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damaged during previous excitations, so that the strength has deteriorated, and no longer 
fulfils the code specifications. Active vibration control can then protect against the specified 
design loading for the structure which, without it, would cause a collapse. 

Substantial advantages may be obtained by utilizing active control for vibration suppression, 
but some factors tend to favour passive structural design over active control techniques. The 
safety of a civil engineering structure is usually governed by its response to an infrequent 
event, such as a severe earthquake. As a result, an active earthquake control system would 
have to remain in stand-by mode for many years and perhaps several decades without being 
activated. The reliability of an infrequently used equipment then becomes a serious problem. 
An additional concern for active control systems is that the time at which the control power 
is most needed often coincides with the time at which failure of most utility systems can be 
expected. Hence, such active vibration control devices must be equipped with a local power 
source. In contradiction to control systems designed for safety requirements, those utilized for 
comfort operate relatively frequently. For continuously active controllers economics remains a 
major concern since energy consumption may become excessive. For these and other reasons, 
attention still has to be given to passive control measures, while research is performed in 
producing more reliable and effective active control devices. 

Design of active control systems for vibration suppression of civil engineering structures may 
be considered as the third component in a general structural analysis, which also comprise 
system modelling and identification. These 3 topics are all treated in this study, but with 
the emphasis placed on the design of control algorithms. A concise description of model 
development in structural dynamics is presented, (Chapter 2). In addition, different methods 
for designing the control force algorithm are reviewed in this chapter. One of these employs 
an optimal control strategy, where the control forces are chosen such that a given performance 
index is minimized. Optimal control algorithms for linear structures based on a performance 
index being quadratic in the state vector and control forces are presented, (Chapter 3). 
Further to the classical solution techniques known from the literature on control theory, a new 
solution method based on the invariant embedding technique is presented. Implementation 
of active control possesses some practical problems which are discussed, (Chapter 4). 

Next, the feasibility in controlling nonlinear structures has been explored, (Chapter 5). 
Here, the control algorithm developed from the invariant embedding technique in connection 
with linear structural systems is extended to include the nonlinear case. The algorithm is 
developed from a criterion of minimizing a quadratic performance index, but because of 
approximations introduced, it will only provide a suboptimal solution. Another suboptimal 
control law based on Pearson's equivalent linearization is presented. The two algorithms 
are compared by application to simulated data generated from a hysteretic single-degree-of­
freedom system subjected to a Gaussian white noise, and the proposed algorithm based on 
the invariant embedding technique showed the best performance properties. In the remainder 
of Chapter 5 a control algorithm· for simultaneous determination of structural parameters -
a so-called adaptive controller, is presented. This control algorithm is finally validated by 
application to the numerical model used previously. Finally, based on the theory for optimal 
control of linear structures introduced experimental tests have been carried out in order to 
study the effectiveness of an actively tuned mass damper, (Chapter 6). In this context, a 
system identification technique is derived to find the parameters in the equation of motion 
for the experimental model. 



Chapter 1 

Introduction 

In designing large civil engineering structures, an important consideration is prospective 
dynamic loadings which may include earthquake ground motion, wind gusts, severe sea 
states and moving vehicles, rotating and reciprocating machinery and others. Successful 
design of such structures requires providing for the safety and integrity of the structure, 
and in some cases also providing for a measure of comfort for the occupants during such 
events. The design task is complicated by considerable uncertainty in defining the dynamic 
loading which the structure and its occupants must endure. Due to these uncertainties, the 
civil engineering community has traditionally adopted a very conservative design approach. 
Thus, buildings and other structures have relied on the strength of the structure and its 
ability to dissipate energy in order to survive during severe dynamic loadings. 

During the last 50 years, however, much attention has been given to socalled passive vi­
bration suppression of civil engineering structures for providing structural safety. In fact , 
passive control devices such as base isolation systems, viscoelastic dampers and tuned mass 
dampers have. been installed in existing structures, resulting in improved structural perfor­
mance. Passive control devices utilize the property that energy dissipation mechanisms can 
be activated by the structure itself. However, the passive control parameters are generally 
designed to suppress vibration response only at a single frequency. Due to limitations in 
the passive control and in consequence of an increasing applicability of sophisticated anal­
ysis techniques, active control has during the last 20 years been considered for attenuating 
vibrations of civil engineering structures. Unlike passive control devices, active control im­
plies a modification of the structural vibration by means of force action provided through 
an external loading mechanism. Comparing active and passive control systems one of the 
main advantages by a properly designed active control system is that it can be effective over 
a wide frequency range. Besides this essential property, there are other motivating factors 
for making research in the field of active structural control. 

Driven by economic disincentivities such as increasing relative cost for materials, by the 
development of high-strength materials, and by the advancement in structural analysis and 
design, the trend has been towards the design and constructing increasingly more slender 
and flexible civil engineering structures. This, in turn, could in case of large environmental 
loads lead to excessive vibrations, which may need to be suppressed to prevent the structure 
from oscillating beyond acceptable limits. The application of active control is one of the 
options in safeguarding such structures. 

Active control systems can also be installed in existing structures which have been slightly 
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1.1 Review of Literature 

Active vibration control of large civil engineering structures is of relatively recent novelty, 
but the concept of active control has been prominent in the aerospace, electrical and me­
chanical engineering fields for many decades. Much of the theory applied by civil engineering 
researchers is rooted in classical and modern control techniques, which basically have been 
developed within these fields. However, its application to civil engineering structures is 
unique in many ways and possesses new problems to be solved. It is the purpose of what 
follows to review briefly some of the scientific work accomplished within active structural 
control, and one of the basic problems within this field is dealt with. 

The concept of active structural control was first presented to the structural engineering 
profession by Yao (1972), who made a more rigorous formulation of the structural control 
problem on the basis of the control theory developed at that time. Since he suggested the 
employment of appropriate applied forces to reduce structural vibrations and thus, improve 
the safety and reliability of a structure, comprehensive research has taken place according to 
his idea. Most of the work done has concentrated on developing different control algorithms 
and making numerical documentation, assuming ideal conditions under which active control 
is implemented. Experimental verification has, however, only been performed to a limited 
extent. 

The most essential component in an active control device is perhaps the actuator used to 
transform the supplied external energy into control forces. Naturally, a number of different 
actuators have been proposed and one type is the active tendon control. This system consists 
of a set of prestressed tendons connected to the structure and to one or more electro-hydraulic 
servo-mechanisms. The tension in the tendons is then regulated by means of the electro­
hydraulic servo-mechanism, and if the tendons are connected to suitable locations of the 
structure this system will be able to reduce vibrations. Active tendon control has been 
studied both analytically by Abdel-Rohman and Leipholz (1978a,1979,1981), Abdel-Rohman 
(1987a), Cheng and Pantelides (1987), Roorda (1975), Yang (1975), Yang and Giannopulos 
(1978), Yang and Mingchien (1982), Yang and Samali (1983a), Yang and Lin (1983b ), Yang 
et al. (1987), and experimentally by Chung et al. (1988,1989). 

Another category is the active tuned mass damper. This control mechanism consist of a con­
ventional tuned mass damper, McNamara (1977), for which the secondary mass is connected 
to an electro-hydraulic servo-mechanism. By application of active tuned mass dampers it is 
provided that the combined control device operates like a tuned mass damper when there 
is no control force. Hence, both the inertia forces resulting from motions of the secondary 
mass and the generated control force are used to suppress the structural vibrations. A series 
of feasibility studies of active mass dampers has been made, Abdel-Rohman and Leipholz 
(1983), Abdel-Rohman (1987a), Chang and Soong (1980b ), Cheng and Pantelides (1987) , 
Samali et al. (1985), Yang and Mingchien (1982), Yang and Samali (1983a), Yang and Lin 
(1983b ), Yang et al. (1987). A semi-active mass damper has been proposed by Hrovat et al. 
(1983) to control wind-induced vibrations in tall buildings. This control device is a tuned 
mass damper augmented by a special time-varying damper in which the damper parameter 
is varied with time and, as such, requires only a relatively small amount of active energy to 
modulate the damping. Another semi-active mass damper has been proposed by Desanghere 
and Vansevenant (1991 ), where the stiffness is adjusted. A few tall buildings have been built 
with active tuned mass dampers with the primary intention to reduce wind-induced vibra-
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tions. In the 274 m high Citicorp Center in New York an actively controlled secondary mass 
damper of 400 tons has been installed on the top of the building. In Tokyo, Japan an active 
mass driver system has been installed on the top floor of the eleven storey Kyobashi Seiwa 
building capable of controlling vibrations due to strong wind or moderate earthquakes. This 
actuator is a pendulum-type dual-mass system, where one mass, weighting approximately 
four tons, is used for lateral motion control, and a second mass, weighting approximately 
one ton, is used for torsional control. 

The required excitation for vibration suppression may also be generated by pulse actuators, 
where a pulse force of relatively short duration is produced by the release of air jets from a 
gas pulse generator. By analytical investigations control algorithms have been developed to 
determine when the pulses are to be triggered and with what magnitude, Masri et al. (1982), 
Reinhorn et al. (1987), Udwadia and Tabaie (1981a,1981 b) and experimental studies have 
been carried out by Miller et al. (1988). 

Wind-induced vibrations can be reduced by mounting an aerodynamic appendage on a suit­
able place of the particular structure. Using a simple on-off control scheme, the appendage is 
fully extended when the velocity of the structure at the controller location is in the direction 
against the wind, and fully closed when the velocity is in the opposite direction. This control 
scheme has been tested experimentally with an appendage situated at the top of a scaled­
down tall structure, Soong and Skinner (1981). However, as concluded by Abdel-Rohman 
(1987a) from a numerical analysis, its feasibility is questionable for tall buildings. At present, 
systems are under development for control of flutter vibrations of suspension bridges, where 
the wind flow around the oscillating bridge is controlled by aerodynamic appendages in a 
way, that the lift forces from the wind always oppose the velocity of the bridge section. 

Finally, the application of piezo-electric actuators has been proposed for controlling flexible 
beams. The piezo-electric actuator is bonded to a beam and by varying an electric field 
applied across this film, it will expand or contract. Hence, it is possible to bend a beam 
in a manner very similar to a bimetallic thermostat. This control device has been verified 
analytically, Baz and Poh (1988), and by experimental tests with cantilevered beams with a 
maximum length of 1.2m, Baz and Poh (1990), Bailey and Hubbard (1985). 

The feasibility of using active vibration control has been explored for different types of struc­
tures. In many cases the investigations have been accomplished with a certain combination 
of actuator and structure. But almost to the same extent, it is simply assumed in the numer­
ical analysis that the required control force is available, not including reflections of how to 
generate the forces. In the formulation of a control strategy many researchers do not specify 
the structure, but simply consider a beam type structure, Abdel-Rohman et al. (1980a), 
Baba et al. (1989), Baz and Poh (1988), Ebrahimi (1989b ), Meirovitch et al. (1984b ), Sadek 
et al. (1987,1988), Sloss et al. (1988), Soong and Skinner (1981), Yang and Giannopu­
los (1978), King et al. (1991) Schafer and Holzach (1985). Active control of a membrane 
has been considered by Sadek and Adali (1984) and of plate by Luzzato (1983). However, 
specific structures have also been modelled in the development of control strategies, e.g. 
tall buildings, Abdel-Rohman (1982,1987a), Baruh (1987), Cheng and Pantelides (1987), 
Roorda (1975), Yang and Mingchien (1982), Yang and Samali (1983a), and bridges, Abdel­
Rohman and Leipholz (1978a,1978b,l980b,1981), Abdel-Rohman and Nayfeh (1987b ). A 
simultaneous design of structures and active control devices has also been considered by 
some researchers, Bendsf!le et al. (1987), Grandhi (1987). 

The objective of an active control system for civil engineering structures is, basically, to 
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reduce vibrations caused by environmental loads. Hence, the control force is needed during 
the period of intense external excitations. This is a unique problem compared with the 
classical control theory, where the intention usually is to control eigenvibrations caused by 
non-zero initial conditions of the displacement and/or velocity. However, the latter type of 
problem has also been considered by control of flexible structures, Meirovitch et al. (1983a), 
Sadek et al. (1988), Sinha (1988), and the corresponding problem with forced vibrations 
due to a deterministic external loading, Abdel-Rohman and Leipholz (1980b,1984a), Abdel­
Rohman (1987c), Baba et al. (1989), Martin and Soong (1976), Roorda (1975). Against it, 
the environmental loads of practical concern are generally of stochastic nature. With such 
random external excitations control schemes have been developed to reduce vibrations from 
earthquake ground motion, Chung et al. (1988,1989), Meirovitch and Silverberg (1983b) , 
Puh and Hsu (1988), Pu and Kelly (1991), Suhardjo and Spencer (1990), Yang (1975), Yang 
and Lin (1983b), Yang et al. (1987), from wind loadings, Abdel-Rohman (1987a), Cheng and 
Pantelides (1987), Meirovitch and Ghosh (1987), Sae-Ung and Yao (1978), Soong and Skinner 
(1981), Yang (1975), Yang and Giannopulos (1978), Yang and Samali (1983a), Thesbjerg 
(1990), Wong and Luco (1991), and a single concentrated moving load on a bridge deck with 
irregularities, Abdel-Rohman and Leipholz (1981 ). 

In the brief review given above, the most obliging proposals in application of active structural 
control have been mentioned with respect to the choice of actuator, type of civil engineering 
structure to protect against excessive vibrations, and type environmental load causing the 
undesired vibrations. A prospect, which is, however, not mentioned, is active vibration 
control of off-shore structures subjected to severe sea states. More examples and references 
to literature may be found in review papers by Yang and Soong (1988), Soong (1988), 
Reinhorn and Manolis (1985,1989), Spencer and Suhardjo (1990), and in a book by T.T. 
Soong (1990). Concerning the proposed control strategies and the applied theory, further 
references are given in each chapter of this thesis. 



