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Abstract

Graphene is a 2D sheet of carbon atoms arranged in a honeycomb lattice and
it has attracted a great deal of interest due to its superior electronic properties,
the possibility of its usage as the main ingredient of semiconductor devices, and
for its easily tunable optical properties. Graphene has sparked a tremendous
amount of work and interest also in other 2D materials such as the transi-
tion metal dichalcogenides (TMDs) and monoelement 2D materials. Recently,
stacks of different 2D materials, the so-called van der Waals heterostructures,
have attracted much attention due to the possibility of easy customization of
the optical properties.

In order to exploit the electronic properties of graphene in semiconductor
devices, it is essential to open up a bandgap in the otherwise semimetallic
band structure of graphene. This can be accomplished by making a periodic
array of holes in graphene thereby turning graphene into a so-called graphene
antidot lattice (GAL) with a bandgap that can be tuned by varying the lattice
parameters. Monolayer GALs have been intensively investigated, but bilayer
GALs have so far not attracted much attention. In this work, the electronic
properties of bilayer GALs are elucidated. Intrinsic bilayer graphene offers the
possibility to open a bandgap and tune it simply by electrostatic gating, and
it is found that it may be possible to exploit this tunability to provide for
even more control over the bandgap in bilayer GALs. It is found also that
bilayer GALs follow the rules for bandgap opening previously established for
monolayer GALs.

To describe the optical properties of layered heterostructures it has become
common practice to use the effective medium theory (EMT), which basically
amounts to averaging the dielectric constants of the constituents. This is ob-
viously an approximation, and in this work this approximation is evaluated in
heterostructures of graphite and hexagonal boron nitride (hBN). Two limits
are investigated: Very thin layers and very thick layers. It is found that in
layers with as few as 5 monolayer sheets, EMT is a reasonable approximation,
but when the layer thickness is increased EMT breaks down sooner than an-
ticipated. It is found also that surface effects may be extremely important, in
particular for evanescent light modes, something that affects heavily the de-
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scription of the decay rate of a dipole, also called the Purcell factor, in the
vicinity of the heterostructure.

The graphite/hBN stacks are investigated also for their properties as a
hyperbolic metamaterial. Hyperbolic materials are predicted to give strong
Purcell enhancement due to the hyperbolic dispersion leading to an apparent
divergence in the photonic density of states. It is found, however, that the
hyperbolic region does not lead to a clear signature in the Purcell factor of
graphite/hBN structures because losses cause the Purcell factor to remain high
also outside the hyperbolic region. 31 naturally occurring TMDs are shown to
exhibit hyperbolic dispersion with unusual low losses because the special band
structure features a metallic band separated by lower and higher bands by a
considerable gap, large enough to separate intra- and interband losses. These
materials are found to exhibit strong Purcell enhancement with a clear indica-
tion of the hyperbolic regime and an abrupt drop of emission rate outside this
regime. The TMDs are compared to a conventional silver/SiO2 metamaterial
and found to offer much higher Purcell enhancement due to the lack of internal
structure.

Finally, plasmons in doped and optically pumped graphene, MoS2 and black
phosphorus have been examined. In the intrinsic materials at zero temperature
plasmons cannot be excited due to a lack of mobile carriers, but by optically
pumping with a high intensity laser beam electrons can be excited into the
conduction bands. This results in an unstable state that after a few 10s of
fs decays into a metastable state that can be described with a Fermi-Dirac
distribution of the electrons and holes of a temperature much above the ionic
temperature. In these optically heated materials it is found that plasmons
are activated and that their dispersive properties are similar to the dispersive
properties in the doped materials provided that an equivalent doping level is
chosen. It is furthermore found that optically activated plasmons may lead to
a strong increase in the decay rate of a dipole located close to the materials.



Resumé

Grafen er et todimensionelt materiale bestående af kulstof atomer placeret i et
mønster tilsvarende hønsetrådsnet. Grafen har tiltrukket stor opmærksomhed
pga. dets overlegne elektroniske egenskaber, for muligheden for måske at an-
vende grafen som grundsubstans i halvleder komponenter samt for dets nemt
modificérbare optiske egenskaber. Grafen har desuden startet en enorm in-
teresse også i andre 2D materialer såsom overgangsmetal dichalcogenider og
enkelt element 2D materialer. På det seneste er også stakke af forskellige 2D
materialer, de såkaldte van der Waals heterostrukturer, blevet grundigt un-
dersøgt pga. muligheden for at tilpasse deres optiske egenskaber ved at vælge
“byggeklodser” med passende egenskaber.

For at kunne udnytte de elektroniske egenskaber af grafen i halvleder kom-
ponenter, er det nødvendigt at åbne et båndgab i grafen, som ellers i dets
naturlige form er et halvmetal. Dette kan opnås ved at lave et periodisk gitter
af huller i grafen, hvormed grafen bliver til et såkaldt grafen antidot gitter med
et båndgab som kan justeres blot ved at ændre parametrene for gitteret. An-
tidot gitre baseret på enkeltlags grafen er allerede blevet grundigt undersøgt,
men der har ikke tidligere været meget interesse for antidot gitre i dobbeltlags
grafen. I dette projekt undersøges de elektroniske egenskaber af dobbeltlags
grafen antidot gitre. Dobbeltlags grafen i dets naturlige form giver allerede
mulighed for åbning og efterfølgende justering af et båndgab ved at påspænde
et elektrisk felt vinkelret på lagene. I dette projekt vises det at denne egenskab
kan udnyttes også i antidot gitre i dobbeltlags grafen, til at give yderligere
kontrol over båndgabet. Ydermere findes det at tidligere etablerede regler for
åbning af båndgab i monolags antidot gitre, også gælder i dobbeltlags antidot
gitre.

Til beskrivelse af de optiske egenskaber af stakkede heterostrukturer bestå-
ende af forskellige materialer, er det blevet normalt at anvende den såkaldte
effektiv medie approksimation, som grundlæggende blot svarer til at beskrive
egenskaberne af stakken ved middelværdien af permittiviteterne for de enkelte
materialer. Dette er naturligvis en tilnærmelse, og i dette projekt evalueres
denne tilnærmelse i heterostrukturer bestående af grafit og hexagonalt bohr
nitrid (hBN). Grænserne hvor de enkelte lag er meget tynde og meget tykke

v



undersøges. Det findes at lag bestående af så få som 5 enkeltlag kan beskrives
vha. EMT, men at EMT bryder sammen før forventet når lag tykkelsen øges.
Det findes endvidere at overflade effekter kan være ekstremt vigtige, specielt for
ikke propagerende lys hvilket kan have stor indflydelse på beskrivelsen af hen-
faldsraten af en dipol, den såkaldte Purcell faktor, i nærheden af heterostruk-
turen.

Grafit/hBN strukturerne er blevet undersøgt også for deres egenskaber
som et hyperbolsk metamateriale. Hyperbolske materialer giver en kraftig
forstærkning af Purcell faktoren, men det findes at der i grafit/hBN strukturer
ikke er en tydelig forstærkning i det hyperbolske område af spektret, fordi tab
i materialet bevirker at Purcell faktoren forbliver høj også udenfor det hy-
perbolske område. 31 naturligt forekommende overgangsmetal dichalcogenider
vises at have hyperbolsk dispersion med usædvanligt lave absorptions tab pga.
deres specielle båndstrukturer hvor det metalliske bånd er adskilt fra under-
og overliggende bånd af et stort gab. Dette giver en adskillelse af intra- og
interbånds tab, og følgeligt et energiområde med lave tab. Det vises, at disse
materialer har stor Purcell faktor med en klar indikation af det hyperbolske
område, samt at de byder på meget større Purcell faktorer end konventionelle
sølv/SiO2 metamaterialer fordi de ikke har nogen indre struktur.

Slutligt er plasmoner i doteret og optisk pumpet grafen, MoS2 og sort fosfor
blevet undersøgt. I de naturligt forekommende materialer ved en temperatur
på 0 K kan plasmoner ikke exciteres fordi der er for få frie ladningsbærere,
men ved optisk pumpning med en laser ved høj intensitet, kan elektroner ex-
citeres op i ledningsbåndene. Dette resulterer i en metastabil tilstand som kan
beskrives ved en Fermi-Dirac fordeling af elektroner og huller med en temper-
atur meget højere end stuetemperatur. I disse optisk opvarmede materialer
findes det at plasmoner er aktiveret og at deres dispersive egenskaber ligner de
dispersive egenskaber af plasmoner i de doterede materialer, såfremt det æk-
vivalente doterings niveau bruges. Det findes endvidere, at optisk aktiverede
plasmoner fører til en kraftig stigning i henfaldsraten af en dipol placeret i
nærheden af et af materialerne.
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Chapter 1

Introduction

1.1 The beginning of the 2D era

Starting with the discovery of graphene in 2004 by Andre K. Geim and Kostya
S. Novoselov [1] a huge research area in atomically thin materials has very
quickly evolved. Graphene kick-started this area due to its numerous interesting
properties such as linear band dispersion [1–4], electron mobilities of around
200000 cm2/Vs [5–7] and the relative ease with which large defect free graphene
sheets can be produced [8, 9].

Much of the initial excitement about graphene was due to the prospect of
producing graphene based transistors for use in electronic circuitry, but for
this particular purpose intrinsic graphene is of little use because of its lack of a
bandgap, the essential feature enabling turning the current on and off. Various
means of introducing a bandgap into graphene has been proposed. Among
these are slicing graphene into ribbons [10–15], placing graphene on a substrate
[16–18], adsorbing molecules on graphene [19], and nanopatterning graphene
[20–25]. With regard to the latter, it has been shown that nanopatterning
of graphene and placing graphene on a substrate can drastically decrease the
impressive mobility of pure graphene, although carefully choosing the substrate
may yield mobilities comparable to intrinsic graphene [26–29].

Another intriguing property of graphene that has attracted much attention
is the ease with which the electrical properties can be modified. Graphene is
a zero-gap semiconductor (a semimetal) with the Fermi level exactly at the
band crossing as shown in Fig. 1.1 and in this intrinsic state graphene ex-
hibits a minimum electrical conductivity of σ0 = e2/4~ in the DC limit [25],
although there is some debate about the actual value of σ0 [30]. Small changes
in the free carrier density (the Fermi level) drastically changes the conduc-
tivity of graphene. This makes graphene a natural candidate for sensing ap-
plications as even small external disturbances can alter the Fermi level and
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Fig. 1.1: (left) Band structure and density of states of intrinsic graphene and (right)
geometry of a graphene sheet.

thereby the optical response [31–33], but also for optical applications where for
example a back-gate configuration can be used to provide control over mate-
rial response [34–36]. Also bilayer and few-layer graphene have attracted much
interest [37–39] in particular due to the possibility of opening a bandgap sim-
ply by electrostatic gating [40, 41]. Bilayer graphene is much different from
monolayer graphene. The band structure of A-B stacked (Bernal stacked) bi-
layer graphene is parabolic near the K point in the Brillouin zone although
still gapless [37], but imposing a perpendicular electrostatic field causes a po-
tential difference across the layers and the opening of a widely tunable gap
in the range from 0 to 250 meV [41]. This makes bilayer graphene the only
known semiconductor with a tunable bandgap and has started speculations on
the possibility of a laser tunable by the electric field effect.

Following the discovery of graphene a large number of other atomically
thin materials have been discovered and all these materials are collectively
denoted as 2D materials [42]. Among these materials are MoS2 and other
transitions metal dichalcogenides (TMDs) [43], hexagonal boron nitride (hBN)
[17], and monoelement 2D materials such as phosphorene and silicene [44–46].
Advances in production and transfer techniques have opened up the possibility
of heterogeneous stacking of 2D materials into the so called “van der Waals
heterostructures” [47, 48], an extremely interesting field of study where different
2D materials are stacked on top of each other to tailor the properties of the
resulting heterostructures in order to create new materials (metamaterials).

Among the plethora of heterostructures, the combination of graphene and
hBN have been the focus of much interest due to their crystal structure being
identical except for a 2% difference in lattice constant [49, 50]. This has allowed
epitaxial growth of graphene on hBN [51, 52] and calculations have suggested
that applying a perpendicular electric field to the graphene/hBN structure
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opens up a gap in graphene that can be tuned by varying the electric field
much in the same way as for bilayer graphene [53].

Graphene on hBN has been suggested also as a so called hyperbolic meta-
material (HMM) [36]. In a hyperbolic material the signs of the parallel and
perpendicular components of the dielectric tensor ε‖ and ε⊥, respectively, dif-
fer, causing the isofrequency contours of the dispersion to be hyperbolic rather
than spherical and the material to support modes of very high wavenumber
kx parallel to the surface that would otherwise be evanescent. This allows
for some interesting properties such as hyperlensing and lifetime engineer-
ing [54–57, 57–61]. One generally distinguishes between type I and type II
hyperbolic metamaterials (see Fig. 1.5). In a type I HMM it is the perpendicu-
lar component of the dielectric tensor that is negative, while in a type II HMM
it is the parallel component. Graphite is an example of a naturally occurring
type II hyperbolic material in certain spectral ranges, but other such natural
hyperbolic materials may be found [62, 63] and by stacking of 2D materials one
can engineer metamaterials with the desired hyperbolic properties.

1.2 This work

This thesis focuses on primarily two aspects of 2D materials research: bandgap
engineering in graphene and optical properties of 2D materials based metama-
terials. It begins with a brief literature review on the key topics of this thesis,
followed by Chp. 2 dedicated to the theory and methods used. It then contin-
ues with a summary of the results in Chp. 3. Finally, in Chp. 4 the conclusions
of this thesis are presented. In addition, all four papers that have been written
as a part of this thesis are found in the last part of the thesis. It is emphasized
that this thesis is entirely based on the results and theory of the papers, and
no new results or methods are presented.

