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Abstract

The reduced energy consumption is highly demand in motor drives for heating, venti-

lating, and air conditioning (HVAC) applications. The efficiency advantage makes the

permanent-magnet (PM) synchronous machine an attractive alternative to the induc-

tion machine in drives for those applications.

In order to use PM synchronous machines in HVAC applications, simple, low-cost

control methods are also important for them. The particular requirement in control

of PM synchronous machines is the synchronization of the AC excitation frequency

with rotational speed. A shaft-mounted position sensor is required for achieving this.

This shaft-mounted position sensor increases the cost and reduces the reliability in

the drive system. This makes it undesirable for HVAC applications. The objective of

this research project is to investigate sensorless control methods for PM synchronous

machines with particular attention to HVAC application requirements.

The understanding of the machine model is a key requirement for machine control.

The mathematical models for PM synchronous machines are first derived in this the-

sis. The control properties of PM synchronous machines are discussed and they are

compared.

Since high dynamic performance is not a demand for HVAC applications, a suitable

control approach for PM synchronous machines is V/f control approach. A substantial

part of this thesis is devoted to investigate V/f control approach for PM synchronous

machines.

In order to provide basics for designing a V/f controlled drive, the stability charac-

teristics of PM synchronous machines under open-loop V/f control, i.e. without having

any feedback for V/f control, is analyzed in this thesis. The linearized machine model

is the key to analyze the stability characteristics. The stability analysis show that the

PM synchronous machine becomes unstable after exceeding a certain applied frequency

under open-loop V/f control.

In order to show how to stabilize the V/f controlled PM synchronous machines for

a wide frequency range, a simplified small signal dynamics model for PM synchronous

machines is derived in this thesis. With the help of this model it is shown that by

modulating the applied frequency proportional to the perturbations in the power the

stable operation of the machine can be achieved for a wide frequency range. In voltage

source inverter driven drives the DC-link current perturbations can also be used for

v



vi Abstract

this purpose. The implementation of both these methods are discussed in details.

For the V/f controlled drive, a method to calculate the magnitude of the voltage

with vector compensation of the stator resistance voltage drop is proposed. The com-

plete V/f controlled drive consists of this voltage calculation algorithm and a stabilizing

loop, which modulates the applied frequency proportional to the perturbations in the

power. Only two current sensors are required to measure the motor phase currents

and no rotor position sensor is required for complete implementation of the drive. This

proposed sensorless V/f controlled drive system demonstrates satisfactory performance

for HVAC applications.

Besides V/f control approach, the field-oriented control approach for PM syn-

chronous machines is also discussed in the thesis. The control structure and the design

of the controllers for field-oriented controlled drive system are described. A rotor posi-

tion estimation technique for sensorless operation of the field-oriented controlled drive

system is studied in details. The estimator uses predictor-corrector method where the

difference between the estimated current and the measured current (current error) is

used to correct a predicted rotor position. The analysis show that the correction of

the predicted rotor position using current errors is possible in the estimation algo-

rithm for non-salient pole PM synchronous machines, however, there are difficulties

for salient pole PM synchronous machines. For salient pole PM synchronous machines

more investigations are still required for accurate rotor position estimation.

Finally, the comparison shows that the proposed sensorless V/f control approach

has some promising features for HVAC applications compared to the sensorless field-

oriented control approach investigated in the thesis.
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Chapter 1

Introduction

1.1 Permanent-magnet electric machines

Permanent-magnet (PM) electric machines are doubly excited electric machines, which

have two sources of excitation, namely, the armature and the field. In conventional dou-

bly excited electric machines (DC commutator machines and synchronous machines),

both of these excitation sources are electric windings connected to an external source of

electric energy. In PM electric machines, the field is generated by permanent-magnets

eliminating the requirement of field windings and external electrical source for it.

In contrast to the conventional doubly excited electric machines, the copper loss

associated with field windings does not exist in PM electric machines increasing the

efficiency of the machine. Moreover, the use of permanent-magnets to generate the

field allows to design these machines with less weight and compact size compared to

the conventional doubly excited electric machines. On the other hand, in PM electric

machines the permanent-magnets generate a constant field flux and it cannot be con-

trolled as easy as in conventional doubly excited electric machines changing the field

current.

1.1.1 Classification of PM electric machines

In general, PM electric machines can be classified as shown in figure 1.1.

Depending on the design of the machine whether it for DC or AC excitation, PM

electric machines can be first classified into two groups, namely, PMDC and PMAC

type. The structure of PMDC machines is very similar to the conventional DC com-

mutator machines. The only difference is the use of permanent-magnets in the place

of field windings. The commutator and the brushes still exist in these machines and

they still suffer the problems associated with conventional DC commutator machines.

The PMAC machines are synchronous machines, which the field is generated by

permanent-magnets located in the rotor. In these machines, the commutator and the

brushes do not exist making the machine structure very simple and eliminating the

3
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PM electric machines

PMDC machines

Trapezoidal type
(BLDCM)

Sinusoidal type
(PMSM)

Interior magnets type
(IPMSM)

Surface magnets type
(SPMSM)

PMAC machines

Figure 1.1: Classification of PM electric machines.

problems, such as brushwear, high rotor inertia, which associate with PMDC ma-

chines. This makes the PMAC machines the most attractive machine type among the

PM electric machines. The PMAC machines can be further classified into trapezoidal

and sinusoidal types as shown in figure 1.1. The trapezoidal PMAC machines induce a

trapezoidal back-EMF voltage waveform in each stator phase winding during rotation,

whereas sinusoidal PMAC machines induce a sinusoidal back-EMF voltage waveform.

For torque production, the trapezoidal PMAC machines are excited from rectangular

current waveforms, whereas sinusoidal PMAC machines require sinusoidal current exci-

tation of the stator. The trapezoidal PMAC machines, which are also called “brushless

DC motors” (BLDCM) were developed first because of the simple control of those ma-

chines. However, the presence of torque ripples in those drives rejects their usage in

high performance motion control applications. The development of sinusoidal PMAC

machines came next in late 1970s and 1980s due to the possibility of high performance

control of those machines using vector control principles first used for induction ma-

chines [1]. The sinusoidal PMAC machines are the most suitable PMAC machine type

to compete with the induction machines in the most of the induction machine drive

applications. Therefore, they are getting a growing attention in recent years. Since

these machines are closely related to the conventional synchronous machines, they are

also called PM synchronous machines (PMSMs). It should be mentioned that except

for special applications, in general, the PMSMs are not built with damper windings in

the rotor, mainly due to the high manufacturing cost. Hereinafter the PMSMs referred

to PM synchronous machines without having damper windings in the rotor.

Different rotor configurations exist for PMSMs depending on how the magnets are

placed in the rotor [1], [2]. The two common types, namely, surface magnets type and

interior magnets type are shown in figure 1.2. In surface magnets type the magnets are

mounted on the surface of the rotor core, whereas in interior magnets type the magnets

are placed inside the rotor core. Hereinafter the PMSMs with surface magnets rotor

configuration are referred to as SPMSMs and PMSMs with interior magnets rotor

configuration are referred to as IPMSMs.
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Figure 1.2: Motor cross sections showing different rotor configurations for
PMSMs. (a) Surface magnets type (b) Interior magnets type.

The interior magnets type rotor configuration brings saliency characteristics to the

machine which is not present in a machine with surface magnets type rotor [3]. As

shown in figure 1.2(a) and figure 1.2(b), the magnetic flux induced by the magnets

defines the rotor direct or dr-axis radially through the centerline of the magnets. The

rotor quadrature or qr-axis is orthogonally (90 electrical degrees) placed with rotor

dr-axis (Note that for four-pole design this is 45 mechanical degrees as shown in figure

1.2(b)). Since the permeability of permanent-magnets is almost same as the air, in

interior magnets type configuration the effective airgap of dr-axis is increased compared

to the qr-axis. Therefore, the dr-axis reluctance is higher than the qr-axis reluctance.

This results in the qr-axis inductance is higher than the dr-axis inductance, i.e. Lq > Ld,

in IPMSMs.

1.2 Control fundamentals for PMSMs

Since PMSMs are synchronous machines, the accurate torque can be produced in these

machines only when the AC excitation frequency is precisely synchronized with the

rotor frequency. Therefore, the fundamental requirement in control design of PMSMs

is the assurance of precise synchronization of machine’s excitation with the rotor fre-

quency. The direct approach to achieve this requirement is the continuous measurement

of the absolute rotor angular position and, the excitation of the machine accordingly

as shown in figure 1.3. This concept is also known as self synchronization [1] and it

assures that the PMSM does not go out of synchronization during operation.
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PMSMController

Rotor angular
position sensor

�r

Command

Excitation

Figure 1.3: The self synchronization concept for PMSMs, which uses ro-
tor angular position feedback to synchronize the AC excitation and the rotor
frequency.

1.2.1 Basic control methods

V/f control
It is possible to design the IPMSMs with squirrel cage windings (damper windings)

in the rotor as shown in figure 1.4. These squirrel cage rotor windings are similar to

the induction machine squirrel cage rotor windings and they produce asynchronous

torque when the IPM rotor does not rotate in synchronous speed. The asynchronous

torque produced by rotor squirrel cage windings during asynchronous operation put

back the IPM rotor to the synchronous operation ensuring the synchronous operation

of the IPMSM at all the time. This makes the possibility to use simple open-loop

V/f control algorithm for this type of IPMSMs as shown in figure 1.4 to achieve speed

control for applications like pumps and fans that do not require fast dynamic response

[1].

IPMSM with rotor
squirrel cage windings

PWM
VSI

Frequency
command

Voltage
calculation

Stator

Rotor

Magnets

Rotor squirrel
cage windings

*
s

v

*f

*f

Figure 1.4: Open-loop V/f control approach, which can be used for IPMSMs
with rotor squirrel cage windings.

Figure 1.4 shown V/f control approach for IPMSMs with rotor cage windings is

similar to the one uses in induction machine V/f control (scalar control) approach.
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However, one advantage in this drive is, the rotor speed is only dependent on the exci-

tation frequency of the machine and it does not require slip compensation requirement

as it does in induction machine drives.

While the IPMSMs with rotor cage windings can be used to control using the

configuration shown in figure 1.4, a difficulty can be expected to control the PMSMs

without having rotor cage windings using the same control configuration. The non-

existence of the rotor cage windings means that the machine does not guarantee the

synchronization of the rotor with the excitation frequency and the stable operation.

Therefore, to use V/f control approach to the PMSMs without having rotor cage

windings requires rotor frequency (rotor speed) information in order to achieve the

synchronization between AC excitation frequency and rotor frequency. In this case,

the system should be designed to operate in closed-loop manner as shown in figure 1.5.

PMSM

+

PWM
VSI

Rotor angular
position sensor

+

�r

Frequency
command

Voltage
calculation

Calculation of

*
s

v
*f

f

f�

d/dt
�r

f�

Figure 1.5: V/f control approach for PMSMs without having rotor cage
windings.

Closed-loop speed and torque control
Better performance compared to the V/f control approach can be achieved incorpo-

rating torque and speed control of the machine in the drive controller. The drive control

structure with torque and speed controller is shown in figure 1.6. The torque produc-

tion of PMSMs is related to the stator currents and the torque control incorporates

with stator current control requiring stator current feedback to the torque controller as

shown in figure 1.6. Moreover, as described in the beginning of this section, to achieve

self synchronization, the rotor angular position feedback is also essential for the torque

controller.

The stator current control is done in field-oriented frame in the torque controller.

Therefore, the PMSM control with this type of torque controller can also be referred

to as field-oriented control.

The speed control can be achieved closing the speed feedback loop outside the inner
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torque control loop as shown in figure 1.6. The speed feedback can be derived from the

same rotor angular position sensor, which is used to obtain the rotor position feedback.

PMSM
Torque
controller

Rotor angular
position sensor

�r

Speed
command

Phase current feedback

T *e

-

PWM
VSI

+ -Speed
controller

�r*

�r

��r

Angular position feedback

d/dt
�r�rAngular velocity feedback

*
s

v

Figure 1.6: Block diagram of PMSM control scheme incorporating torque
and speed controller.

In order to achieve fast torque control, direct torque control (DTC) of PMSMs is

also get some attention recently. Accurate flux estimation and torque estimation are

required for DTC. A detailed discussion about DTC of PMSMs can be found in [4].

1.2.2 Rotor position sensor elimination

It is clear from the above discussed control approaches for PMSMs, i.e. the V/f control

approach to the PMSMs without having rotor cage windings (figure 1.5) and, the torque

and speed control approach (figure 1.6), the requirement of rotor angular position sensor

to achieve self synchronization in the control. This shaft mounted position sensor is

not desirable in the control system due to number of reasons [5]. The position sensors

are expensive and they considerably increase the cost of the drive system. Moreover,

a special mechanical arrangement needs to be made for mounting the position sensors

and extra signal wires are required from the sensor to the controller. Some type of

position sensors are temperature sensitive and their accuracy degrades when the system

temperature exceeds the limits. These reasons lead to the elimination of shaft mounted

rotor angular position sensor, which is conventionally used for self synchronization in

the control system. The control of PMSMs using the same concepts discussed in § 1.2.1

eliminating the rotor angular position sensor is referred to as sensorless control of those

machines.

For the V/f control approach shown in figure 1.5 there are possibilities to use other

variables rather than rotor speed to achieve self synchronization and stable operation of

the PMSM. The measurements from the motor terminals or the DC-link in the inverter

may be used for this purpose and this sensorless control approach for PMSMs is shown

in figure 1.7.



1.3. PMSMs versus induction machines 9

PMSM

+

PWM
VSI

+

Frequency
command

Voltage
calculation

Measurements from motor
terminals or DC link

*
s

v

f

*f

f�

Calculation of
f�

Figure 1.7: V/f control approach for PMSMs without using rotor position
sensor.

For the torque and speed control approach shown in figure 1.6, the basic method

of eliminating the shaft mounted position sensor is, the accurate estimation of rotor

angular position and velocity using measurements from the motor terminals or the

DC-link. This approach is shown in figure 1.8.

PMSM
Torque
controller

�r

Speed
command

Phase current feedback

T *e

-

PWM
VSI

+ Speed
controller

�r*

�r

��r

Rotor position
and velocity
estimator

�

�
Measurements from motor
terminals or DC link

-
*
s

v

Figure 1.8: Torque and speed control scheme for PMSMs eliminating rotor
angular position sensor.

1.3 PMSMs versus induction machines

In contrast to the induction machines, the PMSMs do not require magnetizing compo-

nent of stator current, since the excitation is provided by magnets in those machines.

This causes a reduction in stator copper loss in PMSMs. Moreover, the copper loss

associated with rotor in induction machines does not exist in PMSMs. This copper

loss reduction in stator and rotor significantly improves the efficiency in PMSMs com-

pared to the induction machines. However, it should be mentioned that during flux
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weakening regime operation the PMSMs require high stator current to weaken the flux

[6],[7], increasing the stator copper loss. This reduces the efficiency of PMSMs dur-

ing flux weakening regime operation and both PMSMs and induction machines suffer

with less efficiency characteristics in that regime operation. This implies that from

efficiency point of view the PMSMs are well suited over the induction machines in the

applications like pumps and fans, where the machines are operated in constant torque

regime.

The growing electrical energy consumption is one of the major problems that world

faces at present. Most of this electrical energy is consumed in motor drives and a large

fraction of this motor drives consumed energy goes to the induction machine drives

with pumps and fans [8]. Therefore, in pumps and fans drives, using PMSMs instead

of using induction machines, it can be contributed to reduce the total electrical energy

consumption significantly.

Another attractive feature of PMSMs over the induction machines is that the possi-

bility of design them with less weight and volume. Recently, the IPMSMs were designed

with significant reduction of weight and volume over the induction machines [9],[10].

Moreover, they also have high torque to inertia (Te/J) ratio, which is highly attractive

for applications that demand fast dynamic response.

Since PMSMs are synchronous machines their control should always be incorporated

with self synchronization concept as explained in §1.2. It is not a requirement for

induction machine control since they are asynchronous machines. This makes the main

difference in control concepts for these two types of machines.

1.4 Objectives and scope of the project

In pumps and fans drives, when PMSMs are used instead of induction machines the

improvement of efficiency and its impact to the global energy saving is clear from the

discussion in §1.3. This fact is the motivation for this project.

If PMSMs are to be used in pumps and fans drives, they will need control methods,

which are more suitable for those applications. This project deals with control of

PMSMs focusing on pumps and fans applications.

The PMSMs’ basic control methods and the reasons to eliminate the rotor angular

position sensor from those methods are discussed in §1.2.1 and §1.2.2 respectively. For

the same reasons as described in §1.2.2, it is obvious that the rotor angular position

sensor is highly undesirable in pumps and fans applications and sensorless control

should be considered.

Both sensorless V/f control approach and sensorless torque and speed control ap-

proach (see figure 1.7 and figure 1.8) can be considered as solutions for this project.

The sensorless V/f control approach shown in figure 1.7 seems the most suitable con-

trol approach for pumps and fans drives due its simplicity. However, this approach is
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not widely addressed in the literature so far. Since high dynamic performance of the

drive is not a demand for pumps and fans applications simple rotor position and ve-

locity estimation technique may be possible for the sensorless torque and speed control

approach.

Considering these facts the objectives of this project are as follows.

• The sensorless V/f control approach shown in figure 1.7 should be given a con-

siderable attention during this project. The modeling of the system and the

designing of the whole controller should be presented in detail. The performance

of the drive with this control approach should be analyzed.

• The sensorless torque and speed control approach shown in figure 1.8 should be

presented with design of various controllers (speed, torque, current) and design

of a position and speed estimator. The attention should be paid to the simplicity

in position and speed estimating algorithm. The performance of the drive with

this control approach should be analyzed.

• A comparison is required for the two control approaches in terms of implementa-

tion simplicity and performance.

1.4.1 Limitations

• Only an interior type PM synchronous machine without having cage windings in

the rotor is used as the test motor for this project. Recently, the IPMSMs were

designed with significantly improved efficiency, less weight and less volume over

the induction machines [9],[10]. Therefore, an IPMSM is a good candidate to

consider in pumps and fans drives.

• The standard adjustable speed drive converter configuration, i.e. voltage source

inverter with diode rectifier, shown in figure 1.9 is used in the motor controller.

• Since the applications are pumps and fans, the control speed range is limited

to 10%-100% of rated speed, which is typical for such applications. The flux

weakening regime operation of the machine is not considered. During 10%-100%

rated speed the controller should be able to overcome 50% of rated load torque

step.

1.5 Outline of the thesis

The thesis is organized in the following manner in order to present the work, which

has been done in the project. For readability, it is separated into 5 parts including one

part for appendices.
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Connected to the
3-phase PMSM

Connected to
the
AC source

3-phase

Figure 1.9: The converter configuration used in the motor controller.

PART I Preliminaries

Chapter 1. Introduction

This chapter.

Chapter 2. Mathematical Models and Control Properties

In this chapter, the mathematical models for PMSMs are derived. The key control

properties of the PMSMs are discussed and they are compared.

PART II Sensorless Stable V/f Control of PMSMs

Chapter 3. Stability Characteristics of PMSMs Under Open-Loop V/f
Control

Under open-loop V/f control the PMSMs stability behaviour is studied in detail in this

chapter. The linearized PMSM model is described and the eigenvalues of the linearized

system matrix are used to study the stability characteristics. The computer simulations

and experimental results are provided to validate the stability characteristics of the

PMSMs.

Chapter 4. Stabilization of Open-Loop V/f Controlled PMSMs

The methods for stabilizing the open-loop V/f controlled PMSMs are discussed in this

chapter. A simplified linearized model is used to investigate the stabilizing methods.

The implementation of the stabilizing methods are discussed and they are experimen-

tally verified.

Chapter 5. Sensorless Stable PMSM Drive with V/f Control Approach

The complete V/f controlled PMSM drive system is discussed in this chapter. A voltage

control method with stator resistance voltage drop compensation is discussed. In order



1.5. Outline of the thesis 13

to provide the stability in the system, Chapter 4 discussed stabilizing technique is used.

The performance of the complete drive system is given.

PART III Sensorless Field-Oriented Control of PMSMs

Chapter 6. Field-Oriented Control and Estimation of Rotor Position and
Velocity

In this chapter, the rotor permanent-magnet flux oriented controlled PMSM drive

system is introduced. The rotor position and velocity estimating techniques for this

drive system are reviewed and their merits and demerits are discussed.

Chapter 7. Field-Oriented Controlled Drive System with and without Po-
sition Sensor

In this chapter, the control structure of the field-oriented controlled PMSM drive system

is discussed in detail. The design of current and speed controller are discussed. The

performance of the drive system with angular position sensor is examined. The rotor

position and velocity estimation technique for the drive system is also investigated.

PART IV Conclusions

Chapter 8. Conclusion

The main conclusions are highlighted in this chapter with recommendations for future

work.

PART V Appendices

A. Data for the IPMSM

Data for the IPMSM used in this project are given in this Appendix.

B. Various Relationship Derivations Related to Chapter 3 and Chapter 4

Some relationships, which are required in the discussion of Chapter 3 and Chapter 4,

are derived in this Appendix.

C. Generation of PWM

The PWM generation in the drive systems is briefly described here.

D. The Laboratory Test System

In this Appendix, the laboratory test system used for experiments is described.
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Chapter 2

Mathematical Models and Control
Properties

2.1 Introduction

Development of the correct machine model through the understanding of physics of the

machine is the key requirement for any type of electrical machine control. Since in this

project an Interior type Permanent-Magnet Synchronous Motor (IPMSM) is used for

the investigations, the mathematical models are developed for an IPMSM. However, to

reduce the complexity, the development of those models is under some assumptions as

used in many models developed for a wide variety of electrical machines.

The basic control properties of IPMSMs are also discussed and they are compared

for the IPMSM used in this project.

2.2 Voltage equations in the stationary a,b,c refer-

ence frame

A conceptual diagram for two-pole IPMSM is shown in figure 2.1. It has 3-phase stator

windings conceptually shown as aa′, bb′ and cc′ with their current direction. These

stator windings are identical windings and symmetrically displaced by 1200. The axes

as, bs and cs are magnetic axes of the stator phases a, b and c respectively. The

rotor has buried magnets and, the rotor direct-axis (dr-axis) and the rotor quadrature-

axis (qr-axis) are also shown in figure 2.1. No damper windings exist for the IPMSM

used for the investigations for this project and therefore, the damper windings are not

considered for modeling.

The following assumptions are made for the development of the IPMSM model.

1. The spatial stator phase winding distribution in the air gap is sinusoidal.

2. No thermal effect for stator resistance and the permanent-magnet flux.

3. No saturation effect for the inductances.

15
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Figure 2.1: Conceptual diagram for three phase, two pole IPMSM.

4. No core losses in the machine.

The voltage equations for the stator windings can be written in the matrix form as

vabcs = rsiabcs + pλabcs (2.2.1)

where, rs is stator winding resistance per phase, p represents the operator d
dt

and vabcs

(Stator phase voltage matrix), iabcs (Stator phase current matrix) and λabcs (Stator

phase flux linkage matrix) are defined by

vabcs =



vas

vbs

vcs


 ; iabcs =



ias

ibs

ics


 ; λabcs =



λas

λbs

λcs


 (2.2.2)

No rotor damper windings in the machine and therefore, no rotor circuit equations

exist for the machine.

The stator windings’ flux linkage matrix λabcs is related to the stator currents and

rotor permanent-magnet flux by the following matrix equation.

λabcs = λabcs(s) + λabcs(r) (2.2.3)

where,

λabcs(s) =



Laas Labs Lacs

Lbas Lbbs Lbcs

Lcas Lcbs Lccs


 iabcs (2.2.4)
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λabcs(r) = λm




sin(θr)

sin(θr − 2π
3

)

sin(θr + 2π
3

)


 (2.2.5)

In (2.2.4), Laas is the self inductance of phase a winding, Labs and Lacs are mutual

inductances between a and b phases, a and c phases respectively. For self and mutual

inductances of b and c phases the same notations are used. In (2.2.5), λm is the

amplitude of the flux linkages established by the permanent-magnets on the rotor as

viewed from the stator phase windings.

The inductances in (2.2.4) are described below.

Due to the rotor saliency in IPMSM the air gap is not uniform, and therefore, the

self and mutual inductances of stator windings are a function of the rotor position.

The derivation of these rotor position dependent inductances is available in details in

[1]. The results are summarized here as following.

The stator winding self inductances are

Laas = Lls + LA − LBcos2θr (2.2.6)

Lbbs = Lls + LA − LBcos(2θr +
2π

3
) (2.2.7)

Lccs = Lls + LA − LBcos(2θr − 2π

3
) (2.2.8)

where, Lls is the leakage inductance and it is the same in all three phase windings since

three phase windings are identical. LA and LB are given by

LA = (
Ns

2
)2πµ0rlε1 (2.2.9)

LB =
1

2
(
Ns

2
)2πµ0rlε2 (2.2.10)

where, Ns is number of turns of each phase winding, r is radius, which is from centre

of machine to the inside circumference of the stator and l is the axial length of the air

gap of the machine. µ0 is permeability of the air. ε1 and ε2 are defined as

ε1 =
1

2
(

1

gmin

+
1

gmax

) (2.2.11)

ε2 =
1

2
(

1

gmin

− 1

gmax

) (2.2.12)

where, gmin is minimum air gap length and gmax is maximum air gap length.

The mutual inductances between stator phases are

Labs = Lbas = −1

2
LA − LBcos(2θr − 2π

3
) (2.2.13)

Lacs = Lcas = −1

2
LA − LBcos(2θr +

2π

3
) (2.2.14)

Lbcs = Lcbs = −1

2
LA − LBcos2θr (2.2.15)
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Finally, the flux linkage matrix λabcs in (2.2.1) can be written in the following form



λas

λbs

λcs


 = L



ias

ibs

ics


 +




sin(θr)

sin(θr − 2π
3

)

sin(θr + 2π
3

)


λm (2.2.16)

where,

L =


 Lls + LA − LBcos2θr −1

2LA − LBcos(2θr − 2π
3 ) −1

2LA − LBcos(2θr + 2π
3 )

−1
2LA − LBcos(2θr − 2π

3 ) Lls + LA − LBcos(2θr + 2π
3 ) −1

2LA − LBcos2θr

−1
2LA − LBcos(2θr + 2π

3 ) −1
2LA − LBcos2θr Lls + LA − LBcos(2θr − 2π

3 )




(2.2.17)

2.3 Voltage equations in space vector form

Another way to represent the machine voltage equations is space vector form. Space

vector form of the machine equations has many advantages such as compact notation,

easy algebraic manipulation, very simple graphical interpretation. Specially, this nota-

tion is very useful when analyzing the vector control based techniques of the machines.

The space vector representation of AC machine equations has been discussed in detail

in number of text books ([2], [3] and [4]).

The instantaneous value of the machine variable (current, voltage or flux linkage)

can be represented along the phase axis as a vector and the space vector correspondent

to this variable is defined as

f
abcs

=
2

3
[fas + afbs + a2fcs] (2.3.1)

where, fas, fbs and fcs are the instantaneous values of the machine variable in a, b and

c phases respectively and

a = ej 2π
3 (2.3.2)

a2 = ej 4π
3 (2.3.3)

With the above definition for space vector, the conjugate of it (f �

abcs
) becomes

f �

abcs
=

2

3
[fas + a2fbs + afcs] (2.3.4)

The selection of constant 2
3

in the definition given in (2.3.1) guarantees that for

balanced sinusoidal phase waveforms the magnitude of the space vector is equal to the

amplitude of that phase waveforms.

The IPMSM voltage equations in space vector form can be obtained using the

definition in (2.3.1). Multiplying the second row of the stator voltage matrix equation
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(2.2.1) by a and the third row by a2, adding the result to the first row and multiplying

the entire result by 2
3

it can be obtained the space vector form of the voltage equations

as

vabcs = rsiabcs + pλabcs (2.3.5)

where,

vabcs =
2

3
(vas + avbs + a2vcs), (2.3.6)

iabcs =
2

3
(ias + aibs + a2ics), (2.3.7)

and

λabcs =
2

3
(λas + aλbs + a2λcs), (2.3.8)

The flux linkage space vector λabcs can be obtained from current space vector iabcs

and permanent-magnet flux λm as follows.
The flux linkage matrix which was given in (2.2.16) can be written in the following

form.
λas

λbs

λcs


 =


Lls + LA −1

2LA −1
2LA

−1
2LA Lls + LA −1

2LA

−1
2LA −1

2LA Lls + LA





ias

ibs
ics


 − LB

2


 ej2θr a2ej2θr aej2θr

a2ej2θr aej2θr ej2θr

aej2θr ej2θr a2ej2θr





ias

ibs
ics




−LB

2


 e−j2θr ae−j2θr a2e−j2θr

ae−j2θr a2e−j2θr e−j2θr

a2e−j2θr e−j2θr ae−j2θr





ias

ibs
ics


 +

λm

2j


 ejθr

a2ejθr

aejθr


 − λm

2j


 e−jθr

ae−jθr

a2e−jθr




(2.3.9)

Multiplying the second row of this equation by a and the third row by a2, adding

the result to the first row and multiplying the entire result by 2
3
, one obtains (after

some simplification),

λabcs =
2

3
(λas + aλbs + a2λcs)

=
2

3
(Lls +

3

2
LA)(ias + aibs + a2ics) − LB(ias + a2ibs + aics)e

j2θr + λme
j(θr−π

2
)

(2.3.10)

Using the basic definition for the space vector and its conjugate this expression

becomes finally,

λabcs = (Lls +
3

2
LA)iabcs −

3

2
LBi

�
abcse

j2θr + λme
j(θr−π

2
) (2.3.11)

Equations (2.3.5) and (2.3.11) represent the space vector model of the IPMSM.
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2.4 d,q model

2.4.1 Transformation of machine variables to a general
rotating reference frame

Even though the space vector form of machine equations becomes more compact, the

rotor position dependent parameters still exist in that form of expressions (see (2.3.11)

for the stator flux linkage vector). Therefore, the space vector approach discussed in

the above section is still not a simple model, which can be used for the analysis. A

simplification can be made if the space vector model referred to a suitably selected

rotating reference frame. In the following, it is discussed how the space vector model

transforms to a general rotating reference frame.

as

cs

bs

q

d

�
Re

Im

�

Figure 2.2: Stator three phase axes (as,bs,cs) and general rotating reference
frame (d,q).

