

Aalborg Universitet

Object-Oriented Structuring of Finite Elements

Hededal, O.

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Hededal, O. (1994). Object-Oriented Structuring of Finite Elements. Aalborg Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://vbn.aau.dk/en/publications/e3f752c0-a869-11da-8341-000ea68e967b

OBJECT-ORIENTED STRUCTURING

OF FINITE ELEMENTS

OLE HEDEDAL

AALBORG UNIVERSITY

September 1994

Acknowledgements

This thesis, Object-oriented Structuring of Finite Elements, has been prepared in connec-

tion with a Ph.D. study carried out in the period September 1991 to April 1994 at the

Department of Building Technology and Structural Engineering, University of Aalborg,

Denmark.

A visit at the Department of Structural Engineering, Chalmers Technical University,

Sweden, in the period March to May 1993 was used for writing a major part of the program

code. I thank Professor N.E. Wiberg and my colleagues for making the visit a professional
as well as social success.

I greatly acknowledge the inspiration and guidance given to me by my supervisor Pro-
fessor, Dr. Techn. Steen Krenk. Furthermore, I thank Norma Hornung for assistance in
the preparation of the illustrations in the thesis.

The work has been �nanced by a grant from the Technical Faculty at the University of
Aalborg. The visit to Chalmers Technical University was supported by Nordisk Forskerut-
danningsakademi (NorFA).

Aalborg, September 1994 Ole Hededal

i

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Numerical requirements . 2

1.1.2 Requirements to the program structure 3

1.1.3 Aim . 4
1.2 The structure of �nite elements . 4

1.2.1 Sample program . 6

1.3 Object-oriented programming . 9
1.3.1 Objects and classes . 9
1.3.2 Inheritance . 10

1.3.3 Polymorphism and dynamic binding 11
1.3.4 Objects and C++ . 11

1.4 Review of literature . 13
1.4.1 Matrix and vector classes . 14

1.5 Notation . 15

2 Concepts in �nite elements 17

2.1 Balance equations . 17
2.2 Finite element approximation . 19
2.3 Elasticity theory . 22

2.4 Summary . 25

3 Classes in �nite elements 29

3.1 The class structure . 29

3.1.1 Requirements to ObjectFEM . 31

3.2 The FEM classes . 32
3.2.1 The Node class . 35

3.2.2 The Element class . 38

3.2.3 The Material class . 41
3.2.4 The Property class . 42

3.3 Model storage . 42
3.3.1 The List class . 42

3.3.2 Customizing the lists . 43

3.4 Algebraic classes . 45

iii

iv CONTENTS

3.5 The application . 46

3.5.1 Model de�nition . 47

3.5.2 Model generation . 47

3.5.3 Forming the global equation system 48

3.5.4 Solving the global equation system 48

3.5.5 Postprocess . 49

3.5.6 Linear and non-linear applications 50

4 Customizing the FEM classes 53

4.1 Potential element with linear materials . 53

4.2 Isoparametric elements . 55

4.2.1 Numerical integration . 58

4.3 The isoparametric element class . 59

4.3.1 The Gausspoint class . 64

4.3.2 Potential elements in 2D and 3D 65

4.4 Customizing Material and Property . 67

5 Solid elements 69

5.1 Solid element for linear elasticity . 69
5.2 Isoparametric solid element . 73

5.3 Elastic materials . 73

6 Non-linear �nite elements 75

6.1 Solution of non-linear �nite element equations 78
6.2 The orthogonal residual method . 83

6.2.1 Dual orthogonality . 85
6.2.2 Implementation of the orthogonal residual method 88

6.3 Extensions to the Element class . 94

7 Bar elements 95

7.1 Elastic bar element with �nite deformations 95
7.1.1 Tangent sti�ness . 98

7.1.2 Total and updated Lagrangian formulation 99

7.2 Linear bar element . 100

7.3 Geometrically non-linear bar elements . 101

7.4 Examples . 104

7.4.1 Example 1: Two-bar truss . 104

7.4.2 Example 2: 12-bar truss . 107

7.4.3 Concluding remarks . 110

8 Elasto-plastic materials 113

8.1 Hardening plasticity . 113

8.1.1 Hardening rules . 117
8.2 Integration of stress . 118

8.2.1 Explicit integration . 119

CONTENTS v

8.2.2 Return mapping algorithms . 120

8.3 Classes in elasto-plastic analysis . 121

8.3.1 Extension to the Element class . 122

8.3.2 The Gausspoint class . 123

8.3.3 The Plastic material class . 125

8.4 von Mises plasticity . 126

8.5 Example . 132

8.5.1 Example: Plate with hole . 132

9 Conclusion 137

9.1 Algebraic classes . 137

9.2 FEM classes . 138

9.3 Applications . 139

9.4 An open, expandable framework . 140

10 References 143

A Algebraic classes 147

A.1 Class declaration . 148

A.1.1 Attributes . 148
A.1.2 Constructor and destructor . 149
A.1.3 Member methods and friend methods 151

A.1.4 Arguments and return values . 152
A.1.5 Coercion . 154

A.2 Operators . 155

A.2.1 Assignment . 155
A.2.2 Arithmetic operators . 157

A.2.3 Input and output operators . 159
A.3 Solution of linear equation systems . 160

A.3.1 Factorization . 160

A.3.2 Solution . 162
A.3.3 Constrained systems . 162

A.4 Examples . 170
A.5 References . 181

B Summary 183

C Summary in Danish 187

Chapter 1

Introduction

1.1 Motivation

The need for highly specialized �nite element codes is today present in research, practical
engineering and education. While many problems can be solved using standard codes,

there is a variety of problems that require special elements or material models or for which
the available solution algorithms are not e�cient or stable enough. In such situations the
user is interested in easy ways to implement new elements or to obtain stable algorithms,

i.e. the user wants to provide new facilities with the least possible e�ort.
In most cases only limited modi�cations are needed. It could for example be the change

of a single parameter in order to monitor its inuence on the result or a slight change in the
element formulation. Implementation of an entire new element or material model, either for
research purposes or for solving problems that are not standard, requires greater changes

in the code concerning both computation and data management. The computation of the
model parameters is usually well-de�ned and easy to program and test. Most of the new
code will, however, be used for the data management, e.g. input/output and storage of

data; this is trivial but nonetheless tedious and prone to errors.
Another essential part of a �nite element program is the solution algorithms. The algo-

rithms may be divided in solution methods and solution strategies. The methods usually

concern basic matrix manipulations such as solution of linear equation systems or solution
of an eigenvalue problem. They are characterized by a close relation to the structure of

the system matrices and their internal representation, i.e. di�erent methods should be em-
ployed for non-symmetric, symmetric, banded or sparse matrices. The strategies are for

example solution of non-linear equations and time integration schemes. They use infor-

mation generated by the element procedures and the solution methods to seek a solution
iteratively. A strategy consists of a number of controls that the user can manipulate or

change in order to stabilize the algorithm or make it more e�cient. The program should
allow the user to choose freely the methods and strategies that most e�ciently solve the

considered problem.

The issues described above have 3 levels of abstraction. The solution methods may

be referred to as low level programming and are mainly dictated by the matrix structure.

The medium level concerns implementation of new elements and materials and involves

1

2 Introduction

modi�cation or addition of procedures that describe a part of the physical problem. The

strategies have the highest level of abstraction. They are mathematical instruments that

are used to obtain a solution of the global system built of elements and materials. Imple-

mentation of new strategies consists of modifying the control structures, that uses existing

procedures, rather than adding new procedures.

1.1.1 Numerical requirements

From a numerical point of view a �nite element code should ideally possess

� E�ciency

� Robustness

� Flexibility

3 groups of �nite element codes will be considered discussing these properties in relation

to the possibilities of incorporating new facilities in the existing �nite element code: com-

mercial general-purpose programs, specialized programs made by the user and systems
that use high level languages. The �rst 2 groups are compiled codes that use algorithmic

techniques, while the last type uses high level command driven languages.
Commercial general-purpose �nite element programs like ANSYS (1988) and ABAQUS

(1992) consist of a precompiled main processor that includes the implementation of stan-
dard elements, material models and solution procedures. In order to perform an analysis
the user supplies a command �le (written as a text �le or generated by a graphical prepro-

cessor) that is interpreted by a driver. The driver generates a Fortran code that describes
the �nite element model in terms of the program variables and calls to the involved proce-

dures. This program segment is then compiled and linked along with the main processor to
an executable �le. The analysis is performed running the execute �le. The user is allowed
to supply subroutines that speci�es a special solution strategy or implements a user-de�ned

element. The user subroutines are compiled and linked along with the rest of the code.
The advantage of using programs like ANSYS and ABAQUS for analysing non-standard
problems is that the user can bene�t from their strong capabilities e.g. concerning solution

of large problems, advanced elements and graphical presentation. Many resources have
been invested in optimizing and verifying the implementations of elements and algorithms

in these codes to ensure the quality and robustness of the analysis results. Therefore, to

protect the commercial interests the source codes are not available to the common user.

The drawback of this is that it restricts the possibility of monitoring special variables or

it might even restrain the user from trying to make a user subroutine.

Another class of �nite element programs are the programs that are developed by the
user to treat special problems. These programs are usually modest compared to the general-

purpose programs with respect to the number of available elements and solution strategies,

the capability of running large problems and the graphical presentation. The advantage of

open codes is that the user have access to all parts of the program and can access any needed

parameter or modify any procedure in order to satisfy the current needs. These codes are
traditionally programmed in procedural languages like Fortran, Pascal or C, which have

shown superior for numerical computation. Large procedural programs, however, tend

to grow complex due to the organization of the data and procedures. To enhance the

1.1. MOTIVATION 3

readability the programs can use data structures to collect related data in a single entity,

e.g. a node structure which consists of the node number, the node coordinates and the

nodal displacements and loads. Further, the programmer may want to use object-oriented

programming in which related data and methods are collected in an entity - the object.

Hereby the relation between a variable and its function in the problem becomes more

clear. Object-oriented programming is therefore a way to improve the program structure

of a �nite element codes, making modi�cation and extension simpler. For the numerical

parts procedural programming could still be used.

The �nite element code can also be programmed in a high level language like in Matlab,

CALFEM (1993), Dahlblom et al. (1985), or even in a symbolic language like in Maple,

Beltzer (1990). In the Matlab implementation of CALFEM the element formulation is given

in a toolbox that is used in combination with the existing facilities. The toolbox consists

of a set of functions, e.g. generation of the element sti�ness matrices or calculation of the

strain. The analysis is performed interactively with the user de�ning the model, generating

the system matrices, calling the (built-in) solution algorithm and �nally presenting the

results in tables or graphically. The user is thus always in control of the process and may
stop the analysis at any time to preview parameters. Also the direct access to graphical
tools motivate the use of such programs for educational and development work. However,

for larger problems e�ciency requirements may limit the use of this type of program.

1.1.2 Requirements to the program structure

Developing a �nite element program requires strategy and program structuring. Planning
a program system three issues should be taken into account,

� Specialization

� Expansion

� Maintenance

In order for more people to work with same program system - simultaneously or over a
period of several years - it is important to make an expandable framework where di�er-

ent parts can be developed independently without a�ecting other parts of the system.
Therefore there should be very few bindings between the di�erent parts. This would allow

specialization and expansion of the program system with more e�cient algorithms, new

elements or additional postprocessing facilities. The program system thereby becomes ca-

pable of handling a large number of problems without increasing the complexity of the

program structure. Furthermore, large-scale programs typically have lifetimes that outlast

the immediate involvement of the single programmer. It is therefore important that new
programmers can take over the code maintenance and development without having to rely

on several years of experience with the system.

In order to maintain and specialize the program code to meet new requirements it is

necessary to have an architecture that is exible and does not restrict modi�cations. First

of all, it is useful to divide the program into modules. This enhances readability and
provides an easier overview of the program structure. Second, related variables should be

gathered in data structures in order to limit the number of global variables. Along with the

expansion of the computer power and storage the program codes have expanded equally.

4 Introduction

Therefore, it is important to be able to reuse code as this would save time and limit the

possibility of introducing errors. These requirements can be met concentrating on

� Modularity

� Data structuring

� Code reuse

Object-oriented programming supports modularity and data structuring by organizing the

problem in objects with very few internal bindings. Objects can inherit functionality from

each other, thus using the same code for several types of problems.

1.1.3 Aim

The aim of this thesis is to describe an implementation of an open, expandable framework,

ObjectFEM, that permits the user to choose freely among the available set of elements,

materials and algorithms or provide new ones. A program structure with three levels is
de�ned using object-oriented structuring and programming. The top level concerns the

algorithms used to solve the global equations. i.e. possibilities of solving linear as well as
non-linear equation systems. The top level can be referred to as the application and it is at

this level the user can de�ne new solution algorithms. Level 2 is used to describe the �nite
element theory. At this level di�erent elements and materials may be implemented using
a standard programming interface and directly used in already existing applications. The

lowest level contains the de�nition of tools. In scienti�c programming the most important
tool is linear algebraic classes such as vectors and matrices. However, others such as lists,
arrays or graphics may be useful. Level 3 deals with formulation of such tools.

The structure of this thesis tries to emphasize the step-by-step style in which object-
oriented �nite element programs can be developed. Having identi�ed the central concepts in

a �nite element formulation a basic framework is described. The basic framework de�nes
a standard interface for programming new elements or materials. In connection to this
an application for solution of linear static problems is presented. The framework must

be customized to apply to a speci�c problem. This is done considering isoparametric
continuum elements for potential problems and linear elasticity theory. Solution of non-

linear �nite element problems requires iterative strategies. Di�erent solution strategies
are considered in order to identify extensions to the linear framework and an application

for solution of non-linear problems is presented. A geometrically non-linear bar element is

formulated as an example of a simple non-linear element. Elasto-plastic material models are

used to identify further extensions of the standard framework to deal with path-dependent
material models and von Mises associated plasticity will be implemented as an illustration

of the concepts.

1.2 The structure of �nite elements

A �nite element program can be described in terms of

� Data

� Methods

1.2. THE STRUCTURE OF FINITE ELEMENTS 5

� Algorithms

The data are the variables that contain the model description, e.g. node labels, element

topology or material properties, and the variables that store the system matrices and vec-

tors, such as the global sti�ness matrix or load vector. Four groups of methods manipulate

the data: FEM methods, data management methods, I/O methods and solution methods.

The FEM methods relate directly to the �nite element formulation and are responsible

for calculating the element sti�ness matrix or the strain occurring from the applied loads.

Data management mainly consists of storing the model de�nition and the analysis results,

but involves also the generation and assembly of the global system, e.g. assembly of the

global sti�ness matrix. I/O methods take care of input and output from the program.

The program must be able to obtain its input from a �le or a graphical user interface

and present the analysis results in tables or graphics. The solution methods are related

to the global matrices and vectors and are used for solving the linear equation systems

or obtaining the eigenvalues of the system. Algorithms are in this context the strategies

that are used for controlling an analysis such as linear analysis programs or strategies for
solving non-linear equation systems.

Algorithm 1.1: Truss analysis program

Variables:
node no, elem no, matl no
coor, topo, prop
a, f, �x, Ke, K, N

Preprocess:
read node(node no,coor)
read elem(elem no,topo)
read matl(matl no,prop)
read bc(a,�x,f)

for (all elements) do
elem sti�ness(elem no,topo,coor,prop,Ke)
assm sti�ness(elem no,topo,Ke,K)

Process:
factor(K,�x)
solve(K,a,f,�x)

Postprocess:
for (all nodes) do

write disp(node no,a)
write load(node no,f)

for (all elements) do
elem force(elem no,topo,coor,prop,a,N)
write elem force(elem no,N)

6 Introduction

1.2.1 Sample program

A simple �nite element program for truss analysis with bar elements given as Algorithm 1.1

can be used to illustrate the program structure. It is an example of an algorithm for linear

analysis. An algorithm is built of control structures: for (all elements) do symbolizes a

loop over all elements in the model. Standard structures like for-do and while-do are

written in courier. Variables and methods are written in sans serif. Variables that are

needed by the methods are given in the argument list which is enclosed in parenthesis: (�).

1.2. THE STRUCTURE OF FINITE ELEMENTS 7

Classifying the program in data and groups of methods gives

Data:

node no,elem no,matl no: Identi�cation of nodes, elements and materials by a num-

ber.

coor: Node coordinates.

topo: Element topology: contains the numbers of the connected nodes

and material.

prop: Material properties: elastic modulus and cross section area of the

bar.

a: Vector of nodal displacements - the degrees-of-freedom ordered by

their position in the global system.

f: Vector of nodal loads - ordered as a.

�x: Array indicating if a degree-of-freedom is prescribed.

Ke: Temporary matrix that stores the element sti�ness matrix.

K: Global sti�ness matrix.

N: Element section force: axial force.

FEM methods:

elem sti�ness: Calculates the element sti�ness matrix and returns it in terms of

the global coordinate system.

elem force: Calculates the axial force in the bar.

Data management methods:

assm sti�ness: Assembles the global sti�ness matrix from the element sti�ness

matrices using the topology information.

I/O methods:

read node: Reads the node number and coordinates

read elem: Reads the element number and topology.

read matl: Reads the material number and the properties, E and A.

read bc: Reads the boundary conditions: prescribed displacements and loads.

write disp: Writes the nodal displacements.

write load: Writes the nodal loads.

write elem force: Writes the calculated axial force.

Solution methods:

factor: Factorizes the constrained matrix K

solve: Solves the constrained equation system Ka=f.

Algorithm 1.1 follows the standard structure of a procedural �nite element programs.

First it identi�es the data and then calls a number of methods in reaching the solution. In

8 Introduction

Figure 1.1: Organization in procedural programs

Figure 1.2: Organization in object-oriented programs

procedural programming the data are grouped separately from the methods and algorithms
as illustrated by Figure 1.1.

Looking at the data of a �nite element program it is immediately recognized that they

group naturally in the 3 data structures Node, Element and Material and the data that
contains the global model, K, a, f and �x. The methods can be divided by their relation to

the data structures, thereby grouping the data and methods together while the algorithms
still are independent. An entity that contain data and the related methods is called an
object. The organization in object-oriented programs is illustrated in Figure 1.2.

In the �nite element method 3 built-in concepts are the obvious object candidates:
Node, Element and Material. An object is a self-contained entity, i.e. it must be able to do

its own I/O, manage itself and maybe represent parts of the �nite element formulation.
The Node is mainly responsible for managing degrees-of-freedom and point loads and send-
ing the prescribed values to the global system. The Element must for example be able to

compute the element sti�ness matrix and the Material must generally be able to represent
the constitutive behaviour in a matrix form and present it to the elements. Other candi-
dates for objects are matrices and vectors, for these there must be methods that perform

algebraic operations like additions and multiplications, but also methods that can solve a

linear equation system should be available. The structure of a simple object-oriented �nite

element program is given in Figure 1.3.
The conclusion to the discussion above is that a �nite element program consists of 4

types of operations that should be taken care of

� Model I/O

� Data management

� Problem formulation - elements and materials

� Solution methods and strategies

1.3. OBJECT-ORIENTED PROGRAMMING 9

Figure 1.3: Object-oriented �nite element programs

The programmer should ideally be able to concentrate on either a single problem formula-
tion, solution method or strategy at the time. Using an object-oriented program structure

this can be accomplished by inheriting the other parts of the program, especially the data
management and I/O methods, from objects that are already de�ned.

1.3 Object-oriented programming

Object-oriented analysis is a structuring technique that has recently grown popular due to
the appearance of languages that support object-oriented programming. Object-oriented

analysis is a general tool used to analyze the nature of a problem to be solved in order
to obtain a program structure that is highly distributed with very few bindings between

di�erent modules. In this section some basic terms of object-oriented analysis and program-
ming are presented and shortly illustrated with �nite element concepts. The de�nitions
speci�cally relate to the way the terms are used later on. In many situations graphical

presentation is the best way to describe the architecture and the internal dependencies

of an object-oriented system. Therefore a simple graphical model is introduced based on

ideas from Coad & Yourdon (1991) and Yu & Adeli (1993).

1.3.1 Objects and classes

The behaviour of a system can be divided into a number of tasks. Each task is de�ned

by some data that describe the current state and a number of operations which can alter

the state of the system leading to a new task. This provides a well-de�ned and logical

structure which helps to maintain overview of the system. The idea of the object-oriented

analysis and programming is to divide a system into tasks that directly reect the system
concepts.

10 Introduction

Figure 1.4: Classes and their dependency

In object-oriented analysis the behaviour of a system, e.g. a physical model, is described

in terms of objects in a computer model. An object is an abstraction of a concept in

the system, such as nodes and elements. It is described by a number of state variables

called attributes which for a node may be label, coordinates, degrees-of-freedom, etc. The

attributes are usually hidden from other parts of the model, i.e. they are encapsulated.

The access to the attributes and behaviour of an object are modelled by methods which

make it possible for other parts of the system to a�ect the state of the object, i.e. methods
simulate the behaviour that the object is responsible for exhibiting, cf. Section 1.2. The
base of an object-oriented architecture is the class. A class contains the description of one

or more objects with a uniform set of attributes and methods, including a description of
how to create a new object in the class, Coad & Yourdon (1991). Thus, an object is an

initialized instance of a class, i.e. there exists the same relation as for type and variable in
traditional compiled languages.

Objects communicate through messages. A message is a request to the object to alter

its internal state, e.g. by performing an operation that alter the values of its attributes
or by sending messages to other objects. Messages are the object-oriented counterpart
to parameter lists in procedural programming. These can be avoided in object-oriented

programming because an object itself knows how to react, i.e. to obtain and alter the
involved attributes. E.g. in the calculation of the element sti�ness the element will itself

ask the material object to send the constitutive matrix. This means that the element
depends on the material object. The dependency can act one way as for the element-
material relation or it may be mutual as e.g. for a node-element relation.

In Figure 1.4 2 classes are represented graphically de�ning the class names, attributes
and methods. The one-way dependency, Class A uses Class B, indicates that Class B by

request sends information to Class A.

1.3.2 Inheritance

Classes alone do not make an object-oriented architecture - without inheritance a class

would simply be an advanced version of a user-de�ned data structure. Inheritance is used

to specialize the behaviour of a class. Instead of rede�ning the entire class a subclass
is derived from the superclass, as e.g. an isoparametric element may be derived from an

element superclass. The subclass inherits its attributes and methods from the superclass

and new attributes and methods can be added. Those methods of the superclass that do
not apply any longer can be rede�ned in order to specify a slightly di�erent behaviour of

1.3. OBJECT-ORIENTED PROGRAMMING 11

Figure 1.5: Inheritance - a class hierarchy

the subclass - elements would for example have to de�ne the sti�ness matrix. The subclass
de�nes a class of objects, but it also initializes some of the attributes. The subclass is

therefore at the same time a class and an object and will be referred to as a Class&Object.
A system of classes which inherit from each other is referred to as a hierarchy. Graphically a

class hierarchy is presented as in Figure 1.5. Attributes that are initialized by the subclass,
e.g. a1 and methods that are given new implementation by the subclass, e.g. a3, are de�ned
both by the superclass and the subclass.

1.3.3 Polymorphism and dynamic binding

In order to implement an object-oriented architecture special features must be available in
the programming language. Inheritance allows the subclass to use some of the methods of

the superclass while others have a new de�nition and new methods are added. Objects of a

class hierarchy share some methods but these may have di�erent implementation. Shared

methods are called polymorph - multiple shape - which means that a single declaration may

apply to more than one implementation. The distinction between these relies on a strong

typecasting and enables the program at run-time to seek the appropriate implementation

of a method. Binding at run-time is called dynamic binding. First, the program will see if

the object itself contains an implementation of the method, otherwise the superclasses are

called in turn until an implementation is encountered.

1.3.4 Objects and C++

As discussed in Section 1.2 �nite element programs consist of a mixture of data, methods

and algorithms. The data and methods can conveniently be gathered in objects, whereas

12 Introduction

the algorithms are more independent on the representation of the data. The objects are

used for managing the model and developing a distributed program structure, while ex-

perience has shown that the procedural programming style is more e�cient for numerical

algorithms. A hybrid of procedural and object-oriented programming is therefore advan-

tageous and will in many cases avoid the loss of e�ciency often encountered for pure

object-oriented applications, Forde et al. (1990). This is attractive for environments where

highly specialized and optimized parts of scienti�c code are already implemented in C,

Pascal or Fortran. C++ is a hybrid language where a procedural part - basically the C

language subset - is extended to include object-oriented techniques. It is unlike Smalltalk,

CLOS and Ada not entirely object-oriented, consequently the programmer is able to ap-

ply a programming style where part of the program is object-oriented - typically the data

management part - while for the numerical part a procedural style as in C should be chosen.

In the following a short introduction to object-oriented programming in C++ will be

presented. For a comprehensive introduction the reader should consult The C++ Program-

ming Language by Stroustrup (1991), but also Lippman (1989) and Winder (1991) could

serve as introduction. For the procedural programming part Kernighan & Ritchie (1991)
gives an excellent introduction to C supplemented with Press et al. (1988) who present the
basics of scienti�c programming in C.

The C++ declaration of objects is a class. A class is a user-de�ned type that can be
used as any built-in type like integer or oating points. A class declaration consists of two
parts. A private part which contains the attributes and some internal methods - this is

the C++ counterpart to encapsulation. The public part is the interface to the other parts
of the program. The public methods can manipulate the private attributes, i.e. calls to

public methods correspond to sending a message to an object. Methods may be called with
arguments, thus they are a mixture of pure object-oriented methods and procedures. The
public part also consists of methods that are used to initialize new objects, these are called

constructors. A constructor is typically responsible for memory allocation and initialization
of attributes. When the object is not used any more a destructor is automatically called

freeing the memory allocated for the object.
One of the reasons for the success of C++ is that it is a compiled language. For

programs in C++ internal dependencies must be declared explicitly at compiling time,

which allows the compiler to optimize these dependencies and produce a more e�cient

code. The drawback of this is that inheritance must be handled in a special way. In C++

inheritance and polymorphism are handled by virtual methods. The declaration of a virtual

method tells the program to use dynamic binding for this speci�c method, i.e. previous

implementations will be discarded. The reason that dynamic binding is not default is

due to the fact that dynamic binding gives a slower code, while static binding (binding

de�ned at compiling time) generally is faster. Static methods are also inherited but can

not be overwritten. Static methods should therefore be used in cases where all versions of

a method is identical for all subclasses. Consequently, the programmer should use as few

virtual functions as possible, which actually is advantageous as it gives a small standard
interface that is easy to overview. To make the derived classes work as fast as possible an

extra level of encapsulation has been introduced - the protected attributes and methods

of the superclass. These are shielded from the rest of the system like privates, but can

1.4. REVIEW OF LITERATURE 13

be accessed directly by the subclasses, i.e. the subclass can manipulate the shared data

without sending the slower messages to the superclass. This is bene�cial for the e�ciency

of the object-oriented code.

1.4 Review of literature

In this section a brief review of papers on object-oriented �nite elements will be presented.

Being a relatively new �eld there are few, but central papers notably by Baugh & Rehak

(1989,1992), Forde et al. (1990) and Zimmermann et al. (1992). Class names will be

indicated by a capital �rst letter, e.g. Element.
Baugh & Rehak (1989,1992) de�ne an object-oriented framework for �nite element

analysis based on a geometric model described in terms of a Vertex class and an Edge class.
The system consists of 3 FEM classes: Element, Node and Material. The Element class
is de�ned by its topology, the material model, a type (e.g. isoparametric) and geometric
parameters such as area, thickness etc. The topology information is inherited from the

Edge class. The Material is itself a FEM class; it contains the constitutive properties of the
model. The di�erent types of elements (isoparametric, bar) are subclasses of the Element
and provides an implementation of the element sti�ness matrix. The last FEM class is
the Node class which inherits its coordinates and connectivity (which edges are attached
to this vertex) from the Vertex class. The Node also contains the degrees-of-freedom and

information about boundary conditions (prescribed displacements and point loads). The
analysis is controlled by a user application. The application is responsible for storing both

the geometric and the FEM model. Having done that the model should be generated and
the equation systems solved. The result - the unknown degrees-of-freedom - is stored by the
Nodes. Any appropriate postprocessing such as stress evaluation may then be performed,

it is, however, not an integral part of the Element class. The system was implemented in
Common Lisp Object System (CLOS). Using a Lisp dialect is a natural choice for systems
developed in a CAD environment, a fact used also by Miller (1991) who follows a similar

approach.
Forde et al. (1990) presented an object-oriented �nite element program for linear elas-

tic analysis with plane, isoparametric elements. The aim was to develop an expandable
framework that others could easily expand to more advanced problems or incorporate in
expert systems. There are 5 FEM classes that have only a few attributes and methods. In

addition to the Element, Material and Node classes, the boundary conditions are handled

by a DispBC class and a ForceBC class. To each FEM class belongs a customized version
of a List class which handles storage and assembly of the model. The Element is capable
of computing the element sti�ness and several types of distributed loads. This is done by
numerical integration and requires a Gausspoint class and a Shapefcn class. Furthermore,

the Element has its own postprocessing facilities such as stress evaluation and graphical

presentation of the result. The entire �nite element model is represented by a Domain class
which stores the customized lists of Nodes, Elements, Materials and boundary conditions.

It is also responsible for the storage of the global matrices and vectors. To perform an
analysis the user should provide an application program that controls program evaluation,

14 Introduction

i.e. de�nition of a Domain, solution and call of postprocessing facilities. The expandable

framework is simple due to the small FEM classes. However, by giving the lists function-

ality that refers to a speci�c class instead of leaving that to the class itself the number of

specialized classes becomes twice the necessary. The program was implemented in a hybrid

language using C for the numerical part and ObjectPascal for the object-oriented part. A

C++ implementation was provided by Scholtz (1992).

Zimmermann et al. (1992), Dubois-P�elerin et al. (1992) developed a prototype program

in Smalltalk in order to investigate whether object-oriented programming was applicable

to �nite elements. Their approach was guided by practical experience with FEM which

is clearly reected in the class structure. They introduce two levels of programming - the

Domain class and the FEM classes. The Domain is responsible for managing the global

model and for the solution of the problem. The 4 FEM classes are Element, Node, Material
and Load. The Element is responsible for computing the sti�ness and mass matrices and

assembling them into the global arrays, computation and assembly of distributed loads,

which are described by the Load class. Integration of the element matrices and vectors

is done numerically. This requires a Gausspoint class, which in linear analysis is trivial,
but becomes more important in material non-linear problems, Men�etrey & Zimmermann
(1992). The Node class de�nes coordinates and manages the degrees-of-freedom as well as

the nodal loads. The degrees-of-freedom is de�ned in a separate Dof class, which stores the
value of a dof and knows whether it is restrained or not. The Material is responsible for
the constitutive behaviour of the model, thus it is used by the Element both in computing

the sti�ness matrix and calculation of the stresses. A C++ implementation was presented
by Dubois-P�elerin & Zimmermann (1993) which today is the most advanced version of

object-oriented �nite elements known to the author containing both static and dynamic
analysis features as well as non-linear material models in addition to the standard linear
ones.

Mackie (1992) uses ObjectPascal to test the possibility of changing from procedural
programming to object-oriented programming. A class of Elements for plane stress and

plane bending have been de�ned for static as well as dynamic analysis. The class methods
are de�ned parametric in a style that lies close to the traditional Fortran style. What is
accomplished by using object-oriented programming is, however, an enhancement of the

program structure as well as reusability due to inheritance.

Yu & Adeli (1993) de�ne a class library for �nite element analysis. The analysis is

centred around a GlobalElement object which handles the model assembly. It is a subclass

of Element and uses several objects like Node, Material and Shape. The model is stored in a

central database from which is is possible for any object to get the data that are needed. A

notable di�erence to the systems presented above is the possibility for each object to copy

itself, e.g. generate a number of equally spaced Nodes. The class library has been tested

on composite laminate problems using a C++ implementation.

1.4.1 Matrix and vector classes

A major �eld within scienti�c programming is linear algebra which is used during the

solution almost any engineering problem. The problems involve solution of linear equation

1.5. NOTATION 15

systems, multiplication of vectors and matrices, calculation vector products, etc. These

tasks are trivial to the experienced programmer, still - or rather consequently - these parts

of a program are error-prone, e.g. because of unbounded loops, uninitialized counters

or wrong combination of indices. Therefore, a more symbolic programming style where

loops and counters are replaced by symbols matching their mathematical interpretation is

clearly of interest. This would lead to increased readability, fewer errors and increase the

programmer's e�ciency.

The class concept in object-oriented programming enables symbolic programming by

use of overloaded operators. An overloaded operator is a rede�nition of an ordinary op-

erator to �t the current context. Several types of variables are relevant for consideration,

especially mathematical types like rational numbers, complex numbers, vectors and ma-

trices. In these cases a well-established symbolic notation exists that is similar to that of

the simple types (integers and reals). Consequently, operator overloading makes it possible

to create a more direct link between the mathematical concepts and their use in scienti�c

programming. Classes such as Matrix and Vector can be used as tools in all types of pro-

gramming. They are essentially not hierarchical in the classical object-oriented sense, e.g.
an IntegerVector may not be derived from a RealVector. Such classes are termed abstract
data types (ADT), Stroustrup (1991).

Several papers consider the possibility of using Matrix and Vector classes (in C++).
Most authors use these classes as a tool for programming in a fully object-oriented frame-
work, see e.g. Scholtz (1992), Dubois-P�elerin et al. (1992), Yu & Adeli (1993). Others

consider the inuence that these classes may have on the development of procedural, sci-
enti�c programming, Ross et al. (1992a,1992b), Nielsen (1993), Hededal (1993). It is

concluded that using algebraic tools will enhance the development e�ciency and make the
code less error-prone. Also, it is found that the readability is improved due to the more
symbolic programming style. The matrix and vector classes used in this work are presented

in Appendix A.

1.5 Notation

Throughout this thesis a common notation will be kept in order to indicate objects, classes,
attributes and methods. In order to distinguish between the text and references to object-

oriented concepts these will all be written with sans serif typeface. By tradition class names

and objects of a class are spelled with capital �rst letter, e.g. Element, Node, Material. For
attributes and methods small letters will be used. Names of methods contain a verb

indicating the message sent to the object, e.g. put label means that the object should

return its identi�cation attribute, label. In cases where it can be unclear to which class an
attribute or method belongs it will be denoted by its class and name, e.g. Element.put label.
Programming details are illustrated in pseudo-code. The code segments are written in sans
serif typeface and divided from the text by horizontal lines, i.e.

16 Introduction

code segment

Node.put label()
return label

The pseudo-codes are not direct transcriptions of the C++ syntax.

In mathematical formulations scalar variables and functions are represented in standard

italic typeface, e.g. xi represents a coordinate in direction i. Subscripts generally refer to

the spatial direction, while superscript usually refers to a node or element number. Matrices

and vectors are written in boldface, e.g. B or �. The superscript, T , marks the transpose

of a vector or matrix.

Chapter 2

Concepts in �nite elements

In this chapter the �nite element formulation of potential problems is described. The

potential problem has the advantage that it is a scalar problem which is simple but still it
possesses all characteristics of a �nite element formulation. The object is to identify some

key concepts that are common to all �nite element formulations regardless if it is potential
problems, solid mechanics or structural mechanics. Then a �nite element formulation
for elasticity theory is characterized by use of these concepts demonstrating the common

structure in the method and pointing out the di�erences between the scalar and the vector
problem. This leads to a uni�ed notion for the �nite element concepts and an identi�cation

of some parameters that may characterize the structure of the element matrices and vectors.

2.1 Balance equations

The basis of a �nite element formulation in mechanics and mathematical physics is a

balance equation on di�erential form and boundary and initial conditions, which in general
is termed the strong form. For a potential problem as in Figure 2.1 it is the Poisson

equation,

r
Tq +Q = 0 (2.1)

where qT = [q1 q2 q3] is the ux vector. rT = [@=@x1 @=@x2 @=@x3] is the diver-

gence operator. The dimension of the ux vector and the divergence operator follows the
spatial dimension. The scalar Q = Q(x) is a load applied in point x. Multiplication of

(2.1) by a weight, w, and integration over the domain,
, yields,

Z

w
�
r

Tq+Q
�
d
 = 0 (2.2)

which by use of the divergence theorem may be written as

Z

(rw)Tq d
 =
Z

wQd
 +
Z
�

w qn d� (2.3)

17

18 Concepts in �nite elements

Figure 2.1: A potential problem

This is termed the weak form of the balance equation. It introduces the normal ux,

qn = qTn, acting on the surface with the outward normal, n. The gradient operator, r,

which is adjoint to the divergence rT , is de�ned as

r =

2
666666664

@

@x1
@

@x2
@

@x3

3
777777775

(2.4)

The simple matrix relation between the divergence and the gradient in this case is due to

the choice of a Cartesian coordinate system, but the adjoint pair can be determined in
terms of other types of coordinate system. In this problem the divergence and gradient

are the mathematical linear operators. The concepts, however, may be generalized to the
matrix form encountered in elasticity theory or even introduced as non-linear operators in
geometrically non-linear problems.

The weak form, (2.3), states that the internal forces (the left side) must balance the
external loads (the right side). It is valid for all types of �nite element formulations, both

linear and non-linear. It is often assumed that there exists a linear relation between the

ux and the gradient of the potential on the form

q = �Cru (2.5)

where C is the constitutive matrix that for linear material models is constant. For non-

linear material models, as for example plasticity theory, a linear constitutive relation is

often used for the incremental formulation, e.g.

�q = �Cr(�u) (2.6)

Inserting (2.5) in (2.3) yields

Z

(rw)T C (ru)d
 = �
Z

wQd
 �
Z
�

w qn d� (2.7)

2.2. FINITE ELEMENT APPROXIMATION 19

Table 2.1: Concepts in potential problems

Potential: u(x)

Gradient: ru

Flux: q

Divergence operator: r
T

Gradient operator: r

Internal forces:
Z

(rw)Tq d

External loads:
Z

wQd
 +
Z
�

w qn d�

Constitutive models: q = �C ru

which is the weak form for potential problems with linear material models. This weak form
has the potentials as unknowns, hence the ux may eventually be derived using (2.5).

