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SUMMARY 

The unfortunate impacts arising from the continued use of fossil fuels has in recent 
years given rise to an increased focus on the development of biofuels. Bioethanol 
has in particular been considered as a viable alternative to transportation fuels 
derived from oil. However, the current controversial production systems and 
processes based on sugar and starch has to undergo change to enable lignocellulosic 
biomass to be utilized as feedstock instead of food. Comprehensive research and 
development is needed in order to optimize the various processes involved in the 
conversion of biomass to 2nd generation bioethanol. The recalcitrant structure of 
lignocellulose requires a combination of thermochemical and enzymatic 
pretreatment to release sugars to be used for the subsequent fermentation process. 
The fermentation step, with its many process parameters, has endless opportunities 
for improvements and to optimize the process. Therefore, one way to be able to 
create optimal conditions for fermentation, or the prior pretreatment steps for that 
matter, is by being able to monitor these conversions in a simple manner to retrieve 
as much process information as possible. The development of 2nd generation 
bioethanol production is also being challenged by the fact that only few yeast or 
bacteria species in the wild are capable of producing ethanol efficiently from all the 
different types of sugars found in lignocellulosic biomass. 

The aim of the this research project was to study the possibilities and limitations 
arising from applying monitoring techniques for controlling fermentations or other 
processes in a biorefinery setting. Such methods may help improve process control 
or reduce labor costs associated with sampling and analysis. Monitoring was 
attempted using Raman spectroscopy to follow the progress of a yeast 
fermentations in real-time. The factors affecting Raman measurements such as 
attenuation of signal by the suspended particulates were measured and build into a 
quantification models. This made it possible with Raman to continuously measure 
the concentrations of ethanol, glucose and cell biomass in the growth media during 
fermentations with Saccharomyces cerevisiae. Concentration quantifications were 
performed without using complex statistics involving chemometric or multivariate 
methods commonly used with other spectroscopy methods such as NIR. Overall, 
monitoring a fermentation process containing biomass residues in the hydrolysate 
using this method yielded reasonable concentration values to be collected, as long 
as the amount of particulates surrounding the immersion probe could be kept at a 
low level. An attempt to monitor a pretreatment reaction, however, seemed to give 
more inconsistent results, while applying Raman to monitor a hydrolysis process 
did not appear applicable at all. 
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In another part of the project, I focused on working with the two xylose-fermenting 
yeasts Scheffersomyces (Pichia) stipitis and the more recent isolated Spathaspora 
passalidarum. The yeasts were grown on hydrolysates prepared from three 
abundant tropical biomasses: Sugarcane bagasse, eucalyptus tree fiber and empty 
fruit bunches (EFB), residues from the palm oil production. The comparison 
between the two yeasts resulted in similar yields, but the conversion rate of S. 
passalidarum was slightly better under the micro-aerobic conditions. The higher 
level of acetic acid found in the hydrolysate from EFB (6 g/L) resulted in a longer 
lag phase, which initially seemed to inhibit S. passalidarum the most. Despite 
inhibition in the beginning, this fermentation eventually yielded the highest ethanol 
concentration of about 20 g/L. Under strict anaerobic conditions, neither of two 
yeasts where capable to overcome the inhibition caused by the acetic acid.  



I 

RESUME 

De uønskede virkninger ved den fortsatte anvendelse af fossile brændstoffer har i de 
senere år givet anledning til en øget fokus på udviklingen af biobrændstoffer. 
Bioethanol forventes især at have potentiale til at blive et bæredygtigt alternativ til 
brændstoffer fremstillet af olie. De eksisterende kontroversielle første generations 
produktionssystemer baseret på sukker og stivelse må dog ændres nok til at kunne 
bruge biomasse af lignocellulose som råvare i stedet for fødevarer. Det nødvendigt 
med en omfattende forskningsindsats for at opnå dette med henblik på at optimere 
de forskellige delprocesser, der indgår i omdannelsen af biomasse til anden 
generations bioethanol. Det svært nedbrydelige lignocellulose kræver en 
kombination af termokemisk og enzymatisk forbehandling for at kunne frigive 
sukre til den efterfølgende gæringsproces. Gæringsprocessen med sine mange 
procesparametre har uendelig mange forbedringsmuligheder. De optimale 
procesbetingelser for en gæringen eller det forudgående forbehandlingstrin skabes, 
hvis omdannelsen hele tiden kan overvåges, så flest mulig procesoplysninger nemt 
kan opsamles. Udviklingen af anden generations bioethanol produktion udfordres 
også af at kun få gær- eller bakteriearter i naturen er i stand til at producere ethanol 
effektivt ud fra alle de forskellige sukre, som findes i det lignocellulose biomasse. 

Formålet med dette forskningsprojekt var at undersøge de muligheder og 
begrænsninger, som opstår ved brug monitoreringstekniker, der anvendes til at styre 
gæringer eller andre processer i et bioraffinaderi. Herigennem kan der muligvis 
opnås en forbedret processtyring eller reduceret lønomkostning i forbindelse med 
prøvetagning og analysearbejde. Muligheden for at anvende procesovervågning 
blev afprøvet ved at monitorer gærfermenteringer i realtid med Raman 
spektroskopi. De faktorer, som påvirker Ramanmålinger, såsom omfanget af 
dæmpning af lyssignal forårsaget af lysspredende partikler i reaktionsblandingen, 
blev målt og integreret i kvantificeringsmodellen. Herved blev det muligt at 
foretage løbende koncentrationsbestemmelser af ætanol, glucose og cellebiomasse i 
vækstmedie ved gæringer med Saccharomyces cerevisiae. Koncentrationsbestem-
melserne blev gjort uden brug af kompliceret statistik med kemometri eller 
multivariate analysemetoder, der for det meste anvendes i forbindelse med andre 
spektroskopiske metoder, såsom NIR.  

Fremgangsmåden til monitorering af en fermenteringsproces indeholdende rester 
fra biomasse i hydrolysatet gav overordnet set fornuftige koncentrationsmålinger, så 
længe mængden af partikler omkring sensoren kunne holdes på et relativt lavt 
niveau. Et forsøg på at overvåge en forbehandlingsreaktion syntes dog at give 
unøjagtige resultater, mens anvendelse Raman til overvågning af en 
hydrolyseproces på ingen vis forekom brugbar. 
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I en anden del af projektet fokuserede jeg på at arbejde med de to 
xylosefermenterende gærarter; Scheffersomyces (Pichia) stipitis og den senest 
isolerede Spathaspora passalidarum. De blev opformeret på hydrolysater 
fremstillet af tre biomasser, som forefindes i store mængder i troperne: 
sukkerrørbagasse, eukalyptus træfiber og restprodukter fra produktionen af 
palmeolie - empty fruit bunches (EFB). Ved sammenligning af de to gærarter 
fremkom lignende udbytter, men stofomsætningshastigheden for S. passalidarum 
var lidt bedre under de mikroaerobe forhold. Den højere mængde af eddikesyre, 
som fandtes i hydrolysatet fra EFB (6 g/l), syntes mest at inhibere S. passalidarum, 
hvilket resulterede i en længere nølefase. På trods af denne hæmning i starten endte 
denne fermentering med at give den højeste ætanolkoncentration på omkring 20 
g/L. Under fuldstændige iltfrie forhold syntes ingen af de to gærarter at kunne 
overvinde den hæmmende virkning forårsaget af eddikesyren. 
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INTRODUCTION  

The current concerns about climate change have urged both governments and in the 
private sector to find viable solutions to reduce the green house gas emissions. The 
combustion of coal, oil and gas has caused carbon dioxide in the atmosphere to 
reach record levels at 400 ppmv in 2013 from originally 280 ppmv at preindustrial 
times – more than a 40 percent increase. The green house gasses, predominantly 
carbon dioxide, absorb infrared thermal radiation re-emitted from the planets 
surface when warmed by the visible sunlight, which easily passes through the 
atmosphere. Almost half the carbon dioxide released into the atmosphere by human 
activity is furthermore dissolved in the oceans, lakes and rivers of the planet, where 
it contributes to acidification. Decreasing pH reduces the concentration of available 
carbonate needed by calcifying organisms (1, 2). According to latest IPPC 
assessment report on climate change, it is more than 95 % certain that human 
influence has been the dominant cause of the global warming observed since the 
mid-20th century. The temperatures of the last three decades have probably been 
the warmest for 1,400 years, which calls for essential precautionary actions. Even if 
emissions would completely cease, the elevated temperatures will remain almost 
constant for centuries (3, 4).  

Currently, the global consumption of energy arising from electricity production, the 
transportation sector and power needed for heating, is mainly covered by the use of 
fossil fuels. Carbon-free alternative sources of energy for electricity production 
such as; hydro-, nuclear-, solar-, wind power and through combustion of biomass or 
biogas are widespread. In contrast, it seems more difficult to replace the 
petrochemical fuels used for transportation. Only surpassed by emissions from 
power plants, the transportation sector is responsible for almost 25 percent of the 
annual global emissions of carbon dioxide (5). The use of electric vehicles, based 
on battery technology, may be promising; provided the needed electricity is 
produced without using fossil fuels. However, this would require an expensive 
modification of the current infrastructure. Ideally, any method to produce 
alternative carbon dioxide neutral liquid fuels requiring little or no modifications at 
the gas station, or of the engines in vehicles currently on our roads, would be highly 
desirable. In addition, dependency from foreign oil may be reduced in many 
countries, if petrochemicals can be replaced by domestically produced biofuels.  

Energy derived from any sort of combustion of biomass or products hereof is 
generally regarded to be renewable and carbon neutral for the most part. The carbon 
dioxide emitted by the biofuel roughly corresponds to the amount assimilated by the 
biomass during the growth period, driven by photosynthesis with sunlight being the 
ultimate source of energy (6). Liquid biofuels such as methanol, bioethanol, 
biodiesel, ethers and biobutanol with properties similar to gasoline or diesel fuels 
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can be produced from agricultural residues, forestry waste and municipal solid 
waste through chemical or biochemical conversion processes. An abundant and 
sustainable alternative source of organic raw material to fossil fuels can be derived 
from biomass. Forest and agricultural residues alone constitutes an estimated 
energy resource of 30 EJ/year, and a considerable amount of the global primary 
energy demand of more than 400 EJ/year could be covered by utilizing dedicated 
crops in addition to the residues of different sorts (6).  

Today, ethanol is the biofuel produced in largest amounts. Production is increasing 
rapidly with a global production of 17.25 billion liters per year in 2000, to 
projections exceeding 125 billion liters in 2020. This is the result of government 
programs around the world promoting the increased use of biofuels. Bioethanol is 
produced with the yeast Saccharomyces cerevisiae using mainly raw materials such 
as cornstarch in the US or sucrose extracted from sugarcane in places like Brazil 
(7). Development of 2nd generation biofuels using non-food lignocellulosic biomass 
for feedstock has gained much attention in recent years because of the controversial 
use of food for the production of fuel. In order to facilitate the production of 
bioethanol or other advanced biofuels using biomass as feedstock, research must be 
carried out to reduce process costs of develop new conversion technologies. 
Moreover, attempts to increase product yields or energy efficiencies by applying the 
latest from biotechnology or other fields of technology are also a priority (8).  

BIOMASS STRUCTURE AND RESOURCE 

A prerequisite for being able to develop efficient production processes for 
converting the constituted biomass components into biofuels is to obtain knowledge 
about the general structure of biomass (Figure 1). The main component of plant 
biomass is lignocellulose, which is constructed as a complex matrix of three 
interlinked polymers within the cell wall; cellulose (35-50%), hemicellulose (20-
35%) and lignin (10-30%) (9,10). The tensile strength of biomass fibers is mainly 
determined by cellulose and hemicellulose; while lignin provides rigidity to the 
structure. The abundance of each polymer depends on the type of biomass and 
varies between hardwoods, softwoods and grasses. Lignin content is highest in 
woods, whereas hemicellulose is found in higher amounts in grasses rather than in 
woody biomass. In addition, all plants also contain significant amounts of inorganic 
minerals (ash), proteins, lipids, soluble sugars and pectins, which is a common 
polysaccharide in fruits, but is also present in the cell wall of lignocellulosic 
biomass (11).  
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Figure 1: The structure of lignocellulose composed of the three biopolymers. 

 

CELLULOSE  

As the most abundant organic compound on Earth, cellulose represents a major 
potential feedstock for renewable fuels. Cellulose consists of homogeneous linear 
polymers of up to more than ten thousands of β-D-glucose units linked by β (1→4)-
glycosidic bonds with cellobiose as the repeating unit in the glucan chain. Adjacent 
glucan chains are parallel to each other and bound together by hydrogen bounds and 
weak van der Wall's forces in hydrophilic micro fibril subunits of 24 to 36 chains. 
The rigid insoluble cellulose micro fibrils have both an ordered crystalline interior 
and a more disordered amorphous characteristic at the surface. The polymer is 
synthesized in the plasma membranes by the honeycomb-arrayed Rosette subunits. 
The micro-fibril structure, resembling a scaffold, gives the polymer great 
mechanical strength and recalcitrant properties towards degradation during 
thermochemical pretreatment or enzymatic hydrolysis (12, 13). By contrast, the 
highly branched starch (amylose and amylopectin) consisting of (1→4)-α-glucans 
also has crystalline features, but the transition to the amorphous state in water takes 
place at only 65 °C compared to 320 °C required for cellulose to undergo this 
transition in water (14).  



OPTIMIZATION OF LIGNOCELLULOSIC BIOETHANOL PRODUCTION USING PENTOSE FERMENTING YEASTS AND 
RAMAN SPECTROSCOPY 

10
 

 

HEMICELLULOSE 

Hemicellulose, composed of both hexoses and predominantly pentoses, has a more 
heterogeneous and branched structure than cellulose. It consists of glucose, 
arabinose, mannose, galactose and rhamnose, but in most biomasses xylose is the 
predominant sugar monomer in these polymers consisting of up to 3000 sugar units 
(Figure 2). Sometimes, glucuronic acid and galacturonic acid are also constituents 
of hemicellulose. These monomers are linked together with (1→4), (1→3) or 
(1→6) linkage by both β- and α-bonds and the polysaccharide binds non-covalently 
to the longer cellulose microfibrils. The main categories of hemicellulose are 
xylans, manans, xyloglucans and β-glucans, which are determined by the backbone 
of the polymer. The abundance varies among plant species with the xylan backbone 
(1→4-β linked D-xylose) being the most common polymer in hemicellulose (15):  

• Softwood such as spruce and pine (gymnosperms): Galactoglucomannans, 
arabino-glucuronoxylans and arabinogalactan  

• Harwood such as birch and aspen (angiosperms): Glucuronoxylans and 
glucomannans 

• Grasses such as corn (herbaceous plants): Arabinoxylans 
 

The branched polysaccharide pectin differs from hemicellulose mainly by having a 
backbone of linked α-(1 → 4) D-galacturonic acid, mostly, with a methyl ester 
group attached at the carboxylic group. Unlike cellulose and lignin, hemicellulose is 
relatively easy solubilized in hot dilute acids, thus enabling subsequently hydrolysis 
of the polymer to form single sugar monomers. However, prolonged 
thermochemical pretreatment can further degrade the released pentose sugars to 
furfural before the cellulose in the biomass has undergone any decomposition (11).  

LIGNIN 

Next to cellulose, lignin is the second most abundant biological polymer on earth. 
This complex branched polymer of phenyl-propanoid units are in contrast to the 
polysaccharide components in the cell wall hydrophobic and lack a primary 
structure. Covalently bound to hemicellulose, the brown amorphous lignin fills out 
the space between the other polymers and provides rigidity to the cell wall. As 
shown in Figure 2, the macromolecule is composed of a three dimensional network 
of the three aromatic monolignol monomers: p-coumaryl-, coniferyl- and sinapyl 
alcohol. These monomers, differing in the degree of methoxylation, are joined 
together by alkyl– aryl, alkyl–alkyl and aryl–aryl ether bonds. Herbaceous plants 
such as grasses contain all three units, whereas wood lignins mainly consist of 
guaiacyl and syringyl monomers (16). Biodegradation of lignin into the constituting 
monolignol units cannot simply occur through hydrolysis, but may involve reaction 
with radicals. Lignin is thus indigestible by animals, and it helps to shield the 
polysaccharides in the cell wall from enzyme attack (17). In the absence of an 
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oxidant, the polymer also resists chemical treatment well. The lignin degradation 
products can adsorb to enzymes and then inhibit further hydrolysis. Lignin is the 
initial source of fossil fuels, because of this ability to resist degradation (18, 19).  

 

Figure 2: The seven major building blocks of the polymers in lignocellulose: a) p -
hydroxyphenyl (H), ( p -coumaryl alcohol), b) Guaiacyl (G), (coniferyl alcohol), c) Syringyl 
(S), (sinapyl alcohol), d) Xylose (ß-D-Xylofuransoe), e) Arabinose (ß-L-Arabinofuranose), f) 
Mannose (ß-D-Mannopyranose), g) Glucose (ß-D-glucopyranose).  

 

BIOMASS FEEDSTOCK  

Biomass is the largest, if not the only renewable source of carbon for several 
applications such as food, feed, materials, and it can also be used for chemicals, 
gaseous fuel, liquid fuel or solid fuel. Most often, the biomass feedstock originates 
from woody plants or herbaceous plants but the resource can also be derived from 
aquatic plants, manures or municipal wastes. Some of the general characteristics of 
ideal energy crops are:  

• High yield per hectare  
• Decease, pest and weed resistant 
• Low energy input to produce and harvest 
• Low cost to store and process  
• Low nutrient requirements 
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In regards to the subsequent processing, additional properties of the feedstock may 
be important such as: moisture content, ash content, cellulose to lignin ratio (6, 20).  

The available land for production of biomass on Earth is limited and getting the best 
out of the resource is a challenge, when considering obstacles such as; a future 
population of 9 billion people, loss of biodiversity, the controversial use of food for 
fuel, and soil depletion. Proteins, oils and to some extend starch produced by plants, 
require more resources than the production of cellulose, hemicellulose or lignin. 
Oils and proteins should therefore be left for food and feed production, whereas 
future production of bioenergy ideally should focus on using cellulose, 
hemicellulose or lignin.  

The biomass needed for the production of 2nd generation biofuels may come from 
both dedicated energy crops or from lignocellulosic residues produced by existing 
agriculture and forestry. Technologies integrating food and fuel production could 
minimize the loss of energy and nutrients and assist in facilitating the best use of 
the available biomass resource. Exploiting marginal lands with limited potential for 
food production may also serve as a way to supply biorefineries with raw materials. 
Examples of all ready abundant lignocellulosic residues rendered by existing 
industrial, agricultural or silvicultural productions are:  

• Sugarcane bagasse from sugar and bioethanol industry in especially South 
America 

• Straw from grain and seed production such as corn or wheat 
• Residues from palm oil production in South East Asia such as; leaves and 

empty fruit bunches 
• Forest residues from wood and pulp production 
• Municipal solid waste 

 

These low value agricultural bi-products are already present in tremendous 
amounts. In fact some are already available at production facilities, reducing 
transportation costs. Alternatively, biomass for bioenergy, may be provided by 
dedicated crops such as: 

• Herbaceous perennials grasses (seasonal plants): Switchgrass, Miscanthus, 
sweet sorghum and alfalfa.  

• Dedicated production of woody biomasses from Populus (poplar), Salix 
(willow) eucalyptus  

• Whole crop concepts combining traditional starch crop and their 
lignocellulosic residues 
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The perennial grasses, sugarcane, miscantus, switchgrass, soghum, Arundo donax 
(giant cane) and maize fixate carbon dioxide via a 4-carbon organic compound by 
utilizing the faster and more energy efficient C4 photosynthetic pathway compared 
to the pathway found in cereals and other C3-plants. These C4-plants are therefore 
potentially more interesting as feedstock for bioenergy purposes by giving greater 
biomass yields. However, in colder climate, C3-plants may be more productive and 
tolerant towards low-temperature conditions than C4 photosynthesis (6, 20, 21). 

Considerations about sustainability are essential when implementing dedicated 
bioenergy crops on agricultural land otherwise used for the production of food or 
feed. There is a potential risk, especially in the tropical regions, that cultivation of 
bioenergy crops or even the increased production of common agricultural crops 
delivering residual biomass for biorefineries could threaten pristine forests and wild 
life. Sugarcane bagasse, eucalyptus tree fibers and empty fruit bunches or other 
residues from the palm oil production are examples of some biomasses with 
tremendous potential as raw material for the production of lignocellulosic biofuels 
in tropical regions, such as Brazil and Thailand (22, 23). The use of such biomass 
resources in sensitive areas potentially threating tropical forest should thus be 
approached with caution. Manuscript III deals with production of bioethanol using 
the xylose-fermenting yeasts Scheffersomyces (Pichia) stipitis and Spathaspora 
passalidarum and these three important tropical biomasses as raw material. S. 
stipitis has been able to grow and produce ethanol in hydrolysates from a wide 
variety of available lignocellulosic biomasses like corn stover or common grasses 
such as cocksfoot grass (24). 

Feedstock is only one of several important features of a biorefinery system. The 
conversion pathway from the biomass resource to the final product is being 
determined by the process and platform. The platforms are intermediates from 
which the products are derived, which could be the C6 sugars or both C6 and C5 
released during the pretreatment and hydrolysis processes. Integrating feedstock, 
products, platform and processes in the early development stages of a biorefinery 
concept are necessary to estimate the overall impact. An overview of some of these 
features and classifications of biorefinery systems is presented in Table 1 (25). 

BIOREFINERY 

Utilization of sugarcane has been known for millennia, and the first sugar refinery 
was established in 1801 upon research conducted by A.S. Marggraf on the isolation 
of crystalline sugar from different beets and roots. Later, hydrolysis of starch was 
observed when potato starch was cooked in dilute acid, thereby converting starch 
into sugar. In 1835, J. J. Berzelius in Sweden discovered that hydrolysis of starch 
could also be catalyzed by enzymes. The process of wood saccharification was 
discovered in the early19th century; where glucose was released in low yields, as 
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wood was exposed to either dilute acid at high temperatures or to concentrated acid 
at lower temperatures. Significant ethanol production could be based on the 
fermentation of such sugar fractions using yeast in this early biotechnological 
process and particularly with starch as feedstock. Another use of these sugar 
feedstocks with fermentation was in the production of acetic acid. Processes to 
yield other products from lignocellulosic feedstock such as; furfural through 
distillation from decomposed hemicellulose, levulinic acid from cellulose, cellulose 
pulp and vanilin from lignin were also developed, but have not achieved the same 
significance as bioethanol production (26).  

Biorefinery concepts have evolved from being based on sucrose from sugarcane or 
beet to the utilization of glucose or fructose released from starch grains exposed to 
enzymes. More recently, approaches to use lignocellulosic feedstock, considered to 
be more sustainable, have received more attention: 

1. Sugarcane/ beet  → sucrose  
2. Starch grains + enzymes  → glucose + fructose  
3. Lignocellulose + enzymes  → glucose and pentose sugar mixture + lignin  

 

The difference in cost of the available fermentable carbohydrate produced through 
these three concepts has diminished over the last decades. This has partly been due 
to a dramatic decrease in the cost of the needed enzyme dose as a consequence of 
better enzymes performance and due to improved production economics 
implemented by the main industrial enzyme producers, Novozymes and Genencor. 
The cost of enzymes is now estimated to contribute to approach levels below 50 
cent per gallon of lignocellulosic bioethanol produced (27).  

