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Abstract

Loudspeakers, headphones and other sound reproduction systems have tra-
ditionally been evaluated in two separate domains: The physical domain and
the perceptual domain. The physical domain consists of technical measure-
ments of e.g. frequency response, impulse response, directivity, sensitivity
etc. and is traditionally measured in anechoic rooms. The perceptual do-
main consists of perceptual evaluation of stimuli in listening tests with highly
controlled experimental variables, and is traditionally conducted in listening
rooms (for loudspeakers) with a low and standardized reverberation time
or in listening booths (for headphones); both with low background noise.
The limited direct connection between these two domains of evaluation, have
made it difficult to understand the perceptual consequence of the physical
measurement results; Both in terms of overall preference and in terms of
sound reproduction characteristics.

In this project the feasibility of modelling perceptual characteristics of
headphones and loudspeakers was investigated, by establishing a number of
prediction models and evaluating their prediction capabilities. An initial part
of this investigation concerned strategies for obtaining a good data basis, i.e.
an objective perceptual characterisation of a set of sound reproduction sys-
tems and physical data of relevance for the auditory perception. This inves-
tigation led to a strategy of obtaining perceptual and physical measurements
in the listening position, used in the conducted listening tests, in an effort
to optimize the direct connection between these two domains. Accordingly,
the proposed methodology consisted of making physical measurements in
the listening position using a Brüel & Kjær head-and-torso simulator with
microphones placed at the same position as the human ear drums.

The human auditory processing is highly non-linear in terms sound pres-
sure level as well as spectral, temporal and binaural properties of the sound
reaching the ears. Because of that, the features of the unprocessed recorded
stimuli were still not directly connected to human perception. Consequently,
these recordings were processed using auditory models in order to obtain a
perceptually relevant physical representation of the sound reproduction in
the listening position.
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Abstract

A number of prediction models were proposed on the basis of the mea-
surements from these two domains and each model was trained for pre-
diction of one perceptual characteristic. Among these were both dominat-
ing characteristics differentiating headphones and commonly found sound-
reproduction characteristics selected from a set of well-defined sensory de-
scriptors known as a Sound wheel. The modelled characteristics comprised
exclusively of spectral properties of the reproduction, but other types of char-
acteristics were included in the investigations as well.

One generic prediction model was proposed, which was trained to ac-
curately predict a number of sensory descriptors, such as Bass and Treble
strength, while another type of model was designed specifically for predic-
tion of the sensory descriptor Dark-Bright (a spectral-balance property). In
total the modelling efforts led to 12 prediction metrics, which correlated well
with results of the perceptual evaluations (r = [0.70− 0.99]).
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Resumé

Højttalere, hovedtelefoner og andet udstyr til gengivelse af lyd, er tradi-
tionelt set blevet evalueret i to separate domæner: Det fysiske domæne og
det perceptuelle domæne. Det fysiske domæne består af tekniske målinger
af f.eks. frekvensrespons, impulsrespons, retningsvirkning, sensitivitet, m.m.
og måles traditionelt i lyddøde rum. Det perceptuelle domæne består af
evalueringer af lydopfattelsen af stimuli repræsenteret i lyttetest med nøje
kontrollerede eksperimentelle faktorer og bliver som oftest afholdt i lytterum
(ved evaluering af/over højttalere) med en lav og standardiseret efterklangstid
eller i lyttebokse (ved evaluering af/over hovedtelefoner); begge med lav bag-
grundsstøj. Den begrænset direkte sammenhæng mellem disse to domæner,
har gjort det besværligt at forstå de perceptuelle konsekvenser af de fysiske
måleresultater; Både i forhold til den overordnede præference, samt i forhold
til karakteristika af lydgengivelsen.

I dette projekt blev der undersøgt, i hvor høj grad det var muligt at
forudsige perceptuelle karakteristika af hovedtelefoner og højttalere. Dette
blev gjort ved at udvikle en række modeller til forudsigelse af disses karak-
teristika, som efterfølgende blev evalueret i forhold til deres evne til kor-
rekt at forudsige intensiteten af lytteres bedømmelser. En indledende del af
denne undersøgelse omhandlede strategier for indsamling af et godt data-
grundlag bestående af en objektiv perceptuel karakterisering af udstyr til
lydgengivelse, samt fysisk måledata med relevans for lydopfattelsen. Denne
undersøgelse førte til en strategi om at foretage fysiske målinger af stimuli i
lyttetestenes lytteposition, således at den direkte sammenhæng mellem disse
to domæner blev optimeret. Den forslåede metodik til dette formål blev der-
for, at foretage disse fysiske målinger i lyttepositionen ved brug af en Brüel
& Kjær mannequin med mikrofoner placeret i samme positioner, som men-
neskers trommehinder.

Den menneskelige hørelse er stærkt ulineær i forhold til opfattelse af
lydstyrke, samt spektrale, temporale og binaurale egenskaber af den lyd,
som når ørene. Derfor er der stadig ikke direkte sammenhæng mellem op-
tagelsernes egenskaber og de perceptuelle karakteristika. Som konsekvens
heraf, blev optagelserne efterfølgende processerede via en auditiv model af
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Resumé

hørelsen, således at der blev opnået en repræsentation af udstyr til lydgen-
givelse i det fysiske domæne, som var perceptuelt relevant for lytternes op-
fattelse af stimuli.

Et antal modeller blev udviklet på basis af målinger fra de to domæner og
hver af disse modeller blev udviklet specifikt til forudsigelse af én opfattede
karakteristika. Blandt disse var både dominerende karakteristika til differ-
entiering af hovedtelefoner, samt typiske karakteristika for udstyr til lydgen-
givelse udvalgt fra et såkaldt lydhjul af veldefinerede sensoriske termer. De
modellerede sensoriske termer bestod udelukkede af spektrale termer, men
andre typer karakteristika var også inkluderet i projektets undersøgelser.

Én generel model blev udviklet, optimeret til præcisionsforudsigelser af
flere karakteristika, så som Bass- og Diskantstyrke. Derudover blev en an-
den type model udviklet specifikt til forudsigelsen af bedømmelsen af det
sensoriske term Mørk-Lys (karakteristika vedrørende spektral-balance). To-
talt set, ledte projektets undersøgelser til 12 såkaldte metrikker, som alle ko-
rrelerede godt med bedømmelserne fra de perceptuelle evalueringer (r =
[0.70− 0.99]).
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Preface

“Top speed, 0-60, they are just numbers. They are meaningless in themselves. What
matters is whether they add up into a sensation, and this delivers a tremendous
sensation! [Tires screeches]”

- James Daniel May, Top Gear (TV show), Season 21 (2014), Episode 4.

This thesis is submitted to the Doctoral School of Engineering and Science
at Aalborg University in partial fulfilment of the requirements for the degree
of Doctor of Philosophy. It falls within the framework of an industrial PhD
project, which was a collaboration between Aalborg University and DELTA
SenseLab, where the student was employed throughout the duration of the
project.

The work was funded by DELTA and the Danish Agency for Science,
Technology and Innovation (Case number: 1355-00061). All work was carried
out in the period from September 1st, 2013 to the date of the thesis submis-
sion at DELTA, the Department of Electronic Systems at Aalborg University,
as well as Ecole Nationale Des Travaux Publics De L’Etat (ENTPE) part of the
University of Lyon in France (Spring of 2015).

Industrial involvement

This PhD project ran in parallel with a government-funded research project
carried out by DELTA SenseLab on perceptual evaluation of reproduced
sound. During this period colleagues in SenseLab had a number of activ-
ities, which directly influenced this project:

• Trained a panel of expert listeners specifically in evaluation of sound
reproduction characterisation,
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• conducted a number of sub-projects demonstrating the possibilities of
developed evaluation techniques,

• developed a Sound wheel of sensory descriptors for full characteristics
of sound reproduction systems, and

• designed two loudspeaker spinners for loudspeaker evaluations.

The panel of trained assessors was used for all tests described in this the-
sis, with the exception of the experiment presented in Paper B conducted in
Lyon, France. These tests were all designed with the dual purpose of advanc-
ing the investigations of the government project as well as providing data for
this PhD project. Consequently, the tests were not designed strictly for test-
ing of hypotheses related to the PhD work. The experimental designs were
made in a collaboration between the PhD student and SenseLab colleagues
to best fit the dual purposes.

The sensory descriptors modelled in this thesis all originates from a Sound
wheel, which the PhD student was peripherally involved in the development
of, but which was headed by the company supervisor Torben H. Pedersen.
He also designed the loudspeaker spinners used in the listening test pre-
sented in Paper D.

Besides the internal involvement from SenseLab colleagues, this project
benefited from support from Danish companies lending equipment for test-
ing purposes. This included loudspeakers from DALI, headphones from
Aiaiai, as well and compact loudspeakers from the Nordic retail chain Hi-
Fi Klubben.

Project focus

The scope of this PhD project was on modelling of a selection of sound re-
production systems and scenarios. This included:

• evaluation of headphones, as well as mono- and stereo setups of loud-
speakers in the horizontal plane.

• evaluation in small rooms (mimicking living rooms).

• evaluation of a physical products’ influence on the reference stimuli,
but not artefacts from codecs, wireless streaming or the like.

• evaluation of full-range loudspeakers covering the majority of the au-
dible frequency range, i.e. not subwoofers.
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ANOVA analysis of variance

D/R direct-to-reverberant

DoE design of experiments

ERP ear reference point

FEM finite element method

HATS head-and-torso simulator

ITU International Telecommunication Union

JND just-noticeable difference

LSD least significant difference

LOO leave-one-out

MDS multi-dimensional scaling

RMSE root-mean-square error

PCA principal component analysis

SEAP specialized expert assessor panel

SNR signal-to-noise ratio

STEP spectro-temporal excitation pattern
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Acronyms

Glossary

A number of words and terms in this thesis were used with a specific defini-
tion in mind. These are defined in the list below:

Auralization Generally defined as the process of (re)creating a sound event,
real or virtual, in another setting, e.g. recreating a choir singing in
the reverberant environment of a church in a smaller listening room.
In this thesis, it refers specifically to recreation of headphone sound re-
production, from measurements of their frequency response or complex
transfer function. This process is sometimes referred to as virtualization
(recreation of a physical product’s sound reproduction).

Metric An equation for determining the perceptual intensity of a sensory
descriptor on the basis of recordings or physical measurements.

Perceptual characteristic A perceptual attribute (defined below) of notice-
able prominence. Definition adapted from [65].

Perceptual attribute An unique/independent property that can be perceived
(perceptual, affective or connotative); It may or may not be prominent.
Definition from [66].

Prediction model Describes a model in development, which in it’s final form
is referred to as a metric. A generic prediction model may be trained
for e.g. two product groups, compact loudspeakers and headphones,
leading to two metrics measuring the perceptual intensity of a sensory
descriptor in their respective context.

Sensory descriptor A word or phrase that describes, identifies, or labels a
perceptual characteristic of a system, e.g. the sound reproduction of
a loudspeaker. Definition adapted from [66]. Note that a sensory de-
scriptor describes one or more perceptual attributes, although in the
ideal case a sensory descriptor would describe exactly one perceptual
attribute.

Stimuli Generally, “stimuli maybe anything that evokes a response from an
assessor when presented with the stimuli” [65]. In the context of this
thesis, stimuli is specifically the reproduced sound reaching a listener’s
ears (ear reference point (ERP)) and which comprises the basis of the
listener’s perceptual evaluation.

System A system refers to any type of sound reproduction equipment, e.g.
a loudspeaker or a set of headphones. Often used in the context of de-
scribing listening tests, where systems are the equipment being evalu-
ated. Note that ‘system’ have a special meaning in the Appendix report
(defined in Section 1, p. 135).
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Prediction of perceptual
audio reproduction
characteristics

1 Introduction

In December 1915 the modern moving-coil loudspeaker was introduced to
the world by Peter L. Jensen (Dane) and Edwin S. Pridham (American) [9].
After its 1915 presentation in San Francisco to an amazed audience its pop-
ularity increased rapidly and loudspeakers were manufactured and sold in
large parts of the world within the next decade. Fast forward to today, no
modern house hold is without numerous loudspeakers in stereos, radios,
computers, flat screen TVs, cars, mobile phones etc. While the technical con-
cept of most modern loudspeakers has remained the same as 100 years ago,
the sound quality of both the recording and the reproduction has increased
significantly; Driven by numerous improvements in technology, materials,
and understanding of the interaction between electrical and mechanical parts
and the corresponding acoustical output.

Sound reproduction can fundamentally be divided into three components
as depicted in Fig. 1. An electro-mechanical domain representing e.g. a loud-
speaker, which moves a diaphragm and produces an acoustical output. This
output is transmitted to a listener who will experience an auditory sensation.
At present time, the electro-mechanical domain and the link to the acoustical

Electro-mechanical
domain

Acoustical
domain

Perceptual
domain

Fig. 1: The three fundamental domains of sound reproduction.

domain is well understood and we are able to calculate the acoustical output
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of an electro-mechanical design with high precision using e.g. lumped ele-
ment models [47, 74, 75] and finite element method (FEM) (e.g. [36]). How
the acoustical output is perceived is, however, not yet as well understood.
As a result, sound reproduction systems are currently described and gauged
directly by physical properties: Frequency response, dimensions and volume
of the cabinet, number and size of drivers, impedance, total harmonic distor-
tion, sensitivity etc. An issue with these specifications is that they have very
limited direct connection with the auditory sensation.

Traditionally, the sound character of loudspeakers have been (fine-)tuned
using “golden ears” or tonmeisters. While this approach may have its merits,
perceptual evaluations of a larger group of listeners, would be more repre-
sentative of the average consumer perception than that of one tonmeister or
a small group of experts. Obtaining information about perceptual charac-
teristics of a more representative nature is, however, a time-consuming task
involving complex listening tests, which may not be ideal in the early phases
of development or for special use cases. One example could be the increasing
amount of sound systems with adaptive acoustical outputs, where perceptual
evaluations involving human listeners, might not be appropriate, if fast per-
ceptual characterisation is needed.

Prediction of perceptual characteristics of sound reproduction systems
would improve the possibility of setting perceptually-driven design goals,
making e.g. a tonmeister able to specify perceptual characteristics as per-
ceived by the average listener (or a target consumer segment), without relying
on solely on their own senses. Having specifications based on predicted per-
ceptual characteristics readily available would also allow decision-making in
the engineering process on the basis of how a choice would affect perception.
For example how the influence of a choice of speaker cone shape would af-
fect perception of ‘brilliance’ and ‘envelopment’ rather that only knowing the
affect on e.g. off-axis frequency response. This could be more relatable and
especially useful in terms of making compromises. It is the potential of these
predictions of auditory perception that led to the investigations described in
this thesis.

The purpose of this PhD project was to establish and investigate the po-
tential of mathematical models for prediction of perceived characteristics
of the sound reproduction of headphones and loudspeakers. Specifically,
whether a prediction model could be established that would be able to pre-
dict the intensity of a characteristic, i.e. the average rating given by a panel
of experienced and trained listeners in listening tests; With the perceptual
characteristics being represented by well-defined sensory descriptors (see
definition in the Glossary, p. xx). Moreover, the purpose was to establish
the requirements and limitations of current perceptual evaluation methods,
with respect to obtaining an optimum data basis for establishing prediction
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1. Introduction

models. In this regard, it was of interest to establish how to predict listen-
ers’ ratings that are known to be relative in nature rather than absolute (see
e.g. [1, 69]).

An important point with regards to the nature of the prediction models,
was that perceptual characteristics sought modelled, was not the characteris-
tics of listening test stimuli1, but the differences in reproduction introduced
by each set of headphones or each loudspeaker, i.e. the perceptual character-
istics differentiating a listener’s auditory sensation of a set of stimuli.

A key part of this project, was that the majority of perceptual evaluations
(listening tests) were conducted with trained expert assessors, which were ex-
perienced in making perceptual evaluations and furthermore trained specif-
ically in evaluation of perceptual characteristics of reproduced sound. Since
the accuracy of the prediction models relied on the quality of the perceptual
evaluations, emphasis was put on data quality analysis to ensure sufficient
quality and suitability of data. Although it is possible to obtain quality data
in perceptual evaluations with naïve listeners (consumers), the amount of
subjects required is usually much higher. As an example of this, consider a
sensory study of perfume characterisation [82], where a panel of 12 expert
perfume assessors provided perceptual ratings with the same level of preci-
sion (uncertainty) as a panel of 103 naïve assessors (consumers), despite the
large difference in panel sizes.

In the next section, previous modelling efforts within the domain of sound
reproduction systems are summarised and important perspectives and chal-
lenges are highlighted. This is followed by a chapter on auditory processing,
which describes why and how auditory perception was incorporated into the
modelling methodology framework of this project as a key element. Chapter
3 provides a brief introduction into the two main types of perceptual mea-
surements and their relation to objectivity as well as a description of a Sound
wheel [66], which contains all of the sensory descriptors evaluated in this
project. In Chapter 4, the issue of predicting ratings, which are dependent
on the experimental setup (i.e. relative ratings) is discussed in detail. Ad-
ditionally, an overview is given on the structure of the proposed predictions
models, followed by a short section that introduces methods of gauging the
performance of these. Finally, in Chapter 5, the contributions of this project
are presented, discussed and summarised.

1.1 Previous modelling efforts

The pursuit for methods of measuring the dominating perceptual character-
istics of audio reproduction span more than 40 years, pioneered by Gabriels-
son in the 1970’s and Toole in the 1980’s. Since then many have followed in

1Stimuli is defined here, as the reproduced sound reaching a listener’s ears. See full definition
in the glossary, page xx.
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Sensory evaluation

Perceptual

Sensory descriptor

Spatial

Multi-channel [38, 71]
Microphone pos. [51]
Artifical signals [78]

Distortion

Loudspeakers [62]
Artificial signals [57, 79, 80]

Timbre

Loudspeakers [18, 39, 50, 77]
Headphones [18, 63, 85]

Hearing aids [18]
Instruments [12, 43]

Artifical signals [14, 72]

(Dis)similarity

Loudspeakers [17, 39, 44, 46, 52]
Hearing aids [18]

Affective

Preference

Loudspeakers [18, 61, 81]
Headphones [6, 18, 48, 60, 63]

Telecom [27, 29, 30]
Hearing aids [18]

Codec [23]
Artifical signals [14, 23]

Sound Quality

Spatial Quality

Loudspeakers [16]
Multi-channel

[7, 11, 24, 31, 32, 70, 71]

Timbral Quality

Loudspeakers [56]
Headphones [60]

Multi-channel [71]
Artificial signals [56]

Fig. 2: Literature overview. The tree structure contains literature dealing with modelling of
sensory ratings or evalutions of sensory characteristics relevant for modelling. The grey boxes
contain classification of the studies, grouped into types of measurements (Perceptual and Affec-
tive) and subtypes of measurements. The white boxes contain the type of systems modelled and
references to studies. Note that a source can appear in more than one box.
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1. Introduction

their path and the rate of publications suggest that the area have yet to peak.
Among these efforts have been a number of attempts of perceptual modelling.
In Fig. 2 an overview of these and related efforts are shown, categorised by
domain, starting with the division into the perceptual and the affective do-
main. The overview emphasises the two main research areas: 1) subjective
preference modelling and 2) prediction of timbral characteristics. Note that
the Preference box includes studies with both Mean opinion score (MOS),
Basic Audio Quality (BAQ), and Preference, i.e. all subjective terms with-
out characterisation of any specific area of audio reproduction. Additionally,
the research area of spatial evaluation and modelling of multi-channel and
3D sound for virtual- and augmented reality have been very active in recent
years, and may not be fully represented by the literature referenced here.

The following subsections will briefly discuss a number of topics in the
literature identified as important for understanding the paths chosen in the
this PhD project; Many of which are discussed in more detail in the enclosed
collection of papers. First, a discussion of why sensory characterisation is
of value as a supplement to hedonic evaluations of preferences, and there-
fore of value to make predictions of. Secondly, the dominance of timbral
characteristics for differentiating sound reproduction systems is discussed.
A timbral dominance was found to throughout the studies of this project and
in this second subsection, this trend is put into perspective by summarising
the dominance of timbrel aspects in comparable studies. Thirdly, an assump-
tion, made in the majority of published modelling efforts are discussed: that
one prediction model is sufficient for accurate predictions, regardless of the
type of sound reproduction system. While perception of e.g. bass might be
the same regardless of the type of sound reproduction system, the data on
which the models are trained, listener ratings, could be affected by the type
of systems evaluated. This issue is therefore adressed in the third subsection.
Fourthly, the efforts, taken in literature, to obtain physical measurements
of relevance for the perceptual characteristics being predicted are discussed,
which is a key element for obtaining predictions with high performance and
robustness [23]. The fifth topic concerns the influence of the number of sys-
tems, stimuli, and listeners in listening tests on the generalisability of percep-
tual evaluations and is of value for optimising the validity of the data basis
on which the prediction models are trained. Finally, the last topic discusses
what listeners use as a reference, when making perceptual evaluations, e.g.
how a listener determines whether a presented stimuli has a ‘neutral’ amount
of bass or ‘a lot’ of bass? This philosophical question have had influence
on both previously chosen modelling approaches as well as the efforts in the
current project and constitutes an important aspect of estimating the auditory
processing of listeners on a higher cognitive level.
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Value of sensory evaluations beyond preference ratings

While studies of preference offers information of direct interest for manufac-
turers of audio reproduction systems, supplementing with perceptual mea-
surements offer an insight into the underlying reasons behind listener pref-
erence. Evaluation of perceptual characteristics is often done, by rating a
number of sensory descriptors (words) [1], defined either by each listener in-
dividually or in consensus among a number of listeners. These descriptors
are chosen to represent perceptual characteristics of importance specifically
for evaluation of a chosen set of sound reproduction systems under evalu-
ation. They thereby provide an intuitive mean for communicating the per-
ceptual characteristics and differences between sound reproduction systems.
In combination with subjective evaluations of preference, perceptual char-
acterisation adds the possibility of optimizing products beyond the current
state-of-the-art, e.g. using the Ideal Profile method [83], which allow listen-
ers to score the intensity of stimuli for a set of sensory descriptors, while also
stating their preferred intensity for each of the descriptors.

Dominance of timbral characteristics

The emphasis on timbral studies within perceptual measurements are well
founded. The most dominating perceptual characteristics in audio reproduc-
tion have been found to concern timbre and in particular spectral differences
(See e.g. [46]. While studies of sensory descriptors needed for discrimination
between audio reproduction systems have lead to a large number of sen-
sory descriptors, the importance of each is rarely discussed. One example
is however the headphone study by Olive et. al [60], which showed ‘Good
Spectral Balance’ to have the highest correlation with preference (r = 0.92).
The importance of timbre is discussed in detail in Paper A and investigated
for headphones in Paper B.

“One size fits all” modelling assumption

The referenced studies of Fig. 2 all have in common that they rely on an
assumption of “one size fits all”; Meaning that one prediction model is con-
sidered sufficient for making accurate prediction for all listeners, all tech-
nologies, price ranges, etc. It is, however, well-established in this and other
domains that listeners do not have the same preference, but that preference
tend to be divided into clusters (see e.g. [42, 73]. Some may for instance prefer
extra bass and others extra treble. System characteristics may also be evalu-
ated differently for subgroups of sound reproduction systems. For example
in terms of bass strength, where the frequency range consider by listeners
when evaluating small portable loudspeakers may differ from the frequency
range considered when evaluating larger floor-standing loudspeakers. As
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1. Introduction

a result, a model intended for prediction of characteristics or preference of
any type of sound reproduction systems, under the “one size fits all” assump-
tion, may suffer in terms of prediction capabilities. In view of this pitfall,
the two loudspeaker studies of this PhD project (Appendix in Part III and
Paper D), were designed to include only loudspeakers within one category
of loudspeakers per study. On the contrary, the headphone study in Pa-
per B focused on modelling the dominating differences between headphones
in general and thus was not limited to one specific type of headphones. A
cluster analysis of the perceptual evaluations did not show any clear cluster-
ing between headphones. This indicated that the performance of the metrics
would not be negatively affected by being trained on data from all of them.

In general, results (of a prediction model) are of course only valid for the
systems tested in a given study, but specifically regarding prediction mod-
els, they are only of value for prediction of systems which were not. This
makes validation of prediction models of high importances. The referenced
studies in Fig. 2 are generally lacking in this area and many does not include
validation at all (discussed further in Section 4.4).

Data basis: Physical measurements with perceptual relevance

A common trend in studies over last 40 years is a shift away from using
physical measurements directly in prediction models. In the early studies,
frequency responses were for instance widely used for prediction of prefer-
ence or timbral characteristics. This was still the case in the late 1980’s and
early 1990’s [16, 81]. In 1984 Staffeldt [77] showed the importance of tak-
ing the transfer function of the human head into account when evaluating
timbral aspects, instead of using frequnecy responses directly. These were,
however, still based on traditional measurements made in anechoic cham-
bers. In 1991 Gabrielsson found that measurements made in a listening room
correlated better with listener ratings of sound quality of loudspeakers than
measurements in an anechoic chamber (or a reverberation room). Later on, in
2004 [61] included the influence of the listening room in his predictive model
of loudspeaker preference, but the influence of the head, torso and outer ear
were still not taken into account and neither were the many non-linearities
of human auditory perception. This was, however, done by Klippel in his
PhD project (see the 1990 thesis summary paper [39]), who calculated the fre-
quency spectrum of the stimuli directly in the position where listeners were
position during the perceptual evaluations. Furthermore, these spectra were
processed through a stationary loudness model and used as input for predic-
tion of a number of sensory descriptors for characterisation of loudspeakers.
The use of auditory models have since been increasing in popularity and
have been used for e.g. prediction of sensory characteristics within the spa-
tial domain [78] and in understanding the dominating perceptual differences
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between loudspeakers [45, 46].
In conclusion, evaluation of loudspeakers have moved away from strict

laboratory environments and towards evaluation resembling real-world con-
ditions. Additionally, perceptional measurements have become more reli-
able, as methods have improved and allowed for objective measurements
of perceptual intensities of the auditory sensation. As stated previously,
one purpose of this project was to maximize the perceptual relevance of
the physical measurements in this PhD project, such that the all established
prediction models would be based on an emulation of the path from head-
phone/loudspeaker to auditory sensation. The physical measurements were
therefore obtained by reproducing musical excerpts over sound reproduc-
tion systems, recording the stimuli in the listening position using a head-
and-torso simulator (HATS), and processing these recordings using auditory
models.

Data basis: Generalisability of predictions

For a prediction model to be of general value for a certain system group,
it is important to ensure that the perceptual space spanned by the systems,
on which the model is trained, are representative of the types of systems
one wish to make predictions of. Depending on the level of ambition, this
may require a large number of systems. In Table 1, studies including pre-
dictive modelling of sensory descriptors are listed for loudspeakers (L) and
headphones (HP). Note that relevant papers from this thesis are included
for comparison. Klippels loudspeaker study [39] consisted of seven separate
experiments, explaining the high number of systems, musical excerpts, and
subjects. An trend in Table 1 is the smaller dataset size in studies of head-
phones compared to studies of loudspeakers. Since the variations within
loudspeakers are much larger in terms of number and size of drivers, type
of cross-over filter, cabinet volume etc., this could make sense, but does not
mean that the smaller number of systems and subjects is sufficient for gener-
alised predictions of headphone characteristics.

A prediction model’s power is influenced differently depending on the
experimental factors of the listening test on which it is trained, such that:

• Increasing the number of perceptually different systems, increase the
generalisability of the study’s conclusions.

• Increasing the number of excerpts, increases the generalisability of the
systems’ characterisation.

• Increasing the number of subjects, increases the general validity of the
study and decreases the uncertainty of the statistical inferences, e.g. the
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1990 Klippel [39] L 45 53 94 2-3 (86%-98%) 40 (7)
1991 Gabrielsson [16] L 18 8 16 - 7
2004 Olive [61] L 70 4 268 5 (97 %) 1
2016 Volk et al. [Paper D] L 11 2 10 3 (89%) 6
2006 Opitz [63] HP 4 2 12 3 (84%) 3
2010 Chon & Sung [6] HP 8 5 10 - 1
2012 Olive & Welti [60] HP 6 3 10 - 19
2016 Volk et al. [Paper C] HP 8 4 18 4 (92%) 6

Table 1: Summary of audio studies including prediction modelling of sensory descriptors or
preference. HP denotes headphones/earphones and L denotes loudspeakers. Not reported
details are marked with ‘-’. Note that the Klippel study included seven separate experiments.
Seven descriptors were modelled, using different subsets of the data.

confidence intervals of the mean2.

While the above bullet list describes how to increase the generalisability
of a study, it is difficult to assess the absolute generalisability of a listening
test due to the vast amount of sound reproduction system variations and
configurations available. One way to handle this dilemma, is to have a fo-
cused scope with regards to the prediction model. In Paper C, focus was
of predictions of prototypes from one brand, and in Paper D, focus was on
affordable 2-way dynamic compact loudspeakers. Within these narrow scopes,
8-11 systems may provide insight of some general value, while e.g. results
of the referenced headphone studies with only 4-8 systems are not likely to
represent headphones in general.

In Paper B, 21 headphones were included in an multi-dimensional scal-
ing (MDS) study of dominating headphones characteristics in a effort to ob-
tain some generalisability. The headphones were chosen to represent prod-
ucts currently on the market in terms of distribution between open and
closed headphones as well as a selection of popular brands. Within the MDS
methodology, a mathematical rule-of-thumb [40] states that the number of
stimuli N needed to statistically uncover Ndim dimensions can be estimated
by this equation: Ndim = (N−1)

4 , e.g. 13 systems for 3 dimensions, 17 for 4, 21

2For subjective studies of preference, the confidence intervals may increase with the addition
of subjects, if the subjects disagrees on preference, thus representing several clusters of prefer-
ence. This is not the case with perceptual measurements where intensity is measured (when
using normal-hearing listeners).
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for 5, etc. The means, even if a set of stimuli spans X perceptual dimensions,
they might not all be uncovered in the studies if less stimuli than stated by
this rule-of-thumb are included in a study.

Data basis: Listener reference

In terms of prediction modelling, a fundamental issue, is how listeners per-
ceive stimuli. When evaluating e.g. the bass strength of a number of loud-
speakers, how do they determine whether a certain stimulus has a little bass,
neutral bass, or a lot? Somehow, they need a reference. In models for codec
testing, such as P.OLQA for telecommunication sound quality [30] and QES-
TRAL for spatial quality [11], the reference is simply the original musical
excerpt played back over e.g. headphones. This is possible, because the de-
graded stimuli is played back over the same reproduction systems, and thus
only the degradations due to the codec is assumed to affect listener eval-
uations. For evaluation of physical products it is, however, in general not
possible to present the original stimulus. In [39] Klippel assumes that lis-
teners know the recorded reference and are able to use this as an “internal
reference” for assessment of systems by evaluating the deviations from this
reference. This assumption is not likely to hold, as listeners have no possibil-
ity of knowing the reference: They only have the presented stimuli available,
e.g. musical excerpts influenced by each of of the sound reproduction sys-
tems under test; And while they might have had heard the excerpts before,
they have never heard it without influence from reproduction equipment.
Consequently, in this project, it was instead assumed that listeners evaluate
“the perceived changes to the envisioned original sound” [Paper D], with the en-
visioned original sound being created by listening to the test systems in the
given environment (listening room). Put another way, listeners compare sim-
ilarities of the presented stimuli and formed estimates of the original sound
of the excerpts. To provide listeners with the opportunity to form estimates
of the envisioned originals, each listening test in this project started with a fa-
miliarisation session including all or a representative selection of stimuli. The
influence of this new definition of the “internal reference” was a modelling
strategy were a reference was estimated by averaging over the ratings of all
stimuli per musical excerpt. This question of listener reference was discussed
in Paper D.

