is the core component of the model predictive control
(MPC) [11] approach.

We want to calculate the ui(k) values for all the flexible units Fi and over the
entire time horizon {1, . . . , K}, such that the maximum value of the sequence z̄(k) is
minimized. This opaque minimax objective,

min
u(·)
‖z̄(k)‖∞ = min

u(·)
‖〈p, u(k)〉+ w̄(k)‖∞, (A.7)

can be written in a convenient linear form by adding a new variable, m ∈ R and a set
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of inequality constraints, see [6],

min
u(·)
‖z̄(k)‖∞ ⇔

min
u(·),m

m

−m ≤ z̄(k) ≤ m; ∀k.
(A.8)

Furthermore, because z(k), the cumulated instantaneous power consumption, is al-
ways non-negative, the left inequality, −m ≤ z̄(k), can be dismissed. Next, we detail
three main constraints.

First, the model dynamics must be included to indicate the relation between the
states Ti(·) and the decision variables ui(·). For each flexible unit i, and k ∈ {1, . . . , K},
equation (A.1a) without the random term is accounted as an equality constraint. It is
noted that the Ti(1) temperatures are already decided by the ui(0), and act as initial
conditions. These constraints apply on Ti(2) to Ti(K + 1).

Second, the states Ti(k) must be within the allowable ranges, Tmin
i ≤ Ti(k) ≤

Tmax
i , where Tmin

i , Tmax
i ∈ Rni are individual parameters of the flexible unit i and

k ∈ {2, . . . , K + 1}.
Third, we include minimum on and off times associated with the power consump-

tion of each Fi. These constraints can be written in a linear form, see [7]. Expressions
(A.9) are for the minimum on-time and (A.10) are for the minimum off-time.

(UTi−Ci)ui(0)

∑
k=1

ui(k) = (UTi − Ci)ui(0) (A.9a)

t+UTi−1

∑
k=t

ui(k) ≥ UTi (ui(t)− ui(t− 1)) ,

∀t ∈ {(UTi − Ci)ui(0) + 1, . . . , K−UTi + 1} (A.9b)
K

∑
k=t

ui(k)− (ui(t)− ui(t− 1)) ≥ 0, ∀t ∈ {K−UTi + 2, . . . , K}; . (A.9c)

(DTi−Ci)(1−ui(0))

∑
k=1

ui(k)) = 0, (A.10a)

t+DTi−1

∑
k=t

(1− ui(k)) ≥ DTi (ui(t− 1)− ui(t)) ,

∀t ∈ {(DTi − Ci)(1− ui(0)) + 1, . . . , K−DTi + 1} (A.10b)
K

∑
k=t

1− ui(k)− (ui(t− 1)− ui(t)) ≥ 0, ∀t ∈ {K−DTi + 2, . . . , K}. (A.10c)

It can be seen that a number of approximately 2K linear inequalities are used for
each unit to assure the minimum on and off time conditions. The inequalities have
different expressions at the beginning (A.9a), (A.10a) and at the end (A.9c), (A.10c) of
the time horizon. Ci is a counter value that holds number of samples that the unit has
been in the initial state, and is part of the optimization initialization. Thus the value
(UTi − Ci) represents the number of periods that the unit must remain in its initial
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state and not change. The term ui(t)− ui(t− 1) equals to 1 for a turn-on event at time
t, and thus the next UTi commands ui(t+ 1), . . . , ui(t+UTi − 1) must remain on (=1).
The term ui(t− 1)− ui(t) equals to 1 for a turn-off event at time t.

The optimization can now be passed to a mixed integer linear solver. Simulation
results are presented in Section 5.

We present next implementation considerations. In total, the problem has 2 ×
N × K + 1 decision variables (temperatures are also decision variables) and about
5× N × K constraints. A sample period Ts = 60 seconds is considered a good choice
with respect to the dynamic characteristics of the controllable units, the level of detail
in the modeling, and the on/off control behavior. Ideally, the time horizon K should
cover 24 hours, the main period of the inflexible consumption pattern. In the model
predictive control solution, such an optimization needs to be solved every sample
period. Although good algorithms exist for solving mixed integer linear optimiza-
tions [3], memory and execution time requirements will grow exponentially with the
number of units and the time horizon, and make computation infeasible for large-
scale problems. Another disadvantage here is related to the centralized nature of the
approach: the computation center must send and receive data from geographically
distributed locations in a short period of time, requiring a robust, fast, double way
communication infrastructure.

4 A Distributed Approach

In the centralized approach, the non-convex elements and the large number of local
variables and constraints make the numerical computations impracticable. It seems
reasonable to carry out part of the control task at the local level where knowledge of
the state variables and operational constraints is inherent. If the power consumption
decisions are made locally, some type of information sharing becomes necessary to
achieve a consistent global behavior.

We construct a demand response structure that has distributed characteristics,
two control levels, and requires minimal communication. A diagram is shown in
Fig. A.2(a), where blocks F1, . . . , Fn represent flexible units equipped with the local
controllers KL and the (I1 + . . . + IL) block corresponds to the cumulated inflexible
consumption process.

4.1 Supervisory control and estimation

Using consumption forecasts and an aggregation model with approximate knowledge
of type and number of cooling units in the system, the supervisor control generates
the power reference signal r. The power reference has the purpose of scheduling
periods of thermal energy storage and discharge. Furthermore, estimated values are
needed to characterize the refrigeration population. These are Ñon and Ñoff, estimates
for the number of units in the state ON and OFF respectively that are in the flexibility
range, and p̄i the average specific power rating of a cooling unit in the group. The
flexibility range refers to the temperature of a unit i being some distance away from
the hard limits, that is in the range [Tmin

i + ∆Ti, Tmax
i − ∆T′i ]. This is done to avoid

successive on/off cycling due to conflicting local and global objectives.
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if {ui(k-1)==0 & Ci < DTi}; ui(k)=0; goto END
if {ui(k-1)==1 & Ci < UTi}; ui(k)=1; goto END
if {Ti(k) > Ti

max}; ui(k)=1; goto END
if {Ti(k) < Ti

min}; ui(k)=0; goto END

%Local Constraints

%Global Objective
if {Ti(k) > Ti

min+ΔT & ε>0 & rand(1)<ε }; 
                  ui(k)=1; goto END
if {Ti(k) < Ti

max-ΔT' & ε<0 & rand(1)<|ε|}; 
                  ui(k)=0; goto END

END: Update_Ci();

(b)

Fig. A.2: Distributed control structure (a), and the local controller block KL (b)

4.2 Local controller

The local controller, shown in Fig. A.2(b), is a computationally inexpensive extension
of the thermostat cooling logic. The on/off decision is made with first priority on
constraints, in this case temperature and timer limits. If they are all satisfied, the
operational flexibility is used to respond to the broadcast signal ε in a randomized
manner. Fig. A.3 shows a normal thermostat operation versus an extended thermostat
reacting in a randomized manner to an external signal ε.

4.3 Dispatch strategy

The ε signal is similar to the error signal in a classic control structure. It is build as
a scaled difference between the reference signal r and the actual power consumption
z. It can either encourage consumption (ε > 0), or discourage it (ε < 0). The scaling
is performed such that the absolute value has the meaning of a fraction of the total
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(b) Randomized duty-cycle

Fig. A.3: Operation of flexible unit. Temperature is shown in blue, and the on/off state in black.

number of refrigerators. For example, if ε = −0.1, the broadcast information is that
10% of the refrigerators should turn off. The formula for computing ε is thus

ε =

{
(r− z)/(Ñoff p̄i), if r > z
(r− z)/(Ñon p̄i), if r < z.

(A.11)

Refrigerator units in the flexibility range respond to the ε signal by making random
trial with success rate |ε|. If the trial is successful, the unit reacts by turning on (ε > 0)
or respectively off (ε < 0). For a sufficiently large number of refrigerators and good
Ñ estimates, by the law of large numbers, the cumulated responses of the individual
units will be close to the requested fraction. It is thus possible to follow a power
reference signal r that is well-designed.

We have organized a dispatch strategy that can support an arbitrarily large num-
ber of individual units, is computationally and communication-wise cheap, and is
robust to faults in the coordination level. The dispatch is intrinsically noisy, but the
relative noise ratio will decrease with the number of units. This can be seen in the
next section. Some of the complexity of the problem remains to be handled at the
coordination level, where good aggregation models and algorithms are needed for
tracking the thermal storage level and for estimating the Ñon and Ñoff values.

5 Numerical Experiments

This section puts forward specific models for the flexible and inflexible units, and
presents simulation results for the centralized optimization control and the distributed
control.

We take the case of a 1-compartment cooling unit in constant ambient temperature,
similar to [4], [12] or [5],

Fi :

Ti(k + 1) = aiTi(k) + (1− ai)

(
Ta

i − ui(k)T
g
i

)
+ q(k)

yi(k) = piui(k),
(A.12)
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where a = exp(−UA · Ts/C), Tg = COP · p/UA and Ts = 60 seconds. A random,
white component q(k) with normal distribution has been added to the temperature
dynamics to simulate disturbances. Overall, this is a simple model with the purpose
of evaluating the control approaches, and is a particular case of the general affine
linear state-space representation (A.1).

We work with two parameter sets, described in Table A.3. Parameters marked
with "∗" will be generated with a ±10% normal variation around the given value. In
uncontrolled operation mode, the thermostat drives the power consumption cycle in
regular intervals1 of approximately 20 minutes on and 162 minutes off for the first
parameter set (refrigerators) and 43 minutes on and 490 minutes off for the second
parameter set (freezers).

Table A.3: Numerical parameters for the flexible unit model

Description Units Refrigerator Freezer
C∗ heat capacity J/◦C 9.4 · 104 13.5 · 104

UA∗ overall heat transfer W/◦C 1.432 0.8
Ta∗ ambient temp. ◦C 24 22
COP∗ coeficient of perf. - 2.8 2.8
p∗ power rating W 100 140
Tmin min operational temp. ◦C 2 -22
Tmax max operational temp. ◦C 5 -15
UT min up time min 5 5
DT min down time min 5 5
q(·) random, normal distrib. ◦/s σ = 0.05 σ = 0.05

The inflexible unit j is described by the transition probabilities pj
01(k) and pj

10(k)
specified over the time horizon of a day. The transition probabilities have been de-
signed piece-wise constant, and create a state probability profile pj

1(k) with two exag-
gerated peaks, shown in Fig. A.4. The probability behavior is identical for all units,
such that the cumulated consumption has the same shape.

For the MPC approach, the optimization problem defined in Section 3 has been
implemented for the Gurobi solver MATALB interface. It was parameterized for a
group of identical 1-compartment cooling units with identical ambient temperatures
and inflexible consumption profile w̄(k). The largest number of controllable units for
which it was possible to obtain solutions in a reasonable amount of time was N = 20.
The optimized commands associated corresponding to the first time step, u(1), are
dispatched to each unit. The new temperatures are then collected and used as initial
conditions for the next optimization, which is carried out with a receded horizon.

For the distributed approach, a simulation was set-up in MATLAB as described
in Sec. 4. The elements of the Supervisor Control and Estimation block have not
been completely developed for this simulation. The reference signal r was designed
manually such that periods of energy storage were scheduled prior to the peaks, and
periods of energy discharge were scheduled during the peaks. In addition, the Ñoff

1Added Note: For clarification, it is remarked that the ON and OFF duration are calculated for a deterministic
operation, without considering the white noise contributions.
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(b) Probability profile for state ON

Fig. A.4: Properties for the inflexible units across the time horizon of a day. In the left figure, TURNON
transition probabilities are shown in red, and TURNOFF transition probabilities are shown in blue. In the
right figure, resulting steady-state probabilities for ON are shown.

and Ñon estimates were constructed using simulation data that would not normally
be available to the supervisor center.

Fig. A.5 shows realizations for the small scale case. The differences between the
planned schedule (Fig. A.5(a)) and the MPC realization (Fig. A.5(b)) are due to model
parameter variations and noisy dynamics in the simulation of the flexible units, and
also because of errors in the inflexible consumption forecast. For the distributed
control A.5(d), it can be seen that the reference signal for the total consumption is
followed in an imprecise manner. This is mainly due to large relative granularity of
the system as the response from the refrigerator group is in steps of approximately
±100W. Furthermore, at this scale, the dispatch strategy is imprecise due to the
randomization. For both the MPC and the distributed control, the peak has been
reduced.

Fig. A.6 shows realizations for the large-scale case. The dispatch strategy is now
able to keep the response smooth and precise. The shortcomings in this experiment
are only related design of the power reference signal. This remains to be addressed
in future work. It can also be noticed that the second peak starting around 16:40 has
a longer duration. The refrigerator units simply do not have enough storage capacity
to completely ride through this peak and after the 20:00 mark, power consumption
increases over the reference value. Fig. A.6(c) shows a distributed control run for a
group of freezers, units with a larger individual flexibility. In this case, it is possible
to keep the peak close to the level of the inflexible consumption.

6 Conclusion

We have proposed in this work a demand response scenario with a power peak reduc-
tion objective and emphasis on large-scale. First, a centralized MPC framework was
evaluated as infeasible. Subsequently, we presented a distributed control structure
with good performance for large numbers of control units. A main contribution is the
randomized dispatch strategy, which keeps decision making at the local level where
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(b) MPC with receding horizon
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(d) Distributed control

Fig. A.5: Small scale experiments for refrigerator units, N = 20. Blue shows the consumption of the flexible
units y(·), red shows the consumption of the inflexible units w(·), and black represents the total power z(·).
For the distributed control, the power reference r(·) is shown in green. In figures A.5(c) and A.5(d), data from
theree simulated days is plotted in an overlapped manner.

(a) Uncontrolled operation (b) Distributed control
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(c) Distributed control, freezer units

Fig. A.6: Large-scale experiments, number of controllable units is N = 1000. Same conventions as in Fig. A.5

.

specific operation is easy to manage. The approach has only minimal communication
requirements. Future work will address in detail the design of the supervisor level
control based on an aggregated model of the group of thermostat-based devices.
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1. Introduction

Abstract

Demand response is an important Smart Grid concept that aims at facilitating the integra-
tion of volatile energy resources into the electricity grid. This paper considers the problem of
managing large populations of thermostat-based devices with on/off operation. The objective
is to enable demand response capabilities within the intrinsic flexibility of the population. A
temperature distribution model based on Fokker-Planck partial differential equations is used to
capture the behavior of the population. To ensure probability conservation and high accuracy of
the numerical solution, a Finite Volume Method is used to spatially discretize these equations.
Next, a broadcast strategy with two switching-fraction signals is proposed for actuating the
population. This is applied in an open-loop scenario for tracking a power reference by running
an optimization with a multilinear objective.

1 Introduction

We consider a large group of devices of the same type, where each unit has on/off
power consumption controlled by an internal thermostat. These devices are of special
interest for Smart Grid scenarios since they have the potential to deliver demand re-
sponse services in an automated way. The focus of this work is on aggregating a very
large numbers of units. The challenge is twofold. Firstly, communication flows must
be carefully designed to be feasible under cost, security and privacy criteria because
of the large-scale and large geographic spread of the system. Secondly, computational
complexity must be kept in check.

The study of large groups of thermostatic loads started in the power system and
in the control literature in the ’80s with the works of [3] and [5]. The interest was
on modeling the oscillatory effects in the power consumption after a planned (direct
load control) or unplanned interruption (black-out). After three decades, the problem
got a resurgence motivated by the advancement of demand response concepts, which
in turn are motivated by new challenges in power system operations, mainly the
integration of intermittent generation.

The modeling approach that we are focused on is based on physical principles and
stochastics. The thermostatic unit is described by a stochastic hybrid lumped-state
dynamical model, while a thermostatic population can be described by a distribution
function over the hybrid state-space.

If the distribution function is taken in its continuous form (a density), an infinite
dimensional state-space description is obtained where dynamics are given in the form
of a Partial Differential Equation (PDE) system and boundary conditions. This form
was first derived in [5], and has been subsequently used in e.g. [2], [1], [6]. Another
approach is to divide the hybrid state-space into a finite number of partitions, and
work with a discrete distribution i.e. probability mass. Careful considerations based
on the unit model can be made to derive transition probabilities from one partition
to another, and thus the dynamics can be expressed in form of a Markov chain, e.g.
in [4], [9], [7]. These two forms are essentially equivalent, leading to a standard, linear
state-space description.

However, in terms of numerical performance not all methods all equivalent. For
example, in [1] a finite-difference numerical scheme is used to obtain the Markov
chain representation from the PDE description. This method does not inherently
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conserve probability and the solution might require periodic rescaling. In [4] the
transition probabilities of the Markov chain are derived based on an uniformity ap-
proximation over each partition. In this work, we propose Finite Volume Methods
(FVM) for obtaining the Markov chain transition matrix from the PDE system. The
main advantage is that the overall probability is guaranteed to be conserved as the
resulting dynamic matrix has columns that sum to zero1. Furthermore, numerical
results have a high degree of accuracy also over long horizons, since the PDE form
is exact and the only errors are related to the size of the state-space partitions. Fi-
nally, there is an advantage in using a well-developed framework with recognized
robustness and performance as opposed to custom solutions.

Other important aspects for population modeling are heterogeneity and minimum
on/off times. Heterogeneity is a difficult problem because exact descriptions suffer
from the "curse of dimensionality". We add a few remarks, but do not address di-
rectly the modeling of heterogeneity. Nonetheless, results show that the used control
appears to have good robustness to heterogeneity. The effects of enforcing minimum
on/off times at the unit level are modeled using a technique essentially equivalent
to [9].

For control, our focus is on broadcasting strategies since we believe that these have
an implementation advantage. In particular, we are interested in a particular form of
toggling control [4] that involves the broadcast of only two switching fractions. This
is a randomized method of actuation, and has been introduced in [9] and [8] in a
closed-loop form where just one switching fraction is used at a time. In this work,
we set-up and analyze an open-loop configuration based on a non-convex, predictive
horizon optimization.

Section 2 presents the modeling used for the individual Thermostatically Con-
trolled Load (TCL) and for the population, Section 3 introduces the randomized
broadcast actuation with the switching fractions, Section 4 sets up the optimization
formulation and presents numerical results, and Section 5 concludes.

2 TCL Modeling

For this work, we consider cooling units, in particular domestic refrigerators. As un-
der realistic conditions, the TCLs are independent of each other, do not communicate
nor share states. A main object of interest is the aggregated power consumption,
which is simply the sum of the individual power consumptions.