Thermochemical decomposition processes include pyrolysis and gasification. 
Pyrolysis is performed in the absence of oxygen at 350 to 550 °C, possibly 
increasing up to 700 °C during reaction to produce liquids, gasses and char. In 
comparison, gasification occurs at 800 to 900 °C through partial oxidation of the 
biomass, which produces syngas, that consists of a gas mixture of carbon 
monoxide, carbon dioxide and hydrogen. Methane, methanol or larger 
hydrocarbons may catalytically be synthesized from syngas (28, 29).  
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Table 1: Biorefinery categories

Feedstocks Platforms Processes Products

Starch crops C6 sugars Thermochemical: Energy:
Combustion Bioethanol

Sugar crops C5 sugars Gasification Biodiesel
Hydrothermal upgrading Biomethane

Lignocellulosic crops Lipids/oil Pyrolysis Biobutanol 
Supercritical extraction Methanol

Oil crops Protein Synthetic biofuels
Biochemical: Dimethyl ether

Grasses Biogas Fermentation Electricity and heat
Anaerobic digestion

Marine biomass Syngas Aerobic digestion Material products:
Enzymatic processes Food

Lignocellulosic residue Hydrogen Animal feed
Chemical:

Oil based residue Organic acids Catalytic Fertilizer
Pulping Glycerin

Organic residue Pyrolytic liquid Esterification Biomaterials
Hydrogenation Hydrogen

Lignin Hydrolysis Polymers
Electrolysis Furans

Electricty and Heat
Mechanical:
Extraction
Separation
Milling
Drying

  

Biochemical conversion processes have some benefits over chemical conversion of 
biomass. These benefits include lower energy costs, less risk of catalytic poisoning, 
less microbial dependency on fixed substrate composition and higher specificity 
towards the substrate. Enzymatic hydrolysis technology applied during biochemical 
conversion of biomass can preserve the original carbohydrate structure if required, 
which is in contrast to fully thermochemical conversion causing decomposition of 
the sugar units (30). A vast number of organic acids or alcohols with biofuel 
potential for transportation can be produced in a biorefinery through biochemical 
conversion of the free carbohydrates released during pretreatment and hydrolysis. 
Among useful organic acids with potential as high volume platform chemicals 
produced by fermentation with wild type organisms or genetically modified 
organisms are: Acetic acid, oxalic acid, lactic acid, propionic acid, butyric acid, 
fumaric acid, malic acid, succinic acid, levulinic acid, ascorbic acid, citric acid and 
gluconic acid (31). Choice of conversion method and biofuel is dependent on 
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factors such as conversion yields and rates, sugar utilization, product and inhibitor 
tolerance, toxicity and fuel properties in combustion engines. The ability to control 
fermentation in large scale, to avoid microbial contamination in the fermentation 
process and to separate the product from the broth after fermentation may also be 
important requirements.  

ANAEROBIC DIGESTION 

The production of biogas through anaerobic digestion is the most simple biorefinery 
process employed to convert biomass into a biofuel having properties similar to a 
common fossil fuel. In the absence of oxygen, the organic components in biomass 
will gradually be degraded by a vast number of different microorganisms and will 
eventually be converted to a gas mixture consisting of mostly methane. The steps 
involved in the digestion are: hydrolysis, acidogenesis, acetogenesis and 
methanogenesis. Extra-cellular enzymes from hydrolytic bacteria initially 
decompose polymers such as polysaccharides, proteins and lipids down to smaller 
soluble monomers. Then, the available sugars, amino acids and long chain fatty 
acids are metabolized to intermediate alcohols, lactate, acetic acid and higher 
volatile fatty acids (VFA) by the fermentative bacteria during acidogenesis. The 
higher volatile fatty acids, lactate and alcohols, are oxidized by acetogenic bacteria 
to yield acetic acid, hydrogen, ammonia and carbon dioxide. Finally, methanogens 
convert these products to methane (typically about 70 %), and the remaining 
constituent of the biogas is carbon dioxide as well as trace amounts of hydrogen 
sulfide and hydrogen. Subsequent to the removal of hydrogen sulfide, the biogas 
can be stored and used for production of electricity. Further processing may be done 
to strip of the carbon dioxide and isolate the methane to yield fuel for transportation 
purposes if compressed. Liquid biofuels however seems easier to handle with 
current infrastructure than compressed biogas (32). 

BIOBUTANOL 

Another process considered to have potential for producing industrial biofuel is the 
ABE fermentation, which produces mainly butanol with Clostridium bacteria 
strains such as C. pasteurianum. Both hexoses and pentoses can be utilized and 
besides butanol significant amounts of ethanol and acetone are also produced giving 
the name ABE fermentation. The main disadvantages to this process are low yield, 
low productivity and the low toxicity of butanol to these strains. The poor butanol 
tolerance requires complicated removal and recovery of the product. Continued 
solvent removal during fermentation is possible, but has so far made the ABE 
process too complicated and expensive compared to the production of bioethanol 
(33). 
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BIOETHANOL 

Production of 2nd generation bioethanol from lignocellulosic biomass is the 
biochemical conversion process that receives the most attention in a biofuel context. 
The following main process steps are generally involved in the various concepts of 
lignocellulosic bioethanol production: size reduction of biomass, thermo-chemical 
pretreatment, enzymatic hydrolysis, ethanol fermentation and recovery of ethanol. 
Detoxification, neutralization, separation of solids from liquids and residue 
processing are often also part of the overall process. The major bottleneck in the 
conversion of biomass into ethanol is to achieve efficient deconstruction to simple 
sugars during pretreatment and hydrolysis due to the recalcitrant nature of plant cell 
walls. Optimizations of sugar yields have been carried out to a great extent by 
improving enzyme performance and reducing the enzyme production costs. 
Furthermore, minor changes of pretreatment parameters can easily result in 
increased formation of inhibitors, affecting the fermentation process and thus the 
overall performance. Only a limited number of bacteria, yeasts and fungi are able 
through fermentation to also convert the pentose sugars from the hemicellulose 
fraction into ethanol. Currently, most concepts heading for commercialization 
employ a platform based on fermenting only the hexose sugars by using the baker's 
yeast, Saccharomyces cerevisiae (Figure 3).  

 

Polymers of cellulose + hemicellulose + lignin

Hydrolysate with hemicellulose sugars
Enzymes

Hydrolysate with cellulose sugars
Yeast

Ethanol + residual solids (lignin)

Ethanol

Solids Heat & electricity

Cellulosic feedstock

Thermochemical pretreatment

Size reduction

Hydrolysis of cellulose

Fermentation of C6 or both C6+C5

Ethanol recovery

Separation of solids

 
Figure 3: General lignocellulosic bioethanol production process.  
 
Models have shown that future cellulosic biorefineries concepts have the potential 
to achieve efficiencies comparable to what is reached with the current fossil based 
production of fuel for transportation. Biochemical production costs that are 
competitive with gasoline (in terms of cost per gasoline equivalent), may be 
realized at oil prices as low as $30 per barrel, provided that the development of 
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effective processes to overcome lignocellulosic recalcitrance are executed for 
production scale. For instance, merging the enzyme production, hydrolysis and 
fermentation steps into one single theoretical possible unit process could optimize 
the production of bioethanol. Biological ethanol production seems a bit more 
promising than thermochemical processing, but integration of both with lignin-rich 
residues being converted thermochemically appears to be a scenario with an even 
better performance. Biorefineries with coproduction of fuel and protein for animal 
feed, as well as, significant integration of processes to recover heat and water are 
also assessed to be necessary to achieve economic feasibility. High capital costs are 
associated with advanced biofuels, compared to starch ethanol plants, which with 
the current technology and corn prices are still more cost effective (34, 35). 

PRETREATMENT 

Pretreatment is the first step in deconstructing the rigid structure of the 
lignocellulose during the production of lignocellulosic bioethanol. An initial 
mechanical grinding or milling of the biomass usually takes place before 
pretreatment to increases the surface area and thus facilitate the chemical and 
enzymatic degradation processes. This mechanical size reduction however adds to 
the total energy consumption. The subsequent pretreatment reduces crystallinity and 
increases the porosity of cellulose, thereby contributing additionally to increasing 
the access of the enzymes to the polymers, hence for a more effective enzymatic 
hydrolysis of the biomass. Several pretreatment methods have been developed 
including physical, chemical, biological, and electrical or combinations of these 
(36, 37). 

The most common pretreatment methods require conditions with high temperature 
and pressure; applying dilute acid, steam explosion, ammonium fiber expansion, 
wet oxidation, or wet explosion of the biomass. Hemicellulose acetyl groups are 
cleaved off at the elevated temperatures during pretreatment and the hydrolysis of 
the polymer to monosaccharides is further aided by acetic acid acting as catalyst on 
the reaction. Lignin is not easily removed, but sort of melts and is redistributed on 
the fiber surface from depolymerization and repolymerization reactions, thus 
enhancing fiber digestibility (38). Higher temperatures are generally needed when 
more dilute sulfuric acid or other catalyst is used. Pretreatments with dilute sulfuric 
acid typically release most of the sugars from the hemicellulose in the biomass 
within 20 min at temperatures above 150 °C. Release yields of the fermentable 
hemicellulose sugars above 90% of the theoretical possible have been achieved 
with many of these methods. The process should be optimized to ensure high sugar 
yields, little formation of fermentation inhibitors and minimal use of energy and 
chemicals (39).  
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HYDROLYSIS 

The enzymatic digestibility of lignocellulosic biomass or recalcitrance is 
determined by enzymatic accessibility. The dilute acid pretreatment of 
lignocellulosic biomass exposes the cellulose by releasing most of the 
hemicellulose from the biomass. Moreover, the pretreatment hydrolyses most of the 
hemicellulose into monomers. Acid hydrolysis of the remaining cellulose to glucose 
is also possible if more severe conditions regarding temperature and acid 
concentration is applied, but can result in the formation of fermentation inhibitors 
such as furfural. As a consequence, the hydrolysis of the remaining cellulose 
polymers is in practice only completed when utilizing cellulytic enzymes. The 
cooperative action of three types of enzymes is necessary for complete degradation 
of cellulose into glucose. Endo-ß-glucanases (EG) randomly cleaves bonds in the 
amorphous parts of the cellulose chain, yielding shorter oligosaccharides. Exo-ß-
glucanases, also named cellobiohydrolases (CBHs), cleaves the disaccharide 
cellobiose off from each end of the cellulose chain, with CBHIs cleaving at the 
reducing ends and CBHIIs working at the non-reducing ends. Together, with some 
of the free oligomers cellobiose is finally hydrolyzed down to single glucose 
monomers by ß–glucosidase (13, 38). Any of these enzymes may exhibit product 
inhibition, but the overall hydrolysis rate is in particular dependent on the activity 
of ß–glucosidase - being the last acting enzyme in a chain of cellulose hydrolysis 
reactions (40).  

Strains of filamentous fungi, Hypocrea jecorina (Trichoderma reesei) or Humicola 
insolens are among the best known producers of these hydrolytic enzymes for 
industrial applications, in which the optimal hydrolytic activity with enzyme 
preparations are obtained at 55°C and pH 4.5 (41). More recently, a novel class of 
fungal glycoside hydrolases (GH61) have been shown to be capable of degrading 
cellulose by oxidative cleavage of the polysaccharide in its crystalline state, which 
in combination with the classical cellulases may enhance the enzymatic conversion 
of biomass (42, 43).  

FERMENTATION 

In contrast to conventional starch or sugar-based fermentations, a more severe 
pretreatment prior to enzymatic hydrolysis and fermentation is necessary, when 
using lignocellulosic biomass as feedstock, because of the more recalcitrant 
structure. Fermentation and distillation technologies on the other hand would need 
less modification when upgrading the current bioethanol production processes to 
use lignocellulose instead of starch or sugar. The yeast Saccharomyces cerevisiae 
has for centuries been used to produce ethanol for consumption. It can grow on 
simple sugars and disaccharides, but not on pentose sugars. Most production 
concepts currently heading for commercialization of lignocellulosic bioethanol use 
S. cerevisiae, which is well adapted to industrial processes and have been 
successfully tested at 2nd generation bioethanol demonstration plants. The main 
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advantages are an exceptional high ethanol yield close to the theoretical limit of 
0.51 g ethanol/ g sugar and high tolerances towards inhibitors and ethanol itself of 
typically 14 % or even as high as 18 % (w/v) of some of the industrial strains of this 
yeast. The ethanol tolerance is however significantly lower in the presence of the 
inhibitors found in pretreated lignocellulosic biomass. A relative fast growth rate 
also contributes to the ability to avoid contamination by fast growing external 
microorganisms in the fermentation process, otherwise threatening to outgrow the 
yeast culture and thereby decreasing ethanol yields. It is not practically possible to 
perform steam sterilization of the major parts of a biorefinery in the event of a 
bacterial contamination, since the low value products cannot justify the costly use 
of high-pressure fermentation vessels that are capable of withstanding stream 
sterilization. Instead, a concept must be applied where bacteria cannot easily 
outgrow a robust production organism such as S. cerevisiae (50, 74). 

As a consequence of the cellulase product inhibition described above, enzymatic 
hydrolysis of pretreated lignocellulosic biomass is rather slow, compared to 
hydrolysis of starch during the conventional ethanol production. The concept of 
simultaneous saccharification and fermentation (SSF) aims to reduce product 
inhibition by combing hydrolysis and fermentation in a single step, whereby ethanol 
fermentation maintains glucose concentrations at lower levels. In spite of the 
drawback presented when the hydrolysis temperature has to be reduced from the 
optimal 45-50 °C down to below 35 °C, where the yeast can exist, SSF benefits 
from an overall increased cellulose to ethanol conversion rate and from eliminating 
the additional reactor needed for the configuration with the original separated 
hydrolysis and fermentation process (SHF). The promising hybrid hydrolysis and 
fermentation (HHF) process is a modified SSF where a short saccharification step at 
optimal hydrolysis temperature initiates SSF (44). 

XYLOSE-FERMENTING YEASTS 

S. cerevisiae is an excellent ethanol producer when it comes to using glucose from 
starch, but it is limited to hexose sugars; however, the main component in 
hemicellulose, xylose, therefore cannot naturally be metabolized. A limited number 
of bacteria, yeasts and fungi are able through fermentation to convert the pentose 
sugars from the hemicellulose fraction to ethanol (74). Amongst the naturally 
xylose fermenting yeasts are Pachysolen tannophilus, Candida shehateae, 
Scheffersomyces stipitis (previously known as Pichia stipitis), Kluyveromyces 
marxianus (75, 77) and recently Spathaspora passalidarum; these yeasts have been 
shown to ferment xylose efficiently (76). The fungus Mucor inducus is also well 
known for its xylose fermenting abilities. So far, S. stipitis has been considered to 
be one the best xylose fermenting yeasts for industrial application because of its 
ability to ferment the pentose sugars from hemicellulose efficiently. Generally, this 
yeast is capable of fermenting both pentose and hexose carbohydrates into ethanol, 
as well as, metabolizing sugars such as cellobiose and even to hydrolyze xylan (78). 
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Unfortunately, S. stipitis generally has a lower ethanol tolerance, lower yields and a 
slower sugar consumption rate compared to S. cerevisiae. The purpose of this thesis 
is to assess the industrial potential and limitations of using natural xylose-
fermenting yeasts as biocatalyst for the production of lignocellulosic bioethanol. A 
comparison between the performance of Scheffersomyces stipitis and Spathaspora 
passalidarum fermenting pretreated biomass is presented in Manuscript III.  

Attempts to genetically improve the wild type xylose fermenting yeast 
Scheffersomyces stipitis for bioethanol production have been carried out through 
numerous cloning experiments (45, 75). Alternatively, more gradual strain 
improvements may be achieved through the application of classical chemical 
mutagenesis, techniques to optimize parameters, such as; the range of sugars 
consumed, the temperature span or the tolerance towards inhibitors and ethanol.  

Scheffersomyces stipitis and the other xylose fermenting yeasts cannot completely 
metabolize xylose to ethanol under strict anaerobic conditions. Microaerophilic 
conditions must be provided during fermentation in order to maintain NADH 
balance in the cell. The intermediate xylitol will accumulate without any aeration 
hence terminating the uptake of xylose (79). In contrast, xylose metabolic pathways 
in bacteria using xylose isomerase do not need oxygen for the regeneration of 
cofactors, as illustrated in Figure 4 (46). Another pentose-fermenting yeast with 
some interesting beneficial traits in regards to lignocellulosic bioethanol production 
is the thermotolerant Kluyveromyces marxianus, which is considered optimal in 
SSF processes due to the capability to ferment and grow well at temperatures above 
40 °C.  However, ethanol yields with K. marxianus are unfortunately not optimal 
(47-49).  

 

 
Figure 4: Redox balance during xylose fermentation in yeast and bacteria. XI - xylose 
isomerase, XR - xylose reductase, XDH - xylitol dehydrogenase, XK – xylulokinase. 
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In this context, many research projects have focused on creating strains that can 
convert all carbohydrates in lignocellulosic biomass to ethanol by other means than 
mutagenesis. To achieve this, genes involved in the xylose metabolism in fungi or 
other yeasts have been inserted into S. cerevisiae through genetic engineering. To 
avoid the need for strictly controlled aeration required with the yeast xylose 
pathway, some groups have attempted to introduce xylose isomerase genes from 
other organisms into the genome of S. cerevisiae. In the presence of xylose 
isomerase enzyme expressed by genes inserted from bacteria or other fungi, S. 
cerevisiae has produced ethanol from xylose (75, 77, 80). Genetically, metabolic 
engineered strains with the xylose isomerase genes inserted into the genome of the 
yeast, have produced promising results for further scale-up trails in pilot plants and 
possibly commercialization.  

XYLOSE-FERMENTING BACTERIA 

Other research efforts have been focused on developing recombinant ethanologenic 
bacterial strains capable of producing ethanol when fermenting both C-5 and C-6 
sugars. Among these are the Gram-negative bacteria Echerichia coli, Zymomonas 
mobilis and Klebsiella oxytoca. In contrast to the Embden-Meyerhof (EM) pathway 
in many microorganisms, Z. mobilis metabolizes glucose through the Entner-
Doudoroff (ED) pathway producing less biomass, but more fermentation product 
than S. cerevisiae as a consequence of a lower ATP yield. The wild-type bacterium 
has a narrow substrate range, pentoses not included, and the integration of genes 
responsible for the assimilation of arabinose and xylose has successfully improved 
the fermentation capabilities. However, Z. mobilis is not considered to be as robust 
as S. cerevisiae. The well-characterized E. coli can naturally grow on a wide range 
of sugars and recombinant strains have been created to produce ethanol, but the 
fermentation process is still limited by unfortunate pH requirements (6.0-8.0). In 
addition to the difficulties associated with hydrolysis and fermentation having 
different optimal pH range, the production of bi-products during fermentation, such 
as acetate or lactate, is another disadvantage often encountered with natural 
bacterial ethanol producers (50). Some thermophilic anaerobic bacteria with high 
ethanol tolerance and the ability to ferment both pentose and hexose sugars 
efficiently have also drawn some attention as potential ethanol producers. Cultures 
with recombinant strains of thermoanaerobacter species with genetically 
interrupted lactic acid and acetic acid pathways have shown able to ferment most of 
the sugars in lignocellulosic hydrolysate to ethanol at high conversion yields and 
productivities. Recombinant strains of thermoanaerobacter with terminated 
production of bi-products are being tested in pilot scale (51, 52).  

INHIBITORS 

Lignocellulosic ethanol production is challenged by the wide range of compounds 
formed at the elevated temperatures during the pretreatment of the biomass, which 
may inhibit fermentation. The effect of such inhibitors thus has to be included in a 
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process evaluation. Among inhibitors present in hydrolysate are aliphatic acids such 
as: acetic, formic and levulinic acids, aromatic phenolics and the furaldehydes, 5-
hydroxymethylfurfural (HMF) and furfural. Acetic acid and furfural are considered 
to be the major inhibitors of the fermentation. Below certain concentrations, the 
degradation of both acetic acid and furfural by the yeasts is possible, but at a cost of 
ATP, consequently resulting in extended lag phase, lower productivities, lower 
ethanol yields or cell growth (53). 

In summary, evaluation of certain desirable microbial features is inevitable, whether 
fungi or bacterial strains are considered as fermentation biocatalyst for 
lignocellulosic bioethanol production. Among these are: 

• Conversion yield  
• Ethanol tolerance 
• Tolerance to salt and the inhibitors in hydrolysates 
• Sugar consumption rate 
• GRAS Status (Generally Regarded As Safe)  
• Substrate utilization range 
• Growth rate 
• Low fermentation pH to avoid contamination 
• Volumetric productivity 
• Minimal nutrient requirements  
• Compatibility with SSF  
• Cellulase producer 

 

Therefore, the complexity of assessing a process involving so many factors leaves 
plenty of room for future optimization of fermentation processes considered for the 
production of bioethanol or any other microbial produced biofuel for that matter 
(50). 

MONITORING 

The success of future biorefinery concepts is dependent upon development of 
economical feasible production processes. Any measures to reduce formation of 
undesirable byproducts or to decrease energy consumption is therefore crucial in 
order to be able to implement production of biofuels on a vast scale. Acquiring 
detailed knowledge about the different biochemical conversion reactions is an 
essential basis for improvements. Utilizing effective analysis methods may aid 
achieving a thorough understanding of the processes involved and enable optimal 
control of the critical process parameters. During biochemical conversion 
processes, gas chromatography (GC) and High Pressure Liquid Chromatography 
(HPLC) are among the analysis methods most commonly used for measuring the 
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components of interest in a biorefinery such as sugars and alcohols. Although 
reliable and accurate results are expected, a time delay must be considered when 
applying these well established methods, since sampling, transport of sample, 
handling in the laboratory and delivery of result to the production line may take 
hours, or even days. This delay time complicates active process control, and such 
off-line analysis serves more as tool to guarantee quality parameters for the 
subsequent process step, rather than a monitoring method allowing active 
adjustments and feedback for ongoing processes. Production processes can be 
operated more efficiently or even automated if production parameters can be 
monitored real-time instead of retrieving vital process information through manual 
time-consuming sampling and subsequent off-line analysis, despite being designed 
to account for time delay (54).  

PROCESS ANALYTICAL TECHNOLOGIES 

Labor intensive processing of samples done off-line in a laboratory may be reduced 
when using Process Analytical Technologies (PAT), which accommodates analysis 
right next to the process by monitoring in-line or even on-line by directly measuring 
in the processes. Various on-line configurations are available, including direct in 
situ sensor insertion, as well as, in situ and ex situ sampling loops with in-line 
analyzers. The American Food and Drug Administration (FDA) now recommends 
applying tools for on-line monitoring to improve production consistency and quality 
in pharmaceutical manufacturing. PAT may also be applied in research to optimize 
future production processes. In particular, fast reactions or processes being 
dependent on many process parameters may benefit from rapid analysis and fast 
feedback to enable a dynamic production, where variations are constantly adjusted 
and compensated for in order to assure high quality by avoiding the process steps 
getting off track. The speed of analysis and the elimination of errors from manual 
sample processing such as separation of sample components, provide more true 
quantitative and qualitative information about the process than derived from an 
external sample, but only if the performance of the monitoring method is robust. 
Censor technology, representative measurements of the relevant process parameters 
and data analysis are the three basic elements of a successful PAT approach. 
Implementation may therefore long term serve to improve use of resources through 
optimal monitoring and control of production, or even serve to facilitate continuous 
processes and automation tools. This contributes on-line information to be received 
directly assuring valuable short response times. Ideally, monitoring requirements 
for each process parameter applied in a bioreactor control system are met with 
small and stable in-line sensors (55).  