One assumption, which neither of the previous studies, nor the papers
included in this thesis discusses is the fact that perceptual evaluations made
by listeners have been found not to be absolute, which is a challenge in terms
of making absolute predictions. This aspect have been discussed in detail in
the Section 4.1, along with possible actions for dealing with this fundamental
challenge.
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2. Auditory processing

1.2 Overview of thesis papers

The collection of papers comprising the main body of this thesis consist of
two conference papers, two journal papers, and one research report. The
first paper (Paper A) is a literature study, and discussed five aspects of how
to obtain objective and relevant data from listening tests. The second and
third paper focuses on headphones. One (Paper B) investigates the domi-
nating perceptual differences among a large and varied set of headphones
and proposes metrics characterising these differences, while the third paper
(Paper C) describes metrics for prediction of well-defined sensory character-
istics of a selection of prototype headphones. This paper also investigates an
experimental method for validation of the prediction models when dealing
with a small number of systems. The research report (Appendix in Part III)
and the fourth paper (Paper D) deals with sound reproduction of loudspeak-
ers. The report describes an early attempt of generating data for modelling,
both perceptual and physical, based on evaluation of a set of sound sources
generated by a baffle of loudspeakers (see Fig. I, p. 136). Unfortunately, this
experiment suffered from two significant issues with listening test biases and
did not have the data quality for reliable modelling. The fourth papers de-
scribes metrics for prediction of sensory characteristics of loudspeakers in a
classical stereo setup. It is the culmination of both this PhD thesis and the
parallel activities at SenseLab in terms of modelling prospects.

In the following chapters, relevant topics are presented and discussed in
relation to the studies described in the four papers and the research report.
References are included regularly to make the reader aware of how topics are
linked to the relevant papers.

2 Auditory processing

While many of the traditional measurements of a loudspeaker’s acoustical
output are linear, human perception of this output is far from linear. The
extensive research in psychophysics and psychoacoustics have revealed non-
linearities in every step of the auditory processing. How a sound is perceived
depends on sound level, frequency (range and sparsity), temporal character-
istics, and higher level (cognitive) processes. Furthermore, differences be-
tween the sound reaching the two ears affect perception. As a result, any
linear measurements of sound reproduction will be related to auditory per-
ception in a highly indirect and incomprehensible fashion. Consequently,
characterisation of loudspeakers and headphones have been largely limited
to that of investigating the similarity between physical measurements and
the original test signals (see e.g. [15, 81]) or musical excerpts as they appear
on the medium (CD). It is, however, of further value to know how deviations
from perfect/preferred reproduction are perceived, and how the sum of these
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deviations affect the dominating characteristics of the auditory sensation of
the reproduction (or even the emotional consequences).

In this project it was believed that metrics having causal relations between
the physical and the perceptual domains would lead to be the most robust
outcome. In practical terms, this meant that prior knowledge about auditory
perception was part of every step of the modelling process.

To obtain metrics with a direct relationship to listeners’ auditory percep-
tion, the prediction models were based on perceptual ratings from listening
tests and a physical representation of the sound reaching the ears of the lis-
teners. The physical representation consisted of recordings of the sound re-
produced by the systems included in the study captured by a head-and-torso
simulator. These recordings were processed using an auditory model able to
account for the non-linearities of human auditory processing. A description
of the loudness model, favoured in the studies of this thesis, is present in the
next section in terms of advantages and limitations for this specific purpose.

2.1 Loudness perception

The main auditory model used in this project, was the time-varying (TV)
loudness model by Glasberg & Moore [20]. The model is based on their sta-
tionary loudness model [55], which took a frequency spectrum as an input.
This spectrum represented the average of both the left- and right ear sig-
nal and the full duration of the stimulus. The TV loudness model added two
temporal aspects: 1) Calculation of instantaneous loudness for every millisec-
ond and 2) Calculation of a short- and long term loudness. The first addition
ensures calculation of masking effects as a function of time, while the second
addition accounts for temporal integration of loudness, i.e. that a stimulus
with a short duration (transients) are perceived to have a lower loudness
level, than a stimulus of identical sound intensity, but a longer duration.

This loudness model can account for observed non-linearities of the au-
ditory system as a function of sound levels, frequency, bandwidth, and tem-
poral aspects such at temporal integration, amplitude modulation and on-
set/offset perception. A diagram of the loudness model is depicted in Fig.
3. Note that the calculation of overall specific loudness was not part of the
original model, but was the basis of the loudness calculations for the met-
rics proposed in this thesis. Extraction and calculation of the overall spe-
cific loudness thereby bypassed the temporal integrators of the original TV
loudness model. These temporal integrators, short- and long-term, relies on
automatic gain control with time-constants that were tuned to fit data on
perception of stimuli of various durations. However, no consensus currently
exists regarding the type and number of these temporal integrators and their
time-constants [20, 25, 58]. Hots et al. [25] concluded on the basis of a pro-
posal by Kumagai et al. [41] and data from Poulsen [68] that two integrators
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2. Auditory processing

Fig. 3: Diagram of the time-varying loudness model Glasberg & Moore [20]. A spectral loudness
representatation is calculated for every millisecond. Note: The calculation of (overall) specific
loudness is not part of the original model. Diagram adapted from [55] and [19].
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in parallel may better predict current loudness experiment data compared to
the serial approach of Glasberg and Moore (depicted in Figure 3). Both ap-
proaches, however, perform a spectral integration prior to the temporal inte-
gration, which is unwanted for the modelling approach in this thesis. In [58]
it is speculated that loudness is calculated by multiple approaches in the au-
ditory system on the basis of a spectro-temporal excitation pattern (STEP),
which supports the idea behind the approach taken in this PhD project. Un-
fortunately, the integrator time-constants as a function of both spectrum and
duration is not presently know and consequently, calculation of the overall
specific loudness was estimated using simple averaging over the time dimen-
sion. For stimuli with large variations over time, simple averaging may not
be representative of a listener’s perceived basis for evaluation. An example
of a large variation could be the start of a dominant bass drum, the start of
an instrument solo, large level changes (start of a chorus or a ‘bridge’ seg-
ment) etc. The musical excerpts of the studies of this thesis were all cut, such
that they had limited variation over time. This was done for reasons of good
audio perceptual evaluation practice: 1) To have all assessors base their eval-
uations on the stimuli as a whole and not smaller parts, e.g. either the start
or end, and 2) To ensure a looping of the excerpts, which does not remove
listeners’ focus from the evaluation task.

The TV loudness model includes simplified binaural summation of loud-
ness. The binaural summation processing steps were however revised in a
updated loudness model for stationary signal [54], which modelled contralat-
eral binaural inhibition, i.e. the inhibition of loudness in the left ear caused
sound reaching the right ear and visa versa. Generally, it has been found that
binaural summation of identical left and right stimuli lead to an increase in
loudness corresponding to 5-6 dB (a loudness factor of 1.4-1.53), while a 10
dB increase (a loudness factor of 2) would be anticipated with perfect loud-
ness summation. The degree of inhibition is, however, dependent on the level
difference between ears and possibly the overall level. Furthermore, the de-
gree of inhibition depends on frequency content; at least for low frequencies,
where phase information is conveyed accurately from the cochlears to the
central auditory system (see e.g. [35]) responsible for comparing and process-
ing signals from both left- and right ear. In a summary article from 2014 [53],
Moore described a revised time-varying model including the same binaural
inhibition process as proposed in [54], which is currently being standardized
in ISO/DIS 532-2. This binaural time-varying loudness model (BTV) was
kindly provided by Glasberg and Moore for use in the current PhD project
and used in the study described in Paper D. Here, the prediction models
were trained using either the TV- or the BTV loudness model. The result was

3The conversion between loudness factor and difference in SPL is described by ∆L =
10 log2 (z), where z is the loudness factor.
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2. Auditory processing

identical or very similar metrics in terms of frequency ranges, but the TV
model led to better correlations in almost all cases. Consequently, the results
of the BTV were not reported in Paper D, due to the lack of improvement
over the simpler TV model and the lack of published articles documenting
its performance. The BTV loudness model may, however, be of potential ad-
ditional value compared to the TV loudness model in experiments with other
musical excerpts or types of stimuli, as excerpts included in the experiment
of Paper D were similar in terms of sound level between channels, i.e. had a
symmetrical sound image.

Loudness model representativeness

The use of a loudness model to predict perceptual ratings relies on the as-
sumption that the loudness model is representative of the listeners mak-
ing the perceptual ratings. This assumption relies on another assumption,
namely that both are representative in terms of hearing capabilities (char-
acteristics) of an average normal hearing listener. Obtaining model coeffi-
cients and perceptual ratings meeting this requirement would require a large
group of listeners and extensive validation. An alternative approach (not in-
vestigated in this PhD project) was utilized by Jepsen et al. [33], who made
measurements of the hearing capabilities of ten individuals with sensorineu-
ral hearing loss and fitted an advanced auditory model [34] to the individual.
This approach have the potential, not only to improve loudness predictions,
but also to gain metrics that represents the true auditory processing of listen-
ers more closely.

Another issue with current loudness models is that they are rarely tested
with realistic stimuli as is the input in the prediction models of this project.
Doing so could lead to better loudness models or better fitting coefficients
in the current ones. One study, showing the need for this, by Soulodre [76],
found that in a comparison of ten (unnamed) loudness models’ ability to
predict perceptual ratings of loudness of eight programme materials with
either speech, environmental sounds, music or a combination, the best loud-
ness predictor was LEQ(RLB). LEQ(RLB) is simply the average sound pres-
sure level weighted by a frequency curve, RLB, which is identical to the B-
weighting curve at low frequencies and flat at high frequencies. I.e. a “prim-
itive” predictor without emulation of human hearing in regards to temporal
processing, compression, binaural processing, etc. In general perceptually-
driven prediction models has however been found to be more robust than
“technical” measures [23].

17



3 Perceptual evaluation

With regards to evaluation of sound quality and sound character, loudspeaker
and headphone manufacturers have historically always relied on human au-
ditory perception; Either for iterative evaluation as part of the development
process or for confirmatory evaluation as a supplement for measurements of
technical aspects of the reproduction (frequency response, impedance, sensi-
tivity, etc.). With pioneers like Alf Gabrielsson, Floyd E. Toole, and others,
the systematic use of listeners for perceptual evaluations became a recognized
method of performance evaluation and is now considered the most relevant
technique for audio evaluation. Some debate, however, still exists regarding
the nature of perceptual evaluations and in most fora perceptual evaluations
are referred to as subjective evaluations, as opposed to objective evaluations.
Experts within the domain of perceptual audio evaluations, however, divide
perceptual evaluations into two categories of which one is objective and one
is subjective (see e.g. [1, p. 3]):

• Perceptual measurements

• Affective measurements

Perceptual measurements are objective evaluations of system characteristics,
e.g. bass strength, while affective measurements are subjective expressions of
preference or sense of quality. A discussion of the objectivity of perceptual
measurements is included in Paper A based on definitions by Jens Blauert.
The concept that listeners are able to make both objective and subjective eval-
uations is founded on the filter model framework [64], shown in Fig. 4. The

Fig. 4: The filter model. Perceptual measurements are based on the sensory acuity only, while
affective measured are also affected by higher cognitive factors, such as prior experiences, mood,
and emotions. Diagram adapted from [1].

perceptual measurements are assumed only to depend on the sensory acuity
of the auditory system and thus measurements with listeners in one place
can be reproduced by listeners in another place in terms of statistical infer-
ences. This is not (necessarily) the case with affective measurements. Some
may prefer more bass, others more treble and their preference may change
from one day to the next due to influences such as context, mood etc. Note
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3. Perceptual evaluation

that all modelling effort in this PhD project, dealt solely with prediction of
objective perceptual measurements of product characteristics.

3.1 Sensory descriptors

The characteristics of sound reproduction systems, which was sought pre-
dicted in this project, consisted of sensory descriptors from a list of descrip-
tors developed and organised in a Sound wheel [66]. The list is designed
to perform a characterisation of sound reproduction systems, i.e. the most
common senory descriptors related to the perception of the changes to the en-
visioned original sound. The purpose of the Sound wheel was three-fold: 1)
To make the sensory descriptor elicitation process more efficient by selecting
descriptors from an established set of descriptors, and 2) to potentially reduce
noise in the data, by having listeners use the same descriptors continuously
to improve their understanding of the descriptors and additionally improve
consensus among listeners, 3) To facilitate communication across diverse au-
diences such as product developers, manufacturers, sensory experts, retail
business and consumers. Furthermore, having a closed set of descriptors al-
low systematic training. A challenge with many of the elicitation methods
available (comprehensive review in [8]) is that selecting sensory descriptors
and making proper definitions is a demanding task requiring understanding
of the desired properties of sensory descriptors [1, 66].

The present version of the Sound wheel [84] with 41 sensory descriptors
(+ four sub descriptors) is depicted in Fig. 54. The sensory descriptors mod-
elled during this project are summarized in Table 2, page 34 and comprises
eight descriptors from the Sound wheel. These were selected in a two step
process: Firstly, during consensus elicitation meetings with listeners for the
headphones or loudspeakers of each study and secondly, by only keeping
descriptors whos ratings met a number of data quality requirements (see de-
tails in Paper C, Section 2.5). Most of the sensory descriptors (6) were directly
related to spectral characteristics, because the output of the consensus elic-
itations mainly comprised spectral aspects and because listeners performed
well in terms of discrimination and reliability (calculated using eGauge [49]),
i.e. few spectral sensory descriptors were removed during data quality inves-
tigations. This dominance of spectral characteristics is typical in perceptual
audio evaluations, as previously mentioned and described in Paper A, Sec-
tion 3.

4The inner most circle in [84], Basic Audio Quality, was removed here to clearly separate
sensory descriptors describing perceptual measurements from descriptors describing affective
measurements.
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Fig. 5: Sound wheel of sensory descriptors for perceptual characterisation of reproduced au-
dio. The rings (in→out) reprensents, groups, subgroups, and sensory descriptors respectively.
Adapted from [66, 84] and generated using an Aculocity visualization tool (www.aculocity.
com/labs/sunburst-chart).
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4. Modelling and validating

3.2 Independence between sensory descriptors

In Paper A, the choice of descriptors was also discussed in terms of indepen-
dence. Indepedence is described as a desired properties of descriptors [1, 66],
but a literature study showed a discrepancy between the number of sensory
descriptors (large) in some studies and the number of independent statistical
dimensions (small) in other studies. Large dependencies between sensory de-
scriptors are (viewed as) inefficient and a sign that fewer/better descriptors
could have been used. This makes it of interest to measure the dominating
perceptual dimensions within each product category of sound reproduction
system, as it provides an overview of which categories of sensory descriptors
are of most importance. This was the topic of Paper B, where the dominat-
ing perceptual difference between 21 headphones were investigated using a
pair-wise comparison scheme with evaluation of the degree of dissimilarity
between pairs rated on a continuous rating scale and analysed using MDS.

4 Modelling and validating

When modelling the link between the physical output of for example a loud-
speaker and the rated perceptual intensity of a sensory attribute, the nature of
the two measurement methods must be considered. Physical measurements
are absolute measures with well-defined units. Given that e.g. a sound level
meter is calibrated correctly, an isolated and stable sound source will mea-
sure the same every time (within its specified accuracy) and measurements
of other sound sources will not be affected by the first measurement, as they
are independent. An intensity rating of a sensory descriptor has been found
not to be absolute. In a study by Brockhoff [4], significant differences in scale
usage (variance heterogeneity) was found in 91 % of the investigated studies.

For the purpose of predicting perceptual characteristics, it was of interest
to understand how to deal with the challenge of these context effects on lis-
teners ratings; Specifically, how to possibly minimize the influence of context
on ratings and how to predict ratings that relies on context. These questions
are described in detail in the next subsections, followed by a description of
the proposed prediction models, an introduction to validation techniques,
and finally an introduction to the statistical metrics used for evaluation of
model performance.

4.1 Handling relative ratings in prediction modelling

Background

Although perceptual ratings can be considered objective (see definition and
discussion in Paper A), they are dependent on a number of variables in the
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setup of the listening test [1]: The range and number of systems included in
the test setup, the (musical) excerpts selected for the evaluation, the sensitiv-
ity of the listeners, the scale used, the verbal anchors, etc. The consequence
of these variables, in terms of rating scale usage, are generally divided into
two parts: a shift and a scaling effect. Due to reasons of simplicity, these
effects are often assumed to be linear or approximately linear. For a shift, an
additive effect, all system ratings are moved up or down on the scale, while
the distance between ratings are kept constant. With regards to the scaling
effect, a multiplicative term, perceptual ratings are moved closer together or
further apart, while the ratio between them are unaffected. These two effects
can be described by a general linear transformation: x′ = a · x + b. In [86]
another type of bias is described, which causes non-linear changes in sen-
sory ratings: “Bias due to perceptually non-linear scale”. If the assessment
scale has three or more labels, e.g. verbal, which listeners perceive as being
positioned with non-linear distances, they may adjust their ratings to fit the
imagined scale, which may even differ from listener to listener. This would
affect the accuracy of the perceptual measurements, specifically the statisti-
cal inferences of e.g. mean ratings, but thereby becomes a problem from a
modelling perspective. To avoid this potential bias in the current project, all
the rating scales used were limited to two verbal anchors near the end-points
(extremes) of the scales.

In the acoustics and audio journals, the effects causing sensory attribute
ratings to be relative due to the choices in the listening experiment setup are
well-described (see e.g. an overview in [1]). The main concern regarding
listeners’ scale usage, with regards to predictive modelling, is the context
effect. One type of context effect is the Range Equalizing Bias [86], [69, pp.
207-233], which occurs when listeners adapt to the range of intensity for the
given set of stimuli. Due to the adaptation, they tend to use the entirety
of the scale for the ratings somewhat independent of the stimuli intensity
range. Another context effect is the Centering bias [86], [69, pp. 105-120],
where listeners tend to centre the ratings symmetrically around the middle
of the scale. These effects can be reduced, but not eliminated, by including
verbal anchors etc.

The influences of the context effect and other effects leading to relative
listener scale usage are not taken into account in the existing prediction mod-
elling efforts; Neither in the ITU recommendations (PEAQ [27], POLQA [30]),
nor the conference papers or journal articles listed in Fig. 2. The mod-
elling approach ranges from simple visual inspection to correlation analysis,
analysis of variance (ANOVA), linear regression analysis, principal compo-
nent analysis (PCA), Factor analysis, and MDS analysis as well as use of
auditory models, but none considers this issue.

The Range Equalizing bias was likely observed in the one of the loud-
speaker experiments conducted in this project (see Appendix III), as is clear
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4. Modelling and validating

Fig. 6: Example of how the context (range of systems) can affect listeners’ scale usage in listening
tests. The left and right plots depicted results from two identical design of experiment, but with
different sets of loudspeakers (see Appendix III). The plots depicts the mean ratings of eight
listeners with 95 % confidence intervals. Systems ’A1’–’A3’, were included in both.

from the example with the sensory descriptor Bass strength in Figure 6. In
this example all experimental variables were kept constant from Test 1 (left) to
Test 2 (right), except the set of loudspeakers included; meaning that the setup,
the sensory attributes evaluated, and the listeners were identical. Three an-
chor loudspeakers were, however, included in both Test 1 and Test 2, which
made it possible to compare the ratings across the otherwise identical tests.
From Figure 6 it is evident that A1 was rated significantly different between
Test 1 and Test 2. Consequently, in these two tests, context effects could
not have been ignored if accuracy was to be achieved in a prediction model
trained with these data. In [69] it is advised to use an indirect method of
magnitude estimation to avoid Range Equalization biases, which would be a
challenge to use in all cases due to demands for standardized test methods,
time constraints regarding listeners’ participant time etc. It could, however,
potentially be a beneficial methodology for collection of training or validation
data for the prediction models.

Strategies for handling relative scale usage

A number of possible actions could be considered, either to fix scale usage,
or deal with a relative scale usage:

1. Including anchor loudspeakers or auditory references (at e.g. a low-,
mid-, and high points on the scale)

2. Using (multivariate) data aggregation techniques

3. Intensive training of listeners in consensus scale usage for each sensory
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attribute

4. Making product type specific models - valid only for a subset of audio
reproduction systems.

A fifth solution could be to estimate the effects of all experimental variables
and attempt to compensate for these. This is, however, not presently a viable
solution, as many of the effects and the interactions between them are not
yet fully understood. The four listed strategies are discussed in the following
paragraphs. All of the listed actions were taken or tested during this project.
The first two action points were tested in the research study described in the
Appendix in Part III. Since both tests have biases in the experimental design,
the data aggregation technique is, however, not described.

1. Anchor loudspeakers or auditory references
To limit the influence of the range equalization bias, a number of extra sys-
tem, e.g. loudspeakers, can be included, which should ideally span the per-
ceptual range of the set of systems for all included sensory descriptors. Typ-
ically, three are used, one at each extreme and one in the centre. These ex-
tra loudspeakers provides reference points for listeners performing multiple
stimulus tests, thereby anchoring the scale usage. These anchor loudspeakers
must be included in all tests, desired to be compared or modelled. An inher-
ent challenge of this approach is choosing the anchor loudspeakers. In the
scenario where the anchor loudspeakers are very different from the remain-
ing loudspeakers, the ratings of these may be squeezed together causing an
unwanted reduction in rating resolution. As the anchor loudspeakers must
be fixed for all the tests that it is desired to compare, choosing suited an-
chor loudspeakers can become a limiting experimental factor. Furthermore,
the introduction of extra loudspeakers, may limit the number of loudspeaker
possible to include in the test, as the listener’s comparison task becomes ex-
ponentially more complex (in terms of pairwise comparisons) with the num-
ber of loudspeakers included. This can to some degree be resolved by in-
cluding anchor auditory references instead of physical loudspeakers. These
should correspond to a fixed pre-defined rating for each sensory attribute,
and would thereby not require evaluation by the listeners. Finding good au-
ditory anchor references is, however, a complex task, which must be repeated
for every sensory descriptor (and from a rigid point of view also for every
change of descriptor definition).

2. Data aggregation
In the case where datasets with loudspeaker evaluations are available that
included anchor loudspeakers, it is possible to use data aggregation tech-
niques to correct for shift and scaling effects. This is relevant if the anchor
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4. Modelling and validating

loudspeakers got different mean values with respect to the statistical infer-
ence. While this technique has been used in the Sensory food industry for
some time, few papers are published on the subject investigating these tech-
niques in depth. One concern is that the uncertainties of the dataset being
transformed to the scale of the target dataset are amplified/altered during
the transformation. Another concern is the need to make an assumption of
the type of transformation (e.g. linear, log-linear etc.), which may change the
relationship between the loudspeaker ratings in a non-optimum fashion and
thereby reduce the relationship between ratings and listener perception. The
data aggregation can be done either by a unidimensional linear method for
the individual sensory attribute ratings or by a multivariate approach, such
as the Generalized Procrustes analysis (GPA) [21]. For the unidimensional
linear approach a minimum of one anchor system is needed for correcting
biases related to shifts, while a minimum of two anchors systems are needed
for correcting biases related to scaling effects.

3. Intensive training of listeners in consensus scale usage
For most perceptual evaluations of system characteristics, a panel of listen-
ers is trained to become experienced or experts in evaluation of the specific
sensory descriptors used within their field of expertise. During this training
listeners are trained in the definition of the sensory descriptors, as well as in
rating scale usage, such that consensus is attempted with regards to the rat-
ing of a sensory descriptor with a given intensity. Brockhoff et al. [3] recently
analysed a large body of sensory data (from SensoBase) where experienced
of expert listeners were used, to investigate to which degree significant inter-
action effects between listeners and systems were found and how often these
could be explained by shifts and scaling effects. His study showed that in
studies where significant interactions between listeners and products were
found, significant differences between listeners could be explained by scaling
effects in 57.2 % of the cases. Counting on listener training as a mean to ob-
tain stable sensory ratings are therefore generally not considered a complete
solution on its own to solve the challenge of relative sensory ratings.

4. Specific modelling based on product type
The range Range Equalizing bias cannot be avoided completely, which leads
to an important realisation with regards to the prediction models: A pre-
diction model may be needed for each product type where the rating scales
are used differently. An example could be the ratings of Bass depth in small
cheap loudspeakers maybe depend on a different part of the frequency re-
sponse, than evaluation of Bass depth in high-end floor-standing loudspeak-
ers. The definition of a product type in this context is not clear cut. For
headphones, it might constitute two groups: closed-back and open-back, but
a split into groups could also be done on the basis of overall sound quality,
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low-end vs. high-end. The points is, not to assume that ratings of one sen-
sory descriptor can be modelled with only one prediction model valid for all
sound reproduction systems. Instead the prediction power of a model, i.e.
gauged by a correlation analysis, could be used to determine whether prod-
ucts belong to the same perceptual product group, or whether they should
be separated into multiple groups, e.g. by performing cluster analysis.

4.2 Overview of the proposed prediction models

The ambition behind the structure of the proposed prediction models of this
project, was to approximate the human auditory processing leading to the
perception of sound reproduction system characteristics to a large extend,
while simultaneously limiting the complexity of the models. As a result,
simple modelling approaches were initially attempted, and with good re-
sults. Two main modelling frameworks were established: One generic frame-
work for prediction of sensory descriptors related to timbrel aspects, and a
second framework established specifically for prediction of the Dark-Bright
descriptor. Dark-Bright is defined as the perception of the spectral balance
of the sound reproduction. The first framework is first introduced in Pa-
per B, while the second framework was introduced in Paper C and refined in
Paper D.

Generic timbre prediction framework
The first prediction modelling framework is described by Eq. 1, where Densm( f )
denotes the temporal mean of the instantaneous specific loudness, while A–D
denotes the frequency limits, which the specific loudness is summed over.

metric =
AB range
CD range

=

B

∑
f=A

Densm( f )

D

∑
f=C

Densm( f )

(1)

This equation thereby constitutes a loudness ratio between two frequency
ranges of specific loudness. This allows estimation of the relative loudness
of a given AB frequency range, either in relation to the full frequency range
or a more narrow frequency range CD. The two ranges were found in two
steps. In step one, the Pearson correlation between the perceptual ratings
for a musical excerpt and all possible combinations of AB- and CD ranges
were calculated (with some constraints on minimum range and range over-
lap specified in Paper B). This led to a correlation grid/matrix with a reso-
lution of either 0.1 or 0.25 critical bands, depending on the utilized loudness
model. An example of such a correlation grid is depicted in Fig. 7, with the
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4. Modelling and validating

frequency limit A on the horizontal axis, B on the vertical axis, and CD set to
the full range. Any AB-range leads to a different correlation with the percep-
tual ratings. Note that grid points with correlation coefficients |r| < 0.8 are
represented in gray to improve the overview. In this example a AB range of
20-210 Hz led to the highest correlation, as well as the complimentary range
210-15000 Hz. In a second step, the correlation matrices for each musical

-1.00
-0.96
-0.92
-0.88
-0.84
-0.80

0.80
0.84
0.88
0.92
0.96
1.00

P
ea

rs
on

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Start point A [ERB number, Cam scale]

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

E
nd

 p
oi

nt
 B

 [E
R

B
 n

um
be

r,
 C

am
 s

ca
le

]

Local peak (ρ = −0.95)

Local peak (ρ = 0.95)

Fig. 7: Example of a correlation grid for the generic prediction model framework. Plotted as
a function of the start frequency A and end frequency B (with the CD range fixed to the full
specific loudness range in this example). The lightest grey represents all values within r = ±0.8.
The figure is a reprint of Fig. 7 in Paper B.

excerpt were first averaged across and then the frequency limits, A–D were
chosen as the limits where the highest absolute Pearson correlation, |r|, was
located. This was done to obtain AB- and CD loudness ranges with limited
dependence on a single musical excerpt. The performance of this framework
were tested in two different versions in Paper B: One, with both AB- and
CD being optimised to obtain the maximum correlation with perceptual data
and one with the CD-range fixed to the full specific loudness range (20-15000
Hz). These two versions (mostly resulting in different AB- and CD ranges)
led to almost identical levels of correlations. In the subsequent two papers,
only results from the version with the fixed CD range were reported, as the
same trends was found. Furthermore, the risk of obtaining non-meaningful
frequency ranges increased with the added complexity of the variable CD
range. As an example, a prediction model of midrange strength, having both
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AB and CD ranges in the treble range in likely not be a robust predictor of
sound reproduction systems in general, due to lack of causality. As a result,
such a prediction model is unlikely to perform well in prediction of new
headphones or loudspeakers. For some sensory descriptors, such as Clean, it
may not be possible to define meaningful frequency ranges.

Dark-Bright prediction
Since the sensory descriptor Dark-Bright is defined as the spectral balance of
the sound reproduction, the generic framework was not deemed appropriate,
although it could provide reasonable predictions, when the CD range was not
fixed. Another approach was established that lead to better predictions. This
approach was based on finding the spectral centroid, i.e. the point of equal
energy between the lower frequency content and the upper frequency con-
tent. This had been used before in literature, but only on linear frequency
spectra and not on specific loudness spectra, i.e. processed through a loud-
ness model prior to finding the centroid. The problem of finding the specific
loudness centroid, here referred to as the perceptual centroid, was first de-
scribed in Paper C, Eq. C.5 and reprinted here in Eq. 2. Densm( f ) is the
temporal mean of the instantaneous specific loudness, and fMIN , fCEN , fMAX
are the minimum, centroid, and maximum centre frequencies respectively.

min
bCEN∈Z

|
bCEN

∑
b=bMIN

Densm(b) −
bMAX

∑
b=bCEN+1

Densm(b)|

subject to
bMIN ≥ bCEN ≤ bMAX

(2)

In Paper D a revised version of the Dark-Bright prediction model was sug-
gested, which were based on the assumption that the midrange frequencies
might not have the same influence on perception of spectral balance as fre-
quencies at the bass- and treble range. A proposed addition was to add
a weighting function prior to finding the perceptual centroid. One simple
weighting function was tested: An upside-down rectangular window, de-
picted in Fig. 8. A percentage weighting coefficient, p, was optimised such
that the highest possible correlation with the perceptual ratings of Dark-
Bright was obtained. The rectangular window improved correlation with the
perceptual ratings compared with the originally proposed prediction model.
This weighting function was not found likely to be part of human auditory
processing due to the discontinuity in weighting coefficients at the start and
end of the upside-down rectangular window, but indicated that the existence
of a weighting function is likely.