Chapter 2 

Modelling and Design of Actively 
Controlled Structures 

Control systems for active vibration control can generally be classified into 3 groups. The 
distinction between these classes refers to which kind of information is used to make contin­
uous correction to the applied control force. When only variables describing the structural 
behaviour are measured, the control configuration is referred to as closed-loop control. If 
measurements of the external loadings are utilized an open-loop control results. The terms 
feedback and feedforward control are also used in the literature to designate the two cate­
gories. According to the former specification the case where information on both the response 
quantities and excitation is utilized for control design, the term open-closed loop control is 
used. A general representation of such a control system is given in fig. 2.1. 

External 
excitation 

Structural 
response 

Figure 2.1: Schematic diagram of open-closed loop control system. 

The advantage of a closed-loop system compared to an open-loop is that it is often more 
able to cope with unexpected external excitations and uncertainties about the structural 
behaviour. However, it need not be true that closed-loop control is always superior to 
open-loop control. When the measured response has sufficiently large errors, and when the 
unexpected external excitations are relatively unimportant, closed-loop control can have a 
performance which is inferior to open-loop control. 

In active vibration control of building structures a lacking knowledge of the excitations 
subjected to the structure will often be dominant compared to measurement errors in the 
structural response. Therefore, closed-loop control is usually preferred, and if it is possible 
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to measure the external excitations the open-closed loop control may be utilized to make use 
of as much information as possible. 

The objective of this chapter is to make a mathematical representation of a control system for 
active vibration control. The kernel of such a model is an equation of motion for the structure. 
In section 2.1 both a distributed and discrete parameter model are set up. In preparation 
for the following design and analysis of the control system the equations of motion are 
represented in state space form. Section 2.2 reviews the most common performance criteria 
for design of active vibration control systems. 

2.1 Structural Models 

In order to suppress vibrations by active control a system model is needed to describe the 
structural behaviour under externalloadings, and the interconnection of the structure and 
the actuators. The method used here to develop such a model, consists of systematic appli­
cation of basic physical laws to components of the structural system and the interconnection 
between these components. 

Basically, civil engineering structures are distributed parameter continuous systems. Hence, 
the structural model will be obtained by considering a 3-dimensional continuously distributed 
structure, cf. fig. 2.2 

u.<.o> 
l) 

configuration ( t = 0) 

current configuration 

n 

Figure 2.2: Reference and current configuration of an arbitrarily distributed parameter structure 
to be actively controlled. 

To identify the motion of the structure, we introduce a fixed rectangular Cartesian coordinate 
system with origon 0. Time is measured from a fixed reference timet= 0. Suppose that at 
t = 0 the structure occupies a fixed region of space 0 which has the boundary surface r S· 

The position occupied by each particle of the structure at t = 0 is identified by the spatial 
coordinates xT = [xt x2 x3 ] in the chosen coordinate system. The reference configuration 
is assumed to be a statical equilibrium state. Generally, boldface type denote a vector or a 
matrix. 
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On part of the surface r 1 mechanical boundary conditions are prescribed, while geometrical 
boundary conditions are given for the remaining part r2 of the entire surface. 

Suppose that, at t = 0, the structure is subjected to a time-varying displacement u(0)(x, t) = 
(u~0)(x, t) u~0)(x, t) u~0)(x, t)] of all particles at r2. Simultaneously, the structure is subjected 
to the external dynamic forces per unit volume of the reference configuration fex,i(x, t). 
These excitations lead to a motion of the structure. It is assumed that the displacement 
of the material point occupying the position at point X; E f2 U r 1 at the reference time 
t = 0 is given by u;(x, t). This displacement defines the current configuration at the time 
t. To counteract the motion a distributed system of control forces per unit volume of the 
referential configuration J;(x, t) is activated. 

In the statical reference configuration at the time t = 0, the stress configuration in the 
interior of the structure is given by the components a!J), which may be caused by residual 

stresses and external statical forces per unit volume, fl0)(x), of the reference state. As a 
consequence of dynamic excitations the stress is increased by /::::,.a;i leading to the total stress 
configuration 

0' .. _ 0'(0) + AO' .. 
I) - ij L.l. I) (2.1) 

In (2.1) the components O'ij are interpreted as elements of the second Piola-Kirchoff stress 
tensor. The referential description of the Cauchy's equation of motion then becomes, see 
e.g. Spencer (1980) 

O~j [ ( S;k + !::) O'kj] + /;(O)(x) + fex,;(x, t) + J;(x, t)- /d,;(x, t) 

()2 
= p(x) ot2 u;(x, t) V (x, t) E 0 x )0, oo( (2.2) 

In (2.1) and below the index summation conventions will be applied to the indices i,}, .. .. 
The symbol O;j is the Kronecker delta. To account for energy dissipation in the material 
besides possible hysteresis a structural damping force per unit volume of the reference state 
- /d,i(x, t) has been included. p(x) is the mass density in the reference configuration. 

The mechanical boundary conditions are formulated in analogy with (2.2) by assuming that 
there is no surface traction. This leads to 

V(x,t) E f1 x ]O,oo( (2.3) 

where ni are components of the outward normal unit vector to the undeformed surface. 

In the reference configuration the structure is assumed to be in a static equilibrium state 
and hence it fulfils the equation of equilibrium 

~a~?)+ f~0)(x) = 0 
QX · I) I 

) 

Vx E 0 (2.4) 
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and the mechanical boundary conditions 

u~?>n1· = 0 
tJ ' 

Vx E ft (2.5) 

Substituting (2.4) and (2.5) into (2.2) and (2.3), respectively, provides the incremental equa­
tions 

a!j [ ~O"ij + ;;: (ui~> + ~O"kj) l + !ez,i(x, t) + fi(x, t)- h,i(x, t) 

(j2 
= p(x) ot2 ui(x, t) , V (x, t) E n X ]0, oo[ (2.6) 

V (x, t) E rl X ]0, oo( (2.7) 

The prescribed displacement on the subsurface r 2 is represented by 

V (x,t) E r2 X ]O,oo( (2.8) 

As seen it has been assumed, that all points on the surface r2 are subjected to the same 
displacement u~0>(t). Finally, the following initial conditions at t = 0 have to be satisfied 

'Uj(X, 0) = 0 ' Uj(X, 0) = 0 ' v x e n u r1 (2.9) 

For a specific problem the unknown stresses ~O"ij in (2.6) and (2. 7) are eliminated by in­
troducing appropriate constitutive laws and compatibility relations. Likewise, a constitutive 
model is introduced for h,i(x, t) relating this quantity to the deformation state of the struc­
ture. Inserting these models into eqs. {2.6) and (2. 7) a system model is obtained for an 
actively controlled continuum of material under external excitations, i.e. displacements and 
forces supplied by the environments. 

2.1.1 Linear Structural Systems 

A common approach in active control of civil engineering structures is to describe the motion 
by a linear mathematical model. Such a model is appropriate for small deformations of the 
structure, whose achievement is the aim of the control procedure. 

To develop a linear model the constitutive equation for a linear elastic solid is introduced 

V (x,t) E nu rl X )O,oo( (2.10) 

where ~ckl and Eiikl are, respectively, the components of the incremental strain tensor and 
the elasticity tensor. E ijkl is the tangent modulus which depends on the linearization point 

u~~ in the referential configuration. Since ~O"ij and ~ckt are symmetric tensors the number 
of independent elastic constants in Eijkl is at most 21. According to an assumption of small 
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deformations the incremental strain tensor is defined as 

L':l.cii = - -' + - 1 1 (ou· ou·) 
2 OXj OXi 

V (x, t) E !1 U f 1 x )0, oo( (2.11) 

Finally, a linearization of (2.6) and (2.7) followed by an insertion of (2.10) and (2.11) yields 

02
Ui 

Lui + p(x) {)t2 = !e:c,i (X, t) + fi(X, t)- /d,i(x, t) , V (x, t) E n X ]0, oo[ (2.12) 

V(x,t) E f 1 x]O,oo[ (2.13) 

L is a self-adjoint differential operator of order 2 expressing the stiffness. L is defined as 

(2.14) 

and B1 is a differential operator of order 1, expressing the mechanical boundary conditions. 
B 1 is defined as 

(2.15) 

For the damping forces per unit volume /d,i(x, t) a linear viscous model is assumed in the 
form 

/d,i(x, t) = c(x) ( ui(x, t)- i;i(o)(x, t)) (x,t) En x)O,oo( (2.16) 

where c(x) is a non-negative function. Ui(o)(x, t) is a quasi-static displacement field caused by 
the boundary displacements U~O)(t) . Ui(O)(x, t) is then determined by the following boundary 
value problem 

LUi(O) = 0 ' V (x,t) E n X ]O,oo[ (2.17) 

(2.18) 

V (x, t) E f2 x ]0, oo[ (2.19) 

Ul0l(x, t) may satisfy arbitrary initial conditions at t = 0. Substituting (2.16) into (2.12) 
yields 

OUi 82ui a (0) 
Lui + c(x)at + p(x) ot2 = c(x) ot Ui (x, t) + !e:c,i(x, t) + /i(x, t) , 

V (x, t) E !1 x )0, oo[ (2.20) 
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Equation (2.20) expresses the required equation of motion for analysing the effect of apply­
ing control forces to a linear elastic distributed parameter structure subjected to external 
loadings and displacements of the surface. (2.20) must be solved using the initial conditions 
(2.9) and the boundary conditions (2.8), (2.13). 

The preceding equation of motion (2.20) implies that control forces are applied at every point 
of the structure. This is an ideal situation, which cannot be realized in practice. Indeed, 
in practice actuators tend to be discrete elements. These actuator forces can formally be 
treated within the presented continuous formulation by writing 

nm 

fi(x, t) = :2.': h(x- Xa)eaiFa(t) (2.21) 
a=l 

In (2.21) nm is the number of discrete control forces, and Fa(t), a= 1, 2, ... , nm, is the dis­
crete control force applied at the material point x~ = [xal Xa2 XaJ] in a direction determined 
by the unit vector e~ = [eat ea2 eaJ] . 6(x- Xa) = 6(xt- Xat)8(x2- Xa2)6(x3- Xa3) is a 
spatial Dirac delta function. 

2.1.2 Discretized Linear Structural Systems 

To simplify the design of an active control system modelled by partial differential equations 
as (2.20), these will often be approximated by discrete-parameter models described by or­
dinary differential equations. For a discrete-parameter system all energy storage or energy 
dissipation is lumped into a finite number of discrete spatial locations. 

The differential operators L in (2.14) and B1 in (2.15) can be discretized in various ways, 
e.g. by a finite element scheme or by a finite difference scheme. In both cases the initial and 
boundary value problem formulated by (2.8), (2.9), (2.13) and (2.20) is transformed into a 
system of ordinary differential equations. Using (2.21 ), this yields 

Mii + Cu + Ku = CU(o)(t) + Fex(t) + 11F(t) 

u(O) = 0 , u(O) = 0 

t>O (2.22) 

u(t) is ann-dimensional vector of the absolute displacements and rotations in then degrees 
of freedom of the structure. U(o)(t) is an n-dimensional vector specifying the quasi-static 
displacements and rotations relative to the reference configuration, caused by the base mo­
tion. 
M, C and K signify mass, damping, and stiffness matrices, respectively, all of dimensions 
n x n. Fex(t) is an n-dimensional vector of equivalent nodal forces obtained by discretizing 
the distributed external loading, and F(t) is an nm-dimensional vector of the control forces 
Fa(t) . 11 is a constant influence matrix of dimension n x nm in which column a states the 
nodal loading in the degrees of freedom u, when a unit force is applied at point Xa in the 
direction ea. 

Let u(0 l(t) be an /-dimensional vector of nodal motions of the supports. On account of the 
linearity, we have 

(2.23) 
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where 12 is a constant influence matrix of dimension n x 1. Column i states the displacement 
in the degrees of freedom u, when u~o) is equal to 1, and the remaining components is equal 
to 0. 12 is determined by conventional statical methods. 

The relative displacement v(t) with respect to the quasi-static displacement u<o)(t) is given 
by 

v(t) = u(t) - u<o)(t) (2.24) 

The quasi-static displacements and rotations U 0 (t) caused by the boundary motions u<0)(t) 
must in analogy with (2.17) satisfy the condition KU0 (t) = 0. Using this fact and substi­
tuting (2.23) and (2.24) into (2.9), the equation of motion becomes 

Mv + Cv + Kv = -MI2ii(o)(t) + Fex(t) + 11F(t) t>O 

v(O) = -l2u(0)(0) v(O) = -l2u(0)(0) (2.25) 

These equations may, for example, model the behaviour of a frame-like structure subjected 
to an earthquake and discrete external forces. 

2.1.3 State Space Representation 

In the design and analysis of control systems the system equations will here be arranged as 
a set of equivalent first order differential equations. Use of this concept allows one to treat 
a distributed parameter system with the simple uniform notation 

ay~~' t) = c (y(x, t)) + ho(x, t)w(x, t) + b(x, t)f(x, t) V (x,t) E n X )O,oo[ 

(2.26) y(x, 0) = Yo(x) v x E n 

where y(x, t) is the state vector and .C( ·) is a matrix differential operator of the order n with 
respect to x, which in general may be non-linear. w(x, t) is the external excitation vector and 
f(x, t) is the applied control force vector. w(x, t) represents both the applied external load 
distributed over the domain n and the prescribed displacement of the surface r2. bo(x, t) 
and b(x, t) are coefficient matrices conjugating, respectively, the external excitations and 
the control forces to the state vector. 