The new concepts for the production of lignocellulosic bioethanol are still under 
development and the analytical methods required may similar to food and 
pharmaceutical processes benefit from utilizing effective process monitoring 
methods based on PAT strategy. Therefore, methods to perform in situ 
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measurements of the chemical conversions during the three main processes, 
pretreatment, hydrolysis and fermentation are of great interest. The major challenge 
is to apply reliable and robust censor technologies able to withstand these 
environments, while delivering measurement results of adequate qualities, in order 
to be able to replace existing techniques used to analyze samples subsequently. In 
bioreactors, requirements for industrial applicable probes have been estimated to 
include:  

• Designed with inert materials not contaminating process 
• Endure high temperature and pressure, possibly to the point of being fully 

sterilizable (SIP) 
• Robust in corrosive environments with high salt or even acid concentrations 
• Adequate sensitivity and resolution for monitoring requirement 
• Easy to perform and maintain calibration 
• Linear dependency or other well defined correlation 
• Noise insensitive  

 

REAL-TIME MEASUREMENT IN BIOREFINERY 

Basically every process step of a biorefinery is expected to contain high amounts of 
particulates from biomass debris. Applying immersed censors in such 
heterogeneous liquids poses the major obstacle for implementing in situ 
measurement methods. Approaches to overcome fouling of probes or signal 
disturbance caused by solids must then be considered when monitoring in these 
conditions. Another issue, likely to disturb during on-line measurements, are the 
diverse range of compounds not converted during the heterogeneous liquids of the 
various process steps. Complex background signals of little or no value originating 
from molecules or matter present in the different process mixtures, but not being 
processed such as lignin, inert carbohydrates, dissolved inorganic minerals, or 
perhaps biomass debris must be taken into account when evaluating in situ analysis 
methods. In summary, suitable analytical measurement techniques for on-line 
monitoring should be able to withstand rough conditions, maintain calibration, 
handle background noise and the censors should not be prone to settling of 
particulates causing unreliable measurements.  

Several process parameters are of significance when monitoring and controlling 
bioethanol production. Temperature, pH and dissolved oxygen (DO) were some of 
the first successfully monitored parameters in the chemical and pharmaceutical 
industries applying in situ sensors inside the occasionally harsh environments of the 
reaction vessels. Monitoring these parameters using existing standard equipment 
during the pretreatment, hydrolysis or fermentation processes of lignocellulosic 
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bioethanol production is therefore considered to be of rather trivial matter where 
only instrument calibration may prove difficult.  

Additional analysis of other important process indicators is however estimated to be 
more complicated to perform on-line when considering the common analysis 
methods currently applied for in similar bioprocesses. Information about 
concentrations of substrates, products, or inhibitors such as acetic acid, furfural or 
HMF is of major interest during the pretreatment, hydrolysis and fermentation 
reactions. Chromatography analysis methods with integrated pre-separation of the 
samples such as HPLC or GC are currently often used to distinguish these 
components from each other when quantifying concentrations. Sampling and 
subsequent analysis appears to be necessary when monitoring these concentrations, 
but utilization of the rapidly evolving optical sensor techniques may ideally enable 
direct simultaneous monitoring of substrate and product without prior separation 
(56, 57). 

ELECTROCHEMICAL SENSOR 

Some of the first technologies available to monitor fermentation processes real-time 
were based on electrochemical sensors. An electrochemical censor transforms 
chemical information into a useful signal for analysis. Probes to measure pH or 
dissolved oxygen are some of the most common electrochemical censors used for 
monitoring bioprocesses. The censor is basically an electrochemical cell consisting 
of two or three electrodes, a sensing electrode and a counter electrode separated by 
electrolyte, wherein there sometimes is a reference electrode to provide a constant 
potential to the censing electrode. The analyte diffuses over a selective permeable 
barrier, for instance a hydrophobic membrane, into the electrolyte generating an 
electrical signal in the form of voltage, current or resistance. The overall 
performance is determined by selectivity, noise sensitivity, limit and range of 
detection, response time, and lifetime. Chemosensors are robust but lack specificity 
compared to biosensors (56, 57). 

DIELECTRIC SPECTROSCOPY 

As an alternative to measuring optical density (OD) real-time monitoring of 
microbial cell density is also possible applying a method based on radio-frequency 
impedance. This method is also referred to as dielectric spectroscopy or simply 
capacitance. The concentration of viable cells in a fermentation culture can be 
estimated by utilizing measurements of capacitance and conductance. The principle 
behind this has been known for 20 years and capacitance is now used to control 
mammalian cell cultures. In an electric field, ions cannot freely move across the 
nonconductive cytoplasma membrane of a cell resulting in buildup of charge or 
induced polarization. The polarized living cells act as capacitors in the culture 
medium, in contrast to dead cells with a damaged cytoplasma membrane not 
hindering the movement of charge. Figure 5 shows a dielectric immersion probe 
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and illustrates a polarized cell. The amount of living cells or total cell volume is 
proportional to the capacitance measurable in an alternating electrical field at 
certain high frequencies. In addition to this, the shape of a dielectric spectrum of the 
capacitance over a range of frequencies reflects characteristics about cell 
morphology, size and type (58, 59). At lower frequencies, cells have enough time to 
become polarized (maximal cell polarization), whereas fewer ions can charge the 
cells within the shorter charging time at higher frequencies (minimal cell 
polarization) and the remaining background capacitance is then mostly due to 
dipoles of water and other molecules in the culture growth medium (60). 

 

 

Figure 5. Annular type dielectric probe and polarized cell in an electrical field (right corner).  

 

In contrast to biopharmaceutical production, biofuel fermentation cultures contain 
considerable amounts of suspended solids and dissolved minerals potentially 
disturbing measurement. Increasing ion concentrations and hence conductivities, 
give rise to higher biological capacitance and corrections might therefore be needed 
if ionic strength does not remain constant (58). The technology is challenged by 
issues regarding calibrations and polarization problems at low cell density in 
growth media with high conductivities, which have been encountered with 
commercial probes (59). Considerable capacitance background is expected to 
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originate from the fiber fraction in the pretreated biomass, compared to the signal 
generated by the fermentation culture itself. The potential use of dielectric 
capacitance for monitoring the growth of the microbial cell cultures in biorefineries, 
may be limited, if the signal to noise ratio will be too large, due to much 
background signal caused by suspended solids present in the fermentation broth. 

BIOSENSORS AND IMMOBILIZED ENZYME ELECTRODES 

Conventional ion-selective electrodes measuring pH or redox potentials have been 
based on detecting the level of only inorganic anions or cations. More recent 
electrochemical procedures using more advanced enzyme electrodes also enable 
measurements of the organic compounds. The electrode basically consists of a 
receptor able to selectively respond to certain molecules, ions and a transducer, 
which continuously converts the non-electric process information into an electrical 
signal. The organic molecule to be assayed can simply be censed by selective 
enzymes immobilized onto an ion-selective electrode if the enzyme reaction 
involves increasing or decreasing electroactive compounds. A transducer thus 
continuously converts the non-electric process information into an electrical signal 
from changing concentration of ions. Instead of enzymes, selective antigens may 
also be employed in these advanced types of electrodes. 

In regards to biofuel production, utilizing commercially available electrodes with a 
gel containing glucose oxidase is a useful application of this technique to detect 
glucose at low levels. Carbon dioxide, acetic acid or other relevant sugars such as 
xylose may as well be monitored using this principle. However, enzyme electrodes 
seem delicate and sensitive to temperature and pH changes compared to robust 
optical sensors designed to withstand cleaning and sterilization in place. In addition, 
measuring multiple compounds simultaneously in a viscous mixture containing 
particulates with only one optical sensor seems less complicated and costly than 
using several enzyme electrodes for each compound investigated, or applying one 
specially designed electrode containing all the needed enzymes while expected to 
maintain catalytic activity. Superior precision and specificity of these electrodes 
may in fact be of limited benefit, if the membrane or diffusion gel layer of the 
enzyme electrode also proves to be more prone to irreversible fouling than the lens 
surfaces of optical immersion probes. As a consequence, these bioselective sensors 
are probably most useful for off-line analysis (56, 57). 

OPTICAL PROBES AND MONITORING 

Spectroscopy conducted with in-line sensors is rapid, less expensive, non-
destructive, straightforward and sometimes more accurate than analysis performed 
with conventional electrodes. Electromagnetic radiation can interact with matter 
through the mechanism of reflection, absorption or scattering. All energy of a 
photons just bouncing back from the matter is preserved during reflection, whereas 
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the energy of the photon is completely transferred to the matter through absorption. 
The photon is partially or completely reemitted in the case of the scattering process.  

Most optical sensors rely on the analytical principles of spectroscopy based on 
UV/VIS, IR (NIR and FTIR), Raman scattering and fluorescence light undergoing 
transmission, absorbance or backscattering of the photons. A major parameter 
affecting the fermentation conversion rate hence performance of the fermentation 
process, is cell concentration. Optical density (OD), relying on reduced 
transmission of light due to light scattering, is an easy and widely used optical 
method to estimate microbial biomass. This traditional method of measuring cell 
biomass often at 600 nm in off-line samples is now possible in situ with the 
application of new immersed biosensors, as long as cells are the only light 
scattering particulates present in the suspension. Without dilution, polynomial 
approximation may be needed at higher cell concentration to account for the 
shadow effect, which disrupts the linear relationship between concentration and 
reduction of the transmitted signal. Interference from particulates is less likely in a 
clean pharmaceutical cell cultivation process, whereas the amount of debris from 
plant biomass inevitably will remain in the fermentation broth of both 1st and in 
particular 2nd generation bioethanol production will complicate direct measurements 
of OD in the slurry. In contrast to OD measurements merely relying on the 
scattering of light by the cells, spectroscopic techniques may yield more detailed 
information about components than just the microbial cell concentration (57).  

FLUOROMETRY 

Fluorescence-active analytes possessing distinct spectra of excitation and emission 
wavelengths allow measurements and reaction monitoring to be conducted with 
fluorescence sensors. For instance, estimation of viable cells is based on the amount 
of nicotinamide adenine dinucleotide phosphate NAD(P)H measured using 
fluorescence spectroscopy. The cell culture is exposed to UV excitation light, to 
generate measurable emission light at another wavelength, useful for quantifying 
culture cells if NAD(P)H amount per cell remains constant and interference from 
other components also acting as fluorophores is minimal. Proteins, coenzymes and 
vitamins can also be measured directly as fluorophores. Moreover, fluorescent dyes 
may be added to cultures to specifically sense other parameters such as oxygen, pH 
and carbon dioxide (57, 59). Some interference hurdles can be overcome with 
multi-wavelength techniques. The potential use of this method in a biorefinery may 
prove difficult, because the high amount of lignin with its aromatic structure is 
strongly fluorescent.  
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INFRARED SPECTROSCOPY 

Absorption, emission and reflection spectra in the field of infrared spectroscopy all 
take advantage of the interaction between electromagnetic radiation and the 
molecular transition from one state of vibrational or rotational energy to another. In 
contrast, absorption within the ultraviolet-visible spectral range originates from the 
transition from one orbital state of electrons to another within molecules. In the 
electromagnetic spectrum infrared light is located in between visible light and 
microwaves, so IR wavelengths range from about 0.8 to 1000 µm, which is 
equivalent to a range from 12,500 to 10 cm-1, when using the more convenient 
wavenumber scale - proportional to frequency. IR is usually further divided into 
near infrared (NIR) ranging from about 12,500 to 4000 cm-1, mid infrared (MIR) 
ranging from 4000 to 200 cm-1 and far infrared (FIR) ranging from 200 to 10 cm-1. 
Most useful molecular details are revealed in parts of the MIR extending from 700 
– 1200 cm-1 (61, 62).  

The oscillating electrical field of a photon interacts with the dipole moments of the 
bonds in a molecule. The dipole moment depends on the charge magnitude and 
charge distance. For IR absorption to occur, this dipole moment must undergo a net 
change, at the radiation frequency, that matches some of the vibrational frequencies 
of the molecule. The vibrational energy state of a bond simplified resembles a 
mechanical spring oscillating harmonically with a frequency dependent on mass, 
distance and charge differences. A certain electromagnetic energy quantum is 
required to change a discrete natural vibrational energy state of a molecule to 
another. The energy quantum of a photon can sometimes change energy states of 
two bonds simultaneously rather than only one, thereby creating combination 
bands, complicating spectra for structural analysis. As a consequence of vibrational 
oscillations exhibiting some disharmonic characteristics, the combined energy 
transitions may become twice, three or four times larger than the fundamental 
vibrational energy of a bond, thereby causing overtone bands and also combination 
bands hereof to appear, mainly in the NIR region. The occurrence of overtone 
bands is less likely to happen than the fundamental transition, and overtone 
intensities are thus generally lower. Water generates fundamental O-H stretching 
and bending vibrational band around 1900 nm, first overtone O-H stretch band is 
seen at 1450 nm and second overtone O-H stretch band is displayed around 970 nm 
in a NIR spectra (54).  

Spectra vibrations in a molecule containing more than two atoms can appear 
basically as a stretching or bending motion due to a change of the interatomic 
distance or a change in the angel between two bonds respectively. In addition, 
bending vibrations fall into the categories of twisting, wagging, rocking and 
scissoring. All six fundamental modes of vibration are displayed in Figure 6. 
Larger molecules with more vibration points, than between neighboring atoms, 
have more complicated types of vibration. The number of possible vibrations is 
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determined by degrees of freedom. A linear molecule with N atoms has 3N-5 
vibrational modes, whereas a nonlinear molecule has 3N-6 vibrations. 

 

 
Figure 6: Modes of molecular vibrations, with motion towards (+) or away (-) from the 
reader.  
 
 
The spectra displaying these various types of vibrational transitions can be utilized 
to retrieve information about molecular compounds when irradiating gas mixtures, 
solutions or solid samples with light at different wavelengths. In the case of the 
different methods of absorption spectroscopy (NIR and MIR), spectra are generated 
as a result of the complete absorption of the photons, transferring all 
electromagnetic energy to the excited molecules. Some incoming photons may 
however only undergo partial transfer of energy to a molecule or even from an 
already excited molecule and leave the molecule again having a different 
wavelength than before the interaction. This inelastic scattering also referred to as 
Raman scattering form the basis for another branch of analytical spectroscopy with 
characteristics different from absorption techniques (55, 61). 

Altogether, vibrational spectroscopy is a method of chemical analysis where the 
sample is illuminated with incident radiation in order to excite molecular vibrations. 
Vibrational excitation occurs when the molecule absorbs, reflects or scatters a 
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particular discrete amount of energy. There are two major types of vibrational 
spectroscopy: Infrared (IR) and Raman.  

ABSORPTION SPECTROSCOPY  

IR absorption spectra are generally acquired through means of transmission, 
reflectance or techniques hereof. In transmission, a full spectra light beam passes 
through a transparent sample and absorption (A) or transmission (T) values at the 
various wavelengths are derived from the light intensities of the incident light (I0) 
and of the light intensity remaining after passing through the sample (I):   

A = log (1/T) = log (I0 /I) = ε · c · l  
 
Expressed by the Lambert-Beer law, the absorbance is dependent by the molar 
analyte concentration (c), the molar absorptivity or extinction coefficient of the 
absorber (ε) and the distance through the sample (l). This linear correlation between 
absorbance (also referred to as optical density) and concentrations of analytes 
deviates at higher concentration. Nevertheless, size of absorption peaks in an IR or 
UV/VIS spectra generally correlates well with analyte concentrations. The 
transmission of light is not always reduced by absorption alone, but light scattering 
by particulates can also contribute significantly to the extinction of light passing 
through a suspension. The light extinction exhibited by fermentation cultures are 
caused by cells scattering light rather than absorbing it, and cell concentrations can 
also be determined through measurements of optical density (OD) at low 
concentrations where similar linear correlation exists (55, 62).  

The reflection mode is often used for solid samples or powders where light is 
reflected of the surface instead of passing completely through the sample. The light 
undergoes sample penetration to some extent, internal diffuse reflections and some 
degree of absorption at the outer layers of a rough and grainy surface of the sample. 
The relative intensity of reflected light may be reduced at some wavelengths if the 
surface material is an infrared absorbent. Reflectance (R) corresponds to 
transmission (T) depicted above:  

log (1/R) = log (I 0 /I)  
 
The measurement of reflectance instead of transmittance is possible due to the low 
molar absorptivity of absorption bands in the NIR region. This enables recording of 
solid samples and therefore rapid determination by NIR spectroscopy. Reflectance 
spectroscopy measures the light reflected from the sample surface. This reflection 
contains two components: specular and diffuse reflectance. Specular reflectance is 
the mirror-type reflection occurring at the boundary between the sample surface and 
air, and contains very little information of the composition. Diffuse reflectance is 
light reflecting from the interior of the sample. It arises through multiple scatterings 
of the light by particles near the surface but inside the material. In the process of 
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diffusion, the radiation becomes entirely depolarized, whereas any specular 
reflected radiation maintains its state of polarization. The specular component may 
be eliminated by adjusting the position of the detector relative to the position of the 
sample and light source. In addition, the method of transflectance has features of 
both transmission and reflectance modes and may be used for liquids containing 
solids. The light is directed through the sample to a mirror and reflected back 
through the sample a second time (62). 

Another widely used measurement technique similarly based on internal reflection 
for rapid qualitative and quantitative analysis of samples with little or no sample 
preparation is Attenuated Total Reflectance (ATR), which mostly is used with 
FTIR. ATR allows for spectra to be obtained from solids of limited solubility, 
pastes, fibers, slurries or other difficult samples. A beam of light reflected of the 
internal surface of an ATR crystal can for a short distance, as an evanescent wave, 
penetrate 2 to 4 micrometers into a sample placed on the crystal. The penetration 
depth depends on the wavelength, the refractive index of the ATR crystal and the 
sample and the angle of the entering light beam. Absorption of energy from 
multiple total light reflections of the interface between ATR crystal and sample 
result in attenuation of the radiation at certain wavenumbers, from which, spectra 
similar to traditional absorption spectra can be acquired. Sample dilution or path 
length adjustment may sometimes be necessary to avoid complete light absorption. 
An ATR crystal dipped into a slurry may furthermore work as an immersion probe 
for in situ monitoring (63).  

DISPERSIVE AND FTIR INSTRUMENTS 

Dispersive infrared spectrophotometers use prisms or, nowadays, diffraction 
gratings as a monochromator to separate the light source into different wavelengths. 
A double beam configuration is generally employed to initially split and direct 
radiation through both sample and reference before the grating disperses and directs 
the different wavelengths from both beams onto the detector. Fourier Transform 
Infrared Spectroscopy (FTIR) is a more rapid alternative measurement technique 
for acquiring absorption spectra to dispersive instruments. The full spectra of 
infrared light after interaction with the sample is collected and transformed to an 
interferogram using moving mirrors inside a Michelson interferometer. A Fourier 
transformation algorithm then converts this data set to all frequencies of the desired 
spectrum of a sample (55, 62).  

RAMAN SPECTROSCOPY  

Raman spectra are acquired from the scattered photons reemitted in all directions 
from molecules when irradiated with a visible or near-infrared monochromatic 
beam of laser light. This type of spectroscopy only applies excitation at one 
wavelength in contrast to absorption spectroscopy methods applying transmission 
or reflection of the full light spectra. Most of the radiation is during Raman 
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spectroscopy reemitted with unchanged wavelength in a process called Rayleigh 
scattering, where the collisions of the incoming photons with the molecules is said 
to be elastic. The Raman effect on the other hand causes a small proportion of 
incident photons to scatter inelastically and shift wavelength, due to transition of 
the intrinsic vibrational energy states of certain molecules (Figure 7). This shift, 
mainly towards smaller wavenumbers than excitation, is called Stokes shift. 
However, some photons may also gain energy from the molecules and less intense 
anti-Stokes lines will then appear with a higher wavenumbers, but with same shift 
in wavelength as seen with the Stokes lines. Raman scattering predominantly takes 
place with non-polar bonds by creating induced electric dipole moment, while water 
or other molecules with dipolar bonds generate weaker Raman signals (55, 57).  

 

  
Figure 7. Transition of vibrational states of energy.  
 
Raman spectra are generally displayed in the range from 400 to 2000 cm-1 relative 
to the excitation wavelength, which both the Stokes shift and the corresponding 
anti-Stokes shift are independent of. Only the weak Raman Stokes scattering is 
usually transmitted to the detector and displayed in the displayed spectra. 
Employment of extremely sensitive Charged Coupled Device (CCD) detectors in 
addition to applying more stable and cheap lasers has dramatically improved 
Raman spectroscopy.  

A major challenge in Raman spectroscopy is dealing with the interference caused 
by the fluorescence background noise exhibited by many biological molecules. The 
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Raman effect is similar to fluorescence, since emission occurs at a different 
wavelength than the incident light, but the absorption of light is more limited to 
specific resonance frequencies of the fluorescent molecule. The subsequent 
relaxation to a lower energy state occurs in various ways resulting in broader 
fluorescence peaks than commonly produced by the Raman effect. Fluorescence is 
less likely at higher excitation wavelengths and, similarly, Raman signal intensities 
also tend to decreases with increasing excitation wavelengths. The optimal 
excitation wavelength may vary according to the compounds measured and 
impurities present in samples. In recent years, Raman spectrophotometers have 
been significantly improved by methods implemented to mathematically estimate 
and reject the fluorescence contribution of the measured signal (64). 

Shifted Excitation Raman Difference Spectroscopy (SERDS) is another technique 
intended to remove fluorescence from the Raman spectra. SERDS requires 
excitation lasers in pairs with slightly different excitation wavelengths in order to 
create two spectra with a small shift in Raman bands, but with hardly any change to 
the broad fluorescence background. The contribution from fluorescence can be 
eliminated by subtracting one of the spectra from the other and reconstructing a 
new SERDS spectrum with intact Raman signals (65). Another Raman method, 
Surface Enhanced Raman Spectroscopy (SERS), strongly increases Raman signals 
from molecules attached to metal (Ag, Au) nanostructures (10 – 100 nm) (66).  

SPECTROSCOPY COMPARISON 

Raman and other IR methods complement each other well, so weak signals in IR 
are typically strong in Raman spectra vice versa. Dipolar and asymmetric functional 
groups such as carboxyl groups giving the strongest signal in NIR and MIR, 
whereas stretching vibration from symmetric, non-polar and double or triple bonds 
such as aromatic groups or hydrocarbon chains yield high Raman peaks.  

The scattering principle behind Raman spectroscopy makes it relative easy to place 
the sample in the excitation beam and collect the scattered light, which in principle 
can be done using the same lens for both excitation and collection of light using a 
probe shown in the picture on the thesis cover page. The picture shows a Raman 
immersion ball probe for focused illumination and collection of scattered light from 
Enwave Optronics Inc. Less interference from water in aqueous samples is 
experienced with Raman spectroscopy compared to conventional IR transmission 
spectroscopy, and with little or no sample preparation required making analysis of 
gas, solute or solid is easy. Distinct peaks with intensities proportional to the 
analyte makes Raman spectroscopy suitable for quantification as well as qualitative 
analysis. Dispersive Raman and Fourier transform Raman are the two techniques 
commonly used. Dispersive Raman often equipped with grating monochromator 
and operating with visible excitation lasers splits the collected beam to the 
constituent wavelengths with a diffraction grating and directs the beam to the 
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detector as illustrated in Figure 8. Generally illuminating at 1064 nm, FT-Raman 
spectrophotometers employ excitation lasers at higher wavelengths, than dispersive 
Raman. Just as in FTIR, FT-Raman utilizes interferometer and Fourier 
transformation to obtain spectra of samples (55).  