2.1 TCL unit model

Stochastic Hybrid Unit Model:

The basic model for a TCL is a hybrid dynamical system with two modes, correspond-
ing to the "on" or "off" state of the vapor-compression cooling cycle. When the TCL is
"on", it is consuming power and the temperature in the food storage compartment is
lowering. When the TCL is "off", it is not consuming power and the temperature in

1Added Note: The original print contains "the resulting dynamic matrix has a proper rate transition form,
i.e., columns that sum to zero." For a proper transition-rate form, the resulting dynamic matrix must also have
all non-diagonal elements non-negative. This property is not by default fulfilled by using FVM. This is further
discussed in Paper D, and the claim of a proper transition rate-matrix is removed from this paper.
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the food storage compartment is rising due to ambient conditions. The heating and
cooling processes are modeled with a first-order dynamic. This is similar to [3], [2], [1]
and others. Although more complex, second-order dynamics should be studied for
air-conditioning or heat-pumps TCLs [9], this is not considered necessary in the case
of domestic refrigerators, because there is no dominant secondary temperature mass.
Additionally, random fluctuation are introduced in the dynamics as a white noise
term.

Other possible random disturbances not pursued at this time are jump processes
that would correspond to "door-opening" events. Furthermore, power consumption
is considered to be constant when the mode is "on". This assumption might need to
be revisited in future work.

Summing up, the model of a TCL unit is a stochastic hybrid system of the follow-
ing form:

dT(t) = −UA
C

(
T(t)− Ta + m(t)

ηW
UA

)
dt + σdw (B.1a)

=

(
aT(t) + b + m(t)c

)
dt + σdw (B.1b)

y(t) = dm(t) (B.1c)

where T(t) ∈ R is the continuously-valued temperature state, m(t) ∈ {0, 1} is the
discrete-valued state corresponding to the "off" and "on" modes respectively, y ∈ R+

is the power consumption viewed here as model output, and a, b, c, d and σ are time
invariant coefficients.

The dynamics of the discrete-valued state, mi, are given by

m(t+) =


1, T(t) ≥ Tmax

m(t−), T(t) ∈ (Tmin, Tmax)

0, T(t) ≤ Tmin

, (B.2)

a standard thermostat mechanism with boundaries at Tmin and Tmax. This is a deter-
ministic, state-dependent switching.

Probabilistic unit model

Because of the random influences introduced in the continuous dynamics, the hybrid
state

(
T(t), m(t)

)
∈ R× {0, 1} is a stochastic variable. It can be characterized by a

probability density function (pdf) defined in the following way,

fy(x, t) = lim
δx↘0

1
δx

Pr[T(t) ∈ [x, x + δx) ∧m(t) = y] . (B.3)

The Fokker-Planck equation

The temperature dynamics corresponding to each of the two modes (on and off) are
continuous-time continuous-state Markov processes, and in particular diffusions. If
we look at any of the modes in isolation and do not take the switches into considera-
tion, given the probability distribution of the temperature state at time t0, we can de-
termine the probability distribution at any future time t ≥ t0 using the Fokker-Planck
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(Forward Kolmogorov) equation, which can be seen as a transport and conservation
law for probability.

PDE system for the hybrid dynamic

The result in [5] gives the pdf dynamics in the particular case of the TCL hybrid
dynamic (B.1), (B.2). It consists of Fokker-Planck equations written for each mode
(B.4), and a set of boundary conditions (B.5).

Before stating the result, some preliminaries need to be addressed. The tempera-
ture domain needs to be divided into three subsets: the thermostat range [Tmin, Tmax],
the left hand side (−∞, Tmin) and the right hand-side (Tmax, ∞). This is a natural
partition with respect to the operation of the TCL unit, and is necessary because
boundary conditions apply in the points Tmin and Tmax, and also because the pdf is
not x-differentiable here. It is convenient to denote the three subsets with the letters
b, a and c respectively. It is also important to note that in normal operation the pdf
corresponding to the off mode, f0(x, t), is zero-valued on the c domain, because if the
temperature becomes greater than Tmax the thermostat mechanism ensures that the
mode can not remain "off". The c domain accounts only for units in state "off", whose
temperature becomes greater than Tmax due to diffusion effects. Similarly, the pdf
corresponding to the on-mode, f1(x, t) is zero-valued on the a-domain. In numerical
work, the infinity domains limits can be cut short since it is realistic to assume that
the temperature inside a working refrigerator cannot drop below some Tminmin value
and cannot rise above some Tmaxmax value.

∂ f0j

∂t
+

∂

∂x

(
(ax + b) f0j

)
=

σ2

2
∂2 f0j

∂2x
, j ∈ {a, b} (B.4a)

∂ f1j

∂t
+

∂

∂x

(
(ax + b + c) f1j

)
=

σ2

2
∂2 f1j

∂2x
, j ∈ {b, c} (B.4b)

f1b(Tmin, t) = 0, f0b(Tmax, t) = 0 (B.5a)

f0a(Tminmin, t) = 0, f1c(Tmaxmax, t) = 0 (B.5b)

f0b(Tmin, t) = f0a(Tmin, t), f1b(Tmax, t) = f1c(Tmax, t) (B.5c)

∂

∂x
f1b(Tmin, t) =

∂

∂x
f0b(Tmin, t) +

∂

∂x
f0a(Tmin, t) (B.5d)

∂

∂x
f1b(Tmax, t) =

∂

∂x
f0b(Tmax, t)− ∂

∂x
f1c(Tmax, t) (B.5e)

Fig. B.1(a) shows the temperature domains, and the stationary shape of the pdfs
obtained after a long operation time of the TCL unit. In this case, the pdf is almost
uniform across the thermostat temperature range. An important quantity of interest,
the probability that the TCL is on, is given by the area under the pdf associated with
the on-mode,

Pr[m(t) = 1] =
∫ Tmaxmax

Tmin

f1(T, t)dT. (B.6)

Furthermore, the area under both pdfs equals to 1, as it represents total probability.
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Fig. B.1: Temperature domains and sketch of the temperature distributions at equilibrium

A PDE system can be recovered using the Fokker-Planck framework also for ex-
tensions of the continuous dynamics, such as multidimensionality (e.g. second order
temperature dynamics) and jump-noises (modeling user interaction /door opening
events).

Finite Volume Method

To solve the PDE, or equivalently propagate the pdf in time starting from an initial
condition, numerical methods are employed and special care must be taken not to
introduce unnecessary errors. Because of the conservation form of the Fokker-Planck
equations, we choose FVM. This assures that the invariant of the system, probability,
is conserved.

The idea is to partition the temperature domain, consisting of the sub-domains
a, b, c, into a finite number of cells Na, Nb, Nc. For convenience, we choose cells of
equal sizes ∆Ta, ∆Tb and respectively ∆Tc for each domain. The continuous pdf func-
tion is replaced by a finite number of approximations points F = [Fa

0 , Fb
0 , Fb

1 , Fc
1 ]

T ∈
R(Na+2Nb+Nc)×1, each representing the average density value over a cell. This means
that F0a(i) is designed to approximate the value

∫
Celli

f0a(T)dT. Because of the linear
form of the equations (the PDEs (B.4) are linear in the unknown function f ) and of
the boundary conditions, a linear finite-dimensional approximation dynamic can be
obtained,

Ḟ(t) = AF(t). (B.7)

The resulting matrix A has the property that the columns sum to 0. This is consistent
with the fact that the space discretized description is a Markov chain representation
of the stochastic hybrid TCL model2. Furthermore, as a consequence of the fact that
the columns sum to one, the matrix Ahas stable eigen values except one, which is
exactly zero.

2Added Note: As mentioned, the non-diagonal elements are not guratanteed to be non-negative by a generic
FVM technique alone, meaning that the matrix A will not have a true transition-rate form.
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Lastly, the expected power consumption output of the TCL unit can be written as

y(t) = CF(t), (B.8)

with C = d ·
[
01×Na 01×Nb ∆Tb11×Nb ∆Tc11×Nc

]
.

2.2 Population model

Homogeneous population

The state distribution model has so far been developed for a single TCL. If we consider
a population of N identical units, the dynamic model (B.7) holds, where the vector
F simply changes meaning from probabilities to fractions3 of the population. The
expected power consumption of the population is given by

y(t) = NCF(t). (B.9)

Heterogeneous population

"Small" heterogeneities of the TCL population should not cause severe modeling er-
rors, but "large" heterogeneities will cause a significant departure from the homoge-
neous case. If we consider heterogeneity given in the form of parameter distribution,
an exact modeling approach is to augment the TCL model and add parameters as
states with dynamic zero. This is sketched below for a single branch of the hybrid
dynamic,

dT =

(
aT(t) + b + m(t)c

)
dt + σdw (B.10a)

ȧ = 0 (B.10b)

ḃ = 0 (B.10c)

ċ = 0 (B.10d)

σ̇ = 0 (B.10e)

The corresponding multidimensional Fokker-Planck equation in the pdf f (x, t) =
f ([T, a, c, b, σ], t) resolves to

∂ f (x, t)
∂t

+
∂

∂x1

(
(x2x1 + x3) f (x, t)

)
=

x2
5

2
∂2 f (x, t)

∂2x1
. (B.11)

Unfortunately the approach suffers from the curse of dimensionality, since the space-
variable x ∈ R5 and a fine meshing of the five dimensional space is required to
accurately recover the dynamics. Another observation is that, since the dynamics of
the parameter-state are not connected to the dynamics of the temperature state, this
formulation essentially leads to a clustering strategy, as used in [9]. The clustering
strategy corresponds to a rough partitioning of the parameter space.

Another approach to modeling heterogeneous dynamics is by adding an extra
term in the PDE (B.4) that can be fitted to account for the empirically observed damp-
ing/dissipation effect. This approach is taken in [6] using an increase of the already

3The state vector F ∈ RNa+2Nb+Nc is defined to represent average density values. It can be scaled by the
cell sizes to yield probability quantities, which are equivalent to fractions in the population case.
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present diffusion term ∂2

∂x2 . Other operators could be consider for obtaining a better
fit, perhaps taking inspiration from mechanical modeling.

2.3 Numerical verification

For a population composed of identical TCLs with known parameters, the only sources
of inaccuracies are the fact that the number of units in the population is finite (this
error is small for large populations) and the spatial discretization of the PDE (this
error is also small in the FVM case). A more concerning source of errors is that a real
population would not be composed of identical units.

The graphs in Fig. B.2 compare the power output of the model (B.7), (B.9) with
Monte Carlo simulations of populations composed of N = 10000 units and different
levels of heterogeneity. The scenario is that of a free response to synchronized initial
condition where all units start from the same state (Tmax, 0). This type of synchro-
nization that generates a well known oscillatory behavior.

Time[min]
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P
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W
]

0
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200

800

Fig. B.2: Free response of the power consumption. The model is shown in black, and Monte Carlo simulations
in blue (identical units), green (10% heterogeneity), yellow (20% heterogeneity) and red (30% heterogeneity).

The heterogeneous populations are composed of units where the key Equivalent
Thermal Parameters (ETP) of the TCL model (C, UA, W) and σ are each distributed
according to a Gaussian profile with standard deviations 10%, 20% and 30% respec-
tively, and truncated at ±3σ. It can be seen that the model matches well the power
consumption of the population with identical units, but starts to degrade in perfor-
mance with the increase of heterogeneity.

The parameters used for the TCL unit model are given in Table B.1, resulting in a
duty-cycle4 with an on-time of about 18 minutes and off-time of 160 minutes.

4Added Note: For clarity, it is remarked that the ON and OFF duration are calculated for a deterministic
operation, without considering the white noise contributions.
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Table B.1: TCL unit parameters

C (J/K) UA (W/K) Ta (◦C ) W (W)
93920 1.432 24 100
η σ (◦C/s) Tmin(◦C) Tmax(◦C)
2.8 0.0065 2 5

3 Switching-Fraction Modeling

In order to externally influence the power consumption of the TCL population, a
switching-fraction signal is introduced. This is composed of two rational numbers
that have the meaning of percentages, ε = {ε0, ε1} ∈ Q2, and is broadcast every Tc
seconds. The signal triggers a percentage ε0 of the units "on", which are also in the
"on-safe" temperature range (to be defined next), to "switch-off", and a percentage ε1
of the units "off", which are also in the "off-safe" temperature range, to "switch-on".
The "on-safe" range is [Tmin, Tmax−∆T0], and the "off-safe" range is [Tmin +∆T1, Tmax].

3.1 Actuation at the unit-level

While the switching-fractions are given at the population level, the actual switch is
decided at the unit level. The TCLs have to meet the requested fractions without
communicating with each other. To do so, an individual TCL that is in the target
group switches based on the result of a binomial trial with success rate equal to the
broadcast fraction value. If the target group is large enough, by the law of large
numbers, the response of the population will be close to the requested one.

Referring to the stochastic hybrid model from Section 2.1, this represents a change
in the discrete dynamic (B.2). The thermostat mechanism that generates deterministic
state-dependent switches remains in place, and in addition, a stochastic component is
introduced. This can generate spontaneous switches in response to the external signal.
The temperature safe-zones are specially defined to ensure that switches do not occur
close to a relevant boundary, since they would quickly be reversed by the thermostat.
Furthermore, minimum on/off guards can be introduced to block the generation of
an external switch, again to avoid the undesirable fast switching behavior.

3.2 Actuation in the population model

The switching-fractions broadcast actuation has been introduced as a discrete-time
strategy. We will therefore introduce it into a discrete-time state space form of (D.16),
specifically

F(k + 1) = AdF(k), Ad = eA·Tc . (B.12)

Figure B.1(b) shows the temperature ranges of the switching-fraction signal. A switch-
off fraction ε0 will instantaneously transport probability from the temperature zone
[Tmin, Tmax − ∆T0] of f1b to f0b. Similarly, a switch-on fraction ε1 will transport prob-
ability from the temperature zone [Tmin − ∆T1, Tmax] of f0b to f1b. Notations b1, b2
and b3 have been introduced in Fig.B.1(b) to define the safe-range partitions of the
thermostat domain.
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At the time step k+, right after the broadcast, the pdfs over the temperature do-
main [Tmin, Tmax] change in the following way,

F0b1
(k+) = F0b1

(k) + ∆F1b1
(k) (B.13a)

F1b1
(k+) = F1b1

(k)− ∆F1b1
(k) (B.13b)

F0b2 (k
+) = F0b2 (k)− ∆F0b2 (k) + ∆F1b2 (k) (B.13c)

F1b2 (k
+) = F1b2 (k) + ∆F0b2 (k)− ∆F1b2 (k) (B.13d)

F0b3 (k
+) = F0b3 (k)− ∆F0b3 (k) (B.13e)

F1b3 (k
+) = F1b3 (k) + ∆F0b3 (k) . (B.13f)

If the minimum on-off time effects are not considered, then

∆F1b1
= ε0F1b1

(B.14a)

∆F1b2 = ε0F1b2 (B.14b)

∆F0b2 = ε1F0b2 (B.14c)

∆F0b3 = ε1F0b3 , (B.14d)

leading to the following bilinear form

F(k + 1) = E(k + 1)AdF(k) , (B.15)

where E(k) is a matrix depending on ε0(k) and ε1(k). The block form5 of the E(k)
matrix is

I 0 0 0 0 0 0 0
0 I 0 0 ε10(k)I 0 0 0
0 0 (1− ε01(k))I 0 0 ε10(k)I 0 0
0 0 0 (1− ε01(k))I 0 0 0 0
0 0 0 0 (1− ε10(k))I 0 0 0
0 0 ε01(k)I 0 0 (1− ε10(k))I 0 0
0 0 0 ε01(k)I 0 0 I 0
0 0 0 0 0 0 0 I


. (B.16)

To include the minimum on-off effects, it is required to account for the units that
are "locked", meaning that they have recently switched and cannot do so again. This
reduces the amount of TCL units that are responsive to the broadcast signal. The
population modeling needs to be extended to include tracking of the locked units.
The following is similar to [9].

Let us assume that the on-lock duration (minimum on time) is 300[s], the same
for all units, and equivalent to l1 = 5 control steps for Tc = 60[s]. Similarly, off-lock
duration (minimum off time) is associated with l0. Initially, after a period with no
control, all units are available for external switching. The first broadcast actuation
causes a change in the distribution state F as described in (B.15). After the broad-
cast, the units that have switched become locked. We have direct information about
the distribution of the locked states, this is [∆F0b2 (k), ∆F0b3 (k)] (just switched on),
and [∆F1b1

(k), ∆F1b2 (k)] (just switched off). These proportions of the distribution are

5Added Note: The block form has been added for clarity.
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locked for a number l1 and l0 respectively of time steps, and we have to also take into
account that these distribution will evolve in the temperature space during this time.

The following additional states are added to the model, representing the distribu-
tion of on-locked units and off-locked units respectively, at different locking stages.

Fl
1L = [Fl

1Lb1
, Fl

1Lb2
, Fl

1Lb3
, Fl

1Lc]
T , l ∈ {0, · · · , l1 − 1} (B.17)

Fl
0L = [Fl

0La, Fl
0Lb1

, Fl
0Lb2

, Fl
0Lb3

]T , l ∈ {0, · · · , l0 − 1}. (B.18)

These states propagate in the following way,

Fl+1
1L (k + 1) = Ad1Fl

1L(k) (B.19)

Fl+1
0L (k + 1) = Ad0Fl

0L(k), (B.20)

where matrices Ad1 and Ad0 represent temperature dynamics without thermostat
switches.

In the end, the population model with switching-fraction actuation and minimum
on/off times can be written as an augmented form of (B.15), namely

F̄(k + 1) = Ē(k + 1)ĀdF(k). (B.21)

The bilinear form of the actuation in (B.15) and (B.21) can be seen as intrinsic to
the TCL problem. It also appears in the case of a thermostat set-point actuation [1].
This is because when using a physically based modeling approach, the actuation
does not represent an external input to the system, but rather an internal transforma-
tion/change. Although the work in [4] proposes a linear formulation of the control,
by letting the decision variables be the ∆F(k) quantities from (B.13), this has some dis-
advantages. In this case, there are as many independent control channels as bins in
the relevant b1, b2 and b3 temperature zones. The control is therefore dependent on a
particular spatial discretization, and multiple switching fractions need to be broadcast
at every time step.

4 Open-Loop Control

The objective of this section is to use models (B.15) and (B.21) for controling the
aggregate power consumption of the TCL population. We define an optimization to
generate an actuation sequence consisting of switching fractions ε0(k) and ε1(k). This
actuation sequence is applied in open loop to drive the population to consume power
in a manner that closely matches a given external reference.