1.2.1 Bilayer graphene antidot lattices

As discussed earlier in this chapter, the key limitation of graphene with regards
to use in semiconductor devices is the absence of a bandgap. Various methods
of opening a bandgap in graphene have been suggested, but this thesis will
focus on bandgap opening by nanopatterning. In 2008 it was suggested that
a bandgap could be opened in graphene by introducing a periodic array of
holes in the graphene sheet [20, 25, 64–66], and these structures were denoted
graphene antidot lattices (GALs), see Fig. 1.2. GALs attracted interest not
only for the possiblity of opening of a gap, but also as plasmonic materials with
prominent absorption properties [67, 68], as wave guides [69] or as barriers for
electronic transport [70].

A GAL is described by the unit cell dimensions and the radius of the hole
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a2 are the GAL lattice vectors, R is the radius of the hole and L is a measure of the unit
cell dimension.

written as {L,R}, where L denotes the number of hexagons on the unit cell edge
and R denotes the hole radius in units of a0, see Fig. 1.2. The term antidot
refers to the repelling of electrons from the holes in contrast to the trapping
of electrons in a quantum dot. It was shown that a bandgap up to 1 eV can
be opened in this manner [20] and that the gap depends heavily on the details
of the GAL geometry [23]. For triangular GALs, it has been shown that the
bandgap scales, at least approximately, linearly with the factor N1/2

removed/Ntotal,
where Ntotal is the number of atoms in the unit cell before the hole is made and
Nremoved is the number of atoms removed to form the hole [20], although some
structures diverge considerably from this rule. In Ref. [71] this discrepancy was
found to be due to electronic edge states on the antidots. In GALs with antidots
with only zigzag edges the electrons are strongly localized to the edge of the
antidot while for armchair edges the electrons are spread out over the entire
GAL unit cell. In fact, GALs with armchair edges follow almost exactly the
bandgap scaling rule. In 2009 Eroms et al. successfully produced square GALs
and managed to measure a gap opening of ≈ 6 meV [72]. The bandgap scaling
rule estimates a gap of 26 meV but some care should be taken in applying a
scaling rule based on idealized structures to experimentally produced square
GALs where disorder will most certainly decrease the gap. Using the block
copolymer method GALs with sub-20 nm features were successfully produced
in Ref. [73] and gaps of around 100 meV were estimated.

In Ref. [23, 24] it was found that the GAL geometry has a major impact on
the bandgap. While all triangular GALs possess a bandgap, this is not the case
for other geometries. Similar to what one observes in graphene nanoribbons
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Fig. 1.3: Geometry of one of the investigated bilayer GALs. (from [80])

[74], the GAL gap exhibits an oscillating behavior as a function of unit cell
dimensions for all but the triangular geometry. For a non-triangular GAL, the
unit cell length parameter should obey L = 3n + 2, with n being a positive
integer, in order for the structure to possess a large bandgap [24]. In all other
cases, the structure has either zero gap or a gap much small than if the rule is
obeyed. This rule is found to be consistent with the formation of a complete
benzenoid pattern in the unit cell such that all double bonds are completely
delocalized [23]. Liu et al. [75] and Dvorak et al. [76] have confirmed and
extended upon these findings, and reported that the bandgap opening can be
understood simply by investigation of the lattice vectors. In Ref. [77] it was
shown that half of the possible triangular GALs has been unintentionally left
out when constructing the unit cells as illustrated in Fig. 1.2, and that for this
“missing” half the bandgap remains closed.

The studies just discussed have all been focused on GALs in monolayer
graphene, although some reports on edge effects in bilayer GALs [78] and
bandgap dependence on geometry in triangular bilayer GALs [79] may be found.
Bilayer graphene has a number of interesting properties such as the possibility
of opening and tuning the gap [40] or even activation and tuning of second har-
monic generation in the otherwise intrinsically centrosymmetric crystal by ap-
plying an electrostatic field perpendicular to the layers [38]. Therefore, bilayer
GALs should allow for additional tuning of the gap introduced by patterning.
The contribution of this work has been to extend the previous rules of gap de-
pendency on geometry also to bilayer GALs, and to establish bandgap scaling
rules in bilayer GALs also considering the additional tunability that might be
possible by applying a perpendicular electrostatic field. To obtain this goal,
structures as the one shown in Fig. 1.3 have been investigated by applying tight
binding (TB) based modelling of bilayer GALs, along with modelling starting
from the analytical Dirac Hamiltonian of bilayer graphene including a mass
term to account for the bandgap similar to how it was done in [71].
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1.2.2 Effective medium theory for the description of meta-
materials

The identification of numerous exciting 2D materials [46, 81, 82] and the pos-
sibility of stacking these materials to create metamaterials with novel prop-
erties [83, 84], calls for a simple description of the metamaterials preferably
in terms of the presumably well-known properties of the constituents. Due to
the extremely small thicknesses of 2D materials compared to the wavelength
of visible and infrared light usually used in applications of these materials, it
has become common practice to employ effective medium theory (EMT) in the
description of the optical properties of layered metamaterials [57, 59, 85]. In
EMT, it is assumed that the response of the constituents inside the metamate-
rials is identical to the response of their isolated bulk counterpart outside the
metamaterial. The optical properties of the metamaterial are then calculated
by averaging the permittivities of the constituents to obtain a single permit-
tivity for the entire metamaterial, as it is depicted in Fig. 1.4a. In layered
heterostructures like this it is frequently the case that the in- and out-of-plane
components of the permittivity tensor differs strongly from each other, and so
it becomes necessary to consider the two components separately. The EMT
permittivites for planar heterostructures are given by

εEMT
‖ = ρε‖,m + (1− ρ)ε‖,d

1

εEMT
⊥

=
ρ

ε⊥,m
+

1− ρ
ε⊥,d

(1.1)

and it is seen that for the perpendicular permittivity it is the reciprocals that
should be averaged. This will be discussed in more detail later.

Determining the optical properties of heterostructures in this simplified
manner naturally rises a number of questions about the validity of such an
approximation [87, 88]. First, it is immediately apparent that any reflection of
light from the interfaces between layers is neglected in an EMT description. In
addition, one could ask, how thin can the layers be before they can no longer
be described by their bulk permittivities? The answers to these two questions
define the regime of validity of EMT. Basically, there are two limits in between
which EMT is expected to work well: The optical limit stating that the period
of variation in the refractive index of the material should be much smaller than
the wavelength of the incoming light (the wavelength criteria) [60, 87, 89],
and the quantum limit stating that the thickness of the constituents should
be sufficiently small (large) to entail an accurate description using the bulk
(monolayer) properties.

To further investigate the two limits TB model of layered graphene/hBN
heterostructures has been employed. This model is based on periodic struc-
tures with the unit cell as depicted Fig. 1.4b. TB parameters for an accurate
description of graphene and few-layer graphene can be found in the litera-
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Fig. 1.4: (a) Illustration of a metamaterial consisting of layers of dielectric and metal with
in-plane permittivities ε‖,d and ε‖,m and out-of-plane permittivities ε⊥,d and ε⊥,m. The
entire metamaterial has the EMT permittivities εEMT

‖ and εEMT
⊥ . {N,N} denotes the number

of consecutive graphene and hBN layers in the unit cell of the structure. (b) Illustration
of the atomic structure of layered graphene/hBN structure for use for TB calculations on
graphene/hBN heterostructures. (modified from [86])

ture [90] whereas for hBN the TB parameters have been determined by fitting
to a density functional theory (DFT) calculation of bandstructure and optical
spectra.

The quantum limit is examined by calculating the dielectric constant ε(ω) of
the graphene/hBN heterostructures with varying number of graphene and hBN
sheets for both the parallel and perpendicular directions, using a full quantum
mechanical model taking into account also the coupling between the graphene
and hBN layers [53]. The term “layers” refers to the number of graphite and
hBN layers in the entire metamaterial and the term “sheet” refers to the number
of atomic monolayers in each layer. Thus, the structure depicted in Fig. 1.4a
consists of 4 layers and 12 sheets. Ultimately, it is the interlayer coupling
between the graphene and hBN sheets and the change in electronic structure
when going from many to few sheets that puts a limit to the accuracy of using
bulk permittivities for the description of the individual layers. It is shown that
it is possible to take this coupling into account by expanding EMT with a
“boundary” term accounting for the layer coupling. This improved EMT was
tested and shown to provide a better description of heterostructures of thin
layers in a number of important cases.

To assess EMT in the optical limit it is natural to look at the reflection
coefficient rp for p-polarized light, since it probes both the parallel and the
perpendicular response of the metamaterial due to the fact that the electric
field lies in the plane of incidence. Intuitively, EMT is expected to be a good
approximation in the long wavelength limit because the light does not “see” the
variation in the refractive index, but previous research has shown that there
might be more to that story [87]. First, rather than the vacuum wavelength
it is the wavelength inside the metamaterial that counts. If the refractive
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index is high, the wavelength inside the material may be considerably larger
than outside. This is true in particular for evanescent light of large parallel
wavenumber kx > ω/c. Secondly, it has been shown that the topmost layer
of the metamaterial plays an important role for the optical properties of the
stack [87]. Thus, the different electronic environment of the surface electrons
causing the response of the first few sheets of the first layer to be different
from the rest may prove to be important for the optical properties of the entire
stack.

In order to assess the usability of EMT in actual applications the enhance-
ment of the decay rate of an oscillating dipole located close to the metamaterial,
the so called Purcell factor [36, 59], is calculated. It has been suggested already,
that EMT may be questionable in applications regarding the decay rate of an
oscillating dipole [91]. The Purcell factor depends on the reflection coefficients
at high kx and is thus a good measure of the overall performance of EMT.
The Purcell factor is predicted to be large in materials exhibiting so-called
hyperbolic light dispersion [57, 92]. Usually the isofrequency contours of the
dispersion relation (k2x + k2y)/ε⊥ + k2⊥/ε‖ = ω2/c2 are spherical, but for the
special situation ε‖ε⊥ < 0 they become hyperbolic as shown in Fig. 1.5, re-
sulting in an apparent divergence of the photonic density of states. Since the
graphite/hBN structures show hyperbolic dispersion in some frequency ranges,
one would expect the Purcell enhancement to be particularly strong in this
regime.

1.2.3 Natural hyperbolic materials

Layered metamaterials, as the graphite/hBN structures discussed in the previ-
ous section, may be engineered to exhibit hyperbolic light dispersion by choos-
ing the compounds and the layer thickness [57, 85, 92]. To establish whether a
specific metamaterials exhibits hyperbolic behavior the components of the per-
mittivity tensor are calculated from EMT. As discussed above, the applicability
of EMT is limited to wavelengths much longer than the metamaterial period,
and therefore any predicted hyperbolic behavior breaks down as soon as the
long wavelength criterion is broken. This puts an effective upper bound to the
wave vectors that see the hyperbolic dispersion, given by kmax ∼ π/d where
d is the metamaterial period. To circumvent this limitation the metamaterial
period should be lowered, but it is an experimentally difficult task to decrease
the period below 10 nm without increasing the surface roughness to an extent
that may be detrimental to the metamaterial performance [94].

A different route to obtaining materials with hyperbolic dispersion also for
large wave vectors is to search for materials that are naturally hyperbolic. Such
materials are not subject to the long wavelength criterion due to the lack of
internal structure, and are instead limited only by the so-called non-local re-
sponse [95, 96] of the material which allows for much larger wave vectors. An
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Fig. 1.5: Illustration of type I and type II hyperbolic metamaterials and natural a type II
hyperbolic material. Due to challenges of downscaling the metamaterial period the maximum
wave vector that can be supported is much smaller for the metamaterials than the natural
materials. (from [93])

illustration of type I and II hyperbolic metamaterials along with a naturally
occurring hyperbolic material and their isofrequency contours is shown in Fig.
1.5. Graphite has already been mentioned as one material exhibiting hyper-
bolic dispersion in the UV regime, and recently also other materials [62, 97, 98]
including the layered tetradymites Bi2Te3 and Bi2Se3 [63] has been shown to
exhibit hyperbolic dispersion in the near IR spectral range. The much differ-
ent in- and out-of-plane dielectric properties of these layered compounds stem
from the weak coupling between layers, which drastically lowers the plasma fre-
quencies in the perpendicular direction. It is reasonable to expect many other
layered compounds to exhibit similar dielectric properties, and as such, this
work sets off to investigate and uncover a large class of layered TMDs exhibit-
ing hyperbolic light dispersion in a wide spectral range covering the mid-IR
to the UV. 31 different layered TMDs are shown to exhibit primarily type II
hyperbolic behavior and these materials are compared to a typical artificially
engineered metamaterial based on silver and SiO2.

Conventional metamaterials such as graphene or metal based structures
show substantial Purcell factors even outside the hyperbolic region due to losses
[36, 59] although carefully choosing the doping level of graphene may open a
spectral range of low losses [99]. Recently a number of natural TMDs exhibiting
low losses in the hyperbolic region have been identified [100]. In this work, more
such materials are found and investigated for their superior properties regarding
the Purcell factor, and it is shown that in these materials the Purcell factors
are substantially larger inside the hyperbolic region than outside.
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Fig. 1.6: Atomic structure of black phosphorus and MoS2. The structure of MoS2 is similar
to other TMDs.

.

1.2.4 Optically activated plasmons in 2D materials

Plasmons are collective oscillations in the free electron gas of a conductor [101].
To understand what a plasmon is, one can imagine a piece of conducting ma-
terial subjected to a homogenous electric field pointing for example along the
x-axis. The free electrons will redistribute such as to cancel out the electric
field, and when the electric field is turned off the electrons will bounce back
and forth exerting oscillating motion of some frequency ωp called the plasma
frequency, until the energy has dissipated to losses in the material. Research
in plasmons has attracted much attention due to their small extent in space
making it possible to strongly confine light to small dimensions and to subse-
quently manipulate and guide the propagation of the plasmons on the surface
of a metal [102–104]. This could be a step on the way to an all optical computer
that has previously been hampered by the huge wavelength of light compared
to the extent of the electronic circuits in use in modern computers. Plasmonics
has already been applied in a variety of fields such as gas detection [105] and
improvement of photovoltaic devices [106].

