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Preface
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sure working with you. I would also like to thank the rest of my office
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ally trivial questions and for the good spirit. Also the rest of my colleagues
at the Department of Hematology and the statistical group at Aalborg Uni-
versity Hospital deserve thanks. I would also like to express my gratitude
towards Therese Andersson, Mark Clements, and the rest of the biostatistics
department at Karolinska Institutet for welcoming me and making my visits
comfortable and fruitful.

Additionally, I would like to thank Søren Vilsen and Johan Sørknæs for
their friendship and for all the "hard" work we did together during our stud-
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Abstract
Within cancer research population-based survival data are commonly used
to identify clinical and molecular factors that are associated with the risk of
death, progression, or similar end-points. As cancer patients may die from
causes not related to cancer, it is sometimes of interest to quantify the patient
survival relative to the survival of a relevant general population. From the
time of diagnosis the patient mortality is typically elevated as compared to
the general population, but for most cancer types the mortality difference
decreases as patients remain alive. In paper I, we compare the conditional
survival of diffuse large B-cell lymphoma patients in complete remission af-
ter first line R-CHOP(-like) therapy with the survival of the Danish general
population.

As mortality risks can be quantified in various ways, survival trends and
risk factors may be detected in multiple ways. The conditional number of life
years lost due to the cancer, termed the loss of lifetime function, provides an
intuitive measure of the disease severity. However, computing this function
is generally difficult due to censoring. Paper II evaluates methods for esti-
mating the loss of lifetime function through simulations and real-world data
for which complete follow-up is available.

While cure is challenging to assess within cancer due to the risk of re-
lapse, trends in the survival of cancer patients may be used to assess cure. In
particular, if the patient mortality reaches the same level as the mortality of
the general population, those patients who are still alive may be considered
statistically cured of the disease. The time point at which this occurs is termed
the cure point and provides useful information for health care planners as
well as patients, particularly patients attending routine follow-up. However,
its estimation is challenging for a number of reasons which are discussed in
Paper III together with a new approach for estimating cure points.

Cure models have previously been introduced to model the proportion of
patients who are statistically cured. The most applied models rely on either
simple parametric survival distributions or spline-based distributions with
the strict assumption of a finite cure point. Paper IV introduces a general
formulation of parametric cure models, which allows for a wide range of
functional forms and time/covariate effects.

While prognostic factors have been found for many lymphoma types, in-
dividual prognoses are often based on dichotomized clinical variables and
grouped risks scores, which often result in a large loss of information. This
can ultimately lead to patients receiving inaccurate information. Paper V
evaluates the performance of commonly used prognostic scores within 11
frequent lymphoma types by comparing to a simple model relying on age
and performance status alone, and a more refined modelling approach using
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an extended list of clinical variables.
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Resumé
Populationsbaseret overlevelsesdata bliver ofte brugt indenfor kræftforskn-
ing til at identificere kliniske og molekylære faktorer, som er associeret til
risikoen for at dø, progrediere eller lignende. Eftersom kræftpatienter også
kan dø af årsager, som ikke er relaterede til kræftsygdommen, kvantificeres
patientoverlevelsen nogle gange relativt til overlevelsen i en relevant bag-
grundsbefolkningen. Sammenlignet med baggrundsbefolkningen er den ku-
mulerede dødsrisiko, målt fra diagnosetidspunktet, ofte højere for kræft-
patienter, men forskellen mellem patientoverlevelsen og overlevelsen i bag-
grundsbefolkning vil typisk aftage, jo længere patienterne overlever. I artikel
I sammenligner vi den betingede overlevelse for patienter diagnosticeret med
diffust storcellet B-celle lymfom, og som opnåede komplet remission efter
førstelinje-behandling med R-CHOP, med overlevelsen i den danske bag-
grundsbefolkning.

Eftersom risici kan kvantificeres på forskellige måder, kan tendenser og
sammenhænge i overlevelsesdata også findes på forskellig vis. Det betingede
antal mistede leveår på grund af kræftdiagnosen kaldes levetidstabsfunktio-
nen og er et intuitivt mål for sygdommens sværhedsgrad. Det er dog svært
at udregne denne funktion på grund af censurering. I artikel II evaluerer vi
forskellige metoder til at udregne levetidstabsfunktionen ved hjælp af simu-
lationer og overlevelsesdata, hvor fuld opfølgning er tilgængelig.

Ved kræftpatienter kan det være svært at vurdere, hvorvidt en patient er
kureret efter behandlingen, da der i mange tilfælde er en væsentlig risiko
for, at sygdommen genopstår. Dog kan overlevelsesdata bruges til at vur-
dere kurering. Hvis patientoverlevelsen når det samme niveau som over-
levelsen i baggrundsbefolkningen, kan de patienter, som fortsat er i live
blive anset for at være statistisk kurerede. Tidspunktet hvor dette sker bliver
kaldet kureringspunktet og indeholder brugbar information for både sund-
shedsplanlæggere og patienter. På grund af en række udfordringer kan det
være kompliceret at beregne kureringspunktet. Disse diskuteres i artikel III
sammen med en ny beregningsmetode.

Kureringsmodeller er tidligere blevet brugt til at modellere andelen i en
patientpopulation, som er statistisk kurerede. De mest anvendte modeller
bygger på simple parametriske overlevelsesmodeller eller spline-baserede ov-
erlevelsesfunktioner med antagelse om et endeligt kureringspunkt. Artikel
IV introducerer en generel formulering af parametriske kureringsmodeller,
som muliggør brugen af en lang række tids- eller kovariateffekter.

Selvom prognostiske faktorer er kendte indenfor mange lymfomtyper,
bliver individuelle prognoser ofte baseret på dikotomiserede kliniske variable
eller grupperede risikoscorer, hvilket typisk resulterer i et stort information-
stab. Ultimativt kan dette lede til, at patienterne får upræcise oplysninger.
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Resumé

Artikel V evaluerer nøjagtigheden af hyppigt anvendte prognostiske scorer
indenfor 11 lymfomtyper ved at sammenligne med en simple model, der
bygger udelukkende på diagnostisk alder og performance status, samt en
mere raffineret modelleringsteknik, som udnytter en udvidet liste af kliniske
variable.
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Background
1 Cancer

Cancer spans a wide range of malignant diseases which differ in biology,
treatment, and prognosis. Certain properties, described as the hallmarks of
cancer, are required of a tumour for it to be considered cancerous [1]. The
hallmarks include the ability to independently grow without external growth
signals, avoid natural cell death, grow limitlessly where normal cells stop
doubling, and spread to other organs or tissues in the body. In Denmark,
more than 40,000 individuals are diagnosed with cancer each year of which
the most common cancer types are cancer of the alimentary tract, skin, respi-
ratory system, breast, and male genitalia [2].

As tumors vary in cellular composition and severity, the treatment of can-
cer is very heterogeneous. Even within specific cancer types, the treatment
may depend on various clinical and molecular factors. As some patients
remain refractory to the standard treatment or relapse after treatment, new
treatment options are constantly being tested in clinical trials with the pur-
pose of improving the cancer survival. Based on the reported risk-benefit
balance, new therapies will, if appropriate, be included in the clinical guide-
lines associated with specific cancer types. While clinical trials provide a
framework for testing new drugs rigorously, the conclusions, however, may
not be generalizable to an entire patient population due to strict inclusion
criteria [3]. Because the effect of new drugs is only reported in a selected
group of patients, evidence of the drug effect in the general patient popula-
tion is often lacking. Observational studies are commonly used to derive such
clinical evidence outside randomized clinical trials. This thesis is concerned
with the analysis of register data, which provide the basis for conducting ob-
servational studies for an entire patient population of a hospital, region, or
country.

1.1 Is cancer curable?

The main goal of patients diagnosed with cancer is to become cured. In prac-
tice, clinicians perform response evaluations after completion of therapy to
assess the amount of remaining malignant disease. If no residual disease is
observed, patients are said to be in complete remission and may be consid-
ered cured of the disease. However, a substantial risk of relapse often remains
while late toxicities and lethal side effects due to the treatment may also oc-
cur. Therefore, defining cure by complete remission can be misleading and
some clinicians therefore refrain from using the term cure in general [4].
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Background

Another possibility is to base the assessment of cure upon population-
based risks. If the risk of relapse is sufficiently low, patients who successfully
complete the treatment may be considered cured of the disease. At the same
time, late toxicities due to the treatment may lead to an elevated mortality,
and so mortality risks may also be of relevance for assessing cure. Since
cancer patients may also die from causes not related to the cancer, it has
been suggested to base cure upon the comparison of the patient mortality
and the mortality risk in the gender and age-matched general population
[5]. If the patient mortality after some time point reaches the level of the
mortality in the general population, we may consider patients who survive
beyond this time point cured of the disease. This approach takes into account
all excess mortality due to the cancer diagnosis in the assessment of cure,
including immediate cancer-related death, death from side effects, and death
from relapses. Because cure is based on the mortality risk computed from an
entire patient population, we use the term statistical cure about this definition
[6]. In relation to statistical cure, it is of interest to estimate the time at which
the patient and the general population mortality become similar. This time
point has previously been termed the cure point [7]

Following succesful completion of the treatment, cancer patients often at-
tend routine follow-up programs with regular visits to the clinic. While the
mortality, as evaluated from the end of treatment, is often elevated in com-
parison to the general population mortality, the individual prognosis is likely
to change at every visit. For instance, the mortality of cancer patients who re-
main alive after completed therapy without experiencing adverse events often
approaches that of the general population. To provide prognostic informa-
tion for the patients at every visit, conditional mortality risks are particularly
useful [8]. At every visit, the patients might be informed about their updated
prognosis, possibly in relation to the general population mortality, given that
they have survived without adverse events until the time of the visit. This is
also known as dynamic prediction and constitutes an entire subfield within sur-
vival analysis [9]. Dynamic predictions can be carried out in countless ways
by using different variables for the conditional statement and end-points.

1.2 Lymphoma

Lymphoma is cancer occurring in the lymphoid tissue and constitutes a rel-
atively small proportion of all cancer cases [2]. Within lymphoma, the pa-
tients are further grouped according to the cellular characteristics of their
disease [10]. The most common lymphoma type is diffuse large B-cell lym-
phoma (DLBCL), which is an aggressive disease of haematopoietic system.
The treatment strategy within lymphoma is heterogeneous and ranges from
immediate high dose treatment with immunochemotherapy and stem-cell
transplantation to wait and watch programs [11, 12]. This comes as a result
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of the varying disease severity and is often based on a number of clinical
factors.

In practice, prognostic indices based on clinical variables are commonly
used for risk assessment and, for some lymphoma types, guiding treatment
[11]. Due to the heterogeneity of lymphoma, prognostic indices have been
developed separately for the most frequent lymphoma types. These are
based on variables regularly measured in clinical practice, e.g., age, gen-
der, stage, performance status, and lactate dehydrogenase (LDH) value. The
most prominent example is the international prognostic index (IPI) which is
commonly used for patients diagnosed with DLBCL or T-cell lymphoma to
categorize their mortality risk [13]. The IPI score ranges from 0 to 5 and is cal-
culated as the number of true statements; age above 60, stage III-IV disease,
elevated LDH, performance status above 1, and more than one extranodal
sites. According to the IPI score, patients are considered at low risk (0-1),
low-intermediate risk (2), high-intermediate risk (3), or high risk (4-5).

1.3 Cancer register data

In Denmark, the Danish Cancer Registry (DCR) collects information on all
cancer incidences in the Danish population with the main purpose of con-
ducting cancer statistics and quality controls [14]. Since 1987, it has been
mandatory to report a number of different personal and tumour character-
istics of individual cancer patients to the register. By using the Danish Civil
Registration System [15], personal information such as age, gender, munici-
pality, and the date of death is merged into the DCR. The DCR does not con-
tain any treatment nor cause of death information, but this can be retrieved
from the Danish National Patient Register [16] and the Danish Register of
Causes of Death [17], respectively.

Because the clinical procedures may deviate substantially between differ-
ent cancer types, cancer-specific registers have been established for numerous
cancer types. In this thesis, data from the Danish Colorectal Cancer Group
Database [18], the Danish National Acute Leukemia Registry [19], and the
Danish National Lymphoma Registry (LYFO) [20], have been used. LYFO
has been nationwide since 2000 and contains information on the vast major-
ity (94.9%) of all lymphoma cases in Denmark. In addition to the variables in
the DCR, LYFO contains more detailed baseline (at diagnosis) clinical infor-
mation, treatment information, as well as response and relapse information.
To ensure against missing registrations, LYFO is cross referenced with the
Danish National Patient Registry [16] and the National Pathology Registry
[21]. The Danish Colorectal Cancer Group Database and the National Acute
Leukemia Registry are designed similarly, but with clinical variables specific
to colon cancer and acute leukemia. In each register, vital status and date
of death in deceased patients are obtained by merging with the Danish Civil
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Registration System.

2 Basic concepts in survival analysis

Survival analysis is the analysis of the duration until the occurrence of an
event, e.g., the time to death. The main goal is the same as in other types
of statistical analyses, namely to conduct inference about a particular re-
sponse of interest, but time-to-event analysis is typically challenged by the
occurrence of censoring, which implies that conventional statistical methods
cannot readily be applied. In clinical studies, censoring occurs when a study
is terminated before the event of interest is observed for all patients. This
type of censoring is known as right censoring. For censored patients, the
exact time to event is unknown, but we know that the patients had not expe-
rienced the event at the time of censoring. This information has to be taken
into account in order to avoid inefficient estimators and possibly biased re-
sults. Another challenge is truncation, which occurs when patients are only
included in the analysis if their event happens within a certain time win-
dow [22]. Various types of censoring and truncation can affect the analysis
of time-to-event data. However, the remaining of this thesis will mainly deal
with right-censored survival data and we will assume that the response of
interest is the time to death.

2.1 Commonly used functions

In medical studies, survival data are often used to measure the effect of an
exposure by comparing to a control group. In particular, in randomized
trials of cancer patients, the benefit of new drugs is often assessed based on
the observed effect on the mortality. However, the effect of a certain drug can
be quantified by various measures. In the following, we describe the most
commonly used measures in survival analysis. We use the term follow-up as
the period in which we monitor patients in a particular study. At the end of
the follow-up, alive patients are censored.

First, let T be a random variable with density function f , denoting the
survival time of a cancer patient. In many medical studies, the probability
of surviving beyond some time t is reported. Treating this probability as a
function of time, we obtain the survival function,

S(t) = P(T > t) =
∫ ∞

t
f (u)du.

Naturally, we have that S(0) = 1 and limt→∞ S(t) = 0 if T is proper. In stud-
ies of cancer survivorship, the 5-year survival probability, i.e., the probability
of surviving five years after the diagnosis, S(5), is often reported. Although
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2. Basic concepts in survival analysis

the survival function can be estimated in various ways, the Kaplan-Meier
(KM) estimator is typically used [23]. The KM estimator is only defined until
the last available follow-up time and due to censoring, it is often seen that
the KM estimator does not reach zero within the follow-up.

Another used measure is the hazard function,

h(t) = lim
h→0

P(t ≤ T < t + h|T ≥ t)
h

.

It provides the instantaneous risk of death given survival until time t and
thus is a dynamic measure of the mortality risk. The definition of the haz-
ard function implies the following relation between the hazard, density, and
survival function:

h(t) =
f (t)
S(t)

= −d log[S(t)]
dt

.

While the hazard function, itself, is rarely reported in clinical studies, the haz-
ard ratio, i.e., the ratio between two hazard functions, has gained widespread
popularity in medical research. This is largely due to the Cox proportional
hazards (CPH) model, which enables regression modelling of the hazard
function by using the assumption that covariates affect the hazard function
proportionally [24]. The model is specified by,

h(t|z) = h0(t)exp
(

zT β
)

,

where z is a vector of covariates, β is a vector of coefficients, and h0(t) is a
baseline hazard function, i.e., the hazard if z = 0. Thus, if z denotes whether
a patient has received treatment (z = 1) or placebo (z = 0), the ratio between
the hazard function of the treated and the control group is a constant equal to
exp (β). The estimated value of β and its standard error can then be used to
assess the benefit of the treatment. The main advantage of the CPH model is
that it can be fitted without making any assumptions about the form of h0 by
using a partial likelihood approach [24]. Therefore, this model is sometimes
referred to as a semi-parametric survival model.

The cumulative hazard function given as

H(t) =
∫ t

0
h(u)du

is sometimes used to provide a measure of the cumulative mortality risk.
The cumulative hazard function is interpreted as the expected number of
events before time t. Given that the event of interest is death, this is under
the assumption that patients can be resurrected immediately after each death,
and thus the interpretation is not ideal for reporting mortality risks. However,
the cumulative hazard function is related to the survival function by H(t) =
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− log S(t).

2.2 Parametric survival models

This thesis is largely concerned with parametric survival models, which are
survival models specified entirely by a finite number of parameters. A very
simple and commonly used parametric survival model is the Weibull model.
The survival function of the Weibull model is given as

S(t) = exp
(
−β1tβ2

)
, (1)

where β1 > 0 and β2 > 0 are parameters controlling the trajectory of the
survival function.

To see how parametric models are estimated, we introduce some notation.
We assume that n patients are followed and the time to event for the ith

patient is denoted Xi. Furthermore, patient i is censored at time Ci, implying
that we observe only Ti = min(Xi, Ci) and a status indicator δi = 1[Xi ≤ Ci]
denoting whether patient i is censored before the event or not. Thus, we
observe n independent triplets (Ti, δi, zi), where zi is the covariates of the ith

patient. Often it is also assumed that Xi and Ci are independent.
The standard approach for estimating parametric survival models is by

maximum likelihood estimation. In standard likelihood inference, the ith

contribution to the likelihood is the density function evaluated in the data of
the ith patient, but for censored patients, we only know that the event has not
occured before the time of censoring. For these patients the survival function
is used instead. Given that the survival model is described by parameters θ,
the general likelihood for right-censored survival data [22] is

L(θ) =
n

∏
i=1

f (Ti|zi, θ)δi S(Ti|zi, θ)1−δi =
n

∏
i=1

h(Ti|zi, θ)δi S(Ti|zi, θ)

yielding the log-likelihood,

`(θ) =
n

∑
i=1

δi log(h(Ti|zi, θ)) + log(S(Ti|zi, θ)). (2)

The model of interest is fitted by optimizing (2) with respect to θ. In the case
of the Weibull model, (1) and h(t) = β2β1tβ2−1 are inserted into (2) and the
function is optimized with respect to θ = (β1, β2).

8



2. Basic concepts in survival analysis

2.3 Flexible parametric survival models

While the Weibull model has been used for many applications, the model is
rather restrictive, which means that for most applications, the model will not
be able to capture the true underlying survival function particularly well. To
avoid the pitfalls of simple parametric survival models, a vast literature on
flexible parametric survival models exists. The most popular alternative is
the model by Royston and Parmar, which uses restricted cubic splines (RCSs)
to model the survival function [25]. The Royston-Parmar model is specified
by

S(t|z) = exp
(
−exp

(
s0(x, γ) + zT β

))
, (3)

where x = log(t) and θ = (γ, β) are model parameters. The RCS is defined
as a linear combination, ∑K

i=1 vi(x)γi, of base functions, vi (see [25] for precise
formulation of the base functions), after selection of K knots on the log-time
scale. Thus, the RCS is modelled on the log-time scale and the covariates
are additive on the log-log scale. In fact, the Royston-Parmar model forms a
proportional hazards model, which can easily be seen by

h(t|z) = − d
dt

log[S(t|z)] = d
dt

exp
(

s0(x, γ) + zT β
)

= exp
(

s0(x, γ) + zT β
) ds0(x, γ)

dt

= h0(t)exp
(

zT β
)

,

where

h0(t) = exp (s0(x, γ))
ds0(x, γ)

dt
.

This means that the covariate-specific parameters, β, can be interpreted in the
same manner as in the CPH model. However, the baseline hazard is modelled
parametrically and thus smooth hazard and survival predictions are obtained
from this model. The model can be fitted by maximum likelihood using (2).
The flexibility of the Royston-Parmar model is controlled by the number of
knots in the RCS. The Akaike information criterion (AIC) or similar measures
were proposed to find the optimal number of knots [25].

The Royston-Parmar model was recently generalized by Liu et al. [26].
Using a bijective, monotone link function, g : (0, 1) → (−∞, ∞), and a time-
varying linear predictor, they modelled the survival function by

g(S(t, z, θ) = η(t, z, θ) = X(t, z)θ.

That is, the g-transformed survival function is assumed to be linear in θ.
The Royston-Parmar model is obtained if g(x) = log(− log(x)) and if the
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time-effect is given by an RCS. Again, optimization of (2) is used to fit the
model. The intent of this generalization was to enable the use of a wide
range of smoothers, such as those described by Wood [27] and implemented
in the mgcv R-package. In addition, the time effect is not restricted to be
on the log-time scale, but may be formulated for t or

√
t without additional

considerations.
The approach by Liu et al. is implemented in the R-package rstpm2, which

enables modelling of right-censored, left-truncated, and interval-censored
time-to-event data. Also, Liu et al. proposed a penalized regression approach,
such that the knot selection in knot-based smoothers becomes only a minor
obstacle. This also avoids the use of AIC or similar measures for determining
the flexibility of the survival model [26].

3 Mortality relative to the general population

In population-based studies of cancer survival, it is sometimes of interest to
quantify the patient mortality relative to the mortality seen in the general
population of a country or region. Life tables contain information on the
periodical death rate in the general population stratified on a number of de-
mographic variables such as gender and age. Under the assumption that the
patient population of interest is a negligibly small part of the general popu-
lation, life tables can thus be used to quantify the mortality among matched
individuals without cancer. While life tables are available at central statistical
offices, these are also readily available at the Human Mortality Database [28]
for a wide range of countries.

Alternatively, the general population survival may be obtained by match-
ing each patient to a number of "healthy" individuals with similar demo-
graphics. This enables matching on a larger number of demographical vari-
ables such as comorbidities and municipality, but requires additional data,
which are not readily available. In Denmark, this approach is enabled through
the central statistical office, Statistics Denmark.

In the following, different approaches for comparing the patient and gen-
eral population mortality are described, with the general population mor-
tality determined by life tables. Similarly to Pohar et al. [29], we describe
both multiplicative and additive models incorporating the general popula-
tion mortality.

3.1 Multiplicative models

An often used approach for comparing the patient and general population
mortality is a proportional hazards model. For a general population hazard,
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h∗, the model is given by

h(t) = h∗(t)exp
(

zT β
)

, (4)

where z is a vector of covariates and β are the corresponding coefficients.
If z = 1, then exp (β) denotes the ratio of the patient hazard to the general
population hazard. Breslow et al. [30] showed that estimating exp (β) under
z = 1 corresponds simply to computing the standardized mortality ratio (SMR),

SMR =
O
E

,

where O is the observed number of deaths during the follow-up and E is the
expected number of deaths as determined by the general population. The
observed number of deaths is simply O = ∑n

i=1 δi and utilizing the inter-
pretation of the cumulative hazard function, as described in Section 2.1, the
expected number of deaths may be computed by E = ∑n

i=1 H∗(ti|zi), where
H∗ is the general population cumulative hazard. The SMR provides a mea-
sure of the relative mortality throughout the entire follow-up. Whenever
dynamic evaluations of the overall relative mortality is of interest, O and E
may be computed conditionally on, say, survival until time t, which yields a
conditional SMR. This quantifies the mortality ratio from time t throughout
the remaining follow-up.

A generalization of the model in (4),

h(t) = h∗(t)v0(t)exp
(

zT β
)

,

was introduced by Andersen et al. [31]. Here the baseline ratio of the patient
hazard to the general population hazard is given by v0(t) and deviations from
this function is modelled by the linear predictor zT β. This model can be fitted
in the framework of Cox proportional hazards models [24] by allowing for a
time-varying offset. Note that the hazard function provides the conditional
instantaneous risk of death and so v0 provides a ratio of two instantaneous
risks.

3.2 Additive models

While the multiplicative models resemble the CPH model, another type of
model incorporating the general population mortality may be established
similarly to the additive Aalen model [32]. The additive hazards model is
given as,

h(t|z) = h∗(t|z) + λ(t|z). (5)
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Here, λ(t|z) denotes the additional mortality a patient experiences as com-
pared to the general population also known as the excess hazard or excess mor-
tality. Although various models can be formulated for λ(t|z), proportional
excess hazard models,

λ(t|z) = λ0(t)exp
(

zT β
)

, (6)

are popular. However, unlike the CPH model, a fitting procedure which does
not require specification of the baseline excess hazard, λ0, is not available
and thus λ0 is commonly specified parametrically. A simple way to so, is
to divide the follow-up into K intervals and assume a piece-wise constant
baseline, λ0(t) = ∑K

j=1 γj1[t ∈ Ij], where Ij is the jth interval and γj is the
piecewise level of the baseline excess hazard [33]. Alternative parametric
models for λ0 may also be employed.

Using the relation between the hazard and the survival function, we ob-
tain

S(t) = exp
(
−
∫ t

0
h(u)du

)
= exp

(
−
∫ t

0
h∗(u) + λ(u)du

)
= exp

(
−
∫ t

0
h∗(u)du

)
exp

(
−
∫ t

0
λ(u)du

)
.

Let S∗ be the survival function of the general population and let R(t) =

exp
(
−
∫ t

0 λ(u)du
)

. Then we obtain

R(t) =
S(t)
S∗(t)

. (7)

The function R(t) is termed the relative survival since it is the ratio between
the patient and general population survival function. Thus, while (6) defines
a model for the excess hazard, it also defines a model for the relative sur-
vival. Note, the relative survival is not bounded to be below 1 or decreasing
and so is not a proper survival function. Examples of the patient, general
population, and relative survival are shown in Figure 1.

Assuming a parametric model for λ(t|z), (5) may be fitted by maximum
likelihood estimation. By inserting (5) and (7) into (2) we obtain

`(θ) =
n

∑
i=1

δi log [h∗(Ti|zi) + λ(Ti|zi, θ)] + log(R(Ti|zi, θ)) + log(S∗(Ti|zi)).

Since S∗ does not depend on any model parameters, the likelihood reduces
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Figure 1: An example of the patient, general population, and relative survival. The general
population survival was computed for a Danish man aged 75 years in 2010.

to

`(θ) =
n

∑
i=1

δi log [h∗(Ti|zi) + λ(Ti|zi, θ)] + log(R(Ti|zi, θ)). (8)

The above likelihood highlights the advantage of using parametric additive
excess hazards (or relative survival) models. The only additional informa-
tion needed to the likelihood is the general population hazard evaluated at
each observed event time, which can easily be obtained. Clearly if h∗ = 0,
the usual likelihood function for parametric survival models is obtained. As
parametric relative survival models are obtained by simply adding the gen-
eral population hazard to the usual likelihood function, the Royston-Parmar
model can easily be extended to relative survival when dealing with right-
censored survival data, which was demonstrated by Nelson et al. [34]. As
shown in the Appendix, the same information from the general popula-
tion is needed when dealing with left-truncated survival data. However, for
interval-censored data, S∗ cannot be ignored in the likelihood, which makes
it slightly more tedious to fit relative survival models based on this data type.