4.1 Optimization problem

Given a power reference over a time horizon with Tsteps, and the initial state of
the TCL population as the distribution F0, an optimization for minimizing the power
consumption tracking error can be written as

minimize
ε1(k),ε0(k)

f (ε) = ∑T
k=1

(
CF(k)− r(k)

)2

subject to
0 ≤ ε0(k) ≤ 1
0 ≤ ε1(k) ≤ 1

(B.22)
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where, using model (B.15),

F(k) = E(k)AdE(k− 1)Ad · · · E(1)AdF0. (B.23)

Gradient of the objective function

The first order optimality conditions on (B.22) lead to,

∂ f (ε)
∂εx(l)

= 2
( T

∑
k=l

[CF(k)− r(k)]C∗l,k

)
Ex(l)AdF(l − 1)

= 0 (B.24)

with C∗l,k = C ·
i=k↓
∏
l+1

E(i)Ad, ∀k ≥ l, (B.25)

matrix Ex(l) = ∂E(l)/∂εx(l), and the subscript ()x standing in for either 0 or 1.
Since the optimization problem is not convex (the objective expression is multilinear
in the decision variables), it is important to specify this gradient information to the
numerical solver to improve computational time and performance. Furthermore, the
line-vector C∗l,k can be computed recursively

C∗l,k = C∗l+1,kE(l)Ad, (B.26)

and the sparse structure of the matrices involved, especially E and Ad, can be used to
reduce computation time.

The optimization has the same form when considering the minimum on/off ef-
fects, requiring only to replace F, C, Ad, E with the augmented versions, F̄, C̄, Ād, Ē.

4.2 Numerical examples

This section6 presents numerical results for tracking two references composed of step
segments over a time horizon of two hours. The control time-step is Tc = 60[s] and the
initial state of the population is close to the equilibrium distribution shown in Fig. B.1.
The optimization is implemented numerically in MATLAB with a generic interior
point algorithm. Figure B.3 shows the results, and it can be seen that model without
the locking mechanism can be driven to consume closely to the desired reference.
The power flexibility of the model with the locking mechanism is somewhat reduced.
Although this is a good solution, because of the non-convex formulation we cannot
conclude that these results represent the optimum.

Figure B.4 shows the results of actuating Monte Carlo populations (N = 10000)
using the optimized switching fraction signals. The performance is good for both
the homogeneous and the heterogeneous populations suggesting that the switching
fractions broadcast is robust to heterogeneity7. On the other hand, as can be seen
from Fig. B.4(a) and B.4(c), the locking effect is significant and cannot be avoided in
the modeling.

6Added Note: The numerical results and figures presented in this section are updated versions of published
paper. The changes are not significant to alter the conclusion.

7Results are shown here for Gaussian distributed parameters. Similar results are obtained also for uni-
formly distributed parameters.
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Fig. B.3: Power reference (blue) and the optimized consumption (black) of the model with (B.21) and without
locking (B.15).

5 Conclusion

Demand response of TCL populations can provide a great support to the electrical
grid by reducing the capacity need for fast reserves. The switching fraction broadcast
is a reliable way of engaging and controlling the power output of such populations
within their natural flexibility. This intrinsic flexibility is most accurately represented
by a physically based modeling technique. We have introduced a switching-fraction
actuation entering the system in a bilinear form. While this is not an ideal form
for control, we have shown that an open-loop model predictive strategy can still be
computationally tractable and robust to heterogeneity. Future work will make use of
these results to complete a control architecture with feedback and state-estimation.
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Fig. B.4: TCL populations under optimized actuation. The color legend is the same as in Fig. B.2. The
Monte Carlo populations on the left do not have the locking mechanism implemented (except cyan), while the
populations on the right all have it.
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1. Introduction

Abstract

We model thermostatic devices using a stochastic hybrid description, and introduce an external
actuation mechanism that creates random switches in the discrete dynamics. We then conjec-
ture the form of the Fokker-Planck equation and successfully verify it numerically using Monte
Carlo simulations. The actuation mechanism and subsequent modeling result are relevant for
power system operation.

1 Introduction

In the context of power system operation and Smart Grids technologies, thermostat-
ically controlled loads (TCLs), such as refrigerators, air-conditioners or heat-pumps,
are seen as a promising resource of demand response services [3, 9]. Essentially, TCLs
have the potential of acting as distributed energy storages that can be scheduled and
controlled to balance out grid fluctuations. Arguably, this can be used to decrease
the overall capacity requirements for spinning reserves, and contribute towards the
integration of more intermittent generation, such as wind, into the grid.

Since the individual TCL has a very small energy storage capacity relative to the
scale of power system operation, any relevant demand response strategy requires the
participation of a very large number of TCLs. For this reason, developing demand
response algorithms requires not only models for individual TCLs, but also models
for TCL populations. An overview of recent population modeling results can be found
in [7].

This work presents an aggregate model for a TCL population under a specific
demand response strategy, the Switching Rate broadcast actuation. This actuation is
closely related to the Switching Fraction broadcast proposed and analyzed in [10–
12], but has the added advantage that the switching actions are not synchronized
across the population. An individual TCL unit is modeled as a Stochastic Hybrid
System (SHS) with the Markov property, and the resulting population model is in the
form of a Partial Differential Equation (PDE) or Partial Integro-Differential Equation
(PIDE) system and boundary conditions. This PDE form corresponds to a generalized
Fokker-Planck (Forward Kolmogorov) operator [1] associated with the TCL stochastic
hybrid system.

The Fokker-Planck approach for TCL population modeling is not in itself new. It
was first used in [8] for modeling a TCL population without (continuous) external
actuation. However, to the best knowledge of the authors, the Switching Rate ac-
tuation variant and the resulting population model are new and should be a useful
contribution to the topic.

The article is organized as follows. The stochastic hybrid model of the TCL unit
and the Switching Rate actuation are presented in Section 2. PDE population models
are then given in Section 3. Numerical simulations and results addressed in Section
4, while Section 5 points to future work.

2 Stochastic Hybrid Model for the TCL Unit

Similar to other works, we consider that the TCL unit can be abstracted as a hybrid
dynamical system with temperature as a continuous state and the power mode, "on"
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or "off", as a discrete state. An informal presentation follows next where mathematical
constructions are not rigorously addressed, but remarks about the formal setting are
made towards the end of the section.

2.1 Unactuated TCL

We consider the dynamics of the continuous state represented by Stochastic Differen-
tial Equations (SDE) of the following form,

dTt = u0(Tt, t)dt + σ0(Tt, t)dwt, for mt = 0 (C.1a)

dTt = u1(Tt, t)dt + σ1(Tt, t)dwt, for mt = 1, (C.1b)

where T ∈ R is the temperature state, u0(·), u1(·) : R× [0, ∞)→ R are deterministic,
(potentially) time-varying vector fields, wt ∈ R is a Wiener process, σ0(·), σ1(·) :
R× [0, ∞) → Rn×m are diffusion coefficients, and mt ∈ {0, 1} is the mode state. We
choose one-dimensional spaces for the continuous state Tt and the Brownian motion
wt since it simplifies presentation, but other low-dimensional spaces (e.g. [12] uses
a two-dimensional temperature state) could also be considered and the subsequent
population model carries over in a straightforward manner. However, it is noted
that numerical analysis becomes more difficult as the state space increases, since the
Fokker-Planck approach suffers from the curse of dimensionality and can become
intractable.

The dynamics of the discrete state involve a thermostat mechanism that is consid-
ered equivalent to a state dependent, deterministic rule. For example, in the case of a
cooling unit, this can be described as

mt+ =


0, if Tt ≤ Tmin and mt− = 1

1, if Tt ≥ Tmax and mt− = 0

mt− , otherwise

, (C.2)

where function argument notations t+ and t− denote limit from the right and from
the left respectively, and Tmin and Tmax are the thermostat boundaries. In the multi-
dimensional case, the thermostat-triggering temperature has to be one of the states.

The output of the TCL unit is represented by the instantaneous power consump-
tion yt ∈ R+, which must be a function of at least mt. More specific, we consider that
the power consumption is constant r > 0 if the mode is "on" and is zero otherwise,

yt = rmt, r > 0 . (C.3)

2.2 Switching-Rate actuation

To make demand response possible, a control element needs to be introduced. The
objective is to create the possibility of modifying the power consumption pattern of
the TCL unit (and thus also that of the population) in a non-disruptive manner, from
an external channel. Non-disruptive means that the TCL temperature is maintained
within the thermostat dead-band at all times and no other operational constraints are
broken. The Switching Rate mechanism achieves this objective by adding a control
element to the discrete-state dynamics.
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The idea is to introduce, in addition to the thermostat, a new type of switching:
rate-switching. While the thermostat switching is governed by a deterministic law,
rate-switching will take place according to a probabilistic law parameterized by an
external signal. The external signal will control the rate of occurrence of the proba-
bilistic switches (the average number of switching events in a given period of time).

Furthermore, a practical consideration needs to be addressed. A frequent switch-
ing behavior is undesirable because it can damage the equipment (e.g. compressor
components) and because it is inefficient. If the cooling/heating cycle is active for
only a short period of time, it will not produce any significant temperature effect. In
addition, temperature dynamics of type (C.1) will be highly inexact in such cases.

To avoid frequent switching, two heuristics are added. First, we will prevent the
pattern of a thermostat- and a rate-switch occurring closely in time. This is done
by allowing rate-switching only if the temperature is a safe distance away from the
relevant thermostat boundary. For example, in the case of a cooling unit, switch-
off actions are allowed only when the temperature is some distance away from the
upper bound (hot zone) of the thermostat interval, and similarly, switch-on actions
are allowed only if the temperature is some distance away from the lower bound (cold
zone). In this way, thermostat- and rate-switches will not compete. Second, we will
prevent multiple rate-switches to occur closely in time. This is done by imposing a
minimum dwell time for modes "on" and "off".

The Switching Rate mechanism is described next using more mathematical terms,
but the presentation remains informal.

We introduce ∆T0 and ∆T1 as the safe distances from the thermostat boundaries,
and add a new continuous state dt ∈ R+, the dwell time. The dwell time acts as a
clock variable, ḋt = 1, and resets to zero after each switch. We denote by M0 the
minimum dwell time in the "off" state, and by M1 the minimum dwell time in the
“on" state. The external control signals for the switch-off and switch-on rates are ε0

t
and ε1

t respectively. The probability of a rate-switching event in a small time interval
τ << 1 can be described as,

Pr
[

mt+τ = 1
∣∣ mt = 0∧ Tt ∈ [Tmin + ∆T1, Tmax) ∧ dt ≥ M0 ∧ ε1

t
]
=

= λ1(ε
1
t , Tt)τ + o(τ) , (C.4a)

Pr
[

mt+τ = 0
∣∣ mt = 1∧ Tt ∈ (Tmin, Tmax − ∆T0] ∧ dt ≥ M1 ∧ ε0

t
]
=

= λ0(ε
0
t , Tt)τ + o(τ) , (C.4b)

where the temperature ranges in the conditional part of the probability are exem-
plified for a cooling unit, and λ1 and λ0 are real and positive valued rate-functions,
which can be seen as part of the (control) design. A straightforward and simple choice
for these functions is a temperature-independent form,

λi(ε, T) = ε, i ∈ {0, 1} . (C.5)

Compared to the Switching Fraction approach [10–12], the Switching Rate actua-
tion has the advantage that individual switch events will not be synchronized across
the population. This is useful for at least one reason. It is well known that the
power consumption of an individual TCL exhibits a peak (compressor peak) right
after switch-on and before converging to the nominal value. This is not captured in

99



Paper C.

the modeling (C.3), and could in practice cause short but high demand peaks that
negatively impact grid stability if the switch-on actions are synchronized.

2.3 Remarks on a GSHS description

The TCL unit could formally be described in the framework of Generalized Stochastic
Hybrid Systems (GSHS) [2]. A GSHS is a hybrid system where the continuous states
evolve according to a SDEs (as is the case of (C.1)), and where the discrete dynamics
can produce jumps in the continuous state (as it the case with the reset of the dwell
time state dt). Furthermore, the discrete dynamics are described by probabilities (in
the TCL case, the switch-rate laws (C.4)), or occur when the continuous state hits a
certain domain boundary (in the TCL case, the thermostat mechanism). A GSHS has
the strong Markov property and trajectories that are right continuous with left limits.

The only issue that needs to be addressed is the fact that the GSHS definition does
not explicitly include dependences of an external control element, as is the case of the
transition rate functions, or time, as is the case with the continuous dynamics. We
postpone this technical discussion for future work.

3 Probability Density Model

In the absence of the Switching Rate mechanism, the TCL unit can be described,
equivalent in effect with the SHS characterization, in terms of the probability density
function (pdf) over the hybrid state space (T, m) ∈ R× {0, 1}, namely

fi(x, t) =
1

dx
Pr
[
T(t) ∈ (x, x + dx] ∧ m(t) = i

]
. (C.6)

Building on elements and results from Markov process theory (e.g. [4, 6]), [8] showed
that the dynamic of fi(x, t) can be described analytically. In particular, the dynamic of
fi(x, t) represents the generator of the forward-operator linear semigroup associated
with the TCL SHS. For dynamical systems characterized by regular SDEs, without
hybrid elements, this generator is known as the Fokker-Planck equation. Therefore,
the result in [8] can be seen as a Fokker-Planck operator specific to the TCL SHS.

Unlike the SHS form, a TCL description in terms of the pdf translates almost di-
rectly into a (homogeneous) population model. Probability quantities simply change
meaning to population fractions, see e.g. [8] and [11]. The latter contains also a dis-
cussion and results on heterogeneous populations.

3.1 Unactuated TCL

For an unactuated TCL unit, [8] showed that the dynamics of fi(x, t) can be described
by a system of Fokker-Planck equations, each acting on a sub-domain of the hybrid
state-space. These sub-domains are 0a = (−∞, Tmin)× {0}, 0b = (Tmin, Tmax)× {0},
1b = (Tmin, Tmax)× {1}, 1c = (Tmax, ∞)× {1}, and the pdf fi(x, t) is reconstructed
from four segments, f0a, f0b, f1b, and f1c. The separation of the pdf into components
f0 and f1 corresponds to the "off" and "on" discrete modes, and it appears naturally
as seen already in (C.6). The partition of the temperature domain into the regions
a, b and c, is a result of the pdf fi(x, t) not being x-differentiable at Tmin and Tmax.
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Furthermore, the pdf is zero over the omitted domains 1a and 0c. These features
are a result of the thermostat. The dynamic for each pdf segment is given by the
Fokker-Planck equations

∂ fip

∂t
(x, t) = − ∂

∂x

(
ui(x, t) fip(x, t)

)
+

∂2

∂x2

(
1
2

σ2
i (x, t) fip(x, t)

)
, (C.7)

and the following boundary conditions apply,

f1b(Tmin, t) = 0, f0b(Tmax, t) = 0 (C.8a)

f0a(−∞, t) = 0, f1c(+∞, t) = 0 (C.8b)

f0b(Tmin, t) = f0a(Tmin, t), f1b(Tmax, t) = f1c(Tmax, t) (C.8c)

h0a(Tmin, t) = h0b(Tmin, t) + h1b(Tmin, t) (C.8d)

h1c(Tmax, t) = h0b(Tmax, t) + h1b(Tmax, t) (C.8e)

where i ∈ {0, 1} and p ∈ {a, b, c}, in the allowed combinations mentioned above,

hip(x, t) are probability flows defined as
∫ ∂ fip

∂t dx, and (C.8d) and (C.8e) are particular
to the case of a cooling unit. For the differential forms in the right hand side of (C.7)
to exist, it is implied that the functions ui and σi need to be sufficiently smooth.

3.2 Switching-Rate actuation

We first consider Switching Rate actuated TCLs without the feature of the minimum
dwell time. The pdf dynamic corresponding to a TCL unit with rate-switching can be
described in this case by the PDE system

∂ f0a
∂t

= − ∂

∂x

(
u0 f0a

)
+

∂2

∂x2

(
1
2

σ2
0 f0a

)
(C.9a)

∂ f0b
∂t

= − ∂

∂x

(
u0 f0b

)
+

∂2

∂x2

(
1
2

σ2
0 f0b

)
− λ̄1 f0b + λ̄0 f1b (C.9b)

∂ f1b
∂t

= − ∂

∂x

(
u1 f1b

)
+

∂2

∂x2

(
1
2

σ2
1 f1b

)
+ λ̄1 f0b − λ̄0 f1b (C.9c)

∂ f1c
∂t

= − ∂

∂x

(
u1 f1c

)
+

∂2

∂x2

(
1
2

σ2
1 f1c

)
(C.9d)

together with the boundary conditions (C.8). The notation λ̄ is used to extend the
function λ with zero values over the unsafe temperature distances ∆T0 and ∆T1. In
the case of a cooling unit, this translates into

λ̄1(ε, T) =

{
0, T ∈ (Tmin, Tmin + ∆T1)

λ1(ε, T), T ∈ [Tmin + ∆T1, Tmax)
(C.10)

λ̄0(ε, T) =

{
λ0(ε, T), T ∈ (Tmin, Tmax − ∆T0]

0, T ∈ (Tmax − ∆T0, Tmax) .
(C.11)

The reason why adding terms λ̄1 f0b and λ̄0 f1b gives a fitting dynamic in (C.9a)
is related to the exponential behavior of the survival and jump switch-rate times as
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∆t → 0. We refer to [1] for a more elaborate mathematical discussion in the context
of GSHS.

We now include minimum dwell time conditions and consider the complete Switch-
ing Rate actuation. The idea is to continuously track the part of the pdf that be-
comes locked for the external actuation. The same approach is used in [12] and [11]
in the context of the Switching Fraction actuation. We introduce two new density
functions corresponding to the locked condition for mode "off" and for mode "on",
L0 : (−∞, Tmax)× [0, M0)× [0, ∞)→ R+ and L1 : (Tmin, ∞)× [0, M1)× [0, ∞)→ R+,
defined as

Li(x, y, t) =
1

dxdy
Pr
[

Tt ∈ (x, x + dx] ∧ dt ∈ (y, y + dy] ∧mt = i
]

. (C.12)

Using these pdfs, we can evaluate the part of fi(x, t) which remains responsive to the

actuation. The terms λ̄1 f0b and λ̄0 f1b will thus be replaced in (C.9a) by λ̄1

(
f0b −

∫ M0
0 L0(x, y, t)dy

)
and λ̄0

(
f1b −

∫ M1
0 L1(x, y, t)dy

)
.

The new pdfs must also be propagated in time. Their dynamic is given by normal
Fokker-Planck equations, since no switching mechanism is active in the interior of the
domains. These are

∂Li
∂t

(x, y, t) = − ∂

∂x

(
ui(x, t)Li(x, y, t)

)
− ∂

∂y
Li(x, y, t) +

∂2

∂x2

(
1
2

σ2
i (x, t)Li(x, y, t)

)
,

(C.13)

with boundary conditions that follow naturally,

Li(x, 0, t) = λ̄i

(
f īb −

∫ Mī

0
Lī(x, y, t)dy

)
(C.14a)

Li(x, Mi, t) = 0 (C.14b)

L0(−∞, y, t) = 0, L0(Tmax, y, t) = 0 (C.14c)

L1(Tmin, y, t) = 0, L1(∞, y, t) = 0 (C.14d)

where i ∈ {0, 1}, and ī = 1− i. Eq. (C.14b), (C.14c) and (C.14d) represent absorbing
boundaries, while (C.14a) represents the incoming density current (or flow) of "newly
locked" for which the dwell time state dt has just been reseted to zero.