Figure 2.2 shows axes of reference for the three stator phases as, bs and cs. It also

shows a rotating set of d,q axes, where the q-axis is located an angle θ from the stator

a phase axis. Variables along the as, bs and cs stator axes can be referred to the q-and

d-axes by the expressions

fqs =
2

3
[fascosθ + fbscos(θ − 2π

3
) + fcscos(θ +

2π

3
)] (2.4.1)

fds =
2

3
[fassinθ + fbssin(θ − 2π

3
) + fcssin(θ +

2π

3
)] (2.4.2)

where, f represents any of the three phase stator variables such as voltage, current or

flux linkage. The coefficient 2
3

should be included in (2.4.1) and (2.4.2), since the space

vector definition in (2.3.1) has the same coefficient. Since there are three phases, to

obtain the full transformation to the d, q frame it is necessary to define the third new
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variable which is called zero sequence component. The expression for the zero sequence

component f0s is

f0s =
1

3
[fas + fbs + fcs] (2.4.3)

In general applications, machines are delta or wye connected without having a neutral

return path. Therefore,

fas + fbs + fcs = 0 (2.4.4)

and zero sequence component does not exist.

Multiplying (2.4.2) by j and subtracting it from (2.4.1) one can obtain the space

vector referred to the rotating d, q reference frame (f
qds

) as

f
qds

= fqs − jfds =
2

3
[fase

−jθ + fbse
−j(θ− 2π

3
) + fcse

−j(θ+ 2π
3

)] (2.4.5)

This expression for f
qds

can be written as

f
qds

=
2

3
e−jθ[fas + afbs + a2fcs] (2.4.6)

Finally, using the definition in (2.3.1) for space vectors, (2.4.6) can be written as

f
qds

= e−jθf
abcs

(2.4.7)

The expression (2.4.7) describes the transformation of a space vector to a general

rotating reference frame.

2.4.2 Voltage equations in stationary d,q reference frame

Referring to figure 2.2, the stationary (ω = 0) d,q reference frame is defined when

θ = 0. Therefore, from (2.4.7) the stationary reference frame vectors can be obtained

as

f s

qds
= f

abcs
= f s

qs − jf s
ds (2.4.8)

where, superscript s denotes the stationary reference frame quantities. Applying the

definition in (2.4.8) to (2.3.5), the stationary reference frame machine voltage equations

can be obtained as

vs
qds = rsi

s
qds + pλs

qds (2.4.9)

where,

λs
qds = (Lls +

3

2
LA)isqds −

3

2
LB(isqds)

�ej2θr + λme
j(θr−π

2
) (2.4.10)
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Substituting the following expressions for complex vectors

vs
qds = vs

qs − jvs
ds (2.4.11)

isqds = isqs − jisds (2.4.12)

λs
qds = λs

qs − jλs
ds (2.4.13)

and equating the real and imaginary parts in both sides of (2.4.9) and (2.4.10) one can

obtain the scalar form of the machine equations in stationary reference frame as

vs
qs = rsi

s
qs + pλs

qs (2.4.14)

vs
ds = rsi

s
ds + pλs

ds (2.4.15)

and,

λs
qs = (Lls +

3

2
LA − 3

2
LBcos(2θr))i

s
qs +

3

2
LBsin(2θr)i

s
ds + λmsin(θr) (2.4.16)

λs
ds =

3

2
LBsin(2θr)i

s
qs + (Lls +

3

2
LA +

3

2
LBcos(2θr))i

s
ds + λmcos(θr) (2.4.17)

2.4.3 Voltage equations in rotor d,q reference frame

Since θ = θr in rotor d,q reference frame, the voltage vector in that reference frame

can be obtained multiplying the both sides of (2.3.5) by e−jθr as,

vabcse
−jθr = rsiabcse

−jθr + e−jθrpλabcs (2.4.18)

Using chain rule, (2.4.18) can be written as

vabcse
−jθr = rsiabcse

−jθr + pλabcse
−jθr + jωrλabcse

−jθr (2.4.19)

and finally, the rotor reference frame voltage vector can be obtained from (2.4.19) as,

vr
qds = rsi

r
qds + pλr

qds + jωrλ
r
qds (2.4.20)

where, superscript r denotes the rotor reference frame quantities.

The flux linkage vector in rotor reference frame can be obtained as

λr
qds = λabcse

−jθr

= (Lls +
3

2
LA)iabcse

−jθr − 3

2
LBi

�
abcse

j2θre−jθr + λme
j(θr−π

2
)e−jθr

= (Lls +
3

2
LA)iabcse

−jθr − 3

2
LBi

�
abcse

jθr + λme
−j π

2

= (Lls +
3

2
LA)irqds −

3

2
LB(irqds)

� + λme
−j π

2 (2.4.21)

It should be noted that when transforming the flux linkage vector to the rotor d,q

reference frame the rotor position dependent terms disappear in the expression as it
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can be seen from (2.4.21). The rotor position dependent inductances do not appear

in rotor reference frame flux vector and this is the main advantage in rotor reference

frame equations.

The expression for flux linkage vector (2.4.21) can also be written in magnetizing

inductances.

The magnetizing inductances are defined as [1],

Lmd =
3

2
(LA + LB) (2.4.22)

Lmq =
3

2
(LA − LB) (2.4.23)

Solving for LA and LB,

LA =
Lmd + Lmq

3
(2.4.24)

LB =
Lmd − Lmq

3
(2.4.25)

Using (2.4.24) and (2.4.25), the flux linkage vector given in (2.4.21) can be written

from magnetizing inductances as

λr
qds = (Lls +

Lmd + Lmq

2
)irqds − (

Lmd − Lmq

2
)(irqds)

� + λme
−j π

2 (2.4.26)

The more useful scalar form of (2.4.20) and (2.4.26) is derived below.

Substituting the following expressions for complex vectors

vr
qds = vr

qs − jvr
ds (2.4.27)

irqds = irqs − jirds (2.4.28)

λr
qds = λr

qs − jλr
ds (2.4.29)

to (2.4.20) and (2.4.26), and equating the real parts and imaginary parts in both sides

of the equations the scalar form of the machine equations in rotor reference frame can

be obtained as

vr
qs = rsi

r
qs + pλr

qs + ωrλ
r
ds (2.4.30)

vr
ds = rsi

r
ds + pλr

ds − ωrλ
r
qs (2.4.31)

where,

λr
qs = Lqi

r
qs (2.4.32)

λr
ds = Ldi

r
ds + λm (2.4.33)

In (2.4.32) and (2.4.33), the Lq and Ld are defined as

Lq = Lls + Lmq (2.4.34)

Ld = Lls + Lmd (2.4.35)
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Substituting the relationships in (2.4.32) and (2.4.33) into (2.4.30) and (2.4.31),

and also considering pλm = 0, the most common scalar form of the machine voltage

equations in the rotor reference frame can be obtained as

vr
qs = rsi

r
qs + pLqi

r
qs + ωrLdi

r
ds + ωrλm (2.4.36)

vr
ds = rsi

r
ds + pLdi

r
ds − ωrLqi

r
qs (2.4.37)

Equations (2.4.32), (2.4.33), (2.4.36) and (2.4.37) in the equivalent circuit form are

shown in figure 2.3.
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Figure 2.3: Equivalent circuit models of the IPMSM in the rotor reference
frame. (a) Rotor d-axis equivalent circuit (b) Rotor q-axis equivalent circuit.

Stationary d,q reference frame equations from Ld and Lq

The stationary d,q reference frame equations derived in § 2.4.2 can also be written in

Ld and Lq. The equations in that form may also be useful for some analysis of the

machine.

With the aid of (2.4.24), (2.4.25), (2.4.34) and (2.4.35), the stationary reference

frame flux given in (2.4.16) and (2.4.17) can be written as

λs
qs = [L+ ∆Lcos(2θr)]i

s
qs − ∆Lsin(2θr)i

s
ds + λmsin(θr) (2.4.38)

λs
ds = −∆Lsin(2θr)i

s
qs + [L− ∆Lcos(2θr)]i

s
ds + λmcos(θr) (2.4.39)

where,

L =
Lq + Ld

2
, ∆L =

Lq − Ld

2
(2.4.40)

The expressions given in (2.4.38) and (2.4.39) can also be written in matrix form

as [
λs

qs

λs
ds

]
=

[
L+ ∆Lcos(2θr) −∆Lsin(2θr)

−∆Lsin(2θr) L− ∆Lcos(2θr)

] [
isqs

isds

]
+

[
λmsin(θr)

λmcos(θr)

]
(2.4.41)
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where, the inductance matrix is[
L+ ∆Lcos(2θr) −∆Lsin(2θr)

−∆Lsin(2θr) L− ∆Lcos(2θr)

]
(2.4.42)

Substituting (2.4.38) and (2.4.39) to the (2.4.14) and (2.4.15), one can obtain the

stationary reference frame voltage equations from Ld and Lq as

vs
qs = rsi

s
qs + p[(L+ ∆Lcos(2θr))i

s
qs − ∆Lsin(2θr)i

s
ds] + λmωrcos(θr) (2.4.43)

vs
ds = rsi

s
ds + p[−∆Lsin(2θr)i

s
qs + (L− ∆Lcos(2θr))i

s
ds] − λmωrsin(θr) (2.4.44)

2.5 The electromagnetic torque

The expression for the electromagnetic torque produced by the IPMSM can be derived

using power balance equation of the machine.

The instantaneous power pe flowing into the machine can be written from rotor d,q

frame variables as

pe =
3

2
(vr

dsi
r
ds + vr

qsi
r
qs) (2.5.1)

After substituting the voltages vr
ds and vr

qs from (2.4.31) and (2.4.30), the equation

(2.5.1) can be written separating the power quantities as in the following form.

pe =
3

2
[rs(i

r
ds)

2 + rs(i
r
qs)

2]︸ ︷︷ ︸
Power loss in conductors

+
3

2
[pLd

(irds)
2

2
+ pLq

(irqs)
2

2
]︸ ︷︷ ︸

Rate of change of stored energy

+
3

2
[ωrλ

r
dsi

r
qs − ωrλ

r
qsi

r
ds]︸ ︷︷ ︸

For energy conversion

(2.5.2)

In (2.5.2), the first term indicates the power loss in the conductors and the second

term indicates the time rate of change of stored energy in the magnetic fields. The

third term should be for energy conversion, that is, from electrical energy to mechanical

energy. If this term (the electromechanical power) is denoted as pem, then

pem =
3

2
[ωrλ

r
dsi

r
qs − ωrλ

r
qsi

r
ds] (2.5.3)

This electromechanical power output should be equal to the power output from the

motor shaft, i.e., the multiplication of mechanical angular velocity of rotor shaft ωrm

and the machine produced torque Te. Thus, (2.5.3) can be written as

ωrmTe =
3

2
[ωrλ

r
dsi

r
qs − ωrλ

r
qsi

r
ds] (2.5.4)

The relationship between mechanical angular velocity of the rotor and the electrical

velocity is:

ωr =
n

2
ωrm (2.5.5)
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where, n is the number of poles of the machine.

Substituting ωr from (2.5.5) to (2.5.4), one can obtain the electromagnetic torque

expression for IPMSM in rotor d,q axes flux and current components as

Te =
3

2

n

2
[λr

dsi
r
qs − λr

qsi
r
ds] (2.5.6)

Substituting λr
qs and λr

ds from (2.4.32) and (2.4.33), the torque expression in (2.5.6)

becomes

Te =
3

2

n

2
[λmi

r
qs + (Ld − Lq)i

r
dsi

r
qs] (2.5.7)

It can be seen from (2.5.7), the IPMSM produce torque consists of two parts, one

is produced by the permanent-magnet flux (Tm) and the other is the reluctance torque

(Tre), which is produced by the difference of the reluctance in rotor d- and q- axes.

The expressions for those two torque components are

Tm =
3

2

n

2
λmi

r
qs (2.5.8)

Tre =
3

2

n

2
(Ld − Lq)i

r
dsi

r
qs (2.5.9)

It should be mentioned that for SPMSMs the reluctance torque component (Tre)

does not exist due to the same reluctance paths in rotor d- and q-axes and only Tm

exists.

The torque expression given in (2.5.7) can also be written using the current vector

magnitude is and the torque angle α, i.e. angle between rotor q-axis and current vector.

This way of expressing the torque is useful in a later section of this chapter and it is

derived here.

The components of the current vector in the rotor reference frame and the torque

angle are shown in figure 2.4.

Using torque angle α the current components irds and irqs can be written as

irds = iscosα (2.5.10)

irqs = issinα (2.5.11)

Substituting irds, i
r
qs from (2.5.10) and (2.5.11) into (2.5.7), the torque expression from

is and α can be obtained as

Te =
3

2

n

2
[λmissinα+

1

2
(Ld − Lq)i

2
ssin2α] (2.5.12)

From (2.5.12), Tm and Tre components can be written as

Tm =
3

2

n

2
λmissinα (2.5.13)

Tre =
3

2

n

2

1

2
(Ld − Lq)i

2
ssin2α (2.5.14)
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Figure 2.4: Current vector components in rotor reference frame.

For a given current magnitude, Tm and Tre varies according to the torque angle α,

and therefore, the resultant torque of the IPMSM. For a given current magnitude, the

variation of Tm and Tre and the resultant torque Te with torque angle α is illustrated in

figure 2.5. The IPMSM parameters used for this calculation are given in the Appendix

A. The current magnitude is taken as the rated current magnitude of the machine.
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Figure 2.5: For a given current magnitude, the variation of magnets produced
torque (Tm) , reluctance torque (Tre) and resultant torque (Te) as a function
of torque angle (α).
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In torque expressions (2.5.7) and (2.5.12) currents are involved and, there is an-

other useful torque expression, which describes from stator flux linkage λs and rotor

permanent-magnet flux λm. Referring to figure 2.6, the stator flux components in rotor

reference frame can be written as

λr
qs = λssin(ψ) = Lqi

r
qs (2.5.15)

λr
ds = λscos(ψ) = Ldi

r
ds + λm (2.5.16)

where, ψ is the angle between stator flux linkage vector and the rotor permanent-magnet

flux vector.

�m
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�m

axisd r �

axisq r �

r
dsi

si
r
qsi

r
qsq

r
qs iL��

r
dsd iL r

ds�

�

Figure 2.6: Rotor permanent-magnet flux vector and stator flux linkage vec-
tor in rotor reference frame.

From (2.5.15) and (2.5.16) the irqs and irds can be obtained as

irqs =
λssin(ψ)

Lq

(2.5.17)

irds =
λscos(ψ) − λm

Ld

(2.5.18)

Substituting λr
qs, λ

r
ds, i

r
qs and irds from (2.5.15), (2.5.16), (2.5.17) and (2.5.18) to the

torque equation given in (2.5.6), one can obtain the torque expression in stator flux

linkage and rotor permanent-magnet flux as

Te =
3

2

n

2
[
λsλmsin(ψ)

Ld

+
λ2

s(Ld − Lq)sin(2ψ)

2LdLq

] (2.5.19)
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2.6 Mechanical equation of the machine

The relationship among the machine produced electromagnetic torque Te, load torque

Tl and the machine’s electrical speed ωr, gives the mechanical equation of the machine

and it can be expressed as

Te = J
2

n
pωr +Bm

2

n
ωr + Tl (2.6.1)

where, J is the inertia of the rotor and the connected load, and Bm is the viscous

friction coefficient.

2.7 Steady state model in rotor d,q reference frame

Steady state voltage equations in rotor d,q frame can be obtained directly from the

dynamic voltage equations described in (2.4.36) and (2.4.37). In steady state, since

currents in the rotor reference frame irqs and irds become DC values (constants) the

derivative terms in (2.4.36) and (2.4.37) become zero. Therefore, the steady state

voltage equations in rotor reference frame can be expressed as

V r
qs = rsI

r
qs + ω0LdI

r
ds + ω0λm (2.7.1)

V r
ds = rsI

r
ds − ω0LqI

r
qs (2.7.2)

where,

V r
qs, V

r
ds - Steady state rotor q- and d- axis voltages

Ir
qs, I

r
ds - Steady state rotor q- and d- axis currents

ω0 - Steady state electrical speed of the rotor

From (2.7.1) and (2.7.2), the rotor reference frame steady state vector diagram of

the IPMSM can be drawn as in figure 2.7.

The steady state torque expression can be written from (2.5.7) as

Te0 =
3

2

n

2
[λmI

r
qs + (Ld − Lq)I

r
dsI

r
qs] (2.7.3)

where, Te0 is the steady state electromagnetic torque of the machine.

2.8 Control properties

In this section, basic steady state properties of the IPMSM under different control

strategies will be studied. The key control strategies for the IPMSMs are as follows [5].

1. Constant torque angle (α = π
2
) control (CTAC)
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Figure 2.7: Steady state vector diagram of the IPMSM in rotor reference
frame. φ0 and α0 are steady state power factor angle and torque angle respec-
tively.

2. Maximum torque per ampere control (MTPAC)

3. Unity power factor control (UPFC)

4. Constant stator flux control (CSFC)

2.8.1 Normalization

In the following developments the normalized steady state machine equations are used

to show the relationships among the machine variables. The base values for the nor-

malization are selected as follows.

The base value for current (Ib) is selected as the amplitude of the rated phase

current, i.e.

Ib =
√

2Irms(rated) (2.8.1)

The base voltage Vb is defined as

Vb = ωbλm (2.8.2)

where,

ωb = 2πfb (2.8.3)
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fb is rated frequency of the machine.

The base value for torque (Tb) is

Tb =
3

2

n

2
λmIb (2.8.4)

By definition, the base impedance Zb is

Zb =
Vb

Ib
(2.8.5)

Then, the base inductance Lb is

Lb =
Zb

ωb

. (2.8.6)

2.8.2 Constant torque angle (α = π
2 ) control

One of the easiest control strategy for IPMSMs is to control the torque angle in order

to maintain it 900. This control can be achieved by controlling the rotor d-axis current

component to zero leaving the current vector on the rotor q-axis. Therefore, this

strategy is also referred to as irds = 0 control. However, it should be noted that from

this control strategy the benefit of the IPMSM produced reluctance torque cannot be

utilized, and therefore, this control strategy is not recommended for IPMSMs with high

saliency ratio. For SPMSMs, this control strategy is the widely used and it will also

become maximum torque per ampere control for SPMSMs as it will be shown later.

The relevant steady state performance equations for this control strategy is derived

in the following.

Since Ir
ds = 0, from (2.7.3) the machine produced torque Te0 becomes

Te0 =
3

2

n

2
λmI

r
qs =

3

2

n

2
λmIs (2.8.7)

The normalized torque can be expressed as

Ten =
Te0

Tb

=
3
2

n
2
λmIs

3
2

n
2
λmIb

= Isn (2.8.8)

From (2.7.1) and (2.7.2) the steady state voltage equations are

V r
qs = rsI

r
qs + ω0λm = rsIs + ω0λm (2.8.9)

V r
ds = −ω0LqI

r
qs = −ω0LqIs (2.8.10)

The magnitude of the voltage vector is given by,

Vs =
√

(V r
qs)

2 + (V r
ds)

2 (2.8.11)

The normalized voltage vector magnitude Vsn becomes,

Vsn =
Vs

Vb

=
Vs

ωbλm

=
√

(rsnIsn + ω0n)2 + (ω0nLqnIsn)2 (2.8.12)

The steady state vector diagram for this control strategy is depicted in figure 2.8.
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Figure 2.8: Steady state vector diagram for constant torque angle (α = π
2
)

control.

2.8.3 Maximum torque per ampere control

From this control strategy, the minimum stator current magnitude can be impressed to

the machine for a required electromagnetic torque [6]. Therefore, for a given operating

point, the copper losses can be minimized in the machine. When the core losses are

negligible, from this control method the maximum efficiency of the machine can also

be obtained.

The steady state performance equations for maximum torque per ampere control

are derived below.

The normalized steady state torque equation can be obtained from (2.5.12) as

Ten =
Te0

Tb

= Isn[sinα +
1

2
(Ldn − Lqn)Isnsin2α] (2.8.13)

In figure 2.5, for a given current magnitude the variation of resultant torque with torque

angle is shown. The torque angle, where the maximum torque is achieved for a given

current, can be obtained by taking the derivative respect to torque angle of (2.8.13)

and equating to zero, i.e.

d(Ten)

dα
= Isn[cosα + (Ldn − Lqn)Isncos2α] = 0 (2.8.14)

Solving for torque angle α

α = cos−1[
−1

4(Ldn − Lqn)Isn
±

√
1

2
+ (

1

4(Ldn − Lqn)Isn
)2 ] (2.8.15)

From figure 2.5, it can be seen that Tm is maximum at α = 900 and the Tre is added to

the resultant torque when 900 < α < 1800. Therefore, the maximum resultant torque is
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achieved always when 900 < α < 1800. Because of this reason, in (2.8.15) only negative

sign should be considered for the solution. Then, the expression for steady state torque

angle in order to obtain maximum torque for a given current magnitude is

α0 = cos−1[
−1

4(Ldn − Lqn)Isn
−

√
1

2
+ (

1

4(Ldn − Lqn)Isn
)2 ] (2.8.16)

The steady state voltage equations (2.7.1) and (2.7.2) can be written using the

current vector magnitude Is and the torque angle α0 as

V r
qs = rsIssinα0 + ω0LdIscosα0 + ω0λm (2.8.17)

V r
ds = rsIscosα0 − ω0LqIssinα0 (2.8.18)

The normalized voltage equations are

V r
qsn = ω0n[

rsnIsnsinα0

ω0n

+ LdnIsncosα0 + 1] (2.8.19)

V r
dsn = ω0nIsn[

rsncosα0

ω0n

− Lqnsinα0] (2.8.20)

The normalized stator voltage magnitude is

Vsn =
√

(V r
qsn)2 + (V r

dsn)2 (2.8.21)

For a given current magnitude Isn one can calculate α0 from (2.8.16) and substituting

those values to (2.8.13), (2.8.19) and (2.8.20) the torque and voltages can be calculated

for this control strategy.

Since reluctance torque Tre does not exist in SPMSMs, from figure 2.5 one can

observe that for a given current magnitude the maximum torque is always obtained at

α = 900. This means that for SPMSMs the maximum torque per ampere control is

α = 900 control.

Some insight into the maximum torque per ampere control technique can also get

writing the normalized torque equation from Ir
dsn and Ir

qsn. From (2.5.7), the normalized

torque equation can be written as

Ten = Ir
qsn + (Ldn − Lqn)Ir

dsnI
r
qsn (2.8.22)

For a given torque there are infinite number of Ir
dsn and Ir

qsn values to fulfill the rela-

tionship in (2.8.22). Those values make a hyperbole in the rotor Ir
dsn, Ir

qsn plane. For

different torque values, those constant torque loci in Ir
dsn, Ir

qsn plane are shown in figure

2.9. In each locus there is one point, where the current becomes minimum to obtain

that torque. The locus, which those minimum current points are connected, is also

shown in figure 2.9 and it is referred to as MTPA trajectory. Figure 2.9 is drawn for

the IPMSM, where the parameters are given in Appendix A. The MTPA trajectory

lies in the second quadrant, i.e. 900 < α < 1800, as expected. For a SPMSM the

MTPA trajectory should lie on Ir
dsn = 0 line.
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Figure 2.9: Constant torque loci and maximum torque per ampere (MTPA)
trajectory in Ir

dsn, Ir
qsn plane for the IPMSM.

2.8.4 Unity power factor control

Since only active power is input to the machine under unity power factor control, the

VA rating requirement of the inverter can be reduced.

Since power factor angle φ0 becomes zero under this control strategy, there is no

phase difference between the current vector and the voltage vector. This implies that

the relationship

V r
qsn

V r
dsn

=
Ir
qsn

Ir
dsn

= tan(α0) (2.8.23)

is fulfilled. Substituting the voltages from (2.8.19) and (2.8.20), the equation (2.8.23)

becomes

rsnIsnsinα0

ω0n
+ LdnIsncosα0 + 1

Isn[ rsncosα0

ω0n
− Lqnsinα0]

=
sinα0

cosα0

(2.8.24)

After simplifying, (2.8.24) becomes

Isn(Lqnsin
2α0 + Ldncos

2α0) = −cosα0 (2.8.25)

Solving for torque angle α0

α0 = cos−1[
−1 ± √

1 − 4LqnI2
sn(Ldn − Lqn)

2Isn(Ldn − Lqn)
] (2.8.26)
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In order to utilize the maximum torque for a given current magnitude of the IPMSM,

900 < α0 < 1800 (see figure 2.5). That is, cos(α0) < 0, and therefore, only positive sign

must be considered in (2.8.26) (It should also be noted that Ldn < Lqn for an IPMSM).

Therefore,

α0 = cos−1[
−1 +

√
1 − 4LqnI2

sn(Ldn − Lqn)

2Isn(Ldn − Lqn)
] (2.8.27)

After obtaining α0 for a given current magnitude, the steady state normalized torque

and voltages can be calculated for this control strategy from (2.8.13), (2.8.19), (2.8.20)

and (2.8.21) respectively.

2.8.5 Constant stator flux control

Limiting the stator flux linkage magnitude λs, the stator voltage requirement can be

kept comparably low. However, when limiting the stator flux linkage magnitude the

torque producing capability of the machine is also limited.

As it can be seen from the torque expression (2.5.19), for a given stator flux magni-

tude λs the electromagnetic torque Te is a function of ψ (the angle between stator flux

linkage vector and the rotor permanent-magnet flux vector). This is depicted in figure

2.10 for different stator flux magnitudes (Machine parameters are given in Appendix

A). As it can be seen from figure 2.10 when the magnitude of the stator flux is decreased

the maximum torque, which can be produced by the machine is also decreased.

When controlling the flux for PMSMs, usually, the stator flux linkage magnitude λs

is kept constant at a value equal to the rotor permanent-magnet flux magnitude λm,

i.e. λs = 1 p.u.. With this selection, the stator voltage requirement to the machine can

be kept comparably low and the torque producing capability of the machine is also not

degraded.

In the following, the steady state performance equations are derived for the machine,

when the stator flux linkage magnitude is equal to λm.

The magnitude of the stator flux linkage vector is

λs =
√

(λr
qs)

2 + (λr
ds)

2 =
√

(LqIr
qs)

2 + (LdIr
ds + λm)2 (2.8.28)

Equating

λs = λm (2.8.29)

one can obtain the relationship for rotor frame currents as

(LqI
r
qs)

2 + (LdI
r
ds)

2 + 2LdλmI
r
ds = 0 (2.8.30)

Since [(LqI
r
qs)

2 + (LdI
r
ds)

2] > 0 and the machine parameters are positive values in

(2.8.30), it can easily be seen that it should always Ir
ds < 0 for this control strategy.
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Figure 2.10: For a given stator flux magnitude λs, the variation of the elec-
tromagnetic torque with ψ (the angle between stator flux linkage vector and
the rotor permanent-magnet flux vector).

If the rotor frame current components in (2.8.30) are substituted from the cur-

rent vector magnitude and the torque angle using (2.5.10) and (2.5.11), the following

expression can be obtained.

Is =
−2λmLdcosα0

L2
qsin

2α0 + L2
dcos

2α0

(2.8.31)

After normalizing (2.8.31) one obtains

Isn =
−2cosα0

Ldn(σ2sin2α0 + cos2α0)
(2.8.32)

where,

σ =
Lq

Ld

=
Lqn

Ldn

. (2.8.33)

Note σ > 1 for the IPMSMs.

The torque angle α0 can be obtained from (2.8.32) as

α0 = cos−1[
−1

IsnLdn(1 − σ2)
±

√
(

1

IsnLdn(1 − σ2)
)2 − σ2

(1 − σ2)
] (2.8.34)
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Since Ir
ds < 0 for this control strategy, 900 < α0 < 1800,and therefore, only the negative

sign should be considered in (2.8.34).

α0 = cos−1[
−1

IsnLdn(1 − σ2)
−

√
(

1

IsnLdn(1 − σ2)
)2 − σ2

(1 − σ2)
] (2.8.35)

For a given stator current magnitude the α0 can be calculated from (2.8.35) for this

control strategy. The torque and voltages can be calculated using (2.8.13), (2.8.19),

(2.8.20) and (2.8.21) respectively.

2.8.6 Comparison of control strategies

In order to compare the steady state performance characteristics of the above discussed

control strategies, for each of the control strategy some important quantities of the

machine are plotted as a function of the torque. The IPMSM parameters, which are

used for the calculations are given in Appendix A.

