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Abstract

Wind power is the fastest growing renewable energy source with the highest share
of power production in the Danish power system. Increasing wind power produc-
tion also causes new challenges for the power system.

One possibility to enable higher shares of wind power in the system is to build
virtual power plants (VPPs). In this work, VPPs refer to wind power plants
(WPPs) connected to an electrical battery energy storage system (BESS) which
is in close proximity to the WPP, and both plants are able to participate in the
Danish power market (ancillary service markets and day-ahead market). BESSs
demonstrated to be suitable storage technologies that have been integrated in
power systems worldwide in recent years. Such storage systems are underlying
a fast development track and have improved over the past decades considerably.
This makes an increase in the number of VPPs more likely in future.

Potential investors in VPPs face several questions before and after an investment
decision for a specific BESS is made. This work addresses the following questions:

1. Is a VPP a profitable investment and if so, which technology or combination
of different technologies of BESSs and which size should be purchased?

2. Once the BESS is purchased and grid connected: When should the VPP
submit bids to which power market and in what quantity?

3. Once the awards on the power market are announced and the latest wind
power production forecast is available: How should the VPP be operated in
order to face minimum penalty payments for imbalances due to, e.g. changes
in wind power production?

This thesis proposes a deterministic mixed-integer-linear-programming (MILP)
formulation to address the above stated optimization problems. One generic
(MILP) problem is formulated that can be used to address each of the above
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stated questions depending on the input parameters provided to the model. The
model focuses on the BESS including capacity fade which is a battery specific
property. It determines the performance, live-time, and – most important – the
annualized costs of the BESS. Modeling capacity fade opens up the possibility
to take into account BESS’s annualized costs based on a function of its state-of-
health (SoH).

The proposed MILP formulation is verified based on three case studies following
the problem formulation. There is one case study for each question described
above.
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Resumé

Vindkraft er den vedvarende energikilde, der producerer mest energi til det danske
elektricitetsmarked og er samtidig den hurtigst voksende energikilde. Der er dog
udfordringer forbundet med denne vækst.

En mulighed for at lade vindkraften udgøre en endnu større andel af elproduk-
tionen, er at opføre virtuelle kraftværker (virtual power plants, VPP). I denne
afhandling samarbejder VPP’s med vindkraftværker, altså WPP’s (Wind power
plants), som er forbundet med et elektrisk batteri-lagringssystem (BESS, battery
energy storage system), i umiddelbar nærhed af WPP. Både vindkraftværket og
batteriet kan sende strøm på elmarkedet.

Gennem de seneste år har BESS vist sig at være en velegnet lagringsteknologi, og
er derfor blevet integreret i elsystemer over hele verden. Batterilagringssystemet
gennemgår en hurtig udvikling og er forbedret gennem de seneste årtier, hvilket
sandsynliggør et øget antal VPP’s i fremtiden.

Før potentielle investorer i en VPP overhovedet overvejer at, og reelt kan, investere
i en BESS, oplever de dog adskillige udfordringer. Disse forskellige udfordringer
er opstillet som problemformulering for denne afhandling:

1. Er en VPP en profitabel investering? Og i så fald, hvilken størrelse, type
eller kombinationer af forskellige typer BESS skal der investeres i?

2. Hvilken mængde strøm og i hvilke tidsrum skal VPP’en sende strøm til
elmarkedet, når et BESS samtidig er forbundet til elnettet. Og til hvilket
elektricitetsmarked skal denne strøm sendes?

3. Når elprisen er kendt og den seneste forudsigelse af vindkraftproduktionen
er kendt, hvordan skal VPP’en så drives for at opnå minimale bøder for
ubalancer, såsom ændringer i vindkraftproduktionen, som opstår efter den
seneste justering?
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Denne afhandling foreslår en deterministisk mixed-integer-linear-programming
(MILP)-formel til at besvare disse spørgsmål. Der er opstillet en generisk MILP-
formel for hvert enkelt spørgsmål, afhængigt af hvilke inputparametre der an-
vendes. Modellen fokuserer på BESS og inkluderer et fald i batteriets kapacitet.
Modellen beregner batteriets ydeevne, levetid og – vigtigst af alt – de annualis-
erede omkostninger. Ved at inkludere faldet i ydeevne er det muligt at tage højde
for BESS’ets omkostninger som en funktion af forbruget.

Den foreslåede MILP-formel er verificeret på baggrund af tre case studies. Der er
et case study til hvert punkt i problemformuleringen.
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Abbreviations

Table 0.1.: Abbreviations

A Ampere

Ah Ampere hour(s)

BESS Battery energy storage system (including power
electronics and other devices in order to safely operate
batteries)

CAPEX Capital expenditures

DA Day-ahead power market, also called electricity spot
market

DoD Depth-of-discharge

Fig. Figure

ES Energy storage

LP Linear programming

MILP Mixed integer linear programming

MWh Megawatt hour(s)

NaS Sodium-sulfur battery

NiCd Nickel cadmium battery

OTC Over-the-counter
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OPEX Operation expenditures

PLA Piecewise linear approximation

PFR Primary frequency regulation

PV Photovoltaic

RP Regulating power

SoC State of charge

SoH State of health

Tab. Table

TSO Transmission system operator

V Volt

VPP Virtual power plant

VRB Vanadium redox flow battery

VRLA Valve regulated lead-acid battery

W Watt

Wh Watt hour(s)

WPP Wind power plant

Zebra Sodium nickel chloride battery

ZnBr Zinc bromine flow battery
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1. Introduction

The first chapter discusses the background of this PhD project and explains the
VPP concept. The research scope and project objectives of this PhD thesis are
explained.

1.1. Background and motivation

Many countries, in particular in the EU, have shown a strong growth of renewable
energies in the past years. Especially Denmark is an example, where wind power
production has reached about 33% of the total electricity demand in 2013 while
ten years earlier the share was just about 16% (see Fig. 1.1) [1]. Globally, wind
power generation accounted for just 2.6% out of the total electricity consumption
in 2013 (projected number) [2].

Renewable energy systems have an intermittent power production profile and a
forecast of such a production profile has a certain error. The higher the share of
renewable power generation in the grid, the higher the impact of any forecast error
for renewable generation. One solution to reduce this impact is to build virtual
power plants (VPPs). These are a combination of different generation plants
usually based on a mix of renewable energy systems and conventional power plants
or energy storage (ES), aggregated into a single-acting unit [3]. The combination
of conventional generation or ES with renewable energy systems allows the VPP
to increase its predictability. Increased predictability would enable even higher
shares of renewable energy sources in the power system. This can pave the way
for further growth of wind power and other renewable power generation sources
in the grid.

The VPP consisting of wind power plants (WPPs) connected to a battery energy
storage system (BESS) is chosen in this work because wind power has the highest

3



Chapter 1 Introduction

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

15

20

25

30

Year

Sh
ar

e 
of

 w
in

d
po

w
er

 p
ro

du
ct

io
n 

[%
]

 

 

Figure 1.1.: Wind power production out of total electricity demand in Denmark
(data from [1])

share of renewable energy generation worldwide (except for hydro-power). In
2011, about 48% of electricity was generated with wind power out of all renewable
electricity generation (excluding hydro-power) worldwide [4].

Besides the big share of WPP amongst the renewable power generation, BESS
are chosen to be part of VPPs in this work because BESSs underlie a vast tech-
nological development and undergo improvements in battery life, cost, safety, and
storage capabilities including the development of new battery technologies [5, 6].
The driver behind the development of better BESS, especially li-ion batteries, is
coming rather from the automotive and other sectors than from the energy sector
where research is done on improved BESSs for electric vehicles or other devices
using BESSs [6]. The energy sector might take profit of this development by
incorporation of such storage technologies into the power system.

The question is, if BESSs as part of VPPs would be profitable and what the
optimum components of such a system would be. And once an investment decision
has been made, the question of optimum operation of the VPP arises. This
demands for the development of a high-level optimization model for the VPP
because BESSs are still costly investments and once an investment is made, the
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1.2 Virtual power plant concept

entire VPP should be operated in an optimum manner to ensure highest possible
profits.

These questions are further elaborated in sec. 1.3 below but first the concept of
VPPs is discussed in more detail in the next section.

1.2. Virtual power plant concept

The concept of VPPs considered within this thesis is outlined in Fig. 1.2. The
focus lies on VPPs consisting of WPPs and BESS(s). The VPP depicted in Fig. 1.2
should indicate that the plant consists of two types of battery ES technologies (not
just two batteries) in order to stress that the VPP can consist of any number of
different BESS technologies. A combination of different BESS technologies is
called hybrid BESS in this work which can be more profitable than a VPP based
on a single BESS technology. Further, the BESSs and WPPs are grid connected
and power can be sold on the day-ahead (DA) market or on the ancillary service
markets. A VPP has many degrees of freedom on how to operate it over a certain
time period and the optimum operation might not be obvious. Therefore, a high
level control algorithm (indicated with optimization model in Fig. 1.2 ) has to be
developed that operates the entire VPP in an optimum manner. The solution of
the optimization model is information about the amount of power to bid into each
power market as well as set points send to the low-level controllers in each unit of
the VPP (indicated by the gray arrows in Fig. 1.2 pointing from the optimization
model to the BESSs and WPPs). On the other hand, the optimization model
receives plant information like state of charge (SoC) of the BESS or wind power
forecasts.

The low-level controller takes care of all dynamics in each unit while the high
level controller (optimization model) just considers the main plant dynamics that
are relevant for the chosen discretization step. The low level controllers are not
separately shown in Fig. 1.2 and it is assumed that they are part of the depicted
WPP and BESSs. Such low level controllers would be the battery management
system or the wind farm controller. They have to ensure safe plant operations
and could finally shut down the plant if an error is detected which the high-level
controller (optimization model) is not designed for. Moreover, it is assumed that
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the VPP forms its own balancing responsible party.
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Figure 1.2.: Virtual power plant (VPP) concept

1.3. Research scope

The scope of this thesis is to determine an:

“Intelligent energy management system for virtual power plants.”

The energy management system can be considered as the high-level optimization
model discussed in sec. 1.2 above. The following objectives for this PhD project
have been identified:

• Optimum scheduling of the VPP

• Optimum dispatch of the VPP

• Optimum sizing of the BESS

Optimum scheduling should find the optimum operation of the VPP based on
forecasts of market prices and wind power production. The optimum scheduling
algorithm would typically be run before the first deadline for submission of bids
to one of the power markets where the VPP participates in. The result of the
optimum scheduling algorithm is used to determine the size of power bids into
each power market.
The optimum dispatch algorithm is called after bids are awarded and market
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1.3 Research scope

prices are revealed as well as a new wind power forecast might be available in
order to find the optimum set points for the VPP in each discretization period.
The optimum dispatch problem can be considered as a rescheduling problem. As
shown in sec. 4.2 on page 48, the optimum rescheduling problem has been previ-
ously and successfully addressed in literature for one power market. In this work,
the focus is not on a new problem formulation for rescheduling but shows that
this concept can also be applied to various power markets in order to reschedule
VPPs.
The final objective, optimum sizing of the BESS, is used to support investment
decisions in order to find the optimum size and BESS technology (or combination
of BESS technologies) for a VPP in a specific location.

The goal of all three objectives is to maximize the profit of the VPP.

The following list describes important properties that should be incorporated in
all three objectives:

• The VPP is able to participate in various power markets under a specific
market regime.

• The model of the BESS includes aging of the batteries and other relevant
battery specific parameters.

• The costs of the BESS are calculated based on its usage which influences
the lifetime.

• Any number of different BESS technologies and size and any number of
WPPs are able to be addressed by the optimization problem formulation.
Especially hybrid BESSs based on a combination of different battery tech-
nologies should be able to be handled.

In summary, the research scope of this work is to determine a suitable optimization
technique and to develop an optimization problem formulation in order to create
an intelligent energy management system for VPPs.

Having discussed the concept of VPPs and the scope of this work, the next chapter
discusses BESSs and their applications in power systems. It covers a pre-selection
of BESSs and identifies the most important applications under the Danish market
rules. Assumptions and limitations of this work are presented in the end of the
next chapter in sec. 2.10.

7





2. Battery energy storage
technologies and applications

There are many kind of different electrical ES technologies and besides electrical
ES technologies, there are also thermal ESs which are not considered in this
work. Fig. 2.1 provides an overview of various important available electrical ES
technologies. The overview is not comprehensive as there exist many different
technologies which are of minor relevance. Electrical ES can be divided into
mechanical, electromagnetic, and electro-chemical ES. The focus of this work is
on batteries which are part of electro-chemical ES. Battery ES are chosen for two
reasons:

1. Battery ES technologies are portable and can be set up in close proximity
to WPPs.

2. Battery ES undergo a fast development and have improved in recent years
(see sec. 1.1).

Having set the focus on battery ESs, this chapter provides an overview of im-
portant battery ES technologies and how they can be applied in power systems.
Technical specifications of battery technologies are presented, as well as aging
mechanisms and applications for battery ES are discussed. Finally, Denmark is
picked as an example and applications are identified that are remunerated under
the Danish power market regulations. This chapter provides the bases in order
to develop an appropriate optimization algorithm in chapter 5.
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Chapter 2 Battery energy storage technologies and applications

Figure 2.1.: Overview electrical energy storage technologies (adjusted from [7])

2.1. Battery ES technologies

Different battery ES technologies have different properties concerning lifetime,
efficiency, relation between power rating and battery energy, energy density, costs,
safety, response time, etc.. This section and the following subsections describe
the functional principle of batteries and give insights into important battery ES
technologies.

All battery cells consist of two electrodes, the anode and the cathode which are
apart of each other, and the medium between the electrodes is called electrolyte
(see Fig. 2.2). The electrolyte has to be able to conduct ions but has to be an in-
sulator prohibiting the flow of electrons. Otherwise, there would be a short-circuit
in the battery cell. The difference in chemical potential lets then flow electrons
through the terminals of the cell. This is called discharging where electrons pass
through an electrical load originating from the negative electrode. Cells that can
only be discharged are called primary cells while cells that can also be charged are
called secondary cells. While charging a secondary battery, the chemical reaction
of discharging is reversed (see Fig. 2.2 right hand side). In this work, only sec-
ondary batteries are considered. In general, different battery technologies can be
distinguished by the material of the electrodes and the electrolyte. This paragraph
is based on [8].
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2.1 Battery ES technologies
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Figure 2.2.: Functional principle of battery ES (adjusted from [8])

The following list specifies important parameters that characterize the perfor-
mance or state of battery ES. All parameters defined within this section are listed
in the nomenclature at the end of this chapter on page 31 not to interfere with
parameters defined for the problem formulation in chapter 9.3 on page 145.

• Battery energy: Is the amount of energy stored in the battery in Wh. It is
determined by integrating the instantaneous value of the current (A) times
the instantaneous value of the voltage (V) in respect of time during charging
or discharging of the battery [8].

• Capacity: Amount of charge in ampere-hours “that can be withdrawn from
a fully-charged battery under specified conditions”. [8]

• C-rate: This is the rate at which the battery is charged or discharged relative
to the rated capacity and the unit is ampere [8]. The following example
helps to understand this concept. A battery with a rated capacity of 50Ah
is charged with 0.5Cr which is a charging current of 0.5 · 50 = 25A. The
battery is fully charged within 1/Cr hours which is in this example 2 hours.
The efficiency is not considered in the C-rate and it is only related to the
nominal capacity.

• Cycle-life: “The number of cycles that can be obtained from a battery before
it fails to meet selected performance criteria” [8].
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Chapter 2 Battery energy storage technologies and applications

• Depth-of-discharge (DoD): Is the ratio “of the ampere-hours discharged from
a battery at a given rate to the available capacity under the same specified
conditions” [8]. The DoD is the complement of the state-of-charge (SoC)
with DoD = 1− SoC.

• Efficiency: Usually refers to the round-trip efficiency η defined as the ratio
of energy delivered by the battery when completely discharged from fully
charged state and energy needed to completely charge the battery ES again
[9].

• Maximum DoD: Maximum value of DoD that the battery cannot exceed.
This influences the maximum usable capacity of the battery. [10]

• Power rating: The maximum power capability as specified by the manufac-
turer [8].

• Power to energy ratio: Batteries, except of flow batteries, have a fixed power
to energy ratio which depends on the technology and the specific battery
model considered [11]. It means that one cannot double the power rating of
a specific battery without increasing the battery energy by two times.

• Self-consumption of BESS: Is defined in this work as the energy consumed
by the BESS in order to operate the batteries safely and within specified
conditions. Self-consumption results from devices such as chiller units to
maintain the temperature of the BESS or the battery management system,
for instance.

• Self-discharge: Is the energy dissipation of the battery [9] under open-circuit
conditions due to internal chemical reactions or short-circuits. It results in
a reduction of the SoC over time but it does not reduce the maximum
storable amount of energy in the BESS. Self-discharge depends on battery
temperature, technology, SoC, or SoH, for instance [12].

• SoC: Is the remaining capacity of a battery ES in comparison to the available
capacity of a fully charged battery ES [13]. The SoC is the complement of
the DoD with SoC = 1−DoD.

• SoH: Is defined in [14] as “the ability of a cell to store energy, source and
sink high currents, and retain charge over extended periods, relative to its
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2.1 Battery ES technologies

initial or nominal capabilities”. It is expected that the more a battery is
cycled and thus ages, the lower is its capability to store energy.

After the discussion of the basic technical background of batteries, the following
sections provide an overview of important battery technologies.

2.1.1. LiIon

Principle: Redox reaction in electrochemical cell. The electrodes are made of
different compositions, e.g. lithiated metal oxide and layered graphitic carbone
while the electrolyte can be lithium salts dissolved in organic carbonates. There
are many sub-types of li-ion battery technologies with different materials in the
electrodes and electrolyte. Every sub-type would need to be treated as its own
battery technology due to varying parameters. [9]
Pros: High energy density, low weight, low self-discharge, high cycle-life, high
efficiency, many multi-megawatt utility scale installations [15]. Low maintenance
requirements [16].
Cons: Not as mature as lead-acid batteries, high cost [9].

2.1.2. LeadAcid

Principle: Redox reaction in electrochemical cell [9]. Electrodes are made of
lead metal and lead oxide, the electrolyte is a sulphuric acid [15].
Pros: Most mature battery technology, low cost, high number of installed capac-
ity, availability in different sizes [15].
Cons: Low specific power and energy density, short cycle life, toxicity, high main-
tenance requirements, low efficiency, self-discharge, temperature sensitivity [15].

Moreover, lead-acid batteries have a low maximum DoD which means that not
all the energy stored in the battery can be used (at certain currents). The lower
the discharge current, the more energy can be withdrawn but for higher discharge
currents (e.g. > 0.5Cr) the maximum DoD is low (or it can be said that the
maximum usable energy in the battery is low) compared to other battery tech-
nologies (see [16] fig 2.3, for example). This relation is called Peukert effect and is
dominant for lead-acid batteries. It also exists for other battery technologies but
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Chapter 2 Battery energy storage technologies and applications

shows a smaller effect (see [17] for li-ion batteries, for instance). For this work it
is assumed that the minimum SoC of a lead-acid battery is 40%.

Another negative characteristic of lead-acid batteries is the charge- and discharge
time which may vary widely. Standard lead-acid batteries are charged with a
much smaller current over a longer period than they can be discharged. An
example for a standard lead-acid battery data whose suggested usage is in solar-
and wind energy applications (amongst others) is found in the data sheet of
[18]. The recommended discharging current is about 40 times higher than the
recommended charging current which results in a long time to charge the battery.
The maximum discharge current for the capacity measured at 1h and 1.75 volt per
cell is stated in the range of 10 to 30Cr. Opposed to the exemplarily referenced
data sheet, literature shows successful tests of fast charging lead-acid batteries but
which may - on the other hand - shorten the lifetime of lead-acid batteries. [19]
charged lead-acid batteries with up to 4.6Cr and [20] reported charging currents
of up to 1Cr. At this point an assumption has to be made regarding the ratio of
charging and discharging rate. It is assumed that a maximum charge rate is 30%
of the maximum discharge rate.

2.1.3. Sodium-sulfur battery (NaS)

Principle: Redox reaction in electrochemical cell under high temperature. At
the positive electrode is liquid (molten) sulphur and liquid (molten) sodium is at
the negative electrode and the two active materials are separated by a solid beta
alumina ceramic electrolyte. The battery has to be operated at around 300-350
°C. [9]
Pros: Medium to high efficiency, pulse power capability, medium cycle life, high
energy density.
Cons: Few manufacturers [21]. High cost, heat source required to keep operating
temperature if battery is not enough cycled causing a lower efficiency, high self-
discharge [9].
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2.1 Battery ES technologies

2.1.4. Vanadium redox flow battery (VRB)

Principle: VRBs belong to the type of flow batteries and the positive and nega-
tive electrolytes are separated from each other and stored in two tanks. The two
contain the vanadium ions and flow from the tanks to the electrochemical cell. If
the battery is discharged, the two electrolytes are the same and thus, if they are
mixed, they will not contaminate each other but simply discharge the battery.
The cell contains an exchange membrane which keeps the two electrolytes apart
when pumped through the cell. [22]
Pros: Power rating and battery energy are not coupled. The power rating is
determined by the cell while the battery energy is defined by the amount of
electrolyte stored in the tanks and the concentration of vanadium ions in the
electrolyte. VRBs have long lifetimes mainly limited by membrane and are easy
to handle compared to other flow batteries. In addition, over discharge will not
damage the battery and the costs for energy applications are favorable. [15]
Additionally, this type of battery has a low self-discharge [22].
Cons: Large space requirements, low energy density, low efficiency [15, 22].

2.1.5. Zinc bromine battery (ZnBr)

Principle: The ZnBr is also a flow battery. Two different electrolytes flow in
separated tanks around carbon-plastic composite electrodes. The electrolytes are
separated by a non-selective micro-porous membrane. Only the concentration
of the dissolved elemental bromine makes the two electrolytes different. The
life-limiting factor is the corrosion that takes place when the system operates.
Therefore, the lifetime of the system depends rather on the hours operated than
on the cycle life. [15]
Pros: Battery energy and power rating can be selected apart from each other
and are not coupled, high energy density, low cost in terms of battery energy. [15]
Cons: Low efficiency, only two major manufacturers, considered less mature than
VRBs [9]. Low lifetime of ca- 6000 hours in operation, and the electrolyte is an
environmental hazard [15].
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2.1.6. Nickel cadmium battery (NiCd)

Principle: Redox reaction in electrochemical cell. The electrodes contain nickel
hydroxide and cadmium hydroxide, respectively and the cell has an alkaline elec-
trolyte. [9].
Pros: Mature technology, low maintenance requirements, robust reliability, high
energy density. [9].
Cons: Prohibited in EU (with exceptions) [23]. Toxicity, low cycle life, high cost
[9].

2.1.7. Sodium nickel chloride battery (Zebra)

Principle: Similar to NAS batteries, Zebra batteries are molten sodium based
batteries. The negative electrode is based on molten sodium and the positive
electrode contains nickel chloride. The operating temperature is around 270 °C.
[15]
Pros: High efficiency, medium to high cycle life, limited over- or under charge
can be tolerated and better safety characteristics compared to NaS batteries. [15]
Cons: High self-discharge, low energy- and power density compared to NaS bat-
teries, one manufacturer.[9]

2.2. Pre-selection of battery technologies

In order to limit the scope of the simulations in chapter 6 to chapter 8, the two
most promising BESS technologies are selected in this sub-chapter. This selection
does not mean that the developed MILP formulation in chapter 5 is limited to
only these two technologies. The MILP formulation itself remains to be generic
for various kinds of BESS technologies as long as the necessary input data are
available. However, to be able to run the optimization reasonable fast on a stan-
dard laptop computer, the number of battery technologies need to be limited. If
a more powerful computer is available, the optimization can be run for a larger
set of battery technologies. For this work, it is sufficient to demonstrate the
optimization problem formulation on two different battery technologies.
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2.2 Pre-selection of battery technologies

Having described the most important battery energy storage technologies above,
Tab. 2.1 provides a summary of their properties which serves as a foundation to
select the two most important battery ES technologies for the use in VPPs. It has
to be annotated that data in Tab. 2.1 serves as an indication because they can only
provide a certain range of properties that exist on the market at a certain point
of time. Often, there are many subcategories of one ES available and the exact
specification might differ between manufacturers and products even though they
belong to the same technology category. This means that users of the proposed
algorithm need to find the exact data of their battery model before running the
algorithm.
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Tech-
nology

Energy
den-
sity

Power
den-
sity

Round-
trip
effi-

ciency

Cycle
life

Self-
discharge

Power-
to
en-
ergy
ratio

Cost1

Unit W h/kg W/kg MW h
MW h

100 cycles
MW h
MW h
day

100 MW
MW h

€/kW h

(€/kW )

Li-
Ion

75-200
[9]

150-
315
[9]

85-95
[15]

2,000-
10,000
[15, 9]

0.1-0.3 [9] 4 [6] 3214-
4593
(803-
1148)
[6]

Lead-
acid

30-50
[9]

75-300
[9]

75-85
[15]

500-
1,000
[9]

0.1-0.3 [9] 0.25
[6]

315-352
(1259-
1407)
[6]

ZnBr 30-50
[9]

-[9] 70-80
[15]

2000+
[9]

Small [9] - 2 214-259
(1074-
1296)
[6]

NaS 150-
240
[9]

150-
230
[9]

70-90
[15]

2500
[9]

ca. 20 [9] 0.15
[6]

385-407
(2296-
3630)
[6]

VRB 10-30
[9]

- [9] 60-70
[15, 22]

12,000
[9]

Small [9] - 2 459-
548)
(2296-
2741)
[6]

NiCd 50-75
[9]

150-
300
[9]

60-70
[15]

2,000-
2,500
[9]

0.2-0.6 [9] 4 [24] 592-
1111
(148-
278)
[9]

Zebra 100-
120
[9]

150-
200
[9]

85-90
[15]

2500+
[9]

ca. 15 [9] 1.4 -
1.7
[25]

74-148
(48-95)

[9]
Table 2.1.: Comparison of different battery ES technologies. 1: 1EUR = 1.35
USD, 2: Variable power to energy ratio18



2.3 Battery aging

One important battery ES that is found more commonly also in power system
application are li-ion batteries. They promise a high round-trip efficiency com-
bined with a high cycle life (see Tab. 2.1). However, they tend to be an expensive
ES technology. Complementary to li-ion batteries are lead-acid batteries with a
low cycle life and a low to medium round-trip efficiency and relatively low costs.
Lead-acid batteries are a mature technology existing in industrial applications for
longer time than li-ion batteries. Their complementary properties make these two
battery ES technologies interesting for further considerations and they are used
for the case studies in chapter 6 to chapter 8.

Other battery technologies listed in Tab. 2.1 would also be interesting for con-
sideration, however, the high temperature batteries NaS and Zebra are not as
commercialized as li-ion and lead-acid batteries and only a very limited number
of manufacturers exist. Concerning NiCd batteries, the EU has banned widely
the use of this technology due to toxicity making it unfavorable to be part of the
comparison. Finally, flow batteries (VRB and ZnBr) are excluded because of their
low efficiencies and limited number of manufacturers.

Having made the pre-selection of battery ES technologies, the next section dis-
cusses aging of batteries as being an important driver of costs.

2.3. Battery aging

Aging is an important property when discussing battery ES. Generally, the more
a battery is used the lower becomes its available capacity and its power rating
until it finally has to be replaced. This means that parameters influencing aging
have a direct impact on the battery lifetime and hence on the costs of the battery
ES. This sections discusses aging of batteries in order to provide the bases for the
development of a proper battery ES model in chapter 5.