Short propagation lengths in traditional plasmonic materials such as gold
and silver is a major obstacle toward applications. For this reason, there is
a great motivation to investigate plasmons in the newly available 2D ma-
terials. Graphene has already shown promise in the field of plasmonics, in
particular due to easy tunability of the electronic properties of graphene by
gating [107, 108] the small wavelength of the plasmons and the possibility to
efficiently launch plasmons in graphene [109]. Gating allows voltage control
over the plasmon wavelength and amplitude [110] and even electrostatic on/off
switching of the plasmons [111]. In addition to this, low losses and consequently
long propagation lengths have been demonstrated in van der Waals structures
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Fig. 1.7: Illustration of doping and pumping. (a) Intrinsic materials at low temperature (b)
Electron doping for example by gating of materials at low temperature (c) Optical pumping
of the materials by photons of energy ~ωpump. Holes are illustrated by black spheres and
electrons by green spheres. Yellow spheres illustrate electrons that are excited by the probe
pulse of energy ~ω and momentum ~q.

.

consisting of graphene sandwiched in between two films of hBN [112].
In addition to the intense research in graphene, other 2D materials such as

MoS2 [113, 114] and the monoelement 2D material black phosphorus (or phos-
phorene) have attracted interest as plasmonic materials [115, 116]. Monolayer
MoS2 is made from a single layer of molybdenum between two layers of sulfur
and monolayer black phosphorus consists of two layers of phosphor atoms, see
Fig. 1.6. Both materials are semiconductors but black phosphorus is special in
the sense that it exhibits strong anisotropic in-plane behavior and a gap tunable
by applying strain along the direction perpendicular to the layers [46, 117, 118].

In this work, plasmons activated by optical pumping of graphene, MoS2 and
black phosphorus are investigated. In their intrinsic state and at zero temper-
ature neither of these materials support plasmons due to a lack of free charge
carriers, see Fig. 1.7a. In order to activate plasmons one has to either dope the
material for example by chemical or electrical means, or alternatively, increase
the temperature to thermally excite electrons into the conduction bands. In
semiconductors high temperatures on the order of several thousands Kelvin
are required to excite electrons across the bandgap and obtain a carrier density
sufficiently high to support plasmons, so simple heating of the materials is not
feasible because phonons will blur the response, if the material does not simply
melt.
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Because electrons are much lighter than the atom cores, it is possible to
increase the effective temperature of the electrons by optically pumping the
material using photons of sufficiently high energy to excite electrons into the
conduction band. Dissipation of energy from the electrons to the lattice is slow,
thus allowing for probing of the material response with a secondary light pulse.
This technique is referred to as pump-probe spectroscopy.

Pumping of a material is different from doping. Doping the materials either
introduces electrons into the conduction band (electron doping) or holes into the
valence band (hole doping). This is illustrated in Fig. 1.7b for electron doping.
Pumping of a material causes electrons to be excited from the valence band to
the conduction band leaving behind holes in the valence band, as illustrated
in Fig. 1.7c. Initially this creates an unstable out-of-equilibrium state with no
well defined electronic temperature or chemical potential. By electron-electron
interactions this state relaxes in the course of 10s of fs [119–124] to a Fermi-
Dirac distribution to which chemical potentials for electrons and holes µe and
µh and a temperature T can be ascribed. The electrons in this scenario are
referred to as “hot electrons” because their temperature is significantly higher
than room temperature, and also significantly higher than the temperature
of the lattice ions. This is a transient state with a lifetime on the order of
picoseconds [125] which is sufficient to allow for measurements of for example
plasmons. This has already been done experimentally in graphene [126–129]
and black phosphorus [130] using pump-probe spectroscopy. The idea is to first
pump the material and subsequently during the lifetime of the transient state,
probe the material to allow for a time-resolved investigation of the plasmonic
response [128, 131–133].

In this thesis it is shown that thermally activated plasmons in graphene,
MoS2 and black phosphorus exhibit dispersive properties similar to plasmons
activated by doping, and that the Purcell effect is strongly enhanced by plas-
mons both in the doping and the pumping scheme. To allow for an accurate
description of plasmons in these materials, nonlocal effects [95] are taken into
account by using the framework of the nonlocal-RPA to calculate the dielec-
tric function ε(q, ω). The results are compared to results obtained using the
local-RPA approximation to reveal the importance of nonlocal effects in these
materials.
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Chapter 2

Theory and Methods

In this chapter the fundamental theory and methods used to produce the re-
sults in the next chapter are presented. It begins by presenting the quantum
mechanical methods used for obtaining the electronic structure of crystalline
materials and for obtaining the optical response in the limit of small electrical
fields which is usually referred to as the linear response. It the proceeds with
methods based on Maxwell’s equations to describe the propagation of electro-
magnetic fields in layered structures using the calculated response functions.

2.1 Tight binding

The starting point of all calculations in this work is a tight binding (TB)
calculation used to determine eigenstates and eigenenergies of the materials.
TB is a semi-empirical method in the sense that it relies on the matrix element
of the atomic wave functions with the Hamilton operator (transfer integral) and
the overlap between the wave functions of electrons on different atomic sites
(overlap integral). These parameters has to be determined by other means
for example by fitting to a density functional theory (DFT) calculation or to
experimental results.

The starting point of the TB model is the Schrödinger equation

Ĥ |Ψn(r)〉 = En |Ψn(r)〉 , (2.1)

where Ψn represents the n’th eigenstate of eigenenergy En. The basic assump-
tion of the TB model is that the wave function of the entire system can be
constructed from the atomic wave functions of the isolated atoms that make
up the system. Thus, the wave function Ψn is written as a linear combination
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Rα

Tl

Rαl=Rα+Tl

Fig. 2.1: Illustration of a crystal lattice with two atoms in the unit cell marked by the
dashed square. Rα is the position of the atoms within in the unit cell, T l is a translation
vector of the lattice and Rαl is the position of atom α in unit cell l,

of atomic orbitals

|Ψn(r)〉 =
1√
U

N∑
α

U∑
l

bαln |ϕα(r −Rαl)〉 , (2.2)

where N is the number of orbitals in the unit cell, U is the number of unit
cells, ϕα(r) is the orbital with α denoting also the orbital symmetry (s, p, ...),
and Rαl = Rα + T l is the position of the orbital α in the unit cell at the
lattice translation vector T l, see Fig. 2.1. The sum is taken over all orbitals
and all translation vectors of the lattice. In the following the upper limits N
and U of the sums will not be written out, and it should be understood that
sums over α and β run over all orbitals and sums over l and l′ run over all unit
cells. According to the Bloch theorem, the wave function in a periodic crystal
acquires a phase change in going from one lattice site to another. Thus, we
must require that Ψ(r + Rαl) = eik·RαlΨ(r). Imposing this requirement one
finds that bαln = bknαe

ik·Rαl and therefore

|Ψk
n(r)〉 =

∑
α

bknα

[
1√
U

∑
l

eik·Rαl |ϕα(r −Rαl)〉

]
=
∑
α

bknα |Φk
α(r)〉 , (2.3)

where |Φk
α(r)〉 is called the Bloch function associated with orbital α. By in-

serting the wavefunction Eq. 2.3 into the Schrödigner equation and operating
from the left with 〈Φk

β(r)|, one gets the matrix equation

N∑
α

bknαHαβ = Ek
n

N∑
α

bknαSαβ . (2.4)

with the matrix elements of the Hamiltonian given by
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Hαβ = 〈Φk
β(r)| Ĥ |Φk

α(r)〉

=
1

U

∑
l

∑
l′

eik·(Rαl−Rβl′ ) 〈ϕβ(r −Rβl′)| Ĥ |ϕα(r −Rαl)〉

=
∑
l

eik·(Rαl−Rβ0) 〈ϕβ(r −Rβ0)| Ĥ |ϕα(r −Rαl)〉

=
∑
l

eik·(Rαl−Rβ0)γαβl, (2.5)

and the overlap matrix elements by

Sαβ = 〈Φk
β(r)|Φk

α(r)〉

=
1

U

∑
l

∑
l′

eik·(Rαl−Rβl′ ) 〈ϕβ(r −Rβl′)|ϕα(r −Rαl)〉

=
∑
l

eik·(Rαl−Rβ0) 〈ϕβ(r −Rβ0)|ϕα(r −Rαl)〉

=
∑
l

eik·(Rαl−Rβ0)sαβl, (2.6)

and the double sum eliminates the factor of 1/U because all lattice sites give
the same contribution and the notation Rβ0 means the position of orbital β in
the zeroth unit cell. The transfer integral γ and the overlap integral s are the
unknown TB parameters that should be determined by other means. In the
next section the framework for using the TB eigenstates and eigenenergies to
determine the optical response of a material is developed.

2.2 Optical response theory

The optical properties of non magnetic materials are contained in the dielectric
constant ε of the material. This is the quantity that enters Maxwell’s equations
and thus describes how the material responds to electrical fields such as light.
In many isolating materials such as glass or plastic the dielectric constant is
for most practical purposes a purely real quantity in the visible spectrum with
a positive real part and an associated refractive index given by n =

√
ε which

is also real and positive. In general, the refractive index depends on the wave-
length of the light and the properties of a material may change drastically with
wavelength. For example, the response of silica glass, SiO2, is rather indepen-
dent of wavelength in the visible part of the spectrum where it has a constant
refractive index of ∼ 1.5, but in the ultraviolet regime the material exhibits
strong absorption. This is quantified by the imaginary part of the complex
refractive index n = n′ + in′′ with n′′ representing loss mechanisms and ab-
sorption [134]. Conducting materials are characterized by a complex dielectric
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constant with a negative real part and a positive imaginary part representing
losses.

The dielectric constant is directly related to several other material proper-
ties such as the electric susceptibility χe and the electric conductivity σ. These
are not independent quantities and are linked through the continuity equation
∂ρ/∂t = −∇ · J where ρ is the charge density and J is the current density.
The charge density is related to the polarization P and the electric field E as
ρ = −∇ ·P = −ε0χe∇ ·E and the current density is given by J = σE. Com-
bining all this and assuming harmonic time dependence such that E ∝ e−iωt

one finds

σ = −iωε0χe ,

ε = 1 +
iσ

ε0ω
, (2.7)

where the definition ε = 1 + χe was also used.
For a very thin material the field can be taken constant in the direction

perpendicular to the material and so the current flowing through the material
per unit length may be calculated as J2D = dσE = σ2DE, where J2D is the
2D current density and σ2D is the 2D (sheet) conductivity. In the following the
subscript 2D will not be used and all references to the conductivity σ should
be taken as references to the sheet conductivity σ2D unless otherwise stated

The calculation of the optical response of a 2D material under illumination
by a photon of energy ~ω and momentum ~q relies on linear response theory, an
application of perturbation theory where only the lowest order terms are kept.
In this framework, the real part σ′ of the complex conductivity σ = σ′ + iσ′′

in the zero-broadening limit is given by [135, 136]

σ′(q, ω) =
e2ω

2πq2

∑
m,n

∫
BZ
fqnm |Mq

mn|
2
δ(Eq

mn − ~ω)d2k, (2.8)

where Eq
mn = E

k−q/2
m −Ek+q/2

n , fqnm = f(E
k+q/2
n )−f(E

k−q/2
m ) with f(E) being

the Fermi function, ~q is the momentum change in the electronic transition,
and

Mq
mn = 〈Ψk−q/2

m | e−iq·r |Ψk+q/2
n 〉 (2.9)

are the matrix elements with Ψk
m being the wave functions given in Eq. 2.3.

This expression considers both vertical and non-vertical electronic transition in
the BZ. Non-vertical transitions are transitions in which the electron changes
its momentum during the transition, which may be induced for example by
phonons but also by evanescent light of high momentum. Eq. 2.8 includes
both interband (n 6= m) and intraband (n = m) transitions, but care should
be taken when using it to calculate the intraband response in the limit of
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Fig. 2.2: Intraband conductivity in the nonlocal-RPA for q1 = 10−5 Å−1, q2 = 3 × 10−5

Å−1, and q3 = 5× 10−5 Å−1 in units of σ0 = e2/(4~).

small q because in this case the intraband response is found at very small
energies, see Fig. 2.2. Eq. 2.8 will from now on be referred to as the nonlocal-
RPA conductivity (random phase approximation) contrary to the local-RPA
which is the q → 0 limit. The associated q dependent permittivity found from
Eq. 2.7 is referred to as the dielectric function. The zero-broadening limit
allows for easier computation using the triangle integration method [25, 38] ,
and broadening is easily reintroduced after calculation by convolution with a
Lorentzian of full width half maximum (FWHM) γ

σ′γ(q, ω) =
1

π

∞∫
−∞

σ′(q, ω′)
γ

(ω − ω′)2 + γ2
dω′. (2.10)

The imaginary part can be calculated using the Kramers-Kronig relation

σ′′γ (q, ω) = − 1

π
PV

∞∫
−∞

σ′γ(q, ω′)
1

ω′ − ω
dω′, (2.11)

where PV stands for principal value. Numerically, this amounts to excluding
the point ω′ = ω from the integral. Instead of actually calculating the con-
ductivity at negative frequencies the symmetry properties of the conductivity
stating that σ′(−ω) = σ′(ω) and σ′′(−ω) = −σ′′(ω) can be exploited.

To numerically calculate the matrix elementsMq
mn the expression for |Ψk

n(r)〉
given in Eq. 2.3 is inserted in Eq. 2.9 to get

Mq
mn =

∑
α

∑
β

b̄k−q/2mα b
k+q/2
mβ 〈Φk−q/2

α (r)| e−iq·r |Φk+q/2
β (r)〉

≈
∑
α

∑
β

b̄k−q/2mα b
k+q/2
mβ 〈Φk−q/2

α (r)|Φk−q/2
β (r)〉

=
∑
α

∑
β

b̄k−q/2mα b
k+q/2
mβ

∑
l

sαβle
ik·(Rβ0−Rαl)eiq·(Rβ0+Rαl)/2

≈
∑
α

b̄k−q/2mα bk+q/2
mα eiq·Rα0 , (2.12)
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where b̄ denotes complex conjugation. The second step follows from replacing
r with Rβl which is a good approximation under the TB assumption that the
atomic orbitals are strongly localized around the nucleus to which they belong,
such that the main contribution to the integrals in Eq. 2.5 and Eq. 2.6 is for r
close to one of the nuclei. The last step follows from assuming sαβl = δRβ0,Rαl .