The kinematic and mechanical boundary conditions may be represented by the vector equa­
tions 

9i (y(x, t)) = 0 , i = 0, ... ,n -1 V (x, t) E f x ]0, oo( (2.27) 

where 9i(·) is in general a nonlinear vectorial spatial differential operator whose parameters 
may depend on x and t. These are ordered in ascending order of differentiability, so that 
9i(·) is a differential operator of order i. The indicated initial and boundary value problem 
is applicable to one, two and three-dimensional continua as well. 

For many structures the equation of motion can be approximated by a linear mathematical 
model. In such cases the governing partial differential equations can be expressed in the 
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following general form 

8y(x, t) 
8t = A(x,t)y(x,t) + bo(x,t)w(x,t) + b(x,t)f(x,t)' V (x,t) E n X ]O, oo[ 

y(x, 0) = Yo(x) , V x E f! (2.28) 

where A(-) is a matrix, linear spatial differential operator. 

For the linearly distributed parameter structure considered in section 2.1.1 it is quite easy to 
rearrange the governing partial differential equation (2.20) into state space form like (2.28), 

A(x) = [ _l_L -~I l 
p(x) p(x) 

y(x, t) = [ ~~:: !~ ] 

bo(x) = [~I 1_I l 
p(x) p(x) 

[ 
iJ(o)(x t) ] 

w(x, t) = fex(x, ~) b(x) = [ 1_I ] (2.29) 
p(x) 

u(x, t), fex(x, t) and i.J(o)(x, t) are vectors of the corresponding components u;(x, t), fex,;(x, t) 
and U;(o)(x, t) . Lu(x, t) is a vector of the components Lu;(x, t), and I and 0 are, respectively, 
a unit matrix and a zero matrix of order 3 x 3. 

The differential operators representing the boundary conditions (2.13) and (2.8) are given as 

YoY(X, t) = [ I 0 ] y(x, t)- u(O)(t) V (x, t) E r2 X ]0, oo[ (2.30) 

YtY(x,t) = [ Bt 0] y(x,t) ' V (x,t) E rl X ]O,oo[ (2.31) 

where B 1 u(x, t) is a vector with components B 1u;(X, t), and u(0l(t) is a vector with compo­
nents u~o) ( t). 

Considering a general non-linear discrete-parameter structure the equation of motion can be 
written in state space notation as 

Y(t) = G(Y(t), t) + B0 (t)W(t) + B(t)F(t) , Y(O) = Yo (2.32) 

where Y(t) is the state vector and G is a vector function accounting for structural dynamics. 
F(t) is a vector of control forces and W(t) is a vector of external excitations. B(t) and B 0(t) 
are general time-dependent coefficient matrices conjugating the control forces and external 
excitations to the state vector. 

The nonlinearity of a structural model may for instance be due to a hysteretic restoring force. 
On condition that the constitutive law for the hysteretic component of the restoring force 
can be written in differential form then the model (2.32) may represent such a system. Fur­
thermore, the governing differential equation (2.32) may include a safety or damage measure 
for the structure given in differential form. Sometimes, it is convenient to view the external 
loading as being generated by a dynamic system represented in differential form, which may 
also be included in (2.32). Hence, the state vector of an augmented structural model may 
include the state variables of a shaping filter generating the environmental loading, of a 
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hysteretic system, and of a safety or damage measures. 

A discretized linear structural system can be written in state space form as 

Y(t) = A(t)Y(t) + B0 (t)W(t) + B(t)F(t) , Y(O) = Yo 
(2.33) 

where A(t) is a general time-varying system matrix. For the discretized structural system 
considered in section 2.1.2, we have 

, A= [ -~-tK _J-tc l 
[ 

0 0 l [ii(
0
)(t)] [ 0 l Bo = -I2 M-1 ' W(t) = Fez(t) ' B = M-1It (2.34) 

where 0 and I denote, respectively, the null matrix and the identity matrix of appropriate 
dimensions. 

2.2 Performance Specifications 

Based on the developed equations of motion it is possible to see the effect of applying control 
forces to a given structure on ideal conditions. Consider a building structure modelled by the 
equation of motion (2.25) and represented in state space form by (2.33) and (2.34) . Suppose 
that the open-closed loop configuration is used in which the control force is designed to be a 
linear function of the measured state vector Y(t) and the measured excitation vector W(t). 
The control force vector then takes the form 

F(t) = -Gc(t)Y(t) + Ic(t)W(t) (2.35) 

where Gc(t) = [Kc(t) Cc(t)] and Ic(t) = (lct(t) lc2(t)] are respective gains which in general 
are time-dependent. Substituting (2.35) into (2.33) and rearranging yields 

Mv + (C +It Cc) v + (K + ltKc) v - ( -MI2 + ltlct) ii(0>(t) +(I+ ltlc2) Fex(t) 

t > 0 (2.36) 

Comparing equation (2.36) with equation (2.25) in the absence of control, it is seen that the 
effect of closed-loop control is to modify the structural damping and stiffness. The effect of 
the open-loop component is a modification of the excitation. The choice of the control gain 
matrices Gc and le depends on the selected control criteria. 

2.2.1 Pole Assignment 

Consider the state space model given by (2.33) and (2.34). In the absence of feedback control 
forces , the system matrix A defines the open-loop system dynamics, and its eigenvalues ).i 
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provide the modal damping ratios (i and the angular eigenfrequencies w, 
). . - -~" ·w · ±iw· ~ ' - ..,, ' 'V l. - ~i (2.37) 

where i is the complex imaginary unit. The open-loop eigenvalues are given as complex 
conjugated pairs. Let the control forces be determined by closed-loop feedback, i.e. 

F(t) = -Gc(t)Y(t) (2.38) 

where Gc(t) is a general time-varying control gain matrix. Substituting (2.38) into (2.33), 
and assuming that the system matrices A, B and the gain matrix Gc are constant, leads to 
the closed-loop equation 

Y(t) = (A- BGc) Y(t) + Bo W(t) (2.39) 

in which the closed-loop system matrix becomes A- BGc. The closed-loop eigenvalues 'f/i 

obtained from the modified system matrix provide the effective modal damping ratios and 
natural frequencies for the controlled structure. Since .,,, in part, defines the controlled 
system behaviour, a feasible control strategy is to choose the control gain Gc in such a 
way that the eigenvalues 'f/i take a set of values prescribed by the designer. Development of 
control algorithms according to this procedure is generally referred to as pole assignment. 

The application of pole assignment algorithms to the control of civil engineering structures 
has been studied by Baruh (1987), Abdel-Rohman (1982,1987), Abdel-Rohman and Leipholz 
(1978), Martin and Soong (1976), and Sinha (1988). However, in general the application of 
this viable form of design is limited in structural control. One reason is the lack of criteria 
to prescribe the desired set of closed-loop eigenvalues. Furthermore, determination of the 
control gain G c for prescribed eigenvalues generally requires the solution of highly nonlinear 
algebraic equations, Meirovitch et al. (1983a). Besides, this solution is generally not unique 
and hence, some other criteria must be incorporated, for instance the demand for certain 
eigenvectors. 

2.2.2 Bounded State 

The objective of active control is to suppress vibrations to obtain structural safety and human 
comfort. However, this is not tantamount to a design criterion of total vibration elimination 
and hence, within some small bounds oscillations may be tolerable. If a deadband region 
is prescribed a control algorithm can be designed to limit the state variables within these 
bounds. This approach is referred to as bounded state control. 

One way to prevent a dangerous rhythmic build-up of the structural response is to apply force 
pulses of suitable magnitude and proper direction at several locations distributed throughout 
the structure. Such a pulse control strategy falls into the category of bounded state control, 
Soong (1988). 

Assume that, on the basis of design considerations, threshold levels for the relative dis­
placement Vr,i, i = 1, 2, ... , nm , have been established for the location of the control force 
actuator i. The relative displacement v, at the position of actuator i is continuously mon­
itored. When the absolute value lvil exceeds the threshold level Vr,i a pulse control which 
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Figure 2.3: Pulse control force triggered by excess of prescribed threshold level. 
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opposes the velocity is applied as. The magnitude of the control pulse ~(t) is given by 

(2.40) 

where 

() {
1 , x~O 

sign x = _
1 , X< 0 

(2.41) 

Gi is the amplitude of the pulse at location i, Pi(t) is the nominal pulse shape at location i, ti 
is the threshold-crossing time at location i, and Td,i is the pulse duration of the control force at 
location i. The pulse amplitudes Gi are to be selected according to some criteria formulated 
by the designer. The pulse duration Td,i must be small compared to the fundamental period 
of the structure, e.g. < 10%. Otherwise, the sign of the velocity will change during the effect 
of a particular pulse and hence, the vibration will be amplified. 

Miller et al. (1988) and Udwadia (1981a,1981b) have determined the pulse magnitudes ana­
lytically so as to minimize a cost function which is quadratic in the state. These algorithms 
require that the equation of motion is given by a set of ordinary, linear differential equations 
with constant coefficients. However, the control algorithms based on (2.40) , do not generally 
depend on any prior knowledge of the structural system and are not limited by nonlineari­
ties. Masri et al. (1982) proposed a control period, which consists of application of pulses 
every time a zero-crossing of the displacement is detected to suppress vibrations of nonlinear 
structures. The pulse shape function is selected as a function of the instantaneous relative 
velocity at actuator i, Pi(t) = lvdn;, where ni is some appropriate power of the velocity. 

Besides being suited for treatment of inelastic structures the pulse control procedures have 
the advantage that the control force need not be very large to counteract completely the 
energy being applied to the structure, Miller et al. (1988). Furthermore, the amount of 
control energy used is limited, since the control is only applied when the structural response 
exceeds a certain threshold related to the resistance of the structure. 
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2.2.3 Instantaneous Optimal Control 

More complex design methods are concerned with developing control systems which are 
the best possible with respect to a standard, a so-called performance index. The category 
of optimal control algorithms described in this section, has been developed by Yang et al. 
(1987). A linear discretized structure described by the state space model (2.33) and (2.34) 
is considered. A category of optimal algorithms are established by using a time-dependent 
performance index J(t) as follows 

J(t) = ~YT(t)Q(t)Y(t) + ~FT(t)R(t)F(t) (2.42) 

in which Q(t) is a symmetric, positive semi-definite matrix and R(t) is a symmetric, positive 
definite matrix. The control configuration is obtained by minimizing J(t) at every instant 
of time t for all t E [0, T] subjected to the constraint given by the equations of motion 
(2.33) . T is a fixed time to be longer than the external excitation causing the undesired 
vibrations. The optimal control thus developed is referred to as the instantaneous optimal 
control algorithm. 

To obtain an optimal control law the evolution of the state vector Y(t) over a small interval 
!::l.t is first found by solving (2.33) and (2.34) . The solution can be written 

Y(t) = eAAty(t- !::l.t) +it eA(t-r)(BoW(r) + BF(r))dr 
t-At 

(2.43) 

where 

(2.44) 

A is a diagonal matrix consisting of complex eigenvalues Ai , i = 1, 2, ... , 2n of the system 
matrix A, and ~ is a matrix consisting of the associated eigenvectors. eAt is a diagonal 
matrix with diagonal terms eA;t, i = 1, .. . , 2n. 

Using a trapezoidal rule for the quadrature, the following difference equation is derived 

Y(t) = D(t- !::l.t) + ~t [Bo W(t) + BF(t)] (2.45) 

where 

D(t- !::l.t) = eAAt { Y(t- !::l.t) + ~t [BoW(t- f::l.t) + BF(t- f::l.t)]} (2.46) 

The necessary conditions for instantaneous optimal control is obtained by minimizing the 
performance index J(t) subject to the constraint in eq. (2.45). The solution to this problem 
may be formulated in three different forms as an instantaneous open-loop, an instantaneous 
closed-loop, or an instantaneous open-closed loop solution, respectively. The control forces 
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F*(t) that minimize (2.42) fulfil the minimum condition 

8J(t) = yT(t)Q(t) 8Y(t) + y•T(t)R(t) 
8F(t) 8F(t) 

= yT(t)Q(t)~tB + F*T(t)R(t) = 0 => 

tlt 
F*(t) = -2R-1(t)BTQ(t)Y(t) 

Chapter 2 

(2.4 7) 

(2.47) represents the instantaneous optimal closed-loop control law. The instantaneous op­
timal open-loop control law is obtained by eliminating Y(t) in (2.47) by means of (2.45). By 
rearranging, this yields 

F•(t) =- [ R(t) + ( ~~) 2 

BTQ(t)B] -l BTQ(t) [ D(t- .!l.t) + ~1B0W(t)] (2.48) 

Alternatively, a control law can be derived by expressing F*(t) as a weighted average of the 
right hand sides of (2.47) and (2.48), written as 

a E (0, I) (2.49) 

The control law obtained for the case of a = ~ is designated instantaneous optimal open­
closed loop control. 

It follows from the derivations that the control efficiencies for the three instantaneous op­
timal control algorithms are all identical under ideal conditions. On the other hand, the 
effectiveness will vary in practice because of measurement noise and uncertainties in the 
structural model and the loading. The selection of the best algorithm then depends on the 
relative importance of uncertainties and noise as discussed at the beginning of this chapter. 

Some evaluation of these instantaneous optimal control algorithms has been carried out, both 
analytically and experimentally, for structures subjected to earthquake-type excitations, 
Yang et al. (1987a). 