Aging of a battery ES means its “permanent loss of capacity [and power [26]]
as a result of battery use and/or the passage of time” [8]. This permanent loss
of capacity and power is called hereafter capacity- and power fade. Due to the
fact that capacity fade is the factor determining the lifetime of the battery (see
below), the focus of this work is on capacity fade and power fade is not considered.
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Chapter 2 Battery energy storage technologies and applications

Capacity fade can be divided into calendric capacity fade and exercised capacity
fade [27].

Calendric capacity fade is independent of the energy throughput through the
BESS and is an on-going process over time and depends on parameters like SoC
or temperature, for instance. On the contrary, exercised capacity fade is due
to energy throughput through the battery (exercising the battery) and depends
mainly on cycle depth or Ah/energy throughput that depends on the model used
[28].

A measure of capacity fade is the state-of-health (SoH) defined as the ratio of
the capacity available at a certain point of time versus the originally available
capacity of the battery ES [29]. The SoH at which the battery ES needs to be
replaced depends on the application of the battery ES and what is perceived as
acceptable. A commonly found value for the SoH limit in literature is 80% (see
e.g. [30, 31, 27, 28]) at which replacement of the battery is required and when the
battery has reached its end of life. These assumptions are chosen for this work.

However, it can also be assumed that the BESS can still be used beyond the 80%
SoH limit and that the BESS still has a certain value. Thus, the replacement
decision needs not necessarily take place at 80% SoH, or any other predefined
SoH. For future work, it is recommended to extend the proposed algorithm and
to incorporate methods of industrial maintenance and replacement as they are
discussed in [32] page 31ff, for instance.

2.3.1. Calendric capacity fade

Batteries that are stored over a certain period of time irreversible loose parts of
their maximum capacity caused by side reactions due to instability of the battery
materials [7, 33]. Factors that accelerate calendric capacity fade are increased
temperature and high SoC (high cell voltage) [34].

Data on calendric capacity fade have to be obtained experimentally through lab
tests or data from manufacturers or other available sources have to be used but
they might be difficult to find for a specific battery technology. An example of
calendric capacity fade data for li-ion batteries can be found in [33]. If data
are not available and cannot be obtained by own lab tests for the desired battery
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2.3 Battery aging

technology, it might become necessary to assume a certain calendric capacity fade
for a certain period.

2.3.2. Exercised capacity fade

Considering exercised capacity fade, the general relation is observed: The higher
the energy throughput, the higher the capacity fade [27]. A standard parameter
that indicates lifetime of a battery ES regarding exercised capacity fade is to
state the number of full cycles that a battery ES can perform before it has to be
replaced [27]. A full cycle is from 0% SoC to 100% SoC and back to 0% SoC, for
instance.

There are different methods how to account for exercised capacity fade. One
method is to simply count the energy or Ah throughput through the battery
(amount of energy or Ah charged and discharged into/from the battery) [28].
These are called throughput models [28]. Another method would be to count the
number of cycles the battery ES performs. This method is called cycle counting
[28]. Cycle counting does not consider Ah or energy throughput but is based on
the SoC profile which means the amplitude of the charge cycle affects the amount
of lifetime reduction [28]. Details of a cycle counting method for lead-acid batteries
and li-ion batteries can be found in [28] and [7], respectively.

Generally, it is possible to combine these two methods and also to link them to
other factors [28].

In this work, it is assumed that an energy throughput model is sufficient to de-
scribe exercised capacity fade. Due to the fact that manufacturers usually specify
the number of full-cycles rather than a maximum Ah- or energy throughput, the
number of full cycles have to be translated into maximum Ah- or energy through-
put. Formula 2.1 describes this conversion [28].

Throughput =
∑

i(CNom ·DoDi)N i

i
(2.1)

CNom describes the nominal battery capacity and DoDi is the specific depth-of-
discharge for the ith measurement out of i measurements. Ni is the number of
cycles until failure of the battery at point i. The lower the DoD the more cycles
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can a battery withstand [28]. The Throughput can be calculated as an average
over all i or a specific range of points can be picked that represents the most
dominant DoD range [28].

When calculating Throughput, [28] does not distinguish between Ah orWh to use
for CNom in order to compute the throughput of the battery, even though both
units are not the same as explained on page 11. In this work, it is also assumed
that the life of the battery can be determined based on energy throughput in Wh

and that this provides sufficient accuracy.

The conversion of cycle life into energy throughput is convenient for further model
development because the cycle-life can be found throughout various battery ES
technologies which allows to calculate energy throughput and to develop an opti-
mization algorithm for different battery ES technologies that is based on energy
throughput.

2.4. Self-discharge

Self-discharge is the reversible loss of capacity of a battery occurring over time
[27]. It is assumed that self-discharge only depends on the SoC and the type of ES
technology which is according to [16], where self-discharge is expressed for some
battery technologies as a percentage of the SoC that is internally discharged over
a certain time period. Self-discharge is due to internal chemical reactions [16].
It is assumed that self-discharge can be modeled for all batter technologies as
described in [16]. Further, it is assumed that the temperature of the BESS is kept
constant and thus temperature as an effect on self-discharge can be neglected as
well as the influence of the SoH.

2.5. Battery efficiency

As discussed above, when stating the efficiency for a battery it usually refers to
the round trip efficiency. In practice, the efficiency depends on various param-
eters and important ones are temperature, SoC, aging, and C-rate or charging-
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and discharging currents, respectively. It is worth to have a closer look at pa-
rameters that influence the efficiency because efficiency is one of the cost drivers
of the battery technology when using the battery. The higher the efficiency, the
lower the wasted energy and the better is the battery ES in economic terms. It
has to be noted that the efficiency depends on the selected battery technology
and on the specific battery model chosen. Drawing conclusions from one battery
model to others of the same kind of battery technology might be difficult. How-
ever, the problem for a complete discussion of this issue is data availability. For
this work, data from the authors of [35] were provided based on laboratory mea-
surements. The charging- and discharging efficiencies versus DoD are depicted
in Fig. 2.3 for the Kokam “Superior Lithium Polymer Battery (SLPB)” (model
no. SLPB120216216). The parametric identification of this battery is described
in [35] under II B. The efficiency is determined based on the internal resistance
Ri,soc of the battery that depends on the SoC and is calculated based on

Ri,soc = Vocv,soc − Vpeak,soc

I
(2.2)

where Vocv,soc is the open circuit voltage measured 2h after current pulse has been
applied and Vpeak,soc is the highest (lowest) voltage reached during the pulse cur-
rent for charging (discharging). I is the charge- or discharge pulse current which
is kept constant for each step. The power losses while charging- or discharging
the battery can be calculated according to:

Ploss,soc = I2Ri,soc. (2.3)

The efficiency ηsoc can then be determined by

ηsoc = 1− Ploss,soc

Ptotal,soc
(2.4)

where Ptotal,soc is the total charging- or discharging power at the battery termi-
nals.

The above equations in this section are based on or provided by the authors of
[35].
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Data for different charging- or discharging currents could not be provided by the
authors of [35]. Fig. 2.3 reveals that the efficiencies for charging- and discharging
differ slightly but considering only charging or discharging, the efficiency can be
assumed to be constant for 10%<DoD<90%. Within this range, the average
charging efficiency is 95.5% and the average discharging efficiency is 94.5%. This
results in a round-trip efficiency of 90.25%. This lies well in the range of 85 to
95% stated in Tab. 2.1. All measured efficiencies do not include losses of power
electronics like the inverter or the transformer. It needs also to be stressed that
the measured data are only valid for the specifically tested batteries under the
specific test conditions. Due to a lack of other data, the results based on [35] are
assumed to be representative for this work.
That means that the efficiency is constant for 10% which is also considered as the
operating range (see also sec. 2.10) due to oversizing of the BESS. Due to missing
data for other parameters, it is further assumed that the efficiency of the battery
does neither depend on the charging- nor on the discharging current or the aging of
the battery. It is also assumed that the test temperature is the same in practice as
well as that this is applicable for other battery technologies. In practice, a major
influence on the battery efficiency could be expected based on the charging- or
discharging current because Ploss,soc depends on its square values. This means
that a better assumption would be to say that Ri,soc is constant but due to the
lack of additional data, it is assumed that the charging- and discharging efficiency
is constant.

2.6. Battery energy storage systems (BESSs)

Single battery cells have to be combined in order to deliver sufficient power and
energy for a desired application. Therefore, batteries are combined in modules
which are then stacked together to a bigger unit which is usually housed in con-
tainers. Combined with a battery management system that controls the entire
unit as well as an inverter and transformer, a BESS is built. Such a BESS is
able to provide active power and may also provide reactive power for voltage reg-
ulation. Set points can be sent to the battery management system which tries
to achieve the desired output. The battery management system also has to take
care of each individual cell that operational parameters (like temperature) are not
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Figure 2.3.: Efficiency for Kokam SLPB battery depending on DoD (based on
data of [35])

exceeded in order to guarantee a safe operation without unnecessary wear out of
the system. (Compare [36])

A disadvantage of a BESS is that it has internal power consumption for its an-
cillary systems needed to operate the BESS and which is referred to as self-
consumption in this work. It is caused, for example, by the battery management
system, fans, chiller systems, heating system, etc. Manufacturers of BESSs tend
not to specify this parameter. One reason might be that self-consumption de-
pends on the geographic location of the BESS concerning the required amount
for cooling the BESS, for instance. Self-consumption is not caused by inefficiency
of the battery ES and is independent of the operating pattern of the battery ES.
It is assumed in this work that the self-consumption of the lead-acid and li-ion
battery is 0.0125MW per installed MW discharger rating.

2.7. Applications for battery energy storages

This section discusses important applications that can be provided by the BESS
which is based in close proximity to the WPPs. Some applications can only be
provided by the combination of BESSs with WPPs (called VPPs here) while other
applications can be provided by a BESS alone.
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Ramp rate reduction means to reduce the fluctuations of the WPP output
power. Technically, the output power gradient dP

dt is smoothed with this applica-
tion and the smaller the fluctuations, the better it is for the power system stability
[7]. If a certain ramp rate may not be exceeded with a WPP, it might need to
be down-ramped in certain periods and the WPP generates less energy than it
technically could. BESSs can be used in such situations to store the excess energy
and this energy can later be released when ramp rates allow it.

Energy arbitrage is an application where energy is bought and stored in the
BESS when prices are low and the energy is sold when prices are higher [37].
Energy arbitrage makes thus use of different power prices in different time periods.
This application is also called time shift because energy is stored in times when
demand is low (normally causing low prices) and the discharge period is shifted
to a period of high demand (which usually means higher prices) [37].

Frequency regulation is the ability of a WPP or BESS to provide short dura-
tions of power in order to help reducing system imbalances and thus stabilizing
the system frequency [37]. The technical requirements for frequency regulation
are usually published by the transmission system operator (TSO) or regulator.
Frequency regulation can be further divided into primary-, secondary-, and ter-
tiary frequency regulation. Primary frequency regulation has to take immediate
response in order to restore the system frequency in case of imbalances until sec-
ondary regulation takes over while tertiary frequency regulation has the slowest
response time and is usually activated for imbalances that last longer.[38]

Forecast accuracy improvement Selling wind power on an energy market re-
quires to have a forecast of the power production of the next day(s). The actual
output of the WPPs normally deviates from its forecast due to forecast errors.
In case of a mismatch between sold and delivered energy, WPP operators need
to pay a penalty for this deviation. BESSs can be used to reduce imbalances by
charging or discharging the BESS and thus penalty payments can be reduced.
[37]
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Transmission curtailment WPPs might be installed at remote sites where not
sufficient transmission capacities are available to transport all generated power
and the WPPs would need to be down-ramped in order to not exceed transmission
capacities. BESSs can be used in that case to store excess power production when
the transmission capacities would otherwise be exceeded. [37]

Transmission line deferral Similar to the above application, BESSs can be used
to defer investments in new transmission capacities until a later point of time [15].
This can mean a financial saving and if the costs for the installation of a BESSs
are less than the saving, transmission line deferral can be a profitable application.

2.8. Relevant applications in Denmark (DK1)

The Danish power system is divided into two parts, DK1 (Jytland and Fyn) and
DK2 (Zealand). A brief overview of remunerated applications and the related
market regulations for DK1 is presented in this section. The regulatory framework
of Denmark is exemplarily chosen because Denmark is a country with a high share
of wind power production [39]. The most promising applications are selected and
serve as a guideline in developing an appropriate MILP problem formulation in
chapter 5.

Energy arbitrage on DA market The Danish DA market is called Elspot and is
traded on Nordpool. BESSs and WPPs can both participate in this market and
the BESSs can be used to store energy when prices are low and energy can be
discharge when prices are higher. In this market, bids have to be submitted until
12am before the day of delivery and the last accepted bid sets the price for all
other bids. The lowest possible price is -200€/MWh and the highest possible price
is 2000€/MWh. There is no minimum amount stated for a bid. The reference for
this paragraph is [40].

Energy arbitrage on intraday market Besides the Elspot market, there also
exists the Elbas market for intraday trading up to one hour before the delivery
hour [40]. Energy arbitrage is also possible in this market.
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Providing regulating power (RP) Also in the RP market, both - WPPs and
BESSs - can participate. The application is to provide power to balance the
system which is in the broader sense also to regulate the grid frequency. The
demand of RP is defined by the total grid imbalances within one hour. Bids
can be send out up to 45 minutes before the upcoming hour of operation. If a
generation unit fails to provide RP, there is no penalty meaning that the operator
has to pay a penalty equal to the income for the awarded bid in RP and the
final balance is zero Euros. Further, it is possible to combine several generation
units in order to submit aggregated bids. However, if WPPs want to participate, a
separate bid has to be delivered for these plants. Additionally, a bonus that might
be paid to WPPs is not affected if the WPP provides RP up. The bonus is paid
according to the reading of the WPP’s meter. Thus, it is only affected if providing
RP down when the WPP is down-ramped and less electricity is produced. This
lowers the bonus paid to the WPP operator.
The minimum price of RP up is the DA market price and the maximum price of
RP down is also the DA market price. The maximum price for upward regulation
is DKK 37,500/MWh. Moreover, the last activated bid sets the price for all other
bids. Prices for RP down can be negative. Further details on RP can be found in
[41].

Providing primary frequency regulation (PFR) The PFR market is aimed to
provide short term frequency regulation of maximum up to 15 consecutive min-
utes. And payments to providers of PFR are only based on power provided for
PFR and no payment is made for the actual energy delivered. The application is
obviously frequency regulation. In this market, bids must be submitted until 3pm
the day of delivery and the auction is categorized in blocks of four hours each.
Meaning, there is the same price for each block but upwards and downwards reg-
ulation is priced differently and the last accepted bid sets the price for all other
bids. Moreover, it is possible to combine units to provide PFR; however, WPPs
cannot provide PFR alone but need to be backed up by another unit eligible to
participate in the PFR market. Generally, BESS are eligible to provide PFR if
they can at least provide the bid power for up to 15min. References and further
details for PFR are found in [42].
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Providing secondary reserve Secondary reserve should be able to be activated
within 15 minutes in order to take over from PFR. The TSO Energinet.dk buys
secondary reserve on a monthly bases which makes it unattractive for WPPs due
to their intermittent power output which is unrealistic to forecast over such a
long period. It is also unattractive for BESSs because they cannot guarantee to
maintain regulation continuously which is required by regulations. Due to these
limitations, the secondary reserve market is not further considered. For reference
of this paragraph, see [42].

Forecast accuracy improvement This application is not directly addressed by
market regulations. Here, revenues are generated by avoided costs for imbalances.
Details on the calculation of costs for imbalances are described in [41]. Forecast
improvement is an application that can only be provided by VPPs and not by the
BESS alone which makes it stand out from the other applications and is therefore
chosen to be addressed in the problem formulation in chapter 5 under dispatch
function.

Ramp rate limitation Danish regulations impose certain limits on the wind
power ramp rate that may not be exceeded [43]. It is assumed that this means in
practice only minor losses for the WPP operator and therefore ramp rate limita-
tion is not selected as an application for the MILP problem formulation.

2.9. Selected applications

As already discussed in the previous section, forecast accuracy improvement is an
important application and is included in the optimization problem formulation.

The remaining applications out of the previously discussed applications which can
be served with a BESS on the DK1 market are energy arbitrage for the DA- and
intraday market as well as the BESS can participate in the PFR- and RP market.
Due to the fact that the Elbas market is smaller then the Elspot market, the focus
of energy arbitrage is on the DA market and the Elbas market is neglected [44].
Hence, the focus of this work is on the following applications:
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• Energy arbitrage on the DA market (WPP and BESS)

• PFR (BESS only)

• RP (WPP and BESS)

• Forecast accuracy improvement (WPP and BESS combined only).

Chapter 5 explains how these four selected applications are addressed in the op-
timization problem formulation.

2.10. Limitations and assumptions

Having discussed the scope of this work in chapter 1, followed by the description of
battery ES technologies and their applications in this chapter, certain assumptions
have to be made in order to refine the scope of this work. The following is a list
of assumptions and limitations of this work:

• The VPP is connected to a wind farm in close proximity and builds its own
balancing responsible party.

• Only battery ESs are considered with a fixed power to energy ratio, no other
electrical energy storage systems are part of this study.

• The model of the battery ES system is specifically developed to reflect aging
of the BESS. Aging of BESSs are complex processes and most likely non-
linear. Certain assumptions regarding linearization are to be made in order
to accommodate such effects.

• The WPP is operated based on a bonus remuneration scheme.

• Bilateral contracts like over-the-counter (OTC) trading are not considered,
only the power market prices on the stock exchange are considered.

• The VPP is assumed to be a price-taker.

• There exists a dual pricing system for the PFR- and RP market meaning
that prices for upward- and downward regulation can be different.

• The BESS is oversized which allows to assume that maximum charging- and
discharging power does not depend on the SoC and can be constant and that
the usable 0 to 100% SoC does not reflect the physical possible SoC range.
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• The battery model regarding aging accounts for capacity fade, however,
power fade is not considered because the factor determining lifetime of the
battery is related to capacity fade.

2.11. Nomenclature of chapter 2

The nomenclature related to this chapter is shown in Tab. 2.2. A separate nomen-
clature for this chapter is used because the introduced variables do not relate to
the other chapters.
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Parameter Unit Description

CNom Ah Nominal capacity

Cr A C-rate

DoDi Ah/Ah or Wh/Wh Depth-of-discharge for ith point
where I is the set of i = 1, . . . , i

points of measurements

I Amperes Charging or discharging current
pulse

Ni cycles Maximum number of cycles for
DoD i until battery needs

replacement

Ploss,soc W Power loss while charging or
discharging depending on SoC

step

Ptotal,soc W Total power for charging or
discharging depending on SoC

step

Ri,soc Ohm Internal resistance battery
depending on SoC step

T ◦C Degree centigrade

Vocv,soc V olt Open circuit voltage for specific
SoC step

Vpeak,soc V olt Highest (lowest) voltage reached
during the pulse current for

charging (discharging)

ηsoc W/W Charging or discharging
efficiency for specific SoC step

Table 2.2.: Nomenclature of chapter 2
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3. Background on optimization
techniques

3.1. Selection of optimization technique

This section provides an overview of different optimization techniques and a suit-
able technique for the problem formulation in this work is chosen. The selected
technique is described in more detail in order to understand the problem formu-
lation in chapter 5.

First of all, it has to be noted that optimization problems are present everywhere
in our life and there is a wide range of how such problems can be tackled. Over
the last decades, numerous techniques and tools have been developed to solve op-
timization problems. Optimization techniques can be divided into deterministic
and heuristic approaches [45]. Deterministic optimization techniques apply ana-
lytical properties in order to converge to the global optimum. Important examples
of deterministic approaches are:

• Linear Programming (LP )

• Mixed Integer Linear Programming (MILP)

• Stochastic programming

• Quadratic programming

• Convex optimization,

• Etc.

The other class of optimization techniques is based on heuristic approaches where
random inputs are used in the search process to find the global optimum. Exam-
ples of such techniques are:
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• Genetic algorithm

• Simulated annealing

• Evolutionary algorithms

• Swarm algorithms

• Etc.

The advantage of heuristic algorithms is that they can handle non-linear and non-
convex objective functions and constraints easily. However, due to the random
nature of the search methods, optimality cannot be guaranteed and conclusions
on the quality of the solution cannot be made, as well as they might become
inefficient for large problems [45]. Such large problems can easily arise when the
optimization includes discretized time periods which is the case when the optimum
operation of the VPP should be found over a certain time period.

Amongst all different optimization techniques, MILP has proven to be successful
for two reasons: There are several very effective solvers that can solve large prob-
lems and a wide range of problems can be addressed via MILP and LP [46]. Due
to the advantages of MILP, this is the optimization technique of choice to develop
an intelligent energy management system for VPPs in this work. One efficient
solver is CPLEX [47] which is part of the iLog Optimisation Studio that is used
to solve the formulated problem.

Further, it has to be stated that this thesis is focusing on the MILP problem for-
mulation and it is not focusing on how to solve the problem by certain algorithms
or on how to increase their performance e.g. by tuning. This would exceed the
scope of this work but is recommended for future work.

The next sections of this chapter will provide the reader with the basic under-
standing of the MILP technique and related techniques part of MILP.

3.2. Mixed integer linear programming

This brief introduction into MILP is by no means meant to be complete. It should
give the reader a basic understanding of the general form of the MILP problem
formulation in order to understand the problem formulation in chapter 5.
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For a more detailed discussion of this topic, the reader is referred to [48, 49], for
instance.

MILP problems are linear optimization problems where some of the decision vari-
ables can only have integer values and other decision variables are continuous.
Thus, it is a mixed problem. The general formulation of a MILP is defined by
equation 3.1 (compare [50]):

Maximize z = cx+ hy

s.t.

Ax+Gy ≤ b

x ∈ Zn
+

y ∈ Rp
+

(3.1)

The integer variables are x = (x1, . . . , xn) with Zn
+ as the set of non-negative

integer n-dimensional vectors. The continuous variables are y = (y1, . . . , yp) with
Rp

+ as the set of non-negative real p-dimensional vectors. An optimization problem
is defined by specifying the following data with: c as a n-vector, A as a m × n
matrix, G as a m×p matrix and b as a m-vector. The problem formulation in 3.1
only contains inequality constraints but can be converted to equality constraints
by adding slack variables. This is also called the conversion of the problem from
canonical form to standard form (see [51] for more details). The nomenclature
of this chapter is chosen to explain the concept of MILP and does not relate to
other chapters in this work. Therefore, variables and parameters are not listed in
the Nomenclature on page 145 of this thesis but can be found at the end of this
chapter on page 40.

A problem where x = 0 is called a LP formulation where all variables are contin-
uous.

The advantage of MILP is that it enables to model logical conditions by restricting
integer variables to be binary decision variables. This enables e.g. modeling of
states of a power plant like on or off, or sequencing where one operation must
be finished before another starts. A thorough discussion on the use of discrete
variables can be found in [49], chapter 9.
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When formulating a MILP problem, it has to be kept in mind that integer vari-
ables cause a MILP problem to be more difficult to solve than a problem for-
mulation with purely continuous variables (LP problem) [52]. Therefore, when
formulating a problem, as few integer variables as possible should be used.

3.2.1. Network flow programming

Network flow programming is a technique which is usually based on an LP formu-
lation that represents a network structure. A network is built of arcs and nodes
where the arcs connect the nodes in a logical manner. The circles in Fig. 3.1 are
nodes and the arrows indicate arcs that connect the nodes. There are source-,
sink-, and transit nodes in a network. Source- and sink nodes are nodes where
the flow is entering or leaving the network. In Fig. 3.1 the source node would be
“Node 1” and the sink node would be “Node 4”. Transit nodes are “Node 2” and
“Node 3”. Nodes could represent for example cities, stop lights, junctions in power
systems, etc. In this sense, arcs would correlate to roads for cities and stop lights,
and transmission lines would correlate to the junctions in power systems. Flow
would be vehicles and electrical energy. This paragraph is based on [53] which the
author recommends for a more depth discussion on network flow programming.

Figure 3.1.: Network flow example
(adapted from [53])

If a network structure of a problem can
be identified, network flow program-
ming helps to formulate the optimiza-
tion problem. A network is defined by
a set of nodes V and a set of arcs W .
The direct connections in the network
are expressed by arcs from node k to
node l. The general formulation of a
network flow problem (minimum cost)
is defined by equation 3.2 where ykl is
the flow on arc(k,l) and each arc(k,l)

has a maximum flow capacity ukl and associated unit cost kkl (compare [50]).
The arc gain is denoted by gkl. It is a factor to obtain a different flow at the
end of the arc than at the beginning. Gains that are < 1 model losses in the
network. If all gains are equal 1, the network is said to be a pure network [48].
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Whether node k is a source node, sink node or a transit node depends if bk is
positive, negative or zero, respectively. In order that a pure network flow problem
has a feasible solution, the sum of bk has to equal zero [48]. Equation 3.2 is the
formulation of the general minimum linear cost network flow problem [50, 48]:

Minimize z =
∑

(k,l)∈W

kklykl

s.t.

ykl ≤ ukl for (k, l) ∈W∑
l∈V

ylk −
∑
l∈V

gklykl = bk for k ∈ V

y ∈ R|W |+

(3.2)

The equality constraint in equation 3.2 is known as the flow conservation con-
straint meaning that all flows into a node have to equal the outflows of this node
except for sink- and source nodes.

There are many sub-problems that belong to the class of network flow problems
like the transportation, transshipment, maximum flow, shortest route problem,
etc. and the objective function does not always need to be minimized. More
information can be found in [48], for instance.

If a network model has constraints that cannot be depicted with arcs and nodes,
the network model is said to have side constraints [48]. Such side constraints may
include integer decision variables. In fact, there is no strict border line between
network problems and MILP problems because there is a MILP formulation for
many network problems [51].

3.2.2. Piecewise linear approximation (PLA)

Any continuous function of one variable can be approximated with the technique
of piecewise linear approximation to be accommodated in the framework of MILP.
This technique enables the use of non-linear functions in a MILP optimization
problem if they are separable functions in the form f(y1, . . . , yj) =

∑j
q=1 fq(yq).
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The quality of the approximation is defined by the number of breakpoints r of the
piecewise linear function f(y) with the breakpoints of (ai, f(ai)) for i = 1, . . . , r.
Then, the linear approximation can be written as (compare [50, 49]):

y =
r∑

i=1
λiai

f(y) =
r∑

i=1
λif(ai)

r∑
i=1

λi = 1

λ = (λ1, . . . , λr) ∈ Rr
+

(3.3)

λ can be considered as weights attached to the breakpoints [49]. In addition to
equation 3.3, one extra condition has to be met that at most two adjacent λ can
be non-zero. This condition is also called adjacency condition and means that
the weights can only be attached to neighboring points of the PLA. If the PLA
is in the objective function, the adjacency condition is met if the piecewise linear
functions are convex (concave) in a minimization (maximization) problem and a
LP formulation is sufficient. Moreover, an LP formulation is also sufficient if the
PLA is on the left hand side of an ≤ constraint and the approximated function
is convex (concave) or if the PLA is on the left hand side of an ≥ constraint and
the approximated function is convex (concave) in a minimization (maximization)
problem. For a complete discussion see [54].