The �nite element formulation uses a number of basic concepts listed in Table 2.1.
These concepts can be recovered in all types of �nite element problems and they will in
this thesis be used to obtain a uni�ed �nite element notion, cf. Section 2.4.

2.2 Finite element approximation

The basis of the �nite element approximation is the weak forms of the balance equations,

(2.3) or (2.7), depending on if it is a linear or non-linear problem that is considered. To
be as general as possible (2.3) is used in the �rst place and then the linear formulation is
recovered when introducing the element sti�ness matrix.

Figure 2.2: Discretizing in �nite elements

The idea in the �nite element method is to discretize the domain into a number of

�nite elements which are connected in the nodes as shown in Figure 2.2. The distributed

20 Concepts in �nite elements

properties are lumped in terms of the nodal values - the degrees-of-freedom (dof). For the

potential problem there is 1 dof in each node. To each dof corresponds a load, which is

a sum of the external loads, i.e. of point loads acting in the node and a nodal equivalent

to the distributed loads. The technique thus consists of reducing the problem from a

continuous �eld problem to a discrete problem with a �nite number of unknowns - the

degrees-of-freedom.

Within each element the weight, w, can be approximated from the node values, c, and

the shape functions, N(x),

w(x) = N(x) c (2.8)

For an n node element with 1 dof in each node the shape function matrix, N, has the form

N = [N1 N2 � � � Nn] (2.9)

where each shape function is de�ned so

N i =

(
1 in node i
0 in other nodes

Introducing (2.8) into (2.3) and performing the integration over the element domain,
e,
yields

cT
Z

e
(rN)T q d
 = cT

Z

e
NT Qd
 + cT

Z
�e
NT qn d� (2.10)

As c is independent of x it may be put outside the integrations. For an arbitrary choice of
the weight the �nite element approximation of the weak form �nally becomes

Z

e
BT q d
 =

Z

e
NT Qd
 +

Z
�e
NT qn d� (2.11)

where the gradient matrix, B =rN, has been introduced as

B =

2
664
@N1=@x1 @N2=@x1 � � � @Nn=@x1

@N1=@x2 @N2=@x2 � � � @Nn=@x2

@N1=@x3 @N2=@x3 � � � @Nn=@x3

3
775 (2.12)

The dimensions of B follows from the number of components in the gradient operator and

the number of element nodes.

It is notable that the ux still has a general form and an approximation of the ux has

not yet been de�ned. For linear material models the constitutive behaviour is modelled by

(2.5), thus it is possible to approximate the ux in terms of the potentials. Within each
element the potential �eld, u(x), is approximated by the shape functions, N(x), and the

node potentials, aT = [a1 a2 � � � an],

u(x) = N(x) a (2.13)

2.2. FINITE ELEMENT APPROXIMATION 21

Table 2.2: Finite element concepts

Element

Node

Shape function matrix: N

Gradient matrix: B =rN

Element (tangent) sti�ness matrix: Ke

Element load vectors: f ev , f
e
s

Node load vector: fnp

Global degrees-of-freedom (dof): a

Global sti�ness matrix: K

Global load vector: f

The shape functions are chosen to be the same as for the weight, i.e. the Galerkin approx-

imation is used. Inserting this into (2.5) gives

q = �CrN(x) a = �CB(x) a (2.14)

whereby (2.11) becomes

Z

e
BTCB d
 a = �

Z

e
NTQd
 �

Z
�e
NT qn d� (2.15)

This recovers the �nite element approximation of the weak form for linear problems, cf.
(2.7). The integrals represents a system of n linear equations,

Ke a = f ev + f es (2.16)

Ke is the element sti�ness matrix and is a n� n symmetric matrix. In non-linear cases it

represents the tangent sti�ness. The vectors f ev and f es represent, respectively, the volume
load and surface load acting on the element. The load vectors are the same for linear

and non-linear models. Both the node potential vector, a, and the load vectors have n
components corresponding to the total number of dof in the element.

The relation (2.16) states the weak form of the balance equation for one element with

approximated potential and weight. The global model receives contributions from all el-
ements in the domain, thus the global sti�ness matrix, K, is found by assembly of the

sti�ness of all elements,

K =
X

elements

Ke (2.17)

22 Concepts in �nite elements

Likewise the element loads must be assembled into a global load vector, f , which also

receives contribution from point loads, fnp , de�ned in the nodes,

f =
X

elements

(f ev + f es) +
X
nodes

fnp (2.18)

This enables restatement of (2.7) in a system of linear equations,

Ka = f (2.19)

where a contains the nodal values of the potential. Solution of (2.19) will for linear models

directly give an approximation of the potential �eld. For non-linear problems it represents

the tangent behaviour of the system in the current state and may serve as the basis for

an iterative solution strategy such as Newton-Raphson. This concludes the �nite element

approximation which has introduced a number of concepts listed in Table 2.2.

2.3 Elasticity theory

Elasticity theory di�ers from the scalar potential problem by being a vector problem where
each dof - the displacement - is oriented. Typically, the dof is represented by a vector,

u, with components along each spatial direction, thus the displacement of each point is
described by the same number of components as the spatial dimension. The formulation
given below is for 3 dimensional elasticity, but apart from the matrix representations, the

formulation is the same in 2 dimensions.
For the elastic body shown in Figure 2.3 the balance equation states equilibrium between

the stress, �, and the volume loads, b. It is for numerical purposes convenient to represent
the original tensor relations in matrix format, i.e.

r
T� + b = 0 (2.20)

where the stress vector is

�T = [�11 �22 �33 �23 �13 �12] (2.21)

Figure 2.3: Elastic body

2.3. ELASTICITY THEORY 23

and the volume load is

bT = [b1 b2 b3] (2.22)

For elastic problems the balance equation is formulated by use of a generalized divergence

operator, rT , which is on matrix form, viz.

r
T =

2
666666664

@

@x1
0 0 0

@

@x3

@

@x2

0
@

@x2
0

@

@x3
0

@

@x1

0 0
@

@x3

@

@x2

@

@x1
0

3
777777775

(2.23)

Using the principle of virtual work the strong form is multiplied by a virtual displacement

�eld, wT = [w1 w2 w3], and integrated over the domain,
,

Z

wT (rT� + b) d
 = 0 (2.24)

The weak form is obtained by partial integration of (2.24)

Z

(rw)T � d
 =
Z

wT b d
 +
Z
�

wT t d� (2.25)

The partial integration leads to the generalized gradient operator, r, that is adjoint to
the generalized divergence operator. In Cartesian coordinates the gradient matrix is the
transpose of the divergence matrix, (2.23). The boundary term involves the traction, t,

which is the projection of the stress on the outward surface normal, n, i.e. t = �Tn. The
weak formulation thus has the same form as the potential formulation, (2.3).

For linear elastic materials the constitutive model, which expresses the relation between
the displacements, uT = [u1 u2 u3], and the stress, has the form

� = Cru = C" (2.26)

where C is the constitutive matrix. In this relation the strain, ", represents the gradient
of the displacement vector. The strain, which is conjugate to the stress, is

"T = ["11 "22 "33 2"23 2"13 2"12] (2.27)

Finally, the weak form of equilibrium for linear elastic bodies is found as

Z

(rw)T C (ru) d
 =
Z

wT b d
 +
Z
�

wT t d� (2.28)

From this relation or the more general form, (2.25), a �nite element approximation can
be made as it is done for the potential problem. The displacement �elds, u and w, are

24 Concepts in �nite elements

approximated by use of shape function matrix, N, and the nodal displacements, a and c.

There are 3 displacement components in each node, thus a has the form

aT = [a11 a12 a13 � � � an1 an2 an3] (2.29)

This structure requires an expanded format of the shape function matrix,

N =

2
64
N1 0 0 � � � Nn 0 0

0 N1 0 � � � 0 Nn 0

0 0 N1 � � � 0 0 Nn

3
75 (2.30)

Using the gradient operator on the approximated displacement �eld de�nes a block format

of the gradient matrix, B = [B1 B2 � � � Bn], where

Bi =

2
6666666666664

@N i=@x1 0 0

0 @N i=@x2 0

0 0 @N i=@x3

0 @N i=@x3 @N i=@x2

@N i=@x3 0 @N i=@x1

@N i=@x2 @N i=@x1 0

3
7777777777775

; i = 1; 2; :::; n (2.31)

The gradient matrix has the dimensions 6� 3n where the number of rows corresponds to

the number of strain components and the number of columns is equal to the number of dof
times the number of nodes. The �nite element formulation of linear elasticity theory then

becomesZ

e
BTCB d
 a =

Z

e
NT b d
 +

Z
�eq

NT t d� (2.32)

identifying the element sti�ness matrix,

Ke =
Z

e
BTCB d
 (2.33)

as a 3n� 3n symmetric matrix. Thus the dimension of the element sti�ness matrix equal
the number of dof times the number of nodes. The element load vectors

f ev =
Z

e
NT b d
 (2.34)

f es =
Z
�eq

NT t d� (2.35)

are of dimension 3n.

Table 2.3 lists the elastic counterparts to the concepts already identi�ed for the potential
problem, cf. Table 2.1.

2.4. SUMMARY 25

Table 2.3: Concepts in elasticity theory

Displacement: u(x)

Strain: " =ru

Stress: �

Divergence operator: r
T

Gradient operator: r

Internal forces:
Z

(rw)T � d

External loads:
Z

wT b d
 +
Z
�

wT t d�

Constitutive models: � = C "

2.4 Summary

In this chapter the �nite element formulations of potential and elasticity problems have
identi�ed concepts that are shared by most �nite element formulations.

The primary unknowns in a problem are the degrees-of-freedom (dof) that generally
form a continuous �eld, but in the �nite element formulation are discretized into a �nite
number of variables, a, related to the nodes. Corresponding to the dof there exists an

equivalent nodal load, f , which comes from discretizing the external loads. A prescribed
dof is referred to as �xed and to this corresponds an initially unknown load - a reaction.

The balance equation de�nes the generalized divergence operator, rT . The adjoint
generalized gradient operator, r, is introduced going from the strong to the weak form of
the balance equation. In elasticity theory the generalized gradient of the displacement �eld

is termed strain, ", this notion that will be used about the gradients in other problems
as well. The strain is conjugate to the stress, �, which in the following will denote all

types internal forces, e.g. ux or section forces. The relation between strain and stress is
modelled by the constitutive matrix, C, which depends on the material model.

A �nite element approximation consists of discretizing the domain into elements which

are connected in the nodes. Within each element the dof and weight are approximated

by shape functions, N, and thereby the approximation strain may be derived using the
gradient matrix, B. Inserting these approximations into the weak form, the element sti�-

ness matrix, Ke, and load vectors, f ev and f es , are obtained. The element contributions
are assembled into the global sti�ness matrix, K, and the global load vector, f . The load

vector also receives contribution from prescribed point loads acting in the nodes, fnp . The

global dof vector, a, contains initially of the values of the �xed dof which is de�ned in the
nodes. This gives a linear system of equations whose unknowns are the free dof and the

reactions corresponding to the �xed dof, thus the equation system is formed with 2 vectors
that both can contain unknown values.

26 Concepts in �nite elements

Table 2.4: Concepts in ObjectFEM

Concept Symbol Description

dof a Primary unknown of the discretized problem

load f Equivalent nodal load

�xed/free - A prescribed dof is �xed otherwise it is free
reaction - Nodal load introduced by a prescribed dof

strain " Generalized gradient of the dof �eld

stress � Internal force conjugate to the strain

sti�ness matrix Ke, K Linear relation between dof and load
external load f ev , f

e
s , f

n
p Applied loads

shape function N Approximation of the dof �eld

gradient matrix B Gradient operator for the discretized dof

constitutive matrix C Relation between strain and stress

problem parameters no dof Number of dof in each node

no strain Number of strain components

element parameters no nodes Number of element nodes
no gauss Number of generalized Gauss points in each element

The main di�erence between di�erent �nite element formulations is the dimensions
of the matrices and vectors that are involved. The problem formulation introduces 2

parameters: the number of dof in each node (no dof) and the number of strain components
(no strain). The choice of element type introduces also 2 parameters: the number of nodes

in the element (no nodes) and the number of generalized Gauss points (no gauss). The
number of nodes may be di�erent for each direction and should be de�ned as an array with
the size of the spatial dimension. The Gauss points are used in the numerical integration

of the sti�ness matrix and the element loads, but are also the points where the strain and
stress are evaluated from the dof. For elements with explicit integration, e.g. bars and
beams, the number of Gauss points is simply the number of points where the strain and

stress will be evaluated. Also the number of Gauss points may be di�erent for di�erent
directions, thus should be de�ned as an array.

Table 2.4 summarizes the standard notion and symbols for the key concepts. These

will be used in the following formulations and are also used by the FEM classes that form
the object-oriented �nite element program ObjectFEM.

The formulations given above have focused on linear problems. Still, relations such as
(2.11) are general for both linear and non-linear problems. The main di�erence between

the 2 problem types does not arise from the element formulation, but from the way the

global equations are usually solved. While the linear equation system, (2.19), can be solved
explicitly, the non-linear strategies iteratively seek a solution by solving a series of linear

equation systems. These linear systems are stated on incremental form where the external

load is applied in increments in a number load steps. The corresponding dof increments are
adjusted by iterations so that the internal force is in equilibrium with the external load. In

2.4. SUMMARY 27

each iteration the dof and may be the load are modi�ed using the unbalance - the residual

- between the internal and the external force and a linear predictor to calculate the new dof

increment. The linear predictor generally represents an estimate to the tangent sti�ness.

The modi�cations that non-linear problems impose on the structure of the problem are thus

limited to an incremental formulation of the balance equations which de�nes the evaluation

of the internal force and replaces the sti�ness with a tangent sti�ness.

28 Concepts in �nite elements

Chapter 3

Classes in �nite elements

With the previous chapters as basis it is possible to de�ne an object-oriented �nite element

framework called ObjectFEM. First, the structure of a program for linear analysis is shortly
presented and the requirements that govern the management structure are discussed. Then

follows the presentation of the FEM classes: Node, Element, Material and Property. There
will be a description of their function in the framework and the key attributes and methods.
The List class and the algebraic classes Matrix and Vector are then introduced. Finally, the

application which de�nes the global model and describes a linear analysis is presented
indicating the parts that must be modi�ed when introducing new elements or materials or

in order to solve non-linear problems.

3.1 The class structure

On basis of the �nite element formulations in Chapter 2 it is possible to identify the 4

FEM classes in ObjectFEM: Node, Element, Material and Property.
The Node is a connection point for the elements and its responsibility is to manage

the primary unknowns in the problem: dof and load. Each dof and its corresponding load
form a dual pair, where either of them must be prescribed in order for the global equation
system to be non-singular. This duality a�ects the solution of the global system, because

the prescribed dof imposes an initially unknown load on the system, thus the global dof

and load vectors both contain unknowns. In this thesis the duality is taken into account

in the solution methods so that the Matrix.solve method simultaneously determines the

unknown dof and reactions. The Node must be able to send prescribed dof and loads

to the global equation system and retrieve the initially unknown values after the global

analysis. The Node may also de�ne a point in the physical domain represented by a set

of coordinates. The distinction between element connection points and physical points

could be exploited to introduce slave nodes in the elements. These slave nodes, which do

not have coordinates, could be eliminated before assembling the global equation system as

done for superelements.

The Element takes care of the distributed properties. Its tasks can be divided in prepro-
cessing and postprocessing. During preprocessing the Element collects properties, such as

geometry and material behaviour, from the other classes in order to process the discretized

29

30 Classes in �nite elements

forms, i.e. the element sti�ness matrix and the element load vector, to be assembled into

a global equation system. Postprocessing consists of interpreting a discrete solution repre-

sented by the dof in terms of distributed properties, namely the strain and stress, requiring

again information from the other classes.

The Material describes material models which the Element can use in an analysis. Its

task is to manage the material parameters so the Element at any time is able to evaluate

the sti�ness and the stress. For linear materials the constitutive matrix uniquely de�nes

the material behaviour. The Property class is introduced to take care parameters that

are not speci�cally part of the material models. For plane problems it is the thickness,

while for bars and beams they are the cross section areas, moments of inertia, etc. These

parameters are on request send to the Element.
The entire �nite element model consists of objects of all 4 types. In addition to the

�nite element formulation there is a number of tasks which must be taken care of: model

de�nition, model generation, forming the global equation system, solving the global equa-

tion system and postprocessing. These tasks are handled by the application. Zimmermann

et al. (1992) introduce a domain class to control the analysis, but in ObjectFEM a user
de�ned application module handles the tasks mentioned above.

De�ning the model consists of reading and storing all the objects in the model and

prescribing the boundary conditions. The model should be stored in a dynamic storage
structure, like arrays, linked lists or trees, that is gradually expanded for each de�ned
object, thus the model size needs not to be known from the beginning, e.g. allowing a

step by step de�nition of elements and nodes in di�erent parts of the physical domain.
In the model generation phase the relations between the objects are determined, i.e. the

Elements search the di�erent stores to obtain references (addresses) to the connected Nodes,
Material and Property and vice versa. Generating the model also enables determination of
the structure global sti�ness matrix - an initial dof numbering scheme may serve as a

�rst guess on a numbering sequence. If the sti�ness matrix structure is not convenient a
renumbering scheme could be employed, see e.g. Schwarz (1988).

Each object in the model is now able to perform its tasks. The data that form the
global equation system is divided in 2 types: prescribed data and processed data. The
prescribed data are dof boundary conditions and point loads acting in the nodal points.

These data are sent directly to the global equation system and thus do not require any type

of processing. The processed data are the element contributions: sti�ness and distributed

loads. It is notable that the Material and Property objects are not directly used by the

application, but the values of their attributes are processed by the Element and sent to

the application. The global equation system, linear or non-linear, needs to be solved to

obtain the unknown dof and node loads. For this purpose the application requires access

to a solver for linear equations. Optimal solution algorithms depend on the structure of

the matrix, whether it is banded, symmetric, a one- or two-dimensional array etc. Like

for FEM attributes and FEM methods, it is convenient to relate the algebraic methods to

the matrix and vectors attributes, thus de�ning Vector and Matrix classes. For non-linear
problems there is also involved a strategy which is de�ned in the application.

Having obtained the unknown dof and reactions the results may be returned to the

nodes. There the results may be processed into tables or graphics. The distributed results,

3.1. THE CLASS STRUCTURE 31

Figure 3.1: Structure of ObjectFEM

strain and stress, is handled by each element in turn, deriving the results from the dof.
The structure of a object-oriented �nite element program is shown in Figure 3.1. A

more detailed description of the di�erent parts is given the following.

3.1.1 Requirements to ObjectFEM

The idea behind ObjectFEM is that all types of linear problems in principle can be treated
by the same application, regardless the choice of elements and materials. This aim imposes

certain requirements on the classes:

� Self-contained classes

� Standard class interface

� Groups of dof

First of all, the classes should be self-contained, i.e. they must be able to represent

themselves in every part of the analysis performing I/O, model generation, and postpro-

cessing. This will allow a very general de�nition of the linked list class that stores and

manages the entire �nite element model.

It must be possible to refer to an element in a standard way, e.g. isoparametric, thermal
elements and beam elements should simply be referred to as elements. In order for this

to work a standard interface must be de�ned through which all types of elements com-

municate with the global equation system. This standard interface must be de�ned by
the superclass, Element, and inherited by its subclasses. The subclasses overwrite previous

implementations of for example the sti�ness matrix. On the other hand, there are methods

32 Classes in �nite elements

which are identical for all types of elements. For example, assembly of the global sti�ness

matrix employs a standard scheme for transferring element contributions into the right

places in global matrix. It is important to realize the di�erence between the two types

of methods when programming in C++. The �rst type of methods requires possibility of

rede�nition, for these dynamic binding is used by de�ning them as virtual methods. For

the second type static binding is su�cient as these do not require new implementations

by the subclasses. Instead, the static methods use the problem parameters and virtual

methods which are set by the di�erent subclasses.

A �nal requirement is the ability to mix di�erent types of elements in an analysis.

Analyzing a structure for which one part is subjected to combined elastic and thermal loads,

while the other only is loaded elastically, it would be convenient to mix elements which

include the thermal contribution with elements that do not. Assembling these correctly

requires identi�cation of the di�erent types of degree-of-freedom, telling which part of the

sti�ness matrix refers the elastic dof and which part concerns the thermal dof. Standard

numbering of dof will have to be introduced as e.g. done in ABAQUS (1992) where

1-3: Translations

4-6: Rotations

7: Warping

8: Pressure
...

11: Temperature

In ObjectFEM the di�erent types of dof is ordered in groups. Presently, 3 groups of 3 dof

each are de�ned:

Group 1: Translations

Group 2: Rotations

Group 3: Scalars - temperature, pressure, etc.

The groups will be used when communicating between objects, but internally the dof are
stored in a single array.

3.2 The FEM classes

The �nite element formulation is handled by the FEM classes: Node, Element, Material
and Property. Attributes and methods are generally named according to the standard

�nite element notion introduced in Section 2.4. There are, however, some attributes and

methods which do not have counterparts in the theoretical formulations. A guideline for
the choice of names and the syntax is given in the following. It covers most of the attributes

and methods, while a more detailed description of the key attributes and methods is given
in Sections 3.2.1{3.2.4.

Pseudo-code representations are introduced to support the text. The syntax for class

methods will be as follows

3.2. THE FEM CLASSES 33

class methods

Class.method1(argument list):
implementation...

The �rst line represents the declaration, which is identi�ed by class name (capital �rst

letter), method name and argument list. The remaining part gives the implementation of

the method.

Control structures and calls to the methods of an object are represented as

call to method

for (i=1 to n) do
object1.method1(argument list)

An object of a class, e.g. object1, is referred to in small �rst letter. Methods are referred

to by their object name, method name and an argument list enclosed in parentheses, e.g.

object1.method1(). Attributes are referred to by variable and attribute name (without
parentheses), e.g.

access to attribute

object1.attribute1 = � � �

shows assignment to attribute1 in object1.
Most of the methods are polymorph, i.e. they are used by more than one class and

there generally exist several versions of the same method within each class. The di�erence

between the versions are the number and type of arguments. Another important issue is
the possibility to use the return value of a method as the left-hand side in an assignment
operation, e.g.

assignment

elem.set node(1) = "Node1"

assigns the string Node1 to Element.nodelabel(1). The Element method has the following

form

set node

Element.set node(i):
return nodelabel(i)

Attributes

In this framework all objects are uniquely identi�ed by their label, which generally is a

character string. Attributes called element, node, material or property are used to store

references (addresses) to such objects. The pre�x no indicates that the attribute stores a

number, e.g. Element.no nodes is the number of element nodes. Values of model properties,

such as Youngs modulus or the thickness of a plate, are stored in arrays called par.

34 Classes in �nite elements

Methods

The class attributes are encapsulated. Therefore there must be de�ned a set of methods

that makes it possible to obtain the value of an attribute or assign a new value. These

access methods will be characterized by 2 verbs: set and put. The set method assigns a

value to an attribute, e.g. set label instructs the object to assign the argument to the label
attribute and node.set coor assigns a coordinate vector to the attribute Node.coor. The

methods also illustrate 2 ways of assignment: the �rst takes an argument, while the latter

uses an overloaded assignment operator, Vector.operator =, i.e.

set methods

elem.set label("Element1")
node.set coor() = point A

The set methods usually set a single attribute, but are in some cases used for more com-

plicated operations as it is demonstrated later on. The put method returns the value of
the requested attribute, e.g. Node.put coor returns the coordinates of a Node object. The
method is polymorph and can be used with or without an argument, i.e.

put methods

point A = node.put coor()
x coor = node.put coor(1)

The I/O methods are de�ned for communication with a terminal or a text �le. The
read methods read formatted input, e.g. Node.read reads the label and the coordinates

and Element.read vload reads the nodal intensities of the element volume load. Output is
handled by a write method which either echoes the input directly, like Material.write that
echoes the label and the material parameters, or presents the results of the analysis, e.g.

Node.write dof. The methods uses the terminal if a �le is not given in the argument list.

read and echo

node.read()
node.write()
elem.read(in�le)
elem.write(out�le)

The management methods handle interchange of larger amounts of data. The methods

that bring information from the object into the global equation system have send or assm
as pre�x depending on whether it is prescribed or processed data, e.g. Node.send load
introduces prescribed point loads in the global load vector, while Element.assm load sends

the processed values of the distributed loads to the global equation system. Retrieving
information from other parts of the system is handled by get methods, e.g. Element.get dof
tells the Element object to retrieve the dof values from its Nodes. The methods that

communicate with the global equation system require an argument such as the global
sti�ness matrix, while communication between the objects is handled without arguments,

e.g.

3.2. THE FEM CLASSES 35

Figure 3.2: The Node class

management

elem.assm sti�ness(K)
node.get load(f)
elem.get dof()

The last type of methods are the FEM methods which relate directly to concepts in the

formulation. They are used to establish the element sti�ness matrix and the element load
vectors and they de�ne the strain and its conjugate stress. These methods do not have a
verb as pre�x, thereby obtaining a more symbolic programming style. They are presented

along with the objects in the following chapters.

3.2.1 The Node class

The Node is the most general of the 4 FEM classes and is not inherited by any subclasses.

It serves 2 purposes: collecting the dof and describing a point in the physical domain. The
Node is presented in Figure 3.2 and descriptions of key attributes and methods are given
below.

The Node is a connection point for elements. References to the connected Element
objects are stored in elements. An arbitrary number of elements may be connected and

therefore elements is de�ned as an ElementList which can be extended dynamically, see

Section 3.3.1. The type of elements determines the type and number of dof. These are
numbered by 3 attributes: dofgroup, no dof and no dofgroup. The dofgroup array stores

the number of active dof in each of the 3 (=no dofgroup) groups, cf. Section 3.1.1. Initially

there are 3 available dof in each group, but during the model generation, the actual number

is determined and stored in dofgroup. The total number of dof is stored in no dof. Initially,
no dof=9 but it is reset after determining the actual number of active dof.

The Node have 3 vectors with dimension no dof that describe the dof: dof, load and �x.
Before the analysis the dof vector contains the prescribed dof values, i.e. the dof boundary
conditions. The �x array is a boolean indicator that tells whether the dof is �xed or

free. To each dof there corresponds a nodal load stored in the load vector. This vector

stores prescribed point loads before the analysis is performed. After the global analysis

the unknown dof and reactions are retrieved and stored the remaining positions in dof and

36 Classes in �nite elements

load. The position of nodal contributions to the global dof and load vectors is stored in

the dofno array, whereby the Node itself is able to exchange information with the global

equation system.

The Node may also describe a point in the physical domain. The point is described in

terms of coordinates, coor, referring to the global coordinate system. The coordinates are

used by the Elements to carry out the integrations of the sti�ness and distributed loads.

As an option the Node could de�ne a local coordinate system - this is not implemented in

ObjectFEM.

The boundary conditions may be prescribed using set dof and set load and retrieved by

their corresponding put methods. The set dof method illustrates the principle. Prescribing

a dof involves also setting a position in the �x array, i.e.

set dof

Node.set dof(dg,dn):
index = no dofgroup * (dg{1) + dn
�x(index) = TRUE
return dof(index)

where dg refers to the dof group (1,2,3) and dn is a local dof number (1,2,3), that internally
is translated to a one-dimensional numbering scheme. The value of the dof is set by an
assignment operation, e.g.

prescribe dof

node.set dof(1,2) = 0

�xes translation 2. It should be noticed that the methods during the model de�nition

assume that all 9 available dof are active, thus if it is later encountered that a prescribed
dof is not active it will simply be discarded when compressing the internal vectors, see
resize vectors.

Forming the global equation system requires the global dof numbers to be set. The
number of active dof in a Node depends what types of elements that are connected. During
the model generation the Elements send information about how many dof are active in each

dof group. This is done through the set element method, which stores the number of active

dof in dofgroup and a reference to the calling Element in elements.

set element

Node.set element(elem):
elements.add(elem)
for (i=1 to no dofgroup) do

dofgroup(i) = max(dofgroup(i),elem.get dofgroup(i))

The attribute elements is an ElementList, which can be extended dynamically by use of the
add method, cf. Section 3.3.1.

Having determined the number of active dof in all Nodes the global dof number, dofno,
may be set using set dofno, which assigns a unique number to all dof in the model. The

Node sends a message about dofno to each connected Element.

3.2. THE FEM CLASSES 37

set dofno

Node.set dofno(gl dofno):
for (i=1 to no dofgroup) do

no dof += dofgroup(i)
for (i=1 to no dof) do

gl dofno += 1
dofno(i) = gl dofno

k = 0
for (el=elements.start() to elements.end) do
for (i=1 to no dofgroup) do
for (j=1 to dof group(i)) do

k += 1
elem.set dofno(label,i,j) = dofno(k)

resize vectors()

The method takes the previous global dof number, gl dofno, as argument and sends the

incremented global dof number back to the system. The operation k += 1 is a compact
notation for k = k+1. At this moment of the analysis the number of active dof in the
node is known and in order to minimize the storage used by the object the internal vectors

are resized before allocating the global system. This is done by the resize vectors method,
which sets the size of the internal vectors equal to the number of active dof (=no dof).

resize vectors

Node.resize vectors():
Vector dof1(no dof)
k = 0
for (i=1 to no dofgroup) do
for (j=1 to dofgroup(i)) do
k += 1
l = no dofgroup * (i{1)+j
dof1(k) = dof(l)

dof = dof1

The method includes also resizing of the load and �x vectors, but being identical they are

omitted here.
The discrete boundary conditions enter without modi�cations into the global equation

system. The Node has 2 methods for communicating with the global system: send dof and
send load. These methods use the global dof number, dofno, to place the prescribed values

correctly to the global vectors. A global boolean array gl �x marking the prescribed dof is

formed along with the global dof vector by send dof.

send dof

Node.send dof(a,gl �x):
for (i=1 to no dof) do
if (�x(i)=TRUE)
a(dofno(i)) = dof(i)
gl �x(dofno(i)) = TRUE

The load is send to the global system by a similar method.

38 Classes in �nite elements

Figure 3.3: The Element class

After solving the constrained system of equations, Ka = f , the Node may retrieve the

unknown dof and reactions from the global vectors by use of the get dof and get load. As
for the send methods the global dof numbers are used to access the vectors correctly, e.g.

get dof

Node.get dof(a):
for (i=1 to no dof) do
if (�x(i)=FALSE)
dof(i) = a(dofno(i))

Notice that only the unknown values are extracted.

3.2.2 The Element class

The Element is a superclass for all types of elements. It implements the access, I/O and

management methods. The FEM methods sti�ness, load, strain and stress are declared but

not implemented (purely virtual methods) and a subclass should provide implementations
of these methods. A general �nite element formulation introduces shape functions and

a gradient matrix that are used when evaluating the sti�ness, load and strain. Some

elements, like for example bars and beams, have explicit forms of the sti�ness matrix and

the strain and it is therefore chosen not to include such methods in the superclass. The

class is presented in Figure 3.3.
An Element is described by 2 problem parameters: no dof, no strain and 2 element

parameters: no nodes and no gauss. The number of nodes and dof in each node de�ne

the size of the element arrays, matrices and vectors and are used to control the I/O and
management methods. These methods, e.g. set dofno, assm sti�ness and assm load, thereby
become identical for all elements and may be de�ned statically. The no strain sets the

3.2. THE FEM CLASSES 39

number of strain (and stress) components which are calculated in no gauss points within
the element, typically the Gauss points. The write strain and write stress can thus also be

de�ned statically. To communicate with the Nodes the dof are divided into 3 dof groups.

As the Element is de�ned by its dof, it is responsible for setting dofgroup upon initialization.
All the listed parameters are speci�c for each element type and therefore these are set

by the subclass. For an 8 node potential element in 3D, (Pot3D8), the constructor may

look as follows.

Pot3D8

Pot3D8.constructor:
no dof = 1
no strain = 3
no nodes = 8
no gauss = 8
dofgroup(3) = 1

The topology is described in 2 tempi. In the model de�nition phase labels that refer
to yet unknown objects are stored in nodelabel, matlabel and proplabel. During model
generation these labels are translated to references to actual objects which then are stored

in the nodes array, material and property. The Element knows the size of the nodes array,
thus it is not necessary to use a NodeList.

The nodal intensities of the volume load, vload, and surface loads, sload, are de�ned

by each Element separately. The volume load, vload, is a vector with no nodes�no dof
components. The surface load must be de�ned for each surface and therefore 2 additional

parameters, no surf and no snodes, are introduced to set the size of the matrix, sload. This
structure should in the future be revised introducing a LoadBC class, which can describe
the di�erent types of load, see e.g. Forde et al. (1990). The Element should then store a

reference to a LoadBC object which can be called during the calculation of the equivalent
nodal loads.

The key method in ObjectFEM is generate model which creates references between
the objects in the model. The element topology is at �rst de�ned in terms of nodelabel,
matlabel and proplabel. The method generate model searches the NodeList, MaterialList and
PropertyList to obtain references to the objects and stores these in nodes, material and
property. This enables the Element to collect the data used in calculation of the sti�ness

matrix, the load vector etc.

generate model

Element.generate model(nolist, matlist, prolist):
for (i=1 to no nodes) do

node(i) = nolist.�nd(nodelabel(i))
node(i).set element(this)

material = matlist.�nd(matlabel)
property = prolist.�nd(proplabel)

In the process Node.set element is called to create a mutual reference. The argument this
is the way that an object refers to itself.

After the generation of the model it is possible to de�ne the structure of the sti�ness

40 Classes in �nite elements

matrix and by use of Node.set dofno to de�ne the global dof numbers. In order for the

Element to be able to assemble the sti�ness and loads correctly a corresponding method is

de�ned for the Element,

set dofno

Element.set dofno(nlabel,dg,dn):
for (i=1 to no nodes) do

if (nodelabel(i) = nlabel)
index = (i{1) * no dof
for (j=1 to dg) do

index += dofgroup(j)
return dofno(index+dn)

The method takes a node label (nlabel), the number of the dofgroup (dg) and the local

dof number dn as arguments. After seeking the correct element dof the dofno is set by

assignment. Instead of �nding the correct entry by looping over all preceeding dof groups
an address array could be formed containing e.g. the number of the �rst dof in each group,
thus enabling a more direct notation.

The Element is responsible for calculating and assembling the processed part of the
global model. The virtual methods, sti�ness and load, are called by the static assembly
methods, assm sti�ness and assm load. By use of the global dof numbers, dofno, each
contribution is then added to the global equation system. Calculation and assembly of the
sti�ness may illustrate the principle,

assm sti�ness

Element.assm sti�ness(K):
Ke = sti�ness()
size = no dof * no nodes
for (i=1 to size) do
for (j=1 to size) do
K(dofno(i),dofno(j)) += Ke(i,j)

It is seen that there is a direct relation between the global dof numbers, dofno(i), and the
local dof numbers, i.

Having solved the global equation system the unknown node dof and loads are retrieved

by the Nodes. In order for the Element to evaluate the strain it needs to extract the dof
from the connected nodes. This is handled by the get dof method.

get dof

Element.get dof():
l = 0
for (i=1 to no nodes) do
for (j=1 to no dofgroup) do
for (k=1 to dofgroup(j)) do

l += 1
dof(l) = node(i).put dof(j,k)

Once again it is seen that internally the dof are numbered consecutively while communi-

3.2. THE FEM CLASSES 41

Figure 3.4: The Material class

cation between di�erent objects uses the dofgroup number and a local dof number.

The postprocessing facilities are limited to calculation of the strain and stress. The

strain and stress de�nitions are handled by virtual methods. The Element, however, imple-

ments a write method for writing a table of strain and stress for no gauss speci�ed points

in the element. In principle this may look the following way,

write strain

Element:write strain()
E = strain()
write(tablehead)
for (i=1 to no gauss) do

write(i)
for (j=1 to no strain) do
write(E(i,j))

It is assumed that strain returns a matrix with the correct dimensions.

3.2.3 The Material class

The Material is the superclass for all material models. It introduces the constitutive model
described by no par parameters. The parameters are stored in the par vector. On request
it provides the element with a single parameter,

put par

Material.put par(pn):
return par(pn)

The full constitutive matrix is used to evaluate the sti�ness and the stress. This is handled

by the purely virtual method, C, which must be implemented for each type of material.

The class, which is shown in Figure 3.4, will increase in importance for material non-linear

problems such as plasticity theory.

Figure 3.5: The Property class

42 Classes in �nite elements

Figure 3.6: A linked list

3.2.4 The Property class

The Property class is a simple class which is described by the number of parameters, no par.
It is managing parameters that are not speci�cally part of the material model. E.g. for

plane strain or stress one parameter will be the thickness of the element, while for bars and

beams the area and moment of inertia are to be de�ned. The class will on request from

the Element return one of the parameters stored in par, see Material.put par.

3.3 Model storage

Like the rest of the system the storage model must be designed to be as exible as possible.
The exibility is obtained by de�nition of dynamic storage schemes like arrays, linked list,

trees or even databases. Arrays are generally easy to handle and are widely used to store
�nite element models, but in order to perform range checking the size of the array must be
known from the beginning. Gradual extension is easier to obtain with linked lists where

range checking is replaced by an existence check indicating the end of the list. A linked list
requires more memory to store the same number of items than an array. This drawback

is, however, compensated by the possibility to add or remove items dynamically which can
be used for example in free-meshing techniques or adaptive methods where the mesh is
automatically re�ned. ObjectFEM uses linked lists to store the FEM objects in the model.