In the limit q → 0 Eq. 2.8 reduces to the local-RPA expression. To see
this the inter- and intraband cases are considered separately. For small q the
exponential function can be written e−iq·r ≈ 1− iq ·r and therefore the matrix
element in the interband where m 6= n case becomes

Mq
mn ≈ 〈Ψk

m|Ψk
n〉 − iq · 〈Ψk

m| r |Ψk
n〉

= −iq · 〈Ψk
m| r |Ψk

n〉 , (2.13)

where the last equality follows from the orthogonality of the states. The dipole
matrix elements can be rewritten in terms of the momentum matrix elements
[137, 138] and so one obtains

Mq
mn ≈

−~
mEmn

q · Pmn, (2.14)

where Pmn = 〈Ψk
m| p̂ |Ψk

n〉 and p̂ = −i~∇ is the momentum operator. Using
this in Eq. 2.8 one gets

σ′inter(ω) =
e2

2πm2ω

∑
m,n

∫
BZ

fnm |q̂ · Pmn|2 δ(Emn − ~ω)d2k, (2.15)

where q̂ = q/q. To arrive at the result Eq. 2.15 we made use of the substitution
1/E2

mn → 1/(~ω)2 which is allowed because the δ function contributes only
when Emn = ~ω. This expression is used for calculation of the local-RPA
interband conductivity. The momentum matrix elements can be calculated
using p̂ = (m/~)∇kĤ, which is correct in TB calculations provided the intra-
atomic contribution can be neglected [137], and they are given by

Pmn =
∑
α

∑
β

b̄kmαb
k
nβ 〈Φk

α| p̂ |Φk
β〉

=
im

~

N∑
α

N∑
β

b̄kαmb
k
βn

U∑
l

γαβl(Rβ0 −Rαl)e
ik·(Rβ0−Rαl). (2.16)

For the intraband case we havem = n andMq
nn → 1 for q → 0. By inserting

this in Eq. 2.8, making the substitution ~ω → Enn similar to how it was done
for the interband part, and using the limits

lim
q→0

Eq
nn = 0,

lim
q→0

fqnn/q = f ′(En)∇kEn · q̂,

lim
q→0

Eq
nn/q = ∇kEn · q̂, (2.17)
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where f ′(En) is the energy derivative of the Fermi function, the expression

σ′intra(ω) =
e2

2π~
∑
n

∫
BZ
f ′(En) (∇kEn · q̂)

2
δ(~ω)d2k (2.18)

is obtained. Now, by reintroducing a broadening γ using Eq. 2.10 and cal-
culating the imaginary part using Eq. 2.11 one arrives at the Drude response
σγ,intra(ω) = iε0ω

2
p/(ω + iγ), with the plasma frequency ωp given by

ω2
p =

−e2

2π2~2ε0

∑
n

∫
BZ
f ′(En) (∇kEn · q̂)

2
d2k. (2.19)

This expression and the expression in Eq. 2.15 are exactly the local-RPA
expressions and agree with the results of Ref. [139] and Ref. [25]. To facilitate
numerical evaluation of Eq. 2.19 the temperature is taken to zero such that
f ′(En) becomes −δ(En − EF). This allows usage of the triangle integration
method as it was done for the interband part. Subsequently, the temperature is
reintroduced by convolution with the Fermi function. It should be noted that
all of the above introduced formula for 2D materials can be easily extended
to bulk materials simply by making the substitution d2k → 1/(2π)d3k and
replacing all vector quantities by their 3D equivalent.

In all of the above formula the direction q̂ of the vector q plays an im-
portant role because it determines the direction of the electric field to which
the response is calculated. Many materials such as silica glass or silver are
isotropic in the sense that the response is invariant to the direction of the po-
larizing field, while for other materials the direction plays a crucial role. This
should not be confused with the different reflective properties of materials for
s- and p-polarized light, which is a consequence solely of the boundary because
the electromagnetic boundary conditions are different for transverse and per-
pendicular electric fields. A light pulse originating from inside the material
experiences no directional dependence in its propagation in a truly isotropic
material. In some materials, however, the response depends on the direction of
the perturbing field and such materials are termed anisotropic or birefringent
materials. An example of a strongly anisotropic naturally occurring material
is graphite. Graphite is composed of sheets of graphene stacked on top of each
other and these sheets interact only weakly. Consequently, the graphene sheets
maintain their conductive properties in-plane, but in the out-of-plane direction
graphite is an insulator (except at very long wavelengths). Anisotropic mate-
rials exhibit a number of special properties such as different refractive indices
for s- and p-polarized light. In such materials, the response functions of the
materials all become tensors. In this work, only planar anisotropic materials
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charaterized by a dielectric tensor of the form

ε =

ε‖ 0 0

0 ε‖ 0

0 0 ε⊥

 , (2.20)

where ε‖ is the in-plane permittivity and ε⊥ is the out-of-plane permittivity,
will be treated. Such materials with different in- and out-of-plane responses
are termed uniaxial anisotropic media. The associated in- and out-of-plane
refractive indices no =

√
ε‖ and ne =

√
ε⊥ are often referred to as the ordinary

and the extraordinary refractive indices, respectively. In the following section a
method to calculate the propagation of electric fields in stacks of such structures
is developed.

2.3 Transfer matrix method

Materials composed of layers with different optical properties constitute an
exciting field of study due to the possibility of tailoring the properties to specific
needs. In principle, it is possible to calculate the optical response of a stacked
material using the framework described in the previous section if all layers are
introduced into the Hamiltonian and q chosen to be perpendicular to the layers,
but care should be taken because Eq. 2.8 relies on the assumption that the
electric field is constant throughout the entire structure. This assumption is
fulfilled for field polarizations parallel to the layers but is, in fact, incorrect for
fields polarized perpendicular to the layers. The boundary conditions for an
electric field crossing the interface between two layers here designated as 1 and
2 are given by [140]

E‖,1 = E‖,2, (2.21)
ε⊥,1E⊥,1 = ε⊥,2E⊥,2, (2.22)

and from these conditions it is obvious that E‖ is invariant through the en-
tire structure, while the perpendicular component changes in proportion with
the difference in the permittivities of the layers. Therefore, ε⊥ of a stacked
heterostructure cannot be calculated directly using the framework for calcula-
tion of optical response functions, and the optical properties of such materials
have to be determined by relying on a method that takes into account the field
variation.

Consider Fig. 2.3 illustrating propagating fields in a layered structure.
Layer 0 represents the side of incoming light and layer N + 1 the side of trans-
mitted light. In layer i of the structure there will be a wave propagating left
and one propagating right, except in layer N + 1 where there will only be the
right propagating wave transmitted through the structure. Taking z = 0 to be
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Fig. 2.3: Illustration of propagating fields in a layered structure. Light is is incident from
the left. Superscript + and - denotes a wave travelling right and left, respectively. Fields
immediately left and right of an interface are written as Ẽ and E, respectively. On the left
there will be both an incident and a reflected wave while on the right there will be only a
transmitted wave.

the leftmost side of layer i, the total field in layer i is

Ei(z) = E+
i e

ikz,iz + E−i e
−ikz,iz, 0 < z < li (2.23)

where li is the width of layer i, kz,i is the z-component of the wavevector in
layer i and the superscripts + and - refers to forward and backward propagating
waves, respectively. Evaluating the field Ei(z) at z = 0 and z = li one gets

Ei(0) = E+
i + E−i ,

Ei(li) = E+
i e

ikz,ili + E−i e
−ikz,ili = Ẽ+

i + Ẽ−i = Ẽi(0), (2.24)

where Ẽ+
i = E+

i e
ikz,ili and Ẽ−i = E−i e

−ikz,ili . Ei(0) and Ẽi(0) are conse-
quently the total fields in the left and right sides of layer i, respectively. Ac-
cordingly, defining j = i+ 1 just to avoid writing i+ 1 in the subscripts, Ẽi(0)

and Ej(0) are the fields just left and right of the boundary between layer i
and j. The aim is now to express the relation between the two fields using the
transmission and reflection coefficients of the boundary. Thus, if rij and tij are
the Fresnel reflection coefficients when going from layer i to layer j, then

Ẽ−i = rijẼ
+
i + tjiE

−
j ,

E+
j = rjiE

−
j + tijẼ

+
i . (2.25)

Now, expressing Ẽ+
i and Ẽ−i in terms of E+

j and E−j one gets

Ẽ+
i =

1

tij
E+
j −

rji
tij
E−j , (2.26)

Ẽ−i =
1

tij
(tijtji − rijrji)E+

j +
rij
tij
E−j . (2.27)
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which written in matrix notation becomes(
Ẽ+
i

Ẽ−i

)
= Tij

(
E+
j

E−j

)
, (2.28)

where the matrix Tij is called the transfer matrix from layer i to layer j = i+1

and it is defined as [140]

Tij =
1

tij

(
1 −rji
rij tijtji − rijrji

)
(2.29)

=
1

tij

(
1 rij
rij 1

)
, (2.30)

where the last step follows from the symmetry relations of the Fresnel coef-
ficients rij = −rji and tijtji − rijrji = 1. The transfer matrix connects the
coefficients on the two sides of a boundary.

To proceed, the connection between the coefficient E+
i and E−i in the left

side of a layer and the coefficients Ẽ+
i and Ẽ−i in the right side of the same

layer is needed. This connection is given by the equations E+
i = Ẽ+

i e
−ikz,ili

and E−i = Ẽ−i e
ikz,ili , and writing these equations in matrix form one gets(

E+
i

E−i

)
= Pi

(
Ẽ+
i

Ẽ−i

)
, (2.31)

with the propagation matrix Pi given by [140]

Pi =

(
e−ikz,ili 0

0 eikz,ili

)
. (2.32)

With the transfer matrix and the propagation matrix at hand, the relation
between Ẽ+

0 , Ẽ−0 and E+
N+1 can be readily determined by starting with layer

N + 1, calculating the fields in layer N , then in N − 1 etc.(
Ẽ+

0

Ẽ−0

)
= S

(
E+
N+1

0

)
, (2.33)

where S = T01P1T12P2 . . .PNTN,N+1 is the so called system matrix de-
scribing field propagation within the entire system. The reflection coefficient
r = Ẽ−0 /Ẽ

+
0 and transmission coefficient t = E+

N+1/Ẽ
+
0 of the entire stack are

given by

r =
S21

S11
, t =

1

S11
, (2.34)

with Smn being elements of the system matrix. Since the reflection coefficient
of the system is given by the ratio between two element of the system matrix,
the prefactors t−1ij of T cancel out, and the reflection coefficient of the stack
depends only on the reflection coefficients of the layer boundaries.
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2.4 Reflection from anisotropic media

The transfer matrix method developed in the previous section relies on knowl-
edge of the Fresnel reflection coefficients rij and tij of every boundary between
two media of different dielectric constants εi and εj . For isotropic materials
the Fresnel coefficients take their usual form which for s- and p-polarized light
are [140]

rsij =
kz,i − kz,j
kz,i + kz,j

tsij =
2kz,i

kz,i + kz,j
, (2.35)

rpij =
n2jkz,i − n2i kz,j
n2jkz,i + n2i kz,j

tpij =
2ninjkz,i

n2jkz,i + n2i kz,j
, (2.36)

with ni =
√
εi being the complex refractive index and kz,i being the z-component

of the wavevector k in layer i. For anisotropic media like the uniaxial media
described by the dielectric tensor ε of Eq. 2.20, however, the Fresnel coeffi-
cients are different. To find them, consider the wave equation in anisotropic
media [141, 142]

∇2E(r) + k20εE(r)−∇(∇ ·E(r)) = 0, (2.37)

where k0 = ω/c is the vacuum wavenumber and ω is the light frequency. In the
following the coordinate system is chosen to be oriented such that the interface
between the medium of incidence and the anisotropic medium lies in the xy-
plane. For an electric field given by E(r) = E0e

ik·r this equation assumes the
form

−k2E0 + k20εE0 + k(k ·E0) = 0 (2.38)

which is in fact three equations, one for each Cartesian component. Now,
for s-polarization the electric field lies entirely in the plane of the boundary,
that is, E0 = Eyŷ. In this case, one finds from the x- and z-components of
Eq. 2.38 that ky can be taken to be zero, and from the y-component that

ksz = ±
√
k20ε‖ + k2x. The positive and negative solutions correspond respec-

tively to waves travelling towards and away from the interface. Thus, the wave
propagation direction for s-polarized light in anisotropic media is seen to be
identical to the case of isotropic media. Intuitively, this makes sense since
light polarized parallel to the interface does not cause any polarization in the
out-of-plane direction, and so does not see the out-of-plane permittivity.