Otherwise, extra constraints based on binary variable B have to be introduced to
enforce the adjacency condition (see [54] or [50], for instance):

λ1 ≤ B1

λi ≤ Bi−1 +Bi for i = 2, . . . , r − 1

λr ≤ Br−1

r−1∑
i=1

Bi = 1

B ∈ Br−1

(3.4)
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Another way to address the adjacency condition is by the so called “restricted
entry rule” which is described in [54], for instance.

This section is based on [50, 49, 54].

3.2.3. Separable programming

The restriction in sec. 3.2.2 that PLA can only be applied on separable functions
can mean quite a limitation in practice. One way to overcome this problem is that
it is often possible to convert non-separable functions into separable functions.
Very commonly is the non-separable function which is a product of two variables
y1y2 that can be converted to separable form by the following steps (see [49]).

1. Introduction of the two new variables u1 and u2

2. Establishing the following relation between u1 and u2, and y1 and y2:

u1 = 0.5(y1 + y2) (3.5)

u2 = 0.5(y1 − y2) (3.6)

3. The term y1y2 can finally be replace by u2
1 − u2

2 which is in separable form.
When implementing the conversion to separable form, it has to be considered
that u2 can take negative values.

Once there are only separable functions, they can be approximated by PLA ac-
cording to sec. 3.2.2. In this case a PLA for u2

1 and −u2
2 is necessary. In order

to find an appropriate PLA of a function, starting break point a1 and finishing
point ar (assuming ai < ai+1) has to be found as the first and last point for
approximation of the piecewise linear function. Oftentimes there are minimum
and maximum values that x1 and x2 can possibly take implied by constraints. In
this case for u1, the smallest value for the PLA is

a1 = ([min value of y1] + [min value of y2])/2 (3.7)
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and the biggest value is

ar = ([max value of y1] + [max value of y2])/2. (3.8)

For u2,
a1 = ([min value of y1]− [max value of y2])/2 (3.9)

and the biggest value is

ar = ([max value of y1]− [min value of y2])/2. (3.10)

Besides the above demonstrated procedure to convert a non-separable function
into separable form, there are other conversions possible that depend on the non-
separable function. See e.g. [49] for more information.

In general, separable programming increases the complexity of the problem to be
solved and thus should be applied with care.

3.3. Nomenclature of chapter 3

The nomenclature related to this chapter is shown in Tab. 3.1. A separate nomen-
clature for this chapter is used because the introduced variables do not relate to
the other chapters.
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Table 3.1.: Nomenclature chapter 3

Parameters Description

A Matrix with coefficients of continuous variables for
constraints

G Matrix with coefficients of integer variables for
constraints

(ai, f(ai)) Breakpoints for piecewise linear approximation

bk Parameter determining source-, sink-, and transit
nodes

c Matrix with coefficients of integer variables for
objective function

gk,l Gain on arc(k,l)

h Matrix with coefficients of continuous variables for
objective function

kk,l Unit costs for flow on arc(k,l)

n Dimension x-vector

p Dimension y-vector

uk,l Maximum flow capacity on arc(k,l)
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Decision
variables

Description

B Binary variable to enforce adjacency condition

u1, u2 Variables used for separable programming

x Integer decision variable

y Continuous decision variable

λ Weights attached to the breakpoints of the
piecewise linear approximation

Functions Description

f(y) Piecewise linear function

z Objective function

Indices Description

i Indicates breakpoint i = 1, . . . , r

k Indicates the arc from node k

l Indicates the arc to node l
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Sets Description

V Set of nodes

W Set of arcs

Having discussed the essentials of MILP, the next chapter presents the state of
the art literature which is relevant for this work in order to understand what has
been published in the past and what contributions of this work are.
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4. State of the art literature review

This chapter discusses the state of the art literature relevant for this thesis. It
is structured according to the three functions of the proposed algorithm which is
optimum scheduling, -sizing, and -dispatch. The literature review is focused on
LP/MILP problem formulations for various ES technologies applied in different
contexts. Literature on other optimization techniques is discussed if relevant for
this work.

4.1. Optimum scheduling

The literature review includes references based on deterministic formulations of
the optimum scheduling problem as well as on publications on stochastic formu-
lations in order to give a broad overview.

References for deterministic optimum scheduling problems Catalão et al. pro-
poses a non-linear optimum scheduling formulation for hydro-power plants [55]
where non-linear head effects of hydro-power stations have been taken into ac-
count and a study is conducted for hydro-power plants in Portugal. The problem
formulation is based on network flow programming. [56] presents a non-linear
model for scheduling of hydro power plants taking also into account non-linear ef-
ficiency curves of such plants. However, both studies do not consider the ancillary
service markets. Another study of the optimum scheduling problem for cascaded
hydro-power storages that is based on network flow programming is found in [57].
The authors also take spinning-reserves into account but no energy markets are
considered. [58] also uses network flow programming to schedule hydro- and ther-
mal power plants including spinning reserve. The authors do not consider energy
markets, either.
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Castronuovo and Lopes [59] formulate a LP problem for a wind farm connected to
a hydro-power storage. They assume that the hydro-storage can only be recharged
by wind power and not by purchases from the DA market. Moreover, their for-
mulation does not take any ancillary services into account. Another detailed
deterministic MILP formulation for a cascaded hydro-power system is found in
[60] which is also only targeting the DA market. In addition, the authors of [61]
propose an optimum scheduling formulation based on the genetic algorithm for
WPPs and BESSs. The authors use a general formulation for the BESS without
taking into account battery specific factors.
In contrary to the above mentioned publication, the model in [61] is solved with
the genetic algorithm which might become time consuming if the time horizon
is extended and, due to the stochastic nature of the genetic algorithm, finding
the global optimum cannot be guaranteed. F. Bourry et al. describe a similar
optimization problem in [62] focusing on VPPs consisting of WPPs and a pumped-
hydro storage. The formulation aims to minimize the penalty risk through im-
balances and is based on a rolling-window approach. Besides the DA market, the
intraday market is also included in this study. Two strong assumptions in this
publication are that the energy storage can only be charged through the WPPs
and not through both, the DA market and the WPPs and that the energy storage
has an efficiency of 100%.
Another deterministic optimum scheduling problem proposed in [63] is also focus-
ing on pumped-hydro power storages but the authors do not consider wind power
in their formulation. However, sales to the spinning and non-spinning reserves
are included in addition to the DA market. The authors present a multistage-
algorithm to solve the problem. [64] discusses the optimum scheduling problem of
an ES located in the Danish power market for energy arbitrage. The optimization
method applied is sequential quadratic programming.

References addressing SoH of batteries Besides LP / MILP formulations, the
optimum scheduling problem can also be formulated as a dynamic programming
problem. Examples can be be found in [65, 66, 67, 68]. Dynamic programming is
mentioned at this point because [68] introduces an approach to consider the SoH
(aging) of a lead-acid BESS based on its capacity fade in the optimization. The
system considered is a grid connect photo-voltaic (PV) plant with BESS. The
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same concept is applied by [69] for optimum scheduling of a PV-battery system
in the framework of a MILP formulation. It is further picked up by [70] in an
MILP optimum sizing problem (see sec. 4.3 on page 51).
The capacity fade is implemented in [68, 69, 70] in such a way that it is a constant
factor multiplied with the discharging power of the ES. Capacity fade for charging
power is not considered. This might be unrealistic as it penalizes discharging over
charging. The above sources do not discuss an approach where the capacity fade
is proportional to the charging and discharging power. Additionally, the SoC also
affects the capacity fade of a battery ES which is not accounted for in [68, 69, 70].
The relation of the SoC and the capacity fade is the following: A battery ES that
is kept at high SoC levels has to be replaced faster than the same storage kept at
lower levels (without actually charging or discharging the battery ES). Also see
battery aging on page 19.

Stochastic programming formulations Stochastic programming formulations of
WPPs connected to pumped-hydro storages are discussed in [3] and [65]. There,
the authors propose a stochastic programming model based on a MILP formula-
tion to take into account the stochastic nature of wind power as well as the fact
that future market prices are unknown. However, their formulation includes only
the DA market and ancillary service markets are not addressed. Also the authors
of [71] and [72] present a stochastic programming formulation based on MILP
focusing on the optimum operation of hydro-power storages in the DA market;
however, wind power is not taken into account.

Summary As shown above, the optimum scheduling problem of hydro-power
storage is widely discussed in literature and many formulations are based on LP
or MILP; however, a MILP formulation specifically for a BESS combined with
grid connected WPPs operated on the DA- and ancillary service market is not
discussed in literature to the best of the authors knowledge. In particular, all
of the above cited publications consider only the DA- or intraday market except
[63, 58, 57] that also take spinning- and/or non-spinning reserves into account.
Though, the work of [63] does not consider the combination of the pumped-
hydro plant with other types of plants like WPPs and it is not based on a MILP
formulation. [58] uses network flow programming to schedule hydro- and thermal
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power plants taking into account spinning reserve but renewable energy sources
other than hydro-power or other ESs are not part of their work. Moreover, energy
markets are not considered. [57] takes spinning reserve in the problem formulation
into account but energy markets are not part of this study, either.

4.2. Optimum dispatch

The optimum dispatch problem can be considered as a rescheduling problem of
the original schedule after e.g. a change in the wind power forecast has occurred.
When rescheduling the original schedule, the new schedule has to be linked to the
original schedule because any deviations in delivery to the power market other
than the amount awarded (imbalances) might get penalized.

[73] addresses this problem in a simple and straight forward manner. The differ-
ence between the generated power (or updated schedule for generation) Pg and
the scheduled power Psch has to be balanced by either upward (BalanceUp > 0)
or downward (BalanceDown > 0) power according to equation 10 in [73]:

BalanceDown−BalanceUp = Pg − Psch. (4.1)

Equation 4.1 can also be considered as a node in a network flow programming
framework where Pg and BalanceUp are the inflow into the node and Psch and
BalanceDown are the outflow out of the node (see Fig. 4.1).

[73] applies this concept successfully on the DA market. This work demonstrates
in chapter 7 that the concept of [73] is applicable also when several power mar-
kets like the DA- and ancillary service markets are addressed simultaneously.
Thus, the dispatch function cannot be claimed as a new contribution to research
but can demonstrate that this concept works also for several power markets (see
chapter 7). The formulation of the dispatch function is found in sec. 5.2.7 on page
92. No further literature is discussed due to the fact that the problem of optimum
dispatch is sufficiently addressed based on equation 4.1.

Summary It is shown that there exists a concept in [73] to address balancing of
a plant for MILP but the concept is restricted to only one power market. Other
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Market 

x

BalanceUp BalanceDown

Pg

Psch

Figure 4.1.: Example of dispatch of one market node

power markets like the markets for ancillary services have not been addressed by
[73].

4.3. Optimum sizing

The issue of sizing ESs has been addressed in literature for various ES technologies
and based on numerous methods that also include methods which are not based
on optimization techniques. This section discusses the state-of-the-art literature
on sizing ES with regard on MILP formulations. The focus is on battery ESs but
there is also important literature on sizing other ES technologies or literature not
based on MILP which is discussed if appropriate.

In the following, literature is grouped into methods that focus on sizing hydro
power storages, sizing microgrids including ES, sizing battery ES including capac-
ity fade, sizing ES based on stochastic programming, and other sizing techniques
which are of relevance.

Hydro power optimization [74] discusses a sizing approach for a pumped hydro
storage unit in an isolated power system. The storage unit is part of a diesel
system including renewable energy generation. The optimization is based on a
LP formulation that optimizes the power rating and battery energy of the pumped
hydro power station. The power rating is not coupled to the battery energy, which
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reflects such a plant correctly, but would not be applicable for most battery ES
technologies. No other ES technology besides pumped hydro is considered. In
[71], a MILP optimization model is also discussed for a pumped hydro storage
unit participating in an electricity market (DA market) combined with wind power
generation. The outcome of the optimization is the optimum schedule for the
pumped storage plant. The authors also indicate the need to find the optimum
pumped hydro storage size by comparing the results for pumped hydro storages
with different sizes. However, no MILP based approach is applied to find the
optimum power rating or optimum battery energy of the storage device. Moreover,
only the DA market is included in the formulation.

Microgrid models with ES Another sizing approach for ESs (not specifically
pumped hydro storages) is proposed in [75] for a microgrid system. The approach
chosen is based on a MILP formulation and the optimum size of the ES is identified
by an iterative approach (and not by decision variables), either minimizing the
total cost or maximizing the total benefit. The optimum ES is defined by meeting
the stated objective. This approach may become cumbersome when more than
one ES is used and the optimum of a combination of different ES needs to be
found. [76] describes a LP model for a wind-diesel power system connected to a
hydrogen storage. The model is used to discuss the sizing question of the hydro-
gen storage. A simplified model of the hydrogen storage is used for optimization
with the objective to minimize costs. The optimum size of the storage is indicated
by analyzing the results of the model and not directly through a decision vari-
able. Another example of a MILP battery model can be found in [77] as part of
a biomass, photovoltaic, biogas, small-hydro and diesel system. There, the com-
bination of all system components is being optimized including the small-hydro
plant. Also [78] discusses a MILP optimum sizing approach for an ES located in
a microgrid. The ES model is simplistic and no efficiency losses of the storage
are considered as well as the authors assume that the power rating and battery
energy can be sized independently of each other.

References addressing SoH The article in [79] discusses a MILP optimization
approach for sizing battery capacity in a grid-connected PV system. Their battery
model incorporates the cost of battery aging (capacity fade). The capacity fade
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process is implemented as proposed in [68] and the capacity fade only occurs when
discharging the ES. A disadvantage of [79] is that the objective of the optimization
is to minimize all costs while the selected battery is compared on the basis of
annual net profit. If the cost function would reflect maximizing the annual net
profit of the ES, a different size of battery could have been identified. Another
disadvantage is that the authors have decoupled optimizing the dispatch schedule
from optimizing the capacity of the battery storage. Decoupling may have the
consequence that a non-optimum storage for the system is found because the
size of the battery ES has an influence on the optimum dispatch schedule. If
the dispatch schedule changes, another capacity value of the battery ES might
be optimum. Hence, the optimum dispatch schedule and optimum (capacity of
the) ES should not be determined independent of each other. Moreover, the
authors state in the literature review that “Recently, optimization of storages in
grid-connected PV systems attracted increasing interest. However, there is little
in the way of guidance on battery sizing with respect to optimal scheduling of
the battery.” Despite the fact that this statement is in respect to ES combined
with PV systems, the author of this thesis agrees that there is little literature on
optimum sizing of ESs based on (MI)LP.

[70] introduces a sizing algorithm for a battery ES connected to a residential
PV system which is also grid connected. The optimization is based on a MILP
formulation. Capacity fade is also accounted for in their model and it is based
again on [68] and the same drawbacks apply as discussed in sec. 4.1 on page 47.
The applications served in the formulation of [70] are power arbitrage and peak
shaving. The cost function minimizes the sum of the net power purchase costs
plus the costs of the capacity fade.

In contrast to [79] and [70], one reference based on a heuristic optimization method
needs to be mentioned besides the disadvantages described in chapter 3. The
authors in [80] size an ES system based on the genetic algorithm and account for
capacity fade of a lead-acid battery via lifetime assessment based on the rainflow
cycle counting method. It has the advantage that it can better describe capacity
fade than an energy throughput model. A deeper discussion on lifetime models
based on the rainflow counting algorithm is found in [7].

In summary, it can be concluded that capacity fade has been addressed based
on a MILP formulation in only two references focusing on PV systems and no
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literature of capacity fade in ES connected to WPPs is available to the best of the
authors knowledge. Both references refer to the concept introduced in [68] with
the drawbacks as discussed in sec. 4.1 on page 47.

Sizing hybrid ES formulations [81] discusses a mixed integer quadratic pro-
gramming optimization approach on sizing hybrid ES systems. It can be applied
to find the optimum ES combination out of different ES technologies. A model
for demonstration is provided in which the electricity is generated by a WPP to
serve a residential load. The selected ES technologies are batteries and a hydro-
gen ES. The authors demonstrate that the optimum hybrid combination shows a
30% improvement regarding cost effectiveness. The authors also point out that it
is important to find the optimum size of each component of a hybrid ES system.

[82] proposes a sizing method for hybrid ES based on MILP. Their model is an
adjustment of the formulation presented in [83]. The authors consider a li-ion
and lead-acid battery energy storage for their study. The hybrid ES is sized for
a microgrid based on WPPs and a load. The authors assume that the battery
energy can be sized independent of the power rating which is incorrect for lead-
acid and li-ion batteries. There might be different power to energy ratios available
within one battery ES technology. However, each sub-technology of a battery
should be treated as its own technology. Moreover, [82] does not consider any
restrictions on minimum SoC. This feature becomes necessary when battery ESs
are considered like lead-acid which cannot be discharged below a certain threshold
at a certain current (see sec. 2.1.2). Further drawbacks of this study are the energy
markets not being part of the model and no battery lifetime determining factors
like capacity fade being considered. Moreover, the initial SoC is a decision variable
which is a rather unrealistic assumption because the initial SoC is usually known
as a parameter when the optimization period is short. This can mean that one
ES is biased over the other.

The authors of [84] indicate in their overview paper that there exist not many
(MI)LP models for hybrid energy systems in literature compared to heuristic
optimization techniques (not all references include ESs in their models).
It has to be acknowledged that finding a LP or MILP representation of a specific
system might be not as straight forward as applying a heuristic optimization
method. However, the advantage is that even relatively large (MI-)LP problems
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can be solved reliable and fast and also the global optimum can be guaranteed.
The authors of [81] also mention that “very few papers have addressed this issue”
of optimizing a hybrid ES system based on a LP or MILP formulation. This
can be confirmed by the author of this thesis to the best of his knowledge as the
literature review reveals only two references, one based on MILP and one based
on quadratic programming.

Stochastic programming models A stochastic optimum sizing approach for a
general type of ES without specification of the technology can be found in [85].
The developed model focuses on an isolated grid based on WPPs and diesel gener-
ators. The objective is to find the optimum ES rating that minimizes the energy
coming from the wind diesel plant. Their model allows to optimize the power
rating and battery energy independent of each other which is not a realistic as-
sumption for most battery ES technologies (see page 12). Due to the fact that an
isolated grid is considered, power markets are not part of the formulation.

An optimum sizing method based on stochastic LP for a single ES is proposed in
[83]. The model is based on WPPs connected to a load and the objective is to
minimize under-generation or energy deviations. A drawback of the model is that
the power rating of the ES can also be optimized independently of the battery
energy. This assumption cannot be confirmed for most of the ES technologies as
described on page 12. A case study with a one week hourly horizon is part of the
study where parameters of a NaS battery are used.

Other relevant concepts: [86] describes a model approach for thermal ES sys-
tems in industrial applications based on a MILP approach. The model of the
thermal ES is not of relevance for this work where the focus is on BESSs. How-
ever, the author uses the concept of optimizing the size of the ES with a step
function. This approach is adapted in this work (see sec. 5.2.4 Charger commit-
ment and Discharger commitment).

Summary Summarizing the state-of-the-art literature review for sizing BESSs, a
comprehensive MILP formulation for sizing BESSs, which are part of VPPs, does
not exist in literature to the best of the authors knowledge. A MILP formulation,
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that covers the following properties, has so far not been proposed in literature.
These properties are part of the proposed formulation of this thesis and are major
contributions to research:

• A BESS is part of a VPP that is connected to the power system and can
participate in the DA market as well as in the markets for ancillary services.

• Aging of the BESS is based on calendric- and exercised capacity fade where
the exercised capacity fade occurs while charging- and discharging the BESS.

• Self-consumption of power for ancillary devices in order to operate the BESS
is considered as well as self-discharge of the batteries over time.

• Annualized costs of the BESS are related to the SoH of the BESS where a
replacement of the BESS is required at 80% SoH (or any other predefined
value).

• The profit achievable on the various power markets is maximized.

• There is a dependency of the optimum schedule and the selected BESS.

• Any number of different battery technologies can be addressed and it can
be specified how many different battery ES technologies should maximum
be part of the optimum solution and what the maximum power rating of
each technology should be.

This concludes the state of the art literature review and the next chapter presents
the proposed MILP formulation.
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This section discusses the proposed MILP formulation of the optimization prob-
lem. Detailed information regarding sets, parameters, and decision variables can
be found in the nomenclature on page 145. The problem formulation is kept
generic and can be used for all three functions: Optimum scheduling, optimum
dispatch, and optimum sizing of the BESS (see Fig. 5.1). The input data provided
to the model determines which function is called.

Moreover, in order to allow the evaluation of different country markets, the prob-
lem formulation is kept as general as possible in the sense that it can be applied
to other markets that are similar to the exemplarily chosen regulatory framework
of Denmark (DK1).

Fig. 5.1 provides an overview on the structure of the optimization problem formu-
lation regarding all three functions. It shows that the same MILP formulation is
used for all three functions and that the specific function depends on the input
data provided into the model.

The main purpose of the scheduling function is to find the optimum amount of
bids to be submitted into each power market. In addition, information about
the optimum charge- and discharge rate of the BESS as well as the best WPP
production set point for each time step is obtained in order to maximize profit.
Input data for this function are all relevant technical data of the BESS (which is
the same for all three functions) as well as the forecasted wind power production
and power prices (for the different markets). The algorithm includes the DA-,
PFR-, and RP markets (which is the same for all functions). Hence, all selected
applications from sec. 2.9 are considered within the optimum scheduling- (and
optimum sizing) function except forecast improvement.

Optimum dispatch addresses how to maximize the profit based on adjustments of
input data of the optimum scheduling problem. Updates on the previous optimum
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schedule can also be considered a rescheduling problem. The dispatch function
is called e.g. when a new wind power production forecast becomes available or
market prices differ from the forecast. The main information which is used from
the results obtained of this function are the charging- and discharging power of
the BESS as well as the power output of the WPP. This function includes the
application of forecast improvement because any error on the forecast becomes
obvious during actual operation and the BESS helps to reduce penalty costs for
imbalances. Generally speaking, this function ensures the most profitable opera-
tion of the VPP considering that:

• the wind power production does not match the forecast,

• not all bids were awarded on the market,

• the actual SoC of the BESS differs from the model,

• or market prices differ from the forecast.

Additional input data necessary for this function are (a forecast of) penalty costs
which have to be paid for imbalances. Compared to the optimum scheduling
function, this function indicates the necessary adjustments of the results obtained
from the optimum scheduling function.

The third function, optimum sizing of the BESS, is about finding the optimum set
of BESSs and their optimum power rating and battery energy for a given study
period. The chosen period should be representative to reflect assumed future
prices and wind power production.

In order to increase readability of the problem formulation below, all decision
variables begin with a capital letter and all parameters begin with a lower-case
character. Additionally, sets begin also with a capital letter but sets do neither
appear directly in the constraints nor in the cost function but only in connection
with the universal quantifier (∀) before the actual constraint and can thus be
distinguished from decision variables.

Equations within gray shaded boxes are not part of the MILP formulation and
are to be calculated (or assigned) in advance before running the optimization or
they are only used for illustrative purposes.
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Figure 5.1.: Overview optimization algorithm

5.1. Objective function

The objective function OF is to be maximized expressing the profit (revenues
minus costs) of the VPP which can be achieved on the different power markets
over the discretized time periods t (see equation 5.2). In order to account correctly
for the profit of the VPP, annualized costs are used to determine the costs of the
BESS and WPP over the specific time steps t due to the fact that the WPP
and BESS may have different investment horizons. In case the study period t is
shorter than one year, the corresponding fraction t·tdt

8760 of the annualized costs is
considered.

The formula to determine annualized costs (annualizedCostb) is shown in equa-
tion 5.1 where pv is the present value at year zero, i is the interest rate, and ih
is the investment horizon (see e.g. [87]). This formula is not part of the MILP
formulation.

annualizedCostb = pv
(i+1)ih−1
i(1+i)ih

(5.1)

Revenues are generated by sales of power on the DA market, by selling RP up,
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and by selling PFR up and down. Costs occur by purchasing power on the DA
market, by selling RP down, and by the operation of the WPPs and the BESS(s).
Regarding power purchases, the constant purchaseCostSupplement is added to
the market price in order to avoid selling the purchased amount within the same
time period (see equation 5.4). RP down sales are added to the cost function with
positive sign (and not with negative sign), because prices for RP down power have
(mostly) negative values as provided by [1]. The following describes the objective
function.

Maximize:

OF =(
marketSales−marketPurchase+ bonusWpp− costsWppOf − costsBess

+regUpPowerSales+ regDownPowerSales+ primaryUpSales

+primaryDownSales− buDexpr − bdDexpr

−buRegUpDexpr − bdRegUpDexpr

−buRegDownDexpr − bdRegDownDexpr

−buPrimaryUpDexpr − bdPrimaryUpDexpr

−buPrimaryDownDexpr − bdPrimaryDownDexpr
)
tdt

(5.2)

Revenues of power sales to the DA market and costs of power purchases are
calculated straightforward in equations 5.3 and 5.4.

marketSales =
∑

t

marketPricet · Salet (5.3)

marketPurchase =∑
t

(marketPricet + purchaseCostSupplement) Purchaset
(5.4)

Concerning the costs of the WPP (costsWppOf in equation 5.5), they are split
into capital expenditures (CAPEX) and operational expenditures (OPEX) (see
sec.A.1 on page 171 for more information on WPP costs). It is assumed that
capital expenditures costWppCapex occur independent of the use of the WPP
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while the operational expenditures costWppOpex only depend on the operation
of the WPP based on produced MWh electricity. This enables to make the right
operating decision between the DA market, the RP upwards, and the RP down-
wards market based on OPEX and not considering CAPEX which always occurs
also when not operating the WPP.

costsWppOf =

costWppCapex · t

8760
+
∑

t

(
WindSpott · costWppOpex

+WindRegUpt · regUpEnergyF lowFactor · costWppOpex

−WindRegDownt · regDownEnergyF lowFactor · costWppOpex
)

(5.5)

Besides the costs of the WPP, it is assumed that the WPP is operated under a
bonus regime which guarantees an additional payment for each produced MWh
of electricity. The revenues related to the bonus are defined by bonusWppOf in
equation 5.6.

bonusWppOf =

+
∑

t

(
WindSpott · bonusWpp

+WindRegUpt · regUpEnergyF lowFactor · bonusWpp

−WindRegDownt · regDownEnergyF lowFactor · bonusWpp
)

(5.6)

The costs of the BESS are accounted for in equation 5.7. Two cases need to
be distinguished: In case the sizing function is called (esInvestSwitch = 1),
the annualized costs EsCostOFb are a function of the capacity fade of BESS b

which is discussed further below. If the scheduling or dispatch function are called
(esInvestSwitch = 0), the annualized BESS costs are calculated in advance as
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esCostPerMwb assuming a certain lifetime of the BESS b.

costsBess =∑
b

EsCostOFb · dischargerMaxb · esInvestSwitch ·
t

8760

+
∑

b

esCostPerMwb · dischargerMaxb (1− esInvestSwitch) t

8760

(5.7)

The costs and revenues of the ancillary service markets are defined in equations
5.8 to 5.11.

regUpPowerSales =∑
t

RegUpt ·marketPriceRegUpt
(5.8)

regDownPowerSales =∑
t

RegDownt ·marketPriceRegDownt
(5.9)

primaryUpSales =∑
t

PrimaryUpt ·marketPricePrimaryUpt
(5.10)

primaryDownSales =∑
t

PrimaryDownt ·marketPricePrimaryDownt
(5.11)

And last but not least, the costs for imbalances are defined in equations 5.12 to
5.21.

buDexpr =
∑

t

BuPowert · buCostt (5.12)

bdDexpr =
∑

t

BdPowert · bdCostt (5.13)
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buRegUpDexpr =
∑

t

buRegUpCostt ·BuRegUpt (5.14)

bdRegUpDexpr =
∑

t

bdRegUpCostt ·BdRegUpt (5.15)

buRegDownDexpr =
∑

t

buRegDownCostt ·BuRegDownt (5.16)

bdRegDownDexpr =
∑

t

bdRegDownCostt ·BdRegDownt (5.17)

buPrimaryUpDexpr =
∑

t

buPrimaryUpCostt ·BuPrimaryUpt (5.18)

bdPrimaryUpDexpr =
∑

t

bdPrimaryUpCostt ·BdPrimaryUpt (5.19)

buPrimaryDownDexpr =∑
t

buPrimaryDownCostt ·BuPrimaryDownt
(5.20)

bdPrimaryDownDexpr =∑
t

bdPrimaryDownCostt ·BdPrimaryDownt
(5.21)

5.2. Constraints

A high-level outline of the optimization problem is provided in Fig. 5.2. It shows
the basic structure of the problem formulation which can be considered as a
network flow programming problem with many side constraints (see sec. 3.2.1 on
page 36). The idea to use network flow programming for the proposed model
is based on [57], for instance. Fig. 5.2 depicts important nodes and arcs within
the optimization problem formulation. The constraints of the proposed MILP
formulation are grouped according to this overview in the following, namely BESS
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source- and sink node, BESS cost, converter, WPP, and DA market as well as
ancillary service markets.