2.2.4 Optimal Control 

The optimal control system introduced in the preceding section was developed within the 
last 5 years . However, optimality conditions in design of control systems have been applied 
during the last 30 years. According to the classical optimal control theory the design problem 
for a generally distributed parameter system, such as given in (2.26), is to minimize a general 
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performance index in the form, Tzafestas and Stavroulakis (1983) 

J[y,f] =In Lo(y(x,T),x,T)dx + 1Tin L 1 (y(x,t),f(x,t),x,t)dxdt (2.50) 

where Lo and L 1 are specified functions of their arguments. Lo is the cost associated with the 
deviation of the terminal state from the desired state at the time T. L 1 is the cost function 
associated with the deviation of the transient state from the desired state and control effort. 
Hence, the functions L0 and L 1 must be selected to put more or less emphasis on terminal 
accuracy, transient behaviour, and the expended control effort in the total cost functional J. 

In active control of civil engineering structures it is usually desired to determine the system of 
control forces f(x, t) such that the structural response will correspond as closely as possible 
to the equilibrium state, when it is subjected to external excitations. In such a case the 
performance index is selected directly as in (2.50). This is known as the so-called optimal 
regulator problem. 

The adjoint problem is to steer the structure from an initial state y 0(x) . at t0 to the equi­
librium state in a minimum of time by means of an admissible control force f(x, t). This 
so-called time-optimal control problem is obtained by setting L0 = 0 and using the restriction 
to the optimization problem J0 L 1 dx = 1. 

The latter performance specification would typically be used in case of a momentary pulse 
loading. However, in what follows the optimal regulator problem is considered, where the 
performance index is chosen in the classical quadratic form as 

J[y, f] = ~In yT(x, T)s(x, T)y(x, T) dx 

+ ~ 1T In (yT(x, t)q(x, t)y(x, t) + fT(x, t)r(x, t)f(x, t)) dx dt (2.51) 

where s(x, t), q(x, t) are symmetric positive semi-definite matrix functions, and r(x, t) is 
a symmetric positive definite matrix. These weighting matrices are assigned according to 
the relative importance attached to the state variables and to the control forces in the 
minimization procedure. As the elements of r(x, t) increase, more weight is put on the 
reduction of the required control force. The opposite is true when these elements are reduced. 
Hence, by varying the relative magnitude of the weighting matrices, one can synthesize the 
controllers to achieve a proper trade-off between the control effectiveness and control energy 
consumption. There is no general strategy for selection of the weighting matrices. 

For discrete-parameter structures described in state-space form by (2.32) a general perfor­
mance index is the following 

J[Y, F) = L0(Y(T), T) + 1T L 1 (Y(t), F(t), t)dt (2.52) 

where L0 and L1 are real non-negative scalar-valued functions of their arguments . A classic 
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form of (2.52) is the quadratic performance index specified as 

J[Y,F) = ~YT(T)S(T)Y(T) + ~ lT (YT(t)Q(t)Y(t) + FT(t)R(t)F(t)) dt (2.53) 

The symmetric weighting matrices S(T), Q(t) and R(t) in (2.53) fulfil the same definite 
properties as the associated weighting matrix functions in (2.51 ). 

Control design based on the minimization of the quadratic performance indices (2.51) and 
(2.53) are treated in Chapter 3. 

2.3 Conclusions 

The behaviour of civil engineering structures subjected to external excitations and control 
forces has been modelled for distributed and discrete parameter systems by linear and non­
linear partial and ordinary differential equations, respectively. Next, for the purpose of 
control design the differential equations are represented in state space form for both classes. 

Active vibration control systems can be designed from different performance criteria. In 
general, however, the effect of closed- and open-loop control is to modify the structural 
parameters (stiffness and damping) and the total excitation, respectively. 

The decision of which one of the mentioned performance criteria to be used may depend on 
the particular problem. Concerning the pole assignment method a general drawback is the 
lack of criteria to prescribe the desired set of poles. According to the name, algorithms falling 
into the category of bounded state control, are designed to limit the state variables within 
prescribed bounds. Such an algorithm may then be used, when the purpose is to maintain 
a set of structural variables within an allowable region determined by the requirements of 
structural safety and human comfort. 

The design criteria based on the optimality conditions are divided into 2 groups, instanta­
neous and classical optimal control. Common to these methods is that the control forces are 
designed by minimizing a performance index. The difference is that the performance index 
is time-dependent for the instantaneous optimal control problem, whereas the performance 
index is the integral of a function over the entire control period for the classical problem. 
Hence, the latter criterion is based on information over a specified period of time and may 
therefore be considered to be better for structural control. However, concerning the choice 
of performance criterion, it is generally impossible to settle which one is the best. In the 
remainder of this thesis the optimal control technique has been selected, and its applicability 
for structural control has been investigated. 
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Optimal Control of Linear Elastic 
Structures 

Design of an active control system according to the optimality criteria introduced in Chapter 
2 requires the solution of a constrained optimization problem. For this purpose different 
techniques such as variational calculus and dynamic programming are available. These 
techniques will be applied in this chapter to derive necessary conditions for optimality of 
the solution. The problem equations obtained hereby are then solved by the matrix Ricatti 
equation and the invariant imbedding method. 

Treating the optimal control problem it is first assumed that the external loading is known 
during the specified time of control. Next, the optimal control problem for structural systems 
subjected to external loadings described by stochastic processes is considered. At the end 
of this chapter the problem of incomplete measurements of the state variables for feedback 
control is treated. In the latter case control and estimation of the state variables must be 
performed concurrently. 

3.1 Distributed Parameter Structures 

The objective is to determine a continuously distributed optimal control law which minimizes 
the response of a distributed parameter structure according to a specified performance index. 
Let the equation of motion with associated boundary conditions be represented by (2.28) and 
(2.27). Notice that the boundary conditions (2.27) are linear in the present case. Further, 
the performance index is taken to be quadratic as given by (2.51). 

The problem then is to determine the optimal field of control forces f"'(x , t) that minimizes 
(2.51) with respect to the restrictions (2.27) and (2.28). Using the method of Lagrangian 
multipliers, the optimal control is determined from the unrestricted stationarity conditions 
of the extended functional 

J[y, f, ~] = ~ 1 yT(x, T)s(x, T)y(x, T) dx 

+ lT 1 [ ~yT(x, t)q(x, t)y(x, t) + ~fT (x, t)r(x, t)f(x, t) 
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+ ~T(x, t) ( A.(x, t)y(x, t) + b0 (x, t)w(x, t) + b(x, t)f(x, t) - y(x, t))] dx dt 

(3.1) 

In (3.1) ~(x, t) is a vector of Lagrange multipliers, (also called the eo-state or adjoint state 
vector) . In the last term (3.1) partial integration of ~T(x, t)y(x, t) is performed with respect 
to time. Further, partial integration of the term ~T(x, t)A.(x, t)y(x, t) is performed n times, 
using the divergence theorem. Then (3.1) attains the form 

J[y, f, ~] = 1 [~yT(x, T)s(x, T)y(x, T)- ~T(x, T)y(x, T) + ~T(x, O)y(x, 0)] dx 

+ [ L (~( -1)'+1 (gi(x, t)~(x, t))T gn-t-;(x, t)y(x, t)) dA dt 

+ 1T1 [~yT(x,t)q(x,t)y(x,t) + ~fT(x,t)r(x,t)f(x,t) 

+ ((A*(x,t)~(x,t))T +.\T(x,t))y(x,t) 

+ ~T (x, t) (bo(x, t)w(x, t) + b(x, t)f(x, t))] dxdt (3.2) 

in which dA is an area element on the surface of the structure, and 9i(x, t) and A*(x, t) 
are the adjoint differential operators to 9i(x, t) and A(x, t), respectively. Stationarity of 
](y, f, ~) implies 

8](y,f, ~) = 1 [(yT(x,T)s(x,T)- ~T(x,T))8y(x,T) + ~T(x,0)8y(x,O)]dx 

+ J.T 1s (~( -l)'+'(gi(x, t)~(x, t))T g._,_,(x, t)8y(x, t)) dAdt 

+ 1T 1 [ (yT(x, t)q(x, t) + (A*(x, t)~(x, t))T + .\T (x, t)) 8y(x, t) 

+ (fT (x, t)r(x, t) + ~T (x, t)b(x, t))8f(x, t) J dx dt = 0 (3.3) 

From this the Euler conditions for stationarity 

~(x,T) = s(x,T)y(x,T) 'v'x En (3.4) 

9i(x,t)~(x,t) = O , i = O, . . . , n - 1 , V(x,t) E fsx]O,oo[ (3.5) 

·T 
~ (x, t) = - A*(x, t)~(x, t) - q(x, t)y(x, t) , V (x, t) E n x ]0, oo[ (3.6) 
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f*(x, t) = -r-1(x, t)bT(x, t)~(x, t) , V(x,t) E nx]O,oo[ (3.7) 

The boundary conditions in (3.5) are prescribed on the part of fs, where Yi(x, t)y(x, t) ::j:. 0. 
The control force field can be eliminated from the equation of motion (2.28) using (3.7), 
leading to the initial and boundary value problem 

y(x, t) = A(x, t)y(x, t) + b0 (x, t)w(x, t)- b(x, t)r-1(x, t)bT(x, t)~(x, t) , 

'v' (x, t) E n X )0, oo( 

Yi(x,t)y(x,t)=O , i=O, ... ,n-1 , 'v'(x,t) E fsx]O,oo[ 

y(x, 0) = Yo(x) , Vx En (3.8) 

Notice, that most adjoint linear differential operators in structural mechanics fulfil 

.A*(x, t) = .AT(x, t) , V(x,t) E n x ]O,oo[ (3.9) 

This is mainly due to the self-adjointness of the differential operator L on the displacement 
field u(x, t). 

Illustrative Example 

f (x, t) 

e 
u (x, t) 

Figure 3.1: Linear elastic homogeneous cantilevered Bernoulli-Euler beam subjected to external 
loading, w(x, t), and distributed control forces, f(x, t). 

As an example consider the Bernoulli-Euler beam of length l shown in fig 3.1. Due to 
the homogeneity the bending stiffness and the mass per unit length can, without loss of 
generality, be selected as El= J1. = 1. 

In this case the equations of motion with associated boundary and initial conditions become, 
corresponding to (2.27) and (2.28), 

y(x, t) = .Ay(x, t) + b0w(x, t) + bf(x, t) , V (x, t) E ]0, l[ x ]0, oo[ 

Yiy(x,t) = O, i = 0,1,2,3, V(x,t)E{O,l}x]O,oo[ 

y(x, 0) = Yo(x) , V X E ]0, l[ 
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where 

[ 
u(x, t) l 

y(x, t) = u(x, t) , A= [ _ 
0
ac ~ ] 

oxC 
, ho=[~], h=[~] (3.10) 

[ a; ] . 0 2 3 ( ) [ u ( x' 0) l 
. Qi = a;r 0 ' t = '1, ' ' Yo X = u(x, 0) (3.11) 

u(x, t) is the displacement field. In this case the extended functional (3.2) attains the form 

J[y,j,A] = ~1
1

yT(x,T)s(x,T)y(x,T)dx 

+ lT 1' [ ~yT(x, t)q(x, t)y(x, t) + ~f2 (x, t)r(x, t) 

+ ..\T(x, t) (Ay(x, t) + b0w(x, t) + bf(x, t)- y(x, t))] dx dt (3.12) 

Let 

(3.13) 

where .A1(x, t) and .A2(x, t) represent the Lagrange multipliers adjoint to u(x, t) and u(x, t), 
respectively, i.e AT(x, t)Ay(x, t) = .A1 (x, t)it(x, t)- .X2 (x, t);:c u(x, t). Partial integration 
with respect to time is then performed on the term -AT(x, t)y~x, t), and partial integration 
with respect to x is performed 4 times on the term -.A2(x, t) :xc u(x, t). (3.12) then attains 
the form 

](y,J,:A) = l [ GYT(x,T)s(x,T)Y(x,T)- :AT(x,T)y(x,T) + :AT(x,O)Yo)] dx 

1T (-' ( )a
3
u(x,t)l

1 
a.X2(x,t)a

2
u(x,t)l

1 

+ "-2x,t a3 + a a2 
0 X 0 X X 0 

_ a2
.X2(x,t)au(x,t)l' a

3
.X2(x,t) ( )I') d 

a 2 a + a 3 u x, t t 
X X O X 0 

+ 1T 1' [~yT(x, t)q(x, t)y(x, t) + ~J2(x, t)r(x, t) + .A1(x, t)it(x, t) 

a4 A2(x, t) · T T ( )~ - ax4 u(x, t) +A (x, t)y(x, t) +A (x, t) bow(x, t) + bf(x, t) ~ dx dt 

(3.14) 
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Introduce the following differential operators 

Q! = [ o L] ' ax• i = 0, 1, 2,3 (3.15) 

(3.16) 

Notice, that the defined differential operator A• satisfies (3.9). According to the definitions 
(3.15) and (3.16), the augmented performance index (3.31) can then be written in the same 
form as the general one, (3.2), 

](y, J, 'A)= L' [~yT(x, T)s(x, T)Y(x, T)- 'AT(x, T)y(x, T) + 'AT(x, O)y0] dx 

+ { (t( -1);+1 g;.\(x, t)g3_;y(x, tJI:) dt 

IT I' [1 1 + Jo Jo 2yT(x, t)q(x, t)y(x, t) + 2/ 2 (x, t)r(x, t) 

+ ( (A• 'A(x, t))T + .;\T (x, t)) y(x, t) + 'AT(x, t)(b0w(x, t) + bf(x, t))l dx dt 

(3.17) 

Hence, the Euler equations for the considered example can be derived as in the general 
formulation. This finishes the example. 