For p-polarized light the electric field is of the form E0 = Exx̂ + Ezẑ.
Inserting this in Eq. 2.38 yields again an equation for each of the three Carte-
sian coordinates and from the y-component one finds ky = 0. The other two
equations yield

kpz = ±
√
k20ε‖ + k2xε‖/ε⊥, (2.39)
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showing that propagation of p-polarized light in uniaxial anisotropic media
does indeed depend on both the in-plane and out-of-plane components of the
dielectric tensor. The equations also give the field directions, and solving for
instance for Ez one finds that the electric field inside the anisotropic material
can be written as (it is only defined up to a constant)

E0 = E0

(
∓k

p
z

ε‖
, 0,

kx
ε⊥

)
(2.40)

where E0 is a constant. From this it is seen that in the anisotropic case ε‖ 6= ε⊥
the electric field is not perpendicular to the wave vector kp = (kx, 0, k

p
z ). The

electric displacement field, however, is perpendicular to kp and it is given by
D0 = εE0 = E0(∓kz, 0, kx). The normalized direction of the displacement
field is

dp =
1√

k2x + k2z
(∓kz, 0, kx) =

1

npk0
(∓kz, 0, kx) , (2.41)

where np can be seen as an effective index of refraction that is given by

np =

√
kp · kp

k0
=

√
ε‖ −

(
1− ε⊥

ε‖

)
k2x
k20
. (2.42)

The effective refractive index is seen to reduce to n =
√
ε in the isotropic case

ε‖ = ε⊥ = ε.
To derive the reflection and transmission coefficients in the anisotropic case,

the incident, reflected and transmitted fields are expressed and the electromag-
netic boundary conditions Eq. 2.22 used to provide the relationship between
the field amplitudes. The fields are given as

Einc(r) = E0

(
kpz,i/ε‖,i, 0, kx/ε⊥,i

)
e−ik

p
z,izeikxx, (2.43)

Erefl(r) = rpijE0

(
−kpz,i/ε‖,i, 0, kx/ε⊥,i

)
eik

p
z,izeikxx, (2.44)

Etrans(r) = tpijE0

(
kpz,j/ε‖,j , 0, kx/ε⊥,j

)
e−ik

p
z,jzeikxx, (2.45)

where kpz,i =
√
k20ε‖,i + k2xε‖,i/ε⊥,i and E0 is the field amplitude. From the elec-

tromagnetic boundary conditions the reflection and transmission coefficients
are found to be given by [141, 142]

rpij =
ε‖,jk

p
z,i − ε‖,ik

p
z,j

ε‖,jk
p
z,i + ε‖,ik

p
z,j

, (2.46)

tpij =
2ε‖,jk

p
z,j

ε‖,jk
p
z,i + ε‖,ik

p
z,j

, (2.47)

and it is seen that the form of the Fresnel coefficients is identical to the isotropic
case and therefore that the symmetry properties are unchanged, such that the
transfer matrix in the last line of Eq. 2.30 continues to be valid.
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2.5 Response of layered structures

In the calculation of the response of structures composed of sheets of atomic
monolayers, such as naturally occurring graphite or hexagonal boron nitride, or
artificially structured metamaterials, composed of layers of different materials
that are again composed of monolayers sheets, the response of each individual
sheet will in general be different. This is important when calculating for ex-
ample optical reflection or transmission, since when light enters the structure
it is refracted in the first sheet and it is this refracted light, which is then seen
by the second sheet. As such, to permit an accurate description of the entire
stack, it is in general not enough to assign a refractive index to the entire stack
nor is it enough to treat the individual layers as homogenous. An individual
calculation of the refractive properties of each sheet of the entire stack is nec-
essary to accurately describe light propagation in the heterostructure and to
enable treatment of edge effects on the top and bottommost layers.

To get the individual sheet response the local-RPA projected conductivity
is introduced. The projected conductivity gives the contribution from a set
A = {α1, α2, ...} of atoms in the unit cell to the total conductivity. To calculate
the conductivity due to the atoms in the set A, the matrix element Pmn is
replaced by the matrix element MA

mn = Re
(
PAmnP̄mn

)
with

PAmn(k) =
1

2

∑
α∈A

N∑
β

[
b̄kmαb

k
nβ + b̄kmβb

k
nα

]
〈Φk

α| p̂ |Φk
β〉 , (2.48)

being the projected momentum matrix element. PAmn reduces to the total
matrix element given in Eq. 2.16 if the set A includes all atoms in the unit
cell. In this case interchanging α and β gives the same result and eliminates
the factor of 1/2.

2.6 Effective medium theory

In a layered heterostructure composed of thin layers with respect to the wave-
length of the light that illuminates the structure, the variation in refractive
index may under certain circumstances be ignored because the wavelength of
the light is much longer than the period of variation. In this case, it is com-
mon to describe the entire layered medium by a single effective refractive index
based on the refractive indices of the constituents, and this method is referred
to as homogenization or effective medium theory (EMT). Characterizing a het-
erostructure by a single material parameter is practical because it allows for a
characterization of the structure as being metallic or dielectric by just looking
at a single parameter, instead of having to calculate for example the reflec-
tion spectrum to see how the structure behaves. There is reason to be careful
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though, and EMT relies on a number of assumptions. First, EMT cannot catch
the phase change across individual layers and thus multiple reflection effects
are absent in such a description. If the wavelength is, in fact, much larger than
the period of variation in the heterostructure, such effects are of course small,
but one should bear in mind that it is the wavelength in the layer that counts.
As such, a thin layer with a high refractive index may cause a significant phases
change across it. Secondly, it is an assumption that the incoming light actually
sees several periods of layers. Thus, if one of the first few layers is very lossy it
does not make sense to describe the structure as an effective medium because
only a few layers are actually seen by the light.

The formulas for calculating the effective permittivity of a heterostructure,
may be derived by averaging the perpendicular component of the electric field
E, and the parallel component of the displacement field D = εD over the
entire structure and applying the electromagnetic boundary conditions [56].
Here ε is the permittivity tensor which in a uniaxial planar heterostructure
is given from Eq. 2.20. Considering a heterostructure composed of metal
and dielectric layers, the parallel component of the average displacement field
Davg
‖ = εEMT

‖ Eavg
‖ , with εEMT

‖ being the sought effective permittivity, is

Davg
‖ = ρD‖,m + (1− ρ)D‖,d, (2.49)

where D‖,m = ε‖,mE‖,m and D‖,d = ε‖,dE‖,d are the displacement fields in
the metal and the dielectric, respectively, and ρ is the fraction of metal in the
structure. The boundary condition for the electric field given in Eq. 2.22 state
that Eavg

‖ = E‖,m = E‖,d and one finds

εEMT
‖ = ρε‖,m + (1− ρ)ε‖,d. (2.50)

Similarly, by averaging the electric field and using the boundary condition for
the displacement field in Eq. 2.22 one finds for the perpendicular component

1

εEMT
⊥

=
ρ

ε⊥,m
+

1− ρ
ε⊥,d

. (2.51)

The EMT permittivities allows for characterization of a material as metallic
or dielectric, and in certain cases a material may even exhibit both metallic
and dielectric behavior in the sense that particular choices of the constituent
materials and the metal fill fraction ρ, may lead to metallic behavior in-plane
and dielectric behavior out-of-plane. Such materials are strongly anisotropic
and exhibit unusual properties. The dispersion relation for a wave propagating
in an anisotropic material is found from Eq. 2.39 (generalizing to fields in the
xy-plane) and it is given by

k2x + k2y
ε⊥

+
k2z
ε‖

=
ω2

c2
. (2.52)
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For the case ε‖ > 0 and ε⊥ > 0 the isofrequency contours of Eq. 2.52 are
elliptical meaning that the allowed values of k are restricted to lie on an ellipse.
Wave components with wavenumbers outside this ellipse are evanescent in the
material. For materials for which ε‖ε⊥ < 0, the isofrequency contours are not
spherical but hyperbolic, and therefore these materials are termed hyperbolic
materials. In these materials an, in theory, infinite range of k-modes are allowed
to propagate and these materials can have a great impact when placed in the
near field of an oscillating dipole. An oscillating dipole emits light of modes
that are evanescent in air and they are accordingly only detectable in the
near field. These non-propagating modes do not carry away any energy for
an isolated dipole, but if the dipole is placed in the vicinity of a hyperbolic
material these evanescent modes can couple to the material. This effectively
increases drastically the decay rate of the dipole, an effect referred to as the
Purcell effect. The Purcell factor, that is, the ratio between the decay rate
Γ close to the hyperbolic material and the decay rate Γ0 in vacuum, is for a
dipole oriented parallel to the surface of the material given by [59]

Γ

Γ0
= 1 +

3

4k0
Re

 ∞∫
0

(
rs − k2z

k20
rp
)
kxe

2ikzd

kz
dk

 , (2.53)

where d is the distance between the dipole and the surface, kz =
√
εk20 − k2x, ε

is the permittivity of the ambient and rs and rp are the reflection coefficients of
the material. Thus, the Purcell factor is determined entirely once the reflection
coefficients of the material are known.
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Chapter 3

Summary of results

In this chapter, a summary of the results from the papers included in the last
part of this thesis is presented. The aim is to provide the reader with an
overview of the work that has been accomplished during this Ph.D. project.
Not all details of the results are discussed, and the reader is referred to the
papers for an in-depth treatment.

3.1 Electronic properties of bilayer graphene an-
tidot lattices

Graphene antidot lattices (GALs) have been proposed as a way of turning
graphene semiconducting. It has been shown that by making a periodic array of
holes in graphene, a bandgap opens up and this gap can be tuned by varying the
hole separation and the hole diameter [20]. Previous work has shown that the
appearance of a large bandgap can be correlated with the Clar sextet structure
of the lattice, that is, the possibility of forming a complete benzenoid pattern
in the GAL [23, 24]. Only those GALs with completely delocalized electrons
have a large bandgap, whereas the rest have either zero band gap or a “small”
bandgap [23]. This is illustrated in Fig. 3.1, where the band structure for
hexagonal and square monolayer GALs are shown in red along with their Clar
sextet structure.

It turns out that all the triangular lattices have large bandgaps but for
30◦ rotated triangular, square and honeycomb lattices, only every third GAL
with respect to the unit cell size allow for a complete Clar structure and thus
possess a large gap. This behavior is similar to what has been observed also
in graphene nanoribbons [74]. The observation can be formulated in a set of
simple restrictions on the unit cell dimensions, such that for a square lattice
to possess a large gap one needs the unit cell height Ly = 3n + 2 while for a

29



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Γ X1 M2 A1 Γ

E
ne

rg
y 

[e
V

]

Γ X1 M2 A1 ΓΓ X1 M2 A1 Γ

{5,5,1}

{5,6,1}

{5,5,1}

{5,6,1}

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Γ K1 K2 M1 Γ

E
ne

rg
y 

[e
V

]

Γ K1 K2 M1 ΓΓ K1 K2 M1 Γ

0.37 eV

{4,1}

{3,1}{3,1}{3,1}

{4,1}

Fig. 3.1: (top left) Band structures of triangular and (bottom left) square mono- (red
curves) and bilayer (black curves) GALs, along with (right) examples of Clar sextet struc-
tures. All hexagonal GALs have large bandgaps while only every third square GAL have a
large gap. (from [23, 80])

rotated triangular or a honeycomb lattice to have a large gap one needs the
unit cell to have a side length L = 3n+ 2 with n a positive integer and L and
Ly measured in units of the graphene lattice constant a0 = 2.46 Å (see Fig.
1.2).

In paper A GALs in bilayer graphene are investigated using a tight binding
(TB) model with the parameters from Ref. [37] and by using a Dirac model to
make a simplified analytical analysis. The most stable form of bilayer graphene
is the AB stacking, also called Bernal stacking, of the monolayer sheets, where
each carbon atom in the top sheet is located in the center of each hexagon
beneath it (see Fig. 1.3). In order to maintain similar holes in the two sheets
in this geometry, the holes are shifted by acc = 1.42 Å (the CC bond length)
along one of the bonds and it is assumed that no reconfiguring of the atoms
near the hole edge takes place. This assumption is in fact wrong [79], but it is
not expected to strongly influence the conclusions in the present investigation.
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For bilayer GALs the criteria for gap opening turns out to be identical to
those for monolayer GALs as it is seen by comparing the band structures of
mono- and bilayer GALs in Fig. 3.1 where two different geometries are shown.
This finding is true also for bilayer GALs of other geometries as it is shown
in paper A. It is, however, reasonable to expect the monolayer GAL bandgap
scaling with N1/2

removed/Ntotal as discussed in the introduction, to be different in
bilayer GALs due to the different electronic structure.

A simplified analysis of GALs can be made by replacing the actual unit cell
by a circular unit cell of radiusRe with a hole of radiusR. Re is chosen such that
the area of the circular unit cell is equal to the area of the actual unit cell before
the hole is made. At low energies this system can be described by a massive
Dirac Hamiltonian with a spatially varying mass term ∆(r) = ∆0θ(R − r),
where R is the hole radius and ∆0 the constant value of the mass term inside
the hole, accounting for the effect of the holes. The Hamiltonian is written as

H =


∆(r) −Ô− 0 γ1
−Ô+ −∆(r) 0 0

0 0 ∆(r) −Ô−
γ1 0 −Ô+ −∆(r)

 , (3.1)

with the operator Ô± = −i~vFe±iθ
(
∂r ± i

r∂θ
)
where vF is the Fermi velocity,

and γ1 is the direct (nearest neighbor) coupling between carbon atoms in dif-
ferent sheets that are directly above each other. The upper left block matrix
corresponds to one graphene sheet and the lower right to the other sheet. From
this Hamiltonian one can determine the eigenstates and the eigenenergies. The
four energies are given by

E = ±γ1
2
± 1

2

√
γ21 + (2~vFk)2, (3.2)

using all possible four combinations of + and −. The boundary conditions for
the state of lowest angular momentum [71] leads to a condition on the possible
values of k and this condition can be expressed in terms of the areas of the unit
cell and of the hole [71] leading to the following expression for the energies

E = ±γ1
2
± 1

2

√
γ21 + 16π~2v2FAhole/A2

cell

= ±γ1
2
± 1

2

√
γ21 + E2

g,ML, (3.3)

where Eg,ML = 4~vF
√
πAhole/Acell is the monolayer bandgap and vF is the

Fermi veloticy in graphene [20]. The bandgap in the bilayer case is given by

Eg,BL =

(
−γ1

2
+

1

2

√
γ21 + E2

g,ML

)
−
(

+
γ1
2
− 1

2

√
γ21 + E2

g,ML

)
=
√
γ21 + E2

g,ML − γ1. (3.4)
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Fig. 3.2: (top) Comparison of the bandgap scaling in mono- and bilayer GALs. The dashed
lines show the fitted analytical results, the circles show the TB monolayer gaps and triangles
show the bilayer gaps. The black triangles show the gap between the lowest valence band and
the highest conduction band. (bottom) Bandgap versus electric bias applied perpendicular
to a bilayer GAL for a number of GAL geometries. (from [80])

As expected, in the case of zero coupling between atoms in different sheets γ1 =

0 eV, the bilayer gap reduces to the monolayer gap, and when the monolayer
gap is zero, so is the bilayer gap.