The major advantage of FT-Raman is inherent wavelength calibration, good 
resolution, low cost, and reduced fluorescence using NIR excitation, which 
however, also results in lower Raman scattering intensities. On the other hand, 
dispersive Raman is faster and can use the more efficient cooled CCD sensor, 
which have less background noise levels than the NIR detectors required for FT-
Raman higher.  

 
  

 
Figure 8. Dispersive Raman spectrophotometer with a notch filter to hold back Rayleigh 
scattered light and a diffraction grating to split the spectra light and direct light towards the 
detector.  
 
 
The major source of background noise in Raman spectra is fluorescence exhibited 
mainly in biomolecules by aromatic functional groups or compounds containing 
conjugated double bonds. In this context, monitoring any biomass conversion 
processes with Raman spectroscopy may prove difficult due to the high content of 
aromatic lignin. Despite these drawbacks, Raman spectroscopy benefits from less 
cluttered spectra with narrower and distinct bands than observed with any IR 
techniques, as shown in Figure 9. Furthermore, interference of signals when using 
fiber optics is more disruptive with IR absorption methods, therefore making 
Raman well suited for remote monitoring (57).  
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Figure 9: Comparison of baseline corrected Raman spectra (3rd order) and derivative of NIR 
spectra (1st order) of components often found in fermentation cultures 
(http://www.azom.com/article.aspx?ArticleID=8442). 
 
 
The generally broad absorption bands seen in the NIR are the result of molecular 
overtones and combinations of the more intense fundamental mid-infrared 
vibrations and mainly originate from the functional groups:  -CH, -OH, -SH and -
NH. The overlapping combination bands make it more difficult to interpret the 
subtle spectral variations and to assign specific molecules to features in the NIR 
spectra (81). Despite the overlapping peaks, NIR has been used more extensively 
for quantitative monitoring of bioprocesses, because interference from water is 
more likely to occur using MIR exhibiting stronger molar absorptivity from the 
fundamental vibrations. NIR on the other hand, facilitates deeper penetration in 
aqueous samples, and measurement of samples with limited transparency is 
achievable when using reflectance methods not requiring sample preparation. The 
introduction of efficient chemometric calibration techniques furthermore enabled 
simultaneous analysis of multiple variables from NIR spectra, despite the lack of 
spectral features.  

LORENZ-MIE SCATTERING 

Applying optical sensors in the analysis and monitoring of the viscous slurries 
present in the bioprocesses of future biorefineries is challenged by disturbance from 
the high amounts of suspended biomass debris. Quantification of the components of 
interest is complicated by the scattering of light caused by particulates in various 
sizes and cells present during fermentation. Molecules or small particles scatter 
light elastically without changing wavelength through the Rayleigh process. The 
wavelength of the reemitted light scattered in all directions is unchanged. Shorter 
wavelengths tend to undergo Rayleigh scattering more easily, which result in the 
sky to appear blue.  

The properties of the scattering mechanism changes and fall into the Mie-Lorenz 
model, as the size of the particles increase and approximate the wavelengths of the 
electromagnetic radiation. The similarly elastically Lorenz-Mie scattering generally 



OPTIMIZATION OF LIGNOCELLULOSIC BIOETHANOL PRODUCTION USING PENTOSE FERMENTING YEASTS AND 
RAMAN SPECTROSCOPY 

38
 

 

occurs when any spheres larger than molecules are exposed to visible or infrared 
light, and the interaction between light and spherical surfaces involves some degree 
of light refraction, as illustrated in Figure 10. This scattering effect is seen in the 
case with water droplets in the clouds or suspended biological cells having sizes 
close to wavelengths of light. As a consequence of refraction being involved, the 
scattered photons are redirected less equally in all directions than exhibited by the 
Rayleigh process and the angular directions of scattered light create resonance 
patterns in space. Furthermore, Lorenz-Mie scattering is in contrast to Rayleigh not 
strongly wavelength dependent. Almost all the wavelengths in white light is 
scattered equally, hence clouds appear white. 

 

 
Figure 10: Rayleigh and Lorenz-Mie scattering.  

 

The size of the spheres determines the angular directions of the scattered light. 
Lorenz-Mie theory can predict the direction of light scattered of suspended particles 
of equal size. However, modeling the scattering pattern produced in a suspension 
containing yeast cells and debris of biomass of different sizes is very complicated, 
especially when photons scatter multiple times. When measuring components in 
solution using absorption or Raman spectroscopy, it is essential to understand the 
impact from light extinction occurring when photons scatter out of a beam of light 
sent into these turbid samples before reaching the censor. This extinction or 
attenuation of light, is a combined result of absorption and the Lorenz-Mie 
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scattering caused by the suspended solid particulates. In this context, investigating 
the course of signal attenuation exhibited in opaque slurries is crucial when 
considering using vibrational spectroscopy techniques for on-line monitoring of 
processes in biorefineries (67, 68).  

This thesis attempts to address issues concerning scattering during the monitoring 
of a yeast fermentation process using Raman spectroscopy, which is described in 
Manuscript I: Quantitative Monitoring of Yeast Fermentation using Raman.  

CHEMOMETRICS 

Information about a chemical parameter may be extracted from one measured 
variable alone, but the analytical chemical methods used for the complex systems 
encountered in science most often yield multivariate data. Multivariable models 
may therefore often prove more effective than classical univariate statistics when 
applying spectroscopy methods yielding soft overlaying signals as in NIR. 
Empirical data-driven modeling can improve interpretation of vast datasets where 
prior knowledge and theory alone insufficiently provides all significant correlations 
of a complex chemical system. In this context, chemometrics combines empirical 
and multivariate modeling of chemical data in order to extract hidden data and 
obtain the relevant chemical information. Chemometric computer-based methods 
usually involve: 

• Exploratory data analysis 
• Classification methods 
• Regression methods for prediction 

 

Hidden patterns in complex data may be revealed in a comprehensible form with 
exploratory data analysis using algorithms such as Principal Component Analysis 
(PCA) or Artificial Neural Networks (ANN) to show which variables affect these 
patterns the most. A classification model can visualize groupings to find unusual 
samples in the data set by comparing it to previously analyzed samples. The 
correlation between the multiple independent variables and the quantifiable desired 
properties is in the multivariate system expressed by the regression model. The 
model can include algorithms such as Partial Least Squares (PLS), Multiple Linear 
Regression (MLR) or Principal Component Regression (PCR) to avoid some 
correlation between the independent variables in the model (69). 

Prior to predicting values upon measurements by using the statistical calibration 
techniques of chemometrics, preprocessing of the raw spectral data set may in some 
instances, especially with NIR spectra, be performed to enhance the relevant 
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information of the data set and improve predictability. Pretreatment of spectral data 
often include, background subtraction, mean centering, auto scaling, normalization, 
derivatives, smoothing noisy data (Savitzky–Golay), Standard Normal Variates 
(SNV) or using Multiplicative Scatter Correction (MSC) especially used with raw 
NIR spectra (70). 

A regression model relates the dependent or response variables y to one or more 
independent or explanatory variables x. Multiple independent variables is common 
in science and the multivariate regression model, assuming a linear link, may be 
expressed by linear algebra notation or matrix-vector product:  

  y i = β 0 + β 1 x i,1 +···β p x i,p + e 
  
  y = X β + E  
 

where the response variable vector y could be a concentration, X could be a matrix 
of spectral data sets, composed of measurements (observations) for each row and 
columns with wavenumber (variables). β is the parameter vector or regression 
coefficient, and the residual e or E vector is the error term or noise (71). 

MULTIPLE LINEAR REGRESSION 

Applying the simple MLR method, a model β may be estimated for data set with a 
reduced number of variables and properties Y. Least squares is a method to estimate 
the coefficients to yield the best fit through data points, where the sum of all 
squared errors (SSE) have minimal value.  

 
SSE = ∑(e)2 = ∑(yi − β0 −β1Xi,1 −···βpXi,2)2 

 

Assuming the model errors are Gaussian-distributed, the model regression 
coefficient b can be estimated (the matrix transpose is denoted T):  

 SSE = (y - Xb)T (y-Xb) 

 if ∂(SSE)/∂b = 0 

 then b = (XT X)-1 XT y  

 

hence the fitted squares regression line is: 

yˇ = Xb = X(XT X)-1 XT y  
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Traditional MLR modeling can be used for data sets with few uncorrelated X 
variables. However, spectra, often composed of overlapping peaks, consist of 
numerous x-variables, where little is known about the degree of interference or 
correlation between the x-variables in the data set (69). 

PRINCIPAL COMPONENT ANALYSIS 

PCA is method for exploratory data analysis and data compression used to visualize 
relations in only the X-matrix between objects and between variables. The number 
of variables may be reduced by projecting the sample data into a low dimensional 
system of coordinates displaying the maximum variance of the variables. The result 
of PCA performed on spectral data is a transformed matrix, interpreted as the 
original spectra, with less or equal number of orthogonal and uncorrelated variables 
called principal components (PC). The compressed matrix contains only important 
variations from the data set, while the loss is minimal. A PCA model describes the 
relation between the original data in matrix X (I,J) and principal components in 
terms of component scores T (I,R), loadings P (J,R) and residual E (I,J), where I 
represents samples, J is variables and the R row in the loading matrix is the 
contribution of single variable to the PC:    

 X = TPT + E  

 

An iterative least squares process is used to determine the pairs of scores and 
loadings for each PC with PC1 having the highest variance followed by PC2 and so 
forth. Placing the loadings of each PC to be orthogonal to the others eliminates the 
correlation between the PC’s. An increasing number of PC's will reduce the 
remaining variance after data compression, which is contained in the residual E 
matrix. Yet too many PC's may, however, result in fitting data more than necessary. 
PCA is a qualitative discriminant analysis method to extract the most variation of 
the data set to be represented in a reduced form, but PCA is not sufficient for 
performing predictions of the dependent variable without any subsequent regression 
analysis (71). 

PRINCIPAL COMPONENT REGRESSION 

PCR can be used in natural extension to PCA to estimate regression coefficients of 
a multivariate model, which makes PCR suited for large data set having correlated 
input variables. Similarly to MLR, PCR involves least squares computations and is 
applied to determine the regression values, but instead of performing the linear 
regression on independent variables directly, the PCA derived principal components 
are used. X can be substituted with components as long as they originate from 
independent variables only and not from Y - variables. Subsequent to PCA and 
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ordinary least squares regression on selected PC’s have been carried out, model 
parameters are determined from the explanatory input variables (72). 

PARTIAL LEAST SQUARES 

PLS regression can establish a quantitative multivariate model of the X to Y 
relation despite having only minimal relevant X-variable information available and 
without involving qualitative visualization as with PCA. Unlike simple MLR, PLS 
can analyze strongly correlated noisy data having many independent variables 
compared to the number of observations. The PLS method combines a 
decomposition with linear regression and enables simultaneous prediction of 
several dependent variables. PLS uses both variation of X and Y to find the new 
compressed latent variables or components. In contrast to the two-step PCR with 
projection of x-variables followed by regression of compressed variables, PLS 
decomposition of data incorporates the covariance of both X and Y directly through 
a more complex process. The covariance structure of the X and Y matrices is found 
by projecting the predicted and observable matrix as latent structures to new spaces. 
The dependent and independent values are decomposed into scores (T and U), 
loadings (P and Q) and residuals (E and F) and linked by a linear relationship: 

 X = TPT + E    

 Y = UQT + F   

 U = bT 

where the regression vector of the linear model is 

 b = UT T/TT T 

 

The model has weights instead of scores for the y-variable: X = ywT + E 

The score value from the X component with highest covariance can be used to 
predict the score value of the Y component with the highest covariance. There are 
several algorithms to obtain PLS estimators and one of the most popular ones used 
for decomposition is NIPALS (Nonlinear Interactive Partial Least Squares). The 
PLS loading weights are iteratively re-estimated by performing simple bivariate 
regression algorithms. (73). PLS models are often simpler than PCR with fewer 
condensed variables, because Y-data is included in the compression step. 

MODEL VALIDATION 

One measure to assess how well the regression line of a model represents the data is 
the coefficient of determination R2, which in a model with a perfect fit will 
approach 1.0. However, the coefficient of determination may not give the best way 
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estimate of the validity of a regression model, since just adding more variables can 
increase R2 hence seemingly improve the fit of the model. R2 cannot be used as sole 
validation procedure to verify the effectiveness of a regression model before 
attempting to apply the calibration for predictions of new independent values such 
as concentrations. 

The Root Mean Square Error of Prediction (RMSEP) is the average prediction error 
and can express how well the data of a new test measurement fits to the model. In 
contrast to the similar Root Mean Square Error of Estimation (RMSEE), applying 
the calibration samples already used to describe the model fit, RMSEP uses external 
samples to determine the actual validation error of the model. Both calibration fit 
error, RMSEE providing the rough estimate. The subsequent prediction error 
RMSEP decrease with increasing number of latent variables, but errors associated 
with more complex modeling on the other hand increase as more latent variables 
are integrated.  

The Root Mean Square Error of Cross-Validation (RMSECV) is one of several 
internal validation methods using the calibration data itself instead of new data to 
obtain optimal number of model variables, while evaluating the model fit at the 
same time. The model is made upon one or more sub-validations, where the same 
data is either used for building or testing the calibration model, as the model is 
constructed (55). 

SPECTROSCOPY SUMMARY 

The introduction of chemometrics has significantly improved the overall ability to 
precisely monitor and quantify important bioprocess parameters. In particular, 
relevant information previously hidden in spectral data sets is now retrievable, 
thereby drastically enhancing the possible uses of spectroscopy methods such as 
NIR, MIR, Raman and fluorescence for construction of reliable prediction models. 
However, the overall combined effort required to perform calibration including full 
data pretreatments and chemometric analysis is very extensive and difficult to carry 
out - even by skilled professionals. As long as the process monitored is changed 
very little subsequent to the construction and validation of the regression model, 
utilizing chemometrics can be justified. This might not be the case, when dealing 
with a process being altered regularly, as often occurring in the development phase 
or, for instance, when media compositions are modified between test runs. It simply 
may be too time-consuming to adjust the comprehensive multivariate calibration 
model in such situations. Moreover, a sort of 'black box' is created, when 
chemometrics is employed, since pre-processing and calibration errors are difficult 
to recognize without performing full data analysis. Especially with NIR, it is 
practically impossible to intuitively estimate how minor changes appearing in the 
raw spectra will affect the different process response variables in the multivariate 
model.  
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This might not be the case with Raman spectroscopy due to more distinct and less 
overlapping peaks in the spectra. In the event a reasonable quantification method 
can be obtained with fewer pre-processing steps, than currently used with NIR, 
while also applying a simple univariate regression instead of multivariate 
regression, Raman spectroscopy may prove more flexible, easy to utilize and 
overall better for some non-standardized applications. Such method expected to 
benefit from being more flexible and transparent are however anticipated to come at 
the cost of precision of prediction. In summary, part of this PhD project intends to 
investigate at what extend acceptable quantification estimations is obtainable and 
applicable for monitoring bioethanol production processes, without the application 
of excessive data processing. Instead, quantifications are attempted applying only 
zeroth-order models. This matter is addressed in Manuscript I and II.  

CONCLUSION AND PERSPECTIVES 

The outcome of the presented experimental work shows some potential benefits of 
applying Raman spectroscopy for monitoring biorefinery processes in real-time. 
Manuscript I describes the development and use of a quantification model for 
measuring concentrations present during fermentation. The model deviates from 
conventional multiple linear chemometric methods by using an initial scattering 
correction step to account for the non-linear attenuation of Raman signal caused by 
cell particulates. Reasonable results measuring yeast fermentation was obtained 
with this two-step approach involving only a simple final univariate regression to 
determine concentrations. Extended use of this quantification model in regards to 
lignocellulosic bioethanol production processes involving opaque hydrolysates with 
much biomass debris is demonstrated in Manuscript II. Attempts to use Raman 
spectroscopy and the established quantification method resulted in satisfactory 
measurements of concentrations to be obtained from monitoring in the hydrolysates 
during especially the fermentation process and to some degree also from the 
pretreatment process. However, the enzymatic hydrolysis reaction was difficult to 
monitor using Raman spectroscopy due to only minor spectral changes being 
observed during the release of sugars from the cellulose polymers. Measurements in 
all the processes are significantly affected by background noise caused by scattering 
of signal from the suspended biomass debris. Some degree of signal transparency 
through the hydrolysates is necessary in order to acquire any useful spectra for 
quantification. Real-time concentration measurements during the fermentation 
process were only obtainable, if the stirring speed was reduced enough to allow 
some precipitation of the suspended particulates around the immersion probe at the 
top of the reaction mixture, while keeping yeast cells suspended.  

Overall, Raman spectroscopy shows some great potential as an analysis tool for 
future biorefinery processes and additional utilization should be investigated in 
extension to this study. The simple univariate model presented may become more 
accurate by integrating the non-linear scattering features for scattering correction 
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into the conventional chemometric methods using multiple variant regressions for 
quantification. A natural expansion of the method would be additionally to monitor 
the conversion of the pentose sugars, which might be used to monitor combined C5 
and C6 fermentation or control microaerobic conditions when using xylose-
fermenting yeasts. Another application possibility within bioethanol fermentation 
could be to measure the presence of lactic acid, thereby enabling early detection of 
bacterial contamination. Raman spectroscopy might also be applied for other 
biofuel production processes such as measuring different volatile fatty acids during 
anaerobic digestion or the gas composition during gasification and pyrolysis 
processes. Strong Raman signals are expected to arise from the many non-polar 
bonds in these compounds.  

Another obvious study possibility is to develop more techniques to combine 
separation and real-time Raman measurements in order to reduce some of the 
background noise from cell and biomass particulates expected to be present in any 
liquid reaction mixture regardless of the bioprocess being monitored. For instance, 
a system with providing a continuous flow of the process liquid through a cyclone 
or spin filter before passing by the immersion probe may improve measurement 
accuracy.  

The final part of this project concerning a performance comparison between the two 
xylose fermenting yeasts Scheffersomyces stipitis and Spathaspora passalidarum 
when grown on three important tropical biomasses is disclosed in Manuscript III. 
Fermentation of pretreated sugarcane bagasse, eucalyptus tree fiber and palm oil 
empty fruit bunches revealed some slightly better yields of up to 20 g/L ethanol in 
hydrolysate from empty fruit bunches when using S. passalidarum. This research 
furthermore supports results by others showing S. passalidarum to be among the 
best xylose fermenting yeasts. Hydrolysate with a high concentration of acetic acid 
caused metabolism in S. passalidarum initially to be inhibited. One important 
perspective for future studies on the potential of using S. passalidarum for 
lignocellulosic bioethanol production could thus be to investigate the extent of 
inhibition by acetic acid on the performance of this yeast. 
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Abstract Compared to traditional IR methods, Raman spectroscopy has the 
advantage of only minimal interference from water when measuring aqueous 
samples, which makes this method potentially useful for in-situ monitoring of 
important industrial bioprocesses. This study demonstrates real-time monitoring of 
a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy 
instrument equipped with a robust sapphire ball probe. A method was developed to 
correct the Raman signal for the attenuation caused by light scattering cell 
particulate, hence enabling quantification of reaction components and possibly 
measurement of yeast cell concentrations. Extinction of Raman intensities to more 
than 50% during fermentation were normalized with approximated extinction 
expressions using Raman signal of water around 1627 cm-1 as internal standard to 
correct for the effect of scattering. Complicated standard multi variant chemometric 
techniques, such as PLS, were avoided in the quantification model, as an attempt to 
keep the monitoring method as simple as possible and still get satisfactory 
estimations. Instead, estimations were made with a two-step approach, where initial 
scattering correction of attenuated signals was followed by linear regression. In-situ 
quantification measurements of the fermentation resulted in root mean square errors 
of prediction (RMSEP) of 2.357, 1.611 and 0.633 g/L for glucose, ethanol and yeast 
concentrations respectively.  