The current requirement as a function of torque is illustrated in figure 2.11 for the

different control strategies. It should be noted that for a given current the calculation

of torque angle and torque is independent of the speed as it is seen when deriving the

steady state performance equations for the control strategies (see (2.8.16),(2.8.27),(2.8.35)

and (2.8.13)). Therefore, the relationships shown in figure 2.11 are independent of the

speed of the machine.
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Figure 2.11: Current requirement for different control strategies as a function
of torque.
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It can be seen from figure 2.11, the MTPA requires the lowest current for a given

torque as it is expected. However, up to 1 p.u. torque, there is no major difference

for current requirements for CTAC, CSFC and MTPAC. From UPFC, the maximum

torque, which can be produced in the machine is about 1 p.u.. Moreover, it can also

be seen that there are two operating points in the machine for UPFC for each torque

value up to that torque. However, it should be noted that the operating point with

high current value cannot exist due to the current limitations to the machine. Even

with lower current operating point UPFC requires somewhat higher current compared

to the others when the torque is higher than about 0.6 p.u.. (Note that in every figure

in this section, the two parts of the curve related to UPFC are marked with circles and

squares in order to recognize the corresponding part of the curve in each figure. As it

is mentioned, practically, the part with circles cannot exist for UPFC.)

The voltage requirements for the control strategies as a function of torque for two

different speeds (1 p.u. speed and 0.1 p.u. speed) are shown in figure 2.12. Both

high and low speeds the voltage requirement for UPFC is the lowest. For CTAC is the

highest.
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Figure 2.12: Voltage requirement for different control strategies as a function
of torque. (a) Rotor speed at 1 p.u. (b) Rotor speed at 0.1 p.u..

VA rating requirement for different control strategies as a function of torque at 1

p.u. speed is shown in figure 2.13. VA rating comparison at high speed is the most

important since the highest required VA rating for control strategies can be seen at

high speeds. It can be seen from figure 2.13, both UPFC and CSFC have the lowest

VA rating requirement. CTAC requires the highest VA rating.

The power factor variation as a function of torque for different control strategies is

shown in figure 2.14. Both high and low speeds, the power factor decreases rapidly for

CTAC compared to the others when the torque is increased. CSFC keeps the power
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Figure 2.13: VA rating requirement for different control strategies as a func-
tion of torque at 1 p.u. rotor speed.

factor very close to unity until the torque reaches about 1 p.u..
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Figure 2.14: Variation of the power factor for different control strategies as
a function of torque. (a) Rotor speed at 1 p.u. (b) Rotor speed at 0.1 p.u..

The steady state performance characteristics comparison which was shown in figure

2.11, figure 2.12, figure 2.13 and figure 2.14 can be summarized based on the control

strategies as below.

It can be seen that the voltage requirement is relatively high for CTAC. Even though
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the current requirement is not very high, the high voltage requirement increases the

VA rating. CTAC deteriorates the power factor when the load or the speed is increased

in the machine.

The main advantage of MTPAC is the lowest current requirement to the machine.

However, the voltage requirement is only second to CTAC. The high voltage require-

ment increases the VA rating. The power factor is only second to CTAC.

The benefit of the UPFC is the voltage requirement is relatively low to the machine.

However, UPFC can only produce about 1 p.u. torque in the machine, which is the

main drawback. When torque is increased, relatively high current is required to the

machine from UPFC.

The voltage requirement for CSFC is only second to UPFC. However, CSFC can

produce much higher torque in the machine compared to UPFC. Even though the

current requirement is high at high torques, up to 1 p.u. torque there is no significant

different between CSFC and MTPAC. CSFC also has the lowest VA rating requirement.

The power factor is only second to UPFC and it is very close to unity up to 1 p.u.

torque.

From this comparison study it can be concluded that the CSFC has better steady

state performance characteristics compared to the others and it should be a good

control strategy to consider.

2.9 Summary

The mathematical models for IPMSM have been derived in this chapter. Even though

there are different forms to express the IPMSM voltage equations, the rotor d,q refer-

ence frame voltage equations are the most convenient. The simplification in rotor d,q

reference frame voltage equations is due to the disappearance of position dependent

inductances in those equations.

The electromagnetic torque of the IPMSM is not only produced by the permanent-

magnet flux but also by the reluctance difference in rotor d- and q-axes. This is different

from SPMSMs where the electromagnetic torque is only produced by the permanent-

magnet flux.

The steady state performance characteristic equations for key control strategies of

IPMSM have also been derived in this chapter. The comparison of steady state perfor-

mance characteristics of the key control strategies reveals that the overall performance

of the constant stator flux linkage control strategy is better compared to other control

strategies.
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Part II

Sensorless Stable V/f Control of
PMSMs





Chapter 3

Stability Characteristics of PMSMs Under
Open-Loop V/f Control

3.1 Introduction

When PMSM drives are used for applications like pumps and fans, where high dynamic

performance is not a demand, V/f control of them may be sufficient to achieve the

required control performance. However, as described in § 1.2 of Chapter 1, the V/f

control of PMSMs can only be achieved in closed-loop manner, in order to assure the self

synchronization. This makes the design of V/f control for PMSMs somewhat difficult.

In order to obtain the background knowledge for designing the V/f control of PMSMs

in closed-loop manner, it is important to understand the stability characteristics of

PMSMs under open-loop V/f control. The open-loop V/f control is referred to as, the

V/f control without incorporating any feedback for self synchronization as shown in

figure 3.1.

PMSM
PWM
VSI

Frequency
command

Voltage
calculation

s
V

*f
0

fAccel.
Decel.

0
f

Figure 3.1: Open-loop V/f control of PMSMs.

The objective of this chapter is to study the stability characteristics of PMSMs

under open-loop V/f control. For this purpose, to use linear system theory for analysis,

the nonlinear PMSM equations derived in Chapter 2 are linearized. This linearized

PMSM model is the tool for studying the stability behaviour of the PMSMs under

open-loop V/f control. Computer simulations and experimental results are provided

to validate the results obtained from the linearized PMSM model analysis.

45
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3.2 Linearized PMSM model

3.2.1 PMSM equations in state variable form

The PMSM’s rotor dr, qr frame voltage equations, torque expression and the mechanical

equation, which are derived in Chapter 2, are used here to develop the linearized

machine model of the PMSM. Here, another machine variable is defined, that is, the

load angle δ, which is useful for the analysis.

The load angle δ is defined as

δ = θe − θr (3.2.1)

where, θe and θr are electrical angular position of applied stator voltage vector and

electrical rotor angular position respectively. Figure 3.2 illustrates the load angle δ

defined in (3.2.1).
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Figure 3.2: Rotor reference frame vector diagram showing the load angle δ.

Differentiating (3.2.1) one can obtain

pδ = ωe − ωr (3.2.2)

where, ωe and ωr are the electrical angular speed of applied voltage vector and the

rotor respectively.

Using δ, the rotor frame voltage components vr
qs and vr

ds can be obtained as

vr
qs = vscos(δ) (3.2.3)

vr
ds = −vssin(δ) (3.2.4)
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where, vs is the magnitude of the applied voltage vector.

Substituting vr
qs and vr

ds from (3.2.3) and (3.2.4) to (2.4.36) and (2.4.37) derived in

Chapter 2, the following equations can be obtained.

vscos(δ) = rsi
r
qs + pLqi

r
qs + ωrLdi

r
ds + ωrλm (3.2.5)

−vssin(δ) = rsi
r
ds + pLdi

r
ds − ωrLqi

r
qs (3.2.6)

Substituting the torque expression (2.5.7) to the mechanical equation (2.6.1) one

obtains

3

2

n

2
[λmi

r
qs + (Ld − Lq)i

r
dsi

r
qs] = J

2

n
pωr +Bm

2

n
ωr + Tl (3.2.7)

The four equations (3.2.5), (3.2.6), (3.2.7) and (3.2.2) can be rearranged to obtain

the four system equations in state variable form as

pirqs =
−irqs

στs
− ωr

σ
(
λm

Ld

+ irds) +
vscos(δ)

σLd

(3.2.8)

pirds =
−irds

τs
+ σωri

r
qs −

vssin(δ)

Ld

(3.2.9)

pωr =
3

2J
(
n

2
)2[λmi

r
qs + Ld(1 − σ)irqsi

r
ds] −

1

J
Bmωr − n

2J
Tl (3.2.10)

pδ = ωe − ωr (3.2.11)

In these equations

τs =
Ld

rs

(3.2.12)

σ =
Lq

Ld

(3.2.13)

3.2.2 Linearization

The above obtained machine state equations (3.2.8)-(3.2.11) have the form

ẋ = f(x, u) (3.2.14)

where, x is the vector of the machine state variables and f is the nonlinear function of

the state x and the inputs u.

The linearized form of the nonlinear system given in (3.2.14) can be written as

∆̇x = A(X)∆x+B(X)∆u (3.2.15)

where, ∆x is perturbation matrix for state variables x, A(X) is state transition matrix,

∆u is input perturbation matrix and B(X) is input matrix [1], [2].



48 Chapter 3. Stability Characteristics of PMSMs Under Open-Loop V/f Control

The linearized state equations in (3.2.15) can be obtained from the nonlinear state

equations in (3.2.14) as described below.

It should be considered the each machine state variables in (3.2.14) is composed of

a steady state component X and a small perturbation (∆xi) as

xi = X + ∆xi (3.2.16)

In (3.2.16), xi is the i th state variable.

Substituting (3.2.16) for the corresponding state variable in (3.2.14), and cancelling

steady state terms and neglecting second order perturbations the linearized equations

in (3.2.15) are obtained [1], [2], [3], [4].
Applying this linearizing method to the nonlinear PMSM state equations described

in (3.2.8)-(3.2.11), the obtained linearized PMSM equations can be written in matrix
form as

p




∆irqs

∆irds

∆ωr

∆δ




=




−1
στs

−ω0
σ

−1
σ (λm

Ld
+ Ir

ds)
−Vs
σLd

sin(δ0)

σω0
−1
τs

σIr
qs

−Vs
Ld

cos(δ0)

3
2(n

2 )2 1
J [λm + Ld(1 − σ)Ir

ds]
3
2(n

2 )2 1
J Ld(1 − σ)Ir

qs
−Bm

J 0

0 0 −1 0







∆irqs

∆irds

∆ωr

∆δ




+




cos(δ0)
σLd

0 0
−sin(δ0)

Ld
0 0

0 0 −n
2J

0 1 0







∆vs

∆ωe

∆Tl


 (3.2.17)

In the linearized system given in (3.2.17), the state transition matrix (the system

matrix)

A(X) =




−1
στs

−ω0

σ
−1
σ

(λm

Ld
+ Ir

ds)
−Vs

σLd
sin(δ0)

σω0
−1
τs

σIr
qs

−Vs

Ld
cos(δ0)

3
2
(n

2
)2 1

J
[λm + Ld(1 − σ)Ir
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(3.2.18)



3.2. Linearized PMSM model 49

where
Ir
qs, I

r
ds - Magnitude of the steady state rotor qr- and dr- axis currents

Vs - Magnitude of the steady state stator applied voltage

ω0 - Steady state electrical speed of the rotor

δ0 - Steady state load angle

The PMSM’s voltages and currents in the rotor fixed reference frame become con-

stant values in a steady state operating point, and therefore, the state transition matrix

A(X) also becomes a constant matrix (time invariant) in the linearized model described

in (3.2.17) for that operating point. This makes the analysis of the system more con-

venient and this advantage is due to the selection of the PMSM equations in the rotor

fixed reference frame [5].

The above obtained matrix form of the linearized machine model can also be illus-

trated in block diagram form as shown in figure 3.3.
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Figure 3.3: Block diagram form of the linearized PMSM model.
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3.3 Linearized PMSM model under open-loop V/f

control

Under open-loop V/f control the commanded voltage magnitude and the frequency

are directly applied to the PMSM. No adjustments are made for them measuring other

signals. This means that there are no perturbation components in the applied voltage

magnitude and the frequency, i.e. the conditions

∆vs = 0 (3.3.1)

∆ωe = 0 (3.3.2)

are fulfilled.
Applying these two conditions to the linearized PMSM model in matrix equation

(3.2.17), the PMSM model under open-loop V/f control can be obtained as

p


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Now, the state transition matrix of the system A1(X) is

A1(X) =


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(3.3.4)
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and it is same as A(X) given in (3.2.18).

Taking into account the two relationships

Vscos(δ0) = V r
qs (3.3.5)

−Vssin(δ0) = V r
ds (3.3.6)

the A1(X) can also be written without involving δ0 as follows.

A1(X) =
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2
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2
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2
)2 1

J
Ld(1 − σ)Ir
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−Bm

J
0

0 0 −1 0




(3.3.7)

Under open-loop V/f control, the small signal dynamics (or linearized system dy-

namics) of the system can also be visualized in terms of the block diagram form as

shown in figure 3.4. One can obtain this block diagram taking into account the rela-

tionships given in (3.3.1) and (3.3.2) to the full small signal dynamics model given in

the block diagram form in figure 3.3.
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Figure 3.4: Block diagram form of the linearized PMSM model under open-
loop V/f control.

The block diagram in figure 3.4 shows that the torque perturbations produce rotor

speed perturbations (through the rotor mechanical dynamics), which in turn create

load angle and torque perturbations which are feedback in a closed-loop system. The

characteristic equation for this system is

1 +
n

2Js(s+ Bm

J
)
(
∆Te

∆δ
) = 0 (3.3.8)
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One can find the transfer function for ∆Te

∆δ
in (3.3.8), by linearizing the torque

equation (2.5.7) and considering the first, second and fourth equations in the matrix

equation (3.3.3). The derivation of this transfer function is given in Appendix B.1.

3.4 Investigation of stability characteristics under

open-loop V/f control

After obtaining the linearized model of the system under open-loop V/f control, the

system can be analyzed using the linear system theory. According to the linear sys-

tem theory, the eigenvalues of the state transition matrix A1(X) express the poles of

the system. Therefore, the location of the eigenvalues of A1(X) in the s-plane indi-

cates the system’s stability characteristics for the conditions under consideration. The

eigenvalues of A1(X) (system poles) are determined by the solution to the determinant

equation

det(sI − A1(X)) = 0 (3.4.1)

where, I is the unit matrix.

The system poles can also be found from the solutions to the characteristic equation

(3.3.8). However, in this section the eigenvalues of the state transition matrix A1(X)

are used to investigate the stability characteristics of PMSMs under open loop V/f

control. The eigenvalue plots of A1(X), which are drawn as a function of a appropriate

parameter, will be the key to understand any instability and the damping of the system

for the conditions under consideration. The IPMSM parameters, which are given in

Appendix A, are used for the following calculations.

3.4.1 The machine under no-load

Under no-load, the ideal condition is assumed, i.e. the machine does not produce a

torque, and therefore, Ir
qs = 0. In order to reduce the losses Ir

ds does not need to

flow in the machine under no-load. Therefore, under no-load the voltage is applied to

the machine only to compensate the back EMF (Em) produced by the rotor PM flux.

This implies that the conditions for no-load are, Vs = Em = ω0λm = V r
qs, I

r
qs = 0 and

V r
ds = 0, Ir

ds = 0. Applying these conditions to the matrix A1(X) given in (3.3.7), the

drawn eigenvalue plot of it, as a function of the applied frequency is shown in figure

3.5. This plot is symmetric on the real axis and the four parts correspond to the four

eigenvalues of matrix A1(X) for each operating point.

From figure 3.5, it can be seen that, when the applied frequency is increased, one

set of poles is moving away from the imaginary axis in the left half of the s-plane.

For high frequencies the real part of the eigenvalues is almost a constant for this set.

The damping of the other set decreases with increasing frequency and above a certain

frequency the eigenvalues migrate into the right half of the s-plane making the system
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Figure 3.5: Eigenvalue plot for the machine under no-load, as a function of
the applied frequency.

unstable. After this crossing frequency this set of poles remain in the unstable region

when the applied frequency is increased.

It should be noted that the set of poles, which is comparably fast in figure 3.5

represents the fast acting electrical dynamics in the stator of the machine. These poles

are referred to as “stator” poles of the machine. The remaining set of poles, which

is comparably slow, represents the mechanical dynamics of the machine. This set of

poles is referred to as “rotor” poles of the machine [2]. From figure 3.5, it can be seen

that the rotor poles of the machine become dominant poles since they mainly impact

on the stability characteristics of the machine. An enlarged view of these rotor poles

in the s-plane is shown in figure 3.6. From figure 3.6 it can be seen that the machine

becomes unstable after about 15 Hz.

Figure 3.7 illustrates the loci of the rotor poles with different inertia of the system,

under no-load, as a function of the applied frequency. When the inertia of the system

is increased the mechanical dynamics of the machine become slow. This can clearly be

seen from figure 3.7, where the rotor poles become slow when the inertia is increased.

It can also be seen in figure 3.7, the oscillation frequency decreases in the machine

when increasing the inertia of the system, also as expected. However, the instability in

the machine still exists with increased inertia.
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Figure 3.6: Enlarged view of rotor poles of the machine, under no load, as a
function of the applied frequency.
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3.4.2 The machine under load

When the machine under load, the stability characteristics are investigated under the

different control strategies discussed in §2.8 of Chapter 2. Under load, the steady state

values of the machine variables (i.e. Ir
qs, I

r
ds, V

r
qs, V

r
ds), which require to determine the

elements of state transition matrix A1(X), are calculated under those different control

strategies.

Figure 3.8 shows the eigenvalue plot of matrix A1(X), machine under full-load, with

constant stator flux linkage control strategy, as a function of the applied frequency. The

shape of this eigenvalue plot is very similar to the eigenvalue plot, which is drawn for

the no-load condition of the machine in figure 3.5. The eigenvalue plots drawn under

full-load with other control strategies reveal that there is no significant change in the

shape of the complete eigenvalue plot.
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Figure 3.8: Eigenvalue plot for the machine under full-load, constant stator
flux linkage control, as a function of the applied frequency.

In figure 3.9- figure 3.12, the eigenvalue plots are shown with different control strate-

gies, under different load conditions in the machine. For clarity, only the dominant

poles (rotor poles) are shown in those figures. The no-load condition is also shown for

comparison. It can be seen that the eigenvalues of the machine migrate into the right

half of the s-plane, i.e. the machine becomes unstable, after exceeding a certain applied

frequency (about 15 Hz) regardless of the control strategy and the load condition of

the machine. Under open-loop V/f control, this type of stability behaviour of PMSMs

was also observed in [6] and [7], and it was referred to as mid-frequency instability of
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PMSMs.
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Figure 3.9: The loci of dominant poles under different load conditions, con-
stant stator flux linkage control, as a function of the applied frequency.
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3.4.3 Simulations and experimental results

In order to verify the stability behaviour of the machine, which was demonstrated

using the eigenvalue plots obtained from the linearized model of the machine, first,

the computer simulations were carried out for different operating points using the full

non-linear model of the machine.

The machine was modeled using the equations (3.2.8)-(3.2.11) and, the rotor speed

and the load condition of the machine were initialized to the required steady state

operating point value. Then, the machine was simulated exciting the frequency and

the voltage correspondent to that steady state operating point, using a voltage source

inverter with space vector modulation (see figure 3.1). A constant DC-link voltage (560

V) was used for the voltage source inverter. The machine parameters were same as

used for the eigenvalue plot calculations. They are given in Appendix A.

Figure 3.13 shows the simulated rotor speed responses at different frequencies under

no-load, i.e. Vs = Em. It can be seen from this rotor speed responses the system is

stable at low frequencies (at 5 Hz and 10 Hz) and at high frequencies (at 43.75 Hz

and 87.5 Hz) the system is unstable as expected from the eigenvalue plots drawn under

no-load (see figure 3.5 and figure 3.6).

Figure 3.14 shows the simulated rotor speed responses at different frequencies, ma-

chine under full-load, with the excitation voltage according to the constant stator flux

linkage control strategy. Again, the results in figure 3.14 agree with the stability anal-

ysis of the machine, which was demonstrated in the eigenvalue plots drawn under

full-load with this control strategy (see figure 3.8 and figure 3.9).

To see the stability behaviour of the machine experimentally, the following labo-

ratory tests were carried out in a prototype drive system, under no-load. The drive

system consists of a voltage source inverter with space vector modulation (see Appendix

C) and the IPMSM, which is used for the analysis. More details of this laboratory drive

system can be found in Appendix D.

The machine was ramped up to the different frequencies, under no-load, applying

the voltage Vs = Em = 2πf0λm. For all measurements the machine was started from

a same initial rotor position. The plots of measured rotor speeds are shown in figure

3.15. It can be seen from this measurements, the stable operation at low frequencies

and the unstable operation at high frequencies of the machine, as expected from the

previous analysis. Moreover, the oscillations at high frequencies have a good agreement

with the eigenvalue plot, which was drawn for the no-load case in figure 3.6.

In order to see whether any effect from ramp up time to the instability seen at high

frequencies, the rotor speed at 43.75 Hz was measured with different ramp up times.

The results are shown in figure 3.16(a). As it can be seen, changing the ramp up time

the stable operation of the machine cannot be achieved. Another measurement was

carried out applying a higher than the no-load voltage to the machine at the same

frequency. The measured rotor speed is shown in figure 3.16(b). The stable operation
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Figure 3.13: Simulated rotor speed responses, machine under no-load. The
excitation voltage Vs = Em. (a) At 5 Hz (b) At 10 Hz (c) At 43.75 Hz
(50% of the rated frequency) (d) At 87.5 Hz (rated frequency).
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Figure 3.14: Simulated rotor speed responses, machine under full-load. The
excitation voltage is according to constant stator flux linkage control. (a) At
5 Hz (b) At 10 Hz (c) At 43.75 Hz (50% of the rated frequency) (d) At
87.5 Hz (rated frequency).
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Figure 3.15: Measured rotor speeds at different frequencies, under no-load.

of the machine can also not be achieved applying a higher voltage to the machine, as

it can be seen from the rotor speed measurement shown in figure 3.16(b).
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Figure 3.16: Measured rotor speeds at 43.75 Hz, under no-load. (a) With
different ramp up times (b) Applying a half of the rated voltage to the ma-
chine.
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3.5 Summary

This chapter has been investigated the stability characteristics of the PMSMs under

open-loop V/f control. First, the linearized PMSM model has been derived when the

machine is under open-loop V/f control. The eigenvalues of the state transition matrix

of this linearized PMSM model have been used to investigate the stability character-

istics of the machine. The drawn eigenvalue plots for the machine under no-load and

under load conditions, as a function of the applied frequency, have revealed that the

machine becomes unstable after exceeding a certain applied frequency (mid-frequency

instability) under open-loop V/f control. Computer simulations and experimental re-

sults have verified that stability behaviour of the machine.

Since the machine has been operated under open-loop, it does not assure the syn-

chronization of machine’s stator excitation and motion of the rotor. Without this

synchronization the electrical and the mechanical modes of the machine do not have

proper coupling and this leads to the instability of the machine, after exceeding a cer-

tain applied frequency, as it is seen in the investigation. However, at low frequencies

the electrical and the mechanical modes of the machine have coupling, which makes

the stable operation of the machine.
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Chapter 4

Stabilization of Open-Loop V/f Controlled
PMSMs

4.1 Introduction

As it is shown in Chapter 3, the PMSM becomes unstable after exceeding a certain

applied frequency under open-loop V/f control. Under open-loop V/f control, there

is no assurance for synchronization of PMSM’s stator excitation and the motion of

the rotor. This leads to that observed instability behaviour of the PMSM. In order

to achieve stable operation for a wide frequency range, the open-loop V/f controlled

PMSMs require some means of synchronization of the stator excitation and the motion

of the rotor. This chapter investigates how this can be achieved for open-loop V/f

controlled PMSMs.

First, in this chapter, the small signal dynamics model, which is derived in §3.2 of

Chapter 3 is simplified, so that it can mainly provide the behaviour of the principal

system roots of the system. This simplified small signal dynamics model is an easy

tool to understand how the system is stabilized. It will be shown in detail that the

applied frequency modulation proportional to the perturbations in the input power

of the machine should be a suitable solution to achieve stable operation of open-loop

V/f controlled PMSMs for a wide frequency range. Then, two ways to implement this

frequency modulated stabilizing loop in the drive system will be discussed. One method

uses calculated input power of the machine and the other method uses measured DC-

link current in the DC-link of the drive. Small signal analysis, computer simulations

and experimental results are presented to validate those stabilizing techniques.

4.2 Simplified small signal dynamics model

The small signal dynamics model (the linearized machine model) of the PMSM, which

is shown in figure 3.3 of Chapter 3 is a very complex one. From that model it is not

easy to see how the system is stabilized under open-loop V/f control. Therefore, a

simplification is necessary for that small signal dynamics model, so that it can be used

65
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to see how the system is stabilized.

In this section, a simplified small signal dynamics model is developed based on the

model derived in § 3.2 of Chapter 3. The key approximation for the simplification

is discussed. Moreover, the validity of the obtained simplified small signal dynamics

model is studied under open-loop V/f control of PMSMs.

4.2.1 Approximation for the simplification

A simplification can be achieved to the small signal dynamics model of the PMSM

shown in figure 3.3 of Chapter 3, considering an approximation for the electromagnetic

torque perturbation production in the machine. In the approximation, it is consid-

ered the electromagnetic torque perturbation in the machine is produced only due to

the perturbation in the load angle and proportionally to it [1]. This can be written

mathematically as

∆Te = ke(∆δ) (4.2.1)

The ke in (4.2.1) is electromechanical spring constant and it is equal to the slope of

the torque-load angle curve at the steady state operating point, i.e.

ke =
∂Te0

∂δ0
|δ0 at steady state operating point. (4.2.2)

The steady state electromagnetic torque Te0 is a function of Vs, ω0 and δ0. One

can obtain this relationship considering the steady state voltage equations in the rotor

frame and the electromagnetic torque equation. The derivation of this relationship

is given in Appendix B.2. For a given steady state voltage Vs and frequency ω0 the

relationship between Te0 and δ0 can be drawn as in figure 4.1. Figure 4.1 is drawn at

rated frequency and voltages are calculated for different load conditions using constant

stator flux linkage control strategy. The IPMSM parameters given in Appendix A are

used for the calculation. According to (4.2.2), ke is the slope of one of the curves shown

in figure 4.1 at the steady state operating point.

When the Te0 is known as a function of Vs, ω0 and δ0, one can easily derive the

expression for ke using (4.2.2). This derivation is given in Appendix B.3. ke is also

a function of Vs, ω0 and δ0. One particular interest is to see the variation of ke with

frequency for different load conditions. This is useful in later analysis and it is shown

in figure 4.2 for the IPMSM parameters given in Appendix A. For calculations, the

constant stator flux linkage control strategy is used. From figure 4.2 it can be seen that

the ke is not much affected from the load and at high frequencies it becomes almost a

constant value.

4.2.2 Block diagram for simplified small signal dynamics model

Representing the rotor velocity (ωr), electrical angular velocity (ωe) and load angle (δ)

as the sum of the steady state component and the perturbation component, one may
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write

ωr = ω0 + ∆ωr (4.2.3)

ωe = ω0 + ∆ωe (4.2.4)

δ = δ0 + ∆δ (4.2.5)

Substituting these relationships to (3.2.2) of Chapter 3, the following relationship for

the perturbation components can be obtained.

∆δ =

∫
(∆ωe − ∆ωr)dt (4.2.6)

The mechanical equation for the system is (see (2.6.1) of Chapter 2)

pωr =
n

2J
Te − 1

J
Bmωr − n

2J
Tl (4.2.7)

Linearizing (4.2.7) one obtains,

p∆ωr =
n

2J
∆Te − 1

J
Bm∆ωr − n

2J
∆Tl (4.2.8)

Rearranging and substituting s for p, the equation (4.2.8) can be written as

−(∆ωr)(s+
Bm

J
) =

n

2J
(∆Tl − ∆Te) (4.2.9)

Using (4.2.6), (4.2.9) and the approximation for ∆Te given in (4.2.1), the block

diagram for the simplified small signal dynamics model can be drawn as in figure 4.3.
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Figure 4.3: Simplified small signal dynamics model of the PMSM.

Comparing figure 3.3 in Chapter 3 and figure 4.3 one can see the simplification in

figure 4.3 is due to the approximation made for ∆Te generation. In figure 4.3 the ∆Te

is generated only from ∆δ incorporating the gain ke.
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4.2.3 Simplified small signal dynamics model under open-loop
V/f control

Under open-loop V/f control, it can be considered the PMSM is excited from a voltage

with constant amplitude and frequency, where the conditions ∆vs = 0 and ∆ωe = 0

are fulfilled (see § 3.3 of Chapter 3). Due to the approximation made to obtain the

simplified small signal dynamics model the ∆vs does not exist as an input to that

model. Therefore, using the condition ∆ωe = 0, the above obtained simplified small

signal dynamics model in figure 4.3 can be drawn for open-loop V/f control as in figure

4.4.
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Figure 4.4: Simplified small signal dynamics model of the PMSM, under
open-loop V/f control.

The characteristic equation for this system is

1 +
n

2J(s+ Bm

J
)
(
ke

s
) = 0 (4.2.10)

∴ 2Js2 + 2Bms+ nke = 0 (4.2.11)

The solution to this equation (the location of the system poles in the s-plane) is

s =
−Bm

2J
± j

√
2Jnke −B2

m

2J
(4.2.12)

In (4.2.12), the ke varies according to the steady state operating point of the machine.

When the applied frequency is changed at no-load and full-load the location of the

system poles in the s-plane is shown in figure 4.5.

When the full small signal dynamics model was used in § 3.3 of Chapter 3, the

system became a fourth order system. It can be seen that when the simplified small

signal dynamics model is used the system is reduced to almost an undamped second

order system.