In the top panel of Fig. 3.2, the result of a TB calculation of the bandgap
for a number of bilayer GALs are shown along with a fitted curve of the form√
c2 + b2Ahole/Acell − c based on Eq. 3.4. The parameters are found to be

b = 13.78 eV a0 and c = 0.34 eV agreeing qualitatively with the values of the
model b = 4~vF

√
π = 18.97 eV a0 and c = 0.381 eV. Quantitative agreement

cannot be expected because the Fermi velocity is likely to be smaller in an
antidot lattice than in pure graphene, and because the TB model includes
effects that are ignored in the Dirac model such as skew coupling between
atoms in different layers. Even so, the model predicts the correct bandgap
scaling, which is seen to be fundamentally different from the monolayer case
for small gaps. For large gaps the monolayer scaling is recovered. In this study
only holes with armchair edges are considered. Holes with zig-zag edges deviate
significantly from the bandgap scaling rule because the electrons in this case
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are strongly confined to the edge of the hole, and this effect is not described
by the boundary conditions used for the Dirac model treatment of GALs [71].

Biasing of bilayer graphene is easily modelled in TB by adding the potential
V and −V on the diagonal of the block matrix representing the top sheet and
bottom sheets, respectively. For pristine bilayer graphene this leads to an
opening of the gap as seen from the red curve in the bottom panel of Fig.
3.2. For small V one has Eg ≈ V while for large V the gap saturates at some
value. If only the direct coupling γ1 between the layers is considered this value
is exactly γ1 [37], but for the present TB model the value is different because
also the skew coupling is included.

In the case of bilayer GALs a more complicated behavior is observed. For
small Ahole/Acell ratios the gap increases as a function of the applied bias
as expected, but for large ratios the gap decreases when the applied bias is
increased. This effect is somewhat unexpected, but has in fact been observed
also in hydrogenated bilayer graphene [143].

3.2 Effective medium theory in graphene/hBN
multilayer structures

In paper B, heterostructures composed of graphene and hexagonal boron ni-
tride (hBN) were investigated with the aim of assessing the validity of effective
medium theory (EMT) in these structures. EMT is typically based on the bulk
permittivities of the constituent layers, in this case graphite and bulk hBN, so
EMT may be expected to be a good description in between two limits: The
optical limit where individual layers are made so thick that EMT breaks down
because the long wavelength criteria is broken, and the quantum limit where
the thickness of the layers is made so thin that the layer properties deviate
significantly from their isolated bulk counterpart.

To investigate these two limits, structures of varying number of graphene
and hBN sheets are considered. In the following, references to “sheets” mean
monolayers, while references to “layers” mean a number of identical monolayers.
Thus, a graphene/hBN heterostructure consists of a number of graphene and
hBN layers, and each of these layers consists of a number of sheets.

To accurately describe the graphene/hBN heterostructures modelling using
DFT based methods is preferred because DFT allows for accurate calculations
of optical properties, especially if many body effects are included and the GW
correction used. This, however, is a heavy calculation, in particular when the
optical properties are demanded and the number of atoms increases. The cal-
culations of this work involve too many atoms that DFT methods are feasible,
and thus a TB model is adopted. Accurate TB models for the optical prop-
erties of graphene and graphite can be found in the literature [90], but it has
not been possible to find a set of TB parameters for hBN that accurately de-
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Fig. 3.3: Comparison of the in- and out-of-plane permittivity of graphene and hBN calcu-
lated in both DFT and TB. Experimental results are included for graphite in the in-plane
case [144] (from [86]).

scribes both the in- and out-of-plane response. Thus, to describe the hBN
layers a set of TB parameters that accurately reproduces both the DFT band
structure and the DFT based optical spectra has been determined. There is
generally no guarantee that a good fit to the DFT band structure will give
good correspondence between optical spectra also, since the band structure is
determined entirely from the eigenvalues while the optical spectrum relies also
on the eigenvectors. Thus, a good fitting procedure will fit also to the eigen-
vectors. Using the optimization toolbox of MATLAB a third nearest neighbor
model including also the overlap of atomic orbitals has been fitted to a DFT
calculation of the band structure and the optical spectrum, and the parameters
can be found in Ref. [86]. In Fig. 3.3 the optical spectra calculated both from
DFT and from TB are presented along with experimental results for graphite
from [144], and it is seen that good agreement between TB and DFT has been
obtained. Experimental results are included for the graphite in-plane response,
but the out-of-plane response is difficult to measure reliably and significant
disagreement is found in the literature [145].

3.2.1 Calculation of ε using EMT and TB

In this section EMT is assessed by calculating the permittivity using EMT
and the local-RPA formalism introduced in Sec. 2.2 to study the quantum
limit of EMT. Periodic structures are considered (thus consisting of infinitely
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{1,1}
{2,2}

{3,3}
{4,4}

...

Fig. 3.4: Periodic graphene/hBN structures with the number of sheets in each layer increas-
ing. The arrows indicate that the structure is repeated indefinitely.

many layers) as the number of sheets is gradually increased. This is depicted
in Fig. 3.4, where the notation {N,N} is used to refer to periodic structures
of alternating graphene and hBN layers with N sheets in each layer.

For a {1, 1} structure, EMT is expected to perform rather poor because
the single sheets of graphene are not well described by the permittivity of
graphite. That this is indeed the case, is seen from the top two panels of Fig.
3.5, where the convergence of ε‖ is studied for increasingly thicker layers. The
{1, 1} structures behave much different from EMT and, contrary to what one
might intuitively expect, basing EMT on monolayer permittivities is in fact
not better at describing the {1, 1} structures. This is due to the coupling be-
tween carbon and boron, which gives the graphene sheets similar properties to
what they have in graphite. This study shows that already for {5, 5} struc-
tures the permittivities calculated in EMT and the full TB model are almost
indistinguishable.

For the perpendicular permittivity, the story is much different. In the bot-
tom two panels of Fig. 3.5 the convergence study for ε⊥ is shown, and it is
seen that ε⊥ certainly does not converge to the EMT value. That this is so
is not a huge surprise, since εEMT

⊥ is calculated by averaging the reciprocals
according to Eq. 2.51, and it is difficult to see how one would obtain this
result from a calculation based on Eq. 2.15 which simply adds the contribu-
tions of all possible transitions. The reason is that the linear response theory
on which Eq. 2.15 is based, is simply not correct for the calculation of op-
tical properties of heterostructures because it assumes the perturbing field to
be constant throughout the entire structure. This is obviously not a problem
when calculating the in-plane response, because in this case the electric field
is in fact constant throughout the entire structure as dictated by the Maxwell
boundary condition given in Eq. 2.22. However, it is clear from the boundary
conditions that the perpendicular component of the electric field is not contin-
uous throughout the heterostructure but “jumps” in proportion with the ratio
between the individual permittivities. Thus, the basic assumption of the frame-
work leading to Eq. 2.15 is broken explaining the discrepancy in the bottom
two panels of Fig. 3.5.
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Fig. 3.5: The top two panels show the real and imaginary part of ε‖ for increasingly thicker
layers, and the bottom two panels show the real and imaginary part of ε⊥. The right panels
show a zoom on the low energy region. Two EMT models are shown: EMTb, based on bulk
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3.2.2 Calculation of rp using TMM based on EMT and
TB

To remedy this and enable studying the convergence of the out-of-plane permit-
tivity to the EMT value, the field variation throughout the structure is taken
into account by using the transfer matrix method (TMM). As described in Sec.
2.3, the TMM is a method for calculating the fields in all layers of a layered
structure and therefore any property calculated using this method will have
the field variation taken into account. The TMM does not allow calculation of
the stack permittivities, but rather of the reflection or transmission coefficient
of the stack. Thus, the reflection coefficient is calculated for finite structures of
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Fig. 3.6: Illustration of the structures used for TMM calculations. The total number of
layers is constant in all structures and the reflection coefficient is calculated as an average
between structures with metallic (m) and dielectric (d) top layer. The different shade of
sheets within the same layers indicates that each sheets have a distinct permittivity due to
different atomic environments.

the form M × (N,N), that is, the stack composed from stacking M copies of
a finite (N,N) structure on top of each other, treating each sheet as a layer in
the TMM. This is illustrated in Fig. 3.6, where three different stacks denoted
as 15× (1, 1), 6× (3, 3), and 3× (5, 5), all with a total of 30 sheets, are shown.
Now, it is expected that the out-of-plane permittivity of each layer converge to
the bulk value as the number of sheets is increased. If this is so, the reflection
coefficient of the entire stack should gradually converge to the EMT reflection
coefficient provided that the EMT calculation is comparable to the TMM cal-
culation. There are two important points to be considered for this to be true:
The choice of the top layer which has meaning only in the TMM calculation
and the total thickness of the stack. The choice of top-layer is important as
it has been shown in [87], and in order to take this into account the reflection
coefficient is calculated as an average between a stack with graphene on top
and one with hBN on top. The total thickness of the layer is kept constant
throughout all calculations by considering only structures for which the num-
ber of sheets 2MN is equal to 420. This number is chosen because it allows
for many different combinations of M and N , so as to allow for a meaningful
convergence study with several intermediate steps. For the EMT calculation
only the thickness of the entire structure enters and this is chosen to be 420c0
with c0 = 3.35 Å being the sheet thickness [49, 53].

To actually do the TMM calculation, the permittivity of each single sheet
is needed. This is obtained by using the formalism introduced in Sec. 2.5 to
extract the single sheet conductivities from a calculation of a periodic {N,N}
structure, and then using Eq. 2.7 to calculate the permittivity. In Fig. 3.6
the distinct permittivities of the individual sheets in the entire structure are
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Fig. 3.7: a) Convergence in the reflection spectrum for increasingly thicker layers with the
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Illustration of the kind of structures used for the 6× (35, 35) and 6× (35B, 35B) calculations
(the structure shown here are 2× (5, 5) and 2× (5B, 5B)). (from [86])

illustrated using colors of different shades. For simplicity, edge effects are con-
sidered only on boundaries between layers graphene and hBN layers but not
on the boundary between the metamaterial and air. This would in principle be
possibly within the used framework, but it would be a very heavy calculation
due to the large number of atoms involved.

The results of the TMM calculation is shown in Fig. 3.7a for two angles of
incidence θincident = 0◦ and 85◦ and with the graphene doped to a Fermi level
EF = 0.5 eV. From Eq. 2.39 it is clear that the influence of the out-of-plane
permittivity is dependent on the angle of incidence, and so to actually probe
ε⊥ large incident angles should be considered. Again, one should bear in mind
that it is the path of light in the material that counts and even at an incident
angle of 85◦the parallel component of the permittivity tensor could play a sig-
nificant role due to refraction. From the figure it is clear that the reflection
based on {1, 1} structures differs significantly from the EMT based reflection
in the entire spectral range shown. Considering the difference in the dielectric
constant apparent from Fig. 3.5 this is not surprising. For increasingly thicker
layers convergence is reached for energies below ≈4 eV approximately for the
14× (15, 15) structures for both angles of incidence. For higher energies, signif-
icant deviations that get only worse as the layer thickness is increased are seen.
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Since these deviations exist only for high energies, that is, small wavelengths,
one might suspect that the EMT criterion that the wavelength should be much
larger than the period of the structure is broken at these energies, and multi-
ple reflections throughout the structure contribute significantly to the overall
reflection. To test this hypothesis the reflection is calculated for a layered struc-
ture composed of graphite and bulk hBN denoted as 6× (35B, 35B), thus being
identical to the 6 × (35, 35) structure except that bulk permittivities are used
instead of those based on projected permittivities, see Fig. 3.7b and c. If the
deviations are in fact due to multiple reflections, and if the permittivity has
converged, the reflection should be very similar to the 6 × (35, 35) reflection.
From Fig. 3.7 where the dashed line represents the 6 × (35B, 35B) reflection
this is seen to be the case. For the case of θincident = 85◦ the same pattern is
followed, but the effects of multiple reflections play a much smaller role which is
exactly what one would expect when the angle of incidence is increased. For low
energies where these effects have only a weak influence, convergence is reached
for the 14× (15, 15) structure. Thus, it can be concluded that convergence in
both components of the permittivity tensor is reached and that EMT provides
an accurate description provided the layers are thin enough that reflection off
the layer boundaries can be ignored.

In Fig. 3.7 the reflection was studied only for the propagating wave com-
ponents kx ≤ k0. In the near field of an oscillating electric dipole there will

39



be non-propagating modes of kx > k0 and so it is of relevance to study also
the performance of EMT for these modes. There is good reason to be skep-
tical about the performance of EMT in this case, because large kx generally
leads to a large imaginary component of kz in the stack layers, thus limiting
the penetration depth of such modes. Thus, even if the wavelength is large
enough to fulfill the wavelength criterion, the limited penetration depth could
lead to the failure of EMT. In Fig. 3.8a the reflection coefficient is shown for
large values of kx and it is clear that EMT is a bad description already for
kx/k0 ' 2. EMT tend to severely overestimate the reflection coefficient. One
might expect multiple reflections to be the explanation as it was the case for
kx < k0. Comparing the reflection from 6 × (35, 35) with the reflection from
6× (35B, 35B) shows that the reflection in this case does indeed get closer for
small to moderate values of kx, but one quickly realizes that this cannot be
the whole explanation since the limiting value for large kx is different from the
EMT value. That the explanation might lie in the limited penetration depth
as it has already been mentioned, is suggested by looking at the orange dotted
curve. This result is obtained by simply calculating the reflection from two
samples of graphite and hBN both of thickness 420c0 and averaging the two.
The real part of the reflection calculated in this way is somewhat closer to the
6 × (35, 35) heterostructure for large kx but the imaginary part is still off. In
the limit of large kx only a few of the top sheets contribute to the reflection
because the propagation depth will be very small. In the heterostructure the
top layers are not bulk layers, because they sit in a different atomic environ-
ment than the bulk layers, see Fig. 3.8b. Doing again a calculation of the
reflection by averaging the reflection from two bulk calculations, but with the
top layers replaced by the value used in the heterostructure, see Fig. 3.8d, one
gets the red dotted line shown in Fig. 3.8a, and it is clear that this calculation
has exactly the correct limiting behavior. This proves that the effects the top
layers are of huge importance for the modes of large kx, and thus that EMT in
this case in unreliable.