The meaning of the converter in Fig. 5.2 does not refer to power electronics. It
simply means accounting of the efficiency of the BESS in order to determine the
correct flow to the BESS.

Fig. 5.2 also shows how the battery specific parameters are taken into ac-
count: “Calendric capacity fade” (capacityFadeRatet), “Exercised capacity fade”
(capacityFadeRateThroughputb), “Self-consumption” (selfConsumptionb), and
“Self-discharge” (selfDischargerRateb).

Figure 5.2.: Overview optimization model

5.2.1. BESS: Source storage

The basic model of the BESS is adapted from the hydro-power storage model
proposed in [71]. Their concept of a lower and upper reservoir that is linked
to each other by the in- and outflow considering an efficiency factor is also part
of the proposed problem formulation in this thesis. However, certain parts are
amended in order to have a BESS specific model. It can be assumed that the
upper reservoir stores the available chemical energy of the BESS while the lower
level of the reservoir can be regarded as the chargeable amount of energy, both,
before the efficiency factor is applied for charging or discharging. The formulation
of the unit commitment of the BESS is based on integer variables but it is written
in a different way compared to [71] in order to accommodate decision variables
for the sizing function and is adapted from [88], see sec. 5.2.4.

62



5.2 Constraints

In this thesis, the upper reservoir is called source storage node (SosNodeb,t) and
the lower reservoir is called sink storage node (SisNodeb,t) in BESS b out of b
different BESS technologies. An efficiency factor is part of the converter that
transforms the power input from MW to stored energy in MWh when multiplied
with tdt in the source- and sink node (see Fig. 5.2). The optimization model is
written for VPPs that consist of any number of different BESSs. The general
SosNodeb,t is formulated in constraint 5.22 for all time steps t > 0. For the first
time step, the formulation differs. Either an initial SoC initSocb for each b can
be specified in constraint 5.24, where the SoC (equal to the value of SosNodeb,t)
of the first time step (t = 0) is taken as a parameter. Alternatively, a constraint
that forces the SoC to be the same for the first and last time step can be included
(see constraint 5.26). This feature is especially valuable for longer study periods
(e.g. finding optimum BESS) where the SoC of the beginning does not matter
but where the SoC of the beginning (t = 0) should equal to the SoC at the end
of the study period (t = t).

Moreover, capacity fades and the self-discharge rate as well as self-consumption
are accounted for in constraints 5.22, 5.24 and 5.26. Both capacity fades are
modeled as a loss of the energy stored in the SosNodeb,t whereby the amount
of reduced energy is proportional to SosNodeb,t (which can be considered as
the SoC if divided by the capacity of BESS b) for the calendric capacity fade
while the exercised capacity fade is proportional to the charging- and discharging
power of the BESS (also see page 20f). The formulation of capacity is inspired by
[68, 69, 70].

In addition to capacity fade, both – self-discharge and self-consumption – are
modeled as an arc from the SosNodeb,t to the SisNodeb,t causing the BESS
to discharge. The self-consumption (selfConsumptionb) is a constant while the
self-discharge (selfDischargeRateb) is assumed to depend proportionally on the
SosNodeb,t value.

It is assumed that self-consumption is independent of the operation of the BESS
and it is assumed to be constant. It is further assumed that power for self-
consumption is drawn out of the BESS and not from the grid due to security
measures ensuring uninterruptable power supply even during potential short out-
ages of the grid. It has to be pointed out that self-consumption does not include
power consumption due to inefficiency of the BESS, the converter, or the trans-
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former, for instance. Efficiency is handled in the converter (see page 81).

The decision variables ChargerF lowb,t and DischargerF lowb,t are explained in
sec. 5.2.4.

∀b ∈ B ∧ ∀t ∈ T : t ≥ 1 :

SosNodeb,t−1 + tdt · ChargerF lowb,t =

SosNodeb,t + tdt ·DischargerF lowb,t

+selfDischargerRateb · tdt · SosNodeb,t−1

+selfConsumptionb · tdt ·NbSlicesActiveb · dischargerMaxb

+capacityFadeRateb · tdt · SosNodeb,t−1

+capacityFadeRateThroughputb · tdt·(
ChargerF lowb,t

chargerConversionFactorb
+ DischargerF lowb,t

dischargerConversionFactorb

)

(5.22)

The following constraint 5.23 as well as constraints 5.25 , 5.27, 5.30, 5.32, and
5.34 ensure that the DK1 market requirement for PFR is met. This guarantees
that power can be provided for a certain period. Due to the fact that the PFR
requirements depend on the source- and sink nodes, they are stated here but
the description is provided further below in sec. 5.2.8 on page 97 f. after the
PFR market constraints have been discussed for better understanding. Therefore,
constraints 5.23, 5.25 , 5.27, 5.30, 5.32, and 5.34 are stated here without further
discussion.

∀b ∈ B ∧ ∀t ∈ T : t ≥ 1 :

SosNodeb,t−1 · chargerConversionFactorb

≥ primaryUpReserveFactor ·DischargerPrimaryUpb,t · tdt

(5.23)

The following parameter switch allows to select the SoC of the first time step
(switch = 1) or to enforce that the SoC of the last and first time step are equal
(switch = 0). The if-then-else statement has to be implemented in the program-
ming language of the optimization package program and needs to be called before
the optimization is started in order to build the correct problem formulation.
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If : switch = 1

Then : {

∀b ∈ B ∧ t = 0 :

NbSlicesActiveb · sosNodeMaxb · initSocb

+ChargerF lowb,t · tdt =

SosNodeb,t +DischargerF lowb,t · tdt

+selfDischargerRateb · tdt · sosNodeMaxb

·initSocb ·NbSlicesActiveb

+selfConsumptionb · tdt ·NbSlicesActiveb · dischargerMaxb

+capacityFadeRateb · tdt · sosNodeMaxb · initSocb ·NbSlicesActiveb

+capacityFadeRateThroughputb · tdt

·
(

ChargerF lowb,t

chargerConversionFactorb
+ DischargerF lowb,t

dischargerConversionFactorb

)

(5.24)

∀b ∈ B ∧ t = 0 :

NbSlicesActiveb · sosNodeMaxb · initSocb

·chargerConversionFactorb

≥ primaryUpReserveFactor ·DischargerPrimaryUpb,t · tdt

(5.25)

}

Else : {

∀b ∈ B ∧ t = 0 :

SosNodeb,t + ChargerF lowb,t · tdt =

SosNodeb,t +DischargerF lowb,t · tdt

+selfDischargerRateb · tdt · SosNodeb,t

+selfConsumptionb · tdt ·NbSlicesActiveb · dischargerMaxb

+capacityFadeRateb · tdt · SosNodeb,t

+capacityFadeRateThroughputb · tdt

·
(

ChargerF lowb,t

chargerConversionFactorb
+ DischargerF lowb,t

dischargerConversionFactorb

)

(5.26)
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∀b ∈ B ∧ t = 0 :

SosNodeb,t

·chargerConversionFactorb

≥ primaryUpReserveFactor ·DischargerPrimaryUpb,t · tdt

(5.27)

}

The limit of the SosNodeb,t, which can be regarded as the maximum storable
battery energy, is specified by constraint 5.28:

∀b ∈ B ∧ ∀t ∈ T : SosNodeb,t ≤ sosNodeMaxb ·NbSlicesActiveb (5.28)

5.2.2. BESS: Sink storage

Corresponding to the source storage node constraint, the sink storage node con-
straint in the first time step differs from the other time steps (see constraints 5.29,
5.31, and 5.33):

∀b ∈ B ∧ ∀t ∈ T : t ≥ 1 :

SisNodeb,t−1 +DischargerF lowb,t · tdt

+selfDischargerRateb · tdt · SosNodeb,t−1

+selfConsumptionb · tdt ·NbSlicesActiveb · dischargerMaxb

= SisNodeb,t + ChargerF lowb,t · tdt

(5.29)

Equivalent to the source storage node, the sink storage node has to ensure a
certain SoC to be able to provide PFR down and not to violate the minimum
required time to provide PFR (see constraints 5.30, 5.32, and 5.34).

∀b ∈ B ∧ ∀t ∈ T : t ≥ 1 :

SisNodeb,t−1 · dischargerConversionFactorb

≥ primaryDownReserveFactor · ChargerPrimaryDownb,t · tdt

(5.30)

66



5.2 Constraints

Again, the switch parameter is used to select either the SoC of the first time step
or to enforce that the SoC of the last and first time step are equal.

If : switch = 1

Then : {

∀b ∈ B ∧ t = 0 :

NbSlicesActiveb · sosNodeMaxb · (1− initSocb)

+tdt ·DischargerF lowb,t

+selfDischargerRateb · tdt · sosNodeMaxb

·initSocb ·NbSlicesAcitveb

+selfConsumptionb · tdt ·NbSlicesAcitveb · dischargerMaxb

= SisNodeb,t + tdt · ChargerF lowb,t

(5.31)

∀b ∈ B ∧ t = 0 :

NbSlicesActiveb · sosNodeMaxb (1

−initSocb) dischargerConversionFactorb

≥ primaryDownReserveFactor · ChargerPrimaryDownb,t · tdt

(5.32)

}

Else : {

∀b ∈ B ∧ t = 0 :

SisNodeb,t + tdt ·DischargerF lowb,t

+selfDischargeRateb · tdt · SosNodeb,t

+selfConsumptionb · tdt ·NbslicesActiveb · dischargerMaxb

= SisNodeb,t + tdt · ChargerF lowb,t

(5.33)

∀b ∈ B ∧ t = 0 :

SisNodeb,t · dischargerConversionFactorb

≥primaryDownReserveFactor · ChargerPrimaryDownb,t · tdt

(5.34)
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}

Finally, the maximum amount of storable energy in the SisNodeb,t is specified
in constraint 5.35. This constraint is used to implement the minimum SoC of
the BESS through a proper value of sisNodeMaxb which has to be calculated in
advance of the optimization with equation 5.36 (which is not part of the MILP
problem formulation). Hence, BESS b is not able to reach any SoC lower than
specified by minSocb because SosNodeb,t cannot be discharged with more energy
than SisNodeb,t is able to absorb.

∀b ∈ B ∧ ∀t ∈ T : SisNodeb,t ≤ sisNodeMaxb ·NbSlicesActiveb (5.35)

∀b ∈ B : sisNodeMaxb = (1−minSocb) · sosNodeMaxb (5.36)

5.2.3. Accounting for BESS costs

Accounting for the costs of the BESS differs between the optimum sizing function
and the optimum dispatch/scheduling function. Concerning the sizing function,
the BESS costs are not known in advance compared to the dispatch and schedul-
ing function which consider a pre-defined BESS size and lifetime. Therefore,
constraints 5.37 to 5.68 are especially introduced for the MILP formulation of the
sizing function. They are not required for the scheduling and dispatch function.
In order to keep the algorithm reasonable fast for the dispatch and scheduling
function, the parameter esInvestSwitch is introduced which has to be set ac-
cordingly to distinguish the different functions. If the sizing function should be
used, esInvestSwitch has to be equal to 1, otherwise it has to be equal to 0 for
the dispatch and scheduling function:

If : esInvestSwitch = 1

Then : {
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SIZING FUNCTION

The objective of the sizing function is to find the optimum power rating and
battery energy and optimum BESS technolog(y/ies) which are - as opposed to the
scheduling- and dispatch function - not known in advance. Thus, new decision
variables and constraints need to be formulated that indicate the power rating
and battery energ(y/ies) and BESS technolog(y/ies) of the optimum BESS (or
combination of BESSs, called hybrid BESS). This approach assumes that the
considered BESS technologies have a fixed relation between battery energy and
power rating and hence, if the optimum power rating is found, the optimum
battery energy is also known.

The sizing function makes use of the previously introduced capacity fades as a
measure for the BESS lifetime. The higher the capacity fade, the sooner the BESS
has to be replaced and the costs of the BESS can be related to the capacity fade.
In this work, it is assumed that the BESS has to be replaced when the BESS
has reached 80% of its original capacity. The final capacity fade is determined by
constraint 5.37 and the decision variable FinalCapacityb is introduced indicating
the remaining capacity at t, also named SoH (see [68]). In addition, it has to be
specified that the decision variable FinalCapacityb cannot be lower than 80% (or
any other predefined value) which is when the BESS has reached its end of life.
See [30] and [69] for a discussion on capacity fade and appropriate limits when to
replace a BESS.

Modeling capacity at final time step

The FinalCapacityb is calculated based on equation 5.37 where the decision vari-
able NbSlicesActiveb indicates how many slices of the BESS b are selected in the
optimum solution. This concept is also used in [86] to find the optimum size of a
thermal BESS and the authors call it finding the optimum size based on a “step
function”. In this thesis, NbSlicesActiveb is an integer decision variable and indi-
cates how many slices (or steps) in BESS b are activated (NbSlicesActiveb ≥ 1)
or if none of the slices is activated (NbSlicesAtiveb = 0). In this manner, the
optimum power rating of the BESS with the resolution of the slice (step) size
is indicated. The slice size in MW is defined by the parameters chargerMaxb
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and dischargerMaxb and the slice size concerning the battery energy in MWh is
defined by sosNodeMaxb and sisNodeMaxb.

∀b ∈ B : FinalCapacityb

=
SisNodeb,t + SosNodeb,t

sosNodeMaxb ·NbSlicesActiveb

(5.37)

However, it is not possible to implement equation 5.37 in a MILP formulation for
two reasons:

1. the equation is non-linear and not in separable form

2. FinalCapacityb is not defined if NbSlicesActiveb = 0

In order to overcome this problematic, separable programming is applied in com-
bination with PLAs to linearize equation 5.37. In the next step, an indicator
variable (in this case BatteryIntb which is further discussed in sec. 5.2.4) is used
to model the following indicator constraint:

∀b ∈ B : BatteryIntb > 0 → equation 5.37 (in linearized form).

By this procedure, FinalCapacityb is only modeled for BatteryInt > 0 that
implies NbSlicesActiveb > 0.

In equations 5.38 to 5.42, the formulation to convert equation 5.37 into separable
form is stated. First, equation 5.37 is converted into terms that contain only two
decision variables (equation 5.38).

∀b ∈ B : FinalCapacityb

=
SisNodeb,t

sosNodeMaxb ·NbSlicesActiveb

+
SosNodeb,t

sosNodeMaxb ·NbSlicesActiveb

(5.38)

Then, each term can be converted into separable form as discussed in sec. 3.2.3 by
introducing extra decision variables Sa,b with a = 0, 1, 2, 3 and ∀b ∈ B (compare
[49]) and relating them to the following equality constraints (5.39 to 5.42).
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S0,b = 0.5
(
SisNodeb,t + 1

NbSlicesActiveb

)
(5.39)

S1,b = 0.5
(
SisNodeb,t −

1
NbSlicesActiveb

)
(5.40)

S2,b = 0.5
(
SosNodeb,t + 1

NbSlicesActiveb

)
(5.41)

S3,b = 0.5
(
SosNodeb,t −

1
NbSlicesActiveb

)
(5.42)

However, the term 1
NbSlicesActiveb

is non-linear and has to be linearized based
on a PLA as described in sec. 3.2.2 (compare [49]). The advantage is that

1
NbSlicesActiveb

has to be only once approximated with a PLA and can be used in
equation 5.39 to 5.42. Furthermore, this is not the only necessary PLA throughout
this work and in order to avoid repetition, the PLA approach based on sec. 3.2.2 is
re-written in equations 5.43 to 5.49 and a denotes which PLA is meant where Pa is
the set of breakpoints pa = 0, ..., pa−1 used for the (a+1)th linear-approximation.
One breakpoint is defined by (xa,pa,b, f(xa,pa,b)).

∀a ∈ A ∧ ∀b ∈ B :

PlaYa,b =
∑
pa

(λa,pa,b · f(xa,pa,b)) (5.43)

∀a ∈ A ∧ ∀b ∈ B :

PlaXa.b =
∑
pa

(λa,pa,b · xa,pa,b) (5.44)

∀a ∈ A ∧ ∀b ∈ B :
∑
pa

λa,pa,b = 1 (5.45)

The variable λa,pa,b can be considered as weights attached to each breakpoint of
the approximation (see [49]).
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The adjacency condition (constraint 5.46 to 5.49, see [49, 54]) needs to be modeled
except under certain conditions which are described below. A thorough discussion
on the adjacency condition can be found in [54]. In a maximization problem, the
adjacency condition does not need to be implemented if:

• The PLA is in the objective function and the approximated function is
concave.

• The PLA is on the left hand side of a ≤ constraint and the approximated
function is concave.

• The PLA is on the left hand side of a ≥ constraint and the approximated
function is concave.

In case an equality constraint contains a PLA approximation, it should be con-
verted to a ≤ and ≥ constraint and thus the adjacency condition needs to be
implemented.

In this model, the adjacency condition needs to be implemented at every PLA
because the above stated conditions that allow to omit the adjacency conditions
are not met. The reason is shown at each PLA below.

∀a ∈ A ∧ pa = 0 ∧ ∀b ∈ B : λa,pa,b ≤ IntPLAa,pa,b (5.46)

∀a ∈ A ∧ 1 ≤ pa ≤ pa − 2 ∧ ∀b ∈ B :

λa,pa,b ≤ IntPLAa,pa−1,b + IntPLAa,pa,b

(5.47)

∀a ∈ A ∧ pa = pa − 1 ∧ ∀b ∈ B : λa,pa,b ≤ IntPLAa,pa−1,b (5.48)

∀a ∈ A ∧ ∀b ∈ B :
pa−2∑
pa=0

IntPLAa,pa,b = 1 (5.49)

Having written the PLA in a generic manner, the term 1
NbSlicesActiveb

can now
be piecewise linear approximated based on constraint 5.43 to 5.49 and a = 4
because it is the 5th PLA (because equation 5.39 to 5.42 are converted to separable
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form in equation 5.56 and finally also need to be approximated with a PLA and
a = 0, 1, 2, 3 is reserved for their PLAs) .

∀b ∈ B : PlaX4,b = NbSliceActiveb (5.50)

∀b ∈ B : PlaY4,b = ReciprocalNbSliceActiveb (5.51)

Due to the fact that 1
NbSlicesActiveb

appears in equality constraints 5.52 to 5.55,
the adjacency condition needs to be implemented. (In case the adjacency con-
dition does not need to be implemented, PlaY4,b could not be assigned to
ReciprocalNbSliceActiveb in constraint 5.51 for better readability and PlaY4,b

would need to be directly implemented in constraints 5.52 to 5.55 instead of
ReciprocalNbSliceActiveb. This needs also to be considered for the other PLAs.)

Based on constraints 5.50 and 5.51, 1
NbSlicesActiveb

can be replaced with
ReciprocalNbSliceActiveb in eqution 5.39 to 5.42:

S0,b = 0.5
(
SisNodeb,t +ReciprocalNbSliceActiveb

)
(5.52)

S1,b = 0.5
(
SisNodeb,t −ReciprocalNbSliceActiveb

)
(5.53)

S2,b = 0.5
(
SosNodeb,t +ReciprocalNbSliceActiveb

)
(5.54)

S3,b = 0.5
(
SosNodeb,t −ReciprocalNbSliceActiveb

)
(5.55)

Finally, equation 5.38 can be re-written in separable form as:

∀b ∈ B : FinalCapacityb = 1
sosNodeMaxb

(
S2

0,b − S2
1,b + S2

2,b − S2
3,b

)
(5.56)

The non-linear terms in equation 5.56 can also be linearized based on a PLA as
shown above. The breakpoints for the linearization of the non-linear terms S2

a,b

are provided by:

73



Chapter 5 Optimization problem formulation

(xa,pa,b, f(xa,pa,b)), a = 0, 1, 2, 3 ∧ ∀pa ∈ Pa ∧ ∀b ∈ B where, again, Pa is the
set of breakpoints used for the (a+ 1)th linear-approximation.

a = 0, 1, 2, 3 ∧ ∀b ∈ B : PlaYa,b = Za,b (5.57)

a = 0, 1, 2, 3 ∧ ∀b ∈ B : PlaXa.b = Sa,b (5.58)

Due to the fact that the terms S2
a,b appear in the equality constraint 5.56, the

adjacency condition needs to be modeled.

Then, S2
a,b can be replaced with Za,b for a = 0, 1, 2, 3 and ∀b ∈ B. Equation 5.56

can be rewritten as:

∀b ∈ B : FinalCapacityb = 1
sosNodeMaxb

(Z0,b − Z1,b + Z2,b − Z3,b) (5.59)

Having linearized equation 5.37, the next step is to define equation 5.59 only if
BatteryInt > 0 which also implies that NbSlicesActiveb > 0. This results in
the indicator constraint 5.60. It can be implemented as described in [49] (chapter
9), known as the small-m and big-M constraints. However, an advanced software
package is likely to be more efficient if directly implementing indicator constraint
5.60 in a provided function which would probably use a different approach to
address constraint 5.60 not using the small-m and big-M constraints:

∀b ∈ B : BatteryIntb > 0 →

FinalCapacityb = 1
sosNodeMaxb

(Z0,b − Z1,b + Z2,b − Z3,b)
(5.60)

Furthermore, it is necessary to limit the FinalCapacityb to values greater than
or equal to 0.8 in order to not exceed the above stated end-of-life criteria of
the BESS b. However, this is only applicable for BESS b selected in the final
solution which is indicated by BatteryIntb if equals 1. If this would be enforced
for batteries which are not part of the final solution, this would cause a conflict
with equation 5.37 concerning the SisNodeb,t and SosNodeb,t decision variable.
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Therefore, BatteryIntb is used as an indicator variable in order to model the
following condition in indicator constraint 5.61:

∀b ∈ B : BatteryIntb = 1 → FinalCapacityb ≥ 0.8 (5.61)

This could again be modeled with a small-m constraint as proposed by [49] but
using a dedicated function of a software package is recommended instead for better
efficiency of the solver.

Modeling BESS’ costs based on final capacity

Once the decision variable FinalCapacityb is properly modeled, it can be used to
determine the costs of a BESS depending on its usage because FinalCapacityb

contains information of the total BESS lifetime. This relationship between the
BESS’s lifetime and FinalCapacityb is represented in constraint 5.62 (equations
5.62 to 5.64 are again not part of the MILP formulation as indicated by the gray
shaded box and need to be calculated in advance of the optimization):

∀b ∈ B : yearsEsOperationb =
0.2 · 1

tdt
· t

8760
1− FinalCapacityb

(5.62)

Fig. 5.3 illustrates equation 5.62 and indicates the total BESS lifetime in relation
to the remaining capacity between 0.8 and 1 at t = 8760 and tdt = 1. It shows
that the BESS would need to be replaced after one year if the capacity is at 80%
of its original value. If the capacity is at 90%, the BESS would need to be replaced
after two years, etc.

In the next step, the total BESS lifetime yearsEsOperationb of BESS b is used
to calculate the annualized costs of the BESS which has to be accounted for
in the objective function OF . The calculation of the annualized costs differs
if yearsEsOperationb ≥ 1 year or < 1 year. Depending on the capacity fade,
tdt, and t, yearsEsOperationb of less than one year can be reached within 80%
and 100% of the original capacity. This demands that the costs are accounted
for correctly if the lifetime of the BESS is less than one year. These are rather
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Capacity after one year operation
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Figure 5.3.: Capacity versus years of BESS lifetime for tdt = 1, and t = 8760

theoretical considerations as it would be expect that the BESS lifetime would be
greater than one year; however, the cost curve also needs to be correctly defined
for short lifetimes in order to avoid a wrong decision of the algorithm.

Parameters in equation 5.63 are the present value pvb which is the initial invest-
ment in the BESS b per MW and the interest rate i. For yearsEsOperationb of
less than one year, it is assumed that the interest rate for the one year period is
to be paid and that the investment can be done in fractions of the initial invest-
ment. For instance, if yearsEsOperationb = 0.4, it is assumed that the BESS is
replaced 2.5 times in one year. If yearsEsOperationb ≥ 1 year(s), the formula
to calculate the annualized costs in equation 5.1 is applied which can be found in
[87], for instance.

Using the annualized cost method to account for the BESS costs assumes that
the investment is carried out over the least common multiple of the lifetimes of
the BESSs if more than one BESS is part of the optimum solution, or that the
salvage value of the BESS for periods shorter than the least common multiple of
the lifetimes is as high to not alter the investment decision.
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5.2 Constraints

∀b ∈ B : annualizedCostb =
pvb(1+i)

yearsEsOperationb
if yearsEsOperationb < 1

pvb · i (1+i)yearsEsOperationb

(1+i)yearsEsOperationb−1 if yearsEsOperationb ≥ 1

(5.63)

The annualized BESS costs for a lifetime of 1 to 20 years are exemplarily depicted
in Fig. 5.4 for a BESS b with pvb of 106€/MW and i = 0.1.
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Figure 5.4.: BESS lifetime versus annualized BESS costs per MW

In the next step, the final capacity is linked to the annualized costs of the
BESS by replacing yearsEsOperationb in equation 5.63 by equation 5.62.
The annualizedCostb in equation 5.64 are now a function of the capacity
FinalCapacityb, the present value pvb, the time step tdt and the interest rate
i.
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∀b ∈ B : annualizedCostb =

pvb (1+i)
0.2·t

tdt·8760 (1−F inalCapacityb)
if yearsEsOperationb < 1

pvb · i (1+i)
0.2·t

tdt·8760 (1−F inalCapacityb)

(1+i)
0.2·t

tdt·8760 (1−F inalCapacityb)−1
if yearsEsOperationb ≥ 1

(5.64)

Fig. 5.5 shows exemplarily the relation between capacity and annualized costs
per MW for one specific BESS. It can be concluded that this is a non-linear
function and thus a PLA has to be applied to account for the non-linearities.
The PLA is again based on constraints 5.43 to 5.45 where a = 5 in combination
with constraints 5.65 and 5.66. In addition to the points shown in Fig. 5.5, there
is one additional point included for this PLA which is (1.1, 0) for all BESSs b.
This enables to account for zero BESS costs (EsCostV sCapacityb = 0) if the
BESS b is not chosen indicated by BatteryIntb = 0, then the indicator constraint
5.60 is not enforced meaning that the lowest costs for this specific BESS b is
chosen in the optimization and that is zero for FinalCapacityb = 1.1. The value
1.1 is arbitrarily chosen and any point > 1 will achieve the desired effect (if the
algorithm is able to numerically distinguish the chosen point from 1).