Keywords Raman spectroscopy . sapphire ball probe . on-line monitoring . yeast 
fermentation . quantitative analysis . scattering correction.  
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Introduction 

Temperature, pressure, pH and dissolved oxygen are common parameters 
monitored in-situ during chemical and biological production processes. Retrieving 
additional information about concentrations of reagents and products often requires 
labor-intensive sample processing, delaying analysis and process control. Real-time 
monitoring using process analytical technologies (PAT) to ensure effective 
operation, automated control and the analysis of critical quality parameters in 
industrial bioprocesses are becoming increasingly important [1, 2]. Vibrational 
spectroscopy techniques in near-infrared (NIR) and mid-infrared (MIR) or light 
absorption within the ultraviolet or visible ranges enable real-time measurement and 
use of a feedback mechanism for computer automated process control. Non-
destructive optical methods can complement or substitute time-consuming off-line 
measuring methods for monitoring chemical reactions, such as high performance 
liquid chromatography (HPLC) or gas chromatography (GC). In particular, 
monitoring of fermentations or other bioprocesses can benefit from spectroscopy 
methods, since several components can be analyzed simultaneously. The risk of 
microbial contamination is reduced by non-invasively measuring with optic 
components able to withstand steam sterilization [3]. Attempts of in situ non-
invasive spectroscopic monitoring of fermentation processes have been reported 
using NIR to analyze biomass, glucose and ethanol during fermentation [4]. NIR is 
based on the molecular overtone vibrational transition in contrast to the 
fundamental vibrational mode transitions of molecular bonds measured in the MIR 
range. As a consequence, the more narrow peaks seen in MIR are more useful and 
capable of identifying unknown compounds. However, water is a strong infrared 
absorber and use of IR spectroscopy is difficult even when using attenuated total 
reflection (ATR) elements [5].  Alternatively, Raman spectroscopy can be used, 
because the Raman scattering of water is weak, especially at 0-3000 cm-1. In 
addition narrower and cleaner peaks are typically obtained than with MIR 
absorption, hence making better resolution, and direct spectral interpretation 
possible [6]. Raman spectroscopy is based on the inelastic scattering of 
monochromatic light from molecules, reemitting photons with Stokes energy 
differences equal to the vibrational transitions of the molecule. Raman scattering is 
generated by induced dipole moments and strong Raman intensities are exhibited 
by symmetric molecular bonds with low polarity such as carbon-carbon double 
bonds [7]. Raman signals are thus weak compared to the Rayleigh emitted light 
created by elastic scattering. Raman spectroscopy has occasionally troublesome 
fluorescence background noise created by laser illumination [8]. Instrument 
advancement has recently been achieved with the design of a chemically robust 
sapphire ball probe with focal point optimized for opaque solutions (US Patent 
6,831,745) that has the advantage of being functional with only one lens for both 
the excitation light beam entering the sample and for collecting the backscattering 
Raman signal.      
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An early attempt to analyze fermentation products applying ATR 
Raman spectroscopy was done in 1987 by Shope [9]. Signal-to-noise improvements 
have been achieved applying mathematical algorithms on the basis of polynomial 
curve fitting or wavelength shifting of the excitation laser to estimate and reject the 
noise from the fluorescence [10]. Shaw [11] used dispersive Raman to determine 
concentrations of glucose and ethanol during yeast fermentation by monitoring on a 
bypass line free of cells obtained by filtration. A study to simultaneously monitor 
glucose, ethanol and optical cell density during yeast fermentation has been 
presented by Sivakesava [12] who used both FT-MIR and FT-Raman spectroscopy 
with multivariate techniques. FT-Raman proved to be less accurate at low 
concentrations than FT-MIR. Recently, real time monitoring of multiple process 
parameters in the increasingly important mammalian cell culture bioprocesses has 
been achieved using in situ Raman spectroscopy [13, 14].   
 Chemometrics combines spectroscopy with statistical methods to 
enable quantitative analysis of complex data with multiple response variables by 
incorporating the combined effect into the model. Multivariate data analysis 
methods are particularly beneficial when signals are weak. The simplest 
multivariate regression method to find the correlation between one dependent 
variable and multiple independent variables is multi-linear regression (MLR) 
estimated by partial least square (PLS). Principal component regression (PCR) - 
using principal component analysis (PCA) instead of least squares to estimate 
regression coefficients - is more suitable to explain the variance in data sets [15, 
16]. The Raman intensity is directly proportional to the number of molecules [17]. 
Exceptions to this exist when the laser wavelength is close to an electronic 
absorption band resulting in resonance Raman scattering [18]. If significant non-
linear characteristics are present in spectral data sets the situation is more 
complicated.     
 The presence of light scattering microbial cells in a fermentation 
broth further complicates data analysis. Molecules are subject to Rayleigh 
scattering, whereas larger particles, bubbles, droplets and cells with a size closer to 
the wavelength of the incident light fall into the domain of Lorenz-Mie scattering 
and are responsible for turbid waters. Lorenz-Mie scattering is more difficult than 
Rayleigh scattering to calculate in terms of direction and magnitude [19, 20]. This 
diffuse scattering is responsible for attenuation of both the laser intensity reaching 
the sample and the Raman light exiting from the sample, thereby reducing the 
signals. Both scattering and absorption contribute to extinction of the light in 
particulate media and this kind of extinction is also referred to as optical density 
[21]. Scattering is regarded as predominant compared to absorption in the cell 
suspensions [19]. Extinction of signal intensity as a linear function of concentration 
does, however, only apply to single scattering events, while higher turbidity with 
diffuse light and shadow effects proved this expression to be more complicated 
[22]. Raman data sets obtained from cell suspensions are expected to involve 
multiple scattering, so a non-linear extinction function of cell concentration E(c) 
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should be used in a quantification model covering the scattering range above the 
dilute Beer-Lambert domain:  

I = I0 · 10 -E(c)    (1) 

All Raman signals are reduced when the turbidity increases, but not all peaks in 
spectrum are changed by variations in analyte concentrations. Therefore, variations 
of Raman intensities of components - constant during reaction - can be used as 
internal standards to reveal and correct for all disturbances affecting the Raman 
signals from reaction components [23]. Quantitative Raman monitoring of ethanol 
fermentation has been reported by Picard [24], who used sulfate as an internal 
standard to correct for Raman signal disturbances generated in the sample or the 
instrument. In addition, concentrations of glucose and fermentation products in an 
Escherichia coli culture have been measured with Raman spectroscopy by 
correcting the light attenuation from the biomass and bubbles using the estimated 
water concentration as an internal reference [25]. In anaerobic fermentations where 
cell particulates are the only source of light attenuation, the cell concentration may 
thus be monitored during fermentation by use of the intensity reduction of the 
internal standard signal.     
 In this study we demonstrate real-time monitoring of a 
Saccharomyces cerevisiae fermentation process by use of Raman spectroscopy with 
a sapphire ball probe designed to withstand the harsh environment during the 
sterilization and to minimize the interference from particulates. We examined linear 
and non-linear features in the data sets for quantification purposes, and the 
scattering correction procedure was attempted using the internal standard approach 
to develop working process control technologies for biofuel production or other 
bioprocesses.  

 

Materials and Methods 

Fermentation 

A culture medium containing 10 g/L yeast extract, 20 g/L protease peptone and 40 
g/L glucose was autoclaved and kanamycin (50 mg/L) was added before 
inoculation to 2 g/L Saccharomyces cerevisiae dry yeast (Thermosacc, Lallemand 
Ethanol Technology, Denmark). Fermentation was performed at 35 °C for 7 hours 
in 1L Multifors bioreactor (Infors-HT, Switzerland). Yeast concentration was 
determined by optical density measurements at 600 nm on a UV/Vis 
spectrophotometer (Jenway, UK).  
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HPLC Analysis 

Sample concentrations were determined with High Performance Liquid 
Chromatography (HPLC) (Ultimate 3000, Dionex,CA, USA). 10 µL of sample 
supernatant were run through the Aminex HPX-87H column (300 X 7.8 mm) 
combined with a Cation-H guard column (30 X 4.6 mm), both Bio-Rad 
Laboratories, CA, USA. The components were separated isocratically with 4 mM 
H2SO4 as eluent for 26 min with a flow rate of 0.6 mL/min at 60 °C and detected 
with the refractive index (RI). Mixtures containing glucose, glycerol, ethanol and 
lactate were used as standards (concentrations of 0.5 to 20 g/L). 1 mL samples were 
added with 10 µL 1 M H2SO4 and supernatant was used for HPLC. 

 
Raman Analysis 

All measurements were done with maximum frequency-stabilized laser output at 
785 nm (deep red, 300 mW power) using a ProRaman-I instrument from Enwave 
Optronics Inc. The instrument had a 250-2350 cm-1 spectral coverage and a 6 cm-1 
spectral resolution, was equipped with a cooled charge-coupled device (CCD) 
detector operating at -60 °C and used an immersion fiber optic probe (12 mm 
diameter) with ball sapphire lens. The cm-1 axis scale was calibrated by means of 
recording Raman lines of the provided Enwave calibrating sample with given bands 
at 382, 537, 996, 1140, 1590 and 2220 cm-1. Data were processed with the 
EZRaman Reader ver. 8.2.2 spectra managing software. References, supernatant 
samples and the fermentation process were all measured or monitored by acquiring 
Raman data for 20 seconds and averaging 45 times, thereby giving data points for 
every 15 min during the real-time continuous measurements. Samples taken every 
hour during fermentation were centrifuged for 60 seconds at 5000 rpm and typically 
2-10 mL supernatant samples were subsequently measured with Raman. Signals 
from ambient light were avoided by covering samples or the bioreactor during all 
measurements.     
 Except for spectra used for measurements of the magnitude of 
fluorescence or the impact from particles or yeast cells, all shown spectra were 
manipulated to subtract the fluorescence background. Baseline fit was done 
automatically with a polynomial algorithm using the autobaseline 2 setting of the 
software. In order to quantify the measured Raman signal of the components, the 
baseline corrected values were normalized according to zero values and then 
correlated to the standard curves.   
 Reference solutions (1 % w/w in water) of glucose, ethanol, 
glycerol and lactic acid were made to identify the peaks relevant in fermentation 
with yeast. Glucose and ethanol calibration curves were based on a simulated 
fermentation with the gradual conversion of 100 g/L glucose to 50 g/L ethanol in 10 
% increments. Mixtures of 20 g/L ethanol and 70 g/L glucose with various 
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concentrations of yeast were used to quantify the extinction of the Raman signal 
due to cell particulate scattering. Both calibration standards and the extinction 
solutions were made as culture media with 10 g/L yeast extract and 20 g/L protease 
peptone in the reference solutions. 

 
Quantitative Raman analysis method 

Quantification of glucose, ethanol and cell biomass concentrations using Raman 
measurements were done in a two-step approach. First, extinction of the Raman 
signal using the water peak at ~1627 cm-1 as an internal standard was determined to 
get the cell concentrations applying equation 3. Extinction of Raman signals of the 
analytes were then determined and corrected according to the obtained cell 
concentration. Subsequent to the scattering corrections, the concentrations of 
glucose and ethanol were predicted without using any multiple linear regressions or 
partial least squares analysis, but only standard linear regression.  

 

Results and Discussions 

Reference Overview 

Raman spectra of relevant components likely to be formed or present during yeast 
fermentation were collected. Reference solutions of glucose, ethanol, glycerol and 
water are shown in Fig. 1a In addition to these substrate and product molecules, 
lactic acid produced as a result of bacterial contamination is also an important 
compound to monitor during yeast fermentation.  
 Each compound has some distinct peaks in wavenumber regions 
with only minor interference from other compounds. Thus, the main peak of 
glucose is at 1123 cm-1 and a smaller one is present at 514 cm-1, whereas a Stokes 
shifted Raman band from ethanol is seen strongly at 877 cm-1, but bands are also 
present at 1046 and 1455 cm-1. Lactic acid Raman scatters at 822 cm-1, whereas 
distinct peaks at 480, 840 and 1055 cm-1 can be observed with glycerol and a broad 
Raman signal around 1620-1645 cm-1 is the bending water molecule. The strong 
signals at 378, 416, 642 and 749 cm-1 is Raman scattering from the sapphire crystal 
in the probe. 
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Fig. 1 Fermentation components. Raman spectra of references upon fluorescence corrections 
(a) and Standard plot of baseline corrected spectra for a simulated fermentation of 100 g/L 
glucose up to 50 g/L (b). Ethanol measured at 877 cm-1 (♦), y = 21.406x + 12.553, R² = 
0.9959; 1046 cm-1 (×), y = 3.0716x + 138.07, R² = 0.9569 at 1455 cm-1 (▲), y = 6.4871x + 
138.52, R² = 0.984. Glucose measured at 514 cm-1 (●), y = 2.8793x + 11.362, R² = 0.9973 
and 1123 cm-1 (■), y = 4.2116x + 24.177, R² = 0.994. 

 

A strong linearity between the concentrations and corresponding 
Raman intensities - subsequent to the fluorescence baseline correction - is seen in 
Fig. 1b. The intensity calibration was made on the basis of the simulated 
fermentation of glucose to ethanol and is displayed in 10% increments of 
conversion. The Raman intensity from ethanol at 877 cm-1 is particularly strong, 
even at low concentrations, compared to any glucose signals, which can be 
explained by the non-polar feature of the C-C bond.  

The effect of yeast cells on Raman measurement was seen when a 
raw spectrum of a fermentation broth sample containing 7 g/L yeast cells was 
compared with the spectra of the same sample after centrifugation (Fig. 2). Most of 
the directly measured signal prior to baseline correction is from background 
fluorescence with Raman scattering contributing with less than 15% in both cases. 
The presence of the cells reduces the Raman intensities with more than 40% for 
some peaks, whereas the removal of yeast cells resulted in an overall 10% reduction 
of the fluorescence background noise contribution to the signal. The change in yeast 
content thus seems to have a high impact on the Raman signal attenuation, but little 
on the fluorescence. 
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Fig. 2 Non-baseline corrected Raman spectra for fermentation with S. cerevisiae. The sample 
was obtained after 20 hours of fermentation and measured with yeast cells and without after 
separation. 

 
Effect of Scattering 

Fig. 3 illustrates spectra acquired from suspensions of viable yeast in water. In 
general, Lorenz-Mie scattering is not considered to be wavelength dependent 
compared to Rayleigh emission, but the directionally dependent scattering property 
- also referred to as anisotropy – of the cell particulates, resulting in a wave pattern 
of the Raman signal throughout an extended range of wavenumbers in the spectra. 
These periodic bands of significant magnitude, observed at 300, 363, 427, 498, 571, 
649 cm-1 and seeming to continue for every 65 to 70 cm-1 at diminishing strengths, 
do not correlate with any expected structural component in the yeast cells or any 
previously found band in spectra of a single yeast cell acquired by Raman micro 
spectroscopy as reported by Xie [26]. One way to explain this is to let it result from 
the change in angular scattering intensity of a particle in accordance with Lorenz-
Mie theory. Accordingly, the scattering cross section of a suspension of spheres 
exhibits a pattern with periodic maxima and minima as the wavelength changes and 
the angular configuration is assumed to remain constant [27, 28]. These oscillating 
features are caused by the constructive and destructive interference of the diffracted 
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light expected to come from both the fluorescence background and the Stokes 
signal itself and can be expressed by a Bessel function, which describes the 
scattering fluctuations within the Lorenz-Mie regime as the parameters (particle 
size, frequency or wavelength) are gradually altered. The spectra may however be 
partially at the boundary of the Mie domain, since a spectral range from 200 to 
2000 cm-1 corresponds to wavelengths of 50000 to 5000 nm, whereas the diameter 
of the yeast cells could be somewhere between 10000 and 40000 nm. Another 
explanation for the pattern can be some kind of resonance fluorescence. 

 
Fig. 3 Oscillating patterns in the Raman spectra exhibited by increasing concentrations of 
yeast cells suspended in water. Spectra derived upon the subtraction of a reference Raman 
spectrum of water. 

 
To further investigate the behavior of the spectral signals, Raman 

spectra of glucose and ethanol solutions mixed with yeast at various concentrations 
were acquired. Fig. 4a displays how the intensities of some of the distinct Raman 
peaks - originating from solutes or water throughout the spectrum generally decline 
at a decreasing rate as the yeast content increases. This seemed to be true for all 
Raman bands except the one at around 300 cm-1, which was the only oscillating 
band exhibited by the yeast, described above, having strong enough intensity to also 
be distinguishable in the spectra from mixtures. Furthermore and remarkably, it was 
the only signal in the spectra found to increase linearly with the growing cell 
content, thus overcoming the general attenuation effect.   
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Fig. 4 The effect of gradually increasing content of light scattering yeast cells on Raman 
intensities a) originating from glucose (■, ×), ethanol (▲, ●), water (o) and yeast cells (♦) 
and the consequently attenuation of the signals b) seen in the samples containing 20g/L 
glucose and 70 g/L ethanol. 

 

The scattering effect is also a common phenomenon in NIR spectra 
and corrections are usually done using Multiplicative Scatter Correction (MSC) or 
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the similar Standard Normal Variate (SNV) transformation. Both of these 
correction models are based on regressing spectral values on the average spectrum 
and used to estimate a wavelength dependent shifting baseline. For MSC or SNV to 
be used for spectral pre-processing, the scattering is expected to shift the spectra 
gradually with changing wavelengths [20]. A similar pre-processing method could 
in principle be used for correction of Raman scattering spectra, but such a 
relationship could not be deduced from our Raman data sets, due to the greater 
variance in the extinction of the Raman signal (Fig. 4b). The extinction was higher 
than typically seen for NIR, where the scattering basically introduces a uniform 
baseline shift. Some of this variance may be explained as the oscillating wavelength 
dependent Mie scattering (Fig. 3), which however is likely to change in pattern for a 
different excitation setup. For this reason of the expected variance in attenuation 
coefficient, the scattering effects of each of the few bands used for quantification 
were estimated individually instead of trying to apply some sort of smoothed curve 
or single value for calibration.    
 The changes in Raman signal extinction with increasing cell 
concentration are shown in Fig. 4b. Extinction values were determined from values 
displayed in Fig. 4a. Increasing amounts of cell particulates significantly attenuated 
the water band at ~1627 cm-1 as well as the most distinct Raman signals of ethanol 
at 877 cm-1 and glucose at 1123 cm-1, despite of constant analyte concentrations. 
The Raman intensities, shown in Fig. 4a, were as expected not declining linearly as 
the amount of cell particulates increased. The relationship between yeast 
concentration and the extinction were moreover far from following the Beer-
Lambert correlation. Light attenuation, due to the loss of photons in the light path, 
was significantly non-linear, throughout this range of yeast concentration. Instead, 
the correlation between particle concentration and light attenuation is complex. On 
the basis of the data, a quadratic equation gives an acceptable approximation 
describing the extinction as a simple quadratic function of the concentration of the 
scattering cell particulates E(c), as in equation (3):  

Ethanol, 877 cm-1:      E(c) = 0.0081 · c2 - 0.1093·c R2 = 0.9823      (2) 

Glucose, 1123 cm-1:   E(c) = 0.0054 · c2 - 0.0698·c R2 = 0.9650      (3) 

Water, ~1627 cm-1:    E(c) = 0.0069 · c2 - 0.0881·c R2 = 0.9712      (4) 

 

Different logarithmic approaches were tested, but did not give better fit to the data 
set. Despite vigorous stirring of the cell suspensions during the measurements, the 
Raman intensity data at various yeast concentrations showed greater deviation from 
the trend line, no matter which mathematical correlation was chosen, than 
compared to the non-particulate calibration standard measurements of reference 
analytes shown in Fig. 1. Some inaccuracy may hence have to be taken into account 
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when using the internal standard method to correct for light extinction caused by 
Mie scattering from the cells. The displayed extinction changes at increasing cell 
concentrations are not equal, and the ethanol signal measured at 877 cm-1 is 
attenuated more than 50% relative to the glucose band at 1123 cm-1 in the data set. 
This is why the same extinction values for the internal water standard was not 
directly used to correct for all the other attenuated Raman signals in the model, but 
only to find cell concentrations needed to determine the attenuation for each 
analyte. This method is in contrast to some of the approaches in the literature [23, 
24], where the extinction magnitude of the internal standard was assumed to be 
valid for all other peaks.  

 

Fermentation Monitoring 

Raman spectra of supernatant samples after removal of fluorescence background, 
taken throughout the yeast formation and fermentation process, are shown in Fig. 
5a. The displayed changes in Raman intensities show only the effects of the 
conversion process, since the cells active in Mie scattering have been removed and 
the internal standard signal at around 1627 cm-1 from water was constant. The 
resulting signals at 1123, 514 and 1360 cm-1 were diminishing due to glucose 
consumption and the increasing ethanol concentrations giving rise to growing 
intensities at 877, 1046, 1080 and 1455 cm-1 are remarkably distinct and having 
minimal overlap. Spectra of the same samples with yeast cells, measured before 
separation, revealed light attenuation of the signals at all these wavenumber 
positions, including the internal standard Raman band from water (spectra not 
shown). This proves that the internal standard peak only was affected by scattering 
and not by the biochemical conversion. The signal induced by the growth of the 
yeast cell - expected to show up at 300 cm-1 - was unfortunately too weak and 
hidden in noise to retrieve any information about the yeast growth. 
 The attempt to estimate yeast cell concentrations on the basis of 
this internal standard Raman signal attenuation, at ~1627 cm-1 using the extinction 
equation for water, is depicted in Fig. 5b. After the inoculation (2 g/L) both 
concentrations measured by HPLC and by Raman showed the yeast growth from 2 
g/L at inoculation to 7 g/L after 7 hours of fermentation. The effect of scattering is 
demonstrated by the disappearance of the signal when stirring of the reaction was 
stopped between 7 and 17 hours, resulting in cell precipitation. Compared to the 
cell concentration values measured by UV-VIS, the Raman determined growth 
curve seems less stable. Further noise reduction and improvement of cell 
estimations are likely to be achievable applying smoothening algorithms to the 
spectra. It must be emphasized, that this method to estimate cell concentrations only 
is applicable, as long as the cells are the only type of Mie scattering particulates 
present when a bioprocess is monitored, which is usually not the case. Nevertheless, 
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extinction of the internal standard Raman band can still be used to estimate the 
particulate content and to correct the attenuated analyte signals. 

 
 

Fig. 5 Results of S. 
cerevisiae fermentation 
in YPD media contain-
ing 40 g/L glucose 
(reactor stirring was 
stopped between hours 
8-17). Raman spectra of 
baseline-corrected sup-
ernatants of samples 
obtained during fermen-
tation (a). The develop-
ment of cell concen-
tration determined by 
UV-VIS (■) and in-situ 
Raman (line) (b). The 
concentrations of solut-
es determined by HPLC 
and upon Raman signals 
at 877 cm-1 for ethanol 
(open symbols) and at 
1123 cm-1 for glucose 
(closed symbols) (c). 
Compo-nent measure-
ments were done by in-
situ Raman (♦), 
scattering normalized 
in-situ Raman (●), 
subsequent Raman of 
supernatants (■) and 
HPLC (▲). 

 
 
 
 
 
 
 
 
 
 
 



MANUSCRIPT I 

67 

 The significant improvements obtainable by using particle 
scattering correction of the Raman signals, applying the estimated cell 
concentrations, is seen in Fig. 5c. The method corrects the glucose and ethanol 
values with more than 50 % concentration offsets, thus correlating well with the 
values derived from Raman spectra of supernatant samples as well as from the 
external HPLC data. The benefit of this new scattering correction method is 
furthermore confirmed by the plots of the correlation between the measured and 
predicted values presented in Fig. 6.  

 

 
 

Fig. 6 Prediction of 
the content of glu-
cose (a), ethanol (b) 
and yeast cells (c) 
during fermentation 
as obtained by use of 
Raman compared to 
HPLC or UV-VIS 
analysis. Measure-
ment done by in-situ 
Raman (▲), scatter-
ing normalized in-
situ Raman (●) and 
Raman of superna-
tants analyzed subse-
quently (■). Perfect 
correlations, are 
shown by the line of 
where predicted val-
ues equal measured 
values.   
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Thus simple scattering normalization significantly improves the quantification, 
although similar fermentation monitoring as conducted by other methods using PLS 
with Raman [14, 29] gave better overall accuracies, when compared to our RMSEP 
values (Table 1). Further accuracy improvements of the method can most likely be 
gained by also incorporating conventional preprocessing such as smoothening or by 
use of spectra derivatives. Chemometric models can account for non-linear 
correlations by for instance applying quadratic PLS instead of linear regression as 
described by Blanco [30]. Similar use of quadratic regressions in a multivariate 
model may also further improve the quantification, if scattering estimations and 
quantifications are still done separately. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
Conclusion 

The presented study of Raman spectroscopic monitoring and quantification of a 
fermentation process showed significant extinctions of the Raman signals due to 
Lorenz-Mie scattering by the yeast cell particulates. The true scattering effect 
cannot be accounted for applying traditional chemometric models without initial 
pre-processing, since quantification of analytes by linear regression is not permitted 
in the presence of interfering components. The attenuation impact on the Raman 
intensities was shown not to be uniform throughout the examined spectral range and 
regions with oscillating extinction were observed. The simply procedure of 

Table 1 Results of the applied quantification 
model using Raman spectroscopy to predict the 
concentrations of glucose, ethanol and yeast 
cells by correcting for signal attenuation caused 
by Mie-scattering 

  R2 

 

RMSEP 

 
Glucose, 1123 cm-1 

 
 Supernatant 

 

0.995 

 

1.535 

 
 In-situ, no correction 

 

0.991 

 

8.973 

 
 Scattering corrected 

 

0.990 

 

2.357 

 
  

 

  
Ethanol, 877 cm-1 
 Supernatant 

 

0.981 

 

1.892 

 
 In-situ, no correction 

 

0.993 

 

7.133 

 
 Scattering corrected 

 

0.995 

 

1.611 

 
    
Yeast (water), ~1627 cm-1 

 

0.840 

 

 

0.633 
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employing the same intensity reduction ratio of an internal reference to correct the 
scattering effects of all Raman signals is thus problematic. Instead, we are 
suggesting a two-step algorithm with an initial determination of the scattering factor 
and a subsequent quantification based on the peak intensity extinction calibration 
curve for each analyte. We have shown that robust concentration estimations and 
real-time monitoring can be achieved, without the need of further pre-processing of 
the Raman spectral data, such as calculating derivatives. It is even not needed to 
extend this simple univariate model in order to get robust results, as shown above. 
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ABSTRACT  

Process control automation in the emerging biorefinery industry may be achieved 
by applying effective methods for monitoring compound concentrations during the 
production processes. This study examines the application of Raman spectroscopy 
with an excitation wavelength of 785 nm and an immersion probe for in situ 
monitoring the progression of pretreatment, hydrolysis and fermentation processes 
in the production of lignocellulosic ethanol. Raman signals were attenuated by light 
scattering cells and lignocellulosic particulates, which the quantification method to 
some degree could correct for by using an internal standard in the spectra. Allowing 
particulates to settle by using a slow stirring speed further improved results, 
suggesting that Raman spectroscopy should be used in combination with continuous 
separation when used to monitor process mixtures with large amounts of 
particulates. The root mean square error of prediction (RMSE) of ethanol and 
glucose measured in real-time was determined to be 0.98 g/L and 1.91 g/L 
respectively.  