Both of these prediction model frameworks were based on current knowl-
edge about the human auditory processing of sound and tested on perceptual
evaluation of both headphones and loudspeakers. While one methodology
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4. Modelling and validating

Fig. 8: Illustration of a midrange weighting function for prediction of Dark-Bright. An upside-
down rectangular window with a weigthing coefficient of p = 30 % is multiplied with the specific
loudness spectra, prior to calculation of the perceptual centroid.

was specifically designed for modelling of Dark-Bright, the other has poten-
tial for modelling of additional spectral-related sensory descriptors from the
Sound wheel [66], such as Canny, Boomy, Boxy, and Full.

4.3 Influences of musical excerpts

One concern, when using perceptual evaluations as the basis for prediction
modelling, is the influence of the musical excerpts on the ratings. This in-
fluence comprises of both a shift and a scaling effect. The shift depends on
the absolute intensity of the sensory descriptor under evaluation, e.g. tre-
ble strength. Sound reproduction systems may receive a lower rating when
evaluated using an excerpt with little treble. The scaling effect is of more
interest as the span of ratings given for e.g. treble strength may depend on
the amount of treble in the excerpt. This is exemplified in Fig. 9.

In terms of obtaining a set of generally valid metrics for prediction of
sensory descriptors these effects pose a challenge. Both are linear effects and
can be compensated e.g. by averaging the perceptual ratings over excerpts. It
might, however, be of interest to investigate whether this averaging is mean-
ingful. If significant non-linear effects are present for some excerpts, it may
not be meaningful to average over all excerpts. Additional, it might make
sense to have multiple genre-dependent prediction models, if some musi-
cal excerpts/genres are highly different from the others. In the latter case,
knowing the increase in intensity that is required to obtain a clear perceptual
difference for a certain genre of music, would enable design targets better
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Fig. 9: Scaling dependence on musical excerpt for the sensory descriptor Treble strength. The
dotted lines are the best-fit linear regressions for each musical excerpt respectively.

fitted to the target group of a sound reproduction system. In the example
in Fig. 9 it is for instance evident that a smaller increase in treble loudness
is needed to increase the perception of treble strength for a classical excerpt,
than for the other musical excerpts (although the scaling effect is tiny in
the example). It may not be a coincident that the classical excerpts differed
the most, as the long-term spectral distribution for classical music has been
found to be different from other genres and has greater variations within the
genre [13, 22].

4.4 Validation technique

As argued in a previous section, validation is an important part of gauging
the performance of a prediction model. The point of validation is to test
whether a model’s predictions are general and representative for a target
group of systems, e.g. compact loudspeakers, and not only the subset used
for training of the model. A prediction model is optimised using statisti-
cal fitting metrics, such as the correlation coefficient, r. If the fitting metrics
increase for a subset of data - the training subset - without increasing the pre-
diction of other systems from the target group, over-fitting is occurring. Over-
fitting causes overly optimistic fitting statistics, possibly over-complication of
the model, and/or a decrease of prediction performance within the target
group systems as a whole.

In this project, two validation techniques were considered:

1. Splitting of data into a training and a validation subset, and
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4. Modelling and validating

2. Cross-validation

Item 1 in the list is considered the most ideal method, as the statistical fit-
ting metrics are used only on a validation subset of the collected data, and the
training subset is used only for training of the prediction model. This method
was utilised in Paper D with validation of prediction models for character-
isation of loudspeakers in a stereo setup. A challenge with this method is,
however, that it requires a large dataset, as, ideally, both the training and the
validation set should be representative of the target group of systems. The
method provides a clear separation of training and validation, but with an in-
efficient use of data and consequently a requirement for a larger dataset, than
is needed with the cross-validation method. This method (see e.g. [10, Chap.
11]) uses the full dataset for both training and validation, but splits the set
into k folds, of which k− 1 are used for training and 1 is used for validation
at a time. This is repeated k times with each fold being in the validation set
once. Commonly k is set to 10, but the optimum number of folds depends
on the size and dimensionality of the dataset. A special case of the k-fold
method is the leave-one-out (LOO) strategy in which the validation set con-
sists of data points from exactly one system. Using cross-validation allows
for calculations of e.g. correlations coefficients, which better represents the
full dataset. Cross-validation is widely used for smaller datasets, where the
purpose of validation is to estimate how a model will perform in general on
other data. As mentioned previously, validation is not widely used within au-
dio reproduction research, as evident from the studies summarised in Fig. 2
of which few included validation. The ones that do are briefly discussed in
the next paragraph.

The standardisation models developed by the International Telecommu-
nication Union (ITU) [27, 29, 30] all use the first validation technique with
strict separation between the training and validation data subsets. These
models were both trained and validated on large ecologically representative
datasets. The same validation method was used for the distorting model by
Tan et al. [56], but using artificial signals. Some of these were virtual rep-
resentations of real sound reproduction systems (mobile phones) and some
were manually distorted signals. Using artifical signals for validation is not
without problems, as was discovered in a validation of [56] with real-devices
as part of a master project in colaboration with DELTA SenseLab [62]. Har-
lander et al. also performed validation of models by others, when they tested
previouly proposed perceptual models using publicly available databases.
The alternative method, cross-validation, was used only in one of the studies
of Fig. 2, namely the QESTRAL project on spatial sound quality [31].

In Paper C another approach was utilized. Here, a bootstrap method (see
e.g. [59, Chap. 16]) was used for estimation of model parameters - in ad-
dition to calculation of correlation coefficients. Bootstrapping is a method
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that provides improved insight about the collected dataset, specifically the
distribution of the data. It does not, however, provide information with re-
gards of how representable the collected dataset is of the prediction model’s
target group of systems. The insight is achieved by repeated sampling with
replacement from a dataset. One sampling iteration results in a ‘new’ dataset
of the same size as the original dataset, but with a different representation
of systems. If the dataset included 10 systems, a resampled dataset might
have e.g. 7 systems, with three of them being represented twice. This is
equivalent to adding ‘weights’ to each systems from [0− N], where N is the
number of systems. By calculating new model parameters for each iteration
of the bootstrapping (of a total of e.g. 1000 iterations), the method provides
an estimated distribution of the parameter values for improvement of both
the model and estimates of its performance. In Paper C the distribution of
model parameters was categorised and the percentage of iterations within
each category used for choosing the optimum parameters. This combination
of bootstrapping and categorisation was somewhat experimental and was
proposed to investigate methods of optimising models on the basis of small
datasets (< 10 systems).

Gauging model performance

In gauging the performance of the prediction models of this project, it was
important to consider the uncertainties of the data from the listening tests in
combination with the performance metric, the correlation coefficient. Since
the modelling was conducted used averages over listeners, the correlation
coefficient may overestimate the prediction power of the models. The risk
is illustrated in Fig. 10 with example data. The vertical axis have the per-
ceptual rating and the horizontal axis have an example output predicted by
a model. The errorbars represent the 95 % confidence intervals of the per-
ceptual ratings. If the perceptual ratings were without any uncertainties, a
perfect prediction model would predict values strictly on the diagonal. With
uncertainties on the perceptual data, any optimisation of the predictions of a
model beyond the point were CI’s of all data points overlaps with the diago-
nal cannot be verified. Two competing models, that both perform at this level
may, however, have different correlation coefficients. In this case it is invalid
to chose one over the other without improving the data basis, i.e. by reducing
the uncertainties of the perceptual data. This could for instance be achieved
by supplementing the perceptual dataset with additional listener ratings, or
by repeating the listening test with more careful control of the experimental
variables - if possible.

Another issue with the correlation coefficient is that shift and scaling ef-
fects (discussed in Section 4.1) have no influence on the Pearson correlation
coefficient, meaning that other performance metrics, such as the RMSE is
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Fig. 10: Three examples of prediction model outputs - all have the same correlation coefficient
and RMSE. The left subplot depicts a model with errors, which are normally distributed. The
right subplot depicts models with systematic errors at the upper- or middle rating scale range
respectively.

needed as well to gauge the performance with validation data sets. RMSE is
a measure of the average deviation from the ideal linear relationship, i.e. the
diagonals of Fig. 10. One thing must be kept in mind, when using the RMSE
as a performance metric: competing models with identical coefficients may
not be equally suited. This is also illustrated in Fig. 10, where the output
of a model in the left panel has errors randomly distributed around the di-
agonal, while the two models in the right panel both have systematic errors
in the mid- and high range of the rating scale respectively. Consequently,
the left panel model, may be the best choice despite the three models having
identical RMSE. This emphasizes the need of using visual inspection as part
of the process of gauging prediction performance. Visual inspection is also
useful for getting an indicating of whether the Pearson correlation formula
or another correlation formula, Spearman or Kendall, is best suited.

5 Summary of findings

5.1 Main results and contributions

The main outcome of this project was a total of 12 metrics. These are sum-
marised in Table 2. The terms ‘AB-range’ and ‘CD-range’ are defined in Se-
cion 4.2. The metrics provide the means for 1) predictions of the dominating
characteristics (defined by othogonal MDS dimensions) differentiating head-
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phones, as well as prediction of perceptual characteristics of 2) headphones
and 3) loudspeakers. The latter two defined by sensory descriptors in the
Sound wheel [66]. All proposed metrics describe characteristics related to
spectral aspect of sound reproduction systems. This was not intentionally so,
but a results of listeners’ performing better in evaluations of spectral charac-
teristics.

All of the metrics performed at a high level (r ≥ 0.76), with Pearson
correlation coefficients for eight of them being above r ≥ 0.87, e.g. able to
explain or predict ≥ 75 % of the variation of the perceptual ratings. While
the metrics for the prototype headphones of Paper C, may not be of general
use, the remaining metrics are likely valid for prediction of headphones and
compact loudspeaker characteristics in general.

Metric Paper Type AB-range CD-range |r|
DeepBass B HP 20-190 20-15000 0.95
Bass/Mid B HP 20-220 246-3300 0.95
Bass+Mid B HP 140-2000 20-15000 0.93
Mid/Treble B HP 330-1400 3700-14000 0.92
Bass strength* C HP 20-15000 210-15000 0.79
Midrange strength C HP 690-15000 20-15000 0.97
Treble strength C HP 8700-15000 20-15000 0.99
Clean C HP 20-8200 20-15000 0.76
Dark-Bright C HP - - 0.95
BassPunch D L 20-72 20-15000 0.90**
Brilliance D L 8300-10000 20-15000 0.96
Dark-Bright (R) D L - - 0.85

Table 2: Summary of proposed metrics. ‘HP’ denotes headphones. ‘L’ denotes loudspeakers in
a stereo setup. Numbers in the AB- and CD-ranges are in Hz. r represents the Pearson correla-
tion coefficients. All numbers are rounded to two significant digits. Note that the correlations
coefficients are not directly comparable as they are based on different validation schemes. * The
AB and CD ranges (i.e. numerator and denominator respectively) and have been interchanged
for this metric compared to the Paper. This was done to obtain a positive correlation. ** A lower
correlation coefficient of r = 0.70 was found for the training data set.

The contributions of the literature study in Paper A consisted of descrip-
tions of five focus areas of value for obtaining objective perceptual measure-
ments, on which the prediction models could be trained. These were: meth-
ods of selecting the right sensory description and the proper number of these,
as well as methods of loudness equalising sound reproduction systems, opti-
mum listening room specifications for loudspeaker evaluation and finally an
investigation of the validity of evaluations of loudspeakers using headphones
in combination with auralization/virtualisation techniques.

In Paper B the main contribution was a study of the dominating percep-
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tual characteristics differentiating headphones in general. Furthermore, the
generic prediction model framework was established and tested on the two
main MDS dimensions found.

In Paper C the framework from Paper B was again tested for headphones,
but this time for prediction of perceptual characteristics defined by sensory
descriptors from the Sound wheel [66]. Furthermore, the framework for pre-
diction of the sensory descriptor Dark-Bright was proposed.

In Paper D both of the two frameworks were tested on predictions of
perceptual characteristics of loudspeakers in a classical stereo setup. The
generic framework was tested on four different sensory descriptors and the
Dark-Bright framework was expanded by a proposed weighting functions,
which lowered the influence of the midrange frequencies.

Prediction of rankings among systems
For this thesis (but not discussed in the papers), it was also investigated how
well the metrics predicted the rankings of systems. Unfortunately, the rela-
tionship between the mean ratings of systems and the size of the confidence
intervals meant, that the uncertainty of a systems ranking could be as high at
six positions for 8 system×sample combinations (loudspeaker validation set).
A system could for example have a rank of 1 or 6 (ranking uncertainty of 6) de-
pending on the true mean of the perceptual ratings of the set of loudspeakers.
For the perceptual ratings of Paper C, the average ranking uncertainty was
1.8, and the number of correct ranking predictions within the uncertainty of
the mean was 27/35 (77 %). The corresponding statistics for Paper D was
an average ranking uncertainty of 4.5 and 24/24 (100 %) correct predictions.
The worst prediction is terms of ranking was for Clean, were 4 of 7 predicted
rankings were outside the range of possible rankings within the uncertainties
of the perceptual data.

5.2 Secondary contributions

A number of secondary contributions were part of this thesis work as well.
Presented below is a list of contributions selected on the basis of the 17 defi-
nitions of originality from [67, pp. 69-70].

• Introduced the notion that a prediction model might be needed in sev-
eral versions to obtain accurate prediction for all types of sound repro-
duction systems (Section 1.1).

• Formulated a definition of listeners “internal reference”, when evaluat-
ing perceptual characteristics (Paper D).

• Proposed a method for investigating uncertainties of small sets of sound
reproduction systems using bootstrapping and categorisation (Paper C).
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• Introduced, to the audio field of research, a set of criteria for gauging
the suitability of perceptual rating data for predictive modelling, as well
as more nuanced view of gauging model performance (Paper D).

• Introduced a method of monitoring the stability of pair-wise compar-
ison data, such that data analysis can be performed on data from a
sensible number of participants, which one can show is sufficient (Pa-
per B).

• Discussed the potential value of prediction models with genre-dependent
scaling in terms of perceived sensory descriptor intensities (Section 4.3).

6 Future work

A few points of interest that were not investigated within the allotted time of
this project, were identified as having thepotential of leading to better met-
rics. First of all, the loudspeaker studies were conducted in a room with a
intentionally limited reverberation time. In Paper A it was, however, shown
that the reverberation time of common living rooms in western countries are
longer than in DELTA’s listening room, which follows the ITU-R BS.1116 stan-
dard [28]. The consequence of this mismatch, is a direct-to-reverberant (D/R)
ratio, which is not generally representative. This have the effect of reduc-
ing the influence of directivity characteristcsof the loudspeakers, which have
been found of high importance for preference ratings in [81] and successive
studies by Floyd Toole and may also be a significant factor in discriminating
between loudspeakers. Changing environment of evaluation of loudspeak-
ers, may thus led to 1) better overall discriminating, 2) a higher influence of
spatial properties, and 3) more representative (ecologically valid) listening
test data and as a result, more relevant prediction models.

Another identified issue is, that for the loudspeaker metrics, the physical
representation of the sound reproduction consists of recordings made in the
listening position, which is assumed to be unique and fixed. Listeners, how-
ever, vary in height and will move their head. Consequently, it may be more
suited to make a number of recordings which are representative of the range
of positions of listeners’ ears. A first approximation of this was attempted in
the study described in Appendix III, but was not evaluated due to issue in
the listening test design. A second attempt was made for the study of loud-
speakers in a stereo setup. Here, the measurement positions were chosen on
the basis of a study of listener head movements [37] as well as estimates of
variation in listeners ear canals’ height above floor level and an asymmetrical
layout of recording positions chosen:

1. Centre / Sweet spot (height: 110 cm)
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2. Centre (15◦ azimuth, right)

3. Centre (−30◦ azimuth, left)

4. Centre (height: 115 cm)

5. Centre (height: 101 cm)

6. Forward (7.5 cm from centre)

In Paper D only the sweet position was investigated, and as a result it remains
to be investigated whether some position averaging scheme could improve
the performance of the prediction models.

A final missing point of interest is whether prediction models could be
made more generally valid, by calculating the metrics on the basis of pink
noise or e.g. the IEC 60268-1 test signal [26], Either supplementary or as
replacement of the musical excerpts. Pink noise have a frequency spectrum
with equal energy between all octave bands, straining a loudspeaker or head-
phone evenly, while the IEC test signal is a filtered version of pink noise,
which represents an average of reproduction material such as music and
speech. A predict model calculated with a more general test signal, would
reduce the cap between current traditional loudspeaker measurements and
current perceptual measurement methods, and may increase the confidence
in the prediction capabilities of the proposed metrics. Whether this would
be possible, relies on whether a listening test with a small feasible amount of
musical excerpts would be representative of the overall audio reproduction
characteristics for a given target set of sound reproduction systems.

7 Concluding remarks

The purpose of this PhD project was to investigate the potential of mod-
elling perceptual characteristics of headphones and loudspeakers using cur-
rent state-of-the-art methods of conducting listening tests combined with in-
corporation of the current knowledge about the human auditory processing.
The results of this project have demonstrated that this was at least possi-
ble with timbre-related sensory descriptors. Since these were also found to
represent the two most dominating dimensions differentiating headphones
(and loudspeakers [46]), underline the importance of these findings. In terms
of other groups of sensory descriptors from the Sound wheel [66], the data
quality analysis led to identified problems with all of them. Either in terms
of mean ratings, which were not significantly different between the majority
of evaluated systems, or due to lack of consistency in listener ratings, such as
poor discriminating and/or repeatability. Whether this was a consequence
of all other characteristics than the timbre-related ones being small (in com-
parison) or whether it was caused by issues in the listening test methodology
remains to be investigated.
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The modelling efforts of this project led to 12 metrics with Pearson cor-
relations ranging from r = 0.70− 0.99. Among these, bass was found con-
sistently as a characteristic of importance regardless of the type of sound
reproduction system and the method of perceptual evaluation: It was one of
two dominating characteristics differentiating headphones (DeepBass), found
as one of five reliable descriptors for prediction of differentiating character-
istics among prototype headphones (Bass strength), as also found important
for differentiating between loudspeakers in a stereo setup (BassPunch).

The high performance of these metrics not only showed the suitability of
the data basis of the prediction models, but also of the methodology of col-
lecting the data (recording technique and perceptual audio evaluation tech-
nique), as well and the processing of the recordings using loudness mod-
els mimicking the fundamental bottom-up auditory processing steps of the
complex and highly non-linear human auditory system. Furthermore, the
methodology was found suited for modelling of both headphones and loud-
speakers, thus indicating that the influence of loudspeaker-room interaction
affects neither the suitability of the modelling scheme nor the recording-
based data collection method.

A concern in this project was to which degree it would be possible to
make absolute predictions of perceptual evaluations, which was known to be
relative in nature. The mechanics of listeners rating strategies and rating ten-
dencies were described along with the possible measured to counter listeners’
urge to use the rating scale in a non-absolute fashion. The two studies using
sensory descriptors showed that it was possible to make predictions of the
absolute distance in intensities of characteristics between systems. This, how-
ever, required linear fitting of the prediction models on the basis of perceptual
ratings from individual musical excerpts; Strengthening both the prediction
power of the final metrics, but also the dependence between the metrics and
the original content of the listening tests used for training of the models.

The initial literature study of this project, showed that all previous mod-
elling efforts had relied on the assumption of one-size-fits-all: That one pre-
diction model could describe, e.g. preference, of all loudspeakers or head-
phones. The starting point of this thesis was, that this might not be the
case. The results of the headphone study in Paper B, indicated that the two
dominating dimension differentiating headphone might be closely related
to the same dimensions for monophonic reproduction of loudspeakers in a
room [46], but that a third dimension, “Feel of space”, was not found in
the headphone study. Combined with the findings of the remaining stud-
ies of this thesis as well as other studies (e.g. [2, 5, 18, 39, 85]), it shows that
the differentiating characteristics varies between types of sound reproduction
systems. Since preference must depend on these dominating characteristics,
the assumption of one-size-fits-all is not likely to hold. Whether the perception
of characteristics, which are similar between two or more types of systems,
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differs in subtle ways depending on the type of reproduction systems, was
not proven in this thesis work; A result of different sensory descriptors being
chosen for characterisation in each study.

The methodologies described in this thesis may work for more than just
the metrics proposed to this date. They constitute a framework for modelling
of perceptual characteristics, which may be altered or adjusted in order to
model more of the sensory descriptors of the Sound wheel in its present or
future form. The loudness model may be replaced with future state-of-the-art
models. The listening test methodologies may be optimised, e.g. by changing
the reverberation time of the listening room. The generic modelling method
(introduced in Paper B), may be altered for finding an optimum frequency
range of perceptually relevant ripples in the STEP or the temporal averaging
may be changed to capture dynamical aspects of the audio reproduction. In
combination with future expansions of the suited data sets for modelling,
this framework constitutes a sound foundation for future endeavours within
perceptual modelling of sound reproduction characteristics.
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1. Introduction

Abstract

A literature study was conducted focusing on maximizing objectivity of results from
listening evaluations aimed at establishing the relationship between physical and per-
ceptual measurements of loudspeakers. The purpose of the study was to identify and
examine factors influencing the objectivity of data from the listening evaluations.
This paper addresses the following subset of aspects for increasing the objectivity
of data from listening tests: The choice of perceptual attributes, relevance of per-
ceptual attributes, choice of loudness equalisation strategy, optimum listening room
specifications, as well as loudspeaker listening in-situ vs. listening to recordings of
loudspeakers over headphones.

1 Introduction

In the natural sciences, a fundamental prerequisite for making valid conclu-
sions is the collection of objective results from measurements. With regards
to perceptual evaluations, using human subjects, the same goal applies. In [1]
by Blauert, the requirement of objectivity is defined as results which are al-
ways the same, with regards to the statistical inferences, both for multiple
measurements of one assessor and measurements of multiple assessors. Two
factors constitutes this requirement: reproducibility and accuracy. In this con-
text, accuracy is defined as closeness to the true answer and reproducibility
is defined as the degree of variability around this true answer.

Maximizing the objectivity of results in listening evaluations (of loud-
speakers) is a matter of controlling the experimental variables, both the phys-
ical and the psychological. For an overview of these see e.g. [2, 3] or one of
the many listening test standards. Among the most commonly mentioned
are: 1) Playback systems, 2) Attributes, 3) Listening test paradigm, 4) Test
management, 5) Listening room, 6) Stimuli, 7) Listening panel, and finally 8)
Statistics.

The purpose of the present study was to ensure optimal data for an in-
dustrial Ph.D. project aimed at modelling the statistical relationship between
electro-acoustical measurements and perceptual evaluations in the domains
of loudspeakers, headphones, and portable audio systems. Through a com-
prehensive literature study, looking into the aforementioned experimental
variables in more detail, a number of aspects were identified as necessary
for maximizing objectivity of perceptual evaluation. Five of these aspects are
described in the present paper.

Among the physical variables three are investigated in this study: Lis-
tening room specifications, Loudness equalisation, as well as listening mode,
i.e. listening in-situ to loudspeakers versus listening to loudspeaker record-
ings over headphones. The first two have been found to have a statistically
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significant influence on the results of listening tests (see e.g. [4–7]). The last
variable, listening mode, will in case of reproduction over headphones, have
a significant impact on the results if the headphones has not been adequately
calibrated/equalized.

Beside the physical variables a number of dependent variables in the per-
ceptual measurements are also of importance with regards to objectivity, i.e.
variables related to the experimental questions of interest (and the method
of enquiring). The information needed from perceptual evaluation of loud-
speakers typically relates to either: Knowledge about the basic audio quality
(which loudspeaker has the highest audio quality?), the perceptual differ-
ences (which acoustical differences are audible?), or the perceptual differ-
ences significantly influencing basic audio quality (which perceptual differ-
ences are important for preference?). In the third case, the group of sensory
descriptors (timbre, spatial, dynamics, etc.) and the selection of attributes
within these groups has an influence of the prediction of preference, and
therefore becomes directly related to the level of accuracy (and thus the ob-
jectivity) of the results.

Notice however, that other factors, such as defining sensory descriptors
as well as training and monitoring of assessors are also major issues, related
to reduction of statistical noise in the evaluations, but are outside the scope
of this paper. Interested readers are encouraged to read the overviews of
sensory descriptors elicitation methodologies in the Ph.D. thesis’ of Lorho [8]
and Dehlholm [9].

The next sections present studies of each of the five aspects, and finally a
section with a discussion of conclusions.

2 Sensory descriptors

Within sensory evaluations, it is not yet clear how many descriptors are
needed to measure all (significant) perceptual characteristics within the range
of reproduced sound from loudspeakers. In this context a perceived charac-
teristic (of e.g. an acoustical source) is considered evidence of an perceptual
attribute. In many cases it is possible to label a perceptual attribute with a
word, the sensory descriptor. A large number of these sensory descriptors
are suggested in the literature (scientific and commercial) to describe sen-
sations of loudspeakers - both perceptual and affective. A low number of
attributes is preferable with regards to simplicity, but choosing a set of sen-
sory descriptors, which does not relate to all perceivable differences between
the products being evaluated, leads to a risk of bias, which reduces the ac-
curacy of the evaluation. This bias stems from the attributes not included,
which may influence the ratings of the perceptual attributes included (see
e.g. [3]). An example could be perceived distortion affecting an assessor’s
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rating of ’clarity’. The phenomenon is sometimes referred to as perceptual
’bleeding’.

The sets of sensory descriptors reported in the literature for audio repro-
duction systems, such as loudspeakers and headphones ranges in number
from 7 sensory descriptors in one study up to 55 in another, which could
therefore be considered the range of expected sensory descriptors required
to comprehensively describe the perceptual characteristics of a set of loud-
speaker or a set of headphones [10–13].

Basic audio quality (BAQ) is assumed to be the weighted auditory sum-
mation of a stimulus’ contributions from individual perceptual attributes [3].
In an effort to predict the perceptual attributes involved in the summation,
one approach is to make a statistical regression model of the measured re-
sponses of the evaluated sensory descriptors, and investigate the relationship
to the affective metric BAQ. A regression model can provide insight with re-
gards to the BAQ variance explained by the individual sensory descriptors’
ratings, as illustrated in Fig. A.1. If the perceptual attributes described by
the sensory descriptors are independent and unidimensional, the number of
principal components/dimensions in the data should correspond to the num-
ber of sensory descriptors. If these requirements are not fully met, the num-
ber of principal dimensions will be lower than the number of descriptors. In
one study by Rumsey et al. [14] concerning multi-channel reproduction and
utilizing the regression model approach, 2 main dimensions was found to
explain 97 % of the variance in an experiment with BAQ prediction of sound
reproduced by loudspeakers.

Another approach is useful if the perceivable differences between loud-
speakers’ sound reproduction capabilities are of interest (independent of
whether they contribute significantly to perception of BAQ). An evaluation is
conducted measuring the differences between loudspeakers (e.g. a pair-wise
comparison test or an attribute test) and a statistical investigation (such as
PCA or MDS) is made of the dimensional span of the evaluations. Among
the experiments described in [10, 12, 15, 16] ( [12] was a headphone exper-
iment and [10] included both a loudspeaker and a headphone experiment),
2-4 main dimensions explained most of the variance in experiments of dis-
similarities of sound reproduced by loudspeakers:

- 2 dimensions in [15] (explained variance not reported)

- 87 % for 2 dimensions in [16]

- 90 % for 4 dimensions in [10]

For the two cited papers on headphones the results were similar with 85 %
reported for 5 dimensions in [10], and 96 % for 4 dimensions in [12].

Within the methodologies described so far lies the assumption that per-
ceptual attributes can be adequately described by using only words as sen-
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Fig. A.1: Example of variance explained by each component in a regression model. In this
example six components are needed in the model to explain 95 % of the variance in the ratings
of a basic audio quality evaluation.

sory descriptors. This assumption has previously been studied with the hy-
pothesis that a graphical response format might lead to a more accurate de-
scription of especially spatial perceptual attributes. This was for instance
investigated in [17, 18], where a graphical response format was found to be
a useful supplement to the verbal attributes, i.e. leading to a more detailed
spatial characterisation, fewer attributes, and was found to reveal collinearity
problems within the verbal sensory descriptors related to spatial perception1.
The conclusion being that the limitations of words as mediators of spatial per-
ception, are important to take into account in evaluations where the spatial
perception is of interest.

Summing up, the number of sensory descriptors needed to describe per-
ceptual loudspeaker differences may be as low as 2-4 if carefully selected,
i.e. 1) having a high degree of independence (and unidimensionality) among
them, 2) sufficiently describing the perceptible loudspeaker differences, and
3) being sufficient to describe the perceptible differences of interest (as op-
posed to including a graphical response format instead of words).

3 Relevant perceptual attributes

A common trait regarding known methods of elicitation of sensory descrip-
tors for characterisation of loudspeaker differences (such as QDA [19]), is the
emphasis on uncovering all perceived differences, rather than on identifying
the dominating perceivable differences and their individual importance. Fur-
thermore the result is often presented in a spider plot, where the importances
of each descriptor with regards to basic audio quality (or preference) is miss-
ing. One exception is the Napping method [20], where the limitation of two
dimensions (a piece of paper) and the difference in width and height forces

1Collinearity in statistics is the occurrence of linear relations between variables leading to
problems in the calculation of regression coefficients.
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the assessor to actively choose the most importance ones. For loudspeaker
evaluations the limitation of only two dimensions may however be too restric-
tive (in accordance with the conclusions of section 2). In the next subsection
studies investigation the salience of perceptual attributes are discussed.

3.1 Salience of perceptual attributes

One approach to uncover which perceptual attributes dominates the over-
all perception of basic audio quality is to investigate the auditory sensitivity
within the areas of acoustics wherein loudspeakers differentiate: changes
in spectrum, phase, source directivity etc. The outcome of this approach
is briefly reviewed by Brian Moore in [21] (section 10.3). His main points
are summarized in the next few lines. The lack of spectral distortion (here
defined as all deviations from a flat frequency response) has been found to
correlate highly with preference. Not only regarding the on-axis frequency
response, but also off-axis (in the horizontal and median plane), which con-
tributes with lateral energy and thus the sense of a spatial reproduction. Be-
sides the sensitivity to spectral distortion, Moore touches on the subject of
phase distortion (deviations from perfect phase reproduction). The human
auditory system is very sensitive to phase distortion, especially with regards
to transients, as the stimuli reaching the ear is processed/perceived without
the presence of reflections, as these reaches the ear with a time delay larger
than the duration of the transients.

Other researchers have looked into sensitivity in the perception of sound
quality of loudspeakers as well: The perceptual influence of frequency re-
sponse irregularities were investigated in 1981 by Bücklein [22], phase dis-
tortion was investigated by Møller in [23] and again in [24], and by Choisel
and Martin for headphones [25] and for loudspeakers [26], while Bech in-
vestigated audibility of low-frequency irregularities in [27]. Additionally, an
auditory model was described in a number of papers from 2003-2004 by Tan
et al., which was trained to predict perceptual degradation of common spec-
tral distortions in loudspeakers [28, 29] (validated in [30]).