In case a BESS b is in the optimum indicated by BatteryIntb = 1, FinalCapacityb

is restricted to 0.8 ≤ FinalCapacityb ≤ 1 and the BESS costs cannot be zero
because of constraints 5.61 and 5.60.

∀b ∈ B : PlaY5,b = EsCostV sCapacityb (5.65)

∀b ∈ B : PlaX5,b = FinalCapacityb (5.66)

Due to the fact that equation 5.64 is neither convex nor concave because of point
(1.1, 0), the adjacency condition in this PLA has to be modeled ([49, 54]). This
is enforced by constraint 5.46 to 5.49 for a = 5.
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Figure 5.5.: Capacity versus annualized costs of BESS per MW, i = 10%

Modeling of BESS costs in objective function

Besides defining the annualized BESS costs in relation to the capacity fade, the
decision variable NbSlicesActiveb is also necessary in order to calculate the costs
of the BESS b in relation to the activated slices. This would lead to the term
EsCostV sCapacityb · NbSlicesActiveb in the objective function but this for-
mulation is not possible in MILP. To tackle this problem, the techniques of
separable programming and PLA can be applied again. However, due to the
fact that NbSlicesActiveb has comparable small numerical values in relation to
EsCostV sCapacityb, tests with actual BESS parameters (parameters used in
chapter 7) indicated that the error of the PLA can be significant causing the
approximation of EsCostV sCapacityb · NbSlicesActiveb not being meaningful.
Therefore, the following formulation in constraints 5.67 and 5.68 is chosen instead
of separable programming:

∀b ∈ B : NbSlicesActiveb = 0 → EsCostOFb = EsCostV sCapacityb (5.67)

∀b ∈ B, ∧∀qb ∈ Qb : NbSlicesActiveb = qb + 1 →

EsCostOFb = EsCostV sCapacityb · (qb + 1)
(5.68)
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Two cases are to be addressed: First, an BESS b is not chosen (NbSlicesAcitveb =
0) and the costs for the BESS should be zero which is formulated in constraint 5.67.
As discussed above on page 78, EsCostV sCapacityb takes the value zero in this
case. In the second case, NbSlicesAcitveb > 0 which is formulated in constraint
5.68. The integer variable NbSlicesActiveb can be represented by a parameter
in each indicator constraint when to be multiplied with EsCostV sCapacityb and
separable programming becomes unnecessary.

In case constraints 5.67 and 5.68 cannot be implemented in a dedicated function
provided by a software package, they can be translated into indicator constraints
as described in [49].

The advantage of this formulation is that there is no approximation error incurring
by a PLA allowing for a more accurate calculation of EsCostOFb (there might
still be an error caused by modeling the indicator constraints 5.67 and 5.68 but
it is considered as non-relevant). On the other hand, maxNbSlicesb should be
chosen carefully as larger values can cause longer times to solve the model. This
depends on the input parameters to the model and on the computer’s specifica-
tions that is used to solve the model. This could be overcome be several iterations
of running the optimization problem, starting with a relatively large slice size and
then refining the slice size around the previously calculated optimum.

}
(This curly brace indicates the end of the sizing function)

SCHEDULING AND DISPATCH FUNCTION

For the scheduling and dispatch function, the BESS size is known in advance
and the annualized BESS cost can be directly accounted for in the objective
function (see constraint 5.7). This leads to the fact that the problem can be
tightened because the above introduced constraints 5.43 to 5.68 are not part of
the problem formulation for these two functions. However, when implementing
the above formulation in a software package, the decision variables introduced
in these constraints are still defined in the problem. Therefore, tightening the
unused decision variables in the scheduling and dispatch function (see constraints
5.69 to 5.78) allows solving the problem faster. This can be done in the following
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manner and is only executed when esInvestSwitch = 0 (see the following else
statement):

Else : {

∀a ∈ A ∧ 0 ≤ pa ≤ pa − 2 ∧ ∀b ∈ B : IntPLAa,pa,b = 1 (5.69)

∀a ∈ A ∧ ∀pa ∈ Pa ∧ ∀b ∈ B : λa,pa,b = 0 (5.70)

∀b ∈ B : NbSlicesActiveb = 1 (5.71)

∀b ∈ B : EsCostV sCapacityb = 1 (5.72)

∀b ∈ B : BatteryInt = 1 (5.73)

∀b ∈ B : FinalCapacityb = 1 (5.74)

∀b ∈ B : ReciprocalNbSliceActiveb = 1 (5.75)

a = 0, 1, 2, 3 ∧ ∀b ∈ B : Za,b = 1 (5.76)

a = 0, 1, 2, 3 ∧ ∀b ∈ B : Sa,b = 1 (5.77)

∀b ∈ B : EsCostOFb = 1 (5.78)

} (This curly brace indicates the end of the constraints used specifically in the
scheduling- and dispatch function)

5.2.4. Converter

The converter transforms the power input (Chargerb,t) into the energy stored
in the SosNodeb,t while removing energy from the SisNodeb,t (constraints 5.79
and 5.80). Also compare Fig. 5.2. The term converter does not mean a power
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electronic device. However, in this model, it is the unit responsible for charging
and discharging the BESS while accounting for its efficiency. The source stor-
age node SosNodeb,t can be assumed as the upper pond of a reservoir while the
SisNodeb,t can be considered as the lower one. While charging, the “medium”
in the SisNodeb,t is pumped to the SosNodeb,t. When discharging the stor-
age, the “medium” flows from the SosNodeb,t to the SisNodeb,t. The decision
variables ChargerF lowb,t and DischargerF lowb,t are assigned to the flow of the
“medium” in the storage. Fig. 5.2 illustrates this by the arcs pointing from the
SisNodeb,t through the converter to the SosNodeb,t which can be considered as
the ChargerF lowb,t and vice versa for the DischargerF lowb,t.

The efficiency is considered as a constant in the chargerConversionFactor and
dischargerConversionFactor which are the reciprocal of the square root of the
round-trip efficiency of the BESS, or the square root of the round-trip efficiency,
respectively, if no separate values (e.g. based on laboratory test) exist. Further,
non-linearities are not considered for charging- or discharging the BESS because
it is assumed that the storage is operated below its physical capabilities and that
the efficiency can be assumed constant in that region. Physically, the maximum
charging- and discharging power rates of BESSs depend (amongst others) on the
voltage and are thus related to the SoC. However, in practice, battery energy
storage management systems usually operate the BESS below their physical ca-
pabilities to ensure a greater lifetime of the BESS and this allows to assume
maximum charging- and discharging power rates that are constant from 0% SoC
to 100% SoC. This SoC range is not the physical possible range but limited by the
battery management system (also see discussion in sec. 2.5 on page 22). Hence,
no piecewise approximation of the charging- and discharging efficiency is made at
this point in order to take non-linear efficiency curves into account.

Moreover, it is assumed that participation in the RP market requires that some
amount of energy bid on the regulating power market will actually be requested
by the operator. This is considered by the regDownEnergyF lowFactor and the
regUpEnergyF lowFactor which has to be set between 0 and 1, with 1 signifying
the operator calls for the entire bid.
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Charger converter flow

The ChargerF lowb,t is modeled by 5.79:

∀b ∈ B ∧ ∀t ∈ T :

Chargerb,t + ChargerRegDownb,t · regDownEnergyF lowFactor

= chargerConversionFactorb · ChargerF lowb,t

(5.79)

5.80 allows to limit ChargerF lowb,t. This should only be made if such a physical
limit exists. Otherwise, a large number should be used for chargerF lowMaxb,t

because the actual charging- and discharging power rating limitations are defined
in constraints 5.86 and 5.90.

∀b ∈ B ∧ ∀t ∈ T :

0≤ChargerF lowb,t≤chargerF lowMaxb

(5.80)

If the BESS is discharged, the stored energy in the SosNodeb,t has to be converted
into power which can be sold on the different power markets. When power is
requested from the storage, it flows out of the SosNodeb,t and back into the
SisNodeb,t. The efficiency of the discharger (dischargerConversionFactor) is
the square root of the round-trip efficiency.

Discharger converter flow

The DischargerF lowb,t is modeled by constraint 5.81:

∀b ∈ B ∧ ∀t ∈ T :

Dischargerb,t +DischargerRegUpb,t · regUpEnergyF lowFactor

= dischargerConversionFactorb ·DischargerF lowb,t

(5.81)

The parameter dischargerF lowMaxb,t in the constraint 5.82 should also be set
to a large value unless there exists a physical requirement to limit it.

∀b ∈ B ∧ ∀t ∈ T :

0≤DischargerF lowb,t≤dischargerF lowMaxb

(5.82)
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Charger commitment

The charger commitment is determined through constraints 5.84, 5.93, and 5.94
where ChargerCommitmentb,t is a Boolean decision variable and can be either
0 or 1. It ensures that the BESS can only be charged or discharged but not
both at the same time within one time step, see sec. 5.2.4. This unit commitment
approach is based on [88]. Moreover, the minimum- and maximum charging power
rates (chargerMin and chargerMax) are specified by constraints 5.83 and 5.86.

The concept of finding the optimum power rating of the BESS by searching for
the optimum number of slices NbSlicesActiveb (which can be considered as a step
function) has been adapted from [86], constraint 7. The continuous decision vari-
able NbSlicesActiveT imestepChargerb,t is included in constraints 5.83 to 5.86
in order to avoid the term ChargerCommitmentb,t ·NbSlicesActiveb because a
Boolean commitment variable which would be multiplied with an integer decision
variable is not feasible in MILP. Another solution would be to tackle the problem
again by separable programming and PLA. However, this would lead to a more
complicated model. A better solution is to insert two extra constraints (5.84 and
5.85) to overcome this problem. This forces NbSlicesActiveT imestepChargerb,t

to be 0 if ChargerCommitmentb,t is 0, otherwise it cannot be greater than or
equal the optimum slice number NbSlicesActiveb which is a decision variable.
The upper bound of NbSlicesActiveb is maxNbSlicesb for all BESSs b.

∀b ∈ B ∧ ∀t ∈ T :

chargerMinb ·NbSlicesActiveT imestepChargerb,t

≤ Chargerb,t − ChargerPrimaryUpb,t

(5.83)

∀b ∈ B ∧ ∀t ∈ T :

NbSlicesActiveT imestepChargerb,t

≤ ChargerCommitmentb,t ·maxNbSlicesb

(5.84)

∀b ∈ B ∧ ∀t ∈ T :

NbSlicesActiveT imestepChargerb,t

≤ NbSlicesActiveb

(5.85)
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∀b ∈ B ∧ ∀t ∈ T :

chargerMaxb ·NbSlicesActiveT imestepChargerb,t

≥ Chargerb,t + ChargerRegDownb,t + ChargerPrimaryDownb,t

(5.86)

Using the possibility to provide PFR up (ChargerPrimaryUpb,t, constraint 5.83)
or PFR down (ChargerPrimaryDownb,t, constraint 5.86) based on the current
charging level (Chargerb,t), is adapted from [58].

Discharger commitment

Similarly to the above, discharging of the BESS is formulated through constraints
5.87 to 5.90.

∀b ∈ B ∧ ∀t ∈ T :

dischargerMinb ·NbSlicesActiveT imestepDischargerb,t

≤ Dischargerb,t −DischargerPrimaryDownb,t

(5.87)

∀b ∈ B ∧ ∀t ∈ T :

NbSlicesActiveT imestepDischargerb,t

≤ DischargerCommitmentb,t ·maxNbSlicesb

(5.88)

∀b ∈ B ∧ ∀t ∈ T :

NbSlicesActiveT imestepDischargerb,t

≤ NbSlicesActiveb

(5.89)

∀b ∈ B ∧ ∀t ∈ T :

dischargerMaxb ·NbSlicesActiveT imestepDischargerb,t

≥ Dischargerb,t +DischargerRegUpb,t +DischargerPrimaryUpb,t

(5.90)

Similarly to the charger commitment, using the possibility to provide
PFR down (DischargerPrimaryDownb,t, constraint 5.87) or PFR up
(DischargerPrimaryUpb,t, constraint 5.90) based on the current discharging
level (Dischargerb,t) is adapted from [58].
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Other converter constraints

The constraint 5.91 determines by means of the Boolean decision variable
BatteryIntb whether one BESS technology is included in the optimum solution
if BatteryIntb = 1.

∀b ∈ B : NbSlicesActiveb≤BatteryIntb ·maxNbSlicesb (5.91)

The if-then-statement in constraints 5.92 to 5.94 is used to tighten the problem
formulation. If the constraint in 5.93 is sufficient, the problem formulation is
tighter and the problem can be solved faster than using constraint 5.94. The
tighter formulation is only possible if constraint 5.92 is true and in this case the
optimum solution does not change for one specific constraint (which both ensure
that either the charger or the discharger is activated but not both at the same
time).

If : {

∀b ∈ B : chargerMinb≤0.0001 ∧ dischargerMinb ≤ 0.0001 (5.92)

}

Then : {

∀b ∈ B ∧ ∀t ∈ T :

ChargerCommitmentb,t +DischargerCommitmentb,t = BatteryIntb
(5.93)

}

Else : {

∀b ∈ B ∧ ∀t ∈ T :

ChargerCommitmentb,t +DischargerCommitmentb,t ≤ BatteryIntb
(5.94)
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}

The following if-statement is used to specify constraint 5.96 only for the sizing
function. The purpose of this constraint is to limit the number of different BESS
technologies to less than or equal maxNbEs.

If : {

esInvestSwitch = 1 (5.95)

}

Then : {

∑
b

BatteryIntb ≤ maxNbEs (5.96)

}

5.2.5. Wind power plant (WPP)

The WPP is modeled in constraints 5.97 to 5.101. The WindSpott decision
variable is the amount of power delivered each time step to the DA market from
the WPP and the variablesWindRegUpt andWindRegDownt define the amount
of wind power delivered to the RP up- and down power market, respectively. The
regUpEnergyF lowFactor and regDownEnergyF lowFactor are factors between
0 and 1 that reduce the amount of energy delivered to the RP market because
a unit may not be called for an entire hour but only for a limited time which is
unknown in advance. This factor can be adjusted in order to fit a specific power
market and the expectation of the market participant.

According to the DK1 market rules (see sec. 2.8), market participants can simul-
taneously participate in the RP up and -down market and they can bet that the
upwards- and downwards RP are both called within the same hour. If this is the
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case, the energy delivered for RP up can cancel out the energy delivered to the RP
down market while receiving payments for up and down RP. However, it is more
likely that only one direction of RP is called and that case is assumed for this
model. This is implemented by the Boolean variables WppRegUpCommitmentt

and WppRegDownCommitmentt (see constraints 5.99 to 5.101) which ensure
that onlyWindRegUpt orWindRegDownt can be provided within the same time
step. In case the result of the optimization algorithm is that WindRegDownt

should not be provided in one time step, the plant operator can still manually
decide to bid for WindRegDownt according to his or her judgment.

∀t ∈ T :

WindSpott +WindRegUpt · regUpEnergyF lowFactor

≤ windMaxt

(5.97)

∀t ∈ T :

WindRegDownt · regDownEnergyF lowFactor

≤WindSpott

(5.98)

∀t ∈ T :

WindRegUpt · regUpEnergyF lowFactor

≤ windMaxt ·WppRegUpCommitmentt

(5.99)

∀t ∈ T :

WindRegDownt · regDownEnergyF lowFactor

≤ windMaxt ·WppRegDownCommitmentt

(5.100)

∀t ∈ T :

WppRegDownCommitmentt +WppRegUpCommitmentt = 1
(5.101)

Data for the parameter windMaxt depend on the preferred function of the al-
gorithm, whether the algorithm is used for the scheduling- or dispatch problem
or for the sizing problem. It can be either the best available forecast for wind
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power production or it can be an actual wind power production time series which
is explained below.

Scheduling- and dispatch function

For the scheduling- and dispatch function, the forecasted wind power production
is to be used. The dispatch function can make use of a better forecast than the
scheduling function because it is closer to the actual operation.

∀t ∈ T : windMaxt = windForecastt (5.102)

Sizing function

In contrast to the scheduling- and dispatch function, the sizing function demands
that the actual (historic) WPP production data is used for windMaxt.

∀t ∈ T : windMaxt = actualWppProductiont (5.103)

Constraints 5.102 and 5.103 are not part of the optimization problem but indicate
what data should be used for windMaxt.

5.2.6. Day-ahead (DA) market node

The DA market constraints are expressed in constraints 5.104 to 5.108.
Dischargerb,t, WindSpott, and Purchaset flow into the market node while
Chargerb,t and Salet flow out of it.

The decision variables BuPowert and BdPowert are needed for the dispatch
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function and are explained in the next subsection.

∀t ∈ T :
∑

b

Dischargerb,t +WindSpott

+Purchaset +BuPowert

=
∑

b

Chargerb,t + Salet +BdPowert

(5.104)

∀t ∈ T : purchaseMint≤Purchaset≤purchaseMaxt (5.105)

∀t ∈ T : saleMint≤Salet≤saleMaxt (5.106)

∀t ∈ T : 0≤BuPowert≤buMax (5.107)

∀t ∈ T : 0≤BdPowert≤bdMax (5.108)

At this point, the input data needed for the scheduling- and sizing function are
discussed separately from the input data needed for the dispatch function.

Scheduling- & sizing function

The input data needed for the scheduling- and sizing function are mentioned here
without further explanation because the concept is introduced in sec. 5.2.7 below.

The balance up BuPowert and balance down BdPowert variables for the DA
market have to be set equal zero (see equations 5.109 and 5.110).

buMax = 0 (5.109)

bdMax = 0 (5.110)
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Additionally, the variables purchaseMaxt and saleMaxt are used to define the
maximum amount that should be purchased or sold from or to the DA market in
each time step t. If this is unrestricted, large values are used for these parame-
ters. Moreover, minimum sales and purchases can be specified. This is defined in
equations 5.111 and 5.112 and they are assumed to be zero in this study. These
minimum values depend on the market participants who can choose other mini-
mum amounts if desired.

∀t ∈ T : purchaseMint = 0 (5.111)

∀t ∈ T : saleMint = 0 (5.112)

Dispatch function

The parameter obligationPurchase is the awarded amount of purchase on the
DA market and is further described in sec. 5.2.7 below.

∀t ∈ T : purchaseMint = obligationPurchaset (5.113)

∀t ∈ T : purchaseMaxt = obligationPurchaset (5.114)

The parameter obligationSalet is the amount that got awarded on the DA market
for sales and is also described in sec. 5.2.7 below.

∀t ∈ T : saleMint = obligationSalet (5.115)
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∀t ∈ T : saleMaxt = obligationSalet (5.116)

The parameters buMax and bdMax have to be chosen large enough to allow
proper dispatching as they limit the amount of power that is available for upwards-
and downwards regulation.

5.2.7. Concept of dispatch function

This sub-section discusses the implementation of the dispatch function concept
and how input data differs for the different functions. As already explained above,
the developed formulation is written in a generic manner in order to suit all three
different functions and the user only needs to adjust input data for a specific
function. First, input data required for the scheduling- and sizing function is
discussed.

Scheduling- & sizing function

The dispatch problem is addressed as discussed in sec. 4.2 on page 48 according to
[73] with the difference that it is applied on the DA- and ancillary service markets
simultaneously. Each market has its own market node as illustrated as “Market”
in Fig. 5.6. For simplicity, the inflow into the market node is only coming from the
WPP in Fig. 5.6 which is previously called Pg in Fig. 4.1 but there might also be
additional inflows into the node. The outflow of each market for the scheduling-
and sizing function is a decision variable that defines how much power is assigned
(scheduled) to each market in each time step called “Decision Variable” in Fig. 5.6,
left-hand side. In addition to that, there is one more inflow and outflow connected
to each market for the purpose of the dispatch function. The inflow is called “Bu”
while the outflow is called “Bd” (see Fig. 5.6). These are two decision variables of
no use for the scheduling- and the sizing function and are thus set equal to zero
for all time steps (left side of Fig. 5.6).

To summarize, there is one node for each power market and each node has an
inflow from the source of power generation and an outflow to a power market. In
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addition, every market has an in- and outflow for dispatch purpose which is set
equal zero for the scheduling- and sizing function. Moreover, the market for PFR
and RP -up and -down are each treated as a separate market (one for upwards
regulation and one for downwards regulation). In case of RP down, the “Decision
Variable” becomes an inflow into the “Market” node and the WPP and BESS are
an outflow.

WPP

MarketBu

Bd

Decision 

Variable

=0

=0

Scheduling & sizing function

WPP

MarketBu

Bd

Obliga-

tion

0

0

Dispatch function

Figure 5.6.: Variation of input data between scheduling & sizing function and
dispatch function (concept adapted from [73])

Dispatch function

The formulation of the dispatch problem makes use of the decision variables called
“Bu” and “Bd” in Fig. 5.6 (right-hand side) which can, in this case, take any
value greater than or equal to zero (indicated by the white fill). Contrary to the
scheduling- and sizing function, the “Decision Variable” from the left-hand side
of Fig. 5.6 becomes now an obligation in the dispatch function and has to take
a certain value. This value should equal the amount awarded on that specific
market (see e.g. constraints 5.113 to 5.116 for the DA market) based on the
result of the scheduling function.

In order to call the dispatch function, a forecast of the penalty costs for imbalances
is needed. The forecasted imbalance costs are multiplied with the “Bu” or “Bd”

93



Chapter 5 Optimization problem formulation

decision variables accordingly in the objective function (compare equations 5.12
to 5.21).

5.2.8. Ancillary services

This subsection discusses the formulation of the RP- and PFR markets. First,
the RP formulation is discussed followed by the formulation of PFR.

Regulation power up

RP upwards regulation (RegUpt) can be provided by the BESS (reducing charging
power or increasing discharging power: see sec. 5.2.4) or by increasing the WPP
output. These three possibilities have to be summed up in constraint 5.117 which
is the RP up power market node. Constraint 5.118 specifies the lower and upper
limit for RegUpt (which can be considered as bounds). Also, the decision variables
for the dispatch function are included in constraints 5.119 and 5.120 which can
be regarded as lower and upper bound on BuRegUpt and BdRegUpt.

∀t ∈ T : RegUpt +BdRegUpt

=
∑

b

DischargerRegUpb,t +WindRegUpt +BuRegUpt
(5.117)

∀t ∈ T : regUpMint≤RegUpt≤regUpMaxt (5.118)

∀t ∈ T : 0≤BuRegUpt≤buRegUpMax (5.119)

∀t ∈ T : 0≤BdRegUpt≤bdRegUpMax (5.120)

Scheduling & sizing function In case the algorithm is used for the scheduling-
or sizing function, the constant regUpMaxt needs to have assigned a proper value
for all time steps. If there is a maximum quantity that should not be exceeded,
the desired value to regUpMaxt should be assigned. If not, it should be a large
number for all time steps. If the desired minimum is zero, it means that there is
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no specific quantity that is to be bid in this market, and in this case regUpMint

gets assigned the value zero for all time steps.

Moreover, BuRegUpt and BdRegUpt have to be set equal to zero in the
scheduling- and sizing problem (see equations 5.121 and 5.122). Hence, balancing
power will be zero in the optimum solution.

buRegUpMax = 0 (5.121)

bdRegUpMax = 0 (5.122)

Dispatch function When the dispatch function is used, the parameters
regUpMint and regUpMaxt are both equal to the amount awarded on the RP
up market in each time step (obligationRegUpt), see equations 5.123 and 5.124.
In this way the decision variableRegUpt equals the amount awarded on the RP
up market. The parameters buRegUpMax and bdRegUpMax have to be able to
take values greater than or equal zero.

∀t ∈ T : regUpMint = obligationRegUpt (5.123)

∀t ∈ T : regUpMaxt = obligationRegUpt (5.124)

Regulation power down

Similar to constraint 5.117, the RP down market node is defined by the equal-
ity constraint 5.125 but this time RegDownt is flowing into the node and
ChargerRegDownb,t and WindRegDownt is flowing out of the node. Constraint
5.126 specifies the lower and upper limit for RegDownt and can be implemented
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in a programming package as lower- and upper bound. Moreover, the decision
variables for the dispatch function for RP down are also included and constraints
5.127 and 5.120 can be regarded as lower- and upper bound on BuRegDownt and
BdRegDownt.

∀t ∈ T : RegDownt +BuRegDownt

=
∑

b

ChargerRegDownb,t +WindRegDownt +BdRegDownt
(5.125)

∀t ∈ T : regDownMint≤RegDownt≤regDownMaxt (5.126)

∀t ∈ T : 0≤BuRegDownt≤buRegDownMax (5.127)

∀t ∈ T : 0≤BdRegDownt≤bdRegDownMax (5.128)

Scheduling & sizing function The limits of BuRegDownt and BdRegDownt

for the sizing function are set in the same manner as for RP up above.

buRegDownMax = 0 (5.129)

bdRegDownMax = 0 (5.130)

Dispatch function In the dispatch function, regDownMint and regDownMaxt

are equal to the amount awarded on the RP down market (obligationRegDownt).

∀t ∈ T : regDownMint = obligationRegDownt (5.131)

∀t ∈ T : regDownMaxt = obligationRegDownt (5.132)
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Primary frequency regulation up

As stated on page 28, PFR can only be provided by WPPs in DK1 if they are
backed up by conventional generation units. This means that only the BESS can
provide PFR when considering VPPs. BESSs count as conventional generation
unit in DK1 because of their predictable output and fast enough ramp rates. It
would only make sense to let the WPPs provide PFR if the up- and down ramping
would be cheaper than with the conventional power generation source. This case
is not considered in this study.
PFR upwards can be provided by decreasing charging power or increasing dis-
charging power (see constraints 5.83 and 5.90). The PFR up market node can
then be defined in constraint 5.133 which also includes decision variables for the
dispatch function BdPrimaryUpt and BuPrimaryUpt.

∀t ∈ T : PrimaryUpt +BdPrimaryUpt

=
∑

b

ChargerPrimaryUpb,t +
∑

b

DischargerPrimaryUpb,t

+BuPrimaryUpt

(5.133)

Again, assigning limits to the decision variables of PFR up in constraints 5.134 to
5.136 is done in the same manner as for RP up on page 94 and can be implemented
as lower- and upper bounds.

∀t ∈ T : primaryUpMint≤PrimaryUpt≤primaryUpMaxt (5.134)

∀t ∈ T : 0≤BuPrimaryUpt≤buPrimaryUpMax (5.135)

∀t ∈ T : 0≤BdPrimaryUpt≤bdPrimaryUpMax (5.136)

Scheduling & sizing function The limits of BuPrimaryUpt and
BdPrimaryUpt for the scheduling- and sizing function are set in equations 5.137
and 5.138.

97



Chapter 5 Optimization problem formulation

buPrimaryUpMax = 0 (5.137)

bdPrimaryUpMax = 0 (5.138)

Dispatch function In the dispatch function, primaryUpMint and
primaryUpMaxt are equal to the amount awarded on the PFR up market
(obligationPrimaryUpt).

∀t ∈ T : primaryUpMint = obligationPrimaryUpt (5.139)

∀t ∈ T : primaryUpMaxt = obligationPrimaryUpt (5.140)

Primary frequency regulation down

Similar to the RP down market, the formulation for the PFR down market is
provided by constraints 5.141 to 5.144.