3.3.1 The List class

A linked list consists of Items. An Item has 2 �elds: data and next. The data �eld can be
any type of variable, e.g. integer, oating point, arrays, data structures or objects. The

next �eld holds the address of the next Item in the list. Extension of the list consists of
allocating the storage for a new data �eld and setting next to point at an empty �eld -

the Null pointer. The new Item is inserted in the end of the list replacing the next �eld of

the previous Item with the address of the new Item. The end of the list is thus indicated
letting next point at an empty �eld. The principle of linked lists is shown in Figure 3.6.

2 item variables are needed for managing the list: the �rst item in the list, start item,
and the current item, curr item. Running through the list thus consists of looking in the
next �eld of the current item to �nd the address of the following item. Safe and e�cient

manipulation of a linked list can be obtained by making it a class. The List is designed as
template class, i.e. a class that can be typecasted to any data type without modi�cations.

3.3. MODEL STORAGE 43

A List consists of an arbitrary number of Items each pointing at the next one in the list.

The merit of the List class is to deliver methods that enable safe and easy manipulations

of these Items. The List should be able to add, remove or �nd an Item and there should

be a method, next, that steps through the List returning the data. This is necessary in

cases where a message should be send to all Items in the List. The List is represented in

Figure 3.7.

Figure 3.7: The List class

3.3.2 Customizing the lists

All objects in the �nite element model are stored in a linked list that is typecasted from
the template, List. There are de�ned a NodeList, an ElementList, a MaterialList and a
PropertyList. For these the data are addresses to objects of the type and the methods

of e.g. the Element can be applied to items in the ElementList. This enables the List to
simulate the traditional looping techniques such as the for-do and the while-do loops -
a style that will enhance the readability e.g. when calculating and assembling the sti�ness

matrix. Assembly of the global sti�ness by looping over each Element object (elem) in the
ElementList (ellist) may be written in pseudo-code in the following way

for{do

for (elem=ellist.start() to ellist.end) do
elem.assm sti�ness(K)

where start returns the �rst item in the list. The notion ellist.end is not an actual method,

but it is introduced to retain the pseudo-code notation of the for-do loop. The represen-
tation above is a compact form of a while-do loop,

while{do

elem = ellist.start()
while (elem) do
elem.assm sti�ness(K)
elem = ellist.next

where the loop terminates when elem becomes Null. The use of the for-do loop is based on

the possibility to simulate this syntax in C++ by use of an overloaded increment operator
(++), i.e.

44 Classes in �nite elements

for-do in C++

for (elem=ellist.start(); elem; elem=ellist++)

elem->assm stiffness(K);

The more compact notation is therefore used in the pseudo-codes.

3.4. ALGEBRAIC CLASSES 45

3.4 Algebraic classes

The major numerical part of a �nite element program concerns linear algebra, i.e. matrix

manipulations and calculation of vector products. For this purpose two types of classes

are de�ned: Matrix and Vector. The classes are described by their body, m or v, and their

dimensions, no row and no col.
Standard matrix algebra, like addition, substraction and multiplication, are de�ned as

overloaded operators. This enables a symbolic programming style where loops are replaced

by operators that match the mathematical concepts, e.g.

loop

for (i=1 to no row) do
for (j=1 to no col) do

A(i,j) = B(i,j) + C(i,j)

is replaced by

operator

A = B + C

The operators + and = have in this case been overloaded so they perform addition and

assignment internally. Storing the dimensions allows the methods to check the validity of
the operations, e.g. to ensure that the dimensions match or that the operations are within

the matrix range. Accessing a member in a matrix is done by use of the overloaded index
operator () that includes a range check,

index operator

Matrix A(2,2)
A(1,2) = 2
A(2,3) = 4

A is declared as a 2�2 matrix, so the last operation is illegal and therefore the assignment
is not carried out.

The transpose of a matrix is symbolically represented by the method T, e.g.

transpose

A = L * D * L.T

reestablishing A from the matrices L and D which are the LDLT factors.

The Vector class consists of a one-dimensional array. Its methods are divided between
matrix algebra and vector calculus. The matrix algebra is similar to that of Matrix. The
vector calculus part consists of methods for evaluating the inner (scalar) product, dot, the
cross product, cross, and the Euclidian norm, length.

46 Classes in �nite elements

Figure 3.8: The Matrix and Vector classes

vector calculus

x = length(a)
y = dot(a,b)
c = cross(a,b)

where x, y are scalars and c is a Vector.
Solution methods are highly related to the matrix structure and they are de�ned in con-

junction with the Matrix and Vector classes. These methods - being numerical algorithms

- are programmed in procedural style taking the matrices and vectors as arguments. The
solution of linear equation systems uses factorization, factor, and a series of substitutions,
solve, to obtain the solution for a load pattern. The solution methods are also used by det
to calculate the determinant and by inv to calculate the inverse of a square matrix. Thus
the solution of a system of linear equations can be written directly,

inversion

a = inv(K) * f

or as a sequence of operations,

factor & solve

factor(K)
solve(K,a,f)

The general class de�nitions are given in Figure 3.8. Detailed description of the entire

algebraic classes is given in Appendix A.

3.5 The application

This section presents an application that uses the de�ned classes. The application is valid

for all types of linear problems with the exception of the model de�nition which requires

knowledge of the speci�c types of elements or materials that are used in the analysis. The

necessary modi�cations when introducing new elements are, however, restricted to a few

additions in the command interpreter. The application will �rst be described by its tasks

and then the full application will be summarized in pseudo-code in Algorithm 3.1.

3.5. THE APPLICATION 47

3.5.1 Model de�nition

In this phase the model is de�ned. Usually, it is done taking input from the terminal, a �le

or a graphical environment. Thus, �rst part of the application is devoted to interpretation

of input. A command interpreter reads the input and recognizes a number of keywords.

Some keywords are shared by all models, e.g. Node, Property, Vload. Others are used to

specify the speci�c elements and materials, e.g. Solid3D8 which refers to a 8 node element

for 3D solid mechanics or Elastic de�ning an isotropic elastic material. As an element

in the following is referred to as Element, it is this phase that the variable is typecasted,
meaning that the attributes and methods are initialized according to the element type.

Due to the dynamic binding the correct implementations of the methods will be used in

the following. The command interpreter must know which elements and materials are

available, so introducing a new element requires the programmer to add a new keyword.

However, being the only part of the application that distinguishes between di�erent types

of elements and materials, the command interpreter is the only part of the application that
needs to be modi�ed when introducing new elements or materials.

The command interpreter stores each model item in the linked lists, so that the rest
of the application knows where to �nd its informations. A typical sequence may be the

identi�cation, typecasting, storage and calling a read method, e.g.

model de�nition

if (key = Solid3D8)
elem = new Solid3D8
ellist.add(elem)
elem.read()

The new command symbols the creation of a new object and its initialization. The sequence
given above may be de�ned for all types of model input, i.e. nodes, materials, properties

and boundary conditions. These are collected in a command interpreter module, read input,
which in the end returns linked lists containing all items in the model.

3.5.2 Model generation

Having obtained the model input it is possible to start the model generation. This lies

in the hands of 2 methods: Element.generate model and Node.set dofno. The �rst method
uses the linked lists to establish connections between the elements and the connected

nodes, material and property. All elements in the model requires the information so the
application must loop over all elements in the element list. Having obtained information

about the number of active dof the nodes are able to de�ne the global dof numbers, thus

the model generation consists of two loops: one over all elements and a loop over all nodes,

48 Classes in �nite elements

model generation

for (elem=ellist.start() to ellist.end) do
elem.generate model(nolist,matlist,prolist)

no dof = 0
for (node=nolist.start() to nolist.end) do
node.set dofno(no dof)

The total number of dof, no dof, is initially set to 0. The set dofno method assigns a unique

dof number to all dof in the node and returns the updated number of dof, eventually giving

no dof. The loops run over all types of elements and nodes - due to the typecasting which is

performed in the model de�nition phase each Item itself knows what version of the virtual

methods to evoke.

3.5.3 Forming the global equation system

When the dimensions of the global matrices and vectors are known (= no dof) they may
be allocated and assembled. The assembly of the global equation system involves the

prescribed values from the nodes, dof and load, and the processed element data, sti�ness
and load. Two loops are introduced for this purpose,

form equations

Matrix K(no dof,no dof)
Vector a(no dof)
Vector f(no dof)
IntArray �x(no dof)

no dof = 0
for (node=nolist.start() to nolist.end) do
node.send disp(a,�x)
node.send load(f)

for (elem=ellist.start() to ellist.end) do
elem.assm sti�ness(K)
elem.assm load(f)

In C and C++ boolean variables are represented by integer variables: TRUE=1 and

FALSE=0, thus the �x array may be de�ned as a 1D array of integers, cf. Appendix

A.

3.5.4 Solving the global equation system

The global equation system is a constrained system of linear equations that can be solved
explicitly. The solution process is divided in factorization, factor, of the global sti�ness

matrix and a solution procedure, solve, that uses the factorized matrix and the global

dof and load vectors. These solution methods relate, as described previously, to the Matrix
class that is used. Full square matrices uses LU factorization, while for symmetric matrices

3.5. THE APPLICATION 49

the LDLT scheme is available. A constrained system is characterized by having unknown

values in both the dof and the load vector. The terms related to the prescribed dof are

marked by the �x array and are omitted in the factorization. The unknown dof and

reactions are then determined by the solve method. An LDLT scheme for pro�le matrices

has been developed, Hededal & Krenk (1993), where the unknown dof and reactions are

found simultaneously during the substitution process. The algorithm is included in the

C++ ProMatrix class but to retain the numerical e�ciency it is implemented using a pure

C syntax, see Appendix A.

solve equations

factor(K,�x)
solve(K,a,f,�x)

for (node=nolist.start() to nolist.end) do
node.get disp(a)
node.get load(f)

After the analysis the Nodes retrieve the unknown dof and loads. It is thereby possible

to free the memory used by the global system and use it for other purposes during the
postprocessing phase.

3.5.5 Postprocess

Last part of the application is to output the various results from the analysis. The dof
and reactions do not require processing and may be given directly in tables. The element
results, strain and stress, are derived from the dof which the Element get from the Nodes
and presented in tables.

postprocess

for (node=nolist.start() to nolist.end) do
node.write disp

for (node=nolist.start() to nolist.end) do
node.write load

for (elem=ellist.start() to ellist.end) do
elem.write strain

for (elem=ellist.start() to ellist.end) do
elem.write stress

The virtual methods, strain and stress, are called by the 2 write methods. Again, it should

be noted that the elements in the List are not necessarily of the same type.

50 Classes in �nite elements

3.5.6 Linear and non-linear applications

The segments described above form an application for linear analysis which is summa-

rized in Algorithm 3.1. The input and output parts, which are hidden in read input and
write output, may vary from problem to problem, whereas the other parts apply for all

sorts of linear analyses.

Extension from linear to non-linear analysis mainly a�ects the solution part of the

application. The load is applied in a number of load steps and iterations are performed to

reestablish equilibrium. The extension thus consists of adding 2 control structures: a load

incrementation and equilibrium iterations. A modi�ed Newton-Raphson scheme may have

the following form

Newton-Raphson

Solve global equation system:
for (n=1 to no loadstep) do
for (elem=ellist.start() to ellist.end) do
elem.assm sti�ness(K)

factor(K,�x)
fe += df
solve(K,da,df,�x)
do

for (elem=ellist.start() to ellist.end) do
elem.assm intforce(�,a+da)

r = fe { �
solve(K,delta,r,�x)
da += delta

until (norm(r) < EPS*norm(fe))
a += da
for (node=nolist.start() to nolist.end) do
node.get dof(a)
node.get load(fe)

In each load step or even in iteration a representative sti�ness must be evaluated, thus the
assembly of the sti�ness matrix is moved into these loops. The solution algorithm is driven

by the unbalance between the internal forces, �, corresponding to the current dof and the
external loads, fe, thus in order to obtain a new increment, delta, the residual, r = fe { �,
must be evaluated in each iteration.

In the more general methods both the load and the dof increments are adjusted during

the iterations, Cris�eld (1981), Krenk (1993b), Krenk & Hededal (1993). This is neces-

sary if the equilibrium path has limit points or snap-through and may as well improve

the convergence rate. Implementation of such methods require very few additions to the

Newton-Raphson scheme above, as demonstrated in Chapter 6. Furthermore, it is notable

that these algorithms are implemented on the application level, thus do not require the

programmer to modify the rest of the system.

3.5. THE APPLICATION 51

Algorithm 3.1: Linear analysis

Variables:
elem, node
ellist, nolist, matlist, prolist
no dof, K, a, f, �x

Model de�nition:
read input(all lists)

Model generation:
for (elem=ellist.start() to ellist.end) do

elem.generate model(nolist,matlist,prolist)
no dof = 0
for (node=nolist.start() to nolist.end) do

node.set dofno(no dof)

Form global equation system:
allocate K, a, f, �x
for (node=nolist.start() to nolist.end) do

node.send disp(a,�x)
node.send load(f)

for (elem=ellist.start() to ellist.end) do
elem.assm sti�ness(K)
elem.send load(f)

Solve global equation system:
factor(K,�x)
solve(K,a,f,�x)
for (node=nolist.start() to nolist.end) do

node.get disp(a)
node.get load(f)

Postprocess:
write output(nolist,ellist)

52 Classes in �nite elements

Chapter 4

Customizing the FEM classes

The FEM classes de�ned in the previous section formulate a framework for implementing

elements and materials. In this chapter is demonstrated how the FEM classes can be
customized to �nite elements for linear potential problems. The aim is to introduce a 4

point standard approach that can be used for specializing the FEM classes.

1. Theory and �nite element formulation

2. Identi�cation of parameters and virtual methods, cf. Table 2.4

3. Additional attributes and methods

4. Additional classes

For the potential problem the theory and �nite element formulation are established in
Section 2.1 and Section 2.2. This chapter starts by giving an interpretation of the virtual

methods. The isoparametric element concept will be used, leading to the speci�c formula-
tion of element matrices and vectors and a numerical integration scheme that uses Gauss

quadrature. A Continuum element class formulated as isoparametric elements is presented
and a Gausspoint class introduced. The Continuum element constitutes a class of elements
that in this chapter is specialized to 2D and 3D potential elements and in the following

chapter extended to include solid elements.

4.1 Potential element with linear materials

From the formulation given in Section 2.2 it is found that a potential element with n nodes
(no nodes=n) is described by 1 dof pr. node (no dof=1), i.e.

aT = [a1 a2 � � � an] (4.1)

fT = [f 1 f 2 � � � fn] (4.2)

giving a simple form of the shape function matrix,

N = [N1 N2 � � � Nn] (4.3)

The strain, ", which is this case is the gradient of the potential, ru, has DIM components

(no strain=DIM), where DIM is the spatial dimension. The strain may be derived from the

53

54 Customizing the base classes

discretized dof, a, using the gradient matrix, B,

" =

2
64
"1
"2
"3

3
75 = Ba (4.4)

where the gradient matrix, B, is a DIM�no nodes matrix, i.e.

B =

2
664
@N1=@x1 @N2=@x1 � � � @Nn=@x1

@N1=@x2 @N2=@x2 � � � @Nn=@x2

@N1=@x3 @N2=@x3 � � � @Nn=@x3

3
775 (4.5)

In potential problems the ux becomes the generalized stress, �. It is found from the

strain using the constitutive relation,

� =

2
64 �1�2
�3

3
75 = C " (4.6)

For linear isotropic materials C has the form

C = c I (4.7)

where c is the material constant (Material.no par=1) and I is the unit matrix with dimen-

sions equal to the spatial dimension. More general anisotropic materials requires a full
constitutive matrix on the form

C =

2
64
c11 c12 c13
c21 c22 c23
c31 c32 c33

3
75 (4.8)

where cij are material constants. Assuming, however, that the constitutive relation can be

given on potential form imposes symmetry on the constitutive matrix thus reducing the
number of independent parameters from 9 to 6 (Material.no par=6). This assumption is

used in ObjectFEM.
Having de�ned the constitutive matrix leads to calculation of the element sti�ness

matrix,

Ke =
Z

BT CB d
 (4.9)

which is an n � n symmetric matrix. Calculation of the volume loads, f ev , is dependent

on the load �eld, Q(x). The �eld may be approximated from the node intensities, QT =

[Q1 Q2 � � � Qn], using the shape functions, N(x),

Q(x) = N(x)Q (4.10)

4.2. ISOPARAMETRIC ELEMENTS 55

whereby the integral over the element becomes

f ev =
Z

NT N d
 Q (4.11)

For a surface, i, the surface load �eld, qin(x), may be interpolated from the node intensities,

qin = [qi;1n qi;2n � � � qi;nn], by use of the shape functions, i.e.

qin(x) = N(x)qin (4.12)

The integral of the surface load, f es , consists of a sum of s surface integrals, s being the

number of element surfaces. In principle the integration is

f se =
sX

i=1

�Z
�i

NT N d�

�
qin (4.13)

This form is in practice expensive because most of the entries in the matrices are 0. Instead

a more compact form may be chosen where only the non-zero parts are used.
De�ning the number of nodes in each direction and the shape functions conclude the

element formulation. In ObjectFEM the number of nodes is the same for all directions.

4.2 Isoparametric elements

A �nite element solution is an approximation to the exact one. Using in�nitely many and
in�nitely small elements to discretize the domain the solution should converge to the exact

solution. This convergence requirement can be ful�lled if the element shape functions are
complete and compatible. Completeness is stated as the ability to represent constant dof

and strain �elds within the element. Compatibility means that the �eld, represented by the
shape functions and the dof, is continuous over element boundaries, Ottosen & Petersson
(1992). For arbitrary geometries compatibility is di�cult to obtain if the mesh is not

aligned with coordinate axis. However, using the isoparametric element concept the mesh
can be mapped onto a standard domain where it is aligned with the basis coordinate axis,

thus making it possible to establish compatibility for domains with curved boundaries.

In this section the isoparametric element formulation, which is later used for potential

elements and solid elements, is established.

A basis element is described in the basis coordinates, �. Each point, �, in the basis

element corresponds to a point, x, in the physical domain, see Figure 4.1. The mapping
between the 2 coordinate systems is described by the shape functions, N(�), and the node

coordinates in the physical domain. Each component xi is described by a nodal component

vector, XT
i = [X1

i X2
i � � � Xn

i],

xi(�) = N(�)Xi (4.14)

Notice that the shape functions are expressed in the basis coordinates.

56 Customizing the base classes

Figure 4.1: Isoparametric element

The dof, u(x), is similarly expressed from the nodal values, a, by the relation

u(x(�)) = N(�) a (4.15)

The strain components, "i, are here the gradient components found by partial di�erentia-
tions,

"i =
@u

@xi
=
X
j

@u

@�j

@�j

@xi
; i = 1; 2; 3 (4.16)

Inserting the mapping, (4.15), and introducing matrix notation yields

["1 "2 "3] =

�
@N(�)

@�1
a

@N(�)

@�2
a

@N(�)

@�3
a

�
2
666666664

@�1

@x1

@�1

@x2

@�1

@x3

@�2

@x1

@�2

@x2

@�2

@x3

@�3

@x1

@�3

@x2

@�3

@x3

3
777777775

(4.17)

Finally, transposing (4.17) the strain is calculated as

" = J�1(�)r�N(�) a (4.18)

where r� is the gradient with respect to the basis coordinates that for DIM = 3 is given as

r� =

2
666666664

@

@�1
@

@�2
@

@�3

3
777777775

(4.19)

4.2. ISOPARAMETRIC ELEMENTS 57

The relation (4.18) identi�es the gradient matrix, B(x), as the matrix product of a gradient

�eld, r�N(�), and a transformation matrix, J(�),

B(x) = J�1(�)r�N(�) (4.20)

J is the Jacobi matrix which expresses the di�erential mapping between 2 domains. It is

de�ned as

J =

2
666666664

@x1

@�1

@x2

@�1

@x3

@�1
@x1

@�2

@x2

@�2

@x3

@�2
@x1

@�3

@x2

@�3

@x3

@�3

3
777777775

(4.21)

The Jacobi matrix may be evaluated using the mapping, (4.14),

@xi

@�j
=
@N(�)

@�j
Xi ; i; j = 1; 2; 3 (4.22)

On matrix this becomes

J =r�N(�)X (4.23)

where the X matrix is formed by the 3 coordinate vectors, i.e.

X = [X1 X2 X3] (4.24)

It is notable that the gradient of the shape functions, r�N(�), is used both for calculating
the Jacobi matrix, J(�), and setting up the gradient matrix, B(x). These task should be

collected so that r�N(�) is evaluated only once for each point.
A fundamental characteristic for isoparametric elements is that the integrals can be

evaluated in the basis domain, �i 2 [�1; 1]. Substitution from the physical domain to the

basis element is done by introducing the determinant of the Jacobi matrix, J = jJj,
d
 = dx1 dx2 dx3 = J d�1 d�2 d�3 (4.25)

Thus the Jacobian, J , expresses the ratio between a unit volume in the 2 domains. The
integrations can be performed in the basis coordinates replacing the volume integrals by

triple integrals, i.e.

Ke =
Z 1

�1

Z 1

�1

Z 1

�1
BT(�)CB(�) J(�) d�1d�2d�3 (4.26)

f ev =

�Z 1

�1

Z 1

�1

Z 1

�1
NT(�)N(�) J(�) d�1d�2d�3

�
Q (4.27)

The surface integral is replaced by a sum over s double integrals

f es =
sX

i=1

�Z 1

�1

Z 1

�1
NT(�)N(�) JS(�) d�1d�2

�
qin ; �i3 = �1 (4.28)

where �i3 refers to the coordinate which is constant for surface i. JS is the surface ver-

sion of the Jacobian giving the ratio between a unit area in a physical domain and the

corresponding area in the basis domain.

58 Customizing the base classes

4.2.1 Numerical integration

Numerical integration schemes replaces the integrals with summations. The value of the

function, f(x), is evaluated in a �nite number of point and a weighted sum is taken, e.g.

Z
f(x) dx =

gX
i=1

f(xi)wi (4.29)

For polynomials the Gauss quadrature is e�cient, Ottosen & Petersson (1992): nth order

Gauss perform exact integrations of polynomials of order 2n� 1. The �nite element shape

functions are usually low order polynomials, thus Gauss quadrature is a natural choice for

integrating the element integrals. Furthermore, being de�ned for standard domains the

isoparametric elements have explicitly determined Gauss coordinates and weights, which

can be given as tables for each element.

The integration is carried out in one direction at the time, i.e. there are n Gauss points

in each direction, thus for 3D problems n3 points are needed. The position of the Gauss
points are the same in all directions and are given as a coordinate set, �i. For volume
integrals the triple integrals are replaced by a single weighted sum,

Ke =
gX

i=1

h
BT(�i)CB(�i)�
i

i

f ev =
gX

i=1

h
NT(�i)N(�i)�
i

i
Q (4.30)

where the volume weight, �
i, is de�ned as

�
i = J(�i)
DIMY
j=1

wi
j (4.31)

Thus the resulting weight is found as the product of the individual weights for each of the
spatial dimensions. Similarly, it is possible to replace the double integrals in the surface

load with simple sums, i.e.

f es =
sX

l=1

"
gSX
i=1

h
NT(�i)N(�i)��i

i #
qln ; �ik = �1 (4.32)

The surface weight, ��i, is evaluated as

��i = JS(�
i)

DIMY
j=1;j==k

wi
j (4.33)

As the polynomial degree is usually the same for volume and surface integrals the same

Gauss points and weights can be used with the exception that the coordinate that is
constant for surface l is set �ik = �1 and the weight is wi

k = 1. Also the number of

integration points should be reduced 1 order, e.g. from n3 to n2.

An element is thus apart from the number of nodes and the shape functions de�ned
by the order of the Gauss integration scheme for each direction. In ObjectFEM the Gauss

order is the same for all directions and set as the total number of points, e.g. no gauss =
n3.

4.3. THE ISOPARAMETRIC ELEMENT CLASS 59

Figure 4.2: Isoparametric elements and Gausspoint

4.3 The isoparametric element class

The previous sections give a common de�nition of the isoparametric element. It may be
considered as an interpretation of the virtual methods in terms of a set of new methods.

The preprocesssing tasks of an isoparametric element is to evaluate the volume and
surface integrals. For that purpose it should de�ne implementations of the virtual methods,
sti�ness and load. The integrations are carried out by Gauss quadrature. A Gausspoint
class is introduced to manage the coordinates and weights of the single Gauss point. The
isoparametric element class adds an array called gausspoint to the attribute list, which

stores the no gauss Gausspoint. Each Gausspoint is initialized with its basis coordinates
and weights and a reference to the Element by the method init gauss:

init gauss

Continuum.init gauss():
gx = xi()
gw = w()
for (i=1 to no gauss) do

gausspoint(i) = new Gausspoint(this,gx(i),gw(i))

The method is static, but uses two virtual methods, xi and w, that set up matrices with

all the Gauss coordinates and weights. Systematic generation of the Gauss points and
weights can be obtained by looking at one direction at the time. The Gauss coordinate

and weight form a pair, (�; w), which can be combined with other pairs to form the 2 and 3

dimensional Gauss schemes. Introducing a matrix, Xi, which contains the node coordinates
in the basis element gives that a 2nd order Gauss scheme may be initialized the following

60 Customizing the base classes

way:

xi

Continuum.xi():
gx = 1/sqrt(3)
return = Xi * gx

A 4 node 2D element has the node coordinates, �, thus the coordinates for 2nd order

Gauss becomes

� =

2
6664
�1 �1
1 �1
1 1

�1 1

3
7775) � =

2
6664
�1=p3 �1=p3
1=
p
3 �1=p3

1=
p
3 1=

p
3

�1=p3 1=
p
3

3
7775

For 2nd order Gauss the weights are all 1, thus

w

Continuum.w():
Matrix gw(DIM,no nodes)
gw = 1
return gw

where the assignment, gw=1, sets all components in the matrix equal to 1. The simple

format is due to very special form of 2nd order Gauss. 3rd order Gauss uses 3 points in
each direction and a similar scheme may be employed de�ning the center node as number
9, see e.g. p. 538 in Zienkiewicz & Taylor (1989).

This enables evaluation of the integrals by looping over all the no gauss points. The
sti�ness thus becomes

sti�ness

Continuum.sti�ness():
c = material.C()
for (i=1 to no gauss) do

dn = dN(i)
jacobi = J(dn)
b = B(dn,jacobi)
dv = dV(i,jacobi)
Ke += b.T * c * b * dv

return Ke

where thematerial is requested to supply the constitutive matrix, C. To evaluate the sti�ness
contribution for each Gauss point 4 additional methods have been introduced: dN, J, B
and dV.

The method dN evaluates and sets up the gradient, r�N, for gausspoint(g). The shape
functions may be generated as a product of 1 dimensional functions, N i

j(�j), in the following

way:

N i(�) =
DIMY
j=1

N i
j(�j) (4.34)

4.3. THE ISOPARAMETRIC ELEMENT CLASS 61

The notation, N i
j , refers to the shape function in direction j for node number i and �j is

the value of the basis coordinate in direction j. A component in the gradient matrix,r�N,

thereby becomes

@N i(�)

@�j
=
@N i

j(�j)

@�j

DIMY
k=1;k==j

N i
j(�k) (4.35)

Translating this into pseudo-code gives

dN

Continuum.dN(g):
Matrix dn(DIM,no nodes)
x = gausspoint(g).coor()
for (i=1 to no nodes) do
for (j=1 to DIM) do
dn(j,i) = dshape(Xi(i,j),x(i,j))
for (k=1 to DIM) do
if (k == j)
dn(j,i) *= shape(Xi(i,k),x(i,k))

return dn

The 2 methods, shape and dshape, evaluate the value of the 1 dimensional shape function

and its derivative on basis of the node coordinate, Xi, and the Gauss coordinate, x. The
actual implementation in ObjectFEM di�ers from the presentation given here, thus these
methods are not included in the class description in Figure 4.2.

This matrix is used to calculate the Jacobi matrix, J. The method J uses the matrix,
X, which is set up from the nodal coordinates in the physical domain.

Jacobi

Continuum.J(dn):
for (i=1 to no nodes) do
for (j = 1 to DIM) do
X(i,j) = nodes(i).put coor(j)

return dn*X

The B method uses those 2 matrices to set up the gradient matrix, B(x). For a potential

problem this simply consists of a transformation:

B

Continuum.B(dn,J):
return inv(J) * dn

where inv performs a numerical inversion of the Jacobi matrix.

The volume weight dV is also de�ned as a virtual method, whereby the integration of

the sti�ness becomes identical for 3D as well as 2D problems, cf. (4.31). In 3D it is the

product of the weights and the Jacobian, J .

62 Customizing the base classes

dV { 3D

Continuum.dV(g,J):
return gausspoint(g).weight() * det(J)

The method is virtual and can be overwritten so that for 2D problems is becomes

dV { 2D

Conti2D.dV(g,J):
return Continuum.dV(g,J) * property.put par(1)

where the thickness is obtained as parameter No. 1 from the property. The call with pre�x,
Continuum.dV, explicitly tells the program to use the implementation in the superclass. If

the pre�x is not used the call would be recursive and result in an interminable loop.

The load vector is a sum of the volume loads and surface load, i.e.

load

Continuum.load():
return load v()+load s()

It receives contribution from two 2 methods: load v and load s. The volume load is essen-
tially the same as the integration of the sti�ness matrix, i.e.

load v

Continuum.load v():
for (i=1 to no gauss) do

dn = dN(i)
jacobi = J(dn)
dv = dV(i,jacobi)
n = N(i)
F += n.T * n * dv

return F * vload

The shape functions in a Gauss point can be evaluated from (4.34). The shape function

matrix is set up by a virtual method, N, de�ned as

N

Continuum.N(g):
Matrix n(1,8)
x = gausspoint(g).coor()
for (i=1 to no nodes) do

n(1,i) = 1
for (j=1 to DIM) do
n(1,i) *= shape(Xi(i,j),x(i,j))

return n

The volume load is also identical for 2D and 3D and may therefore be de�ned statically.

The form of the surface load given in (4.12) is not very convenient to program. There
are several ways to do it which is closely related to the type of surface loads. Special type

4.3. THE ISOPARAMETRIC ELEMENT CLASS 63

of loadings like those that act normal to the surface, e.g. normal ux or pressure, should

be handled one way while more general loading types require other means. Another issue

that is hard to generalize is the numbering sequence of the surface nodes. There must be

a speci�cation of which nodes belong to which surface, this is e.g. dependent on whether

the element has 8 or 20 nodes. Therefore the method load s will be de�ned as a virtual

method. The integration is performed with no gauss s Gauss points. In ObjectFEM this

corresponds to the same order as the volume integration scheme and the coordinates and

weights may be obtained from the Gausspoints , see e.g. Section 4.2.1.

The postprocessing part consists of evaluating the strain and stress from the node dof.

The isoparametric element must supply an appropriate de�nitions of the 2 virtual methods,

strain and stress. For this purpose the gradient matrix, B(x), must be available - either it

could be stored during preprocessing or it is reevaluated at this point. The strain may be

evaluated as

strain

Continuum.strain():
a = get dof()
for (i = 1 to no gauss) do

dn = dN(i)
jacobi = J(dn)
gausspoint(i).set strain() = B(dn,jacobi) * a

The stress is evaluated from the strain by multiplying with the constitutive matrix.

stress

Continuum.stress():
if (gausspoint(1).put strain = 0)

strain()
c = material.C()
for (i = 1 to no gauss) do

gausspoint(i).set stress() = c * gausspoint(i).put strain()

The if statement tests whether the strain has already been evaluated - if not strain is
call before proceeding. Both methods, strain and stress, are the same for all isoparametric

elements with linear materials.
The strain and stress are �eld properties, but it is only convenient to evaluate them at

selected points. The Gauss points are characteristic by being those points in the element for

which the convergence rate for strain is the highest. The strain and stress calculated in these
points are thus the best possible approximations with a given discretization. Therefore the

strain and stress are evaluated in the Gauss points and the Gausspoint class have means for
obtaining and storing the strain and stress. In linear analysis this is not necessary because

the strain and stress can be derived explicitly from the strain gradient and the node dof.

It is, however, chosen to use the Gauss point because the elements thereby apply equally
well to problems with linear as well as non-linear material models where the strain and

stress are found from incremental relations, cf. Chapter 8.

64 Customizing the base classes

4.3.1 The Gausspoint class

The Gausspoint class, presented in Figure 4.2, is introduced to manage the coordinates and

weights for the numerical integration. The Gauss points are optimal when evaluating the

strain and stress from the nodal dof. The Gausspoint class is able to store the strain and

stress in the point and has methods for updating these corresponding to the current dof

state. The importance of this will become more obvious for material non-linear problems

such as plasticity theory.

The class has 3 attributes related to the task of de�ning the Gauss coordinates: element,
xi, w. The element attribute contains a reference to the element that the point is part

of. The xi and w are the coordinates and weights. These attributes are initialized upon

creation, i.e. they are set by the Continuum.init gauss method, which calls the constructor,

viz.

Gausspoint

Gausspoint.constructor(elem,gx,gw)
element = elem
xi = gx
w = gw

The coordinates and weights are presented to the element by 2 methods: coor returns
a vector with the basis coordinates and weight returns the product of the weights. The
default argument, s=0, identi�es that the full product should be formed corresponding to
a volume integration, (4.31). If s>0 the component s constant in the surface integrations

and the weight should be omitted in the product, (4.33).

weight

Gausspoint.weight(s=0)
gw = 1
for (i=1 to w.size()) do
if (i==s)
gw *= w(i)

return gw

Using Vector.size makes the method identical for all dimensions. The C abbreviation gw
*= w(i) is used to replace gw = gw * w(i).

The strain and stress describe the current state of the Gausspoint. The attributes may

be set by the element using set strain or set stress and upon request returned by put stress
and put stress, e.g.

set strain

Gausspoint.set strain():
return strain

where the attribute is set by assignment.

4.3. THE ISOPARAMETRIC ELEMENT CLASS 65

4.3.2 Potential elements in 2D and 3D

The Continuum class may be superclass for many di�erent elements. One of the simplest

is a 3D element with 8 nodes and linear shape functions for potential problems, Pot3D8.
Pot3D8 will be used as superclass for all continuum elements. It delivers the implemen-

tation of init gauss, J, sti�ness, load v, strain and stress which apply to all problems both

in 2D and 3D. The superclass further de�nes a number of virtual methods: xi, w, dV,
N, dN, B and load s. These may be overwritten by the subclasses. ObjectFEM contains

presently 4 isoparametric potential elements, which are all of the serendipity type, see

e.g. Zienkiewicz & Taylor (1989). The 3D elements are Pot3D8 with linear shape func-

tions and Pot3D20 which has quadratic shape functions. Pot2D4 and Pot2D8 are the

linear and quadratic 2D elements, respectively. The hierarchy is presented in Figure 4.3.

66 Customizing the base classes

Figure 4.3: Isoparametric potential elements

4.4. CUSTOMIZING MATERIAL AND PROPERTY 67

Figure 4.4: Specializing Material to potential problems

4.4 Customizing Material and Property

Two types of material models are de�ned for the potential problems: a simple linear
isotropic material, (4.7), and an anisotropic material as de�ned by (4.8). For the isotropic

linear material 2 simple material subclasses are de�ned: PotIso3D and PotIso2D which are
described in terms of 1 parameter, c , i.e. no par = 1. The constitutive matrix is easily set
up as a diagonal matrix containing the single parameter.

C

PotIso3D.C():
Matrix c(3,3)
for (i to 3) do

c(i,i) = par(1)
return c

It could be part of the de�nition that the Element supplied information about the spatial

dimension so that it is possible to use only one class. The full anisotropic material classes,
PotAniso, are described by no par = 6, and the constitutive matrix is set up as for PotIso.
The Figure 4.4 presents the Material subclasses.

Figure 4.5: Specializing Property to plane problems

For plane problem it is necessary to set the thickness of the element. This is done

by a Property object, see Figure 4.5. There is not de�ned a speci�c subclass, because it

simply consists of storing and returning prescribed parameters. Initializing the object thus
requires the user to set the number of parameters, no par, explicitly, before it is possible

68 Customizing the base classes

to store any values.

Chapter 5

Solid elements

This chapter describes how the isoparametric solid elements can be derived from the po-

tential elements. The approach will follow the one outlined in the beginning of the previous
section. Making use of the theoretical formulation given in Section 2.3 the problem param-

eters and concepts are resumed. Then the element classes are described with relation to
the isoparametric potential elements concentrating on the methods that must be rede�ned
to handle the extended number of dof and strain components. An linear elastic, isotropic

material model is introduced for 3D problem and in conjunction with the 2D elasticity for-
mulation the 3D class, Elastic, is specialized into classes for plane stress and plane strain.

A hierarchy of isoparametric elements and linear elastic material models are summarized
in Figure 5.1 and Figure 5.2.

5.1 Solid element for linear elasticity

From the formulation given in Section 2.3 it is found that a 3D solid element with n nodes
(no nodes=n) is described by 3 dof pr. node (no dof=3), i.e.

aT = [a11 a12 a13 � � � an1 an2 an3] (5.1)

fT = [f 11 f 12 f 13 � � � fn1 fn2 fn3] (5.2)

giving the shape function matrix, N, on expanded form,

N =

2
64N

1 0 0 � � � Nn 0 0
0 N1 0 � � � 0 Nn 0
0 0 N1 � � � 0 0 Nn

3
75 (5.3)

The strain, ", has 6 components (no strain=6) and may be derived from the discretized

dof, a, using the gradient matrix, B,

" =

2
666666664

"11
"22
"33
2"23
2"13
2"12

3
777777775
= Ba (5.4)

69

70 Solid elements

where a block in the gradient matrix, B = [B1 B2 � � � Bn] is de�ned as

Bi =

2
666666664

@N i=@x1 0 0

0 @N i=@x2 0

0 0 @N i=@x3
0 @N i=@x3 @N i=@x2

@N i=@x3 0 @N i=@x1
@N i=@x2 @N i=@x1 0

3
777777775

; i = 1; 2; :::; n (5.5)

The stress, �, is found from the strain using the constitutive relation,

� =

2
666666664

�11
�22
�33
�23
�13
�12

3
777777775
= C " (5.6)

A linear elastic material is de�ned by 2 parameters (Material.no par=2): Youngs modulus,
E, and Poisson's ratio, �. For isotropic materials the constitutive matrix is

C =
E

(1 + �)(1� 2�)

2
666666664

1� � � � 0 0 0
� 1� � � 0 0 0
� � 1� � 0 0 0

0 0 0 1

2
(1� 2�) 0 0

0 0 0 0 1

2
(1� 2�) 0

0 0 0 0 0 1

2
(1� 2�)

3
777777775
(5.7)

The element sti�ness matrix has the same form as for potential elements, i.e.