Non-parametric estimators of the relative survival function, including the
Ederer I [35], Ederer II [36], and Hakulinen [37] estimator, have also previ-
ously been introduced. These three were all established by considering an
estimator of the patient and general population cumulative hazard functions,
subtracting these, and then transforming to the survival scale to obtain (7).
The estimators differ in their formulation of the general population cumu-
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lative hazard, but use the same estimator for the patient cumulative hazard,
namely the Nelson-Aalen estimator [32].

The relative survival function is often associated with net survival, which
is a term used about the patient survival in the hypothetical scenario where
deaths due to other causes than the considered disease are eliminated. Sim-
ilarly to Perme et al. [38], we may define two random follow-up times, TD
and TP, which are the time to disease-related death and death due to other
causes, respectively. However, we observe only the smallest follow-up time,
i.e., T = min(TD, TP). The net survival for an individual with covariates z is

SD(t|z) = P(TD > t|z) = P(TD > t, TP > t|z)
P(TP > t|z) = R(t|z).

The above equality builds on two main assumptions: TD and TP are condi-
tionally independent given the covariate vector z and the survival associated
with TP is equal to the survival in the general population, S∗. The marginal
net survival may be computed by

SD(t) =
1
n

n

∑
i=1

SD(t|zi).

Perme et al. showed that the the three non-parametric relative survival esti-
mators, Ederer I, Ederer II, and the Hakulinen estimator, do not estimate the
marginal net survival [38]. In addition, Perme et al. derived an estimator for
the marginal net survival, which does not explicitly give a formulation of S∗,
but rather estimates the relative survival directly.

The estimator of Perme et al. requires the two aforementioned assump-
tions in order to give the relative survival a net interpretation. However,
these assumptions are generally challenging to verify, which was also argued
by Andersen and Keiding in their discouragement of measures for which the
interpretation is not in the real world [39].

The excess hazard provides a measure of the instantaneous excess mor-
tality given survival until time t, while the relative survival defines the ratio
of the cumulative patient survival to the cumulative general population sur-
vival. When conditional evaluations are of interest, the conditional relative
survival is commonly used. Given survival until time u, the conditional rela-
tive survival is given as

Ru(t|z) =
R(t + u|z)

R(u|z) =
S(t + u|z)
S∗(t + u|z)

S∗(u|z)
S(u|z) .

Thus, the conditional relative survival is the ratio of the conditional patient
survival function to the conditional general population survival function.
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3.3 Loss of lifetime

Often in medical studies, the main interest is the mean value of some re-
sponse, but due to censoring the mean value of the time to some event can
typically not be estimated directly. However, techniques can be used to pro-
vide estimates of the mean value. We first recall that the mean value of the
time to death, T, is related to the survival function by

E [T] =
∫ ∞

0
S(u)du. (9)

This entity is also known as the mean lifetime or mean survival time. Thus, the
mean lifetime can be computed by the area under the the survival function
(Figure 2). The conditional mean lifetime given survival until time t is

E [T − t|T > t] =
∫ ∞

t

S(u)
S(t)

du.

This function is known as the mean residual lifetime. The difference between
the patient and general population mean residual lifetime,

L(t) =
∫ ∞

t

S∗(u)
S∗(t)

du−
∫ ∞

t

S(u)
S(t)

du, (10)

provides a dynamic measure of the severity of the disease. We term this the
loss of lifetime function (Figure 2), and if t = 0, we obtain the number of years
lost due to the disease.

When dealing with censored data, these three measure cannot be com-
puted without some form of extrapolation, which makes the use of non-
parametric estimators, such as the KM estimator, insufficient. Therefore,
extensive research has been devoted to developing methods for providing
accurate extrapolations of the survival function. A common approach is to
use long-term external data, such as register data or life tables, to provide
more stable extrapolations [40]. However, generally the accuracy of extrapo-
lated survival probabilities cannot be assessed and even well-fitting models
may extrapolate poorly [41].

To avoid extrapolation, a common practice is to replace ∞ with some finite
time point, τ. In terms of the mean lifetime, this corresponds to computing
E [min(T, τ)], which has a different interpretation than (9). This measure
is the mean lifetime over the following τ years and is commonly known
as the restricted mean lifetime. The Royston-Parmar model [25] and pseudo
values [42] are recommended approaches for estimating the restricted mean
lifetime [43]. By replacing ∞ with τ in the loss of lifetime, (10), we obtain the
conditional number of years lost due to the disease over the following τ − t
years given survival until time t.
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Figure 2: In the top figure, the mean survival of the patients is indicated by the shaded area. In
the middle, the shaded area indicates the loss of lifetime at time zero. The bottom figure shows
the mean residual lifetime and the loss of lifetime function from time 0 until 20 years.

4 Cure models

Occasionally when dealing with time-to-event data, it is reasonable to assume
that some individuals will never experience the event of interest. We consider
these individuals cured from the event. For example, some mothers will
never have more than one child. So the time between the birth of the first and
second child displays a cure pattern [44]. In this context, it may be of interest
to estimate the proportion of mothers who will never have a second child.
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Figure 3: Cure model for the relative survival with R(t)→ π = 0.5 as t→ ∞.

While this is hampered by the occurrence of censoring, a reasonable estimate
may still be obtained if the follow-up is sufficiently long. In particular, the
cure proportion, π, can be modelled and estimated using cure models, which
have a long history in the statistical literature [45], and may be formulated
both parametrically and non-parametrically [46, 47].

However, in analyses of time to death, it is not appropriate to assume
cure from death. Instead, cure models for the relative survival function may
be used if statistical cure can reasonably be assumed for a proportion of the
individuals. That is, some individuals experience the same survival as the
general population, which is indicated by a plateau in the relative survival
[48, 49]. In the following, we will only consider cure models for the relative
survival function.

As the patient population may be modelled as a mixture of patients that
are statistically cured and patients who are uncured, we may model the rela-
tive survival as a mixture model. The relative survival of cured patients is a
constant equal to one, and so the total relative survival may be written as

R(t|z) = π(z) + [1− π(z)] Su(t|z),

where Su(t|z) denotes the relative survival of the uncured patients. This
model is known as a mixture cure model [49]. Often Su(t|z) is assumed to
be proper since the ratio of the patient to the general population survival
function in uncured patients is expected to approach zero as time approach
infinity. Therefore, under this assumption, we also have that R(t) → π as
t→ ∞ (Figure 3).

Another type of cure models, namely non-mixture cure models or promo-
tion time cure models, also enables analysis of the cure proportion [49]. The
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model is given as
R(t|z) = π(z)F̃(t|z),

where F̃(t|z) is a proper distribution function. The function F̃(t|z) is not in-
terpreted as the distribution function of those who are uncured, but is merely
used to model the time-effect of the relative survival. However, the relative
survival of the uncured can still be obtained by a simple transformation,

R(t|z) = π(z) + [1− π(z)]
π(z)F̃(t|z) − π(z)

1− π(z)
,

such that,

Su(t|z) =
π(z)F̃(t|z) − π(z)

1− π(z)
.

Thus, the two primary entities in cure models, namely the cure proportion
and the survival of those who are uncured, can be estimated from both mix-
ture and non-mixture cure models. Although several non-parametric cure
models have been introduced before, these are not immediately applicable
to relative survival [46, 50]. In contrast, given a parametric formulation of π
and Su (or F̃), these models can be fitted by optimizing the log-likelihood in
(8). A Stata implementation of mixture and non-mixture cure models is avail-
able, which enables the use of several distribution functions for Su (weibull,
lognormal, and generalized gamma) and link functions for π (identity, logit,
and log-log) [51].

Due to gradual improvements in cancer care, the relative survival of sev-
eral cancer types has been increasing during the last two decades [52]. In the
framework of cure models, relative survival improvements may occur in four
different ways. The increase in cancer survival may be seen by an increase
in the cure proportion, which may occur if, for instance, a new therapy is in-
troduced. We may also see the mortality improvement by an increase in the
survival of the uncured, Su. A combination of both scenarios may also occur.
Finally, an increase in the cure proportion may be observed together with a
decrease in the survival of the uncured. This might occur if the introduction
of a new drug implies that the uncured group consists of fewer, but more
frail patients.

4.1 Flexible parametric cure models

While implementations of mixture and non-mixture cure models utilizing
simple distribution functions are readily available, these models suffer from
the disadvantage of being too simple to capture the shape of the true survival
of the uncured, Su. Therefore, attempts have been made to provide more
flexible parametric cure models. Lambert et al. [53] introduced a mixture
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model for Su to increase the model flexibility. The model for Su was described
as a mixture of a Weibull and an exponential survival function or a mixture
of two Weibull models. However, this model is challenged by the variable
selection required for each term.

Another type of cure model was introduced by Andersson et al. who al-
tered the RCS of the Royston-Parmar model in order to obtain a constant
relative survival after the last knot [7]. The cure model was formulated simi-
larly to (3), but was shown to be a special case of a non-mixture cure model,
where F̃(t) is 1 beyond the last knot. As opposed to the more simple mixture
and non-mixture cure models, cure is assumed at the last knot of the spline.
Therefore, the placement of the last knot becomes crucial for the cure pro-
portion estimates [7]. A similar approach was suggested by Bremhorst and
Lambert [54], who used cubic P-splines to model the time-effect of a non-
mixture cure model in a Bayesian framework. By letting the last parameter
of the spline be sufficiently large, F̃(t) was forced to be one by the end of the
follow-up. The latter approach was suggested for total survival cure models,
but is generalizable to relative survival.

5 Prognostic survival models

In medical research, some studies aim to investigate the (causal) effect of
some variable on a response of interest. This could be the effect of a new
cancer treatment on the patient survival. Other studies aim to establish mod-
els that can predict a certain event as accurately as possible in new patients
based on a number of covariates. These two types of studies are known as eti-
ological and predictive studies, respectively, with the vast majority of medical
studies focusing on etiological conclusions [55]. Since the aims of etiological
and predictive studies differ, the preferred statistical approaches also deviate
[56]. The bias-variance trade-off is often used to depict the difference between
these two types of studies. The expected prediction error (EPE) for a model
is the expectation of the prediction error with respect to both the response
and covariates, and may be factorized by

EPE = Irreducible error + Bias2 + Variance.

Etiological studies are concerned with minimizing the bias term in order to
accurately explain the relationship between the response and the covariates.
In predictive studies, the aim is to minimize the entire EPE in order to achieve
a model that leads to accurate predictions in future patients. Since the EPE
is minimized by reducing the sum of the bias and the variance, choosing
a more biased model, which at the same time reduces the variance, may
lead to a better model. Therefore, some models may be suitable for inferring
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etiological conclusions while others might be more appropriate for predicting
new events.

Also, etiological studies tend to focus on estimating relative measures
such as hazard ratios, odds ratios, or relative risks, while predictive studies
focus on predicting the absolute risk of some event [55]. Validating a pre-
dictive model in independent data is an important part of predictive studies.
The validation can be conducted in various ways dependent on the desired
generalizability of the model and is commonly based upon some type of per-
formance measure.

5.1 Performance measures

Let Ĝ be some estimated predictive model for a non-censored continuous
response T with covariates z. Let (T1, z1), ..., (Tn, zn) be n new observations
which were not used to fit the model Ĝ, and let T̂i = Ĝ(zi) be the predicted
responses from the model. The accuracy of the predicted responses can then
be assessed through various loss functions, e.g., the mean square error, which
is computed by (1/n)∑n

i=1(Ti − T̂i)
2.

When dealing with time-to-event data, the predicted time to event, T̂,
may be obtained as the mean or median survival time based on the predicted
survival function, Ŝ(t|z) [57]. However, in prognostic research, it is more
often seen that the accuracy of the model is based directly on the predicted
survival function, Ŝ(t|z). Another common approach is to base the model
accuracy on some risk predictor, G(z), where larger values indicate a shorter
time to event.

The C-index is widely used in the medical literature and provides a mea-
sure of the concordance between the order of the predicted risks and the
event times for two randomly selected patients,

C = P(G(z1) > G(z2)|T2 > T1).

The above C-index was first introduced by Harrell et al. [58], but alternative
definitions and several estimators have since been introduced [59].

The time-varying AUC (tAUC) is a generalization of the receiver oper-
ating characteristic curve and may be defined in multiple ways [60], which
yield slightly different interpretations. For two randomly selected patients,
the cumulative dynamic tAUC is given by

AUC(t) = P(G(z1) > G(z2)|T1 ≤ t, T2 > t).

Thus, the tAUC matches how well the risk ranking corresponds to the actual
ranking of the survival times. In the case of no censoring, the tAUC has a nat-
ural estimator [61], but whenever censoring is present, the natural estimator
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needs to be modified. In particular, weighting with the inverse probability of
censoringis a commonly used strategy [61]. Using this approach, the tAUC
cannot be estimated for time points smaller than the first follow-up time.

Another performance measure, which is similar to the mean square error,
is the Brier score [62],

BS(t, Ŝ) = E
[
Y(t)− Ŝ(t|z)

]2 ,

where Y(t) = 1[T ≥ t] [63] and the expectation is with respect to both T and
z. The integrated Brier score is given as

IBS(Ŝ) =
∫ τ

0
BS(u, Ŝ)ds,

for some upper limit τ. If the data were uncensored, the Brier score could
easily be estimated by computing the empirical mean. Similarly to the tAUC,
inverse probability weighting has been proposed to obtain consistent estima-
tors of the Brier score [64]. The Brier score measures how well the predicted
survival probabilities correspond to the observed survival statuses. Thus it
provides a measure of the model calibration, while the tAUC provides a mea-
sure of the discrimination. Therefore, the performance ranking of two models
is not guaranteed to be the same when based on these measures. In fact, one
model might provide an accurate risk ranking, but at the same time provide
inaccurate survival probabilities.

6 Overview of the thesis

In the following, the papers of this thesis are presented. For published ar-
ticles, the articles as available through the publishers website are included,
and the remaining papers are formatted for this thesis. All papers are accom-
panied by a publication status and a small description of the content.

Paper I deals with the survival of DLBCL patients in first complete remis-
sion after R-CHOP(-like) treatment. In particular, the survival was compared
to that of the general population by using data from LYFO. The main focus
was to confirm a previously published result showing that DLBCL patients
who remain event-free for two years after diagnosis experience the same mor-
tality as the general population [65]. In conclusion, the survival was not nor-
malized despite many years in complete remission. However, the difference
in restricted mean survival between the patients and the general population
was rather small after two years of event-free survival.

Paper II deals with methods for estimating the loss of lifetime function
which is given as the difference between the patient and general population
mean residual lifetime. Due to censoring, the loss of lifetime function cannot
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be directly estimated from the KM estimator, but requires extrapolation of
the patient and general population survival functions. We investigated three
extrapolation approaches based on relative survival. The approaches were
tested in a simulation study and by using cancer survival data from the DCR
where complete follow-up was available. For illustrative purposes, the loss
of lifetime function was estimated in data from LYFO.

Paper III describes the concept of cure points, which is the time point
at which the patient mortality reaches the same level as general population
mortality. The estimation of cure points is not appropriately done by conven-
tional hypothesis testing. We introduced an approach for cure point estima-
tion using clinical relevant measures of the mortality difference between the
patients and the general population. The accuracy of the cure point estima-
tor was evaluated in a simulation study. Real-world examples were carried
out by using data from the Danish Colorectal Cancer Group Database, the
Danish Acute Leukemia Registry, and LYFO.

Paper IV deals with cure models and attempts to provide a general and
flexible estimation framework for these. The approach expands on the gen-
eralized survival models by Liu et al. [26]. We considered two classes of
parametric cure models, namely explicit and latent cure models, which dif-
fer in their inclusion of parameters for the cure proportion. Through sim-
ulations and analysis of real-world data from the Danish Colorectal Cancer
Group Database and LYFO, we highlighted the differences between these two
classes in terms of identifiability and performance.

Paper V evaluates the performance of commonly used prognostic scores
for 11 frequent lymphoma types by utilizing survival data from LYFO. Each
prognostic score was tested against a simple model based on age and perfor-
mance status alone. In addition, a more advanced modelling approach was
also tested. The paper illustrated a subpar performance of most prognostic
scores, which could easily be improved upon using simple CPH models. Ad-
ditionally, advantages of using more advanced modelling were only observed
for few lymphoma types.

The developed methods in paper II, III, and IV were implemented in the
R-package cuRe (see https://github.com/LasseHjort/cuRe). The package
contains functions for fitting flexible parametric cure models and associated
summary measures. In particular, the loss of lifetime, crude relative survival-
based cumulative incidences, and cure points can be computed from cuRe.
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Appendix

In the following, we consider the likelihood function in the case of not only
right-censored survival data, but also left-truncated and interval-censored
data. Similarly to Liu et al. [26], we assume that (X, YL, T1, T2) is observed,
where X is the observed, and possibly right-censored, follow-up time, YL
is the delayed entry time, and T1 and T2 are the boundaries for interval-
censored observations. For observations without delayed entry YL = 0. Let
D denote the set of patients for whom the exact event time is known, let R be
the set of right-censored patients, and let I denote interval-censored samples.
For n = |D|+ |R|+ |I| independent observations and a parametric survival
model with parameters θ, the likelihood is

L(θ) = ∏
i∈D

h(Xi|zi, θ)S(Xi|zi, θ)

S(YLi|zi, θ) ∏
i∈R

S(Xi|zi, θ)

S(YLi|zi, θ) ∏
i∈I

S(T1i|zi, θ)− S(T2i|zi, θ)

S(YLi|zi, θ)
,

which yields the log-likelihood,

`(θ) = ∑
i∈D

[log(h(Xi|zi, θ)) + log(S(Xi|zi, θ))− log(S(YLi|zi, θ))]

+ ∑
i∈R

[log(S(Xi|zi, θ))− log(S(YLi|zi, θ))]

+ ∑
i∈I

[log(S(T1i|zi, θ)− S(T2i|zi, θ))− log(S(YLi|zi, θ))] .

Assume that only patients in D and R are observed, i.e., no patients are
interval-censored. For a relative survival model, we rewrite the likelihood
with h(t|zi, θ) = h∗(t|zi) + λ(t|zi, θ) and S(t|zi, θ) = S∗(t|zi)R(t|zi, θ), and
obtain

`LT(θ) = ∑
i∈D

[log (λ(Xi|zi, θ) + h∗(Xi|zi)) + log(R(Xi|zi, θ)) + log(S∗(Xi|zi))

− log(R(YLi|zi, θ))− log(S∗(YLi|zi))]

+ ∑
i∈R

[log(R(Xi|zi, θ)) + log(S∗(Xi|zi))− log(R(YLi|zi, θ))

− log(S∗(YLi|zi))]

≡ ∑
i∈D

[log (λ(Xi|zi, θ) + h∗(Xi|zi)) + log(R(Xi|zi, θ))− log(R(YLi|zi, θ))]

+ ∑
i∈R

[log(R(Xi|zi, θ))− log(R(YLi|zi, θ))] .
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If some patients are interval-censored, the corresponding likelihood is

`GEN(θ) = `LT(θ) + ∑
i∈I

log [R(T1i|zi, θ)S∗(T1i|zi)− R(T2i|zi, θ)S∗(T2i|zi)]

− log(R(YLi|zi, θ))− log(S∗(YLi|zi)).

Hence, for left-truncated data, the only required external information for the
likelihood is the expected hazard at the exact event times, which is the same
in the case of right-censored data. On the contrary, interval-censored data
requires both S∗(T1|zi) and S∗(T2|zi) to be specified in order to fit the model,
which makes the fitting procedure of parametric relative survival models for
interval-censored data more tedious.
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Description
In this paper, we compared the survival of Danish diffuse large B-cell lym-
phoma patients with that of the Danish matched general population by utiliz-
ing data from the Danish Lymphoma Registry. In addition, death causes and
updated relapses in deceased patients were obtained by reviewing patient re-
ports within each hematology department in Denmark. The aim of the study
was to evaluate the patient survival as compared to the general population
and determine how this evolves as patients remain event-free after successful
treatment with the standard R-CHOP therapy. Thus, the study included only
adult patients who achieved complete remission/unconfirmed after first line
treatment.
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Minimal Loss of Lifetime for Patients With Diffuse Large
B-Cell Lymphoma in Remission and Event Free 24 Months
After Treatment: A Danish Population-Based Study
Lasse Hjort Jakobsen, Martin Bøgsted, Peter de Nully Brown, Bente Arboe, Judit Jørgensen, Thomas Stauffer
Larsen, Maja Bech Juul, Lene Schurmann, Linda Højberg, Olav Jonas Bergmann, Therese Lassen, Pär Lars
Josefsson, Paw Jensen, Hans Erik Johnsen, and Tarec Christoffer El-Galaly

A B S T R A C T

Purpose
The general outlook for patients with diffuse large B-cell lymphoma (DLBCL) in first remission is
important information for patients and for planning post-treatment follow-up. The purpose of this
study was to evaluate the survival of patients with DLBCL in remission compared with a matched
general population.

Methods
A total of 1,621 patients from the Danish Lymphoma Registry who were newly diagnosed with
DLBCL between 2003 and 2011 were included in this study. All patients were$ 16 years of age
at diagnosis and had achieved complete remission or complete remission unconfirmed after
first-line rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) or
R-CHOP–like therapy.

Results
The 5-year post-treatment DLBCL survival was inferior to survival in the matched general population
(78%; 95% CI, 76 to 80; v 87%; standardized mortality ratio, 1.75; P , .001). Excess mortality was
present but reduced for patients achieving post-treatment event-free survival for 24 months
(pEFS24; standardized mortality ratio, 1.27; P , .001). In age-stratified analyses, the survival of
patients , 50 years of age was normalized to the general population after achieving pEFS24
(P = .99). During the first 8 years after pEFS24, the average loss of lifetime was 0.31 mo/y (95% CI,
0.11 to 0.50mo/y). Excessmortality diminishedwhen analyzing death from lymphoma as competing
event to death from other causes, suggesting that early and late relapse is responsible for increased
mortality in patients with DLBCL.

Conclusion
Although this population-based study does not support complete normalization of survival for pa-
tients with DLBCL achieving pEFS24, the estimated loss of residual lifetime was low for patients in
continuous remission 2 years after ending treatment. Therefore, pEFS24 is an appealing and rel-
evant milestone for patient counseling and could be a surrogate end point in clinical trials.

J Clin Oncol 35:778-784. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the
most common subtype of non-Hodgkin lym-
phoma (NHL) in the Western world.1 The addition
of rituximab to cyclophosphamide, doxorubicin,
vincristine, and prednisone (CHOP) has increased
DLBCL survival substantially, but 30% to 40% of
patients are refractory to treatment or relapse after
initial response to therapy.2-5 Patients with relapsed/
refractory DLBCL have dismal outcomes, and only

a fraction of patients with early relapse are cured by
intensive salvage therapies.6 Thus, achieving du-
rable remission early is crucial for favorable long-
term outcomes in DLBCL. The chance of surviving
DLBCL beyond a given time point (eg, 4-year
survival) can be assessed from clinical prognostic
scores, such as the International Prognostic Index
(IPI), revised IPI (R-IPI), and National Compre-
hensive Cancer Network–IPI.7-9 Although practi-
cal, these models oversimplify individual prognostic
information by pooling noncomparable patients
into a few groups,making the resulting group-specific
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survival rates inappropriate for patient counseling. For ex-
ample, consider two patients with identical IPI scores who are both
set to receive R-CHOP. The first patient is an 80-year-old with poor
performance status due to comorbidity (Eastern Cooperative On-
cology Group 2), elevated lactate dehydrogenase, and stage III
disease. The second patient is a 25-year-old with stage IV disease,
extensive extranodal involvement, elevated lactate dehydrogenase,
and lymphoma-related reduced performance (Eastern Cooperative
Oncology Group 2). Both are high risk according to the R-IPImodel,
with an estimated 4-year overall survival (OS) of 55%.8 However,
the normal 4-year life expectancy for healthy 25-year-olds and
80-year-olds are not comparable, and, without this context,
meaningful interpretation of prognostic information becomes
difficult for the patients. Normalization to the survival of
a matched general population was recently proposed as an al-
ternative to classic time to event analysis in DLBCL. The pivotal
study by Maurer et al10 showed that event-free survival for
24 months (EFS24) is an important milestone for patients with
DLBCL, and survival beyond this time point is equivalent to that
of the general population. If confirmed, EFS24 will be important,
not only for daily patient consultation but also for planning
disease surveillance strategies and as a possible surrogate end
point in clinical trials. In the current study, a similar post-
treatment EFS24 milestone was evaluated in a population-
based study of patients with DLBCL in first remission.

METHODS

The Danish Lymphoma Registry and Patient Inclusion
This is a retrospective study based on the Danish National Lymphoma

Registry (LYFO). LYFO has been nationwide since 2000 and contains
detailed information on patients with lymphoma diagnosed and treated at
Danish hematology departments. Local hematologists prospectively report
a wide range of clinicopathologic features to LYFO, which also captures
information on treatment, the response to treatment, relapse, and vital
status. Arboe et al11 recently validated the data quality in LYFO. The
coverage was 94.9%, and the accuracy concerning lymphoma histology and
treatment information was 99.9% and 99.3%, respectively. Dates of death
for deceased patients are obtained by periodic merging with the Danish
Civil Registration System using the unique Danish personal identifica-
tion numbers.12 Relapses are also reported to LYFO by local departments.
Safeguarding measures against missing registrations included notifica-
tion if biopsy-confirmed lymphoma relapse was identified from au-
tomatized queries to the Danish National Pathology Registry or if
chemotherapy and/or radiotherapy prescriptions occurred $ 9 months
after the first pathologic diagnosis of DLBCL. Information on cause of
death is often incomplete in LYFO, and, as a part of this study, we
performed a national review of patient records to determine cause of
death whenever possible.

The inclusion criteria for the current study were:$ 16 years of age at
diagnosis, newly diagnosed DLBCL between 2003 and 2011, and complete
remission (CR) or complete remission unconfirmed (CRu) after first-line
treatment with R-CHOP or equivalently effective regimens. The stan-
dardized response criteria for NHL were used if stand-alone computed
tomography (CT) was performed for the final response assessment, and
the revised response criteria for malignant lymphomawere used if positron
emission tomography (PET)/CT was performed for the final response
assessment.13-15 LYFO does not contain information on the imaging
modality used for response assessment, but hospitals were reimbursed
for PET/CT within the first 120 days of completing therapy in . 50% of
patients with DLBCL in CR from 2007 onward.

Statistics and Ethics
Post-treatment OS (pOS) was defined as the time from end of

treatment until death or censoring in patients still alive at last follow-up
(September 6, 2015). Post-treatment event-free survival (pEFS) was de-
fined as the time from end of treatment until death, relapse, or censoring,
whichever came first. The survival of patients with DLBCL at different
pEFS milestones (6, 24, 36, 48, and 60 months) was computed using the
Kaplan-Meier method.16 A general population derived from Danish life
tables17 was matched on sex, age, and calendar year using a conditional
approach.18 Excess mortality in patients with DLBCL was calculated as the
standardized mortality ratio (SMR)—the ratio of observed to expected
mortality.19 A proportional hazards competing risks regression model was
used to assess associations between relapse risk and baseline prognostic
factors.20 The 10-year loss of lifetime for patients with DLBCL relative to
the general population was calculated as the area between the patient and
the population-specific survival curves from study entry until 10 years of
follow-up, at which time many patients were still at risk. Causes of death at
different pEFS time points were assessed by cumulative incidences from
a competing risks analysis. For survival comparisons from a pEFS mile-
stone (eg, pEFS24), only patients achieving that milestone were analyzed.
The survival clock was started at the milestone of interest and a general
population rematched to the patient age and calendar time at that
milestone. Statistical analyses were conducted in R (version 3.3.1). Double-
sided P values # .05 were considered significant. The study was approved
by the Danish Data Protection Agency (2008-58-0028) and the Danish
Health and Medicines Authority (3-3013-1373/1).