∀t ∈ T : PrimaryDownt +BuPrimaryDownt

=
∑

b

ChargerPrimaryDownb,t +
∑

b

DischargerPrimaryDownb,t

+BdPrimaryDownt

(5.141)

Alike for PFR up, constraints 5.142 to 5.144 are the limits for the decision variables
of PFR down.

∀t ∈ T : primaryDownMint≤PrimaryDownt≤primaryDownMaxt (5.142)
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∀t ∈ T : 0≤BuPrimaryDownt≤buPrimaryDownMax (5.143)

∀t ∈ T : 0≤BdPrimaryDownt≤bdPrimaryDownMax (5.144)

Scheduling & sizing function Again, the limits of BuPrimaryDownt and
BdPrimaryDownt for the scheduling- and sizing function are set in the same
manner as PFR up above.

buPrimaryDownMax = 0 (5.145)

bdPrimaryDownMax = 0 (5.146)

Dispatch function In the dispatch function, primaryDownMint and
primaryDownMaxt are equal to the amount awarded on the PFR down mar-
ket (obligationPrimaryDownt).

∀t ∈ T : primaryDownMint = obligationPrimaryDownt (5.147)

∀t ∈ T : primaryDownMaxt = obligationPrimaryDownt (5.148)

Additional primary frequency regulation requirement

In this section, it is explained why constraints 5.23, 5.25, 5.27, 5.30, 5.32, and
5.34 are required: In the Danish market (DK1), PFR has to be provided for max-
imum 15 min continuously and afterwards a 15min break is allowed (see sec. 2.8
on page 28). Therefore, during one hour, the provider of PFR can be asked to
deliver maximum 30 min continuous power. If the time step is one hour, the
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primaryUpReserveFactor and primaryDownReserveFactor in sec. 5.2.1 and
sec. 5.2.2 on page 62ff have to be equal to 0.5.

In this paragraph, the charging of the BESS is described (upper part of Fig. 5.7):
On the left-hand side, the case of charging is illustrated between 0MW of charge
and the maximum charging power. The actual charging power has to be between
the minimum and the maximum power rating (see constraints 5.83 and 5.86) and
the charging power of the BESS can at maximum be so high, that the battery
energy will not be violated. This is ensured by constraint 5.28. In case of providing
PFR down with the charger, the actual charging power can be increased in case
the BESS has to provide PFR down. This means that constraint 5.28 might
not be any longer sufficient to ensure that the maximum battery energy is not
exceeded and the extra constraints 5.30, 5.32, and 5.34 need to be added. These
constraints require that the sink node level is high enough meaning that the source
node level is low enough to be potentially charged with the extra energy coming
from the PFR downwards market (see a) in Fig. 5.7). Considering the case when
the charger provides PFR upwards power, no additional constraints are required
because the actual inflow in the source storage node will be equal or less then the
amount that is caused by the charging power.

Besides charging the BESS, the same considerations have to be made for dis-
charging the BESS (lower part of Fig. 5.7). In this circumstance, PFR upwards
can cause a higher discharge of the BESS than it would be caused without PFR.
Constraints 5.23, 5.25, and 5.27 ensure that the source node level is high enough
to be able to provide the extra discharge.

In summary, this chapter provides the problem formulation for the VPP. It has
to be highlighted that one problem formulation can be used in order to provide
the three individual functions of optimum scheduling, optimum sizing and opti-
mum dispatch. In the next three chapters, case studies are presented where each
function is discussed in more detail.
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Charger max

Charger = 0

Charging power

ChargerPrimaryDownb

ChargerPrimaryUpb

Charger SoC

SoC

SisNodeb

SosNodeb b)

SisNodeb

SosNodeb

a)

Discharger max

Discharger = 0

Discharging power

DischargerPrimaryUpb

DischargerPrimaryDownb

Discharger

Figure 5.7.: Primary frequency regulation requirement
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6. Case Study I: Optimum
scheduling

This case study demonstrates the optimum scheduling function of the developed
algorithm which is used to find the optimum operation schedule that maximizes
profit of the VPP. Besides the operation schedule, the results of the scheduling
function indicate the amounts of power that should be bid into each power market.
This case study is structured as follows: First, a numerical example is discussed
that indicates the model output over an 48 hour interval. It is used to proof the
model by common sense if results are meaningful. In the second part, actual mar-
ket data from the years 2010 until 2013 are used as input data into the model and
results are presented. Moreover, various configurations of the VPP are discussed
which are used to indicate the profitability of the BESS.

6.1. Model implementation

The optimization model has been implemented based on the optimization pro-
gramming language (OPL) of the IBM® iLog® Optimization Studio (version 12.5)
and CPLEX® is used to solve the problem. All input data are prepared with Mat-
lab® and the output is stored in MS Excel® files which are read by OPL. When
the optimization problem is solved, all results are stored in an MS Excel® file.
The optimization is performed for monthly data in order to solve the model rea-
sonably fast. Thereby, the final SoC and the total capacity-fade of the last period
of each month are stored and these values are used as input for the next month.
The time to solve the optimization for different months for a single BESS varies
but takes about 1 to 30 minutes depending on which month is optimized (more
time is needed for hybrid BESSs) on a laptop computer with 64-bit Windows®
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7 operating system, 8GB memory, and Intel® Core i7 CPU with 2.67GHy. This
time is achieved with special CPLEX® tuning parameters which are used for
all optimizations performed in this work in order to reduce the computational
time. A copy of the input parameters can be found in Appendix B on page 181.
These parameters have been found based on trial and error. For future work,
it is recommend to use the tuning tool of CPLEX® in order to find even better
parameters.

6.2. Results numerical example

The numerical example discussed in this section is solved for 48 time steps as-
suming a two day period with one hour time steps. The purpose of this example
is to demonstrate that the optimization model is correctly formulated and imple-
mented. The parameters used for this example are taken from Tab.A.1 on page
174 for the li-ion BESS except the parameters listed in Tab. 6.1. These parame-
ters differ because the effect of realistic parameters would not be clearly visible
in an example of 48 periods with hourly discretization. Therefore, unrealistic
high values are chosen to demonstrate their impact over a short optimization pe-
riod. Moreover, for the sake of simplicity, chargerMaxb, dischargerMaxb, and
sosNodeMaxb are set to 1 and the initSocb is set to 50%.

capacityFadeRateb

[
MW

MW h

]
1 chargerMaxb [MW ] 1

capacityFadeRateThroughputb
[

MW h
MW h

]
1 dischargerMaxb [MW ] 1

selfConsumptionb

[
MW h
MW h

]
0.1 initSocb

[
MW h
MW h

]
0.5

selfDischargeRateb

[
MW

MW h

]
5 sosNodeMaxb [MWh] 1

Table 6.1.: Input parameters for numerical example different from li-ion BESS
parameters of Tab.A.1 on page 174.

The numerical example is based on two parts. In the first part (see page 106), the
BESS only participates on the DA market without the ancillary service markets.
In the second part (see page 108), it is assumed that the VPP can participate in
all power markets including the markets for ancillary services.
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6.2 Results numerical example

Fig. 6.1 shows the results for the first part. To use the problem formulation
described in chapter 5 above for this simplified case, PFR prices and prices for
RP up are set equal to 0, and RP down prices are set to large negative values
(-500€/MWh) to avoid scheduling power to these markets. Moreover, the WPP
output is the same as illustrated in Fig. 6.2 b).

Fig. 6.1 depicts that the BESS is charged with maximum power when the DA
market price is low in time step 4 and 18 as well as in time step 29 in order to sell
power in time step 1, 8, and 32 and to avoid being recharged when prices are high
(e.g. time step 34). Moreover, the exaggerated effect of high self-consumption
is shown where the BESS has to be re-charged from time step 12 to 16, just
before prices are lowest, in order to provide enough power for the BESS own
consumption. During this period, the charging power is just as high that it can
cover the self-consumption of the BESS. Fig. 6.1a) also shows that the BESS avoids
being recharged when prices are high (e.g. time step 9 to 11 and 33 to 36) and
that recharging occurs with maximum power once prices are lowest or favorable
(time step 4, 18, and 29). Moreover, the effect of losses due to inefficiency can
be seen in the same time steps when the storage is charged with 1MW but the
change in SoC shown in Fig. 6.1 b) is less than 100%. Furthermore, the same
figure also shows that the SoC is always between 0% and 100%. In addition to
the SoC, the impact of capacity fade of the BESS is also illustrated in Fig. 6.1
b) on the right y-axes. The BESS constantly loses capacity during its operation.
It has to be remembered that the capacity fade is chosen unrealistically high for
this example. The results also indicate that the BESS is completely emptied at
the final time step. If the SoC of the last time step would be greater than zero,
energy could still be sold to the market and the solution would not be optimal.

Fig. 6.2 shows the results for the second part where the VPP can participate in
all power markets including the ancillary service markets and thus results are
more complex to be interpreted. The same input data are used as for the first
part discussed in Tab. 6.1. Market prices from the second part are depicted in
subplot a) in Fig. 6.2 which are positive values except for RP down (negative RP
down prices are explained in sec. 2.8 above). If RP down prices are not shown in
Fig. 6.2 a), they are set to -500€/MWh in order to avoid sales to the RP down
market because there was no demand for RP down in that hour from the TSO.
In Fig. 6.2 b), the WPP is assumed to have a maximum output of 3MW and
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Figure 6.1.: Results of numerical example for DA market without WPPs. a)
Charging- and discharging power, DA market price; b) SoC and capacity

the power generation of the WPP scheduled to the DA market (WindSpott) is
shown as a red dashed line while windMaxt is shown as a gray thin solid line.
The same figure also shows sales and purchases to and from the DA market.
Moreover, the right y-axes shows the bar chart indicating the difference between
the WPP output and sales to the DA market. Fig. 6.2 c) shows the BESS behavior
indicating the SoC and charging- and discharging power and Fig. 6.2 d) presents
the decision variable values for the ancillary service markets.

This paragraphs explains the results depicted in Fig. 6.2 and the reader is referred
to the numbers in blue color in Fig. 6.2 that correspond to the following numbered
list:

1. In the first time step the BESS is charged from purchases on the DA market
because the WPP production is not high enough that the BESS could be
charged from the WPP.

2. During periods of high RP down prices, the WPP and the BESS both sell
power to the RP down market.

3. RP up is sold by the WPP and the BESS.

4. When ancillary service market prices are 0€ (or -500€ for RP down), no
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6.2 Results numerical example

sales occur to the ancillary service markets.

5. Power is scheduled to the PFR up market for high PFR up prices.

6. Power is scheduled to the PFR down market for high PFR down prices.

7. The SoC changes without the charger or discharger being activated and
changes in the SoC are higher than the self-consumption because the BESS
provides RP up or -down which affects the SoC.

It has to be noted that the SoC in Fig. 6.2 c) is shifted by minus one time step
to match the time-step of charging- and discharging power. This is due to the
formulation of the source- and sink storage nodes in sec. 5.2.1 and sec. 5.2.2. In
addition, it has to be stressed that the exaggerated input parameters of Tab. 6.1
are also used for Fig. 6.2.

Based on Fig. 6.2, it can be concluded that the BESS is able to schedule power to
the various power markets in order to maximize profit of the VPP and that the
WPP is able to participate on the DA- and RP markets.

The next section discusses the application of the proposed optimization model on
actual market data.
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Figure 6.2.: Result numerical example: Includes DA- and ancillary service markets,
BESS, and WPPs. a) Market prices; b) DA market related decision variables; c)
BESS behavior; d) Ancillary service market results
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6.3 Results case study I

6.3. Results case study I

This section applies the developed optimization model on a lead-acid and a li-ion
BESS with real market data. All input data for this case study are summarized in
Appendix A on page 171. References for the input data, if not otherwise stated,
can be found in the previous chapters. If a specific BESS should be used, first
the BESS would need to be parametrized and then the developed formulation
can be applied on the specific parameters. Regarding the efficiency stated in
Appendix A, a remark has to be made that data refer to the ES efficiency and
not to the efficiency of the whole BESS including converter or transformer losses,
for instance. Due to the fact that efficiency data for entire BESSs were unavailable,
efficiency data of only the battery ESs are taken into account which omit, e.g.
converter losses, and thus, these data are rather optimistic for the whole BESS.

Market data used for this case study are from the Danish power market west
(DK1) and dates from beginning of 2010 until the end of 2013. The Danish
TSO (Energinet.dk, see [1]) makes market data freely available. The wind power
production data discussed in Appendix A is used for all four years.

Further, the annualized investment costs esCostPerMwb are calculated based on
the BESS’s costs stated in Tab. 2.1 on page 18 and it is assumed that the li-ion
BESS has to be replaced after six years while the lead-acid BESS needs to be
replaced already after three years. Further, an interest rate i of 10% is used. The
optimization is discretized into hourly time steps because market data are only
available on hourly bases. Due to the complexity of the model, the optimization is
split into months in order to allow solving the problem reasonably fast. Thereby,
the final SoC and the final available capacity are used as input data for the
first time step of the next month. Moreover, in case that no RP up or -down was
demanded in one specific hour, the price is set to -500€/MWh to avoid scheduling
power for this market.

Fig. 6.3 illustrates the breakdown of revenues resulting from the different power
markets for four different years. The pie-charts in a) (first row) show the results
for one MW li-ion BESS regarding the operation on the DA-, RP-, and PRF
market including WPPs. The other pie charts in row b) use the same scenario
with one MW lead-acid BESS. In the following, Fig. 6.3 is discussed:
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Chapter 6 Case Study I: Optimum scheduling

• Sales to the DA market have the second biggest share. On the other hand,
DA purchases are very low compared to the sales. One reason for a much
higher share of sales than purchases is that WPPs can only sell their power
generation into the RP up-, RP down- and into the DA market but they
have no need to purchase power. In addition to this, purchases on the DA
market are slightly more expensive than sales within the same hour. This
is due to the introduced purchase cost supplement in order to avoid selling
and buying within the same hour. This leads to the fact that the BESS is
charged with power from the WPP and only if this is not sufficient, power
from the DA market is bought.

• RP up has the biggest share for all years and comparing the size of the
share between the two different BESSs, little difference can be seen. The
lead-acid BESS has slightly higher shares of RP up sales. One reason for
the RP up market sales having a higher share than DA market sales, is the
fact that uncertainty of power demand and prices for the RP up market
are not present in this optimization due to the usage of historic data. This
means that RP up is privileged whenever activated because prices have to
be at least as high as the DA market price of the hour in question (see page
28).
Compared to RP up, RP down contributes on a much smaller level to the
share of revenues over all years, considering the lead-acid and li-ion BESS.
It has to be remarked that RP down prices have most of the time negative
values (sellers of RP down need to pay in order to provide this service) but
there are instances when they have positive values. The optimization algo-
rithm makes use of positive RP down values as they indicate that absorbing
power is reimbursed. From 2010 until 2013, the accumulated revenues from
the RP down market are positive for a) and b) and are displayed in the
pie chart for these years but are not visible for some years due to their low
values.

• The main difference between both BESSs can be found in the revenues de-
riving from the PFR up market which has the third biggest share of revenues
for both BESS technologies. The li-ion BESS is able to generate a higher
share from this market compared to the lead-acid BESS. One interpretation
is that it is caused by the low charging power capabilities of lead-acid BESSs
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6.3 Results case study I

which restrict the amount of sales to the PFR market compared to li-ion
BESSs.
Comparing the PFR up and -down markets, the contribution of the PFR
down is low compared to the PFR up market. One reason is that prices for
PFR up are usually higher than PFR down prices within the same period.

DA market sales DA market purchases RP up RP down PFR up PFR down

a)

b)

2010 2011 2012 2013

Figure 6.3.: Revenue breakdown for a) li-ion battery and b) for lead-acid BESS
participating in different power markets

The profitability of a VPP based on a li-ion BESS serving different markets is
discussed in the following paragraph and results are depicted in Tab. 6.2. The
li-ion BESS has been selected exemplarily to highlight the effect of different con-
figurations of the VPP. All four cases have in common that there is wind power
generation included and sales as well as purchases can always be made on the DA
market. The profit is equal to the objective function value OF of the optimization.

Results of Tab. 6.2 show that the 1MW li-ion BESS is never more profitable than
the option without BESS when comparing the first and the second row, or the
third and fourth row. Tab. 6.2 also indicates that including the ancillary service
markets yields a considerable higher profit than just operating the BESS on the
DA market. Without the ancillary markets, the BESS can only be used for energy
arbitrage (buying when DA market prices are low and selling when DA market
prices are high). In order that li-ion BESSs become a profitable investment, the
investment costs in the BESS would need to decrease, the lifetime of the BESS
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Chapter 6 Case Study I: Optimum scheduling

would need to be extended, or the power- and ancillary service market prices need
to be more favorable.

Considering the results listed in Tab. 6.2, it has to be acknowledged that such
profit can only be generated with perfect foresight of market prices as well as WPP
production, and under the condition that all bids to the markets get awarded.
This is unlikely in practice and actual profits are likely to be lower. On the other
hand, the assumption of perfect foresight means that imbalances do not occur
which is also not true for real operations where the BESS can yield extra benefits
by reducing imbalance penalties incurred by the WPP.

Ancillary

service

markets

DA market WPP BESS 2010 2011 2012 2013

x x x x -27 -132 -512 -487

x x x -15 -31 -372 -338

x x x -518 -452 -770 -726

x x -291 -225 -544 -500
Table 6.2.: Annual profit (OF ) in k€ for lead-acid BESS with various market
configurations (x indicates included unit or market)

Another aspect of interest is the comparison of the incremental profit for different
BESS technologies. Incremental profit is defined as the profit achieved with the
BESS and WPP combined minus the profit achieved with WPPs only. This com-
parison includes different configurations of BESSs. The first two configurations
are based on one MW (discharger rating) lead-acid- and li-ion BESS as already
discussed in Appendix A. The third and fourth configurations are hybrid BESSs
based on the combination of a 1MW and 0.5MW lead-acid- and li-ion BESS (dis-
charger ratings). The charger ratings and battery energy are adjusted accordingly.
The other parameters of Appendix A are still valid for the hybrid configurations.
Moreover, the ancillary service markets are all taken into account for this compar-
ison. Fig. 6.4 shows the incremental profit of all configurations. The investment
in VPPs is financially viable if the incremental profit is positive. Results indicate
that the highest profit or smallest loss can be achieved in the year 2010. There,
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6.3 Results case study I

the VPPs with 1MW lead-acid BESS and 0.5MW hybrid BESS are more prof-
itable than operating WPPs without BESS. In all other years, the VPP is not
more profitable than the WPPs alone (except for a small profit of the 0.5MW
hybrid configuration in year 2011). Considering all years, the highest losses occur
with the 1MW hybrid configuration while the 0.5MW hybrid configuration shows
the highest profits (smallest losses). Amongst the non-hybrid configurations, the
lead-acid BESS is preferable over the li-ion battery BESS. All in all, Fig. 6.4 indi-
cates that none of the evaluated configurations would allow an attractive business
case over the analyzed years.
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Figure 6.4.: Incremental annual profit for different BESS configurations (annual
profit VPPs – WPPs only)

Taking everything into consideration, it has to be pointed out that the developed
algorithm is applied on an exemplary set of BESSs but that the size and the type
of BESS technology is not optimized. Consequently, the profit of other sizes of
BESSs based on the same configuration could be different and there could be a
BESS configuration that achieves a higher profit during all tested years than the
WPPs alone. The discussion on optimum sizing can be found in the next chapter
(case study II).

Finally, Fig. 6.5 (top) shows the energy throughput of the BESS which is the
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Chapter 6 Case Study I: Optimum scheduling

sum of energy put in and out of the BESS. In the first two years, the energy
throughput of the li-ion BESS was considerably higher than in the other years
causing a higher capacity fade due to the higher throughput. Contrary to the
li-ion BESS, the lead-acid BESS does not show a higher energy throughput at the
first years.
The total energy throughput over the entire period is 4817MWh for the li-ion
BESS and 1021MWh for the lead-acid BESS. In total, the li-ion BESS loss is 41%
of its capacity over the optimization period and the lead-acid BESS’s loss is 16%,
see Fig. 6.5 (bottom), respectively. Assuming the BESS’s end of life at 80% of
its original capacity, the li-ion BESS has already exceeded its end of life criteria.
Concerning the lead-acid BESS, assuming linear extrapolation based on the values
of the original capacity and the capacity at the end of month 48, the lead-acid
BESS can be operated 4.7 years, which is longer than the assumed lifetime of
three years. These findings demand an adjustment of the annual investment
costs calculation resulting in lower annualized investments costs for the lead-acid
battery, making it more profitable. On the other hand, the lifetime of the li-
ion battery is lower than assumed for the cost calculation which makes it less
profitable than depicted in Fig. 6.4. Taking this into account, the lead-acid BESS
will still be more profitable than the li-ion BESS in Fig. 6.4 even after adjusting
the costs of the BESS. It has to be pointed out that a change in annualized
investment costs of the BESS would change the cost function value (profit) of the
optimization. Nevertheless, it would not change the result of the decision variables
because the BESS’s investment costs do not depend on decision variables in the
optimum scheduling and -dispatch problem.

6.4. Conclusions case study I

The optimum scheduling function is applied on a numerical example in order to
demonstrate that results are meaningful. Moreover, it is also applied on real
market data based on various configurations of the VPP. Results show that none
of the tested configurations, which are based on li-ion- and lead-acid BESSs, would
allow for an attractive investment decision based on the underlying market data.

The presented case study also indicates that the assumed life-times of the BESSs
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Figure 6.5.: Energy throughput (top) and capacity (bottom) for li-ion and lead-
acid BESSs from 2010 to 2013

are not confirmed by the results of the case study and therefore need to be adjusted
for further studies. The lifetime of the li-ion BESS needs to be reduced and the
lifetime of the lead-acid BESS needs to be increased. This results in more favorable
costs concerning the lead-acid BESS and that can cause the incremental profit of
the lead-acid BESS to become zero or greater. This could make investments in
VPPs with lead-acid BESS profitable.
Reasons for the lifetime of the li-ion BESS being lower than estimated could be
due to the following: The li-ion BESS has a comparable higher energy throughput
than the lead-acid BESS, which leads to a much higher capacity fade for the li-
ion BESS than for the lead-acid BESS and thus results into a shorter lifetime.
This result demands that the values of capacity fade found in literature need to
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Chapter 6 Case Study I: Optimum scheduling

be verified by laboratory tests in order to verify if such a short lifetime of li-ion
BESSs is realistic in practice.

Further conclusions from case study I are:

• Considering capacity fade in the optimization problem is important as it
gives valuable information on the BESS’s lifetime and hence it should be
used to adjust the annualized investment costs if necessary. Taking the
capacity fade not into account would result in unrealistic high profits of the
VPP.

• Considerable higher profits can be generated in case the VPP is operated on
the ancillary service markets in addition to the DA market. This highlights
the importance to consider the ancillary markets in a formulation of the
optimum scheduling problem based on Denmark (DK1).

• On the RP up market, the VPP achieves the highest share of revenues
followed by the DA market sales. The PFR up market has the third highest
share of revenues. This requires a reliable forecast of market prices and
when RP up or down is called in order to achieve these revenues in practice.

• The importance of hybrid BESS is shown within this case study where the
0.5MW hybrid configuration yields the highest incremental profit (smallest
incremental loss). However, results also underline the importance of proper
sizing of the hybrid BESS because the other tested hybrid configuration of
1MW showed the worst performance in terms of profitability.
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This chapter discusses the sizing function with a further numerical example in
order to illustrate how the algorithm works and to demonstrate that results are
meaningful. Due to the long computational time to solve the problem, the demon-
stration is restricted to the numerical example of 48 time periods from the previous
chapter. The CPLEX® tuning parameters presented in Appendix B on page 181
are also used for this example.

This chapter is outlined as followed: First, the calculation of BESS costs is verified
by various test cases of a smaller problem formulation. This is followed by the
numerical example in sec. 7.2 which shows that the sizing function works correctly.

7.1. Testing of BESS cost calculation

The test case described in this section is conducted to verify the correct accounting
of the BESS costs described in sec. 5.2.3 on page 68ff. This test gives the opportu-
nity to evaluate the quality of the results from seperable programming and PLA
of the functions in equation 5.37 (based on decision variable FinalCapacityb)
and equation 5.64 (based on decision variable EsCostV sCapacityb). The test is
conducted through a smaller problem formulation that includes only the neces-
sary constraints and omits all other constraints. The problem of this test case is
formulated in a manner that it can only have a single solution and no objective
function is used in the OPL programming language solved by the CPLEX® solver
(due to the single possible solution). This testing problem formulation consists of
constraints from equation 5.43 on page 71 to equation 5.66 on page 78 (excluding
the constraints in the gray shaded boxes). In addition, the following constraints
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Chapter 7 Case Study II: Optimum sizing

have been added:

∀b ∈ B : SosNodeb = sosNodeTestb (7.1)

∀b ∈ B : SisNodeb = sisNodeTestb (7.2)

∀b ∈ B : NbSlicesActiveb = nbSlicesActiveTestb (7.3)

BatteryIntb = 1 (7.4)

The test cases for this problem formulation are only conducted for one battery
(b = 1). Tab. 7.1 depicts input data used for the test cases as well as the results
for each test case. All other input data not shown in Tab. 7.1 are based on
the values for the li-ion BESS in sec. 6.2 if not otherwise stated. The values of
the decision variables FinalCapacityb and EsCostV sCapacityb in the columns
indicated with “MILP” are the results of the reduced MILP problem formulation,
while the results of the same variable indicated with “Actual” are the numerically
correct calculated values not based on MILP. The column “EsCostV sCapacityb

Actual” is calculated based on “FinalCapacityb Actual” and not based on results
of the MILP calculation. The columns “Error1 %” and “Error2 %” indicate thus
the total relative error of the MILP results.

The results in Tab. 7.1 verify that the problem formulation proposed in constraints
5.43 on page 71 to constraint 5.66 on page 78 is able to calculate (in most cases)
with sufficient accuracy the costs of the BESS in dependence of the capacity fade
based on the number of breakpoints chosen. Only five times out of the 17 test
cases, the error is greater than ±5% of EsCostsTest and in only one case the
calculation is considerably wrong with −46.63%. In this case, the breakpoints
are poorly chosen. It is recommended to re-run the optimization problem with
adjusted breakpoints that are closer around the first obtained solution in order
to further reduce the approximation error.
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1 0 0.9 1 1 0.91 0.90 0.96 9,170 10,038 -8.65

2 0.2 0.7 1 1 0.90 0.90 -0.01 10,043 10,038 0.05

3 0.4 0.5 1 1 0.90 0.90 -0.01 10,043 10,038 0.05

4 0.6 0.3 1 1 0.90 0.90 -0.01 10,043 10,038 0.05

5 0.8 0.1 1 1 0.90 0.90 -0.01 10,043 10,038 0.05

6 0.2 3.4 2 2.2 0.82 0.82 -0.30 18,499 18,499 0.00

7 0.8 2.8 2 2 0.90 0.90 -0.46 10,449 10,038 4.10

8 1.2 2.4 2 2 0.89 0.90 -0.76 10,720 10,038 6.80

9 1.6 2 2 2 0.90 0.90 0.44 9,636 10,038 -4.00119
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10 0.2 0.61 1 0.9 0.90 0.90 -0.01 10,043 10,038 0.05

11 0.4 0.41 1 1 0.81 0.81 -0.56 19,528 19,071 2.40

12 0.6 0.21 1 1 0.81 0.81 0.33 18,800 19,071 -1.42

13 0.8 0.01 1 1 0.90 0.81 10.94 10,178 19,071 -46.63

14 0.2 3.04 2 2 0.80 0.81 -1.06 19,934 19,071 4.53

15 0.8 2.44 2 2 0.80 0.81 -1.73 20,476 19,071 7.37

16 1.2 2.04 2 2 0.81 0.81 0.27 18,850 19,071 -1.16

17 1.6 1.64 2 2 0.82 0.81 1.60 17,766 19,071 -6.84
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7.1 Testing of BESS cost calculation

Not listed in Tab. 7.1 are the breakpoints used for the piecewise linear approx-
imations. Tab. 7.2 gives an overview of the minimum and maximum values for
the x-axes values of the breakpoints. The calculation of the minimum and maxi-
mum values for separable programming is described in sec. 3.2.3 on page 39f. The
breakpoints are linearly spaced except for the points a5,pa,b. Their calculation is
described in Algorithm 7.1.