 
Keywords:  
Raman spectroscopy, lignocellulose, pretreatment, hydrolysis, ethanol fermentation.  
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1. Introduction 

Concerns about increasing carbon dioxide emissions and the depletion of the 
remaining global oil reserves provide ample reasons to develop alternatives to fossil 
fuels. A promising renewable resource for the production of fuel for transportation 
exists in the form of bioethanol produced from the carbohydrates present in 
lignocellulosic biomass from abundant agricultural residues (Menon and Rao, 
2012). The production of 2nd generation bioethanol involves some sort of 
pretreatment of biomass at elevated temperatures followed by enzymatic hydrolysis 
to release the sugars bound in cellulose and hemicellulose for the subsequent 
fermentation process. These processes can be operated more efficiently or even 
automated if production parameters can be monitored real-time instead of retrieving 
vital process information through manual time-consuming sampling and subsequent 
off-line analysis.  

Various forms of absorption spectroscopy technologies present alternative in situ 
analysis methods to the commonly used high performance liquid chromatography 
(HPLC) or gas chromatography (GC) for measuring concentrations of multiple 
reaction components simultaneously (Bakeev, 2005; Beutel and Henkel, 2011). 
Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have been used to 
monitor the fermentation processes (Finn, Harvey and McNeil, 2006; Mazarevica et 
al., 2004; Sivakesava, Irudayaraj and Demirci, 2001). However, these analysis 
techniques are complicated by the broad overlapping peaks seen in NIR spectra or 
by the strong absorption of water in the MIR spectral range, unless used with an 
attenuated total reflection unit (ATR). In contrast, Raman spectroscopy is not based 
on absorption but on inelastic scattering of monochromatic light with a wavelength 
of the reemitted photons determined by the Stokes energy shift of the molecule 
(Bakeev, 2005; Stewart et al., 1995). The need for a probe with a fixed light path 
within a gap is circumvented if the spectroscopy method is not based upon light 
transmission, since the same lens can be used for both the excitation light beam 
entering the sample and collecting the backscattering Raman signals. This makes 
Raman spectroscopy capable of analyzing viscous reaction mixtures or ones with 
high solids content. Raman spectra generally have distinct narrow peaks and the 
interference from water in aqueous samples is weak, unlike MIR. However, Raman 
signals are very weak and the laser-generated Rayleigh scattered light and 
fluorescence background noise must be eliminated from the collected backscattered 
signal before spectral interpretation (Bocklitz et al., 2011; Vankeirsbilck et al., 
2002). Process monitoring using Raman spectroscopy has not yet gained the same 
popularity as NIR, but this may change with; recent instrument improvements 
through the implementation of better lasers, new spectrometer designs, improved 
detectors with increased sensitivity and applying computers and software, which are 
able to overcome the challenge of fluorescence (Bakeev, 2005). 
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Altogether, Raman spectroscopy is a promising monitoring technology, with 
various configurations capable of analyzing concentrations of substrates and 
products during fermentation processes (Sivakesava, Irudayaraj and Demirci, 2001; 
Shaw et al., 1999; Shope, Vickers and Mann, 1987). Quantifications with high 
degrees of accuracy have recently been achieved by monitoring multiple process 
parameters simultaneously in yeast fermentations and mammalian cell culture 
bioprocesses using in situ Raman spectroscopy and chemometrics (Abu-‐Absi et al., 
2010; Ávila et al., 2012; Gray, Peretti and Lamb, 2013; Li et al., 2013; Uysal et al., 
2013; Whelan, Craven and Glennon, 2012). Chemometrics combines spectroscopy 
with statistical methods and most often includes multivariate data analysis, which 
enables quantitative analysis of complex data with multiple independent variables 
for each dependent variable. It has been used extensively with NIR where 
absorption bands tend to overlap (Roggo et al., 2007; Wold, Sjöström and Eriksson, 
2001). Raman spectra with its narrower peaks should in some cases enable 
sufficient quantification using simple univariate calibration models, thus reducing 
the need for complicated chemometrics. Quantification of concentrations by 
applying Raman data with single or multi-linear regression is reasonable, since the 
intensity of Raman scattered light is directly proportional to the number of 
molecules (Pelletier, 2003). This linear correlation between concentration and 
Raman intensity can; however, deviate by resonance Raman scattering if the 
excitation wavelength is near an electronic absorption band (Liu and Berg, 2012). 
The linear relationship between Raman intensity and concentration can also be 
disturbed by the presence of microbial cells or signal-attenuating particles due to 
diffuse Lorenz-Mie scattering responsible for optical density (Butler, 1964). For a 
long time the challenge of removing the fluorescence background signal was 
considered a major obstacle in working with Raman spectroscopy. However, with 
better software and algorithms to deal with this; the next important issue to solve 
may be the development of ways to overcome the effects of light scattering 
particulates. 

The relationship between light extinction and the concentrations of light-scattering 
particulates can be expressed by a simple linear correlation in dilute suspensions. In 
more turbid media, attenuations of Raman signals are more mathematically 
complicated to quantify and correct, because of multiple scattering of photons and 
shadow effects. Instead, the overall magnitude of Mie scattering can be revealed by 
using a component unchanged through the reaction and with peaks not shared by 
other components in the reaction mixture as an internal standard. The changes in 
intensity of the internal standard can only be explained by changes in scattering, if 
the concentration remains constant; which can be used to estimate the reductions of 
all other Raman signals through a relative simple scattering correction method 
(Aarnoutse and Westerhuis, 2005). This method of correcting for signal extinction 
using an attenuation coefficient was demonstrated by using sulfate in the media as 
an internal standard when monitoring yeast fermentation (Picard et al., 2007). 
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The amount of light-scattering particulates is limited in fermentations with defined 
media compared to lignocellulosic bioethanol production processes, where large 
amounts of biomass debris must be anticipated. Therefore, monitoring highly 
heterogeneous lignocellulosic biofuels production processes with Raman 
spectroscopy is complicated by the attenuation of the Raman signals due to 
particulates. There have been a number of publications investigating biomass 
structures or spectral features from components in lignocellulosic biomass using 
Raman spectroscopy (Stewart et al., 1995; Adapa et al., 2011; Agarwal, Reiner and 
Ralph, 2012; Barsberg et al., 2006; Xu et al., 2013). Until recently, minimal 
research has been done on how to quantify component concentrations during 
biorefinery processes using Raman spectroscopy. Glucose and xylose have been 
measured off-line simultaneously in samples taken from corn stover hydrolysate 
applying extraction procedures to improve detection (Shih, Lupoi and Smith, 2011). 
In another recently published study, HPLC data of ethanol and glucose 
concentrations obtained from a lignocellulosic fermentation of switch grass 
hydrolysate correlated well with real-time Raman derived results (Ewanick et al., 
2013). These two studies were based on monitoring fermentation of the separated 
liquid fractions or filtered samples without interference from light scattering 
biomass debris. In future large scale biorefineries, continuous removal of all 
scattering solids in the production processes is not a realistic scenario and some 
degree of particulates should be expected and accounted for in the method used for 
real-time monitoring.  

The purpose of our research was to examine the application of Raman spectroscopy 
in monitoring conversion processes involved in the production of lignocellulosic 
bioethanol, considering disturbance from particulates. Experiments were conducted 
with the aim of developing methods for real-time quantification of substrate, 
product, and inhibitor concentrations during dilute acid pretreatment, enzymatic 
hydrolysis, and fermentation with Saccharomyces cerevisiae. The microcrystalline 
cellulose Avicel was used as a model substrate for the initial hydrolysis experiment. 
The analysis of the model substrate was followed by the analysis of more 
complicated lignocellulosic material by monitoring pretreatment, hydrolysis, and 
fermentation of sugarcane bagasse. Applying complicated multiple linear regression 
or partial least squares analysis was avoided; and quantification was carried out 
with only simple linear regression with one independent variable after initial 
correction of attenuated Raman intensities. We demonstrate real-time monitoring of 
a Saccharomyces cerevisiae fermentation process using a Raman instrument 
equipped with a sapphire ball probe designed to minimize interference by 
particulate as well as withstand the harsh environment during sterilization. We 
examined the prospect of using Raman spectroscopy for monitoring concentration 
changes during the pretreatment, hydrolysis, and fermentation processes. Scattering 
correction of the spectra by using an internal standard in the media was performed 
before quantification of concentrations. 
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2. Materials and Methods 

2.1. Avicel Hydrolysis and Fermentation 

A one liter suspension of 40 g/L Avicel® PH-101 (~50 µm particle size) 
microcrystalline cellulose, (Sigma-Aldrich, USA), 20 g/L proteose peptone, and 10 
g/L yeast extract, was adjusted to pH 5.5. This suspension was hydrolyzed by 
adding 10 mL (0.36 mL product/g cellulose) of Accelerase® 1500 (DuPont, USA) 
at 50 °C and 100 rpm for 48 hours in a 1.4 L Multifors bioreactor (Infors-HT, 
Switzerland). Subsequent to hydrolysis, the bioreactor with the suspension was 
sanitized at 95 °C for 30 min and kanamycin (50 mg/L) was added before 
inoculation with Saccharomyces cerevisiae dry yeast (3 g/L) for fuel ethanol 
(Thermosacc Dry, Lallemand Ethanol Technology A/S, Denmark). The initial 
fermentation was carried out at 35 °C and 100 rpm for 10 hours with sampling 
every hour. The fermentation was prolonged to 30 hours by adding 10 g of glucose 
at 6, 10 and 21 hours fermentation time. During hydrolysis and fermentation, real-
time monitoring of glucose and ethanol concentrations was carried out using Raman 
spectroscopy acquiring data points for every 15 min. 

2.2. Pretreatment hydrolysis and fermentation of sugarcane bagasse 

Sugarcane bagasse was from Lafourche Sugars, LLC, Thibodaux, LA, via Dr. 
Edward Richard from the USDA. Hammer milled (1 mm particle size) sugarcane 
bagasse was pretreated utilizing a low-temperature method with dilute sulfuric acid 
as catalyst. A 1 L suspension containing 10% w/v total solids of sugarcane bagasse 
and 0.4% w/v sulfuric acid was pretreated on a heated magnetic stir plate (RCT 
Basic, Ika®-Werke GmbH, Staufen, Germany) at 95 °C and 300 rpm for 48 hours in 
the 1.4 L Multifors bioreactor. Real-time Raman monitoring during pretreatment 
and Raman measurements were also performed on samples taken from the 
pretreatment three times a day. 

Subsequent to pretreatment, 3.5 g sodium hydroxide pellets and 5 M sodium 
hydroxide were added to the one liter suspension for final adjustment to pH 4.8. 
Protease peptone was added (10 g/L) and the suspension was sanitized at 90 °C for 
60 min before hydrolysis. The pretreatment was followed by hydrolysis in the 
Multifors bioreactor and was performed at 50 °C for 100 hours with 2 mL Cellic 
CTec2 (Novozymes A/S, Bagsvaerd, Denmark) added, corresponding to 10 mg 
protein/g cellulose. To limit the disturbance from light scattering particles during 
continuous Raman monitoring, the stirring speed was reduced to 100 rpm during 
hydrolysis, thereby continuously precipitating the non-solubilized particulates and 
increasing transparency in the top 5cm of the bioreactor. The hydrolysate was 
inoculated (3 g/L) with dry yeast and fermentation was conducted at 35 °C and 100 
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rpm for 7 hours with samples taken once every hour. The Raman spectra were 
acquired every 15 minutes from the top layer of the hydrolysate, an area free of 
most lignocellulosic particulates. 

2.3. HPLC Analysis 

A High Performance Liquid Chromatography instrument (HPLC) equipped with a 
refractive index (RI) detector was used to measure sample concentrations. The 
HPLC (Ultimate 3000, Dionex, CA, USA) was operated with an Aminex HPX-87H 
column (300 x 7.8 mm) combined with a Cation-H guard column (30 X 4.6 mm) 
from Bio-Rad Laboratories, CA, USA. Sample supernatants of 10 µL were run 
through the column isocratically for 26 min with a flow rate of 0.6 mL/min at 60 °C 
using 4 mM H2SO4 as eluent. Supernatants of 1 mL samples with 10 µL 1 M H2SO4 
were run on the HPLC and concentrations of separated sample component were 
determined using mixtures containing glucose, xylose, arabinose, glycerol, ethanol, 
acetic acid and lactate (concentrations of 0.5 to 20 g/L). 

 2.4. Raman Analysis and Quantification 

Spectroscopy analysis and monitoring was carried out with a ProRaman-I 
instrument (Enwave Optronics Inc.) equipped with a cooled charge-coupled device 
(CCD) detector operated at -60 °C and a deep red 785 nm laser providing a power 
output during measurement of 300 mW. Sample measurements or real-time 
monitoring was conducted with an immersion fiber optic probe (12 mm diameter) 
equipped with a ball sapphire lens designed to withstand harsh chemical and 
physical environments. The acquired spectra (250-2350 cm-1 coverage and 6 cm-1 
resolution) were processed with the EZRaman Reader ver. 8.2.2 spectra managing 
software. Calibration of the wavenumber axis scale was carried out using the solid 
calibrating sample provided by Enwave Optronics. The rate of stirring was kept 
high enough to avoid settling of biomass debris or yeast cells on the probe lens. 

The spectra were generally obtained from references, samples or in situ reactions by 
averaging 45 Raman spectral data sets, each acquired through 20 seconds of 
exposure. This resulted in acquisition of data points for every 15 min during the 
real-time measurements of hydrolysis and fermentation of both the Avicel and the 
sugarcane bagasse. Raman measurements of samples taken during the pretreatment 
of bagasse were, however, only obtained through 5 seconds of acquisitions in order 
to reduce the increased fluorescence background due to particulates and thereby 
maintaining the maximum peak signals below the saturation level of the detector. 
These samples were allowed to settle for a few minutes before measurement – 
thereby reducing most of the impact from the biomass debris. The samples taken 
during fermentation of bagasse hydrolysate were centrifuged at 5000 rpm for 60 
seconds before acquiring Raman from the particulate-free supernatants. This 
allowed for minimal fluorescence interference. The bioreactor and samples were 
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shielded during all measurements to avoid interfering signals from ambient light. 
All spectra were normalized by subtracting the fluorescence background through 
the application of a polynomial algorithm through the EZRaman software’s 
autobaseline 2 setting, except when displaying the impact of fluorescence (Fig. 2). 

Subsequent to normalization of spectra, quantification of individual components in 
the spectra was achieved by correlating Raman signals originating from single 
components in the sample mixtures to standard curves derived from normalized 
spectra. However, this method is without further processing of spectra only accurate 
for samples absent from light scattering particulates. Thus an initial scattering 
correction was applied when cells or biomass particles were present in samples or 
during real-time monitoring of hydrolysis or fermentation. Scattering correction 
was carried out using either the water peak at 1630 cm-1 or sulfate as internal 
standards – with the assumption that the concentration of these would be constant 
during biochemical conversions. The ratio between the attenuated signal and the 
unscattered Raman signal of the internal standard was used to estimate the 
extinction magnitude of all other Raman signals. After the scattering correction, 
concentrations of glucose and ethanol were predicted by standard linear regression 
in accordance to glucose and ethanol calibration curves prepared in the pretreated 
sugarcane bagasse. In summary, concentration quantification of samples and 
standards was conducted through the following steps: 

1. Normalization of spectra through the removal of the fluorescence 
background with auto-polynomial subtraction 

2. Estimation and correction of the attenuated Raman signals using the 
reduction of the normalized Raman signal of the internal standard as the 
common correction factor 

3. Baseline adjustment of the scattering corrected Raman values by 
subtracting intensity values corresponding to concentrations equivalent to 
zero 

4. Determination of concentrations through univariate linear regression of 
Raman intensities using only one independent variable 

 

No further preprocessing typically applied with NIR quantification methods such as 
Savitzky-Golay smoothening of the spectra or spectral derivative pretreatment was 
performed with the Raman data sets. Chemometric calibration techniques involving 
multivariate analysis using principal component analysis (PCA) or partial least 
squares (PLS) were also omitted. 
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3. Results and discussion 

3.1. Identification of important components in lignocellulosic material  

In order to use Raman spectroscopy to analyze and monitor the conversion of 
lignocellulosic material into biofuel, initial identification of the Raman signal 
profile of single components is necessary. Fig. 1 displays Raman spectra of 
solutions of some of the most important components present during pretreatment, 
hydrolysis and fermentation of lignocellulosic material, including glucose, xylose, 
ethanol, acetic acid and furfural as well as 

 
Fig. 1. Fluorescence subtracted Raman spectra in the fingerprint region of water and 10 g/L 
reference solutions of glucose, xylose, ethanol, acetic acid and furfural.  

water without solutes. Each of these components has some bands in their Raman 
spectra, not shared by the other molecules, thereby yielding nearly ideal distribution 
of Raman peaks in the spectra of biomass hydrolysate. However, xylose and 
glucose share most of their main Raman scattering wavenumber regions in the 
spectra except peak present at 530 cm-1 from xylose. Raman scattering from the 
sapphire crystal in the probe is responsible for the signals seen at 378, 416, 642 and 
749 cm-1 (Colomban and Havel, 2002). The most important and distinct bands of 
these molecules are listed in Table 1.  

Furfural stands out as having many peaks, some with the strongest Raman 
intensities among all peaks found in the reference spectra, more than 5 times higher 
than ethanol or acetic acid, and more than 10 times the intensities of the sugars at 
the same concentrations. This is because Raman scattering originating from the 
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vibrations of less polar and symmetric molecular bonds results in the strongest 
intensities. The carbon-carbon double bonds in furfural thus give particularly strong 
Raman signals (Stewart et al., 1995). Similarly, Raman signals originating from C-
C bonds in ethanol and acetic acid at 877 and 890 cm-1, respectively, also generate 
strong Raman bands compared to peaks emitted from the polar bonds in glucose or 
xylose. This demonstrates why Raman spectroscopy has some advantages 
compared to NIR in relation to analysis of biofuels and inhibitors, since detection 
and measurement of non-polar hydrocarbon chains is possible at relatively low 
concentrations using Raman. Linear correlation between the concentrations of 
molecules of interest for quantification and the Raman intensities of corresponding 
main Raman bands was demonstrated in standard curves (curves not shown). The 
standards curves were prepared in the supernatant derived from the pretreated 
sugarcane bagasse and the linear regressions of the compounds showing strong 
correlation (Table 1) were used for concentration determinations of Raman 
measurements. The coefficients are determined by the Raman cross-sections of the 
components.  

Table 1. Raman bands and intensities of important components in lignocellulosic 
hydrolysate* 

Component Wavenumber, cm-1	  

	  

Linear regression coefficient of the correlation 
between intensity and concentration, each from 10 
references samples 

Glucose 1124, 510	   	    I (c) = 4.2·c R2 = 0.9940 

Xylose 530, 1120, 897  	    

Ethanol 877, 1455, 1045	   	    I (c) = 21.8·c R2 = 0.9968 

Acetic acid 890	   	    I (c) = 18.4·c R2 = 0.9928 

Furfural 1371, 1476, 1663  	   	  

Water 1630  	   	  

* Band intensities derived from the average of 45 spectra, each with 20 second exposure 
time 

 
Comparisons of the raw spectra and the normalized spectra of samples with and 
without debris show how both the fluorescence and the Raman signal was affected 
by biomass particulates in the dark brown colored lignocellulosic hydrolysate (Fig. 
2). The overall intensities in the raw spectrum of a pretreated sugarcane bagasse 
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sample was more than 50 times higher when it contained lignocellulosic 
particulates as compared to the raw spectrum given when measuring the supernatant 
of the same sample (both spectra shown at the top of the figure). This difference in 
signal intensity is mainly due to fluorescence originating from the suspended 
particulates, which is revealed by the normalization process, whereby the 
fluorescence part is subtracted from both spectra. Prior to separation, the 
fluorescence constituted for more than 95% of the full signal in the raw spectra, 
which was reduced to about 50% by removing the biomass debris. After the 
subtraction of the fluorescence contribution to the raw spectra, the remaining 
Raman signal itself was also shown to be affected by particulates, with Raman 
signal reduction of almost 95%, due to light scattering and hence attenuation of 
signal (not shown). For this reason, initial attenuation correction of the normalized 
Raman signals was conducted before quantification of the concentrations of the 
compounds of interest. This was done by using peaks originating from compounds 
maintaining constant concentrations during reactions, such as water or sulfate. In 
order to avoid exceeding the saturation level of the CCD detector of 60,000 a.u., 
acquisition times were reduced from 20 seconds, most commonly used throughout 
this study, to 5 seconds, when measuring mixtures containing particulates.  

 
Fig. 2. Raman spectra of pretreated and hydrolyzed sugarcane bagasse from samples with 
biomass debris (grey, left y-axis) and the supernatant of the same sample without particles 
(black, right y-axis) with the raw spectra including the fluorescence contribution depicted at 
the top of the figure and the normalized spectra without the background fluorescence at the 
bottom. Raman spectra were derived from averages of 45 acquisitions, each with 4 seconds 
of exposure time.  
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The undesirable fluorescence background signal shown above to mainly be 
exhibited by the particulates is assumed in most part to be caused by lignin 
remaining in the solid biomass debris during pretreatment. Lignin with its complex 
phenolic heteropolymer structure exhibits strong auto-fluorescence in the visible 
and as well as IR regions compared to carbohydrates (Radotić et al., 2006). Only 
small amounts of soluble lignin were expected to be present in the hydrolysate after 
the pretreatment at low temperature below 100 °C, which is shown through the 
significant reduction in fluorescence after removal of the lignin-containing solids. 
At the higher temperatures above 150 °C used during more common pretreatment 
processes, more lignin is expected to be solubilized and present in the liquid 
fraction. More studies using lignin references are however needed to give a more 
comprehensive understanding of the full extend of the fluorescence background 
noise caused by lignin in regards to monitoring using Raman. As a consequence of 
the suspended solids causing higher fluorescence and attenuating scattering of 
Raman signal, real-time monitoring by Raman may nevertheless be improved by 
somehow continuously reducing the amount of disturbing biomass particulates 
during measurement.  