Ke =
Z

BT CB d
 (5.8)

but for solid mechanics it becomes a 3n� 3n symmetric matrix. Calculation of the volume

loads, f ev , is dependent on the load �eld, b(x). The �eld may be approximated from the
node intensities, bT = [b11 b12 b13 � � � bn1 bn2 bn3], using the shape functions, N(x),

b(x) = N(x)b (5.9)

whereby the integral over the element becomes

f ev =
Z

NT(x)N(x) d
 b (5.10)

For a surface, i, the surface traction, ti(x), may be interpolated from the node intensities,

(ti)T = [t11 t12 t13 � � � tn1 tn2 tn3], by use of the shape functions, i.e.

ti(x) = N(x) ti (5.11)

5.1. SOLID ELEMENT FOR LINEAR ELASTICITY 71

The integral of the surface load, f es , consists of a sum of s surface integrals, s being the

number of element surfaces, i.e.

f se =
sX

i=1

�Z
�i

NT(x)N(x) d�

�
ti (5.12)

The di�erence between the integrals for linear elasticity and potential problems is that the

number of dof is 3 instead of 1, thereby changing the form of shape function matrix and

the gradient matrix.

72 Solid elements

Figure 5.1: Continuum elements

5.2. ISOPARAMETRIC SOLID ELEMENT 73

5.2 Isoparametric solid element

The solid elements can also be de�ned as isoparametric elements. The similarities between

potential problems and elasticity theory suggest that the solid elements should be derived

from the potential elements. First of all, the elements uses the same shape functions and

the same order of integration. The main di�erences are the expanded forms of the shape

function matrix, N, and the gradient matrix, B. The components in these matrices is,

however, exactly the same as for the potential problem, thus the rede�ned methods merely

get the compact matrices from the potential methods and expand them to the correct

format. The shape function matrix, N is set up in the following way,

N

Solid3D8.N(g)
Matrix n(3,3*no nodes)
Nmat = Pot3D8.N(g)
for (i=1 to no nodes) do
for (j=1 to no dof) do
n((i-1)*no dof+j,j) = Nmat(i,j)

return n

Similarly, the gradient matrix (5.5) is assembled from the compact matrix (4.20). Thus
a solid element may inherit everything from the potential element rede�ning only the
methods that set up the shape function matrix and the gradient matrix. The full hierarchy

of continuum elements are presented in Figure 5.1.

5.3 Elastic materials

The solid elements uses a linear elastic, isotropic material model, as given by (5.7). This
material model de�nes a class of elastic materials, with the 3D model as superclass. The
3D isotropic material is called Elastic. It is described by 2 parameters (no par=2): Youngs
modulus, E, is de�ned as par(1) while the Poisson ratio, �, is par(2). The responsibility
of each class is to set up the constitutive matrix, C, and on request send it to the calling

Element, which is handled by the implementation of C:

C

Elastic.C():
Matrix c(6,6)
E = par(1)
nu = par(2)
c(1,1) = c(2,2) = c(3,3) = 1{nu
c(1,2) = c(2,1) = c(1,3) = c(3,1) = c(2,3) = c(3,2) = nu
c(4,4) = c(5,5) = c(6,6) = 0.5 * (1{2*nu)
denom = (1+nu) * (1{2*nu)
c *= E/denom
return c

Specializations to the plane problems, i.e. plane strain or plane stress, is done be over-

74 Solid elements

writing Elastic:C with the proper 2D de�nitions. For plane strain the constitutive matrix

is

C =
E

(1 + �)(1� 2�)

2
64
1� � � 0

� 1� � 0

0 0 1

2
(1� �)

3
75 (5.13)

while for plane stress problems the constitutive matrix is

C =
E

1� �2

2
64
1 � 0

� 1 0

0 0 1

2
(1� �)

3
75 (5.14)

The hierarchy of elastic materials is presented in Figure 5.2.

Figure 5.2: Elastic materials

Chapter 6

Non-linear �nite elements

Finite elements establish the equilibrium equations as a relation between the external load,

f , and the internal force, q, in terms of the generalized displacements, a. Equilibrium can
be stated as

X
elements

�Z

e
BT� d

�
= f (6.1)

The left side represents the internal force, q, that is usually expressed in terms of the

discretized displacement, a. The relation is generally a system of non-linear equations on
the form

q(a) = f (6.2)

If the displacement is known the external load follow directly from (6.2), but usually it
is the external load that is prescribed and the inverse relation must be determined. The
relation between the displacement and the load is either linear or non-linear as illustrated

in Figure 6.1. For linear problems the unknown displacement can be found explicitly by
solving a system of linear equations, cf. Chapter 2,

Ka = f (6.3)

In non-linear problems, where the relation between the displacement and the external
load is not simple, it is necessary use an iterative strategy to solve the equations. This

Figure 6.1: Linear and non-linear �nite element problems

75

76 Non-linear �nite elements

usually involves a series of load steps, �f1;�f2; :::, where the corresponding displacement

increments, �a1;�a2; :::, are determined. Solution of non-linear �nite element equations is

a predictor-corrector strategy that for each load step consists of three parts: a prediction of

the �rst displacement increment, a test of whether equilibrium is obtained and a strategy

for correcting the �rst increment.

When an equilibrium point has been determined an additional load increment, �f , is

applied. A �rst estimate on the displacement increment, �a1, is found solving a linear

tangent sti�ness relation,

Kt�a1 = �f (6.4)

The tangent sti�ness matrix, Kt, can be dependent on the current displacement, a, the

current stress, � and the preceeding load history expressed by some state variables, �,

i.e. Kt = Kt(a;�;�). It is, however, often possible to distinguish between two types

of non-linearity: geometrically non-linear problems and material non-linear problems. In

geometrically non-linear problems it is the generalized gradient, r, that is non-linear in
the displacement. The tangent sti�ness thus becomes

Kt(a) =
X

elements

�Z

e
BT(a)CB(a) d

�
(6.5)

In material non-linear problems it is the relation between the strain and stress that intro-
duces the non-linearity. The material model is described by the constitutive matrix, C,
giving the following tangent sti�ness

Kt(a;�;�) =
X

elements

�Z

e
BTC(a;�;�)B d

�
(6.6)

The evaluation of the tangent sti�ness is part of the element formulation and will be
described in the Chapters 7 and 8.

The next step in the solution procedure is to verify whether the estimate corresponds
to an equilibrium state, (6.2). For this purpose the internal force has to be evaluated on
basis of the current displacement estimate. The computation of the internal force can be

divided in two types. In the �rst type of problems the internal force, q, can be evaluated
explicitly from the estimated displacement, a. This type of problem includes non-linear
strain measures, e.g.

� = C "(a) = CB(a) a (6.7)

and non-linear, path-independent material models, such as non-linear elasticity, e.g.

� = C(") " (6.8)

The strain, ", is found from the displacement estimate, i.e. " = Ba, thus the internal force

can be evaluated explicitly.

Path-dependent material models, such as elasto-plasticity, constitute the other class of
non-linear problems. For such materials the stress in a point is dependent on the strain

77

and stress history and therefore it is not possible to express the constitutive behaviour in

terms of total strain and stress. Instead an incremental formulation must be used. For

rate-independent materials the relation between the strain increment, d", and the stress

increment, d�, is given by a tangent sti�ness relation,

d� = C(�; ";�) d" (6.9)

The incremental tangent sti�ness, C, depends on the current stress and strain, and on

the stress history expressed in terms of some state variables, �. These are also path-

dependent and the evolution of the state variables must be formulated on incremental

form, as well. The internal force, q, is found by integration of the total stress, �, over

the elements. Because the constitutive behaviour is path-dependent the stress in a point

is found by integrating the incremental relation, (6.9), and the state variables, �, over

the complete load history. In practice this means that the load must be applied in a

number of increments, each followed by equilibrium iterations. Within an iteration the

�nite stress increment, ��, and the increment in the state variables, ��, are evaluated
from the estimated strain increment, �". Having obtained convergence the total stress
and state variables are updated by their increments. Solution of non-linear problems with

path-dependent material models thus consists of two iteration levels: the global equilibrium
iterations that determines the displacement, a, and iterations on point level within each

element to integrate the stress, �, and state variables, � for the estimated strain increment.
The evaluation of the internal force is part of the element formulation. Chapter 7

provides the formulation of a bar element with �nite deformations as an example of a

problem with explicit evaluation of the internal force. Chapter 8 deals with elasto-plastic
material models where the internal force is obtained implicitly by integration over the
complete load history.

If the estimate does not represent equilibrium there must be a strategy for correcting
it. The residual, which is the unbalance between the internal force and the external load, is

usually the main component in the strategy. The residual may be regarded as that part of
the load that has not yet produced any displacement. Its contribution to the displacement
increment is found by solving another linear sti�ness relation. Additional provisions such as

restrictions on the magnitude of displacement increment and modi�cation of the external

load can be employed to make the solution algorithm more robust. Evaluation of the

residual and computation of the correction are termed equilibrium iterations. These are
continued until the residual is smaller than a prescribed tolerance limit.

This chapter considers the solution of non-linear �nite element problems. A general

introduction to non-linear solution methods is given in order to identify two key concepts:

equilibrium iterations and sti�ness updates. The orthogonal residual algorithm, Krenk

(1993b) and Krenk & Hededal (1993), is introduced. A pseudo-code describing an appli-

cation for non-linear �nite element problems summarizes the algorithm. Finally, additions

to the Element class dictated by the non-linear solution strategies are presented.

78 Non-linear �nite elements

Figure 6.2: Solution of non-linear equations

6.1 Solution of non-linear �nite element equations

The solution of non-linear �nite element problems usually consists of a series of load steps,

each involving iterations to establish equilibrium at the new load level. Each converged
load step marks a point on the equilibrium path, Figure 6.2.

Assuming that an equilibrium point, (an�1; fn�1), has been established, a new load
increment, �f1, is applied. A �rst estimate on the increment, �a1, is obtained by solving

a system of linear equations,

K�a1 = �f1 (6.10)

where K is a representative incremental sti�ness matrix. Because the relation, (6.2), is
non-linear the �rst increment does not represent an equilibrium state and iterations must

be performed in order to determine the next point on the equilibrium path, see Figure 6.2.
The iterations may involve changes in both the displacement and the load increments. For
iteration i the increments, �ai and �fi, are modi�ed by the subincrements, �ai and �fi,

i.e.

�ai = �ai�1 + �ai (6.11)

�fi = �fi�1 + �fi (6.12)

If the estimate, an�1 + �ai, does not satisfy the equilibrium equation, (6.2), there exists
an unbalance between the internal force and the external load. This unbalance is termed

the residual, r, and is de�ned as

ri = fn�1 +�fi � q(an�1 +�ai) (6.13)

The residual, ri, is usually the main component in the correction of the displacement

increment in the following iteration. The residual, ri�1, thus gives the subincrement, �ai,

that can be found by solving an incremental sti�ness relation,

K �ai = ri�1 (6.14)

where K is a representative sti�ness matrix. The sti�ness matrix can either be the same
as used in (6.10) or it may be an updated matrix representing the current sti�ness, as

6.1. SOLUTION OF NON-LINEAR FINITE ELEMENT EQUATIONS 79

Figure 6.3: Equilibrium iterations: a) Newton-Raphson methods, b) Residual methods, c)

Arc-length methods

discussed later on. The equilibrium iterations are carried on until the residual, r, is lower

than a given tolerance. Essential to this type of solution strategy is the residual vector

and the sti�ness matrix. The residual scales the subincrement, �a, and the sti�ness matrix

determines the direction of the correction.
The equilibrium iterations may involve modi�cations of both the load and the dis-

placement of as stated in (6.11) and (6.12). In the classical Newton-Raphson methods,

Figure 6.3a, the load is kept constant during iterations and the displacement is then ad-
justed sequentially by evaluating the residual, (6.13), and the corresponding subincrement

from (6.14). These methods have problems in passing load limit points, because the load
is not adjusted. Another iteration strategy would be to adjust the load at �xed displace-
ment, Figure 6.3b. For multi-dimensional problems the load can not be adjusted so that

it exactly corresponds to an equilibrium point and therefore the displacement must also
be modi�ed. The correction of the displacement is found on basis of the residual from the
modi�ed load. In this type of iterations the corrections thus work in pair. The strategy,

Figure 6.3b, is the basis for the residual methods, Bergan (1980,1981) and Krenk (1993b),
where the external load is adjusted in order to optimize the residual, r, used for calculating

the subincrement, �a, from (6.14). The orthogonal residual method is considered in detail
in Section 6.2.

A third possibility is to adjust the load and displacement simultaneously, Figure 6.3c.

Among the most popular of these methods are the arc-length methods, Riks (1979), Cr-
is�eld (1981), Ramm (1981). In the arc-length methods a constraint is imposed on the
displacement and load increments, �a and �f , such that they keep a constant `arc-length'

during all iterations. Within each iteration the subincrement, �ai, is �rst evaluated from

(6.14) and then the updated increments, �ai and �fi, are scaled to satisfy the constraint.

Cris�eld (1981) de�nes the constraint in terms of the Euclidian norm of the displacement
increment, i.e.

k�ak2 = lmax (6.15)

where lmax is the prescribed arc-length. This constraint should be ful�lled for all increments
during the equilibrium iterations. The �rst increment, �a1, is found from the tangent

relation, (6.10), with the load increment, �f1, which is then adjusted so that the it ful�ls

80 Non-linear �nite elements

the constraint

� =
lmax

l
(6.16)

The initial load factor � corresponds to a scaling of a linear estimate, thus the e�ective in-

crements are ��a1 and ��f1. This estimate will in general not ful�l equilibrium, (6.2), and

equilibrium iterations must performed. The displacement subincrement, �a, is determined

by a tangent relation, (6.14), where the residual is found from (6.13) with �fi = ��f1.

The un-modi�ed displacement increment, �~a, then becomes

�~a = �a + �a (6.17)

This increment may, however, violate the arc-length constraint, (6.15), and it must be

corrected. A simple way to regain a correct arc-length is to modify the increment by a

contribution along the tangent direction, �a1, i.e.

�a = �~a +���a1 (6.18)

There are di�erent ways to evaluate the correction factor, ��. The constraint, (6.15),
leads to a quadratic equation in ��. Criteria for choice of the root is e.g. given by Cris�eld

(1981). As the correction is along the tangent direction it corresponds to a modi�cation of
the external load, ��f1, thus the load factor is in each iteration updated by the correction

factor, i.e.

� = � +�� (6.19)

The arc-length method is summarized in Algorithm 6.1. In order to make it a workable

algorithm it must be supplemented criteria for reversing the load after passage of load limit
points and for restarting in cases where convergence is not obtained within a maximum
number of iterations. These issues are common for all algorithms and are considered in

Section 6.2.2.
Another important part of a non-linear solution method is the strategy for updating the

sti�ness matrix, K. In each equilibrium iteration the solution of the incremental sti�ness

relation, (6.14), requires a sti�ness matrix and a residual vector. The residual vector must
be formed in each iteration, but it is usually inexpensive to compute because it mainly

involves vector operations on element level. Updating the sti�ness matrix, however, may
involve matrix manipulations on element level and may require the updated matrix to be

factorized, both operations are expensive compared to the vector manipulation relating to

the residual vector. Some strategies therefore updates the sti�ness more rarely, e.g. in each
equilibrium state, even though it may reduce the converge rate.

The Newton-Raphson methods are based on a �rst order Taylor expansion of the equi-
librium equations. The sti�ness matrix associated with this expansion is the tangent

sti�ness, Kt, Figure 6.4a. In �nite elements the tangent sti�ness represents the sti�ness

associated with the current displacement state and is found by di�erentiation of the equi-
librium equations, see e.g. Section 7.1. In a full Newton-Raphson scheme the sti�ness

6.1. SOLUTION OF NON-LINEAR FINITE ELEMENT EQUATIONS 81

Algorithm 6.1: Arc-length method - Crisfield (1981)

equilibrium state: an�1; fn�1
load increment: �f

�a1 = K�10 �f

� = lmax=k�a1k2
�a = ��a1

equilibrium iterations:

do

�q = q(an�1+�a)�fn�1
r = ��q + ��f

�~a = K�10 r

�� =
��(�a; �~a;�a1; lmax)

�a = �~a+���a1
�a = �a + �a

� = � +��

until krk < "kfk
update:

an = an�1 +�a

fn = fn�1 + ��f

82 Non-linear �nite elements

Figure 6.4: a) Tangent sti�ness, b) Secant sti�ness

matrix is evaluated for each state during the equilibrium iterations, while in the modi�ed

Newton-Raphson scheme the sti�ness is evaluated only in equilibrium states.

The advantage of the full Newton-Raphson update is that it represents the current
displacement state. It is, however, attractive only to calculate the tangent sti�ness ex-
plicitly at equilibrium states mainly because it involves factorization. Alternatively, a

quasi-Newton modi�cation of the sti�ness matrix could be used if it is observed the e�ec-
tive sti�ness changes during equilibrium iterations. These modi�cations can be introduced

directly in the factorized sti�ness matrix and is therefore computationally inexpensive
compared to a full Newton-Raphson update.

The idea in the quasi-Newton methods is to replace the original sti�ness, K0, with

a sti�ness, K, that exactly reproduces a known increment from a prescribed load incre-
ment. This quasi-Newton condition can be stated as a linear sti�ness relation between the

increment in the internal force, �q, and the displacement increment, �a, on the form

Ks�a = �q (6.20)

The sti�ness matrix, Ks, associated with the quasi-Newton condition represents a secant

sti�ness, Figure 6.4b. However, in multi-dimensional problems the secant is not uniquely
de�ned and there exist various possibilities for choosing it. A standard technique for
obtaining a correction in a direction, v, consists of forming an exterior product with a

vector, w, i.e.

Kv = (K0 + vwT)v = K0 v + v (6.21)

The correction along v is thus scaled by the projection of v ontow. For �nite element prob-

lems the BFGS update (Broyden-Fletcher-Goldfarb-Shanno) has been used with success.
It consists of a symmetric rank-two correction of the sti�ness matrix, i.e.

Ks = K0 � (K0�a) (K0�a)
T

�aTK0�a
+
�q�qT

�qT�a
(6.22)

where K0 is the sti�ness corresponding to the last full update, e.g. the last equilibrium

point. It is seen that if the sti�ness, Ks, is multiplied with the increment, �a, the �rst

two terms on the right side in (6.22) cancel, i.e. the original sti�ness is removed, leaving

6.2. THE ORTHOGONAL RESIDUAL METHOD 83

only the increment in the internal force, �q. The BFGS update is attractive because the

modi�cations can be introduced directly in the factored form of the global sti�ness matrix,

Matthies & Strang (1979). Thus, the quasi-Newton update does neither involve element

calculations nor require the sti�ness matrix to be factorized.

The two main ingredients in non-linear solution strategies are thus: equilibrium iter-

ations and sti�ness updates. The di�erent techniques may be combined to form robust

algorithms. Among the most popular are the arc-length methods of which there exists a

number of variants. An interesting alternative to these methods are the orthogonal residual

algorithms presented in the following.

6.2 The orthogonal residual method

An important part of a non-linear solution strategy is the ability to pass load limit points.

This requires that both the displacement and the load can be adjusted during the equilib-
rium iterations. In the residual methods equilibrium iterations consist of an adjustment of
the external load followed by a correction of the displacement increment. In each iteration

the external load is adjusted at �xed displacement such that the residual becomes optimal.
This optimal residual in then used to evaluate the correction.

Assume that an equilibrium point, (an�1; fn�1), is established. An additional load
increment, �f , is applied and equilibrium iterations are performed. In the current iteration
the displacement estimate, an�1 + �a, corresponds to an internal force, q(an�1 + �a).

This force is generally not in equilibrium with the external load, fn�1 +�f , but generates
residual, r. The load is adjusted by introducing the scaled load increment, ��f , instead of
the original, �f . The residual from the scaled external load is

r = fn�1 + ��f � q(an�1 +�a) = ��q + ��f (6.23)

where �q is the increment in the internal force from the last equilibrium state, fn�1 = qn�1,

�q = q(an�1 +�a)� qn�1 (6.24)

The scaling factor, �, is found from an optimality criterion. Bergan (1980,1981) stated

optimality as a minimum condition,

min
�
krk = min

�
k��q + ��fk (6.25)

This minimum condition requires de�nition of an appropriate norm for the residual, e.g.

in quadratic form

krk2 = rT Br (6.26)

where B is a symmetric positive de�nite matrix. Candidates for the B matrix could be the

identity matrix, I, leading to a Euclidian norm or the inverse of the sti�ness matrix, K�1,

which gives an energy norm. The choice of B is limited by the restriction that it must be
positive de�nite. The energy norm is therefore di�cult to use around limit points where

84 Non-linear �nite elements

Figure 6.5: Minimum residual: a) Euclidian norm, b) B-norm

Figure 6.6: Orthogonal residual

the sti�ness matrix, K, is not positive de�nite. In either case the scaling factor may be
determined explicitly by setting the derivative with respect to � equal to 0, i.e.

�fT B (��q + ��f) = 0 (6.27)

This relation states that the minimum residual, r, should be B-orthogonal to the increment
in the external load, �f , see Figure 6.5. The scaling factor thus becomes

� =
�qT B�f

�fT B�f
(6.28)

The subincrement, �a, generated by the minimum residual is found from (6.14). Multiply-

ing this relation with (B�f)T gives

(B�f)TK �a = �fTBr = 0 (6.29)

Thus all subincrements lie in a hyperplane with a normal vector, KTB�f , provided the
sti�ness matrix is kept constant in all iterations. If this hyperplane does not intersect the

true equilibrium path, e.g. at displacement limit point, the iterations will not converge.
An alternate optimality criterion stated in terms of conjugate variables is used by Krenk

(1993b) to formulate an orthogonal residual method. In the orthogonal residual method

the external load is assumed to be optimal when the residual, r, will neither increase nor

decrease the magnitude current displacement increment, �a. This optimality condition

may be expressed as

�aT r = 0 (6.30)

It states that the external load is optimal when the residual is orthogonal to the current
displacement increment, see Figure 6.6. It is noticed that this optimality condition is stated

in conjugate variables and does not require any norm. Inserting the residual, (6.23), into

the orthogonality condition, (6.30), gives

�aT (��q + ��f) = 0 (6.31)

6.2. THE ORTHOGONAL RESIDUAL METHOD 85

Comparing this relation with (6.27) it is seen that the term B�f is replaced by the current

displacement increment, �a. If the energy norm is used, B = K�1, the �rst iteration

would be exactly the same for the two criteria, i.e. �a1 = K�1�f1. However, this identity

is lost in the following iterations. Rearranging (6.31) gives the scaling factor,

� =
�qT �a

�fT �a
(6.32)

Thus the scaling factor, �, is explicitly determined by evaluating two scalar products.

The orthogonal residual, (6.23), is then used to evaluate the next subincrement, �a. The

direction of the subincrements can be investigated by multiplication of (6.14) with the

current displacement increment, �a,

�aTK�a = �aT r = 0 (6.33)

It is seen that the subincrement, �a, is K-orthogonal to the current increment, �a. This
means that the subincrements do not lock onto a �xed hyperplane as it is the case in the
minimum residual method.

6.2.1 Dual orthogonality

The other part of a non-linear solution method relates to the sti�ness update. In the
orthogonal residual method the load adjustment is independent on the choice of sti�ness

update. In this framework the modi�ed Newton-Raphson method has usually been em-
ployed, updating the sti�ness matrix in each equilibrium point. Changes in the e�ective
sti�ness encountered during the equilibrium iterations are taken into account by a quasi-

Newton modi�cation which in combination with the orthogonality condition, (6.30), leads
to a simple one-term correction of the displacement subincrement, Krenk & Hededal (1993).

The quasi-Newton modi�cation applied in the following is the symmetric rank-two
BFGS update, (6.22). The inverse of this secant sti�ness matrix may be found by use of
the Sherman-Morrison formula, see e.g. Luenberger (1984),

K�1s =

I� �a�qT

�qT�a

!
K�10

I� �q�aT

�qT�a

!
+
�a�aT

�qT�a
(6.34)

Using the modi�ed sti�ness matrix in the incremental sti�ness relation, (6.14), yields

�a = K�1s r (6.35)

When the residual satis�es the orthogonality condition, (6.30), the terms involving products

between the residual, r, and the displacement increment, �a, vanishes leading to the

following simple form of the incremental sti�ness relation,

�a =

I� �a�qT

�qT�a

!
K�10 r (6.36)

86 Non-linear �nite elements

Figure 6.7: Quasi-Newton correction of a displacement subincrement

By introducing the subincrement without any quasi-Newton correction

�~a = K�10 r (6.37)

the corrected subincrement becomes

�a = �~a��a
�qT �~a

�qT�a
= �~a + ��a (6.38)

As for the load scaling factor, �, the displacement scaling factor, �, is found from two scalar
products,

� = � �qT �~a

�qT�a
(6.39)

It is assumed that the magnitude of the current displacement increment, �a, is optimal

for the current load level. This magnitude should be retained after the quasi-Newton
correction, (6.38), and the total increment is divided by the factor, 1 + �, corresponding
to a relaxation of the correction, i.e.

�a =
�~a

1 + �
(6.40)

It is found that the quasi-Newton correction used in connection with the orthogonal residual

leads to another orthogonality,

�qT �a = �aTKs �a = �aT r = 0 (6.41)

This implies that any quasi-Newton modi�cation that satis�es (6.20) will lead to a subin-
crement, �a, that is orthogonal to the current increment in the internal force, �q. Thus the

algorithm is characterized by a dual orthogonality: orthogonality between the residual and

the total displacement increment and orthogonality between the increment in the internal
force and the iterative subincrement.

The quasi-Newton modi�cation consists in the orthogonal residual method of a one
term correction of the the subincrement, �~a, along the current total increment, �a, see

Figure 6.7. The modi�cation does not involve matrix operations, thus is computationally

e�cient. Also it is notable that the quasi-Newton modi�cation acts on the global equation
system and does not require integrations on element level, like the tangent sti�ness. The

6.2. THE ORTHOGONAL RESIDUAL METHOD 87

Algorithm 6.2: Orthogonal residual method

equilibrium state: an�1; fn�1
load increment: �f

�a = K�10 �f

equilibrium iterations:

do

�q = q(an�1+�a)�fn�1
� = �qT�a=�fT�a

r = ��q + ��f

�~a = K�10 r

� = � �qT �~a=�qT�a

�a = �~a=(1 + �)

�a = �a + �a

until krk < "kfk
update:

an = an�1 +�a

fn = fn�1 + ��f

orthogonal residual method supplemented by the quasi-Newton correction is summarized

in Algorithm 6.2. It is notable that this version of the orthogonal residual method only
di�ers from the arc-length method, Algorithm 6.1, on two points: the direction of the
correction of the subincrement and the determination of the load factor. In the orthogonal

residual method the correction is in the direction of the current total increment, �a, while
the arc-length method uses a correction along the tangent, �a1. The load factor is in the

orthogonal residual method evaluated independently of the displacement, namely from the
orthogonality condition, whereas the arc-length follows directly from the correction of the
displacement increment.

As for the arc-length method, Algorithm 6.1, the orthogonal algorithm must be supple-

mented with means for passage of load limit points and a restart strategy in case of slow

convergence. This is considered in the following section.

88 Non-linear �nite elements

6.2.2 Implementation of the orthogonal residual method

In order to develop a robust code on basis of the orthogonal residual method as presented

in Algorithm 6.2 there are two issues that require attention: passage of load limit points

and strategies for controlling the magnitude of the increments in regions with changes in

the sti�ness.

Having passed a load limit point the direction of the load increment is reversed, corre-

sponding to a change of the sign on the load increment in the following load step. Contin-

uing with the previous sign on the load increment would mean that the �rst displacement

increment, �a1, would have the wrong sign and double back along the equilibrium path,

Figure 6.8a. Instead it must be ensured that the next step leads to a continuation of the

equilibrium path, Figure 6.8b. If the sti�ness does not change excessively, e.g. because of

bifurcation, the �rst displacement increment, �a1, is dominant and the iterative subincre-

ments, �a, mainly changes the magnitude of the �nal increment. The �rst displacement

increment is therefore used to check if a load limit point has been passed. The projection
of the �rst increment, �a1, onto the �nal increment in the previous load step, �aold, gives

a simple condition,

�aTold�a1 > 0 (6.42)

If this condition is violated the sign of the displacement increment and the following load

increments is changed.

Figure 6.8: Direction control: a) doubling back, b) continuation of the equilibrium path

In regions with low sti�ness, such as load limit points, the �rst displacement increment,
�a1, may become excessively large, Figure 6.9. However, a simple step length control

handles the problem. Instead of evaluating the residual from the out-of-scale value the

increment is scaled back along its direction,

�~a1 = ��a1 (6.43)

This adjustment of the �rst increment is done before starting the equilibrium iterations

and does therefore not violate the orthogonality condition, (6.30). The scaling factor, �, is

de�ned as

� = min

1;

lmax

k�a1k

!
(6.44)

6.2. THE ORTHOGONAL RESIDUAL METHOD 89

Figure 6.9: Scaling of �rst increment

The norm could be the maximum norm, k � k1, which scales the increment relative to the

maximum displacement component. Another possibility is to use the Euclidian norm, k�k2,
which is a scaling in the multi-dimensional displacement space. The relation, (6.44), uses

a norm expressed only in terms of the displacement. Tracing an equilibrium path gives of

a number of displacement states, a1; a2; ::: To obtain a good representation of the entire
path the distance between these points should be kept relatively constant. As the load may
change arbitrarily from point to point, a norm that includes the load could lead to arbitrary

scaling factors. It should be noticed that the scaling factor, �, is identical with the initial
load factor, �, of the arc-length method, Algorithm 6.1. The Euclidian scaling thus shows
similarity with the version of the arc-length method presented by Cris�eld (1981).

The step length restriction, (6.43), should only be active in regions with low sti�ness.
In these regions the algorithm changes from load control to displacement control. The

choice of the maximum step length, lmax, determines when this change takes place. In the
present framework an absolute maximum step length, labs, is de�ned relative to the initial
sti�ness. The �rst increment in the following load steps can not exceed some constant, C,

times the size of the �rst increment in the �rst load step, �ainit, i.e.

labs = C k�ainitk (6.45)

where the norm should be the same as used in (6.43). The algorithm thus changes to

displacement control when the sti�ness becomes less than C�1 of the initial sti�ness.
In regions where the sti�ness changes rapidly the �rst displacement increment, �a1,

which is based on the sti�ness at the beginning of the iterations, may have a direction that is

not representative for the �nal convergent increment. Thus, if the �rst increment is too long
the iterations may not converge within a maximum number of iterations, see Figure 6.10a.

It may therefore be necessary locally to restart the iterations from the previous equilibrium
point with a new �rst increment. In this framework the restart procedure, which is evoked

if convergence is not obtained within imax iterations, sets the new �rst increment to half

the previous one and performs new equilibrium iterations on basis of this estimate, see
Figure 6.10b. This procedure is continued until convergence is reached, thus after m

reductions the resulting �rst increment is

�a1 = �astart ; = 0:5m (6.46)

where �astart is the �rst increment evaluated at the beginning of the load step.

90 Non-linear �nite elements

Figure 6.10: Restart: a) Full �rst increment, b) Reduced �rst increment

Having reached convergence a new load increment is applied. It is, however, convenient

to keep the reduced increment until it is observed that the direction of the �rst increment

again is representative for the �nal increment. This reduction is imposed via the step

length restriction, (6.43). The maximum step length, lmax, in the load step following a

reduction is reduced by the same factor, , as the �rst increment, i.e.

lmax = lmax (6.47)

This maximum step length is kept until the �rst increment again becomes dominant. The
number iterations, i, that is used to obtain convergence may be used as an indicator. If
the number of iterations, i, in the previous load step is lower than a desired number of

iterations, id, the maximum step length is doubled, i.e.

lmax = min(labs; 2lmax) (6.48)

Thus it is assured that the �rst increment can not exceed the absolute maximum, labs.

In connection with the arc-length method a continuous modi�cation of the step length is
often used, see e.g. Cris�eld (1981). The new maximum step length is scaled relative to the
ratio of the desired number of iterations to the number of iterations used in the previous

load step, i.e.

lmax = min

�
labs;

�
id

i

��
lmax

�
(6.49)

where the exponent, �, is usually chosen in the interval [0:5; 2:0].

The full implementation of the orthogonal residual algorithm is presented as Algo-
rithm 6.3. It uses modi�ed Newton-Raphson sti�ness update that can be supplemented by

the quasi-Newton correction, (6.38). The quasi-Newton correction is evoked if the boolean

QN is TRUE. Convergence is measured using a reduced Euclidian norm where only the free
force components are included, i.e.

reduced norm

rnorm(f):
for (i=1 to no dof) do
if (�x(i) = FALSE)
norm += sqr(f(i))

return sqrt(norm)

6.2. THE ORTHOGONAL RESIDUAL METHOD 91

Convergence is obtained if

krkred < " k�fkred (6.50)

where " is the convergence threshold.

If convergence is not obtained within i max iterations the restart procedure is evoked.
It sets a boolean new step equal to FALSE, whereby a sti�ness update and determination

of a new �rst increment are omitted. Instead the increment, da, is found as the reduction

factor, psi, times the �rst increment, da start, which is saved in the beginning of a new

load step. When convergence is obtained the boolean new step is set TRUE, thus telling
the algorithm to update the sti�ness and determine a new �rst increment. The maximum

step length, l max, is reduced by the factor, psi, before psi is reset to 1. The total dof, a,
and load, fe, is then updated by their converged increments, da and xi*df.

The provisions made to make the orthogonal residual algorithm workable can be used

to formulate an application of the arc-length method as well. The changes, however, may

simply be introduced as options in the orthogonal residual algorithm, Algorithm 6.3.
It should be noted that the programming of the global solution algorithm is entirely done

on application level, cf. Section 3.5, once the Element class has provided a representative

tangent sti�ness and the internal force.

92 Non-linear �nite elements

Algorithm 6.3: Application for solution of non-linear equations

initialize:
a = da = fe = 0
psi = 1
new step = TRUE
for (n=1 to no loadstep) do
begin load step
update sti�ness and �nd �rst increment:
if (new step = TRUE)
f

K = 0
for (elem=ellist.start() to ellist.end) do
elem.assm sti�ness(K)

factor(K,�x)
da old = da
solve(K,da,df,�x)
if (dot(da old,da) < 0)
df = {df
da = {da

l = norm(da)
if (n=1)
l abs = l max = c * l

if (i < i d)
l max = min(l abs,2*l max)

rho = min(1,l max/l)
da start = da
da *= rho
if (ARC = TRUE) xi = rho

g

6.2. THE ORTHOGONAL RESIDUAL METHOD 93

Algorithm 6.3: (continued)

equilibrium iterations:
i = 0
do

f
i += 1
� = 0
for (elem=ellist.start() to ellist.end) do
elem.assm intforce(�,a+da)

dq = � { fe
if (OR = TRUE) xi = dot(dq,da)/dot(df,da)
r = {dq + (xi * df)
solve(K,delta,r,�x)
if (OR = TRUE and QN = TRUE)
eta = {dot(dq,delta)/dot(dq,da)
delta /= (1 + eta)

else if (ARC = TRUE)
dxi = dxi(da,da start,delta,l max)
delta += dxi * da start
xi += dxi

da += delta
g
until (rnorm(r)<EPS*rnorm(df) or i>i max)
restart:
if (i>i max)
f

new step = FALSE
psi *= 0.5
da = psi * rho * da start
if (ARC = TRUE) xi = rho * psi

g
update:
else

f
new step = TRUE
l max *= psi
psi = 1
a += da
fe += xi * df
for (node=nolist.start() to nolist.end) do
node.get disp(a)
node.get load(fe)

g
end load step

94 Non-linear �nite elements

6.3 Extensions to the Element class

A solution strategy based on (6.14) requires that the Element must be able to evaluate the
internal force and the current sti�ness from the total displacement, a. There are di�erent

ways to obtain this: either Element methods take the total displacement as argument or

they retrieve the updated values from the Nodes.
ObjectFEM usually uses a modi�ed Newton-Raphson sti�ness update evaluating the

sti�ness matrix at each equilibrium points. For each equilibrium state the Nodes store the
converged displacement. The Element can thus retrieve the displacement by the get dof
method and evaluate the sti�ness. In this way the initial declaration of sti�ness, where it
does not take arguments, is retained.

The internal force is always evaluated on basis of the current displacement estimate,

which may not correspond to equilibrium. Retrieving the displacement from the Nodes
would mean that these should store non-converged increments and provide a method that

returns the updated displacement to the Element. In ObjectFEM the Element methods,

assm intforce and intforce, take the global displacement vector as argument, thus avoiding
addition of attributes and methods to the Node. Solution of non-linear problems adds only

two methods to the existing linear Element class: assm intforce and intforce. The �rst is a
static method that takes care of the extraction of the element displacement from the global
displacement vector and after evaluation of the internal force assm intforce assembles the
updated values in the global vector containing the internal force, i.e.

assm intforce

Element.assm intforce(gl �nt,a)
size = no dof * no nodes
for (i=1 to size) do

dof(i) = a(dofno(i))
�nt = intforce(dof)
for (i=1 to size) do

gl �nt(dofno(i)) += �nt(i)

The method intforce is a virtual method, that must be de�ned for elements that uses either

a non-linear strain measure or a non-linear material model, but also for linear elements that
are used in a non-linear analysis. The extended Element class is illustrated in Figure 6.11.