In
de

x:
a

aa,1,b aa,pa,b nb. breakpoints

0 0
sisNodeMaxb

·maxNbEsSlicesb

21

1 1
maxNbEsSlicesb

1 21

2 0
sosNodeMaxb

·maxNbEsSlicesb

21

3 1
maxNbEsSlicesb

1 21

4 1 maxNbEsSlicesb maxNbEsSlicesb

5 0.8 1.1 see Algorithm 7.1
Table 7.2.: Calculation breakpoints for piecewise approximations

Algorithm 7.1 determines the minimum amount of breakpoints necessary for
a5,pa,b because Fig. 5.5 on page 79 can sufficiently be approximated with a linear
function between 0.8 and 0.98 in this example. This interval depends on the input
parameters provided into equation 5.64. The interval between 0.98 and 1 cannot
be approximated by a linear function (in this example) without a relative big
error and a number of breakpoints have to be chosen to approximate this section.
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It has to be stressed that this is an important interval of the function in case
the capacity fade is small. For example, this is the case, when simulating only
a short period as shown in the numerical example below. The determination of
the breakpoints can be followed in Algorithm 7.1 which basically calculates the
annualized investment costs first and then picks the breakpoints for the non-linear
section based on the capacity at which the lifetime of the BESS would be less than
a year long. Finally, the breakpoint (1.1, 0) is added for each BESS b to account
for the case of zero BESS costs if BatteryIntb = 0 which is further discussed on
page 78.
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7.1 Testing of BESS cost calculation

Algorithm 7.1 Calculation breakpoints a5,p5,b. Variables that differ
from chapter 9.3: nbPeriodsCapFade = t; (xAxesValues, yAxesValues) =
(a5,p5,b, f (a5,p5,b)); nbEs = b .

1: CapacityPoints = [0.8:0.02:0.98, 0.99, 0.999, 0.9999];
2: yearsEsOperation = (1/PeriodsPerHour) * 0.2 * (nbPeriodsCapFade /8760)./ (1 -

(CapacityPoints ));
3:
4: for bt = 1:nbEs do
5: for cp = 1:length(CapacityPoints) do
6:
7: if yearsEsOperation(cp) < 1 then
8: esCostVsCapacity(cp,bt) = pv(bt) * (1 + i) ./ yearsEsOperation(cp);
9: else

10: part1 = ((1 + i)^ (yearsEsOperation(cp))) - 1
11: part2 = i * ((1 + i)^ (yearsEsOperation(cp)))
12: esCostVsCapacity(cp,bt) = pv(bt) / (part1 / part2);
13: end if
14: → calculating es cost for capacity = 1 (infinite investment horizon)
15: end for
16: esCostVsCapacity((length(CapacityPoints)+1),bt) = pv(bt) * i;
17: end for
18:

→ Search when yearsEsOperation becomes < 1
19: absOneYear = abs(1-yearsEsOperation);
20: [minValue, minPoint] = min(absOneYear);
21: CapacityPoints = [CapacityPoints 1];
22:
23: if CapacityPoints(minPoint) < 0.98 then
24: pointsPLA = [1 minPoint 10 11 12 13 14];
25: else if CapacityPoints(minPoint) < 0.99 then
26: pointsPLA = [1 minPoint 11 12 13 14];
27: else if CapacityPoints(minPoint) < 0.999 then
28: pointsPLA = [1 minPoint 12 13 14];
29: else if CapacityPoints(minPoint) < 0.9999 then
30: pointsPLA = [1 minPoint 13 14];
31: else if CapacityPoints(minPoint) < 1 then
32: pointsPLA = [1 minPoint 14];
33: end if
34:
35: for bt = 1:length(pv) do
36: for pp = 1:length(pointsPLA) do
37: yAxesValues(pp,bt) = esCostVsCapacity(pointsPLA(pp),bt);
38: end for
39: yAxesValues(pp+1,bt) = 0;
40: end for
41: xAxesValues = CapacityPoints(pointsPLA);
42: CapacityPointsPLA = [CapacityPointsPLA 1.1];
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Chapter 7 Case Study II: Optimum sizing

7.2. Numerical example of sizing function

This numerical example is based on the example already discussed previously
in sec. 6.2 where b = 0 is the li-ion BESS and b = 1 is the lead-acid
BESS. All input parameters are the same as in Tab.A.1 except for the ones
listed in Tab. 7.3 as well as esInvestSwitch = 1, and capacityFadeRateb and
capacityFadeRateThroughputb which are multiplied by 102 in order to make ca-
pacity fade more visible over such a short optimization horizon (t = 48). For
the sizing function, the decision variables NbSlicesActiveb and BatteryIntb are
of main interest, because NbSlicesActiveb represents the “size” of the BESS
as the factor is multiplied with the parameters sisNodeMaxb, sosNodeMaxb,
dischargerMaxb, and chargerMaxb which define the smallest slice size (see
chapter 5). The Boolean decision variable BatteryIntb indicates which BESS
technology b is part of the solution if it is equal to one. The sizing function
is tested by varying the investment costs pvb for the BESSs. This is done by
multiplying factor k with pvb (see 2nd column Tab. 7.3). For very low costs of
the BESS b, it is expected that all slices (NbSlicesActiveb) are activated up to
maxNbSlicesb in the activated BESSs b indicated by BatteryIntb = 1. Further,
the sum of BatteryIntb is expected to be equal to maxNbEs for very low BESS
costs. When increasing pvb, it is expected that less slices are being activated.
And finally, no slice should be activated for very high prices.

The results in Tab. 7.3 confirm the expected behavior that no BESS is chosen for
k = 1 and k = 10−1. For k = 10−2, one slice of the li-ion BESS and five slices of the
lead-acid BESS are chosen, and all slices (not exceeding maxNbSlicesb) in both
BESSs are activated for k = 10−4. It also shows that the objective function value
is higher if a BESS is part of the solution compared to the case where no BESS is
part of the solution. Also, the lower the BESS’s investment costs, the higher the
objective function value. However, no BESS would be selected in the numerical
example for k = 1 if capacityFadeRateb and capacityFadeRateThroughputb were
unchanged, as this would mean that the assumed BESS costs in the previous
chapter are too expensive to be profitable in this example.

Furthermore, case 2 has to be highlighted where a more expensive BESS is favored
over a cheaper BESS concerning the investment costs per MW.

Moreover, the “Error2 %” of Tab. 7.1 is also calculated for this numerical example.
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7.2 Numerical example of sizing function

It is not significant in all four test cases shown in Tab. 7.3 and EsCostOFb are
calculated very close to their numerically correct values with an error of less than
10€.
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5

5

]
2

[
5

5

] [
1

1

] [
0.9465

0.9642

] [
5238

4786

] [
26191

23927

]
275 4004

[
0.01

0.01

]

2 10-2

[
5

5

]
2

[
1

5

] [
1

1

] [
0.9965

0.9988

] [
34238

16360

] [
34238

81802

]
5251 -548

[
0.24

0.22

]

3 10-1

[
5

5

]
2

[
0

0

] [
0

0

] [
1.1

1.1

] [
0

0

] [
0

0

]
0 -4286

[
0

0

]

4 1

[
5

5

]
2

[
0

0

] [
0

0

] [
1.1

1.1

] [
0

0

] [
0

0

]
0 -4286

[
0

0

]
Table 7.3.: Input parameters and results of numerical example of sizing function: b = 0 is the li-ion BESS; b = 1 is
the lead-acid BESS; k is a factor multiplied with pvb to vary BESS costs.
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7.3 Conclusions case study II

7.3. Conclusions case study II

The numerical example presented in this chapter shows the application of the
sizing function on a short optimization period. Moreover, a testing model shows
the correct calculation of the BESS costs in dependence of the capacity fade and
the size of the selected BESS. The results of the numerical example cannot be
used beyond demonstration of the optimum sizing function. Any “real-world”
conclusions cannot be drawn because of the adjusted capacity fade parameters
in order to make any capacity fade at all visible for such a short optimization
period. The adjusted input parameters make both BESSs look worse than they
are and therefore falsely require lower investment costs in order to make the BESSs
profitable compared to unchanged input parameters.

The results demonstrate that the proposed optimum sizing algorithm can be used
to determine the optimum size and technology, as well as the optimum combina-
tion of BESSs in terms of optimizing profit of the VPP. Thus, the model is also
able to find an optimum hybrid BESS.

Another point to highlight is that the specific investment costs of a BESS regard-
ing its battery energy or power rating are taken into account. This does not mean
that a cheap BESS is chosen over a more expensive BESS in the optimum solu-
tion because the model considers all relevant properties of the BESS (discussed
in chapter 5) and the proposed problem formulation identifies if extra costs for a
more expensive technology pay-off.

Having demonstrated the algorithm on a small example, it could be applied on a
larger problem that might contain more time steps t, more BESS technologies b,
and/or an increase in the number of slices (maxNbSlicesb). Due to the properties
of the computer system used in this work (described in sec. 6.1 on page 103), there
was no opportunity to test a larger problem of the sizing function due to the long
solving time. Thus, future work is to run a sizing problem for a representative time
period and with more different BESS technologies. Beyond computer hardware,
investigations into better tuning settings of the solver, which is used to solve
the MILP problem, are recommended to further improve performance and/or
to enable that larger problem sizes can be solved. In addition, a tighter problem
formulation would be of advantage to reduce the time needed to solve the problem.
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8. Case Study III: Optimum dispatch

The following case study discusses the optimum dispatch function which indicates
optimum adjustments of the optimum scheduling function’s results. Adjustments
of the original schedule become necessary for example due to deviations of the
latest wind power production forecast from a previous forecast or if bids do not
get awarded on the market. Another reason for re-scheduling can occur if the
modeled SoC of the BESS differs from the actual SoC. The result of the optimum
dispatch function is an adjusted schedule that ensures minimum penalty payments
for imbalances by maximizing the overall profit.

This chapter is similarly structured as chapter 6: First, a numerical example is
run on the optimum dispatch function followed by a small study with actual
market data from 2013. In this case study, only the impact of the deviation of
the WPP production from its forecast is discussed and it is assumed that all bids
get awarded on the power markets and no adjustments of the SoC of the BESS
are necessary.

8.1. Wind power forecast data preparation

In order to illustrate a deviation of the WPP production from its forecast, the
best case would be to have actual wind power forecast data available. However,
this is not the case and an artificial forecast needs to be created. The artificial
forecast generation is presented in Algorithm 8.1 which is pseudo-code.

At this point, it needs to be stressed that windMaxt in chapter 6 would be based
on a WPP’s power production forecast because the actual wind power production
is unknown in advance. Due to the lack of real forecast data, the available actual
wind power production data are already used in case study I in chapter 6 because
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Chapter 8 Case Study III: Optimum dispatch

Algorithm 8.1 Forecast error generation
1: signR = rand(length(WppData));
2: for s = 1:(length(WppData) do
3: if signR ≤ 0.49999 then
4: signV = -1;
5: else
6: signV = 1;
7: end if
8: end for
9: errorForecast = 0.1;

10: magnitudeScaling = rand(length(WppDataAdjusted)) * errorForecast;
11: WppForecast = WppData + (signV .* magnitudeScaling .* WppData);
12: for s = 1:(length(WppData) do
13: if WppForecast(s) > maxWppOutput then
14: WppForecast(s) = maxWppOutput;
15: end if
16: end for

it is more extended than case study III. For this reason, artificially generated
forecast data is used in the dispatch algorithm for windMaxt in order to generate
a difference in windMaxt between the optimum scheduling- and dispatch problem.

8.2. Results numerical example optimum dispatch

The input parameters used for the numerical example of the dispatch function
are the same as discussed in Tab. 6.1 on page 104 and presented in subplot a)
in Fig. 6.2 on page 108 except for the prices depicted in Fig. 8.1. The prices for
balance down- and balance up power are chosen in order to have some consecutive
periods of over-production as well as under-production in the grid. E.g. period
t = 1, 2, . . . , 9 shows an over-production in the grid. This can be seen as buCostt
are equal to the DA market price (marketPricet) in these time periods. If bdCostt
equals marketPricet, there is an under-production in the grid. In the following,
the results of the numerical example for the dispatch function are discussed in
detail.

Fig. 8.2 shows the difference of important decision variables between the optimum
dispatch- and optimum scheduling problem, except in the first subplot, where the
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Figure 8.1.: Market prices for numerical example

error of the wind power forecast is shown. This error is the only input parameter
which is different in regards to the numerical example of the optimum scheduling
problem. The forecast error is generated manually in order to better show its im-
pact (and not by Algorithm 8.1). By displaying the difference in decision variable
values, the adjustment indicated by the optimum dispatch function becomes obvi-
ous. Any difference in WindGeneratort, WindRegUpt, and WindRegDownt —
which is caused by the forecast error — needs to be compensated either through
a balance up- or balance down decision variable or through the BESS. If there is
a positive forecast error (first subplot Fig. 8.2), this indicates that there is more
wind power available than originally predicted in the forecast. In such a case, the
variables WindGeneratort, WindRegUpt, and WindRegDownt do not need to
take any different values because the scheduled generation can still be provided by
operating the WPP below its maximum capabilities. This can be seen in period
41 to 48, for instance. However, if the WPP produces extra power, this can be
used if it is profitable, see t = 18, 19, 20. In that instance it is more profitable to
over-produce and to compensate the overproduction on the balance down (Bdt)
market compared to loosing the bonus for wind power production.

Another time period of interest is t = 9, 10 where the output of WindGeneratort

and WindRegDownt is less than scheduled (fourth subplot Fig. 8.2). The
under-production of WindGeneratort is compensated by But while the under-
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Chapter 8 Case Study III: Optimum dispatch

production of WindRegDownt is compensated by BdRegDownt which is the ex-
pected behavior. This is because RegDownt in the RP down node (see equation
5.125) is flowing into the node and not out of it. This means that BdRegDownt

is required if there is an under-production (not enough power is absorbed from
the grid) in the RP down market.

Moreover, the second and third sub-plot indicate that the BESS in the dispatch
function is used to reduce penalty payments for imbalances. Last but not least, the
difference on balance up and -down decision variables for the PFR up and -down
market are for all t equals 0 (not explicitly shown in Fig. 8.2). This result confirms
the expectation, because the scheduled output to the PFR up and -down market
may not be adjusted and using a large numerical value for imbalance penalties
of this market does not alter the decision variable for PFR up and -down in the
optimum dispatch problem.

8.3. Results monthly dispatch

This section applies the dispatch function on actual market data based on a li-ion
and lead-acid BESS for the year 2013 split into single months. Input data are the
same as used for case study I in sec. 6.3 (excluding the hybrid BESS). Moreover,
results of sec. 6.3 indicating the amount of bids scheduled for each market are taken
as new input parameter for the dispatch function. The only input data adjusted
for the optimum dispatch function is the wind power production (according to
Algorithm 8.1). Due to the fact that the actual wind power production profile is
used in sec. 6.3, Algorithm 8.1 is run on the production profile and the artificially
generated forecast is taken as input data for the dispatch function. The mean error
of the wind power forecast is displayed in the last row of Tab. 8.1 and is 0.13MW
on an annual basis. Results show that the mean forecast error is relatively low
and varies slightly across different months. A relation between the mean forecast
error and the absolute reduction of the objective function value OF is visible for
both BESSs in Tab. 8.1 and Tab. 8.2. This is expected because the higher the
forecast error, the higher should be the reduction of OF but the actual reduction
is also based on market prices for imbalances.

The results of the optimum dispatch problem are depicted in Tab. 8.1 and Tab. 8.2
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8.3 Results monthly dispatch

Figure 8.2.: Difference in decision variables values optimum scheduling vs. op-
timum dispatch results

for the li-ion and lead-acid battery, respectively. Both tables show the relative and
the absolute reduction of the objective function value OF for each month, compar-
ing the result of the optimum scheduling problem with the result of the optimum
dispatch problem. At this point, it has to be mentioned, that the scheduling func-
tion was run again for each month of 2013 but without transferring the capacity
fade of the previous month to the next month (for automation reasons) and the
same was done for the dispatch function.
Generally, the lower the reduction of OF the better, because the less penalty
payments need to be paid for imbalances. The results indicate that the relative
reduction varies heavily between different months but absolute reductions are all
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within the same order of magnitude. This relative variation is due to the fact that
the OF values for different months can vary from negative to positive values and
show no clear pattern. Moreover, results indicate that the absolute reductions of
OF for both, the li-ion- and lead-acid BESS, are similar for all months and that
the two BESSs with the same power rating have a similar contribution on the
optimum dispatch result. However, the relative reduction is much more dramatic
for the lead-acid BESS with 22% versus 8% for the li-ion BESS.

For further insight into the results of the dispatch function, the objective function
terms regarding balance power of the different markets are included in Tab. 8.1
and Tab. 8.2. The sum of all balance up and -down penalties equal the total costs
for imbalance penalties. It has to be noted that the absolute reduction of OF
does not necessarily equal the sum of imbalance penalties because the reduction
of OF also includes the adjusted WPP costs.

Comparing the penalty payments for the li-ion- and lead-acid BESS for each
month and on average, a similarity is found. Both BESSs have the highest penalty
payments for upward regulations because in case the WPP produces less than
scheduled, the production of the WPP cannot be up-ramped and balance power
needs to be bought. However, in case of over-productions, the WPP can easily
be down-ramped. This makes mainly upwards regulation necessary. The highest
imbalance penalties are to be paid for buRegUpDexpr and the second highest
penalties are to be paid for buDexpr. This is because higher contributions to the
OF are coming from the RP upwards market than from the DA market.

Finally, there are small amounts of imbalances resulting from bdRegDownDexpr

that is used to balance RegDownt power which has not many bids scheduled in
the optimum scheduling problem compared to RegUpt and Salest. No imbalance
costs arise by buRegDownDexpr and bdRegUpDexpr as this can be avoided
through down-ramping of the WPP.
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Month 1 2 3 4 5 6 7 8 9 10 11 12 A
nn

ua
la

ve
ra

ge

Reduction OF [€]
(optimum scheduling

vs. optimum dispatch)

4834 3095 4881 2693 4153 2300 2497 1173 2107 1610 2597 2913 2904.5

Reduction OF [%] 28.8 11.0 13.4 6.8 52.2 3.9 4.7 1.4 4.3 1.8 5.2 6.7 8.0

bdDexpr [€] 52 6 96 11 9 30 7 6 11 56 42 88 34

buDexpr [€] 1522 944 1379 927 912 635 619 533 722 576 605 1138 876

bdRegDownDexpr [€] 1 0 1 0 0 0 0 3 11 0 0 1 2

buRegDownDexpr [€] 0 0 0 0 0 0 0 0 0 0 0 0 0

bdRegUpDexpr [€] 0 0 0 0 0 0 0 0 0 0 0 0 0

buRegUpDexpr [€] 2122 1335 2372 1134 2213 1103 1221 600 1115 610 1265 945 1336

Mean forecast error
[MW]

0.18 0.14 0.19 0.10 0.17 0.10 0.12 0.08 0.12 0.10 0.12 0.16 0.13

Table 8.1.: Monthly results optimum dispatch li-ion BESS (year 2013)
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Month 1 2 3 4 5 6 7 8 9 10 11 12 A
nn

ua
la

ve
ra

ge

Reduction OF [€]
(optimum scheduling

vs. optimum dispatch)

4793 3098 4856 2691 4147 2285 2501 1171 2106 1605 2596 2892 2895

Reduction OF [%] 138.7 7.4 22.7 5.0 66.8 3.5 3.8 1.2 3.5 1.5 3.9 4.7 21.9

bdDexpr [€] 52 6 93 11 22 37 7 6 11 56 41 76 35

buDexpr[€] 1495 943 1379 927 912 635 619 533 722 576 605 1132 873

bdRegDownDexpr [€] 1 0 1 0 0 0 7 3 2 0 0 1 1

buRegDownDexpr [€] 0 0 0 0 0 0 0 0 0 0 0 0 0.0

bdRegUpDexpr [€] 0 0 0 0 0 0 0 0 0 0 0 0 0.0

buRegUpDexpr [€] 2122 1335 2359 1134 2199 1092 1221 600 1114.7 609.8 1265.6 946.9 1,333

Mean forecast error Same as in Tab. 8.1.

Table 8.2.: Monthly results optimum dispatch lead-acid BESS (year 2013)
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8.4 Conclusions

8.4. Conclusions

The conclusions of case study III are summarized by the following points:

• The optimum dispatch function is capable to properly reschedule the VPP
by finding the solution with the minimum penalty payments for imbalances.
It is able to take the optimum dispatch decision considering the DA- as well
as the ancillary service markets.

• Tab. 8.1 and Tab. 8.2 show that the value of OF is always less in the opti-
mum dispatch problem compared to the optimum scheduling problem. This
confirms the expectation and serves as another indication that the dispatch
function is correctly formulated.

• The artificial wind power forecast error calculated by Algorithm 8.1 is low
with a mean error of 0.13MW for the underlying wind power production
data. It is likely that this error is higher in reality. However, actual forecast
data was not available and thus an artificial forecast was generated based
on an actual wind power production profile in order to generate input data
that deviates from the optimum scheduling problem. For future studies, it
is recommended to receive an actual forecast that relates to the wind power
production data in question.

• The high share of imbalance penalties through buRegUpDexpr occur if large
bids to the RP up market are allowed in the first place but market partic-
ipants cannot be sure that RP up is actually demanded in a specific hour.
Otherwise, buDexpr will most likely show the biggest contribution to im-
balance penalties.

• Results in Tab. 8.1 and Tab. 8.2 are very similar to each other in regards to
the absolute reduction of OF . The power rating is the only property the li-
ion- and lead-acid BESSs have in common while all other parameters differ
from each other. Therefore, this result is unexpected. This demonstrates
the big impact of the discharger power rating in the dispatch function on
the absolute reduction of OF . Regarding the relative reduction of OF , this
impact cannot be seen.
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9. Conclusions, contributions, and
future work

This chapter presents the conclusions drawn and highlights important contribu-
tions of this work. Last but not least, an outlook for future work is presented.

9.1. Conclusions

This work proposes a MILP formulation to address the questions of optimum
scheduling, dispatch (rescheduling), and optimum sizing of VPPs. It can be con-
sidered as an intelligent energy management system for VPPs. The focus of this
work is the MILP formulation which covers a realistic BESS model in order to
address specific properties like capacity fade or self-discharge. Moreover, the al-
gorithm incorporates exemplarily Danish (DK1) power market rules where the
VPP is able to send bids to the DA- and ancillary service markets. Three case
studies demonstrate the suitability of the proposed problem formulation regard-
ing optimum scheduling, -dispatch , and -sizing of VPPs. The conclusions of each
case study are summarized below:

Case study I

• This case study is used to demonstrate optimum scheduling of VPPs based
on the DA- and ancillary service power markets. It also illustrates that the
optimum scheduling problem can address hybrid BESS systems based on
different battery technologies.

• Moreover, it demonstrates that the proposed MILP formulation can be used
to model capacity fade of the BESS. However, the parameters used to model
capacity fade based on literature values result in a relatively high capacity
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fade of the li-ion BESS. Results indicate that battery parameters are to be
determined and verified by laboratory tests.

• This case study also highlights that the tested configurations of BESSs (li-
ion, lead-acid, and hybrid BESSs) are not yet a profitable investment. In
order that the tested BESSs become profitable, DA- and ancillary service
market prices need to be more attractive, BESS costs need to decrease, or
the lifetime of the BESSs need to be increased.

• It also reveals that monthly time periods with one hour resolution can be
solved relative quickly with standard laptop equipment (<30 min for a single
BESS). However, the actual time to solve the optimization problem depends
on the input data provided.

Case study II

• The numerical example in case study II shows that the annualized costs
of the BESS are correctly calculated in relation to the capacity fade. This
means that costs of the BESS are accounted for based on its usage (SoH).
The more a BESS is cycled, the shorter is its lifetime and thus the higher are
its annualized costs. On the other hand, revenues from markets will most
likely increase the more the BESS is cycled. These trends are considered in
the objective function by maximizing the profit (revenues minus costs) of
the VPP.

• The proposed optimum sizing algorithm is able to determine the optimum
size(s) and BESS technolog(y/ies) independent of each other by choosing the
optimum operating profile(s) of the BESS(s) and WPPs as well as taking
the costs of the BESS(s) for the related operating pattern(s) into account.
The proposed algorithm can explicitly handle hybrid BESSs. An extra in-
vestment in BESSs beyond the optimum cannot be justified.

• The optimum sizing problem is more difficult to solve compared to the opti-
mum scheduling- and dispatch problem and powerful computer equipment
is recommended to solve this problem in reasonable time. The proposed
formulation can be considered as a first step to address the problem of
relating the costs of the BESS to its SoH in a MILP formulation. Further
improvements would target a faster run of the model, e.g. by tightening
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the proposed MILP formulation.

Case study III

• The optimum dispatch function is able to reschedule the VPP based on
input parameters that differ from the optimum scheduling problem. Input
parameters that can become different in respect to the scheduling problem
need to be adjusted. These can be the wind power production forecast,
market prices, the amount of power scheduled to each market in order to
match the awarded amount of bids, or the latest available actual SoC. It is
demonstrated that bids on the DA- and RP market are correctly adjusted
with balance up and -down power as allowed by DK1 market rules. Also,
bids submitted to the PFR market are not adjusted as required by market
regulations in DK1. Choosing very high prices for balancing PFR up and
-down prohibits any adjustment of the awarded bids. This shows that the
concept introduced by [73] to balance a plant can be extended to multiple
energy markets.

• The case study indicates that the VPP is mainly balanced through But and
BuRegUpt in case of an under-production of the WPPs and that potential
over-production are mostly handled through down-ramping the WPPs.

• The optimum dispatch problem takes slightly less time to be solved than
the optimum scheduling problem described in case study I.

Overall, the three case studies verify that the proposed intelligent energy manage-
ment system is capable to adequately handle the optimum scheduling-, dispatch-,
and sizing problem of VPPs by providing the appropriate input parameters to the
algorithm.

General conclusions

The proposed optimization problem formulation can become computationally
heavy to solve depending on the length of the time period and the number of
BESSs considered for optimization. Due to the lack of a powerful workstation
computer or even a cluster computer that could be used for this work, the opti-
mum sizing problem is restricted to a numerical example which could be solved
with the available laptop computer (based on the adjusted CPLEX parameters).
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In practice, it is recommended to invest in a powerful workstation computer or
even to use a cluster computer. This will allow to solve the optimum sizing prob-
lem over a longer, more representative, time period.