These studies of the audibility of degradations in loudspeaker reproduc-
tion, using a psychoacoustics approach may well prove useful for under-
standing the salience of perceptual attributes.

3.2 The role of timbre

While the quantity and importance of sensory descriptors depend on the
type of loudspeakers and loudspeaker setup (for example the number of re-
production channels), timbre has been identified as the dominating factor in
a number of studies, ranging from an experiment using a mono loudspeaker
setup investigating perceived differences in loudspeaker comparisons [15],
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to a surround sound experiment investigating contributions from perceptual
attribute categories to the overall perception of basic audio quality [14]. In
the study by Rumsey et al. [14] it was established that approximately 70 % of
the perceptual differences between loudspeakers were related to timbre for
surround sound stimuli (5.0) down-mixed to various configurations of three,
two or one loudspeaker.

The importance of timbre is not limited to loudspeakers, but was for in-
stance also found to be dominating in a headphone study by Olive et. al. [13],
where the sensory descriptor "Good spectral balance" was found to have the
highest correlation with Preference (r = 0.92).

To maximize the objectivity of a study accessing the general characteristics
or main differences of loudspeakers’ sound reproduction, it is inferred from
the mentioned studies, that the set of sensory descriptors must be chosen
such that it is dominated by descriptors related to timbre.

4 Loudness adjustment strategy

Differences in loudness between the sound reproduction of different loud-
speakers has long been known to be a confounding factor in perceptual
evaluation of sound quality [6, 7], i.e. affecting evaluations of other at-
tributes if not properly controlled. Therefore loudness equalisation is needed
to avoid a systematic bias in perceptual evaluations. In principle the ideal
loudness equalisation should account for differences in loudspeakers’ sound
reproduction (sensitivity as well as frequency- and phase response), sam-
ples/programme material, and assessors’ loudness perception and any inter-
action among these.

An inherent problem with loudness equalisation, is stimuli containing
multiple sources, such as is common for music. While the overall percep-
tion of a particular equalisation scheme might lead to a set of stimuli being
perceived as equally loud on a set of loudness equalised loudspeakers, the
individual sources in the stimuli might not, e.g. the bass may seem louder
on some of the loudspeaker and the guitar lower on others. This is caused
by differences in frequency responses, i.e. dips and peaks. While the dips
and peaks may differ in frequency and magnitude from one loudspeaker to
another, all of them have dips at the very low and very high frequencies - the
roll-off. This fact makes it relevant to decide whether the loudness equalisa-
tion scheme should include the entire audible frequency range, or only the
frequency range within the lowest common cut-off frequency of the set of
loudspeakers.

Furthermore large differences in loudness perception exists between sub-
jects, e.g. as a consequence of natural variation in hearing thresholds [31].
This nature variation is allowed in perceptual evaluations, as it is common
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in perceptual evaluations to allow assessors within the entire normal hearing
range up to ≤ 20 dB HL [32] or even ≤ 25 dB HL [33]. While assessors fulfill-
ing these lax requirements may be representative of the general population,
it allows for assessor differences not only with regards to absolute differences
in overall loudness perception, but also with regards to frequency dependent
differences. The difference in auditory threshold becomes especially relevant,
when the stimuli included in the listening evaluation have a dynamic range
with parts in the range close to the hearing threshold. Combined with the fact
that differences in loudness was found to be perceived for small differences
in sound levels (Just noticeable differences of ≈ 0.5 dB SPL) [34], sufficiently
good loudness equalisation becomes a challenge to accomplish.

Over the years many loudness equalisation schemes have been utilized to
deal with the challenges of loudness equalisation. These can be categorised
as listed here:

1. Physical RMS measurements with various time- and frequency weight-
ings (e.g. using a pink noise calibration signal as in [35])

2. Physical measurements of loudness based on various auditory loudness
models (e.g. models by either Zwicker [36, 37] or Moore [30, 38])

3. Perceptual measures (e.g. averaged loudness equalisation from percep-
tual listening tests as in [25])

For each of these three methods the calibration signal can be chosen as a
general signal such as Pink noise (broadband or narrowband) or the set of
stimuli used in the main listening test.

The approach described in item 1 was recently used at DELTA (method
described in [39]). A band-limited pink noise reference stimulus was played
back on the loudspeakers being tested and the equivalent sound pressure
levels, Leq, were measured and adjusted to the same level. The result was an
experimental setup with low-frequency content having audible differences in
loudness for selected musical excerpts, but having approximately the same
perceived loudness of the vocal.

The choice of frequency weighting scheme (A, B, ...) used for loudness
equalisation using a pink noise test signal has been discussed in the literature
as well. In [35] it is reported that equalising using a B-weighted pink noise
test signal correlates better with perception than A-weighted pink noise test
signals in tasks of loudness equalisation performed by individual assessors.

A newer paper by Soulodre and Norcross [34] recommends another weight-
ing curve, ’RLB’, which is a cross between the standard ’B’ and ’C’ curves at
low frequencies and flat above ≈ 400 Hz, which is found to better match
subjective loudness ratings of ’typical program material’, compared to the
standard A- and B- weighting curves.
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Using loudness models to equalise loudness across loudspeakers is not
presently found perceptually satisfactorily for complex stimuli such as mu-
sic, but some papers describe a procedure, where the models are used to
obtain a rough approximation followed by a manual ’fine-equalization’ of
the loudspeakers’ sound reproduction by the experimenters or a subset of
the assessors (e.g. [14]).

Recently, Koehl and Paquier [40] (and later Koehl et al. [41]) have sug-
gested a novel method, which attempts to eliminate individual perceptual
differences of loudness from listening tests. By allowing the assessors to
adjust the playback level individually within ± 6 dB with the instruction
of equalising the playback level of each stimulus. This strategy was com-
pared to a strategy of loudness equalising by having three expert listeners
agree on loudspeaker levels for the individual music excerpts across the four
loudspeakers. Their results showed comparable results in a preference eval-
uation, but that the assessors were significantly better at discriminating be-
tween some of the loudspeakers, in the sessions where the individual asses-
sors equalised the loudspeakers.

While it may seem intuitively better to loudness equalise loudspeakers
for each stimulus in a loudness matching experiment, Soulodre et al. showed
in [34] that performance in terms of assessor reliability had the smallest stan-
dard error for white noise stimuli compared to a variety of program material
(jazz, speech, etc.).

Furthermore, for narrow band stimuli within frequency ranges coinciding
with significant loudspeaker differences, the loudspeaker differences may be
unintentionally compensated for, basically comprising a frequency response
equalisation rather than a loudness equalisation.

5 Listening room specifications

Since the British Broadcasting Corporation (BBC) started investigating the
influence of domestic room acoustics on the perceived quality of their trans-
missions [42], many approaches have been made to obtain results of listening
tests, which could be considered general and valid for the largest possible
proportion of domestic listening spaces.

The room influence is a general concern in relation to perceptual evalu-
ation of loudspeakers, as the loudspeaker-room-listener interaction is eval-
uated rather than the loudspeaker isolated. Therefore the evaluation setup
should mimic that of the intended users of the loudspeakers being evaluated.
A loudspeaker will be used in many acoustically different rooms, positions,
and conditions, all having an influence on the sound field. Furthermore the
users cannot be assumed to listen solely in the sweet spot2. They will sit in a

2The sweet spot is the optimum listening position, which the sound experience is commonly
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large range of positions relative to the loudspeakers; positions varying both
horizontally and vertically, and often the listeners will not even be station-
ary, but moving around. How do we evaluate a loudspeaker such that the
conclusions are valid for the largest possible proportion of listening spaces?
The current standards (described later on) strives to achieve a room response
which has limited colouration (changes in spectral composition of a played
back stimulus compared to the original) in the mid- and high frequencies and
a room which is symmetrical in an effort to obtain an unbiased evaluation.
The underlying assumption being that this strategy will correlate the most
with the average listening experiences of the users.

Two main listening standards are commonly utilized in perceptual loud-
speaker evaluations: The ITU standard ITU-R BS.1116-1 [43] and the IEC
60268-13 standard [44]. Other standards include the AES20 standard [45]
which has specifications similar to the IEC standard, and the EBU Tech
3276 [46, 47] which closely resembles the ITU standard with regards to room
specifications. ITU-R BS.1116-1 [43] was designed for critical listening and
specifically for evaluation of codecs and detection of small degradations. It
specifies a very low reverberation time, which minimises the room influence
and put emphasis on the direct sound. A concern with listening rooms fulfill-
ing this strict standard is, that few domestic rooms have reverberation times
this low, which has the consequence that loudspeakers designed for domestic
conditions will sound different in most real life situations. A better alterna-
tive might be the IEC 60268-13 standard [44], which has the same philosophy
regarding colouration, but specifies a larger target for the reverberation times.
The reverberation times in the IEC standards corresponds to those found in
the mentioned BBC study [42]. Utilizing the more reverberant IEC 60268-
13 standardised listening room, will affect the spatial sensation of the stimuli
and increase the perceptual difference between loudspeakers with differences
in directivity patterns, as well as being assumed to correspond better to a
common western living room.

Studies of domestic rooms in Europe (UK: [42, 48, 49], Spain: [50], Aus-
tria: [51]) can provide background knowledge for making a qualified choice
between the room specifications from ITU and IEC. A list of prior studies of
reverberation times and room sizes is presented in Table A.1, dating from the
aforementioned BBC study from the 1950s [42] to a recent and very compre-
hensive survey by Dias & Pedrero from 2005 [50].

From Table A.1 the difference in reverberation times between the Building
Research Establishment (BRE) study in UK and the Diaz & Pedrero study
[50] in Spain showed the influence of very different styles of buildings and
interior decoration. Notice that even the low reverberation times of the British

optimised for, e.g. for a stereo setup the third corner of a equal-sided triangle with loudspeakers
in the other two corners.
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Author & source Year Rooms [#] Avg. volume [m3] Reverberation time [s]

Geddes et al. [42] 1954 16 Not reported 60/8000 Hz : 0.55/0.30
Jackson & Leventhall
[48]

1972 50 44 125/8000 Hz : 0.69/0.40

BRE [49] 1968 14 Not reported 100/3150 Hz : 0.39/0.32
BRE [49] 1972 60 35 100/3150 Hz : 0.44/0.33
BRE [49] 1983 47 39 100/4000 Hz : 0.38/0.37
Diaz & Pedrero [50] 2005 3211 46.2 125/4000 Hz : 0.60/0.35
Lang, Judith [51] 2012 113 30-80 63/3150 Hz : 0.60/0.48

ITU-R BS.1116-1 [43] 1997 100∗ 200-4000 Hz : 0.25± 0.05
IEC 60268-13 [44] 1998 100.17∗∗ 200-4000 Hz : 0.45± 0.15

Table A.1: Surveys of reverberation times in domestic rooms (1954-2005). Maximum and min-
imum reverberation time with the specified frequency range is reported. The two bottom rows
displays the two main listening room standards. ∗ The ITU standard reverberation times are
stated here for a 100 m2 room, but other sizes are allowed. For smaller room sizes the allowed
reverberation times are lower. ∗∗ The IEC reference room volume is stated here. In the IEC
standard the specified reverberation times are contant for all allowable room sizes.

domestic rooms are higher than those specified in the ITU standard ITU-R
BS.1116-1 [43].

While the ITU standard might be well suited for critical evaluation of
codecs, the requirements of the IEC 60268-13 standard [44] was found to be a
better fit to the reverberation times reported in Table A.1 of domestic rooms
in Europe.

6 Listening in-situ vs. listening over headphones

When conducting direct perceptual evaluations of loudspeakers, they should
ideally be evaluated under identical conditions. To ensure this, the loud-
speakers should be positioned in the same place in the room or the influence
of different positions should be eliminated. Furthermore the limited human
auditory memory (limited in time to ≈ 20 sec [52]), should be accounted for
in the measurement setup, i.e. by enabling the assessors to switch between
loudspeakers fast or ideally instantaneously. Consequently, the ideal is to
have the loudspeakers positioned in the same position at the same time. As
this is not possible a compromise is needed. One possibility is to have a
loudspeaker shuffler to swiftly switch between loudspeakers, enabling an
measurement setup with a fixed loudspeaker position - for the loudspeaker
playing. The shuffler must operate silently to avoid unwanted cues. An al-
ternative is to position the loudspeakers side-by-side and randomise their
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position between assessors in order to statistically reduce the variation of
room influence between positions, affecting the evaluation accuracy. In this
setup, the loudspeakers do however influence each others acoustical output
to some degree. Lastly, the room influence of different loudspeaker positions
(with sufficient distances to minimize interaction) can be included in the de-
sign of the experiment, in an effort to statistically separate the influence of
the loudspeaker-room interaction from the loudspeaker output. While this is
still considered a method of direct evaluation, having loudspeaker position
as an experimental variable increases the number of assessors (or listening
sessions) required to ensure a statistically balanced experiment.

Indirect listening is an alternative to direct listening. In indirect listening
evaluations recordings are made of each loudspeaker, e.g. using a head-and-
torso simulator (HATS). Afterwards the recordings are reproduced over the
assessors’ headphones. This allows all loudspeakers to be evaluated while
positioned ideally. Furthermore the assessor position is well-defined, as the
position of the recording microphones does not change during playback,
while an assessor in a direct comparison could move during a listening ses-
sion.

It also allows multiple assessors to make evaluations of the same loud-
speakers simultaneously, as the evaluation does not require use of the phys-
ical loudspeakers, which is of practical value. But is it a valid method for
evaluation of loudspeakers? Does it lead to the same conclusions as the direct
evaluations? And under which circumstances? The literature review for the
considerations listed below included the following topics: Headphone trans-
fer functions [53], Headphone calibration ( [3], section 8.3), Binaural Synthe-
sis [11, 54–56], Assessor asymmetry [57], Localisation performance [58], and
Auralization of loudspeakers [41, 59]. The considerations regarding repro-
duction of loudspeakers over headphones are listed below:

1. If the headphones are equalised with respect to frequency response,
evaluation of recordings of loudspeakers over headphones is valid for
attributes related to timbre, within these specified limitations:

- Above ≈ 7 kHz, the problem of individual differences makes evalua-
tions relying on frequency content in this region unreliable [53], unless
individual equalisation is performed.

- For complex auditory environments, spatial distortion can lead to
’bleeding’ of spatial differences onto perceived timbral differences [11],
i.e. affect assessor ratings of unrelated perceptual attributes. By spatial
distortion is meant changes in perception of spatial attributes, such as
reproduction width, depth, localisation, envelopment or similar.

2. For evaluation of certain spatial attributes the use of individual Head-
related transfer functions (HRTFs) is required, to obtain sufficient repro-
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duction accuracy. With regards to localisation, this is not just a matter
of increasing precision, but also of avoiding front-back confusion [58].
Individual HRTFs are needed to correct for both differences between
subjects and inter-subject differences, i.e. head- and outer ear asymme-
try [57, 58].

3. A final limitation, relates to the physical sensation experienced while
listening to stimuli at very high sound pressure levels, especially if the
low frequency content is dominating. This is rarely a problem as stimuli
is presented at lower SPLs to ensure that assessors do not risk hearing
damage from listening sessions. In some cases reproduction of bass
content in the presented stimuli may be enhanced by use of a hybrid
setup with a set of open headphones and a subwoofer (see e.g. [59]).

Furthermore some concern has been expressed in relation to cross-modal
interactions for evaluation of certain stimuli, such as classical concerts. The
concern regards the influence on assessors of having tests in small listening
booths, compared to the bigger room needed for direct-comparison of loud-
speakers, which has a larger visual sense of space. Others have found that
it is not a concern for automotive evaluations, where evaluations in-situ in
cars, corresponded well to evaluations of recordings conducted in listening
booths [11].

7 Conclusions

In this paper a literature study of five aspects of perceptual evaluations were
presented with the purpose of maximizing the objectivity of results from
perceptual evaluations of loudspeakers.

While the number of sensory descriptors describing perceived dissimilar-
ities between loudspeakers was found in the literature to range from 7 to
55 descriptors, other studies showed that only 2-4 principal dimensions ex-
plained a large amount of the variations perceived in loudspeaker evaluations
(87 %− 97 %). This is evidence of a low degree of independence among the
descriptors, leading to noisy (and inefficient) perceptual evaluations. While
the number of sensory descriptors can be decreased if they have a high degree
of independence, it is also important to avoid ’bleeding’, i.e. all perceptible
differences between loudspeaker should be sufficiently covered by the set of
sensory descriptors. Finally, it is valuable to consider whether the use of sen-
sory descriptors (words) are sufficient to describe the perceptible differences,
or whether e.g. a graphical response format is needed.

Timbre was found in a number of studies looking into perceptual profiling
of loudspeakers to be the dominating perceived characteristic between loud-
speakers (and headphones) and as a consequence timbral descriptors should
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be prioritised in the elicitation process and possibly taken into account in
the choice of elicitation methodology. Investigating the models developed by
Tan et al. in [28–30] could, to the authors’ opinion, be of further value for
evaluation of differences of importance in electro-acoustic measurement data
on perception.

Differences in perceived loudness of loudspeakers’ sound reproduction
in listening tests are known to affect sensory ratings significantly and must
therefore be minimized. A method by Koehl et al. [40] appeared to be the
best loudness equalisation strategy, which introduced individual loudness
matching performed by each assessor. This method may potentially be fur-
ther improved by using a noise signal (white or pink) as loudness matching
stimuli (as opposed to the stimuli for the actual listening evaluation), as it
was found in [34] that using a white noise stimulus minimized the variability
of assessor loudness matchings in a repeated loudness matching evaluation
of loudspeakers.

A listening room for perceptual evaluations, should ideally have the rever-
beration time of typical domestic rooms, for the results to be representative
of the average user experience. Furthermore the room response should be
flat at mid- and high frequencies to avoid colouration of the acoustical out-
put. Listening rooms complying with the IEC 60268-13 standard was found
most suited for evaluation of loudspeakers, while listening rooms comply-
ing to the ITU BS.1116-1 standard have too low reverberation times, which
may influence the perception of spatial qualities of loudspeakers in stereo or
surround setups, and potentially bias the evaluations. With the large cur-
rent research focus on spatial aspects, this is a needed experimental design
variable to consider to maximize measurement accuracy.

Evaluation of loudspeaker recordings presented over headphones was
found to be an unbiased alternative to in-situ evaluations; within a set of lim-
itations listed in section 6, setting requirements for equalisation with respect
to the nature of evaluation. Most noticeable is the conclusion that individual
equalisation is needed for evaluations of any sensory descriptors, affected
by frequencies above ≈ 7 kHz, i.e. not only evaluation of treble, but also
descriptors such timbral balance, clarity, or any other descriptors that may
be influenced by the high frequency reproduction. Failing to take this into
account could affect accuracy as well as reliability.

Handling these five aspects in perceptual evaluations will improve data
objectivity, the prerequisite for making valid scientific conclusions.
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1. Introduction

Abstract

The perceptual differences between the sound reproductions of headphones were inves-
tigated in a pair-wise comparison study. Two musical excerpts were reproduced over
21 headphones positioned on a mannequin and recorded. The recordings were then
processed and reproduced over one set of headphones to listeners, who were asked to
evaluate their perceived degree of dissimilarity. The two musical excerpts were used
in separate experiments. The processing of the recordings consisted of compensating
for the influences of the playback headphones worn by the listeners as well as for the
mannequin’s ear canals. A multidimensional scaling analysis revealed two dominat-
ing perceptual dimensions used by the listeners to differentiate the reproductions of
the headphones. These dimensions were similar for the two musical excerpts. Ob-
jective metrics are proposed to describe them, leading to correlations ranging from
0.89 to 0.97 between the dimensions and metrics. The first perceptual dimension was
associated with the relative strength of bass, while the second dimension was related
to the relative strength of the lower midrange.

1 Introduction

Listening over headphones has gained increasing popularity during the last
decade or more and with it the interest in making better headphones. The
headphones research effort however extends much further back in time and
has had several focus areas, such as the reduction of distortion [1], the choice
of the design target for the frequency response (see e.g. [2–4]), as well as
the perceptual investigations of general sound quality [5], subjective prefer-
ence [6], spatial characteristics [7, 8], and the preservation of cues important
for externalisation [9]. Furthermore, investigations into the characteristics of
headphones have been conducted in an effort to differentiate between the
numerous available headphone models [8, 10], as understanding of the per-
ceptually dominating characteristics may focus the research effort towards
the limiting factors of audio reproduction. The aim of the present study was
to highlight the dominating auditory perceptual dimensions differentiating
headphones and to relate these dimensions to objective metrics.

In the recent years, a number of studies have focused on quantifying the
optimum headphone reproduction leading to the highest preference among
listeners [5, 6, 11]. These studies have relied on the assumption that a global
preference exists, a “one size fits all”. It has however been established that
clusters exist with regards to listener preference in a wide range of appli-
cations and areas, e.g. binaural mixing algorithms [12], multichannel audio
quality [13] or other sensory domains such as tasting [14]. Since audio repro-
duction free from influences from the reproduction equipment is not possible,
compromises must be made in the electro-acoustic design of headphones.
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Manufacturers must prioritize between these compromises in the effort to
minimize the difference between the design target and the obtained audio re-
production. This has the consequence that, even if all listeners preferred the
same ideal (the manufacturers design target), they might not prefer the same
compromise. This issue can be investigated by performing a perceptual char-
acterisation of headphones and study the relationship between the obtained
characteristics and the observed clustering in listener preference among con-
sumers. The efforts of perceptual characterisation of headphones [6–8, 11]
have led to a large number of sensory descriptors1 describing the differences
between headphones. It is however unclear how important the individual
sensory descriptors are for the overall sound perception of headphones.

[7] tested eight headphones. Twenty listeners evaluated the similarity
of the headphone reproduction of five musical excerpts on 30 sensory de-
scriptors (adjectives). A factor analysis of the data led to five main fac-
tors needed for differentiating the headphones: sharpness/hardness, clear-
ness/distinctness, disturbing sounds, brightness/darkness, and feeling of
space. The study gave insight into characteristics differentiating headphones
for the included set of headphones, but had a number of limitations. The
30 sensory descriptors were imposed on the listeners, as the original sen-
sory descriptor elicitation process was conducted without the listeners par-
ticipating in the study. Consequently all perceivable differences might not
have been described and the listeners, naïve to sound reproduction evalua-
tion, might not have been able to fully understand the proposed descriptors.
Furthermore, the reproduction technologies of the included headphones are
no longer representative of the products available today, which are almost
exclusively electro-dynamic transducers. Additionally, the listeners were in-
experienced with headphone listening, which may also have affected their
expectations. Altogether the conclusions of the study may not have been rep-
resentative of differences between headphones in general at the time, due to
the limited number of products, and may not be representative of perceived
headphone differences today, due to the shift in technology and the increased
usage of headphones for listening to music.

In [6], listener preference among six headphones was evaluated. Ten lis-
teners were asked to describe the characteristics of each set of headphones,
leading to 19 sensory descriptors. Finally, the frequency of occurrence of
each of these 19 terms was analysed with regards to correlation with the
preference scores, thereby describing the main characteristics important for
preference ratings (both negative or positive effects). The three most posi-
tively correlated descriptors were: good spectral balance, wide sound stage
and neutral/low coloration, while the three descriptors leading to the low-

1A sensory descriptor is defined here as a word or phrase that describes, identifies, or labels a
perceptual characteristic of a system, e.g. a headphone reproduction. This definition is adapted
from [15].
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est negative correlations were: distorted, dull and coloured. While provid-
ing valuable insights regarding the factors influencing preference ratings of
the six tested headphones, the listeners were specifically trained to evaluate
linear and non-linear distortion, which may have affected their focus with
regards to preference ratings of headphones.

In [6, 7, 11], the headphone evaluations were performed as a real-device
test, i.e. with the listeners wearing the headphones during the evaluations.
This has the advantage of getting an accurate representation of the head-
phones’ sound reproduction, but can also lead to biases related to other fac-
tors than the reproduction, such as the sense of comfort [6]. Furthermore,
direct comparison of headphones is affected by the time needed to switch
between headphones, increasing the complexity of the listeners’ evaluation
task and making the data quality very dependent on their ability to mem-
orise the characteristics of one headphone while having another put on. In
these three studies, the headphones were put on by a test instructor (“semi
blind” paradigm) to limit biases related to listeners’ interaction with the
headphones. This may however also influence the evaluations, e.g. by lead-
ing to a non-optimum fit on the listeners ears or by influencing the listeners
by being present during the test.

In [8], six headphones (five with active noise cancellation (ANC) technol-
ogy) were evaluated on ten descriptors. The reproductions of the headphones
were recorded before being compared. The recordings were made with the
headphones placed on a mannequin with background noise playing from
external loudspeakers and either with or without a musical excerpt being re-
produced by the headphones themselves. The stimuli, representing the six
headphones, were then reproduced over a pair of reference headphones in the
listening test, thereby allowing instantaneous comparison in a double-blind
paradigm. The test with the musical excerpt led to four main dimensions
identified: timbre/attenuation, dynamic/spatial, precision/stereo space, as
well as treble range. The paradigm led to an efficient evaluation of ANC
headphones, with the compromise of using recordings to represent the head-
phones.

Lavandier and collaborators developed a protocol to investigate percep-
tual dimensions used to differentiate the sound reproduction of loudspeakers
in a monophonic setup [16–18]. The reproduction of musical excerpts repro-
duced over a large number of loudspeakers was recorded and later presented
over headphones to listeners in pair-wise comparisons. This protocol led to
stable results for a large collection of loudspeakers [18] and for different mu-
sical excerpts [16, 17]. The result of a multidimensional scaling (MDS) anal-
ysis of the data collected by [18] revealed three main perceptual dimensions:
bass/treble balance, relative strength of midrange, and feeling of space. It
would be of interest to investigate the influence of differences in audio re-
production separately from room influences, as is possible in evaluation of
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headphone reproduction.
Lavandier and collaborators showed that many reproduction systems are

needed to uncover all perceptual dimensions: three dimensions were uncov-
ered in the study with 37 loudspeakers [18], while only the first two were
found in the previous studies with 12 loudspeakers [16, 17]. The previously
mentioned headphone characterisation studies only included between 4 and
8 headphone models [6–8, 11]. Additionally, when one wants to describe
the perceptual dimensions with objective metrics, involving more stimuli in-
creases the chances of having the stimuli more homogeneously spread along
the different perceptual dimensions, allowing for a more reliable objective
description of these dimensions. Finally, comparing more loudspeakers or
headphones should lead to perceptual dimensions, which are more represen-
tative of loudspeakers/headphones in general rather than of the particular
set of systems under test.

The main purpose of this study was to investigate the extent to which the
results with loudspeakers were valid for headphones, i.e. for audio repro-
duction with neither room influences nor artefacts from systems with mul-
tiple drivers. By including a much larger set of headphones than presented
in previous studies, the aim was to establish a more general understand-
ing of the main characteristics of headphones audio reproduction and the
perceptual significance of measurable differences. Additionally, it was inves-
tigated whether an optimization routine, would lead to metrics describing
the perceptual differences with higher correlations than previously found in
the literature.

The present study consisted of two listening tests, involving different mu-
sical excerpts, but the same experimental protocol and the same 21 head-
phones. As in the protocols proposed by [16, 17] and [8], recordings of the
headphones were used as an alternative to real-device evaluation to avoid
problems related to differences in interaction between individuals and head-
phones [19] as well as removing biases related to other modalities, such as
visual or haptic impressions. Naïve listeners were instructed to evaluate the
degree of dissimilarity between the headphones in a pair-wise comparison
paradigm similar to that of [17]. The pair-wise comparison data comprises a
direct measure of dissimilarity, which provides insight into the latent struc-
ture of the listeners internal decision criteria. An MDS analysis was used to
describe this structure and reveal its dimensionality. Metrics are proposed
to describe the dominating perceptual dimensions. These metrics are based
on computations of the spectral content of the test stimuli, but the estimated
loudness spectrum was used rather than the frequency spectrum, to take the
properties of the human auditory system into account (e.g. middle ear influ-
ence, frequency-dependent sound level perception, and frequency masking).
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Table B.1: Distribution of the type of headphones included in this study.

Open-back or Semi-open-back Closed-back
Circumaural 4 9
Supraaural 1 7

2 Methods

2.1 Headphones

A set of 21 electrodynamic headphones was included in each experiment.
It consisted of six prototypes from one manufacturer, nine commercially
available models from another manufacturer, and additional models from
six other manufacturers. The models were a mix of open- and closed-back
headphones, circumaural and supraaural models as shown in Table B.1, and
spanning more than a factor 10 in price (from ≈ 30 USD to > 350 USD).

2.2 Recording and processing

The stimuli for each experiment consisted of the recordings of the sound
reproductions from the 21 headphones. These recordings were reproduced
over a pair of Sennheiser HD 650 headphones (referred to as the playback
headphones in the following). The processing steps utilised to record and
prepare the stimuli in the experiments were the following. Musical excerpts
were played back over the headphones positioned on a B&K HATS 4128C
mannequin and the binaural output was recorded in 32 bit/48 kHz WAV
format. The headphone positioning was checked by recording pink noise
and comparing the right-left input level balance prior to recording of the
musical excerpts. In cases of leakage, the level was clearly lower in one
channel. In cases with imbalanced driver sensitivity or poor mannequin ear
fit, perceivable left-right imbalance could not be completely avoided. The
recording gain was adjusted for each set of headphones to obtain similar
output levels independent of their sensitivity. A control listening concluded
each gain adjustment to avoid a playback level with increased non-linear
distortion.

The influence of the ear canals of the mannequin was removed with an
128th order minimum-phase inverse finite impulse response filter based on
measurements by B&K of the ear canal influence from the specific man-
nequin. The influence of the playback headphones were compensated by
an inverse filter designed using a MATLAB toolbox in development [20].
The toolbox facilitates the design of minimum-phase, linear-phase and zero
phase-filters. A minimum-phase filter was chosen to compensate for the am-
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Fig. B.1: (Color online) Inverse filter design. The upper plot shows the measured mean trans-
fer function (line), the regularisation curve (dotted) and the regularised inversion target (dash-
dotted). The lower plot shows the target inverse filter (dotted) and the compensated transfer
function (line).

plitude response of the playback headphones while avoiding reported po-
tential pre-ringing artefacts of linear-phase filters [21]. The filter design in-
cluded averaging over measurements, regularisation, octave smoothing of the
measured transfer function, and 1/9-octave smoothing of the regularisation.
These parameter settings in the toolbox were based on informal experimenta-
tion and perceptual evaluations by two of the authors. The inverse filter was
based on measurements of the frequency response of nine Sennheiser HD
650 headphones positioned on the mannequin and averaged across channels.
Plots of the playback headphones frequency response and compensation fil-
ter are shown in Figure B.1. The resulting filter was irregular in the lowest
and highest frequencies, but had an extended bass response, which improved
the perceived transparency for the musical excerpts compared to a smooth
and regular filter with less bass extension.

Informal perceptual loudness equalisation by two normal-hearing listen-
ers was conducted. Using the playback headphones, the perceived loudness
of each processed recording were evaluated relative to the unprocessed origi-
nal musical track reproduced at the chosen playback level of the experiments.
In the final processing step, the excerpts were converted to 16 bit WAV files
to obtain compatibility with the test software.