The natural frequency of oscillation (ωd) of the poles in figure 4.5 are given by (from

(4.2.12))

ωd =

√
2Jnke −B2

m

2J
(4.2.13)
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Figure 4.5: The location of system poles from simplified small signal dy-
namics model, as a function of the applied frequency. (a) Under no load
(b) Under full load, constant stator flux linkage control.

Figure 4.6 compares the natural frequency of the dominant poles of the full small

signal dynamics model and natural frequency of the poles of the simplified small signal

dynamics model under open-loop V/f control. It can be seen from the plots drawn

in figure 4.6 the natural frequencies from both models have a good agreement, except

some deviations at low frequencies.
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Figure 4.6: Comparison of natural frequencies (ωd) from the dominant poles
of the full small signal dynamics model and from the poles of the simplified
small signal dynamics model. (a) Under no load (b) Under full load, con-
stant stator flux linkage control.
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It can be concluded that the characteristics of the poles of the simplified small signal

dynamics model express the characteristics of the dominant poles (rotor poles) of the

full small signal dynamics model. When the frequency is increased the similarity in the

characteristics is also increased.

4.3 Stabilization by frequency modulation-Simplified

small signal model analysis

The simplified small signal dynamics model, which is derived in § 4.2 can be used to

show how to stabilize the open-loop V/f controlled PMSMs by modulating the applied

frequency. In the following, using the simplified small signal dynamics model, different

methods to modulate the applied frequency to achieve stabilization of the system are

discussed.

4.3.1 Frequency modulation using rotor velocity perturbations

The rotor velocity perturbations (∆ωr) can be used to modulate the applied frequency

to add damping and stabilize the system.

If the applied frequency is modulated using the rotor velocity perturbations as in

the following relationship,

∆ωe = −kv
d(∆ωr)

dt
(4.3.1)

then, the simplified small signal dynamics model in figure 4.3 can be drawn as shown

in figure 4.7. In (4.3.1), kv is the gain for the frequency modulation component.

From the block diagram shown in figure 4.7 the characteristic equation of the system

can be obtained as

s2 +
(2Bm + nkekv)

2J
s+

n

2J
ke = 0 (4.3.2)

This characteristic equation indicates that the damping of the system can be con-

trolled by properly selecting the gain kv.

However, to implement this method a rotor position sensor is required to obtain

the rotor velocity perturbations. This is of course not desirable in sensorless control

and this technique will not be investigated further in this chapter.

4.3.2 Frequency modulation using power perturbations

The perturbations in the power of the system can also be used to modulate the supply

frequency in order to stabilize the system. This can also be shown using the simplified

small signal dynamics model.

The motor power balance equation can be written as

pe = pml +
dwem

dt
+

2

n
ωrTe (4.3.3)
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signal dynamics, when the applied frequency is modulated as ∆ωe = −kv
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The input power pe is distributed among the motor losses Pml, the change in electro-

magnetic energy storage wem and the mechanical output power of the machine.

Using the mechanical equation of the machine (see (2.6.1) of Chapter 2) the equation

(4.3.3) can be written as

pe = Pe + ∆pe = pml +
dwem

dt
+ (

2

n
)2J

2

d

dt
ω2

r + (
2

n
)2Bmω

2
r +

2

n
ωrTl (4.3.4)

where, Pe is the steady state power and ∆pe is the perturbation component.

It is assumed that for a given operating point the first two terms in right side of

(4.3.4) are almost constant and the perturbations in the power are only due to the last

three terms of (4.3.4). With this assumption the perturbations in the power can be

written as

∆pe = (
2

n
)2Jω0

d

dt
∆ωr + 2(

2

n
)2Bmω0∆ωr +

2

n
Tl0∆ωr (4.3.5)

where, Tl0 is the steady state load torque.

If the supply frequency is modulated proportionally to the perturbations in the

power, then ∆ωe can be written as

∆ωe = −kp∆pe = kp[(
2

n
)2Jω0

d

dt
(−∆ωr) + 2(

2

n
)2Bmω0(−∆ωr) +

2

n
Tl0(−∆ωr)] (4.3.6)

where, kp is the proportional gain.

With this type of modulation for the applied frequency, the simplified small signal

dynamics model given in figure 4.3 can be drawn as shown in figure 4.8.

The block diagram shown in figure 4.8 gives the characteristic equation for the

system as

s2 + (
Bm

J
+

2keω0kp

n
)s+

ke

2J
[n+ 4(

2

n
)Bmkpω0 + 2Tl0kp] = 0 (4.3.7)

The roots of this equation, i.e. the poles of the system in the s-plane, are

s1,2 = −(
Bm

2J
+
keω0kp

n
)±

√
(
Bm

2J
+
keω0kp

n
)2 − ke

2J
[n+ 4(

2

n
)Bmkpω0 + 2Tl0kp] (4.3.8)

Since Bm, J, n are constants for the machine and ke, ω0, Tl0 are also constants for

a given operating point, the damping of the system for an operating point can be

controlled by properly selecting the gain kp as it can be seen from (4.3.8). Figure 4.9

and figure 4.10 show the location of the system poles when the gain kp is increased

under no load and full load at rated frequency, respectively. It can be seen from figure

4.9 and figure 4.10 how the gain kp affects to the system’s damping at the operating

points considered.

As it can be seen from (4.3.8), using a constant value for the gain kp it is not possible

to fix the location of the poles, since the location of the poles is also vary according to

ω0, ke and Tl0. However, there is a possibility to approximately fix the location of the

poles if ω0kp term is kept constant (i.e. varying kp inversely proportional to ω0). The
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Figure 4.9: Location of the system poles from the simplified small signal
dynamics model when the applied frequency is modulated proportionally to
the power perturbations, at no load, rated frequency (87.5 Hz), as a function
of the gain kp.
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Figure 4.10: Location of the system poles from the simplified small signal
dynamics model when the applied frequency is modulated proportionally to
the power perturbations, at full load, rated frequency (87.5 Hz), as a function
of the gain kp.
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variation of ke and Tl0 can still somewhat affect to the location of the poles with that

way of selecting the gain kp. However, at high frequencies since ke is also a constant

(see figure 4.2) it can be expected that the location of the poles can almost be fixed,

at least in high frequencies, when varying kp inversely proportional to ω0.

The location of the poles as a function of the applied frequency is shown in figure

4.11 and figure 4.12 for no-load and full-load cases respectively. For these plots the

gain kp was selected such that ω0kp = 8 (i.e. kp = 8
ω0
, ω0 �= 0). This gives kp = 0.015 at

rated frequency. From figure 4.11 and figure 4.12, it can be seen that when the applied

frequency is high the location of the poles is almost constant (i.e. poles have almost a

constant damping factor) as expected.
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Figure 4.11: Location of the system poles from the simplified small signal
dynamics model when the applied frequency is modulated proportionally to
the power perturbations, at no load, as a function of the applied frequency.
The product kpω0 = 8.

4.3.3 Frequency modulation using DC-link current perturba-
tions

Modulation of the applied frequency according to the perturbations in the DC-link

current is also a method to stabilize open-loop V/f controlled PMSMs [2], [3], [4], [5],

[6].

For voltage source inverter driven drives, the DC-link current perturbations can be

considered as proportional to the power perturbations in the system, since the DC-link

bus voltage is almost a constant. Using the same analysis method as in § 4.3.2, it can
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Figure 4.12: Location of the system poles from the simplified small signal
dynamics model when the applied frequency is modulated proportionally to
the power perturbations, at full load, constant stator flux linkage control, as a
function of the applied frequency. The product kpω0 = 8.

be shown that how the system can be stabilized by modulating the applied frequency

using the DC-link current perturbations.

Expressing the DC-link current idc as the addition of the steady state value Idc and

the perturbation component ∆idc the DC-link power balance equation can be written

as

Vdc(Idc + ∆idc) = pil + pml +
dwem

dt
+ (

2

n
)2J

2

d

dt
ω2

r + (
2

n
)2Bmω

2
r +

2

n
ωrTl (4.3.9)

where, Vdc is constant DC-link voltage and pil is the inverter losses.

The difference in (4.3.9) compared to the (4.3.4) is the inclusion of the inverter

losses pil. Due to the same reasons mentioned in the previous § 4.3.2, the DC-link

power perturbations can be approximated due to the last three terms of (4.3.9). With

this approximation, the perturbations in the DC-link power can be written as

Vdc∆idc = (
2

n
)2Jω0

d

dt
∆ωr + 2(

2

n
)2Bmω0∆ωr +

2

n
Tl0∆ωr (4.3.10)

and the perturbations in the DC-link current can be derived as

∆idc =
1

Vdc

[(
2

n
)2Jω0

d

dt
∆ωr + 2(

2

n
)2Bmω0∆ωr +

2

n
Tl0∆ωr] (4.3.11)

Using the simplified small signal dynamics model, it can be shown that these per-

turbations in the DC-link current can be used to modulate the applied frequency to

add necessary damping to the system.
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If the applied frequency is modulated proportionally to the perturbations in the

DC-link current, then

∆ωe = −ki∆idc =
ki

Vdc

[(
2

n
)2Jω0

d

dt
(−∆ωr) + 2(

2

n
)2Bmω0(−∆ωr) +

2

n
Tl0(−∆ωr)]

(4.3.12)

where, ki is the proportional gain.

With this relationship for ∆ωe, the block diagram in figure 4.3 can be drawn as

shown in figure 4.13.
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Figure 4.13: Block diagram of PMSM simplified small signal dynamics when
the applied frequency is modulated proportionally to the DC-link current per-
turbations, i.e. ∆ωe = −ki∆idc.

The block diagram shown in figure 4.13 gives the characteristic equation of the

system as follows.

s2 + (
Bm

J
+

2keω0ki

nVdc

)s+
ke

2J
[n+ 4(

2

n
)
Bmkiω0

Vdc

+
2Tl0ki

Vdc

] = 0 (4.3.13)

The roots of this equation, i.e. the poles of the system are

s1,2 = −(
Bm

2J
+
keω0ki

nVdc

)±
√

(
Bm

2J
+
keω0ki

nVdc

)2 − ke

2J
[n+ 4(

2

n
)
Bmkiω0

Vdc

+
2Tl0ki

Vdc

] (4.3.14)

If the expression (4.3.14) is compared with the expression (4.3.8), one can see that the

difference in (4.3.14) is the appearance of constant Vdc in denominator of some terms.



4.4. Stability verification for frequency modulation 79

Therefore, due to the similar explanations given for (4.3.8), almost a fixed location for

the poles of this system (i.e. almost a constant damping factor) can be achieved at

high applied frequencies by selecting the gain ki, such that ω0ki is a constant value.

Referring to (4.3.6) and (4.3.12), if one selects the gain kp for frequency modulation,

which incorporates the power perturbations, then using the relationship

ki = kpVdc (4.3.15)

it can be found that the gain for the frequency modulation, which incorporates the DC-

link current perturbations, in order to have the same pole locations for both systems.

4.4 Stability verification for frequency modulation

In the previous § 4.3, the simplified small signal dynamics model was used to show

how damping can be added to the system by modulating the applied frequency. The

simplified model was an easy tool to predict how the applied frequency should be

modulated to add damping to the system. The suitable selection of the gains for applied

frequency modulation to add damping to the system was also seen from the simplified

model analysis. However, the simplified model analysis is with some approximations to

the system. The true effect to the system from the applied frequency modulation can

be seen from the analysis made with the full small signal dynamics model incorporating

the knowledge obtained from the simplified model analysis.

4.4.1 Frequency modulation using power perturbations-Full
small signal model analysis

In this section, the analysis is made using the full linearized system equations, to see

the true effect to the system by modulating the applied frequency proportional to the

power perturbations of the system, which is discussed in § 4.3.2 using simplified small

signal model analysis.

Under the condition of the applied frequency modulation, the system equations

(3.2.8)-(3.2.11), which are given in Chapter 3, remain valid. However, because of the

frequency modulation, ωe in (3.2.11) is now a state variable, i.e. ωe has a relation

with other state variables. In order to describe the system fully, now, there should be

an another state equation (fifth state equation) for the state variable ωe. This state

equation, which describes the relation between ωe and other state variables, can be

obtained considering how the applied frequency is modulated.

As described in § 4.3.2, to add damping to the system the applied frequency should

be modulated using power perturbations as follows.

∆ωe = −kp∆pe (4.4.1)
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The perturbation component of the power ∆pe can be extracted by passing the

system power pe through a first order high-pass filter. Therefore, ∆pe can be written

as

∆pe =
s

s+ 1
τh

pe (4.4.2)

where, τh is the high-pass filter time constant.

Substituting ∆pe from (4.4.2) to (4.4.1) and rearranging it the following relationship

is obtained.

p∆ωe +
∆ωe

τh
= −kpp(pe) (4.4.3)

The derivative of the power p(pe) in (4.4.3) can be obtained considering the power

balance equation of the system.

The power balance equation can be written as

pe =
3

2
[vr

qsi
r
qs + vr

dsi
r
ds] (4.4.4)

Substituting vr
qs and vr

ds from (3.2.3) and (3.2.4) of Chapter 3, the equation (4.4.4) can

be written as

pe =
3

2
vs[i

r
qscos(δ) − irdssin(δ)] (4.4.5)

Taking the derivative for both sides of the (4.4.5), one obtains

p(pe) =
3

2
Vs[cos(δ)pi

r
qs − sin(δ)pirds − (irqssin(δ) + irdscos(δ))pδ] (4.4.6)

When obtaining (4.4.6), it is considered the applied voltage is a constant, since no

perturbations are incorporated with it (i.e. ∆vs = 0).

After substituting the expression for the derivative of the power given in (4.4.6),

the equation (4.4.3) can be written as

p∆ωe +
∆ωe

τh
= −kp

3

2
Vs[pi

r
qscos(δ) − pirdssin(δ) − (irqssin(δ) + irdscos(δ))pδ] (4.4.7)

Substituting the derivative terms pirqs, pi
r
ds and pδ from (3.2.8), (3.2.9) and (3.2.11) of

Chapter 3 to the (4.4.7), one can obtain the required fifth state equation as

p∆ωe = kp
3

2
Vs{[cos(δ)

στs
+ ωrσsin(δ) + (ωe − ωr)sin(δ)]irqs

+[
ωrcos(δ)

σ
− sin(δ)

τs
+ (ωe − ωr)cos(δ)]i

r
ds

+
ωrλmcos(δ)

σLd

− (
Vs

Ld

)(
cos2(δ)

σ
+ sin2(δ))} − ∆ωe

τh
(4.4.8)

The linearized form of the five nonlinear equations (i.e. equations (3.2.8)-(3.2.11) of

Chapter 3 and (4.4.8)) of the system under applied frequency modulation proportional

to the power perturbations can be written as

p∆x = A2(X)∆x+B2(X)∆Tl (4.4.9)
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where,

∆x =
[
∆irqs ∆irds ∆ωr ∆δ ∆ωe

]T

(4.4.10)

and

B2(X) =
[
0 0 −n

2J
0 0

]T

(4.4.11)

The elements of the system’s state transition matrix A2(X) are given in Appendix

B.4.

Now, the system becomes a fifth order system and the eigenvalues of the state

transition matrix A2(X) can be used to investigate the effectiveness of the applied

frequency modulation to the system.

Figure 4.14 and figure 4.15 illustrate the effect from the variation of gain kp to

the stator and rotor poles of the system at rated frequency, no-load and full-load,

respectively. The IPMSM parameters given in Appendix A were used to draw these

plots. The cut-off frequency of the high pass filter, which was needed to obtain the

power perturbation ∆pe, was selected to 2.5 Hz, i.e. the time constant τh = 0.0637s.

This time constant affects mainly to the fifth pole of the system, which lies always on

the negative real axis of the s-plane. It was observed that the above selected value gave

a reasonably good dynamics to the system locating the fifth pole at around s = −20.

It can be observed in figure 4.14 and figure 4.15, when the gain kp is increased the locus

of the rotor poles has a similar shape as it is seen in root loci in figure 4.9 and figure

4.10 in § 4.3.2, where the analysis is made using the simplified small signal dynamics

model. This indicates the dynamics of the rotor poles are dominant in the simplified

small signal dynamics model. It can also be observed in figure 4.14 and figure 4.15, the

stator poles move towards to the right half of the s-plane when the gain kp is increased

and they migrate into the right half of the s-plane at a certain gain. This indicates

that there is an upper limit when selecting the gain kp for the stabilizing loop, which

modulates the applied frequency of the system.

The effectiveness of the stabilizing loop to the system rotor poles at no-load and

full-load, as a function of the applied frequency, is shown in figure 4.16 and figure 4.17,

respectively. In both figures the locus of rotor poles without stabilizing loop (without

applied frequency modulation) in the system is also shown for the comparison. For

the stabilizing loop the gain kp was selected such that the product kpω0 = 8 (i.e.

kp = 8
ω0
, ω0 �= 0). This gives kp = 0.015 at rated frequency. The added damping to the

rotor poles from the stabilizing loop can be seen in these two figures.

It can also be seen from figure 4.16 and figure 4.17, at high applied frequencies with

stabilizing loop in the system the rotor poles have almost a constant damping factor.

This matches with the prediction made using simplified small signal dynamics model in

§ 4.3.2. At high frequencies, the location of the rotor poles with the stabilizing loop in

the system, has a very close agreement with the location of poles at high frequencies in

figure 4.11 and figure 4.12 in § 4.3.2. However, at low frequencies, there is a deviation
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Figure 4.14: The locus of stator and rotor poles at no-load, rated frequency,
as a function of the stabilizing loop gain kp.
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Figure 4.15: The locus of stator and rotor poles at full-load, rated frequency,
constant stator flux linkage control, as a function of the stabilizing loop gain
kp.
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Figure 4.16: The loci of rotor poles, with and without stabilizing loop at
no load, as a function of the applied frequency. For the stabilizing loop, the
product kpω0 = 8.
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in location of the poles in the simplified small signal dynamics model’s prediction. This

is due to the approximation made to simplify the model. However, the prediction at

high frequencies is the most important, since the instability occurs in the system at

relatively high frequencies as it is shown in § 3.4 of Chapter 3.

Figure 4.18 shows the loci of rotor poles with stabilizing loop in the system, under

different load conditions, as a function of the applied frequency. It can be seen that how

the system damping is affected from the stabilizing loop under different load conditions

of the machine.
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Figure 4.18: The loci of rotor poles with stabilizing loop, under different load
conditions, constant stator flux linkage control, as a function of the applied
frequency. For the stabilizing loop, the product kpω0 = 8.

4.4.2 Implementation of the stabilizing loop

According to the discussion in § 4.3.2 and in § 4.4.1, to stabilize the system, the applied

frequency should be modulated using power perturbations as

∆ωe = −kp∆pe (4.4.12)

The perturbation component of the input power ∆pe can be extracted by passing

the input power pe through a first order high-pass filter. The input power pe can be

calculated using the expression

pe =
3

2
vsiscos(φ) (4.4.13)
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where, is is the magnitude of the stator current vector and φ is the power factor angle.

One can obtain the expression (4.4.13) for the input power, considering the expres-

sion given in (4.4.5). Taking the rotor frame current components along the voltage

vector one can obtain (see figure 4.19)

irqscos(δ) − irdssin(δ) = iscos(φ) (4.4.14)

�m

r
qsi

r
dsir

ds
v

r
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m
e

�
�

Figure 4.19: Voltage and current vector in the rotor reference frame.

Substituting (4.4.14) into the (4.4.5) one obtains the expression (4.4.13) for the

input power.

The commanded magnitude of the stator voltage vector can be used for vs in

(4.4.13). The iscos(φ) term in (4.4.13) is the stator current vector component along

with the stator voltage vector. This term can directly be calculated if the stator cur-

rent vector is seen in the stator voltage vector fixed reference frame as shown in figure

4.20. Referring to figure 4.20 and equation (2.4.1) of Chapter 2, the iscos(φ) term can

directly be calculated measuring the two phase currents as

ivqs = iscosφ =
2

3
[iascos(θe) + ibscos(θe − 2π

3
) − (ias + ibs)cos(θe +

2π

3
)] (4.4.15)

The commanded position of the stator voltage vector can be used for θe in (4.4.15).

With this knowledge, the implementation of the stabilizing loop, which uses input

power perturbations to modulate the applied frequency, is shown in figure 4.21.

If the DC-link current perturbations are used to stabilize the system, the applied

frequency should be modulated as (see § 4.3.3)

∆ωe = −ki∆idc (4.4.16)

Measuring the DC-link current the perturbation component ∆idc can be extracted. The

implementation of the stabilizing loop using DC-link current perturbations is shown in
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Figure 4.21: Block diagram showing the implementation of the stabilizing
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figure 4.22. The DC-link current can be measured using a current sensor in the DC-link.

Before sampling, the DC-link current should be passed through an analogue low-pass

filter as shown in figure 4.22, to filter out the high frequency current components due

to the switchings in the inverter. Similar to the method used to obtain the input

power perturbations ∆pe, the sampled DC-link current can be passed through a digital

high-pass filter to extract the perturbation component ∆idc.
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Figure 4.22: Block diagram showing the implementation of the stabilizing
loop, which uses DC-link current perturbations to modulate the applied fre-
quency.

4.4.3 Simulations and experimental results

To demonstrate the effectiveness of the frequency modulation, the computer simulations

were carried out for the system with frequency modulated stabilizing loop using both

input power perturbations and DC-link current perturbations.

The stabilizing loop, which uses the input power perturbations was modeled in the

system as shown in figure 4.21. A voltage source inverter with a constant DC-link

voltage (560 V) was used and, the switching frequency and the sampling frequency

of the system was 5 kHz. The parameters, which were used for the simulations were

the same as the parameters used to draw the eigenvalue plots with the stabilizing loop

in figure 4.16 and figure 4.17. In order to see the operating point stability with the

stabilizing loop, the simulation method used here is exactly the same as the method

used in § 3.4.3 of Chapter 3. The rotor speed and the load condition of the machine were

initialized to the required steady state operating point value, and then, the machine

was simulated exciting the frequency and the voltage correspondent to that steady state

operating point. The simulated rotor speed responses with input power perturbation
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stabilizing loop, machine under no-load and full-load are shown in figure 4.23 and

figure 4.24 respectively. Each figure shows the rotor speed responses at 43.75 Hz (50%

of rated frequency) and at 87.5 Hz (Rated frequency). Comparing these simulated rotor

speed responses with the simulation results, which were given in figures 3.13(c),(d) and

figures 3.14(c),(d) in Chapter 3, it can be seen that the effectiveness of the frequency

modulated stabilizing loop in the system.

0 0.2 0.4 0.6 0.8 1
88

89

90

91

92

93

Time (s)

R
ot

or
 s

pe
ed

 (
ra

d/
s)

0 0.2 0.4 0.6 0.8 1
177

178

179

180

181

182

183

184

185

186

Time (s)

R
ot

or
 s

pe
ed

 (
ra

d/
s)

(a) (b)

Figure 4.23: Simulated rotor speed responses, machine under no-load, with
input power perturbation stabilizing loop. The excitation voltage Vs = Em.
(a) At 43.75 Hz (50% of the rated frequency) (b) At 87.5 Hz (rated fre-
quency).

The same simulations were carried out for the system with the stabilizing loop,

which uses DC-link current perturbations. The stabilizing loop was modeled as shown

in figure 4.22. A second-order Butterworth type analogue low-pass filter with 1 kHz

cut-off frequency was used to filter out the high frequency current components in the

measured DC-link current, before sampling it. In order to have a higher bandwidth

(i.e. higher cut-off frequency) in the filter, a second-order filter was selected rather

than a first order one. Since the sampling frequency of the system is 5 kHz, the cut-off

frequency of the second-order filter was able to select as high as 1 kHz to obtain the

DC-link current in average sense. The gain ki for this stabilizing loop was calculated

according to (4.3.15), using the gain kp which was used for the previous simulation, in

order to have same system poles as in the stabilizing loop with power perturbations.

Other parameters for the system were the same as for the previous simulation with

power perturbation stabilizing loop. The simulated rotor speed responses are shown in

figure 4.25 and figure 4.26 for no-load and full-load cases respectively. These simulation

results also show the effectiveness of this stabilizing loop in the system.

The variation of other variables with rotor speed is shown in figure 4.27 and figure
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Figure 4.24: Simulated rotor speed responses, machine under full-load, with
input power perturbation stabilizing loop. The excitation voltage is according
to constant stator flux linkage control. (a) At 43.75 Hz (50% of the rated
frequency) (b) At 87.5 Hz (rated frequency).
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Figure 4.25: Simulated rotor speed responses, machine under no-load,
with DC-link current perturbation stabilizing loop. The excitation voltage
Vs = Em. (a) At 43.75 Hz (50% of the rated frequency) (b) At 87.5 Hz
(rated frequency).



90 Chapter 4. Stabilization of Open-Loop V/f Controlled PMSMs

0 0.2 0.4 0.6 0.8 1
65

70

75

80

85

90

95

Time (s)

R
ot

or
 s

pe
ed

 (
ra

d/
s)

0 0.2 0.4 0.6 0.8 1
155

160

165

170

175

180

185

190

Time (s)

R
ot

or
 s

pe
ed

 (
ra

d/
s)

(a) (b)

Figure 4.26: Simulated rotor speed responses, machine under full-load, with
DC-link current perturbation stabilizing loop. The excitation voltage is ac-
cording to constant stator flux linkage control. (a) At 43.75 Hz (50% of the
rated frequency) (b) At 87.5 Hz (rated frequency).

4.28 for power perturbation stabilizing loop and DC-link current perturbation stabi-

lizing loop respectively. For these simulation results, the machine was under full-load

and at rated frequency.

The power perturbation stabilizing loop and the DC-link current perturbation sta-

bilizing loop were also implemented in the laboratory prototype drive system as shown

in figure 4.21 and figure 4.22 respectively. The parameters for the stabilizing loops (The

time constants of the filters and the gains kp, ki) were selected as same as for the simula-

tions. The switching frequency and the sampling frequency of the DSP-microcontroller

based prototype drive system (see Appendix D) is 5 kHz.

The measured rotor speeds, when the machine is ramped up to different frequencies,

under no-load (i.e. applying the voltage Vs = Em = 2πf0λm) with stabilizing loops in

the system are shown in figure 4.29. Comparing these measurements with the measured

speeds in figure 3.15 of Chapter 3, where the stabilizing loop was not in effect, it can

be seen the effectiveness of the stabilizing loop in the system at high frequencies.

The measured rotor speed and the stabilizing loop variables when the machine is

ramped up to 50% of rated frequency under no-load are shown in figure 4.30 and in

figure 4.31 with power perturbation stabilizing loop and with DC-link current pertur-

bation stabilizing loop in the system respectively. After the initial transients during

ramping the system’s stable operation can be seen with each stabilizing loop in the sys-

tem, in contrast to the situation under open-loop V/f control at this frequency shown

in figure 3.15 of Chapter 3.
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Figure 4.27: Simulated variables, machine under full-load, at rated frequency
(87.5 Hz), with input power perturbation stabilizing loop. The excitation
voltage is according to constant stator flux linkage control. (a) Rotor speed
(b) Input power (c) Frequency modulation signal (∆ωe).
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Figure 4.28: Simulated variables, machine under full-load, at rated frequency
(87.5 Hz), with DC-link current perturbation stabilizing loop. The excitation
voltage is according to constant stator flux linkage control. (a) Rotor speed
(b) Filtered DC-link current (c) Frequency modulation signal (∆ωe).
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Figure 4.29: Measured rotor speeds at different frequencies, under no-load
with frequency modulated stabilizing loops. (a) With power perturbation sta-
bilizing loop (b) With DC-link current perturbation stabilizing loop.



4.4. Stability verification for frequency modulation 93

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

R
ot

or
 s

pe
ed

 (
ra

d/
s)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−75

0

75

150

225

300

p e (
W

)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−150

−100

−50

0

50

100

∆p
e (

W
)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5
−4
−3
−2
−1

0
1
2
3

∆ω
e (

el
ec

. r
ad

/s
)

Time (s)
 (d)

Figure 4.30: Measured variables when the machine is ramped up to 50%
of rated frequency under no-load with power perturbation stabilizing loop.
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4.5 Summary

The solutions for mid-frequency instability of the open-loop V/f controlled PMSMs

have been investigated in this chapter. The simplified small signal dynamics model

presented in this chapter has helped to think how to stabilize the system by frequency

modulation. The machine’s power balance equation incorporated with this small signal

dynamics model has shown that by modulating the applied frequency proportional to

the perturbations in the input power the stable operation of the PMSM is possible for a

wide frequency range. For voltage source inverter driven drives the perturbations in the

DC-link current can also be used for that purpose. The simplified small signal dynamics

model has also helped to select the gains for those stabilizing loops. To implement

those stabilizing loops either calculated input power of the system or measured DC-

link current can be used and no rotor position sensor is required. The full small signal

dynamics analysis, computer simulations and laboratory test results have verified the

effectiveness of those stabilizing loops.

After adding the stabilizing loop to the open-loop V/f controlled PMSM, the system

is operated in closed-loop manner providing the synchronization between the stator

excitation and the motion of the rotor. The physical meaning of the stabilizing loop

can be seen as that way and it enables the stable operation of the PMSM for a wide

frequency range as expected.
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Chapter 5

Sensorless Stable PMSM Drive with V/f
Control Approach

5.1 Introduction

In Chapter 4, methods for stabilizing open-loop V/f controlled PMSM drives were

discussed. With that knowledge, the stable V/f controlled PMSM drive can be shown

as in figure 5.1.

PMSM

+

InverterRectifier
DC-link

�	e

+	0
	e

�

�2� �e

Stabilizing
loop

SVM

Accel.
Decel.