RESULTS

Patients and Outcomes
A total of 1,621 Danish patients with DLBCL met the in-

clusion criteria (Data Supplement). The clinicopathologic char-
acteristics are listed in Table 1. With a median follow-up of
85 months (reverse Kaplan-Meier method21), the 5-year pOS was
significantly lower for the patients with DLBCL than for the
matched general population (78%; 95% CI, 76 to 80; v 87%). The
baseline (end of treatment) SMR was 1.75 (95% CI, 1.60 to 1.91;
P, .001; Fig 1A), which was reduced to 1.27 (95% CI, 1.12 to 1.44;
P, .001; Fig 1B) for patients achieving pEFS24 and 1.32 (95% CI,
1.11 to 1.54; P, .001; Fig 1C) for patients achieving pEFS48. Age-
stratified analyses (, 50 years v $ 50 years) revealed early nor-
malization of survival in the younger patients who achieved
pEFS24 (5-year pOS, 99% v 99%; SMR, 1.11; 95% CI, 0.22 to 3.25;
P = .99; Data Supplement). In contrast, patients with DLBCL$ 50
years were at increased risk of death even after achieving pEFS60
(SMR, 1.36; 95% CI, 1.12 to 1.63; P = .001). In addition, after
achieving pEFS6, only eight (4%) of 222 patients , 50 years old
died during the follow-up period.

Loss of Residual Lifetime Estimation and Event
Decomposition

For all patients with DLBCL in CR or CRu after treatment,
residual lifetime was reduced by 1.07 mo/y (95% CI, 0.87 to 1.27
mo/y) within the first 10 years after treatment compared with the
expected survival in the general population (Data Supplement). In
patients achieving pEFS24, pEFS36, and pEFS48, the estimates
were 0.31 mo/y (95% CI, 0.11 to 0.50 mo/y), 0.29 mo/y (95% CI,
0.09 to 0.49 mo/y), and 0.29 mo/y (95% CI, 0.08 to 0.51 mo/y),
respectively. In age-stratified analyses (, 50 years, 50 to 60 years,
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and. 60 years), patients younger than 50 years quickly normalized
to the general population, whereas patients age $ 50 years had
continuously increased mortality (Data Supplement). Loss of
lifetime was more pronounced in the high-risk patients but was
reduced for all patients achieving pEFS24 regardless of risk group
(Fig 2). The absolute difference in loss of lifetime for patients with
high-risk IPI versus patients with low-risk IPI disease was also
significantly reduced at pEFS24, suggesting that pretreatment risk
factors become prognostically less important with long-term re-
mission. No difference in loss of lifetime was observed between
male and female patients achieving pEFS24 (Fig 2).

The 5-year cumulative incidence of DLBCL relapse was 18%
(95% CI, 16% to 20%), which was reduced to 8% (95% CI, 7% to
10%) in patients achieving pEFS24 (Fig 3). From end of treatment,
lymphoma (relapse or treatment toxicity) was the most common
cause of death (40%; Data Supplement). The 2-year cumulative
risk of death from other cancers or cardiovascular disease was 1.2%
(95% CI, 0.8% to 1.9%) and 0.5% (95% CI, 0.2% to 1.0%), re-
spectively. For patients achieving pEFS48, the 2-year cumulative
risk of death from other cancers or cardiovascular diseases in-
creased to 2.4% (95% CI, 1.6% to 3.7%) and 1% (95% CI, 0.5% to
2%), respectively. From that point on, the risk of death from other
cancers was similar to the risk of experiencing DLBCL relapse.
Thirteen (16%) of 83 deaths from other cancers were attributed
to myelodysplastic syndrome (n = 5) or acute myeloid leukemia
(n = 8).

A competing risks model was used to determine the impact of
recurrent DLBCL on post-treatment DLBCL survival (Data Sup-
plement). In this analysis, death from relapsed DLBCL (including
immediate treatment complications) was treated as a competing
event to death from other causes. Using this approach, the survival
of patients with DLBCL was equivalent to the survival of the
general population at the end of treatment, suggesting that the
observed excess mortality in patients with DLBCL was fully
explained by early and late relapse. The 5-year risk of relapse after
achieving pEFS24 was 4% (95%CI, 2% to 8%), 7% (95%CI, 5% to
11%), and 10% (95% CI, 8% to 12%) for patients younger than 50
years, 50 to 60 years old, and older than 60 years, respectively (Data
Supplement). Age older than 60 years, advanced stage, and IPI. 2
were associated with increased risk of late relapse in a multivariate
analysis of patients achieving pEFS24 (Table 2).

DISCUSSION

In this study, pEFS24 was evaluated as a milestone for patients with
DLBCL in CR or CRu after first-line treatment with R-CHOP
(–like) therapy. We confirmed that patients achieving pEFS24 have
favorable outcomes, although the present population-based

Table 1. Clinicopathologic and Demographic Characteristics of Patients With
DLBCL in CR or CRu Diagnosed Between 2003 and 2011 (n = 1,621)

Characteristic
Summary
(n = 1,621) Missing Information

Median age, years (range) 65 (16-92) 0
Age groups, years
16-40 88 (5.4)
40-50 139 (8.6)
50-75 1,101 (67.9)
$ 75 293 (18.1)

Sex ratio, M/F 1.20 0
Ann Arbor stage . 2 886 (55.1) 14
IPI . 2 526 (34.0) 72
ECOG performance . 1 185 (11.5) 14
B symptoms 663 (41.5) 25
Elevated LDH 743 (47.1) 45
Extranodal 952 (58.7) 0
Radiotherapy 626 (38.6) 0
Chemotherapy 0
CEOP 25 (1.5)
CHOEP 129 (8.0)
CHOP 1,467 (90.5)

NOTE. Data presented as No. (%) unless otherwise noted.
Abbreviations: CEOP, cyclophosphamide, etoposide, vincristine, prednisone;
CHOEP, cyclophosphamide, doxorubicin, vincristine, etoposide, prednisone;
CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; CR, complete
remission; CRu, complete remission unconfirmed; DLBCL, diffuse large B-cell
lymphoma; ECOG, Eastern Cooperative Oncology Group; IPI, International
Prognostic Index; LDH, lactate dehydrogenase.
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Fig 1. Overall survival of diffuse large B-cell lymphoma (DLBCL) in first complete remission or complete remission unconfirmed versus the expected survival on the basis
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analysis found a slightly reduced survival of patients with DLBCL
relative to the general population despite many years in CR or CRu.
This finding was age dependent, because the survival of patients
younger than 50 years at diagnosis equalized to that of the general
population by pEFS24, compared with the continuous increased
mortality in middle-age and elderly patients. The excess mortality
was mainly driven by relapsed DLBCL; risk factors for DLBCL
relapse after pEFS24 were age older than 60 years, advanced stage,
and IPI . 2. Thus, predictors of outcome in this situation are
similar to well-characterized prognostic factors at baseline.7,8

To the best of our knowledge, this is the first population-based
study to investigate residual lifetime in patients with DLBCL event
free at specified time points after treatment, but it is not the first
study of DLBCL survival compared with a matched general
population. Maurer et al10 analyzed patients with DLBCL enrolled
in the North Central Cancer Treatment Group NCCTG-N0489
phase II study (n = 87) and the University of Iowa/Mayo Clinic
Specialized Programs of Research Excellence Molecular Epide-
miology Resource (MER) registry (n = 680). The MER registry
included patients treated at the Mayo Clinic or the University of
Iowa, or patients referred for a second opinion at the Mayo Clinic
or the University of Iowa while treated locally in the community.
All patients in the MER registry were enrolled prospectively within
9 months of diagnosis; the majority (80%) of patients were from
the upper Midwestern US (MN, IA, IL, WI; M. J. Maurer, personal
communication, September 2016). For the entire DLBCL cohort,
as well as patient subgroups, the survival of patients achieving the
EFS24 milestone normalized to the general US population.10

Maurer et al10 successfully reproduced the results in a French
DLBCL cohort consisting of patients from clinical trials sponsored
by Groupe d’Etude des Lymphomes de l’Adulte (n = 600) and from
a hospital-based registry in Lyon (n = 220). Important differences
are present in the designs of the study by Maurer et al10 and the

current study. First, Maurer et al10 used conventional OS and EFS
end points (ie, measured from diagnosis), whereas we used pOS
and pEFS. The different approach was chosen because our motive
was to examine the survival of patients with DLBCL responding
with CR or CRu to immunochemotherapy. By definition, this
group of patients survived first-line treatment, which could in-
troduce guarantee-time bias if using the time of diagnosis as the
entry point when comparing this group to the general population
(ie, patients with DLBCL are guaranteed survival for at least
3 months, but this is not the case for the general population).
Second, Maurer et al10 included unplanned treatment as an event
in the EFS24 analyses, but the only events of interest in the current
study were relapse or death from any cause. However, restricting
our analysis to patients with CR or CRu made unplanned treat-
ment in the absence of documented relapse unlikely, and the more
conservative EFS definition will not bias toward later normaliza-
tion of survival. Notably, striking differences were found in the
baseline SMRs reported for both US and French patients (2.88 and
4.99, respectively) compared with the 1.75 in our patients. This
difference is likely explained by the better outlook for a group of
patients defined by CR or CRu.

Less homogeneity between patients with DLBCL and the
matched general population may fully or partially explain the
conflicting observations between Maurer et al10 and the current
study. Patients treated or seen for a second opinion at tertiary care
centers, such as the Mayo Clinic, and patients enrolled in clinical
trials may have better overall health than the US general population
to which they were compared. This could bias toward earlier
normalization of survival for the patients with DLBCL. Given that
cancer treatment in Denmark is publicly funded with equal access
to all citizens, the patients with DLBCL analyzed in our study may
better resemble the general population regarding general health
and access to health care. Notably, the 5-year relapse rate in the
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Fig 2. Loss of lifetime in diffuse large
B-cell lymphoma subgroups for all patients,
patients who achieve post-treatment event-
free survival for 24 months (pEFS24), and
patients achieving post-treatment event-free
survival for 48 months (pEFS48). ECOG,
Eastern Cooperative Oncology Group; IPI,
International Prognostic Index; LDH, lactate
dehydrogenase.
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current study and reported by Maurer et al10 in patients achieving
pEFS24 and EFS24, respectively, was 8%. This suggests that there is
some comparability of the disease characteristics of patients an-
alyzed in the two studies.

Consistent with the observations of the current study, an
abstract based on data from the BC Cancer Agency Lymphoid
Cancer Database also reported persistent excess mortality for
patients achieving conventional EFS24.22 However, unlike the
current study, the excess mortality was explained not only by the
continuous risk of relapse but also by increased risk of death from
other causes. Interestingly, cell of origin data were available for 601
patients in the Canadian study. Analysis of these patients revealed
normalization of survival at EFS24 for patients with germinal
center B-cell–like DLBCL but not patients with non–germinal
center B-cell–like/activated B-cell–like DLBCL.22 In a recent study
by Smeland et al,23 the survival of Norwegian patients undergoing
high-dose therapy with autologous stem cell transplantation for
various NHLs was compared with survival in the general pop-
ulation. In that study, patients with DLBCL surviving the first
5 years after therapy normalized to the general population (SMR,
1.7; 95% CI, 0.9 to 3.1).23 However, there could be a lack of
statistical power due to fewer patients at risk after 5 years.

A similar study of patients with Hodgkin lymphoma (HL)
diagnosed between 1989 and 2012 who were treated with doxo-
rubicin, bleomycin, vinblastine, and dacarbazine (or equivalently
effective regimes) in British Columbia found increased mortality,
even after achieving EFS60, which may seem counterintuitive given
the favorable outcome of HL and better salvage opportunities.24

However, the risk of relapse in patients achieving EFS24 was low
(5.6% 5-year cumulative incidence), and the authors concluded
that EFS24 could be a potential surrogate end point in clinical trials
of HL as proposed for DLBCL by Maurer et al.10,24 With the low
loss of lifetime for patients with DLBCL achieving pEFS24 in our
study, milestones such as pEFS24 may be surrogates for OS and
progression-free survival in clinical trials involving patients with
DLBCL. However, studies that demonstrate sufficient correlation
between effect measures on the basis of pEFS24 and classic end
points are warranted.25 In particular, precautions should be taken
against using pEFS24 as a surrogate end point if there are concerns
of severe long-term toxicity or if survival curves could later cross
during follow-up. The recently published long-term results of
a study comparing three cycles of CHOP plus radiotherapy to eight
cycles of CHOP illustrates this concern.26 The 5-year progression-
free survival and OS were in favor of three cycles of CHOP plus

radiotherapy, but corresponding 10-year estimates were similar in
the two treatment arms.26 Acknowledging the shortcomings of
EFS24-based effect measures, it is clear that less expensive setups
for clinical trials with faster reporting of results are welcome in the
early era of personalized medicine and at a time when the ther-
apeutic armamentarium for lymphoid malignancies is rapidly
expanding.

pEFS24 or EFS24 may also be useful for planning follow-up
programs, and the low relapse risk in young patients with DLBCL
achieving pEFS24 indicates that less-intensive disease surveillance
strategies may be pursued for this subgroup of patients. In terms of
patient counseling, survival relative to age- and sex-matched
persons without DLBCL is more relevant than crude 5-year sur-
vival probabilities.

The strengths of the current study are the use of population-
based data, long follow-up, and complete information on vital
status. However, the median follow-up of 7 years is too short to
estimate the impact of DLBCL on residual lifetime for younger
patients. In particular, the impact of late toxicities is not
covered by this study. Another strength of this study is similar
regional outcomes of DLBCL in Denmark, permitting the
pooling of data into a single study.27 The increasing use of PET/
CT during the inclusion period could have changed the quality
of remission assessment and therapy outcome of patients
concluded to be in remission. However, a stratified analysis of
patients with early (2003 to 2006) and late diagnosis (2007 to
2011) revealed no clinically relevant differences in loss of
lifetime in patients achieving pEFS24 (0.07 mo/y; 95%
CI, 20.23 to 0.37 mo/y).

In conclusion, we showed that a persistent risk of relapse
prevents normalization of survival for patients with DLBCL despite
years in remission. Nevertheless, the loss of residual lifetime for
patients achieving pEFS24 is minimal and, although significant,
may not be clinically relevant to individual patients. However,
relying on pEFS24 or EFS24 as end points in clinical trials could
potentially miss the impact of late toxicities and other late adverse
effects on patient outcomes.
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Table 2. Time-to-Relapse Determinants From Competing Risk Regression for Patients With DLBCL in First CR or CRu Who Achieved EFS24 (n = 1, 337)

Determinant Univariate HR (95% CI) P Multivariate HR (95% CI) P

Age . 60 years 1.73 (1.10 to 2.72) .02 1.86 (1.18 to 2.91) .01
Sex 1.08 (0.73 to 1.59) .70
Advanced stage 3.41 (2.19 to 5.32) .00 4.31 (2.61 to 7.12) .00
IPI . 2 1.58 (1.06 to 2.36) .02 0.65 (0.42 to 1.02) .06
ECOG performance . 1 1.29 (0.72 to 2.32) .39
B symptoms 1.08 (0.73 to 1.58) .71
Elevated LDH 1.11 (0.75 to 1.64) .60

NOTE. Significant effects in the univariate analyses were included in the multivariate analysis.
Abbreviations: CR, complete remission; CRu, complete remission unconfirmed; DLBCL, diffuse large B-cell lymphoma; ECOG, Eastern Cooperative Oncology Group;
EFS24, event-free survival for 24 months; HR, subdistribution hazard ratio; IPI, International Prognostic Index; LDH, lactate dehydrogenase
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Figure S1: CONSORT diagram of the Danish DLBCL patients.
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Figure S2: Overall survival of DLBCL in 1st CR/CRu versus expected survival as determined
by the general population stratified on age (50< and 50≥) A) for all patients, B) patients that
achieve pEFS24, C) patients achieving pEFS48, and D) patient achieving pEFS60.
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Figure S3: Loss of lifetime (months per year) for the entire DLBCL cohort and age-specific
subgroups (-50, 50-60, 60-) computed by the area under the survival curves up to ten years. For
a given time point, the loss of lifetime is computed using all patients achieving pEFS at that time
point.
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Figure S4: Cause of death pie chart and corresponding cumulative incidences from a competing
risks analysis computed for all DLBCL patients in 1st CR/CRu, patients achieving pEFS24, and
patients achieving pEFS48.
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Figure S5: Cumulative incidences of death from a non-lymphoma related cause for DLBCL
patients in 1st CR/CRu versus the general population A) for all patients, B) patients that achieve
pEFS24, and C) patients achieving pEFS48.

Figure S6: Age stratified cumulative incidences of death from a non-lymphoma related cause
for DLBCL patients in 1st CR/CRu versus the general population A) for all patients, B) patients
that achieve pEFS24, and C) patients achieving pEFS48.
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Figure S7: Cumulative incidences of relapse for DLBCL patients in 1st CR/CRu from end of
treatment, pEFS24, and pEFS48 stratified a young (<50), a middle-aged (50-60), and an old group
(≥60).
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Description
In this paper, we evaluated the accuracy of various estimators of the loss of
lifetime function. The loss of lifetime function measures the dynamic mortal-
ity difference between a given patient population and the general population.
As the estimation of the loss of lifetime function requires extrapolation of the
survival functions, parametric models are particularly useful for this pur-
pose. However, even though a parametric model may fit the data well, it
may extrapolate poorly. Therefore it has been proposed to utilize external
data from registers or life tables to improve the extrapolations. Relative sur-
vival models have previously been used for estimating the loss of lifetime
from diagnosis. The aim of this study was to assess the accuracy of the en-
tire loss of lifetime function when employing relative survival models for the
extrapolation.
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1. Introduction

Abstract

Background: Within cancer care, dynamic evaluations of the loss in expecta-
tion of life provides useful information to patients as well as physicians. The
loss of lifetime function yields the conditional loss in expectation of life given
survival up to a specific time point. Due to the inevitable censoring in time-
to-event data loss of lifetime estimation requires extrapolation of both the
patient and general population survival function. In this context, the accu-
racy of different extrapolation approaches has not previously been evaluated.
Methods: The loss of lifetime function was computed by decomposing the
all-cause survival function using the relative and general population survival
function. To allow extrapolation, the relative survival function was fitted us-
ing existing parametric relative survival models. In addition, we introduced
a novel mixture cure model suited for extrapolation. The accuracy of the es-
timated loss of lifetime function using various extrapolation approaches was
assessed in a simulation study and by data from the Danish Cancer Registry
where complete follow-up was available. In addition, we illustrated the pro-
posed methodology by analyzing recent data from the Danish Lymphoma
Registry.
Results: No uniformly superior extrapolation method was found, but flexible
parametric mixture cure models and flexible relative survival models seemed
to be suitable in various scenarios.
Conclusion: Using extrapolation to estimate the loss of lifetime function
requires careful consideration of the relative survival function outside the
available follow-up period. We propose extensive sensitivity analyses when
estimating the loss of lifetime function.

1 Introduction

Dynamic survival prediction is important in cancer care, where prognostic
assessments are given numerous times during diagnosis, treatment, and post-
treatment follow-up. A popular measure for characterizing the severity of a
disease is the expected amount of lifetime lost due to the disease as compared
to the general population. This measure is known as the loss in expectation
of life and may be computed as the difference between the area under the
general population and patient survival curves [1]. The loss in expectation
of life has previously been used to characterize the disease burden within
colon cancer and acute myeloid leukemia [2, 3]. The loss of lifetime function
generalizes this measure by dynamically evaluating the loss in expectation
of life, yielding the conditional number of years lost due to cancer given
survival up to specific time points.

Due to the occurrence of censoring, computing the loss of lifetime func-
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tion typically requires extrapolation of both the patient and general popu-
lation survival function. Generally, extrapolation of survival functions esti-
mated from censored time-to-event data is challenging since there is no way
to evaluate the extrapolation accuracy and even a well-fitted model may ex-
trapolate poorly.

An extensive literature exists on techniques for extrapolating survival
functions. Jackson et al. reviewed methods for incorporating external data,
such as register data or national life tables, to extrapolate survival functions
[4]. The use of external data requires assumptions about how the survival in
the present patient population and the external data differ and how this will
continue beyond the follow-up. In particular, extrapolation through the rel-
ative survival function has been proposed for both grouped and individual-
level data, which has demonstrated improved accuracy in comparison to
models for the all-cause survival function [1, 5]. Andersson et al. examined
the accuracy of the loss in expectation of life estimates calculated by three
types of relative survival models [1]. However, none of these assessments
were conducted for the entire loss of lifetime function.

In the following article, we compute the loss of lifetime function using
previously introduced extrapolation approaches. In addition, a new flexible
parametric relative survival model based on mixture cure models and spline-
based proportional hazards models is introduced [6, 7]. We expand the study
of Andersson et al. [1] by evaluating the accuracy of the entire loss of lifetime
function based on various extrapolation approaches in a simulation study
and in data from the Danish Cancer Registry where complete follow-up was
available. In addition, as a clinically motivated example, the loss of lifetime
function is computed for three lymphoma types using recent data from the
Danish Lymphoma Registry.

2 Methods

2.1 Relative survival

The relative survival function is commonly used to describe the disease-
specific (net) survival without requiring cause of death information. Given
covariate vector z, patient population (all-cause) survival function S(t|z), and
general population survival function, S∗(t|z), the relative survival function is
given by

R(t|z) = S(t|z)
S∗(t|z) .
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By using the relation between the hazard function and the survival function,
the all cause hazard function corresponding to S(t|z) can be written as

h(t|z) = h∗(t|z) + λ(t|z),

where h∗(t|z) is the general population hazard function and λ(t|z) is termed
the excess hazard function or excess mortality. Both h∗(t|z) and S∗(t|z) are usu-
ally computed from publicly available life tables matched on variables such
as age, sex, and calendar year. The most popular way to include covariate ef-
fects is the proportional excess hazard model with a parametric specification
of the baseline excess hazard [8, 9].

2.2 Parametric cure models

In survival analysis, cure models are used to provide useful information, par-
ticularly in cancers where the patient hazard function reaches the same level
as the general population hazard function after some time [6, 10]. This corre-
sponds to the relative survival reaching a plateau and the patients still alive
after this time point are considered statistically cured. The main parame-
ter of interest in cure models is the proportion of patients reaching statistical
cure, also known as the cure proportion. Cure models are commonly divided
into mixture and non-mixture cure models [6]. In mixture cure models, the
patient population is considered a mixture of cure and uncured individuals.
The relative survival is a mixture of a relative survival function for the cured
and uncured patients, i.e.,

R(t|z) = π(z) + [1− π(z)]Su(t|z), (1)

where π(z) is the, potentially covariate dependent, cure proportion and
Su(t|z) is the relative survival function of the uncured patients. The cure
proportion can be modelled through a link function, e.g., with a logistic,
identity, or log-log link function [6]. The function Su(t|z) can conveniently
be modelled by regular parametric survival models, such as a Weibull model,
a log-normal model, or more flexible alternatives such as a Weibull-Weibull
mixture model [11]. The model is estimated by maximum likelihood where
the only external information needed is the general population hazard at the
observed event times (see Lambert et al. [6] for the likelihood function).

Non-mixture cure models are of a less intuitive form:

R(t|z) = π(z)1−S̃(t|z),

where the function S̃(t|z) is a proper survival function which does not have
an intuitive interpretation like Su(t|z). By rewriting the non-mixture cure
model, it can be formulated as a mixture cure model, with (π(z)1−S̃(t|z) −
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π(z))/(1−π(z)) as the relative survival function of the uncured patients [6].
Thus, estimation of the non-mixture cure model can be carried out similarly
to that of mixture cure models.

2.3 Flexible parametric cure models

Royston and Parmar introduced a flexible parametric proportional hazards
model by using restricted cubic splines to model the baseline hazard func-
tion (on the log cumulative hazard scale) [7]. This approach was applied
to relative survival by Nelson et al. where the log-cumulative excess hazard
was modelled by restricted cubic splines [9]. Including covariate effects, the
relative survival by Nelson et al. is given by

log(− log(R(t|z)) = s0(x; γ0) + zT β +
p

∑
i=1

si(x; γi)zi, (2)

where x = log(t), p is the number of time-varying covariate effects, s0(x; γ0)
is a baseline restricted cubic spline, β is a vector of regression coefficients, and
si(x; γi) is a spline corresponding to the ith covariate, providing a time vary-
ing coefficient. For the ith spline, Ki knots, ki1 < ki2 < .. < kiKi , are selected
on the log-time scale. The spline is then given as a linear combination of base
functions defined through the chosen knots, i.e., si(x; γi) = ∑Ki−1

j=0 vij(x)γij,
where γi are model parameters. The base functions are given by vi0(x) = 1,
vi1(x) = x, and

vij(x) = (x− kij)
3
+ − λij(x− ki1)

3
+ − (1− λij)(x− kiKi )

3
+, (3)

for j = 2, ..., Ki − 1, where λij =
kiKi
−kij

kiKi
−ki1

and x+ = max(x, 0). Generally, the

number and placement of the knots in the different spline functions do not
need to be the same.

Andersson et al. used (2) to establish a flexible parametric cure model
[12]. This model is formulated similarly to (2), but the basis functions of the
splines are adjusted to ensure that the relative survival has zero slope after a
preselected time point which is used as last knot in all spline functions, i.e.,
kK = k0K0 = k1K1 = · · · = kpKp . The cure proportion is then estimated by
R(kK). Rewriting (2) we obtain

R(t|z) = exp

(
−exp

(
γ00 + zT β

)
exp

(
K0−1

∑
i=1

vi(x)γi +
p

∑
i=1

si(x; γi)zi

))
.

Hence, the model by Andersson et al. can be viewed as a non-mixture cure
model where the cure proportion is modelled through the baseline spline
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parameter, γ00, and the fixed covariate effects, zT β, while the remaining pa-
rameters are used to model 1− S̃(t) [12]. While this model provides a flexible
framework for estimating the cure proportion in cancer studies, the assump-
tion of statistical cure after the last knot is strong. Therefore, we introduce
a new flexible parametric cure model which combines regular mixture cure
models with flexible parametric survival models. The model is specified by
(1) with

Su(t|z) = exp

(
−exp

(
s0(x; γ0) + zT β +

p

∑
i=1

si(x; γi)zi

))
. (4)

Similarly to the more simple cure models presented in Lambert et al. [6], π(z)
can be modelled by various link functions and the relative survival cannot
fall below π(z), thus ensuring statistical cure. The model is fitted by max-
imum likelihood using the likelihood of the mixture cure model. This cure
model enables flexible modelling of the relative survival without the strong
assumption of cure after the last knot while providing the more intuitive in-
terpretation of a mixture cure model. Also, in this model, the modelling of
the cure proportion becomes more clearly separated from the modelling of
Su(t).