2.3 Stimuli

The musical excerpts used for the headphones recordings originated from an
electronic music track by Todd Terje (Delorean Dynamic (Disco Mix). Album:
It’s Album Time. 2014. Olsen Records, Norway) and a soft pop track by
Tina Dickow (Room with a view. Album: In the Red. 2006. Finest Gramo-
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Fig. B.2: (Color online) Spectrogram of the two musical excerpts: Todd Terje (top) and Tina
Dickow (bottom). Averaged over the two channels. Note: Only the first 1.9 s of the Tina Dickow
excerpt is shown.

phone/A:larm/Universal Music, London UK). These two excerpts were cho-
sen among nine excerpts covering a wide range of genres. By informal lis-
tening, excerpts were selected which provided the highest discrimination be-
tween headphones. Short samples of 1.9 and 4.5 seconds, respectively, were
selected from the full tracks, the samples being representative of the tracks
and cropped to maintain the rhythm during their looping allowing listeners
sufficient opportunity to get a good impression of each stimulus. The limited
auditory memory of humans [22] makes it attractive to use stimuli of short
durations in auditory comparison tasks. For listening tests with trained lis-
teners and small differences between stimuli, longer stimuli durations can be
of value because it allows the experienced listeners to make their own choice
of the best part of the excerpts for discrimination. In this study, involving
naïve listeners, it was considered better to pre-select a discriminating part
of the excerpts to maximize discrimination and stability in the evaluations.
Samples of such short durations were also used in [17] and led to meaningful
MDS spaces, which were stable across samples. Short samples ensured that
all listeners base their judgement on the same part of the original excerpt.

Spectrograms of the two excerpts are plotted in Figure B.2. The Todd Terje
excerpt consists of a fast electronic beat with a deep bass and a wide band
spectrum and the Tina Dickow excerpt consists of a short sentence (“Watch
the sky turn from hazy grey to black”) accompanied by a prominent acoustic
guitar. It has an emphasized midrange and some full band ‘s’ sounds. Both
excerpts make little use of stereo effects, i.e. having a largely centred stereo
image.

As described in Section II.B the recordings were post-processed in an ef-
fort to compensate for the effects of the playback headphones and the man-
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nequin. In order to investigate the precision and influence of this auralization
process, an additional stimulus was included in each experiment: the origi-
nal unprocessed musical excerpt. When reproduced over the playback head-
phones this stimulus could be compared with an auralized version of the
same playback headphone model also reproduced over the playback head-
phones (as the Sennheiser HD 650 were one of the 21 headphones under
test). The mean perceived difference between these two stimuli was used as
an indicator of how suited the recording and processing steps were for the
headphones evaluation (see the 4).

The playback level was adjusted to a listening level considered comfort-
able for a 90-minute listening test, selected by informal listening by two listen-
ers. This level corresponded to Leq = 72± 2 dB SPL for the two unprocessed
musical excerpts adjusted to the same loudness as the remaining stimuli.

2.4 Listening test procedure

The experiments consisted of a pair-wise comparison task with French speak-
ing listeners. Listeners were instructed to evaluate the dissimilarity between
pairs of recordings involving two different headphones (but the same musi-
cal excerpt). The comparison scheme was a half-matrix combination of the
stimuli, e.g. comparison of headphone A vs. B but not B vs. A nor A vs.
A. This led to 231 comparisons for 22 stimuli. The user interface had a 16 cm
continuous and unipolar response scale with the verbal anchors “Pas du tout
différent” (not different at all) and “Extrêmement différent” (extremely dif-
ferent) positioned at the two extremes of the scale, as well as a tick at the
center of the scale. Listeners rated the perceived difference between stimulus
A and B by moving a marker on this horizontal rating scale.

The listening tests were conducted in a double-walled soundproof booth.
A computer screen, visible to the listeners, was placed outside the booth,
while the keyboard and mouse were placed inside the booth. Digital/analog
conversion and amplification of the stimuli were accomplished using a Lynx
TWO sound card. Stimuli were presented in randomized order via the play-
back headphones.

Listeners completed two short familiarisation tasks prior to the dissimilar-
ity evaluation. First, a task with informal listening to 12 stimuli from the test,
selected to be representative of the range of differences in the stimuli. Lis-
teners were required to listen at least once to each stimulus. Secondly, a task
with a minimum of 10 pair-wise evaluations (using randomly-chosen pairs
from the dissimilarity evaluation) to familiarise the listeners with the pair-
wise comparison methodology and the user interface. Their use of the soft-
ware was monitored from outside the listening booth to ensure correct use
and understanding of the task. Before starting the dissimilarity evaluation
listeners were encouraged to take at least one break during the experiment.
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Each listening test lasted about 1-1.5 hours.
After each experiment listeners were asked if they could put words on

the type of differences they heard. Their responses were useful for the later
process of establishing hypotheses regarding the nature of the dominating
perceptual differences and for the evaluation of potential biases in the test
(see the 4).

2.5 Listeners

Fifteen naïve listeners participated in each experiment. Eight listeners from
the first experiment participated in the second experiment. The Todd Terje
experiment was conducted prior to the Tina Dickow experiment with ap-
proximately 3 weeks between sessions for listeners participating in both ex-
periments. In both experiments, 7 men and 8 women participated. The age
of the listeners was not normal-distributed, but ranged from 19 to 31 with a
median of 22 in the Todd Terje experiment. The age distribution was similar
in the Tina Dickow experiment, but with a minimum age of 20. The par-
ticipants were paid for their participation. All participants reported having
normal-hearing, but were not screened for hearing loss. After the listening
tests, hearing loss was discovered in one listener, but the listener’s ratings
were kept in the dataset, as they were not found to be outliers.

The number of listeners included in the two tests was based on monitoring
of the change in the average difference in the dissimilarity half-matrix with
the addition of ratings from each new listener. As a result, the number of lis-
teners needed to get a stable average could be monitored and justified prior to
analysis of the results. The average difference between dissimilarity matrices
with N subjects vs. N-1 subjects is depicted as a function of N in Figure B.3.
Average difference is defined as the summed differences of ratings divided
by the number of ratings in the half-matrix. This average difference is scaled
to the response scale in the experiments, i.e. 0 − 16 cm. Figure B.3 shows
that a stable level was reached after the 12th listener contribution for both
musical excerpts. It is seen that the average change approaches an asymptote
for 15 listeners, where ratings of dissimilarity between headphones are stable
within approximately ±0.4 cm on average.

2.6 Analysis method

The dissimilarity data were analysed using a metric MDS analysis [23]. The
method is based on the Classical MDS [24], but uses Euclidean distance calcu-
lations. The MDS algorithm calculates the N-dimensional space in which the
distance between all pairs are as close as possible to the dissimilarities con-
tained in the perceptual dissimilarity matrix. Following the hypothesis un-
derlying the MDS analysis, the MDS dimensions represent the criteria used
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Fig. B.3: (Color online) Monitoring of the average difference in dissimilarity matrices with addi-
tion of ratings from each new listener. Average difference is defined as the summed differences
of ratings between the matrices with N vs. N-1 subjects divided by the number of ratings in the
half-matrix. The dotted line marks the asymptote at ±0.4 cm, which is the average difference for
12 to 15 listeners.

by the listeners to evaluate dissimilarity — although the meaning of the di-
mensions is a matter of interpretation. The algorithm can be constrained to
find the optimum solution for any choice of N. While the relative distance
between all stimuli in the MDS space are fixed, the scaling and rotation of
the whole MDS space are unconstrained. Typically, the space is rotated, such
that the axes present the MDS dimensions in monotonically decreasing order
of variance, based on the eigenvalues of the MDS space. Other rotations may
however be of value for the interpretation of the space.

The metric MDS method is based on the premise that all listeners use
identical internal rating criteria in the pairwise comparison evaluations. This
includes having the same perception of the stimuli, basing the decision on the
same perceived characteristics and giving the same weights to each of these
perceived characteristics. This is a simplification of real life conditions, but
has the strength that no structure is imposed on the data, and only funda-
mental dimensions, shared by the majority of listeners, will be prominent in
the resulting multidimensional space. The number of important dimensions
in an MDS analysis, i.e. dimensions related to perception and not to random
noise in the evaluations, is often evaluated using the STRESS metric. It is
based on a cost function, which measures the similarity between the MDS
configuration, e.g. a 2-dimensional MDS, and the dissimilarity matrix (raw
data). When plotting the STRESS calculated for each number of dimensions a
knee-point is often clear, which is used as a dimension-selection criteria. The
implication of the knee-point is that adding dimensions beyond this point
will increase the similarity with the dissimilarity matrix only a little, but it is
likely to additionally add noise and complicate the interpretation of the MDS
space.
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In pairwise comparison experiments the number of independent (orthog-
onal) dimensions possible to uncover in the analysis depends on the number
of stimuli included in the test. A literature study [25] showed that up to
4 or 5 independent dimensions are likely to exist concerning the perceived
characteristics of headphones. A rule-of-thumb [26] states that the number of
stimuli N needed to statistically uncover Ndim dimensions can be estimated
by this equation: Ndim = (N−1)

4 . Consequently, an estimated minimum of 17
stimuli is needed to uncover 4 dimensions and 21 stimuli for 5 dimensions.
With 21 headphones (+ the original sample) included in the present exper-
iments, approximately 5 dimensions could potentially be uncovered in the
MDS analysis.

3 Results

3.1 MDS analysis

For both experiments, plotting the STRESS metric as a function of the num-
ber of MDS dimensions displayed a knee-point at two dimensions. Further-
more, a bootstrapping procedure with 500 iterations was used to estimate the
95 % confidence intervals between headphones in the third dimension of a 3-
dimensional MDS space. This procedure revealed no significant differences
between headphones in the third dimension. As a result the 2-dimensional
MDS space was selected for further analysis. In Figure B.4 and Figure B.5
the resulting 2-dimensional MDS maps are depicted. Each point refers to a
stimulus/headphone. The MDS map for the Tina Dickow experiment has
been rotated to best match the dimensions for the Todd Terje experiment (ar-
bitrarily chosen as a reference to compare the two spaces) using a generalized
procrustes analysis procedure. Confidence intervals are shown for the unpro-
cessed musical excerpt (Original) and the auralized Playback headphones for
validation of the processing steps (see the 4). Note that most headphones are
positioned similarly within the space regardless of the experiment’s musical
excerpt.

Using the MDS maps, structured listening to the stimuli of each experi-
ment was conducted by two of the authors in an effort to establish hypothe-
ses regarding the underlying nature of the two dimensions. Dimension 1
was perceived as clearly related to bass, while dimension 2 was perceived as
related to treble or midrange/treble ratio. Both dimensions were thus hy-
pothesized to be spectral in nature. As spectral dimensions were also found
as two of the dominating dimensions in the previous work by Lavandier and
collaborators [16–18], the modelling effort presented in the next section in-
vestigated only this aspect of audio reproduction.
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Fig. B.4: (Color online) Two-dimensional MDS map resulting from the dissimilarities evaluated
in the experiment with the Todd Terje excerpt. Each point refers to an auralized headphone.
’Original’ refers to the original unprocessed excerpt and ’Playback headphone’ refers to the
recorded and processed pair of Sennheiser HD 650 played back over the HD 650 used in the
experiment. The ellipses are the 95% confidence ellipses of the stimuli used to discuss the
validation of the stimuli processing (see the 4).
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Fig. B.5: (Color online) Same as Fig. B.4 but for the experiment with the Tina Dickow excerpt.
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3.2 Link between MDS dimensions and stimuli

Metrics were developed to investigate the link between MDS dimensions and
stimuli. These metrics were all based on a time-varying loudness model [27],
where the time-averaged specific instantaneous loudness was calculated for
each stimulus in the experiments in steps of 0.25 Equivalent Rectangular
Band (ERB) from 0.8 ERB (20 Hz) to 38.8 ERBs (14.7 kHz). The loudness met-
rics were all constructed as the summed loudness in a frequency range AB
divided by either the full loudness spectrum (FS) or the loudness in another
non-overlapping frequency range CD.

An optimisation routine was utilised to find optimum areas AB and CD
at which the metrics have the maximum correlation with the coordinates
in MDS dimension 1 or 2. As it was not of interest to get metrics related
specifically to each of the two musical excerpts, but rather to get metrics of a
more general nature, the metrics utilizes the frequency ranges (AB and CD)
with the maximum average correlation across the two musical excerpts. An
outline of the optimisation routine is shown in Figure B.6. All combinations
of search ranges and search positions were tested with two constraints: 1)
the search ranges were restricted to a minimum width of two ERBs, to avoid
getting maximum correlations in too narrow frequency ranges unlikely to
be the cause of the perceptual evaluation and 2) the two frequency ranges
AB and CD were not allowed to overlap. The optimisation approach was
selected to test the hypotheses established by informal listening, i.e. that
the two perceptual dimensions were related to one frequency range relative
to another range (including full-range). To allow an outcome leading to a
rejection of the hypotheses the search ranges AB and CD included the full
loudness spectrum.

The metrics were calculated for both the left and right channel loudnesses
as well as for their average in each 0.25 ERB (Ch. average) and the largest
of the two loudnesses in each 0.25 ERB (Ch. max). The two latter cases
combining the information from both channels were included to reduce the
influence of any specific characteristic in the stereo-mix of the chosen musical
excerpts. ‘Ch. average’ was included to represent a binaural summation
strategy, while ‘Ch. max’ may represent a ’better ear’ strategy. Note that the
time-varying loudness model simulates the spreading of excitation between
successive time frames and consequently better estimates the time-averaged
loudness. The equations for the suggested metrics are presented in Eq. B.1
to B.4. Since the “Ch. average” approach led to the best results in terms
of correlation with the perceptual dimensions, the frequency limits in the
equations below are reported for this data basis only (they were similar for
the left, right and “Ch. max” loudnesses).

Two metrics gave almost identical maximum correlations with the per-
ceptual dimension 1. The equations for these two metrics DeepBass and
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Fig. B.6: (Color online) Sketch of the optimisation routine used to define the metrics on the
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Bass/Mid are given in Eq. B.1 and Eq. B.2 respectively, with f being the
frequency and Densm being the temporal mean of the time-varying specific
loudness. Note that an empty summation sign denotes a summation over the
full loudness spectrum.

DeepBass =

186 Hz
∑

f=20 Hz
Densm( f )

∑ Densm
(B.1)

DeepBass is the ratio between the specific loudness in the frequency range
20 − 186 Hz (ERBN = 0.8 − 5.8) and the loudness over the full spectrum
(ERBN = 0.8− 38.8).

Bass/Mid =

222 Hz
∑

f=20 Hz
Densm(c)

3262 Hz
∑

f=246 Hz
Densm(c)

(B.2)

Bass/Mid is the ratio between the specific loudness in the deep and low bass
20− 222 Hz (ERBN = 0.8− 6.3) and the specific loudness in the midrange
246 Hz− 3262 Hz (ERBN = 6.8− 25.3).

Two metrics, well-correlated with the perceptual dimension 2, are de-
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scribed by Eq. B.3 and Eq. B.4.

Bass+Mid =

2039 Hz
∑

f=144 Hz
Densm( f )

∑ Densm
(B.3)

Bass+Mid is the ratio between the specific loudness in the bass and lower
midrange 144 − 2039 Hz (ERBN = 4.5 − 21.3) and the loudness in the full
spectrum.

Mid/Treble =

1369 Hz
∑

f=330 Hz
Densm( f )

13940 Hz
∑

f=3659 Hz
Densm( f )

(B.4)

Mid/Treble is the ratio between the specific loudness in the high bass and
low midrange 330− 1369 Hz (ERBN = 11.3− 16.0) and the specific loudness
in the treble 3659− 13940 Hz (ERBN = 30.3− 38.0).

The maximum correlations resulting from the optimization routine are
shown in Table B.2. For the metric DeepBass the sign of the correlation is
different for the left and right channels. This is caused by the optimization
routine leading to two peaks with almost identical maxima. One peak related
to bass vs. full-range and the other peak related to everything-but-bass vs.
full-range (the reciprocal). The two peaks thus describe the same: the relative
level of the bass. These two peaks are found for DeepBass regardless of
the data basis (Left, Right, Ch. average or Ch. max). An example of the
two peaks are shown in Figure B.7. From Table B.2 it is also seen that, on
average across musical excerpts, the highest correlation is always found for
the column ‘Ch. average’. Consequently only the ‘Ch. average’ correlations
are discussed hereafter. Note also that the difference in correlation values
between the two excerpts for Bass+Mid and Mid/Treble, in combination with
‘Right ch.’, are caused by one set of headphones being an outlier. Without this
outlier, correlations are r = 0.89 and r = 0.87 for Bass/Mid and Mid/Treble
respectively.”

The frequency ranges used in the equations of the four metrics are based
on the maximum correlations found for the current dataset, but for prediction
of other headphones/musical excerpts the relevant frequency ranges could
shift, expand or contract. In Figure B.7 the correlation between DeepBass
and perceptual dimension 1 is plotted as a function of the start frequency
A and end frequency B of the AB range used to compute the metric (i.e.
the output of the optimization routine). As mentioned previously two peaks
were found for DeepBass, with one being the reciprocal of the other. In this
case it was hypothesized that DeepBass would be more stable than its high
frequency counterpart, as it has a lower dependence on the uncertainties at

86



4. Discussion

Table B.2: Pearson correlation coefficients between loudness metrics and MDS dimensions. The
loudness metrics are specified in the rows and the data basis (calculated loudness for one or two
channels) in the columns. The two numbers in each cell represents the correlation for the Todd
Terje and Tina Dickow excerpts respectively. All correlations are significant on a α = 0.001 level.

Metric Dim. Left ch. Right ch. Ch. average Ch. max
DeepBass 1 0.90/0.86 -0.95/-0.94 0.97/0.94 0.92/0.89
Bass/Mid 1 0.89/0.88 0.95/0.93 0.97/0.94 0.92/0.88
Bass+Mid 2 0.92/0.95 0.76/0.94 0.88/0.97 0.85/0.95
Mid/Treble 2 0.91/0.91 0.75/0.94 0.89/0.95 0.85/0.94

high frequencies, where physical differences between listeners’ ears causes
the signal reaching the ear drum to vary [28]. With regards to the uncertainty
of the limits of the frequency ranges of the DeepBass metric, it was found that
the correlations were within 0.04 of the maximum correlation within a shift
of A or B by plus or minus 2-3 ERBs. For larger changes in the frequency
limits, correlation between DeepBass and dimension 1 drops more rapidly. A
similar sensitivity was observed in the definition of the frequency limits used
for the other metrics of this study.

4 Discussion

Judging from the similarity of the MDS maps for the two musical excerpts
(Fig. B.4 and B.5), the same internal criteria were used for evaluation of the
differences between headphones in the two experiments, despite the differ-
ence in musical genre (electronic beat vs. soft pop) and the corresponding
differences in temporal and spectral characteristics of the excerpts being re-
produced. While the same dimensions were found for both excerpts, the
ranking based on the percentage of variance explained by each dimension
interchanged from one excerpt to the other (D1: 32 % and D2: 16 %; D1: 21 %
and D2: 24 % for the Todd Terje and Tina Dickow experiments respectively),
suggesting that the perceptual weight of each dimension depended on the
stimuli. Note that some debate exists regarding the method of calculating
explained variance for MDS dimensions, so the weighting of the separate
dimensions should be considered here with caution. In [16], an experiment
with pairwise comparison of loudspeakers included three musical excerpts
of different genre. An MDS analysis of the dissimilarity data led to very
similar MDS 2-dimensional spaces across excerpts, supporting the findings
of the current study that perceptual dimensions can be stable across musical
excerpts.

With regards to the metrics proposed to describe the relation between the
stimuli loudness spectrum and the MDS space, high correlations of 0.92−
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Fig. B.7: (Color online) Correlation between DeepBass and perceptual dimension 1 plotted as a
function of the start frequency A and end frequency B used in the caculation of the metric based
on ‘Ch. average’ data. The lightest grey represents all values within ±0.8.
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0.95 (averaged across excerpts) were found, showing that the metrics accu-
rately describe the two perceptual dimensions for this dataset. The high cor-
relations support the hypotheses that the two dominating MDS dimensions
were both related to spectral characteristics. Processing the stimuli using a
time-varying loudness model [27] was suited for describing the perceptual
differences between headphones in this study. Since the selected musical ex-
cerpts had limited stereo effects, the headphones’ differences in spatial sound
qualities may not have been distinct. It is possible that excerpts having a more
spatial quality would excite additional perceptual dimensions and even that
these dimensions could account for a larger part of the perceived differences
than the dimensions found in the present study. It is however a sign of gen-
eral validity that two excerpts of such different genres led to the same main
dimensions.

Both metrics related to perceptual dimension 1 were associated with the
deep/low bass content (20− 222 Hz). Based on the present dataset it could
not be concluded whether the perceptual dimension was related to deep
bass relative to the full spectrum or relative to the narrower frequency range
246 Hz− 3.2 kHz. DeepBass and Bass/Mid led to the same correlation level
(0.95 averaged across excerpts) and the two metrics were highly correlated
(0.94). For perceptual dimension 2, the two metrics Bass+Mid and Mid/Treble
led to very similar correlations: 0.93 and 0.92 respectively and the two met-
rics were also highly correlated (0.79). It is therefore inconclusive whether
the second perceptual dimension was related primarily to the relative loud-
ness in the lower midrange or the ratio between the lower midrange and the
treble range. The similar correlations of Bass+Mid and Mid/Treble may stem
from whether or not the upper midrange was part of the listeners’ decision
criteria. In general, the uncertainty regarding the involvement of loudness in
the midrange for both dimensions 1 and 2 could suggest that some listeners
based their decisions on the full frequency range and others on more narrow
frequency areas. A cluster analysis of listeners did not show any clearly sep-
arated clusters, but further work is needed to fully understand the decision
process of listeners.

In [18], the sound reproductions of 37 single loudspeakers in a room were
compared. Three main dimensions were highlighted as used by the listeners
to differentiate these reproductions. While one dimension was clearly spatial
and associated with the interaction of the loudspeakers with the room, the
two other dimensions were spectral and very comparable to the dimensions
obtained in the present study. These dimensions were also described using
metrics defined on the specific loudness of the stimuli (recordings of a short
musical excerpt reproduced by each loudspeaker in the room, reproduced
using headphones during the listening test). These metrics, BassTreb and
Mid2, are shown in Eq. B.5 and Eq. B.6 respectively. Note that [18] calculated
the specific loudness spectrum, Densm( f ), using a different model [29] than
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the one used in the present study.

BassTreb =

280 Hz
∑

f=20 Hz
Densm( f )

15.5 kHz
∑

f=1.8 kHz
Densm( f )

(B.5)

Mid2 =

280 Hz
∑

f=20 Hz
Densm( f ) +

15.5 kHz
∑

f=1.8 kHz
Densm( f )

1.8 kHz
∑

f=280 Hz
Densm( f )

(B.6)

Table B.3: Pearson correlation coefficients between MDS dimensions of the present study and
metrics proposed in a loudspeaker study [18]. The two numbers in each cell represents the
correlation for the Todd Terje and Tina Dickow excerpts respectively. Correlation with a * are
significant on a α = 0.05 level.

Metric Dim. Left ch. Right ch. Ch. average
BassTreb 1 0.73*/0.68* 0.84*/0.82* 0.82*/0.78*
Mid2 1 0.40/0.26 0.42*/0.19 0.43*/0.22
BassTreb 2 0.46*/0.67* 0.31/0.54* 0.39/0.60*
Mid2 2 -0.86*/-0.78* -0.63*/-0.85* -0.79*/-0.88*

BassTreb is the ratio between the specific loudness in the bass and upper
midrange & treble. Mid2 is the inverse ratio of the lower midrange and the
specific loudness in the remaining spectrum. The two metrics, BassTreb and
Mid2, were calculated for the stimuli of the current study in order to compare
the dimensions obtained across studies. Table B.3 shows the correlation of
BassTreb and Mid2 with the perceptual dimensions 1 and 2. BassTreb is highly
correlated with dimension 1 (ρ = 0.80), while Mid2 is highly correlated with
dimension 2 (ρ = −0.84). The difference in sign for Mid2 has no significance
as the MDS dimensions found using the metric MDS method are subject
to inversion. The correlations between BassTreb and Mid2 with the metrics
of the current study are shown in Table B.4. The highest correlations with
BassTreb are obtained with DeepBass and the highest correlations with Mid2
are obtained with Bass+Mid. The levels of correlation reported in Table B.3
and B.4 suggest that the perceived dimensions could have been similar in
the two studies despite the differences in reproduction systems and musical
excerpts. More data would however be needed to establish which metrics
from the current study corresponds best with BassTreb and Mid2.

In Gabrielsson and Sjögren, a questionnaire submitted to 40 sound engi-
neers on the suitability of 200 adjectives (sensory descriptors) for evaluation
of audio reproduction led to 30 adjectives being used to describe differences
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Table B.4: Pearson correlation coefficients between the metrics BassTreb and Mid2 proposed in
a loudspeaker study [18] and the four metrics proposed in the current study. The metrics were
calculated from the ‘Ch. average’ data. The two numbers in each cell represents the correlation
for the Todd Terje and Tina Dickow excerpts respectively. Correlation with a * are significant on
a α = 0.05 level.

Metric DeepBass Bass/Mid Bass+Mid Mid/Treble
BassTreb 0.89*/0.79* 0.67*/0.59* 0.55*/0.80* 0.53*/0.57*
Mid2 0.37/0.29 0.66*/0.54* -0.78*/-0.65* -0.42/-0.32

in reproduction of headphones. Out of these 30 adjectives, only three were
directly related to spectral characteristics (emphasized bass, bright/light, and
full), although more may be strongly related (e.g. nasal, thin, dull, rumbling).
An experiment was then conducted in which 20 subjects rated the quality of
the 30 adjectives for eight headphones. A factor analysis resulted in five main
factors of which the fourth was found clearly related to spectral characteris-
tics: “brightness-darkness”, with the strongest adjective correlation being to
“emphasized bass”. While this corresponds well to the findings reported in
the present study of (deep) bass being a significant factor, the study of [7]
showed less emphasis on spectral characteristics, with three factors explain-
ing a higher proportion of the variance in the evaluations. These factors
(sharpness, clearness and disturbing sounds) may result from headphones
having a generally lower sound quality with clearly perceivable artefacts,
which may not have been as distinct in the present headphones selection.
The fifth factor, feeling of space, which was not found in the present study,
may have been a consequence of the selected musical excerpts (four of the
five musical excerpts in [7] were recorded in large rooms and included choirs
or orchestras) or differences in spacial aspects caused by the wider selection
of transducer technologies (electrodynamic, electrostatic, orthodynamic, and
piezo-electric) used by Gabrielsson and Sjögren.

In [6], a higher emphasis on the spectral reproduction was reported in an
analysis of ten trained listeners’ comments on their reasoning behind prefer-
ence ratings of six headphones. They investigated the correlation between the
number of the occurrences of sensory descriptors and the preference scores.
The highest correlated descriptor was good spectral balance (-0.92) and a to-
tal of 9 out of 19 descriptors were directly related to spectral characteristics
(good bass extension, mid/treble peak, colored, etc.), with 5-6 others possibly
indirectly related (e.g. dull, veiled, boomy, etc.). The fact that these descrip-
tors are closely related to the dimensions highlighted in the present study
might indicate that preference is related to the dominating perceptual differ-
ences between headphones. The second and third highest correlations were
however distorted and wide sound stage, two aspects of the reproduction
which were not highlighted in the present study, although informal debrief-
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ing included a few listeners reporting that they took spatial characteristics
into account in the evaluation of dissimilarity (they mentioned: externalisa-
tion, localization, envelopment, reverberation and room-size perception).

A dominance of spectral characteristics was also found in the study of [8],
in which six headphones were evaluated. A panel discussion between trained
listeners led to eight sensory descriptors needed for characterisation of active
noise control headphone reproduction in background noise, among which
four were related to spectral characteristics. A hierarchical multiple fac-
torial analysis resulted in four main dimensions: timbre/attenuation, dy-
namic/spatial, precision/stereo space, and treble range; i.e. with the first and
the fourth directly related to spectral characteristics. The spectral attributes
selected in [8] included bass strength, treble strength and treble range (exten-
sion). While bass and treble are also elements in the four metrics proposed
in the current study, treble range was not; in contrary the metric DeepBass
maybe viewed as bass extension as opposed to treble extension. Like for [7]
and [6], a dimension was found related to spatial characteristics, possibly a
consequence of the selected musical excerpts as discussed previously.

The auralization process described in Section II B was designed to com-
pensate for the spectral colouration of both the recording process and the
reproduction of the Playback headphones. In Figure B.4 and Figure B.5 the
results showed the unprocessed musical excerpt (Original) and the aural-
ized Playback headphone to have overlapping confidence ellipses. The con-
fidence ellipses (depicted only for these two stimuli for the sake of clarity)
were estimated using a bootstrap method with 500 iterations. Furthermore,
the playback headphones were, for both excepts, the headphones positioned
closest to the Original. Ideally the perceived difference between the aural-
ized headphones (Playback) and the real headphones (Original) should be
smaller than the smallest difference measured in the other comparisons of
headphones. Even though this was not the case in the current experiments,
this difference seems close to the smallest perceived difference.

The debriefing following the listening tests showed that a few listeners
reported overall loudness differences between stimuli. Three listeners in one
experiment (Todd Terje) and two in the other experiment (Tina Dickow).
None of the listeners participating in both experiments reported loudness
differences in both. Considering the normal variation in hearing thresholds
and high sensitivity concerning loudness differences (just noticeable differ-
ences of 0.5 dB were found for typical audio programmes material in [30]), it
was expected that not all listeners would perceive loudness as the listeners
performing the informal loudness equalisation. Since none of the listeners,
participating in both experiments, reported loudness as a type of difference
perceived in both experiments suggests that overall loudness differences did
not influence the results.

The most reported type of difference from the debriefing was left-right
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balance differences between pairs. The left-right balance was purposefully
preserved in the auralization process, to keep all headphones characteristics
and thereby the differences between them. Left-right balance was however
not found related to any of the MDS dimensions. A correlation analysis com-
paring the perceptual dimensions to the mean and max left-right differences
in the loudness spectrum showed no significant correlations (p > 0.2).