Figure 6.11: Extension of Element to non-linear problems

Chapter 7

Bar elements

The solid mechanics element presented in Chapter 5 may be used in all types of structural

analysis, e.g. describing bars, beams, plates or shells. In classical structural mechanics the
continuum formulation is condensed into specialized theories such as beam theory or plate

theory depending on the shape and loading conditions of the structural member. Using
these theories the number of degrees-of-freedom is reduced and it is possible in special
cases to obtain exact solutions to the di�erential equations. Special types of elements are

based on such theories. Unlike the potential elements and the continuum elements, they
give exact solutions to the di�erential equations and are an e�cient way to analyze more

complicated structures using the classical theories. The elements are born on discrete form,
i.e. the analytical solutions dictate the degrees-of-freedom and choice of shape functions,
hence the sti�ness matrix and the strain measure can be evaluated explicitly.

The bar element is one of these. This chapter presents an elastic bar element with
�nite deformation which uses a non-linear strain measure. This bar element represents a

non-linear problem where the internal force can be evaluated explicitly from the estimated
displacement, cf. Chapter 6.

First, the equilibrium equations for an elastic bar are formulated. This establishes

the internal force in terms of the current displacement increment. Di�erentiation of the
equilibrium equations leads a tangent sti�ness that can be used in the global solution
algorithm. From the non-linear formulation the linear part can be extracted to give a neat

formulation of a geometrically linear bar element, implemented as class Bar. The non-linear
bar element class, NlBar, is derived from Bar. In order to use NlBar element in a non-linear

analysis the sti�ness method is modi�ed so that it represents the tangent sti�ness and the

internal force is evaluated by the method intforce. The chapter is concluded by examples
where the orthogonal residual method and the arc-length method, Algorithm 6.3, are used

for tracing the equilibrium path of non-linear truss structures.

7.1 Elastic bar element with �nite deformations

In this section a bar element with �nite deformations based on the Green strain measure

is formulated. The purpose is to obtain expressions for the internal force and a tangent
sti�ness. The formulation is given on matrix form and applies to both two- and three-

95

96 Bar elements

Figure 7.1: Elastic bar

dimensional problems. The presentation follows Krenk (1993a).

Consider an elastic bar with 2 nodes, A and B, as shown in Figure 7.1. The initial
state is described by a directional vector, x0, de�ned from the nodal position vectors,

x0 = xB0 � xA0 (7.1)

Subjecting the bar to 2 end forces, pA and pB, produces displacements in each node, uA

and uB. The state of the bar is, however, only a�ected by the di�erence in the nodal
displacements, thus a deformation vector, u, is introduced as

u = uB � uA (7.2)

Thereby the deformed bar can be described by a directional vector, x1,

x1 = xB1 � xA1 = x0 + u (7.3)

For bars undergoing �nite deformations it is necessary to use a non-linear strain measure.
Here the Green strain is used,

"G =
l21 � l20
2l20

(7.4)

where l0 is the initial length of the bar and l1 is the length of the deformed bar. Inserting
the vector representations of the undeformed and the deformed bar yields

"G =
xT1 x1 � xT0 x0

2l20
=

�
x0 +

1

2
u
�T
u

l20
(7.5)

in which (7.3) is used to rewrite x1. The total Green strain, "G, is found as a projection

of the displacement, u, onto the intermediate direction vector, x0 +
1

2
u. Taking the �rst

variation of this gives

�"G =
1

l20
(x0 + u)T �u =

1

l20
xT1 �u (7.6)

7.1. ELASTIC BAR ELEMENT WITH FINITE DEFORMATIONS 97

The increment in the Green strain, �"G, is found as the projection of the displacement

increment, �u, onto the current direction vector, x1. Assuming that there exists an axial

force, N , which is conjugate to the increment in the Green strain, �"G, makes it possible

to state a virtual work, �V . The internal force, N , works through the strain increment,

while the external load, p, works through the nodal displacement increments, i.e.

�V =
Z
l0

N �"G ds� (pA)T �uA � (pB)T �uB

=
Z
l0

N

l20
xT1 �u ds� (pA)T �uA � (pB)T �uB = 0 (7.7)

Dividing the internal work in contributions from �uA and �uB enables (7.7) to be written

as

�
 Z

l0

N

l20
x1 ds+ pA

!T

�uA +

 Z
l0

N

l20
x1 ds� pB

!T

�uB = 0 (7.8)

As this must hold for arbitrary displacement integration yields

pA = �pB = �N
l0
x1 (7.9)

This reveals that the true axial force in the deformed bar is not the conjugate force, N ,
but the scaled internal force, (l1=l0)N . This axial force balances 2 end forces that in the
deformed state are aligned with the deformed bar, x1.

For linear elastic materials the conjugate force, N , is found from the strain,

N = EA"G (7.10)

where E is Youngs modulus and A is the cross section area of the bar. It is notable that

even though a linear constitutive model is used, the force, N , is non-linear with respect
to the deformation, u, through the Green strain. Using the constitutive relation (7.9)

becomes

pA = �pB = �"GEA
l0
x1 (7.11)

This is the balance equation establishing the relation between external load, p, and the
internal force. Thus the balance equation, (7.11), is found from the weak formulation, (7.7).

It is interesting to notice the resemblance between (7.7) and (2.11), thus the formulation

given in Chapter 2 is able to capture the e�ect of a non-linear strain measure. The internal
force given as equivalent nodal forces can be evaluated from (7.11). This de�nes the

evaluation of the internal force in terms of the strain, "G, which is given as a non-linear
measure of the displacement - the dof.

98 Bar elements

7.1.1 Tangent sti�ness

The solution strategies also requires the element to give a representative sti�ness measure

for the current state. The tangent sti�ness is a commonly used measure and it can be

found by di�erentiation of the balance equation, (7.9),

dpA = �dpB = �
�
x1

l0
dN +

N

l0
du

�
= �

x1

l0

dN

du
+
N

l0
I

!
du (7.12)

The �rst term in (7.12) relates to the change in the internal force, dN , appearing if the

bar is deformed. The last term appears due to a change in the direction, e.g. a rigid body

rotation. It is related to the initial stress, N , which may be introduced as prescribed

prestressing or due to a deformation of the bar. By introducing the constitutive equation,

(7.10), and (7.5) the �rst term is rewritten as

dN

du
=
EA

l0

d"G

du
=
EA

l20
xT1 (7.13)

whereby (7.12) can be given as

dpA = �dpB = �

x1x

T
1

l30
EA+

N

l0
I

!
d(uB � uA) (7.14)

On matrix form this is

�
dpA

dpB

�
=

EA

l30

�
x1x

T
1 �x1xT1

�x1xT1 x1x
T
1

�
+
N

l0

�
I �I

�I I

�! �
duA

duB

�
(7.15)

This establishes the balance equations on incremental form with the tangent sti�ness, Kt,
describing a linear relation between the increments in the external load and the increment
in the node displacement:

df = Kt da (7.16)

where the 2 vectors are

df =

�
dpA

dpB

�
; da =

�
duA

duB

�
(7.17)

The tangent sti�ness can be used as a linear predictor by the non-linear solution algo-

rithms. It can be divided into 3 parts: linear sti�ness, K0, initial displacement sti�ness,

Ku and initial stress sti�ness, K�, i.e.

Kt = K0 +Ku +K� (7.18)

where

K0 =
EA

l30

�
x0x

T
0 �x0xT0

�x0xT0 x0x
T
0

�
(7.19)

7.1. ELASTIC BAR ELEMENT WITH FINITE DEFORMATIONS 99

Table 7.1: Concepts for elastic bars

Initial state: x0
Deformed state: x1
Deformation: u

Strain: "G
Stress: N

Internal force:
N

l0
x1

External load: p

Constitutive model: N = "GEA

Dof: a

Load: f

Tangent sti�ness: Kt = K0 +Ku +K�

is the sti�ness corresponding to a linear strain measure. The initial displacement sti�ness
contains the contribution that follows from using a non-linear strain measure and has the

form,

Ku =
EA

l30

�
x0u

T + uxT0 + uuT �(x0uT + uxT0 + uuT)
�(x0uT + uxT0 + uuT) x0u

T + uxT0 + uuT

�
(7.20)

The initial stress sti�ness is identi�ed as the last term in (7.15),

K� =
N

l0

�
I �I

�I I

�
(7.21)

The initial stress sti�ness arises, as it is seen from (7.12), because the internal force, N ,

must change its direction.

7.1.2 Total and updated Lagrangian formulation

The representation of the bar element presented above relates the state of the bar to an

initial con�guration, x0, thus a Lagrangian formulation is used. The solution of non-linear
problems involves a number of load steps, �f1;�f2; :::, in which deformed con�gurations,

x1;x2; :::, are determined. This gives 2 possibilities for the choice of reference con�guration.
In the total Lagrangian formulation the initial con�guration, x0, is retained as reference. In

this case the tangent sti�ness must include all 3 terms in (7.18). In an updated Lagrangian

formulation the previous equilibrium con�guration, xn�1, is used as reference. In this case

100 Bar elements

the tangent sti�ness does not contain the initial displacement sti�ness as u = 0. The

tangent sti�ness thus becomes

Kt = K0 +K� (7.22)

where the linear sti�ness is evaluated replacing x0 with the current con�guration, xn�1.

The initial stress sti�ness requires the internal force, N , to be evaluated. This is done from

the total strain in the current con�guration,

Nn�1 = EA"G(x0;un�1) = EA

�
x0 +

1

2
un�1

�T
un�1

l20
(7.23)

It is noted that using the updated Lagrangian formulation simply consists of adding an

initial stress contribution to the sti�ness of a linear bar element described in the updated

con�guration. Still, the strain and consequently also the internal force is scaled relative

to the initial length, l0. If instead the current length, ln�1, is used as scaling factor in an
updated Lagrangian formulation, the solution becomes sensitive to the load increment size,

see e.g. Yang & Leu (1991).

7.2 Linear bar element

From the derivation of the non-linear bar element emerges a neat formulation of the linear
bar element. Neglecting the non-linear terms the linear sti�ness,K0, represents the sti�ness

of a bar with a linear strain measure,

" =
�l

l0
=
xT0 u

l20
(7.24)

The advantage of this formulation to those that are formulated in local coordinates and
then transformed into the global system is that the transformation is avoided. For a bar in
3D the entire computation consists of obtaining the unnormalized directional vector, x0,

evaluating its length and evaluate the exterior product which gives a 3� 3 matrix. From
this matrix the element sti�ness matrix may be obtained by simple assignment.

sti�ness

Bar.sti�ness():
x = x0()
xx = x * x
size = no dof * no nodes
Matrix Ke(size,size)
for (i=1 to no dof) do
for (j=1 to no dof) do
Ke(i,j) = Ke(i+no dof,j+no dof) = xx(i,j)
Ke(i+no dof,j) = Ke(i,j+no dof) = {xx(i,j)

EA = material.put par(1) * property.put par(1)
l3 = length*length*length
factor = EA/l3
return Ke*factor

7.3. GEOMETRICALLY NON-LINEAR BAR ELEMENTS 101

The attribute, length, which stores the initial length of the bar, is introduced to make the

sti�ness method compatible with the linear sti�ness in the non-linear bar element. The

method uses an overloaded operator, Vector.operator *, to form the exterior product of two

vectors, xxT . A method x0 is de�ned for obtaining the directional vector from the node

coordinates:

x0

Bar.x0():
return node(2).put coor() { node(1).put coor();

The constitutive parameters, E and A, are de�ned by an Elastic object and a Property
object. The Bar uses the Elastic class that was de�ned for the continuum elements, Sec-

tion 5.1. The Property is a one parameter object of the same type as for the plane problems,

Section 4.4.

The single strain component, the axial strain, is found from (7.24):

strain

Bar.strain():
a = get dof()
Vector u(no dof)
for (i=1 to no dof) do

u(i) = a(i+no dof) { a(i)
x = x0()
return dot(x,u)/(length*length)

where dot calculates the scalar product of 2 vectors. The conjugate stress - the axial force
- is given by

N = EA" (7.25)

In pseudo-code this becomes

stress

Bar.stress():
return material.put par(1) * property.put par(1) *strain()

The strain and the stress are constant within the element, thus it is only necessary to

evaluate these in 1 point. This point may be referred to as a generalized Gauss point,
therefore no gauss = 1. The Bar element is presented in Figure 7.2.

7.3 Geometrically non-linear bar elements

The linear bar element presented above was a by-product of the non-linear formulation

given in Section 7.1. A non-linear bar element, NlBar, which uses updated Lagrange for-

mulation, (7.22), is derived from Bar.
The evaluation of the linear part of the sti�ness can be carried out by Bar:sti�ness by

letting the method x0 be virtual. The updated geometry at a new equilibrium point is

x = x0 + u:

102 Bar elements

x0

NlBar.x0():
a = get dof()
Vector u(no dof)
for (i=1 to no dof) do

u(i) = a(i+no dof) { a(i)
return Bar.x0() + u

All scaling, however, refers to the initial length of the bar and it is therefore necessary to

have the extra attribute, length, which is initialized with the original length of the bar,

l0. In this way Bar.sti�ness represents exactly the linear part of the sti�ness. The total

sti�ness is evaluated as the sum of the linear contribution obtained from Bar.sti�ness and
the initial stress term,

sti�ness

NlBar.sti�ness():
Ke = Bar.sti�ness()
EA = material.put par(1) * property.put par(1)
factor = EA*strain()/length
for (i=1 to no dof) do
for (j=1 to no dof) do
Ke(i,j) += factor
Ke(i+no dof,j+no dof) += factor
Ke(i+no dof,j) {= factor
Ke(i,j+no dof) {= factor

return Ke

The initial stress part of the sti�ness is evaluated on basis of the strain. In ObjectFEM the

sti�ness is always evaluated from the dof that are stored in the nodes. These usually refer
to the previous equilibrium state corresponding to a modi�ed Newton-Raphson update.

The internal force is evaluated from (7.11) using the current displacement state:

intforce

NlBar.intforce(a):
Vector u(no dof);
for (i=1 to no dof) do

u(i) = a(i+no dof) { a(i);
Eg = green strain(u)
EA = material.put par(1) * property.put par(1)
factor = Eg * EA / length
p = factor * (Bar.x0()+u)
Vector �nt(no dof*no nodes)
for (i=1 to no dof) do

�nt(i) = {p(i)
�nt(i+no dof) = p(i)

return �nt

The method, green strain, which takes the current deformation, u, as argument, calculates

the corresponding strain using (7.5):

7.3. GEOMETRICALLY NON-LINEAR BAR ELEMENTS 103

green strain

NlBar.green strain(u)
return dot(Bar.x0()+0.5*u,u)/(length*length);

The methods, intforce and green strain, use the initial direction vector, x0. However, the

directional vector evaluated by the method, x0, refers to the updated con�guration. The

initial con�guration must instead be obtained from the method Bar.x0, that does not

include the previous deformation of the bar. The de�nition of the virtual method, strain,
concludes the implementation of NlBar. It uses get dof to obtain the converged dof values

from the nodes, i.e.

strain

NlBar.strain()
a = get dof()
Vector u(no dof)
for (i=1 to no dof) do

u(i) = a(i+no dof) { a(i)
return green strain(u)

Here it is assumed that the Nodes have stored the updated dof before the strain is evaluated
by the Element. The stress is evaluated by the inherited method Bar.stress. The bar element
class is de�ned in Figure 7.2.

Figure 7.2: Linear elastic bar elements

104 Bar elements

7.4 Examples

In Chapter 6 two solution algorithms were formulated. The arc-length method of Cris�eld

(1981), Algorithm 6.1, and the orthogonal residual method, Algorithm 6.2. In the following

two examples of non-linear truss structures are analyzed using the two algorithms. The

intention is to demonstrate the behaviour of the algorithms at characteristic points, such

as limit points in the load-displacement space and in the displacement space. The issue is

not to compare the numerical e�ciency of the methods - for such a purpose the examples

are too small and too special.

7.4.1 Example 1: Two-bar truss

Figure 7.3: Two-bar truss with lateral support by a spring

A symmetric two-bar truss supported by a lateral spring is shown in Figure 7.3. The truss

is tilted with an inclination, c, which could be regarded as a geometric imperfection of the
ideal structure, c = 0. A vertical downward load, P , acts in the center node. The structure

is �xed at the two end nodes, while the spring remains horizontal during deformation. The
structure is described by two displacement components: the vertical displacement of the
center node, w, and the horizontal displacement, u, in the direction of the spring. Due

to symmetry the other horizontal displacement component is zero. The truss consists of
two non-linear bar elements with axial sti�ness, EA, and an initial length, l0. The lateral
support is provided by a linear spring with the sti�ness, k.

The truss is described by the non-dimensional parameters: height h=b = 0:2, inclina-
tion with vertical, c=h = 0:005, and the spring sti�ness kb=EA = 0:02. A suitable load

increment, �P , may be estimated from the bifurcation load of the ideal vertical structure
Pb = 0:0027EA, see e.g. Krenk (1993a). A load increment of �P = 0:001EA thus gives

approximately 3{4 equilibrium points before the �rst limit point is reached. The maximum

step length lmax is adjusted if the number of equilibrium iterations di�ers from a desired
number, id = 3. For the arc-length method the continuous modi�cation of the step length
is used with � = 0:5, whereas the discrete modi�cation is used for the orthogonal residual

method, cf. Section 6.2.2. In both algorithms the absolute maximum step length is set

to twice the initial increment, i.e. C = 2 in (6.45). The algorithms are restarted with

half the previous increment size if the number of equilibrium iterations exceeds imax = 6.

Convergence is measured by the reduced Euclidian norm with a threshold " = 10�3, (6.50).

7.4. EXAMPLES 105

Figure 7.4: Equilibrium path for the two-bar truss

Traces of the equilibrium path evaluated by the orthogonal residual method are shown
in Figure 7.4. It is seen that the equilibrium points are concentrated around the load limit

points. At these points the direction in the displacement space changes dramatically and
it is therefore necessary for the algorithm to restart the load step with a smaller increment.

This reduced increment size is kept until the number of iterations becomes less than id = 3,
i.e. at P � 0. The load-displacement curve w � P is almost linear and therefore the step

length could presumably be increased without loosing any information. However, this

linearity hides a non-linearity in the w � u space. The equal spacing on the equilibrium

points on this linear part shows that the step length restriction is active thus the e�ective

sti�ness is less than C�1 = 1=2 of the initial sti�ness.

The critical points in the analysis are the load limit points where the displacement

increment must change its direction. Figure 7.5 illustrates how the orthogonal residual

method and the arc-length method iterate around the �rst load limit point. In the orthog-

onal residual algorithm the displacement increment consists of a contribution along the
current direction and a correction produced by the residual. The initial increment is evalu-

ated from the tangent sti�ness and does not represent the direction of the �nal increment.

In the orthogonal residual method the magnitude of the initial increment is kept constant

106 Bar elements

Figure 7.5: Equilibrium iterations at load limit point: 2 orthogonal residual method, �
arc-length method

and the subincrements give additional contributions. The �nal increment is thus allowed
to exceed the maximum step length and therefore the total increment around the limit
point becomes relatively large. The arc-length, however, the total increment must ful�l

the constraint that the arc-length is constant for all increments. For the present version
of the arc-length method the constraint forms a circle (hyper-sphere) in the displacement

space on which the iterative increments are situated, cf. Figure 7.5.

Table 7.2: Two-bar truss analysis

Orthogonal residual Arc-length
Discrete Continuous Continuous

�P=EA ntot itot res ntot itot res ntot itot res

0:5 � 10�3 55 184 3 57 172 1 55 166 0

0:75 � 10�3 45 187 7 49 156 2 58 195 5
1:0 � 10�3 37 164 5 44 143 2 44 148 3
1:5 � 10�3 33 159 7 41 139 3 40 131 1

The truss is analyzed with di�erent load increments. The orthogonal residual method
is with both the discrete adaptive modi�cation of the step length and the continuous

modi�cation as used for the arc-length method. Table 7.2 summarizes the number of load
steps, ntot, the total number of iterations, itot, and the number of restarts, res, used to

compute the entire equilibrium path, Figure 7.4, for di�erent load increments. The two

methods that use the continuous schemes produce almost identical results. It is seen that

the orthogonal residual method with discrete adjustment of the step length uses fewer load

steps than both analyses with continuous modi�cation of the step length. However, the

7.4. EXAMPLES 107

number of iterations and the need for restart is higher for the discrete scheme. Usually,

the computational overhead of the equilibrium iterations in a modi�ed Newton-Raphson

scheme is small compared to the sti�ness update. This might suggest that the discrete

adaptive scheme is to be used, but general conclusions can not be made from this special

problem.

7.4.2 Example 2: 12-bar truss

Figure 7.6: Space truss with 12 bars

A space truss, as shown in Figure 7.6, consists of 12 non-linear bar elements with axial

sti�ness, EA. Its dimensions shown in the �gure are relative to the height, h = 1. The
structure is �xed in 6 nodes which form the zero-plane. Three vertical forces act in the free

nodes and have a magnitude of 1:5P , P and 1:5P , respectively. The symmetric deformation
of the structure is described by two vertical components, v and w, and one horizontal
component, u.

The complete deformation history resulting in an inverted form of the structure through
a series of snap-throughs is illustrated by the nine states of Figure 7.7. In state 1 the side

nodes snap through while the center node is pushed slightly upward. During this process

the forces change from positive to negative. From state 2 the load again starts to increase
pushing the center node down until it coincides with the zero-plane. At this point the load

has decreased to zero. The load then becomes negative and the side nodes start to move
upward until the completely plane structure, state 5, is reached. This is a state of complete

symmetry on the load-displacement path, and the following states retraces the previous

history in reverse order. Finally, yielding the inverted structure the all members come in
tension and the structure shows a hardening behaviour.

The full equilibrium path for a 12 bar space truss has been traced using the arc-length

method, Figure 7.8, and the orthogonal residual method, Figure 7.9. The load increment is

to �P = 0:05EA whereby the �rst limit points is reached in 4 load steps. The maximum

step length is adjusted if the number of iterations di�er from id = 3. The arc-length

108 Bar elements

Figure 7.7: Deformed con�gurations of the 12-bar space truss

algorithm uses a continuous adaptive modi�cation of the step length with � = 0:5, while

the orthogonal residual method uses the discrete adaptive scheme, cf. Section 6.2.2. In
both algorithms the absolute maximum step length is set to twice the initial increment,

i.e. C = 2 in (6.45). Both algorithms are restarted with half the previous increment size
if the number of equilibrium iterations exceeds imax = 6. Convergence is measured by the
reduced Euclidian norm with a threshold " = 10�3, (6.50).

It is seen from the w � v curve on Figure 7.8 that the arc-length method distributes
the 95 equilibrium points uniformly. These points are obtained in 291 iterations without
requiring any restarts. The displacement path is smooth and without dramatic changes

in the direction, thus tracing the equilibrium path in the displacement space, as done
by the arc-length method, is simple though not trivial because none of the displacement

components increases monotonically.
The orthogonal residual method, Figure 7.9, concentrates the 100 equilibrium point in

two regions: after state 3 and state 7. At these stationary points the displacement com-

ponent, v, shows a excessive hardening behaviour. In regions where the sti�ness increases
rapidly the modi�ed Newton-Raphson algorithm is known to have convergence problems.

In the present example this problem is handled by using full Newton-Raphson sti�ness
updates during equilibrium iterations. The analysis require 8 restarts with reduced incre-

ments of which the 4 uses full Newton-Raphson updates. The full sti�ness updates are

used at state 3 and state 7, thus the concentration of equilibrium points are related to the
requirement for full sti�ness updates.

The full sti�ness update is included by modifying the equilibrium iterations in solution

algorithm, Algorithm 6.3. The design of the classes in ObjectFEM is aimed at modi�ed

Newton-Raphson sti�ness updates, cf. Section 6.3. Still, the implementation of full Newton-

Raphson updates can be done on application level by letting the nodes store displacements

7.4. EXAMPLES 109

that are not in equilibrium. The modi�ed equilibrium iterations are given in Algorithm 7.1.

110 Bar elements

Algorithm 7.1: Equilibrium iterations with full Newton-Raphson updates

equilibrium iterations:
i = 0
do

f
i += 1
� = 0
for (elem=ellist.start() to ellist.end) do
elem.assm intforce(�,a+da)

dq = � { fe
if (OR = TRUE) xi = dot(dq,da)/dot(df,da)
r = {dq + (xi * df)

if (NR = TRUE) <-- extension
K = 0
for (elem=ellist.start() to ellist.end) do

elem.assm sti�ness(K)
factor(K,�x)

solve(K,delta,r,�x)
if (OR = TRUE and QN = TRUE)
eta = {dot(dq,delta)/dot(dq,da)
delta /= (1 + eta)

else if (ARC = TRUE)
dxi = dxi(da,da start,delta,l max)
delta += dxi * da start
xi += dxi

da += delta

if (NR = TRUE) <-- extension
for (node=nolist.start() to nolist.end) do

node.get disp(a+da)
g
until (rnorm(r)<EPS*rnorm(df) or i>i max)

7.4.3 Concluding remarks

The version of the orthogonal residual algorithm used in these two examples uses a load con-

trolled load incrementation strategy. This is not optimal because it leads to an unequally

spaced distribution of the equilibrium points - as it is clearly seen on the equilibrium curves,
e.g. Figure 7.9. Experience has shown that if the load incrementation is displacement con-
trolled, the distribution of the equilibrium points becomes better. Therefore orthogonal

residual algorithm should use displacement control, e.g. in the way that it is implemented

in the elasto-plastic analysis, Section 8.5.

7.4. EXAMPLES 111

Figure 7.8: Equilibrium path for 12-bar truss computed with the arc-length method

112 Bar elements

Figure 7.9: Equilibrium path for 12-bar truss computed with the orthogonal residual
method

Chapter 8

Elasto-plastic materials

As described in Chapter 6 the non-linear problems can be divided in those where the

internal force can be evaluated explicitly and those that are implicit, e.g. require integration
over the entire load history. The elasto-plastic material model is an example of non-linear

problems with implicit evaluation of the internal force. The global iteration schemes as
presented in Chapter 6 are assumed to take care of the global equations. This chapter
concentrates on the evaluation of the internal force, used in the global iterations, and the

de�nition of a representative tangent sti�ness.
The chapter shortly presents the theory for hardening plasticity introducing the in-

cremental formulation that is to be integrated over the entire load history. From the
constitutive relations it is possible to derive a tangent sti�ness matrix based on the elasto-
plastic constitutive matrix, Cep. Integration of the incremental constitutive relation is done

numerically and di�erent integration schemes are considered. It is assumed that Gauss in-
tegration is used, thus it is only necessary to consider a single material point within an

element.
The additions to the FEM classes are mainly related to the integration of the consti-

tutive relation. The internal force can be found using di�erent strategies, still it is found

that they fall into a common category that can be captured by few methods. These are
used to de�ne a Plastic material class, which inherits its elastic behaviour from the Elastic
material class. A von Mises associated plasticity model is presented as an implementation

of a elasto-plastic material model. The chapter is concluded by an example where the

von Mises model is used in a convergence study of the orthogonal residual methods, cf.

Chapter 6.

8.1 Hardening plasticity

Plasticity theory is based on an observation that a material in loading may experience

plastic (irreversible) deformation and in a following unloading phase regains its elastic
properties, see e.g. Chen & Han (1998). To describe the behaviour of an elasto-plastic

material the constitutive model must add two things to the elastic relations: a de�nition

of plastic loading and elastic unloading, and a ow rule describing the development of the
plastic deformation.

113

114 Elasto-plastic materials

Figure 8.1: Yield function and plastic potential

In plasticity theory the current loading state of a material point is determined by the
yield function, f , see e.g. Figure 8.1. The yield function is de�ned in terms of the stress

state, �, and some state parameters, �, i.e.

f = f(�;�) � 0 (8.1)

The stress, �, de�nes the position in the domain and the state parameters, �, describes
the size, shape and position of the yield surface relative to an initial con�guration where
only elastic deformation has taken place. The yield function divides the stress space into

two domains: an elastic domain where f < 0 and a plastic domain, f = 0, referred to as
the yield surface.

A stress increment, d�, alters the state of a material point. If the material point is

in the elastic domain, f(�;�) < 0, elastic deformations will occur. For a stress point on
the yield surface, f(�;�) = 0, a stress increment can either give elastic unloading, thus

leaving the yield surface and entering the elastic domain, or it might produce additional
plastic deformation and the point remains on the yield surface. For hardening plasticity
the unloading-loading condition follows from the Drucker postulate stating that the yield

surface is convex, see e.g. Ottosen (1987),

@f

@�

!T
d� =

(
< 0 elastic unloading

� 0 plastic loading
(8.2)

Loading is thus determined by the sign of the projection of the stress increment, d�, onto
the outward normal of the yield surface, see Figure 8.2.

The deformation in the elastic domain follows classical elasticity theory, e.g. Hooke's
law. A ow rule is introduced to describe the deformation taking place during plastic

loading. A stress increment, d�, leads to an increment in the conjugate strain, d". The

strain is divided in an elastic and a plastic part,

d" = d"e + d"p (8.3)

8.1. HARDENING PLASTICITY 115

The stress increment is common for both the elastic and the plastic strain thus can be

found from the elastic part of the strain using the incremental constitutive relation,

d� = C d"e = C (d"� d"p) (8.4)

where C is the elastic constitutive matrix, e.g. (5.7). The ow rule relates the development

of plastic strain, d"p, to a plastic potential, g(�;�), i.e.

d"p =
@g

@�
d� (8.5)

where d� is the plastic multiplier. (8.5) states that the plastic part of the strain acts in the

direction that is normal to the plastic potential with a magnitude scaled by d�, see e.g.

Figure 8.1. Plasticity theory where the yield function is used as plastic potential, g = f , is

called associated plasticity. This gives that the plastic strain develops in a direction normal

to the yield surface and (8.5) may therefore be referred to as a normality rule. Normality

implies that if the yield function is independent of some stress component, e.g. the mean
stress, then the plastic strain corresponding to this component, i.e. the dilatation, will be
zero. This representation applies well to metal plasticity. For soil and granular materials

the ow direction is usually not normal to the yield surface and a non-associated ow rule,
g ==f , must be used, Cris�eld (1991).

In case of plastic loading consistency requires that the stress increment, d�, does not
increase the value of the yield function. Thus the increment in the yield function must be
0, giving that

df =

@f

@�

!T
d� +

@f

@�

!T
d� = 0 (8.6)

This means that the stress can only be increased if the shape or position of the yield surface
changes. For work hardening materials the evolution of the yield surface depends on the

development of plastic strain, see e.g. Chen & Han (1988). The increment in the state
variables, d�, is related to the increment in the plastic strain, d"p, through the plastic

multiplier, d�,

d� = h d� (8.7)

Figure 8.2: Hardening plasticity: a) unloading, b) plastic loading

116 Elasto-plastic materials

where h(�;�) is a set of hardening functions. Inserting this into the consistency relation,

(8.6), yields

@f

@�

!T
d� � H d� = 0 (8.8)

with the hardening modulus, H, de�ned as

H = �

@f

@�

!T
h (8.9)

Inserting (8.5) into the constitutive relation, (8.4), and combining it with (8.8) gives an

expression for the plastic multiplier

d� =

C
@f

@�

!T

H +

@f

@�

!T
C

@g

@�

! d" (8.10)

Using (8.10) and (8.5) in the incremental constitutive relation, (8.4), enables the stress

increment to be stated in terms of the total strain increment,

d� =

2
666664C�

C
@g

@�

!
C
@f

@�

!T

H +

@f

@�

!T
C

@g

@�

!
3
777775 d" (8.11)

which is a tangent sti�ness relation on the form

d� = Cep(�;�) d" (8.12)

Cep is the elasto-plastic constitutive matrix. The �rst term is the pure elastic matrix and

the last term is the correction due to development of plastic strain. It should be noted
that the correction is only active if the material point is in the plastic domain. The elasto-

plastic constitutive matrix, Cep, represents the tangent behaviour of the material point at
a given stress state. This constitutive relation should thus be used to establish the tangent

sti�ness, (6.6), used in the next load step. It is noted that for non-associated plasticity the

elasto-plastic matrix is unsymmetric, thus the tangent sti�ness matrix, Kt, also becomes
unsymmetric.

8.1. HARDENING PLASTICITY 117

Table 8.1: Concepts in plasticity theory

Strain: d" = d"e + d"p

Stress: d�

Yield function: f(�;�)

Plastic potential: g(�;�)

Flow rule: d"p = d� (@g=@�)

Evolution law: d� = d�h(�;�)

Constitutive model: d� = Cep d"

8.1.1 Hardening rules

The hardening rules de�ne the modi�cation of the yield surface that takes place due to
plastic ow. The size, shape and position of the yield surface is determined by the state

variables, �, whose development is related to the plastic deformation through the plastic
multiplier, d�, cf. (8.7). A yield surface may be written on the following form

f(�;�) = F (� � ��)� �Y (�) = 0 (8.13)

where the state parameters, �, are divided into two sets

� =

�
��
�

�
(8.14)

The yield stress, �Y (�), determines the size of the yield surface. Its development is de-

scribed through the parameters, �. The function, F (� � ��), describes the shape and
position of the yield surface. The parameters, ��, represents a translation of the yield
surface from its initial center. These parameters are sometimes termed pseudo-stress or

back-stress due to their direct relation with the stress, �, see e.g. Figure 8.3b.
It is noted that the yield surface retains its shape, thus (8.13) can not describe arbitrary

hardening. The formulation, however, captures two distinct types of hardening models:
isotropic hardening and kinematic hardening. In an isotropic hardening model the yield

surface expands in all directions, but retains the shape and position, thus the yield stress

increases in all directions, Figure 8.3a. In kinematic hardening, Figure 8.3b, the yield
surface translates, but retains its shape and size. These two simple hardening models can
be used for problems without load reversals. For materials in cyclic loading the stress

path after a load reversal is not only depending on the current state, but also the previous

cycles, thus the model should include some kind of memory as well, Ristinmaa (1993).

118 Elasto-plastic materials

Figure 8.3: Hardening rules: a) isotropic, b) kinematic

8.2 Integration of stress

Non-linear solution strategies use the residual force to modify the current displacement
estimate, a. The residual is the di�erence between the external loads and the internal

force corresponding to a displacement estimate. The internal force is found by integration
of the total stress in each element, i.e.

f eint =
Z

e
BT�(a) d
 (8.15)

In each point the total stress is calculated as a sum of two contributions: the stress at the
previous equilibrium state, �0, and an additional stress increment, ��, i.e.

� = �0 +�� (8.16)

The �nite stress increment, ��, in a point is found by integrating the in�nitesimal consti-

tutive relation, (8.12),

�� =
Z
d� =

Z "0+�"
"0

Cep d" (8.17)

The �nite increment in the strain, �", is found from the estimate on displacement incre-

ment that is provided by the global solution algorithm, i.e.

�" = B�a (8.18)

The integral, (8.17), must be evaluated numerically. There are two sources of integration

error: a global discretization error and a local discretization error. The global solution
algorithm provides �nite strain increments, �". These represent a piecewise linear ap-

proximation to the true strain path. The total stress used in (8.15) therefore represents

an approximation to the true equilibrium state, even if the integral, (8.17), in the previous

load steps has been evaluated exactly. This type of integration error can only be reduced

8.2. INTEGRATION OF STRESS 119

by letting the increment size be relatively small. The local discretization error is related to

the approximation of the integration path. The path followed in the integration is depen-

dent on the current state, � and �, and because the relation is non-linear it is generally

necessary to use a iterative scheme. The following sections give a brief introduction to

integration of the incremental constitutive relations identifying the standard parts of the

integration schemes. A more comprehensive description is given e.g. in Cris�eld (1991).

8.2.1 Explicit integration

In the forward Euler scheme the in�nitesimal relation is replaced by a �nite incremental

relation,

�� = Cep(�0;�0)�" (8.19)

where the tangent sti�ness, Cep, is evaluated at the previous equilibrium point. A similar

scheme can be employed for the update of the state parameters, �. This linear approxima-
tion can be re�ned to a piecewise linear integration using the subincremental method, see

e.g. Cris�eld (1991). In the subincremental methods the strain increment, �", is divided
into m subincrements, i.e.

�" =
�"

m
(8.20)

The �nite stress increment is then determined as the sum of m stress subincrements, ��k,

each evaluated as a forward Euler step:

��k = Cep(�k�1;�k�1) �" ; ��k�1 =
k�1X
i=1

��i (8.21)

where the updated values of the stress, �k�1, and the state parameter, �k�1, are used in
the evaluation of the tangent sti�ness. Another simple re�nement of the forward Euler

scheme is a two-step procedure presented by Zienkiewicz & Taylor (1991). In the two-step
procedure a forward Euler step is taken with half the total strain increment, i.e.

��1=2 = Cep(�0;�0)
�"

2
(8.22)

This mid-point state is assumed to be representative for the tangent sti�ness and the full

stress increment is evaluated as

�� = Cep(�1=2;�1=2)�" (8.23)

The methods presented above are referred to as explicit because the integration does not
use any correction to ensure that the yield condition, (8.1), is ful�lled. Generally, the

stress increments evaluated with these methods tend to drift away from the yield surface,

see Figure 8.4, and the explicit schemes thus introduce errors that accumulate for each

load step.