3.2.3 Doped structures

In the left panel of Fig. 3.9 the equivalent of the top two panels of Fig. 3.5 is
shown in the energy range 0 to 1.5 eV, but with the graphene part doped to
0.5 eV. The convergence is somewhat slower in the low energy region and in
particular for doped structures. As such, an improved EMT (EMTi) has been
suggested that provides quicker convergence for layered structures. The idea is
to include in the averaging not only the bulk permittivities, but also an inter-
mediate “transition” layer, which accounts for the different environment seen by
the sheets just at the boundary between two layers. The EMTi permittivities
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Fig. 3.9: The left panel shows the convergence of ε‖ to EMT for periodic structure with
increasingly thicker layers with the graphene part doped to 0.5 eV. The right part shows the
convergence to EMTi (improved EMT) under the same conditions. The bottom panel shows
the deviation from EMT and EMTi in percent. (from [86])

are accordingly calculated from

εEMTi
‖ = ρmεm + ρdεd + (1− ρm − ρd)εinterface,

1

εEMTi
⊥

=
ρm
εm

+
ρd
εd

+
1− ρm − ρd
εinterface

, (3.5)

with ρm and ρd being the fractions of metal and dielectric, respectively, and
εinterface the permittivity of the interface layer. 1 − ρm − ρd is the fraction of
interface layer in the structure. In the case of graphene/hBN structures, the
interface layer consists of one layer of graphene and one layer of hBN. For a
{5, 5} structure, for instance, ρm = ρd = 0.8. Using this method, the interface
layer is included in the calculation if it is assumed that the layers above and
below the interface layers are only weakly affected by the boundary.

In the right part of Fig. 3.9, the convergence to EMTi is shown and by
looking at the deviations it is clear that EMTi certainly does offer improvement
over ordinary EMT shown to the left for stacked heterostructures. To actually
use this method access to the sheet permittivities is needed which makes the
method less versatile than ordinary EMT where the ingredients in form of bulk
permittivities are usually readily available. If however, strong coupling between
interface layers is expected in a certain setup, the interface permittivity can
be treated as a fitting parameter that may account for interface effects. In
paper B, reflection spectra are provided showing the improvement also in the
reflection spectra.

In Fig. 3.10, the Purcell enhancement is shown for all considered structures
along with the Purcell factor calculated from EMT. It is clear that EMT in
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Fig. 3.10: Purcell factor of the graphene/hBN metamaterials of different compositions
compared to EMT. (from [86])

all converged cases severely overestimates the Purcell factor, which should not
be too surprising considering the discussion of EMT for modes of high kx that
are crucial to the Purcell factor calculation. EMT suggest that the structures
considered are hyperbolic in the frequency range 50 to 600 meV and thus one
should accordingly find the Purcell enhancement to be much greater in this
regime. It is obvious that no clear features are observed in the Purcell factor
for these energies. The reason for this is the huge losses in the graphitic part
of the materials for low energies which by itself causes the Purcell factor to be
large. Thus, features in the Purcell factor related to the hyperbolic modes are
blurred by the losses.

3.3 Natural hyperbolic materials

In paper C, the dielectric properties of 31 different metallic or semiconduct-
ing layered transition metal dichalcogenides (TMDs) were investigated us-
ing density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation (xc) functional, to calculate the components of the dielec-
tric tensor, starting from the experimentally determined crystal structure of
the compounds [148] (see Fig. 1.6 for the crystal structure of TMDs). This
allows classification of the materials according to spectral regions of hyperbolic
dispersion (ε‖ε⊥ < 0) and as exhibiting either type I or type II hyperbolic
behavior.

In Fig. 3.11, the result indicating the hyperbolic regimes for all 31 TMDs
is shown along with experimental results for graphite, MoS2 and ZrS2 marked
with red squares. All 31 TMDs were found to exhibit predominantly type II
hyperbolic dispersion (metallic response in-plane and dielectric response out-
of-plane) in a wide spectral range covering the mid-IR to the UV. The relatively
good agreement with experiment suggests that the results can be at least qual-
itatively trusted. Unfortunately, experimental studies probing both the in- and
out-of-plane response are sparse and instead the regimes of negative in-plane di-

42



Fig. 3.11: Hyperbolic regimes of 31 TMDs along with experimentally extracted results from
[144] (graphite), [146] (MoS2) and [147] (ZrS2). The investigated materials are predominantly
type II hyperbolic materials. (from [93])

electric constant, a good indicator of a type II hyperbolic material, have been
compared to experiments [149–151] and the accuracy found to be ∼ 0.5 eV.
To further strengthen the confidence in the DFT results, the two compounds
HfBrS and TaS2 are investigated using also the more accurate but computa-
tionally expensive HSE xc-functional [152], and it is found that the hyperbolic
spectral range is blue shifted by ∼ 0.2 eV, a tendency which is expected also
for the other materials.

Natural hyperbolic materials are interesting due to the lack of internal struc-
ture and hence the ability to support hyperbolic modes of much larger wave
vector than the artificially structured metamaterials that are hampered by the
metamaterial period d limiting the supported wave vectors to kmax ∼ π/d,
as discussed in the introduction. The Purcell factor is strongly dependent on
modes of large wave vectors and consequently makes an excellent figure of merit
for comparing natural and artificial hyperbolic materials. In Fig. 3.12a, the
Purcell factor calculated for a metamaterial consisting of layers of silver and
SiO2 both with a thickness of 10 nm and thus, a period of 20 nm, is calculated
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Fig. 3.12: (a) Comparison of the Purcell factor and (b) the propagation length of electro-
magnetic modes in a silver/SiO2 metamaterial and the natural hyperbolic material TaS2.
(from [93])

using the TMM and compared to the Purcell factor of TaS2, a natural hyper-
bolic material. In the silver/SiO2 metamaterial the Purcell factor is orders of
magnitude smaller than in TaS2 even in the region where EMT predicts the
metamaterial to be hyperbolic, while the hyperbolic character of TaS2 has a
clear enhancing effect on the Purcell factor. In traditional planar metamate-
rials the broadband hyperbolic response is caused by hybridization of surface
plasmons on the interfaces. Therefore, the broadband response is heavily rely-
ing on sufficient spatial overlap of plasmons, a condition that is hardly fulfilled
in the shown silver/SiO2 structure because of strongly decaying fields inside
the silver layers [153]. Thus, the hyperbolic character predicted by EMT does
not manifest itself in a TMM calculation where the field propagation within
each layer is properly accounted for. The peak seen for the metamaterial at
∼3.3 eV is due to the unhybridized plasmons in silver.

The metallic TMDs investigated in this work all has the unique feature
of being hyperbolic below the onset of interband absorption, thus allowing for
weakly damped propagating hyperbolic modes that lead to high Purcell factors.
TaS2, in particular, entails a special band structure with isolated metallic bands
causing low losses due to the absence of interband transitions normally giving
rise to strong absorption [100]. The clear signature of the hyperbolic region in
the Purcell factor is a consequence of low losses, because absorption by itself
leads to Purcell enhancement thereby blurring the signature of the hyperbolic
dispersive modes. Another indicator of low losses is the propagation length of
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Fig. 3.13: (a) Comparison of the Purcell factor and (b) the propagation length of electro-
magnetic modes in the natural hyperbolic materials graphite, TaS2 (metal) and ZrS2 (semi-
conductor, Egap ∼ 1.5 eV). For graphite and ZrS2 the high Purcell factor is due to interband
absorption, while for TaS2 it is caused by the low loss hyperbolic modes. (from [93])

electromagnetic modes. In Fig. 3.12b the propagation length normalized by the
in-plane wavelength is shown for TaS2 and for the silver/SiO2 metamaterial and
the much longer propagation length in TaS2 compared to the metamaterial due
to low losses and hyperbolic dispersion is clearly seen. In fact, the propagation
lengths in the metamaterial rarely exceed unity except for in-plane wavelengths
much longer than the metamaterial periodicity, and this is the case even within
the hyperbolic region where the modes are propagating within the structure.

Among the TMDs shown in Fig. 3.11 are both metals and semiconductors
and in Fig. 3.13 a comparison between the Purcell factor and the propagation
lengths of the semiconducting TMD ZrS2 and the metallic TMD TaS2 is shown
including also the results for graphite. ZrS2 shows large Purcell enhancement
only above its bandgap of ∼ 1.5 eV where the material is not hyperbolic, thus
clearly indicating that large Purcell enhancement in this case is not dictated
by hyperbolic dispersion but is rather purely due to absorption losses that
are present only for energies above the onset of interband transitions. The
hyperbolic range between ∼ 2.4 and ∼ 3.1 eV entails only a weak enhancement
in addition to that already present due to losses. This effect is severe also
in graphite where the Purcell enhancement seems to be uncorrelated with the
hyperbolic region, something that was seen also in connection with Fig. 3.10
where no clear correlation with the hyperbolic regime was seen.

In order to have strong enhancement solely within the hyperbolic region, the
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Fig. 3.14: (a) Comparison of the Purcell factor of the materials HfBrS and TaS2 and (b) the
imaginary part of their dielectric constant measuring absorption losses. HfBrS shows a clear
drop in Purcell enhancement outisde the hyperbolic region contrary to TaS2 where the drop
is less pronounced because the Purcell factor remains high due to absorption. (from [93])

material losses, as quantified by the imaginary part of the dielectric constant,
should be small. Recently, the chalcogen-halogen mixed compound HfBrS was
identified as such a low loss material [100]. This material features a single
metallic band that is isolated from higher and lower lying bands by gaps that
are sufficiently large as to separate intraband from interband losses. In this case,
a low-loss energy regime opens up and in HfBrS it coincides with the regime
of hyperbolic dispersion. In Fig. 3.14a the Purcell factor of this material is
compared to the Purcell factor of TaS2 and in Fig. 3.14b the imaginary part
of the corresponding dielectric constants of the materials are shown. Clearly,
the hyperbolic region HfBrS shows huge Purcell factors that drop abruptly
for frequencies where the material cease to be hyperbolic, while for TaS2 the
Purcell factor remains high. The correlation with the material losses is strong
and the Purcell enhancement in HfBrS increase again above ∼ 2.1 eV with the
material losses.

With the rather versatile selection of TMDs that has been shown to ex-
hibit hyperbolic behavior, it is natural to try and combine different TMDs into
van der Waals heterostructures and calculate their optical properties by using
EMT, thus neglecting the plasmon hybridization as well as quantum confine-
ment effects. Referring to the results of paper B, quantum effects should have
negligible influence even when as few as ∼ 5 layers are stacked. Suppose that a
metamaterial with hyperbolic dispersion in the range 1.5-2.0 eV and elliptical
dispersion in the range 2.0-2.5 eV is desired. In this case one can define a figure
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Fig. 3.15: (Heterostructures of different TMDs with the aim of obtaining a combination
with hyperbolic dispersion in the range 1.5-2.0 eV and elliptical dispersion in the range 2.0-2.5
eV. The same ordering of the materials as in Fig. 3.11 is used. (from [93])

of merit as

(Hyp. fraction in range 1.5-2.0 eV)× (Ellipt. fraction in range 2.0-2.5 eV),

(3.6)

and calculate this figure of merit for different combinations of TMDs. In Fig.
3.15 the result of such a calculation combining two different TMDs with a fill
fraction of 50% is shown. The diagonal of the figure corresponds to the pristine
TMDs while all other points correspond to heterostructures. Quite a few good
candidates are found, showing the strengths of heterostructuring to obtain the
desired properties. Even higher flexibility can be obtained by allowing the fill
fraction to differ from 50% or by combining three or more different materials.

3.4 Optically activated plasmons in 2D materials

The aim of the work of paper D is to investigate plasmons in doped and heated
graphene, MoS2 and black phosphorus. The dielectric function ε (q, ω), where
~q is the momentum and ~ω the energy of the exciting light, of the materials
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Fig. 3.16: Chemical potential µ that gives the same plasma frequency as a specific choice
of the electron chemical potential µe and the temperature T . The thick green lines mark
µe = Ec, the equivalence used to produce the rest of the results in this work.

is determined using both the local- and the nonlocal-RPA (in the local-RPA ε

does not depend on q and is called the dielectric constant) to allow also for an
investigation of the importance of nonlocal effects in these materials. Graphene
is described using the simple nearest neighbor TB model with γ = 3.033 eV.
For MoS2 the model of Ref. [154] that includes up to third nearest neighbor
interactions and reproduces well the GGA-DFT band structure is employed.
Black phosphorus (BP) is described using the simplified two-band model of
Ref. [118] which describes well the strong crystal anisotropy and is accurate
at low energies up to ∼ 0.5 eV from the band edges. The atomic structure of
MoS2 and BP is shown in Fig. 1.6.

3.4.1 Doping/pumping equivalence

Optically activated plasmons are plasmons activated by heating of the electrons
in a material using a light pulse. In their intrinsic state, graphene and the
semiconductors MoS2 and black phosphorus do not support plasmons due to
the lack of free charge carriers, but they can be activated either by doping or
by increasing the electronic temperature by optically pumping the materials
as it has been described in Sec. 1.2.4. Doping and pumping are both ways of
creating free charge carriers in the materials, and as such, they lead to similar
material response with the exception that pumping in many cases broadens the
response. Therefore, doping and pumping are fully comparable provided that
they lead to the same plasma frequency ωp.

The plasma frequency can be easily calculated using Eq. 2.19 for a number
of different pumping conditions. In this work pumping is described by the
temperature T and the electron chemical potential µe and these two parameters
are determined by the exact nature of the pumping process.
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Fig. 3.17: Non-vertical transitions in the Brillouin zone illustrated for graphene. Red lines
illustrate intraband transitions, blue lines interband transitions and the ellipse the Fermi level.
For increased q intraband transitions from below the Fermi level and interband transitions
of energy ~ω < 2EF are possible.