Calculation of
the voltage
Command

*f
0f

*
s

v

Figure 5.1: Block diagram of the stable V/f controlled PMSM drive.

In the analysis in Chapter 4, it was also considered, during operation, a constant

stator flux linkage is maintained in the machine of the drive system. If the stator resis-

tance voltage drop is neglected, using constant V/f ratio control, the machine’s stator

flux linkage can be maintained approximately a constant value. However, especially,

during low speed operation, the constant V/f ratio control makes problems, since the

stator resistance voltage drop is not negligible at low speeds. Overcoming that problem,

the magnitude of the stator voltage control method of the machine, is discussed in this

97
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chapter. Moreover, the performance of the total drive scheme, which includes the pro-

posed voltage control method and the stabilizing loop, is studied through simulations

and experimental results.

5.2 Voltage magnitude control method

In the V/f controlled PMSM drive the voltage magnitude should be controlled prop-

erly, in order to maintain the required stator flux level in the machine and obtain the

satisfactory performance from the drive (the properties of constant stator flux linkage

control of PMSMs are discussed in detail in § 2.8.5 of Chapter 2).

For V/f controlled induction motor drives, the voltage magnitude control methods,

in order to maintain the required stator flux level in the machine were widely discussed

in the literature [1], [2], [3], [4], [5], [6]. For PMSM drives, it has not been widely

discussed, but, some concept used for induction motor drives may applicable to PMSM

drives. In subsequent sections, a voltage magnitude control method is studied for the

PMSM drive system shown in figure 5.1.

5.2.1 Constant V/f ratio control

From § 2.7 of Chapter 2, the steady state voltage equations for the IPMSM are

V r
qs = rsI

r
qs + ω0LdI

r
ds + ω0λm = rsI

r
qs + ω0λ

r
ds (5.2.1)

V r
ds = rsI

r
ds − ω0LqI

r
qs = rsI

r
ds − ω0λ

r
qs (5.2.2)

where ω0 = 2πf0 and f0 is the applied frequency to the machine. If the stator resistance

voltage drop is neglected, the steady state voltage equations can be approximated as

V r
qs ≈ ω0λ

r
ds (5.2.3)

V r
ds ≈ −ω0λ

r
qs (5.2.4)

and the magnitude of the stator voltage vector is

Vs =
√

(V r
qs)

2 + (V r
ds)

2 ≈ ω0

√
(λr

ds)
2 + (λr

qs)
2 = ω0λs (5.2.5)

Therefore,

Vs

ω0

≈ λs (5.2.6)

It can be seen that when the stator resistance voltage drop is neglected, the ratio
Vs

ω0
is equal to the magnitude of the stator flux linkage vector λs. Controlling the Vs

ω0

ratio equals to the required stator flux magnitude, one can maintain the required stator

flux to the machine, if the stator resistance voltage drop is negligible. However, when
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the machine operates under load with high current, the stator resistance voltage drop

is high and it cannot be neglected (This is very important at low speeds). Therefore,

controlling the Vs

ω0
ratio to a constant value, the magnitude of the stator flux cannot be

maintained a constant value when the machine is operated under load. This implies

that in order to maintain the required flux in the machine, the magnitude of the stator

voltage should be compensated for stator resistance voltage drop, when the machine

is operated under load. How this can be achieved will be discussed in the following

§5.2.2.

5.2.2 Calculation of voltage magnitude with stator resistance
voltage drop compensation

Using IPMSM’s steady state vector diagram the calculation of the voltage magnitude

with vector compensation of the stator resistance voltage drop will be discussed in this

section.

The IPMSM’s steady state vector diagram, which is described in § 2.7 of Chapter

2 is drawn in the figure 5.2 (a). This vector diagram can be simplified to obtain the

stator voltage vector as an addition of stator resistance voltage drop and stator flux

induced voltage (Es). This is shown in the triangle OAB of the vector diagram in

figure 5.2 (b).
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Figure 5.2: (a) Steady state vector diagram of the IPMSM. (b) Steady
state vector diagram of the IPMSM showing the stator voltage vector as vector
addition of stator resistance voltage drop and induced voltage from the stator
flux (In the triangle OAB).
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In the triangle OAB the AC is drawn perpendicular to the OB. From OAB triangle

the magnitude of the stator voltage Vs can be obtained as

Vs = BC + CO = Isrscosφ0 +
√
E2

s − I2
s r

2
ssin

2φ0 (5.2.7)

where, φ0 is the steady state power factor angle.

Using the trigonometric relationship sin2φ0 + cos2φ0 = 1, the magnitude of the

stator voltage vector given in (5.2.7) can also be written as

Vs = Isrscosφ0 +
√
E2

s + I2
s r

2
scos

2φ0 − I2
s r

2
s (5.2.8)

Even though in (5.2.8) contains the steady state quantities, this expression can be

used to command the voltage to the machine using instantaneously measured quanti-

ties, so that the machine’s stator flux is as the required value in steady state. Using

instantaneously measured quantities and required value for stator flux, the implemen-

tation of (5.2.8) is discussed below.

In (5.2.8), the stator flux induced voltage Es can be calculated from the required

steady state constant stator flux. Due to the reasons mentioned in § 2.8.5 of Chapter

2, the required magnitude of the stator flux is selected as λm. Therefore, the Es can

be calculated as

Es = 2πf0λm (5.2.9)

The term Iscosφ0 in (5.2.8) is the stator current vector component along with the

stator voltage vector (active current component). This is the same current component,

which is used for power calculation in § 4.4.2 of Chapter 4, for the power perturbation

stabilizing loop. Measuring two phase currents this term can be calculated instanta-

neously as described in § 4.4.2 of Chapter 4 and the equation for it as follows.

iscosφ =
2

3
[iascos(θe) + ibscos(θe − 2π

3
) − (ias + ibs)cos(θe +

2π

3
)] (5.2.10)

In (5.2.10), θe is the position of the voltage vector in the stationary reference frame

(This is known in the system).

Is (the magnitude of the stator current vector) in (5.2.8), can also be obtained

instantaneously measuring two phase currents and calculating the stationary ds, qs

reference frame current components as

is =
√

(isds)
2 + (isqs)

2 =

√
1

3
(ias + 2ibs)2 + (ias)2 (5.2.11)

Using the instantaneously calculated values and the commanded value for Es the

final expression for calculation of magnitude of the voltage command v∗s can be written

as

v∗s = (iscosφ)rs +
√

(2πf0λm)2 + (iscosφ)2r2
s − i2sr

2
s (5.2.12)
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It should be mentioned that (5.2.12) expresses the magnitude of the stator voltage

command, with vector addition of the stator resistance voltage drop to the induced

voltage from the required stator flux.

Measuring the instantaneous currents the implementation of (5.2.12) in the digital

drive system is shown in figure 5.3. The previous sampling period calculated value of

the position of the voltage vector, i.e. θe(k− 1), is used to calculate the active current

component (iscosφ) given in (5.2.10). In order to eliminate the high frequency ripples

in calculated currents is and iscosφ, two digital low-pass filters (DLPF) are used as

shown in figure 5.3. Without those two filters the calculated voltage command can be

distorted by the ripples in the currents and it affects the stable operation of the system.

During low speed operation, since the voltage is low, the elimination of distortion in

voltage command is particularly important by filtering the currents. It was found that

the cut-off frequency of the filters used for the currents should be selected as low as

5 Hz, in order to obtain the satisfactory performance from the system for the whole

operating frequency range.
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Figure 5.3: Derivation of the voltage command in the drive with vector
compensation of the stator resistance voltage drop.

5.3 The complete drive scheme

If the voltage control method described in §5.2.2 is used in the drive system, refer to

the discussion in §4.4.2 of Chapter 4, it is obvious that the stabilizing loop which uses

direct input power perturbations should be the best stabilizing technique to incorporate

with the drive. If DC-link current perturbation stabilizing loop is used, the system will

require an extra current sensor to measure the DC-link current and an analogue low-

pass filter (see figure 4.22 of Chapter 4). When the voltage control method described

in §5.2.2 is used in the drive, the input power calculation can easily be done and the

derivation of the frequency modulation signal is straightforward. This is shown in figure

5.4 and this method is used in the drive.

The complete drive scheme with voltage control and the stabilizing loop is shown

in figure 5.5.
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Derivation of the voltage command
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5.3.1 Inverter nonlinearity compensation

In order to obtain the commanded voltage accurately to the machine, the compensation

of the inverter nonlinearities, i.e. ripple in the DC-link voltage, dead-time and voltage

drop across the power devices, is also considered in the drive system shown in figure

5.5. The details about inverter nonlinearity compensation are given in Appendix C.

5.3.2 Starting of the drive

Before starting the drive system, a DC voltage is applied to the machine so that the

rotor can be aligned to a known initial position. Maintaining the θe to zero the DC

voltage is applied to the machine from the modulator. In this way, the rotor d-axis

is aligned with stator a-phase axis [7], [8]. In order to obtain a slow motion of the

rotor during this process, the DC voltage is applied to the machine as shown in figure

5.6, rather than directly applying a constant value from the beginning. The voltage

is ramped up slowly (t1 =200 ms) and applied it to the machine for a while (v =10

V, t2 =500 ms) and it is ramped down to zero slowly. After applying the voltage in

that way, the starting of the drive is delayed for another 100 ms in order to give time

to decay the currents. After this process, which lasts within 1 s, the drive is started

applying the initial voltage vector along the rotor q-axis, assuring a positive starting

torque from the machine.

Voltage

Timet1 t1
t2

v

0

Figure 5.6: The DC voltage applied to the machine before starting so that
the rotor can be aligned to a known position.

Without knowing the initial rotor position arbitrary applying the initial voltage

vector to the machine, in some situations, the rotor may cause to rotate opposite

direction and the smooth start of the machine may not be possible.

5.4 Performance of the drive

In order to investigate the performance of the drive scheme shown in figure 5.5, it was

implemented in the laboratory test system. The voltage control algorithm and the

stabilizing loop were implemented in the digital system with 5 kHz sampling rate. The
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details about the laboratory test system is given in Appendix D. The motor parameter

values (rs and λm) required for voltage control algorithm were used from the motor

name-plate. The stabilizing loop parameters were selected as the values used for the

analysis in §4.4.1 of Chapter 4. They are

τh(High-pass filter time constant) = 0.0637s (5.4.1)

kp(Stabilizing loop gain) =
8

ω0

, ω0 �= 0 (5.4.2)

The stabilizing loop was added to the system after exceeding the applied frequency 3

Hz.

5.4.1 Effect of the stabilizing loop

Using the drive configuration shown in figure 5.5, the machine was ramped up to the

rated speed under no-load and put into continuous operation. The measured variables

are shown in figure 5.7 and the stable operation of the system can be seen from these

measurements. In the second test, the drive was started in the same way, but, after 6

s the stabilizing loop was removed from the control algorithm, forcing the stabilizing

loop gain kp to zero. The measured variables for this test are shown in figure 5.8.

After removing the stabilizing loop from the control algorithm, the system became

unstable as it can be seen from the measurements in figure 5.8. The requirement of

the stabilizing loop in the control algorithm is evident from these two experiments.

5.4.2 Load disturbance rejection

For the drive system shown in figure 5.5, a 12 Nm load step (100% load step) was added

at 43.75 Hz, where there were severe problems observed under open-loop V/f control

(see figure 3.15 of Chapter 3). The computer simulations are shown in figure 5.9 and

the laboratory measurements are shown in figure 5.10 (Measured variables are shown

after starting the drive, i.e. applying of the DC voltage before starting of the drive

is not shown). From these results it can be seen that the drive’s capability of stable

operation overcoming sudden load change in the system. Moreover, it can also be seen

that there is a good agreement between computer simulation results and laboratory

measurements.

The effect of the stabilizing loop gain to the system can be seen from the measure-

ments shown in figure 5.11. Figure 5.11(a) shows the speed response when adding a

100% load step to the drive at 87.5 Hz (rated speed) with nominal gain, i.e. kp = 8
ω0

.

Figure 5.11(b) shows the results with half of the nominal gain, i.e. kp = 4
ω0

. The

less damping in the system with reduced gain in the stabilizing loop can be seen as

expected from the analysis shown in figure 4.15 of Chapter 4.

To verify the importance of the rs voltage drop compensation (especially at low

frequencies) in the voltage control of the machine, two tests were carried out. For the
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Figure 5.7: Measured variables from the complete drive system for the
rated speed (87.5 Hz), under no-load. (a) Rotor speed (b) Stabilizing loop
gain kp (c) Frequency modulation signal ∆ωe (d) Calculated input power
in the stabilizing loop (e) Commanded magnitude of the voltage vector
(f) Magnitude of the current vector.
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Figure 5.8: Measured variables, removing the stabilizing loop from the sys-
tem, at rated speed (87.5 Hz), under no-load. (a) Rotor speed (b) Stabi-
lizing loop gain kp (c) Frequency modulation signal ∆ωe (d) Calculated
input power in the stabilizing loop (e) Commanded magnitude of the voltage
vector (f) Magnitude of the current vector.
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Figure 5.9: Simulated variables with a 100% load step to the drive at 43.75
Hz. (a) Rotor speed (b) Applied load torque to the machine (c) Com-
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Figure 5.10: Measured variables with a 100% load step to the drive at
43.75 Hz. (a) Rotor speed (b) Measured torque on the rotor shaft (From
the torque transducer) (c) Commanded magnitude of the voltage vector
(d) Magnitude of the current vector (e) Input power (f) Frequency modu-
lation signal ∆ωe.
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Figure 5.11: Measurements of the speed responses, when adding a 100% load
step to the drive at rated speed, with different gains to the stabilizing loop.
(a) With nominal gain (b) With half of the nominal gain.

first test, the complete drive configuration shown in figure 5.5 was used, whereas for the

second test only the voltage control of the drive was changed to the relationship given

in (5.2.9), i.e. voltage control without rs voltage drop compensation using constant

V/f ratio control (v∗
s

f0
= 2πλm). Both tests were done at 4.4 Hz (5% of the rated

frequency) with 50% load step. The measurements are shown in figure 5.12 and figure

5.13, respectively. It can be seen from figure 5.13 the drive cannot overcome the load

change due to the lack of voltage to the machine.

5.4.3 Performance with quadratic load

For pumps and fans applications, the load on the machine has a quadratic profile with

rotor speed. The performance of the drive system with that type of load (quadratic

load) is investigated through simulations. The load on the machine is modeled as

Tl = Aω2
rm (5.4.3)

where, A is a constant and ωrm is mechanical rotor speed of the machine. The constant

A is calculated so that at rated speed the rated load torque is applied to the machine.

This gives A = 3.6 × 10−4 Nm rad−2 s2 for the machine used for analyzing here.

The simulation results with quadratic load in the system are shown in figure 5.14.

This simulation results show that the drive can operate satisfactorily with quadratic

load in the system.
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Figure 5.12: Measured variables with a 50% load step to the drive at
5% rated speed. (a) Rotor speed (b) Measured torque on the rotor shaft
(c) Commanded magnitude of the voltage vector.
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Figure 5.13: Measured variables with a 50% load step at 5% rated speed,
without rs voltage drop compensation in the voltage control of the drive.
(a) Rotor speed (b) Measured torque on the rotor shaft (c) Commanded
magnitude of the voltage vector.
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5.5 Summary

In this chapter, the complete stable V/f controlled PMSM drive has been presented.

In order to improve the performance, especially at low speeds, the machine’s voltage

has been controlled with vector addition of the stator resistance voltage drop to the

stator flux induced voltage. The stability in the drive system has been assured from

the input power perturbation stabilizing loop, which is discussed in Chapter 4. Only

phase current measurements are required to implement the complete control algorithm

and no rotor position sensor is required.

The performance of the complete drive system has been studied through computer

simulations and laboratory experiments. The results have shown that the proposed

sensorless stable V/f controlled PMSM drive can operate 5%-100% of rated speed

with satisfactory performance for pumps and fans applications.

It is believed that the proposed V/f control approach in this chapter is novel for

PMSM drives (Note that this drive scheme is also described in [9] by the author).

Especially, it is capable of providing stable operation of the drive for wide frequency

range with improved low speed performance.
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Part III

Sensorless Field-Oriented Control
of PMSMs





Chapter 6

Field-Oriented Control and Estimation of
Rotor Position and Velocity

6.1 Introduction

Except V/f control approach, the other method of controlling an IPMSM is the incor-

poration of a torque controller in the control system as explained in §1.2.1 of Chapter

1. The torque control of the IPMSM can be understood from the torque expression

derived in §2.5 of Chapter 2.

The instantaneous torque developed by an IPMSM is given by (see (2.5.7) of Chap-

ter 2)

Te =
3

2

n

2
[λmi

r
qs + (Ld − Lq)i

r
dsi

r
qs] (6.1.1)

It can be seen from (6.1.1), the IPMSM developed torque can be controlled by properly

controlling the currents irqs and irds, i.e. controlling the stator currents in the reference

frame fixed to the rotor permanent-magnet flux vector [1], [2], [3]. This can be referred

to as rotor permanent-magnet flux oriented control.

In this chapter, first, the rotor permanent-magnet flux oriented controlled drive

system will be described giving emphasis to the main control sections of it. The rotor

position and velocity information are essential for this drive system and the state of the

art approaches to rotor position and velocity estimation are discussed next, reviewing

the past work of various authors.

6.2 Rotor permanent-magnet flux oriented controlled

drive system

The closed-loop control approach described in §1.2.1 of Chapter 1 incorporates a torque

and a speed controller in the control system (see figure 1.6 of Chapter 1). As it is seen

from (6.1.1), the torque control of the machine can be achieved by controlling the stator

currents in the reference frame fixed to the rotor permanent-magnet flux (i.e. rotor

117
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reference frame). The drive system, which incorporates this concept to achieve torque

control is shown in figure 6.1.
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Figure 6.1: Block diagram for rotor permanent-magnet flux oriented con-
trolled drive system.

The speed controller generates the torque command (T ∗
e ) and this torque command

is mapped into commands for rotor reference frame (dr, qr reference frame) current

components ir∗qs and ir∗ds using function generators fq and fd respectively, as shown in

figure 6.1. These two function generators can be extracted in order to operate the ma-

chine under any of the strategies discussed in §2.8 of Chapter 2. The commanded rotor

reference frame current components, which are DC quantities for a constant torque

command, are compared with actual rotor reference frame currents irqs and irds, which

are obtained from measuring the stator currents and stator to rotor transformation

using rotor position. The current errors are input to the current controller and it gen-

erates the rotor reference frame voltage commands vr∗
qs and vr∗

ds. The current controller

consists of two PI controllers, each for qr- and dr-axis current errors, and it will be

discussed in detail in Chapter 7. The rotor reference frame voltage commands are

transformed to the stator reference frame voltage commands vs∗
qs and vs∗

ds using the ro-

tor position feedback. These voltage commands generate the drive signals for voltage

source inverter from PWM.

The design of all controllers in this drive system will be discussed in detail in

Chapter 7.

6.3 Rotor position and velocity estimation techniques

For the previous §6.2 discussed PMSM control scheme, the information of the PMSM’s

rotor position and the velocity is an essential requirement. The rotor position is required
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to the torque controller in order to perform reference frame transformations for currents

and voltages (i.e. for self-synchronization), whereas the actual velocity of the rotor is

required in the control system in order to control the speed in closed-loop manner.

The direct approach to obtain this position and speed feedback signals to the control

system is, the use of a rotor angular position sensor mechanically coupled to the rotor

as shown in figure 6.1. However, as described in §1.2.2 of Chapter 1, this rotor angular

position sensor is not desirable in the system. The rotor angular position sensor can be

eliminated from the system, if the rotor position and velocity are estimated accurately,

using other measurable quantities of the machine. In this section, such rotor position

and velocity estimation techniques are reviewed for the PMSM drive scheme shown in

figure 6.1.

6.3.1 Back-EMF calculation based methods

Since the rotor permanent-magnet flux is aligned with the rotor d-axis in the PMSM,

the permanent-magnet flux induced voltage (i.e. back-EMF) always lies on the rotor

q-axis. Therefore, in the stationary reference frame, the position of the back-EMF

vector indicates the rotor position angle θr. This is shown in figure 6.2.
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Figure 6.2: Back-EMF vector in the stationary reference frame.

If it is possible to calculate the position of the back-EMF vector in the stationary

reference frame, the rotor position is known in the system. For SPMSMs and IPMSMs,

using the electrical equations of the machine, the possibility of calculating the position

of the back-EMF vector in the stationary reference frame is investigated below.
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According to figure 6.2 the position of the back-EMF vector, i.e. the rotor position,

θr = tan−1(
es

d

es
q

) (6.3.1)

where,

es
q = ωrλmcos(θr) (6.3.2)

es
d = ωrλmsin(θr) (6.3.3)

The stationary frame voltage equations, which are derived for IPMSMs in Chapter

2 (see (2.4.43) and (2.4.44)), are written here again for convenience.

vs
qs = rsi

s
qs + p[(L+ ∆Lcos(2θr))i

s
qs − ∆Lsin(2θr)i

s
ds] + ωrλmcos(θr) (6.3.4)

vs
ds = rsi

s
ds + p[−∆Lsin(2θr)i

s
qs + (L− ∆Lcos(2θr))i

s
ds] − ωrλmsin(θr) (6.3.5)

For SPMSMs, since Ld = Lq = L and ∆L = 0, (6.3.4) and (6.3.5) become

vs
qs = rsi

s
qs + Lpisqs + ωrλmcos(θr) (6.3.6)

vs
ds = rsi

s
ds + Lpisds − ωrλmsin(θr) (6.3.7)

For SPMSMs, es
q and es

d can be obtained from (6.3.6) and (6.3.7) as

es
q = ωrλmcos(θr) = vs

qs − rsi
s
qs − Lpisqs (6.3.8)

es
d = ωrλmsin(θr) = −vs

ds + rsi
s
ds + Lpisds (6.3.9)

It is possible to calculate the es
q and es

d from (6.3.8) and (6.3.9) for a SPMSM and obtain

the rotor position from (6.3.1) [4], [5]. To calculate es
q and es

d, the stator voltages can be

measured or estimated (using switching states of the inverter and the DC-link voltage

[3]). The stator currents can be measured and the derivative term of the currents can

be calculated as

pisxs(k) =
isxs(k) − isxs(k − 1)

T
(6.3.10)

where subscript x denotes q or d, k is sampling number and T is sampling period.

The main problem with this technique is the estimation of rotor position at zero

speed and at low speeds. As it can be seen from the (6.3.8) and (6.3.9) at zero speed the

back-EMF components become zero and it is not possible to obtain the rotor position

at zero speed. At low speeds, since the back-EMF is small the noise in the estimated

back-EMF signals becomes a greater portion leading to a large error in the estimated

rotor position. Large errors can also be introduced by the differentiation term of the

phase currents in the back-EMF estimation. Moreover, as it can be seen from (6.3.8)

and (6.3.9), this technique is sensitive to the variation of parameters rs and L.
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From (6.3.4) and (6.3.5), the back-EMF components for an IPMSM should be writ-

ten as

es
q = λmωrcos(θr) = vs

qs − rsi
s
qs − (L+ ∆Lcos(2θr))pi

s
qs + 2ωr∆Lsin(2θr)i

s
qs

+∆Lsin(2θr)pi
s
ds + 2ωr∆Lcos(2θr)i

s
ds (6.3.11)

es
d = λmωrsin(θr) = −vs

ds + rsi
s
ds + (L− ∆Lcos(2θr))pi

s
ds + 2ωr∆Lsin(2θr)i

s
ds

−∆Lsin(2θr)pi
s
qs − 2ωr∆Lcos(2θr)i

s
qs (6.3.12)

It can be seen from the most right side of the (6.3.11) and (6.3.12), the calculation of

es
q and es

d is not feasible for an IPMSM. Unlike the SPMSM, the IPMSM inductances are

rotor position dependent in the stationary reference frame equations and this makes the

difficulty to calculate the back-EMF components es
q and es

d from (6.3.11) and (6.3.12).

Eliminating that problem, recently, an advanced observer based technique was proposed

to calculate the back-EMF components of an IPMSM [6]. However, zero and low speed

performance is still a problem as it is mentioned for SPMSMs.

6.3.2 Stator flux linkage based methods

Some approaches were proposed to estimate the rotor position, knowing the stator flux

linkage vector. The stator flux linkage vector can be estimated using the stationary

reference frame voltage equations (see (2.4.14) and (2.4.15) of Chapter 2) as

λs
qs =

∫
(vs

qs − rsi
s
qs)dt (6.3.13)

λs
ds =

∫
(vs

ds − rsi
s
ds)dt (6.3.14)

The stator phase voltages, currents and stator resistance should be known to estimate

the flux components from (6.3.13) and (6.3.14). Integration drift is a problem when

using (6.3.13) and (6.3.14) for flux estimation and it should be avoided using proper

integration techniques [7], [8].

In [9] and [10], the estimated stator flux is used to calculate the 3-phase stator

currents with an assumed rotor position. The difference between those calculated

currents and the actual currents of the machine, i.e. current errors, are used to correct

the assumed rotor position. The concept is possible to use for both SPMSMs and

IPMSMs. In order to avoid the integrator drift during flux estimation, the estimated

flux is corrected in the algorithm using the corrected rotor position and the measured

stator currents. The same rotor position estimation concept is used in [11] for sensorless

operation of a SPMSM drive above zero speed. Instead of using 3-phase current errors,

the assumed rotor position is corrected using the rotor q-axis current error in [11].
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The machine parameters are used in these rotor position estimation algorithms, and

therefore, they are sensitive to parameter variations. Moreover, the initial rotor position

is not detectable from these techniques, and therefore, the starting performance can

degrade unless another technique is used to detect the initial rotor position.

6.3.3 Rotor position estimation based on stator phase induc-
tance calculation

As it can be seen from (2.2.16) and (2.4.41) of Chapter 2, the stator phase inductances

of an IPMSM are a function of the rotor position. Some techniques are proposed in

the literature to obtain the rotor position information from on-line calculation of the

stator phase inductances.

In [12], the phase inductances are calculated for an IPMSM, assuming that during

one switching period the inductances are not changed due to the rotor position, i.e.

assuming the switching frequency of the current controlled PWM inverter is high. In

order to obtain the rotor position, the calculated inductances are compared with a

pre-calculated look-up table, which contains the relationship between inductances and

the rotor position. To calculate the inductances the parameters rs and λm are used,

and therefore, the variation of these parameters can affect the accuracy of inductance

calculation. Moreover, a high switching frequency (>10 kHz) is required for accurate

calculation of the inductances. At zero speed the inductance calculation is not possible

from the proposed method, since current, voltage and back-EMF of the machine are

zero at zero speed.

Using harmonic components of the voltage and current, which are generated from

the PWM voltage source inverter, the calculation of the inductance matrix given in

(2.4.42) (see Chapter 2) and extraction of the rotor position from the elements of

that matrix is proposed in [13],[14],[15]. Special PWM patterns are used and the

harmonic voltage components are calculated from that PWM patterns. The harmonic

components of the current are calculated from the measured currents. Using those

harmonic components of voltage and current the inductance matrix is calculated from

(2.4.43) and (2.4.44) (see Chapter 2). During the calculations, the resistor drop and the

back-EMF can be neglected in (2.4.43) and (2.4.44), since only harmonic components

of voltage and current are used. The main advantage of this technique is no motor

parameters are required to extract the rotor position. Therefore, it is not sensitive to

motor parameter variation. Moreover, since the machine is excited at zero speed with

special PWM pattern, the inductance calculation is possible, and therefore, the rotor

position. However, special PWM patterns and special current sampling technique (in

order to obtain the harmonic components of the current) are required to implement

this technique.
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6.3.4 Rotor position estimation based on hypothetical rotor
position

In this technique, a rotor position is assumed and assuming that position is correct,

the machine variables (voltages or currents) in the rotor reference frame are calculated

from the rotor reference frame machine model, using the knowledge of previous values

of variables. Then, the measured 3-phase variables (voltages or currents) of the machine

are transformed to the rotor reference frame values using the assumed rotor position.

The error between those transformed values and the values obtained from previous

model calculation are used to calculate the error in the assumed rotor position. The

assumed rotor position is corrected accordingly. This technique was proposed in [16]

for sensorless operation of a SPMSM drive. It proposed two methods to correct the

assumed rotor position. In the first method, the voltage error was used, whereas

in the second method the current error was used. It was also concluded that the

current error based method was better than the voltage error based method. The

initial rotor position is not directly detectable from this technique. Therefore, in [16],

it was proposed to apply special pilot voltages to the machine before starting, and look

into the current profiles of the machine to detect the initial rotor position.

The technique, which used current errors to calculate the position error, was also

used in [17] for an IPMSM with low saliency ratio. However, for IPMSMs with high

saliency ratio, this technique may cause problems, since the rotor position error calcu-

lation is not very accurate for those machines from this technique.

6.3.5 Observer based methods

The use of a state observer is another way to extract the rotor position and velocity

information of the PMSM. In the state observer, the dynamics of the machine are

modeled and drive these dynamics with the same input as it is used to drive the real

machine, and ensure the states of the modeled machine, such as rotor position, velocity,

follow the states of the real machine. The error between the output of the real machine

(which is measurable) and the output of the modeled machine is used in the observer

in order to correct any errors in the estimated states, such as rotor position, velocity.

Since the PMSM model is nonlinear, the designing of a state observer is more

complex compared with a system having a linear model such as a DC motor.