Equations (3.8) and the adjoint initial and boundary value problem (3.4)-(3.6) constitute a 
linear two-point boundary-value problem (TPBVP). This TPBVP is very difficult to solve for 
analytic expressions for the costate 'A(x, t), and following the control forces f(x, t) as given by 
(3. 7). Even when one is able to solve these equations and thus, determine the optimal control 
law, one faces the difficulty of implementing it through continuously distributed control forces 
and measurements. Therefore, another simplified method is sought out, where the structure 
is first discretized in space by expanding the distributed dependent variables into a finite 
series of linear undamped eigenfunctions. Next, the discretized structure is controlled as if 
it were the distributed one. In order to develop this method, the general optimal control 
problem of discretized structures is first considered. The approach for optimal control of 
distributed structures follows in section 3.2.1. 

3.2 Discretized Structures 

An optimal control algorithm for active vibration suppression of linear discretized structures, 
developed by minimizing a quadratic performance index, is called an LQ regulator. The 
necessary conditions for optimal control is developed according to the technique of dynamic 
programming. It provides an efficient means for sequential decision making, based on the 
following Bellman's principle of optimality: An optimal control function has the property 
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that whatever the initial state and the initial choice of control are, the remaining choices of 
control must constitute an optimal control function, with regard to the state resulting from 
the first choice of control, see e.g. Brogan (1985). 

First, the dynamic programming equation for the minimum cost is developed, in the case 
where the equation of motion is represented by the general non-linear state space model 
(2.32) and the associated performance index is given by (2.52). Next, this equation is solved 
for the LQ problem leading to an optimal control law. 

Consider the minimum cost of suppressing the structural vibrations from an arbitrary timet 
and state Y(t) to the terminal timeT with the state Y(T), defined according to the general 
performance index (2.52) as 

J*(Y(t), t) = min {Lo(Y(T), T) +iT L 1(Y(r), F(r), r) dr} 
{F(r),rE[t,TJ} t 

(3.18) 

Equation (3.18) is rewritten by breaking the integral into two segments, 

J*(Y(t), t) = min {Lo(Y(T),T)+lT L1(Y(r),F(r),r)dr 
{F(r),rE[t,TJ} t+~t 

l
t+~t } 

+ t L1(Y(r), F(r), r) dr (3.19) 

According to the principle of optimality the cost J(Y(t + ~t), t + ~t), when the system 
initiates from the state Y(t + ~t) at the time t + ~t, must be minimum if the total cost 
is to be at a minimum. The first two terms on the right-hand side of (3.19) represent 
J*(Y(t + ~t), t + ~t). Suppose that J*(Y(t + ~t), t + ~t) and the corresponding optimal 
control force have been determined on the interval [t + ~t, TJ for each Y(t + ~t). Then it 
only remains to select the current control on the interval [t, t + ~tJ . Hence 

{ l
t+~t } 

J*(Y(t), t) = min J*(Y(t + ~t), t + ~t) + L1(Y(r), F(r), r) dr 
FW t 

(3.20) 

The following Taylor expansions to first order in ~t are introduced: 

J*(Y(t + ~t), t + ~t)) = J*(Y(t), t) + ar(~(t) ,t)~t + ( ar(;y<t),t)) T Y(t)~t + o(~t) and 

f/+~t L1(Y(r),F(r),r)dr = L1 (Y(t),F(t),t)~t + o(~t), where lim~t~oo(~t) = 0 and 
lim~t-o o(~t) = 0. Finally, Y(t) is eliminated by means of (2.32). The following partial 
differential equation is then derived for J*(y , t) 

{)J*(y, t) 
-{)t 

WiN { L,(y, F{t),t) + ( aJ~~· !)) T ( G(y, t) + B0 (t)W(t) + B(t)F(t))} (3.21) 

(3.21) is called the Hamilton-Jacobi-Bellman (H-J-B) equation. In (3.21) {)J*foy designates 
the gradient of J • with respect to y . According to (2.52) and the definition (3. 18) the 
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boundary condition is J*(y, T) = L0 (Y(T), T). Equation (3.21) is solved backwards in 
time with this boundary condition. Notice, that the solution depends on the terminal value 
Y(T) of the vector, which in general is unknown. Y(T) must then be obtained by forward 
integration of (2.32), when the control forces F(t) have been expressed in the state vector by 
the minimal condition (3.21 ). This problem is in general quite difficult to solve analytically. 
Whether it can be solved or not depends on the class of structures, cost functions, admissible 
controls, and state constraints. The optimal control is the one which minimizes the right 
side of equation (3.21). If there are no restrictions on F(t) then the minimum can be found 
by differentiating with respect to F(t) and setting the resultant gradient equal to zero. This 
gives the necessary condition for optimality. 

Linear Quadratic Control 

Return to the class of linear structures represented in state space form by (2.33). If the 
performance index is quadratic, i.e. J is given by (2.53), then 8Ltf8F = FT(t)R(t) so that 
the optimal control F(t) for the LQ regulator problem is given by 

(3.22) 

The H-J-B equation is solved by assuming a solution given by 

(3.23) 

where S(t) is an unknown positive semi-definite symmetric matrix, T(t) is an unknown 
vector, and V(t) is an unknown scalar. Substituting (3.22) and (3.23) into (3.21), and 
collecting the quadratic terms in y, the linear terms in y and the terms not involving y, 
equations for S(t), T(t) and V(t) are found from the requirement that each term must 
balance individually. After some algebra, the following equations are obtained 

S(t) + S(t)A(t) + AT(t)S(t)- S(t)B(t)R-1(t)BT(t)S(t) + Q(t) = 0 (3.24) 

T(t) + AT(t)T(t)- S(t)B(t)R-1(t)BT(t)T(t) + S(t)B0 (t)W(t) = 0 (3.25) 

(3.26) 

(3.24) is a matrix Ricatti differential equation. The boundary conditions for the three sets 
of differential equations are S(T) = Sr, T(T) = 0 and V(T) = 0. For the assumed solution 
(3.23) the partial derivative in (3.22) is :YJ*(Y(t), t) = S(t)Y(t) + T(t) and hence, the 
optimal control law (3.22) becomes 

(3.27) 
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The first term on the right-hand side of (3.27) represents the closed-loop control, i.e. the 
term depending on the current state Y(t). The second term represents the open-loop control, 
which is independent of the state vector of the structure, but depends on the external loading 
through T(t). 
Implementation of the open-closed loop control law (3.27) implies that the Ricatti equation 
(3.24) and (3.25) are solved backwards in time for S(t) and T(t), respectively, because of the 
corresponding terminal conditions. However, solving (3.25) requires a priori knowledge of 
the external excitation history W(t) . Unfortunately, many environmental loads, including 
earthquake ground acceleration, wind gusts, etc., are not known a priori. Thus, open-loop 
control is generally infeasible in structural control application. 

A simple approach in control of civil engineering structures under random environmental 
loads is to neglect the open-loop term in (3.27) corresponding to T(t) = 0, see e.g. Chung 
et al. (1988,1989) and Pu and Hsu (1988). According to (3.25) and the terminal condition 
T(T) = 0, this solution is only optimal if W(t) = 0. In this case the control vector F(t) is 
given by 

F(t) = -R-1(t)BT(t)S(t)Y(t) (3.28) 

Application of this solution is referred to as optimal closed-loop control. Defining a feedback 
as 

(3.29) 

Equation (3.28) can be written in the form as the general linear feedback control law (2.38). 
Furthermore, assume time-invariant matrices A, B, Q and R. Then for many structures 
the Ricatti matrix S(t) is known to remain constant over the entire control interval, and 
it drops rapidly to the boundary value ST near T, see e.g. Lewis (1986a) and Yang et al. 
(1987a). In other words, S(t) converges to a limit matrix S in a very short time starting 
from T backwards. If so, the effectiveness of the control system is not affected significantly 
by utilizing the steady-state solution S obtained by solving (3.24) for S(t) = 0, 

(3.30) 

Hence, application of the steady-state solution to the Ricatti equation correspond to, that 
the performance index is defined over an infinite time interval, i.e T = oo. Readers who 
are interested in knowing on what conditions the stationary solution exist, and in how to 
determine the correct solution to (3.30) among the existing solutions, may for instance see 
in Lewis (1986a) . 

Since all parameters of the algebraic Ricatti equation (3.30) are presumably known, the 
matrix Sand hence Gc can be determined off-line, and the only on-line computation required 
during control execution involves matrix multiplication as indicated by (2.38). 

3.2.1 Reduced-Order Distributed-Parameter Structures 

As an approach to the optimal control of distributed-parameter structures with an infinite 
number of degrees-of-freedom a method based on the control of a finite number of modes is 
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introduced. It is assumed that the structural system to be controlled can be modelled by 
a set of linear differential equations with constant coefficients. Furthermore, the derivation 
will be confined to comprise the distributed-parameter system modelled in Chapter 2 by the 
equations of motion (2.20). If it is desired, the method can easily be enlarged to include 
systems described by the more general linear state-space model (2.28). 

Consider the linear eigenvalue problem associated with the undamped eigenvibrations of 
(2.20) 

Vx En m- 1, 2, ... (3.31) 

subject to the boundary conditions 

(3.32) 

~~m)(x) = 0 ' V X E r2 m= 1, 2, .. . (3.33) 

The solution of (3.31 )-(3.33) consists of a denumerably infinite set of eigenvalues w!, m = 

1, 2, ... , and the associated eigenmodes ~~m), m = 1, 2, .. .. Since the differential operator 
L is a self-adjoint and positive definite, all eigenvalues are real and positive. Further, the 
eigenfunctions fulfil the following orthogonality properties 

(3.34) 

{ ~~m)(x)L~~n)(x) dx = { 0, m =J n 
Jo ' ' w'!,Mm, m = n (3.35) 

In the above equations (3.34) and (3.35) Mm signifies the modal mass defined as 

m = 1,2, . . . (3.36) 

Define the non-dimensional damping parameters (m and (mn according to the following 
equations 

(3.37) 

Let the solution of (2.20) be represented by the following infinite series 

00 

u,(x , t) = u,<o)(x, t) + I: ci>~m)(x)qm(t) (3.38) 
m = l 

where qm(t ) are modal coordinates and Ui(o) (x , t) is the quasi-stat ic displacement field defined 
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by (2.17)-(2.19). This solution for u(x, t) fulfils the associated boundary conditions (2.8) 
and (2.13), since Vl0>(x, t) and <P~m)(x) satisfy, respectively, the boundary conditions (2.18), 
(2.19) and (3.32), (3.33). Introducing (3.38) into (2.20), multiplying both sides of the result 
by <P~n)(x), integrating over the domain nand employing (3.34)-(3.37), the following ordinary 
differential equations are obtained for the modal coordinates 

iim + 2wm ((m4m + f V;~~: (mn4n) + w!qm = Wm(t) + fm(t) 
n=l,n:;l:m 

m= 1,2, ... t E)O,oo[ (3.39) 

In (3.39) wm(t) are modal excitations caused by support displacements and externalloadings 
given by 

- 1 r (m) ( {)2 (0) ) wm(t) - -Mm Jn <P, (x) p(x) at2 U, (x, t)- fe:z:,i(x, t) dx , m = 1, 2, ... (3.40) 

and fm(t) are the modal control forces given by 

m= 1, 2, ... (3.41) 

Even in the absence of feedback control forces, equations (3.39) are coupled in case some of 
the off-diagonal damping parameters (mn are non-zero. This coupling is referred to as inter­
nal. However, if feedback control forces are present, and the modal feedback control forces 
f m ( t) depend on all modal coordinates and their velocities, i.e. f m = f m ( ql, q2, ... ; tlt, q2, ... ) 
then equations (3.39) are externally coupled. In the remainder of this section the problem 
of coupled control is considered. 

It is not practical to control the entire infinity of modes, and hence a truncation of the series 
expansion (3.37) is performed. This amounts to replacing the distributed parameter model 
with a discrete one. With a suitable numbering of the modes, it can without any restriction 
be assumed, that the ne lowest modes should be controlled. Then the corresponding ne 
modal equations can be expressed in matrix form as 

(3.42) 

where the following vectors are introduced 

(3.43) 
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The matrices in (3.42) are defined as follows 

'=' _ { 2wm J ;'o~o (mn , m f; n 
~c,mn- m m 

2wm(m' m= n 
m,n = 1,2, ... ,nc (3.44) 

A -{0, mf;n 
e,mn - w! , m = n m,n = 1,2, ... ,ne (3.45) 

Define a vector ~(m)(xa) = [ ~~m)(xa) ~~m)(xa) ~~m)(xa) ]T and next a matrix be with 

the components 

m= 1, 2, ... 'ne ' 0: = 1, 2, ... 'nm (3.46) 

According to (3.46) the modal control forces defined by (3.41) can be written in matrix form, 
too, as 

(3.47) 

The modal equations (3.42) and (3.4 7) can finally be written in state space form as 

Ye(t) = AYe(t) + BF(t) + Bowe(t) (3.48) 

where 

Bo = [ ~] (3.49) 

The optimal control forces for the discretized system (3.48) is then designed by minimizing 
the quadratic performance index (2.53) where Y(t) is replaced by Ye(t). This optimal control 
problem belongs to the general class of optimal control of systems represented by discrete­
parameter models, which were considered in section 3.2. For the case of coupled control, 
minimization of the quadratic performance index in conjunction with equation (3.48) then 
leads to, cf. (3.27) 

(3.50) 

In the above equation the symmetric matrix S(t) satisfies the matrix Ricatti equation (3.24), 
and the vector T(t) satisfies (3.25), where W(t) is replaced by wc(t). 