4 Numerical Simulation

This section verifies numerically the probability density model of the Switching Rate
actuation, without the minimum dwell time feature. The verification procedure con-
sists of two numerical simulations: a Monte Carlo analysis running multiple SHS
model instances, and a finite dimensional linear approximation of the pdf PDE dy-
namics via a Finite Volume technique. The results show an equivalence between the
two simulations.

The SHS simulation consists of time-discretized dynamics with a sample period
τs = 1s. The SDEs are simulated with the Euler-Maruyama method. The set-up is such
that the control signal ε is constant during the sample period τs, and rate-switches are
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generated as Bernoulli trials with success rate 1− e−εiτs , when the temperature is in
the safe-zone.

The PDE model is the basis for the second simulation. Eq. (C.9a) together with
boundary condition (C.8) represent an infinite-dimensional dynamic. We approx-
imate this dynamic with a finite-dimensional form via the Finite Volume Method
(FVM), see e.g. [5]. This results in a numerical approximation of the weak solution
of the PDE system. The FVM has the property of being locally and globally conser-
vative, which will ensure that the probability in the system will always sum to one.
We implement the FVM using an uniform grid, and a linear, cell-centered, piecewise-
quadratic reconstruction scheme with an upstream flux rule1. Because of Godunov’s
order barrier theorem, this third order accurate reconstruction scheme can create spu-
rious oscillations, but no significant effects have been noticed in practice. Applying
non-linear elements to the reconstruction scheme to correct this possibility is not an
option, as it is important to obtain a dynamic that is linear in the state. We obtain a
finite-dimensional dynamic of the following form,

Ḟt = (A + B0ε0 + B1ε1)Ft, Ft ∈ Rn, A, B0, B1 ∈ Rn×n. (C.15)

We use the following TCL model elements ui(T, t) = aT + bi, σi(T, t) = σ, with pa-
rameter values a = −1.5247−05, b0 = 3.6593−04, b1 = −0.0026, σ = 0.0065, Tmin = 2,
Tmax = 5, meant to approximate a refrigerator unit similar to [10, 11]. Rate-functions
λ of the form (C.5) have been used. A practical deployment scenario requires a coor-
dination center broadcasting the actuation signal εt = (ε0

t , ε1
t ). Between broadcasts,

the TCL units operate with the previously received values, resulting in a scenario
with piecewise constant actuation. The broadcast sample period is τc = 60s. Sim-
ulations take place over a time horizon of two hours, and two actuation signals are
tested. These signals have a specially chosen form derived from the results in [11],
which is meant to show the power consumption flexibility. Figures C.1 and C.2 show
comparisons between the Monte Carlo SHS simulation with 10000 identical units and
the linear system model, for both pdf and power output.

5 Future Work

These successful numerical results motivate future work, in two directions. First, the
modeling result could be consolidated by more rigorous mathematical considerations,
such as completing the GSHS description. Moreover, a two dimensional FVM scheme
needs to be set up to introduce the minimum dwell time feature. Secondly, the bilinear
model (C.15) can be analyzed for control.

1Added Note: This is a control-volume-based finite element scheme, a hybrid finite-volume/finite-element
method.
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Fig. C.1: Power consumption of the TCL population. The output of the Monte Carlo simulation is shown in
black, and the PDE model is shown in blue.
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Fig. C.2: Temperature densities across the TCL population. The empirical Monte Carlo pdf is shown in the
top subplots, and the pdf from the PDE model is shown the bottom subplots. Blue represents low pdf values,
and red high pdf values.
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1. Introduction

Abstract

This work considers the problem of actively managing the power consumption of a large num-
ber of thermostatically controlled loads with on/off operation (TCLs), and a case-study on
household refrigerators. Control is performed using a new randomized actuation that consists
of switching units on and off at given rates, while at the same time respecting the nominal con-
straints on each individual unit. Both the free and the controlled behavior of the TCL units can
be aggregated, making it possible to handle the TCL population as if it were a single system.
The aggregation method uses the distribution of the unit states and across the population. The
distribution approach has two main advantages. It scales excellently since the computational
requirements do not increase with the number of units, and it allows data from individual units
to be used anonymously, which solves privacy concerns relevant for consumer adoption. Using
elements of Markov Theory for Stochastic Hybrid Systems, the dynamics of the distribution
state can be written as a PDE system with boundary conditions. The PDE system is reduced
to a finite dimensional form using finite-volume methods, resulting in a state-space descrip-
tion with linear autonomous dynamics and bilinear input terms. Based on this description,
the power output of the population is controlled using model based techniques.

1 Introduction

Wind and solar power generation have seen a significant increase in the last decade.
This global trend is predicted to continue, and it brings the promise of a more clean
and economically stable energy future worldwide. Yet these renewables still repre-
sent only a small fraction of the overall power generation [13]. One of the problems is
that large-scale integration in the power system is challenging. Wind and solar power
production have a variable characteristic. While averages over long time scales are
predictable, on the shorter time scales the generation output can be volatile and un-
predictable. Because the power system needs to be in balance between consumption
and production at all times, when a large percentage of the generation has a variable
characteristic the balancing effort increases beyond the possibilities of the traditional
grid. Integration levels over 30% require a transformation of the power system [1, 2].
One of the transformations needed is including demand-side as an active participant
in the power system operations, both in the planning stage and in the real time bal-
ancing services. The idea is to access and organize existing demand flexibility, and
utilize it to counteract variability in the grid and, additionally, optimize the economic
dispatch of resources [17, 25, 28, 31].

This work is concerned with a demand response scenario consisting of a large
number of thermostat-based appliances with on/off operation. We think of these
as many, small and "leaky" thermal storages. These devices are of special interest
since they have the potential to deliver a fast, automated response. The focus is on
aggregating a very large numbers of units, in order to obtain a total power capacity
relevant for power system operations. Using terminology introduced in [8], we want
to achieve a control scheme that is fully responsive in terms of the aggregated power
output and nondisruptive to the local unit operation.

The main technical challenges of the control problem are related to the large num-
ber of individual units and the distributed structure. Realistic solutions must keep
computational complexity in check and use communication flows that are feasible
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under cost and privacy criteria. We will therefore focus on solutions that are aligned
with the following three principles. First, actuation should take place via broadcast
communication. The network requirements for the actuation channel are thus re-
duced and communication is fast, since the same signal is sent to all units. Second,
the actual physical decisions should take place at the individual unit and account for
the local conditions. This guarantees a robust, nondisruptive local operation. Thirdly,
measurements on the unit level should be used sparsely and anonymously. This is
to ensure that network requirements for the measurement channel are not excessive,
and that the overall solution is privacy friendly. Similar implementation principles
are discussed also in [20].

The study of large groups of thermostatic loads started in the 1980s with the works
of [18], [22] and [24]. The interest was on modeling oscillations in the power consump-
tion after a planned (direct load control) or unplanned (black-out) interruption. Such
oscillations are caused by the synchronization of the thermostatic duty-cycles, and
can be seen as the free response of a TCL population subject to initial conditions.
These early works set in place the "first principles" or "physically based" modeling
paradigm for TCL populations. Previous approaches used data-driven models fitted
using historical data. The new idea was to model the main behaviors at the unit level
and then both simulate and mathematically lift the population behavior as the natural
result of an aggregation operation. The important result in [22] realizes the mathe-
matical aggregation of a homogeneous population of stochastic hybrid system as a
partial differential system of equations with boundary conditions. The partial differ-
ential equations (PDEs) represent the dynamics of temperature distributions across
the "on" and "off" modes in the population, and are obtained in a manner similar to
the modeling of physical transport phenomena.

After three decades, the TCL problem got a resurgence motivated by the advance
of demand response concepts and enabled by the low cost of computing and com-
munication hardware. The focus is not only on modeling and prediction, but also
control. The duty-cycles of individual TCL units can be modified and adjusted in
order to shape the power output at the group level. A broadcast actuation method
that shifts the thermostat set-point temperature is proposed in [7], and is also used
in other works [3, 26]. The broadcast signal consists of a quantity ∆T, which is either
positive or negative. All units in the receiving population immediately react by shift-
ing their thermostat band with the ∆T amount. Another broadcast actuation is toggle
control [23]. This actuation targets subgroups of units from the population based on
the location (bin) in the temperature and mode distribution. Individual units switch-
on or -off based on a random trial with success probability corresponding to their
subgroup. The broadcast signal thus consists of a set of switching probabilities, one
for each subgroup. A specialized form of toggling control involves the broadcast of
only one or two switching probabilities [32, 33, 35]. In this case, there are only two
target subgroups, the units in mode "on" and the units in mode "off". The broadcast
signal consist of a switch-off and a switch-on probability. Units are protected against
frequent switching by minimum on/off time constraints, and in [32, 33] a switching
dead-zone is included for temperatures that are too close to the relevant thermostat
limit. Other actuations and control methods are present in the literature, but fall out-
side the scope of this work. For example, there are a number of actuations that are
meant to be used infrequently and ensure a particular power response, see [27], [4]
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or [29]. While arguably useful and relevant for different scenarios, we consider these
schemes as not fulfilling the fully responsive property, as they do not allow a continu-
ous and smooth manipulation of the output power.

The switching actuation presents some important advantages compared to the
thermostat set-point and toggle control. It is nondisruptive, as the temperature remains
bound in the original thermostat band, it does not require a temperature sensor with
high resolution to distinguish between narrow temperature bins, and the broadcast
signal has a small footprint. Furthermore, the switching actuation has a direct and
intuitive effect on the power consumption, which is a desirable implementation char-
acteristic.

This work presents in detail the Switching-Rate actuation, which we briefly in-
troduced in [34], and which extends the Switching-Fraction from [32, 33, 35]. The
actuation is used to obtain relevant power responses under two control schemes, and
the observation problem is also addressed. Another contribution of the paper is the
use of Finite Volume techniques in the distribution model. Finally, this work takes
into account a number of practical considerations for making the approach feasible
for real-life, large-scale deployment.

The rest of the paper is structured as follows. Section 2 describes the modeling
process. Section 3 presents model-based control algorithms. Section 4 presents a nu-
merical case study and simulation results, showing the demand response capabilities
of a TCL population and the effectiveness of the Switching-Rate actuation. Section 5
concludes.

2 Modeling

This work considers cooling units, and in particular domestic refrigerators. As un-
der realistic conditions, the units are independent of each other, do not communicate
nor share states. The main object of interest is the aggregated power consumption,
which is the sum of the individual power consumptions. The model for an individ-
ual TCL unit is presented first, followed by the aggregation based on distributions1.
The Switching-Rate actuation is addressed both for the unit and for the distribution
models.

2.1 TCL stochastic hybrid model

The model aims to capture only those dynamic characteristics that are highly relevant
at the population level, and is not meant to be high fidelity at the unit level. This
approach is prevalent in literature and is supported by verifications using simulation
in [35]. The main characteristics to be captured are the thermal dynamics, the hybrid
nature of the thermostat operation, and stochasticity. We next present the established
unit model, along with considerations about the underlying simplifications.

The basic model is a stochastic hybrid dynamical system (SHS) with two modes,
corresponding to the "on" or "off" state of the cooling cycle. When the TCL is "on", it
is consuming power and the temperature in the cold compartment is lowering. When

1The meaning is that of distribution functions in the physical sense, i.e. describing the scattering across a
domain.
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the TCL is "off", it is not consuming power and the temperature in the cold com-
partment is rising due to ambient conditions. The heating and cooling processes are
modeled using a lumped approach and first-order dynamics. Although second-order
dynamics should be studied for air-conditioning or heat-pump TCLs as argued in [35],
this is not considered necessary in the case of domestic refrigerators, since there are
no outstanding dynamical thermal masses coupled to cold compartment. Random
temperature fluctuations are modeled by a white noise term. Other possible random
disturbances, not pursued at this time, are jump processes that would correspond to
"door-opening" events. Power consumption is considered to be a positive constant
when the mode is "on", and zero when the mode is "off". The assumption is again
an idealization, since it is well known that power consumption has a sharp peak at
the start of the power cycle (the start of the single phase induction motor) and that
it also exhibits an overall first order response pattern (the load dynamics from the
vapour-compression cycle), see Fig. D.1.

Time [h]

P
ow

er
[W

]

1 2 5 6 7

60

900

Fig. D.1: Power consumption pattern of a real domestic refrigerator (laboratory set-up)

Summing up, the model of a TCL unit is a SHS of the following form,

dT(t) = −UA
C

(
T(t)− Ta + m(t)

ηW
UA

)
dt + σdw(t) (D.1a)

=
(
aT(t) + b + m(t)c

)
dt + σdw(t) , (D.1b)

z(t) = Wm(t) , (D.2)

where T(t) : R+ → R is the continuously-valued temperature state, m(t) : R+ →
{0, 1} is the discrete-valued state corresponding to the "off" and "on" modes respec-
tively, w(t) is a white noise process, and z(t) : R+ → {0, W} is the power consumption
viewed here as model output. The temperature dynamics are expressed using equiva-
lent thermal parameters in (D.1a) and using equivalent first order system parameters
in (D.1b). All coefficients are considered to be time invariant. In the absence of ex-
ternal control, the dynamics of the discrete-valued state m(t) are given by a standard
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thermostat mechanism with boundaries at Tmin and Tmax,

m(t) =


1, T(t) ≥ Tmax

m(t−), T(t) ∈ (Tmin, Tmax)

0, T(t) ≤ Tmin .

(D.3)

Since the discrete-valued state m(t) has discontinuities at the switching times, notation
t− is used to represent limit from left. The convention is thus that m(t) is càdlàg.

The switching actuation adds a random component on top of the deterministic
thermostat mechanism, see Fig. D.2, and can be represented using the Markov chain
formalism. It has a continuous-time characteristic, described by transition rates that
are given over the broadcast input channel. In this way, a TCL unit that is "off" can be
encouraged to consume power using input u1, while a unit that is "on" can be discour-
aged from consuming power using input u0. At the population level, the magnitude
of the input will be reflected by the number/percentage of units that actually switch.
This externally generated switching is always temperature safe since it can anticipate
but not override the thermostat mechanism, which remains in place.

T ≥ Tmax

T ≤ Tmin

m = 0 m = 1

u0

u1

Fig. D.2: Dynamics of the discrete state m(t) as a Markov chain, including deterministic, temperature-state
dependent transitions (solid line) and random transitions (dashed line).

Furthermore, additional features are added to prevent the occurrence of multiple
switches in a short time interval. Frequent switching can damage the physical compo-
nents of the TCL unit such as the compressor, and can invalidate model (D.1) since the
first-order thermal dynamic cannot be expected to be a good approximation on the
short time scale. To this end, a timer state τ(t) : R+ → R+ with the straightforward
dynamic

τ̇(t) = 1 , (D.4)

is added to the model, and its value is reset to zero after a switch. Non-thermostatic
switches are only allowed if a condition of the type τ(t) ≥ M is satisfied, where M is
chosen based on the specific TCL unit requirements for safe nominal operation. In ad-
dition, "safe-zones" are added to ensure that switches do not occur if the temperature
is too close to a maximum or a minimum limit, as they would quickly be reversed by
the thermostat action.

Switch-on actions are allowed only if the temperature is in the interval S1 and
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Fig. D.3: Temperature and mode trajectory with external actuation. Thermostat actions occur at minutes 37,
81 and 115, and external switches at minutes 23 and 91.

switch-off actions are allowed only if the temperature is in the interval S0,

S1 = [Tmin + ∆T1, Tmax) (D.5a)

S0 = (Tmin, Tmax − ∆T2] (D.5b)

where ∆T1, ∆T2 < Tmax − Tmin. Fig. D.4 gives a sketch of the complete Markov mech-
anism.

Both the Switching-Fraction [32, 33, 35] and the new Switching-Rate are random-
ized actuations, and the main difference is the time characteristic. After receiving a
broadcast (which is considered to take place instantaneously), the TCL unit needs to
take a decision about "if" and "when" to execute a mode switch. In the Switching-
Fraction actuation case, the "when" moment is predefined to be "now", leaving only
the "if" question to be answered. A consequence of the Switching-Fraction mecha-
nism is that non-thermostatic switches are tightly synchronized across the population.
Since the power consumption of an individual TCL exhibits a peak after switch-on,
see Fig. D.1, synchronized switch-on actions lead to synchronized power peaks. The
main objective of the Switching-Rate variant is to desynchronize the switch actions
across the population. Not only is the switch decision random, but also the time of
its occurrence. The mechanism is similar to the jumps in a Poisson process and is
described by transition rates.

Given a small enough time interval h, and making the informal assumption that
the temperature state T does not significantly change its value during this time (does
not leave the safe interval Sī), the probability of a switch event can be written as

Pr
[
m(t + h) = ī

∣∣ m(t) = i, T(t) ∈ Sī, τ(t) ≥ M
]

= uī(tb)h + o(h) , (D.6)
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Tminmin

τ

M
0

Tmin + ∆T1

T
Tmaxmax

Tmin

Tmax − ∆T2
Tmax

M
0

τ

Fig. D.4: Dynamics of the discrete state m(t) including temperature-state and timer-state partitions, extending
the description from Fig. D.2.

where ī ∆
= 1 − i. The model of a TCL unit with Switching-Rate actuation can be

formally constructed using the notion of General Stochastic Hybrid Systems (GSHS)
[5, 6]. These objects include the three main characteristics of the TCL unit, dynamics
given by stochastic differential equations (SDEs), jumps when the continuous state
hits a boundary or according to transition rates, and state resets after jumps.

With a Switching-Rate actuation, switch-on and switch-off events can happen at
any point along the continuous time line after the broadcast time, provided that tem-
perature and timer conditions hold safe. In this way, switches are not synchronized
across the population, although they might be densely clustered if the rate parameter
is high. The switching mechanism is straight forward to implement in software. It
consists of logic operations for checking the state safety conditions defined as inequal-
ities, and a random number generator, see Alg 1.

2.2 Population model

The TCL unit can be described, equivalent in effect with the SHS characterization
from Section 2.1, in terms of the probability density function (pdf) over the hybrid
state space (T, m) ∈ R× {0, 1},

f i(x, t) = lim
dx↘0

1
dx

Pr
[

T(t) ∈ (x, x + dx] ∧m(t) = i
]

.
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The continuous timer state τ(t) has been omitted for the moment, but will be rein-
troduced latter. Building on elements and results from Markov process theory (e.g.
[9, 14]), [22] showed that the dynamic of f i(x, t) can be described analytically. In
particular, the dynamic of f i(x, t) represents the generator of the forward linear semi-
group associated with the TCL SHS. For dynamical systems characterized by regular
SDEs, without hybrid elements, this generator is known as the Fokker-Planck equa-
tion and can be seen as a transport and conservation law for probability. Therefore,
the result in [22] is a type of Fokker-Planck operator specific to the TCL SHS with-
out actuation. The advantage of this modeling is that, unlike the SHS form, a TCL
description in terms of the pdf translates almost directly into a (homogeneous) popu-
lation model. Probability quantities simply change meaning to population fractions,
see e.g. [7, 10, 22].