Since the electrons excited into the conduction band by the pump pulse are
coming from the valence bands, one must require the number of electrons in the
conduction bands to equal the number of holes in the valence bands. In order
for this to be possible, the distribution of holes in the valence bands follows a
separate Fermi-Dirac distribution of the same temperature as the electrons but
distinct chemical potential µh. µh is determined from the equation∫ ∞

Ec

D(E)fe(E)dE =

∫ Ev

−∞
D(E)fh(E)dE, (3.7)

where D(E) is the density of states, fe(E) and fh(E) are the Fermi occupation
factors for electrons and holes, and Ec and Ev are the conduction and valence
band edges, respectively. For materials with electron/hole symmetry, such as
graphene, µe = −µh but in general µe will be different from −µh.

Having calculated ωp for some pair of T and µe it is a simple numerical
exercise to find the equivalent electron doping level µeq at room temperature
(commonly referred to as the Fermi level) that gives the same ωp. In Fig. 3.16
the results of these calculations are shown for five different values of µe with
the value µe = Ec used for all subsequent calculations highlighted using green
thick lines.

In the case of graphene, the result agrees with what one would find in a
simple analytical treatment with linearized bands near the K point [108]. For
MoS2 it may be a bit surprising to see that µeq decreases above a certain
temperature, but this is due to the relatively complicated band structure of
MoS2 (see Fig. 3.18b). The maximum attainable ωp by doping in MoS2 is for
µ = 1.32 eV such that for some combinations of µe and T it will not be possible
to find an equivalent doping to match the plasma frequency.
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Since black phosphorus is a strongly anisotropic material, the response de-
pends on the direction of the perturbing electric field. Therefore, in the figure
the equivalence is shown for the field polarized along both directions in the Bril-
louin zone. For BP there is no upper limit to ωp due to the simplified model
used. The equivalence for q ‖ ΓX resembles the case of graphene because in
this direction the bands in BP are approximately linear (see Fig. 3.18c).

It should be noted that the equivalence is determined based on the local-
RPA formalism, but used also for calculations within the nonlocal-RPA formal-
ism where the conductivity depends on both the energy ~ω and the momentum
~q. This is strictly not correct, but it is used as an approximation.

3.4.2 Plasmon dispersion

Having established the equivalence between doping and pumping the plasmon
dispersion relation can be easily determined. Often the dispersion is deter-
mined from the maxima of the loss function given by imaginary part of the
nonlocal-RPA dielectric function −Im

{
ε(q, ω)−1

}
. These maxima can be found

by determining the solutions to ε(q, ω) = 0. It can be shown that an alter-
native loss function that yields the same plasmon dispersion relation can be
constructed from the imaginary part of the reflection coefficient for p-polarized
light, rp [155], which for a 2D material in the electrostatic limit (kz ≈ iq) is
given by

rp =
1

1− 2iε0ω/(qσ(ω, q))
(3.8)

where σ(ω, q) is the 2D sheet conductivity. The conductivity is calculated
within the nonlocal-RPA formalism introduced in Sec. 2.2. Contrary to the
local-RPA, this formalism includes also the non-vertical transitions in the Bril-
louin zone. This allows intraband transitions (transitions within the same
band) of any energy ~ω > 0 and therefore also transitions starting from below
the Fermi level, which are not possible in the local-RPA. Also, interband tran-
sitions in the energy regime ~ω < 2EF are not possible in the local-RPA due to
Pauli blocking, but in the nonlocal-RPA these transitions become allowed when
q is increased. This is illustrated in Fig. 3.17 for three different values of q.
Non-vertical transitions may happen if the exciting light carries high momen-
tum. For light propagating in air the momentum is very small and will not be
able to inflict the non-vertical transitions that require a substantial momentum
change of the involved electrons. However, evanescent light components such
as those present on the air side of a prism during total internal reflection or in
the near field of an electric dipole may carry significant momentum and may
cause non-vertical transitions to take place.

In Fig. 3.18 the loss function is shown in a (q, ~ω) plot for graphene, MoS2,
and black phosphorus in the intrinsic case, for doping and for pumping in the
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Fig. 3.18: Dispersion relations of plasmons in the nonlocal-RPA and for (d-g) intrinsic ,
(h-k) electrically doped, and (l-m) optically pumped graphene, MoS2 and black phosphorus.
(a-c) shows the band structure and density of states of the materials.

nonlocal-RPA. For doped graphene (Fig. 3.18h), the regime of Pauli blocking
is clearly seen at q = 0 where the losses are weak for ~ω < 2µ, but for q > 0

losses increase even below the threshold of Pauli blocking. For doped graphene
the well-known plasmon dispersion relation is clearly seen [108]. For graphene
at increased temperature (Fig. 3.18l) the overall picture remains the same but
with much stronger losses due to interband transitions. In doped graphene
at low temperature interband transitions are only allowed above ∼ 2µ due to
Pauli blocking and the almost step like Fermi function separating occupied from
unoccupied states. However, for graphene at increased temperatures interband
transitions may occur at any energy causing heavy broadening of the Plasmon
resonances.

For MoS2 plasmon resonances are also seen both for doping and for pump-
ing. In MoS2 in the pumping case a special feature arises around 2 eV that is
not present in the doping case. This feature is due to population inversion and
it causes the imaginary part of the reflection coefficient to be negative. This
should be interpreted as negative losses, or gain, in the material and it has been
suggested that such features may be exploited to balance plasmon losses [131].
For MoS2 interband transitions also cause broadening of the plasmon modes in
the pumping case due to transitions between the second and the third band.
It is quite clear, that in order to avoid broadening of the plasmonic modes the
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Fig. 3.19: Purcell factor energy dependence for all materials for a dipole located 1 nm from
the surface, calculated in both the local-RPA and the nonlocal-RPA.

number of possible inter- and intraband transitions should be limited, and it
is actually possible to identify materials of this kind exhibiting very low losses
and consequently long plasmon propagation lengths as discussed in paper C.

For black phosphorus the loss function is shown for the two independent
directions in the Brillouin zone corresponding to light polarized along the ΓX
and ΓY directions. In the model employed here, losses are practically non-
existing because the model includes only two bands and thus there can be
no interband absorption losses below the bandgap. This is the reason for the
striking similarity between doping and pumping. Some broadening is seen due
to intraband transitions at increased q, and especially so for the ΓY direction
because the density of accessible states when q is increased is higher in this
direction. The broadening introduced in this manner corresponds to phonon
or impurity assisted broadening where the electron momentum is increased to
allow for non-vertical transitions.

3.4.3 Purcell enhancement

Knowing the material response and the reflection coefficient it is a simple mat-
ter to calculate the Purcell factor using Eq. 2.53. The Purcell factor is com-
pletely determined once the reflection coefficients for s and p-polarized light
have been calculated. In the electrostatic limit, that is, for large q where
kz =

√
εk20 − q2 ≈ iq the formula Eq. 2.53 (using q instead of kx) reduces to

Γ

Γ0
= 1 +

3

4k30

∞∫
k0

q2 Im{rp (q)} e−2qddq. (3.9)

In Fig. 3.19, a comparison of the Purcell factor calculated in both the local-
and the nonlocal-RPA and for doping and pumping is presented. For graphene
in the local-RPA a peak is clearly seen at 0.73 eV which corresponds exactly
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Fig. 3.20: Dependence of the Purcell factor on the dipole-surface distance d, calculated in
both the local-RPA and the nonlocal-RPA.

to the plasmon energy at high q. In the local-RPA the plasmon is almost
nondispersive at high q leading to the strong plasmonic response not seen in the
nonlocal-RPA due to the q dependence of the dielectric function. Thus, when
turning to the nonlocal-RPA, the peak is much less pronounced. A similar
trend is seen for pumping where the plasmon peak has almost disappeared in
the nonlocal-RPA. In the supplementary information of paper D the plasmon
dispersion for the local-RPA is shown.

In MoS2 in the doping case two clear peaks are seen and similar to the
case of graphene, these peaks are weaker in the nonlocal-RPA. Again, these
peaks stem from losses to plasmon modes. Contrary to graphene, one can
in fact still find relatively strong peaks in the case of plasmons activated by
optical heating, with peak to valley ratios of about 5. Thus, it might in fact
be possible to measure the plasmonic contribution to the Purcell factor for
optically pumped MoS2. For BP the difference between doping and pumping is
much smaller due the aforementioned reasons of using only a two-band model.

To quantitatively measure the contributions of nonlocal effects in the stud-
ied materials it is natural to look at the dependence of the Purcell factor on
the distance d between the dipole and the material. As the dipole gets farther
away from the surface the evanescent wave components found in the near field
of the dipole has to travel longer before they reach the surface. Thus, they will
have decayed by a considerable factor such that their coupling to the surface is
weakened, and their contribution to the dipole decay rate is decreased. Since
this is true in particular for the wave components of high q, one would expect
the local- and the nonlocal-RPA to agree when d is large while the limit of
small d will be a measure for the importance of nonlocal effects.

In Fig. 3.20 the dipole decay rate as a function of the distance d to the
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surface is shown for doping in both the local- and the nonlocal-RPA on a log-
log scale for all materials and for three different energies. The energies marked
by green and purple labels correspond to energies where intraband transitions
constitute the main contribution to the response, while for the energy marked
with black labels interband transitions is the main contribution. For large
distances perfect agreement between the local- and nonlocal-RPA is seen, while
for small distances the Purcell enhancement in the nonlocal-RPA is more than
an order of magnitude larger than in the local-RPA. It is clear from the figure
that intraband transitions are more heavily affected by nonlocal effects than
interband transitions, since the agreement for the energies in the interband
regime is much better for all materials.
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Chapter 4

Conclusions

In this thesis 2D materials and heterostructures based on 2D materials have
been investigated using tight binding (TB) and density functional theory (DFT)
based modelling. TB allows for computationally inexpensive yet accurate cal-
culations on large structures and this has been exploited to determine the
electronic structure of both 2D and bulk structures on a relatively large scale.
Based on the TB calculations linear response theory has been employed to de-
termine the response functions of the materials. Because the used framework
cannot be applied in structures where the electric field cannot be assumed con-
stant, the transfer matrix method (TMM) has been applied to correctly calcu-
late the reflection coefficient taking into account both the in- and out-of-plane
response where appropriate.

Monolayer graphene antidot lattices (GALs) have been suggested as a route
to making graphene semiconducting by nanopatterning. In paper A, bilayer
graphene antidot lattices (GALs) have been investigated to extend on previous
findings in monolayer GALs showing that a bandgap can be opened only for
very specific lattice geometries. These findings were found to apply in the exact
same form also to bilayer GALs, but has been extended by revealing a different
form of the bandgap scaling with lattice parameters in the bilayer case. In
addition, it has been shown that by applying a perpendicular electrostatic field
to the bilayer GAL it may be possible to further tune the size of the gap simply
by tuning the strength of the electric field. In principle, GALs provide for an
easy way of turning graphene semiconducting, but given the high sensitivity
to even minute changes in the lattice geometry, it is unlike that the large gaps
seen in theory can be realized in experiments.

The promising properties of the numerous different 2D materials that have
been discovered since graphene kick-started the field, have been made even
more versatile with the possibility of stacking 2D materials into heterostruc-
tures tailored to specific needs. The properties of such heterostructures may
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be determined by using effective medium theory (EMT) based on the bulk per-
mittivities of the constituents. In paper B an assessment of EMT in the limit
of very thin and very thick layers is made for graphene/hBN structures. It is
found that even layers as thin as 5 monolayers are accurately described using
monolayer permittivities, but that the choice of the top-layer of the stack sig-
nificantly influences the reflective properties of the entire stack. Modes of high
kx were found to be particularly sensible to the properties of the top layers to
the extent that even the effect of the edge on the electronic structure of the
topmost layers drastically influence the reflection. This was found to be due to
the short penetration depth of high kx modes. A method of improving EMT
by taking into account the boundary between individual layers was suggested
and found to be superior to ordinary EMT especially for structures where the
graphitic part was doped.

In paper C a large group of natural hyperbolic materials (NHM) were iden-
tified and compared to a silver/SiO2 hyperbolic metamaterial with respect to
the Purcell factor. Numerous NHM with hyperbolic dispersion in different en-
ergy regimes covering the spectrum from ∼ 0.1 eV to above 6 eV were found.
It was found that the Purcell factor of 2H-TaS2 is much larger than that of
an ordinary Silver/SiO2 metamaterial, and that losses are much smaller giving
rise to longer propagating lengths of electromagnetic modes. The lower losses
are due to a special band structure with the metallic bands being isolated from
both lower and higher lying bands by a gap large enough to separate intra-
band from interband losses. Strong Purcell enhancement is expected in the
hyperbolic regime, but in some materials such as graphite and the silver/SiO2

heterostructures the Purcell factor may remain high even outside this region
due to losses. 2H-HfBrS was identified as a low loss material with a very clear
Purcell enhancement only inside the hyperbolic region.

In paper D the dispersion of plasmons activated by optical pumping in
graphene, MoS2, and black phosphorus (BP) were compared to plasmons acti-
vated by electron doping. This was done by looking at the dispersion relations
and by comparing the Purcell factor in equivalent situations chosen to yield the
same plasma frequency for doping and pumping. The results were obtained
within the nonlocal-RPA model, which properly takes into account the non-
vertical electronic transitions that may be induced by evanescent light of high
momentum. It was found that pumping and doping leads to largely identical
dispersion relations with the exception that pumping leads to strong broaden-
ing due to interband transitions. Because the model of BP employed includes
only two bands broadening due to interband transitions is almost non-existent,
showing that materials having band structures with isolated bands may exhibit
optically activated plasmons free of strong broadening. Finally, the calculations
of the Purcell factor seems to suggest that strong Purcell enhancement may be
observable in MoS2 in the pumping scheme.
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