3.2.2 Independent Modal Space Control 

A much simpler control device can be obtained if equations (3.39) become internally and 
externally decoupled. This is the basis of the independent modal space control (!MSC) 
method, which has been extensively developed by Meirovitch et al. (1982,1983a). 
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The requirement of internal decoupling means (mn = 0 for all m, n = 1, 2, .. . , ne in the 
modal equations (3.39). In the special case of external decoupling the modal control force 
in the mth mode fm(t) only depends on qm and qm, i.e. fm = fm(qm,qm) · The equations of 
motion (3.39) for the mth mode can then be written in state space form as 

Y m(t) =AmY m(t) + Bm ( Wm(t) + fm(Y m(t))) (3.51) 

where 

(3.52) 

For optimal control the modal control forces can be determined by minimizing a performance 
index in the form 

(3.53) 

where Jm is the modal loss functional chosen as 

] 1 T 1 1T( T 2 ) Jm[Y m, fm = ?.Mm Y m(T)Sm(T)Y m(T) +?.Mm Y m(t)Qm Y m(t) + rmfm(t) dt 
to 

(3.54) 

Sm (T) and Qm are symmetric, positive semi definite weighting matrices of dimension 2 x 2. 
rm is a positive weighting coefficient. A logical choice for Qm is 

(3.55) 

so that the first term of the integral in (3.54) represents the total mechanical energy associ­
ated with the mth mode. 

Due to the modal decoupling the minimization of the performance index J can be achieved 
by minimizing each modal cost function Jm independently. The minimization of Jm leads to 
the modal feedback force, cf. (3.27) 

(3.56) 

where the 2 x 2 symmetric matrix Sm(t) satisfies the matrix Ricatti equation, cf. (3.24) 

(3.57) 
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and the 2 x 1 vector T(t) satisfies, cf. (3.25) 

(3.58) 

The above equations are subject to the terminal conditions Sm(T) = Sr,m and Tm(T) = 0. 
The solutions of (3.57) and (3.58) can only be obtained numerically. However, the closed­
loop modal control force is easy to develop analytically when the steady-state solution of the 
Ricatti equation is used. Letting Sm(t) = 0 in (3.57), three nonlinear algebraic equations are 
obtained. Using the extra condition, that Sm must be positive semi-definite for an arbitrary 
positive choice of rm, these can be solved uniquely 

su,m = s21,m = w~rm ( Jl + w?,.lrm -1) (3.59) 

where S&j,m, i,j = 1, 2 are the components of Sm. Hence, by inserting (3.59) into (3.56) a 
closed-form solution is obtained for the modal control force fm(t) , 

(3.60) 

The actual control forces F(t) are synthesized from the modal control forces contained in 
fc(t) by solving (3.47), 

(3.61) 

which requires that he is quadratic and non-singular. The former of these requirements is 
fulfilled if the number of actuators is equal to the number of controlled modes, nm = ne , cf. 
(3.46). The latter is satisfied if the locations and directions of the control forces are chosen 
appropriately. 

3.2.3 Invariant Embedding Technique 

In the beginning of section 3.2 the general optimal control problem was solved by means 
of dynamic programming, which lead to the Hamilton-Jacobi-Bellman partial differential 
equation for the minimum cost. In this section an alternative approach to the optimal 
control problem is obtained by means of calculus of variations. This leads to a two-point 
boundary-value problem in the state vector and the eo-state vector, analogous to the two­
point boundary-value problem for the state vector and the cost function in the dynamic 
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programming approach. Analytical solutions for two-point boundary-value problems can 
only be obtained for simple systems. Thus, in general, numerical methods must be used. The 
numerical methods considered in this section are the matrix Ricatti equation and invariant 
embedding. 

The objective is to determine the optimal control forces F*(t), t E [0, T), that minimize 
the general performance index (2.52), subjected to the restriction that the state vector is 
required to fulfil the non-linear equations of motion (2.32). Using the method of Lagrangian 
multipliers, the optimal control is determined from the unrestricted stationarity conditions 
of the extended functional 

J[Y,F,..\) = Lo(Y(T),T)+ 1T[L1(Y(t),F(t),t) 

+ ,\T(t) ( G(Y(t), t) + B0 (t)W(t) + B(t)F(t)- Y(t))] dt (3.62) 

,\T(t) is a vector of Lagrange multipliers. In the integral, partial integration of -..\T(trY(t) 
is performed. Then (3.28) attains the form 

J[Y, F, ..\] = L0 (Y(T), T)- ,\T(T)Y(T) + ..\T(O)Yo +iT [Lt(Y(t), F(t), t) 

+ ,\T(t) ( G(Y(t), t) + B 0 (t)W(t) + B(t)F(t)) + .\ T (t)Y(t)] dt (3.63) 

Y(t), F(t), t E )0, T] are varied, whereas the Lagrange multipliers are constants. Using the 
stationarity condition 8][Y, F, ..\) = 0, the following Euler equations are easily derived 

~(t) = _ ( 8G(:Jt), t)) T >.(t) _ ( 8L1(Y~~ F(t), t)) T 

8£1 (Y(t), F(t), t) + ,xT (t)B(t) = O 
8F 

(3.64) 

(3.65) 

(3.66) 

(3.66) gives a set of algebraic equations which allow the determination of the optimal con­
trol forces F*(t) in terms of the still unknown ..\(t) and Y(t). Subsequently, F(t) can be 
eliminated from the equation of motion (2.32) and the adjoint state equation (3.65). 

The Hamiltonian is defined as the scalar function 

1-i(Y.(t), ..\(t), F(t), t) = L1(Y(t), F(t), t) + ,\T(t)(G(Y(t), t) + B0(t)W(t) + B(t)F(t)) 

(3.67) 

Then equations (2.32), (3.64), (3.65) and (3.66) can be given the following canonical formu-
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lation 

Y
. ( ) = o'H(Y(t), ~(t), F(t), t) 

t a~ , 

, T( ) = _ o'H(Y(t), ~(t), F(t), t) 
A t aY , 

o'H(Y(t), ~(t), F(t), t) 
aF =o 

Y(O) = Yo 

~T(T) = oLo(Y(T), T) 
aY 
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(3.68) 

(3.69) 

(3.70) 

Equations (3.68) and (3.69) constitute a non-linear two-point boundary-value problem for 
the optimal controlled state Y*(t). 

Linear Quadratic Control 

In order to eliminate F(t) from the TPBVP, it is necessary to introduce an expression for the 
function L1 in the performance index (2.52). Assuming L1 is quadratic as specified in (2.53) 
and the structure is represented by the linear state space model (2.33), the Hamiltonian 
becomes 

'H(Y(t), ~(t), F(t), t) = ~ yT (t)Q(t)Y(t) + ~FT(t)R(t)F(t) 

+ ~T(t)(A(t)Y(t) + B0 (t)W(t) + B(t)F(t)) (3.71) 

Using (3.71), the control forces F(t) are obtained from (3.70) as follows 

~; = FT(t)R(t) + ~T(t)B(t) = 0 

F(t) = -R-1 (t)BT(t)~(t) 

=> 

(3.72) 

Substituting (3.71) into (3.69) the adjoint vector ~(t) becomes the solution of the differential 
equation 

,\(t) = -Q(t)Y(t)- AT(t)~(t) (3. 73) 

Inserting (3. 72) into (2.33) gives 

Y(t) = A(t)Y(t) + B0(t)W(t)- B(t)R-1 (t)BT(t)~(t) (3.74) 

According to (3.64), the boundary conditions for (3.73) are ~(T) = S(T)Y(T). However, the 
importance of the terminal state Y(T) will not be given any special weighting and hence, we 
set S(T) = 0. Then equations (3.73) and (3.74) constitute a linear two-point boundary-value 
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problem with boundary conditions 

Y(O)=Yo , .\(T) = o (3.75) 

Linear TPBVP's are easily solved, at least in principle. But for large structures with many 
degrees-of-freedom, and in case of time-varying system matrices and/or weighting matrices 
it may be quite complicated to solve analytically. Instead, we will present a solution based 
on the sweep method, see Bryson (1975). Thus, assume that Y(t) and .\(t) satisfy the linear 
relation 

.\(t) = S(t)Y(t) + T(t) (3.76) 

where S(t) is an unknown matrix function and T(t) is an unknown vector function. Using 
equations (3.73)-(3.76) it is found that the assumption (3.76) is valid if S(t) and T(t) satisfy, 
respectively, (3.24) and (3.25) . Hence, if (3.76) is inserted into (3. 72) the same optimal 
control law is obtained as the one given by (3.27). As already mentioned this solution 
requires a priori knowledge of the external excitation history W(t), which is not the case for 
many environmental loads affecting civil engineering structures. 

To circumvent this problem an algorithm is developed, where the TPBVP is solved by 
using the invariant embedding technique. The basic concept of this method is to change 
the original TPBVP into a class of more general initial value problems, see Bellman et al. 
(1960,1961,1963,1967), Kagiwada and Kalaba (1968), Kalaba and Spingarn (1977). 

The TPBVP of equations (3.73) and (3.74) is generalized by letting the terminal boundary 
condition on .\(T) take a general value c rather than 0, i.e . 

.\(T) = c (3.77) 

In addition, it is assumed that both the boundary value c and the terminal time T are 
independent variables. For the trajectory which satisfies (3. 77), let the missing terminal 
value for Y(t) be given by 

Y(T) = r( c, T) (3. 78) 

In other words, the function r( c, T) represents the relation between the boundary condition 
.\(T) = c and the terminal value of Y(T). According to the invariant embedding technique 
an equation for the unknown function r( c, t) is derived. The basic idea in the derivation of 
this is to consider two neighbouring trajectories, one which satisfies the boundary condition 
(3. 78) and one which satisfies .\(T + D.T) = c + L\c. 

Define Y(T + ~T) = Y(T) + L\ Y to obtain 

r( c + D.c, T + D.T) = r( c, T) + L\ Y (3.79) 

From (3.74) follows ~ Y = (A(T)Y(T) + B0 (T)W(T)- B(T)R-1 (T)BT(T).\(T)) L\T + 
o(.6.T). The left hand side of equation (3.79) is expanded into a Taylor series about c and 
T . From (3.73) follows L\c = ( -Q(T)Y(T)- AT(T).\(T)) .6.T + o(L\T). In the limit as 
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~T--+ 0, eq. (3.79) then provides the invariant embedding equation 

8r 8r T 
aT + ac ( -Q(T)r( c, T) - A (T)c) = 

A(T)r(c,T) + B0(T)W(T)- B(T)R-1(T)BT(T)c (3.80) 

This is a non-linear partial differential equation for the function r( c, T). According to the 
definitions (3.77) and (3.78), its solution yields the unknown terminal condition Y(T) as a 

. function of the duration of the control process, T, and the already known terminal condition 
on ~(T). Hence, if r( c, T) can be found by solving (3.80) with proper boundary conditions, 
the missing terminal condition Y(T) is obtained. With it, the original TPBVP (3. 73) and 
(3.74) has been changed into an initial value problem, which can be solved by backward 
integration. 

The invariant embedding equation (3.80) is difficult to solve exactly. Therefore, as an ap­
proximation we search for a perturbation series solution. According to (3. 75) and (3. 77) it 
is assumed that c is small, i.e. lcl ~ 1. A perturbation solution in the parameter c is then 
set up. Ignoring terms of order higher than 1 in c, the perturbation in c is governed by 

r( c, T) = e(T) + S(T)c (3.81) 

where S(T) is an unknown matrix and e(T) is an unknown vector. The assumed solution 
(3.81) is substituted into the invariant embedding equation (3.80) . Then equating terms of 
equal powers of c yield the following differential equations 

e(t) = [A(t) + S(t)Q(t)]e(t) + B 0 (t)W(t) (3.82) 

S(t) = A(t)S(t) + S(t)AT(t) + S(t)Q(t)S(t) - B(t)R-1(t)BT(t) (3.83) 

In (3.82) and (3.83) the variable terminal time is written as just t. The initial conditions 
for e(t) and S(t) are obtained by equating, cf. (3.78), r(c, 0) = e(o) + S(O)c = Y(O) = Y0 • 

Thus, for arbitrary c, the initial conditions are 

e(o) = Yo S(O) = 0 (3.84) 

Letting c = O, which is the correct value, it is seen from (3.78) and (3.81) that e(t) = Y(t) . 
By using this relationship in (3.82), we obtain the invariant embedding equation for the 
controlled state 

Y(t) = [A(t) + S(t)Q(t)]Y(t) + B 0 (t)W(t) , Y(O) = Yo (3.85) 

Besides the inherent approximations due to the introduced perturbation solution, it is inter­
esting and important to note that the state Y(t) calculated from (3.83) and (3.85) is not the 
optimal trajectory. Each state Y(ti) calculated for a given time t 1 is the state which would 
result if t 1 were the terminal time, i.e. a suboptimal control is obtained. 

The basic goal of the control design is a control law which determines the control force. 
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Since the invariant embedding equation (3.85) describes the controlled state the control 
force contained in the equation of motion (2.33) must be chosen in such a way that the 
solution of both equations are equal. A simple comparison of (2.33) and (3.85) reveals that 
this requirement is fulfilled if B(t)F(t) = S(t)Q(t)Y(t) . This relationship only has a unique 
solution if B(t) is quadratic and non-singular, which is generally not the case. 

Instead, the control force is obtained by choosing an algebraic form for the control law in 
which the coefficients will be determined. Assuming the control force is linear in the state 
vector, the control law can be written as (2.38) in which Gc(t) is an unknown nm x n gain 
matrix. In this case n signifies the dimension of the state vector Y(t) and should not be 
confused with the dimension of the displacement vector u(t) in (2.22). nm is the dimension 
of the control force vector. Inserting (2.38) into (2.33) yields the closed-loop equation 

Y(t) = [A(t)- B(t)Gc(t)]Y(t) + Bo(t)W(t) (3.86) 

The aim is to establish Gc(t) so that the solutions to the closed-loop equation (3.86) and the 
invariant embedding state equation (3.85) are approximately equal. For that purpose Gc(t) 
is determined in such a way that the eigenvalues of the system matrices are equal and the 
deviation between the eigenvectors are minimal. 