Distribution model without actuation

This section introduces the main result from [22] that gives the dynamics of f i(x, t) in
the form of a PDE system with boundary conditions. Before stating the result, some
preliminaries need to be addressed.

The temperature domain is divided into three subsets: the thermostat range Sb =
[Tmin, Tmax], and Sa = (−∞, Tmin) and Sc = (Tmax, ∞). This is a natural division
with respect to the operation of the TCL unit, and is necessary because boundary
conditions apply in the points Tmin and Tmax, and because the pdf f i(x, t) is not x-
differentiable here. Superscript indices will then be used to denote subcomponents of

Algorithm 1 Switching-Rate

global T, m, τ, u0, u1
const ∆T1, ∆T2, M
function BroadcastReceived(new_u0,new_u1)

if u0 < 0 then return
end if
if u1 < 0 then return
end if
u0 ← new_u0
u1 ← new_u1

end function

function loop100ms

if (m == 1) and (T > Tmin) and (T ≤ Tmax − ∆T2) and (τ ≥
M) and (rand() ≤ u0 · 0.1) then

m← 0
end if
if (m == 0) and (T < Tmax) and (T ≥ Tmin + ∆T1) and (τ ≥

M) and (rand() ≤ u1 · 0.1) then
m← 1

end if
end function
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Tminmin Tmin Tmax Tmaxmax

f 0a

f 0b

f 1c

∆T1 ∆T2

f 0b1 f 0b2

f 1b1 f 1b2 f 1b3

f 0b3

f 1b

Fig. D.5: Partitions of the temperature domain and subcomponents

the pdf functions f i(x, t) over the specific partitions e.g., f 0a or f 1b. Temperatures out-
side the thermostat range must be accounted for because of the diffusive component
in the thermal dynamics (D.1). For example, even though the TCL unit is automati-
cally "on" and starting to cool when T(t) = Tmax, the temperature might reach values
T(t) > Tmax due to the contribution of the white noise term. It is also important to
note that the pdf corresponding to the off mode, f 0(x, t), is zero-valued on the Sc
domain, because if the temperature becomes greater than Tmax the thermostat mech-
anism ensures that the mode can not remain "off". Similarly, the pdf corresponding
to the on-mode, f 1(x, t) is zero-valued on the Sa domain. In numerical work, the
infinity domains limits can be cut short since it is realistic to assume that the tempera-
ture inside a working refrigerator will not drop below some Tminmin value and cannot
rise above some Tmaxmax value, or equivalently, that probability of this happening is
sufficiently low that it can be ignored. These elements are summarized on Fig. D.5,
using a pdf function corresponding to the refrigerator unit from Section 4. Addi-
tionally, Fig. D.5 contains notations b1, b2 and b3 for the intervals (Tmin, Tmin + ∆T1),
[Tmin +∆T1, Tmax−∆T2] and (Tmax−∆T2, Tmax), relevant for the actuation part. With
this notation, the safe-temperature zones (D.5) can be expressed as,

S0 = Sb1
∪ Sb2 ; S1 = Sb2 ∪ Sb3 . (D.7)

The evolution of the temperature state T(t) in the interior of the Sj domains,
j ∈ {a, b, c}, is driven only by the SDE component (since the discrete dynamics only
come into play at the boundaries of the Sj domains). As a result, the dynamic of
the pdf f ij(x, t) on the interior Sj is given by a standard Fokker-Planck equations
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matching the thermal dynamics (D.1b) for the corresponding mode,

∂ f 0j(x, t)
∂t

+
∂

∂x

(
(ax + b) f 0j(x, t)

)
=

σ2

2
∂2 f 0j(x, t)

∂x2 , j ∈ {a, b} (D.8a)

∂ f 1j(x, t)
∂t

+
∂

∂x

(
(ax + b + c) f 1j(x, t)

)
=

σ2

2
∂2 f 1j(x, t)

∂x2 , j ∈ {b, c}. (D.8b)

The switching dynamics (D.3) are included in the boundary conditions. We first intro-
duce the probability flows hij(x, t) as the integral over the temperature (x-) coordinate

of the probability fluxes ∂ f ij

∂t (x, t),

h0j(x, t) = −(ax + b) f 0j(x, t) +
σ2

2
∂ f 0j(x, t)

∂x
(D.9a)

h1j(x, t) = −(ax + b + c) f 1j(x, t) +
σ2

2
∂ f 1j(x, t)

∂x
. (D.9b)

The boundary conditions can then be written as

h0a(Tminmin, t) = 0, h1c(Tmaxmax, t) = 0 (D.10a)

f 1b(Tmin, t) = 0, f 0b(Tmax, t) = 0 (D.10b)

f 0b(Tmin, t) = f 0a(Tmin, t), f 1b(Tmax, t) = f 1c(Tmax, t) (D.10c)

h0a(Tmin, t) = h0b(Tmin, t) + h1b(Tmin, t) (D.10d)

h1c(Tmax, t) = h0b(Tmax, t) + h1b(Tmax, t) . (D.10e)

Equations (D.10a) represent impenetrable wall conditions, i.e. there is no probability
flow out-of or in-to the domain Sa from the left side, and similarly there is no flow out-
of or in-to the domain Sc from the right side. The rest of the boundary conditions are
associated with the thermostat switching mechanism. First, (D.10b) account for the
"absorption" action of the thermostat process causing Pr[ T(t) = Tmin ∧m(i) = 1 ] = 0
and Pr[ T(t) = Tmax ∧ m(i) = 0 ] = 0. Second, the fact that the temperature state
does not jump (is not reset) by the switching mechanism is reflected in the continuity
condition (D.10c). Finally, (D.10d) and (D.10e) describe of the flow of probability from
mode "on" to mode "off" at Tmin, and the flow of probability from mode "off" to mode
"on" at Tmax.

Finite Volume Methods

The system (D.8), together with boundary conditions (D.10), represents a linear, infinite-
dimensional dynamic. We approximate it with a finite-dimensional form using FVM
[12, 30]. While other works use a Finite Difference approach [3, 16], FVMs are ar-
guably more suitable. A main argument is that FVMs are locally and globally conser-
vative. The obtained approximate solution will conserve the probability invariant of
the system (probability will always scale to 1 in the numerical solution).

The FVM consists of three main steps. First, the continuous spatial domain is par-
titioned using a relatively fine grid of non-overlapping cells2. The second step consists

2This is the semi-discrete FVM approach, as only the spatial domain is discretized. The result is a finite-
dimensional, continuous-time dynamic in the form of an ODE system. The discrete-time dynamics can be
obtained later, and separate from the spatial discretization process. Fully-discrete FVM techniques grid the
spatial and temporal coordinate simultaneously.
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of building the master FVM equation. This is done by integrating the dynamical PDE
equation over a cell of the grid. For a generic conservation dynamic in one spatial
dimension x with drift field φ(x, t), diffusion coefficient D = σ2

2 , and source term
s(x, t),

∂ρ

∂t
(x, t) +

∂
(
φ(x, t)ρ(x, t)

)
∂x

= D
∂2ρ(x, t)

∂x2 + s(x, t) (D.11)

integrating over the spatial cell Kq gives

∫
Kq

∂ρ

∂t
(x, t)dx =

(
− φ(x, t)ρ(x, t) + D

∂ρ(x, t)
∂x

)∣∣∣∣K+
q

K−q
+
∫

Kq

s(x, t)dx , (D.12)

where q ∈ {1, . . . , N} is the cell index, and K−q , K+
q are the left and right edge points

of the cell. Notice that flow quantities evaluated at K−q appear with a negative sign
(outgoing) in the dynamic of the cell Kq, and with a positive sign (incoming) in the
dynamic of the cell Kq−1. The outgoing flow from one cell is incoming flow to the
neighbor cell, resulting in the conservative property of the method. Next, the left side
of (D.12) can be further expressed as∫

Kq

∂ρ

∂t
(x, t)dx =

d
dt

∫
Kq

ρ(x, t)dx = ∆xq
dΘq

dt
, (D.13)

with Θq the average value of ρ(x, t) over the cell Kq and ∆xq the cell size. Equations
(D.12) and (D.13) can be combined to give an exact expression for the evolution in
time of the average quantity Θq,

∆xq
dΘq

dt
=

(
− φ(x, t)ρ(y, t) + D

∂ρ(x, t)
∂x

)∣∣∣∣K+
q

K−q
+
∫

Kq

s(x, t)dx . (D.14)

However, the master equation (D.14) is not closed since the right side expression
uses the ρ(x, t) terms, which are unknowns. The third step thus consists of ap-
plying a numerical scheme for approximating the right side of (D.14) using only
Θq, Θq+1, Θq−1, . . . terms. This step is a combination of reconstruction techniques (in-
terpolation and extrapolation) on neighborhood stencils, numerical approximation for
differentiation and integration operations, and also heuristics such as the "up-wind"
rule. Once this step is complete, a finite dimensional ODE system with N equations
can be used as an approximation of the original infinite dimensional dynamic.

Regarding domain boundaries, the zero flow conditions (D.10a) are straightfor-
ward to implement, while conditions associated with the thermostat mechanism (D.10b),
(D.10c), (D.10d) and (D.10e) need to be handled in combination by solving an alge-
braic system within the reconstruction scheme.

In the particular case of the TCL PDE system, the temperature sub-domains j ∈
{a, b, c} are each divided into a number Nj of cells, Sj = ∪

Nj

k=1Kjq. It is convenient to
use uniform griding, meaning equal cell sizes ∆xjq = ∆x, ∀j, q. As a result of the FVM
spatial discretization procedure, the pdf function states f ij(x, t) are replaced by vector
states Fij ∈ RNj , see Fig. D.6. These components are ordered as F = (F0a, F0b, F1b, F1c),
resulting in a complete vector-state of dimension Na + 2Nb + Nc = N. Subcompo-
nents Fib1 , Fib2 and Fib3 are relevant when considering actuation. Their dimensions
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Tminmin Tmin Tmax Tmaxmax

F0a

F0b

F1c

∆T1 ∆T2

F0b1 F0b2

F1b1 F1b2 F1b3

F0b3

F1b ∆x

Fig. D.6: From the infinite dimensional state f to the final dimensional state F ∈ RN , N = Na + 2Nb + Nc ,
Nb = Nb1 + Nb2 + Nb3 .

are Nb1 , Nb2 , and Nb3 , with Nb1 + Nb2 + Nb3 = Nb. Each entry in the vector state F
represents the average probability density value in its corresponding cell,

Fijq(t) =
1

∆x
Pr
[
m(t) = i ∧ T(t) ∈ Kjq

]
, (D.15)

i ∈ {0, 1}, j ∈ {a, b, c}, q ∈ {1, 2, . . . , Nj} .

Because of the linear form of the Fokker-Planck equations, of the TCL boundary
conditions, and of the particular FVM scheme, the PDE system can be approximated
by a linear ODE system,

Ḟ(t) = AF(t) . (D.16)

Matrix A is guaranteed to conserve probability i.e., has the property that columns
sum to 0. However, A is not guaranteed to be a proper transition rate matrix, and it
can have a number of negative non-diagonal elements. Since the finite dimensional
approximation of the PDE system can be seen as a Markov chain representation of
the TCL SHS [10, 23], having matrix A in the form of a transition matrix is a desirable
property. FVMs do not in general guarantee the positivity property [11], however the
FVM scheme proposed in [21] specifically preserves a number of relevant structural
properties, among which positivity. This FVM scheme is based on an alternative
formulation of the master equation, using the Fokker Planck equation (D.11) recast as

φ(x, t) ≡ − dµ(x, t)
dx

(D.17)

∂ρ(x, t)
∂t

=
1
D

∂

∂x

(
e−Dµ(x,t) ∂

∂x
(
eDµ(x,t)ρ(x, t)

))
+ s(x, t) . (D.18)

The method in [21] is valid also for multidimensional spatial domains. We found
numerically that, to obtain a good dynamic approximation, the structure preserving
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FVM requires denser grids than more typical schemes. The Markov chain structure is
relevant for the error model description in Section 3.3.

Distribution model with Switching-Rate

The Switching-Rate actuation can be introduced in the PDE description (D.8), where-
from it will propagate into the state-space description (D.16). We first address the
case without the locking mechanism. The new terms that are included in the PDE
dynamics are marked with braces,

∂ f 0b

∂t
= − ∂

∂x

(
(ax + b) f 0b

)
−λ1(x) f 0b + λ0(x) f 1b︸ ︷︷ ︸+σ2

2
∂2 f 0b

∂x2 (D.19a)

∂ f 1b

∂t
= − ∂

∂x

(
(ax + b + c) f 1b

)
+ λ1(x) f 0b − λ0(x) f 1b︸ ︷︷ ︸+σ2

2
∂2 f 1b

∂x2 , (D.19b)

where

λ1(x) =

{
u1, x ∈ S1

0, x 6∈ S1
λ0(x) =

{
u0, x ∈ S0

0, x 6∈ S0 .
(D.19c)

The terms u1 f 0b and u0 f 1b give a fitting dynamic for the exchange of probability
from one discrete mode another due to the design of the external switching, see the
infinitesimal contribution given in (D.6). The discontinuity in the λi(x) functions,
and thus the discontinuity in the PDE coefficients, may raise concerns. The effect
of the discontinuity in the coefficients, combined with the smoothing effect of the
diffusion term, is that the solution remains continuous but is non-differentiable at
points Tmin + ∆T1 and Tmax − ∆T1, similar to the behavior at Tmin and Tmax. The
rigorous formulation is then to split the solutions f ib into subcomponents b1, b2 and
b3, and connect these with boundary conditions using flow functions h, that is

f ib1 (Tmin + ∆T1, t) = f ib2 (Tmin + ∆T1, t),

f ib2 (Tmax − ∆T2, t) = f ib3 (Tmax − ∆T2, t) (D.20a)

hib1 (Tmin + ∆T1, t) = hib2 (Tmin + ∆T1, t),

hib2 (Tmax − ∆T2, t) = hib3 (Tmax − ∆T2, t) . (D.20b)

The FVM can again be applied to reduce the PDE dynamics to a finite dimensional
form. The resulting system has the following form,

Ḟ(t) = AF(t) + u0(t)B0F(t) + u1(t)B1F(t). (D.21)

The locking mechanism is now included. The modeling principle is to explicitly
track the part of the pdf that becomes locked for the external actuation. Two density
functions are introduced to correspond to the locked condition for mode "off" and for
mode "on", L0 : (Tminmin, Tmax) × [0, M) × [0, ∞) → R+ and L1 : (Tmin, Tmaxmax) ×
[0, M)× [0, ∞)→ R+,

Li(x, y, t) = lim
dx↘0
dy↘0

1
dxdy

Pr
[

T(t) ∈ (x, x + dx] ∧ τ(t) ∈ (y, y + dy] ∧m(t) = i
]

.

(D.22)
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The part of f i(x, t) which remains responsive to the actuation is evaluated by subtract-
ing the probability of being locked, and the following updates are made to (D.19a)
and (D.19b),

λ1(x) f 0b → λ1(x)

 f 0b −

amount of locked f 0b︷ ︸︸ ︷∫ M

0
L0(x, y, t)dy

 (D.23a)

λ0(x) f 1b → λ0(x)

 f 1b −

amount of locked f 1b︷ ︸︸ ︷∫ M

0
L1(x, y, t)dy

 . (D.23b)

The dynamics of Li are given by normal Fokker-Planck equations in the two-dimensional
state space (T, τ) with the underlying process driven by (D.1b) and (D.4), with no ex-
ternal switching contributions. The dynamics are thus,

∂Li

∂t
(x, y, t) +

∂

∂x

(
(ax + b + ic)Li(x, y, t)

)
+

∂

∂y
Li(x, y, t) =

σ2

2
∂2

∂x2 Li(x, y, t) , (D.24)

with boundary conditions,

hL0(Tminmin, y, t) = 0, hL1(Tmaxmax, y, t) = 0 (D.25a)

L1(Tmin, y, t) = 0, L0(Tmax, y, t) = 0 (D.25b)

Li(x, 0, t) = λī(x, t)
(

f īb(x, t)−
∫ M

0
Lī(x, y, t)dy

)
(D.25c)

Equations (D.25a) represent impenetrable walls conditions where the probability flow
h is zero, and (D.25b) represent absorbing boundaries due to the thermostat action.
Finally, (D.25c) accounts for the incoming probability of a new switching event and
the zero reset of the timer state. This is a boundary condition that has discontinuities
in the x-space and in time, see (D.19c) and the fact that ui(t) is due to the nature
of broadcast communication a piecewise constant function. Again, discontinuities
can be a problem for the current mathematical description. A solution can be to
modify the TCL unit behavior to an ideal version where a smooth approximate of
the λi(x, t) is used. However, such modifications do not change any of the practical
considerations and have little impact on the results of the computational algorithms,
including the FVM procedure. The main difference introduced by the modeling of
the locking mechanism is that a two dimensional FVM scheme needs to be used for
the state Li. The final form of the finite-dimensional dynamic is,

Ẋ(t) = AXX(t) + u0(t)BX
0 X(t) + u1(t)BX

1 X(t) , X = (F L0 L1) , (D.26)

where L0 ∈ R(Na+Nb)Md , L1 ∈ R(Nb+Nc)Md , X ∈ RN(Md+1), and Md is the number of
grid cells with size ∆y used to discretize the timer-state domain [0, M]. A coordinate
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change can be used to create a Markov chain formulation, by separating the unlocked
from the locked states,

X′ =
(

F0 − ∆y
Md

∑
l=1

off, locked, τ∈[(l−1)∆y,l∆y)︷ ︸︸ ︷
L0
(l−1)Na+b+1:lNa+b

, F1 − ∆y
Md

∑
l=1

on, locked, τ∈[(l−1)∆y,l∆y)︷ ︸︸ ︷
L1
(l−1)Nb+c+1:lNb+c

, L0, L1)
= TXX (D.27)

This completes the Switching-Rate model.

Remarks

Locking effects after a thermostatic switch are not considered. The reason why this
is not necessary is due to the temperature safe-zones feature. After a thermostatic
switch, the unit is prevented from switching again until it is some distance ∆T away
from the thermostat boundary. This temperature distance can be chosen such that its
effects are practically equivalent to a timer condition.