The PMSM model in stationary reference frame or in rotor fixed reference frame

has the form

ẋ = f(x, u) (6.3.15)

y = h(x) (6.3.16)

where, x, u and y are, states, inputs and output of the system respectively. f is a

nonlinear function of x and u, and h is a linear function of x. The full state observer
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for this system has the form

ˆ̇x = f(x̂, u) +G(x̂)[y − h(x̂)] (6.3.17)

ŷ = h(x̂) (6.3.18)

where G is the observer gain matrix, which is a function of estimated states x̂. Unlike

linear observers the gain matrix is not a constant in this case. The gain matrix G(x̂)

should be designed in order to guarantee the satisfactory convergence performance of

the estimated states.

Interesting analysis for designing a state observer for a PMSM can be found in [18].

As it can be seen from the analysis in [18], due to the existence of the saliency, the

complexity of the state observer is increased for an IPMSM compared to a SPMSM.

Observers are model based, and therefore, it can be expected the parameter variation

in the system can affect the performance of the observer. However, not all the pa-

rameters, but some parameter variation can give a considerable effect for the observer

performance as it can be seen in simulation studies in [18] and [19]. A solution to this

problem is the inclusion of an on-line parameter estimator in the control system as

described in [20].

Since the estimation of rotor position and velocity is the main concern, the other

states, such as currents, which can be measured easily, may not be required to estimate

in the system. This helps to reduce the order of the observer reducing the computational

power needed for the observer algorithm. This reduced order observer design for a

SPMSM is discussed in [21] and [22].

An extension to the above discussed observer approach is the extended Kalman

filter algorithm. The extended Kalman filter algorithm to estimate the rotor position

and velocity of a SPMSM is discussed in [3], [23], [24]. This algorithm may robust

against parameter variations and measurement noise, however, it is computationally

intensive.

Initial rotor position is not detectable with these observer techniques. Therefore,

the starting performance of the drive is an issue to consider when these techniques are

used.

6.3.6 Position and velocity estimation using high frequency
signal injection

Continuous high frequency carrier signal injection is one of the technique, which can be

used to extract the position and velocity information in an AC machine with saliency

[25]. The basis for the technique is, the injection of a high frequency carrier signal,

either voltage or current, on top of the fundamental excitation of the machine. This

carrier signal excitation induces current or voltage signals (Depend on voltage or current

carrier signal injection) that contains information relating to the rotor position of the
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machine. Using suitable signal processing techniques, it is possible to extract this

position information in induced current or voltage, in order to provide continuous

estimates of rotor position and velocity to the control system.

Due to the saliency in the IPMSMs they are very good candidate for this technique.

The application of high frequency carrier voltage signal injection to extract the rotor

position of an IPMSM can be found in [26] and [27]. Since the high frequency carrier

voltage signal is injected continuously and the induced current signal in the machine

exists regardless of the speed of the machine, using this technique the extraction of the

rotor position is possible at zero and very low speeds. This becomes main advantage

of this technique. In order to extract the rotor position from the induced current,

filters and a tracking observer is required. The accuracy of designing the filters and

the tracking observer affects the performance of the position estimation using this

technique.

6.4 Summary

In this chapter, first, the rotor permanent-magnet flux oriented controlled PMSM drive

system, which incorporates the current control in rotor permanent-magnet flux fixed

reference frame to achieve torque control, has been discussed. It has been shown that

the rotor position and velocity information is essential requirement for the control

system of this drive. Literature review reveals that last decade or so there has been a

considerable attention for eliminating the rotor position sensor, which is conventionally

used to obtain position and velocity information for the control system of this drive. In

this chapter, attempts have been made to categorize those proposed techniques based

on the concept used to estimate the rotor position and velocity. Moreover, their merits

and demerits have been discussed.

From machine type point of view, it is apparent that the saliency in IPMSMs

provide some different approaches, like induction calculation based methods and high

frequency signal injection methods, to estimate the rotor position and velocity. It is

also apparent that the saliency in IPMSMs increases the complexity in the algorithms

compared to the SPMSMs when most of the other position and velocity estimation

techniques are used.
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Chapter 7

Field-Oriented Controlled Drive System
with and without Position Sensor

7.1 Introduction

The rotor permanent-magnet flux oriented controlled drive system is introduced in

§6.2 of Chapter 6. In this chapter, first, the control structure of that drive system is

described in detail. The design of the current and speed controller is also discussed. The

performance of the controller is examined with a position sensor in the drive system.

For sensorless operation, a rotor position and velocity estimating technique is de-

scribed for the drive system. Only motor terminal current measurements are required

for position and velocity estimating algorithm. The estimating algorithm is analyzed

in detail and the performance of the sensorless drive system is studied through simu-

lations.

7.2 The control structure of the drive system

Figure 7.1 shows the detailed control structure of the drive system. The speed con-

troller generates the torque command and the torque control is achieved by controlling

the current in the rotor reference frame. The torque command is mapped into rotor

reference frame current commands using function generators fq and fd. The rotor refer-

ence frame current commands (ir∗qs and ir∗ds) are commanded to the machine through the

current controller in order to achieve the torque request to the machine. The current

controller consists of two PI controllers as shown in figure 7.1. The actual rotor ref-

erence frame currents (irqs and irds), which are needed for current control, are obtained

by measuring two phase currents (see figure 6.1 of Chapter 6) and transforming them

from stator coordinates to rotor coordinates using the relationships

irqs =
2

3
[iascos(θr) + ibscos(θr − 2π

3
) − (ias + ibs)cos(θr +

2π

3
)] (7.2.1)

irds =
2

3
[iassin(θr) + ibssin(θr − 2π

3
) − (ias + ibs)sin(θr +

2π

3
)] (7.2.2)

129
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where, θr is the rotor position.

The rotor reference frame voltage commands (vr∗
qs and vr∗

ds), which are the outputs

of the current controller, are transformed to the stationary reference frame voltage

commands vs∗
qs and vs∗

ds. Those voltage commands are used in PWM generator, which

generates the duty cycles (Da, Db, Dc) for the inverter drive signals.

In the following, each section of this control structure and the design procedure for

the controllers are discussed in detail.
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Figure 7.1: Control structure of the drive system.

7.2.1 Current controller

Coupling in rotor d,q frame voltage equations

The rotor reference frame voltage equations, which are derived in Chapter 2 (equation

(2.4.30) and (2.4.31)) are as follows.

vr
qs = rsi

r
qs + pλr

qs + ωrλ
r
ds (7.2.3)

vr
ds = rsi

r
ds + pλr

ds − ωrλ
r
qs (7.2.4)

where,

λr
qs = Lqi

r
qs (7.2.5)

λr
ds = Ldi

r
ds + λm (7.2.6)

Substituting λr
qs and λr

ds to the derivative terms in (7.2.3) and (7.2.4) one can obtain

the following two equations.

vr
qs = rsi

r
qs + Lqpi

r
qs + ωrλ

r
ds (7.2.7)

vr
ds = rsi

r
ds + Ldpi

r
ds − ωrλ

r
qs (7.2.8)
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These two rotor fixed reference frame voltage equations can be illustrated in block

diagram form as shown in figure 7.2. In this block diagram, the voltages are taken as

inputs and the existing input cross coupling terms can be seen in this model.

1

+r L ps q

+ Lq

+ Ld
+

+

�m

X

X

	r

-

1

+r L ps d

+

Cross
coupling

r
qsi

r
qs�

r
dsi

r
qsv

r
dsv

r
ds�

Figure 7.2: Block diagram representation of the rotor fixed reference frame
voltage equations of the PMSM, showing the cross coupling terms.

Design of current controllers

The rotor fixed reference frame currents become DC values in steady state. Therefore,

PI controllers can be used to control these currents with zero steady state error, because

input to the controllers become constant values (DC values) in steady state [1], [2].

The rotor d,q currents cannot be controlled independently, due to the cross coupling

in rotor d,q circuits as shown in figure 7.2. In order to control irds when vr
ds is changed

the irds is changed as desired, but this causes to change the vr
qs, and therefore the irqs,

which is not desirable. This degrades the control performance of the current control.

To obtain better performance in current control the irds and the irqs should be able to

control independently. This can be achieved by decoupling the cross couplings in rotor

d,q circuits [1],[2],[3],[4]. The PI controllers with this decoupling control are shown in

figure 7.3. The speed (measured or estimated), measured stator currents and machine

parameters can be used to add the decoupling terms, i.e. ωrλ̂
r
ds and ωrλ̂

r
qs, to the PI

controllers’ output as shown in figure 7.3.

The design procedure for the q-axis and the d-axis current controllers shown in figure

7.3 is the same. In the following, only the q-axis current controller design procedure is

discussed in detail.

Assuming the cross couplings in the system are fully decoupled due to the decoupling

terms, the discrete model for designing the rotor q-axis current controller can be drawn

as shown in figure 7.4.
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In figure 7.4, D(z) is the discrete transfer function for the PI controller and it has

the form

D(z) = kpq +
kiq

1 − z−1

=
(kpq + kiq)(z − kpq

kpq+kiq
)

(z − 1)
(7.2.9)

where, kpq and kiq are proportional and integral gain respectively.

The one sampling time delay, which is represented by z−1 in figure 7.4, is due to

the data conversion and computation time delay in the digital system.

The G(z) represents the discrete transfer function for the machine with zero order

hold effect. The G(z) can be obtained as [5], [6],

G(z) = (1 − z−1)Ztrans(
G(s)

s
) (7.2.10)

where, G(s) is s-domain transfer function for the machine and

G(s) =
1

rs + sLq

(7.2.11)

Substituting (7.2.11) into (7.2.10) one obtains

G(z) = (1 − z−1)Ztrans(
1

s(rs + sLq)
) (7.2.12)

After obtaining the Z-transformation, (7.2.12) can be written as

G(z) =
(1 − z−1)z(1 − e

−T
τq )

rs(z − 1)(z − e
−T
τq )

=
(1 − e

−T
τq )

rs(z − e
−T
τq )

=
a

z − b
(7.2.13)

where,

T is the sampling time of the digital system,

τq =
Lq

rs

, a =
(1 − e

−T
τq )

rs

, b = e
−T
τq

These parameter values for the laboratory test system are,

T=0.0002 s (Both switching frequency and sampling frequency of the drive system are

5 kHz), τq=0.0173 s, a=0.0035, b=0.9885.

The motor phase currents are sampled in the beginning of the each PWM switching

period, i.e. when zero voltage vector is applied to the machine, avoiding the inverter
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switching noise in the current measurements. Therefore, a filter is not used in the

current feedback path in the current controller.

The root locus method [6] is used to design the current controllers of the drive

system.

The discrete transfer function for the system shown in figure 7.4 is

irqs(z)

ir∗qs(z)
=

D(z)G(z)z−1

1 +D(z)G(z)z−1
(7.2.14)

After substituting D(z) and G(z) this becomes

irqs(z)

ir∗qs(z)
=

a(kpq + kiq)(z − kpq

kpq+kiq
)

z(z − 1)(z − b) + a(kpq + kiq)(z − kpq

kpq+kiq
)

(7.2.15)

The characteristic equation of the system is

1 +D(z)G(z)z−1 = 0 (7.2.16)

Substituting D(z) and G(z) to (7.2.16) one obtains

1 +
a(kpq + kiq)(z − kpq

kpq+kiq
)

z(z − 1)(z − b)
= 0 (7.2.17)

The equation (7.2.17) has the form

1 + k′H(z) = 0 (7.2.18)

where,

k′ = a(kpq + kiq) (7.2.19)

H(z) =
(z − kpq

kpq+kiq
)

z(z − 1)(z − b)
(7.2.20)

In order to draw the root locus for the characteristic equation (7.2.18) the zero of

H(z) at

z = zoi =
kpq

kpq + kiq

(7.2.21)

must be known (This zero is from the PI controller). After drawing the root loci for

different locations of that zero, it was found that it should be selected in order to cancel

out the pole at z = b to obtain the satisfactory performance from the controller (This

way of selecting the zero cancelling the pole at z = b is also described in [7], [8]).

After selecting the location of the zero one can draw the root locus and select the

desired closed-loop poles on it. The gain k′ correspondent to the selected closed-loop
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poles can also be obtained. Knowing zoi and k′ the PI controller gains can be obtained

by solving (7.2.19) and (7.2.21). The expressions for them are

kpq =
k′

a
zoi (7.2.22)

kiq =
k′

a
(1 − zoi) (7.2.23)

Figure 7.5 shows the z-plane root locus and the selected closed-loop poles for the

q-axis current controller, which the characteristic equation is given by (7.2.18). The

closed-loop poles are selected in order to have the characteristics as given in table 7.1.

The natural frequency (ωn) 3480 rad/s gives the bandwidth of the current controller

554 Hz, which is about 0.11 times the sampling frequency of the system. The calculated

PI controller gains are given in table 7.2.
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Figure 7.5: The root locus and the selected closed-loop poles for the rotor
q-axis current controller.

The design procedure for rotor d-axis current controller is exactly the same as the

procedure discussed for rotor q-axis current controller. The results are given in figure

7.6, table 7.3 and table 7.4.

Integrator antiwindup

There are limits for the output of the PI controllers in the drive system. For example,

the speed PI controller output is the commanded torque to the machine and due to the

limitation in the current to the machine there is a limit for this torque. The output

of the current PI controllers is the voltage command to the machine and the voltage

command is limited by the maximum available voltage from the inverter.
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Closed-loop poles (In Z-
plane)

Equivalent damping fac-
tor (ξ) in S-plane

Equivalent natural fre-
quency (ωn) in S-plane
(rad/s)

0.50+0.06i 0.98 3480
0.50-0.06i 0.98 3480

Table 7.1: Characteristics of selected closed-loop poles for rotor q-axis current con-
troller.

kpq kiq

72.1 0.84

Table 7.2: PI controller gains for rotor q-axis current controller.
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Figure 7.6: The root locus and the selected closed-loop poles for the rotor
d-axis current controller.

Closed-loop poles (In Z-
plane)

Equivalent damping fac-
tor (ξ) in S-plane

Equivalent natural fre-
quency (ωn) in S-plane
(rad/s)

0.50+0.06i 0.98 3480
0.50-0.06i 0.98 3480

Table 7.3: Characteristics of selected closed-loop poles for rotor d-axis current con-
troller.

kpd kid

52.2 0.83

Table 7.4: PI controller gains for rotor d-axis current controller.
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The discrete PI controller with limits to the output is shown in figure 7.7. If the

unconstrained output uuc of the PI controller exceeds the limit in the limiter and the

integrator keeps on integrating the error e, the integral term y will become a very large

value (i.e., integrator “winds up”). The consequence of this is the uuc becomes a very

large value, which should be decreased later resulting in substantial overshoot in the

system.

kpx
r*

kix

1-z
-1

+

+

e uuc
uc

Limiter

+

-
rm

y

ulim

ulim

k Proportional gainpx -

k Integral gainix -

Figure 7.7: Discrete PI controller with limits to the output.

The solution to this problem is integrator antiwindup, which “turns off” the integral

action as soon as uuc exceeds the limit. Several integrator antiwindup methods have

been proposed in the literature [9], [10]. The implemented method for the PI controllers

of the drive system is shown in figure 7.8. As it can be seen that there is an extra

feedback path, which is generated by knowing uuc and uc and forming an error signal

es. The es is fed to the input of the integrator through the gain 1
kaw

. When uuc exceeds

the limit, this extra feedback path around the integrator moves rapidly to decrease the

input to the integrator, avoiding windup.

For implementation kaw is selected as

kaw = kpx. (7.2.24)

Referring to the analysis in [10], this choice results in better performance for a PI

controller.

Voltage limiter in the controller’s output

The rotor reference frame voltage commands to the machine is obtained by adding

the decoupling terms to the current PI controller’s output (see figure 7.3). To assure

the magnitude of the stator voltage command does not exceed the maximum available

voltage from the inverter, the limits should be considered to the rotor reference frame

voltage commands.

The magnitude of the voltage is limited to the largest circle that fits in the volt-

age hexagon during SVM (see Appendix C for more details) and, with this limit the
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Figure 7.8: Discrete PI controller with integrator antiwindup.

magnitude of the maximum voltage vmax becomes

vmax =
vdc√

3
(7.2.25)

where, vdc is the DC-link voltage of the inverter.

The implementation of current controller with voltage limiter is shown in figure 7.9.
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Figure 7.9: Block diagram showing the implementation of current controller
with voltage limiter.

Referring to figure 7.9, the unconstrained voltage vector magnitude vu from the q-
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and d-axis current controllers is

vu =
√
v2

qu + v2
du (7.2.26)

where, vqu and vdu are unconstrained voltage outputs from q- and d-axis current con-

trollers respectively.

When vu exceeds the maximum voltage vmax, i.e. vu > vmax, the corresponding

constrained q- and d-axis voltages are calculated without changing the unconstrained

voltage vector angle, but only the magnitude of it. With this consideration, when

vu > vmax the magnitude of the constrained q- and d- axis voltages (i.e., final command

values of q- and d- axis voltages) are calculated as follows.

vr∗
qs = vqu

vmax

vu

(7.2.27)

vr∗
ds = vdu

vmax

vu

(7.2.28)

The vdc is measured for this implementation.

7.2.2 Speed controller

The mechanical system equation of the machine is given by (see (2.6.1) of Chapter 2)

Te − Tl = J
2

n
pωr +Bm

2

n
ωr (7.2.29)

Considering the relationship in (7.2.29) the model used to design the speed controller

is shown in figure 7.10.

*
r

	 r
	

-

F(s)

1PI+
*

eT eT

lT

+
-

B

n

Js+�� m)

Filter

Figure 7.10: The model used to design the speed controller.

A PI controller is used in the speed loop. Since the inner current loop, which

commands torque to the machine, has a much higher bandwidth compared to the speed

loop, it is modeled using the gain 1 as shown in figure 7.10. Since the speed feedback

is filtered using a first order low-pass filter, this filter is included in the feedback path.

The discrete model for designing the speed controller is shown in figure 7.11.
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Figure 7.11: The discrete model for designing the speed controller.

The D1(z) is the discrete transfer function for the PI controller and

D1(z) = kps +
kis

1 − z−1

=
(kps + kis)(z − kps

kps+kis
)

(z − 1)
(7.2.30)

where, kps and kis are proportional and integral gain respectively.

The G1(z) is the discrete transfer function for the mechanical model of the machine

with zero order hold effect. The G1(z) can be obtained as

G1(z) = (1 − z−1)Ztrans(
G1(s)

s
) (7.2.31)

where, G1(s) is s-domain transfer function

G1(s) =
n

2(Js+Bm)
. (7.2.32)

Substituting (7.2.32) into (7.2.31) one obtains

G1(z) = (1 − z−1)Ztrans(
n

2s(Js+Bm)
) (7.2.33)

After obtaining the Z-transformation, (7.2.33) can be written as

G1(z) =
n(1 − z−1)z(1 − e

−T
τm )

2Bm(z − 1)(z − e
−T
τm )

=
n(1 − e

−T
τm )

2Bm(z − e
−T
τm )

=
a1

z − b1
(7.2.34)

where,

τm =
J

Bm

, a1 =
n(1 − e

−T
τm )

2Bm

, b1 = e
−T
τm
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The F (z) is the discrete transfer function for the first order low-pass filter. The

s-domain transfer function for this filter is

F (s) =
ωc

s+ ωc

(7.2.35)

where,

ωc = 2πfc (7.2.36)

and fc is the cut-off frequency of the filter. Using bilinear transform [11], i.e. substi-

tuting

s =
2

T
(
z − 1

z + 1
), (7.2.37)

one can obtain the discrete transfer function F (z) as

F (z) = k1
z + 1

z − b2
(7.2.38)

where,

k1 =
Tωc

2 + Tωc

and b2 =
2 − Tωc

2 + Tωc

In the laboratory test system fc=100 Hz filter is used.

To design the speed PI controller the root locus method is used as for the current

controllers.

The discrete transfer function (ω∗
r(z) as the input and ωr(z) as the output) for the

system shown in figure 7.11 is

ωr(z)

ω∗
r(z)

=
D1(z)G1(z)

1 +D1(z)G1(z)F (z)
(7.2.39)

After substituting D1(z), G1(z) and F (z), (7.2.39) becomes

ωr(z)

ω∗
r(z)

=
a1(kps + kis)(z − kps

kps+kis
)(z − b2)

(z − 1)(z − b1)(z − b2) + a1k1(kps + kis)(z − kps

kps+kis
)(z + 1)

(7.2.40)

The characteristic equation of the system is

1 +D1(z)G1(z)F (z) = 0 (7.2.41)

Substituting D1(z), G1(z) and F (z) to (7.2.41) one obtains

1 +
k1a1(kps + kis)(z − kps

kps+kis
)(z + 1)

(z − 1)(z − b1)(z − b2)
= 0 (7.2.42)

The equation (7.2.42) has the form

1 + k
′′
H1(z) = 0 (7.2.43)
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where,

k
′′

= k1a1(kps + kis) (7.2.44)

H1(z) =
(z − kps

kps+kis
)(z + 1)

(z − 1)(z − b1)(z − b2)
(7.2.45)

Figure 7.12 shows the z-plane root locus and the selected closed-loop poles for the

speed controller, which the characteristic equation is given by (7.2.43). For this root

locus the zero from the PI controller (z = zos = kps

kps+kis
) is selected at z = b1, in order

to cancel out the slow pole from the machine. Knowing the zos and the root locus gain

k
′′

for the selected closed-loop poles, the PI controller gains can be calculated as

kps =
k

′′

k1a1

zos (7.2.46)

kis =
k

′′

k1a1

(1 − zos) (7.2.47)
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Figure 7.12: The root locus and the selected closed-loop poles for the speed
controller.

The characteristics of the selected closed-loop poles and the calculated PI controller

gains are given in table 7.5 and table 7.6 respectively. The selected closed-loop poles’

ωn=274 rad/s, which gives the bandwidth of the speed controller 44 Hz. This is about

12 times less than the bandwidth of the current controller.

The speed PI controller also includes integrator antiwindup function as described for

current controllers. The speed PI controller output is torque command to the machine

and it is limited to 150% of rated torque of the machine (i.e. 18 Nm). The maximum



7.2. The control structure of the drive system 143

Closed loop poles (In Z-
plane)

Equivalent damping fac-
tor (ξ) in S-plane

Equivalent natural fre-
quency (ωn) in S-plane
(rad/s)

0.95+0.01i 0.98 274
0.95-0.01i 0.98 274

Table 7.5: Characteristics of selected closed-loop poles for the speed controller.

kps kis

0.63 0.01

Table 7.6: PI controller gains for the speed controller.

torque can be produced by the machine is 150% of rated torque, and therefore, the

torque command is limited to that value.

7.2.3 Current reference generator

The speed controller output is the torque command, which requires to move the rotor

of the machine towards to the desired velocity. This torque command is mapped into

the rotor d- and q-axis current commands from the current reference generator (see

figure 7.1). The analysis made in §2.8 of Chapter 2 reveal that the overall performance

of the constant stator flux linkage control strategy, which maintains the magnitude of

the stator flux linkage to λm, is better compared to the others. Therefore, the constant

stator flux linkage control strategy is used to map the torque command to the rotor d-

and q-axis current commands. The rotor d- and q-axis currents as a function of the

torque, in order to achieve the constant stator flux linkage λm, is shown in figure 7.13.

The detailed discussion and the derivation of steady state equations for the constant

stator flux linkage control strategy is given in §2.8.5 of Chapter 2.

The two relationships shown in figure 7.13 is programmed in the current reference

generator so that the torque command is mapped into the rotor d- and q-axis current

commands.

7.2.4 Voltage transformation and PWM

The current controller outputs are the desired voltage to the machine in the rotor fixed

reference frame. The inverter of the drive should be controlled so that this voltage to

be applied on the phases of the machine.

First, the rotor fixed reference frame voltage commands, which are the outputs

of the current controller, are transformed to the stationary reference frame voltage
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Figure 7.13: The rotor d- and q-axis currents (irds, i
r
qs) as a function of the

torque (Te), in order to achieve constant stator flux linkage λm.

commands (see figure 7.1) using the rotor position as follows.

vs∗
qs = vr∗

qscos(θr) + vr∗
dssin(θr) (7.2.48)

vs∗
ds = vr∗

qssin(θr) − vr∗
dscos(θr) (7.2.49)

These stationary reference frame voltage commands are used to generate the inverter

control signals (see Appendix C), so that the voltage command is applied to the phases

of the machine.

7.3 The drive system with position sensor

The field-oriented controlled drive system with position sensor is studied in this section.

The block diagram of the drive system with position sensor is shown in figure 7.14. The

controller uses the position and velocity information from the rotor mounted position

sensor.

All control functions of the drive system are implemented in a laboratory test system

and the details of the laboratory test system can be found in Appendix D. For the

drive system, the current and the speed controller gains are as given in table 7.2, table

7.4 and table 7.6. For all simulations and experimental results presented in this section

the drive is started from a known initial rotor position.
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Figure 7.14: Block diagram of rotor permanent-magnet flux oriented con-
trolled drive system with position sensor.

7.3.1 Validation of current and speed controller design

In order to validate the design of the current controller, the step responses of the

rotor d- and q-axis currents are measured in the drive system. For these tests, the

outer speed loop is disabled and the controller is operated only with the current loop.

The rotor speed is measured and the desired current step references are given to the

controller at required rotor frequencies. The measured current responses at low and

high frequencies are shown in figure 7.15. In order to see the irqs step responses, the

irqs reference is stepped from 1 A to 2 A with irds reference is fixed at zero. For irds step

responses, the irds reference is stepped from 0 A to -1 A with irqs reference is fixed at 1

A.

The current controllers are designed with ωn =3480 rad/s and ξ ≈1 (see table 7.1

and table 7.3). The rise time (tr), i.e. the time required for the step response to

reach from 10% to 90% of the final value, can approximately be calculated as tr ≈ 1.8
ωn

,

when ξ ≈0.5 [6]. With this relationship, when ωn =3480 rad/s, the rise time can be

calculated as tr =0.52 ms, which is about 2.5 sampling periods. However, when ξ =1,

somewhat longer rise time can be expected. As it can be seen from the measurements

in figure 7.15 the rise time for the current step responses is about 4 sampling periods

(i.e. tr ≈0.8 ms), which agree with the design.

In order to see the effectiveness of the decoupling in the current controller, the

measured current step responses at high speed (60 Hz), with and without decoupling

in the current controller, are compared in figure 7.16. As it can be seen from the current

responses, without decoupling the current controller becomes sluggish as expected.

The measured step response of the speed with inner current loop is shown in figure

7.17. The speed reference is stepped from 100 rad/s to 105 rad/s, under no-load, as

shown in figure 7.17. The rise time for this response is about 10 ms, which gives the
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Figure 7.15: Measured current step responses at different frequencies.
(a), (b) irqs step responses. irds reference is fixed at zero. (c), (d) irds step
responses. irqs reference is fixed at 1 A.
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Figure 7.16: Measured current step responses with and without decoupling
in the current controller. The measurements are taken at 60 Hz. (a) irqs step
responses. irds reference is fixed at zero. (b) irds step responses. irqs reference is
fixed at 1 A.

bandwidth of the speed loop about 12 times less than the current loop as expected

from the design. Even though the speed loop is designed with ξ ≈1 (see table 7.5) an

overshoot can be seen in the response shown in figure 7.17. This is due to the fact that

the existence of a zero in the speed loop closed loop transfer function given in (7.2.40).

Even though the zero from the PI controller is cancelled out during the design, a zero

still exists at z = b2 due to the filter in the feedback path. Therefore, an overshoot can

be expected in the speed response.
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Figure 7.17: Measured step response of the speed.
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The effect of the integrator antiwindup in the PI controller can be seen from the

measurements shown in figure 7.18. In order to saturate the speed controller, a large

speed step (50 rad/s) was commanded and the speed response is measured with and

without integrator antiwindup in the speed PI controller. As it can be seen from

the measurements shown in figure 7.18 without integrator antiwindup the overshoot is

increased substantially in the response.
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Figure 7.18: Measured speed step responses with and without integrator
antiwindup in the speed PI controller.

7.3.2 The performance of the complete drive system

The field-oriented controller performance with a load disturbance to the drive was

tested at 50% of rated speed. The simulations are shown in figure 7.19 and figure

7.20. For simulations, a constant DC-link voltage was assumed for the VSI and the

actual rotor position of the machine was used in the controller. The drive system

was simulated in the Saber simulation programme. The laboratory measurements of

the drive system under the same conditions as simulations are shown in figure 7.21

and figure 7.22. Both simulations and laboratory measurements verify the satisfactory

performance of the speed and current controller.

The currents are controlled in the drive in order to achieve constant stator flux

linkage(λs = λm) in the machine. Figure 7.20(e) shows the simulated magnitude of the

actual stator flux in the machine. It can be seen that the magnitude of the stator flux

is kept constant in the machine as expected. It can also be seen that the constant flux

value is almost equal to λm(=0.4832 V s/rad).

The performance of the drive during low-speed operation can be seen from the

measurements shown in figure 7.23. At 5% of rated speed a 50% load step is added
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Figure 7.19: Simulated variables, when adding a 100% load step to the drive
at 50% of rated speed. (a) Rotor speed command (b) Actual rotor speed
(c) Torque command (T ∗

e ) in the controller.
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Figure 7.20: Simulated variables, when adding a 100% load step to the drive
at 50% of rated speed. (a) q-axis current command (ir∗qs) (b) Actual q-axis
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(irds) (e) Magnitude of the stator flux (λs).
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Figure 7.21: Measured variables, when adding a 100% load step to the drive
at 50% of rated speed. (a) Rotor speed command (b) Actual rotor speed
(c) Torque command (T ∗

e ) in the controller.
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Figure 7.22: Measured variables, when adding a 100% load step to the drive
at 50% of rated speed. (a) q-axis current command (ir∗qs) (b) Actual q-axis
current (irqs) (c) d-axis current command (ir∗ds) (d) Actual d-axis current
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to the machine and, as it can be seen from the measurements the drive can operate

successfully overcoming the load step at this speed.
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Figure 7.23: Measured variables, when adding a 50% load step to the drive
at 5% of rated speed. (a) Rotor speed (b) Torque command (T ∗

e ) in the
controller (c) q-axis current (irqs) (d) d-axis current (irds).