The desired set of eigenvalues .Ai(t), i = 1, 2, ... , nand the associated eigenvectors ._p(i)(t), i = 
1, 2, ... , n are determined from the system matrix [A(t) + S(t)Q(t)] of the invariant embed­
ding state equation (3.85). 

The same set of eigenvalues Ai(t), i = 1, 2, ... , n can be achieved for the closed-loop system 
matrix [A(t)- B(t)Gc(t)], if the fictitious time-invariant system at the arbitrary timet= t 1 

described by the pair {A(t1),B(t1)} is controllable, Brogan (1985). Notice, the concept of 
controllability is defined in Section 5.3.1. On this assumption a method of finding Gc(t) is 
given, which furthermore allows to interject judgement regarding desirability of the closed­
loop eigenvectors, Brogan (1985). 

If the closed-loop system matrix has the set of eigenvalues Ai(t), i = 1, 2, .. . , n, then the 
eigenvectors C)(i), i = 1, 2, . .. , n are determined as non-trivial solutions to the homogeneous 
equation [.Ail- A+ BGc]~(i) = 0. This is rearranged in the following way 

(3.87) 

The coefficient matrix in the above homogeneous equation is of dimension n x ( n + nm) 
and has rank n for any value of Ai. Hence, the solution space of (3.87) consists of a linear 
combination of any nm linear independent solution vectors. This set of independent solution 
vectors is assembled column-wise in an (n + nm) X nm dimensional matrix U(.Ai)· According 
to (3.87) the matrix U is partitioned as 

(3.88) 

where the substitution fji) = Gc</>~i), j = 1, 2, ... , nm has been made. Being a solution to 
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(3.87), the eigenvector CJ_)(i) of the closed-loop system can be written as any linear combination 
of the basis vectors ~i' j = 1, 2, ... , nm, of the solution space, i.e. 

= 1'(.-\i)a(.-\i) (3.89) 

where a(.-\i) is a vector of the free parameters a;, j = 1, 2, ... , nm. It is desired to de­
termine a(.-\i) so that the deviation is to be minimum between CJ.)(i) and the associated 
eigenvector of the invariant embedding state equation, q;(i), obtained from the eigenvalue 
problem [.-\;1- A- SQ]q;(i) = 0 For that purpose the Euclidian norm of the error vector 
e = q;(i)- P(.Ai)a(.Ai) is minimized leading to the least squares solution 

(3.90) 

When a(.Ai) is calculated from (3.90), the eigenvector CJ_)(i) is determined according to (3.89). 
Then, if (3.87) is still to be true the same linear combination of the columns in .1="(.-\i) must 
be selected, i.e. · 

(3.91) 

When the components of the solution vector to (3.87) are determined from (3.89) and (3.91 ), 
it is clear that CJ_)(i) is the eigenvector of the closed-loop system associated with Ai. To 
obtain the desired eigenvalues and eigenvectors, Gc must then be selected to satisfy (3.91 ), 
but this equation is not sufficient. However, if an independent equation of this type is 
found for every Ai, i = 1, . .. , n, Gc can be determined from the composite set of equations 
Gc [CJ.)(l) 4_)(2) • • • CJ_)(n)] = [F(.-\1)a(.A1) F(A2)a(.A2) · · · F(.An)a(.An)], yielding 

Gc = [ :F(AI)a(AI) :F(.-\2)a(A2) · · · .1="(.-\n)a(.An)] ( CJ.)(l) CJ.)(2) • • • ~(n) r1 (3.92) 

Substituting Gc = Gc(t) into (2.38) a control law for the optimal non-linear control problem 
is obtained. 
Implementation of the proposed control algorithm requires that all calculations are made 
on-line when the control force is to be determined. The necessary calculations comprise the 
solution of (3.83), the eigenvalue problem for the system matrix [A(t) + S(t)Q(t)] of the 
invariant embedding equation (3.85), and finally solution of (3.87) - (3.90) to obtain the 
feedback gain from (3.92) . Equation (3.83) is solved by integrating forward in time, and 
from the solution S(t) at each time step the gain matrix Gc(t) is determined as described. 
If the structure is described by a linear time-invariant model and the weighting matrices Q 
and R are time independent, S(t) establishes a stationary state in a very short period of 
time. In this case equation (3.83) can be simplified by setting S(t) = 0, and thus it becomes 
a purely algebraic equation yielding S, and in the given circumstances Gc to be constant 
matrices. 
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3.3 Stochastic Optimal Control 

When a civil engineering structure is subjected to externalloadings that cannot be specified 
ahead of time, then deterministic cost functions of the type considered till now cannot be 
minimized by the choice of control forces . However, if the statistics of the external excitations 
are known, a cost function that is the expected value of the previous performance index can 
be minimized. This is called stochastic optimal control. 

Solving the stochastic optimal control problem, two cases must be considered. In the first 
case of complete state information, the state vector Y(t) is known exactly at the time t, 
so feedback control is directly possible. In the second case, the problem of incomplete 
state information is addressed, where the state is measured in the presence of disturbances. 
Generally, stochastic quantities are indicated by capital letters and their sample values by 
small letters. 

3.3.1 Structural Systems with Stochastic Excitations and Per­
fect Measurements 

The general non-linear optimal control problem in Section 3.2 is considered, given the general 
performance index (2.52). However, the state vector and the control force is now modelled 
as stochastic processes {Y(t), t E [0, T]} and {F(t), t E [0, T]}. For this reason the 
performance index is taken as the expectation 

E(J[Y,F]) = E[Lo(Y(T),T)+ 1T L1(Y(t),F(t),t)dt] (3.93) 

The minimization of this expectation is constrained by the structural equation of motion 
(2.32) . For this system the external excitation is assumed to be a non-stationary Gaussian 
white noise process {W(t), t E [0, T)} with mean value function and covariance function 
described by the following 

E[W(t)] = 0 (3.94) 

(3.95) 

where Rw(t) is a time-varying intensity function and 8(·) is the Dirac delta function. The 
indicated formulation of the random external excitation is more general than it appears at 
first sight, because the state space model (2.32) in excess of the equations of motion may 
include a linear filter, where W(t) is the input and the output affects the equation of motion. 
For example, it is well known that an earthquake excitation can be modelled as a white noise 
process passed through an appropriate filter. 

Due to the white noise excitation, {Y(t), t E [0, T]}, as given by, (2.32) becomes a Markov 
vector process in open as well as closed loop control. The drift vector and the diffusion 
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matrix become, see Arnold ( 197 4) 

l!~o ~tE[Y(t + ~t)- Y(t) I Y(t) = y] = G(y,t) + B(t)E[F(t) I Y(t) = y] (3.96) 

lim ! E[(Y(t + ~t)- Y(t))(Y(t + ~t)- Y(t))T I Y(t) = y] = Bo(t)Rw(t)B~(t) 
~t-+0 ut 

(3.97) 

The problem of determining the control forces, which minimize the defined performance in­
dex (3.93) , may in analogy with the corresponding deterministic problem be solved by using 
dynamic programming. Because of perfect measurements, it is assumed, that the observa­
tions Y(t) = y are known without errors at the time t. Further, state observations prior 
to the time t are redundant, due to the Markov property. Hence, the expected performance 
index in (3.93) is replaced by the optimal cost function on condition that Y(t) = y 

J*(y,t) = min E(J[Y,F,t] I Y(t) = y) 
{F(-r),-re[t,TJ} 

J(Y,F,t) = L0(Y(t),t) +iT L1 (Y(r),F(r),r)dr 

Analogous to (3.20) the optimal cost function can be written 

J *(y, t) = min {E[J*(Y(t + L\t), t + L\t) I Y(t) = y] 
F(t) 

+ E[it+llt L 1{Y(r),F(r),r)dr I Y(t) = yl} 

(3.98) 

(3.99) 

(3.100) 

J• (Y ( t + L\t), t + ~t) is a stochastic variable, where the spatial variable y has been replaced 
by Y(t + ~t) in J *(y, t + ~t). 

Due to {3.96), (3.97), the following adequate Taylor expansions to the first order in ~t are 
applied to the conditional expectation of this quantity. 

E [ J*(Y(t + ~t) , t + ~t) I Y(t) = y] = 

r(y,t) + art,t) t:.t + (8J}~,t)) T E [Y(t)t:.t I Y(t) = y] 

+ ~E [ yT(t) {)2J;;;, t)Y(t)(~t)2 1 Y(t) = yl + o(L\t) 

aJ*( t) (aJ•( t))T ( ) = J*(y, t) + a~' D.t + a~' G(y, t) + B(t)E[F(t) 1 Y(t) = yJ D.t 
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(3.101) 

Tr(·) is the trace of the indicated matrices, defined as Tr(AB) = A,iBia· 

For J/+tl.t L 1 (Y( T ), F( T ), T) dr the same Taylor expansion is applied as in (3.19). Inserting 
(3.101) into (3.100) the following partial differential equation is then derived for ~t--+ 0 

- ar~y, t) = min {E[Lt(Y(t), F(t), t) I Y(t) = y] + (aJ~y, t))T 
t F(t) y 

( G(y, t) + B(t)E[F(t) I Y(t) = yJ) + ~Tr( a·~~· t)Bo(t)Rw(t)B~(t)) } (3.102) 

This is the stochastic H-J-B equation for the case of the completely known state Y(t). 
Again (3.102) is solved backwards in time. From (3.93), the starting value for evaluation of 
J•(y(t), t) is E[L0(Y(T), T)], which is L0 (Y(T), T) because Y(T) can be measured without 
error. Generally, the H-J-B equation is quite difficult to solve for analytic expressions for 
the optimal cost and control. A special case in which it can be solved easily, is represented 
in the following. 

Linear Quadratic Control 

Consider a linear system described by the equation of motion (2.33) where W(t) is a white 
Gaussian vector process noise. To suppress the vibrations of this system, it is desired to 
determine the stochastic control vector process {F*(t), t E [0, T]} on [0, T] which minimizes 
the expected quadratic cost 

E[J[Y, Fl] = E [~YT(T)S(T)Y(T) + ~ 1T YT(t)Q(t)Y(t) + FT(t)R(t)F(t) dt] 

(3.103) 

This is called the linear quadratic Gaussian (LQG) control problem. In the derivation 
of the solution to this optimization problem the conditioned control force is written f = 
E[F(t) I Y(t) = y]. On condition that the optimal control force F(t) is given by a linear 
closed-loop law of the same form as equation (2.38), it then follows that E[FT(t)R(t)F(t) I 
Y(t) = y] = fTR(t)f. According to these definitions the H-J-B equation (3.102) becomes 

(3.104) 

Equation (3.104) is subject to the terminal condition J*(y, T) = ~E [YT(T)S(T)Y(T)] , 
V y E R n . Assuming that the control force is not constrained, the minimization can be 
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performed by differentiating with respect to f. This leads to (3.22) for the optimal control 
in terms of 8J*(y, t)f8y. 
The H-J-B equation (3.104) is solved by assuming that 

(3.105) 

for some yet unknown deterministic matrix function S(t). Using (3.22) and (3.105) in (3.104) 
results in the Ricatti differential equation (3.24) for S(t). The optimal control forces are 
obtained by substituting (3.105) into the control law (3.22), which results in equation (3.28). 

Hence, the optimal control law obtained as a solution to the stochastic LQG problem with 
complete state information is identical to the closed-loop control obtained from the LQ 
problem. 

3.3.2 Structural Systems with Stochastic External Excitations 
and Imperfect Measurements 

Closed-loop control strategies based on a state space formulation entails information that 
describes the actual state of the system. However, it is usually impossible to measure the 
entire state vector directly and the observations may furthermore be corrupted by noise. 
This is the problem of incomplete state information. 

With uncertain or indirect measurements it is desirable to transmit the maximum amount 
of information about the state. At the same time it is desirable to find a control force, which 
responds least possible to the measurement errors. Therefore, the best control strategy 
involves optimal state estimation as well as optimal control. 

In the beginning of this section we discuss the same stochastic optimization problem of a 
non-linear system as in Section 3.3.1 except that the measurements are noise-corrupted. The 
design problem consists of minimizing the expected cost function (3.93) with the dynamic 
constraints (2.32). The external excitation has the statistic properties given by (3.94) and 
(3.95). 

The realized measurements at the present timet are contained in a vector z(t), and the set 
of measured data in the interval [0, t] is given by {Z(r), T E [0, t]}. 
A solution to the optimal control in the case of incomplete state information may also 
be obtained by means of dynamic programming. However, with imperfect knowledge of 
the state Y(t), all expectations should rather be conditioned on the available information 
{z(r), r E [0, t]}. 
Using the total representation theorem of probability theory E[X] = E[E[X I Y)], the 
optimal cost function on condition of the observations { z( r ), r E [0, t]} can be written 

min E(J[Y,F,t]l{z(r),rE[O,t]}] 
{F('T), 'TE]t,T]} 

= min E[E[J[Y,F,t] IY(t),{z(r), rE [O,t]}J] 
{F('T), 'TE]t,T]} 

= E[J*(Y(t), t) I {z(r), rE [0, t]}] (3.106) 
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where J[Y,F,t] is given by (3.99) and J*(Y(t),t) is given by (3.98), when y is replaced 
by the random state Y(t). This result follows, because the future expected performance 
index E[J[Y,F,t] IY(t),{z(r), rE [O,t]}] is only affected by the measurements up to and 
including the time t to the extent, Y(t) can be predicted, i.e. the dependence on the 
measurements is implicitly through Y(t). 