2.4 The loss of lifetime function

The conditional expected residual lifetime given survival until a time point t
for patients with covariate vector z can be computed by

∫ ∞
t S(u|z)du/S(t|z).

Based on this property, the loss of lifetime function can be computed by

L(t|z) =
∫ ∞

t S∗(u|z)du
S∗(t|z) −

∫ ∞
t S(u|z)du

S(t|z) , (5)

which is the difference in expected residual lifetime after time point t between
the general population and the patients.

Extrapolation of both S∗(·|z) and S(·|z) is required to compute (5) since
the survival distributions typically cannot be fully estimated due to censor-
ing. Similarly to Andersson et al. [1], the extrapolation of the expected sur-
vival, S∗(·), can be accomplished by using the method of Ederer et al. [13]
(Ederer I) and by making assumptions about the future population mortality
rates. The latter can be carried out by using mortality rates from the last
available time point or, if available, by using predicted future mortality rates.

For the patient survival, we apply the relative survival factorization, i.e.,
S(t) = S∗(t)R(t), such that the extrapolation is based on the relative survival
and the general population survival. Extrapolation of R(·) can be enabled
by fitting a parametric relative survival model [1]. Since some cancer patient
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groups experience statistical cure after some time while others experience
persistent excess mortality, several assumptions on the relative survival can
be applied. We consider three flexible parametric relative survival models,
which mainly differ in tail:

1) the Nelson et al. [9] relative survival (NRS) model, which is linear on
the log cumulative excess hazard scale after the last knot,

2) the Andersson et al. [12] relative survival (ARS) model, which is con-
stant on the log cumulative excess hazard scale after the last knot and
thereby incorporates statistical cure, and

3) the flexible mixture cure (FMC) model in (4), which incorporates sta-
tistical cure, but is not restricted to a constant log cumulative excess
hazard after the last knot.

Due to their flexibility, the three models typically behave similarly within
the first part of the follow-up, but may produce different survival trajectories
beyond the available follow-up. In cure models, the relative survival cannot
fall below π, and thus these models have a parameter to control the asymp-
tote of the relative survival. Therefore, in cases where statistical cure occurs,
cure models may improve extrapolation as compared to non-cure models.
In cases where statistical cure does not occur, cure models may provide too
optimistic extrapolations and hence may not be appropriate. However, in
such cases, the introduced FMC model is expected to estimate π close to
zero such that the fit is mainly based on the flexible survival function, Su(t).
In the ARS model, letting π = 0, substantially affects the survival function
since this forces R(kK) = 0. Therefore, we consider the FMC model a hybrid
between the NRS and ARS models.

2.5 Implementation

Initial values for the optimization procedure for the FMC model were chosen
by first fitting a Weibull parametric cure model using only fixed covariate
effects, i.e., fitting model (1) with a Weibull formulation of Su(t) and a logis-
tic link for π. For the cure proportion, initial values were found by fitting a
linear model with the predicted cure proportions scaled by the chosen link
function as response and the cure proportion covariates as explanatory vari-
ables. For the relative survival of the uncured, initial values were found by
fitting a linear model with the log-log transformed predicted relative survival
of the uncured at the observed event times as response and the splines and
covariates of Su(t) as explanatory variables. The splines do not guarantee
that Su(t) is proper, but this can be obtained by adding a penalty for negative
values of hu(t) = −d/dt log Su(t) similarly to Liu et al. [14]. In particular, the
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term
κ

2

n

∑
j=1

hu(tj|zj)
21[hu(tj|zj) < 0]

is subtracted from the log-likelihood, where tj and zj are the observed follow-
up time and covariate vector of patient j. Initially, κ is 1, but doubles until no
negative values of hu are obtained. Orthogonalization of the base functions
of the restricted cubic splines has previously been recommended due to the
potential correlation between their base functions [15]. We employed a QR-
decomposition approach to carry out the orthogonalization.

Choosing the number and location of the knots is a key issue in spline-
based models. Similarly to Royston and Parmar, the knots of the FMC model
were selected according to the quantiles of the uncensored event times [7].
In a simulation study, Rutherford et al. [15] concluded that complex hazard
shapes can adequately be captured by the spline-based model of Royston
and Parmar [7] provided that a sufficient number of knots is selected. In
particular, the survival model was rather insensitive to the number of knots
and it was argued that the results should also be valid in relative survival
and cure models.

All analyses were performed in the statistical programming language R.
For the purpose of this article, the NRS and ARS models were fitted using the
package rstpm2 [16]. Functions for estimating the presented FMC model and
computing the loss of lifetime function were assembled in the R-package cuRe

(see https://github.com/LasseHjort/cuRe). The package also enables esti-
mation of the expected residual lifetime, restricted expected residual lifetime,
and restricted loss of lifetime using any of the models considered here. The
integrals of the loss of lifetime function are computed numerically by Gauss-
Legendre quadrature, while the point-wise variance of the loss of lifetime
function is estimated using the delta method and numerical differentiation.

3 Results

3.1 Simulation study

Simulation design

We simulated data according to selected relative survival scenarios by using
the independence assumption of the relative survival and general population
survival times. Similarly to Rutherford et al. [17], we used the following
simulation scheme:

1. Draw a general population survival time TE from S∗.

2. Draw a relative survival time, TR from R.
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3. Draw a censoring time TC from C.

4. The observed follow-up time is given by T = min(TR, TE, TC) and the
event indicator is δ = 1[min(TR, TE) ≤ TC].

Weibull Generalized gamma
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Figure 1: Relative survival functions used to simulate net survival times. In scenario 1, 2, and 3,
follow-up times were simulated from a Weibull (generalized gamma) cure model with varying
cure proportions, and in scenario 4, 5, and 6, the follow-up times were simulated from a Weibull
(generalized gamma) relative survival model.

The general population survival distribution, S∗(t), was chosen corre-
sponding to 50-, 60-, and 70-year-old female patients diagnosed in 1980. For
this purpose, we used the Danish general population mortality published by
the Human Mortality Database [18]. The relative survival, R(t), was deter-
mined by a Weibull mixture cure model according to the scenarios in Figure
1. In scenario 1, 2, and 3, the cure proportion was 40%, 40%, and 75% and
cure occurred within the available follow-up, just outside the follow-up, and
many years after the last follow-up time, respectively. In scenarios 4, 5, and
6, the cure proportion was zero and therefore the relative survival function
corresponded to a regular Weibull model. Scenario 5 was similar to 3 within
the follow-up, but differed beyond the follow-up. In scenario 4, most pa-
tients died within the follow-up and scenario 6 was included as an example
of a clear absence of cure within the follow-up. In scenarios where R(t) had
a cure proportion, follow-up times were set to ∞, if there was no solution
to the equation R(t) = U, where U is uniformly distributed between 0 and
1. To examine the extrapolation performances under different trajectories,
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we repeated the simulations after replacing the Weibull distribution with the
generalized gamma distribution.

To mimic typical register data, the censoring times were simulated from
a uniform distribution, C, between 0 and 15 years. Using S∗ and R, the true
loss of lifetime function was obtained by inserting into (5). All scenarios were
simulated 500 times with a sample size of 1000.

Model Model Nr. knots Knot locations
A NRS 6 0%, 20%, 40%, 60%, 80%, and 100% quantiles of the

uncensored event times.
B ARS 7 0%, 20%, 40%, 60%, 80%, and 100% quantiles of

the uncensored event times with an additional knot
placed at 10 years.

C ARS 7 0%, 20%, 40%, 60%, and 80% quantiles of the un-
censored event times. The last knot is placed at 80
years and an additional knot is placed at 10 years.

D FMC 5 0%, 25%, 50%, 75%, and 100% quantiles of the un-
censored event times.

E FMC 5 First uncensored event time, 0.5, 1, 2, and 5 years.

Table 1: Specification of models used to estimate the loss of lifetime function. NRS: Nelson et
al. [9] relative survival model, ARS: Andersson et al. [12] relative survival model, FMC: Flexible
mixture cure model.

For estimation of the loss of lifetime function, we considered five models
(Table 1). In order to obtain the same number of parameters in each model,
an additional knot was required for models B and C, which was placed late in
the follow-up, while for model D and E the number of knots was decreased
by one since these contain an explicit parameter for the cure proportion. Ex-
trapolation using model A and B were considered by Andersson et al. [1]. We
considered a special case of the latter model, where the last knot was placed
beyond the available follow-up. We also considered two instances of the FMC
model, i.e., D with conventional knot placement and E where the knots were
placed in the beginning of the follow-up.

For each model, the loss of lifetime function was computed and the bias
was measured by D(t) = L̂(t)− L(t). The integral,

∫ 15
0 |D(u)|du, was used to

measure the bias of the loss of lifetime estimate during the entire follow-up
period.

Simulation results

In scenarios with statistical cure (scenario 1, 2 and 3), all models had com-
parable performances at time zero for 50-year-old patients (Figure 2). In sce-
narios 1 and 3, the bias was fairly low for all models at all time points, but in
scenario 2, the non-cure model, A, yielded increasingly upward biased esti-
mates. In scenarios without statistical cure (scenario 4, 5, and 6), the diversity
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Figure 2: Loss of lifetime bias, D(t), of the models in Table 1 at time 0, 2, 5, and 10 years in
50-year-old patients following six Weibull relative survival scenarios.

between the models became larger. In these scenarios, the non-mixture cure
models, B and C, underestimated the loss of lifetime, most markedly seen in
model B which assumes cure within the follow-up period.

Generally, the FMC models, D and E, showed good performance both
in scenarios with statistical cure occurring within and beyond the available
follow-up. In scenarios where statistical cure did not occur, the performance
of the FMC models was comparable to model A, but the biases were more
dispersed for later time point, especially in scenario 4 and 6. At ten years,
the biases of model E were slightly less dispersed compared to model D.

Table 2 shows the integrated loss of lifetime biases for 50-, 60-, and 70-
year-old patients. In general, the integrated overall biases were consistent
with Figure 2 where model A, D, and E performed well across the six scenar-
ios. In comparison to model D, model E was largely producing less biased
estimates, while only being slightly worse than model A in scenario 4 and 6.
Generally, the loss of lifetime bias decreased with increasing age and hence
reduced the differences between the models. Despite the bias reduction in
70-year-olds, model B still resulted in a relatively large bias in scenario 4 and
6. The results were similar in the generalized gamma case (Figure 3 and Table
3). In particular, the models A and E showed satisfactory performance in all
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3. Results

Age Scenario pi Model A Model B Model C Model D Model E
50 1 0.40 8.6(0.9-39.2) 2.4(0.5-10.7) 4.1(0.9-19.5) 2.4(0.2-18.5) 2.6(0.3-28.6)

2 0.40 28.9(5.5-66.9) 11.7(6.0-23.1) 12.7(3.7-35.3) 11.1(0.6-68.0) 9.3(0.7-52.1)
3 0.00 8.9(0.7-42.7) 8.9(4.3-15.6) 4.8(0.9-16.4) 7.5(0.5-31.5) 7.2(0.2-23.9)
4 0.75 6.5(0.3-34.5) 144.8(123.4-171.2) 37.2(8.9-82.1) 24.9(0.3-111.8) 18.1(0.2-104.6)
5 0.00 11.0(0.2-43.3) 25.4(14.8-35.4) 13.0(3.2-31.0) 12.8(0.4-33.8) 9.6(0.3-30.9)
6 0.00 18.1(0.5-65.4) 106.6(71.6-127.7) 49.2(7.9-92.4) 36.2(0.6-103.7) 23.9(0.2-89.4)

60 1 0.40 6.0(1.3-19.4) 1.9(0.4-8.0) 3.1(0.6-13.5) 2.1(0.2-14.7) 2.4(0.2-17.6)
2 0.40 14.9(2.6-45.4) 6.4(3.4-14.9) 7.7(2.0-26.2) 7.7(0.6-40.2) 6.6(0.2-42.5)
3 0.00 7.2(0.4-39.6) 4.2(1.9-10.0) 4.0(0.4-22.7) 5.4(0.3-28.2) 4.7(0.3-19.6)
4 0.75 5.7(0.3-24.1) 79.5(64.6-93.2) 21.0(6.1-44.4) 14.2(0.3-62.4) 10.2(0.1-49.8)
5 0.00 7.5(0.3-33.4) 10.7(5.1-18.1) 5.6(1.5-18.6) 7.2(0.5-26.0) 5.0(0.2-17.9)
6 0.00 10.9(0.6-37.3) 48.2(36.4-61.2) 18.5(4.1-42.5) 16.8(1.2-50.9) 11.2(0.3-45.3)

70 1 0.40 3.6(0.9-12.4) 1.5(0.2-4.8) 2.2(0.4-7.3) 1.7(0.1-8.8) 2.0(0.1-12.9)
2 0.40 6.2(1.2-20.8) 3.4(1.5-8.8) 4.0(0.9-14.2) 4.7(0.3-19.4) 4.3(0.3-19.2)
3 0.00 4.9(0.3-20.6) 2.4(0.8-7.0) 3.3(0.3-12.9) 3.6(0.2-19.0) 2.8(0.2-11.2)
4 0.75 4.3(0.3-16.1) 34.9(26.9-44.4) 9.6(3.5-23.3) 7.3(0.2-31.3) 5.7(0.1-27.5)
5 0.00 5.3(0.4-25.2) 3.9(1.7-8.9) 3.5(0.6-14.8) 4.3(0.2-18.5) 2.9(0.1-10.5)
6 0.00 6.0(0.3-21.7) 16.5(9.9-23.8) 6.2(1.8-16.6) 6.9(0.2-23.7) 5.1(0.2-17.4)

Table 2: The integrated loss of lifetime bias in the Weibull scenario, computed by integrating
|D(t)| from 0 to 15 years. The loss of lifetime was computed for 50-, 60-, and 70-year-old patients.
The mean and range from the 500 simulations are provided.

scenarios while model D was more biased in scenario 6. Also in the gener-
alized gamma case, model E had slightly lower integrated bias compared to
model D in scenario 4, 5, and 6.

Age Scenario pi Model A Model B Model C Model D Model E
50 1 0.40 6.8(0.6-30.1) 2.4(0.4-11.3) 4.0(0.5-21.0) 2.6(0.3-29.8) 3.1(0.3-30.5)

2 0.40 23.1(5.0-48.1) 10.2(5.7-18.3) 7.1(1.8-22.8) 8.5(0.6-39.3) 10.3(0.7-43.8)
3 0.00 17.4(1.5-74.8) 10.2(4.2-19.8) 7.6(1.0-31.0) 11.2(0.8-63.1) 10.0(0.3-56.2)
4 0.75 6.7(0.2-32.6) 146.5(121.6-166.8) 39.2(10.4-75.0) 22.8(0.2-123.1) 15.4(0.2-95.0)
5 0.00 14.8(0.6-88.3) 35.9(22.7-45.6) 18.0(3.2-39.4) 18.4(0.6-77.5) 13.7(0.3-40.3)
6 0.00 16.1(0.6-72.9) 130.5(108.5-153.0) 56.1(9.8-99.7) 36.4(0.5-117.8) 21.3(0.8-100.1)

60 1 0.40 4.7(0.9-16.5) 1.9(0.2-7.5) 3.0(0.3-12.1) 2.2(0.2-14.3) 2.8(0.1-21.5)
2 0.40 12.0(2.7-35.4) 5.5(3.1-10.9) 4.6(1.0-19.4) 5.7(0.4-32.1) 7.2(0.5-35.0)
3 0.00 11.1(1.0-53.0) 5.2(2.2-11.4) 6.1(0.7-31.7) 7.4(0.8-37.6) 7.5(0.4-31.0)
4 0.75 5.8(0.2-22.2) 80.3(65.1-96.0) 21.8(7.3-42.4) 13.9(0.3-66.4) 9.5(0.2-49.4)
5 0.00 10.2(0.7-55.2) 14.8(6.9-22.4) 7.4(1.6-29.4) 9.6(0.3-33.6) 6.8(0.2-22.0)
6 0.00 9.8(0.3-37.7) 62.2(44.7-77.0) 24.1(5.9-51.5) 17.1(0.7-64.5) 11.4(0.6-54.9)

70 1 0.40 3.1(0.6-11.0) 1.4(0.2-4.8) 2.2(0.2-7.4) 1.8(0.2-8.8) 2.3(0.1-12.7)
2 0.40 5.5(1.0-16.7) 2.6(1.4-6.0) 2.9(0.4-11.1) 3.2(0.2-13.6) 4.2(0.3-14.6)
3 0.00 6.4(0.4-30.7) 2.8(1.0-8.8) 4.1(0.3-20.0) 4.6(0.4-24.6) 4.5(0.4-17.6)
4 0.75 4.2(0.3-14.9) 35.4(26.7-43.6) 10.2(3.9-23.9) 7.4(0.3-30.9) 5.4(0.2-24.0)
5 0.00 6.1(0.2-26.8) 4.9(2.3-10.5) 3.9(0.6-17.2) 4.8(0.4-26.0) 3.6(0.1-13.1)
6 0.00 6.1(0.4-23.2) 22.4(14.5-30.4) 8.0(2.4-22.7) 7.2(0.7-29.7) 5.2(0.4-25.1)

Table 3: The integrated loss of lifetime bias in the generalized gamma scenario, computed by
integrating |D(t)| from 0 to 15 years. The loss of lifetime was simulated for 50-, 60-, and 70-year-
old patients. The mean and range from the 500 simulations are provided.
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Figure 3: Loss of lifetime bias, D(t), of the models in Table 1 at time 0, 2, 5, and 10 years in
50-year-old patients following six generalized gamma relative survival scenarios.

3.2 Analysis of Danish cancer registry data

Data description

To investigate the performance of the models in Table 1 in cancer survival
data, we analyzed data from the Danish Cancer Registry [19] on patients with
colon cancer (n = 4, 558), breast cancer (n = 21, 731), bladder cancer (n =
11, 738) and malignant melanoma (n = 2404). To achieve (almost) complete
follow-up, we included patients diagnosed in the period 1960-1975, who were
older than 50 years at diagnosis. The diseases were chosen based on the
same considerations as in Andersson et al. [1], i.e., colon cancer typically
displays statistical cure, bladder cancer a constant excess hazard, melanoma
a rather high survival rate, and breast cancer is seen in both young and old
patients. Patients were followed until the end of 2016, where alive patients
were censored and follow-up was measured from diagnosis until death or
censoring. For the purpose of investigating the extrapolation performance,
we restricted the follow-up to 16 years by censoring patients alive in January
1976 and divided patients into age groups; 50-59, 60-69, 70-79, 80+. The true
loss of lifetime was calculated by inserting the Kaplan-Meier estimate into
(5), and the bias was computed by D(t). For both the true and estimated loss
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3. Results

of lifetime, the upper limit of the integrals in (5) was set to 40 years at which
time the true survival was close to zero.

Results
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Figure 4: Time-varying loss of lifetime bias using the models in Table 1 for extrapolation in
bladder cancer, breast cancer, colon cancer, and melanoma patients registered in the Danish
Cancer Registry.

Figure 4 shows the bias function for each disease and each age group
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using the five models in Table 1. The corresponding survival curves can be
found in Figure S1-S4. The models displayed varying performance across
the cancer types and age groups, but biases were commonly decreasing with
increasing age. The extrapolation performance within bladder cancer was
rather poor; in the age groups 50-59 and 60-69, the models consistently un-
derestimated the loss of lifetime function with model B being the worst. Also
for breast cancer, model B underestimated the loss of lifetime function while
model C, which assumes statistical cure beyond the follow-up, provided im-
proved results. In breast cancer, the two FMC models resulted in rather
different loss of lifetime biases, but the bias was not consistently better in
one model. For colon cancer where statistical cure is typically displayed, all
models performed fairly well in all age groups and among the melanoma
patients, model B had the best performance.

Overall, no model was consistently superior to the others, but in scenarios
of statistical cure, there was a slight advantage of using cure models. How-
ever, in scenarios without statistical cure, models B and C were substantially
biased.

3.3 Analysis of Danish lymphoma register data

Data description

To illustrate a potential clinical application of the proposed extrapolation
techniques, we analyzed patient data from the Danish Lymphoma Registry,
which covers 94.9% of all lymphoma cases in Denmark [20]. We included
adult patients (≥18 years of age) diagnosed with diffuse large B-cell lym-
phoma (DLBCL, n = 6639), follicular lymphoma (FL, n = 3204), or mantle cell
lymphoma (ML, n = 980) in the period from 2000 to 2016. The follow-up
period was terminated in June 2017 and the follow-up time was measured
from time of diagnostic biopsy to death or censoring.

Population-based loss of lifetime

For each disease, three models were fitted, namely the NRS model with 6
knots, the ARS model with 7 knots, and the FMC model with 5 knots (cor-
responding to model A, B, and D in Table 1), resulting in the same number
of parameters. Figure S5 displays the relative survival of each disease and
disease-specific summary measures are shown in Table 4.

The estimated loss of lifetime function based on the three models is shown
for each disease in Figure 5. DLBCL and ML patients had a high loss of
lifetime at diagnosis with a rapid decrease, while FL patients displayed a
fairly low initial loss of lifetime with a slow improvement.

Clearly, the three models, despite being similar in the beginning of the
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3. Results

Model DLBCL FL ML
Median age (range) 68(18-101) 63(18-97) 70(28-99)
5-year RS (95% CI) NRS 0.66(0.65-0.68) 0.9(0.88-0.91) 0.61(0.57-0.65)

ARS 0.66(0.65-0.67) 0.9(0.88-0.91) 0.61(0.57-0.65)
FMC 0.66(0.64-0.67) 0.9(0.88-0.91) 0.61(0.58-0.65)

Loss of lifetime (95% CI) NRS 7.43(7.06-7.80) 4.58(3.73-5.42) 7.66(6.86-8.46)
ARS 6.70(6.42-6.98) 3.57(3.13-4.02) 6.92(6.26-7.59)
FMC 7.21(6.86-7.55) 3.97(3.24-4.70) 7.74(6.95-8.53)

Table 4: Median age, 5-year relative survival (RS), and loss of lifetime estimates at time zero
in Danish diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell
lymphoma (ML) patients.
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Figure 5: The loss of lifetime function in Danish diffuse large B-cell lymphoma (DLBCL), follic-
ular lymphoma (FL), and mantle cell lymphoma (ML) patients.

follow-up, produce rather different conditional loss of lifetime estimates. At
time zero, the maximal difference between the models is seen to be around
1 year for FL, for which the assumption of statistical cure is typically not
reasonable. The model differences increased as time progressed, with the
largest difference seen in ML patients. The presented FMC model yielded
a compromise between the NRS and ARS models which was seen by an
intermediate loss of lifetime function. However, for the ML patients this
model resembled the NRS model and even provided slightly higher loss of
lifetime estimates.

Age-dependent loss of lifetime

The patient age at diagnosis plays a crucial role for the individual expected
residual lifetimes and thus also the loss of lifetime function. For the NRS
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model, a time-dependent age effect was specified, i.e.,

R(t|a) = exp (−exp (s0(x) + sa(a)s1(x))) ,

where a is the patient age at diagnosis, sa(a) is a spline-based age effect and
s1(x) is the corresponding time-effect. For the FMC model, (4), the same
model was used for Su(t|z) and for π(z) an age dependent spline-based
logistic model,

log
(

π

1− π

)
= β0 + sa(a).

was chosen. Since none of the diseases showed a clear statistical cure trajec-
tory, we did not consider the ARS model here. The number and location of
the knots for the baseline spline function, s0(x), remained unchanged from
Section 3.3. For sa(a), 4 knots placed at the 0%, 33%, 66%, and 100% quan-
tiles of the patient ages were selected and the intercept was removed since
this is already modelled by the baseline splines and β0. For s1(x), the number
of knots was chosen to be 3 and 2 for the NRS model and the FMC model,
respectively, yielding the same total number of parameters.
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Figure 6: The loss of lifetime conditional on 0, 2, and 5 years of survival for female diffuse large
B-cell lymphoma (DLBCL), follicular lymphoma (FL), and mantle cell lymphoma (ML) patients
diagnosed in 2010 at varying ages.

The loss of lifetime conditional on 0, 2, and 5 years of survival for female
patients diagnosed in 2010 is shown in Figure 6 for varying patient ages. In all
three cancer types, the loss of lifetime decreased with increasing diagnostic
age.

For DLBCL and ML, the two models seem to be in agreement across pa-
tient age. However, the agreement between the two models for 60-70 year old
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4. Discussion

FL patients was poor, likely due to the different model assumptions. Notably,
the models did not differ substantially for young patients even though more
extrapolation is needed to compute the loss of lifetime for these patients.

4 Discussion

In (4) we introduced a novel model, which incorporates statistical cure by
combining regular mixture cure models with spline-based survival models.
This model was compared to the NRS model, which has a linear effect in
the spline function after the last knot and the ARS model, which is constant
after the last knot and thereby incorporates statistical cure. The simulations
demonstrated a consistently good performance of the NRS model and the
FMC model. The analysis of data from the Danish Cancer Registry did not
show consistently satisfactory performance of any model, but in general as-
suming statistical cure at the end of the follow-up can lead to substantial
biases in cases where this assumption is violated, while yielding good esti-
mates when cure is reached.

The present article expanded on the study of Andersson et al. [1] by eval-
uating the accuracy of the entire loss of lifetime function using three extrapo-
lation approaches. While the loss of lifetime estimates at time zero in Figure
4 seemed to be in agreement with the results reported by Andersson et al.
where only 10 years of follow-up were used, the biases were not constant
over time.

The general population survival probabilities for young patients are high
and precise extrapolation of the relative survival is required to avoid a biased
loss of lifetime function for these patients. Confirming this, we observed
a higher bias among young patients which should be kept in mind when
reporting loss of lifetime results. With longer follow-up and higher age, the
bias will decrease and in future studies it would be of interest to estimate for a
fixed age distribution, the amount of follow-up needed to provide sufficiently
unbiased loss of lifetime estimates.

The loss of lifetime measure provides a crude measure of the cancer-
related mortality. In net measures, such as relative survival, it is often seen
that elderly patients have an increased mortality since deaths from other
causes are not taken into account. For young patients, even a small excess
mortality may have a have a large impact on the loss of lifetime function as
the expected lifetime without cancer is long. Therefore, it is often seen that
young patients have a higher loss of lifetime than elderly patients.

An alternative to the unrestricted loss of lifetime, where extrapolation is
avoided, can be obtained by replacing the upper limit of the integrals in (5)
by a fixed time point τ. In this setting, pseudo-values and flexible parametric
survival models have previously been recommended for computing the mean
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survival time [21] and could also be used for estimating the loss of lifetime
function. Using the three models to estimate the restricted loss of lifetime
would likely yield fairly similar estimates due to the model similarities in
the first part of the follow-up (Figure S5). However, interpretation of the
restricted loss of lifetime is not straightforward and the measure does not
capture the full disease burden.