The expected power consumption output of a TCL unit can be obtained by calcu-
lating the total probability of a unit being "on", and scaling it with the power rating
parameter W,

z(t) = CF(t), (D.28)

with C = W∆x
[
01×(Na+Nb) 11×(Nb+Nc)

]
.

The Fokker-Planck approach to modeling the distribution dynamics can also be
used when considering other elements in the TCL unit model, such as nonlinear terms
or jump noises. Another remark is that coefficients and parameters characterizing the
dynamical behaviors can take different values in mode "on" compared to mode "off",
for example the entire drift field, the diffusion coefficients, and temperature safe zones
∆T, and the timer setting M.

The fact that the actuation takes a bilinear form in (D.21) and (D.26) can be seen as
intrinsic to distribution modeling approach. It also appears in the case of a thermostat
set-point actuation [3], and in the case of the Switching Fraction. This is because the
actuation does not represent an external input to the system, but rather an internal
transformation that is defined in relation to the current state.

Populations

As mentioned, when considering a large group of units with identical parameters,
probabilities simply change meaning to fractions. This means that models (D.21) and
(D.26) can be initialized with values for F (or X) reflecting the distribution of temper-
ature and mode (and timer) states values across the population, and will naturally
propagate these distributions over time and under inputs.

Small heterogeneities of the TCL population should not cause severe modeling
errors, but large heterogeneities will cause a significant departure from the homoge-
neous case. However, exact modeling of heterogeneous population is impractical since
it suffers from "curse of dimensionality" (the state-space is extended with an extra di-
mension for each parameter). Therefore, heterogeneity is not explicitly accounted for
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in the distribution model. Instead, this work makes use of the fact that the switching
actuation has a certain amount of robustness to model variations due to its percent-
age formulation, and furthermore, measurements and online estimation can be used
to periodically update the distribution state in real-time operation. In the numerical
simulations, moderate levels of heterogeneity are considered for the TCL population.
For a more pronounced dispersion of parameters, a clustering strategy [35] should be
applied first.

3 Model-based Control Algorithms

This section presents two model-based control algorithms that can be used to manipu-
late the aggregated power consumption of the TCL population via the Switching-Rate
actuation. The control objective is to have the power output track an input reference.
State estimation is also addressed, by describing an error model that can be used with
a linear Kalman filter. The error model uses results from [10]. Finally, observations
are made about the measurement channels.

3.1 Control system

Whether considering or not the switch-lock effect, the TCL population model has a
continuous-time, bilinear, homogeneous input form,

Ḟ(t) =
(

A + ∑
i

ui(t)Bi
)

F(t), (D.29a)

Ẋ(t) =
(

AX + ∑
i

ui(t)BX
i
)
X(t) , (D.29b)

with ui ∈ [0, umax]. The aggregated power consumption is a linear combination of the
states,

za(t) = nCF(t), (D.30)

where n is the number of units in the population.
The free dynamics of the system without the switch-lock effect are given by matrix

A, which has stable eigen values, except one which is exactly zero. This is due to the
FVM procedure producing a dynamic matrix that conserves the probability invariant
of the system state, by having columns that sum to 0. This fact can be used to reduce
the system dimension by one state. Given an initial state F(0) s.t. the sum of its
elements is f (in particular f = 1

∆x ), the sum of F(t) will remain f . Therefore, one of
the states can be written as the difference between f and the sum of all others.

F(t) =
[

F̄(t)
FN(t)

]
, F̄ ∈ RN−1, FN ∈ R (D.31a)[ ˙̄F

ḞN

]
=

([
A11 A12
A21 a22

]
+ ∑

i
ui

[
Bi,11 Bi,12
Bi,21 bi,22

]) [
F̄

FN

]
(D.31b)

FN = f − 1T
N−1 F̄ (D.31c)

˙̄F = A11 F̄ + A12( f − 1T
N−1 F̄) + ∑

i
ui B̄i,11 F̄ =

(
Ā + ∑

i
ui B̄i

)
F̄ + ā (D.31d)
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In (D.31b) matrix Bi,12 = 0 for the switching actuation, in (D.31d) Ā = A11−A121T
N−1 ∈

R(N−1)×(N−1), and ā = A12 f . The dynamic matrix of the transformed system, Ā, is
Hurwitz. Furthermore, a change of variables can move the equilibrium state of the
affine system (D.31d) to 0, resulting in linear, stable free dynamic at the expense of an
added affine input term,

F̄0 = F̄ + Ā−1 ā (D.32a)

˙̄F0 =

(
Ā + ∑

i
ui B̄i

)
F̄0 + ∑

i
ui

b̄i︷ ︸︸ ︷
B̄i Ā−1 ā (D.32b)

In summary, we started with matrix A which has a one-dimensional null-space, iden-
tified the equilibrium state in the null-space by the "sums to f " constraint given by
the initial state, and then shifted the equilibrium to zero using a change of variable.
Notice also that the equilibrium distribution can be easily calculated as

F̄e =
[
−Ā−1 ā, f + 1T

N−1
(

Ā−1 ā
)]

. (D.33)

The same process of changing from a marginally stable to a fully stable dynamic
description can be applied to the augmented systems that include locking states. The
control and estimation algorithms presented here do not require strict stability, and
in the following we will continue to work with the homogeneous forms (D.29).

3.2 Reference tracking

This section presents two control algorithms for tracking an external power refer-
ence. By necessity (the geographically distributed nature of the control structure), all
control algorithms operate in discrete-time. TCL units maintain the switching rates
u constant until the next broadcast event (piecewise constant actuation). The first
algorithm uses switch-off and switch-on actions one at a time, while the second al-
gorithm uses an energy storage heuristic and simultaneous switch-off and switch-on
actions. The algorithms use the distribution model and measurements of the total
power consumption at every step, perform calculations or optimizations over short
time horizons, and require an estimate for the initial state (which is expected to be
close to equilibrium in the absence of actuation). The algorithms can benefit from
- but do not require - frequently updated state information. The control structure is
shown in Fig. D.7.

The main elements of the first control strategy are sketched in Alg. 2. This is
a predictive scheme with a single time-step lookahead. First, a prediction is made
about the power output in the absence of control. If this is bigger than the reference,
the switch-off action is selected for activation. In the opposite case, the switch-on
action is selected. In this way, basic knowledge of the system is embedded in the
algorithm. The main step then consists of calculating the precise input value that
would bring the internal model of the controller to the desired reference. A input-
output linearization technique [19] is used, together with the simplified assumption
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Fig. D.7: Controller structure. The dotted lines indicate signals with low update frequency.

that the output velocity remains constant in the control sample time ∆t,

za(k + 1) = za(k) + ża(k)∆t (D.34a)

ża(k) = nCAF(k) + ui(k)nCBiF(k) (D.34b)

ui(k) =
−nCAF(k) + v

nCBiF(k)
(D.34c)

za(k + 1) = za(k) + v∆t (D.34d)

v =
r(k + 1)− za(k)

∆t
. (D.34e)

For robustness to heterogeneity and other prediction errors, the actuation is wrapped
in an error integration structure (PI), preferably with anti-windup. Algorithm 2 is
suitable for both the simple and the augmented models, since the computation load
is light.

While arguably practical, Alg. 2 manages the power flexibility of the TCL popu-
lation in a simplistic manner. This is because, in most cases, there exists more than
one actuation option for bringing the output of the system to r(k + 1). By having a
lookahead horizon of just one step, and using a preset strategy for choosing between
the actuation options, Alg. 2 is not able to track challenging references. A challenging
reference that is of particular importance is a step-down to zero.

The second control algorithm is an example of an heuristic that can, under certain
conditions, maintain a zero power consumption over a time horizon of reasonable
length. This control uses a slightly modified version of the switching action. Since
the TCL unit temperature sensor is already required to distinguish between three
domains in the thermostat band (b1,b2,b3), we can easily consider an actuation variant
with four input channels: u0b1

, u0b2 , u1b2 and u1b3 . This means that it is possible to
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Algorithm 2 Step k

e = Kie + za(k)− r(k)
ep = nCAdF(k)− r(k + 1) + e
if ep > 0 then

u0(k) = Control(B0)
else if ep < 0 then

u1(k) = Control(B1)
end if

function control(B)
v =

(
r(k + 1)− za(k)

)
/∆t

u =
(
− nCAF(k) + v

)
/
(
nCBF(k)

)
u =Limit(u,0,umax)
F(k + 1) = e(A+uB)∆tF(k)
return u

end function

use one switch-off rate for the on-units in the temperature range Sb1
and another for

the on-units in the temperature range Sb2 , and similarly, two different switch-on rates
for the off-units in the Sb2 and Sb3 ranges.

The strategy is composed of three phases, sketched in Fig. D.8. Each phase of the
strategy is controlled by a different algorithm. In the first phase, the units are pushed
away from the right (hot) thermostat band using the switch-on action u1b3. In order to
keep the power consumption close to a normal level, this action must be compensated
by switching-off units from the left (cold) side of the thermostat using the u0b1. The
combined effect is equivalent to a narrowing of the thermostat band to the Sb2 interval.
In this operation mode, the duty-cycle of a unit will be only slightly higher than the
normal value, and the aggregated power output of the population can remain close
to the baseline value. The second phase corresponds to the zero power consumption
period. The on- and off-distributions are now collected in the midband range Sb2 . It
is therefore possible to switch-off all units using input u0b2 . Power consumption will
remain zero as the collected off-distribution is slowly moving right (heating) across
the Sb1

domain and up until the Tmax threshold of the thermostat is reached. The
third stage is recovery. The population needs to be controlled to slowly return to the
equilibrium distribution, all the while maintaining a power consumption level close
to the baseline. We do not solve the recovery problem in this work, but simply apply
Alg. 2 to return power consumption to the baseline level (the distribution state does
not return to equilibrium).

Algorithm 3 details this second control strategy. The storage phase consists of a
multi-objective optimization over a single control sample time. We want to switch-
on as many units as possible using u1b3, and compensate by the switching-off action
u0b1 in order to keep the power consumption close to a baseline reference. To avoid
large fluctuations within the control sample time ∆t, the reference tracking objective is
formulated using a series of n intra-period time points. The multi-objective optimiza-
tion was implemented using fgoalattain() MATLAB function, based on the goal
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attainment method [15]. While the optimization approach has the potential of becom-
ing computationally heavy, it is sufficient to use the basic, unaugmented distribution
model for both TCL populations with and without minimum on/off time constraints.
This is because the input actions are well separated between different temperature
zones and thus also separated in time, and the locking effect is inherently respected.
With this observation, Alg. 3 remains computationally feasible.

Control

Discharge

Storage

Recover

Fig. D.8: Second control algorithm

3.3 State estimation algorithm

From the point of view of estimation, models (D.29) are linear time-varying systems.
As such, a Kalman filtering technique can be readily applied as long as error models
are set in place. The objective of this section is to discuss the error between the
distribution state coming from the modeling process and the empirical distribution of
the TCL population (the plant).

The estimation algorithm uses discrete dynamic models. If we assume piecewise-
continuous inputs, the discrete-time equivalents of (D.29) are

F(k + 1) = e(A+∑i ui(k)Bi)∆tF(k), (D.35a)

X(k + 1) = e(AX+∑i ui(k)BX
i )∆tX(k) . (D.35b)

Reviewing the construction process of these models, there are three categories of
errors. First, the omissions and inaccuracies coming in the SHS unit model will prop-
agate to the Fokker-Planck description and therefore also in the population model.
For the most part however, these types of errors should be either small or addressable
by adjusting the SHS unit model, and are not considered in the following. Another
type of errors is introduced by the transformation of the PDE system into a finite
dimensional approximation. Again, for the most part, these errors can be kept small
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Algorithm 3 Step k

if phase(k+1) == “Storage" then
e = Kie + za(k)− r(k)
[ u0b1

(k), u1b3(k)] = Optim(r(k + 1)− e)
else if phase(k+1) == “Discharge" then

u0b1
(k) = umax, u0b2 (k) = umax

else if phase(k+1) == “Recovery" then
use Algorithm 2 . Partial recovery

end if

function Optim(r)
n = 5
ir = linspace(za(k),r,n + 1)
lb = [0,0], ub =[umax, umax]
u = min-multi-objective(@objectives, lb, ub )
return u

end function
function objectives(u)

Adn = e(A+u(1)B0b1+u(2)B1b3)∆t/n

Fp = F(k), obj(1) = 0
for j = 1 to n do

Fp = AdnFp

obj(1) = obj(1) +
(
CFp − ir(j)

)2

end for
obj(2) = −u(2) . or equiv. −u(1)
return obj

end function

by employing a proper spatial discretization technique over a reasonably dense grids.
The third type of errors is related to the aggregation procedure.

The aggregation procedure makes the leap from the discretized Fokker-Planck unit
model to the population model. There are two main assumption during this process.
First, it is assumed that the population is infinite in size, such that probability quan-
tities are in effect equivalent to population fractions. The errors introduced by this
assumption can be quantified using the Markov chain interpretation of the unit dy-
namics. This has been addressed in [10] and we now state this result. Let P(k) denote
either of the transition matrices e(A+∑i ui(k)Bi)∆t or e(AX+∑i ui(k)BX

i )∆t, and let p(k) de-
note either of the probability/fraction vectors ∆xF(k), ∆xX(k) of dimensions N, and

N(Md + 1) respectively. The conditional random variables
(

pj(k + 1)|p(k)
)

, where
subscript notation j indicates one of components of the vector p, are characterized by
Poisson binomial distributions, while the conditional random vector (p(k + 1)|p(k))
is characterized by a generalized multinomial distribution. The mean, variance and
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covariances are given by

E
[

pj(k + 1)|p(k)
]
= ∑

i
pi(k)Pji (D.36a)

Var
[

pj(k + 1)|p(k)
]
= ∑

i
pi(k)Pji(1− Pji) (D.36b)

Cov
[

pj(k + 1)|pl(k)
]
= −∑

i
pi(k)PjiPli . (D.36c)

This result points to the addition of an error term M(k),

p(k + 1) = P(k)p(k) + M(k), (D.37)

with E [M(k)] = 0, and state-dependent covariance matrix Cov [M(k)] given by rela-
tions (D.36b) and (D.36c).

A further source of errors, and one of the most concerning, is population hetero-
geneity. Obtaining a good characterization of the errors is however a more difficult
task. If the heterogeneity is not too large, an additional white noise term can be added
to complete an error model,

p(k + 1) = P(k)p(k) + M(k) + w(t) . (D.38)

Having an error model makes it possible to use a linear Kalman filter to perform state
estimation. Model (D.38) can easily be reformulated back in terms of the states F or
X.

3.4 Measurements

The main measurement used by the control algorithm is the total power consumption
signal. This is the driving signal of the control loop structure. In this work, the
TCL population has been considered in isolation, but in a realistic scenario aggregate
power measurements from the electrical grid (a feeder, a transformation station, or
at the regional level) will include other consumption. Therefore a method would be
needed to separate the contribution of the TCLs from the total consumption data.
However, the control objective is not the TCL consumption per se, but rather the
total consumption in an area (or portfolio). As long as the control objective can be
measured, it can be used directly (without separation) to create the control error
signal.

Monitoring the distribution state of the TCL requires individual unit measure-
ments. The advantage of the distribution approach is that individual state measure-
ments can be infrequent, partial and are used anonymously. Individual unit measure-
ments consists of the temperature and mode (and timer) data from a limited number
of units in the population, e.g. 10% or 20%. These can be processed to create a distri-
bution measurement F̃, which can be characterized using the variance and covariance
properties of the multivariate hypergeometric distribution. This is because, by ex-
tracting a finite number of units nm from the TCL population with n > nm units and
N possible outcomes, we are effectively performing a "draws without replacement"
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random experiment.

E[F̃] = F (D.39a)

Var[F̃i] =
n− nm

n− 1
1

nm
Fi

1− Fi∆x
∆x

(D.39b)

Cov[F̃i, F̃j] = −
n− nm

n− 1
1

nm
FiFj (D.39c)

Since the true underlying distribution F is not known, the right hand-side of the
equations (D.39) will be evaluated using the filter estimate F̂. To assure that the
estimation algorithm does not change the system invariant, a virtual measurement is
added that always gives the total probability/fraction of the distribution state as 1.

4 Numerical Simulations

This section contains numerical results on a case-study for domestic refrigerators.
The ETP parameters used for the TCL unit model (D.1a) are listed in Table D.1. The
actuation parameters are the minimum on/off time M = 300s, the temperature safe-
zones are ∆T1 = ∆T2 = 1◦C, and umax = 2.

Table D.1: TCL unit parameters

C (J/K) UA (W/K) Ta (◦C ) W (W)
93920 1.432 24 100
η σ (◦C/s) Tmin(◦C) Tmax(◦C)
2.8 0.0065 2 5

In all cases, a population of 10000 units is considered. In addition to the homo-
geneous population, two types of heterogeneities, each with three increasing levels,
have been tested. The ETP parameters have been randomly distributed around the
mean values from Table D.1 according to a 3σ-truncated Gaussian distribution with
standard deviations of 5%, 10%, and 15%, and according to a uniform distribution
with standard deviations of 10%, 20%, and 30%. The C, UA, Ta, η, W, and σ param-
eters have been affected, while the thermostat range, temperature safe-zones and the
minimum on/off time are uniform across the population. The TCL population (plant)
has been simulated using Monte Carlo techniques. Each of the 10000 SHS models is
run individually with a sample rate of 0.1s. For control, a broadcast rate ∆t = 60s has
been used.

4.1 FVM results

We first give a qualitative and quantitative comparison for the dynamical matrix A
obtained with different FVM techniques. In all cases, the used FVM grid is uniform,
with extended domain boundaries Tminmin = 1.5◦C and Tmaxmax = 5.5◦C. Three cases
are compared: a second order upwind scheme with a coarse (a) and dense (b) grid,
and the structure preserving FVM on a coarse (c) and on a dense (d) grid.

Positivity refers to the Mertzel property of matrix A. Because in addition the
columns each sum to 0 (conservative property), whenever matrix A is positive, it is
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also a proper transition rate matrix. The duty-cycle calculation is done using the equi-
librium distribution computed by (D.33) and evaluating the percentage of represented
by the total area under the on-distribution. It is used as an indicator for the absolute
error of the FVM schemes. The duty-cycle for the TCL unit with the parameters from
Table D.1 is close to 0.105 value. Fig. D.9 shows the equilibrium distributions obtained
from the four methods. It can be seen that the second order up-wind scheme (a) is not
positive, and shows the spurious oscillation effects (see Godunov’s order barrier the-
orem, [30] ch.13), but both of these effects are reduced when the grid size is reduced
in scheme (b). The structure preserving schemes (c) and (d) are positive, but slower
to converge, and as a result the distribution (and duty-cycle) of coarse scheme (c)
has significant errors. Although accuracy criteria would suggest using schemes (d) or
(b), scheme (a) has the advantage of a small computational footprint, and proves to
capture the dynamical behavior suitably well for control algorithms.