3.2. Avicel Hydrolysis and Fermentation 

Avicel, microcrystalline cellulose, was used as a model substrate for the monitoring 
and analysis of hydrolysis applying Raman spectroscopy (Fig. 3). The glucose 
concentration reached 22 g/L after the 50 hours of hydrolysis. Only modest changes 
were seen in the supernatant spectra of samples taken while the polymers were 
hydrolyzed to sugar monomers. Decreasing Raman intensity at 1095 cm-1 was the 
most apparent change (not shown). However, this was not apparent in spectra 
derived when the unseparated opaque mixtures were monitored real-time. The 
progress of the hydrolysis could be monitored to some degree, but quantity values 
could not be obtained. The few covalent bonds modified during hydrolysis of 
cellulose result in only minor spectral changes and the presence of particulates 
easily disturbs any spectral trends. Therefore, real-time measurement of a 
lignocellulosic hydrolysis reaction using Raman spectroscopy is expected to be 
difficult and inaccurate. Extensive use of multivariate spectral analysis combined 
with chemometrics may give some monitoring capabilities, but a low level of 
quantification inaccuracy is still expected to be difficult to overcome. In contrast, 
the subsequent Raman monitoring during fermentation of the hydrolysate revealed 
more promising results. The light-scattering particles that attenuated all Raman 
signals were corrected for by using the reduction of the water peak at 1630 cm-1 as 
correction factor for the other peak intensities. Ethanol concentrations determined 
by Raman correlated well with HPLC data upon scattering correction of spectra, as 
seen in Fig. 3. However, monitoring glucose at any of the corresponding 
wavenumbers was more difficult in the presence of particles and the estimated 
concentrations determined by Raman did not align well with HPLC data, in 
particular below 10 g/L. The prediction of glucose with its Raman peaks tending to 



MANUSCRIPT II 

85 

be partly overlapped by peaks originating from other compounds (Fig. 1) would 
likely benefit from applying multivariate analysis techniques. This is in contrast to 
the reasonable predictions of ethanol when applying only its distinct peak (877 cm-

1) in the univariate regression model. 

 
Fig. 3. Fermentation of the 10% Avicel hydrolysate by S. cerevisiae. Concentrations were 
monitored real-time applying scattering corrected and normalized Raman signals measured at 
877 cm-1 for ethanol (black) and at 1123 cm-1 for glucose (grey). The subsequent off-line 
supernatant HPLC measurements of are displayed as (■) for ethanol and (▲) for glucose. 
Fermentation time was extended by addition of 10 g glucose at 10 and 21 hours of 
fermentation, each time after sampling.  

 
3.3. Pretreatment of Sugarcane Bagasse 

During dilute acid pretreatment of lignocellulosic biomass, acetic acid and xylose 
are the main components released in the suspension as the hemicellulose is 
solubilized. Real-time pretreatment monitoring would be possible if the released 
xylose or acetic acid can be measured using Raman spectroscopy. After a 48-hour 
pretreatment of sugarcane bagasse, concentrations of xylose and acetic acid reached 
final concentrations of 15.4 g/L and 3.9 g/L respectively. Increasing Raman 
intensities from xylose at mainly 530 cm-1 or acetic acid at 890 cm-1 were thus 
anticipated. Fig. 4a shows some of the spectra of precipitated samples taken 
throughout the pretreatment and concentrations of acetic acid. Intensities of xylose 
at 530 cm-1 seemed to increase, but the increase from acetic acid at 890 cm-1 
seemed even more significant and consistent with the progress of the reaction. The 
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Raman signal observed at 980 cm-1 originated from sulfate present in the 
hydrolysate due to the addition of sulfuric acid. Sulfate was not involved in the 
pretreatment, hydrolysis or fermentation processes and the sulfate concentration and 
corresponding Raman intensity was thus assumed to remain constant throughout 
these processes. The Raman intensity from sulfate was only expected to change due 
to overall attenuation of Raman signals in the presence of light scattering particles, 
thereby allowing the Raman signal from sulfate to be used as an internal standard 
for general scattering correction of spectral values before quantification. Applying 
the distinct peak at 980 cm-1 originating from sulfate as internal standard is 
estimated to be more reliable instead of applying the broad water band at 1630 cm 
with possible interference from the furfural formed during pretreatment. This 
method of scattering correction cannot give as accurate quantification as obtainable 
when supernatants of samples exempt from all particulates is measured, but this 
form of in-line monitoring still gives valuable information about concentrations and 
the progress of the reaction.  

Following the scattering correction, the calculated acetic acid concentrations 
yielded values resembling the progress of HPLC data (Fig. 4b). A similar attempt to 
find spectral changes during the pretreatment to estimate concentrations of the 
released xylose or formed furfural was not successful. The high amount of 
particulate matter generated too much noise for exact quantification of xylose to be 
obtained from the unseparated samples. Improved monitoring of xylose release 
could have been achieved if supernatants of the samples were measured instead. 
Acetic acid concentrations may seem difficult to estimate accurately, Raman 
spectroscopy with a probe submerged directly into a pretreatment reaction would 
nevertheless be a useful tool to follow the progression of the pretreatment reaction 
in real-time. In contrast to hydrolysis or fermentation, the pretreatment reaction is a 
significantly more complicated degradation process, with alterations of numerous 
covalent bonds in more unpredictable ways; which implies many spectral changes 
during the reaction. These spectral changes were also seen in spectra of fully 
separated supernatants of the samples and cannot be contributed merely as noise 
from particulates. The presented monitoring results were made upon measurements 
carried out on pretreatment samples after being cooled down to room temperature 
and thus cannot be considered real-time monitoring at the actual pretreatment 
temperature. However, this first attempt to monitor the progress of pretreatment 
serves as a preliminary step to assess the potential application of Raman 
spectroscopy in more common pretreatment reactions at elevated temperatures. A 
typical pretreatment of lignocellulosic biomass taking place at 140 – 180 °C would 
require calibration to take place in similar temperature range, if a real-time 
monitoring setup with the immersion probe in the pretreatment reactor would be 
applied, since the intensity of Raman is temperature dependent (Pelletier, 2003). 
This is only possible if the immersion probe over time can prove capable to 
withstand the environment in the pretreatment system.  



MANUSCRIPT II 

87 

 
Fig. 4. Progress of the sugarcane bagasse pretreatment. a) Normalized and scattering 
corrected Raman spectra of unseparated samples taken during dilute acid pretreatment of 
sugarcane bagasse performed at 95 °C. Raman spectral data derived from acquisitions lasting 
5 seconds with 45 exposures for an average spectra. b) Acetic acid concentrations determined 
by HPLC (Δ) compared to the increasing Raman estimated values at 890 cm-1 (●).  

 

 3.4. Fermentation of Sugarcane Bagasse Hydrolysate 

In light of the Avicel hydrolysis results, in situ Raman measurement of the 
pretreated sugarcane bagasse hydrolysis was not attempted and focus was on the 
real-time monitoring of the fermentation after hydrolysis. The bioreactor was set up 
with a reduced stirring speed, low enough to precipitate particulates and hence limit 
the amount of light scattering particles in a ~5 cm top layer of the broth, but 
vigorous enough to keep yeast suspended. In this way, spectra with acceptable noise 
levels were obtained from the less opaque zone around the tip of the probe, 
allowing for real-time monitoring shown in Fig. 5a. In contrast, smoother and less 
attenuated spectra with less noise were obtained from the fermentation sample 
supernatants, where complete removal of all particulates had been achieved, as seen 
in Fig. 5b.  
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Fig. 5. Fluorescence corrected Raman spectra acquired from measurement of the 
fermentation of sugarcane hydrolysate with S. cerevisiae resulting in a decreasing of the 
glucose Raman signal at 1123 cm-1 and increasing ethanol values at 877 cm-1 in contrast to 
the unaffected peak of the internal standard at 980 cm-1 (sulfate). Spectra obtained by data 
acquisition for 20 seconds with 45 acquisitions for the average spectra. a) Real-time spectra 
from in-situ measurements made with the immersion probe in the top of the fermentation 
broth. Yeast cells kept suspended by stirring, while most of the biomass debris was allowed 
to precipitate to minimize attenuation of the scattered Raman signals. b) Off-line spectra of 
supernatant samples without any particulates.  
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Monitoring the fermentation real-time applying the spectral data without prior full 
separation to quantify ethanol and glucose concentrations yielded reasonable results 
as shown in Fig. 6. The curves obtained from directly monitoring the fermentation 
containing a limited amount of particles were nevertheless not as smooth as the 
Raman derived curves from sample supernatants (not shown). Raman estimated 
glucose concentration especially deviated from the glucose concentrations 
subsequently determined by HPLC measurements. In regard to external HPLC 
measurement, the root mean square error of prediction (RMSE) of glucose was 
calculated to be 1.62 g/L based on supernatants and 1.91 g/L when results were 
derived from scattering corrected in situ spectra, whereas the corresponding values 
for ethanol prediction was 1.06 g/L and 0.98 g/L respectively. However, inaccurate 
predictions of glucose may not have been fully expressed by the RMSE value, since 
fewer samples was taken at the end of fermentation where more fluctuating glucose 
estimations was seen. The consumption of acetic acid revealed by HPLC 
measurements from the short fermentation, however, was not significant enough to 
cause notable reduction of the related Raman band at 890 cm-1. Monitoring 
additional components such as some of the sugars released during pretreatment and 
hydrolysis: cellobiose, xylose, arabinose, mannose, or lactic acid in case of bacterial 
contamination, as well as inhibiting furfural, would also be valuable information 
during fermentation. The removal of all scattering particles would likely be even 
more inevitable to be able to quantify these constituents, present only at low 
concentrations.  

 
Fig. 6. Concentrations obtained during fermentation by S. cerevisiae of the sugarcane 
bagasse hydrolysate. Prior scattering correction performed using sulfate from the sulfuric 
acid catalyst as internal standard. 
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3.5. Separation 

Based on these results, Raman is assessed useful for real-time in situ monitoring of 
lignocellulosic bioethanol fermentation processes as long as the inaccuracy caused 
by particulate matter can be limited. This can be accomplished by creating a zone at 
the probe with less light-scattering particulates through simple precipitation or by 
utilizing an integrated method inside to the reactor to reduce particulates 
continuously through centrifugation or filtration considering the risk of fouling. 
Precipitation removed most of the suspended particulates and thus scattering during 
measurement, but even better accuracies could most likely have been achieved 
using continuous separation technique in an ex situ monitoring mode such as in-line 
spin filter in a by-pass loop.  

3.6. Quantitative model 

The simple quantification method used in this study can easily be implemented. 
However, in order to improve accuracy of quantifications and thoroughly assess the 
potential and limitations utilizing Raman in this context, more extensive analysis of 
each process and development of the method is recommended. In regards to model 
validity, the same correction factor was used to perform scattering correction of the 
attenuated Raman signals at all applied wavenumbers, assuming the scale of signal 
reduction caused by particulates was the same for all Raman bands as for the 
Raman signal originating from the internal standard. However, a more accurate but 
complex model may be developed upon considering the magnitude of scattering 
hence attenuation is not necessarily constant at the various wavenumbers and each 
correction of wavenumber used would thus be determined separately. Future 
investigations could include extending this univariate model to include multiple 
variables and incorporate chemometric methods such as Principal Component 
Analysis (PCA) and with calibration and validation test reactions using numerous 
samples, as is commonly done with NIR spectroscopy. A multivariate model could 
be used where concentration accuracy is most important, whereas the univariate 
approach could make more sense, where model flexibility and fast process feedback 
is more important than obtaining exact concentrations.  

The overall advantage of using Raman compared to NIR is the ease of retrieving 
useful information about process trends by using fewer and less complicated 
preprocessing steps as a result of the more distinguishable Raman peaks. Adapting 
Raman spectroscopy to monitor a new process may be faster, since typical 
chemometrics involving preliminary time-consuming setup and tests of large 
calibration and validation sets may not be strictly necessary. Multivariate analysis 
can be avoided if single Raman bands can be found in the spectra of the process 
mixtures as the only independent variable to estimate concentrations. As a 
consequence of applying a model exempt of a statistically complicated ‘black box’, 
fewer skills are required by professionals in order to understand a simpler 
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quantification method and to be able to rapidly assess the possibility of using 
Raman spectroscopy for real-time monitoring of an untested process and ultimately 
replacing off-line methods such as HPLC would be desirable. Such convenience 
and flexibility can prove valuable despite limitations to accuracy likely to occur 
from applying only simple univariate linear regression compared to NIR in 
combination with chemometrics. Conversely, Raman instruments tend to be more 
expensive than NIR spectrometers due the cost of light sources (Bakeev, 2005). 
Considerable research has been done using diffuse reflectance or other NIR 
techniques to estimate biomass composition and thereby the ethanol potential of 
various lignocellulosic feed stocks (Xu et al., 2013; Cervera et al., 2009). However, 
the various infrared absorption spectroscopy methods have only to a limited extend 
proven applicable as analytical tool to monitor the pretreatment, hydrolysis or 
fermentation processes utilizing lignocellulosic feedstock, despite numerous 
publications about monitoring ethanol fermentations applying these techniques 
(Lantz et al., 2010). 

Our RMSE result were almost twice as high as compared to the root mean square 
error of cross-validation (RMSECV) results of 0.60 g/L for ethanol and 1.06 g/L for 
glucose from a similar attempt to monitor of concentrations during fermentation of 
separated lignocellulosic hydrolysate, where a more complicated chemometric 
model involving principal component analysis was applied (Ewanick et al., 2013). 
A more simple quantification model may however prove to be a powerful tool to 
monitor process progress, despite a higher limit of detection, where ease of use is 
more important than accuracy. 

 
4. Conclusion 

This study demonstrated the potential of using Raman spectroscopy to monitor the 
pretreatment, hydrolysis and fermentation process steps employed in the production 
of lignocellulosic bioethanol. Removal of most particulates through a simple 
continuous separation method enabled Raman to be used as an effective analysis 
tool for real-time quantification during fermentation - even without using 
complicated calibration methods involving chemometrics. However, analysis of the 
pretreatment process – monitored through the release of acetic acid – indicated 
possibilities, but seemed more difficult to carry out in real-time, while of the 
hydrolysis process was unsuccessfully monitored due to minimal spectral changes.  
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Abstract Sugarcane bagasse (SCB), Eucalyptus wood (EW) and empty fruit 
bunches (EFB) from palm oil production are three abundant lignocellulosic raw 
materials from tropical regions with major potential as renewable feedstock for the 
production of lignocellulosic ethanol. To examine this potential we pretreated each 
biomass material at 10 % w/v TS, enzymatically hydrolyzed the pretreated material 
and further did fermentation of the hydrolysates using Saccharomyces cerevisiae 
and the pentose fermenting yeasts Scheffersomyces (aka Pichia) stipitis and the 
ascomyceteous yeast Spathaspora passalidarum. The highest xylose consumption 
rate was observed with S. passalidarum, but the final ethanol yield was similar for 
both the pentose fermenting yeasts. The previous reported ability of S. 
passalidarum to use cellobiose, glucose and xylose simultaneous or to ferment 
under anaerobic conditions was not observed during our fermentations in pretreated 
lignocellulosic hydrolysate. S. passalidarum was further found to be somewhat 
inhibited by the high level of acetic acid of more than 6 g/L in the EFB hydrolysate, 
resulting in a long lag phase. However, the final ethanol concentration of 20.6 g/l in 
the EFB hydrolysate with the highest amount of total sugars was the highest 
achieved with the organism. S. passalidarum was however not able to overcome the 
inhibitory effect of acetic acid fermenting in the same hydrolysate under fully 
anaerobic condition, despite the ability to ferment xylose anaerobically. 

 

Keywords Xylose fermentation · Scheffersomyces stipitis CBS 6054 · Spathaspora 
passalidarum · Eucalyptus · sugar cane bagasse · oil palm empty fruit bunch fiber 
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Introduction 

Waste materials from corn or grain production in Europe and USA have drawn 
much attention as possible raw materials for 2nd generation bioethanol production. 
However, important lignocellulosic biomasses found in developing countries also 
have tremendous potential as raw materials due to availability and low cost. Sugar 
cane bagasse residue from the 1st generation bioethanol industry based on sugar, 
empty fruit bunches from the palm oil industry and Eucalyptus tree fibers linked to 
paper production are some promising lignocellulosic biomasses in the tropical or 
subtropical world present in abundant amounts and assumed to be ideal for low cost 
cultivation on a vast scale (Cardona et al. 2010; McIntosh et al. 2012; Sumathi et al. 
2008; Yang et al. 2011). 

Eucalyptus 

Eucalyptus trees are used globally for production paper and energy production as 
they are among the world fastest growing trees and are cultivated throughout the 
tropics and subtropics. Almost 20 Mio ha are used to cultivate Eucalyptus 
worldwide in countries such as Argentina, Australia, Brazil, China, India, South 
Africa, Uruguay and Vietnam. Eucalyptus has a very effective transpiration making 
it very drought resistant and the average annual growth rates of wood volume can 
reach 70 m3 per ha per year. Harvesting the trees can happens little as every six 
years, making cultivation easy and reducing the environmental impact created by 
disturbances at harvest and planting (Forrester et al. 2010).  

Sugar cane bagasse 

Sugarcane is a perennial grass cultivated in tropical or temperate climates, mainly 
for the production of sugar. Sugar cane bagasse (SCB) is the fibrous residue of the 
sugar cane plant after the juice is extracted. Mainly cultivated in Brazil on about 10 
% of the agricultural area, the total annual sugar cane bagasse production in the 
country is 182 Mt/y and the average sugarcane productivity has reached 6500 
ton/km2. In general, 280 kg of wet bagasse is generated from each ton of sugar cane 
(Cardona et al. 2010). Sugarcane production in Brazil is known for relatively low 
soil erosion and some areas have been producing sugar cane for more than 200 
years with increasing yields (Goldemberg et al. 2008). Some of the excess bagasse 
is currently burned at the sugar mill to meet the energy needs, but the remaining 
fraction could be made available for fuel and chemical production.  
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Oil palm empty fruit bunch fiber 

Palm oil is used for food vegetable oil, soaps and biodiesel production. Originating 
in the tropical parts of West Africa, oil palm (Elaeis guineensis) is most intensively 
cultivated in areas with high precipitation and more than 90 % is produces in 
Indonesia and Malaysia. Oil yields per hectare are five to ten times higher than what 
is obtained by growing rapeseed or soybean (Sumathi et al. 2008). In 2011-2012, 
the World supply of palm oil was 50.6 million tons increasing by almost 25 % over 
the last four years (USDA 2012). Empty fruit bunches (EFB) is the main oil palm 
lignocellulosic residues generated after the oil fruits are removed from the 
harvested fruit bunches. About fifteen million tons of EFB is annually generated in 
Malaysia alone (Rahman et al. 2007). Mesocarp fiber is the waste residue from 
extracting the palm oil from the palm fruit itself. The kernel of the fruit also 
contains oil and extracting palm kernel oil produces the palm kernel press cake 
(PKC) in smaller amounts and the kernel shells. Trunks and fronds of the palm tree 
itself are further fibrous materials besides EFB, PKC, mesocarp fibers and kernel 
shells, which currently are mostly burned at the oil mills (Yano et al. 2009). The 
PKC contains 50 % fermentable hexose sugars, which have successfully been 
hydrolyzed and fermented with S. cerevisiae without any pretreatment resulting in a 
yield of 200 g ethanol per kg PKC (Jørgensen et al. 2010). The lignocellulosic 
waste products, EFB, mesocarp fiber, trunks and fronds also represent a major 
resource for ethanol production.  

Lignocellulosic ethanol 

In contrast to starch or sugar based fermentation, lignocellulosic biomass in general 
needs severe pretreatment before enzymatic hydrolysis and fermentation in order to 
release the sugars for fermentation (Mosier et al. 2005). Lignocellulosic ethanol 
production is also challenged by a wide range of compounds formed during 
pretreatment of biomass that may inhibit fermentation. Among inhibitors found in 
hydrolysate are aliphatic acids such as acetic, formic and levulinic acids, aromatic 
phenolics and the furaldehydes 5-hydroxymethylfurfural (HMF) and furfural. 
Acetic acid and furfural are considered to be the major inhibitors in pretreated 
biomass, which a lignocellulosic fermentation process should be able to deal with 
(Bellido et al. 2011; Klinke et al. 2004). Currently, most bioethanol production 
concepts successfully tested in demonstration plants and heading for 
commercialization use S. cerevisiae due to the ability to control fermentation in 
large scale and to avoid microbial contamination in the fermentation process. 
However, integrated xylose fermentation processes needs yet to prove fully ready 
for production scale. S. cerevisiae is an excellent ethanol producer when it comes to 
using glucose from starch, but cannot grow on xylose, the main component in 
hemicellulose. A limited number of bacteria, yeasts and fungi are able through 
fermentation to convert the pentose sugars from the hemicellulose fraction to 
ethanol (Kumar et al. 2009).  
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Xylose fermenting yeasts 

To overcome this hurdle many research projects have focused on creating strains 
that can convert all carbohydrates in lignocellulosic biomass into ethanol. A number 
of yeast species are capable of fermenting both pentose and hexose carbohydrates 
into ethanol. However, ethanol tolerance or yields are low or xylose uptake will 
stop under strict anaerobic conditions. Fermentation under microaerophilic 
condition is hence required to maintain redox balance (Skoog and Hahn-Hägerdal 
1990). Amongst xylose fermenting yeast are Candida shehateae, Scheffersomyces 
stipitis (previously known as Pichia stipitis), Kluyveromyces marxianus (Hahn-
Hägerdal et al. 2007). So far, S. stipitis strains have been considered to be among 
the best xylose fermenting yeasts. Generally, this robust yeast is capable of using 
several different monomeric sugars, cellobiose and even to hydrolyze xylan (du 
Preez et al. 1986; Lee et al. 1986). Recently, the yeast Spathaspora passalidarum 
isolated from the midgut of passalid bettle was shown able to coferment cellobiose, 
xylose and glucose efficiently with a remarkable fast utilization of xylose (Long et 
al. 2012; Nguyen et al. 2006). Furthermore, S. passalidarum can ferment xylose to 
ethanol under anaerobic conditions - an unusual property among pentose fermenting 
yeasts (Hou 2012).  

 The objective of this work was to investigate the use of the selected 
important biomasses: sugar cane bagasse, Eucalyptus tree fiber and empty fruit 
bunches from palm oil production found in the tropics as substrate for 
lignocellulosic bioethanol production using S. stipitis and S. passalidarum. For 
better assessment, fermentations by S. stipitis and S. passalidarum were to some 
extend compared with fermentation by an industrial strain of S. cerevisiae. All 
fermentations were carried out without costly process steps such as; detoxification, 
use of any pH buffers or separation of hydrolysates in fractions. This overall simple 
process approach - suitable for industrial scale - was used to simulate the 
performance of the yeast strains under microaerobic conditions and in viscous 
lignocellulosic hydrolysates containing inhibitors. 

 

Materials and Methods 

Raw material 

The empty fruit bunch fiber from palm oil plant (Elaeis guineensis) was acquired 
from United Plantations BHD in Malaysia, and the Eucalyptus wood (Eucalyptus 
globulus) was collected from Burleigh Murray Ranch State Park, San Francisco, 
CA. WSU Tri-Cities obtained the sugar cane bagasse (Saccharum officinarum L.) 
from Lafourche Sugars, LLC, Thibodaux, LA, via Dr. Edward Richard from the 
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USDA. All biomasses were hammer milled to a particle size of 1 mm with a MF 10 
basic Microfine grinder from Ika®-Werke GmbH, Staufen, Germany.  

Composition analysis 

The amount of structural carbohydrates and lignin in the three biomasses were 
determined according to the NREL laboratory analytical procedure for standard 
biomass analysis (Sluiter et al. 2008). The method is based on a two-step hydrolysis 
at 30 °C in strong sulfuric acid followed by dilution and hydrolysis at 121 °C. 