5 Conclusions

A pair-wise comparison study was conducted where listeners were asked to
evaluate the dissimilarity between 21 headphone reproductions of two musi-
cal excerpts. The stimuli consisted of the musical excerpts reproduced over
the headphones, recorded, post-processed and reproduced over a set of play-
back headphones. The recorded headphones were of a wide range of types
and prices. A multidimensional scaling analysis showed that two dimen-
sions dominated the perceptual evaluation of dissimilarity. Furthermore it
was shown that these dimensions could be accurately modelled by metrics
based on the reproduced stimuli spectrum. A correlation analysis led to
two competing metrics for each dimension. The first perceptual dimension
was found to be related to either the bass loudness relative to the full-band
loudness (ρ = 0.95) or relative to the loudness of the midrange frequencies
exclusively (ρ = 0.95). The second dimension was found to be related either
to the bass-midrange loudness relative to the full-band loudness (ρ = 0.93)
or relative to the treble loudness exclusively (ρ = 0.92).
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1. Introduction

Abstract

This study tested a framework for modelling of sensory descriptors (words) differen-
tiating headphones. Six descriptors were included in a listening test with recordings
of the sound reproductions of seven prototype headphones. A comprehensive data
quality analysis investigated both the performance of the listeners and the suitability
of the descriptors for modelling. Additionally, two strategies were investigated for
modelling metrics describing these descriptors, both relying on specific loudness esti-
mations of the test stimuli. The stability of the initially found metrics was tested with
a bootstrap procedure to quantify the potential of the metrics for future predictions
within the perceptual space spanned by the headphones. The most promising results
were metrics for Bass, Clean and Dark-Bright with correlations values of r2 = 0.62,
r2 = 0.58, and r2 = 0.90 respectively.

1 Introduction

The development of headphones can be a process involving many prototypes
while exploring the potential of new technologies, constructions, or materi-
als. At some point in the process, the many paths explored must be narrowed
down to a single track. This study explores the possibility of modelling the
link between the physical sound reproduction and the perceptual character-
istics of headphones, thereby potentially providing an indication of which
path will lead to the desired design target.

Perceptual characterisation of sound reproduction offers evaluation of
performance based on human perception as an alternative to traditional electro-
acoustical measurements, such as frequency- and time responses. It can pro-
vide valuable insight into the dominating perceptual characteristics of e.g. a
set of headphones. An issue with perceptual evaluations is however the time
and resources required to collect data. Consequently, a number of mathemat-
ical models based on less resource-heavy electro-acoustic measurements have
previously been proposed. They were able to predict preference [1], mean
opinion score [2, 3] or stereo width [4], thereby providing insight as to sound
quality performance. Earlier efforts with prediction of loudspeaker prefer-
ences from visual inspection of frequency responses were also attempted by
Toole in [5], who concluded that: “Listeners, it seems, like the sound of loud-
spekaers with a flat, smooth wideband on-axis amplitude response that is maintained
at substantial angles off axis”.

Within external preference mapping [6], the underlying decision process
leading to a listener’s preference is assumed to be a weighted sum of per-
ceived auditory characteristics. These weights are based on a personal refer-
ence consisting of desired features and can be influenced by prior experience,
context, mood etc. [7]. The concept can be described by Eq. C.1 for a product

99



Paper C.

i. SX(i) represents the salience of the characteristics described by a sensory
descriptor X and the constants α to ω are an individual’s weightings of the
characteristics’ importance for preference. ε denotes the residual. Note that
the relationship between SX terms may be non-linear, although a linear case
is illustrated in Eq. C.1.

Pre f erence(i) = αS1(i) + βS2(i) + · · ·+ ωSN(i) + ε (C.1)

The weights are individual and subjective, while the salience of an auditory
characteristic, SX , is considered objective and depending only on the audi-
tory acuity of listeners. Leaving out the subjective weights, not all SX-terms
are relevant for product characterisation of a given subset of audio reproduc-
tion products being evaluated (compared). A limited number of terms are
likely to dominate the overall sensation, but which terms that is will depend
on the products being evaluated. Differences in dominating characteristics
are for instance seen between the headphones study [8] by Gabrielsson and
Sjögren from 1979 and the headphones study [9] by Olive and Welti from
2012. In the older study, the analysis led to characteristics with emphasis
on artefacts, while the newer study led to characteristics with emphasis on
spectral differences.

In the present study a framework was established and tested for finding
metrics able to predict the perceptual characteristics of headphones sound
reproductions. Recordings were made of seven prototype headphones’ re-
production of a selection of musical excerpts. The recordings were used as
stimuli in a listening test as well as the basis on which proposed metrics were
calculated. The metrics were thereby developed directly on the basis of what
listeners perceived. This approach was also used in e.g. [10] to study the
dominating perceptual dimensions differentiating monophonic loudspeaker
reproduction in a room. The listening test of the present study consisted of
evaluation of a number of sensory descriptors1 by expert listeners, with the
purpose of characterising the perceptual space spanned by the headphones.
The perceptual ratings were modelled on the basis of estimated stimuli loud-
ness spectra, and consequently the non-linearities of the human auditory
processing are incorporated in the proposed metrics.

2 Listening test

2.1 Headphones

A total of eight electrodynamic headphones were included in this study.
Seven were prototype models from one manufacturer, and one additional

1A sensory descriptor is defined here as a word or phrase that describes, identifies, or labels a
perceptual characteristic of a system, e.g. a headphone reproduction. This definition is adapted
from [11].
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set of high-end headphones was included as a reference. The seven proto-
types consisted of four supraaural and three circumaural. All the prototypes
were closed-back headphones, while the reference headphone model was cir-
cumaural and open-back.

2.2 Stimuli

Four musical excerpts were played over the eight headphones. The repro-
duced audio was recorded, post-processed, and presented to listeners over a
pair of Sennheiser HD 650 headphones (playback headphones). In the record-
ing process the headphones were placed on a Brüel & Kjær 4128C head- and
torso simulator (B&K HATS). To minimize (asymmetrical) leakage, the head-
phone positioning was checked by recording pink noise and comparing the
right-left input level balance. The amplifier gain was adjusted for each set
of headphones to record at approximately the same sound level across all
the headphones (mean Leq = 69.9 dB (A), σ = 5.4 dB, variation dominantly
due to musical excerpt differences). The binaural recordings were captured
using a RME Fireface 800 soundcard with a 24 bit A/D converter and saved
at sample rate of 48 kHz.

The recordings were post-processed to compensate for the influence of the
ear-canals of the B&K HATS as well as for the frequency response of the play-
back headphones. The compensation was performed by means of a equalizer
with 1/3-octave band minimum-phase FIR filters on both channels, i.e. with-
out compensation for left-right imbalance in sensitivity. The filter had a dip
in the range 80− 400 Hz with a minimum of −1.4 dB at 125 Hz and another
in the range 0.5− 12.5 kHz with a minimum of −12 dB at 3.15 kHz. The post-
processed recordings were loudness normalized using an automated process,
where loudness was estimated using a stationary loudness model [12] and it-
eratively level-adjusted to reach a target (channel-averaged) of equal loudness
at a playback level of 67± 0.01 Phon. Finally, the stimuli were converted to
16 bit WAV files for reasons of compatibility with the test software. The post-
processed headphone recordings are referred to as auralised headphones in
the following.

A total of ten musical excerpts were originally recorded. During a session
of informal listening by two experienced listeners, four were selected for the
listening test, as they were perceived to facilitate the largest discrimination
between headphones: Jennifer Warnes (‘Bird on a Wire’, Famous Blue Rain-
coat, 1987), Todd Terje (‘Delorean Dynamite’, It’s album time, 2014), Helge
Lien Trio (‘Natsukashii’, Natsukashii, 2011), and George Druschetzky Ensem-
ble Zefiro (‘Serenata for winds & strings in E flat major: Maestoso, Allegro’,
Druschetzky: Quartetto; Serenata; Quintetto, 2002). These four excerpts rep-
resent the musical genres: Pop, Electronic, Jazz, and Classical respectively.
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2.3 Test procedure

The listening test comprised of evaluations with six sensory descriptors se-
lected as suited for discriminating between the headphones. The selection
was based on consensus meetings with trained listeners [13], specifically
trained in the sensory descriptors described in the DELTA-developed Sound
wheel [11] and all descriptors were consequently selected among these. The
chosen descriptors were: Bass strength, Midrange strength, Treble strength,
Dark-bright, Clean, and Punch. They comprised sensory descriptors from
three main groups: Dynamics, Timbre and Transparency. Danish names and
definitions were used, as all listeners were native Danish speakers.

The listening test consisted of evaluation of the eight headphones with
regards to each sensory descriptor on a 15 cm rating scale anchored by two
words specific for each descriptor. The reference headphones were included
both as a labelled reference and as a hidden anchor system. The defini-
tions included instructions on which rating to give the hidden anchor (if
identified). Consequently the ratings of the reference headphones were ex-
cluded from the data analysis. The SenseLabOnline test software (sense-
labonline.com), allowed listeners to listen to each stimulus as many times as
needed and switch between stimuli almost instantaneously. One “screen” in
the user interface included stimuli for one musical excerpt and evaluation
on one sensory descriptor with all auralized headphones. The full test com-
prised 48 “screens” (six descriptors, four musical excerpts and 2 repetitions)
presented in randomised order and evaluated during one 2-hour session per
listener. Listeners were encouraged to take breaks on a regular basis. The
playback level during the test was set to approximately 80 dB(A) (measured
with the playback headphones positioned on a B&K HATS at the default
level setting). The listeners did however have the option to ask the test leader
for small level adjustments (±4 dB) during familiarisation to accommodate
a comfortable listening level for the individual. Level adjustments affect the
perception of the spectral balance of the stimuli, but makes the long sessions
more comfortable for listeners and have a small influence in comparison to
the natural variation in hearing between listeners.

2.4 Listeners

Eighteen listeners participated in the listening test. All were trained listeners
from DELTA SenseLab’s expert panel. Among the 18 listeners eight were
trained specifically in the sensory descriptors of the Sound wheel [11]. The
listeners ranged in age from 20 to 54 with a median of 29, and all had their
hearing tested both prior to joining the expert panel as well as periodically
afterwards.
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2. Listening test

2.5 Listening test results

Listener performance

The performance of the participating listeners was evaluated per sensory
descriptor by means of two statistical measures, which will be briefly ex-
plained: the eGauge metrics Discrimination and Reproducibility [14] as well
as Tucker-1 analysis [15]. Discrimination describes a listener’s ability to sta-
tistically discriminate between systems (headphones), i.e. a measure of how
big an influence the systems have on the ratings - as opposed to other factors,
such as the influence of musical excerpts, conditions, etc. Reproducibility de-
scribes how consistent a listener rate the same stimuli (a headphone and mu-
sical excerpt combination in this case) between repetitions. The Tucker-1 anal-
ysis is based on a Principal Component Analysis (PCA) and was used here
to gauge listener performance in terms of consistency and agreement with
the panel average/consensus. Listeners below the noise floor (performance
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Fig. C.1: [Colors online] Mean and 95% confidence intervals of the six sensory descriptor ratings.
Each point and number represents the rating of one auralized headphone averaged over selected
listeners, musical excerpts, and repetitions. The number of listeners included for each descriptor
is displayed above the ratings.

of random evaluations), with regards to Discrimination and Reproducibil-
ity, were removed from the dataset prior to further analysis, as was listeners
within the inner ring (less than 50% explained variance) of the Tucker-1 load-
ing scores plot. This meant removing six listeners from Midrange strength,
and one listener from both Bass strength and Clean. Midrange strength was
thus a difficult sensory descriptor to evaluate for the listeners on the pre-
sented stimuli. In addition, the Tucker-1 analysis of the sensory descriptors,
showed a wide spread of listeners’ ratings within the two circles for the Punch
sensory descriptor, which signifies lack of agreement between listeners. This
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Variable MS F Pr > F
Sys (Bass str.) 79000 356 < 0.0001
Sys/sample 1630 7.33 < 0.0001
Sys (Midrange str.) 51300 233 < 0.0001
Sys/sample 187 1.58 0.06
Sys (Treble str.) 120000 626 < 0.0001
Sys/sample 1220 6.36 < 0.0001
Sys (Dark-Bright) 145000 701 < 0.0001
Sys/sample 1950 9.45 < 0.0001
Sys (Clean) 137000 448 < 0.0001
Sys/sample 507 1.67 0.04
Sys (Punch) 30800 82.3 < 0.0001
Sys/sample 2880 7.68 < 0.0001

Table C.1: System effect (6 DF) and system/sample interaction effect (18 DF) from 4-ways
ANOVA tables for each sensory descriptor. Sys/sample is the interaction between headphone
and musical excerpt. Mean square (MS) and F-values are rounded to three significant digits.

could be caused by e.g. listeners’ needing more training or sensory descrip-
tors which are not well-defined or ill-suited for the purpose.

Sensory descriptor assessment

In Fig. C.1 the mean ratings for each sensory descriptor are depicted2, based
on ratings of the listeners that was not removed as a result of the performance
criteria described in the previous section.

In terms of modelling perspectives, the most important prerequisite, was
considered to be the sensory descriptors ability to discriminate between the
headphones, e.g. to model Bass strength, the ratings of the headphones was
required to be significantly different from each other and preferably span
the majority of the rating scale. A 4-ways (Headphone × Musical excerpt ×
Listener × Repetition) fixed-effect analysis of variances (ANOVA) was con-
ducted for each descriptor to test its ability to discriminate between head-
phones. The results are presented in Table C.1 and showed that all sen-
sory descriptors were able to discriminate between two or more of the head-
phones. Punch, however, had the lowest F-value (discriminatory power) and
combined with poor agreement in the Tucker-1 analysis, no efforts were done
to model this descriptor. The interaction between headphones and musical
excerpt was significant for all descriptors with the exception of Midrange
strength (p ≤ 0.05). A similar p-value was however seen for Clean as well.

2The interaction between factors ‘Headphone’ and ‘Musical excerpt’ is significant for most
sensory descriptors (see Table C.1), but its influence (F-value) is at least one order of magnitude
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Table C.2: [Colors online] Pearson correlation coefficients for the sensory descriptor ratings. The
descriptors are sorted in descending order of their absolute correlation with bass. The intensity
of the background color represent the degree of correlation. Bold numbers have r > |0.90|.

A correlation analysis of the sensory descriptor ratings, based on mean
values from well-performing listeners, are shown in Table C.2. The correla-
tions seen to be high between all descriptors - with the exception of Punch.
Due to the listeners’ disagreement in the rating of Punch it was however
not possible to know whether the descriptor comprised an important per-
ceptual dimension or simply a dimension of noise. It is noteworthy that
Dark-Bright had a higher correlation with Treble strength than with Bass
strength. Furthermore Clean was highly correlated with Midrange strength,
Treble strength as well as Dark-Bright. While the ratings of four sensory de-
scriptors were highly correlated it remained of interest to model all as each
potentially represented a separate coupling to the physical world. Conse-
quently they had varying performance potentials, making it of interest to
model all and select the most promising in terms of prediction capabilities.
Note, however, that correlations between sensory descriptors, does not imply
that the sensory descriptors refers to the same percept in general, as simi-
larity between this subset of headphones would lead to high correlations as
well.

3 Modelling methodology

Metrics were developed to investigate the link between the sensory descriptor
ratings and the listening test stimuli. They were all based on a stationary
loudness model [12], where specific loudness was estimated for each stimulus
in steps of 0.1 Bark from Bark number 0.1 (20 Hz) to 24.0 (15.5 kHz). The
resulting loudness metrics (presented later on in Table C.3) are the summed
loudness in a frequency range AB divided by the sum of the full loudness
spectrum, as described by Eq. C.2. Densm( f ) is the temporal mean of the
time-varying specific loudness, while A and B denotes the frequency limits

lower than the main ‘Headphone’ factor. Consequently, Fig. C.1 shows the average over excerpts.
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of the AB range.

metric =
AB range
Full range

=

B

∑
f=A

Densm( f )

∑ Densm
(C.2)

An optimisation routine was implemented to find the frequency range
AB, at which the metrics had maximum correlation with the sensory descrip-
tor ratings. As it was not of interest to get metrics related specifically to
individual musical excerpts, the routine found the frequency range where
the maximum average correlation across excerpts were located, as described
by Eq. C.3 and C.4. Metric is a matrix with Densm(AB) loudnesses for all
tested combinations of AB frequency ranges. Pex is the average perceptual
ratings for each set of headphones for the musical excerpt ex. Rex is the Pear-
son correlation matrix for all tested combinations of AB frequency ranges.
Rmax is the maximum Pearson correlation averaged over all Pex. A metric’s
AB frequency range was consequently the range where Rmax was found.

Rex = corr (Metric, Pex) (C.3)

Rmax = max

(
∑4

ex=1 Rex

4

)
(C.4)

All combinations of search ranges in the full loudness spectrum and all
search positions were tested with the 0.1 Bark resolution with one constraint:
The search range was restricted to AB ranges with a minimum width of two
Barks, to avoid getting peak correlations in narrow ranges unlikely to be
the cause of the perceptual rating. In the remaining part of this paper, the
output of the optimisation routine, when analysed with all seven prototype
headphones, are referred to as the ‘baseline’.

The output of the optimisation routine was likely to lead to several peaks
due to the wide search area. This ensured a search unbiased by the authors’
theories, but complicated the analysis. Even if one peak had a (significantly)
higher correlation coefficient, this may not have been the case with slightly
different prototypes. This issue is commonly dealt with in the literature by
training the metric on one set of data and validating the results with a sep-
arate dataset. This is however not desired with small datasets, such as a
limited number of prototype headphones. Therefore, a bootstrap method
was used to get a better representation of the sample space spanned by all
prototype headphones. A total of 500 bootstrap iterations (sampling with
replacement) of the optimisation routine were processed for each descriptor,
followed by a classification task: For each iteration the optimisation routine
output’s maximum peak was classified either as matching one of the peaks
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from the baseline or an unclassified peak (“Other”). A match was defined as:
A and B from the AB range being within ±2 Bark of a peak from the baseline.
Due to the limited number of headphones, this process was likely not to have
a high hit rate, i.e. maxima’s coinciding with the baseline peaks, but still
allowed comparison of hit rates across peaks as well as providing estimated
correlation coefficient confidence intervals.

3.1 Dark-Bright metric

For modelling of the Dark-Bright descriptor another approach was chosen.
In the literature a metric commonly referred to as the spectral centroid (see
e.g. [16, 17]) is reported to be a good predictor of brightness (a sensory de-
scriptor similar to Dark-Bright). It is the balancing point in a spectrum, where
an equal amount of energy is located below and above the point. In contrast
to the cited papers the spectral centroid was, in the present study, calcu-
lated on the basis of loudness spectra rather than frequency spectra, as it
was hypothesised to be a better predictor, due to the closer relation with the
perception of listeners. The proposed Dark-Bright metric was therefore cal-
culated as described by Eq. C.5. Since the output of the loudness model
was in discrete 0.1 Bark bins, the solution became a minimization problem.
Densm(b) is the temporal mean of the time-varying specific loudness and b
is the 0.1 Bark bin number. bMIN , bCEN , bMAX are the minimum, centroid,
and maximum bin numbers respectively. bCEN thereby represents the point
of equal loudness, i.e. the perceptual spectral centroid.

min
bCEN∈Z

|
bCEN

∑
b=bMIN

Densm(b) −
bMAX

∑
b=bCEN+1

Densm(b)|

s.t.
bMIN ≥ bCEN ≤ bMAX

(C.5)

3.2 Metrics results

Numeric results of the optimization routine and bootstrap classification are
shown in Table C.3. The routine output’s a map showing correlation values
for all processed AB ranges. The first column shows the multiple (compet-
ing) peaks for each sensory descriptor, e.g. three for Bass strength. The
Bass strength P1 and P2 AB ranges pointed to the same conclusion: that the
low-frequency range up to 210 Hz was important for the perception of bass
strength, i.e. P1 and P2 could be considered as equivalent. The ’Peak R’
column displays the Pearson correlation coefficient peaks from the baseline
with the perceptual data. The third peak, P3, was related to treble, implying
that the level of high-frequencies may affect the perception of bass strength.
The ‘Hit rate’ column shows that 26.2% of the bootstrap iterations led to P1
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or P2 having the best correlation with the sensory descriptor Bass strength,
with a median correlation coefficient for P1 of r = −0.79 and 95% CI’s of
[−0.57 to −0.99]. For Midrange strength, the peak with the highest correla-
tion had an AB range within bass and low-midrange frequencies (again P2
was equivalent), while P4 was the only peak with a maxima coinciding with
the baseline peaks in 500 of the bootstrap iterations. The correlation CI’s of
these bootstrap maxima was however inconsistent and spanned both positive
and negative values, implying instability. For Treble strength, P2-P4 all led
to high hit rates, with P2 having the highest hit rate and a narrow CI. P5 had
a low hit rate, but covered the area traditionally considered the treble range.
For Clean, P4 and P5 resulted in a combined hit rate of 31.6%. The boot-
strap CI’s for P4 spanned the smallest range of values. For the Dark-Bright
sensory descriptor a bootstrap method was again employed to test the stabil-
ity of the proposed metric. Pearson correlation coefficients for 500 bootstrap
iterations had a median value of r = 0.95 and 95% CI’s of [0.81; 0.99].

The relation between the proposed metrics and the perceptual ratings are
shown in Fig. C.2.

4 Discussion

For the sensory descriptors modelled using Eq. C.2, the output of the opti-
mization routine led to multiple peaks with correlation coefficients r2 ≥ 0.67
(r ≥ |0.82|), when all headphones were analysed. This approach was deemed
appropriate for modelling of the four sensory descriptors presented in Table
C.3. In the case of Bass-, Midrange- and Treble strength, they all had a peak,
which logically seemed probable: An AB-range of 20− 200 Hz (P2) for Bass
strength, an AB-range of 690− 5900 Hz (P3) for Midrange strength, and an
AB range of 8.7− 15 kHz (P5) for Treble strength. The bootstrap categorisa-
tion method showed the peak P1 (and the equivalent P2) to have a promising
hit rate (26.2%), while Midrange strength, in contrast to logic, showed the
highest hit rate for an AB-range in the high-frequency region. For Treble
strength three peaks got high hit rates (20.0− 29.6%), none of which seem
logically related to the perception of treble. In the case of Midrange- and Tre-
ble strength the bootstrapping process uncovered uncertainties in the data,
but did not point to peaks likely to have a causal relation with perception.
For Bass strength, the method showed that peak P1 may be a better predictor
of bass strength, than the equivalent but more logical choice peak P2, due to
numerical stability. For Clean peak P4 and the equivalent P5 got a combined
hit rate of 31.6%, with P4 being more stable with regards to CI’s. Here, the
bootstrapping process revealed peak P4 as a potential better predictor of the
descriptor Clean, than P1, although P1 had the largest r-value in the output
from the optimization routine when all headphones were analysed (baseline).
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Metric Peak R AB Range Hit rate Bootstrap R 95% CI’s
Bass strength P1 -0.97 210-15000 25.8 % -0.79 -0.99; -0.57

P2 0.96 20-210 0.4 % 0
P3 -0.82 8900-14000 11.2 % -0.82 -0.90; -0.74

Midrange strength P1 -0.98 20-610 0 %
P2 0.98 640-15000 0 %
P3 0.97 690-5900 0 %
P4 0.91 8900-15000 6.2 % 0.80 -0.99; 0.89

Treble strength P1 -0.95 20-650 2.8 % -0.97 -1.00; -0.95
P2 0.95 680-15000 29.6 % 0.97 0.95; 0.99
P3 0.95 730-5700 26.6 % 0.96 0.93; 1.00
P4 0.93 2500-4500 20.0 % 0.98 0.95; 0.99
P5 0.93 8700-15000 2.8 % 0.99 0.94; 1.00

Clean P1 0.99 800-4800 0 %
P2 -0.98 20-720 0.8 % -0.99 -1.00; -0.98
P3 0.98 730-15000 0 %
P4 -0.90 20-8200 24.6 % 0.76 0.58; 0.97
P5 0.90 8200-15000 7.0 % 0.77 -1.00; 0.92

Table C.3: Potential metrics describing sensory descriptors. The first column displays a metric,
e.g. bass strength, and peaks (P1, P2, etc.) in the output map of the optimization routine
(baseline). The two next columns display the Pearson correlation coefficient value of the baseline
peaks and their AB ranges. The ‘Hit rate’ column displays percentage bootstrap iterations having
maximum at the baseline peak. The last two columns display the median correlation of the
iterations with a match as well as their 95% confidence intervals (CI) calculated from bootstrap
percentiles. CI’s in bold have a range spanning both positive and negative r values. All numbers
are rounded to two significant digits.
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In general, the many equivalent peaks may points to a problem in structure
of the metrics described by Eq. C.2. For prediction of bass strength, a better
metric could be AB/CD, i.e. with the denominator covering a limited fre-
quency range CD rather than the full range. This approach was investigated
in another study [18].

For Dark-bright the loudness spectral centroid correlated well with the
perceptual data (median r = 0.95). Closer inspection of the relation between
the metric’s output and the perceptual ratings showed the auralized head-
phones ‘4’ as a slight outlier for two of the four musical excerpts. Compared
with the other headphones, these had an increased midrange within the fre-
quency range ≈ 700− 1400 Hz. This may indicate that wide resonances in
the sound reproduction affect the perception of Dark-Bright slightly different
than predicted by the proposed metric.

The three most promising metrics Bass strength, Dark-Bright and Clean
models the sensory descriptors with the least correlation between them, thereby
constituting a strong set of metrics for characterisation of the perceptual space
spanned by the evaluated prototype headphones.

5 Summary

This paper presented a framework for modelling of sensory descriptors re-
lated to timbre of seven prototype headphones. Three metrics deemed stable
was proposed for Bass strength (r2 = 0.62), Clean (r2 = 0.58), and Dark-
Bright (r2 = 0.90) respectively. All of them were based on loudness estimates
of listening test stimuli. The first two were modelled from a simple equa-
tion (Eq. C.2) with specific loudness in an AB frequency range (found by
optimisation) divided by loudness in the full spectrum. The metric proposed
for Dark-Bright prediction was based on a spectral centroid calculation of
specific loudness. For two other sensory descriptors, Midrange- and Treble
strength, stability investigations based on a bootstrapping process revealed
inconsistencies in the sign of the correlations or multiple competing local
maxima.
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1. Introduction

Abstract

In this study the characteristics of compact loudspeakers in a stereo setup were inves-
tigated. Perceptual evaluations of eleven loudspeakers were conducted on the basis
of six selected sensory descriptors, chosen by experienced listeners during consensus
meetings. Based on an analysis of the perceptual evaluation, four of the descriptors
were found suited for modelling, with the purpose of developing metrics for pre-
diction of Bass depth, Punch, Brilliance, and Dark-Bright. Bass depth and Punch
were modelled as one due to high correlation between them. The experimental setup
included loudspeaker spinners, enabling fast positioning of loudspeakers. The pre-
diction models were based on binaural recordings, processed using a loudness model,
and developed on the basis of previous work on headphone modelling [1, 2]. They
were trained on a subset of the data (66 %) and validated on the rest. The resulting
metrics had high correlations with the perceptual ratings of the validation dataset
(r = 0.85-0.96).

1 Introduction

Loudspeaker specifications have traditionally described the physical prop-
erties and characteristics of loudspeakers: Frequency response, dimensions
and volume of the cabinet, diameter of drivers, impedance, total harmonic
distortion, sensitivity etc. Few of these directly describe the sound repro-
duction, and none directly describe perception of the reproduction, i.e. takes
into account that the human auditory system is highly non-linear in terms of
spectral-, temporal- and sound level processing (see e.g. [3]). This disconnect
between specifications and perception have made it challenging for acous-
ticians and engineers (and consumers) to predict how a loudspeakers will
sound on the basis of these specifications.

Perceptual audio evaluations have long been a reliable method of char-
acterising the reproduction of loudspeakers, headphones, codecs, etc. The
requirements for making reliable listening tests are however many, both in
terms of facilities, equipment, handling of listeners etc. (see e.g. [4]). Ad-
ditionally, numerous potential biases [5, 6] must be avoided in the listening
test design, making the conduction of listening tests a task for experts only.
One way of making perceptual characterisation more accessible (and read-
ily available), have been to develop metrics for predicting perception from
various (more easily obtainable) physical measurements of the sound repro-
duction. The efforts can be divided in two categories: 1) hedonic predictions
of e.g. Basic Audio Quality [7], Mean Opinion Score [8, 9], Preference [10] or
spatial quality [11], and 2) Predictions of reproduction characteristics, such
as Punch [12], Width (sound image) and Bass tightness [13], stereo image
width [14], Discolouration, Treble stressing, General bass emphasis, Low bass
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emphasis, Brightness, Bass clearness, and Feeling of space [15], and Bright-
ness [16, 17].

While earlier studies focused on making predictions on the basis of the
aforementioned specifications (e.g. frequency responses in [18, 19]), more
recent modelling efforts have relied more on measurements closer related to
the human hearing, e.g. by using binaural recordings as a representation of
the physical domain (see e.g. [13, 14]) and by processing the modelling input
using auditory models (see e.g. [12–15]).

In the present study the sensory descriptors describing the dominating
perceptual differences between compact loudspeakers in a stereo setup were
found by consensus meetings with experienced listeners, and predictive mod-
els1, are designed on the basis of listening tests on loudspeakers in a listen-
ing room and analysis of binaural recordings made in the listening position.
These tests included evaluations of five sensory descriptors2, representing
identified differences on eleven stereo sets of loudspeakers. The loudspeak-
ers were placed in two positions: eight on loudspeaker spinners and three
in corner positions. The loudspeaker spinners allowed evaluations of loud-
speakers in identical positions with a minimum of switching time, i.e. strain
on the limited auditory memory of humans (see review in [21]).

The present study presents a modelling methodology based on binaural
recordings being processed using a loudness model. This methodology have
been tested for modelling of headphones (sound reproduction with room
influences) in a previous study [2]. The present study thereby tests both the
suitability of using the proposed methodology for modelling of loudspeakers
in a stereo setup, and tests the modelling strategy on a different set of sensory
descriptors than previously investigated.

2 Loudspeakers in a stereo-steup

The listening test comprised two sessions; Each with evaluation of seven
stereo sets of loudspeakers, of which three sets were in both sessions. The
test consisted of reproductions of two musical excerpts evaluated on six sen-
sory descriptors and rated twice by each listener. One session thereby con-
sisted of 168 ratings and had a duration of no more than two hours includ-
ing breaks, which listeners were encouraged to take whenever needed. The
test software automatically regularly reminded listeners to take these breaks.
One ‘screen’ in the test software consisted of evaluation of each of the seven
sets of loudspeakers for one sensory descriptors with one musical excerpt,

1In this paper the term “metric” is used to describe the end result of the modelling efforts,
while “prediction model” is used to refer to the development stages of a “metric”.

2A sensory descriptor is defined here as a word or phrase that describes, identifies, or labels a
perceptual characteristic of a system, e.g. a loudspeaker reproduction. This definition is adapted
from [20].
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e.g. Bass depth. A ‘screen’ had seven horizontal rating scales representing
each loudspeaker set in a randomised order. The experimental design within
one session was a block design with each block consisting of one repetition.
Within a block the musical excerpts and sensory descriptors were presented
in a randomised order as well. Listeners started both sessions with a famil-
iarisation part that included presentation of all stimuli. In this part, they were
allowed to make small adjustments to the overall sound level and instructed
to keep that level for the main test.

In the following subsections the details of the setup, the loudspeakers, the
stimuli and the listeners are presented.