5 Conclusion

Since there is no way of assessing the performance of extrapolations applied
to data with limited follow-up, the inconsistencies between the simulation
results and the full follow-up data analysis emphasize the need for sensi-
tivity analyses. We therefore recommend that extensive sensitivity analyses
are performed both with respect to the assumptions of the relative survival
model as well as the number and location of the knots of the splines as rec-
ommended previously [9, 12].
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Figure S1: The extrapolated survival function of bladder cancer patients based on 5 relative
survival models.

70−79 80+

50−59 60−69

0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Follow−up time (years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Model A
B

C
D

E
Full KM

Breast cancer

Figure S2: The extrapolated survival function of breast cancer patients based on 5 relative sur-
vival models.
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Figure S3: The extrapolated survival function of colon cancer patients based on 5 relative sur-
vival models.
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Figure S4: The extrapolated survival function of melanoma patients based on 5 relative survival
models.
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Figure S5: The relative survival of Danish diffuse large B-cell lymphoma (DLBCL), follicular
lymphoma (FL), and mantle cell lymphoma (ML) patients calculated by the Ederer II method
including confidence intervals (dashed lines), the NRS model, the ARS model, and the FMC
model.
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Description
As patients with cancer, remain alive after diagnosis, their survival will in
some cases approach that of the general population. If these eventually be-
come the same, the patients still alive are considered statistically cured. While
estimation of measures related to statistical cure, such as the proportion of
cured patients and the survival of those who are uncured, has been described
before, estimation of the time from which there is no longer any excess mor-
tality, termed the cure point, has received limited attention. The aim of this
paper was to discuss approaches and develop an appropriate method for
estimating cure points.
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1. Introduction

Abstract

In cancer studies, the term to be statistically cured is used to describe pa-
tients who over time obtain the same expected mortality risk as the matched
general population. The time to statistical cure, often coined the cure point,
is of great interest to patients, clinicians, and health care planners. As mor-
tality risks can be quantified in various ways, cure point estimation has been
handled in an ad hoc fashion in previous scientific literature, often without
considerations about margins of clinical relevance. In this article, we review
existing cure point estimators and suggest new clinically relevant estimators
based on the loss of lifetime and the conditional probability of cancer-related
death. The performance of the proposed method is assessed in a simula-
tion study and the method is illustrated on survival data from Danish colon
cancer, acute myeloid leukemia, and diffuse large B-cell lymphoma patients.
Despite the usefulness of cure points, one has to be cautious as the estimated
cure point can be very sensitive towards the choice of the clinical relevant
margin.

1 Introduction

One of the most important aims of cancer patients is to become cured, which
in general is different from reaching complete remission due to the risk of
relapse, lethal side effects, and late toxicities. However, for some cancers
the patient mortality risk reaches the same level as the general population
mortality risk. This suggests a possible formulation of cure, namely statistical
cure, which is achieved if the patients survive until the point at which the
patient and general population mortality risks become similar [1]. The time
point at which the patients become statistically cured is termed the cure point
and its estimation is the main focus of this paper.

The clinical problem of estimating cure points may be generalized by con-
sidering when the risk of a certain event in exposed individuals equals that of
unexposed individuals. One example is smoking cessation, which is associ-
ated with a short term increased risk of developing type 2 diabetes, that over
time gradually approaches that of non-smokers [2]. A natural question for
the ex-smoker is when this risk is normalized. Another example involves the
fertility of women who have terminated the use of oral contraceptives, which
is typically inferior to that of women who exclusively used diaphragms [3,
4]. However, as time progresses, the fertility returns to the same level as
previous diaphragm users. In this case the time at which the fertility level
equals that of the control group may be of interest. In the present article, we
only consider estimation of survival-related cure points for cancer patients,
although the statistical problem applies to other diseases and end-points.

77



Paper III.

In the applied setting, cure point estimation has implicitly been the focus
of a number of recent cancer studies [5–10]. Although researchers often ap-
ply ad hoc approaches to compute cure points, methods for estimating cure
points have been introduced previously. Rabinowitz and Ryan proposed a
time-varying test-statistic for establishing a lower confidence bound for the
cure point [11]. However, the lower confidence bound is difficult to inter-
pret in a clinical context and it should be used with caution since it cannot
be determined whether statistical cure has occurred or if there is simply not
enough data to show a significant excess risk. More recently, methods based
on cure models have been proposed. Lambert et al. suggested to compute the
cure point as the time at which the relative survival of the uncured patients
reaches some clinical relevant margin [12]. However, since this function is
interpreted in a rather hypothetical setting where deaths from other causes
than cancer cannot occur, deciding on such a margin may be difficult. Bous-
sari et al. proposed to compute the cure point as the time at which the con-
ditional probability of being statistically cured exceeds a specific level, e.g.,
95% [13]. However, this method relies fully on cure models, where an explicit
definition of the cure point is needed, which seems counter-intuitive.

In this article, we review existing methods and introduce a general ap-
proach for cure point estimation from cancer survival data. The performance
of the proposed method is evaluated in a simulation study and we illustrate
the method on survival data from Danish colon cancer (CC), acute myeloid
leukemia (AML), and diffuse large B-cell lymphoma (DLBCL) patients.

2 Methods

Let T be the random survival time of each patient and D the random cause
of death variable, which is either cancer or other causes. Furthermore, let Y
denote the unobserved random variable denoting whether the patients are
statistically cured (Y = 1) or uncured (Y = 0). Given a covariate vector z, we
denote the hazard and survival functions of the patient population at time
t by h(t|z) and S(t|z), respectively and those of the general population are
denoted by h∗(t|z) and S∗(t|z), respectively. The relative survival function,
R(t|z), is the ratio of the all-cause survival to the expected survival, i.e.,
R(t|z) = S(t|z)/S∗(t|z).

2.1 Cure point definition

Excess hazard and conditional relative survival

Following Rabinowitz and Ryan [11], the excess hazard, λ(t|z) = h(t|z) −
h∗(t|z), i.e., the difference between the patient and general population haz-
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ard, may be used to define the cure point as

tε(z) = inf {t| for all s ≥ t, λ(s|z) ≤ ε} .

This corresponds to the time point at which the excess hazard, λ(t|z), be-
comes lower than some prespecified clinical relevant margin ε. Rabinowitz
and Ryan suggested a time-varying test statistic for the lower confidence
bound of tε with ε = 0 and argued that the lower bound should not be
interpreted as the cure point, but only implies that for all larger time points
there is no significant excess mortality [11].

Dal Maso et al. [7] estimated the cure point as the time point at which the
conditional relative survival,

R(t + u|z)
R(t|z) ,

was sufficiently high (e.g., >95%) for a certain time point, e.g., u = 5 years.
However, determining a margin of clinical relevance for the excess hazard

or the conditional relative survival requires in depth understanding of their
meaning and scale, which can be challenging.

Cure models

While the excess hazard and the conditional relative survival may not be
appropriate for cure point estimation due to their problematic interpretation,
alternatives based on functional parts of cure models have previously been
proposed for this purpose. Cure models assume that a proportion, π, of the
patients are statistically cured, i.e., π(z) = P(Y = 1|z), while the remaining
are uncured [12]. However, Y is unobserved and thus P(Y = 1|z) cannot be
estimated directly. Instead π(z) can be estimated from a mixture cure model.
Using that the relative survival of cured patients is one, the total relative
survival can be formulated as a mixture model,

R(t|z) = π(z) + [1− π(z)]Su(t|z), (1)

where Su(t|z) is the relative survival of the uncured patients, with Su(0|z) =
1 and limt→∞ Su(t|z) = 0, and we have that limt→∞ R(t|z) = π(z). There-
fore, Lambert et al. proposed to compute the cure point as the time at which
Su(t|z) becomes sufficiently low, e.g., 10% or 5% [12]. This approach was
also used by Chauvenet et al. [5]. However, Su(t|z) is usually interpreted in
a setting where deaths from other causes than cancer cannot occur, which is
highly hypothetical for most cancer patients. Therefore, deciding on a clinical
relevant margin for this measure may be challenging.

Another cure model-based measure is the conditional probability of cure
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given survival until time t,

P(Y = 1|T > t, z) =
P(T > t|Y = 1, z)P(Y = 1|z)

P(T > t|z) =
π(z)

R(t|z) , (2)

which was proposed for cure point estimation by Boussari et al. [13]. The
cure point is estimated as the time point at which the probability of cure is
sufficiently close to one, e.g., exceeding 95%. This measure provides a more
intuitive interpretation than Su(t), but relies on accurate estimation of π(z),
which is challenging in scenarios where this is based on extrapolating beyond
the available follow-up [12].

Conditional probability of cancer-related death

The severity of a cancer can be assessed through the cancer-specific cumula-
tive incidence which can be derived from either cause of death information
or relative survival. By using the cumulative incidence, we derive the proba-
bility,

P(D = cancer|T > t, z) =
P(D = cancer, T > t|z)

P(T > t|z) (3)

=
P(T < ∞, D = cancer|z)− P(T ≤ t, D = cancer|z)

P(T > t|z) ,

where P(T < ∞, D = cancer|z) = P(D = cancer|z) is the probability of
dying due to cancer given covariates z. This function provides the conditional
probability of eventually dying from cancer given survival until time t. Since
all patients are bound to die at some point, computing 1−P(D = cancer|T >
t|z) yields the conditional probability of eventually dying from other causes
than cancer. For a given clinical relevant margin, the cure point can then be
estimated as the time at which the probability of cancer-related death falls
below the margin. Eloranta et al. [14] originally introduced this probability
measure by considering specific models such that P(D = cancer) = P(T ≤
tc, D = cancer) for a finite time point tc, but we do not employ this restriction
here.

Loss of lifetime

Due to its straightforward interpretation, the mean residual lifetime, which
can be computed by

∫ ∞
t S(u|z)du/S(t|z), is occasionally used as an alterna-

tive to conventional effect measures in survival analysis. In addition to the
already introduced measures, we consider the loss of lifetime function, given as
the difference between the mean residual lifetime of the general population
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and the patient population, i.e.,

L(t|z) =
∫ ∞

t S∗(u|z)du
S∗(t|z) −

∫ ∞
t S(u|z)du

S(t|z) . (4)

This function yields the conditional number of years lost due to the cancer
given survival until time t after the diagnosis. Similarly to the probability of
cancer-related death, the cure point can be defined as the time at which the
loss of lifetime becomes sufficiently low.

2.2 Estimation

For convenience, we introduce a general comparison measure, G(h, h∗)(t), quan-
tifying the difference between the patient and the general population hazard.
For notational convenience we will write G(t|z) = G(h, h∗)(t). An estimate
of G, Ĝ, is obtained by plugging in the estimated hazard function, ĥ(t, z), and
the known general population hazard function, h∗(t, z). For the purpose of
cure point estimation, we focus on the probability of cure (2), the probability
of cancer-related death (3), and the loss of lifetime function (4).

Extrapolation

In order to compute the loss of lifetime and probability of cancer-related
death from right-censored follow-up data, extrapolation of the involved sur-
vival functions and cause-specific hazard functions beyond the available fol-
low-up period is required. For the loss of lifetime function, the expected
survival, S∗(t|z), can be extrapolated using the method of Ederer et al. [15]
(Ederer I) and by making assumptions about the future population mortality
rates [16]. For extrapolating the patient survival, S(t|z), a common strategy
is to incorporate external data to provide accurate extrapolations [17]. In
particular, flexible parametric relative survival models enable extrapolation
directly and has previously demonstrated good performance in long term
survival data and simulations [18].

For the conditional probability of cancer-related death, the cancer-specific
cumulative incidence is computed by

P(T ≤ t, D = cancer|z) =
∫ t

0
S(u|z)λcs(u|z)du, (5)

where λcs is the cancer-specific hazard. Cause of death information is re-
quired to compute (5), but these are often incomplete and difficult to deter-
mine. Instead of relying on exact cause of death information, flexible para-
metric relative survival models can be used to compute the cancer-specific
hazard by λcs(t|z) = λ(t|z) and the overall survival by S(t|z) = S∗(t|z)R(t|z),
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as well as extrapolate both functions [19]. Again, S∗(t|z) can be extrapolated
using the Ederer I method.

Extrapolation is not require for the probability of cure (2) unless the cure
point is outside the available follow-up in which case the probability can be
directly extrapolated by using a parametric cure model.

Flexible relative survival models

Royston and Parmar introduced a fully parametric proportional hazards mo-
del with the log cumulative baseline hazard modelled by restricted cubic
splines [20]. This model was extended to relative survival by Nelson et al.
who modelled the log cumulative baseline excess hazard by restricted cubic
splines [21]. That is, the relative survival is specified by,

log [− log(R(t|z))] = s0(x, γ) + zT β, (6)

where s0 is a restricted cubic spline and x = log(t). We refer to this model as
the NRS model. Andersson et al. altered the base functions of the restricted
cubic splines in (6) to establish a cure model, which we will refer to as the
ARS model [22]. In this model, the excess hazard is restricted to be zero
beyond the last knot of the splines, resulting in a flat relative survival after
this point. Lastly, we consider the flexible mixture cure (FMC) model intro-
duced by Jakobsen et al. [18], where Su(t) is modelled by the splines of the
Royston-Parmar model, i.e.,

R(t|z) = π(z) + [1− π(z)]exp
(
−exp

(
s0(x, γ) + zT β

))
.

Due to the their flexibility, these models often provide similar estimates, but
differ in the tail of their distributions, which controls the trajectory beyond
the available follow-up. The NRS model is linear on the log-log scale beyond
the last knot, while the ARS model is constant after the last knot. The splines
of the FMC model are also linear beyond the last knot, but the relative sur-
vival is bounded downward by π(z). The parameters of each model can be
estimated by maximum likelihood.

Cure points

For 1 - the probability of cure (2), the probability of cancer-related death (3),
and the loss of lifetime (4), survival improvement corresponds to a decrease
in the comparison measure, G. Hence, for a clinical relevant margin, ε, the
cure point is estimated by solving the equation

Ĝ(t|z) = ε, (7)
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with respect to t. The variance of the cure point estimate can be calculated by
the delta method (see Section S1) after appropriate smoothing of the general
population survival.

We implemented the method in the R-package cuRe, see https://github.

com/LasseHjort/cuRe. The package contains functions for fitting FMC mod-
els as well as computing the probability of cure (2), the probability of cancer-
related death (3), and the loss of lifetime (4). The comparison measures can
be computed using both the NRS, ARS, and the FMC model, except for the
probability of cure, which can only be computed from cure models. The
package also contains functions for computing cure points and correspond-
ing variances based on either of the three comparison measures.

3 Simulation study

3.1 Simulation design

To investigate the performance of the proposed method, we conducted a sim-
ulation study. Data were simulated using a relative survival approach, asum-
ming independence between the relative survival and the general population
survival [23]. That is, the observed follow-up time was min(x, x∗, c), where
x, x∗, and c were realizations generated from R(t), S∗(t), and a censoring
distribution C(t). The status indicator was 1[min(x, x∗) ≤ c].

The general population survival function, S∗, was derived using a Dan-
ish life table from the Human mortality database [24]. For simplicity, all
patients were assumed to be 60-year-old females diagnosed in 1980. The
relative survival was simulated from the mixture cure model in (1) using a
Weibull distribution for Su. We considered three scenarios with varying lev-
els of severity mainly controlled by the cure proportion, π (see Figure S1 for
the relative survival trajectories). To mimic register data, the censoring distri-
bution was chosen to be uniform(0, 10). The simulations were repeated 500
times using a sample size of 2,000.

3.2 Simulation results

For a given clinical relevant margin, ε, and comparison measure, G(t), the
true cure point, tε, was obtained by inserting the true hazard into G(t) and
solving (7). Cure point estimates, t̂ε, were obtained by fitting a relative sur-
vival model and inserting the estimated hazard into G(t) and solving (7). We
considered 4 relative survival models for this purpose:

• The ARS model with knots placed at the 0, 25, 50, 75, and 95 percentiles
of the uncensored follow-up times and the last knot at 10 years. If the
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95 percentile was smaller than 4 years, an additional knot was placed
at 6 years.

• The FMC model with knots placed at the 0, 33, 67, and 100 percentiles
of the uncensored follow-up times. The cure proportion was modelled
using a logit link function as suggested by Lambert et al [12].

• The NRS model with knots placed at the 0, 25, 50, 75, and 100 per-
centiles of the uncensored follow-up times.

• The Weibull mixture cure model from which the data were simulated.
This model was included to assess the performance using the "true"
model.

ARS model FMC model NRS model Weibull mixture
ε tε Bias Var(t̂ε) ECP (%) Bias Var(t̂ε) ECP (%) Bias Var(t̂ε) ECP (%) Bias Var(t̂ε) ECP (%)

Loss of lifetime
Scenario 1

1.00 3.34 0.05 0.06 92.8 0.04 0.04 95.0 0.32 0.64 96.2 0.01 0.02 94.4
2.00 2.86 0.04 0.02 93.8 0.03 0.02 95.6 0.15 0.17 97.2 0.01 0.01 94.8
3.00 2.55 0.03 0.01 93.6 0.02 0.01 95.6 0.07 0.07 96.8 0.01 0.01 95.2

Scenario 2
1.00 4.15 0.09 0.07 92.8 0.06 0.06 95.2 0.89 2.14 94.8 0.02 0.03 94.6
2.00 3.55 0.05 0.03 94.0 0.04 0.03 94.6 0.33 0.36 97.0 0.01 0.02 94.4
3.00 3.15 0.04 0.02 94.4 0.03 0.02 95.2 0.15 0.13 96.2 0.01 0.01 94.4

Scenario 3
1.00 3.05 0.08 0.04 88.4 0.22 0.28 96.6 1.12 1.49 90.4 0.07 0.06 93.8
2.00 2.16 0.05 0.03 92.4 0.11 0.07 95.0 0.37 0.22 94.2 0.05 0.03 94.4
3.00 1.61 0.03 0.02 93.4 0.07 0.03 93.6 0.20 0.06 91.8 0.04 0.02 92.6

Conditional probability of cancer-related death
Scenario 1

0.05 3.39 0.05 0.07 92.8 0.05 0.05 95.0 0.45 3.30 92.8 0.02 0.02 94.4
0.10 2.89 0.04 0.03 93.6 0.03 0.02 95.4 0.17 0.56 94.4 0.01 0.01 94.6
0.15 2.57 0.03 0.02 93.6 0.03 0.02 95.6 0.06 0.20 95.0 0.01 0.01 95.0

Scenario 2
0.05 4.24 0.11 0.09 91.8 0.07 0.07 95.2 2.06 14.47 88.8 0.02 0.03 94.4
0.10 3.62 0.06 0.04 94.2 0.05 0.04 94.8 0.68 2.08 95.8 0.02 0.02 94.8
0.15 3.22 0.05 0.02 94.6 0.04 0.02 95.2 0.31 0.54 97.0 0.02 0.02 94.4

Scenario 3
0.05 3.15 0.09 0.05 87.6 0.31 0.71 96.2 2.78 9.56 85.2 0.09 0.07 94.0
0.10 2.22 0.06 0.03 92.2 0.16 0.15 96.2 0.82 1.07 95.6 0.06 0.04 94.4
0.15 1.64 0.03 0.02 93.0 0.10 0.05 94.8 0.41 0.24 94.4 0.05 0.02 93.0

Conditional probability of cure
Scenario 1

0.05 3.39 0.05 0.07 92.4 0.05 0.05 95.0 0.02 0.02 94.4
0.10 2.90 0.04 0.03 93.6 0.03 0.02 95.2 0.01 0.01 94.6
0.15 2.58 0.03 0.02 93.6 0.03 0.02 95.6 0.01 0.01 95.0

Scenario 2
0.05 4.25 0.12 0.09 91.8 0.07 0.08 95.2 0.02 0.03 94.4
0.10 3.63 0.06 0.04 94.4 0.05 0.04 95.0 0.02 0.02 94.8
0.15 3.23 0.05 0.02 94.8 0.04 0.02 95.2 0.02 0.02 94.4

Scenario 3
0.05 3.17 0.09 0.05 87.6 0.32 1.50 96.0 0.09 0.08 94.2
0.10 2.24 0.06 0.03 92.2 0.16 0.29 96.2 0.06 0.04 94.4
0.15 1.66 0.04 0.02 93.0 0.10 0.09 95.6 0.05 0.02 93.6

Table 1: Bias, variance, and coverage of the cure point estimate in simulated data. The cure point
estimates were based on the loss of lifetime function, the probability of cancer-related death, and
the probabiltiy of cure. The NRS model was not evaluated for the latter measure since this is not
a cure model. ARS: relative survival model by Andersson et al. [22], FMC: flexible mixture cure
model by Jakobsen et al. [18], NRS: relative survival model by Nelson et al. [21], ECP: empirical
coverage probability.

The cure point bias was computed as 1
500 ∑500

j=1 t̂ε,j − tε, where t̂ε,j is the
cure point estimate in the jth simulation. The empirical coverage probability

84



3. Simulation study

(ECP) was calculated as the proportion of simulations where tε was within
the 95% confidence interval of t̂ε and we denote by Var(t̂ε) the empirical
mean variance across all simulations. The bias, mean variance, and ECP
of the estimated cure points are displayed in Table 1 for each scenario and
for varying clinical relevant margins. The cure point was calculated using
the loss of lifetime (4), the probability of cancer-related death (3), and the
probability of cure (2).

Across all three measures, the results were fairly similar displaying smaller
biases for larger clinical relevant margins. The biases obtained by using the
ARS, FMC, and Weibull mixture cure models were low, while larger biases
were seen for the NRS model. However, the tail of the NRS model, which is
not a cure model, varies from that of the mixture cure model used to generate
the survival times. Since both the loss of lifetime (4) and conditional proba-
bility of cancer-related death (3) require extrapolation, this likely explains the
inferior performance of the NRS model.

The variances and biases of the ARS and FMC models were similar, but
slightly elevated compared to the true Weibull model. In scenario 3, the FMC
model showed subpar performance with respect to both bias and variance,
but the ECP remained sufficiently high. In fact, the FMC model was the only
model with a majority of the ECPs exceeding 95%. The ECP of the ARS model
was slightly lower than expected in scenario 3 using the lowest margin. This
may be explained by the combination of the biased estimates and a relatively
small cure point variance. Since the ARS model is restricted to have zero
excess hazard beyond its last knot, the cure point estimate will typically be
affected by the location of this knot. For general cure point estimation, we
therefore suggest that other models are used or that the last knot of the ARS
model is placed well beyond the point at which the excess hazard can be
assumed to be zero. In these simulation, the good performance of the ARS
model may be explained by the relative survival models used for simulating,
where a clear cure pattern was assumed within the follow-up period.

The NRS model was not assessed for the probability of cure (2) since a
cure model formulation of the relative survival is required. In two out of 500
simulations, no solution to (7) was found within 80 years for the probability
of cure using the FMC model. From inspection of these cases, the models
seemed to fit the data well, although the cure proportion estimates were sub-
stantially downward biased which directly affects the probability of cure, and
thus the cure point estimate. This identifiability issue is the main criticism
of using (2) as comparison measure. In real world data, the assumption of
statistical cure will typically be more difficult to verify. Therefore, it is ex-
pected that this problem occurs more frequently than in these simulations.
This problem was not observed for the ARS model, due to its restrictions
after the last knot, nor the Weibull mixture cure model from which the data
were simulated.
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4 Analysis of Danish cancer register data

4.1 Data description

To illustrate the proposed method, we analyzed patient data from three ma-
lignant diseases: CC, AML (not otherwise specified), and DLBCL retrieved
from the Danish Colorectal Cancer Group Database [25], the Danish National
Acute Leukemia Registry [26], and the Danish National Lymphoma Reg-
istry [27], respectively. Each register ensures accurate follow-up on deaths
by merging with the Danish Civil Registration System [28]. The selection of
the three diseases was based on previous studies displaying statistical cure in
CC (≥20 years of age), AML, and DLBCL (18-50 years of age) patients [8, 10,
29]. For CC and AML all adult patients (≥18 years of age) diagnosed between
2000 and 2016 were included, while only DLBCL patients between 18 and 50
years of age were included. Follow-up was measured as the time from di-
agnosis until death or censoring (June 2017). The Danish general population
mortality rates were obtained from a publicly available life table retrieved
from the Human Mortality Database [24]. When mortality rates for calendar
years beyond those available in the life table were needed, the age- and sex-
specific rates from the last available calendar year were used. The study was
approved by the Danish Data Protection Agency (2008-58-0028). The FMC
model was fitted separately to each disease using four knots placed at the 0,
33, 67, and 100 percentiles of the uncensored follow-up times and a logit link
function for the cure proportion.

4.2 Results

In total, 42,380 CC, 1,887 AML, and 762 DLBCL patients were included in
the study. The 5-year Kaplan-Meier estimate was 49% (95% CI, 48-49%), 15%
(95% CI, 13-17%), and 83% (95% CI, 80%-86%) for CC, AML, and DLBCL,
respectively. The fitted FMC models are shown in Figure 1 together with a
non-parametric relative survival estimate calculated by the Ederer II method
[30]. Estimates of the 5-year relative survival, the cure proportion, the prob-
ability of dying due to cancer, and the baseline (at time zero) loss of lifetime
are shown in Table 2. Each disease showed an immediate steep relative sur-
vival function which ultimately flattens out. The plateau level of the diseases
differed greatly. Among the young DLBCL patients, the cure proportion was
rather high while for the AML patients it was low, with few patients alive
after 10 years.

The loss of lifetime function and the conditional probability of cancer-
related death are shown in Figure 2. For the AML patients, the loss of lifetime
was initially large followed by a steep decrease during the first five years. The
same pattern was seen in the conditional probability of cancer-related death.
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Figure 1: The relative survival of Danish CC, AML, and DLBCL patients calculated by the Ederer
II method including 95% confidence intervals (dashed lines) and the flexible mixture cure (FMC)
model.

CC (n = 42,380) AML (n = 1,887) DLBCL (n = 762)
Mean age (range) 72(22-105) 67(18-99) 40(18-50)
5-year RS (Ederer II) 0.61(0.60-0.61) 0.16(0.15-0.18) 0.84(0.81-0.87)
5-year RS (parametric) 0.60(0.59-0.61) 0.17(0.15-0.18) 0.84(0.81-0.87)
Cure proportion 0.54(0.53-0.56) 0.14(0.12-0.16) 0.79(0.67-0.88)
Probability of dying due to cancer 0.42(0.41-0.42) 0.83(0.81-0.85) 0.20(0.15-0.25)
Baseline loss of lifetime (years) 5.87(5.77-5.97) 15.13(14.81-15.45) 7.43(5.93-8.92)

Table 2: Relative survival estimates, cure proportion, probability of dying due to cancer, and
baseline loss of lifetime estimates. CC: colon cancer, AML: acute myeloid leukemia, DLBCL:
diffuse large B-cell lymphoma, RS: relative survival.

The loss of lifetime trajectories were similar between the young DLBCL pa-
tients and the CC patients despite the superior relative survival of the DLBCL
patients. This is likely explained by the lower age of the DLBCL patients.
However, the conditional probability of cancer-related death was higher in
CC compared to the DLBCL patients. Thus, while the relatively small ex-
cess mortality among the young DLBCL patients heavily influences the loss
of lifetime function, it does not have as big an impact on the probability of
cancer-related death.