Pretreatment and hydrolysis 

A low temperature dilute acid pretreatment method was used for all three 
biomasses. Suspensions of 625 mL with 10 % w/v total solids and 0.5 % w/v 
sulfuric acid in 2 L tightly closed blue cap flasks were prepared for each biomass 
and pretreated in an incubator at 95 °C for 45-82 hours with samples taken twice a 
day. Prior to hydrolysis, the three pretreated biomasses were neutralized to pH 4.8 
adding 1M sodium hydroxide, but mostly sodium hydroxide pellets were used to 
avoid dilution. Hydrolysis were performed with Cellic CTec2 (210 mg protein/mL) 
from Novozymes A/S, Bagsvaerd, Denmark at 50 °C at 120 rpm for 72 hours. 

Microorganisms and fermentations 

Inocula of an industrial strain of Saccharomyces cerevisiae intended for fuel 
ethanol (Thermosacc Dry, Lallemand Ethanol Technology A/S, Denmark), 
Scheffersomyces (Pichia) stipitis CBS 6054 (ATCC 58785) and Spathaspora 
passalidarum; 11-Y1 (ATCC MYA-4345) were propagated in autoclaved 100 mL 
YPX (pentose-fermenting yeasts) or YPD (S. cerevisiae) medium with 20 g/L yeast 
extract, 20 g/L protease peptone, 10 g/L xylose or glucose. The inoculum cultures 
were grown in a 250 ml baffled Erlenmeyer fitted with cotton plugs flasks at 32 °C 
and 160 rpm for 60 hours or 27 hours for S. cerevisiae inoculum. The harvested 
centrifuged cell pellets were washed and resuspended to viscous and concentrated 
inocula. Cotton plugs were fitted flasks for the aerated cultures, whereas flasks with 
anaerobic cultures were equipped with a swan neck containing paraffin oil. Baffled 
50 mL Erlenmeyer flask were added 30 mL unseparated hydrolysates and sanitized 
by heating to 100 °C for 30 min (to avoid autoclaving and furfural formation) 
before adding filter sterilized protease-peptone media stock to produce media 
containing 0.7 % w/v protease peptone and 0.3 % w/v urea. Media was inoculated 
to initiate fermentations with targeting 1.0 g/L yeast. An optical density of 1.0 
measured at 600 nm of was assumed to correspond to a cell inoculum of 0.15 g/L. 
The cultures were grown at 35 °C and 140 rpm, whereas the aerated cultures with 
reduced oxygen transfer were cultivated at 100 rpm. All fermentations were 
performed in duplicates and samples were taken in a clean bench. 
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HPLC Analysis 

High Performance Liquid Chromatography (HPLC) was used to determine sample 
concentrations (Ultimate 3000, Dionex, CA, USA) using a refractive index (RI) 
detection module. The instrument was equipped with an Aminex HPX-87H column 
(300 X 7.8 mm) and a Cation-H guard column (30 x 4.6 mm), both Bio-Rad 
Laboratories, CA, USA. Applying 10 µL of sample supernatant, the components 
were separated isocratically at a flow rate of 0.6 mL/min at 60 °C for 26 min with 
4mM H2SO4 as eluent. Mixtures containing glucose, xylose, arabinose, glycerol, 
ethanol, acetic acid and lactate were used as standards (concentrations of 0.5 to 20 
g/L), as well as xylitol, furfural and HMF at a lower concentration range. 10 µL 1M 
H2SO4 was added to the 1 mL samples before measuring the supernatants with the 
HPLC. In order to measure other sugars such as galactose and to confirm results 
from the composition analysis, some samples were also separated through an 
Aminex HPX-87P column (300 X 7.8 mm) with a Micro-Guard Carbo-P column 
(30 x 4.6 mm) at pH 5-9, 83 °C and 0.6 mL/min, using MiliQ water as eluent on the 
Ultima.  

 

Results 

Pretreatment and hydrolysis 

Table 1 shows the results of structural composition analysis of the three biomasses. 
SCB has the highest cellulose content, but the lowest lignin and ash content, 
whereas the highest ash and lignin along with the lowest cellulose and 
hemicellulose content was found in Eucalyptus tree fiber. Almost all lignin was 
present as the acid insoluble filtrate and the UV-determined acid soluble lignin was 
only detectable in insignificant low amounts.  

 

The progress of the low temperature pretreatments of the three used biomasses is 
shown in Fig. 1. The simple slow low temperature pretreatment is basically able to 

Table 1 Biomass composition (% w/w of DM). Values are given as 
duplicates with standard deviations (±). 

 Cellulose Hemi-
cellulose 

Lignin Ash 
EFB 33.87±2.21 33.51±0.68 17.65±1.10 3.04±0.05 
SCB 35.40±0.84 31.23±0.61 19.90±0.70 5.99±0.44 
Eucalyptus 27.57±0.06 19.40±0.28 20.41±2.13 9.58±0.94 
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solubilize all the available xylose. After 45 hours of pretreatment of sugar cane 
bagasse and empty fruit bunches, most of the xylose had been released from the 
hemicellulose and the reactions were stopped. Pretreatment of Eucalyptus seemed 
more difficult and to achieve near complete release of xylose, the reaction was 
continued for a total reaction time of 84 hours. The concentration of xylose in the 
Eucalyptus hydrolysate was almost half of the amounts found in the EFB and SCB 
hydrolysates, however, at levels corresponding to the results given by the 
composition analysis (Table 2).  

 
Fig. 1 Pretreatments of the respective biomasses in 0.5% sulfuric acid at 95°C, 10% w/w TS. 
a) Empty fruit bunches, b) Sugar cane bagasse c) Eucalyptus tree fiber 
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Release of acetic acid was considerably higher from EFB than from the other two 
materials, as shown in Table 2. The table lists the amounts of sugar obtained after 
pretreatment and enzymatic hydrolysis against the results of the analysis of the 
composition of the individual carbohydrates and acetic acid according to the NREL 
method. The enzymatic hydrolysis of hemicellulose ensured the complete release of 
the small amounts of xylose left in the biomasses after pretreatment. However, the 
hydrolysis of the more recalcitrant cellulose fibers was not fully achieved, with 24 
%, 30 % and 46 % glucose left in the EFB, Eucalyptus and SCB hydrolysates 
respectively. SCB also had the lowest share of its acetate released from the 
lignocellulosic structure. A better cellulose hydrolysis may likely have been 
accomplished applying a more severe pretreatment method at a higher temperature 
and pressure, in order to break apart more of the lignin. Estimations of the potential 
ethanol yield of each of the three biomasses could also have been made if a more 
optimal pretreatment with higher sugar release at conditions more likely to be used 
in an industrial process had been applied.  

 
 
Microaerobic fermentations 

The results of fermentation of SCB, EFB and Eucalyptus tree fiber hydrolysates by 
S. stipitis and S. passalidarum illustrated in Fig. 2 are all avarage of two parallel 
samples. Fermentation by S. cerevisiae showed full use of fermentable sugars to 
ethanol within 9 hours (data not shown). Glucose was generally consumed within 
40 hours of fermentation by the pentose fermenting yeasts, except the fermentation 
of EFB hydrolysate by S. passalidarum, which lasted for 93 hours (Fig. 2f). Both 
pentose fermenting yeasts exhibited a strong glucose preference and xylose 
concentrations changed very little until no glucose was left. Hereafter, the 
consumption of xylose increased, but with some exceptions at significantly lower 

Table 2 Monomer composition of biomasses and released hereof (% w/w of DM) 

 EFB  SCB Eucalyptus 

 Composition Hydrolysis Composition Hydrolysis Composition Hydrolysis 

Glucose 37.6 28.7 39.3 21.2 30.6 21.4 

Galactose 1.7 1.0 2.0 1.2 2.2 1.8 

Xylose 23.5 22.9 21.8 20.9 12.5 13.4 

Arabinose 1.3 1.4 2.0 2.4 1.2 1.6 

Acetic acid 7.2 6.3 5.8 3.9 5.1 3.8 
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rates than the corresponding metabolisms rates for glucose. Overall, S. 
passalidarum seemed to utilize the remaining pentose sugars after depletion of 
glucose more rapidly than S. stipitis. Ethanol production predominantly occurred 
during glucose metabolism, with only little or no additional increase in ethanol 
concentrations during pentose uptake and in many cultures reassimilation of ethanol 
started before complete consumption of xylose. Almost no consumption of 
arabinose was seen (not shown) and about half of the initially low amounts of 
arabinose of 1.5 to 2.5 g/L was left at the end of most fermentations. S. stipitis can 
produce cell biomass, but ethanol from arabinose (Agbogbo and Coward-Kelly 
2008). The initial cellobiose levels of 1.5 to 2.0 g/L in the Eucalyptus and SCB 
hydrolysates were generally consumed later than xylose. Assimilation of xylose 
resulted in formation of xylitol to final concentrations in the range of 1.1 to 3.6 g/L 
proportional to initial xylose level. Generally, xylitol formation was 30 % higher in 
the cultures with S. stipitis than S. passalidarum growing in the same substrates 
with the final yields of 0.10 - 0.11 and 0.07 - 0.08 gram xylitol per gram xylose 
consumed respectively. However, significantly more xylitol was produced in EFB 
hydrolysate cultures, which however was not remarkably higher in proportion to 
ethanol formation. Xylitol did not seem to be reassimilated in any of the cultures 
despite the continued supply of oxygen. The relative high temperature of 35°C may 
just be within the range where S. stipitis is known to have optimal biomass and 
ethanol productivities, but less accumulation of residual xylitol and xylose occurs at 
lower temperatures (Slininger et al. 1990). Therefore, better ethanol yields might 
have been obtained if fermentation would have been carried out at temperatures 
below 30°C.  
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Fig. 2 Fermentation of hydrolysates of a) sugarcane bagasse by S. stipitis, b) sugarcane 
bagasse by S. passalidarum, c) Eucalyptus tree fiber by S. stipitis, d) Eucalyptus tree fiber by 
S. passalidarum, e) palm oil empty fruit bunches by S. stipitis, f) palm oil empty fruit 
bunches by S. passalidarum. Duplicate fermentations were conducted in shake flasks at 35 
°C and 140 rpm. Left vertical axis: glucose, xylose and ethanol; Right vertical axis: acetic 
acid and xylitol  

 
In all hydrolysates, the yeasts assimilated acetic acid and the concentrations were 
reduced by 3-4 g/L throughout the fermentations. The high acetic acid 
concentrations above 6 g/L in EFB hydrolysates were not enough to inhibit 
fermentations completely. However, initial delay in acetic acid and pentose 
consumption occurred in all fermentations with EFB except when cultivated with S. 
cerevisiae. The higher acetic acid content in EFB hydrolysate seemed only to delay 
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the sugar uptake in S. passalidarum until much of the acetic acid had been 
assimilated, but not the rate of xylose consumption (Fig. 2f), unless other unknown 
inhibitors had an inhibition impact. The rate of acetic acid and xylose uptake by S. 
passalidarum in SCB (Fig. 2b) exhibited some varience, but deviations were not 
enough to change the overall picture. As a consequence of acetic acid assimilation, 
pH increased from about 5.0 to 7.5 throughout the course of the fermentations (Fig. 
3). In general, minor change was observed for the first 40 hours and the most rapid 
acetic acid consumption and pH increase was seen in the S. passalidarum 
fermentation of Eucalyptus hydrolysate. Initial concentrations of furfural was 0.17 
g/L, 0.29 g/L and 0.29 g/L for Eucalyptus, SCB and EFB hydrolysate respectivly, 
while HMF was barely detectable. Amounts were not measured continuesly, but a 
final measurement revealed complete degradation of furfural and HMF as well as 
full consumption of galactose during the fermentations with the pentose fermenting 
yeasts.  

 

 
Fig. 3 Effect of acetic acid consumption on pH during fermentation of hydrolysates  

 
Ethanol concentrations and yields are displayed in Table 3. S. cerevisiae showed a 
fast consumption of glucose (less than 9 hours), compared to 40 hours or more for 
glucose alone and at least 50 hours for fermentation of glucose and xylose by S. 
passalidarum or S. stipitis. Fermentations by S. passalidarum generally gave higher 
maximum ethanol concentrations than S. stipitis, whereas the highest ethanol yield 
at the point of maximum ethanol concentration was obtained with S. stipitis in EFB 
(0.42 g/g). Further micro aerobic fermentations of the hydrolysate by both S. stipitis 
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and S. passalidarum were conducted at a lower stirring rate to test if the 
reassimilation of ethanol, following glucose depletion, could be reduced by 
decreasing the oxygen transfer rate. Reducing the stirring rate during fermentations 
from initially 140 rpm to 100 rpm had no effect on the consumption of ethanol 
during pentose consumption (data not shown). The only changes of the 
fermentation results were that the rates of sugar and acetic acid metabolism was 
decreased, without affecting the order of substrate uptake.  

 

 
 

Table 3 Summary of fermentations carried out in shake incubator at 140 rpm at 35°C. 
Values are given as duplicates with standard deviations (±). 

 Maximum ethanol Ethanol yielda Fermentation timeb 

 (g/L) (g ethanol/g sugar 
consumed) 

(h) 

Eucalyptus    

 S. stipitis 9.7±0.31 0.29±0.01 69 

 S. passalidarum 12.9±0.12 0.35±0.01 57 

 S. cerevisiae 8.4±0.24 0.41±0.01 < 9 

     

EFB    

 S. stipitis 14.9±0.26 0.41±0.02 45 

 S. passalidarum 20.6±0.13 0.36±0.00 105 

 S. cerevisiae 12.2±0.01 0.36±0.00 < 9 

     

SCB    

 S. stipitis 11.7±0.50 0.25±0.02 93 

 S. passalidarum 12.5±0.88 0.30±0.03 69 

 S. cerevisiae 8.7±0.02 0.35±0.00 < 9 

a Glucose was the only sugar accounted for to determine ethanol yield of fermentations by 
S. cerevisiae 
b Fermentation time for consumption of glucose and xylose, but glucose only with S. 
cerevisiae 
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Anaerobic fermentations and glucose metabolism 

In addition to the micro aerobic fermentations, EFB hydrolysates were further 
fermented under anaerobic conditions fermented by S. passalidarum and for 
comparison, S. cerevisiae (data not shown). The results of S. cerevisiae yeast 
showed complete consumption of glucose within 12 hours before assimilation of 
acetic acid during the fermentation. In contrast, no metabolism of pentoses, acetic 
acid or even glucose was observed in the hydrolysates cultivated with the S. 
passalidarum, indicating the need for oxygen to be present for this yeast to 
overcome inhibition before being able to metabolize the sugars and produce 
ethanol.  

Discussion 

Generally we found that all the microaerobic fermentations of hydrolysates with 
both of the xylose fermenting yeasts showed sequential utilization of glucose before 
consumption of pentoses, and with slower pentoses utilization rates than the 
corresponding glucose utilization rates. The efficiency of xylose metabolism is 
determined by the combined effect of sugar transport mechanisms, enzyme 
activities during sugar metabolism, and redox balance. First step in xylose 
metabolism is the conversion of xylose to xylitol by xylose reductase utilizing 
NADH or NADPH as cofactors. Xylitol is oxidized to xylulose by NAD+ cofactor 
specific xylitol dehydrogenase (XDH) before entering the non-oxidative pentose 
phosphate pathway (Skoog and Hahn-Hägerdal 1990). The redox balance of this 
XR/XDR- pathway in yeasts would be stabile as long as all NAD+ needed for XDH 
would continuously be regenerate by XR. However, as a consequence of XR 
preference for NADPH over NADH in S. stipitis, NADH thus accumulates during 
anaerobic conditions - resulting in formation of xylitol being favored over xylulose. 
In contrast, S. passalidarum also utilized the same cofactors, but the preference of 
XR for NADH instead of NADPH enables sufficient regeneration of NAD+ without 
the need for oxygen. During xylose metabolism, S. passalidarum exhibit a more 
desirable redox balance compared to S. stipitis. S. passalidarum is able to ferment 
xylose to ethanol anaerobically in YPD media, which is explained by the better 
cofactor balance (Hou 2012). Generally, xylitol formation was 30 % higher in 
hydrolysates with S. stipitis compared to S. passalidarum due to cofactor 
differences in the XR/XDH pathway.   

 Xylose transport is based on the ATP driven proton xylose 
symports in S. stipitis. Glucose inhibits xylose consumption, since this transport 
mechanism also mediates the transport of glucose. Other yeasts can also transport 
xylose by facilited diffusion with concentration gradients as only driving force 
without using ATP in the process (Kilian and Uden 1988; Webb and Lee 1990). 
Hou demonstrated how the repression of xylose transport by glucose in S. 
passalidarum is much stronger under anaerobic conditions, suggesting the two 
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different transport systems responsible for xylose uptake, resulting in simultaneous 
consumption of glucose and xylose during aerobic growth and sequential sugar 
assimilation under anaerobic conditions (Hou 2012). Long et al. also reported how 
S. passalidarum is capable of utilizing cellobiose, glucose and xylose 
similtanouosly at similar rates under fully aerobic or oxygen limited conditions and 
the ability to ferment xylose faster than glucose during single sugar cultivations. 
However, this unprecedented finding was achived with defined minimal media. In 
the presence of acetic acid in corn stover hydrolysate, fermentation of xylose was 
delayed until the depletion of both glucose and acetic acid (Long et al. 2012). 
Similarly in our study, only minor difference in sugar uptake during microaerobic 
fermentation of biomass hydrolysate was observed between S. stipitis and S. 
passalidarum and anaerobic metabolism did not occur during fermentation of EFB 
hydrolysate by S. passalidarum. These results might be due to the presence of 
acetic acid.  

 Acetic acid inhibits both cellular growth and ethanol production 
during fermentation with S. stipitis and xylose consumption has been shown to be 
more affected than glucose consumption by the presence of acetic acid (Bellido et 
al. 2011). Nigam reported how a S. stipitis fermentation in synthetic media with a 
constant pH of 5.0 was inhibited by an increase in acetic acid concentration from 1 
to 9.5 g/L resulting in reduced productivity and yield by 97 % and 82 %, 
respectively (Nigam 2001). The inhibitory effect of acetic acid is shown to be more 
severe at lower pH, where the undissociated uncharged form of acetic acid is 
membrane permeable. In order to avoid a decrease in the intracellular pH arising 
from the acetic acid protons must be pumped out of the cell by plasma membrane 
ATPase at the cost of ATP and cell growth (Casey et al. 2010). Acetic acid enters 
the Krebs cycle and undergoes respiration in the presence of oxygen in order to be 
metabolized (Duggan 1964). In the absence of oxygen, acetic acid is not assimilated 
by S. stipitis (Van Zyl et al. 1988). The rate of ATP generation from sugar 
catabolism must counter the ATP requirement for eliminating the toxic effects of 
acetic acid. Acetic acid may have a more severe impact on xylose metabolism, 
since ATP generation from xylose utilization is lower than during glucose 
fermentation (Bellissimi et al. 2009). Low content of sugar relative to acetic acid in 
the hydrolysate can thus explain unsuccessful anaerobic fermentation with S. 
passalidarum in EFB hydrolysate. The same hydrolysate did, however, show no 
inhibition of the S. cerevisiae cultures, since S. cerevisiae possesses higher 
tolerance towards acetic acid than a number of xylose fermenting yeasts (Limtong 
et al. 2000; Palmqvist et al. 2000). Considering the increasing toxicity of acetic acid 
with decreasing culture pH, better results may be achieved, if yeast fermentations in 
hydrolysates from lignocellulosic materials would be carried out at higher pH than 
what has been found optimal for artificial media without acetic acid.  

 Glucose inhibits uptake of xylose in yeasts not only by occupying 
the transporters, but glucose also acts as a repressor of xylose induced synthesis of 
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enzymes involved in metabolism of xylose. In S. stipitis, the presence of glucose is 
known to repress activities of xylose reductase (XR) and xylitol dehydrogenase 
(XDH) and similar mechanism may exist in S. passalidarum (Bicho et al. 1988). 
The ability to utilize pentose sugars is not the only metabolic feature that sets S. 
stipitis apart from S. cerevisiae. The regulation of glucose metabolism also differs 
fundamentally due to the Crabtree effect, exhibited only in S. cerevisiae. Elevated 
glucose levels in media, induces the repression of the tricarboxylic acid (TCA) 
cycle even under fully aerobic conditions, which results in simultaneously 
fermentation and respiration. In contrast, the Crabtree-negative S. stipitis more 
easily favors respiration at the same aeration conditions and the same high glucose 
concentrations (Fiaux et al. 2003; Van Urk et al. 1989). This can explain why the 
micro aerobic conditions did not predominantly result in respiration in the S. 
cerevisiae cultures and lower ethanol yields than observed with S. stipitis. In excess 
glucose, aeration is irrelevant to S. cerevisiae. S. passalidarum is, with similar 
metabolic features as exhibited by S. stipitis, assumed to be Crabtree negative as 
well. However, more thorough experiments are needed to verify, whether or not 
respirative metabolism also occurs at increased glucose levels.  

 The NADH-dependent alcohol dehydrogenase (ADH) metabolizes 
furfural or HMF to less harmful furfuryl alcohols in yeasts. This enzyme also 
reduces acetaldehyde to ethanol and a decrease in the production of ethanol in the 
presence of furfural is thus expected due to substrate competition. Furaldehyde 
reduction can also be achieved with XR in S. stipitis, thereby affecting the xylose 
pathway (Almeida et al. 2008). A less favored oxidation to furoic acid also occurs 
in yeast (Taherzadeh et al. 1999). The inhibitory effect of furfural on the ethanol 
production rate has been observed at furfural concentrations above 2 g/L in 
fermentations with S. stipitis (Díaz et al. 2009). Below this level, the inhibitory 
effect tends only to result in delayed sugar consumption and a low productivity 
until the furfural has been degraded. Therefore, inhibition by only HMF and 
furfural at concentrations not exceeding 0.3 g/L in any of our fermentations is not 
believed to be of major importance, but a synergetic effect between acetic acid and 
other compounds such as levolininc acid, which is not measured, may have 
increased the inhibitory effects of the single components by themselves.   

 Even though ethanol concentration would not exceed 5 % with the 
known species of pentose fermenting yeasts, utilizing an easy to control anaerobic 
fermentation process with efficient metabolism of xylose could help developing a 
simple method for the industrial production of lignocellulosic bioethanol. The direct 
comparison of S. passalidarum with S. stipitis during fermentation of pretreated and 
hydrolyzed lignocellulosic materials displayed only minor performance differences. 
This is surprising considering the benefit of S. passalidarum possessing a uniqe low 
degree of glucose represion of xylose consumption and ability to metabolise 
glucose, xylose and cellobiose simultaneously in defined media as demonstrated in 
previous studies (Long et al. 2012; Nguyen et al. 2006). Long et al. furthermore 
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conducted micro aerobic fermentation by adapted S. passalidarum on enzymatic 
hydrolysate of AFEX-pretreated corn stover with an initial acetic acid content of 
1.5 g/L and experienced a significant delay in the utilization xylose, while the acetic 
acid and most rapidly glucose were consumed. The observed sequential 
consumption of sugars in the presence of acetic acid limits the potential of using 
this promising yeast in its native form as organism for the production of 2nd 
generation bioethanol. Adding to this, the initial concentration of biomass hence 
acetic acid would likely have to be close to twice the amount as we used to 
approach ethanol concentrations of 5% assumed necessary for economical 
distillation process. Future studies with S. passalidarum could focus on 
investigating the impact of acetic acid on the order of sugar consumption, yields 
and productivities under various conditions and ways to reduce acetic acid 
sensitivity applying thorough adaption procedures or perhaps through genetic 
modifications. Nevertheless, S. passalidarum seems to be a promising pentose 
fermenting yeast performing similarly as S. stipitis and further genetic improvement 
could make this an industrial relevant micro organism. 
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