120 Elasto-plastic materials

Figure 8.4: Explicit integration: a) forward Euler, b) subincremental method, c) mid-point

method

8.2.2 Return mapping algorithms

The explicit integration schemes have the inherent problem that the evaluated stress does

not lie on the yield surface, Figure 8.4. In the return mapping algorithms iterations are

used to ensure that the �nal stress ful�ls the yield condition, (8.1). The iterations are
continued as long as the absolute value of the yield function exceeds a given tolerance

limit. The method presented in the following is a one-step procedure, like the forward
Euler scheme. Still, it can be re�ned with subincrements to increase the accuracy of the

integration, see e.g. Krieg & Krieg (1977).
The stress increment, ��, can be evaluated from the constitutive relation,

�� = C(�"��"p) (8.24)

The total strain increment, �", is given, whereas the plastic strain, �"p, must be de-
termined from (8.5). The direction of the plastic strain increment is determined by the
gradient plastic potential, @g=@�. In the backward Euler scheme the stress increment, ��,

is

�� = C(�"��"p) = C�"���C
@g(�n;�n)

@�
(8.25)

where the gradient of the potential, @g=@�, is evaluated with the updated state, �n =

�0 +�� and �n = �0 +��. The plastic multiplier, ��, is evaluated such that the yield
condition is satis�ed in the new point,

f(�n;�n) = 0 (8.26)

In general the non-linear equations, (8.25) and (8.26), will not be satis�ed by the �rst

estimate. In the return mapping algorithms the stress increment is decomposed in an

elastic predictor, ��e, and a plastic corrector, ��p,

�� = C (�"��"p) = ��e ���p (8.27)

where C is the elastic constitutive matrix. The elastic predictor is used to determine a

�rst estimate on the stress, i.e.

� = �0 +��e (8.28)

8.3. CLASSES IN ELASTO-PLASTIC ANALYSIS 121

Figure 8.5: Backward Euler scheme: Return mapping algorithm

If this stress point remains in the elastic domain the stress is simply updated by the elastic

term. If the stress prediction refers to a point outside the yield surface, f(�0+��
e;�0) > 0,

the plastic correction must be evaluated. The plastic part of the strain is evaluated from
the �nite version of the ow rule, (8.5), giving the following correction,

��p = C�"p = ��C
@g

@�
(8.29)

where the plastic multiplier, ��, is evaluated from (8.10). The true direction of the plastic

correction is determined by the gradient of the plastic potential in the �nal stress point
which lies on the yield surface. However, this point is initially unknown and iterations are
performed using the elastic predictor, �0+��e, as starting point. The following iterations

then use the updated stress and state parameters to evaluate a new direction and plastic
multiplier. Still, the correction refers to the elastic prediction, �0 + ��e. The iteration

process is illustrated in Figure 8.5 and the algorithm is summarized in Algorithm 8.1.

8.3 Classes in elasto-plastic analysis

The elasto-plastic equations presented in the previous sections refer to a single material

point. The task of the Element is to collect and process these distributed properties and

present them to the global solution algorithm. In elasto-plastic analysis the state of the

material is individual for each point in the element, thus it is necessary to store the current

state for each Gausspoint. However, the evolution of the stress and strain depends on the

material model. Therefore the Material class needs to be modi�ed to be able to evaluate

the constitutive matrix, C, and the increments in the stress, ��, and state variables, ��,

for the individual Gausspoints. The Plastic subclass is introduced to de�ne an elasto-plastic
framework in which speci�c material models can be implemented.

122 Elasto-plastic materials

Algorithm 8.1: Return mapping algorithm

��e = C�"

if (f(�0+��e;�) > 0)

�� = ��e

�� = 0

do

H = �

@f(�0+��;�0+��)

@�

!T
h(�0+��;�0+��)

n =
@f(�0+��;�0+��)

@�

~�p = C
@g(�0+��;�0+��)

@�

�� =
nT��e

H + nT ~�p

�� = ��e � �� ~�p

�� = �� h(�0+��;�0+��)

until (jf(�0+��;�0+��)j < TOL)

8.3.1 Extension to the Element class

The Element must supply two things in order for the solution algorithms to solve a non-
linear problem: a tangent sti�ness and the internal force.

The tangent sti�ness does for elasto-plastic problems involve the elasto-plastic consti-
tutive matrix, Cep. This matrix is dependent of the current loading state of the point and

is therefore not constant over the element, as assumed in the evaluation of the sti�ness
matrix presented in Chapter 4. The evaluation of the constitutive matrix, C, is therefore
individual for each Gauss point. The modi�ed sti�ness computation becomes,

sti�ness

Continuum.sti�ness():
for (i=1 to no gauss) do

dn = dN(i)
jacobi = J(dn)
b = B(dn,jacobi)
dv = dV(i,jacobi)
Ke += b.T * material.C(gausspoint(i)) * b * dv

return Ke

It is important to realize that it is the responsibility of the Material class to evaluate

the constitutive matrix, but the Gausspoint that stores the current state. The method,

Material.C therefore takes a Gausspoint as argument.
The Element class is extended in connection with the development of non-linear solu-

8.3. CLASSES IN ELASTO-PLASTIC ANALYSIS 123

tion methods, cf. Section 6.3. This added two methods: assm intforce, which is a static

method for extracting the displacement estimate and assembling the resulting internal

force into the global force vector. The method, intforce, which is a virtual method called

by assm intforce, computes the internal force. The internal force in an element is evaluated

from the displacement using the weighted integral of the stress, (6.1).

intforce

Continuum.intforce(a):
Vector �nt(no dof*no nodes)
for (i=1 to no gauss) do

dn = dN(i)
jacobi = J(dn)
b = B(dn,jacobi)
e = b * a;
s = gausspoint(i).put stress(e)
�nt += b.T * s * dV(i,jacobi)

return �nt

For elasto-plastic problems the computation requires the Material and Gausspoint classes
to provide a number of methods such that the stress can be determined in any Gausspoint
and at any displacement state. It is, however, noticed that the method, intforce, does not
distinguish between linear and non-linear problems, relying only on the existence of the
method, Gausspoint.put stress. This makes it possible to mix linear and non-linear elements

and material models in the same analysis.

8.3.2 The Gausspoint class

In path-independent problem such as continuum mechanics with �nite deformation and

non-linear elasticity theory, the Element can evaluate the internal force directly from the
global strain estimate, thus there is no need for a local memory of the stress and strain
history. In elasto-plastic problems the total stress needs to be integrated over the complete

load history and it is necessary to save history information, i.e. the total strain, the total
stress and the state parameters at the previous equilibrium point. These are individual for

each material point and they are therefore stored in each integration point. The Gausspoint
class have attributes to store the strain, stress and state variables, i.e. stress, strain and state.
During the equilibrium iterations the internal force is evaluated in a number of intermediate

states, each corresponding to increments in the stress, strain and state parameters. Upon

convergence the total values are updated by their increments, therefore it is necessary

to have three attributes that stores the increments during the equilibrium iterations, i.e.

dstress, dstrain and dstate. To each of these attributes corresponds a set of simple access

methods (set/put), see Figure 8.6. The method, Element.intforce, uses a special version of

the Gausspoint.put stress method, namely one taking the current total strain as input,

124 Elasto-plastic materials

Figure 8.6: Extension of Gausspoint class

put stress

Gausspoint.put stress(e):
mat = element.material
dstrain = e { strain
dstress = mat.stress inc(this)
return stress+dstress

This method �rst evaluates the strain increment and from that the current increment
in the stress and state parameters are obtained from Material.stress inc. Notice that the
reference to the material is obtained through the element attribute. The current state of

the Gausspoint is obtained using an access method without any argument, e.g.

put stress

Gausspoint.put stress():
return stress+dstress

The strain, stress and state attributes are only updated explicitly when the new equilibrium

point is detected. For this purpose an update method is introduced:

update

Gausspoint.update():
strain += dstrain
stress += dstress
state += dstate

However, as it is only the Element that is explicitly called from the solution algorithm, the

Element must have a method that communicates the message to each Gausspoint, i.e.

update

Element.update():
for (i=1 to no gauss) do

gausspoint(i).update()

The extended Gausspoint class is shown in Figure 8.6.

8.3. CLASSES IN ELASTO-PLASTIC ANALYSIS 125

8.3.3 The Plastic material class

The state of a particular integration point is stored in the Gausspoints. Still, the computa-

tion of the material properties is handled by the Material class. In elasto-plastic analysis

the Material must be capable of providing a tangent sti�ness for each Gausspoint and in-

tegrating the stress and state parameters for a given strain increment. To perform these

tasks a general Material class for elasto-plastic analysis, Plastic, must de�ne a yield func-

tion, gradients of the yield function and the plastic potential and methods for describing

the hardening behaviour.

The elasto-plastic constitutive matrix, Cep, consists of an elastic part supplemented

by the plastic correction. The elastic part is inherited from the Elastic material class,

Section 5.3. In this way only plastic part of the computation lies in the hand of the

material class Plastic. The modi�ed constitutive method, C, takes the current Gausspoint
as argument, so that it is possible to retrieve relevant information.

C

Plastic.C(gp):
c = Elastic.C(gp)
s = gp.put stress()
a = gp.put state()
if (yield(s,a)) < 0)

return c
n = dyield(s,a)
se = c * n
sp = c * dplast(s,a)
h = H(s,a)
denom = h + dot(n,sp)
return (c { (sp * se))/ denom)

The method �rst retrieves the elastic part from Elastic. If the material point is elastic, the

pure elastic part is returned. If there is plastic loading the plastic correction is calculated
by use of (8.11). The method uses four additional methods: yield, dyield, dplast and H. As
these are speci�c for each material model they must be de�ned as virtual methods of the

Plastic class.
The integration of the stress increment is handled by the stress inc method. As this

method is used by the Gausspoint to evaluate the current state of the point, it is necessary to
add this as a virtual method to the base class, Material. The implementation is provided by

the subclass Plastic. In the present framework the return mapping scheme, Algorithm 8.1,

is used for integrating the stress, i.e.

126 Elasto-plastic materials

stress inc

Plastic.stress inc(gp):
c = Elastic.C(gp)
dse = c * gp.put dstrain()
s0 = gp.put stress()
a0 = gp.put state()
if (yield(s0+dse,a0) < 0)

return dse
ds = dse
da = 0
do

h = H(s0+ds, a0+da)
n = dyield(s0+ds, a0+da)
sp = c * dplast(s0+ds, a0+da)
dl = dot(n,dse)/(h+dot(n,sp))
ds = dse { dl * sp
da = dl * hard(s0+ds, a0+da)

until (abs(yield(s0+ds, a0+da)) < TOL)
gp.set dstate() = da
return ds

The evolution of the state parameters, �, depends on a set of hardening functions, h.

These are needed during iterations and this adds another virtual method, hard, to the
Plastic class.

The hardening modulus, H, is evaluated from the derivative of the yield function with

respect to the state parameters, @f=@�, and the hardening functions, h. The hardening
modulus is thus common for all types of elastic problems and may therefore be de�ned as

a static method in the Plastic class. The method takes the current stress and state vectors
as input,

H

Plastic.H(s,a):
return {dot(dyield da(s,a),hard(s,a))

The method, dyield da, de�nes the derivative of the yield function with respect to �. The
Plastic class is presented in Figure 8.8.

8.4 von Mises plasticity

The Plastic class de�nes the elasto-plastic framework. Still, the virtual methods need to

be interpreted in terms of an actual material model. This section introduces von Mises

plasticity with linear isotropic hardening for three-dimensional continuum elements, cf. e.g.

Chapter 5. The material model is simple but it contains all the features of a more advanced
plastic material model.

In metal plasticity the plastic deformation is often assumed to occur without volume

change, thus is independent of the mean stress. The mean stress can therefore be extracted

from the stress measure used to describe the yield surface and the plastic ow. The stress

8.4. VON MISES PLASTICITY 127

is decomposed in the mean stress,

�m =
1

3
(�11 + �22 + �33) (8.30)

and the deviatoric stress components,

�'�� = ��� � ����m ; ��� =

(
1 if � = �

0 otherwise
(8.31)

This decomposition de�nes a stress space described by the hydrostatic axis, �m, and the

deviatoric plane, �', which is orthogonal to the hydrostatic axis.

von Mises used an associated ow rule to describe metal plasticity. The yield criterion

is independent of the mean stress and can thus be formulated in terms of the deviatoric

stress. It can be formulated in terms of the equivalent stress, �e, de�ned from the deviatoric

stress, �', i.e.

�2e =
2

3
(�1'�1' + �2'�2' + �3'�3') (8.32)

where ��' are the principal deviatoric stress components. The equivalent stress can be
restated in the full stress components by use of (8.30) and (8.31),

�2e =
1

2

�
(�11 � �22)

2 + (�22 � �33)
2 + (�33 � �11)

2
�
+ 3

�
�212 + �223 + �231

�
(8.33)

The von Mises yield criterion with a linear isotropic hardening rule, see Section 8.1.1, can
then be written as,

f(�;�) = �e(�')� (�Y + �H) (8.34)

The von Mises yield surface is a straight horizontal line in the meridian plane, (�m; �e),
and forms a circle in the deviatoric stress plane with a radius equal to the current yield
stress, �Y + �H, Figure 8.7.

A formal evaluation of the hardening modulus, H, requires the single hardening func-

tion, h, to be de�ned. Having prescribed the linear hardening model the hardening function

is determined by use of (8.9), i.e.

H = �@f
@�

h) h = 1 (8.35)

The evolution of the state parameter, �, thereby becomes

�� = �� (8.36)

Thus, the size of the yield surface follows directly from the plastic multiplier, ��.

128 Elasto-plastic materials

Figure 8.7: Radial return for von Mises plasticity: a) meridian plane, b) deviatoric plane

The yield stress, �Y , is independent of the stress. The gradient of the yield function

can therefore be written as

@f

@�
=
@�e

@�
=

1

2�e

@�2e
@�

(8.37)

The return mapping algorithm, Algorithm 8.1, can be used to determine the stress
increment, ��. An elastic predictor, �0 + ��e, is evaluated. The plastic correction,
��p, is then calculated in the updated point. This returns the stress along the gradient

- radially - towards the yield surface, see Figure 8.7. As the yield surfaces in the two
points are concentric circles the gradient is the same in the two points, the direction of
the plastic correction is thus constant and only the magnitude, ��, which depends on the

hardening modulus, H, remains to be determined. For linear hardening H is constant,
thus the consistent point can be evaluated explicitly. Therefore the iterative strategy,

Algorithm 8.1, can be replaced by an explicit radial return algorithm, which uses a Taylor
expansion around the elastic predictor to determine the magnitude of plastic correction,
see e.g. Krieg & Krieg (1977) and Cris�eld (1991). For associated von Mises plasticity with

linear isotropic hardening this becomes

�� =
f(�0 +��e;�0)

H +

@f

@�

!T
C

@f

@�

! =
f(�0 +��e;�0)

H + 3�
(8.38)

Here, it is used that the inner product of the gradient, @f=@�, with respect to the isotropic
matrix, C, is a constant, 3�, see e.g. Krenk (1993a).

Thereby it is possible to formulate the all the relevant methods for a plastic material

class using associated von Mises plasticity with linear, isotropic hardening. The behaviour

of the von Mises material is dependent on 4 material parameters, no par=4. The elastic

constants, E and �, must be de�ned as parameter No. 1 and 2, respectively, in order for the
Elastic class to evaluate the constitutive matrix correctly. The remaining two parameters

are used to store the yield stress, �Y , and the hardening modulus, H.

The loading/unloading condition is determined by the yield function,

8.4. VON MISES PLASTICITY 129

yield

VonMises.yield(s,a):
se = equi stress(s)
return se { par(3) { par(4)*a

The yield function is de�ned in terms of the equivalent stress, �e. A method, equi stress,
uses (8.32) to evaluate the equivalent stress,

equi stress

VonMises.equi stress(s):
se = 0.5 * (sqr(s(1){s(2)) + sqr(s(2){s(3)) + sqr(s(3){s(1))
se += 3 * (sqr(s(4)) + sqr(s(5)) + sqr(s(6)))
return sqrt(se)

The full stress vector is taken as input argument. The gradient of the yield function is

found from (8.37).

dyield

VonMises.dyield(s,a):
ss = dev stress(s)
se = equi stress(s)
for (i=4 to 6) do

ss(i) = 2*ss(i)
return 3*ss / (2*se)

The method makes use of the deviatoric stress vector. This is found by removing the mean
stress from the full stress vector,

dev stress

VonMises.dev stress(s):
sm = mean stress(s)
dev = s
for (i=1 to 3) do

dev {= sm
return dev

The mean stress is evaluated from the 3 �rst terms in stress vector, namely the normal

stress terms, ���.

mean stress

VonMises.mean stress(s):
sm = s(1) + s(2) + s(3)
return (sm/3)

The plastic ow is related to the gradient of the plastic potential. For von Mises associated

plasticity the yield function is used as plastic potential. The gradient can therefore be
written as

130 Elasto-plastic materials

dplast

VonMises.dplast(s,a):
return dyield(s,a)

The development of the state parameters, �, is related to the derivative of the yield

function with respect to �. For linear hardening this is a constant, @f=@� = �H, where

the hardening modulus, H, is prescribed as material parameter 4, (H = par(4)).

dyield da

VonMises.dyield da(s,a):
return {par(4)

The linear hardening model implies that the hardening function, h = 1, simply becomes

hard

VonMises.hard(s,a):
return 1

In order to avoid iterations on Gauss point level the explicit radial return will be used to

determine the stress increment:

stress inc

VonMises.stress inc(gp)
c = Elastic.C(gp)
dse = c * gp.put dstrain()
s0 = gp.put stress()
a0 = gp.put state()
f = yield(s0+dse,a0)
if (f < 0)

return dse
h = par(4)
mu = par(1) / (2*(1+par(2))
dl = f / (h + 3*mu)
ds = dse { 3*dl*mu*dev stress(s0+dse)/equi stress(s0+dse)
da(1) = (equi stress(s0+ds) - par(3) - a0(1)*h) / h
gp.set dstate() = da
return ds

This concludes the implementation of von Mises plasticity with linear isotropic hardening.

The methods provide information used by its superclasses Plastic and Material. As each of
the methods reect a small part of the theory they are very simple. It is thus seen that by

dividing the properties of the problem into small tasks, an otherwise complex programming
task becomes relatively simple with strong possibilities of reuse. The full material hierarchy

is given in Figure 8.8.

8.4. VON MISES PLASTICITY 131

Figure 8.8: Material hierarchy

132 Elasto-plastic materials

8.5 Example

The von Mises plasticity model has been used for testing the convergence properties of the

orthogonal residual algorithm, Section 6.2, with or without the quasi-Newton correction.

The plasticity problem di�ers from the geometrically non-linear truss problems by being

monotonic in the load and thus easier to control. Therefore the example is well-suited

for demonstrating the improved convergence properties compared to the modi�ed Newton-

Raphson method.

The example uses 8-node 3D solid elements, which are known to experience locking

for incompressible elasticity and plasticity, Nagtegaal et al. (1974). Locking is avoided by

adding a mean dilatational correction to the strain measure, which imposes the constant

volume constraint, see Hughes (1987) pp. 232-237, ABAQUS (1992) theory manual.

8.5.1 Example: Plate with hole

Figure 8.9: Plate with hole - FEM model

A plate with a circular load as in Figure 8.9 is subjected to a uniform axial load with
intensity, p. The deformation of the plate is measured by the displacement, u, at the end

of the plate. The material properties are Youngs modulus, E = 2:1 105N=mm2, Poisson's
ratio, � = 0:3, yield stress, �Y = 300N=mm2, and a hardening modulus, H = 0, corre-
sponding to an elastic-perfectly plastic material. Plasticity is modelled as associated von

Mises plasticity, cf. Section 8.4. 108 eight-node 3D solid elements are used for discretizing

one quarter of the plate. and symmetry boundary conditions are imposed as shown in

Figure 8.9.

Convergence is obtained if the combined condition,

krkred < "fk�fkred ^ k�ak2 < "aamax (8.39)

is ful�lled. The convergence thresholds are "f = 10�2 on the residual and "a = 10�3 on the

displacement subincrements. Here, k � k2 is the Euclidian norm and k � kred is the reduced
Euclidian norm, (6.50). The maximum displacement, amax, is de�ned relative to the linear

elastic displacement, thus

amax = Ckaelastic(�p)k2 (8.40)

8.5. EXAMPLE 133

with the factor, C = 4.

The example uses displacement controlled load incrementation. In each new load step

a test increment, �p = 0:05 �Y , is applied. The �rst increment, �a1, is then scaled relative

to the converged increment, �a0, in the previous load step before the equilibrium iterations

are performed. In regions with fast or slow convergence it is convenient to change the initial

step size, thus a discrete adaptive scheme is applied. If the previous step has converged in

less than the desired number of iterations, id = 5, the �rst increment is doubled. If instead

convergence is not reached within a maximum number of iterations, imax = 10, all previous

iterations are discarded and the load step is restarted with half the previous increment, see

also Section 6.2.2, i.e.

k�a0k2
k�a1k2 =

8>>>><
>>>>:

min

2;

amax

k�a1k2

!
if i < id

1 if id � i � imax

1

2
if i > imax

(8.41)

This strategy resembles the load incrementation used in the arc-length method and ex-
perience has shown that the displacement controlled strategy is more stable than a load

controlled strategy used in the examples in Section 7.4.

Load-displacement curves

Figure 8.10: Plate with hole - load-displacement curve and development of plastic zones

Figure 8.10 shows load-displacement curves evaluated by the orthogonal residual methods.

The �rst point on the curve marks the elastic limit, and thereafter the plate gradually

134 Elasto-plastic materials

becomes plastic until the load capacity is reached. At three selected points the development

of the plastic zone is shown.

The �rst part of the curve represents a slow development of the plastic zone. In this

region the elastic part of the sti�ness dominates and the linear prediction is representative

for the resulting displacements. The iterations are therefore mainly used for correcting the

external load, thus the residual part of the convergence condition, (8.39), determines the

convergence. The critical points in the analysis are load step 7 and 8. Here, the sti�ness

changes rapidly because the entire cross section becomes plastic. Therefore it has been

necessary to restart with smaller increments. Once these points have been passed the

analyses become entirely displacement controlled. Due to the low e�ective sti�ness the

changes in the external load becomes relatively small and convergence is then determined

by the displacement condition in (8.39). This condition assures an accurate determination

of the direction of the displacements. The solution statistics are given in Table 8.2.

Table 8.2: Plate with hole - solution statistics

OR OR-QN MNR

n �p=�Y p/�Y i �p=�Y p/�Y i i

1 0.250 0.250 0 0.250 0.250 0 0
2 0.0493 0.299 5 0.0493 0.299 5 5

3 0.0464 0.346 5 0.0464 0.347 5 5
4 0.0425 0.388 5 0.0425 0.388 5 5

5 0.0383 0.426 4 0.0383 0.426 4 4
6 0.0596 0.486 9 0.0596 0.486 9 13
7 0.00906 0.495 20+4 0.00906 0.495 20+4 5

8 0.00391 0.499 10+8 0.00390 0.499 10+9 16
9 0.00257 0.502 3 0.00257 0.502 2 4

10 0.00300 0.505 4 0.00297 0.505 5 9
11 0.00216 0.507 7 0.00131 0.506 5 11
12 0.00128 0.508 7 0.00094 0.507 2 4

13 0.00096 0.509 3 0.00129 0.508 4 8
14 0.00108 0.510 7 0.00153 0.510 7 15

15 0.00068 0.511 7 0.00085 0.511 7 13

itot = 108 103 117
itot

nplast
= 7.7 7.4 8.4

It is seen that the two versions of the orthogonal residual method (OR: orthogonal

residual, OR-QN: orthogonal residaul with quasi-Newton correction) give almost identical

results for this problem. The di�erence occurs in load step 11 where OR uses a doubled �rst

increment because load step 10 has converged in only 4 iterations (< id = 5). OR-QN uses

the original increment size, because the previous load step was completed in 5 iterations.

So, the discrete adaptive scheme is sensitive to di�erences if the number of iterations is

close to id.

8.5. EXAMPLE 135

Convergence properties

The convergence properties of the two versions have been examined against the modi�ed

Newton-Raphson scheme (MNR). To obtain comparable results the MNR scheme has used

the load increments determine by the OR-QN analysis. The average number of iterations is

given in Table 8.2 and shows that even though OR and OR-QN uses 3 restarts, i.e. discards

30 iterations, the overall convergence is still better than MNR. Furthermore, the orthogonal

residual methods are good both in regions with low and high sti�ness, i.e. no matter if

it is the load condition or the displacement condition in (8.39) that rules convergence.

The convergence rates for three load steps are given in Figure 8.11. It is seen that the

orthogonal residual methods, being based on a modi�ed Newton-Raphson scheme, have

linear convergence. However, it is found the convergence rates are approximately doubled

in regions with low sti�ness. The di�erence between OR and OR-QN is hardly notable.

Using the quasi-Newton correction gives a slightly more conservative algorithm, which for

some problems would make the solution strategy more robust.

Conclusion

The orthogonal residual method has been used for elasto-plastic analysis of a plate with a
circular hole subjected to uniform axial loading. It is found that the algorithms are able
to determine the entire load-displacement curve without spec�cation of prede�ned load

increments. Thus, the discrete adaptive load incrementation scheme works well for the
displacement controlled algorithm. The two versions of the orthogonal residual method

give almost identical results. Both have linear convergence, which in regions with low
sti�ness are approximately twice that of the modi�ed Newton-Raphson scheme. This
implies that the orthogonal residual method is applicable for elasto-plastic analysis.

136 Elasto-plastic materials

Figure 8.11: Plate with hole - convergence rates

Chapter 9

Conclusion

The aim of this thesis has been to investigate the possibilities o�ered by object-oriented

programming in the development of an open, expandable framework for �nite element
programming. An object-oriented code, ObjectFEM, has been developed. The program

system consists of three levels:

1. Algebraic classes

2. FEM classes

3. Applications

The algebraic classes de�nes a symbolic syntax for linear algebra and can be used for

any scienti�c programming task. The FEM classes constitute a framework for implement-
ing �nite element formulations, which are used by the applications to de�ne an analysis

program. In the following the three levels will be considered separately.

9.1 Algebraic classes

The algebraic classes are user-de�ned data types which can be used like ordinary built-

in types. The Vector and Matrix classes are de�ned for linear algebra developed mainly
for programming �nite elements. They consist of overloaded arithmetic operators (+,-,*,/)

simulating the standard mathematical notation and methods for solution of linear equation

systems. The use of the algebraic classes is simple, because the declaration and operator
syntax follows the standard for built-in types, hence it is not necessary for the programmer

to change the programming style dramatically.
The purpose of introducing the algebraic classes is that the traditional error-prone

loops involved in most matrix operations can be replaced by operator calls. This has two

consequences: First, the code becomes simpler whereby the programmer is less likely to
make errors. Second, the legality of an operation will be tested before it is carried out,

thus errors related to mismatching dimensions or out-of-range operations are avoided. For
dynamically allocated arrays, as used in C and C++, the class concept o�ers another

important facility: automatic memory control. Traditionally it has been the responsibility

of every programmer who uses dynamic memory to ascertain that allocated memory is

freed correctly when it is no longer in use. For an object of a class, however, the allocated

137

138 Conclusion

memory is automatically freed, because the program itself calls a method that reclaims the

memory - the destructor.

The numerical e�ciency of the classes is not reduced compared to standard C, because

the internal operations manipulate the arrays directly. Still, for operations where one of the

arguments can not be overwritten it is necessary to create a temporary object which �nally

is copied to the global scope. These operations imply that memory is allocated and freed

more often as would have been the case if the operation was carried out explicitly in the

program. For operations on small matrices this does generally not give any computational

overhead, but for larger matrices it should be considered whether a traditional looping

technique should be employed.

The algebraic classes are de�ned in such a way that the programmer is able to modify

them to the current needs, e.g. by improving an existing operator or method, or by adding

a new one. This requires the programmer to modify the implementation of the class.

Using the existing code as model for the modi�cations the task is reasonably simple for

programmers with a basic knowledge of C++. Furthermore, the new version of the class

can be fully tested before it is linked to the existing part of the system. The changes do not
a�ect the existing codes that employ the classes, hence these can be used without being
modi�ed.

9.2 FEM classes

The FEM classes constitute a framework for programming the �nite element formulations.

Its kernel is the base classes notably Node, Element and Material. The base classes de�ne an
interface consisting of shared methods and FEM methods. The shared methods take care of
tasks that are common to all problems, e.g. model de�nition, generation and input/output.

To make these methods work a number of problem parameters is introduced mainly for
bounding the internal loops and sizing the internal arrays. This part of the class interface
thus consists of parametric methods - a technique used in procedural programming as well.

The FEM methods specify the �nite element formulation, e.g. the element sti�ness or
strain, and they are to be implemented for each new element or material type. A new ele-

ment is introduced as a subclass of the base class, Element. It inherits the shared methods
from the base class, thus by setting the problem parameters it can use an already imple-

mented shared methods. The subclass also inherits the declaration of the FEM methods

from the base class. For an element these are methods for evaluating the sti�ness, load,
strain and stress. The programmer must interpret the current �nite element formulation

in terms of these four methods. For a bar element the sti�ness, strain and stress can be

evaluated explicitly, hence its implementation involves only a few additional methods, e.g.

for evaluating the directional vector of the bar. Isoparametric continuum elements use

shape functions and numerical integration in the compuation of the element properties. It
is therefore necessary to de�ne a larger number of methods and to introduce a Gausspoint
class to manage the coordinates and weights of each integration point. The number and

type of additional methods vary from one problem to another. The base class, Element, is
therefore a programming framework where it is the responsibility of the programmer to sup-

9.3. APPLICATIONS 139

ply the entire �nite element formulation, rather than a standard scheme for programming

�nite elements. However, this combination of parametric shared methods and inherited

FEM methods enables the programmer to concentrate on the problem formulation.

For some element types and material models it is possible to obtain full advantage of

the inheritance concept. An isoparametric continuum element is mainly described by the

order of its shape functions. The speci�cation of a new element thus consists of de�ning

a shape function matrix, a gradient matrix and the integration order, while the remaining

parts, e.g. computation of the sti�ness matrix, can be inherited from an isoparametric

superclass.

In the present work bar elements and isoparametric continuum elements have been

implemented. It is demonstrated how the di�erent formulations can be captured by an

interface consisting of only four methods. Comparing this to the systems presented by

others, see e.g. Section 1.4, it is found that the common features reduce to these four

concepts, thus instead of providing a standard scheme for programming �nite elements,

object-oriented programming is used basically to structure the code into modules that are

highly independent of each other. This makes it possible to add new elements or material
models without changing the existing code. Furthermore, elements and materials inherited
from the base classes reuse existing code, hence reducing the size of the total code.

The programmer introduces new elements or materials by implementing a subclass. If,
for example, the new element belongs to a group of existing elements, e.g. isoparametric
elements, the implementation will usually consist of rede�ning a few methods. This can

be done with an existing class as model and is therefore mainly a matter of getting the
formulation correct. If instead a new problem type is to be introduced, e.g. shells or plates,

the programmer will have to provide the entire formulation, including both element and
material. It requires the programmer to consider which additional attributes and methods
are needed. If it is not likely that other elements of this type are later implemented the

programmer can simply implement the additional methods as in a traditional program.
If, however, the element is part of a group of elements of which others are likely to be

introduced later on, the programmer should consider de�ning the methods so that they
can be inherited by subclasses. This will require the programmer to be familiar with the
inheritance concept and its implementation in C++. Considering ObjectFEM mainly as a

laboratory for �nite element programming the author �nds that the �rst technique where

inheritance is not taken into account should be employed. In this way the programmer

may become familiar with the system without having to know much about object-oriented

programming.

9.3 Applications

The algebraic classes and FEM classes provides a macro-language for programming a �nite
element analysis program - an application. An application consists of model de�nition
and generation, formation and solution of the global equation system, and postprocessing.

The model de�nition and generation take care of model input. In this phase the available

element types or material models must be known so it is possible to typecast the object in

140 Conclusion

order to activate the appropriate version of the methods. In the following no distinction is

made between di�erent element or material types. The formation and solution of the global

equations form the solution strategy. In the present work there are applications for linear

and non-linear analyses. They are written in terms of Elements and Nodes, i.e. without
reference to the speci�c formulation. This enables the user to analyze di�erent problem

types with the same application. Also the use of the macro-language gives a compact

code consisting of standard loops for communication with Element and Node objects and
otherwise linear algebra handled by the algebraic classes. It is the experience that this

macro-language makes it easy to program new solution algorithms. The application uses

existing facilities, thus the programmer is only required to learn some basic constructs for

manipulation of the �nite element model, but not the object-oriented programming style.

Having an existing program as model it is therefore simple to make a new application -

especially if it is possible to reuse the input module that de�nes the model.

9.4 An open, expandable framework

Object-oriented programming has been used for structuring �nite elements. It is found that

the programmer bene�ts in two ways. First, the �nite element analysis can be divided into
three levels: linear algebra, �nite element formulation and solution strategies. In object-
oriented programming this structure gives a distributed architecture where the di�erent

parts can be developed independently of each other. This enables the programmer to
modify one part of the program without a�ecting the other parts. Second, the �nite element

formulation relates to three concepts: node, element and material. These concepts can be
used to de�ne base classes in an object-oriented structure. The base classes do not de�ne a
standard scheme for implementing elements and materials, but provide a framework where

only the �nite element formulation is handled by the programmer. Objects are thus used
for structuring the code and through inheritance they enable reuse of a major part of the
code.

The aim has been to de�ne an open, expandable framework for easy prototyping of
new elements, material models and solution methods. Three levels of programming have

been introduced: algebraic classes, FEM classes and applications. The algebraic classes can

immediately be used by programmers with experience in traditional scienti�c programming
to produce clear and readable code. The FEM classes constitute a framework for fast

prototyping of elements and materials, but requires the programmer to be familiar with the
base class de�nition and have a general understanding of object-oriented programming (in

C++). The algebraic classes and FEM classes provide a macro-language for programming

�nite element analysis applications. The applications use the existing facilities, hence
requires the programmer to learn a few basic constructs.

The major inhibiting factor in the development and presentation of an object-oriented
framework for �nite element programming has been that the object-oriented principles

are still unfamiliar to most programmers of scienti�c codes. Changing to a fully object-

oriented framework not only requires the programmer to learn a new programming syntax

but also a new programming style. This is of course not optimal. A way to obtain some

9.4. AN OPEN, EXPANDABLE FRAMEWORK 141

of the bene�ts of the object-oriented programming style would be to introduce the tools,

e.g. algebraic classes, into the procedural programs and then gradually to use more of the

object-oriented facilities.

142 Conclusion

Chapter 10

References

ABAQUS (1992): ABAQUS Vers. 5.2 { manuals. Hibbitt, Karlsson & Sorensen Inc.

ANSYS (1988): ANSYS-PC/Linear 4.3 { reference manual. Swanson Analysis Systems
Inc.

Baugh Jr., J.W. and Rehak, D.R. (1989): Object-Oriented Design of Finite Element Pro-

grams. In Computer Utilization in Structural Engineering. (ed. Nelson, J.K.), pp. 91-100,
San Francisco, USA, 1989.

Baugh Jr., J.W. and Rehak, D.R. (1992): Data Abstraction in Engineering Software De-
velopment. Journal of Computing in Civil Engineering. Vol. 6, No. 3, pp. 282-301, 1992.

Beltzer, I.A. (1990): Variational and Finite Element Methods: SMC-Approach. Springer
Verlag, 1990.

Bergan, P. (1980): Solution algorithms for nonlinear structural problems. Computers and

Structures. Vol. 12, pp. 497-509, 1980.

Bergan, P. (1981): Solution by iteration in displacement and load spaces. In Nonlinear
Finite Element Analysis in Structural Mechanics. (eds. Wunderlich, W., Stein, E. and

Bathe, K.-J.), pp. 553-571, Springer Verlag, Berlin, Germany, 1981.

CALFEM (1993): CALFEM: Computer Aided Learning of the Finite Element Method
Vers. 3 { manual. Technical University of Lund, Lund, Sweden, 1993.

Chen, W.F. and Han, D.J. (1988): Plasticity for Structural Engineers. Springer Verlag,

New York, USA, 1988.

Coad, P. and Yourdon, E. (1991): Object-oriented design. Prentice-Hall, New Jersey, USA,
1991.

Cris�eld, M.A. (1981): A fast incremental/iterative solution procedure that handles `Snap-
through'. Computers & Structures. Vol. 13, pp. 55-62, 1981.

Cris�eld, M.A. (1991): Non-linear Finite Element Analysis of Solids and Structures {

Volume 1: Essentials. John Wiley & Sons, Chichester, U.K., 1991.

143

144 References

Dahlblom, O., Peterson, A. and Petersson, H. (1985): CALFEM { Ett datorprogram f�or

undervisning i �nita elementmetoden. Technical University of Lund, Lund, Sweden, 1985.

(in swedish)

Dubois-P�elerin, Y. (1992): Object-Oriented Finite Element Programming: Programming

concepts and implementation. Ph.D. thesis at Ecole Polytechnique Federale de Lausanne,

Thesis No. 1026, 1992, Lausanne, Switzerland, 1992.

Dubois-P�elerin, Y., Zimmermann, T. and Bomme, P. (1992): Object-Oriented Finite Ele-

ment Programming. II: A Prototype Program in Smalltalk. Computer Methods in Applied

Mechanics and Engineering. Vol. 98, pp. 361-397, 1992.

Dubois-P�elerin Y. and Zimmermann, T. (1993): Object-Oriented Finite Element Program-

ming. III: An e�cient implementation in C++. Computer Methods in Applied Mechanics

and Engineering. Vol. 108, pp. 165-183, 1993.

Ellis, M.A., and Stroustrup, B. (1990): The Annotated C++ Reference Manual. Addison-

Wesley, Massachusetts, USA, 1990.