Figure 3 displays the estimated cure point in each disease, obtained by
solving (7), for a varying level of clinical relevance. Whenever the margin of
clinical relevance was low, small changes to the margin implied substantial
changes in the estimated cure point, but for larger values, the cure point
became less sensitive towards the choice of margin. For example, increasing
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Figure 2: Upper: The loss of lifetime function within the first 15 years after diagnosis for Danish
CC, AML, and DLBCL patients. The dashed lines indicate cure point estimates based on three
different clinical relevant margins; 1, 2, and 3 years. Lower: The conditional probability of cancer-
related death within the first 15 years after diagnosis for Danish CC, AML, and DLBCL patients.
The clinical relevant margins are 0.05, 0.10, and 0.15. The shaded areas indicate pointwise 95%
confidence intervals.

the margin for the loss of lifetime function from 3 years to 4 years in DLBCL
resulted in a decrease in the cure point estimate from 2.08 to 1.39 years, while
increasing the margin from 0.5 to 1 year resulted in a decrease from 10.90 to
6.34 years.

For colon cancer, the patients were stratified according to age group (-60,
60-70, 70-80, 80-), gender, and clinical stage (UICC stage I-II, III-IV) and the
FMC model was fitted to each subgroup separately. The stratified cure point
estimates computed using the conditional probability of cancer-related death
(see Figure S2 and S3) as comparison measure and three clinical relevant
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Figure 3: The estimated cure points with 95% confidence intervals against the clinical relevant
margin in CC, AML, and DLBCL patients. For the loss of lifetime function, the margin is given in
years. CC: colon cancer, AML: acute myeloid leukemia, DLBCL: diffuse large B-cell lymphoma.

margins (0.025, 0.05, and 0.075) are shown in Figure 4.
The cure point estimates of female and male patients displayed similar

trends. In certain strata, the confidence interval of the cure point was wide,
which makes the usability of these estimates difficult. For other subgroups,
the variance was reasonably small and led to stable estimates. The cure point
for low stage patients >80 years of age was very small, and due to the slope
of the conditional probability of cancer-related death (Figure S2 and S3), the
corresponding confidence interval was narrow.

5 Discussion

Cure points enable communication of prognostic information to cancer pa-
tients and are particularly useful for patients attending routine follow-up.
Also health care planners may find cure points useful, e.g., for deciding the
duration of the follow-up period. If an early cure point is detected, the du-
ration may be adjusted accordingly, which potentially lowers the cost of the
follow-up program and avoids unnecessary patient anxiety. However, the
detection of long term toxicities is typically also a goal of routine follow-up
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Figure 4: The estimated cure point for Danish colon cancer patients stratified on age group
(-60, 60-70, 70-80, 80-), gender, and stage (UICC stage I-II vs. III-IV). The estimates are based
on the conditional probability of cancer-related death (see Figure S2 and S3). UICC: Union for
International Cancer Control.

programs and should be considered alongside the mortality risk.
We presented a general framework for the estimation of cure points from

cancer survival data. Such a framework has not previously been established
and researchers often consider ad-hoc methodologies to obtain cure point-
like estimates. In recent studies of lymphoma, Maurer et al. and Hapgood
et al. used sequential testing of standardized mortality ratios to evaluate the
survival improvement of the patients [6, 9]. In our previous work, we com-
bined the same standardized mortality ratio approach with restricted loss
of lifetime estimates within DLBCL and concluded that the patients had a
sufficiently low restricted loss of lifetime after 2 years of event-free survival
[10]. Since hypothesis testing is generally sample size dependent, using a
sequential testing approach implies that the cure point is likely to occur later
for larger data sets. Therefore, approaches that directly involve hypothesis
testing are not appropriate for cure point estimation. Dal Maso et al. [7] com-
puted the cure point of various cancers using the conditional relative survival
approach, while Chauvenet et al. [5] computed the cure point of colorectal
patients as the time at which the relative survival of the uncured fell below

90



5. Discussion

10%. Andersson et al. used the loss of lifetime approach to evaluate the sur-
vival progression of colon cancer patients and argued that the loss of lifetime
was sufficiently low after 8-10 years of survival [8].

In studies of statistical cure or similar measures in cancer survival, the
results should be interpreted with respect to the inclusion criteria of the
study. For instance, if a study includes patients treated with a specific ther-
apy, which is typically not given to frail patients, or merely includes patients
with high socioeconomic status, the resulting patient population may be in
slightly better shape than the general population. Thus, for patients achiev-
ing statistical cure, a significant excess mortality may still exist if compared
to non-diseased individuals with similar physical capabilities or similar so-
cioeconomic status.

The main issue with the loss of lifetime function and the conditional prob-
ability of cancer-related death is the need for extrapolation for which the ac-
curacy cannot be assessed. Therefore, sensitivity analyses are recommended
to accompany these estimates [18]. To avoid extrapolation, the model by An-
dersson et al. where cure is assumed at a specific time point, can be used
to compute these measures [22]. However, estimating the cure point from
a model where the cure point is explicitly defined seems counter-intuitive
and we do generally not recommend this approach. Nevertheless, Boussari
et al. used this model to estimate the cure point by using the probability of
cure (2) [13]. As demonstrated in the simulation study, (2) could also be com-
puted from regular cure models where cure occurs at an asymptote (the FMC
model or the Weibull mixture cure model). However, computing (2) would
require reliable cure proportion estimates which can be problematic in some
scenarios due to the intrinsic identifiability issue of cure models which makes
the cure proportion sensitivity towards the tail of the parametric distribution
[12].

Deciding on margins of clinical relevance is an essential part of the present
methodology. The approach is known from non-inferiority testing where hy-
pothesis testing is conducted using a non-inferiority margin [31]. The choice
of clinical relevant margin may be based on, e.g., the age and gender distribu-
tion of the considered patient population, or if single-patient cure points are
of interest, the specific characteristics of the patient. Therefore, it is important
that researchers with experience within the field of research aid in deciding
on a clinical relevant margin which also emphasizes the need for considering
comparison measures that are interpretable to non-statisticians.

The search for surrogate end-points to be used in clinical trials in order
to increase the pace at which these are executed has been the focus of recent
cancer studies [32]. Cure points may be used to derive new surrogate end-
points, since prolonging the study period beyond the cure point may not
be necessary. However, as previously observed by Stephens et al. [33], long
term risks cannot be observed in studies with short follow-up and additional

91



Paper III.

validation of new end-points in a series of clinical trials is required [34].
Using the conditional probability of cancer-related death, stratified cure

points were computed for the colon cancer patients. However, to obtain cure
points more applicable to the clinical setting and to potentially decrease the
variance, modelling of the covariates could be utilized instead. For relative
survival models, proportional excess hazards models are commonly used,
and non-proportional hazards can readily be obtained by including time-
varying covariate effects [35, 36]. Based on the fitted relative survival model,
the individual cure point estimate can be computed by solving (7) using a
patient-specific clinical relevant margin.

Because of the varying survival trajectory of cancers, cure points are not
useful for all diseases, particularly not cancers where statistical cure is not
achieved. To accompany analyses of statistical cure, a formal test for the
assumption of statistical cure would be convenient. Formal tests based on
simple parametric models have previously been introduced [37, 38], but these
are not commonly used and suffer from a number of practical disadvantages
[39].

The sensitivity of the cure point towards the choice of clinical relevance
is a key criticism of the present approach. As demonstrated in Section S1,
the variance of the cure point is inversely proportional to the derivative of
the comparison measure evaluated at the estimated cure point. Therefore,
the cure point is fairly robust whenever the progression measure is steep
and sensitive whenever the progression measure is flat. Also, if only a slow
improvement is seen in the comparison measure, the cure point may change
dramatically if the margin is slightly changed. We suggest that the sensitivity
should be tested and discussed whenever cure points are estimated.
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Supplementary

S1 Variance of the cure point estimator

In the following, we derive a variance estimator for the cure point estimator
using the delta method under the assumption that the hazard function h(t, θ)
has a parametric form with parameters θ. Denote the parameter estimator
by θ̂, and assume that

√
n(θ̂− θ0) is asymptotically normal with mean 0

and variance Σ, where θ0 is the true parameter value and Σ is the inverse
information matrix, i.e., minus the inverse of the expected Hessian matrix of
the likelihood function evaluated at θ0.

Let G(t, θ) = G(h, h∗)(t) be the strictly monotone comparison measure at
time t obtained by inserting the parameters of the hazard function into the
comparison measure and assume that G is continuously differentiable with
respect to θ and t. Furthermore, let tε = G−1(ε, θ) and t̂ε = G−1(ε, θ̂) for a
fixed clinical relevant margin, ε. The variance of t̂ε can then be approximated
directly by using the the delta method, i.e.,

Var
[
t̂ε

]
≈ 1

n
(
∇θtε|θ=θ̂

)
Σ
(
∇θtε|θ=θ̂

)T . (8)

Due to the definition of tε,

∇θG(tε, θ)|θ=θ̂ = 0,

and by the chain rule of vector functions we have that

∇θG(tε, θ)|θ=θ̂ =
∂G(t, θ)

∂t
|t=t̂ε ,θ=θ̂∇θtε|θ=θ̂ +∇θG(t, θ)|t=t̂ε ,θ=θ̂.

Thus,

∇θtε|θ=θ̂ = −
(

∂G(t, θ)

∂t
|t=t̂ε ,θ=θ̂

)−1

∇θG(t, θ)|t=t̂ε ,θ=θ̂.

Inserting into (8) yields

Var
[
t̂ε

]
=

1
n

(
∂G(t, θ)

∂t
|t=t̂ε ,θ=θ̂

)−2 (
∇θG(t, θ)|t=t̂ε ,θ=θ̂

)
Σ
(
∇θG(t, θ)|t=t̂ε ,θ=θ̂

)T

≈
(

∂G(t, θ)

∂t
|t=t̂ε ,θ=θ̂

)−2

Var
[
G(t, θ̂)

]
|t=t̂ε

,

where Var
[
G(t, θ̂)

]
|t=t̂ε

is the variance of G(t̂ε, θ̂) without taking into account
the uncertainty of t̂ε, i.e., the point-wise variance of G evaluated at the point
t̂ε. For obtaining a non-negative confidence interval for the cure point, t̂ε, the
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variance of the log-transformed estimator is computed by the delta method:

Var
[
log(t̂ε)

]
≈ 1

t̂2
ε

Var
[
t̂ε

]
≈ 1

t̂2
ε

(
∂G(t, θ)

∂t
|t=t̂ε ,θ=θ̂

)−2

Var
[
G(t, θ̂)

]
|t=t̂ε

.
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Figure S1: The relative survival trajectories of the models from which the simulated data were
generated.
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Figure S2: The conditional probability of cancer-related death in Danish female colon cancer
patients stratified on age group (-60, 60-70, 70-80, 80-) and stage (UICC stage I-II vs III-IV).
UICC: Union for International Cancer Control.
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Figure S3: The conditional probability of cancer-related death in Danish male colon cancer
patients stratified on age group (-60, 60-70, 70-80, 80-) and stage (UICC stage I-II vs III-IV).
UICC: Union for International Cancer Control.
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Description
In this paper, we introduced a general framework for estimating parametric
cure models. Cure models are particular useful in situations, where some
individuals will never experience the event of interest, or in situations where
the observed survival becomes the same as the survival of the general popu-
lation. These two scenarios are indicated by a plateau in the survival function
and relative survival function, respectively. The primary entity of interest in
cure models is the proportion of the individuals who are cured. In a relative
survival context cured individuals have the same mortality as the general po-
pulation. The aim of this study was to i) develop a framework for estimating
cure models, which allows for a wide range of models specifications, and ii)
assess the performance of cure models, which incorporate the assumption of
a cured proportion in different ways.
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1. Introduction

Abstract

Cure models are used in time-to-event analyses in cases where not all indi-
viduals are expected to experience the event of interest. Cure models have a
long history in the statistical literature and during the last two decades, cure
models for the relative survival have also been discussed. The main parame-
ter of interest in cure models is the proportion of individuals who are cured,
termed the cure proportion, but also the survival function of the uncured
individuals may be estimated. Within relative survival, the cure proportion
denotes the fraction of individuals who experience the same survival function
as the general population. These entities can be estimated from two general
classes of models, namely explicit and latent cure models, which deviate in
their inclusion of explicit parameters for the cure proportion.
In this article, we introduce a general parametric formulation of both explicit
and latent cure models together with a general estimation framework and
software, which enable fitting of a wide range of different models. Through
simulations, we assess the estimation accuracy of both explicit and latent cure
models with respect to the cure proportion and the survival of the uncured
individuals. Finally, we illustrate the models on colon cancer data and data
on diffuse large B-cell lymphoma patients, for whom cause of death informa-
tion was available.
As demonstrated in the simulations, explicit cure models which are not guar-
anteed to be constant after a finite time point tend to produce accurate esti-
mates of the cure proportion and the survival of the uncured. However, these
models are very unstable in certain cases, whereas latent cure models gener-
ally provide stable results at the price of more biased estimates.

1 Introduction

In time-to-event analyses, it is typically assumed that all included individ-
uals are susceptible to the event of interest. However, in some scenarios it
is reasonable to assume that a fraction of the individuals will never experi-
ence the event of interest. These individuals could be considered cured of the
event and the observed population would be a mixture of cured and uncured
individuals. For instance, a proportion of first-time mothers will never give
birth to a second child, and thus the survival function corresponding to the
time until birth of the second child reaches a plateau after a number of years
[1]. Cure models, which have a long history in the statistical literature, are
particularly useful for analyzing time-to-event data, which exhibits such pat-
terns [2]. The two main entities of interest in cure models are the proportion
of cured individuals and the time-to-event survival function of the uncured
individuals.
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While cure models have been employed for analyzing the time to death
for cancer patients with the aim of estimating the proportion of long-term
survivors [3–5], this may not always be appropriate as especially elderly pa-
tients can also die from other causes than the cancer. Instead the proportion
of the individuals who have the same survival as the general population may
be estimated by using a cure model formulation for the relative survival func-
tion [6–8]. Individuals with the same mortality as the general population are
said to be statistically cured and the presence of such individuals is indicated
by a plateau in the relative survival function given that the follow-up is suf-
ficiently long. Relative survival has previously been used to quantify the net
survival, i.e., the survival of patients with a specific disease in the scenario
where they can only die from the considered disease [9]. Perme et al. gave a
comprehensive discussion on the relation between net and relative survival
[10].

The Cox proportional hazards model remains the most popular model
in medical research even though parametric survival models have proven
useful for many applications. Since standard parametric distributions are
typically too restrictive to provide a sufficiently good fit, developing more
flexible alternatives is an active research area, best exemplified by the spline-
based Royston-Parmar model [11]. The Royston-Parmar model was recently
generalized by Liu et al. by using a link-based approach that allows for a
wide range of smoothers and functional forms [12].

Non-parametric cure models for the all-cause survival have previously
been established by using the Kaplan-Meier estimator and, more recently,
by utilizing an expectation-maximization scheme [4, 13]. However, non-
parametric cure models for the relative survival function have not previously
been developed. Parametric cure models are often based on maximum like-
lihood estimation and are therefore easily extendable to relative survival [6,
7]. The Royston-Parmar model has previously also been used to model the
relative survival function, which only requires minor changes to the fitting
procedure due to the parametric formulation of the model [14]. Andersson
et al. suggested a cure model version of this model by forcing the splines of
the Royston-Parmar model to be constant after the last knot [15].

In this article we introduce a general link-based formulation of two classes
of parametric cure models, namely explicit and latent cure models. While ex-
plicit cure models contain explicit parameters for the cure proportion, latent
cure models introduce a cure proportion by incorporating a plateau in the
relative survival function similarly to Andersson et al. [15]. We introduce a
general modelling framework using maximum likelihood, which enables var-
ious time and covariate effects for the cure proportion and the survival of the
uncured individuals. For establishing the latent cure models, we introduce
a methodology for restricting the trajectory of polynomial splines to be con-
stant beyond their boundary knots. In a simulation study, we will examine
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2. Methods

the ability of latent and explicit cure models to estimate the cure proportion
and corresponding covariate effects. Finally, we analyze Danish colon cancer
data, which often display statistical cure, and Danish lymphoma data with
available cause of death information. Without loss of generality, we focus on
parametric cure models for the relative survival function.

2 Methods

Assume we observe i.i.d. right-censored event times, i.e., triplets (Ti, δi, zi) for
individuals i = 1, ..., n, where Ti = min(Xi, Ci), Xi is the time to event, Ci is
the censoring time, δi = 1[Xi ≤ Ci] is the event indicator, and zi is a covariate
vector for the ith individual. We denote by S(t|z) = 1 − F(t|z) = P(X >
t|z) the survival function associated with X, while H(t|z) = − log[S(t|z)] is
the cumulative hazard and h(t|z) = dH(t|z)/dt is the corresponding hazard
function.

We denote by S∗(t|z) the general population survival function and define
the relative survival function as

R(t|z) = S(t|z)
S∗(t|z) .

By using the relation between the hazard and the survival function, the haz-
ard function can be written as

h(t|z) = h∗(t|z) + λ(t|z),

where h∗(t|z) is the general population hazard, and λ(t|z) is termed the
excess hazard function or excess mortality. The functions h∗(t|z) and S∗(t|z)
can be computed from publicly available life tables which contain mortality
rates stratified on a number of demographic variables such as age, sex, and
calendar year. The formulation of the hazard function directly leads to

H(t|z) = H∗(t|z) + Λ(t|z),

where Λ(t|z) =
∫ t

0 λ(u|z)du is termed the cumulative excess hazard.
In cure models, it is assumed that some individuals are cured, i.e., have a

constant relative survival of 1 (see Section S1 for the connection between cure
and the relative survival function). Let Yi be the unobserved random variable
denoting whether the ith individual is cured (Yi = 1) or uncured (Yi = 0) and
assume that the Yis are independent. The primary parameter of interest is
π(z) = E [Yi|z] = P(Yi = 1|z), i.e., the probability of being cured, also known
as the cure proportion.

In some situations, the time point at which there is no mortality difference
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between the considered individuals and the general population, is also of in-
terest. This time point is known as the cure point and inspired by Rabinowitz
and Ryan [16], we define it as

tc = inf {t|∀s ≥ t and ∀z, λ(s|z) = h(s|z)− h∗(s|z) = 0} .

This definition implies that the relative survival is constant for all t ≥ tc,
which is an important feature of latent cure models as described in Section
2.2.

2.1 Explicit cure models

We define explicit cure models as models with explicit parameters for the
cure proportion, π. In cure model literature, this class of cure models is
commonly divided into mixture and non-mixture cure models [7, 17].

Mixture cure models

In the mixture cure model [2], the relative survival is specified by

R(t|z) = π(z) + [1− π(z)]Su(t|z), (1)

where Su(t|z) is the relative survival of the uncured individuals. That is, a
proportion of the considered individuals, π(z), have the same survival as the
general population, while the remaining individuals have a worse survival
described by S∗(t|z)Su(t|z).

We introduce a new formulation of the mixture cure model by using a
bijective function g : (0, 1)→ R for Su, similarly to Liu et al. and Younes and
Lachin [12, 18]. By introducing an additional link function, gπ : (0, 1) → R,
for π, the mixture cure model is formulated by

g(Su(t|z)) = η(t, z; θ) = X(t, z)θ (2)

and
gπ(π(z)) = ηπ(z; β) = Xπ(z)β, (3)

where X(t, z) and Xπ(z) are design matrices for the survival of the uncured
and the cure proportion, respectively. Thus, Su is modelled by a time-varying
design matrix together with some link function, spanning a wide range of dif-
ferent models. Note, the design matrix associated with the cure proportion
is not time-varying. Although the domain of the link functions is often as-
sumed to be [0, 1], the identity function has previously been proposed for
the cure proportion [7]. Denoting the inverse link functions by G = g−1 and
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Gπ = g−1
π , the excess hazard is given by

λ(t|z) = − [1− Gπ(ηπ(z; β))] G′(η(t, z; θ))

Gπ(ηπ(z; β)) + [1− Gπ(ηπ(z; β))] G(η(t, z; θ))
XD(t, z)θ,

where

XD(t, z) =
∂X(t, z)

∂t
. (4)

Generally, (4) can be computed by numerical differentiation. The cumulative
hazard is given by

Λ(t|z) = − log (R(t|z))
= − log [Gπ(ηπ(z; β)) + [1− Gπ(ηπ(z; β))] G(η(t, z; θ))] .

Simple parametric models for Su, such as the exponential and Weibull dis-
tribution, can be obtained through the linear predictor in (2). A Weibull
model without covariates is obtained by choosing g(x) = log(− log(x)), and
X(ti, zi) = [1, log(ti)]. Although these simple models are included in the
general model class, our focus will be on more flexible time effects such as
splines. Since the time effect is represented by the general linear predictor,
η(t, z; θ), different smoothers can be employed. For the purpose of this arti-
cle, we focus on polynomial B-splines. These can be transformed into natural
cubic splines (NCSs), which are similar to the restricted cubic splines used in
the Royston-Parmar model [11]. Also covariate effects may be modelled using
smoothers, and time-varying coefficients can be defined by modelling inter-
actions between covariates and a time effect determined by a given smoother.
The general linear predictor, η(t, z; θ), enables the use of smoothers which
are not limited to be functions of log(t) as in the Royston-Parmar model [11].
Due to the numeric differentiation in (4), smoothers that are functions of, e.g.,
t and

√
t can readily be applied.

Non-mixture cure models

Non-mixture cure models [7, 17, 19, 20] are specified by

R(t|z) = π(z)F̃(t|z),

where F̃ is a proper distribution function with a positive domain. The change
in notation from Su(·) to F̃(·) is to emphasize the interpretational differences
between these two functions. While Su(·) is the survival of the uncured
individuals, F̃(·) cannot be interpreted as the distribution function of the
uncured individuals and is only used to model the time effect of the relative
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survival. However, a simple transformation of the non-mixture cure model,

R(t|z) = π(z) + [1− π(z)]
π(z)F̃(t|z) − π(z)

1− π(z)
,

allows for the same interpretation as in mixture cure models. That is, the
survival of the uncured can be derived from a non-mixture cure model by
computing

Su(t|z) =
π(z)F̃(t|z) − π(z)

1− π(z)
. (5)

Thus, the non-mixture cure model deviates from the mixture cure model only
in the formulation of Su in which π is also included. Using the link functions,
g and gπ , we model π similarly to (3) and the distribution function by

g(1− F̃(t|z)) = η(t, z; θ) = X(t, z)θ,

which leads to

λ(t|z) = log [Gπ(ηπ(z; β))] G′(η(t, z; θ)XD(t, z)θ

and
Λ(t|z) = − log [Gπ(ηπ(z; β))] [G(η(t, z; θ))− 1] .

Again XD can be computed by numerical differentiation.

2.2 Latent cure models

Instead of modelling the relative survival with a mixture or non-mixture cure
model, a model for the relative survival may be formulated without specifi-
cation of a cure proportion, i.e.,

g(R(t|z)) = η(t, z; θ) = X(t, z)θ. (6)

The cumulative excess hazard is then Λ(t|z) = − log[G(η(t, z; θ))] and the
corresponding excess hazard function is

λ(t|z) = − G′(η(t, z; θ))

G(η(t, z; θ)))
XD(t, z)θ.

However, additional assumptions are needed in order to estimate the cure
proportion from the model in (6). In particular, assuming that tc < ∞, we
obtain for a general relative survival function that

R(t|z) = R(tc|z) for all t ≥ tc. (7)
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If we further assume an underlying mixture cure model, following the ar-
gument in Section S1, the condition in (7) implies that π(z) = R(tc|z) and
Su(t) = 0 for all t ≥ tc. Additionally, the survival of the uncured, Su, is
computed by

Su(t|z) =
R(t|z)− R(tc|z)

1− R(tc|z)
,

which is clearly 0 beyond tc. Therefore, the cure proportion and the survival
of the uncured may be computed post hoc from the estimated model in (6),
which does not contain explicit parameters for the cure proportion.

In mixture cure models, restricting Su to be zero beyond tc requires addi-
tional considerations about the link function, g. The relative survival model
in (6) provides an alternative approach for estimating cure proportions that
requires R to be constant beyond tc, which is not challenged by the choice of
link function. However, in order to fit the model in (6), the value of tc has
to be chosen. As simple parametric distributions, such as the Weibull model,
cannot appropriately be restricted to be constant beyond tc, these are not ap-
propriate models for R in (6) if tc is assumed to be finite. The model in (6) is
rather intended for smoothers for which the trajectory can be restricted at tc,
such as polynomial splines.

The described cure model is simply a generalization of the model by An-
dersson et al. [15]. They employed a proportional excess hazards model,
corresponding to G(x) = exp (−exp (x)), with the log-cumulative baseline
hazard modelled by restricted cubic splines. The time effects were altered to
be constant after the last knot of the splines. Andersson et al. showed that
this model was equivalent to a non-mixture cure model and thus contained
explicit parameters for the cure proportion [15]. However, this does not hold
in general for any link function, g. Similar restrictions have previously been
used for establishing non-mixture cure models in a Bayesian framework [21].
In the following, we propose a method for restricting the model in (6) to
satisfy the condition in (7) by modelling the time-effects with B-splines.

Cure by QR decomposition of B-splines

Since g is bijective, R(t) is constant beyond tc if and only if η(t, z; θ) is con-
stant beyond tc. Therefore, the constraint in (7) is equivalent to

η′(t, z; θ) = XD(t, z)θ = 0 for t ≥ tc and ∀z, (8)

For now, we consider the case where no time-varying covariate effects are in-
cluded and use the partition X(t, z) ≡ [X1(t) X2(z)], where X1(t) contains
the time effects and X2(z) contains the covariate effects. Let the time effect,
X1(t), be modelled by B-splines of order m + 1 with K knots k1 < · · · < kK.
A constant relative survival function beyond tc = kK can be obtained by
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incorporating a series of linear constraints,

Bθ1 = 0,

where θ1 is the p1 model coefficients corresponding to the time effect and

Bij =
[

X(i)
1 (tc)

]
j

for i = 1, ..., m

with X(i)
1 (tc) being a vector containing the ith derivative of X1(tc) with respect

to t. For cubic splines, it is therefore sufficient to have the first and second
order derivative of the base functions being equal to zero at tc. The linear
constraints can be absorbed into the model fitting procedure by using the QR
decomposition of BT [22]. We may write

BT = Q
[

R
0

]
,

where Q is a p1 × p1 orthogonal matrix and R is an m×m upper triangular
matrix. Using the partitioning Q ≡ [Q1 Q2], where Q2 is a p1 × (p1 − m)
matrix, parameter estimates satisfying (8) can be obtained by a transforma-
tion of X1(t). In particular, the linear predictor X̃(t, z)θ̃ ≡ [X1(t)Q2 X2(z)] θ̃
satisfies the constraints in (8). Note that X1(t)Q2 is an n× (p1 − m) matrix
and thus θ̃ contains m fewer entries than θ.

For NCSs, the trajectory before k1 is restricted to be linear and so an
additional constraint, X(2)

1 (k1) = 0, needs to be added. For models with time-
varying covariate effects, the QR-decomposition approach can be applied to
each time effect separately.