2.1 Stereo-setup

The listening test was conducted in a listening room compliant with the ITU-
R BS.1116-3 [22] recommendation. The loudspeakers were evaluated in the
stereo setup depicted in Fig. D.1 (not to scale). Four sets of loudspeakers
(spot 1-4) were secured on loudspeaker spinners (DELTA Low Noise Rapid
Speaker Spinners), which could move a requested loudspeaker set into the
ideal position of the equilateral triangle in about a second no matter the
previous position. The figure shows two situations:

Scenario 1 (left) A set of loudspeakers (1-4) on the loudspeaker spinners are
playing after being moved into the ideal positions of the equilateral
triangle (playback positions).

Scenario 2 (right) A set of loudspeakers in the corners (C1-C3) are playing
and the loudspeakers on the spinners are moved to other positions.

Note that the two spinners were always in mirrored positions of each other
(not depicted) with two loudspeakers playing in stereo. The loudspeakers on
spinners were individually positioned to point towards the listening position
(when in the playback positions) and with their acoustically center, as speci-
fied by the manufacturers, at 110± 0.5 cm above the floor (approximately the
height from the floor to the ear canal entrance of an average seated listener).
The centre of each loudspeaker spinner was positioned 0.85 m from the side
wall and 1.05 m from the back wall. They allowed four sets of loudspeakers to
be correctly positioned in an ideal stereo setup (an equilateral triangle), when
evaluated by the listeners. Additionally, they are programmed to rotate the
least possible (left or right) when moving loudspeakers into the playback po-
sitions to minimize switching time. Three additional sets of loudspeakers
(C1-C3) where positioned in the corners of the room. A set of Genelec 8020C
(C1 positions) were stacked on top of a set of SLA (C2 positions) with Gen-
elec 8050A positioned besides the two (C3 positions). Their acoustic centres
were at a height of 145, 122.5 and 133 cm respectively, i.e. higher than the
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loudspeakers on the spinners. The set of loudspeakers in the corners were
programmed to have individual virtual positions on the loudspeaker spin-
ners. This had two purposes: 1) it rotated the spinners to a position as shown
in Fig. D.1 on the right, where the sound emitted was the least obstructed by
the loudspeakers on the spinners, and 2) it gave listeners the impression that
all loudspeakers were placed on the spinners (important to reduce system
identification, which can lead to listener expectation bias [6])

The listener was seated in a chair positioned in the centre of the width-
dimension in the room and view of the loudspeakers were blocked by two
layers of thin curtains and an acoustically transparent canvas (damping <
1 dB below 16 kHz at an 30◦ incident angle) displaying the test interfaces.

Scenar io 1 Scenar io 2

A coustically 
transparent canvas

4

3

2
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2
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C 3
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C 2 C 3

C 1
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spinner

A coustically 
transparent curtain

A coustically 
transparent curtain

L oudspeaker
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L istening room

L istening &  measurement centre

Fig. D.1: Experimental setup. Four sets of loudspeakers were positioned in a standard stereo
setup (equilateral triangle) and three other sets in the corners of the room. The loudspeaker
spinners move a set of loudspeakers (selected in the test interface) into the playback positions
prior to stimuli presentation (Scenario 1). If a set of loudspeakers positioned in the corners
(C1-C3) were selected, the spinners instead moved to a position with less influence from the
loudspeakers on the spinners (Scenario 2). Note: The diagram is not to scale.

2.2 Loudspeakers & Calibration

A perceptual evaluation was made of eleven models of compact loudspeakers
listed in Table D.1. Eight were chosen as representative of loudspeakers for in
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the consumer segment (price range of 60-554 USD, median of 329 USD) and
three were chosen to increase the range of perceptibly differences. Except for
one custom-made loudspeaker (SLA), they all had two drivers (tweeter and
midrange). The volume of the loudspeaker cabinets were in the range 3-21 l
(median 10.4 l), with the exception of the large Genelec 8050A (36 l). The
loudspeakers were evaluated in two separate listening sessions to accommo-
date the space limitations on the loudspeaker spinners. For each session four
models were paired to span a wide range of differences between products,
i.e. by mixing brands, sizes and price ranges. In the following a loudspeaker
set refers to two identical loudspeakers used for stereo reproductions.

Eight of the eleven loudspeaker sets were positioned ideally, while three
were positioned differently and included in both tests to obtain similar scale
usage across the two sessions (as discussed in the previous section). These
three are listed in the bottom of Table D.1. The Genelec 8050A loudspeakers
were equalised to have an approximately flat frequency response within their
specified frequency range, measured in the listening position and with the
other four loudspeaker sets on the loudspeaker spinners. The Genelec 8020C
were equalised in the same fashion, but had 1/3-octave bands above 10 kHz
damped 12 dB to differentiate it from the larger 8050A with regards to both
the low- and high frequency extension. Documentation measurements with a
pink noise signal showed that the frequency responses of these loudspeakers
in the listening position were not identical between sessions (avg. 1/3-octave
difference of 2 dB, max. of 12 dB at 12.5 kHz), but the loudspeakers never-
theless received ratings without significant differences between sessions (also
indicating that there was no significant session effect in the experimental de-
sign). The set of SLA loudspeakers were included in the test to expand the
range of perceivable characteristics downwards and were thus not equalised.
To slightly reduce the difference to the loudspeakers on the spinners, two
strong resonances at 500 Hz and 800 Hz were however dampened 6 dB (us-
ing 1/3-octave equalisers).

All loudspeakers were level calibrated to produce 70± 0.5 dB(A) in the
listening position (measured with a single measurement microphone). The
calibration signal had a pink noise spectrum and was band-pass filtered to
a frequency range of 80 Hz-14 kHz. After the calibration two of the authors
and a colleague checked that no perceptual level differences were noticeable
for the chosen stimuli.

2.3 Stimuli & Sensory descriptors

Two musical excerpts were chosen for reproduction over the loudspeakers. A
15 seconds soft pop excerpt (“Bird on a wire” by Jennifer Warnes) and a 24
seconds oriental excerpt (“Moonlight on spring river” by Zhao Cong). Both
excerpts were cut to maintain the rhythm during looping. Frequency content
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Loudspeaker Freq. range (±3 dB) Session
Argon 6340 80 - 20000 Hz 2
B&W 685 S2 52 - 22000 Hz 2
B&W 686 S2 62 - 22000 Hz 2
B&W CM1 S2 50 - 28000 Hz 1
DALI Menuet 59 - 25000 Hz 1
DALI Zensor 1 53 - 26500 Hz 1
DALI Opticon 2 50 - 27000 Hz 2
Scandyna MiniPod Mk3 55 - 22000 Hz 1
Genelec 8020C 65 - 21000 Hz Both
SenseLab Low Anchor (SLA) ≈80 - 7000 Hz Both
Genelec 8050A 35 - 21000 Hz Both

Table D.1: Selection of compact loudspeakers included in the listening test. Manufacturers’
frequency responses are shown. The last three loudspeaker sets were evaluated in both listening
sessions and were subject to modifications of their frequency responses.

of the two excerpts are shown in Fig. D.2. The Jennifer Warnes excerpt is
dominated by a female vocal and a drum beat, but also includes a variety of
other instruments. All sources are clearly separable in the stereo image and
the frequency content is smooth in a wide range. The Zhao Cong excerpt is
a calm instrumental composition dominated by very deep bass drums and a
melody played on pipa (Chinese “lute”). The mix includes many additional
instruments as well and has great clarity. The frequency content is broad, but
with a lower level in the high bass/low midrange.
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Fig. D.2: Frequency content, LEQ, of the raw musical excerpts depicted in 1/6-octave bands.
Normalised to 0 dB at 1 kHz.

Reproduction of the two excerpts were evaluated by listeners on six per-
ceptual characteristics defined by the following sensory descriptors: 1) Punch,
2) Bass depth, 3) Brilliance, 4) Dark-Bright, 5) Natural, and 6) Spatial pre-
cision. The descriptors were all from a Sound wheel for audio reproduc-
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tion [20] that each have a definition as well as a low- and high verbal scale
anchor, e.g. ‘a little’ and ‘a lot’ for Brilliance. Note that Punch is defined
differently in the Sound wheel compared to that of [12], where it is referred
to as something that: “characterize music or sound sources that convey a sense of
dynamic power or weight to the listener”. Their idea of Punch seemed to have
more in common with the descriptors referred to as Bass precision and At-
tack in the Sound wheel [20]. Punch as defined in the Sound wheel [20] is
“ability to effortlessly handle large volume excursions with compression”.

2.4 Listeners

Ten listeners participated in the listening test. They were all experienced and
trained listeners with normal hearing and ranged in age from 20 to 46 with a
median of 30 years. Nine of the ten were trained specially in perceptual loud-
speaker evaluation. Their performance was evaluated using a combination of
eGauge [23] and Tucker-1 plots. This performance evaluation was described
in detail in [2] and includes criteria for removing listeners performing below
specified requirements with regards to discrimination and reproducibility.

3 Perceptual modelling & results

3.1 Data basis for perceptual modelling

Out of the six evaluated sensory descriptors, listeners were not able to dis-
criminate between the loudspeakers for Spatial precision and Natural, i.e.
none of the loudspeakers on the loudspeaker spinners were rated signifi-
cantly different from each other on an α = 0.05 level. Furthermore, Bass
depth and Punch were highly correlated (r2 = 0.85). Consequently, only
‘BassPunch’ (treating Bass depth and Punch as replicates of the same descrip-
tor), Brilliance, and Dark-Bright were modelled. For each of these, metrics
are proposed on the basis of listening test data and corresponding binaural
recordings made in the listening position.

The recordings captured the two musical excerpts when reproduced over
the loudspeakers. A Brüel & Kjær 4100 head- and torso simulator without ear
canals was placed in a chair in the listening position with the microphones
centred in a height of 110± 0.5 cm above the floor.

The dataset of perceptual ratings and recordings was split up into a training-
and validation set. The selection of loudspeaker for each set was chosen
separately for each sensory descriptor following this strategy: A first step
was to discard perceptual data of the loudspeakers in the corners that had
the largest confidence intervals, i.e. session 1 or session 2 data of the same
loudspeaker set. This was needed as the loudspeakers were too similar to
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treat as separate data points and would have led to overly optimistic evalua-
tion of the prediction models. A second step was to sort the perceptual data
per loudspeaker set in ascending order of mean rating and select loudspeak-
ers ranked 2, 5, 8, and 10 for validation (≈ 36 %) and the rest for training.
This selecting scheme ensured that validation ratings were within the range
spanned by the training ratings (of which the scope of the prediction models
are limited). Additionally, it ensured a wide spread of ratings in both the
training and the validation set3.

3.2 Modelling methodology: BassPunch & Brilliance

Bass depth and Brilliance were defined to describe similar concepts: The bass
extension and the treble extension respectively. From a perceptual viewpoint
the strongest cue in identifying the bass- or treble extension is loudness at
the lowest or highest range of frequencies. Punch is considered related to
a temporal response of loudspeakers determined by its time constant (also
referred to as onset or rise time). In the Sound wheel definitions [20], Punch
is described as related to the reproduction of bass and drums and defined
as “ability to effortlessly handle large volume excursions without compression.”, i.e.
to fully reproduce the (relative) level of the low-frequency content. Since
the lowest frequencies requires the most of the loudspeakers the correlation
with perceived bass depth, seen in the perceptual dataset, seems reasonable.
Consequently, both the combined descriptor BassPunch and Brilliance were
modelled using a generic methodology proposed in two previous papers for
use with perceptual modelling of headphone differences [1] and characteris-
tics [2].

The methodology is based on specific loudness estimations of binaural
recordings, here calculated using the time-varying model by Glasberg and
Moore [24]. Briefly described, the loudness model corrects for outer- and
middle ear influences, calculates the excitation patterns of the basilar mem-
brane, and estimates the specific instantaneous loudness for each millisecond
in a frequency resolution of 0.25 equivalent rectangular bands (ERBs). In a
final step short- and long term loudness is estimated (taking temporal mask-
ing into account). This processing step was, however, not relevant for this
purpose as specific loudness was of interest, i.e. averaging over time instead
of frequency.

Prediction models were trained using an optimization routine (also de-
scribed in [1, 2]) that optimized the variables of an equation on the form
described by Eq. C.2, such that metric correlates the most with the ratings

3Note that division of datasets into training and validation subsets is normally done using
random draw, i.e. randomly assigning data to one or the other subset, which minimizes the risk
of biased/boosted result. With a small dataset this approach isn’t suitable as the random subsets
risk only spanning a small fraction of the rating range.
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of the sensory descriptors. Densm( f ) is the temporal mean of the instanta-
neous specific loudness, while A and B denotes the frequency limits of an AB
range. The optimization routine searches for the optimum AB range in steps
of 0.25 ERBs for A and B independently, but limited to a minimum AB range
of 2 ERBs. This limitation was added to reduce the risk of finding spurious
high correlations in narrow AB ranges, unlikely to have significantly affected
perception and rating of any of the sensory descriptors.

metric =
AB range
Full range

=

B

∑
f=A

Densm( f )

∑ Densm
(D.1)

In [1], where the methodology was first described, an additional equation
was suggested, which had a limited range in the denominator ‘CD’ as well,
as opposed to the full-range of Eq. C.2. This equation was also tested in
the present study for modelling BassPunch and Brilliance, but did not lead
to as high correlations as the simpler equation in Eq. C.2, and results are
consequently not reported.

Additionally the search ranges (investigated AB ranges) were limited to
sensible ranges in relation to the general meanings/definitions of bass and
treble, namely 20-500 Hz for the BassPunch prediction model and 6.0-14.7 kHz
for the Brilliance (14.7 kHz being the highest centre frequency of the loudness
model output).

3.3 Modelling methodology: Dark-Bright

In a previous study [2] we described a metric for prediction of Dark-Bright
ratings. This metric was based on finding the spectral centroid of the stimuli.
While this had been done previously for a descriptor referred to as ‘Bright-
ness’ (similar in description to Dark-Bright) the novelty was to base the met-
ric on specific loudness estimates instead of frequency content. The metric
thereby constitutes the centre frequency at which the loudness in the low and
high frequencies are equal (or in practise have minimum difference). Equa-
tion 2 describes the solution to the minimization problem of finding the per-
ceptual centroid4. Densm( f ) is again the temporal mean of the instantaneous
specific loudness and f is the frequency. fMIN , fCEN , fMAX are the mini-
mum, centroid, and maximum centre frequencies respectively. fCEN thereby

4Note that the frequency resolution is 0.25 ERBs and that the total number of frequency bins,
153, was uneven.
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represents the point of equal loudness, i.e. the perceptual spectral centroid.

fCEN :

min
fCEN∈Z

∣∣∣∣∣ fCEN

∑
f= fMIN

Densm( f ) −
fMAX

∑
f= fCEN+1

Densm( f )

∣∣∣∣∣
subject to

fMIN ≤ fCEN ≤ fMAX

(D.2)

As it was hypothesized that the loudness of the mid-frequencies may not
influence the perception of the Dark-Bright balance to the same extent as
the loudness in the bass- or treble frequency ranges, an alternative prediction
model is proposed here. Loudness in the midrange frequencies - defined here
to be the range 400-4000 Hz - was reduced in steps of one percent point from
p = 0 % to p = 100 % of the original loudness level Densm( f ) to investigate
the effect on the correlation level with the ratings of Dark-Bright. The opti-
mum value of p, leading to the highest correlation with the perceptual data,
was found on the training data and tested on the validation data. Note that
this alternative can be viewed as applying a weighted upside-down rectan-
gular window to the specific loudness spectrum, which is unlikely to occur
in the human auditory processing. This is, however, a method of testing
whether the hypothesis of a weighting function might be part of listeners au-
ditory processing, when evaluating spectral balance. Eq. 2 can be reused for
this alternative approach, simply by replacing Densm with Densmw, defined
in Eq. D.3. Results for the two proposals are reported in Section 3.

Densmw( f ) = Densm( f ) · w( f )
where

w( f ) =

{
p for 0.4 < f < 4.0 kHz
1 otherwise

3.4 Modelling methodology: Logistic transformation

In an effort to obtain models with meaningful predictions in the entire rating
interval, i.e. outside the interval of the currently collected data, all prediction
models presented so far were transformed using a logistic (s-curve) fit. This
ensures that the prediction models can never be outside the range of the scale
in the listening test, i.e. 0-15. A logistic transformation ensures a saturation
of the prediction value at the lowest and highest end of the scale. The trans-
formation was done in five steps. First, the output of the prediction models
was standardized. This was done separately for each of the two musical ex-
cerpts to remove excerpt-specific shift and scaling effects. Secondly, a linear
fit was used to convert the output to the original rating scale (0-15). This
was needed, because the third step required strictly positive values. Thirdly,
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a logit transformation was applied (Eq. D.3). This step transforms the data,
such that the output and the perceptual data have an approximately linear
relationship. Fourthly, a linear fit was found for the logit transformed data.
Finally, the linear fit coefficients, c1 and c2 from step four, were transformed
back to the original scale using the logistic transformation (the inverse of the
logit transform) in Eq. D.4. The two linear fits (step 2 and 4) were made with
perceptual ratings in the training subset and the coefficients were used for
both the training and the validation subsets. The results prior to the final
step of logistic fitting are depicted in Fig. D.3 to Fig. D.5 with the logistic
transformation curve (step 5) plotted.

x2 = log
(

x
15− x

)
(D.3)

x3 =
15

1 + e−c1·x2−c2 (D.4)

4 Modelling results

The modelling led to metrics for prediction of the sensory descriptors BassPunch,
Brilliance, and Dark-Bright respectively. The performance of these are pre-
sented in Table D.2 with parameters specified in the Details column. The
numbers presented are the Pearson correlation coefficients, r, of the logistic
transformed metrics and the AB-ranges are described by their 0.25 ERB cen-
tre frequencies ( fc). Scatterplots are depicted in Fig. D.3 to Fig. D.5. Note
that for clarity only confidence intervals (CIs) for the validation data set are
depicted. The CIs for the training data are similar in size (as both are based
on ratings by the same number of listeners).

The big difference between the training and validation coefficients for
BassPunch are caused by two sets of loudspeakers being outliers. The fit
between perceptual ratings and prediction model prior to logistic transfor-
mation is depicted in Fig. D.3. The two outliers (lowest filled blue symbols)
are SLA and Genelec 8020C from the corner positions evaluated on the same
musical excerpt (Jennifer Warnes). The low correlation coefficient for Dark-
Bright (without window) was also caused by two of the loudspeakers in the
corners being outliers. The proposed alternative Dark-Bright metric with a
weighted upside-down rectangular window, Dark-Bright (R), led to better
correlations than the original Dark-Bright metric for both the training- and
validation sets.
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Fig. D.3: Perceptual ratings of BassPunch vs. the proposed prediction model (prior to logistic
transformation). Each set of loudspeakers is represented by two data points - one for each
musical excerpt. The filled symbols represent loudspeakers from corner positions. The vertical
bars represent the 95 %-confidence intervals.
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Fig. D.4: Same as Fig. D.3, but for Brilliance.
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Metric Train. Val. RMSE Details
BassPunch 0.70 0.90 1.06 AB: 20-72 Hz
Brilliance 0.99 0.96 1.00 AB: 8.3-10 kHz
Dark-Bright 0.61 0.17 2.19
Dark-Bright (R) 0.88 0.85 1.08 p = 7%

Table D.2: Performance of metrics describing sensory descriptor ratings. Training (Train.) and
Validation (Val.) values are Pearson correlation coefficients, r. RMSE is the root-mean-square
error. For the Dark-Bright metrics, (R) denotes the alternative version with a weighted upside-
down rectangular window.
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Fig. D.5: Same as Fig. D.3, but for Dark-Bright (R).

5 Discussion

In general, the three proposed metrics, BassPunch, Brilliance and Dark-Bright
(R), performed well having correlations coefficients r ≥ 0.85 for the validation
data sets and root-mean-square errors of RMSE ≈ 1. Furthermore, the AB-
range for BassPunch seems intuitively reasonable, while for the Brilliance
metric the 10 kHz upper limit seems low and cannot be explained by lack of
frequency content in the musical excerpts. The BassPunch metric, however,
had a lower correlation coefficient for the training set (r = 0.70) than the
validation set (r = 0.90), and consequently r = 0.70 may be the most realistic
estimate of its prediction performance level. The outliers in the validation
training set are likely to be a consequence of the lack of spectral content at
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the lowest frequencies (< 50 Hz) of the Jennifer Warnes excerpt (see Fig. D.2),
which constitutes a significant part of the metric’s AB range (20-70 Hz).

Due to the understanding of Punch as a characteristic linked to temporal
properties of the reproduction, several alternative modelling schemes were
tried in an effort to include this aspect in either a separate Punch metric or
in a combined BassPunch metric, but none led to consistent predictions. One
tested aspect was for instant a modification of Eq. C.2, where the temporal
mean of the instantaneous specific loudness, Densm, was replaced by either
the temporal maximum, Densmax or the mean of an upper percentile, e.g. the
90th, of the instantaneous specific loudness, Densmp.

The higher performance of the Dark-Bright (R) metric in comparison to
the simpler Dark-Bright metric proposed in [2], suggests that listeners put
less emphasis on the midrange frequencies, when evaluating the spectral
balance of sound reproduction. It is, however, important to reiterate that the
proposed weighting function is unlikely to correspond to that of a listener,
as it has two strong discontinuity points at the start- and end frequencies of
the function. A smoother function is expected to better represent this step in
the auditory processing. Additional research is also required to establish the
best-fit frequency limits, as the current range, 400-4000 Hz, were chosen only
as an initial estimate. Furthermore, it is of interest to establish whether these
limits are similar for all listeners or whether clusters exists. Investigation of
these improvements are planned to be the subject of a future study.

In terms of performance of the proposed metrics, it was of further interest
whether all confidence intervals of the validation data points overlap the
curve of the logistic fit in Fig. D.3 to Fig. D.5, in which case the best possible fit
is reached within the uncertainty of the data and more data would be needed
to verify further improvements. The Brilliance metric reached this prediction
performance level, while small improvements are still possible within the
statistical uncertainties of the current data set for both the BassPunch and the
Dark-Bright metrics.

In comparison with previous modelling effort in the literature, one im-
portant difference in this study, is the definition of the listeners “internal
reference. The traditional view is for instance seen in [15], where Klippel
proposed seven metrics for describing loudspeaker performance. The basis
of his metrics was a calculation of “discolouration”, which were defined as
stated in Eq. D.5, where N′test(z) and N′re f (z) are the specific loudness of the
test- and reference stimuli respectively.

N′(z) = N′test(z)− N′re f (z) (D.5)

Eq. D.5 implies that the listeners know the recorded reference and are able
to use this as an “internal reference” for assessment of loudspeakers by the
deviations from this reference. The weakness here is that the listener does not
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5. Discussion

know the recorded reference, as it cannot be presented to the listeners with-
out being affected by the reproduction system. This approach is also used in
prediction models involving codecs, e.g. P.OLQA [9] and QESTRAL [11], but
here the discolouration of the reproduction system is included in both the
reference and the compressed systems under test. In the present study, the
perceptual sound reproduction characteristics were defined as: “The perceived
changes to the envisioned original sound”. So, we assumed that the listener
creates an internal reference of the original sound on the basis of what is
heard and assess the loudspeaker characteristics as the deviation from this
reference. The weakness here is that the internal reference is dependent of
both the characteristics of the musical excerpts and the loudspeakers under
evaluation. We try to overcome this weakness by letting the assessors listen
to all systems with different musical excerpts (familiarization, see Section 2)
before the listening test, such that the internal reference should be an aver-
age over excerpts and thereby be a tool for assessing the loudspeakers with
limited influence of the specific excerpts. In the processing of data, the in-
ternal reference in the present study was approximated by averaging over
stimuli available in the training set and used for standardization as described
in Section 3.4 (step 1).

Besides the different definitions of listener reference, the study by Klip-
pel [15] showed many similarities supporting the findings of the current
study. His metrics were based on seven sensory descriptors identified by
comparisons of loudspeakers using a combination of ratio- and multidimen-
sional scaling methods. They were analysed using factor analysis and thereby
comprise a list of dominating perceptual differences between the sound re-
production of loudspeakers. Four of these are similar to the set used in the
present study, i.e. 1) Treble Stressing ≈ Brilliance, 2) Low bass emphasis
≈ Bass depth/Punch, 3) Brightness ≈ Dark-Bright and 4) Feeling of space ≈
Spatial precision. Note, however, that Klippel’s Treble Stressing was linked to
the perception of sharpness or shrillness, where Brilliance is defined as treble
extension. Klippel’s proposed metric Low bass emphasis describes the ratio
between the discolouration below fc = 60 Hz and all critical bands above,
with discolouration defined as spectral deviation from the original stimulus
(discussed above). This is comparable to the AB-range found for BassPunch
of 20-72 Hz (see Table D.2).

Klippel’s proposed Brightness (Dark-bright) metric is shown in Eq. D.6,
where S is Treble stressing metric and B is General bass emphasis.

H = 0.7S− 0.3B (D.6)

B is calculated from the same equation as Low bass emphasis, but with a
pivot point at fc = 150 Hz. S is based on discolouration as well, but mul-
tiplied by a weighting function increasing at the higher frequencies. Conse-
quently, Klippels Brightness metric puts higher emphasis on bass and treble
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than on midrange frequencies as well, but additionally puts higher weight on
treble than bass, which may be a consequence of a low pivot point at 150 Hz,
which does not encompass the full bass frequency range.

6 Summary

In this study, three metrics were developed for prediction of the perceived
characteristics of loudspeakers’ sound reproduction in a stereo setup with re-
gards to BassPunch, Brilliance and Dark-Bright. The metrics were developed
with the intention of finding specifications of loudspeakers’ sound repro-
duction with perceptual relevance. They were based on binaural recordings
made in the same setup, as was used for perceptual evaluations of eleven
stereo sets of loudspeakers. The recordings, made using a head- and torso
simulator, were processed using a loudness model and led to metrics de-
scribing spectral characteristics of the reproduction. Two, were based on the
relative specific loudness of a limiting frequency range (AB) and one was
based on a weighted specific loudness centroid. The prediction models were
trained on a training subset with seven sets of loudspeakers and validated
on four others. The range of correlation coefficients were r = 0.85-0.96 (de-
tails in Table D.2, page 127). All metrics thus showed potential for prediction
of a comparable loudspeaker segment and with a root-mean-square-error of
RMSE ≈ 1 on a 0-15 rating scale for the validation set. This RMSE level was
largely comparable to the statistical 95 % confidence intervals of the percep-
tual evaluations.
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Characterisation of acoustical environments:
Physics and perception

Abstract

Fifteen acoustical environments were characterised with respect to a number of electro-
acoustical measurements in the physical domain and a number of sensory descriptors
in the perceptual domain. The physical measurements were made in the same po-
sition as the listeners were situated during the perceptual evaluation to allow for a
direct comparison of the two domains. The data quality analysis of the perceptual
data revealed problems in the experimental design and setup, which are described
and discussed in detail in this appendix.

Practical application
The methods of data quality analysis and the problems discovered may help
others avoid a number of pitfalls with regards to perceptual evaluations of
audio reproduction equipment.

Project background
The purpose of this investigation was two-fold: Firstly, to collect perceptual
data for modelling the relation between the physical acoustical environment
and the human perception (PhD project activity). Secondly, to evaluate the
suitability of the included sensory descriptors (DELTA SenseLab activity).

1 Introduction

Two listening tests were conducted in an effort to investigate the general
question of how differences in an acoustic environments driven by repro-
duced audio systems are perceived and evaluated by listeners. This was in-
vestigated through listening tests and measurements of the electro-acoustical
properties of the acoustical environment in the listening position. Examples
of measurements include physical frequency response measurements as well
as perceived Bass strength and Naturalness evaluations.



The perceptual evaluations took place in two iterations: Eight systems
were evaluated in a first test (Test 1) and ten systems were evaluated in a sec-
ond test (Test 2). Each system included sound reproduction of a loudspeaker,
but the setup added significant influences to the sound reaching the listening
position. Consequently, a strict distinction is made in this appendix between
a loudspeaker and a system (defined later on). Three loudspeakers from Test
1 were included in Test 2 to allow for a potential data aggregation of the two
datasets, leading to a total of 8 + (10− 3) = 15 systems. The three recurring
loudspeakers were assumed to provide the same perceived sound at the lis-
tening position in both setups. This assumption is based on the loudspeakers
being positioned in the same positions and being influence very similarly by
the two setups. On the basis of the results from Test 1, the loudspeakers in
Test 2 were selected to represent a wider perceptual intensity range for each
of the included sensory descriptors, as the systems in Test 1 were found to
have too low variability, i.e. spanning a limited part of the rating scales.

In these two tests a number of loudspeakers were used to create variation in
the acoustical environment surrounding the listeners. This was not an eval-

Fig. I: The “baffle” setup of loudspeakers for Test 2. The white-framed loudspeaker (lower left)
was kept for symmetry, but only the right was included in the test. The large Genelec (leftmost)
was placed on top of the white left loudspeaker in Test 1. The position of the two other anchor
loudspeakers were fixed between Test 1 and Test 2.

uation of loudspeakers, but of loudspeaker-driven acoustical environments.
The loudspeakers were positioned up against each other in a “baffle” in an
effort to minimize spatial cues that the listeners could have used to iden-
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2. Measurement methodology

tify each individual loudspeaker. The “baffle” setup from Test 2 is depicted
in Fig. I. The loudspeakers were placed on a table to position the drivers
in a height, which were similar to that of a listeners’ ears above the floor,
to preserve the high frequency components and the frequency reproduction
balance in the direct sound.

As a result of this setup, each of the audio reproduction systems in these
tests were, from the listeners perspective, a combinations of a loudspeaker
output, influence from presence of surrounding loudspeakers, influence from
position of the loudspeaker, room influence, and all interactions between
these elements.

Electro-acoustic measurements of all 15 systems were made at the listening
position. Making the measurements of these systems in the listening position
where the listeners were positioned during the listening test, allowed a one-
to-one investigation of how perceived differences from one system to another
were related to differences in the electro-acoustical measurement data.

2 Measurement methodology

2.1 System Description

The 15 loudspeakers used in the two tests are presented in Table I. The loud-
speakers were selected by colleagues through several informal listening ses-
sions, focusing on getting a selection of loudspeakers that would lead to
audible differences between systems with respect to the sensory descriptors
included in the two listening tests.