Forde, B.W.R., Foschi, R.O. and Stiemer, S.F. (1990): Object-Oriented Finite Element
Analysis. Computers & Structures. Vol. 34, No. 3, pp. 355-374, 1990.

Hededal, O. (1993): Finite element with C++ classes. Proc. 6th Nordic Seminar on
Computational Mechanics. Link�oping, Sweden, 1993.

Hededal, O. and Krenk, S. (1993): A Pro�le Solver in C for Finite Element Equations.
Engineering Mechanics Papers. No. 13, Dept. Building Technology and Structural Engi-

neering, Aalborg University, Aalborg, Denmark. (to appear in Computers & Structures)

Hughes, T.J.R. (1987): The Finite Element Method { Linear static and dynamic analysis.
Prentice-Hall, New Jersey, USA, 1987.

Kernighan, B. and Ritchie, D.M. (1991): The C Programming Language, 2nd Edn. Prentice
Hall, New Jersey, USA, 1991.

Krenk, S. (1993a): Non-linear analysis with �nite elements. Dept. Building Technology
and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993.

Krenk, S. (1993b): An Orthogonal Residual Procedure for Nonlinear Finite Element Equa-
tions. Engineering Mechanics Papers. No. 18, Dept. Building Technology and Structural
Engineering, Aalborg University, Aalborg, Denmark, 1993. (to appear in International

Journal of Numerical Methods in Engineering)

Krenk, S. and Hededal, O. (1993): A Dual Orthogonality Procedure for Nonlinear Finite
Element Equations. Engineering Mechanics Papers. No. 21, Dept. Building Technology

and Structural Engineering, Aalborg University, Aalborg, Denmark, 1993. (submitted for
publication)

Krieg, R.D. and Krieg, D.G. (1977): Accuracies of numerical solution methods for the

elastic-perfectly plastic model. ASME Journal of Pressure Vessel Technology., Vol. 99,

pp. 510-515, 1977.

Lippman, S.B. (1989): C++ Primer. Addison-Wesley, Massachusetts, USA, 1990.

References 145

Luenberger, D.G. (1984): Linear and Nonlinear Programming - 2nd Edn. Addison-Wesley,

Massachusetts, USA.

Mackie, R.I. (1992): Object oriented programming of the �nite element method. Interna-

tional Journal for Numerical Methods in Civil Engineering. Vol. 35, pp. 425-436, 1992.

Matthies, H. and Strang, G. (1979): The solution of nonlinear �nite element equations.

International Journal for Numerical Methods in Engineering. Vol. 14. pp. 1613-1626, 1979.

Men�etrey, P. and Zimmermann, T. (1992): Object-oriented non-linear �nite element anal-

ysis: application to J2 plasticity. Internal report IBAP: 92.03:01, LSC: 92.25. Dept. of

Civil Engineering, Swiss Federal Institute at Lausanne, Lausanne, Switzerland, 1992.

Miller, G.R. (1991): An object-oriented approach to structural analysis and design. Com-

puters & Structures. Vol. 40, No. 1, pp. 75-82, 1991.

Nagtegaal, J.C., Parks, D.M. & Rice, J.R. (1974): On Numerically Accurate Finite Ele-

ment Solutions in the Fully Plastic Range. Computer Methods in Applied Mechanics and

Engineering. Vol. 4, pp. 153-177, 1974.

Nielsen, L.O. (1993): A C++ basis for computational mechanics software. Technical Uni-
versity of Denmark, Copenhagen, Denmark, 1993.

Ottosen, N.S. (1987): Aspects of constitutive modelling. Report TVSM-3010, Lund Insti-
tute of Technology, Lund, Sweden, 1987.

Ottosen, N.S. and Petersson, H. (1992): Introduction to the Finite Element Method. Pren-

tice Hall, U.K., 1992.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988): Numerical
Recipes in C. Cambridge University Press, Cambridge, U.K., 1988.

Ramm, E. (1981): Strategies for tracing the non-linear response near limit-points. In

Nonlinear Finite Element Analysis in Structural Mechanics. (eds. Wunderlich, W., Stein,
E. and Bathe, K.-J.) pp. 63-89, Springer Verlag, Berlin, Germany, 1981.

Riks, E. (1979): An incremental approach to the solution of snapping and buckling prob-

lems. International Journal of Solids and Structures. Vol. 15, pp. 529-551, 1979.

Ristinmaa, M. (1993): Cyclic Plasticity and its Numerical Treatment. Ph.D. thesis at Lund
Institute of Technology. Department of Solid Mechanics, Lund Institute of Technology,

Lund, Sweden, 1993.

Ross, T.J., Wagner, L.R. and Luger, G.F. (1992a): Object-Oriented Programming for

Scienti�c Codes. I: Thoughts and Concepts. Journal of Computing in Civil Engineering.

Vol. 6, No. 4, pp. 480-496, October, 1992.

Ross, T.J., Wagner, L.R. and Luger, G.F. (1992b): Object-Oriented Programming for
Scienti�c Codes. II: Examples in C++. Journal of Computing in Civil Engineering. Vol. 6,

No. 4, pp. 497-514, 1992.

Schwarz, H.R. (1988): Finite Element Methods. Computational Mathematics and Appli-

cations series, Academic Press, London, U.K., 1988.

146 References

Scholz, S.-P. (1992): Elements of an Object-Oriented FEM++ Program in C++. Com-

puters & Structures. Vol. 43, No. 3, pp. 517-529, 1992.

Stroustrup, B. (1991): The C++ Programming Language, 2nd Edn. Addison-Wesley,

Massachusetts, USA, 1991.

Winder, R. (1991): Developing C++ Software. John Wiley & Sons Ltd, Chichester, U.K.,

1991.

Yang, Y.-B and Leu, L.-J (1991): Constitutive laws and force recovery procedures in

nonlinear analysis of trusses. Computer Methods in Applied Mechanics and Engineering.

Vol. 92, pp. 121-131, 1991.

Yu, G. and Adeli, H. (1993): Object-Oriented Finite Element Analysis using EER Model.

Journal of Structural Engineering Vol. 119, No. 9, pp. 2763-2781, 1993.

Zienkiewicz, O.C. and Taylor, R.L. (1989): The Finite Element Method Vol. 1 { Basic

Formulation and Linear Problems. McGraw-Hill, London, U.K., 1991.

Zienkiewicz, O.C. and Taylor, R.L. (1991): The Finite Element Method Vol. 2 { Solid and
Fluid Mechanics, Dynamics and Non-Linearity. McGraw-Hill, London, U.K., 1991.

Zimmermann, T., Dubois-P�elerin, Y. and Bomme, P. (1992): Object-Oriented Finite El-

ement Programming. I: Governing Principles. Computer Methods in Applied Mechanics
and Engineering. Vol. 98, pp. 291-303, 1992.

Appendix A

Algebraic classes

An important part of scienti�c programming is linear algebra. The mathematical notation

such as used in this thesis, provides an compact notation for operations that would other-
wise be di�cult to overview. In C++ the algebraic operators can be simulated to give a

symbolic programming style that lies close to the mathematical notation.
This chapter presents a set of algebraic classes. The oating point classes, Matrix, Pro-
Matrix and Vector, are used for the matrix manipulations and integer classes, IntArray and
Int2DArray, are array structures used to store information e.g. boolean variables. The
classes are mainly developed for writing �nite element codes, therefore they presently only

contain the algebraic operators, +, -, * and /, and methods for vector calculus and solution
of linear equation systems.
C++ provides the object-oriented facilities, i.e. operator overloading and polymorphism,

which enables binding of functionally to a data structure, see e.g. Stroustrup (1991), Lipp-
man (1989), Winder (1991). C++ is therefore used for programming the interface which

handles the communication between an object and the other parts of a program. The nu-
merical part of the classes are programmed in standard C, whereby the numerical e�ciency
of C is retained. Principles for scienti�c programming in C are given e.g. by Press et al.

(1988)
In Section A.1 the di�erent parts of the class de�nition are considered, describing some
of the principles used in the development of the classes. The implementation of and

programming with overloaded operators is given in Section A.2. Algorithms for solving

the linear equation system, which is a central part of �nite element codes, are considered

in Section A.3. The full class declarations are then given in Table A.1-A.5. Section A.4

gives �ve examples that illustrate the use of the classes in scienti�c programming. A short
reference list concludes the chapter.

The C++ program code is given in Courier typeface. The code segments are divided in

Implementation and Syntax giving examples of their use in the program.

147

148 Algebraic classes

A.1 Class declaration

The class declaration consists of attributes, constructors/destructor, methods and opera-

tors. The attributes are encapsulated by declaring them private, whereby they can only

be manipulated using the public part of the class.

class declaration

class Vector

f
private:

Attributes:
int no row;

double *v;

public:

Constructors & destructor:
Vector();

Vector(const Vector& b);

Vector(int nr);

�Vector();
Operators:
Vector& operator = (const Vector& b);

Vector operator + (const Vector& b);
...

Member methods:
int size(int i);

...

Friend methods:
friend double length(const Vector& b);

...

g

A.1.1 Attributes

An object of an algebraic class is de�ned by the number of rows (no row) and the number

of columns (no col). The body of the object is stored by a pointer variable, *v or **m,

for which the memory is allocated and freed dynamically. A standard C pointer technique

for dynamic memory allocation is used to create the one- or two-dimensional array. The
standard matrix index scheme is retained, such that the rows are indexed from 1 to no row,
and the columns are indexed 1 to no col, see e.g. Press et al. (1988). The ranges of the

arrays are stored by the two attributes, no col and no row. This enables veri�cation of

the validity of an operation. During assignment the object can perform a range check, thus

preventing reading or writing in out-of-range memory. The algebraic operations require the
dimensions of the two objects to match and a comparison of the dimensions may be used to

detect illegal operations, e.g. if the dimensions of two matrices match when a multiplication

is performed.

Appendix A 149

A.1.2 Constructor and destructor

User-de�ned types, such as the algebraic classes, are declared and used like ordinary built-

in types, e.g. characters, integers or oating point variables. However, in order to behave

like the built-in types the user-de�ned types must have constructors and a destructor.

Before a variable is used it must be declared by type and name and possibly be initialized.

The type-casting tells the compiler to allocate a speci�ed amount of memory, which is used

for storing the variable. During the declaration the variable is also initialized either by a

default value or a value speci�ed by the user. The declaration operation uses a constructor.

The constructor is responsible for allocating memory and initializing the variable. For user-

de�ned types these operations are not prede�ned, so the programmer must provide their

implementation. For the algebraic classes construction consists of setting the size of the

array and allocating memory. Because the variables can be initialized in di�erent ways,

it is generally necessary to provide a variety of constructors. There are two essential ones

which should always be de�ned: the default constructor and the copy constructor. The
default constructor is used to declare uninitialized objects,

default constructor

Implementation:
Vector::Vector()

f
no row = 0;

v = 0;

g

Syntax:
Vector a;

The binding to the class is stated explicitly in the implementation, e.g. Vector::Vector(),

where the operator :: speci�es that the constructor is part of the pre�xed class.
The copy constructor is called whenever the variable is copied, e.g. between the main
program and a subroutine. It takes another object as argument and creates a copy of it.

copy constructor

Implementation:
Vector::Vector(Vector& b)

f
v = new double [no row = b.no row];

v--;

for (int i=1; i<=no row; i++)

v[i] = b.v[i];

g

Syntax:
Vector b(a);

Usually the constructor is called automatically by the program in order to copy an object

from one part of the program to another. Still, it is possible to call the constructor

150 Algebraic classes

explicitly to initialize a new object. The statement, b(a), handles both declaration and

initialization. First the vector, b, is declared and then initialized by the argument, a, which

is a prede�ned vector for which the size is known and the memory is already allocated.

The constructor �rst allocates no row �elds of double precision oating points by use of

the new operator. In order to maintain indexing from 1 to no row, the pointer is shifted

back by 1, v--, before it is initialized. Finally, it copies each member of the argument to

the new object. Usually the size of the object will be known upon declaration, thus a third

constructor is introduced which sets the size, allocates memory and initializes all members

to 0,

constructor

Implementation:
Vector::Vector(int nr)

f
v = new double [no row = nr];

v--;

for (int i=1; i<=no row; i++)

v[i] = 0;

g

Syntax:
Vector a(6);

Vector b;

b = Vector(3);

As for the copy constructor, this constructor handles both declaration and initialization.
It �rst declares the vector and then initializes the object according to the argument. The

program is able to distinguish between the two types of constructors by looking at the
argument type, thus the constructors are polymorph, see e.g. Stroustrup (1991). This

constructor is also used for allocating memory to objects, e.g. b, declared by the default
constructor. In that case the program makes use of the assignment operator, =, described
in the following section.

A variable is only active within the scope where it is de�ned. The scope can be the entire
program, a subroutine or a loop. When a variable goes out of scope, the allocated memory

should be freed, so that other parts of the program can reuse it. This operation, which is
prede�ned for the built-in types, is handled by the destructor. The user-de�ned type must
provide a destructor that safely frees the allocated memory.

destructor

Implementation:
Vector::�Vector()
f
if (++v) delete (v);

g

Before freeing the memory held by the pointer, it is moved to its original position, i.e.

++v, and it is tested whether any memory has been allocated. The destructor is called

Appendix A 151

automatically when the variable goes out of scope and is therefore seldom called explicitly.

The use dynamically allocated memory is traditionally a sensitive part of a C program,

mainly because there is not any facility for performing range check. The constructor-

destructor technology enables safe manipulation with dynamic variables such as pointers,

because it is in the hands of the object itself to allocate and free the memory.

A.1.3 Member methods and friend methods

In object-oriented programming the attributes and methods are gathered in an entity -

the class. The methods are used for manipulation of the attributes. The attributes are

usually encapsulated, i.e. hidden from the other parts of the program, and can only be

manipulated by the class methods. In C++ the methods that manipulate the attributes

are divided in two: member methods and friend methods. The member methods are

part of the each object, which keep their reference in a table along with the reference

to the attributes. The binding to the class is stated explicitly in the implementation, e.g.

Vector::length(), where the operator :: speci�es that the method is part of the pre�xed
class.

member method

Implementation:
double Vector::length()

f
double l=0;

for (i=1; i<=no row; i++) l += sqr(v[i]);

return sqrt(l);

g

Syntax:
Vector b(4);

double l = b.length();

The use of a member method usually corresponds to that of sending a message in pure
object-oriented languages, thus should ideally not take any arguments. This is also reected
in the calling syntax, where the object is pre�xed to the method name, e.g. b.length().

The friend methods are external methods that are allowed to access the encapsulated

attributes directly. They are, however, not part of any object and must therefore include

the objects in the argument list. Alternatively, the length of the vector is found using a

friend method:

152 Algebraic classes

friend method

Implementation:
double length(const Vector& b)

f
double l=0;

for (i=1; i<=b.no row; i++)

l += sqr(b.v[i]);

return sqrt(l);

g

Syntax:
Vector b(4);

double l = length(b);

The choice whether to use a member method or a friend method is mainly a matter of

programming style. In the present framework most of the methods are de�ned as friends.

Exceptions are the size method that gives the dimensions of the arrays and the T method
which returns the transpose of a rectangular matrix, i.e.

transpose

Syntax:
Matrix A(4,5), B;

B = A.T();

A method can be a friend of several classes, e.g. of the Vector and the Matrix class. This
is e.g. the case for the solution method, solve, which take both a Matrix and a Vector as
arguments. In order to make the operations e�cient it is declared as a friend to both
the Matrix and Vector class, allowing the method to access the private attributes of both
objects directly. Even though the friend methods are external methods independent of the

individual objects of a class, they are usually closely related to the implementation of the
classes which they manipulate. Therefore they should be de�ned in conjunction with the
classes.

A.1.4 Arguments and return values

In C++ data are usually passed from one part of a program to another in two ways: by

copy or by reference. By copying the variable every time it is passed to another part of

the program it is ensured that the global variable is not altered. The copy may either be
passed to a method through the argument list or passed from the method as a return value.

Appendix A 153

pass a copy

Implementation:
double det(Matrix A)

f
double determinant = 1;

if (no row==no col)

f
factor(A);

for (i=1; i<=no row; i++)

determinant *= A.m[i][i];

g
return determinant;

g

Syntax:
Matrix A(5,5);

double determinant = det(A);

The matrix A is copied into the method, where it is factorized in order to calculate the
determinant. The result, determinant, copied to the global scope. The global matrix
remains una�ected even though the local matrix has been factorized.

For small objects the computational overhead involved in passing a copy of the entire
object is usually acceptable. Copying larger objects such as matrices the excessive number

of operations leads to unacceptable computational overhead and instead these should be
passed as reference. Passing a reference means that the program creates an address variable
that points at the data �eld of the global variable. This address is copied to the method

that can access the data �elds.

pass a reference

Implementation:
double length(Vector& b)

f
double l=0;

for (i=1; i<=no row; i++)

l += sqr(b.v[i]);

return sqrt(l);

g

Syntax:
Vector b(4);

double l = length(b);

The vector, b, is passed to the method by reference, which is indicated by the &-su�x on

the argument type, e.g. Vector&. It is seen that neither in the call nor in the method it is

possible to distinguish between an argument passed by copy and passed by reference. As it

is the address that is copied the method is able to alter the global value of the variable. To

ensure that the argument remains unaltered by the method it can be de�ned as a constant,

i.e. double length(const Vector& b).

The reference technique can also be used when returning values from a method. Like

154 Algebraic classes

for the arguments it can be convenient to return references instead of copies, because it

is more e�cient. The use of this technique is limited to those return values that either

involve global variables, or attributes in the object. If a temporary, local variable is not

copied out, it will be destroyed upon return from the method, thus the value stored by the

reference address can be overwritten by the other parts of the program.

A.1.5 Coercion

The Matrix class can be specialized by precision e.g. integer or double precision oating

point. It can also be specialized according to its structure, distinguishing between full

non-symmetric, rectangular matrices, triangular matrices or pro�le matrices (skyline). The

symmetric, square matrices could be derived from aMatrix superclass using virtual methods

for nearly all operators and methods. This is, however, less e�cient than static binding and

therefore a di�erent style has been chosen, namely a type coercion technique. Coercion is

an implicit operation that e.g. enables the program to add a integer variable to a oating

point variable: the integer variable is �rst converted to a oating point so the oating
point operation can be performed. Coercion for the base types is a built-in facility in most
languages.

In C++ it is possible to de�ne coercion for the user-de�ned types as well. This implies
that only those operations that do not alter the matrix structure should be de�ned for the
specialized matrix classes. E.g. adding 2 symmetric matrices produces a new symmetric

matrix, thus this operation should be de�ned explicitly for symmetric matrices. Multipli-
cation of 2 symmetric matrices gives in general a full non-symmetric matrix and in this case

the operation can be performed by the general full matrix class which by use of a coercion
rule converts the symmetric matrix to a full matrix. The coercion operator de�nes the
conversion from a ProMatrix to a full rectangular Matrix, i.e.

coercion

Implementation:
ProMatrix::operator Matrix()

f
Matrix A(n row,n row);

for (i=1; i<=n row; i++)

for (j = p(i)+1; j<=i; j++)

A(i,j) = A(j,i) = m[i][j];

return A;

g

Syntax:
ProMatrix A(4);

Matrix B, C;

B = (Matrix)A;

C = A;

The operator can be evoked explicitly as for the B, but in most cases the program implicitly
evokes the operator, e.g. in the assignment C = A. The full matrices are copies of the original

matrix, A, which therefore remains a pro�le matrix.

Appendix A 155

A.2 Operators

The introduction of the algebraic data types, Matrix and Vector, is based on the possibility

to retain the mathematical notation style in the programming of scienti�c codes by use of

overloaded operators. The overloading of an operator consists of providing an implementa-

tion, that simulates the behaviour of the operator with which it is associated in the current

context. E.g. the addition of two matrices, C = A +B, should have a direct counterpart

in the program, i.e.

operator

Syntax:
Matrix A(3,4), B(3,4), C;

C = A + B;

This operation requires two operators to be de�ned: assignment, =, and addition, +. An

operator is declared and implemented like an ordinary method - either as member or friend.
The calling syntax is, however, the same as for the prede�ned operators.
The algebraic classes have operators for assignment, arithmetic operations, input and out-

put. In the following examples of the implementations and syntax is presented. The
declarations of all the operators are given in Table A.1-A.5.

A.2.1 Assignment

There are two types of assignment operation related to algebraic classes: assignment of
another object and assignment of a single member. The assignment operator, =, resembles

the copy constructor. The constructor creates a new object as a copy of the argument.
The assignment operator, however, replaces the original object by a copy of the argument,
i.e.

assignment

Implementation:
Vector& Vector::operator = (Vector& b)

f
if (v == b.v)

return *this;

if (++v) delete (v);

v = new double [no row = b.no row];

v--;

for (int i=1; i<=no row; i++)

v[i] = b.v[i];

return *this;

g

Syntax:
Vector a(3), b;

b = a;

The operator compares the addresses of the arrays, v and b.v. If these are the same, i.e.

156 Algebraic classes

if it is attempted to assign an object to itself, the operator just returns the self-reference,

*this. Otherwise, the old array is deleted and a new created as a copy of the argument.

It is in many cases necessary to access the single element in the array. This can be done

through the index operator, (), which takes the index as argument and returns a reference

to the member. Using a reference as return value enables the index operator to be used

both for assignment and access of the single member.

index operator

Implementation:
double& Vector::operator(int i)

f
if (v && i>=1 && i<=no row)

return v[i];

g

Syntax:
double x;

Vector b(3);

b(1) = 1;

x = b(3);

b(4) = 5.5; // Illegal operation

The last operation is out-of-range and is therefore not carried out. The index operator thus

prevents reading and writing in out-of-range memory. It should be noted that accessing
an element in the array through the index operator is time consuming compared to direct
access of the pointer, see e.g. Nielsen (1993). Procedures or methods that involve many

single-element assignments should therefore be able to operate directly on the array pointer.
This could be done by declaring the method as a friend. Still, this would require the class
declaration to be modi�ed for each new method and instead a method, pointer, is de�ned

which returns the array pointer.

access pointer

Implementation:
double* Vector::pointer()

f
return v;

g

Syntax:
Vector b(3);

double *b ptr = b.pointer();

for (i=1; i<=3; i++)

b ptr[i] = i;

The global pointer variable, b ptr, is initialized with the pointer to the vector array,

b.v. The two variables thus point at the same location in the memory. The assignment
operation, b ptr[i]=i, therefore is equivalent to v(i)=i. The vector thus becomes b =

[1 2 3]. The disadvantage of this technique is of course that there is no automatic range

Appendix A 157

check.

A.2.2 Arithmetic operators

The arithmetic operators for the algebraic classes are +, - and *. Each of these has a

corresponding operator with assignment, i.e. +=, -= and *=, where the result is assigned to

the calling object, this. For example, the addition with assign of two vectors is de�ned in

the following way:

addition w. assign

Implementation:
Vector& Vector::operator += (Vector& b)

f
if (no row == b.no row)

for (i=1; i<=no row; i++)

v[i] += b.v[i];

return *this

g

Syntax:
Vector u(4), v(4);

u += v;

The operator �rst checks the validity of the operation. The operation then consists of
adding each member in the argument vector, b.v[i], to the body of the calling object,

v[i]. This enables a simple de�nition of the addition operator,

addition

Implementation:
Vector Vector::operator + (Vector& b)

f
Vector a(*this);

a += b;

return a;

g

Syntax:
Vector u, v(4), w(4);

u = v + w;

The statement �rst performs the addition, v + w, and then assigns the result to a new
vector, u. The addition operator is de�ned as a member method with one argument. This

means that the operation, v + w, is interpreted as v.operator+(w). The operator creates

a copy of the calling object using the copy constructor. Then the operator, +=, is called
adding the argument to the copy.

Multiplication of two matrices - symmetric or un-symmetric - generate a full un-symmetric
matrix. It is therefore chosen only to implement the multiplication operator for the Matrix
class. The multiplication operator, *, is de�ned as a friend method, which takes the two

158 Algebraic classes

matrices as argument. If the multiplication involves a pro�le matrix the coercion operator,

ProMatrix::Matrix(), is called, converting the argument to a full matrix. Thereby it

is not necessary to de�ne the multiplication operator in the ProMatrix class. For sparse

matrices this technique is of course ine�cient because it uses elements that are 0 and

the operator should be de�ned for this type of matrix. This is not done in the present

implementation.

multiplication

Implementation:
Matrix operator * (const Matrix& A, const Matrix& B)

f
if (A.no col!=B.no row) return Matrix();

Matrix C(A.no row,B.no col);

for (i=1; i<=A.no row; i++)

for (j=1; j<=B.no col; j++)

for (k=1; k<=A.no col; k++)

C.m[i][j] += A.m[i][k] * B.m[k][j];

return C;

g

Syntax:
Matrix A(3,4), B(4,6), C;

ProMatrix D(4);

C = A * B; // legal operation

C = B * A; // illegal operation

C = A * D; // coercion: converts D

The method �rst veri�es whether the operation is legal. If it is not a zero matrix is returned
else a new matrix is allocated and the multiplications are carried out.

Multiplication or division of a matrix and vector by a factor are also de�ned through
operators. They perform a scalar operation on each of the element in the array. A vector

may e.g. be multiplied by a factor,

scalar operator

Implementation:
Vector& Vector::operator *= (double scal)

f
for (i=1; i<=no row; i++)

v[i] *= scal;

return *this;

g

Syntax:
double x=3.5;

Vector a(4);

a *= x;

Appendix A 159

A.2.3 Input and output operators

The input and output of vectors and matrices can be performed by the stream operators.

A stream is a sequence of characters consisting of e.g. integers, oating point variables

or character strings. The stream input operator, >>, and the stream output operator, <<,

can be overloaded to apply to a speci�c data type. For vectors and matrices the output

operator sets up object body for output, e.g.

output

Implementation:
ostream& operator(ostream& os, Vector& b)

f
os.precision(4);

os.setf(ios::showpoint);

for (i=1; i<=no row; i++)

os << v[i] << endl;

return os;

g

Syntax:
Vector a(2);

cout << "a = " << endl << a;

The stream output operator, <<, is used for generating a stream consisting of a string,

"a = ", a newline character endl and the vector a written in a column. The stream is
�nally send to standard output - usually the screen - through cout, which is an object of
the output stream class, ostream. The operator is declared as a friend method and can

therefore access the private attributes directly. The variable, os, is an object of the class
ostream. Among its attributes are ags that de�nes the output format e.g. the number

of decimals on the oating point output. These ags are e.g. set by the member methods,
precision and setf. A detailed description of the stream classes including �le handling
is e.g. found in Lippman (1989).

160 Algebraic classes

A.3 Solution of linear equation systems

An important step in solving many problems by the �nite element method is the solution

of the global equations. These equations have the form

Ax = b (A.1)

where A is a real, n�n matrix. xT = (x1; :::; xn) is a vector containing the system degrees

of freedom - the displacements - and bT = (b1; :::; bn) is the load vector.

The solution can be obtained by multiplying the load vector by the inverse of the system

matrix, i.e. x = A�1 b. The computation of the inverse is, however, expensive and for �nite

element problems it is often chosen �rst to factorize the system matrix and then obtain

the solution by forward and back substitutions. For general un-symmetric matrices the

LU-factorization can be used. Assuming the matrix, A, can be decomposed in an upper

triangular matrix, U, and a lower triangular matrix, L, such that

Ax = LUx = b (A.2)

The solution is then obtained by solving two new equation systems,

Ly = b (A.3)

Ux = y (A.4)

Due to the triangular form of the system matrices, the solutions can be obtained directly
by substitution.
In �nite element problems where the energy functional is symmetric, e.g. potential problems

and linear elasticity, the system matrix - the sti�ness matrix - is symmetric, positive de�nite
and well-conditioned. These three characteristics imply that a symmetric factorization
scheme without pivotation can be used. In the following the LDLT scheme for symmetric

pro�le matrices is described in detail, Hededal & Krenk (1993). Still, the development of a
simple LU factorization and solution without pivotation follows entirely the same scheme.

A.3.1 Factorization

A symmetric matrix A can be factored in the form

A = LDLT (A.5)

in which L is a lower triangular matrix and D is a diagonal matrix. The computation of

L and D is found by considering the submatrix Ai,

Ai =

�
Ai�1 ai
aTi ci

�
(A.6)

where aTi is a subvector containing the o�-diagonal elements of row i. The factored form

of (A.6)

Ai = LiDiL
T
i (A.7)

Appendix A 161

contains the lower triangular matrix

Li =

�
Li�1 0

lTi 1

�
(A.8)

and the diagonal matrix

Di =

�
Di�1 0

0T di

�
(A.9)

0 is a zero vector. Substituting (A.8) and (A.9) into (A.7) and comparing with (A.6) gives

the two equations:

di + lTi Di�1li = ci (A.10)

and

(Li�1Di�1)li = Li�1ui = ai (A.11)

with ui de�ned as

ui = Di�1li (A.12)

This enables computation of the factors, [lTi di], in step i. It is seen from (A.11) that the
vector [lTi di] contains the same number of leading zeros as the vector [aTi ci]. Thus, the
factored matrix has exactly the same structure as the original one and can be stored in the

memory already allocated for the original un-factored matrix.

A =

2
666666664

a11
a21 a22 sym

a31 a32 a33
a42 a43 a44

a53 a54 a55
a61 a62 a63 a64 a65 a66

3
777777775

; p =

2
666666664

0
0

0
1

2

0

3
777777775

Figure A.1: Pro�le matrix

Consider a pro�le matrix as in Figure A.1. For each row i the matrix is stored in an array
ai containing the elements aij. pi holds the number of leading zeros in row i, hence the

remaining elements of row i are indexed from j = pi+1 to j = i. Using an allocation tech-
nique that enables this index style, see e.g. Press et al. (1988), and overwriting [aTi ci] with

[lTi di] leads to the simple algorithm for factoring pro�le matrices given as Algorithm A.1.

162 Algebraic classes

Algorithm A.1: Factorization

for (i = 2 to n)

for (j = p(i)+2 to i{1) do

for (k = max(p(i),p(j))+1 to j{1) do

A(i,j) = A(i,j) { A(j,k) * A(i,k) (uij from (A:11))

for (j = p(i)+1 to i{1) do

u = A(i,j) (temporary uij)

A(i,j) = A(i,j) / A(j,j) (lij from (A:12))

A(i,i) = A(i,i) { A(i,j) * u (dii from (A:10))

A.3.2 Solution

The solution part has three phases

Lz = b (A.13)

Dy = z (A.14)

LTx = y (A.15)

These operations are straight forward if we consider full lower triangular matrices. For
pro�le matrices care must be taken to avoid operating on elements outside the pro�le

in the factored matrix. The forward substitution (A.13) operates on rows from i = 1
to n with the elements aij indexed from j = pi + 1 to i. Dividing with the diagonal
terms (A.14) is trivial. The back substitution (A.15) is slightly modi�ed. Instead of

performing row operations the solution is obtained by gradually modifying the right hand
side. Rearranging the subsystem

�
LT
i�1 li
0T 1

� �
xi�1
xi

�
=

�
yi�1
yi

�
(A.16)

yields

�
LT
i�1 0

0T 1

� �
xi�1
xi

�
=

�
yi�1 � lixi

yi

�
(A.17)

whereby the solution emerges as x. The total solution scheme is given as Algorithm A.2.

A.3.3 Constrained systems

Algorithm A.1 and Algorithm A.2 are formulated for equation systems without prescribed

displacements where the vector x contains all the unknown values, while b holds the known
values. The output of the solution function is the unknown x. For constrained systems the

vector x contains some known values and the corresponding elements in b are unknown.

The solution function should therefore be modi�ed to supply the unknown values in both
x and b, while the known values are left untouched in the two vectors.

Appendix A 163

Algorithm A.2: Profile Solve

for (i = 2 to n) do

for (j = p(i)+1 to i{1) do

x(i) = x(i) { A(i,j) * x(j) (zi from (A:13))

for (i = 1 to n) do

x(i) = x(i) / A(i,i) (yi from (A:14))

for (i = n downto 2) do

for (j = p(i)+1 to i{1) do

x(j) = x(j) { A(i,j) * x(i) (xi from (A:15))

The equation system, (A.1), can be divided into a part that relates to the free displace-

ments, xf , and a part relating to the prescribed displacements, xc. The load vector is
similarly divided in two: bf corresponding to the free terms and a part related to the
prescribed displacements, bc + b0c . bc are the unknown reactions, while b0c contains the

contribution from a prescribed load. The constrained equation system can be written as�
Aff Afc

Afc Acc

� �
xf
xc

�
=

�
bf

bc + b0c

�
(A.18)

The complete solution to the system is available once the free displacements have been de-

termined, thus only the free part of the system matrix,Aff , needs to be factorized. Usually
the equations are not ordered in free and prescribed terms, but mix arbitrarily. Instead of

reordering the equation system the state of a displacement is identi�ed by a boolean array,
f , i.e. fi = 1 for prescribed displacement and fi = 0 for unknown displacement.
During factorization terms related to the prescribed displacements, Afc and Acc, are not

active and must be left unchanged. These terms are identi�ed by the boolean array, f , and
are thus omitted by checking for constraints before entering each loop in Algorithm A.1
and Algorithm A.2.

Prescribed displacements impose loads on the free part of the system that must be taken
into account during solution. The free part of the load vector are modi�ed with the

contribution from the prescribed displacements,

bf = bf �Afc xc (A.19)

The evaluation of (A.19) is carried out most e�ectively by accessing the lower part of the

matrix A row-wise as indicated in Algorithm A.3.
After having solved the free equation system calculation of the reactions, bc, remains. The

reactions receives contributions from the prescribed load, b0c , and a load imposed by the
deformation of the system, Afc xf , i.e.

bc = �b0c +Afc xf (A.20)

In this operation all elements related to prescribed displacements are used. As for the

modi�cation of the load vector the lower part of A will be considered row-wise seaking the

active elements as it is illustrated in Algorithm A.4.

164 Algebraic classes

Algorithm A.3: Load vector modification

for (i = 1 to n) do

for (j = p(i)+1 to i{1) do

if (f(i) = 1 and f(j) = 0)

b(j) = b(j) { A(i,j) * x(i)

else if (f(j) = 1 and f(i) = 0)

b(i) = b(i) { A(i,j) * x(j)

Algorithm A.4: Calculation of reactions

for (i = 1 to n) do

if (f(i) = 1)

b(i) = {b(i)

for (i = 1 to n) do

for (j = p(i)+1 to i{1) do

if (f(i) = 1)

b(i) = b(i) + A(i,j) * x(j)

if (f(j) = 1 and j == i)

b(j) = b(j) + A(i,j) * x(i)

Implementation with the algebraic classes

The solution of linear equations is highly related to the structure of the system matrix

and it is therefore natural to implement solution methods in conjunction with the Matrix
and ProMatrix classes. The full Matrix uses a simple LU scheme without pivotation, while
the ProMatrix class implements the LDLT scheme described in this section. Both classes

contain methods factorizing and solving unconstrained as well as constrained systems.

unconstrained system

Syntax:
Matrix A(n,n);

Vector b(n);

factor(A);

solve(A,b);

The method factor replaces the original matrix by its factored version. The solve method

takes the factored matrix and the load vector as input. The solution is stored in the load

vector. For constrained systems it is necessary to mark the terms related to the prescribed
displacements. The boolean array f marks the free and prescribed displacements. This

array is passed along with the system matrix to the factor and the solve method.

Appendix A 165

constrained system

Syntax:
Matrix A(n,n);

Vector b(n), x(n);

IntArray f(n);

factor(A,f);

solve(A,x,b,f);

Syntax:
ProMatrix A(n);

Vector b(n), x(n);

IntArray f(n);

factor(A,f);

solve(A,x,b,f);

For constrained system solution consists of determining unknown components in both the

displacement vector, x, and the load vector, b. Therefore the solve method takes both
these vectors as arguments and returns them with their unknown values �lled in.
The names of the two solution methods, factor and solve, are shared by all versions of the

methods. same name is used for all types of problems and matrices. Due to polymorphism,
the program is able to decide which version to evoke by looking at the arguments. This
facility e.g. enables the programmer to change the matrix type without having to alter the

entire code.
The methods are declared as friends to the Vector class and either the Matrix or ProMatrix
class. The methods can thus access the private members directly, which is vital for the
e�ciency of the methods.