2.3 Estimation

Let Θ be all parameters of the cure model. Then the log-likelihood function
is written as

`(Θ) =
n

∑
i=1

δi log [h∗(ti|zi) + λ(ti|zi)]−Λ(ti|zi). (9)

In parametric relative survival models there are usually no restrictions on
the excess hazard function [14], but a non-negativity constraint is applied to
the all-cause hazard, i.e., h(t|zi) = h∗(t|zi) + λ(t|zi). Similarly to Liu et al.
[12], we subtract a penalty term from the log-likelihood function to ensure a
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non-negative hazard,

`P(Θ) = `(Θ)− κ

2

n

∑
i=1

h(ui|zi)
21[h(ui|zi) < 0]. (10)

Initially, the likelihood is maximized with κ = 1. If one or more hazard
values are negative, the likelihood is re-maximized after doubling κ until
all hazards are non-negative. Negative hazard values in (9) are replaced by
some small value, ε ≈ 10−16. For the mixture cure models, the survival of
the uncured individuals, Su(t), may be considered a proper survival function.
Therefore, for mixture cure models, h(·) in the penalty term in (10) is replaced
by hu(·) = −d/dt log[Su(t|z)]. Similar restrictions are employed for the non-
mixture cure models, where S̃(t) = 1− F̃(t) is a proper survival function,
and h(·) is replaced by h̃(·) = −d/dt log[1− F̃(t|z)]. Note, this restriction
automatically implies a non-negativity excess hazard.

Initial values

For latent cure models, initial values were found by fitting a Cox proportional
hazards model including all covariates, but excluding time-varying covariate
effects. The g-transformed predicted survival probabilities from the Cox mo-
del, g

[
Ŝ(ti|zi)

]
, were then used as response in a linear model with X(ti, zi) as

design matrix. The obtained parameter values were used as initial values for
optimizing (9). To adjust the initial values to relative survival, the predicted
survival probabilities were normalized by Ŝ∗(ti|zi) = exp (−h∗(ti|zi)ti), as-
suming a constant general population hazard.

For the explicit cure models, two different approaches were used to obtain
initial values. The likelihood was maximized using both sets of initial param-
eters and the best model was selected as the model resulting in the largest
likelihood. Since mixture and non-mixture cure models are related through
(5), we only describe the two approaches in terms of the mixture cure model.

The first approach finds initial values by fitting a parametric mixture cure
model following the implementation by Lambert [23], with a logistic link
function for π and a Weibull model for Su excluding time-varying covariate
effects. The predicted cure probabilities, ŷ, were used as response in a gen-
eralized linear model with Xπ as design matrix. For Su, a generalized linear
model is fitted with Ŝu(ti|zi) as response and X(ti, zi) as design matrix.

The second approach fits the relative survival model in (6) with a log-log
link function (a proportional excess hazards model) and the baseline time
effect modelled by an NCS without restricting it to be constant beyond the last
knot. The estimates ŷ are obtained by calculating R̂(τ + c|zi) for i = 1, ..., n,
where τ is the largest follow-up time and c is a small constant (selected to be
0.1). The procedure from the previous approach is repeated to obtain initial
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values for π. For Su, the initial values are found by fitting the generalized
linear model,

g
(

R̂(ti|zi)− ŷi
1− ŷi

)
= X(ti, zi)θ.

2.4 Identifiability

Identifibability is a key issue in cure models. A cure model is said to be
identifiable if R(t|z, Θ1) = R(t|z, Θ2) for 0 ≤ t < τ implies that Θ1 = Θ2.

Following the argument of Hanin and Huang, mixture cure models, non-
mixture cure models, and latent cure models are identifiable if Su(τ|z) = 0
for all z [24]. This can be ensured by having τ = ∞ if Su (F̃) is proper in
R+ or by assuming tc ≤ τ. In these cases, the cure model is identifiable
regardless of the model formulation for π [25]. However, these conditions
are not necessarily satisfied in either explicit or latent cure models. We refer
the reader to Hanin and Huang for further identifiability results [24].

2.5 Useful summary measures

The primary entities of interest in cure models are the cure proportion and
the survival of the uncured. However, other useful summary measures can
be computed from cure models. From both explicit and latent cure models
the conditional probability of belonging to the cured group given survival
beyond time t can be obtained [8, 17]. It is given as

P(Y = 1|T > t, z) =
P(T > t|Y = 1, z)P(Y = 1|z)

P(T > t|z) =
π(z)

R(t|z) .

The denominator is changed according to the chosen cure model and the nu-
merator changes according to the specified model for π. Generally, if R(t|z)
is non-increasing, P(Y = 1|T > t, z) → 1 as t → ∞, but if tc < ∞, we have
P(Y = 1|T > tc, z) = 1.

Disease-specific mortality measures

By using that the excess hazard can be interpreted as a cause-specific hazard
associated with a given disease, crude cumulative incidences of death from
the disease can be obtained from relative survival models as demonstrated by
Lambert et al. [26]. For this, we let Ei ∈ {D, O}, denote the unknown eventual
cause of death for the ith individual, where D and O indicate disease-related
death and death due to other causes, respectively. The crude probability of
disease-related death is

P(T ≤ t, E = D|z) =
∫ t

0
S∗(u|z)R(u|z)λ(u|z)du, (11)
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and the crude probability of death from other causes than the disease can be
obtained by replacing λ(·) with h∗(·), i.e.,

P(T ≤ t, E = O|z) =
∫ t

0
S∗(u|z)R(u|z)h∗(u|z)du. (12)

The probability of eventually dying from the disease, P(E = D|z) = P(T ≤
∞, E = D|z), provides a measure of the entire disease burden. By using this
probability and (11), Eloranta et al. [27] proposed

P(E = D|T > t, z) =
P(E = D, T > t|z)

P(T > t|z) =
∫ ∞

t

S∗(u|z)R(u|z)
S∗(t|z)R(t|z) λ(u|z)du

as an interpretable tool for risk communication. This yields the conditional
probability of eventually dying from the disease given survival until time
t. Without tc ≤ τ, extrapolation is required in order to compute P(E =
D|z). The parametric formulation of R(·) and λ(·) enables extrapolation
while assumptions about the mortality rate in the future general population
is required to extrapolate S∗(·) [28].

Cure models also enable estimation of the expected lifetime and loss of
lifetime. The expected residual lifetime is given by

E [T − t|T > t, z] =
∫ ∞

t

S(u|z)
S(t|z)du

=
∫ ∞

t

S∗(u|z)R(u|z)
S∗(t|z)R(t|z) du.

We define the loss of lifetime function as the difference between the expected
residual lifetime of the considered individuals and the general population,

L(t|z) =
∫ ∞

t

S∗(u|z)
S∗(t|z) du−

∫ ∞

t

S∗(u|z)R(u|z)
S∗(t|z)R(t|z) du. (13)

This provides the number of years lost due to the disease given survival until
time t. At t = 0, (13) provides the mean number of years lost due to the
diagnosis, which was termed the loss in expectation of life by Andersson et
al. [28]. Jakobsen et al. [29] investigated the accuracy of the loss of lifetime
function using both explicit and latent cure models as well as the relative
survival model of Nelson et al. [14]. They concluded that sensitivity analyses
should be conducted when computing the loss of lifetime function since the
considered models gave volatile results.

2.6 Implementation

The explicit cure models are implemented in the R-package cuRe (see https:

//github.com/LasseHjort/cuRe). The latent cure models are implemented
in the R package rstpm2 which is available from the Comprehensive R Archive
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Network (CRAN). Both packages enable fitting of all-cause as well as relative
survival cure models by specifying an argument for the general population
hazard, h∗(ti|zi). All models are implemented for both right-censored and
left-truncated time-to-event data and for a series of commonly used link func-
tions. For the explicit cure models, an argument is available for disabling the
penalization approach used to obtain proper estimates of Su and S̃.

All post-estimation procedures described in Section 2.5 are implemented
in the cuRe package. All integrals are computed by Gauss-Legendre quadra-
ture and the variances are computed by the delta method using numerical
differentiation. For probability measures, appropriate link functions were
applied to restrict the confidence interval to be within [0, 1]. The rstpm2

package enables fitting of latent cure models to correlated time-to-event data
using random effects which are estimated using maximum marginal likeli-
hood (see Liu et al. for details [30]).

3 Cure proportion estimation

As explicit and latent cure models rely on different model assumptions, these
may provide different estimates of the cure proportion, π(z) = E [Y|z], and
the survival of the uncured, Su(t|z). In the following section, we evaluate the
performance of several instances of both model types in a series of simula-
tions with and without covariate effects.

3.1 Data simulation

Data were simulated from various relative survival models assuming that
the time-to-event variable X associated with the relative survival, R, and the
general population survival time, X∗, are independent. Along the lines of
Rutherford et al. [31], we used the following scheme to generate the follow-
up times:

1. Generate survival time, X, from the potentially improper R(t|z).

2. Generate survival time, X∗, from S∗(t|z).

3. Generate censoring time, C.

4. The follow-up time is T = min(X, X∗, C) and δ = 1[min(X, X∗) ≤ C].

For a specific R(t|z), the event time was simulated as the root of the equa-
tion R(t|z) = U, where U is uniformly distributed between 0 and 1 (a similar
approach was used for S∗(t)) [32]. In cases where no root existed, the follow-
up time was set to ∞. This may occur if a cure fraction is assumed for R(t|z).
A uniform distribution, Uniform(0, 15), was chosen as censoring distribution
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in all simulations. The general population survival function, S∗(t|z), was
computed for Danish females aged 60 in 1980 using the Ederer I method [33]
and a Danish life table retrieved from the Human Mortality Database [34]. In
each simulation, the sample size was 1000 and the simulations were repeated
500 times.

Without covariates

For R(t|z) we considered six scenarios described by a mixture cure model
with varying cure proportions. The cure proportion in each scenario was
0.25, 0.25, 0.5, 0.75, 0.75, and 0, and the survival of the uncured was given by
a Weibull model. The relative survival trajectories can be found in Figure S1.
The trajectories were chosen to assess the cure proportion sensitivity in cases
where cure occurs within the follow-up (scenario 1 and 4), just at the end
of the follow-up (scenario 3), and beyond the follow-up (scenario 2, 5, and
6). To increase the complexity of the survival of the uncured, the simulations
were repeated using polynomial splines instead of a Weibull model for Su
(see Supplementary S2 for details).

With covariates

To assess the ability of the cure models to capture covariate effects, we in-
troduced a binary covariate, z, simulated from a Bernoulli distribution with
p = 0.5. A covariate effect for both the cure proportion and the survival of
the uncured was included by

ηπ(z; β) = β0 + zβ1 and η(z, t; θ) = θ0 + zθ1 + θ2 log(t).

The coefficients and link functions, which were used for the simulations, are
shown in Table 1. Again, the survival function of the uncured was given
by a Weibull model, which was obtained by using the link function g(x) =
log(− log(x)).

Scenario π β0 β1 θ0 θ1 θ2 g gπ LOR
1 0.25 -1.10 0.50 0.00 0.00 1.00 log[− log(x)] log

( x
1−x
)

0.50
2 0.50 -0.37 0.50 -2.30 0.50 1.40 log[− log(x)] log[− log(x)] -0.76
3 0.60 0.40 0.50 -0.69 0.50 1.00 log[− log(x)] log

( x
1−x
)

0.50

Table 1: Parameter values used for simulations including covariate effects. LOR: true log-odds
ratio for the cure proportion.
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3.2 Simulation results

Without covariates

For the simulations without covariates we considered five models; a (Weibull)
mixture cure model, two explicit cure models and two latent cure models
using NCSs with different knot placement (see Table 2 for details).

Model Model gπ g Smoother Knot locations
A Weibull mixture CM log

( x
1−x
)

log(− log(x))
B Explicit mixture CM log

( x
1−x
)

log(− log(x)) NCS 0%, 25%, 50%, 75%, and 100% quan-
tiles of the uncensored event times.

C Explicit mixture CM log
( x

1−x
)

log(− log(x)) NCS Smallest uncensored event time, 0.5, 1,
3, and 5 years.

D Latent CM log(− log(x)) NCS 0%, 25%, 50%, 75%, 95%, and 100%
quantiles of the uncensored event
times.

E Latent CM log(− log(x)) NCS 0%, 25%, 50%, and 75% quantiles of
the uncensored event times and addi-
tional knots at 8 and 30 years.

Table 2: Specification of the models used for estimating the cure proportion in simulations
without covariates. CM: cure model, NCS: natural cubic spline.

In scenarios where statistical cure is clearly achieved within the follow-
up (1, 3, and 4) all models performed fairly well (Figure 1). In scenarios
where statistically cure was not reached within the follow-up (2, 5, and 6),
the explicit cure models displayed very dispersed cure proportions, which is
explained by identifiability issues. In these scenarios, the same relative sur-
vival trajectory may be obtained by several sets of parameter values. Notably,
the dispersion was not heavily influenced by the flexibility of the explicit cure
models as determined by the number of knots in the NCS (see Figure S2), but
it was less pronounced for the Weibull model (A).

The latent cure models, on the other hand, gave stable cure proportion
estimates in all scenarios, but due to the strict assumption of cure at a specific
time point, these were overestimated in scenarios where statistical cure is not
reached within the follow-up. Even though identifiability is not guaranteed
for model E, because the last knot is placed beyond the available follow-up,
the corresponding estimates were stable and generally slightly lower than
those of model D.

With covariates

We fitted five models similar to those in Table 2, but now including an effect
for the binary covariate, z. In particular, for the mixture cure models, the
covariate was added both for the cure proportion and the survival of the
uncured, and for the latent cure models it was added both in a proportional
hazards and proportional odds model (see details in Table 3). To equalize the
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Figure 1: Estimated cure proportions from the models listed in Table 2 in simulations of the
scenarios in Figure S1.

number of parameters, z was modelled as a time-varying effect in the latter
two models using an NCS with two knots.

Model Model gπ g Smoother Knot locations
A Weibull mixture CM log

( x
1−x
)

log(− log(x))
B Explicit mixture CM log

( x
1−x
)

log(− log(x)) NCS 0%, 25%, 50%, 75%, and 100% quan-
tiles of the uncensored event times.

C Explicit mixture CM log(− log(x)) log(− log(x)) NCS 0%, 25%, 50%, 75%, and 100% quan-
tiles of the uncensored event times.

D Latent CM log(− log(x)) NCS 0%, 20%, 40%, 60%, 80%, 95% and
100% quantiles of the uncensored
event times.

E Latent CM − log
( x

1−x
)

NCS 0%, 20%, 40%, 60%, 80%, 95% and
100% quantiles of the uncensored
event times.

Table 3: Specification of covariate dependent models assessed in the simulation study. CM: cure
model, NCS: natural cubic spline.

For the cure proportion, the effect of the covariate was measured by the
log-odds ratio (LOR) which was obtained by

LOR = log
(

π̂(z = 1)/(1− π̂(z = 1)
π̂(z = 0)/(1− π̂(z = 0)

)
.

The true LOR can be found in Table 1. The variance of the estimated LOR
was computed by using the delta method and numerical differentiation. The
mean absolute error (AE) was used to measure the accuracy of the covariate-
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specific cure proportion. The AE was computed as

AE(π̂, π) =
1
2

1

∑
z=0
|π̂(z)− π(z)|,

where π(z) is the true cure proportion. The integrated mean AE (IAE) was
used to measure the accuracy of the survival of the uncured and the entire
relative survival function. It was computed by

IAE(Ŝu, Su) =
∫ 15

0

1
2

1

∑
z=0
|Ŝu(t|z)− Su(t|z)|dt, (14)

where Su is the true survival of the uncured individuals. The IAE for the
relative survival was obtained by replacing Su with R in (14). The integral
was computed by Gauss-Legendre quadrature.

The empirical mean LOR, median variance, AE, and IAEs of each model
are shown in Table 4. In the first scenario, the cure proportion AE was low for
all models, but model E showed the worst empirical mean LOR. In the second
scenario, the models were more biased, with the latent cure models (D and
E) underestimating the LOR and the spline-based explicit cure models (B and
C) overestimating the LOR. The AE of the cure proportion was smaller for
model D and E compared to model B and C. The same pattern was seen in
scenario 3. The AEs of the cure proportion obtained from the reference model
(A) and the latent cure models (model D and E) were low in all scenarios.

In general, differences between the two latent cure models were minimal,
but larger differences were observed between the latent and explicit cure
point models. In some simulations, the variance of the LOR could not be
computed or was negative because the covariance matrix was not positive
semidefinite, which stems from identifiability issues. However, the median
variances of model A, B and C in scenario 2 and 3 were only slightly elevated
in comparison with model D and E.

In scenario 1, the IAEs of Su were fairly similar between the five models,
whereas in scenario 2 and 3, the IAE of Su was lower for model D and E
compared to B and C. Notably, the relative survival IAE of each model was
similar in all scenarios despite the differences in the estimation of the cure
proportion and survival of the uncured. This highlights the identifiability
issues related to the considered explicit cure models.
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4. Real life data examples

Model LOR Var(LOR) AE(π̂(z), π) IAE(Ŝu, Su) IAE(R̂, R)
Scenario 1 (LOR = 0.50)

A 0.51 0.02 0.018 0.060 0.254
B 0.51 0.03 0.019 0.092 0.260
C 0.51 0.03 0.019 0.090 0.260
D 0.47 0.02 0.019 0.107 0.264
E 0.39 0.02 0.020 0.114 0.286

Scenario 2 (LOR = -0.76)
A -0.76 0.05 0.030 0.307 0.298
B -0.61 0.05 0.051 0.631 0.304
C -0.52 0.05 0.051 0.622 0.304
D -1.01 0.03 0.037 0.528 0.333
E -0.95 0.02 0.032 0.468 0.301

Scenario 3 (LOR = 0.50)
A 0.51 0.03 0.023 0.185 0.290
B 0.62 0.03 0.039 0.626 0.298
C 0.69 0.03 0.041 0.642 0.297
D 0.37 0.02 0.025 0.293 0.312
E 0.33 0.02 0.026 0.317 0.325

Table 4: Emperical mean LOR, median variance, AE, and IAE of the five models in Table
eftab:modelscov. The IAE was calculated both for the survival of the uncured and the entire
relative survival function. LOR: log-odds ratio, AE: absolute error, IAE: integrated absolute
error.

4 Real life data examples

4.1 Colon cancer data

Data on colon cancer survival were retrieved from the Danish Colorectal Can-
cer Group Database [35]. The patients were diagnosed in the period 2000-
2016 and follow-up was measured from the date of diagnosis until death or
censoring (July 2017). We restricted the analysis to adult patients, i.e., pa-
tients ≥18 years at diagnosis. The age-, gender-, and calendar year-matched
general population hazard rates were obtained from the Human Mortality
Database [34]. The use of the data was approved by the Danish Data Protec-
tion Agency (2008-58-0028).

Model coefficients with and without the assumption of cure

In total 38,082 patients were analyzed. Stratified on diagnostic age (-55, 55-
65, 65-75, and 75-), we fitted two parametric relative survival models of the
form log[− log(R(t))] = s0(x), where x = log(t) and s0(x) is an NCS with
8 degrees of freedom. These models were fitted using the R-function stpm2.
One model was fitted using the QR-decomposition approach described in
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Figure 2: The relative survival of each age group in the colon cancer data estimated by the
Ederer II estimator, an NCS-based relative survival model (stpm2), an NCS-based latent cure
model (stpm2-cure), and an NCS-based mixture cure model. NCS: natural cubic spline.

Section 2.2, while no restrictions were forced upon the other. We term these,
the stpm2-cure and stpm2 model, respectively. Additionally, a mixture cure
model was fitted with log[− log(Su)] = s0(x), where s0(x) is an NCS with 7
degrees of freedom. Together with the non-parametric Ederer II estimator of
the relative survival [33], these are shown for each age group in Figure 2.

In all age groups, a plateau was seen in the relative survival function.
The three parametric models displayed fairly similar trajectories with only
small differences seen at the end of the follow-up. For patients >75 years
of age, the non-parametric relative survival variance was high by the end of
the follow-up, which is explained by only few patients being at risk after 15
years. For patients <55 years of age, the models produced virtually identical
trajectories.

We extended the stpm2 and stpm2-cure models with five covariates, namely
age at diagnosis, gender (female as reference), Charlson score (<2 vs. ≥ 2), a
metastases indicator, and clinical stage (UICC, I-II vs. III-IV). The covariates
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4. Real life data examples

were included in a proportional excess hazards model, i.e.,

log(− log(R(t|z))) = s0(x) +
5

∑
i=1

ziβi. (15)

To compare the coefficients with those of a relative survival model, which is
not based on smoothers, we also fitted the piecewise constant excess hazard
model introduced by Estève et al. [36]. The model is formulated similarly
to (15), but a different formulation is used for s0(x) which ensures that the
baseline excess hazard is a piecewise constant function. The model is fitted
by maximum likelihood and is implemented in the R-package relsurv [37].
The change points for the baseline was selected as zero and the 12.5%, 25%,
37.5%, 50%, 62.5%, 75%, 87.5%, and 100% quantiles of the uncensored follow-
up times.

The coefficients, confidence intervals, and p-values of each model are
shown in Table 5. Age, Charlson score, metastases indicator, and stage were
associated with an increasing excess hazard in all three models. In particular,
assuming cure at the last uncensored follow-up time seemed to change the
coefficients only slightly.

Estève ASM stpm2 stpm2-cure
β P β P β P

Age 0.024(0.022;0.025) 0.000 0.024(0.022;0.026) 0.000 0.024(0.022;0.026) 0.000
Male gender 0.004(-0.033;0.041) 0.834 0.007(-0.03;0.043) 0.724 0.006(-0.031;0.042) 0.756
Charlson ≥2 0.438(0.398;0.477) 0.000 0.438(0.399;0.477) 0.000 0.438(0.398;0.477) 0.000
Metastases 1.668(1.622;1.714) 0.000 1.647(1.601;1.692) 0.000 1.646(1.601;1.692) 0.000
Stage III-IV 1.133(1.062;1.205) 0.000 1.096(1.027;1.164) 0.000 1.098(1.029;1.166) 0.000

Table 5: Regression coefficients from proportional excess hazards models. ASM: additive sur-
vival model.

The model in (15) was further extended to incorporate time-varying co-
variate effects. The time effect of each covariate was modelled by an NCS on
the log-time scale with 3 degrees of freedom, i.e.,

log(− log(R(t|z))) = s0(x) +
5

∑
i=1

zisi(x), (16)

For the stpm2-cure model, the QR-decomposition was applied to si for i =
0, .., 6 separately, with a common last knot placed at the last uncensored
follow-up time. The time-varying coefficients of the two models are shown
in Figure 3.

The two models display similar time-varying effects only with small dif-
ferences in the effect of the Charlson score, gender, and stage. Deviations
from the proportional excess hazard assumption were observed in all covari-
ates expect the metastases indicator. In addition, the covariate effects in the
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Figure 3: The time-varying effect of age, Charlson score ≥2, male gender, the presence of metas-
tases, and UICC stage ≥2 in Danish colon cancer patients. The horizontal lines indicate the
estimated coefficients from the proportional excess hazards models, i.e., the models without
time-varying coefficients.

cure model were almost constant after 7 years, while those of the stpm2 mo-
del were less restricted.

For estimating the cure proportion, we also fitted a mixture cure model
formulated by

log(− log(Su(t|z))) = s0(x) +
5

∑
i=1

zisi(x),

log
(

π(z)
1− π(z)

)
= β0 +

5

∑
i=1

ziβi, (17)

where 7 degrees of freedom were used for s0 and 2 degrees of freedom was
used for si where i 6= 0. The cure proportion estimated by (17) and (16)
is shown in Figure 4 for female colon cancer patients without metastases.
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4. Real life data examples

Although similar trends were obtained from these models, relatively large
differences were also observed in the estimated cure proportions.
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Figure 4: Estimated cure proportion for a female colon cancer patient without metastases based
on a latent (stpm2-cure) and an explicit (mixture) cure model.

4.2 Lymphoma data

We analyzed data on 1,621 diffuse large B-cell lymphoma (DLBCL) patients
obtained from the Danish National Lymphoma Registry [38]. These data
were originally reported in the study of Jakobsen et al. who also provided
details on the patient population [39]. Patients were included if they achieved
complete remission after immunochemotherapy, i.e., no residual disease was
observed after first line treatment. The follow-up was measured from end
of treatment until death or censoring. The data set contains cause of death
information grouped into categories: lymphoma-related, related to cardio-
vascular disease, related to other cancers, related to other causes, and no
information/no contact to hospital. The cause-specific cumulative incidences
computed by the Nelson-Aalen estimator [40] and reported by Jakobsen et
al. [39] are shown in Figure S3. These revealed that lymphoma is the main
cause of death among the DLBCL patients even after achieving complete re-
mission, which is mainly explained by the occurrence of relapses. In the
following, we compare the cumulative incidence and cause-specific hazard
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obtained by relying on the available cause of death information and relative
survival.

Excess mortality from cause of death information and relative survival

The death causes were divided into 2 groups, i.e., lymphoma-related deaths
and deaths due to other causes. Utilizing the cause of death information,
we computed the age, gender, and calendar time-dependent cumulative in-
cidences by the approach of Hinchliffe and Lambert [41]. Let SL and hL be
the survival and hazard function, respectively, corresponding to lymphoma-
related deaths when censoring competing risks. Conversely, let SO and hO be
the analogue survival and hazard function, respectively, for the other causes.
The cumulative incidence of lymphoma-related death can then be computed
by ∫ t

0
SL(u)SO(u)hL(u)du

using numerical integration (Gauss-Legendre quadrature). The cumulative
incidence of death due to other causes is obtained by replacing hL with hO.
We considered two models for SL, both formulated as

log(− log(SL(t|a))) = s0(x) + sa(a)× s1(x) + g× s2(x) + sc(c)× s3(x), (18)

where a is the diagnostic age, g is the gender, and c is calendar time. The
functions si for i = 0, 1, 2, 3 were modelled with NCSs using four degrees of
freedom for i = 0 and two degrees of freedom for i 6= 0. The NCSs sa and sc
were formulated with two degrees of freedom. One model was fitted using
the QR decomposition approach for each si (i = 0, 1, 2, 3) to incorporate the
assumption of cure, while no further restrictions were made for the other. The
last knot of the cure model was chosen to be the time of the last uncensored
follow-up time. The model in (18) was also used for SO, but without the
assumption of cure.

In addition to these models, we also fitted two relative survival models
formulated by (18) with SL replaced by R. Again, one of the models was
fitted using the QR decomposition approach. Using the two relative survival
models, the cause-specific cumulative incidences were computed by (11) and
(12). The cumulative incidences for a 50-year-old, 60-year-old, and a 70-year-
old female patient completing treatment in 2008 are displayed in Figure 5.