2.2 Listening room setup

A digram of the listening room setup is depicted in Fig. II. The listening
room is in compliance with the ITU BS.1116-1 Recommendation and EBU
3276 standard regarding listening rooms, with a low reverberation time, a
floor area of 4.69 m × 7.84 m = 36.80 m2 and an volume of 96.43 m3. The
“baffle” of loudspeakers were placed behind an acoustical transparent screen,
severing the dual purpose of displaying the test user interface and hiding the
loudspeakers, such that visual bias is avoided.
The listening position was situated with equal distance to the left and right
wall, but further from the front wall (4.74 m) than the back wall (3.1 m).
The longer distance from the “baffle” to the listening position reduced the
difference in azimuth between sources, making identification by localization
more difficult.
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Manufacturer Model Type Crossover Outer vol. Description
Test 1 systems

DALI Epicon 2 2-way 3.1 kHz 30.3 L High-end
DALI Epicon 2 16Ω in series
DALI Mentor 2 3-way 3.4/12 kHz Hybrid tweeter
DALI Menuet 2-way 3.0 kHz 8.6 L Ultra compact
DALI Menuet 16Ω in series

Test 2 systems
JBL 4208 2-way 35.3 L

Spendor LS3/5A 2-way 32.1 L BBC design
Technics SB-F820 2-way 11.7 L

Sony SS CSE1 2-way 11.2 L
Aiwa SX-MS7 2-way 3.6 L

Celestion CXi 521 2-way 13.3 L
Tannoy CPA5 2-way 4.4 L Coaxial (5",1")

Anchor systems
Homebuild 2-way 32.1 L Undamped

Genelec 8020C 2-way 3.0 kHz 4.8 L Active
Genelec 8050A 2-way 1.8 kHz 35.9 L Active

Table I: Description of the loudspeakers used in the two listening tests. The anchor systems
were included and evaluated in both Test 1 and Test 2.
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2. Measurement methodology

Fig. II: Sketch of the listening room setup. The ceiling height is 2.62 meters. The listeners for
the listening test and the equipment for the electro-acoustical measurements where positioned
in the same "sweet spot". Note: The sketch is not to scale.
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2.3 Setup and equipment

The tests were carried out using a multiple comparison method. The software
utilized to run a listening test with this methodology was custom-made and
programmed in Labview. The software uses ASIO drivers allowing complete
audio control without interference from the operating system (Windows 7).
The hardware used in the stimuli reproduction is presented in Table II.

Equipment Type
Computer Lenovo ThinkCentre Tower
Sound card RME Fireface 800, 16 ch. (ASIO interface)
D/A ADAT RME M-32 DA
Power amplifiers NAD C326BEE, 2x80W (x4)

Table II: Equipment used for stimuli reproduction.

2.4 Calibration and equalisation

The systems were calibrated to a level of 70 dB(A) ± 1 dB in the listening
position using a band-limited pink noise test signal as described in [1]. This
level was chosen as a realistic listening level, which the listener would feel
comfortable listening to for two hours. During an informal listening session
by three experienced listeners, this level was assessed to be within the linear
performance area of the loudspeakers.

2.5 Listening tests: General description

Sensory descriptor group Stimulus 1 Stimulus 2 Stimulus 3
Timbre: Bass (4) • •
- Midrange (1) • •
- Treble (1) • •
- Spectral balance (2) • •
Dynamics (4) • •
Transparency (4) • • •
Preference • • •

Table III: Listening tests’ design. The numbers in parentheses in the first column describes the
number of sensory descriptors evaluated within a group of related descriptors from the Sound
wheel [2]. A bullet signifies that the row-column combination was included in the tests.

The two listening tests were based on the same physical setup, the same
sensory descriptors, design of experiment, procedure, and instructions. The
listening tests’ design are presented in Table III.
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2. Measurement methodology

The three stimuli were musical excepts of durations of 18 − 23 s from:
1) Shirley Caesar - Stand Still (SC) [3], 2) Paula Cole - Tiger (PC) [4] and 3)
Eliane Elias - Chega De Saudade (EE) [5]. The Shirley Caesar excerpt has
a female vocal, multiple drums (transients) and a dominating trumpet; The
excerpt has an almost flat spectrum in the range from 40 Hz to 8 KHz, when
measured over the whole excerpt. The Paula Cole excerpt has a female vocal,
drums, and a deep dominating five-string bass (lowest note: B0 at 30.868 Hz).
The Eliane Elias excerpt has a female vocal, and an acoustic guitar, and was
specifically chosen for evaluation of transparency and naturalness.

Each combination in the test design shown in Table III were repeated twice
during the listening test. The design of experiments (DoE) was a 3-part block
design consisting of 1) Preference, 2) Timbre & Dynamics, and lastly 3) Trans-
parency. Systems and musical excerpts were randomised within each block.
The six blocks (3× 2 repetitions) were structured in three sessions designed
to have a duration of no more than 2 hours including instructions and breaks.
Listeners did, however, had more time available if needed.

The 16 sensory descriptors were selected on the basis of results from a prior
training test. They were considered an experimental set of sensory descrip-
tors, still under investigation with regards to suitability. This is also the
reason why more descriptors were included than is commonly done. The
sensory descriptors and their English definitions are described in the Sound
wheel [6, pp. 21-23]. Their meaning and relevance will not be discussed
further in this appendix, it is however important to note, that one sensory
descriptor was evaluated different from the remaining 15. For the sensory
descriptor Råstyrke (Powerful) from the Dynamics group), listeners were in-
structed to increase the volume of the reproduction and base their evaluation
on the level at which the reproduction became distorted as well as the degree
and nature of the distortion.

The evaluation methodology was a multiple comparison scheme, with each
screen on the graphical user interface (GUI) displaying all systems for one
sensory descriptor. An example is presented in Fig. III. Due to the special
instructions for evaluation of the sensory descriptor Råstyrke (Powerful), the
interface contains a master volume control and listeners were instructed to
gradually increase the volume from the initial −20 dB FS until the distortion
became obvious or until a maximum volume of −10 dB FS was reached. The
maximum was found needed to avoid damaging the smaller loudspeakers.
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Fig. III: Example of the graphical user interface of the multiple comparision scheme of evaluation
used in both perceptual experiments. The distance between graphical components have been
reduced for clarity in figure.
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3. Listening Test 1

2.6 Listeners

Eight listeners from DELTA’s panel of experienced listeners were specially se-
lected to be trained specifically in evaluation of loudspeakers. This panel was
named specialized expert assessor panel (SEAP) and is referred to as such in
this appendix. The eight listeners were part of a long process of selecting a
set of sensory descriptors suited for exhaustive/complete evaluation of dif-
ferences between reproduced audio products and were trained in the use of
these sensory descriptors. The sensory descriptor selection process is also
described in [2].

3 Listening Test 1

The first listening test included five DALI loudspeakers and three anchors
systems (See Table I, page 138). Two of the DALI loudspeakers were modified
by putting a 16Ω resistor in series, in an effort to affect the performance of the
two systems5 and increase the variation in stimuli between the test systems.
The DALI loudspeakers ranged in price from 3, 500 to 16, 500 DKK per unit.

3.1 Data Quality analysis 1

The results of the first listening test showed a clear problem with the test.
What is presented in this section is only the results needed to understand
the problem and not a detailed data analysis. In Fig. IV the average rating
of each system for each musical excerpt is plotted. Furthermore, based on a
3-way ANOVA model the least significant difference (LSD) for each sensory
descriptor was calculated and is represented by the vertical bars in Fig. IV.
If system ratings are within the bar, then the system cannot be statistically
proved to be different. An example is the mean system ratings of "Brillians",
where only System 5 is outside the LSD bar, implying that only System 5 is
statistically different (with p < 0.001) from any other system. The position of
the bars have been manually placed to cover the largest number of systems,
thus visualizing the large similarity in ratings of systems. Notice also that
the LSD is shown without any correction, e.g. Bonferroni or Holm, and
may thereby underestimate the length of the bars; The consequence begin
that less systems would be found significantly different. From Fig. IV it was
clear that the evaluated systems were very similar, i.e. a majority of systems
were rated within the length of the bar, for all but the three bass sensory
descriptors. Furthermore System 5 (Homebuild) was perceived or identified

5To give perspective this corresponds to l = RA
ρ = 16 Ω×0.823·10−6 m2

1.7·10−8 Ω m = 774 m of thin 18 AWG

(0.823 mm2) pure copper cable.
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Fig. IV: Test 1: Overview of sensory descriptor evalutions. Each number represents a system and
the position on the vertical axis represents the mean score on the original rating scale across all
listeners and musical excerpts. The vertical bars indicate the least significant difference (LSD)
and the color indicate the degreee of significance associated with the length of the bar. Red is
p < 0.001, orange is p < 0.01, yellow is p > 0.05 and grey is non-significant. A small black dot
next to a number (system) indicates that the bar overlaps with the system’s mean rating. The
plot was generated using PanelCheck [7].
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3. Listening Test 1

by the listeners to be a low anchor - always scoring much lower than the other
systems (or inverse for Kasselyd).

3.2 Discussion 1

The system with the Homebuild loudspeaker, turned out to be treated by
the listeners as a low anchor in the test. This may be due to their prior ex-
perience from MUSHRA tests [8], where a low anchor is always included,
or it may be due to a real difference in perception between the systems. A
combination is also possible. In MUSHRA tests, the low anchor is a low-
pass filtered (3.5 kHz) version of the original musical excerpt often given a
fixed low rating by listeners (discussed in [9]). In all three scenarios, the low
anchor may have affected the scale usage in such a way that the remaining
systems were squeezed together in the top-half of the scale, which would de-
crease the differences in ratings even for systems that the listeners were able
to discriminate between. This phenomenon constitutes a type of Contraction
bias [10]. This bias is normally associated with a centering of the ratings, in
this case it is a contraction of the ratings of the majority of the systems due
to the perceived outlier system.

Another observation was, that the majority of systems were rated simi-
larly for all sensory descriptors except Basstyke and Buldrende. This was
theorised to stem from having the majority of loudspeakers being from one
brand, thus likely to be tuned to the same target frequency response (with
the possible exception of the low-frequency performance, where the physical
dimensions of the loudspeakers becomes a limitation).

The small span of system ratings and the similar ratings for the majority of
sensory descriptors provided a challenge with regards to modelling the link
between perception and electro-acoustical measurements. If no differences
exists between systems ratings, the relation to the physical system cannot be
modelled. Furthermore, if the systems are rated the same for many sensory
descriptors, e.g. for perceived bass strength and treble strength, a model
predicting bass strength well, would equally well predict treble, which is
assumed not to be generally valid, but a trait of the specific data set used for
training the model and without causal foundation.

As a result a second test was initiated, which included a larger span of
loudspeakers with regards to quality, size, brands, and technology. This test
is described in the next section.
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4 Listening Test 2

In the second test (Test 2), seven different loudspeakers were included as
well as three from the previous test. The three reacurring loudspeakers were
included as anchor systems to allow for a merge of the two data sets and
were chosen as they spanned a large part of the scale in the previous test
(See systems 3,4, and 5 in Fig. IV), i.e. one in the bottom of the scale, one in
the middle and one in the high end of the scale. The other seven loudspeakers
were generally inferior to the loudspeakers in Test 1, but chosen (by informal
listening) as they were believed to span a larger part perceptual space for
all of the included sensory descriptors. The loudspeakers in Test 2 are also
described in Table I. Besides from the different loudspeakers, the design of
experiment was a replicate of the previous test.

4.1 Data quality analysis 2

In Fig. V the LSD plot is presented for the data from Test 2. Comparing with
Test 1, the spread of system ratings are now much larger and spanning the
majority of the scale. The LSD bars indicates that differences exists between
systems with a very high probability (p < 0.001), which is a consequence of
the the larger spread in ratings and of systems being evenly distributed on
the scale.

In Fig. VI the correlation matrix showing the Pearson Product-Moment
correlations are depicted. Cells coloured red have absolute correlation values
|r| ≥ 0.87, meaning that at least r2 = 0.872 = 75 % of the variance is explained
by the other sensory descriptor. This is evidence of a strong dependence
among the sensory descriptor ratings.

Four sensory descriptors stood out from the analysis: Buldrende, Baspræ-
cision, Råstyrke and Mellemtonestyrke. Investigating Fig. VI, it is clear that
Mellemtonestyrke is rated neutral for all systems, i.e. even through the sen-
sory descriptor is different from the other sensory descriptors it has no power
to differentiate the systems, and thus no prospect for modelling. As for Bul-
drende and Baspræcision, the correlation coefficients are still high and all
sensory descriptors except from Mellemtonestyrke (and Råstyrke for Baspræ-
cision) can explain more than 50 % of its variance and all correlations are
moreover still significant on a p < 0.001 level.

Another view of the dataset is visualised in the PCA plot in Fig. VII.
The first dimension explains 54.6 % of the variance in the dataset. From
the scree plot (right) it is clear that the knee point is between the first and
second dimension. From the Loadings plot (left) it can be observed that the
ratings have a high overlap between the sensory descriptors and that only
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4. Listening Test 2

Fig. V: Test 2: Overview of sensory descriptor evalutions. Each number represents a system and
the position on the vertical axis represents the mean score on the original rating scale across all
listeners and musical excerpts. The vertical bars indicate the least significant difference (LSD)
and the color indicate the degreee of significance associated with the length of the bar. Red is
p < 0.001, orange is p < 0.01, yellow is p > 0.05 and grey is non-significant. A small black dot
next to a number (system) indicates that the bar overlaps with the system’s mean rating. The
plot was generated using PanelCheck [7].
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Basstyrke 1 0,99 0,98 0,97 0,97 0,92 0,93 0,89 0,9 0,89 0,89 0,92 0,8 0,83 0,66 0,04 -0,91

Basdybde 0,99 1 0,97 0,97 0,97 0,93 0,92 0,89 0,91 0,88 0,89 0,93 0,82 0,83 0,69 -0 -0,92

Buldrende 0,98 0,97 1 0,95 0,95 0,89 0,92 0,86 0,86 0,84 0,84 0,86 0,75 0,76 0,69 0,11 -0,86

Fyldig 0,97 0,97 0,95 1 1 0,97 0,98 0,96 0,96 0,91 0,95 0,96 0,9 0,87 0,57 0,15 -0,97

Punch 0,97 0,97 0,95 1 1 0,96 0,98 0,96 0,97 0,92 0,95 0,96 0,9 0,88 0,63 0,15 -0,97

Attack 0,92 0,93 0,89 0,97 0,96 1 0,95 0,95 0,95 0,87 0,93 0,94 0,95 0,84 0,56 0,23 -0,98

Nærværende 0,93 0,92 0,92 0,98 0,98 0,95 1 0,99 0,97 0,92 0,97 0,94 0,93 0,87 0,55 0,23 -0,96

Nuanceret 0,89 0,89 0,86 0,96 0,96 0,95 0,99 1 0,99 0,92 0,97 0,94 0,96 0,9 0,52 0,27 -0,96

Brillans 0,9 0,91 0,86 0,96 0,97 0,95 0,97 0,99 1 0,91 0,96 0,95 0,96 0,91 0,56 0,2 -0,97

Homogen 0,89 0,88 0,84 0,91 0,92 0,87 0,92 0,92 0,91 1 0,97 0,98 0,87 0,95 0,55 0,11 -0,89

Naturlig 0,89 0,89 0,84 0,95 0,95 0,93 0,97 0,97 0,96 0,97 1 0,98 0,94 0,94 0,48 0,22 -0,95

Præference 0,92 0,93 0,86 0,96 0,96 0,94 0,94 0,94 0,95 0,98 0,98 1 0,92 0,94 0,55 0,06 -0,95

Ren 0,8 0,82 0,75 0,9 0,9 0,95 0,93 0,96 0,96 0,87 0,94 0,92 1 0,87 0,44 0,25 -0,96

Baspræcision 0,83 0,83 0,76 0,87 0,88 0,84 0,87 0,9 0,91 0,95 0,94 0,94 0,87 1 0,48 0,18 -0,85

Råstyrke 0,66 0,69 0,69 0,57 0,63 0,56 0,55 0,52 0,56 0,55 0,48 0,55 0,44 0,48 1 -0,09 -0,56

Mellemtonestyrke 0,04 -0 0,11 0,15 0,15 0,23 0,23 0,27 0,2 0,11 0,22 0,06 0,25 0,18 -0,09 1 -0,14

Kasselyd -0,91 -0,92 -0,86 -0,97 -0,97 -0,98 -0,96 -0,96 -0,97 -0,89 -0,95 -0,95 -0,96 -0,85 -0,56 -0,14 1

Fig. VI: Correlation matrix of the sensory descriptors in Test 2. Based on average values across
all musical excerpts, repetitions and listeners. The Pearson correlation formula were used for
the calculations. The sensory descriptors are ordered in accordance with their correlation with
Basstyrke. Red cells have a correlation coefficient |r| ≥ 0.87.
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4. Listening Test 2

one dimension explains the majority of the variability in the data despite the
large number of sensory descriptors (Notice, that the ratings for the sensory
descriptor "Kasselyd" have been mirrored to ease the interpretation of the
plot).

Fig. VII: Principle compoment analysis of the sensory descriptors in Test 2. Based on average
values across the PC and SC musical excerpts, all repetitions, and all listeners. Left: Loadings
plot with Dim. 1 vs. Dim. 2. Right: Scree plot.

4.2 Discussion 2

Three sensory descriptors stood out from the correlation matrix in Fig. VI:
Mellemtonestyrke, Buldrende and Råstyrke. With regards to Mellemton-
estyrke (midrange strength), the systems were either very similar or the
midrange was used as an reference for evaluation of bass and treble strength
and thus considered to have a "neutral" strength. Another plausible expla-
nation was expressed by listeners, whom viewed the frequency range of the
sensory descriptor as too large for evaluation as a whole, making it a diffi-
cult task to evaluate overall. Consequently, its position as separated from the
main bulk of sensory descriptors in the PCA plot, may be caused by noisy
evaluations rather that a real difference in perception.

With regards to Råstyrke, the method of evaluation was different for this
sensory descriptor, which might explain the lack of correlation with the other
sensory descriptors, but it could also be due to a real difference in perception
between this sensory descriptor and the others. The short vector in the PCA
plots suggested variance explained by other dimensions than 1 and 2, but
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the low explained variance in the remaining dimensions, suggests a that the
remaining variance might be explained by noise in the data.

Several potential reasons for the overall high correlations were considered:

1. The systems’ perform consistently across all sensory descriptors, i.e. a
"good" system is good on all parameters and a "bad" system is bad on
all parameters.

2. The listeners had a poor understanding of the sensory descriptors and
thus gave a noisy, neutral or hedonic evaluation of the systems.

3. One or more bias’ in the test design caused the large correlation.

Based on the large general experience with perceptual product character-
isation in SenseLab and on the informal listening by experienced listeners,
the first reason listed above was not believed to be the main reason. Conse-
quently the investigation focus were on the two remaining potential reasons.
They are discussed in the next two subsections.

Test design bias investigation

One concern in regards to the test design, was that the “baffle” setup caused
a bass boost due to the influence from the back wall and the interaction be-
tween the back wall and the baffle. The effect being characteristics shared by
all systems, due to the general influence from the environment being larger
than the contribution from the loudspeaker differences. The effect of the back
wall was not initial believed to constitute a problem as the systems and not
the loudspeakers were evaluated. Investigation of the measurements revealed
that the room influence may have acted as a confounding factor, similar to
loudness [11, 12], i.e. the domination of bass strength differences may affect
the evaluation of the remaining sensory descriptors significantly. If this is the
main cause of the high correlations within sensory descriptors, it does, how-
ever, imply that not only sensory descriptors related to timbre are affected by
the domination of bass.

In Fig. VIII the frequency responses of the loudspeakers in Test 2 are
depicted, normalised around the mean value in each 1/3rd octave band. The
figure depicts a boxplot for every 1/3-octave band scaled by an estimation of
the JND within each band [13]. This processing technique allowed for a easy
visual overview of degree of system differences in a frequency resolution,
which approximates that of the human auditory filters.

From the figure it is clear that the differences at mid- and high frequencies
above ≈ 800 Hz are small compared to the large differences below; Especially
in the three 1/3-octave bands with centre frequencies of 36.5 Hz, 46.0 Hz, and
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4. Listening Test 2

Fig. VIII: Test 2: Boxplot of the frequency response of the systems in Test 2 calculated for each
1/3rd octave band. Each boxplot is individually scaled with the corresponding JND of the 1/3rd
octave band and the vertical axis, accordingly, has a scale with a JND unit. The dotted purple
lines mark the ±1 JND limits. The whiskers of the box spans up to 1.5 times the heigth of the
box, but never further than the most extreme data point.
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57.9 Hz, i.e. the area of the cut-off frequency of a typical loudspeaker. The
JNDs of narrow band noise are however not a precise indication of whether
differences are audible in a full frequency spectrum with masking effects and
more. Aditionally JNDs are not well established for low frequencies neither
in [13] or elsewhere; For frequencies below 250 Hz the JND for 250 Hz was
used in the scaling in Fig. VIII.

Comparing with the frequency responses of the systems in Test 2 with
the systems in Test 1 (see Fig. IX) the bass domination was a less dominating
factor in Test 2.
Another concern, regarding a potential test design bias, was the localisation

Fig. IX: Test 1: Boxplot of the frequency response of the systems in Test 1 calculated for each
1/3rd octave band and normalised around the mean value. Each boxplot is individually scaled
with the corresponding JND of the 1/3rd octave band and the vertical axis accordingly has a
scale with a JND unit. The dotted purple lines mark the ±1 JND limits. The whiskers of the box
spans up to 1.5 times the heigth of the box, but never further than the most extreme data point.

cues caused by the positioning of the loudspeakers. If a system could be
identified based on localisation, the system may have been linked by the
listener to a hedonic quality, such as "bad" or "good", potentially affecting the
ratings of all sensory descriptors. In Test 1, where most systems were quite
similar, this may only have been a problem for the low performing System 2,
with the Homebuild loudspeaker, but for the more different systems in Test
2, the effect could be larger. If the listeners did not have a clear concept of
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4. Listening Test 2

the sensory descriptors under evaluation, the risk of a hedonic bias is likely
to become larger. The listener performance-concerns are discussed in the
following section.

Listener performance

The uncertainty of whether lacking listener performance were a significant
factor in the highly correlating sensory descriptor ratings, was investigated by
using the eGauge metrics [14] developed in a collaboration between DELTA
SenseLab and Nokia. The metrics consists of Discrimination, Reliability, and
Agreement. For each metric a statistical noise-floor can be calculated indicat-
ing a performance level, which the listeners should be above to be beneficial
for inclusion in the statistical analysis of the test results. While a listener must
be above the noise-floor for Discrimination and Reliability to perform well,
the Agreement metric is more complex to interpret. One listener with a great
understanding could be in disagreement with the average panel ratings, if
the average panel has a poor understanding of the sensory descriptor. The
one good listener is, however, still diluting the data from a statistical point
of view, as he or she would constitute an outlier. Concentrating on Relia-
bility and Discrimination, all listeners were above the noise-floor for four of
16 sensory descriptors: Basstyrke, Fyldig, Nærværende and Naturlig. For an
additional five sensory descriptors, one listener was below the noise-floor for
either Discrimination or Reliability. For six sensory descriptors two or more
listeners were below the noise-floor for Agreement, suggesting that the sen-
sory descriptor was not well understood. The effect of a few listeners with
poor performance becomes problematic due to the limited number of trained
listeners in the specialized expert assessor panel (SEAP).

An example of a problematic panel performance is depicted in Fig. X6 for
the sensory descriptor Råstyrke. Here, most listeners perform well with re-
gards to Discrimination and Reliability, i.e. are above the noise-floor of both
metrics in the top-right square. The majority of the listeners are however
below the Agreement noise-floor, indicating that listeners have very different
criteria for evaluation. This suggests that the special method of evaluation
for this sensory descriptor may have been too unrestricted to lead to homo-
geneous results.

The lacking listener performance may not conclusively explain the high
correlations between sensory descriptor ratings, but was nonetheless an un-
wanted weakness and handled by starting up weekly training of the listeners

6Notice that only seven listeners are depicted in Fig. X. This occurs if an listener rates a system
with the exact same score in all repetitions, which lead to an eGauge value of infinity. This is a
limitation of the eGauge method in its current version.
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Fig. X: eGauge overview plot for the sensory descriptor Råstyrke in Test 2. Each coloured square
represents one listener’s score. The grey lines representes the noise-floor for Discrimination and
Reliability respectively. A blue colour indicates that the listener is above the Agreement noise-
floor and a red that the listener is below the noise-floor. The size of the square indicates the
distance to the Agreement noise-floor limit, i.e. a large square is far above or below the noise-
floor. A good listener is positioned in the top right corner and (normally) represented with a
large blue square.

154



5. Electro-acoustical measurements

in SEAP. The training prior to the two listening tests had consisted of in-
cluding them in the sensory descriptor elicitation process as well as six hours
of unsupervised home training. This practise was changed to supervised
training to gain a better impression of their understanding of the sensory
descriptors, which could further illuminate whether lack of training was the
cause of the problems.

5 Electro-acoustical measurements

Electro-acoustical measurements were made of the 15 systems with the pur-
pose of modelling the relation between these and the perceptual evaluations.
The measurements were made at the listening position as previously men-
tioned. They were performed separately on the Test 1 “baffle” of systems
and the Test 2 “baffle” of systems with each loudspeaker positioned as it
were during the respective listening test.

Prior to the measurements, the overall sound level of systems were equalised
and calibrated using a band-limited (80 Hz to 14 kHz) pink noise test-signal
and measured with a Sound level meter. The A-weighted loudness equaliza-
tion of the listening tests were reused, while the overall level was reduced
from 70 dB(A) to 67 dB(A). The reduction in level was needed to avoid dam-
aging the smaller loudspeakers, which distorted at the listening test level
when playing the logarithmic sweep. The measurement equipment is pre-
sented in Table IV.

Product Manufacturer Model
Sound card (ADAT) RME Fireface 800
Digital to Analogue converter RME M32-DA
Microphone (free-field) Brüel & Kjær 4190
Dual Microphone Power Supply Brüel & Kjær 5935
Sound level meter NTi XL2
Head-and-Torso-simulator (HATS) Brüel & Kjær 4100D
Power amplifier (2x80W) NAD C356BEE
PC software (measurements) Listen Inc. SoundCheck 12

Table IV: Electro-acoustic measurement equipment

5.1 Capturing the sound field in the listening position

The measurement setup consisted of six measurement points chosen to sam-
ple the sound field surrounding the position of an average listener’s head.

155



Fig. XI depicts these measurement points. The measurement points were po-
sitioned with a 60◦ angle between each. Three positions were 107 cm above
the floor and three were positioned 113 cm above the floor, with every sec-
ond point being positioned in the same vertical plane. These heights were
chosen to be centred around 110 cm, which is commonly referred to as the
average listening height (approximate height of the ear canal opening above
the floor). The position pattern is not aimed at taking listener movement dur-
ing a listening test into account, but rather account for differences in heights
and sitting positions of the listeners. The six measurements points naturally
stabilises the measurements in the mid- and high frequency range, due to the
spatial averaging over the 6 points which were asymmetrically positioned
with respect to the sound sources.

Fig. XI: Measurement positions. Position 1, 3, & 5 were 107 cm above the floor and 2,4, & 6 were
113 cm above the floor. The diameter of the circle was 25 cm.
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5. Electro-acoustical measurements

5.2 Type of measurements

Frequency responses were measurements using SoundCheck. Both a loga-
rithmic sine sweep and a pink noise test-signal were measured for compar-
ison. The logarithmic sweep has the advantage of being deterministic, fast
to measure, and providing a high signal-to-noise (SNR). It was measured
using a time selective response (TSR) method (also referred to as a time-
gated measurement), where the TSR window was set to ±500 ms; thereby
using 500 ms on each side of the calculated impulse response to calculate the
frequency response. The long window corresponds to measurements of fre-
quency content down to 1 Hz. Reducing the window size would decrease the
influence of noise, as noise will be recorded as well during the time window.
Consequently, it would also remove the influence from reverberations, which
contributes to the perceived systems. Below 63 Hz, the reverberation time of
the listening room exceeds 500 ms, and thus the measured frequency content
of the systems slightly underestimates the level of the very low bass.

The pink noise test-signal takes longer to measure, but is less affected by
background noise due to the longer time averaging. The length of the noise
stimuli determines the uncertainty of the measurement due to the random
nature of the signal. For these measurements a length of 20 seconds was
used and a 1/6th octave band analysis. A 1/6th octave band resolution was
chosen, believed to be better than the human auditory system in the audible
frequency range. A 20 second pink noise measurement was analysed us-
ing a 1/6th octave band resolutions leading to a theoretical uncertainty [15]
(Eq. 3.9.a, p. 96) at 20 Hz for the individual measurement of:

fc = 20 Hz

B = fc ∗ 21/12 − fc/21/12 = 2.3 Hz

ε =
4.34√
TA · B

ε =
4.34√

20 s · 2.3 Hz
ε = 0.64 dB

(I)

Where ε is the estimated standard deviation of the assumed normal distri-
bution of the pink noise signal in 1/3-octave band resolution, i.e. there is a
95.5% chance of the true value being within ±2ε = ±1.28 dB. The uncertainty
decreases at higher frequencies, as is evident from the above equation. The
source uncertainty decreases further with the averaging over positions to a
sixth of the calculated ε, i.e. to ε = 0.11 dB, at which point the uncertainties of
the calibration, the measurement equipment, positioning of the microphones
etc. are larger.
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5.3 Frequency response overview

In Fig. XII the differences in frequency responses among the 15 systems are
plotted. The depicted frequency responses are based on the measurements
using the pink noise test-signal. Clearly audible differences are found up to
approximately 400 Hz, which coincides with the definition DELTA SenseLab
have for the upper limit of bass [16]. While the remaining frequency range
have limited area of the boxes within the ±1 JND dotted line, it is worth
remembering that only 50% of the data points lies within the area of the box.

Fig. XII: Boxplot of the frequency response of the systems in both Test 1 and Test 2 calculated for
each 1/3rd octave band and normalised around the mean value. Each boxplot is individually
scaled with the corresponding JND of the 1/3rd octave band and the vertical axis accordingly
has a scale with a JND unit. The dotted purple lines mark the ±1 JND limits. The whiskers of
the box spans up to 1.5 times the heigth of the box, but never further than the most extreme data
point.
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6. Concluding remarks

5.4 Alternative measures

In addition to the electro-acoustic measurements presented in Section 5.2
recordings of the stimuli was also captured in the listening position with a
B&K HATS and a single microphone respectively, using Adobe Audition 3.0
and the same hardware used for the electro-acoustical measurements. The
main purpose was to obtain recordings, which could be used for a potential
comparison of perceptual evaluations in-situ vs. perceptual evaluations using
headphone auralization.

6 Concluding remarks

The idea behind the “baffle” setup was to obtain an intermediate method of
capturing perceptual and electro-acoustical measurements of sound events
generated by loudspeakers - audio reproduction sources. The goal was to
collect data for predictive modelling of perceptual characteristics, gain infor-
mation about the suitability of the elicited sensory descriptors, and continue
the training of the listeners in SEAP.

Unfortunately the results of the perceptual evaluations showed severe
problems in the data quality as described in this appendix. The potential
causes of the problems are discussed, but the main reason was not conclu-
sively identified. Since this was an intermediate step on the path to being able
to perform in-situ perceptual evaluations of loudspeakers - not “systems” -
no further measures were taken to untangle the root of the problem. The tran-
sition from unsupervised training to supervised training and the increase in
training intensity was, however, undertaken to maximize the likelihood of
obtaining better results in future loudspeaker listening tests.

With regards to the measurement technique with six positions, further
investigation of how to capture a sound field representative of the listening
position was undertaken (as described in Section 6).
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