166 Algebraic classes

Table A.1: Declaration of Vector class

Attributes:

int no row No. of rows

double *v 1D oating point array

Constructors & destructor:

Vector() Default: Set all attributes to 0

Vector(int nr) Allocate vector

Vector(Vector& b) Copy: Initialize object as a copy of b

�Vector() Destructor: Free allocated storage

Assignment operators:

Vector& = (Vector& b) Assign b to object

Vector& = (double scal) Assign scal to all members

double& () (int i) Assign/access member

double* pointer() Return array pointer

Vector{Vector operators:

Vector - () Unary minus: �b
Vector + (Vector& b) Addition of two vectors

Vector& += (Vector& b) Addition with assign

Vector - (Vector& b) Substraction of two vectors

Vector& -= (Vector& b) Substraction with assign

Vector{Scalar operators:

Vector * (double scal) Multiplication with scalar

Vector& *= (double scal) Scalar multiplication with assign

Vector / (double scal) Division with scalar

Vector& /= (double scal) Scalar division with assign

Vector products - friend methods:

double dot(Vector& b, Vector& c) Scalar product

Vector cross(Vector& b, Vector& c) Cross product

Matrix * (Vector& b, Vector& c) Exterior product

double length(Vector& b) Euclidian norm

double norm(Vector& b, int n) n-norm

Solve methods - friend methods:

char solve(Matrix& A, Vector& b) Solve un-symmetric linear system

char solve(Matrix& A, Vector& x,

Vector& b, IntArray& f) Solve un-symmetric constrained linear system

char solve(ProMatrix& A, Vector& b) Solve symmetric linear system

char solve(ProMatrix& A, Vector& x,

Vector& b, IntArray& f) Solve symmetric constrained linear system

Input & output operators - friend methods:

istream& >> (istream& is, Vector& b) Read formatted input

ostream& << (ostream& os, Vector& b) Write formatted output

Miscellaneous:

int size(int i) Dimension of vector

Appendix A 167

Table A.2: Declaration of Matrix class

Attributes:

int no row No. of rows

int no col No. of columns

double **m 2D oating point array

Constructors & destructor:

Matrix() Default: Set all attributes to 0

Matrix(int nr, int nc) Allocate matrix

Matrix(Matrix& A) Copy: Initialize object as a copy of A

�Matrix() Destructor: Free allocated storage

Assignment operators:

Matrix& = (Matrix& A) Assign A to object

Matrix& = (double scal) Assign scal to all members

double& () (int i, int j) Assign/access member

double** pointer() Return array pointer

Matrix{Matrix operators:

Matrix - () Unary minus: �A
Matrix + (Matrix& A) Addition of two matrices

Matrix& += (Matrix& A) Addition with assign

Matrix - (Matrix& A) Substraction of two matrices

Matrix& -= (Matrix& A) Substraction with assign

Matrix * (Matrix& A, Matrix& B) Multiplication of two matrices

Matrix& *= (Matrix& A) Multiplication with assign

Matrix{Scalar operators:

Matrix * (double scal) Multiplication with scalar

Matrix& *= (double scal) Scalar multiplication with assign

Matrix / (double scal) Division with scalar

Matrix& /= (double scal) Scalar division with assign

Matrix{Vector operators - friend methods:

Vector& * (Matrix& A, Vector& b) Multiply matrix and vector

Vector& * (Vector& b, Matrix& A) Multiply vector and matrix

Factor & solve methods - friend methods:

char factor(Matrix& A) LU factors of matrix

char solve(Matrix& A, Vector& b) Solve linear system

char factor(Matrix& A, IntArray& f) LU factors of constrained matrix

char solve(Matrix& A, Vector& x,

Vector& b, IntArray& f) Solve constrained linear system

double det(Matrix A) Determinant

Matrix inv(Matrix A) Inverse of matrix

Input & output operators - friend methods:

istream& >> (istream& is, Matrix& A) Read formatted input

ostream& << (ostream& os, Matrix& A) Write formatted output

Miscellaneous:

int size(int i) Dimension of matrix

Matrix T() Transpose of matrix

168 Algebraic classes

Table A.3: Declaration of ProMatrix class

Attributes:

int no row No. of rows

int no col No. of columns

double **m 2D oating point array

IntArray p Pro�le array

Constructors & destructor:

ProMatrix() Default: Set all attributes to 0

ProMatrix(int nr) Allocate lower triangular matrix

ProMatrix(int nr, IntArray& p) Allocate pro�le matrix

ProMatrix(ProMatrix& A) Copy: Initialize object as a copy of A

�ProMatrix() Destructor: Free allocated storage

Assignment operators:

ProMatrix& = (ProMatrix& A) Assign A to object

ProMatrix& = (double scal) Assign scal to all members

double& () (int i, int j) Assign/access member

double** pointer() Return array pointer

Coercion operator:

Matrix() Force conversion to Matrix

ProMatrix{ProMatrix operators:

ProMatrix - () Unary minus: �A
ProMatrix + (ProMatrix& A) Addition of two matrices

ProMatrix& += (ProMatrix& A) Addition with assign

ProMatrix - (ProMatrix& A) Substraction of two matrices

ProMatrix& -= (ProMatrix& A) Substraction with assign

ProMatrix{Scalar operators:

ProMatrix * (double scal) Multiplication with scalar

ProMatrix& *= (double scal) Scalar multiplication with assign

ProMatrix / (double scal) Division with scalar

ProMatrix& /= (double scal) Scalar division with assign

ProMatrix{Vector operators - friend methods:

Vector& * (ProMatrix& A, Vector& b) Multiply matrix and vector

Vector& * (Vector& b, ProMatrix& A) Multiply vector and matrix

Factor & solve methods - friend methods:

char factor(Matrix& A) LDL
T factors of matrix

char solve(ProMatrix& A, Vector& b) Solve linear system

char factor(ProMatrix& A, IntArray& f) LDL
T factors of constrained matrix

char solve(ProMatrix& A, Vector& x,

Vector& b, IntArray& f) Solve constrained linear system

double det(ProMatrix A) Determinant

Input & output operators - friend methods:

istream& >> (istream& is, ProMatrix& A) Read formatted input

ostream& << (ostream& os, ProMatrix& A) Write formatted output

Miscellaneous:

int size(int i) Dimension of matrix

Appendix A 169

Table A.4: Declaration of IntArray class

Attributes:

int no row No. of rows

int& *v 1D integer array

Constructors & destructor:

IntArray() Default: Set all attributes to 0

IntArray(int nr) Allocate array

IntArray(IntArray& b) Copy: Initialize object as a copy of b

�IntArray() Destructor: Free allocated storage

Assignment operators:

IntArray& = (IntArray& b) Assign b to object

IntArray& = (int scal) Assign scal to all members

int () (int i) Assign/access member

int* pointer() Return array pointer

Input & output operators - friend methods:

istream& >> (istream& is, IntArray& b) Read formatted input

ostream& << (ostream& os, IntArray& b) Write formatted output

Miscellaneous:

int size(int i) Dimension of array

Table A.5: Declaration of Int2DArray class

Attributes:

int no row No. of rows

int no col No. of columns

int **m 2D integer array

Constructors & destructor:

Int2DArray() Default: Set all attributes to 0

Int2DArray(int nr, int nc) Allocate array

Int2DArray(Int2DArray& A) Copy: Initialize object as a copy of A

�Int2DArray() Destructor: Free allocated storage

Assignment operators:

Int2DArray& = (Int2DArray& A) Assign A to object

Int2DArray& = (int scal) Assign scal to all members

int () (int i, int j) Assign/access member

int** pointer() Return array pointer

Input & output operators - friend methods:

istream& >> (istream& is, Int2DArray& A) Read formatted input

ostream& << (ostream& os, Int2DArray& A) Write formatted output

Miscellaneous:

int size(int i) Dimension of array

170 Algebraic classes

A.4 Examples

This section consists of �ve small C++ programs that use the algebraic classes for linear

algebra and vector calculus. In each example the full C++ code is given assuming that the

algebraic classes are available to be linked along with the main program. The declarations

of the algebraic classes used in the examples are assumed to be contained in four header

�les: vector.h, matrix.h, promat.h and intarr.h. Test input and the corresponding

output conclude each example.

Example 1: Vector calculus

This example takes two vectors, a and b, of the same dimension, n, as input from the

screen. The vector product methods are used for evaluating the scalar product, the length

of a vector and the cross product. The area of a triangle described by the two vectors

is then found as A = 0:5ja � bj. The vectors are declared by the default constructor,

Vector(), and later allocated using the constructor Vector(int nr), which sets the size
of the vectors.

// File: ex1.c

// Vector calculus

#include <iostream.h>

#include "vector.h"

void main()

{

int n; // declare variables

Vector a,b,c;

cin >> n; // read dimension of system

a = Vector(n); // allocate vectors

b = Vector(n);

cin >> a >> b; // read formatted vector input

cout << "Vector 'a' = " << a; // echo input

cout << "Vector 'b' = " << b;

cout << "Scalar product = " << dot(a,b) << endl;

cout << "Length of 'a' = " << length(a) << endl;

c = cross(a,b);

cout << "Cross product = " << c;

cout << "Area of triangle = " 0.5*length(c) << endl;

}

Appendix A 171

INPUT:

3 <-- dimension

1 1 0 <-- vector a

0 1 0 <-- vector b

OUTPUT:

Vector 'a' =

1.0000

1.0000

0.0000

Vector 'b' =

0.0000

1.0000

0.0000

Scalar product = 1.0000

Length of 'a' = 1.4142

Cross product =

0.0000

0.0000

1.0000

Area of triangle = 0.5000

172 Algebraic classes

Example 2: Matrix operations

This example illustrates di�erent matrix operations. Two fully populated matrices are read

and echoed using the overloaded stream operators, >> and <<. The transpose of A is found

using the member function, T(). The matrix C is declared by the default constructor,

Matrix(), thus no memory has yet been allocated. The operation 3*A creates a new

Matrix, which is then assigned to C, replacing the original empty matrix. The matrix

multiplication, A*B, is carried out if the dimensions of A and B match. For square matrices

it is possible to evaluate the determinant and the inverse. Comparing the dimensions,

no row = size(1) and no col = size(2), decides whether these are evaluated. If so, the

determinant is computed and the matrix C is rede�ned as the inverse of A. The inv method

takes a copy of A as argument, thus does not a�ect the global value of A. The operation

A*C veri�es that the inversion is correct.

// File: ex2.c

// Matrix operations

#include <iostream.h>

#include "matrix.h"

void main()

{

int nr,nc; // declare variables

Matrix A,B,C;

cin >> nr >> nc; // dimension of A

A = Matrix(nr,nc); // allocate matrix A

cin >> A; // read A

cin >> nr >> nc; // dimension of B

B = Matrix(nr,nc); // allocate matrix B

cin >> B; // read B

cout << "A^T = " << A.T(); // transpose of A

C = 3*A; // create C = 3A

cout << "A+C = " << A + C; // add A and C

cout << "A/3 = " << A/3; // divide A by 3

cout << "A*B = " << A*B; // multiply A and B

if (A.size(1) == A.size(2)) // square matrix?

{

cout << "Det(A) = " << det(A); // determinant

C = inv(A); // redefine C as inverse of A

cout << "A*inv(A) = " << A*C; // identity matrix!

}

}

Appendix A 173

INPUT:

3 3 <-- dimensions of A

6 5 4 <-- matrix A

1 4 3

2 -1 4

3 2 <-- dimensions of B

1 2 <-- matrix B

2 3

3 4

OUTPUT:

A^T =

6.0000 1.0000 2.0000

5.0000 4.0000 -1.0000

4.0000 3.0000 4.0000

A+C =

24.0000 20.0000 16.0000

4.0000 16.0000 12.0000

8.0000 -4.0000 16.0000

A/3 =

2.0000 1.6667 1.3333

0.3333 1.3333 1.0000

0.6667 -0.3333 1.3333

A*B =

28.0000 43.0000

18.0000 26.0000

12.0000 17.0000

Det(A) = 88.0000

A*inv(A) =

1.0000 -2.2204e-16 0.0000

2.7756e-17 1.0000 2.7756e-17

5.5511e-17 -2.2204e-16 1.0000

174 Algebraic classes

Example 3: ProMatrix operations

The operations of the symmetric pro�le matrix class, ProMatrix, are the same as for

Matrix. The allocation of a pro�le matrix requires an array of leading zeroes, p, to be

de�ned before the matrices, A and B, are allocated and read. The addition and substraction

of symmetric matrices result in new symmetric matrices, whereas multiplication generally

gives un-symmetric, fully populated matrices. The multiplication of operation, A*B, �rst

uses the coercion operator, Promatrix::Matrix() and then calls the Matrix operator *. In

the addition operation the ProMatrix is converted to a Matrix before the Matrix operator

+ is called.

// File: ex3.c

// ProMatrix operations

#include <iostream.h>

#include "matrix.h"

#include "promat.h"

#include "intarr.h"

void main()

{

int n; // declare variables

ProMatrix A,B;

IntArray p;

Matrix C;

cin >> n; // read dimension of system

p = IntArray(n); // allocate integer array

cin >> p; // read profile of A

A = ProMatrix(n,p); // allocate A

cin >> A; // read formatted matrix input

cin >> p; // read profile of B

B = ProMatrix(n,p); // allocate B

cin >> B; // read formatted matrix input

cout << "A+B = " << A+B; // addition ==> ProMatrix

cout << "A-B = " << A-B; // substraction ==> ProMatrix

cout << "A*B = " << A*B; // multiplication ==> Matrix

C = Matrix(n,n); // allocate full Matrix

cin >> C; // read Matrix input

cout << "C+A = " << C+A; // Matrix + ProMatrix ==> Matrix

}

Appendix A 175

INPUT:

4 <-- dimension

0 0 1 2 <-- profile of A

1 <-- profile matrix A

2 3

3 2

5 1

0 1 0 1 <-- profile of B

3 <-- profile matrix B

2

6 2 3

8 3 4

1 3 4 5 <-- matrix C

4 2 3 4

3 4 5 7

5 3 2 4

OUTPUT:

A+B =

4.0000

2.0000 5.0000

6.0000 5.0000 5.0000

--- 8.0000 8.0000 5.0000

A-B =

-2.0000

2.0000 1.0000

-6.0000 1.0000 -1.0000

--- -8.0000 2.0000 -3.0000

A*B =

3.0000 4.0000 10.0000 16.0000

24.0000 12.0000 27.0000 33.0000

12.0000 50.0000 27.0000 50.0000

30.0000 18.0000 18.0000 19.0000

C+A =

2.0000 5.0000 4.0000 5.0000

6.0000 5.0000 6.0000 4.0000

3.0000 7.0000 7.0000 12.0000

5.0000 3.0000 7.0000 5.0000

176 Algebraic classes

Example 4: Solution of linear equation systems

A central part of linear algebra is the solution linear equation systems on the form,

Ax = b

where system matrix, A, is an n-dimensional square matrix and x and b are the solution

vector and the load vector, respectively. The solution, x, is found by multiplying the

speci�ed load vector, b, with the inverse of the system matrix, i.e.

x = A�1b

The program makes use of the method inv to evaluate the inverse of the system matrix.

The operation inv(A)*b creates a new vector, which is assigned to the solution vector, x.

// File: ex4.c

// Solution of un-symmetric linear equations

#include <iostream.h>

#include "vector.h"

#include "matrix.h"

void main()

{

int i,j,n; // declare variables

Matrix A;

Vector b,x;

cin >> n; // read dimension of system

A = Matrix(n,n); // allocate memory

b = Vector(n);

cin >> A >> b; // read formatted input

cout << "System matrix = " << A; // echo input

cout << "Load vector = " << b; // echo input

x = inv(A) * b; // solve linear equations

cout << "Solution = " << x; // print solution vector

}

Appendix A 177

INPUT:

3 <-- dimension

6 5 4 <-- system matrix A

1 4 3

2 -1 4

28 18 12 <-- load vector b

OUTPUT:

System matrix =

6.0000 5.0000 4.0000

1.0000 4.0000 3.0000

2.0000 -1.0000 4.0000

Load vector =

28.0000

18.0000

12.0000

Solution =

1.0000

2.0000

3.0000

178 Algebraic classes

Example 5: Solution of �nite element equations

The ProMatrix class provides two methods, factor and solve, that enables solution of a

constrained system. An array, f, is introduced to mark the prescribed displacements {

f(i) = 1 for prescribed displacement and f(i) = 0 if the displacement component is free.

This array is passed to the methods along with the sti�ness matrix, K, the displacement

vector, x, and the load vector, b.

Figure A.2: Two-bar truss

Consider the plane truss structure in Figure A.2. It consists of two linear bar elements
with an axial sti�ness of EA. The global sti�ness matrix is found by assembling the two

element contributions, see e.g. Section 7.2.

K =
EA

l

2
6666666666666664

p
2

2
�
p
2

2
�
p
2

2

p
2

2
0 0

�
p
2

2

p
2

2

p
2

2
�
p
2

2
0 0

�
p
2

2

p
2

2

p
2

2
+ 1 �

p
2

2
�1 0

p
2

2
�
p
2

2
�
p
2

2

p
2

2
0 0

0 0 �1 0 1 0

0 0 0 0 0 0

3
7777777777777775

The structure is loaded by a vertical point load, P , in node 2 and �xed in both displacement

components at node 1 and 3, whereby the load vector, b, and the array, f , become

bT = [0 0 0 P 0 0] ; f = [1 1 0 0 1 1]

The following example uses the axial sti�ness, EA = 1, the length, l = 1 and the load

P = �1. The program �rst de�nes the sti�ness matrix as a pro�le matrix, stores the load

vector in a vector and �xity is stored as an integer array. The factorization is carried out
omitting the rows and columns corresponding to a prescribed zero displacement, f(i) =

1. Next, the unknown parts of the displacements and loads are found using the solve

method.

Appendix A 179

// File: ex5.c

// Solution of finite element equations

#include <iostream.h>

#include "vector.h"

#include "promat.h"

#include "intarr.h"

void main()

{

int n; // declare variables

Vector b,x;

ProMatrix A;

IntArray p,f;

cin >> n; // read size of system

p = IntArray(n); // allocate integer array

cin >> p; // read profile array

K = ProMatrix(n,p); // allocate profile matrix

cin >> K; // read stiffness matrix

cout << "K = " << K; // echo stiffness matrix

b = Vector(n); // allocate vectors

x = Vector(n);

cin >> b; // read load vector

f = IntArray(n); // allocate fix array

cin >> f; // read fix array

factor(K,f); // LDL^T factors of K

cout << "LD = " << K; // print matrix factors

solve(K,x,b,f); // solve linear equations

cout << "Displacements = " << x; // print solution vector

cout << "Loads = " << b; // print solution vector

}

180 Algebraic classes

INPUT:

6 <-- problem size

0 0 0 0 2 5 <-- profile p

0.3536 <-- stiffness matrix K

-0.3536 0.3536

-0.3536 0.3536 1.3536

0.3536 -0.3536 -0.3536 0.3536

-1.0000 0.0000 1.0000

0.0000

0 0 0 -1 0 0 <-- load vector b

1 1 0 0 1 1 <-- fix array f

OUTPUT:

K =

0.3536

-0.3536 0.3536

-0.3536 0.3536 1.3536

0.3536 -0.3536 -0.3536 0.3536

--- --- -1.0000 0.0000 1.0000

--- --- --- --- --- 0.0000

LD =

0.3536

-0.3536 0.3536

-0.3536 0.3536 1.3536

0.3536 -0.3536 -0.2612 0.2612

--- --- -1.0000 0.0000 1.0000

--- --- --- --- -nnn-- 0.0000

Displacements =

0.0000

0.0000

-1.0000

-3.8281

0.0000

0.0000

Loads =

-1.0000

1.0000

0.0000

-1.0000

1.0000

0.0000

Appendix A 181

A.5 References

Hededal, O. (1993): Finite element with C++ classes. Proc. 6th Nordic Seminar on

Computational Mechanics. Link�oping, Sweden, 1993.

Hededal, O. and Krenk, S. (1993): A Pro�le Solver in C for Finite Element Equations.

Engineering Mechanics Papers. No. 13, Dept. Building Technology and Structural Engi-

neering, Aalborg University, Aalborg, Denmark. (to appear in Computers & Structures)

Kernighan, B. and Ritchie, D.M. (1991): The C Programming Language, 2nd Edn. Prentice

Hall, New Jersey, USA, 1991.

Lippman, S.B. (1989): C++ Primer. Addison-Wesley, Massachusetts, USA, 1990.

Nielsen, L.O. (1993): A C++ basis for computational mechanics software. Technical Uni-

versity of Denmark, Copenhagen, Denmark, 1993.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988): Numerical
Recipes in C. Cambridge University Press, Cambridge, U.K., 1988.

Stroustrup, B. (1991): The C++ Programming Language, 2nd Edn. Addison-Wesley,

Massachusetts, USA, 1991.

Winder, R. (1991): Developing C++ Software. John Wiley & Sons Ltd, Chichester, U.K.,
1991.

182 Algebraic classes

Appendix B

Summary

The aim of this thesis has been to investigate the possibilities of using object-oriented

programming for �nite element programming. Chapter 1 considers the requirements for
a exible framework for �nite element programming motivating the use of object-oriented

programming. A brief introduction to the object-oriented concepts, e.g. objects, inheritance
and polymorhism, and their representation in C++ is given. The chapter is concluded by a
review of central papers on object-oriented �nite elements. Then follows the two main parts

of the thesis: In Chapter 2-5 the �nite element formulations of linear potential problems
and linear elasticity are considered and a framework for programming �nite elements is

established. In Chapter 6-8 the linear framework is extended to deal with non-linear
problems. First non-linear solution methods are introduced and then di�erent non-linear
�nite element formulations are presented. Chapter 9 gives the conclusions.

In Chapter 1 the requirements for a exible framework for �nite element programming
are considered motivating the use of object-oriented programming. The numerical require-

ments concern e�ciency and robustness of the algorithms, and the possibility of using
di�erent elements, materials or solution algorithms. Furthermore, the structure of a �nite
element code should enable the program to be specialized and expanded without increasing

the complexity of the code. Structuring the program in objects gives a distributed archi-
tecture with very few bindings between di�erent parts of the program. It is thus possible
to introduce new facilities without a�ecting the existing part of the program. Furthermore,

in object-oriented programming the tedious parts of the code, e.g. the input/output facil-

ities, can be inherited from an existing object, hence the programmer can concentrate on

formulating the problem dependent part.

Chapter 2-5 describe the development of an object-oriented framework for �nite element
programming, ObjectFEM. In Chapter 2 the �nite element formulations of linear potential

problems and linear elasticitity theory are considered. The purpose is to identify a general

structure that applies to a large number of �nite element problems. In mechanics the �nite
element formulation is usually based on a balance equation, e.g. the Poisson equation for

potential problems or static equilibrium for elastic bodies. The balance equation, which
de�nes a generalized divergence operator, is reformulated by taking a weighted mean thus

obtaining the weak form used for the �nite element approximation. The weak form de�nes

the generalized gradient operator which is adjoint to the divergence. Discretizing the

183

184 Summary

domain into elements connected at the nodes leads to the �nite element approximation.

The discretized problem is described in terms of the nodal degrees-of-freedom and the

corresponding loads. Within each element the distributed properties are processed into

discrete form, i.e. element sti�ness and load. The derived results, i.e. strain and stress,

are also de�ned by the element. The element degrees-of-freedom, sti�ness matrix and

load vector are assembled into a global system of equation containing the complete �nite

element model. Solving this gives the unknown nodal degrees-of-freedom and loads.

The concepts established in Chapter 2 are used for de�ning the FEM classes: Node, El-
ement and Material. These de�ne a standard interface consisting of shared methods and

FEM methods. The shared methods take care of the model de�nition and generation, the

assembly of and retrieval from the global equation system and input/output operations.

By de�ning a number of problem parameters, e.g. the number of element nodes and the

number of degrees-of-freedom, the shared methods can be used directly by the subclasses.

The FEM methods specify the �nite element formulation, e.g. element sti�ness or strain,

hence must be de�ned for each element type or material model. A new element or material

is implemented as a subclass of either the Element or Material superclass.
The �nite element model is stored in linked lists. The list can be extended gradually, thus it
is not necessary to specify the problem size initially. A linked list uses dynamically allocated

memory and it is vital that it is manipulated safely, hence a List class is introduced de�ning
methods for adding, removing and searching for items in the list. The class is de�ned as
a template, i.e. a general data type which by typecasting can be used for storing di�erent

data types, e.g. Node and Element. The algebraic classes, Vector and Matrix, de�ne a
symbolic notation for programming linear algebra. They consist of overloaded operators,

which simulate the mathematical notation, and of methods for solution of linear equation
systems. The classes are specialized according to the structure, e.g. pro�le matrices or
sparse matrices. The lists, algebraic classes and FEM classes form a macro-language which

is used for writing applications. The application is a user-de�ned module controlling the
complete �nite element analysis. It consists of model de�nition and generation, formation

and solution of the global equations, and a postprocessing part.
In Chapter 4 and 5 the basic framework, i.e. Element and Material, is customized to spe-
ci�c problems. The linear potential element and the linear elastic solid mechanics element

are formulated using the isoparametric element concept. The two isoparametric elements

belong to a family of isoparametric continuum elements and a superclass, Continuum, is
derived from Element. A Gausspoint class is introduced storing the Gauss coordinates and

weights which are used in the numerical integration scheme. Serendipity elements for 3D

and 2D potential problems are derived from the Continuum superclass and simple material

models are derived from the Material class. Linear elastic solid mechanics elements are im-

plemented by the Solid class. Using the potential elements as superclasses the modi�cation

are limited to a rede�nition the dimensions of the element matrices. The Material class is
specialized to linear isotropic elastic materials to be used by the solid elements, i.e. 3D:

Elastic, 2D: PlaneStrain and PlaneStress.
The second part of the thesis, Chapter 6-8, concerns non-linear �nite elements. In Chap-

ter 6 the solution of non-linear �nite element equations is considered. First, a general

introduction to non-linear �nite elements in relation to non-linear solution strategies is

Appendix B 185

given. The solution algorithms are predictor-corrector strategies consisting of an estimate

based on a linear tangent relation followed by equilibrium iterations, where the estimate

is corrected until equilibrium is obtained. The �rst estimate is usually based on a tan-

gent sti�ness relation. The tangent sti�ness is assembled from element contributions. The

main component in the correction �rst estimate is the residual force, i.e. the unbalance

between the internal force produced by the deformation of the structure and the external

applied load. The internal force vector, which must be formed in every iteration, is assem-

bled of element contributions. It classi�es the non-linear problems in two groups. Those

where the internal force can be evaluated by explicit integration over the element, e.g.

geometrically non-linear problems, and those that require implicit integration, i.e. where

the internal force is integrated from a stress state that in each point is �rst integrated over

the complete load history. The extension of the framework to handle non-linear problems

thus requires the Element class to be able to evaluate the tangent sti�ness and the internal

force.

Two iterative solution strategies are presented: the arc-length method and the orthogonal

residual method, which is an alternative to the widely used arc-length method. In order
to make the di�erent methods into robust codes the passage of load limit points and
strategies for controlling the increment size are discussed. An application for non-linear

�nite element analysis which uses either the arc-length method or the orthogonal residual
method is presented.
In Chapter 7 an elastic bar element with �nite deformations is presented as an example

of non-linear problems with explicit evaluation of the internal force. The bar element uses
the Green strain measure to describe the deformation of the bar. A tangent sti�ness is

established and the internal force is de�ned in terms of the current displacement state.
Neglecting the non-linear terms a simple formulation for a linear bar element emerges.
This linear element, Bar, is used as superclass for the non-linear class, NlBar. The chapter
is concluded by 2 examples where the equilibrium paths of non-linear truss structures are
traced using the non-linear solution algorithms presented in chapter 6.

Chapter 8 presents elasto-plastic material models as an example of non-linear problems
where the internal force can not be evaluated explicitly for a given displacement state.
The theory for hardening plasticity and the integration of the constitutive relations are

shortly resumed. The Element class is modi�ed to handle problems where the material

properties are not constant over the element. The Gausspoint class is extended in order

to be able to store the current state of stress and strain. A Plastic material class, which

serves as superclass for elasto-plastic materials, is derived from Elastic de�ning the methods

necessary to evaluate the tangent sti�ness and to integrate the stress used to evaluate

the internal force. von Mises plasticity illustrates the implementation of an elasto-plastic

model.

The experience with object-oriented programming for linear and non-linear �nite elements

is discussed in the concluding Chapter 9. It is found that objects can structure the �-

nite element analysis in a highly distributed architecture where the di�erent parts can be
developed independently of each other. The �nite element formulation is handled by the

FEM classes which de�ne a programming framework. The FEM classes enable reuse of the

more tedious parts, such as input/output. Thereby the programmer is able to concentrate

186 Summary

on the �nite element formulation. The framework can thus be used for fast prototyping

of elements, materials and solution methods. The algebraic classes and the applications

do not require the programmer to change the programming style dramatically because

they in general use a syntax similar to that of procedural programs. However, deriving an

element or a material from a base class requires the programmer to be familiar with the

framework and basic features in object-oriented programming. Thus a basic knowledge of

object-oriented programming is necessary to get the full advantage of an object-oriented

framework for �nite elements.

Appendix C

Summary in Danish

Form�alet med denne afhandling har v�ret at unders�ge mulighederne for at anvende objekt-

orienteret programmering i forbindelse med elementmetode. I kapitel 1 opstilles f�rst en
r�kke numeriske og strukturelle krav til et eksibelt programsystem. Dern�st introduc-

eres centrale begreber i objektorienteret programmering, og deres repr�sentation i C++
beskrives kort. Kapitlet afsluttes med en kort gennemgang af nogle centrale referencer om
objektorienteret elementmetode. Afhandlingen er herefter opdelt i to hoveddele. F�rste

del, kapitlerne 2-5, introducerer elementmetodeformuleringer med hovedv�gt p�a line�re
problemer. Et generelt system til programmering af line�r elementmetode opstilles. Dette

system specialiseres derefter til konkrete problemer. Anden del, kapitlerne 6-8, besk�ftiger
sig med ikke-line�r elementmetode. Det vises, at den ikke-line�re formulering kun inde-
b�rer f�a tilf�jelser til den line�re standardsystem. Erfaringerne, som er opn�aet under

udviklingen af programsystemet, danner grundlag for konklusionerne pr�senteret i kapitel
9.

I kapitel 1 opstilles kravene for et programsystem til programmering af elementmetode.
Det kr�ves, at programsystemet er numerisk e�ektivt og robust, samt at det er muligt p�a
simpel vis at v�lge mellem forskellige elementer, materialer og l�sningsstrategier. Dette

skal underst�ttes gennem en programstruktur, som kan specialiseres og udvides uden at �ge
kompleksiteten af det samlede system. Objekter strukturerer programmet i selvst�ndige
enheder med f�a interne bindinger. Derved bliver det muligt at udvikle de forskellige dele

af programmet uafh�ngigt af hinanden.

Kapitlerne 2-5 beskriver udviklingen af et programsystem for line�r elementmetode, Ob-

jectFEM. I kapitel 2 formuleres elementmetoden for potentialproblemer og line�r elas-

ticitetsteori. Form�alet er at identi�cere en generel struktur, der er f�lles for en r�kke
problemer. Indenfor mekanik er grundlaget for elementmetodeformuleringen ofte en bal-

anceligning, f.eks. Poissons ligning, der beskriver potentialproblemer, eller de statiske

ligev�gtsligninger indenfor elasticitetsteori. Balanceligningen, som de�nerer en generalis-
eret divergensoperator, omformes gennem en v�gtet middelv�rdi til den svage form som

anvendes i elementmetoden. Denne operation de�nerer den generaliserede gradientoper-
ator, som er adjungeret til divergensen. En diskretisering af det betragtede volumen i

elementer, som er forbundet i knuder, danner grundlag for elementmetodeapproksimatio-

nen. Det diskretiserede problem de�neres af knudernes frihedsgrader og de dertil svarende

187

188 Summary in Danish

knudelaster. I hvert element omformes de kontinuerte egenskaber til diskret form, d.v.s.

elementstivhed og last. Elementet er ligeledes karakteriseret ved den generaliserede t�jning

og sp�nding. Alle elementers frihedsgrader, stivhedsmatricer og lastvektorer samles til et

globale ligningsystem, hvis l�sning giver de ukendte knudefrihedsgrader og reaktioner.

De begreber, som er identi�ceret i kapitel 2, danner grundlag for FEM-klasserne: Node, Ele-
ment ogMaterial. Disse basisklasserne de�nerer et standardinterface best�aende af f�llesme-

toder og FEM-metoder. F�llesmetoderne h�andterer bl.a. de�nering og generering af mod-

ellen, assemblering af det globale ligningssystem samt input/output operationer. Ved

at de�nere nogle problemparametre, f.eks. antallet af elementknuder og antallet af ele-

mentfrihedsgrader, er det muligt at anvende f�llesmetoderne til alle problemtyper. FEM-

metoderne speci�cerer elementmetodeformuleringen f.eks. i form af stivhed eller t�jning og

m�a derfor de�neres for hvert element eller materialemodel. Nye elementer eller materialer

implementeres som en underklasse af enten Element eller Material.
Den fulde elementmetodemodel lagres i k�dede lister. En liste kan udvides gradvist, og

det er derfor ikke n�dvendigt at kende modellens st�rrelse p�a forh�and. En k�det liste

lagrer dynamisk allokerede objekter. Derfor er det vigtigt, at de manipuleres p�a en sikker
m�ade, hvilket g�res ved at de�nere listen som en klasse, hvis metoder kan inds�tte, fjerne
eller �nde objekter i listen. Algebraiske klasser muligg�r symbolsk programmering af

line�r algebra. De to klasser, Vector og Matrix, simulerer den matematiske syntaks ved
brug af operatorer, som rede�neres s�a de svarer til deres matematiske modstykke. Da
l�sningen af line�re ligningssystemer er t�t knyttet til strukturen i systemmatricen, in-

deholder klasserne ligeledes s�adanne l�sningsmetoder. De algebraiske klasser, listerne og
FEM-klasserne danner et makro-sprog, som anvendes til programmering af applikationer.

En applikation programmeres af hver enkelt bruger af systemet og de�nerer den fulde el-
ementmetodeanalyse best�aende af modelde�nition, assemblering og l�sning af det globale
ligningssystem, samt evt. efterbehandling.

I kapitlerne 4 og 5 specialiseres det generelle system, d.v.s. Element og Material, til konkrete
problemer. B�ade det line�re potentialelement og det line�rt elastiske solidelement for-

muleres som isoparamtrisk element. Disse to elementer er del af en familie af isoparametriske
kontinuumelementer og derfor de�neres en superklasse, Continuum, som nedarves fra Element-
klassen. En Gausspoint-klasse introduceres til h�andtering af de enkelte integrationspunk-

ters koordinater og v�gte. Den isoparametriske superklasse specialiseres til 2D og 3D-

potentialelementer af serendipitytypen, og i den forbindelse specialiseres Material-klassen
til simple line�re materialemodeller. Line�rt elastiske solidelementer implementeres af

Solid-klassen. Disse elementer nedarves fra potentialelementerne, hvorved modi�kation-

erne hovedsagligt best�ar i rede�nering af elementmatricernes dimensioner. Material-klassen
specialiseres til line�rt, isotropt elastiske materialer i 2D og 3D.

Anden hoveddel af afhandlingen omhandler ikke-line�r elementmetode. I kapitel 6 be-

tragtes l�sningen af ikke-line�re ligningssystemer. F�rst gives generel introduktion ikke-

line�r elementmetode i relation til l�sningsstrategier. To forskellige typer ikke-line�re

problemer identi�ceres. I den f�rste type problemer kan de interne kr�fter kan beregnes
eksplicit p�a basis af et givent estimat p�a ytningerne. I den anden er det n�dvendigt at

integrere de konstitutive relationer op over hele belastningsforl�bet. Disse problemer er

derved karakteriseret ved implicit beregning af de interne kr�fter. Iterative strategier for

Appendix C 189

l�sning af ikke-line�re ligninger pr�senteres med hovedv�gt p�a buel�ngdemetoden og or-

thogonal residual metoden. I forbindelse med udvikling af en applikation, der anvender

disse metoder, beskrives supplerende foranstaltninger, der er n�dvendige for at sikre en

robust kode. Kapitlet afsluttes med at resumere de tilf�jelser til Element klassen, som
kr�ves i forbindelse med brugen af de ikke-line�re l�sningsstrategier.

I kapitel 7 opstilles elementformuleringen for et geometrisk ikke-line�rt stangelement. El-

ementet baseres p�a Greens ikke-line�re t�jningsm�al og er et eksempel p�a et problem, hvor

de interne kr�fter kan beregnes eksplicit. Den ikke-line�re formulering leder til opstill-

ing af en repr�sentativ tangentstivhed samt udtryk til beregning af de interne kr�fter

p�a baggrund af en given ytningstilstand. Den line�re del af formuleringen giver en el-

egant formulering af det line�re stangelement. Det line�re stangelement, Bar, anvendes
som superklasse for det ikke-line�re element, NlBar. Kapitlet afrundes af 2 eksempler,

hvor det totale last-ytningsforl�b for ikke-line�re stangkonstruktioner er fastlagt v.h.a.

de ikke-line�re algoritmer pr�senteret i kapitel 6.

Kapitel 8 omhandler elasto-plastiske materialemodeller som et eksempel p�a ikke-line�re

problemer med implicit beregning af de interne kr�fter. Der indledes med en kort intro-
duktion til plasticitetsteori for h�rdende materialer samt til integration af de inkrementale
konstitutive relationer. Derefter modi�ceres Element og Gausspoint klasserne, s�a de kan

h�andtere problemer, hvor materialeegenskaberne og sp�ndingstilstanden varierer over el-
ementet. En Plastic materialeklasse arver de elastiske relationer fra Elastic, og tilf�jer
metoder til beregning af de plastiske bidrag til tangentstivheden, samt integration af de

konstitutive ligninger i forbindelse med beregning af de interne kr�fter. Implementeringen
af von Mises plasticitet illustrerer en konkret anvendelse af den elasto-plastiske klasse.

Erfaringerne med objektorienteret programmering i forbindelse med strukturing af ele-
mentmetode diskuteres i kapitel 9. Det konkluderes, at objekter kan anvendes til at
opdele elementmetodeanalysen i en r�kke uafh�ngige moduler, som kan udvikles uden,

at det p�avirker det �vrige system. Selve elementmetodeformuleringen h�andteres af FEM-
klasserne, som de�nerer en programmeringskal. Denne programskal muligg�r genbrug af

store dele af koden, f.eks. input/output, hvorved programm�ren er i stand til at koncen-
trere sig om at implementere selve elementmetodeformuleringen. Systemet muligg�r derfor
hurtig implementering af nye elementer, materialer eller l�sningsalgoritmer. Brugen af de

algebraiske klasser og applikationerne stiller ikke s�rlige krav til programm�rens kendskab

til objektorienterede principper. Implementering af nye elementer eller materiale modeller

kr�ver derimod, at programm�ren er fortrolig med systemet og grundl�ggende begreber

indenfor objektorienteret programmering. Et kendskab til de basale begreber er derfor

foruds�tning for at f�a fuld gl�de af de muligheder, som objektorienteret programmering

giver i forbindelse med elementmetoden.