9.2. Major contributions

Major contributions of this work to research are as follows:

• The proposed MILP algorithm can be used for optimum sizing, -scheduling,
and -dispatch specifically for BESSs connected to WPPs, called VPPs, and
operating them on different power markets. This enables the operator or
investor of VPPs to solve three different questions with one algorithm by
choosing appropriate input data.

• As part of the proposed MILP algorithm, the model of the BESS is able
to take important battery specific parameters into account such as capacity
fade, self-discharge, minimum SoC, and self-consumption.

• Considering the optimum sizing function for BESSs, the proposed MILP
formulation takes into account the capacity fade (SoH) of the BESS that
occurs over the optimized operating pattern of the VPP. The capacity fade
is then related to the annualized costs of the BESS. Capacity fade can also
be considered as aging of the BESS: The faster it ages, the sooner it needs
to be replaced. The algorithm considers that the annualized costs of the
BESS(s) need to be justified by the revenues the BESS(s) can generate over
the same time period. The BESS that yields maximum profit is selected as
the optimum or no BESS is chosen if not profitable.

• In the problem formulation, it is possible to specify any number of b differ-
ent BESSs that should be considered when finding the optimum solution.
Further, the maximum number of different BESSs (maxNbEs), which can
be part of the optimum solution, needs to be specified. Thus, the model
is able to indicate optimum hybrid BESSs that consist of different BESS
technologies. Also, the maximum battery energy and power rating of each
BESS b can be specified by maxNbSlicesb. Each battery technology out
of the optimum hybrid BESS can therefore have its specific battery energy
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and power rating. The optimum result is easy to read and is indicated by
the decision variables BatteryIntb and NbSlicesActiveb.

• An optimum scheduling-, dispatch-, and sizing problem is formulated based
on MILP that addresses the DA- and two ancillary service markets (RP and
PFR markets) for WPPs connected to BESSs.

• The proposed formulation targets at the Danish power market (west) and
their market regulations are translated into a MILP formulation. However,
the algorithm can easily be adjusted for other power market regulations by
changing input parameters of the model. This may be sufficient to adjust
the model for another power market regulation.

• The proposed formulation can be used modularly meaning that the algo-
rithm can be applied on BESSs or WPPs alone without interaction. More-
over, it is possible to choose a specific market to participate in. This can be
specified by the input parameters provided to the model.

9.3. Future work

Having discussed the conclusions and contributions of this work, the following list
is a proposal for future work to improve the proposed algorithm even further.

• Additionally to the work carried out in this thesis, a sensitivity study is
recommend for a better understanding how changes of input parameters
affect results. Due to the issue of the long computational time of some
functions, it is recommended to specify certain input parameters for testing
sensitivities and to re-run the problem in order to observe changes in the
results. A starting point could be the optimum dispatch problem in order
to identify how changes in the wind power forecast influence the optimum
schedule.

• Furthermore, future work can include an example over a short optimization
period (e.g. 24h to 48h) to demonstrate the gain in profit for the VPP based
on the proposed algorithm versus a manually chosen schedule.

• Also, the proposed MILP formulation makes use of text book formulations
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to tackle PLAs. In order to achieve a tighter MILP formulation, this can
be improved as proposed by [89] or [46], for instance.

• Further considerations on the time required to solve the model should be
undertaken. The solver used to solve the problem formulation in this work is
CPLEX® and the model implementation is done in IBM® iLog® CPLEX®
Optimization Studio. One possibility is to run the automated tuning tool
of this software package to find improved settings of the CPLEX® solver.

• Another obvious next step is to take uncertainties into account such as
the wind power forecast or market prices. The proposed MILP formula-
tion can be converted into a robust optimization or stochastic optimization
algorithm.

• Moreover, the intra-day market can be incorporate in the optimization prob-
lem for an even more complete picture of the DK1 power market.

• Currently, the model is restricted to WPPs and BESSs and future work is
to incorporate other power generation technologies like solar- or biomass
power plants. In addition, other ES technologies like e.g. flywheels can be
future work for implementation in the model.

• Further improvements can be made concerning the calculation of the capac-
ity fade which is in this model based on the SoC and energy throughput
through the BESS. A more accurate method is the so called rain-flow cycle
counting algorithm for BESSs that is discussed e.g. in [7].

• In addition, the proposed algorithm can be adapted to incorporate methods
of industrial maintenance and replacement to find the optimum replacement
SoH of the BESS that may be different from the chosen 80% SoH limit in
this work.
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Nomenclature

Sets

A As the set of a linear approximations: a = 0, 1, . . . , a− 1

B As the set of b BESSs: b = 0, 1, . . . , b− 1

Pa As the sets of pa breakpoints used for the (a+ 1)th linear
approximation: pa = 0, 1, . . . , pa − 1

Qb As the set of maxNbSlicesb possible slices that the BESS
b can consist of: qb = 0, 1, . . . ,maxNbSlicesb − 1

T As the set of t time periods, t = 0, 1, . . . , t− 1
Table 9.1.: Sets

Table 9.2.: Parameters used in the MILP formulation

Parameters Unit Comments

(xa,pa,b, f(xa,pa,b)) Various Breakpoints used for piecewise
linear approximations

bdCostt € Balancing down costs DA
market

bdMax MW Upper bound bdPower

bdPrimaryDownCostt € PFR down balancing down
costs
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Nomenclature

bdPrimaryDownMax MW Primary frequency regulation
down maximum balance down
power

bdPrimaryUpCostt € PFR up balancing down costs

bdPrimaryUpMax MW Primary frequency regulation
up maximum balance down
power

bdRegDownCostt € RP down balancing down
costs

bdRegDownMax MW Regulation down maximum
balance down power

bdRegUpCostt € RP up balancing down costs

bdRegUpMax MW Regulation up maximum
balance down power

bonusWpp €
MW h Bonus paid to WPPs

buCostt € Balancing up costs DA market

buMax MW Upper bound BuPower

buPrimaryDownCostt € PFR down balancing up costs

buPrimaryDownMax MW Primary frequency regulation
down maximum balance up
power

buPrimaryUpCostt € Balance cost for primary
frequency regulation

buPrimaryUpMax MW Primary frequency regulation
up maximum balance up
power
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Nomenclature

buRegDownCostt € RP down balancing up costs

buRegDownMax MW Regulation down maximum
balance up power

buRegUpCostt € Balance cost for regulation
power (which is -1 x
regulating power price for the
DK1 market)

buRegUpMax MW Regulation up maximum
balance up power

capacityFadeRateb
MW

MW h Calendric capacity fade (see
sec. 2.3.1 ond page 20 and
sec.A.1 on page 171)

capacityFadeRateThroughputb
MW h
MW h Exercised capacity fade (see

sec. 2.3.2 ond page 21 and
sec.A.1 on page 171)

chargerConversionFactorb
MW
MW

1√
round trip efficiency

chargerF lowMaxb MWh Max energy flow charger

chargerMaxb MW Max charging power out of
market node

chargerMinb MW Min charging power out of
market node

costWppCapex €
MW ·a Annualized CAPEX of WPP

costWppOpex €
MW h OPEX of WPP

dischargerConversionFactorb
MW
MW

√
round trip efficiency

dischargerF lowMaxb MWh Max energy flow discharger
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Nomenclature

dischargerMaxb MW Max discharging power out of
market node

dischargerMinb MW Min discharging power out of
market node

esCostPerMwb
€

MW ·a ES costs

esInvestSwitch — 1 for sizing function, else 0

initSocb
MW h
MW h State of charge of storage at

the beginning (period 0)

marketPricet € DA market price

marketPricePrimaryDownt € Price PFR down

marketPricePrimaryUpt € Price PFR up

marketPriceRegDownt € Price RP down

marketPriceRegUpt € Price RP up

maxNbEs — Limits the maximum number
of ES technologies to be part
of the final solution.
(maxNbEs ≤ B)

maxNbSlicesb — Max number of slices
(increments) of which BESS b
can consist of.

primaryDownReserveFactor MW h
MW h Factor to determine the

minimum SisNode level to be
able to provide PFR up

primaryDownMaxt MW Maximum power for primary
frequency regulation down
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Nomenclature

primaryDownMint MW Minimum power for primary
frequency regulation down

primaryUpMaxt MW Maximum power for primary
frequency regulation up

primaryUpMint MW Minimum power for primary
frequency regulation up

primaryUpReserveFactor MW h
MW h Factor to determine the

minimum SosNode level to be
able to provide PFR up

purchaseCostPertubation € Difference between buying
and selling power on the DA
market where buying is more
expensive (avoids that large
quantities are bought and sold
within the same hour)

purchaseMaxt MW Maximum purchase from DA
market in one period

purchaseMint MW Maximum purchase from DA
market in one period

regDownEnergyF lowFactor MW h
MW h Factor to determine actual

energy dispatch for RP down

regDownMaxt MW Maximum power for RP down
in one period

regDownMint MW Minimum power for RP down
in one period

regUpEnergyF lowFactor MW h
MW h Factor to determine actual

energy dispatch for RP up
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Nomenclature

regUpMaxt MW Maximum power for RP up in
one period

regUpMint MW Minimum power for RP up in
one period

saleMaxt MW Maximum sales to DA market
in one period

saleMint MW Minimum sales to DA market
in one period

selfConsumptionb
MW h
MW h Self-consumption of ES in one

period

selfDischargeRateb
MW

MW h Loss of SoC of storage per
hour

sisNodeMaxb MWh Source storage energy

sosNodeMaxb MWh Sink storage energy

switch — If switch = 1 :
SoC0 = initSocb;
If switch = 0 :
SoC0 = SoCnbP eriods−1

tdt h Time step

windMaxt MW Wind power production of
time period t
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Nomenclature

Table 9.3.: Terms of cost function

Parameters Unit Comments

bdDexpr € Costs for balance down DA
market node

bdPrimaryDownDexpr € Costs for balance down PFR
down market node

bdPrimaryUpDexpr € Costs for balance down PFR
up market node

bdRegDownDexpr € Costs for balance down RP
down market node

bdRegUpDexpr € Costs for balance down RP up
market node

bonusWppOf € Revenues of bonus from WPP

buDexpr € Costs for balance up DA
market node

buPrimaryDownDexpr € Costs for balance up PFR
down market node

buPrimaryUpDexpr € Costs for balance up PFR up
market node

buRegDownDexpr € Costs for balance up RP down
market node

buRegUpDexpr € Costs for balance up RP up
market node

costsBess € Costs of BESS

costsWppOf € Costs WPP
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Nomenclature

marketPurchase € Costs purchases DA market

marketSales € Revenues sales DA market

primaryDownSales € Revenues PFR down market

primaryUpSales € Revenues PFR up market

regUpPowerSales € Revenues RP up market

regDownPowerSales € Revenues RP down market

Table 9.4.: Decision variables of MILP formulation (unless otherwise stated, all
decision variables are continuous and non-negative):

Decision variables Unit Comments

λa,pa,b — Weights used for piecewise
linear approximation

BatteryIntb — Boolean: BESS investment
decision variable

BdPowert MW Power for balancing down

BdPrimaryDownt MW Balance power down for
primary frequency regulation
down

BdPrimaryUpt MW Balance power down for
primary frequency regulation
up

BdRegDownt MW Balance power down for
regulation down
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Nomenclature

BdRegUpt MW Balance power down for
regulation up

BuPowert MW Power for balancing up

BuPrimaryDownt MW Balance power up for primary
frequency regulation down

BuPrimaryUpt MW Balance power up for primary
frequency regulation up

BuRegDownt MW Balance power up for
regulation down

BuRegUpt MW Balance power up for
regulation up

Chargerb,t MW Charging power out of market
node

ChargerCommitmentb,t — Boolean: Charger
commitment

ChargerF lowb,t MW Charging power inside battery
after efficiency loss

ChargerPrimaryDownb,t MW Charging power from PFR
down market

ChargerPrimaryUpb,t MW Charging power from PFR up
market

ChargerRegDownb,t MW Charging power from RP
down

Dischargerb,t MW Discharging power out of
market node
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Nomenclature

DischargerCommitmentb,t — Boolean: Discharger
commitment

DischargerF lowb,t MW Discharging power

DischargerPrimaryDownb,t MW Discharging power into PFR
down market

DischargerPrimaryUpb,t MW Discharging power into PFR
up market

DischargerRegUpb,t MW Discharging power into RP up
market

EsCostOFb
€

MW ·a Annualized costs of BESS b
accounted for in the objective
function

EsCostV sCapacityb
€

MW ·a Annualized BESS costs per
MW depending on capacity
fade

FinalCapacityb
MW h
MW h Capacity at final time step of

BESS b

IntPLAa,pa,b — Boolean: Enforcing adjacency
condition in piecewise linear
approximation

NbSlicesActiveb — Integer variable: Number of
active slices in BESS b

NbSlicesActiveT imestepChargerb,t — Number of slices active in
specific time step t for charger

NbSlicesActiveT imestepDischargerb,t — Number of slices active in
specific time step t for
discharger
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OF € Objective function value

PlaXa.b — X-axes value of piecewise
linear approximation

PlaYa,b — Y-axes value of piecewise
linear approximation

PrimaryDownt MW Sales on PFR down market

PrimaryUpt MW Sales on PFR up market

Purchaset MW Amount of purchase from DA
market

ReciprocalNbSliceActiveb — Approximation of
NbSlicesActiveb

RegDownt MW Sales on RP down market

RegUpt MW Sales on RP up market

Sa,b

√
MWh Decision variable used for

separable programming. Sa,b

has to allow negative values
for a = 1, 3.

Salet MW Amount of sales on DA
market

SisNodeb,t MWh Energy level in sink storage
node

SosNodeb,t MWh Energy level in source storage
node

WindSpott MW Power delivered to the DA
market by the WPP
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Nomenclature

WindRegUpt MW RP up provided by the WPP

WindRegDownt MW RP down provided by the
WPP

WppRegDownCommitmentt MW Boolean: Commitment
variable WPP RP up

WppRegUpCommitmentt MW Boolean: Commitment
variable WPP RP down

Za,b

√
MWh Variable used for linear

approximation of S2
a,b

Table 9.5.: Parameters not part of MILP formulation

Parameters Unit Comments

actualWppProductiont MW Wind power production of
turbines

annualizedCostb
€
a Annualized investment cost of

ES

costWppCapex € Capital expenditures
(CAPEX) for WPP

costWppOpex € Operational expenditures
(OPEX) for WPP

finalCapacityFadeb
MW h
MW h Total irreversible capacity

fade at final time step

i % Interest rate
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Nomenclature

ih a Investment horizon (number
of years of an investment)

k — Factor that is multiplied with
pvb to vary BESS costs for
case study II.

minSocb
MW h
MW h Minimum SoC of BESS b

obligationPrimaryDownt MW Obligation primary down is
the result of the scheduling
function for sales on the PFR
down market.

obligationPrimaryUpt MW Obligation primary up is the
result of the scheduling
function for sales on the PFR
up market.

obligationPurchaset MW Obligation purchase is the
result of the scheduling
function for purchases on the
DA market

obligationRegDownt MW Obligation reg down is the
result of the scheduling
function for sales on the RP
down market.

obligationRegUpt MW Obligation reg up is the result
of the scheduling function for
sales on the RP up market.

obligationSalet MW Obligation sales is the result
of the scheduling function for
sales on the DA market
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Nomenclature

Pg MW Power generated (used for
illustration in Fig. 4.1)

Psch MW Power scheduled (used for
illustration in Fig. 4.1)

pvb
€
a Present value of BESS

investment costs (at year 0)

pv €
a Present value

switch — Switch to distinguish
constraint of first time step of
sisNode and sosNode.

windForecastt MW Wind power forecast of time
period t

yearsEsOperationb a Number of years until end of
life of ES is reached
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A. Input data

This appendix discusses all input parameters used in chapter 6 to chapter 8. If a
referenced document provides a range instead of a specific value for one parameter,
for this work the average of the stated minimum and maximum value is taken.

A.1. Calculation of input parameters

Exercised capacity fade Exercised capacity fade is represented by the parameter
capacityFadeRateThroughputb in the problem formulation (and has the unit
MW h
MW h ). As modeled in sec. 5.2.1, the exercised capacity fade occurs while charging
and discharging the BESS. In Tab. 2.1 on page 18 the storage life is indicated based
on the cycle life which needs to be converted to a storage life based on energy
throughput according to equation 2.1 on page 21.
For li-ion batteries, Tab. 2.1 indicates a cycle life of 2,000 to 10,000 cycles. For
this study, it is assumed that the cycle life of a li-ion battery is 6,000 cycles at
100% DoD. Considering a 1MW li-ion BESS specified in Tab.A.1, this converts
(based on equation 2.1) to 1500MWh throughput and a loss of 1.66·10−5MWh per
1MWh throughput through the charger and discharger. If the exercised capacity
fade would only occur at the charger or discharger, the amount would needed to
be multiplied by two.
Regarding lead-acid batteries, a cycle life of 500 to 1,000 cycles is indicated (see
Tab. 2.1) and 750 cycles are assumed for this study. For a 1MW lead-acid BESS,
this means a total throughput until end of life of 3000MWh and a capacity fade
rate of 1.33 · 10−4 MWh per 1MWh throughput.

Calendric capacity fade Data of the calendric capacity fade capacityFadeRateb

(formulated in sec. 5.2.1) of li-ion BESSs is used from [33] Fig. 1. The results
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Chapter A Input data

obtained are for a specific li-ion battery chemistry and might not be applicable
to other types of li-ion battery technologies. However, due to limited data avail-
ability, these data are taken as a reference number. In practical applications of
the algorithm, the author recommends to perform necessary lab tests beforehand
in order to obtain accurate and reliable values of a specific BESS in question.
In Fig. 1 in [33], the calendric capacity fade is shown for cells at four different
temperatures up to 440 days. The cell at 15◦C is chosen as reference because it
shows the lowest calendric capacity fade indicating that this temperature is the
optimum operating temperature out of the four tested cells. In an actual BESS,
the temperature would be controllable which justifies to pick the cell with the
lowest capacity fade. Fig. 1. in [33] indicates a capacity fade of 6.4% after 440
days. This means that the BESS end of life (80% of the original capacity) would
be reached after 1375 days or 3.8 years based on linear interpolation. This results
in a 6.06 · 10−6MW/MWh calendric capacity fade.
Regarding data for the lead-acid BESS, reference [90] indicates a calendar life of
vale regulated lead-acid batteries (VRLA) of greater than 3 years but no actual
test data proofs this number. For this work, a three year lifetime is considered at
100% SoC. This is equal to 7.61 · 10−6MW/MWh.

Further, it has to be annotated that the problem formulation takes the SoC into
account for the calendric capacity fade. A SoC of 100% means that the calendric
capacity fade occurs as specified by the variable capacityFadeRateb and at 0%
SoC no calendric capacity fade is happening. This might be incorrect as shown
in [33] where capacity fade is also happening at lower SoC but this relationship
would be non-linear. Due to the problem of implementing such non-linear effects,
which would further increase the already large model and due to the issue of data
availability, the chosen approach is considered to be sufficient. This means for
this model that the stated 3.8 and 3 years, respectively, are likely to be exceeded
regarding the calendric capacity fade.
However, on the other hand, data for the calendric- and exercised capacity fade
are from different sources that have not studied the correlated effect of exercised-
and calendric capacity fade. In the developed model, both capacity fades are
summed up which can lead to a shorter lifetime of the BESS than achievable in
practice. This highlights the demand for laboratory tests of both capacity fades
related to each other for the BESSs in question.
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A.1 Calculation of input parameters

Wind power costs All cost data concerning wind power production are from
reference [91] where costs for a 2.5MW WPP are discussed. The investment costs
are stated with 3.235 Mio € including foundation and erection. Operational costs
are 125,000€/a including e.g. insurance, reserve assets, and full maintenance
contract. Based on available wind power data of a 12MW wind farm for one
year with unknown location, wind speed, and time stamp, the full load hours are
taken into account with 2032h per year (which is a capacity factor of 23.2%). It
is not possible to state the IEC wind class for this wind farm because of unknown
wind speed data. Assuming an investment horizon of 20 years, the annuity of the
investment costs is 379,982€ at an interest rate of 10%. Adding the operational
costs to the annuity, the total annual costs are 504,982€ which, divided by the
full load hours, amount to 99.39€/MWh.

Besides the costs of wind power generation, there is also a bonus available for wind
power production in Denmark at around 33€/MWh [92]. Considering the average
DA market price in Denmark from 2009 until 2013 which was 41.16€/MWh [93],
the total income for this period would be 74.16€/MWh for wind power (onshore).
Comparing this number with the above calculated costs of 99.39€/MWh, wind
power would not be a profitable business based on the underlying wind production
data with a capacity factor of 23.2%. Moreover, by averaging the DA market data,
the total income may be assumed higher than actually achievable because it is
likely that in periods with high wind power generation, the DA market price is
lower than in the other periods with a lower level of wind power in the grid.

One problem in the calculation of the capacity factor is the unknown location
of the wind farm from which the wind data is used. [94] shows an overview
of the capacity factor for wind turbines in different locations. For Denmark, [94]
indicates a capacity factor of 35.7% which is higher than from the wind farm where
the wind production data are from. Considering the capacity factor of 35.7%
and the same assumptions as above, the total wind power production costs are
64.59€/MWh which lets wind power be an attractive business case in Denmark.
This number is also based on investment costs of 3.235 Mio € for the 2.5MW
plant which results in annualized costs of 1.823 Mio €/a for the 12MW wind
farm under the same assumptions as above. The investment costs are stated
under costsWppCapex in the table below. Furthermore, the same operational
costs are assumed as above with 125,000€/a for the 2.5MW plant which equals
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600,000€/a for the 12MW wind farm. Considering the capacity factor of 35.7%,
the operational costs are 15.99€/MWh which are stated under costsWppOpex in
the table below.

Charger- and discharger flow The parameters dischargerF lowMaxb and
chargerF lowMaxb are used in the problem formulation if the energy flow from
the sink- to the source node and vice versa should be limited. In this work, no limit
is applied and a high number relative to the chargerMaxb and dischargerMaxb

value is used. In this case the value 100MW is chosen for both battery technolo-
gies.

A.2. Input parameters case study I

Tab.A.1 provides an overview of all input parameters of the case study I. Case
study II and III are also based on this table except input parameters that differ
which are stated separately. If a specific case study requires additional input data
not listed below, they are also stated separately. References for each value are
provided in the annex above or in chapter 2.

Table A.1.: Input parameters case study I

Parameter Unit Li-ion Lead-acid

bdCostt € 0

bdMax MW 0

bdP rimaryDownCostt € 0

bdP rimaryDownMax MW 0

bdP rimaryUpCostt € 0

bdP rimaryUpMax MW 0

bdRegDownCostt € 0
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bdRegDownMax MW 0

bdRegUpCostt € 0

bdRegUpMax MW 0

buCostt € 0

buMax MW 0

buP rimaryDownCostt € 0

buP rimaryDownMax MW 0

buP rimaryUpCostt € 0

buP rimaryUpMax MW 0

buRegDownCostt € 0

buRegDownMax MW 0

buRegUpCostt € 0

buRegUpMax MW 0

bonusW pp €
MW h

33

capacityF adeRateb
MW

MW h
6.06 · 10−6 7.61 · 10−6

capacityF adeRateT hroughputb
MW h
MW h

1.66 · 10−5 1.33 · 10−4

chargerConversionF actorb
MW
MW

1
0.945

1√
0.8

chargerF lowMaxb MW 100 100

chargerMaxb MW 1 0.3

chargerMinb MW 0 0

costW ppCapex €
MW ·a 151,917

costW ppOpex €
MW h

15.99
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dischargerConversionF actorb
MW
MW

0.955
√

0.8

dischargerF lowMaxb MW 100 100

dischargerMaxb MW 1 1

dischargerMinb MW 0 0

esInvestSwitch — 0

i % 10

ih a 6 3

initSocb
MW h
MW h

0.5 0.5

marketP ricet € [1]

marketP riceP rimaryDownt € [1]

marketP riceP rimaryUpt € [1]

marketP riceRegDownt €

From [1] (if price

not available,

marketP riceRegDownt

= −1000)

marketP riceRegUpt €

From [1] (if price

not available,

marketP riceRegUpt

= −1000)

minSoc MW h
MW h

0 0.4

t — Depends on month

primaryDownReserveF actor MW h
MW h

0.5
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primaryDownMaxt MW 10000

primaryDownMint MW 0

primaryUpMaxt MW 10000

primaryUpMint MW 0

primaryUpReserveF actor MW h
MW h

0.5

purchaseCostSupplement € 0.01

purchaseMaxt MW 10000

purchaseMint MW 0

pvb(see Tab. 2.1) €
MW

975,000 1,333,000

regDownEnergyF lowF actor MW h
MW h

0.9

regDownMaxt MW 10000

regDownMint MW 0

regUpEnergyF lowF actor MW h
MW h

0.9

regUpMaxt MW 10000

regUpMint MW 0

saleMaxt MW 10000

saleMint MW 0

selfConsumptionb
MW h
MW h

0.0125 0.0125

selfDischargeRateb
MW

MW h
8.3 · 10−5 8.3 · 10−5

sisNodeMaxb MW h
(1–minSoc)

·sosNodeMax

sosNodeMaxb MW h 0.25 4
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switch — 1

tdt h ∀t ∈ T : tdt = 1

windMaxt MW Differs hourly

A.3. Input parameters case study III

The input parameters for case study III that differ from case study I (Tab.A.1)
are listed in Tab.A.2.

Table A.2.: Input parameters case study III

Parameter Unit Value

bdCostt € From: [1]

bdMax MW 1000

bdP rimaryDownCostt € 100,000

bdP rimaryDownMax MW 1000

bdP rimaryUpCostt € 100,000

bdP rimaryUpMax MW 1000

bdRegDownCostt € bdCostt

bdRegDownMax MW 1000

bdRegUpCostt € bdCostt

bdRegUpMax MW 1000

buCostt € From: [1]

buMax MW 1000
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buP rimaryDownCostt € 100,000

buP rimaryDownMax MW 1000

buP rimaryUpCostt € 100,000

buP rimaryUpMax MW 1000

buRegDownCostt € buCostt

buRegDownMax MW 1000

buRegUpCostt € buCostt

buRegUpMax MW 1000

esInvestSwitch — 1

i % 10

ih a Not needed

primaryDownMaxt MW obligationP rimaryDownt

primaryDownMint MW obligationP rimaryDownt

primaryUpMaxt MW obligationP rimaryUpt

primaryUpMint MW obligationP rimaryUpt

purchaseMaxt MW obligationP urchaset

purchaseMint MW obligationP urchaset

regDownMaxt MW obligationRegDownt

regDownMint MW obligationRegDownt

regUpMaxt MW obligationRegUpt

regUpMint MW obligationRegUpt

saleMaxt MW obligationSalet
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saleMint MW obligationSalet
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B. CPLEX Parameters (OPS file)

Algorithm B.1 CPLEX tuning parameters (OPS file)

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<s e t t i n g s ve r s i on="2">
<category name="cp lex ">
<s e t t i n g name="brd i r " va lue="1"/>
<s e t t i n g name="pres lvnd " va lue="2"/>
<s e t t i n g name="probe " va lue="2"/>
<s e t t i n g name=" cu t s f a c t o r " va lue ="30.0"/>
<s e t t i n g name="nodelim " value="200000"/>
<s e t t i n g name="epgap " value ="0.0010"/>
</category>
</s e t t i n g s >
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