The performance of the drive with quadratic load is investigated through simula-

tions. Figure 7.24 shows the results. The quadratic load on the machine is modeled as

described in §5.4.3 of Chapter 5. As it can be seen from the results in figure 7.24 the

drive can operate satisfactorily with a quadratic load.

Figure 7.25 compares the dynamic response of the field-oriented controlled (FOC)

drive system and the V/f controlled drive system discussed in Chapter 5. For both

drive systems the measurements are at 50% of rated speed with 100% load step. It can

be seen that the fast dynamic response in the field-oriented controlled drive system as

expected.
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Figure 7.25: Measured speed responses from the field-oriented controlled
drive system and the V/f controlled drive system, when 100% load step is
added at 50% rated speed.

7.4 Sensorless Control

In order to eliminate the rotor position sensor in the rotor permanent-magnet flux

oriented controlled drive system, a rotor position and velocity estimation technique

is studied in this section. Only motor phase currents are measured for position and

velocity estimation. The overall block diagram of the sensorless drive system (i.e. with

rotor position and velocity estimator) is shown in figure 7.26.

7.4.1 Rotor position and velocity estimation

The rotor position and velocity estimation algorithm requires the estimation of the

stator flux linkage. Using the estimated stator flux, the stator currents are estimated

at a predicted rotor position. The difference between the estimated stator currents and

the measured currents, i.e. current errors, are used to correct the error in the predicted

rotor position. The block diagram of the algorithm is shown in figure 7.27. The

number in the each block of figure 7.27 indicates the execution order of the estimation

algorithm. The principle is similar to the one used in [12],[13] and [14]. In subsequent

sections, each step of this algorithm is discussed in detail.
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Figure 7.26: Block diagram of the sensorless rotor permanent-magnet flux
oriented controlled drive system.

Stator flux linkage estimation

In the first step, the stator flux linkage is estimated integrating the difference between

the stator voltage and the ohmic voltage drop. For discrete implementation, the rect-

angular rule is used for the integration. Therefore, the stator flux linkages are obtained

as

λ̂s
qs(k) = T [vs∗

qs(k − 1) − rsi
s
qs(k)] + λs

qs(k − 1) (7.4.1)

λ̂s
ds(k) = T [vs∗

ds(k − 1) − rsi
s
ds(k)] + λs

ds(k − 1) (7.4.2)

where, T is sampling time and k is sampling number. The isqs and isds are obtained

by transforming the measured phase currents to the 2-phase stationary reference frame

currents as shown in figure 7.27. The phase voltages are not measured and the controller

commanded voltages to the machine in the previous sampling period, i.e. vs∗
qs(k − 1)

and vs∗
ds(k − 1), are used in (7.4.1) and (7.4.2).

In order to avoid integrator drift problems the stator flux is updated in step 4 of the

algorithm using corrected rotor position and measured currents (This will be discussed

in detail later). Those updated flux values (λs
qs and λs

ds) in the previous sampling

period are used in (7.4.1) and (7.4.2) to calculate the stator flux values in the present

sampling period.

Stator current estimation

In step 2 of the algorithm the stator currents are estimated using the estimated flux in

step 1 and the predicted rotor position. The equations for stator currents estimation

are obtained from the solutions to the currents in (2.4.38) and (2.4.39) of Chapter 2.
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Those equations for stator currents estimation are

îsqs(k) =
[L− ∆Lcos(2θ̂rp(k))]λ̂

s
qs(k) + ∆Lsin(2θ̂rp(k))λ̂

s
ds(k) − (L+ ∆L)λmsin(θ̂rp(k))

L2 − ∆L2

(7.4.3)

îsds(k) =
[L+ ∆Lcos(2θ̂rp(k))]λ̂

s
ds(k) + ∆Lsin(2θ̂rp(k))λ̂

s
qs(k) − (L+ ∆L)λmcos(θ̂rp(k))

L2 − ∆L2

(7.4.4)

where, L = Lq+Ld

2
and ∆L = Lq−Ld

2
.

Position correction

The most important part of the algorithm is the correction of the predicted rotor

position. For this purpose, the difference between the measured (actual) current and

the estimated current, i.e. current errors

∆isqs(k) = isqs(k) − îsqs(k) (7.4.5)

∆isds(k) = isds(k) − îsds(k) (7.4.6)

are used. Different methods exist to correct the position using current errors and they

are analyzed in detail in §7.4.2.

Updating of flux linkages

In step 4, the flux is recalculated using the corrected rotor position and the measured

stator currents. The stationary reference frame flux equations (2.4.38) and (2.4.39) of

Chapter 2 are used for this purpose. Those equations are

λs
qs(k) = [L+ ∆Lcos(2θ̂r(k))]i

s
qs(k) − ∆Lsin(2θ̂r(k))i

s
ds(k) + λmsin(θ̂r(k)) (7.4.7)

λs
ds(k) = [L− ∆Lcos(2θ̂r(k))]i

s
ds(k) − ∆Lsin(2θ̂r(k))i

s
qs(k) + λmcos(θ̂r(k)) (7.4.8)

These updated flux values are used in step 1 of the algorithm in the next sampling

interval to estimate the flux. In this way, the integrator drift problems can be avoided

in the flux estimation in step 1.

Prediction of rotor position

The position is predicted assuming the position varies with time as a second-order

polynomial

θr = At2 +Bt+ C. (7.4.9)

Using three estimated previous positions the position at (k + 1) sampling instant

is predicted using second-order polynomial curve fitting. Figure 7.28 illustrates the

principle and it is described below.
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Assuming t = 0 at (k−2) sampling instant, the rotor position can be obtained from

(7.4.9) as

θ̂r(k − 2) = C. (7.4.10)

At (k − 1) sampling instant

θ̂r(k − 1) = AT 2 +BT + C. (7.4.11)

At (k) sampling instant

θ̂r(k) = A(2T )2 +B(2T ) + C. (7.4.12)

At (k + 1) sampling instant the predicted position is

θ̂rp(k + 1) = A(3T )2 +B(3T ) + C. (7.4.13)

Solving (7.4.10), (7.4.11) and (7.4.12) for A,B and C, and substituting A,B and C

values to (7.4.13) one can obtain the predicted rotor position at (k + 1) sampling

instant as

θ̂rp(k + 1) = 3θ̂r(k) − 3θ̂r(k − 1) + θ̂r(k − 2) (7.4.14)

In step 5 of the algorithm, using three previously estimated positions, the position

in next sampling instant is predicted using (7.4.14).

7.4.2 Analysis of position correction methods for the position
estimation algorithm

Method 1:

A rotor position correction term from the stationary frame current errors can be ob-

tained from the linearized stationary frame flux equations [12],[13]. Since the stationary
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frame flux is a function of isqs,i
s
ds and θr (see (2.4.38) and (2.4.39) of Chapter 2) the

linearized forms of the flux equations can be written as

∆λs
qs =

∂λs
qs

∂isqs

∆isqs +
∂λs

qs

∂isds

∆isds +
∂λs

qs

∂θr

∆θr (7.4.15)

∆λs
ds =

∂λs
ds

∂isqs

∆isqs +
∂λs

ds

∂isds

∆isds +
∂λs

ds

∂θr

∆θr (7.4.16)

It is assumed that the flux estimation in step 1 of the algorithm is accurate and the

current errors are due to the error in the predicted position. Therefore, substituting

∆λs
qs = 0 and ∆λs

ds = 0 into (7.4.15) and (7.4.16), the position errors can be calculated

from current errors as

∆θs
q =

−(
∂λs

qs

∂isqs
∆isqs +

∂λs
qs

∂isds
∆isds)

∂λs
qs

∂θr

(7.4.17)

∆θs
d =

−(
∂λs

ds

∂isqs
∆isqs +

∂λs
ds

∂isds
∆isds)

∂λs
ds

∂θr

(7.4.18)

Substituting partial derivative terms to (7.4.17) and (7.4.18), the expressions for cal-

culating ∆θs
q and ∆θs

d can be written as

∆θs
q =

−[L+ ∆Lcos(2θ̂rp)]∆i
s
qs + ∆Lsin(2θ̂rp)∆i

s
ds

−2∆Lisqssin(2θ̂rp) − 2∆Lisdscos(2θ̂rp) + λmcos(θ̂rp)
(7.4.19)

∆θs
d =

∆Lsin(2θ̂rp)∆i
s
qs − [L− ∆Lcos(2θ̂rp)]∆i

s
ds

−2∆Lisqscos(2θ̂rp) + 2∆Lisdssin(2θ̂rp) − λmsin(θ̂rp)
(7.4.20)

A single position error term (∆θ) can be obtained by taking the average of two

position errors,

∆θ(k) =
∆θs

q(k) + ∆θs
d(k)

2
(7.4.21)

The corrected rotor position is obtained as

θ̂r(k) = θ̂rp(k) + ∆θ(k) (7.4.22)

The difficulty of correcting rotor position using this method appears when calcu-

lating error terms ∆θs
q and ∆θs

d. The denominators of (7.4.19) and (7.4.20) become

very small at certain current levels and positions, which leads to give very large values

for ∆θs
q and ∆θs

d terms. The simulation results in figure 7.29 illustrate this problem.

The machine is ramped up to the rated speed using the actual rotor position for the

controller and the position estimator operates in open-loop for this simulation. The

load torque is increased to the machine at 2.5 s as shown in figure 7.29(b). The position

estimating algorithm calculated ∆θs
q, ∆θs

d and ∆θ are shown in figure 7.29(c), figure

7.29(d) and figure 7.29(e) respectively. With or without load in the machine, the terms
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Figure 7.29: Simulation results, when the stationary frame current errors
are used for position correction in the position estimating algorithm. The
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torque (c) Position error ∆θs
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error ∆θ.
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∆θs
q and ∆θs

d become very large values in some situations, and therefore the ∆θ. Those

large values are obviously wrong and the position correction becomes inaccurate at

that situations.

In order to avoid the wrong position correction from very large values of ∆θ, one

can add limits to the ∆θ. The rotor position variation during one sampling period

depends on the speed of the rotor and it is given by ωrT , where, T is the sampling

period. Therefore, the maximum value of ∆θ can be limited to ±ωrT . Figure 7.30

illustrates the simulation results when adding those limits to the position correction

term ∆θ at rated speed. The simulation is done with exactly the same conditions as

the simulation in figure 7.29, but with limits to the ∆θ. Comparing the estimated rotor

position and the actual rotor position in figure 7.30, it can be seen that even with limits

to the ∆θ the estimated rotor position does not track the actual position properly.
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Method 2:

The possibility of correcting the position using dq-transformed current errors instead

of using stationary frame current errors is studied in this section.

Figure 7.31 illustrates the actual and predicted rotor reference frames. The flux

in predicted rotor reference frame can be obtained as (see (2.4.7) of Chapter 2 for

transformation)

λp
qds = λabcse

−jθ̂rp (7.4.23)

Substituting λabcs from (2.3.11) of Chapter 2 to (7.4.23) one can obtain the flux com-

ponents in predicted rotor reference frame as

cs

bs

Re

Im

as�r

rd

rq

pq

pd

�rp

��
��

Figure 7.31: Actual and predicted rotor reference frames.

λp
qs = Lipqs + ∆L[ipqscos(2∆θ) − ipdssin(2∆θ)] + λmsin(∆θ) (7.4.24)

λp
ds = Lipds − ∆L[ipqssin(2∆θ) + ipdscos(2∆θ)] + λmcos(∆θ) (7.4.25)

where, ∆θ = θ̂r − θ̂rp.

Assuming ∆θ is very small and using the approximations

cos(2∆θ) ≈ 1 (7.4.26)

cos(∆θ) ≈ 1 (7.4.27)

sin(2∆θ) ≈ 2∆θ (7.4.28)

sin(∆θ) ≈ ∆θ (7.4.29)



164 Chapter 7. Field-Oriented Controlled Drive System with and without Position Sensor

equations (7.4.24) and (7.4.25) can be written as

λp
qs = Lqi

p
qs − 2∆Lipds(∆θ) + λm(∆θ) (7.4.30)

λp
ds = Ldi

p
ds − 2∆Lipqs(∆θ) + λm (7.4.31)

The actual rotor frame flux equations are (see (2.4.32) and (2.4.33) of Chapter 2)

λr
qs = Lqi

r
qs (7.4.32)

λr
ds = Ldi

r
ds + λm (7.4.33)

Subtracting (7.4.30) and (7.4.32), and (7.4.31) and (7.4.33), one can obtain the rela-

tionships among the errors of variables due to the position deviation as

∆λq = Lq∆iq − 2∆Lipds(∆θ) + λm(∆θ) (7.4.34)

∆λd = Ld∆id − 2∆Lipqs(∆θ) (7.4.35)

where, ∆λq = λp
qs − λr

qs, ∆λd = λp
ds − λr

ds, ∆iq = ipqs − irqs and ∆id = ipds − irds.

Assuming the flux estimation in step 1 of the algorithm is accurate, the position

errors can be obtained substituting ∆λq = 0 and ∆λd = 0 into (7.4.34) and (7.4.35).

They can be written as

∆θq =
Lq∆iq

2∆Lipds − λm

(7.4.36)

∆θd =
Ld∆id
2∆Lipqs

(7.4.37)

The current errors ∆iq and ∆id in (7.4.36) and (7.4.37) can be obtained by trans-

forming the stationary frame current errors ∆isqs, ∆isds to the predicted rotor reference

frame as

∆iq = ∆isqscos(θ̂rp) − ∆isdssin(θ̂rp) (7.4.38)

∆id = ∆isqssin(θ̂rp) + ∆isdscos(θ̂rp) (7.4.39)

and ipqs, i
p
ds as

ipqs = isqscos(θ̂rp) − isdssin(θ̂rp) (7.4.40)

ipds = isqssin(θ̂rp) + isdscos(θ̂rp) (7.4.41)

Again, two position errors (∆θq and ∆θd) exist and the position correction term ∆θ

may be calculated averaging these two terms as

∆θ(k) =
∆θq(k) + ∆θd(k)

2
(7.4.42)
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and the corrected rotor position is obtained as

θ̂r(k) = θ̂rp(k) + ∆θ(k) (7.4.43)

The difficulty appears again when calculating ∆θd. For small values of ipqs, ∆θd

can become very large leading to wrong position correction. The simulation results

in figure 7.32 illustrate this problem. The machine is ramped up to the rated speed

using the actual rotor position for the controller and the position estimator operates

in open-loop. The load torque is increased to the machine at 2.5 s as shown in figure

7.32(b). The position estimating algorithm calculated ∆θq, ∆θd and ∆θ are shown in

figure 7.32(c), figure 7.32(d) and figure 7.32(e) respectively. Under no-load, the term

∆θd becomes a very large value, and therefore, the ∆θ. Even though at high loads the

problem does not appear, when the machine is operated under low loads the position

correction becomes inaccurate leading to fail the position estimation.

As it is described when stationary frame current errors are used to correct the

position, one can limit the ∆θ in order to avoid wrong position correction from very

large values of ∆θ. The simulation results with those limits to the ∆θ are shown in

figure 7.33. Compared to the method 1, an improvement in estimated rotor position

can be seen in the simulation results shown in figure 7.33. However, at no-load the

rotor position does not still track the actual rotor position accurately. It was found that

during closed loop control (i.e. when estimated rotor position is used in the controller)

there were severe instability problems in the system under no-load or light loads with

this estimated position.

For non-salient pole machine

Since ∆L = 0 for non-salient pole machines (SPMSMs), expressions (7.4.34) and

(7.4.35) becomes

∆λq = Lq∆iq + λm(∆θ) (7.4.44)

∆λd = Ld∆id (7.4.45)

From (7.4.44) and (7.4.45), it can be seen that the position error term appears only

in q-axis equation (7.4.44). This is different from previously discussed salient pole

machine (IPMSM) case, where the position error appears in both q and d equations.

Assuming the flux estimation is accurate in step 1 of the algorithm a single position

error correction term can be obtained substituting ∆λq = 0 into (7.4.44) as

∆θ =
−Lq∆iq
λm

(7.4.46)

Unlike salient pole machines, the denominator of (7.4.46) does not include any time

varying variable. Therefore, position correction of non-salient pole machines does not

face difficulties as it is seen for salient pole machines.
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7.4.3 Simulation of the sensorless drive system

The IPMSM used for the analysis in this thesis has a lower saliency ratio (Lq

Ld
= 1.37).

Because of this reason and the difficulties for position correction in the position es-

timation algorithm for an IPMSM (Salient pole machine)using current errors for all

operating conditions, the position estimation algorithm was investigated neglecting

the saliency in the machine. That is,

1. When estimating the currents in step 2 of the algorithm (see figure 7.27), it is

assumed that ∆L = Lq−Ld

2
≈ 0 in (7.4.3) and (7.4.4).

2. In step 3, the position is corrected using (7.4.46).

3. In step 4, when updating the flux linkages, it is assumed that ∆L = Lq−Ld

2
≈ 0

in (7.4.7) and (7.4.8).

The purpose of the simulations is to see the stability of the system and how much

error exist in the position estimation when the small saliency exist in the machine is

neglected during position estimation.

The sensorless drive system shown in figure 7.26 was simulated with all control

functions, which use estimated rotor position and velocity. The estimated speed was

filtered using 100 Hz low-pass filter and the initial simulations showed that for satis-

factory operation of the drive with position and speed estimator the speed controller

bandwidth should be reduced to about 15 Hz (This was about 44 Hz when actual po-

sition was used). The bandwidth of the current controllers remained unchanged. In

all simulations the machine was started from a known initial position and the flux was

initialized for the integration in step 1 of the position estimation algorithm according

to that initial position.

Figure 7.34 shows simulation results when adding a 50% of rated load step to the

drive at 50% rated speed. It can be seen that the stable operation of the drive with this

load step. However, the position error increases when the machine is operated under

load.

When adding the load step to the drive as shown in figure 7.34, variation of some

variables related to the position estimation algorithm is shown in figure 7.35.

In figure 7.35, the qs-, ds-axis flux errors are calculated as

∆λs
qs = λs

qs(actual) − λ̂s
qs (7.4.47)

∆λs
ds = λs

ds(actual) − λ̂s
ds (7.4.48)

where, λs
qs(actual), λ

s
ds(actual) are actual flux from the machine and λ̂s

qs, λ̂
s
ds are estimated

flux in step 1 of the algorithm. It should be mentioned that flux errors ∆λs
qs and

∆λs
ds are not calculated in the position estimation algorithm and in figure 7.35 they

are shown for analysis purpose.

It can be seen from figure 7.35(a) and figure 7.35(b) the flux errors increase and

they remain unchanged when the load is increased to the machine. The same for the
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current errors. However, it can be seen that the position correction term does not try

to correct the rotor position, even though there is a current error. Finally, there is an

error in the estimated rotor position when the machine is loaded.

The reason for the position error when the load is increased is due to the assumptions

made in the position estimation algorithm. The saliency is neglected when the currents

are estimated in step 2 of the algorithm and when updating the flux linkages in step 4

of the algorithm. This makes errors in the current estimation and the updating of flux

linkages. Moreover, in step 3, neglecting the saliency only a single position correction

term given in (7.4.46) is used, which is also not accurate. The combination of these facts

makes increased flux errors, increased current errors and inaccurate position correction

when the load is increased in the machine as shown in figure 7.35.

Figure 7.36 shows the position errors with different load steps to the machine at

50% of rated speed. It can be seen that the position error is dependent on the load of

the machine and when the load is increased the position error is also increased.
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Figure 7.36: Position error when the load is changed at 50% of rated speed.

The response of the drive system when adding a 100% load step at 50% of rated

speed is shown in figure 7.37. Due to the large position error with this load, the speed

controller has to command a large torque to the machine, so that the machine can

overcome the load. It can be seen that the torque command from the speed controller

reaches to the limit, i.e. speed controller saturates, under this condition and the system

becomes unstable. It should also be noted that the voltage command from the current

controller does not go to the limit, i.e. the current controller does not saturate under

this condition. Under the same conditions, another simulation was done increasing

the torque limit of the speed controller to 150% of the nominal value. The results are

shown in figure 7.38. The increased torque limit does not solve the problem. When

the torque limit is increased the position error is increased to a value higher than the
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Figure 7.37: Simulated variables, when adding a 100% load step to the
sensorless drive at 50% of rated speed.
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value with nominal torque limit, as soon as the load step is added to the drive (see the

position error in figure 7.38 as soon as the load step is added to the drive). This in

turn requires higher torque command from the controller, which causes to saturate the

speed controller again.
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Figure 7.38: Simulated variables, when adding a 100% load step to the
sensorless drive at 50% of rated speed, increasing the torque limit of the speed
controller to 150% of nominal value.

Figure 7.39 shows the performance of the sensorless drive system at low speed (5%

of rated speed). It seems the stable operation of the drive is possible under this speed

with a load step, even though the position error increases under load.

The performance of the sensorless drive, when ramping up to the rated speed with

quadratic load is shown in figure 7.40. Due to the increased position error with load, the

speed controller has to command a much higher torque to the machine and it saturates

at a certain speed. It should also be noted that the current controller does not saturate

under this condition. The stable operation of the drive is still possible, however, finally,
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Figure 7.39: Simulated variables, when adding a 50% load step at 5% of
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there is an speed error in the system as it can be seen from figure 7.40(a). In order

to see whether the speed error can be eliminated increasing the torque limit of the

speed controller, another simulation was done increasing the torque limit of the speed

controller to 24 Nm. The results are shown in figure 7.41. With increased torque limit

the position error is increased again as it can be seen from figure 7.41(e), which in

turn requires high torque command from the controller. Finally, the speed controller

saturates again without solving the problem.
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Figure 7.40: Simulation results, when ramping up the sensorless drive to
the rated speed with quadratic load. (a) Commanded and actual rotor speed
(b) Applied load torque to the machine (c) Torque command (T ∗

e ) from the
speed controller (d) Commanded magnitude of the voltage from the current
controller (e) Position error.

So far in the simulations the position estimator was started from a known initial

rotor position. The flux was initialized for the integration in step 1 of the position

estimation algorithm according to that known initial rotor position. The simulation



176 Chapter 7. Field-Oriented Controlled Drive System with and without Position Sensor

 P
o

si
ti

o
n

 e
rr

o
r 

(e
le

c.
 r

ad
)

−0.6

−0.4

−0.2

0.0 V
o

lt
ag

e 
co

m
m

an
d

 (
V

)

0.0

100.0

200.0

300.0

400.0 T
o

rq
u

e 
co

m
m

an
d

 (
N

m
)

0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0

 L
o

ad
 t

o
rq

u
e 

(N
m

)

0.0

3.0

6.0

9.0

12.0

15.0

 R
o

to
r 

sp
ee

d
 (

ra
d

/s
)

0.0

50.0

100.0

150.0

200.0

 t(s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

commanded

actual

(a)

(b)

(c)

(d)

(e)

limit

limit

with nominal torque limit

Figure 7.41: Simulation results, when ramping up the sensorless drive to
the rated speed with quadratic load, increasing the torque limit of the speed
controller to 24 Nm. (a) Commanded and actual rotor speed (b) Applied
load torque to the machine (c) Torque command (T ∗

e ) from the speed con-
troller (d) Commanded magnitude of the voltage from the current controller
(e) Position error.
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results in figure 7.42 show that the performance of the sensorless drive when there is a

mismatch between the actual initial rotor position and the estimator started position.

The estimator was started from 0 elec. rad position and the actual initial rotor position

was set to π
2

elec. rad as shown in figure 7.42(c). The sensorless drive was ramped up

to the 50% of rated speed and, as it can be seen from figure 7.42(b) the drive becomes

unstable under this condition. It is evident that the position estimation algorithm

requires actual initial rotor position in order to estimate the position accurately.
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Figure 7.42: Simulation results showing the instability in the sensorless drive
when there is a mismatch between the actual initial rotor position and the
estimator started position.

7.4.4 V/f control and sensorless field-oriented control
-A performance comparison

It is important to point out some differences seen in the performance of the V/f con-

trolled drive discussed in Chapter 5 and the investigated sensorless field-oriented con-

trolled drive in this chapter.

Figure 7.43 shows the simulated speed responses from the both drive systems when

adding a 50% load step at 50% rated speed. It can be seen that the investigated

sensorless field-oriented controlled drive has fast dynamic response compared to the
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V/f controlled drive.
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Figure 7.43: Simulated speed responses from the V/f controlled drive system
and the investigated sensorless field-oriented controlled drive system, when
50% load step is added at 50% rated speed.

From figure 5.12 and figure 7.39, it can be seen that the stable operation of both

drives at 5% rated speed with 50% load step. However, comparing figure 5.9, figure

5.10 with figure 7.37, one can see that the stable operation of the sensorless field-

oriented controlled drive system is not possible at 50% rated speed with 100% load

step. Another drawback in sensorless field-oriented controlled drive system can be seen

when comparing figure 5.14 with figure 7.40. With quadratic load a speed error exists

in the sensorless field-oriented controlled drive and that situation is not seen in V/f

controlled drive.

With this comparison it can be seen that even though the dynamic response is slower

in the V/f controlled drive system, from the overall performance point of view, it is

better compared to the investigated sensorless field-oriented controlled drive system in

this chapter.

7.5 Summary

The complete control structure of the rotor permanent-magnet flux oriented controlled

PMSM drive system has been described in this chapter. In order to design the current

and speed controller for the digital system the Z-domain root locus method can be used.

The design of the controllers has been validated experimentally and the performance

of the complete drive system with position sensor has been presented.
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For position sensorless operation of the drive system a rotor position estimation

technique has also been investigated. The investigated rotor position estimation tech-

nique uses predictor-corrector method, which uses current errors to correct the pre-

dicted rotor position. The investigation has been revealed that the correction of the

predicted rotor position is difficult for salient pole machines using the current errors in

the stationary reference frame. Using the predicted d-q reference frame current errors

the position correction can be improved under high loads, however, at light loads there

are still problems. For non-salient pole machines, position correction using current

errors in the predicted d-q reference frame seems very convenient.

The difficulty of position correction in the position estimation algorithm for all op-

erating conditions and the relatively low saliency exists in the IPMSM used for the

analysis have lead to make assumptions to the position estimation algorithm. The sim-

ulation results have shown that the stable sensorless operation of the drive is possible,

however, the existing load dependent position error has degraded the performance of

the drive. In order to improve the performance of the drive, more investigations are

still required for accurate rotor position estimation of the IPMSM.

Finally, the comparison has shown that the V/f controlled drive system proposed

in Chapter 5 has better overall performance compared to the sensorless field-oriented

controlled drive system investigated in this chapter.
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Conclusion

Mainly, due to the attractive efficiency characteristics, the PMSMs are good candidate

for pumps and fans drives. This thesis has been focused on control of PMSMs for such

drives.

In order to provide synchronization between machine’s excitation frequency and

rotor frequency, the rotor position information is essential during PMSM control. The

direct approach to obtain the rotor position information is a rotor mounted angular

position sensor. Because of the cost and the reduced reliability, a rotor mounted an-

gular position sensor is not desirable in pumps and fans drives and sensorless control

is needed. Two sensorless control approaches, i.e. sensorless V/f control approach

and sensorless field-oriented control approach, have been investigated in this thesis.

Moreover, the preliminary aspects, such as mathematical models, control properties of

PMSMs, have also been discussed.

Based on the results presented in the thesis, the main conclusions can be summa-

rized as below.

Mathematical models and control properties

• For an IPMSM, the rotor d,q model is the most convenient, since the position

dependent inductances disappear in that model. In addition to the permanent-

magnet produced torque, the reluctance torque also exist in IPMSMs, which

makes important differences over SPMSMs.

• The comparison study made for the different control properties of the tested

IPMSM has revealed that the constant stator flux linkage control has more ad-

vantages compared to the others, i.e. constant torque angle control, maximum

torque per ampere control and unity power factor control.
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Sensorless V/f control

• The design of sensorless V/f controlled drive has been started by investigating

the stability characteristics of PMSMs under open-loop V/f control. The analysis

made in Chapter 3 has revealed that the machine becomes unstable after exceed-

ing a certain applied frequency under open-loop V/f control. Machine under

no-load and under load with different control strategies have been investigated,

and in any case the machine became unstable after the applied frequency exceeds

about 15 Hz. Under open-loop V/f control, there is no synchronization between

the machine’s excitation frequency and the rotor frequency, and therefore, this

instability behaviour can be expected.

• The stabilization of open-loop V/f controlled PMSMs can be achieved by modu-

lating the applied frequency using input power perturbations or DC-link current

perturbations. The simplified small signal dynamics model derived in Chapter 4

is the key to understand these stabilizing techniques. Moreover, the simplified

small signal dynamics model has also shown how to select the gains for these

frequency modulated stabilizing loops. To implement these stabilizing loops no

rotor position sensor is required. The stabilizing loops in the system can also be

seen as the signals, which provide synchronization between the machine’s excita-

tion frequency and the rotor frequency.