2 3 4 5

−0.05

0.15

0.35

(a)

2 3 4 5
0

0.2

(b)

2 3 4 5
0

0.2

(c)

2 3 4 5
0

0.2

(d)

Fig. D.9: Equilibrium distributions as obtained using the second order up-wind coarse and dense schemes (a)
and (b) respectively, and the structure preserving coarse and dense schemes (c) and (d) respectively. The grid
parameters are given in Table D.2.

Augmented systems have a significantly higher dimensionality. The spatial dis-
cretization and overall matrix size used in the following control simulations is also
given in Table D.2.

4.2 Free response simulations

Figure D.10 shows the free response from an initial state where all units are initially off
and have the same temperature, its value close to the hot threshold of the thermostat.

This synchronized initial state showcases the oscillatory nature of the power re-
sponse, and the differences between the homogeneous and heterogeneous popula-
tions. A main and well-known characteristic of heterogeneous populations is that

Table D.2: Dynamic matrix A, and augmented AX

∆x N Positivity Duty-Cycle
(a) 0.0385 182 No 0.105
(b) 0.01 700 No 0.105
(c) 0.0385 182 Yes 0.04878
(d) 0.0025 2800 Yes 0.1046

∆x ∆y N
AX 0.0385 30s 2002
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Fig. D.10: Free response of the TCL populations from a synchronized initial state. The thick line is the
distribution model response, while the thin lines are the responses of TCL populations with different levels of
heterogeneity.

they desynchronize and reach the equilibrium state faster. On the other hand, the
model error is small for the homogeneous population and increases with heterogene-
ity.

4.3 Control simulations

The TCL populations are known to initially be close to equilibrium, and no additional
state updates are used for the duration of a 2 hours control horizon. Measurement of
the aggregate power consumption is done without error terms, see the discussion in
Section 3.4.

Algorithm 2 is tested using two piecewise constant references. Reference I is a
repeated sequence consisting of a moderate step-up doubling the baseline, followed
by a step-down to zero, placed in between baseline values. Results are shown in
Fig. D.11. The control is able to follow the step-up section, as this reference lies
comfortably within the power consumption flexibility, but cannot reach the zero-level
of the step-down section.

Reference II consists of a single step-down to zero. Results are shown in Fig. D.12.
Once again, the control is not able to reach zero power consumption. The only way
to guarantee a zero consumption is to move units away from both the "off" and "on"
b3 zones. This strategy is showcased by Alg. 3. Nevertheless, Alg. 2 is arguably a
practical, efficient and fully responsive control scheme.

Algorithm 3 performs the storage control until the amount of units in the b3 tem-
perature zone (both on the "on" and on the "off" distribution) reaches a low value, and
then enters the discharge phase. When the power consumption cannot be maintained
close to zero anymore, the power consumption is returned to a level close to baseline
using Alg. 2. Results are shown in Fig. D.13. It can be seen that different popula-
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Fig. D.11: Switching-Rate actuation, Alg. 2, Reference I. The plots shows overlapped results from the one
homogeneous and the six heterogeneous populations. The baseline levels of each population are slightly
different.
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Fig. D.12: Switching-Rate, Control Alg. 2, Reference II

tions take different time to charge - the charging time increasing with heterogeneity,
and also that the duration of the discharge period (the zero consumption period) is
different, decreasing with heterogeneity. This is because the algorithm is perform-
ing a type of state synchronization, and the heterogeneous populations have a higher
natural rate of de-synchronization, as can be seen from the free response results in
Section 4.2, working against the algorithm.

Both control techniques can handle some amount of heterogeneity, with the biggest
errors occurring for the largest tested dispersion of the parameters (the uniform dis-
tribution with a standard parameter deviation of 30%).

4.4 State estimation

Implementing the linear Kalman requires the error model (D.37), which is build on
the Markov chain interpretation of the space- and time-discretized model. As such,
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Fig. D.13: Switching Rate, Control Alg. 3

we need to use a dynamic model build with the structure preserving FVM, since
the models constructed with the second-order upwind technique produce dynamic
matrices with negative entries. The structure preserving FVM requires a dense grid
for good accuracy. At a dimension of 2800× 2800, scheme (d) is still under-performing
as the duty-cycle is not correctly approximated, see Table D.2, but is suitable for
estimation.

This section presents numerical results for control with estimation using the Switching-
Rate case for models without locking feature (as the structure preserving FVM models
with the locking feature are computationally too heavy), for the population with the
highest heterogeneity. The control Alg. 2 continues to use model (a) for the one time-
ahead prediction, but the estimation runs in parallel using model (d) and updates the
distribution state. The estimation uses individual measurements from 1000 randomly
chosen units (10% of the population) at each step. Control and estimation algorithms
run with the same sample rate ∆t = 60s. Power trajectories of the estimation run are
compared with the simulation results from Section 4.3 (the state of internal model is
not updated during the control horizon, and a PI structure is used to compensate for
heterogeneity), and also with a run where the PI structure is deactivated.

The results in Fig. D.14 show that the estimation works well, and outperforms the
PI algorithm. However, the estimation is computationally more heavy, as the required
model has a high dimensionality.

5 Conclusion

This work has proposed a new, practical actuation strategy for enabling large scale
demand response of thermostatic loads. The Switching-Rate actuation has been de-
scribed, modeled and used to activate the power consumption flexibility of a popula-
tion of thermostatic loads in a numerical scenario.

Several directions for future work open up as a result of the promising numerical
scenario. First, it would be of interest to study the actuation in a demonstration setup,
subject to the real life thermal and population dynamics, and under realistic distur-
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Fig. D.14: Mean error of the state for the estimation vs PI. The full-line shows the mean error in the on-
distribution, and the dotted line the off-distribution. The state error is smaller when using the estimation.

bances. Secondly, we note that more advanced issues of the problem formulation
remain open. Neither Alg. 2 nor Alg. 3 return the distribution state to equilibrium.
Stopping the control broadcast returns the system to a free response with oscillatory
output behavior before the equilibrium state is reached. The problem of a controlled
return to the equilibrium state using the switching actuation remains as yet open, al-
though we can point towards Lyapunov techniques as a promising direction. Further-
more, it is clear that not all power references are tractable. The problem of describing
tractable references, problem that depends not only on the system parameters but
also on the control algorithm, has not been addressed. Finally, we point to problem
of reducing the system dimensionality. In this work, the PDE dynamics have been
brought to a finite dimensional, continuous-time form using FVMs as numerical tech-
niques. General FVMs schemes however do not preserve structural properties such
as positivity, while the special technique in [21] has the disadvantage of producing
very large matrices not directly suitable for online algorithms. Model order reduction
techniques for bilinear systems could be tested in future work.
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Notes on Duty-Cycle Calculations

The duty-cycle is defined in relation to the durations of the ON and OFF power cycles. The
duty-cycle will be considered for the normal thermostat operation (without any external con-
trol). The thermostat limits are Tmin and Tmax, and the TCL unit is performing a cooling
task. If the thermal dynamics are deterministic, the durations of the ON and OFF cycles are
deterministic. If the thermal dynamics are stochastic, the durations of the ON and OFF cycles
are random variable.

1 Deterministic Duty-Cycle

In the deterministic case, the Themostatically Controlled Load (TCL) model with the
normal thermostat operation is

Ṫ(t) =

{
−aT(t) + b0, when the power cycle is off

−aT(t) + b1, when the power cycle is on ,
(Y.1)

where a = UA
C , b0 = UA

C Tamb, b1 = UA
C Tamb −

ηW
C , with UA, C, Tamb, η, and W

standing in for physical coefficients, all positive. Let variable m(t) denote the state of
the power cycle, 0 ≡ OFF and 1 ≡ ON, then the thermostat logic can be expressed as

m(t) =


1, T(t) ≥ Tmax

0, T(t) ≤ Tmin

m(t−), otherwise

.

A TCL first changes to ON state when the temperature reaches Tmax and remains
ON until the temperature reaches Tmin. To find out how much this takes according to
the model, we study the solution of the Ordinary Differential Equation (ODE)

ṪON(t) = −aTON(t) + b1, TON(0) = Tmax. (Y.2)

The solution is given by the function

TON(t) =
b1
a
+
(
Tmax −

b1
a
)

exp(−at). (Y.3)

By setting TON(τOFF) = Tmin, we obtain an expression for the duration of the ON
cycle as

τON = −1
a

ln

(
Tmin − b1

a

Tmax − b1
a

)
. (Y.4)



It was possible to determine a unique solution for τOFF because of the nice monotonic
form of the solution TON(t).

Similarly, the duration of the OFF cycle is

τOFF = −1
a

ln

(
Tmax − b0

a

Tmin − b0
a

)
. (Y.5)

Using the numerical values for the refrigerator test case used in Papers B, C and D,
it is obtained that τON = 1124.17[s] = 18.74[min] and τOFF = 9615.22[s] = 160.25[min],
leading to a duty-cycle value:

dc =
τON

τON + τOFF
= 0.1047

2 Stochastic Case

In the stochastic case, the thermal dynamics are given by Stochastic Differential Equa-
tions (SDEs),

dT(t) =

{(
− aT(t) + b0

)
dt + σdW(t), when the power cycle is off(

− aT(t) + b1
)
dt + σdW(t), when the power cycle is on ,

(Y.6)

while the thermostat logic remains the same as in the deterministic case. The ON and
OFF mode durations are equivalent to first exit times of the stochastic thermal process
from a corresponding thermostat region. This exposition follows the treatment of first
exit times from [1](Ch.5.2.7).

For the TCL to be OFF, its temperature must belong to the interval [Tminmin, Tmax).
This is because as soon as the temperature reaches Tmax, the thermostat changes to
mode ON. Furthermore, it has been assumed that temperatures smaller than Tminmin
are not possible in normal operation1.

Starting from an initial time t = 0 with temperature T(0) = x ∈ [Tminmin, Tmax)
2, the interest is on the first time when the temperature reaches Tmax. The time t,
defines the end of the OFF duration and is a random variable. Let G(x, t) , Pr

[
τOFF >

t
∣∣ T(0) = x

]
be the tail distribution function of the random variable τOFF(x). This

means that until time t the temperature remained in the proper interval range, and
thus G(x, t) =

∫ Tmax
Tminmin

f (y, t, x, 0)dy, where f is the transition density function of the
thermal process with the dynamic given by the "cooling" SDE, and considering that
the dynamic rules include a reflecting boundary at Tminmin (keeping the probability
in the system) and an absorbing boundary at Tmax (taking the probability out of the
system).

Because the thermal dynamics are time-homogeneous, it is possible to write f (y, t, x, 0)
as f (y, 0, x,−t), and write a Backward differential equation for f as

∂ f (y, 0, x,−t)
∂(−t)

= −(ax + b0)
∂ f (y, 0, x,−t)

∂x
− σ2

2
∂2 f (y, 0, x,−t)

∂x2 ≡

≡ ∂ f (y, t, x, 0)
∂t

= (ax + b0)
∂ f (y, t, x, 0)

∂x
+

σ2

2
∂2 f (y, t, x, 0)

∂x2 (Y.7a)

1An alternative is to consider an infinite left boundary.
2The case x = Tmin is of interest here, as this defines the beginning of an OFF cycle. The first exit times are

best studied by not fixing the x variable to its desired valued in the beginning of the analysis Tmin
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2. Stochastic Case

with boundary conditions corresponding to a reflecting boundary and to an absorbing
boundary,

∂ f (y, t, x, 0)
∂x

∣∣
x=Tminmin

= 0, f (y, t, Tmax, 0) = 0. (Y.7b)

This leads to the G(x, t) function satisfying the same expression,

∂G(x, t)
∂t

= (ax + b0)
∂G(x, t)

∂x
+

σ2

2
∂2G(x, t)

∂x2 (Y.8a)

where the boundary conditions

∂G(x, t)
∂x

∣∣
x=Tminmin

= 0 , G(Tmax, t) = 0. (Y.8b)

As as a tail distribution function G(x, t) (with x is a parameter, t is the variable)
has also the property that G(x, 0) = 1, and lim

t→∞
G(x, t) = 0 with G(x, t) = o(1/t) (for

the given situation), meaning lim
t→∞

tG(x, t) = 0.

A more simple description can be found for the moments of τOFF. Only the first
two are investigated here. First,

E
[
τOFF(x)

]
=
∫ ∞

0
td(1− G(x, t)) = −

∫ ∞

0
tdG(x, t) = −

∫ ∞

0
t
∂G(x, t)

∂t
dt =

= −tG(x, t)
∣∣∞
0 +

∫ ∞

0
G(x, t)dt =

∫ ∞

0
G(x, t)dt , M(x), (Y.9)

which leads to the following second order differential equation,∫ ∞

0

∂G(x, t)
∂t

dt = (ax + b0)
dM(x)

dx
+

σ2

2
d2 M(x)

dx2 ≡

≡− 1 = (ax + b0)
dM(x)

dx
+

σ2

2
d2 M(x)

dx2 (Y.10a)

with boundary conditions

dM(x)
dx

∣∣
x=Tminmin

= 0, M(Tmax) = 0 . (Y.10b)

This form can be solved numerically (e.g. MATLAB R©. bvp4c), and it can be ob-
tained that M(Tmin) = E [τOFF(Tmin)] = 159.73[min]. It is noted that a closed form
expression for M(x) in given in [1], however this includes embedded integrals that are
arguably more difficult to evaluate numerically. For the second moment,

E
[
τ2

OFF(x)
]
= −

∫ ∞

0
t2 ∂G(x, t)

∂t
dt = −t2G(x, t)

∣∣∞
0 +

∫ ∞

0
2tG(x, t)dt =

=
∫ ∞

0
2tG(x, t) , Q(x) , (Y.11)

where it was assumed that lim
t→∞

t2G(x, t) = 0. The following differential equation is

obtained

−2M(x) = (ax + b0)
dQ(x)

dx
+

σ2

2
d2Q(x)

dx2 , (Y.12a)
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showing a dependence on M(x), and with similar boundary conditions

dQ(x)
dx

∣∣
x=Tminmin

= 0, Q(Tmax) = 0 . (Y.12b)

A numerical solution can be obtained for Q(x) and Q(Tmin), and used to calculate the
standard deviation as std

[
τOFF(Tmin)

]
= 33.86 [min].

A similar analysis carried on for τON(x) leads to the following numerical results,
E [τON(Tmax)] = 18.73 [min] and Std

[
τON(Tmax)

]
= 1.36 [min].

It is noted that by definition/construction, the random variables τOFF and τON
are independent, however this does not allow for a straightforward evaluation of the
statistic properties of the duty-cycle τON/(τON + τOFF).

Some further consideration can be made directly about the duty-cycle, and are
given below, however these do not lead to a closed solution.

First, it can seen that the joint density of the random variables τON and τON + τOFF
is given by

fτON,τON+τOFF (x, y) = fτON (x) fτOFF (y− x). (Y.13)

Using the ratio distribution formula, it can be written that

fdc(z) =
∫ ∞

0
u fτON (zu) fτOFF

(
u(1− z)

)
du, (Y.14)

and thus

E
[
dc
]
= M(x0, x1) =

∫ 1

0

∫ ∞

0
zu fτON (x1, zu) fτOFF

(
x0, u(1− z)

)
dudz

=
∫ ∞

0

∫ ∞

0

v1
v1 + v0

fτON (x1, v1) fτOFF (x0, v0)dv1dv0

=
∫ ∞

0

∫ ∞

0

v1
v1 + v0

∂v1 G1(x1, v1)∂v0 G0(x0, v0)dv1dv0 (Y.15)

Further manipulations based on integration by parts leads to the additional expression

M(x0, x1) =
∫ ∞

0

∫ ∞

0

v1 − v0

(v1 + v0)3 G1(x1, v1)G0(x0, v0)dv1dv0. (Y.16)

In the case of the expected value for the random duration times τ, the two expres-
sions of M(x) as a function of G(x, t) could be closed by using the Backward equation
on the G(x, t). This is however not the case for the duty-cycle calculations, because
the terms under the integral expressions v1

v1+v0
and v1−v0

(v1+v0)3 are not compatible.

Table Y.1: Duty calculation. The τ values are given in decimal minutes.

Deterministic
σ = 0.0065 σ = 0.06

Mean Std. Mean Std.
τON 18.74 18.73 1.36 17.75 10.83
τOFF 160.25 159.73 33.86 54.89 45.90
τON

τON+τOFF
0.1047 ? ? ? ?

Finally, we point to the work [2, 3] for some analytical results on the stochastic
duty-cycle calculations, under a reasonable model approximation.
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Notes on Domestic Refrigerators

Refrigerators are the main case-study devices used in this work, and this section presents some
unit level modeling principles and elements, and a partial validation against real measure-
ments.

Domestic refrigerators and freezers are typical household appliances, present in
almost every home in the industrialized countries, as well as in large numbers every-
where else [2]. In Denmark, fridges and freezers accounted for about 820 [GWh] in
energy consumption in 2012 [1], which is equivalent to a baseline (or instantaneous)
consumption of 93 [MW].

1 Thermodynamic Principles

References for fundamental thermodynamic concepts such as systems, states, pro-
cesses, equilibrium and quasi-equilibrium, and the main assumptions under which
thermodynamical systems are generally studied, are [5] and [4].

A first principle when analyzing thermodynamic systems is that for any process,
the overall energy is conserved. This principle can be expressed in the form of a
balance equation, that in the most general terms can be written as,

∆Esystem = Ein − Eout, (Z.1)

meaning that the total energy variation of a predefined system over a time horizon
[t0, t1], ∆Esystem = Esystem(t1) − Esystem(t0), is equal with the total energy received
from the outside minus the total energy lost to the outside during this time. Fur-
thermore, the left hand-side of the equation refers to energy as state or property of
the system in a "static" form, while the right hand-side terms refer to the transfer or
"dynamic" forms of energy, and is depended on the entire trajectory or path of the
system during the [t0, t1] time interval. Therefore an equivalent way of expressing the
energy balance relation is as∫ t1

t0

dEsystem(t) = Et1 − Et0 = ∆E(t0, t1) =
∫ t1

t0

Fin(t)dt︸ ︷︷ ︸
Ein

−
∫ t1

t0

Fout(t)dt︸ ︷︷ ︸
Eout

, (Z.2)

where F is the instantaneous energy transfer flow. While energy (both "static" and
the overall transfered quantities) is measured in Joules [J], the energy transfer flow is
measured in Watts, [W] = [J/s].



In thermodynamic studies there are three types or mechanism for energy transfer:
heat transfer, work, and mass transfer. Heat is energy transfer as a result of tem-
perature difference, work is energy transfer involving forces over distances (includes
electrical effects), while mass transfer refers to the matter exchange of the system with
the surroundings.