A slight difference between using the relative survival approach and the
cause of death approach was observed, with a larger lymphoma-specific mor-
tality obtained by the relative survival approach. The same pattern can be
seen from the lymphoma-specific hazard functions (Figure 6). Notably, the
hazards obtained by the relative suvival approach was larger than those of
the cause of death approach late in the follow-up. This suggests that the
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Figure 5: Cause-specific cumulative incidences for a 50-year-old, 60-year-old and 70-year-old fe-
male DLBCL patient after achieving first complete remission in 2008. The cumulative incidences
were estimated by using four models; two models utilizing cause of death information and
two relative survival models. Additionally, two models were fitted using the QR-decomposition
approach, which incorporates a cure proportion.

cause of death approach may not capture the entire disease burden, likely
because it can be difficult in practice to determine the exact cause of death
or weather the death is related to the course of the disease [42]. The differ-
ences in the cumulative incidences between the cure models and the non-cure
models were only minor and occurred late in the follow-up.

5 Discussion

We presented a general framework for fitting parametric cure models from
right-censored and left-truncated time-to-event data using a link function ap-
proach. We introduced two general classes of cure models, namely explicit
and latent cure models, a general estimating procedure for these, and as-
sociated post-estimation summary measures computable from both model
classes. These estimating procedures was implemented in the R-packages
rstpm2 and cuRe.

The performance of explicit and latent cure models was tested in a sim-
ulation study. The explicit cure models may in some scenarios suffer from
identifiability issues and provide biased cure proportion estimates, e.g., if the
follow-up is not sufficiently long. The latent cure models provide fairly sta-
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Figure 6: Lymphoma-specific hazards for a 50-year-old, 60-year-old and 70-year-old female DL-
BCL patient after achieving first complete remission in 2008. The cumulative incidences were es-
timated by using four models; two models utilizing cause of death information and two relative
survival models. Additionally, two models were fitted using the QR-decomposition approach,
which incorporates a cure proportion.

ble, but often upward biased estimates since the relative survival is restricted
to be constant beyond a finite time point. In particular, choosing a model for
estimating the cure proportion is essentially a trade-off between identifiabil-
ity and bias. While our results guarantee identifiability for models with a
cure point within the follow-up, more research is needed to depict the iden-
tifiability of the explicit cure models. The explicit cure models considered in
the simulation were not restricted to be constant after a specific time point.
Thus, the results of the simulations reflects the behaviour of the models un-
der different assumptions about the cure point rather than the formulation
of the explicit cure models. In particular, such a restriction could be incor-
porated in the formulation of Su(t) and S̃ by letting Su(tc) = S̃(tc)) = 0.
In practice this could be carried out by using splines restricted to satisfy this
property, but this requires additional considerations about the corresponding
link function.

Following the methodology of Lambert et al. [26], we applied relative
survival models to compute the cause-specific cumulative incidences of lym-
phoma patients. The relative survival approach offers an alternative to using
cause of death information, which may more accurately reflect the excess
mortality caused by a particular disease. We used a cause-specific hazard ap-
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5. Discussion

proach to compute the cumulative incidences based on cause of death infor-
mation. Alternatively, direct modelling of the cumulative incidence function
using splines could have been conducted [43]. In this context, cure models
have been proposed for the cumulative incidence, but it is not recommended
to assume cure for all competing risks simultaneously [43]. However, inter-
pretation of the parameters from subdistribution hazards models is slightly
challenging and thus this approach is often not preferred [44]. Furthermore,
neither in our approach nor in the direct modelling approach, the sum of the
cumulative incidences are restricted to be one as time goes to infinity.

In the present article, we only considered NCS as smoother. Rutherford
et al. [45] found that restricted cubic splines which are similar to NCS, were
able to capture the shape of even complex hazard functions given a sufficient
number of knots. Other types of smoothers, such as thin plate splines and
fractional polynomials, may be used for the explicit cure models, but for the
latent cure models, this would require a scheme for restricting the splines
to be constant beyond some finite tc. Also, penalized splines are appealing
since the location and number of knots become less important. However, a
penalization term that incorporates the constant trajectory beyond the cure
point was not readily available.

Model checks in survival analysis are important to assess the assumption
of the used model. This can be conducted by computing various types of
residuals, e.g., Cox-Snell residuals or deviance residuals, and assess their
behavior. Versions of these residuals were recently proposed for the mixture
cure model, but these utilizes specific properties of cure models formulated
for the all-cause survival function [46]. Therefore, these are not immediately
available for cure models for the relative survival. Additionally, an essential
problem within cure models is model selection. Especially in explicit cure
models this is a problem, since different variables can be used to model the
cure proportion and the survival of the uncured. Approaches to incorporate
L1-penalization on both terms has been proposed, but these do not fit into our
modelling framework or are not readily implemented [47–49]. More research
and implementation is needed to incorporate penalization into the presented
cure models.

The present methodology was developed for relative survival models, but
if total survival is of interest, we simply consider S∗(t) = 1 for all time points
t. The general population hazard contribution to the generalized likelihood
is then zero and all subsequent calculations follow directly after this.
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Supplementary

S1 Interpretation of cure models

All-cause survival

Let X be a random variable denoting the time to the event of interest. On
the all-cause survival scale, individuals are cured if X = ∞, i.e., the event
never occurs. The probability of cure is therefore π = P(X = ∞) and 1−π =
P(X < ∞). The random variable X has the improper distribution function,
F(t) = P(X ≤ t) for which we have

1− lim
t→∞

S(t) = lim
t→∞

F(t) = 1− π.

Thus, the cure probability is equal to the asymptote of the survival function,
S. For cure models, where S(t) is constant for t ≥ tc, we have that π =
S(tc). Therefore, the cure probability can in these models be estimated by
evaluating the survival function at tc.

Relative survival

Let TD be the time to death due to a particular disease of interest and let TP
be the time to death from other causes. Patients may be considered cured if
TD = ∞, i.e., if they never die from the disease. Given a vector of covariates,
z, the probability of cure is given as π(z) = P(TD = ∞|z) and 1− π(z) =
P(TD < ∞|z). The follow-up times, TD and TP, are competing events, and we
only observe X = min(TD, TP). Now, assume that deaths from the disease of
interest make up a negligibly small part of the general population mortality.
Using the survival distribution associated with each random variable (STD ,
STP , and SX), we define the relative survival as

R(t|z) = SX(t|z)
STP(t|z)

.
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Assume now that TD and TP are conditional independent given z. Then we
have,

1− lim
t→∞

R(t|z) = 1− lim
t→∞

SX(t|z)
STP(t|z)

= 1− lim
t→∞

P(TD > t, TP > t|z)
P(TP > t|z)

= 1− lim
t→∞

P(TD > t|TP > t, z)P(TP > t|z)
P(TP > t|z)

= 1− lim
t→∞

P(TD > t|z) = lim
t→∞

P(TD ≤ t|z)

= 1− π(z).

Again, if R(t|z) is constant for t ≥ tc, we have that π(z) = R(tc|z). The
assumption of conditional independence is vital in order to obtain the above
result and was also a key assumption in the net survival discussion by Perme
et al. [10]. However, this assumption is not identifiable from the data [44].

On the other hand, a different interpretation may be given to the cure
probability. Instead of considering two competing causes of death, we con-
sider the population a mixture of cured (Y = 1) and uncured (Y = 0) indi-
viduals. In addition, we assume that the relative survival for Y = 1 is a
constant equal to one, and the relative survival for Y = 0 goes towards zero
as time approaches infinity. The cure probability may then be interpreted
similarly to mixing weights from regular mixture models, i.e., the probability
of belonging to each group.

S2 Simulation parameters

In Section 3, the simulations were conducted using a Weibull model and
polynomial splines for Su(t). The parametrization of the Weibull model was

Su(t) = exp
(
−γ0tγ

1
)

.

and the polynomial spline model was formulated as

Su(t) = exp

(
−exp

(
β0 +

5

∑
i=1

vi(t)βi

))
.

The basis functions, vi(t), were obtained by the R-function bs, which com-
putes the basis function using B-splines. The polynomials were of degree 3,
resulting in cubic splines. Four knots placed at time 0, 1, 7, and 15 were se-
lected for these simulations. Table S1 displays the exact parameter values and
Figure S1 displays the relative survival trajectory of each simulation scenario.
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Weibull Polynomial splines
Scenario γ0 γ1 β0 β1 β2 β3 β4 β5

1 1.0 1.0 -6.0 4.5 7.8 7.8 8.0 8.5
2 1.2 0.1 -6.9 4.8 5.9 7.0 7.5 7.7
3 1.4 0.1 -7.5 5.3 6.7 8.1 8.7 9.0
4 1.0 0.5 -6.0 4.5 6.8 7.8 7.5 8.0
5 1.0 0.1 -6.5 4.3 5.8 6.4 6.6 6.7
6 1.2 0.1 -6.9 4.8 5.9 7.0 7.5 7.7

Table S1: Parameter values used for simulating survival data.

Weibull Polynomial splines

0 10 20 30 0 10 20 30

0.00

0.25
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Figure S1: Relative survival functions from which the simulated data in Section 3 were gener-
ated. The vertical line indicates the maximum possible follow-up time (15 years).

S3 Additional simulation results

In this section, we re-estimated the cure proportion using model B of Section
3.2 with a varying number of knots. Figure S2 displays the estimated cure
proportions in each scenario of the Weibull and polynomial spline simula-
tions. In scenario 1, 3, 4, and 6, no substantial differences were seen between
the models. In scenario 2 and 5 larger differences were seen between the
models. In scenario 2 the simple model with two parameters had the best
performance and increasing flexibility led to increased estimates of the cure
proportion. In scenario 5, the dispersion of all models was rather large. How-
ever, except for the simple model, the dispersion was decreasing with more
flexibility.
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Figure S2: Estimated cure proportions in simulations of the scenarios in Figure S1 using model
B of Section 3.2 with a varying number of knots, resulting in a varying number of parameters.
The number of parameters used for the spline is displayed.
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S4 Supplementary Figures
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Figure S3: Cause-specific cumulative incidences of death in Danish DLBCL patients after achiev-
ing complete remission.
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Description
As most clinical prognostic scores within lymphoma are based on dichoto-
mized or grouped clinical variables, these do not utilize all available infor-
mation for prognostication. By avoiding this, more accurate risk assessments
may be obtained, in the form of survival probabilities or risk groupings. The
aim of this paper was to evaluate the performance of commonly used prog-
nostic scores within lymphoma. By utilizing data from the Danish Lym-
phoma Registry prognostic scores used within 11 common lymphoma types
were evaluated.
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Letter

Malignant lymphomas comprise a heterogeneous group of diseases with im-
portant differences in pathogenesis, management strategies, and outcome [1].
To obtain information about prognosis in daily practice, clinical prognostic
models are often used. The most prominent examples of these are the interna-
tional prognostic index (IPI) for diffuse large B-cell lymphoma (DLBCL) and
the follicular lymphoma (FL)-specific international prognostic index (FLIPI)
[2, 3]. For some lymphoma subtypes, treatment decisions are influenced by
these scores, as exemplified by the ESMO guidelines for DLBCL where the
age-adjusted IPI is used to differentiate treatment in patients younger than
60 years [4]. To simplify usability, prognostic scores are often constructed
using dichotomized and/or grouped prognostic factors and predicted risks.
However, the cost of dichotomization is a large loss of information resulting
in inaccurate predictions of patient survival. Despite awareness of the dis-
advantages of dichotomization and grouping, recently developed prognostic
models have also applied this approach [5, 6].

In the present study, we evaluated the predictive performance of estab-
lished prognostic scores and two alternative models for 11 common subtypes
of malignant lymphoma in Denmark. To do so, a nationwide cohort of adult
patients diagnosed between 2006 and 2016 was extracted from the Danish Na-
tional Lymphoma Registry [7]. Following the international prognostic score
(IPS), only advanced stage lymphoma cases were included for Hodgkin lym-
phoma (HL) [8]. For the non-HL subtypes all patients were included. The
follow-up was measured as the time from diagnosis to death or censoring
(November 2016), whichever came first. The study was approved by the
Danish Data Protection Agency (2008-58-0028).

For each lymphoma subtype, a conventional prognostic score, such as
those recommended by the ESMO or NCCN guidelines, was selected for
performance assessment. A list of the included prognostic indices is found
in Table 1.

In order to assess the potential gain of more refined modelling, the prog-
nostic scores were compared to a machine learning (ML) approach in which
the best model was selected among a number of prespecified models. The
models considered were two instances of random survival forest (RSF) in-
cluding up to 20 clinical variables, a Cox proportional hazard (CPH) model,
a penalized CPH model, and an accelerated failure time model (see supple-
mentary). Furthermore, for each lymphoma subtype, a CPH model including
age as continuous variable and performance status as categorical variable,
termed the simple model, was tested. Age and performance status were
selected since they are readily available and are also important survival pre-
dictors in the general population.

The performance of the prognostic models was measured by the time-
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Table 1: The chosen clinical prognostic indices for 11 common lymphoma types in the Danish
National Lymphoma Registry. For each index the involved clinical variables, original end-point,
and final risk groups are shown. For each lymphoma type, frequency, age, and gender ratio are
also displayed. CSS: cause specific survival, OS: overall survival, RS: relative survival.
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varying AUC (tAUC) and the Brier score (BS). The tAUC provides a measure
of the correspondence between the predicted risk ranks and the observed
survival statuses at specific time points, while the BS measures how close the
predicted survival probabilities are to the survival as observed in the data.
The tAUCs and BSs were estimated by ten-fold cross-validation.

In total, 10,864 patients distributed across 11 lymphoma subtypes (Table
1) were included (Figure S1). The median follow-up of the entire patient
population was 4.98 years (reverse Kaplan-Meier method). The tAUCs of
the prognostic scores, the simple model, and the ML approach are shown in
Figure 1. Consistently across all lymphoma types, except peripheral T-cell
lymphoma (PTCL), the tAUC was higher for the ML approach than for the
prognostic indices. In addition, the same observation was made when the
simple model was compared to the prognostic indices. Compared to the ML
approach, the simple model had slightly improved discriminative capabilities
in some subtypes (Burkitt lymphoma and splenic marginal zone lymphoma),
while showing similar performance in six lymphoma types (HL, anaplastic
large cell lymphoma, angioimmunoblastic T-cell lymphoma, lymphoplasma-
cytic lymphoma, and PTCL). Only in DLBCL, MALT-lymphoma, FL, and
mantle cell lymphoma (MCL) it seemed beneficial to use the more complex
modelling approach. The model performance as measured by the BS (Figure
S2) was largely consistent with the tAUC showing inferior performance of
the prognostic indices and only small changes in the ranking between the
ML approach and the simple model. Finally, restricting the analyses to pa-
tients treated with curative intent led to a similar ranking of the three model
approaches (see supplementary).

Dichotomization of the clinical variables is likely the main reason for the
inferior performance of the established prognostic scores. For DLBCL it has
previously been shown that especially the dichotomization of age impairs the
predictive accuracy significantly [13]. Among the prognostic indices consid-
ered here, only the MCL-IPI utilized continuous clinical variables, but pa-
tients are still subsequently assigned to risks groups. We find it more natural
that the primary goal of prognostic models is to yield survival probabilities
instead of risk group assignments, which ignores the, often substantial, sur-
vival variability within each risk group. In practice, the use of cut-offs is
sometimes necessary, e.g., to base treatment decisions on. In such scenarios,
post-hoc risk grouping based on the predicted survival probabilities can be
performed, e.g., by defining patients as high risk when the 2-year survival
probability falls below 50%. Due to the differences in survival trajectories
and patient characteristics, such cut-offs would have to be subtype-specific.

The introduction of novel drugs is increasing the therapeutic armamentar-
ium against lymphoma. New treatment regimens often influence overall sur-
vival and challenge the validity of existing models predicting this endpoint.
Attempts to update some of the considered prognostic scores to the era of
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Figure 1: Time-varying AUC (tAUC). For each lymphoma type, the tAUC was computed for
the corresponding prognostic score, the machine learning approach, and the simple model. The
tAUCs were estimated by using 10-fold cross-validation.

immunochemotherapy have been made, e.g., by introducing the NCCN-IPI
[5] for DLBCL, and FLIPI2 [14] for FL. However, these indices suffer from
the same disadvantages (dichotomization and risk grouping) as many other
prognostic indices and do not generally show good performance [13].

Another potential reason for the inferior performance of the established
prognostic indices is that they are sometimes derived from clinical trial data
[2, 3], which are well known to be subject to selection bias introduced by
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strict inclusion criteria. Therefore, the indices may not be generalizable to the
general patient population. By re-establishing the prognostic scores using
nationwide register data, these biases could be minimized.

Due to incompleteness of cause of death and relapse information, OS was
used as endpoint. However, not all prognostic scores were developed with OS
as endpoint and hence their evaluation using the intended endpoint might
have been more appropriate. Nonetheless, given the poor performance of the
indices developed with OS as endpoint, we expect the same issues.

The rather discouraging increase in predictive performance of the ML
approach, seen even for aggressive lymphomas, can be related to the fact that
cancers are fundamentally genetic diseases. Attempts have been made to use
genetic measurements such as gene expression data for prognostic modelling
[15], however, such tools are still not a part of daily clinical practice.

In conclusion, the performance of commonly used prognostic indices for
11 common malignant lymphoma subtypes is subpar. This result was seen in
a large nationwide cohort which was not hampered by selection bias. Inter-
estingly, in the majority of the lymphoma subtypes, the ML approach did not
outperform the simple model and only a moderate improvement was seen
in the remaining lymphoma types. This suggests that age and performance
status still are strong clinical predictors of survival in lymphoma, just as in
the general population. Establishing new clinical prognostic models for each
major lymphoma type is a natural next step in establishing risk assessment
tools to be used in clinical practice.

Disclosures of interest

The authors report no conflicts of interest.

Supplementary

The Danish Nation Lymphoma Registry

The Danish National Lymphoma Registry (LYFO) has been nationwide since
2000 and contains detailed information on clinical baseline characteristics,
treatment, and outcomes. In a recent quality assessment, the database was
shown to be of high quality and, when compared to the Danish Cancer Reg-
ister, it was shown that LYFO covers approximately 95% of all lymphoma
cases in Denmark [7]. Complete follow-up information is ensured by regu-
larly merging with the Danish Civil Registration System.
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Patients

In order to properly assess the performance of the prognostic models in each
lymphoma type, we restricted the analyses to subtypes with more than 100
patients diagnosed in the time interval of interest. Patients for whom a sub-
type could not be identified or patients diagnosed with small lymphocytic
lymphoma were also excluded, resulting in 10,864 patients distributed across
11 lymphoma types (Table 1). The 11 considered lymphoma subtypes were
based on the histology code grouping shown in Table S1. For HL, only
patients who presented with advanced stage disease were included in the
present study. Advanced stage HL was defined as Ann Arbor stage III-IV,
stage II with B-symptoms, or bulky disease (patients with missing informa-
tion on B-symptoms and stage were also excluded).

Prognostic indices

For each of the included malignant lymphoma subtypes, one established
prognostic index was tested. The choice of prognostic model was based
on the guidelines of the European Society for Medical Oncology (ESMO)
and National Comprehensive Cancer Network (NCCN). For subtypes where
prognostic models were not mentioned in the guidelines (Burkitt lymphoma,
extranodal marginal zone (MALT) lymphoma, and splenic marginal zone
lymphoma), we searched for prognostic indices using the search terms ‘prog-
nostic index’ and ‘prognostic factors’ together with the lymphoma type in
PubMed. In common for all prognostic models tested was the assignment of
patients into predefined risk groups rather than resulting in predicted sur-
vival probabilities (see Table 1 for the number of risk groups).

Machine learning model

To establish a more advanced prognostic model for each lymphoma type, we
selected the best model among: two random survival forest (RSF)[16]-based
predictive models, the disease-specific prognostic index, a disease-specific
CPH model which included the undichtomized/ungrouped variables of the
corresponding prognostic index, a CPH model with a ridge penalty [17]
which included a wider range of variables, and a disease-specific log-logistic
accelerated failure time which included the undichtomized/ungrouped vari-
ables of the corresponding prognostic index. The best model was defined as
the model with the lowest integrated BS as computed by cross-validation. We
refer to this modelling approach as the machine learning (ML) model. The
variables included in the penalized CPH model and the RSFs are specified
in Table S2. The selection of these variables was based on their use in the
existing prognostic scores and availability in LYFO. Establishing prognostic
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models for rare lymphoma types is challenging for a number of reasons. Be-
cause of the small sample sizes, typically the models are unstable [18]. In an
attempt to overcome these limitations, one of the RSF models was established
in a pooled manner to share information across lymphoma types. This was
done by adding lymphoma type as a prognostic factor and fitting the RSF
using all patient records. Whenever a clinical variable is selected for splitting
before all patients have been stratified according to the lymphoma type by
the RSF procedure, information is essentially shared between two or more
subtypes. For the second RSF-based model a separate RSF was fitted for each
included lymphoma type.

Missing data handling

Missing data in the clinical variables were handled by single imputation
using a conditional mean imputation technique based on random forest as
implemented in the R-package mlr [19]. Conditional mean imputation was
employed to avoid the excessive computational running time of multiple im-
putation, while preserving a similar predictive accuracy [20].

Cross validation and predictive performance

The performance of each model (prognostic index, simple model, and ML
approach) was assessed by 10-fold cross validation. The 10-fold splitting of
the data was conducted subtype-wise, i.e., in each fold one tenth of each
lymphoma type was included. For the best model approach, internal 10-fold
cross validation was performed to find the best model. The best model was
defined as the model that minimized the integrated BS in the period from 0 to
7.5 years in the inner cross validation loop. Imputation of missing values was
conducted inside both the outer cross validation and inner cross validation
loop. In addition to the tAUC [21], the predictive performance of each model
was inspected by estimating the BS [22]. The BS measures the calibration of
the models and hence provides a measure of how close the predicted survival
probabilities are to the observed survival statuses at different time points. To
calculate the Brier score both in the inner and outer cross validation loop,
weighting with the censoring distribution in the test data was needed. Since
some subtypes were infrequent, some subtype-specific test sets were rather
small. To cope with this, the censoring distribution was estimated lymphoma
type-wise using all samples of that lymphoma type. The BSs of the prognostic
indices, simple model, and ML approach can be found in Figure S2.

Curative treatment

In aggressive lymphoma types, the administration of palliative versus cu-
rative treatment is often strongly correlated with performance status and
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age. To inspect whether this had an effect on the performance ranking of
the different models, a restricted analysis was performed. In particular, for
the aggressive lymphoma subtypes, the analyses were redone using only pa-
tients treated with chemotherapy (see Table S1 for a detailed description of
the included treatments). The tAUCs and BS can be found in Figures S3 and
S4, respectively. Although minor changes were observed, the main conclu-
sion remains valid, i.e., the majority of the established prognostic indices can
easily be improved upon.

Tables

Lymphoma type Histology code (n) Treatment regimens consid-
ered with cureative intent

Anaplastic large cell lymphoma 9714 (176) CHOP/CHOEP/CEOP
Angioimmunoblastic T-cell
lymphoma

9705 (127) CHOP/CHOEP/CEOP

Burkitt lymphoma 9687 (129) CHOP/CHOEP/CODOX-
M/IVAC/BFM

Classical Hodgkin lymphoma 9650 (cHL, 126), 9663 (nodu-
lar sclerosis cHL, 457), 9651
(lymphcyte-rich cHL, 24), 9652
(mixed cellularity cHL, 159),
and 9653 (lymphocyte-depleted
cHL, 19)

BEACOPP/ABVD/MOPP

Diffuse large B-cell lymphoma 9680 (4420) CHOP/CHOEP/CEOP
Extranodal marginal zone B-cell
lymphoma (MALT-lymphoma)

9699 (629) /

Follicular lymphoma 9690 (381), 9691 (grade I, 571),
9695 (grade II, 827), and 9698
(grade III, 350)

/

Lymphoplasmacytic lymphoma 9671 (1215) /
Mantle cell lymphoma 9673 (686) /
Peripheral T-cell lymphoma,
unspecified

9702 (230) CHOP/CHOEP/CEOP

Splenic marginal zone lym-
phoma

9689 (338) /

Table S1: Lymphoma types included in the present study together with the defining histol-
ogy codes for each type. ”/” indicates indolent lymphoma types or lymphoma types for
which there are no proven standard treatments. Treatment abbreviations: CHOP (cyclophos-
phamide, doxorubicin, vincristine, and prednisolone); CHOEP (cyclophosphamide, doxoru-
bicin, vincristine, etoposide, and prednisone); CEOP (cyclophosphamide, epirubicin, oncovin
(vincristine), and prednisone); CODOX-M/IVAC (cyclophosphamide, doxorubicin, vincristine,
methotrexate/ifosfamide, etoposide, high dose cytarabine); BFM (vincristine, prednisone, dox-
orubicin, cyclophosphamide, ifosfamide, mesna, etoposide, methotrexate, dexamethason); BEA-
COPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and
prednisone); ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine); MOPP (vincristine,
nitrogen mustard, procarbazine hydrochloride, and prednisone).
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Variable Description Formatting
Age Age at diagnosis Continuous
Sex Gender Categoral - male or female
Ann Arbor stage Ann Arbor stage Categorial - 1, 2, 3, or 4
Performance status ECOG performance status Categorical - 0, 1, 2, 3, or 4
B-symptoms B-symptoms Categorical - yes or no
LDH value Measured in µ/L. Standardized

by the national upper reference
(255 and 205 µ/L for patients ≥
70 years and < 70 years, respec-
tively)

Continuous

Extra nodal Number of extranodal sites Continuous
Hemoglobin value Measured in g/L Continuous
Albumin value Measured in g/L Continuous
Lymphocyte count Billions per liter Continuous
Leukocyte count Billions per liter Continuous
Tumor diameter Maximal tumor diameter (cm) Continuous
β2 microglobulin value Measured in g/L Continuous
IgG value Measured in g/L Continuous
IgM value Measured in g/L Continuous
IgA value Measured in g/L Continuous
Creatine value Measured in mmol/L Continuous
Thrombocyte count Billions per liter Continuous
CNS CNS, eye, or leptomeninges in-

volvement
Categorical - yes or no

Lymphoma type Classifed lymphoma type Categorial - values of first col-
umn in Table S1

Table S2: Variables used for predicting survival in Danish lymphoma patients.
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Figures
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N = 11,144 

Subtypes with less 
than 100 patients

N = 219

Final cohort
N = 10,864 

Figure S1: Flow chart of the inclusion criteria.
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Figure S2: Time-varying Brier score, computed for each lymphoma type, for the prognostic
index, the machine learning approach, and the simple model. The integrated Brier score (IBS)
was computed and is shown in each plot window.

149



Paper V.

Burkitt lymphoma Diffuse large B−cell lymphoma Peripheral T−cell lymphoma, unspecified

Advanced Hodgkin lymphoma Anaplastic large cell lymphoma Angioimmunoblastic T−cell lymphoma

0 2 4 6 0 2 4 6 0 2 4 6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time from diagnosis (years)

T
im

e−
va

ry
in

g 
A

U
C

Model Machine learning Prognostic score Simple model

Figure S3: Time-varying area under the curve (AUC), computed for each aggressive lymphoma
type, for the prognostic index, the machine learning approach, and the simple model. Only
patients treated with curative intent were included.
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Figure S4: Time-varying Brier score, computed for each aggressive lymphoma type, for the
prognostic index, the machine learning approach, and the simple model. Only patients treated
with curative intent were included. The integrated Brier score (IBS) was computed and is shown
in each plot window.
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