• In order to improve the performance, especially at low speeds, the compensa-

tion of stator resistance voltage drop is important in voltage magnitude of V/f

controlled drive. It has been shown that measuring stator phase currents the volt-

age magnitude can be calculated with vector compensation of stator resistance

voltage drop.

• With the proposed voltage control method to the drive, the power calculation was

very convenient and the power perturbation stabilizing loop was the best solution

to stabilize the drive. No rotor position sensor has been used to implement the

complete drive system and the performance analysis in Chapter 5 have shown

that the drive is suitable for pumps and fans applications.

Sensorless field-oriented control

• Unlike V/f control, the field-oriented control incorporates an inner torque con-

troller and an outer speed controller in the control system. The torque control is

achieved by controlling the currents in rotor d,q reference frame. The control sys-

tem requires rotor position feedback in order to perform the self-synchronization

function continuously. The basic PI controllers are sufficient for current and speed

control in the drive system.
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• In order to achieve sensorless operation of the drive, the position and velocity

estimation is required and it is important to consider the type of the machine

(SPMSM or IPMSM) and the application of the drive when investigating a rotor

position and velocity estimating technique.

• The investigated rotor position estimating technique is predictor-corrector based,

which uses current errors to correct the predicted rotor position. It has shown

that, in theory, the expressions exist for both SPMSMs and IPMSMs to correct

the predicted rotor position using current errors. However, the investigations have

revealed that, for IPMSMs, there are implementation difficulties to correct the

predicted rotor position using those expressions for all operating conditions. It

has also revealed that, for SPMSMs, the best solution is the use of d,q transformed

current errors to correct the predicted rotor position.

• The difficulty of correcting the predicted rotor position for an IPMSM for all

operating conditions and the relatively low saliency exist in the machine used

for investigation have lead to make some assumptions to the position estimating

algorithm. The simulations have shown that the stable sensorless operation of the

drive is possible, however, the performance of the drive system is greatly affected

by the load dependent position error in the position estimation algorithm with

those assumptions.

• It is believed that unlike SPMSMs simple model based approach is difficult for

position estimation for an IPMSM. The use of saliency in the IPMSM to estimate

the rotor position, e.g. high frequency signal injection, may be a better solution

for an IPMSM.

Comparison of control methods

• In order to implement the sensorless V/f control the voltage magnitude calcula-

tion and the stabilizing loop is required (see figure 5.5 and figure 5.4 in Chapter

5). For sensorless field-oriented control, speed and current controllers are needed

with position and speed estimation algorithm (see figure 7.26, figure 7.1 and figure

7.27 in Chapter 7). The overall calculation power required to implement the sen-

sorless V/f controller is less compared to the sensorless field-oriented controller.

• The performance comparison has shown that the overall performance of the sen-

sorless V/f controlled drive is better compared to the investigated sensorless

field-oriented controlled drive.

• Considering the implementation simplicity and the overall performance of the

drive, it can be concluded that the proposed V/f control method is the best



186 Chapter 8. Conclusion

solution for pumps and fans applications between the two control methods inves-

tigated in the thesis.

8.1 Contributions in the thesis

The main contributions in the thesis can be summarized as below.

• The model for conventional salient-pole synchronous machine was widely dis-

cussed in the literature, however, for an IPMSM it was not directly derived. The

derivation of the IPMSM model and the comparison of control properties are new

contributions in the thesis.

• The detailed analysis provided to understand the stability and stabilization of

open-loopV/f controlled PMSM drives are also new contributions in the thesis.

• The sensorless V/f controlled drive system developed in this work is considered

as a new contribution to PMSM drive control strategies.

• The analysis made for the position correction methods for the position and speed

estimation algorithm used in field-oriented controlled drive is a new contribution.

The position correction in this position estimation algorithm was not clearly

analyzed for SPMSMs and IPMSMs before.

• The previous work were mainly concentrated on sensorless field-oriented control

of PMSMs and there were no attempts to compare V/f control with sensorless

field-oriented control. The attempts made in the thesis to compare these two

control strategies are novel.

8.2 Future work

Even though several topics have been addressed in the thesis, there are still some topics,

which are interesting for future research. Some of those topics are summarized below.

• The variation of machine parameters was not considered for the developed control

algorithm for V/f control. The machine parameter variation, how much effect

give to the performance of this controller should be investigated.

• The control algorithm of V/f controlled drive system was implemented in a high

performance DSP. The implementation of this algorithm in a low-cost micro-

controller is beneficial for pumps and fans drives and the possibility of it should

be investigated.
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• The drives (both V/f controlled drive and the field-oriented controlled drive dis-

cussed in the thesis) are started after aligning the rotor to a known position

by applying a DC voltage to the machine. The problem of this method is the

movement of the rotor during aligning. In order to avoid this problem the inves-

tigations are required for direct detection of the initial rotor position.

• A study is needed for the effect of the machine parameter variation to the field-

oriented controller discussed in the thesis.

• The rotor position estimation using the saliency in the IPMSM, e.g. high fre-

quency signal injection method, may be a better solution compared to the method

investigated in this thesis for sensorless operation of the field-oriented controlled

drive. Therefore, an investigation of that method is needed for the field-oriented

controlled drive system.

• The investigation of the flux-weakening regime operation of both V/f controlled

and field-oriented controlled drive systems discussed in the thesis is also an in-

teresting future research topic.

• The thesis only addressed the V/f control and the field-oriented control of PMSMs.

The direct torque control is another control approach for PMSMs. The study of

advantages and the disadvantages in the sensorless direct torque control approach

compared to the two control approaches discussed in the thesis is another future

research topic.
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Appendix A

Data for the IPMSM

Type - YASKAWA SSR1-42P2AFNL

Number of poles (n) - 6

Rated power - 2.2 kW

Rated speed - 1750 rpm

Rated frequency - 87.5 Hz

Rated torque - 12 Nm

Rated phase to phase voltage - 380 V(rms)

Rated phase current - 4.1 A(rms)

Stator resistance per phase (rs) - 3.3 Ω

d-axis inductance (Ld) - 41.59 mH

q-axis inductance (Lq) - 57.06 mH

Rotor permanent-magnet flux (λm) - 0.4832 V s rad−1

Inertia of the rotating system (J) - 10.07×10−3 kg m2

Viscous friction coefficient (Bm) - 20.44×10−4 Nm s rad−1
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Appendix B

Various Relationship Derivations Related
to Chapter 3 and Chapter 4

B.1 The derivation of the transfer function for ∆Te
∆δ

under open-loop V/f control of PMSMs

Under open-loop V/f control the linearized machine equations, which are given in
matrix form in (3.3.3) of Chapter 3 are written here again as,

p




∆irqs

∆irds

∆ωr

∆δ




=




−1
στs

−ω0
σ

−1
σ (λm

Ld
+ Ir

ds)
−Vs
σLd

sin(δ0)

σω0
−1
τs

σIr
qs

−Vs
Ld

cos(δ0)

3
2(n

2 )2 1
J [λm + Ld(1 − σ)Ir

ds]
3
2(n

2 )2 1
J Ld(1 − σ)Ir

qs
−Bm

J 0

0 0 −1 0







∆irqs

∆irds

∆ωr

∆δ




+




0
0
−n
2J
0


 ∆Tl (B.1.1)

The first two equations and the last equation in this matrix equation can be written

as

p(∆irqs) = A(∆irqs) +B(∆irds) + C(∆ωr) +D(∆δ) (B.1.2)

p(∆irds) = E(∆irqs) + F (∆irds) +G(∆ωr) +H(∆δ) (B.1.3)

p(∆δ) = −∆ωr (B.1.4)
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where,

A =
−1

στs
, B =

−ω0

σ
, C =

−1

σ
(
λm

Ld

+ Ir
ds), D =

−Vs

σLd

sin(δ0) (B.1.5)

E = σω0, F =
−1

τs
, G = σIr

qs, H =
−Vs

Ld

cos(δ0) (B.1.6)

Substituting ∆ωr from (B.1.4) to the equations (B.1.2) and (B.1.3), and replacing

p by s, the relationship between current perturbations and load angle perturbation can

be obtained as

(s− A)(∆irqs) = B(∆irds) + (D − sC)(∆δ) (B.1.7)

−E(∆irqs) = (F − s)(∆irds) + (H − sG)(∆δ) (B.1.8)

Solving for ∆irds and ∆irqs,

∆irds =
[(A− s)(H − sG) − E(D − sC)]

(s− A)(F − s) +BE
∆δ (B.1.9)

∆irqs =
[(F − s)(D − sC) −B(H − sG)]

(s− A)(F − s) +BE
∆δ (B.1.10)

Linearizing the torque equation (2.5.7) in Chapter 2 one obtains,

∆Te = X1∆i
r
qs + Y1∆i

r
ds (B.1.11)

where,

X1 =
3

2

n

2
[λm + (Ld − Lq)I

r
ds] (B.1.12)

Y1 =
3

2

n

2
(Ld − Lq)I

r
qs (B.1.13)

Substituting ∆irds and ∆irqs from (B.1.9) and (B.1.10) to the linearized torque equation

(B.1.11), finally, the transfer function for ∆Te

∆δ
under open-loop V/f control can be

obtained as,

∆Te

∆δ
= X1

[(F − s)(D − sC) −B(H − sG)]

(s− A)(F − s) +BE
+ Y1

[(A− s)(H − sG) − E(D − sC)]

(s− A)(F − s) +BE

(B.1.14)

B.2 The derivation of Te0 as a function of Vs, ω0 and

δ0

The steady state voltage equations in the rotor d,q frame can be written as (see (2.7.1)

and (2.7.2) of Chapter 2)

V r
qs = rsI

r
qs + ω0LdI

r
ds + ω0λm (B.2.1)

V r
ds = rsI

r
ds − ω0LqI

r
qs (B.2.2)
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The relationship between the load angle and the voltages from (3.2.3) and (3.2.4)

of Chapter 3 is

Vscos(δ0) = V r
qs (B.2.3)

−Vssin(δ0) = V r
ds (B.2.4)

Substituting those two relationships to the (B.2.1) and (B.2.2) the following two

equations are obtained.

Vscos(δ0) = rsI
r
qs + ω0LdI

r
ds + ω0λm (B.2.5)

−Vssin(δ0) = rsI
r
ds − ω0LqI

r
qs (B.2.6)

Solving for Ir
ds and Ir

qs from these two equations,

Ir
ds =

ω0LqVscos(δ0) − rsVssin(δ0) − ω2
0Lqλm

r2
s + ω2

0LqLd

(B.2.7)

Ir
qs =

Vssin(δ0)
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+
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ω0LqVscos(δ0) − rsVssin(δ0) − ω2

0Lqλm

r2
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0LqLd

) (B.2.8)

The steady state torque expression from (2.7.3) of Chapter 2 is,

Te0 =
3

2

n

2
[λm + (Ld − Lq)I

r
ds]I

r
qs (B.2.9)

Substituting the current expressions (B.2.7) and (B.2.8) to the torque expression in

(B.2.9) one can obtain the following equation, which expresses the Te0 as a function of

Vs, ω0 and δ0.

Te0 =
3

2

n

2
[λm + (Ld − Lq)(

ω0LqVscos(δ0) − rsVssin(δ0) − ω2
0Lqλm

r2
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)] (B.2.10)

B.3 The derivation of the expression for ke

The above §B.2 obtained the expression (B.2.10) for the torque can be written as

Te0 =
3

2

n

2
[λm + (Ld − Lq)I

r
ds][

Vssin(δ0)

ω0Lq

+
rs

ω0Lq

Ir
ds] (B.3.1)

where,

Ir
ds =

ω0LqVscos(δ0) − rsVssin(δ0) − ω2
0Lqλm

r2
s + ω2

0LqLd

(B.3.2)



196 Appendix B. Various Relationship Derivations Related to Chapter 3 and Chapter 4

Taking the partial derivative of (B.3.1) respect to δ0 one can obtain the ke as,
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∂Te0
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2
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where,
∂Ir
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=
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(B.3.4)

B.4 The elements of the matrix A2(X)
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Appendix C

Generation of PWM

After the voltage vector to the machine is decided from the control section of the V/f

controlled drive or the field oriented controlled drive, this voltage vector is applied to

the stator of the machine through the inverter. For this purpose, the inverter creates

the three-phase stator voltages via Pulse Width Modulation (PWM). There are several

approaches to generate inverter control signals to achieve PWM [1]. The space vector

modulation (SVM) approach is used in both of the V/f controlled and field oriented

controlled drive systems discussed in this thesis. The implementation of this approach

in a digital system is very convenient. The space vector modulation approach and

inverter nonlinearity compensation are briefly discussed in this Appendix.

C.1 Space vector modulation

The basis for the space vector modulation is, the ability of generating fixed voltage

space vectors from a three phase inverter, which is shown in figure C.1. This type of

vdc

+

Phase a
Leg

Phase b
Leg

Phase c
Leg

Connected to the
3-phase motor

_

ias
ibs

ics

Figure C.1: Three-phase inverter.

inverter can produce a total of six non-zero voltage space vectors and two zero voltage

vectors [1]. They are correspondent to the 8 switching states of this inverter. These

197
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voltage space vectors correspond to the switching states of the inverter are shown

in figure C.2(a) with the notation v100, v110, v010, v011, v001, v101, v000 and v111. In this

notation of voltage space vectors, the subscript denotes the state of the switches and

they are represented by a binary pattern, where ‘one’ represents the top switch is closed

and the bottom switch is opened for a particular leg of the inverter and a ‘zero’ the

opposite. The most left position in the pattern is leg ‘a’, the middle is leg ‘b’ and the

right position is leg ‘c’.

According to the states of the switches, one can decide the polarity and the magni-

tude of the voltages, which produce in the three phase stator windings of the machine,

connected to the inverter. The magnitude of those produced phase voltages on the

star connected windings are either 2vdc

3
or vdc

3
. With those produced phase voltages and

using the definition for the voltage space vector given in (C.1.1) (See (2.3.1) in Chapter

2), one can obtain the eight voltage space vectors correspond to the eight switching

states as shown in figure C.2(a). The magnitude of each of these voltage space vectors

is 2vdc

3
.

vabcs =
2

3
[vas + avbs + a2vcs] (C.1.1)
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Figure C.2: (a) Voltage space vectors correspond to the eight switching states
of the three-phase inverter. (b) Representation of the commanded voltage
vector from two adjacent voltage space vectors.

In the following, the generation of inverter control signals from SVM is discussed

assuming the commanded voltage vector v∗s, which is in the stationary reference frame,

locates in the first sector of the space vector diagram shown in figure C.2(a).

Since the commanded voltage vector is in the first sector, the adjacent two voltage

space vectors are v100 and v110. The change in flux over one switching period can be
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written as ∫ Tsw

0

v∗sdt =

∫ T1

0

v100dt+

∫ T1+T2

T1

v110dt+

∫ Tsw

T1+T2

v0dt (C.1.2)

where,

Tsw - The switching period

T1 - The time for the v100 vector

T2 - The time for the v110 vector

v0 - The zero vector (either v000 or v111).

From (C.1.2) the following result can be obtained.

v∗sTsw = v100T1 + v110T2 (C.1.3)

∴ v∗s =
v100T1

Tsw

+
v110T2

Tsw

(C.1.4)

The result in (C.1.4) is illustrated in the vector diagram shown in figure C.2(b).

From (C.1.4) one can obtain the switching times T1 and T2 for the adjacent two

vectors as

T1 =

√
3Tswv

∗
s

vdc

sin(
π

3
− β) (C.1.5)

T2 =

√
3Tswv

∗
s

vdc

sin(β) (C.1.6)

where β is the angle between v100 and v∗s. During the remaining time in the switching

period, the zero vectors should be applied. Therefore, the time for zero vectors (T0)

becomes

T0 = Tsw − T1 − T2 (C.1.7)

The implemented SVM scheme the T0 is divided into four parts of equal duration

and, in the first sector the switching sequence is selected as

v000〈T0/4〉 → v100〈T1/2〉 → v110〈T2/2〉 → v111〈T0/4〉 →
v111〈T0/4〉 → v110〈T2/2〉 → v100〈T1/2〉 → v000〈T0/4〉. (C.1.8)

In (C.1.8), the duration for the associated vector is given in brackets. The switching

signals correspond to the sequence given in (C.1.8) are shown in figure C.3. Note that

each leg of the inverter is switched twice during one switching period and switching

signals are symmetric around 1
2
Tsw.

When the commanded voltage vector is in other sectors, the expressions (C.1.5) and

(C.1.6) remain valid. Then, β should be the angle between the commanded voltage

vector and the first vector applied from the adjacent two vectors.

The implemented drive systems, first, the duty cycles are calculated for the switch-

ing signals shown in figure C.3, with the help of (C.1.5), (C.1.6) and (C.1.7). Knowing

those duty cycles, a micro-controller generates the switching signals to the inverter.
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Figure C.3: Switching signals produced by SVM for the three legs of the
three phase inverter. It is assumed that the commanded voltage vector is in
first 00 − 600 sector.

C.1.1 Voltage limit

The magnitude of the maximum voltage, which can be obtained from SVM is depen-

dent on the position of the commanded voltage vector and it can be found using the

constraint

T1 + T2 = Tsw. (C.1.9)

After substituting T1 and T2 from (C.1.5) and (C.1.6), the expression (C.1.9) becomes
√

3Tswvmax(β)

vdc

sin(
π

3
− β) +

√
3Tswvmax(β)

vdc

sin(β) = Tsw (C.1.10)

where, vmax(β) is the magnitude of the maximum voltage at reference angle β.

From (C.1.10), vmax(β) can be obtained as

vmax(β) =
vdc√

3cos(π
6
− β)

, 0 ≤ β ≤ π

3
(C.1.11)

When β varies, the value of vmax(β) lies on the line, which is connected the tips of the

vectors v100 and v110 (see figure C.2(b)). If it is considered the other sectors also, this

means that vmax(β) constitutes the hexagon shown in figure C.2(a).

One can limit the voltage vector to the hexagon. However, this results in different

maximum voltages depending on the angle of the commanded voltage vector, increasing

the calculation time. Alternatively, one can also limit the voltage vector to the largest

circle that fits in the hexagon (This circle is shown in figure C.2(a)). The advantage of

this circular limit is that the magnitude of the voltage vector is limited to a constant

length regardless of the position of the voltage vector, reducing the calculation time

required. With this circular limit, the maximum voltage (vmax) becomes the radius of

the circle and

vmax =
vdc√

3
. (C.1.12)

This circular limit is used in the implemented drive systems.
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C.2 Inverter nonlinearity compensation

There are three nonlinearities in PWM voltage source inverters [2]. They are

• DC-link voltage ripple

• Dead-time

• Components voltage drop (Diodes and transistors voltage drop in the inverter).

The compensation methods of these nonlinerities are discussed in detail in [2]. The

same methods are used to implement and they are discussed briefly in subsequent

sections.

C.2.1 DC-link voltage ripple

Due to the behaviour of diode rectifier the ripples appear in the DC-link voltage, i.e.

the DC-link voltage is not a constant value. When generating PWM, if it is assumed the

DC-link voltage is constant in (C.1.5) and (C.1.6), it will cause undesirable variations

in stator voltages. In order to overcome this problem, the DC-link voltage is measured

instantaneously, and this measured DC-link voltage is used in (C.1.5) and (C.1.6)

during PWM generation.

C.2.2 Dead-time

In order to avoid short-circuit in the DC-link, it should always be considered a short

period of delay between one transistor is turned-off and the other is turned-on in each

leg of the inverter. This short period of delay is referred to as dead-time. Due to the

dead-time, there is a difference between the actual output voltage and the commanded

voltage to a phase. The influence to the output voltage is dependent on the direction

of phase current. Assuming the switching of the power semiconductor devices is ideal

(i.e. no delays), the magnitude of the average voltage error in one switching period due

to the dead-time is given by [2]

∆v =
td
Tsw

vdc (C.2.1)

where ∆v is the average voltage error in one switching period and td is the dead-time.

The commanded voltage to a phase can be corrected to compensate the dead-time

effect by knowing the sign of the current and using the relationship

v∗as(c) = v∗as + sign(ias)tdfswvdc (C.2.2)

where v∗as(c) is the corrected voltage for phase a, v∗as is the commanded voltage for phase

a and fsw is the switching frequency. Equation (C.2.2) can be written in duty cycles

for the upper transistor of a-phase leg as

D∗
a(c) = D∗

a + sign(ias)tdfsw (C.2.3)
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where D∗
a(c) is corrected duty cycle and D∗

a is commanded duty cycle, i.e. calculated

duty cycle from SVM. For the other two phases same relationships are applied (Only

changing a to b and c).

When implementing, the duty cycles calculated from SVM for the three legs of the

inverter are corrected using the relationship in (C.2.3), in order to compensate the

dead-time effects to the output voltage.

C.2.3 Components voltage drop

The voltage drop across the power semiconductor devices of the inverter causes to

deviate the actual output voltage from the commanded voltage. The effect to the

output voltage from voltage drops of the power semiconductor devices is dependent on

the magnitude and the direction of the phase current [2].

Considering a-phase leg, the transistor and the diode voltage drop can be expressed

as

vT = RT |ias| + vT,0 (C.2.4)

vD = RD|ias| + vD,0 (C.2.5)

where,

vT - Transistor voltage drop

vD - Diode voltage drop

RT - Dynamical resistance of transistor

RD - Dynamical resistance of diode

vT,0 - Voltage drop at zero current in transistor

vD,0 - Voltage drop at zero current in diode.

According to the analysis in [2], the commanded voltage can be corrected to com-

pensate the transistor and the diode voltage drop, knowing the direction of the current

and using the relationships

v∗as(c) = v∗as − vT − (vD − vT )D∗
a, for ias < 0 (C.2.6)

v∗as(c) = v∗as + vD + (vT − vD)D∗
a, for ias > 0 (C.2.7)

Expressions (C.2.6) and (C.2.7) can be written in duty cycles as

D∗
a(c) = D∗

a −
[vT + (vD − vT )D∗

a]

vdc

, for ias < 0 (C.2.8)

D∗
a(c) = D∗

a +
[vD + (vT − vD)D∗

a]

vdc

, for ias > 0 (C.2.9)
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Same relationships can be obtained for the other phases. When implementing, the duty

cycles calculated from SVM for the three legs of the inverter are corrected using the

relationships in (C.2.8) and (C.2.9), in order to compensate the effects from transistor

and diode voltage drops to the output voltage. The transistor and diode parameter

values used in (C.2.4) and (C.2.5) are, RT = 80 mΩ, RD = 80 mΩ, vT,0 = 1.6 V and

vD,0 = 0.8 V. These values are obtained from the data sheets provided by the inverter

IGBT module manufacturer.
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Appendix D

The Laboratory Test System

The laboratory test system, which is used for experiments in this project, is described

in this Appendix. The overview of the laboratory test system is shown in figure D.1.

It consists of a converter, a digital control system, sensors to obtain various signals, a

load control system and an IPMSM. The IPMSM is the test machine used throughout

the project and details of this machine can be found in Appendix A. More details of

other parts of the laboratory test system are given in subsequent sections.

Torque
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Figure D.1: Overview of the laboratory test system.

D.1 Converter

The power electronic converter configuration used in the laboratory test system is

shown in figure D.2. This converter is, a modified version of Danfoss VLT 3004 fre-

quency converter. The control board was removed from original VLT 3004 and the

205



206 Appendix D. The Laboratory Test System

gate pulses and other control signals were supplied from the external digital control

system through fiber-optic interface as shown in figure D.2. It should be mentioned

that remaining control electronics, snubber circuits and power supplies in the converter

are not shown in figure D.2.

IPMSM

Power electronic converter

3x 400 V
AC supply

Dead time implementation
and various protection
functions for the converter

Gate-pulse 1
Gate-pulse 2
Gate-pulse 3

On/Off signal
Enable signal{

From fiber
optics

Figure D.2: Power electronic converter configuration used to control the test
machine in the laboratory test system.

As shown in figure D.2 the supplied signals to the converter include 3 gate-pulses

(one for each leg of the IGBT inverter), enable signal (a square-wave signal with a

frequency of 1-5 kHz, which is required for control electronics of the converter) and

converter on/off signal. Each gate-pulse is split into two signals in the converter (one

for upper IGBT and the other for lower IGBT of each leg) incorporating dead time.

The value of the dead time is 2 µs.

The protection functions, which include in the VLT 3004 is also used in the con-

verter. They are, protection against short-circuit and over-load currents, and thermal

protection of power modules. The DC-link voltage is also measured in VLT 3004 and

the converter trips, if DC-link voltage is not within the required range. This function

is also used in the laboratory test system converter.

D.2 Digital control system

The digital control system handles all the calculations in the control algorithm with the

knowledge of various measured signals from other parts of the system, and generates

gate pulses and other control signals for the converter. The block diagram in figure

D.3 outlines the digital control system.
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Figure D.3: Block diagram of the digital control system.

The measured variables for the A/D converter are, motor phase currents, DC-link

current, DC-link voltage and torque on the rotor shaft (see figure D.1). The LEM

modules are used to measure the phase currents and DC-link current, and an isolation

amplifier (Hewlett-Packard HCPL-7800) is used for the DC-link voltage. The torque

on the rotor shaft is measured using Staiger Mohilo (Model no. 0130/03AE-01-F-A)

torque transducer.

The A/D converter (Analog Devices AD7891) has 8 channels giving facilities to

measure up to 8 analogue signals, even though only 6 signals are used in this project.

All channels are sampled and held simultaneously by two four-channel sample-hold

circuits (Analog Devices AD684), when a signal is given from the micro-controller

(µc). This signal is shown as S/H in figure D.3. The resolution of the A/D converter

is 12 bit, and the conversion time is 1.6 µs per channel. The digitized values from

the A/D converter are read by the digital signal processor (DSP) when it receives the

interrupt signal.

The DSP (Analog Devices SHARC ADSP-21062, 33 MHz clock frequency), which

performs floating point calculations with 32/40 bit resolution, is installed in EZ-LAB

Development System evaluation board designed by BittWare Research Systems. This

board is physically installed in the PC, and the PC can communicate with the DSP.

All control algorithms are programmed using C programming language and they are

compiled using C-compiler, which includes in the DSP software tools. The compiled

programmes are downloaded to the DSP, whenever the control algorithms are needed

to execute in real time. If it is required, variables in control algorithms can be saved in

the DSP memory and they can be transferred to the hard disk of the PC so that they

can be viewed off-line.

At the beginning of each PWM switching period, the micro-controller generates

the interrupt signal to the DSP. With this interrupt signal, the DSP executes the

calculations in the control algorithm. Finally, the DSP outputs the calculated duty-

cycles for the three gate pulses and the on/off status of the converter. They are written
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to the dual-port ram (DPRAM) in 16-bit format. The micro-controller reads these

values and generates the gate pulses and on/off signal for the converter in the beginning

of next PWM switching period.

In addition to the three gate pulses and on/off signal, the micro-controller also

generates the DSP interrupt signal and A/D converter S/H signal in the beginning of

each PWM switching period. The S/H signal is also used as the enable signal to the

converter.

Since the DSP interrupt signal and A/D converter S/H signal are generated in the

beginning of each PWM switching period, the sampling period of the digital control

system is essentially the same as the PWM switching period. It should also be noted

that, since the gate pulses are generated in the beginning of next sampling period

after the calculations, there is one sampling period delay between the analog values are

sampled and the voltage is applied to the machine.

The micro-controller is from Siemens, SAB 80C167, with 20 MHz clock frequency.

It performs calculations in 16-bit fixed-point format. It has PWM channels, which

are dedicated for generating gate pulses for a converter. When duty cycles are known

those PWM channels can be used to generate gate pulses. The programme for the

micro-controller is also written in C programming language. The micro-controller com-

municates with the PC via a serial port.

As it is shown in figure D.3, the micro-controller also counts pulses, which are

generated by an encoder according to the revolution of the rotor shaft. The counted

value of the pulses during one sampling period are written to the DPRAM and it is

read by the DSP. The resolution of the counted pulses is: 8192 pulses/rev.

The micro-controller generated 5 signals for the converter (i.e. 3 gate pulses, enable

signal, on/off signal) are send via fiber-optic cables to the converter. This fiber-optic

cable link provides electrical isolation between digital control system and the converter.

More description about different components used in the digital control system can

be found in manuals published by the manufactures. For EZ-LAB Development System

evaluation board, more details can be found in [1]. Detailed descriptions for the DSP

and the micro-controller are documented in [2] and [3] respectively.

D.3 Load control system

Figure D.4 outlines the load control system in the laboratory test setup. This load

control system was built using Siemens SIMOVERT MASTERDRIVES converters.

The rectifier/regenerative unit provides facility to power flow from grid to the DC-

link and regenerative power flow from DC-link to the grid. Two independent thyristor

bridges in this unit provide this facility. This rectifier/regenerative unit is connected

to the IGBT inverter via the DC-link. The load machine is a SPMSM. It is also from

Siemens and the type is ROTEC 1FT6. This machine is fitted with an encoder in
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Figure D.4: Block diagram illustrating sections of the load control system.

order to provide position and velocity information of the rotor. The rated speed and

the rated torque of this machine are 3000 rpm and 14.7 Nm respectively.

Control of the rectifier/regenerative unit and the inverter is provided by Siemens.

In addition, those units are provided with software so that the user can programme

them via parameters in order to adapt to a specific application. Key-pads with displays

are also included so that the user can programme them easily. The torque command,

which is needed to control the torque of the load machine, can be given to the inverter

from the key-pad or using an analog voltage signal (0-10 V).

Detailed description of the rectifier/regenerative unit and the inverter used in the

load control system can be found in [4] and [5] respectively. More details about load

machine can be found in [6].
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