For a system without mass transfer with the exterior, the energy balance equation
can be written as:

∆Esystem = Qin + Win −Qout −Wout

=
∫ t1

t0

Qin(t)dt +
∫ t1

t0

Win(t)dt−
∫ t1

t0

Qout(t)dt−
∫ t1

t0

Wout(t)dt, (Z.3)

where Q and W are instantaneous heat and work flows respectively, both measured
in [W]. The classical thermodynamic notation of these flows is Q̇ and Ẇ and it is
made use of path integrals notation such that

∫ t1
t0
Qin(t)dt =

∮ t1
t0

Q̇in(t)dt cannot be
evaluated as Q(t1)−Q(t0), since Q(t) does not have a meaning, unlike energy which
is a system state and fulfills

∫ t1
t0

Ė(t)dt =
∫ t1

t0
dE(t) = E(t1)− E(t0) = ∆E(t0, t1).

The second law of thermodynamics states that the autonomous evolution of a sys-
tem is always towards the direction of increasing entropy. A direct consequence of this
is that energy cannot be transfered in the form of heat from a lower temperature sys-
tem to a higher temperature system without work. Refrigerators and heat pumps are
devices that use work to transfer energy in the form of heat from a low-temperature
TL source to a higher-temperature TH sink, see Fig. Z.1.

TLTH
QH QL

WIN

R/HP

Fig. Z.1: Basic principle of a refrigerator and/or heat pump installation working between a low temperature
TL reservoir and a high temperature reservoir TH . A (thermal) reservoir is an system that can receive and
deliver very large amounts of heat without changing its temperature.

The refrigeration system itself does not store energy overall, ∆ER = 0, and thus
the energy conservation principle leads to the following relations,

Win + QL = QH (Z.4a)

Ẇin + Q̇L = Q̇H . (Z.4b)

The performance or efficiency of a process is in general quantified using the ratio
between the desired outcome and the required input resource. The objective of a
refrigerator is to extract heat from the low-temperature heat reservoir. This leads to
the definition of the COP (Coefficient Of Performance) as

COPR =
QL
Win

=
1

QH
QL
− 1

. (Z.5)
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2. Simple Refrigerator Model

Similarly, the objective of a heat pump is to bring heat into the high-temperature
reservoir, leading to a performance definition of

COPHP =
QH
Win

=
1

1− QL
QH

. (Z.6)

The energy balance equation (Z.4b) indicates that the efficiency of heat pumps is
higher by using the heat extraction from lower temperature reservoir, than by trans-
forming the work directly to heat (e.g. by Joule resistive heating).

There exists a theoretical maximum for the performance of a refrigerator/heat
pump, and this is given in terms of the absolute temperatures (on the Kelvin scale) of
the thermal reservoirs as,

max COPR =
1

TH
TL
− 1

, (Z.7)

max COPHP =
1

1− TL
TH

. (Z.8)

The COP is a practical means of evaluating the average performance of a device
under specified conditions, and is a direct or indirect datasheet parameter for refrig-
erators. Although the theoretical maximum COP depends only on the constant TL
and TH temperatures, a practical COP is process dependent. This means that for
practical purposes an unambiguous process trajectory needs to specified, and that
the datasheet COP must be understood in an average sense, both over time and over
similar iterations.

2 Simple Refrigerator Model

A simple model for temperature dynamics of a refrigerator compartment can be set-
up using a basic energy balance analysis and the COP factor. Additionally, the heat
transfer between the low-temperature source and the high-temperature sink environ-
ment need to be considered, as shown in Fig. Z.2.

TL

TH

QH

QL

WIN

R

QC

Fig. Z.2: Simple model of a household refrigerator. The low-temperature compartment loses heat to the the
high-temperature room air.
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Heat is naturally transfered from a warmer system to a cooler one. In the refrig-
erator case, the main mechanism of heat loss from the cooled compartment isolated
with a shell from the external environment, is conduction. Convection effects also
play a role, but are smaller and can be ignored in this approach.

The conductive heat flow though a plane layer or medium as shown in Fig. Z.3 is
proportional with the temperature difference between the two sides of the medium
and with the area of contact, and is inverse proportional to the thickness of the layer,

Q̇c = kA
TH − TL

∆x
. (Z.9)

where k is a material dependent constant, the thermal conductivity, measured in
[W/(mK)].

TH

TL

Qc
Δx

Fig. Z.3: Section through a plane contact medium with thickness ∆x.

Considering a refrigerator with a single compartment and temperature zone (with-
out freezer section), there are six such plane contact surfaces, such that

Q̇c = ∑
i

ki Ai
∆xi

(TH − TL) = UA · (TH − TL), (Z.10)

where UA is an equivalent heat transfer coefficient, measured in [W/K].

The energy balance relation can be written on the refrigerator compartment as,

∆ER = Qc −QL = Qc −COPR ·Win, (Z.11)

and on the outdoor/ambient room as

∆Ea = QH −Qc = (1 + COPR)︸ ︷︷ ︸
COPHP

Win −Qc. (Z.12)

A change in the system energy will lead to a change in some of other system states
e.g. volume, pressure, temperature. The amount of energy that needs to be transfered
to a system such that a temperature increase of one degree is achieved is called heat
capacity C, and is measured in [J/K]. Heat capacity is proportional with the size
(mass) of system, and depends on the path/trajectory of the heat transfer process.
Heat capacity measured for a constant volume process is denoted as CV , and for a
constant pressure process as Cp. Both CV and Cp are dependent, but vary relatively
slowly, with the initial temperature.
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3. The Vapor-Compression Cycle

The thermal reservoir concept used in the previous section is an idealized version
of a system with very large heat capacity compared to the energy transfers involved.
The refrigerator compartment does not have a very large heat capacity compared
to the energy transfer ∆ER, which is dimensioned such that TL temperature can be
controlled. Since the volume of the refrigerator compartment remains constant, the
following relation can be written,

∆TL =
∆ER

CR
V

, (Z.13)

where CR
V is the heat capacity of the compartment at constant volume, for ∆TL vari-

ations that are not too large. On the other hand, the outside system (room) can be
considered as a thermal reservoir since it is much larger and has a heat capacity that
should dominate by order of magnitudes the energy loss ∆Ea,

∆TH =
∆Ea

Ca
V � 1

∼ 0. (Z.14)

Thermal dynamics TL can now be expressed using the rate form of (Z.13) and
(Z.11) as,

ṪL =
1

CR
V

Q̇c −COPR · Ẇin, (Z.15)

and using the convection relation (Z.10),

ṪL =
UA
CR

V
(TH − TL)−COPR · Ẇin , (Z.16)

where the COPR value was considered constant.
A normal operation for a refrigerator (without freezer compartment) takes place

approximately between values TL ∈ [2, 5]. If the ambient temperature is relatively
constant and e.g. TH = 24, the theoretical maximum performance of the refrigeration
process is COPR value of 13.5. Actual values are significantly lower.

A similar simplified dynamic model can be obtained for the heat-pump case,
where the hot-temperature sink is the insulated system, and heat is leaked to the
outdoor, low-temperature environment.

3 The Vapor-Compression Cycle

The main modeling objective with the household refrigerator analysis is on its power
consumption characteristics. The thermal dynamics described by (Z.16) are the basic
building block in the study of the TCL problem in this thesis, and the majority of
other works discussed in the introduction part, sec. 3. At the same time, one of the
most rough approximation points in (Z.16) is the lack of specificity in the work term
Win, and the use of the COP factor in a differential/instantaneous relation, which is
a stretch from its definition. To clarify the validity range of this approach, a more
detailed look can be taken at the refrigeration mechanism.
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The main process taking place in a refrigerator is a thermodynamic cyclic pro-
cesses. During a cycle, a working fluid called refrigerant is subject to a series of
thermodynamic transformations, and is returned to the initial state. The refrigeration
cycle of interest for Themostatically Controlled Loads (TCLs) is the vapor-compression
cycle, which consists of four components. In an ideal sense, these are:

(a) A compression process, during which the pressure of the working fluid is in-
creased by mechanical work. In the ideal case the process take place without
heat transfer. The temperature of the working fluid will necessarily increase,
but the entropy state is constant.

(b) A heat loss process with the high-temperature medium (room). This is possible
because the refrigerant temperature has increased above TH in the previous step.
As a result of the heat loss, the temperature of the working fluid decreases. The
pressure remains constant during this process.

(c) A pressure drop process, without any heat loss and without any work transfer.
As a result of the pressure drop, the temperature of the refrigerant drops signif-
icantly and the volume increases. The enthalpy state of the refrigerant remains
constant during this process.

(d) A heat absorption process with a low-temperature medium TL. This is possible
because the refrigerant temperature has dropped below TL in the previous step.
As a result, the temperature of the working fluid will increase. The pressure
remains constant during this process.

The working fluid enters the compression process (a) as saturated vapor (in its gas
phase, but close to the boiling/condensation/vaporization temperature for the given
pressure), and exits as a superheated vapor (in the gas phase, and far from the boil-
ing/condensation/vaporization temperature for the given pressure). During the heat
loss transfer process (b) the temperature drops and the refrigerant starts to conden-
sate, passing through a vapor-liquid mixture, and ending as a saturated liquid (close
to boiling/condensation/vaporization temperature for the given pressure). From the
throttling/expansion process (c) the saturated liquid exist as a saturated mixture with
only a small percentage vapor (because it has not received any heat to be able to fully
vaporize although the pressure dropped). During process (d), the needed heat for
vaporization is received and the refrigerant should enter the compression process (a)
as a saturated vapor.

The processes (a)-(d) are physically realized with the following components:

(A) The compressor is an electrically powered device that uses moving mechanical
parts to take a gas from a lower input pressure to a higher output pressure.
The compressor task is both to draw refrigerant vapor from the evaporator and
maintain the low evaporator-side pressure, and to discharge refrigerant vapor
on the condenser and maintain a high condenser-side pressure. The main type
compressor used for refrigeration is the reciprocating compressor. Compressors
transform electric energy to mechanical (kinetic) energy, and the kinetic energy
is used to transfer work to the system.
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3. The Vapor-Compression Cycle

(B) The condenser is a winding tube placed on the exterior of the refrigerator. It
intermediates a heat exchange between the refrigerant and the ambient air in
the room.

(C) A passive flow restricting device, such as a capillary tube or valve, realizes the
pressure drop process at constant enthalpy (c), also called throttling.

(D) The evaporator is a winding tube build in the interior of the refrigerator com-
partment to mediate the heat exchange with the refrigerant.

Because compressors are damaged if a significant liquid refrigerant creeps and
accumulates in the compressor chamber, refrigerators are designed with an internal
heat exchanger to mediate heat transfer between the refrigerant at the end of the
condenser tube and the refrigerant at the end of the evaporator tube. In this way, at
the end of the condenser tube the refrigerant is not in the form of saturated liquid
but has become subcooled by some degrees ∆Tsub, while at the end of the evaporator
tube the refrigerant is not in the form of saturated vapor but has become superheated
by some degrees ∆Tsup. Furthermore, some of the cycle processes depart in some
measure from the ideal conditions. The compression process in particular cannot be
realized close to the ideal case, as friction effects lead to an increase in entropy and
heat transfer process occur as well, sometimes by design.
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Fig. Z.4: Schematic of the refrigeration cycle.

The compressor plays the main direct role in the power consumption of a refriger-
ation. At the same time, the performance of the heat exchange between the refrigerant
and ambient, air via the condenser, and the performance of the heat exchange between
the refrigerant and the cooled compartment, via the evaporator, have an important
contribution to the overall performance of the refrigeration process. Modeling the
individual components of the refrigeration cycle separately will lead to a better pre-
diction of the power consumption characteristics. Such an approach is taken in [3, 6].
A short overview of this approach is given next and preliminary results on an adapted
example.

The refrigeration cycle is ON. Given the temperature at evaporator inlet as the
temperature inside the cooled compartment TL, assumed constant over a relatively
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short period of time dt, the refrigeration cycle stabilize to a certain equilibrium state
which determines the absorption rate by the evaporator Q̇L, the power used by the
compressor Ẇ, and other operational parameters. This equilibrium model is coupled
with the compartment thermal dynamics as obtained from the energy balance, where
Q̇L is now given directly instead of using the COP relation. Time is advanced with
dt in the thermal dynamics, and a new TL is determined. This overall modeling
approach is shown in Fig. Z.5.

TL

Thermodynamic steady-state model
(system of algebraic nonlinear equations)

Compartment thermal dynamics
(afine differential equation)

QL

W

tt+dt

Fig. Z.5: Modeling approach for combining a quasi-steady-state (or equilibrium) model of the refrigeration
cycle with the temperature dynamics of the cooled compartment.

The refrigeration cycle equilibrium model is given by the following system of
nonlinear algebraic equations, see [3],

ṁr = ηvVk N/ν1 (Z.17a)

Ẇ = ṁr(h2,s − h1)/ηg (Z.17b)

h2 = h1 + (Ẇ − Q̇k)/ṁr (Z.17c)

Q̇k = UAk(T2,s − TH) (Z.17d)

h4 = h3 + h5 − h1 (Z.17e)

T1 = T5 + εx(T3 − T5) (Z.17f)

Q̇L = ṁacp,a(TL − Tsat(pe))(1− e−UAe/(macp,a)) (Z.17g)

h5 = h4 + Q̇L/ṁr (Z.17h)

Q̇H = UAc(Tsat(pc)− Ta) (Z.17i)

h3 = h2 − Q̇H/ṁr (Z.17j)

pc = Psat(T3 + ∆Tsub) (Z.17k)

pe = Psat(T5 − ∆Tsup), (Z.17l)

where the variables are pe, pc, T1, T3, T5, ṁr, Ẇ, Q̇k, Q̇L, Q̇H , h2, h4. The following
expressions are variable dependent expressions,
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4. Qualitative Comparison

ηv = ηv(pc/pe) (Z.18a)

ηg = ηg(pc/pe) (Z.18b)

ν1 = νr(T1, pe) (Z.18c)

T2,s = T1(pc/pe)
(kT−1)/kT (Z.18d)

h2,s = hr(T2,s, pc) (Z.18e)

h1 = hr(T1, pe) (Z.18f)

h3 = hr(T3, pc) (Z.18g)

h5 = hr(T5, pe), (Z.18h)

while TH , ṁa, cp,a, N, Vk, UAk, kT , ∆Tsub, ∆Tsup, UAe, εX , and UAc are parameters.
These equations correspond to simplified models of the refrigerator cycle components,
and are not reviewed in this appendix, but reference is once again made to [3]. It is
also noted that the subsequent work [6] contains further extensions not used here.
The overall notation is however shortly summarized next: ṁr is the mass flow rate of
refrigerant in the cycle, [kg/s]; Ẇ is the power used by the compressor, [W]; the h-
values are specific enthalpies at different points in the cycle, [J/kg]; pc and pe are the
condenser and evaporator pressures, [Pa]; Q̇k is the heat loss rate of the compressor,
[W]; T denotes temperatures at different points in the cycles, [K]; Q̇L and Q̇H are, as
before, the heat rates to the low- and high-temperature mediums respectively, [W]; ηV
and ηg are dimensionless volumetric and isentropic compressor efficiencies and can
be extracted from datasheet specifications as functions of the operational compression
rate pc/pe, ν = q/ρ is specific volume, [m3/kg]; T2,s and h2,s are the temperature and
enthalpy at the end of the ideal isentropic compression process, notation νr and hr has
been used to denote property functions of the refrigerant, kT is the polytropic coeffi-
cient of the refrigerant, ṁa is the air mass flow rate, [kg/s]; across the evaporator, cp,a
is the pressure constant specific heat capacity of air, [J/(kgK)]; N is the compressor
speed (compression cycles per unit of time), [Hz]; Vk is the compressor intake volume,
[m3], UA are overall heat transfer coefficients, [W/K]; εX is the dimensionless effec-
tiveness of the internal heat exchanger; and ∆Tsub, ∆Tsup are as already introduced
the subcool and supheat temperature variations, [K].

The compartment model is given by

ṪL =
UA
CR

V
(TH − TL)− Q̇L , (Z.19)

with the observation that when compressor is off Q̇L = 0, and that a white noise
component can be added.

4 Qualitative Comparison

Both thermodynamic models (Z.16) and (Z.17, Z.19) can be combined with the ther-
mostat logic, to give temperature and power trajectories. It is noted that the first
model, if enriched with a white noise component, becomes the TCL model as used
in the main body of this work. Additionally, measured trajectories from laboratory
set-up of a single compartment household refrigerator are also presented.
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Figure Z.6 presents simulated trajectories using the first model. Figure Z.7 presents
simulated trajectories using the second model. The equilibrium model of the refrig-
eration cycle is simulated using parameter values adapted from [3]. The R134a re-
frigerant fluid properties were used. It can be seen that the difference in the power
consumption pattern is minimal, however, compared with the first model where the
power consumption was modeled as a constant, the second model captures a slight
dynamic, as the power-on cycle shows an angled profile. It is mentioned that the
parameters are not in general coordinated between the models, and this leads to dif-
ferent duty-cycles between the two cases.
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Fig. Z.6: Simulated trajectory using the energy balance model (Z.16), with a low white noise component.

A measurement session is shown next, from single-compartment ScanDomestic
refrigerator, model SKS150, with a capacity of 124 [l]. The refrigeration fluid is R600a.
The refrigerator is instrumented with one internal and one external temperature sen-
sor. Power measurements are also available. The refrigerator is operating "on empty",
without added thermal mass in the compartment, and in a controlled laboratory setup
with no user interaction (no door openings). The thermostat operation of the unit
can be adjusted via a knob button with seven settings. The refrigerator is shown in
Fig. Z.8.

The measured trajectory from Fig. Z.9 qualitatively resembles that of the simulated
cases. The inside temperature trajectory TL follows the expected zig-zag pattern.
The measurement of the ambient temperature TH shows a low frequency variation,
matching an intradaily expected pattern with slightly higher values around midday,
and a high frequency variation matching the duty-cycle operation of the refrigerator.
This is because the external temperature sensor is in relative close proximity to the
condenser coil. However, in absolute values, the variation of the ambient temperature
is small for this measurement, about 1 [◦C], such that the constant TH assumption
from the previous models can be considered as reasonable.

The power consumption trajectory exhibits the downward angled profile predicted
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Fig. Z.7: Simulated trajectory using the refrigeration cycle equilibrium model (Z.17,Z.19).

Fig. Z.8: A ScanDomestic refrigerator, model 150. Images are from the producer’s website.

by the second model, and in addition, shows peaks at the start of the on-cycle. Fig. D.1
from Paper D shows a high-frequency measurement of the power consumption, re-
vealing more characteristics. The high power peak is consistent for each cycle, and is
due to the start of the compressor motor. This peak is one of the main motivation for
introducing the Switching-Rate actuation.

This concludes the qualitative comparison of the TCL models.
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