Analogous to (3.20) the optimal cost function on condition of { z( r ), r E [0, t]} can be written 

E(J*(Y(t), t) I {z(r), rE [0, t]}] 

=E[J*(Y(t+~t),t+~t)+ 1t+~tL1 (Y(r),F(r),r)drl {z{r),rE [O,t]}] {3.107) 

Next, J*(Y(t + ~t), t + ~t) can be expanded into a Taylor series to first order, given by 
(3.101), where y is replaced by Y(t) . In the limit as ~t --+ 0 the following version of the 
H-J-B-equation is then derived, Stengel (1986) 

0 = minE [oJ*(!(t), t) + L 1(Y(t), F(t), t) 
F(t) t 

+ ( ar(:;t), t) r ( G(Y(t), t) + B(t)E[F(t) I Y(t)J) 

+ ~Tr (a' r~;t), t) Bo(t)Rw(t)Br (t)) I { z( r ), r E [o, tl}] (3.108) 

Notice, that F(t) is assumed to be a function of Y(t). Hence, F(t) in L 1(Y(t), F (t), t ) is 
only affected by the measurements through Y(t) . 

Equation (3.108) is solved backwards in time for the optimal cost E [J*(Y(t), t) I { z( r ), r E 
[0, t]}] with the boundary condition 

E[J"(Y,T) I {z(r), rE [O,TJ}] = E[Lo(Y,T) I {z(r), rE [O,TJ}] (3.109) 

This yields a principal difficulty. Propagation of the expected optimal cost back from the 
terminal time to some intermediate timet is conditioned on { z(r) , r E [0, TJ} . However, 
the available set of measurements is { z(r) , rE [0, tJ} . To solve the H-J-B equation (3.108) 
it is then necessary, somehow, to predict the conditioning effect of the unknown and hence 
random future measurements { Z( r ), r E ]t, TJ} on the expectation of the future cost function 
J*(Y(t), t) . If this effect can only be approximated, then the stochast ic control can only be 
a sub-optimum. Conversely, if the J*(Y(t) ,t) is independent on {Z(r) , r E]t,TJ}, as is the 
case for the LQG problem described in the following, stochastic control can be optimum. 

Linear Quadratic Control 

Let the stochastic quadratic cost function be formulated as (3.103). The objective is to 
minimize this performance index by proper choice of {F(r), rE [0, TJ}, subject to the linear 
equation of motion (2.33). The external excitation {W(t), t E [0, oo[} is a white random 
process with mean and covariance given by (3.94) and (3.95) . The initial condition is random 
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with mean and covariance expressed by 

E[Y(O)] = Yo (3.110) 

E [(Y(O)- Yo)(Y(O)- Yo)T] = Po (3.111) 

The observations Z(t) are assumed to be linearly related to the noise-corrupted state vector 
Y(t), 

Z(t) = H(t)Y(t) + V(t) (3.112) 

where H(t) is a general time-varying transformation matrix and {V(t), T E [0, oo[}, is a 
white measurement noise with 

E[V(t)] = 0 (3.113) 

(3.114) 

In (3.114) Rv(t) is a time-varying intensity function. It is assumed that Y(O), {W(t), t E 

[0, oo[} and {V(t), t E [0, oo[} are independent. As an illustration of a control system 
with an observation model given by (3.112), let the structural behaviour be described by a 
state space model with a state vector containing relative displacements and velocities, i.e 
yT = [vT vT], c.f. (2.34) . Then, if the measurements are performed with strain-gauges 
and the structure is linear, the vector Z(t) containing these measurements may by means 
of geometrical interpolation be expressed in terms of the displacements v(t) by a linear 
model, and consequently by (3.112). The importance and usefulness of representing the 
measurement errors by white Gaussian processes stem from the fact, that noise most often 
is due to superposition of a large number of small, independent, random effects and then 
according to the central limit theorem it is Gaussian. However, the proposed observation 
model is only meaningful in a mathematical sense and not physically, since Z( t) is represented 
by a sum of two terms, HY(t) and V(t) with a finite and infinite variance, respectively, and 
hence it becomes infinite. 

Using the total representation theorem, equation (3.103) can be written 

E(J[Y,Fl] = ~E{ E[YT(T)S(T)Y(T) I {Z(r), rE [O,Tl}] 

+ 1T E[YT(t)Q(t)Y(t) + FT(t)R(t)F(t) I {Z(r), rE [0, tl}] dt }(3.115) 

F(t) is only implicitly dependent on the measurements {Z(r), T E [O,tl} through Y(t). 
Hence, E[FT(t)R(t)F(t) I {Z(r), T E [0, tl}] = E[FT(t)R(t)F(t) I Y(t)]. To be able to 
calculate expected values of combined stochastic variables of Y(t) conditioned on {Z(r), 
r E [0, tl}, the condit ional probability density function /Y(t)(Y I { Z( r ), r E [0, t]) is required. 
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However, in this case, where the externalloadings and the measurement errors are Gaussian 
and the system equations (2.33) and (3.112) are linear, fY(t)(YI {Z(r), rE [O,t]}) becomes 
Gaussian too. Hence, to calculate the expected cost it is sufficient to know the following 
conditioned first and second moments of Y(t) 

E[Y(t) I {Z(r), rE [O,t]}] = Y(t) (3.116) 

(3.117) 

The random vector Y(t) and the random matrix P(t) are, respectively, the regressions of 
A A T 

Y(t) and (Y(t)-Y(t))(Y(t)- Y(t)) on the measurements {Z(r), rE [0, tl}. By replacing 
each term in (3.115) by its trace, interchanging the expectation and trace operations, and 
using (3.116),(3.117) the performance index can be written as 

E[J[Y,Fl] = ~E[Tr(s(r){P(T) + Y(T)Yr(T) }) 

+ Tr (1T Q(t) { P(t) + Y(t)YT (t)} dt) + 1T E[FT(t)R(t)F(t) I Y(t)] dt] 

= Jc + JE (3.118) 

where Jc is the certainty-equivalent performance index 

Jc = ~E[Tr(S(T)Y(T)Yr(T)) 

+ Tr(1T Q(t)Y(t)YT(t)dt) + 1T E[FT(t)R(t)F(t) I Y(t)] dt] (3.119) 

and JE is the cost due to estimation error 

(3.120) 

The conditional covariance matrix P(t) in (3.120) must be determined from the theory 
of state estimation. Within this subject the concern is to estimate the state of a system 
on the basis of measurements which may be indirect and uncertain. The estimate Y(t) 
of the state vector may be determined from different criteria depending on the particular 
problem. A common technique is to determine an optimal estimate in the sense that it 
minimizes the expectation of the square of the error between the actual state, Y(t), and the 
corresponding estimate, Y(t) . This has come to be called the minimum covariance of error 
estimate or simply minimum-variance estimator. The estimation techniques of interest here 
are those determining conditional mean and variance estimates as defined in (3.116) and 
(3.117). However, one may quite easily show that the state estimate determined from the 
minimum-variance criterion is the conditional mean estimate. 
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Equation (3.117) defines the conditional covariance of the state estimate error. According 
to the total representation theorem the unconditioned covariance matrix is then given as 

p(t) = E [ (Y(t)- Y(t))(Y(t)- Y(t))T] = E(P(t)] (3.121) 

The optimal state estimate is obtained by minimizing the norm of p(t) given by the Kalman 
filter equations, see Appendix A. Then the error covariance matrix p(t) develops according 
to the differential equation, 

p(t) = A(t)p(t) + p(t)AT(t) + B0(t)Rw(t)B~(t)- p(t)HT(t)Ry1(t)H(t)p(t) , 

p(O) = Po (3.122) 

and the state estimate update is determined from 

Y(t) = A(t)Y(t) + B(t)F(t) + K,(t) ( Z(t)- H(t)Y(t)) Y(O) = Yo (3.123) 

where K 1(t) is a Kalman filter gain defined as 

(3.124) 

It appears from (3.122) that p(t) is independent of the statistics of the measurements 
{Z( r ), r E [0, t]} and the state vectors {Y( r ), r E [0, t]} beyond the noise covariance ma­
trices Rv(t) and Rw(t) . Especially, p(t) is independent of the statistics of previous control 
forces {F(r), rE [0, t]} . This implies that JE in (3.120) is unaffected by F(t), and therefore, 
the control forces {F( r ), r E [0, T]} that minimize Jc also minimize J. The optimal con­
trol is then obtained by minimizing the certainty-equivalent cost Jc subject to the dynamic 
constraint (3.123). Since the last term in (3.123) is a zero-mean white noise process this is 
an optimization problem identical to the linear stochastic control problem in Section 3.3.1 
with Y(t) replacing Y(t). Thus, the optimal control law takes the same form as (3.28), i.e. 

(3.125) 

where S(t) is the Ricatti matrix obtained from (3.24). This is a quite important result 
known as the separation principle. It can be stated as follows. The control law derived from 
the stochastic optimal control problem with incomplete state information is independent of 
the optimal estimation algorithm, and vice versa. This is clear: The estimation algorithm 
(3.122)-(3.124) does not contain the control law (3.125), and vice versa. Furthermore, the 
results satisfy the certainty-equivalence property. If a stochastic optimal control problem 
possesses this property, then the control function is the same as the deterministic optimal 
control function. The latter is satisfied because the closed-loop control law (3.28) obtained 
as a solution to the deterministic LQ problem takes the same form as (3.28). 

The importance of the separation and certainty-equivalence property is that the LQG regu­
lator design can be accomplished in two separate stages: The Kalman filter design and the 
control feedback design. 



48 Chapter 3 

3.4 Conclusions 

Optimal control strategies for active vibration suppression of linear elastic structures may 
be formulated on the basis of either a distributed or discrete parameter model. For the 
distributed parameter system, it is difficult to determine a continuous optimal feedback 
control law which optimizes the system response according to a specified quadratic criterion. 
It is seen to be so, because the control is a function of both time and spatial coordinates. 
Even when one is able to determine this optimal feedback control law, one faces the difficulty 
of implementing it, because of the demand of distributed sensors and actuators. 

To circumvent this problem, the main emphasis has been placed on the design of control 
algorithms for discretized structures controlled by a finite number of actuators. For this 
class of systems it has been shown how an optimal open-closed loop control law can be 
determined by minimizing a quadratic performance index. This solution is also applicable 
when the control design is accomplished in modal space, and it becomes especially simple 
when the optimal modal control force is going to be determined independently for each mode. 
The latter strategy, called independent modal space control, requires that the number of 
controlled modes must be equal to the number of actuators in order to synthesize the actual 
control forces from the modal control forces. 

The designed optimal control law is a "backward-in-time" solution. This name is used, be­
cause a set of differential equations involving the externalloadings has to be solved backwards 
from the final time, before the control can be evaluated. Unfortunately, many environmen­
tal loads are not known a priori, and therefore, it is not possible to determine the optimal 
control forces. 

A common approach is to disregard the open-loop term and only use closed-loop control. This 
solution is optimal if there are no externalloadings. However, the same closed-loop control 
is shown to be optimal, if the external excitations can be modelled by a Gaussian white noise 
process, and the optimality conditions are formulated so as to minimize the expected cost 
of the previous quadratic performance index. Moreover, the certainty-equivalence property 
of the linear quadratic solution has been proved, which states that the deterministic closed­
loop control function is also optimal in the case of stochastic control with incomplete state 
information. 

To circumvent the assumptions of externalloadings known ahead in time or given as "white" 
noise, the optimal control problem is solved by using the technique of invariant embedding. 
This method leads to a "forward-in-time" solution for the control forces. The developed con­
trol algorithm can be generalized to include non-linear structural systems, and its feasibility 
is studied in Chapter 5, where the general optimal control problem of non-linear structures 
is treated. 
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Implementation of Active Control 

Implementation of active control possesses some practical problems which may be taken into 
account by application of the control schemes developed in the preceding. Besides the real 
practical problems of, for example, how to transmit the desired control forces via one or 
more actuators, other important problems arise from a practical point of view, because the 
control design has been based on idealized system descriptions under ideal conditions. A 
consequence of using models with a finite number of degrees-of-freedom to describe a real 
structure and application of discrete actuators and sensors is the so-called spillover effects, 
(Section 4.1). Another important aspect is the discrete time nature of a control algorithm to 
be executed by a digital computer, (Section 4.2). This phenomenon is treated along with the 
problem arising from an inevitable time delay between the measured feedback information 
and execution of the associated feedback force. 

4.1 Spillover Effects 

A civil engineering structure is by nature a continuum whose dynamic behaviour generally 
may be described by a continuously distributed parameter system. Especially for large struc­
tures , application of optimal control is in such cases encountered with complicated numerical 
problems, cf. Section 3.1. Because of these difficulties, a model reduction procedure is gen­
erally carried out, whereby the distributed parameter system is reduced to a model with 
a finite number of degrees-of-freedom. Subsequently, the control parameters are calculated 
on the basis of this discretized system. One approach is to discretize the structure in space 
by expanding the distributed dependent variable into a finite series of eigenfunctions. This 
technique was demonstrated in Section 3.2.1 in relation to the optimal control problem. 
Other conceivable approaches are the finite element method, the finite difference method, 
or the boundary element method. The latter approach was used by O'Donoghue and Atluri 
(1986) in connection with optimal control of large space structures. 

Control spillover means that the vibrations in modes, which are not controlled by the control 
algorithm, are excited by the control force actuators. Vibrations in uncontrolled modes will 
then always be present, no matter how much the controlled modes are damped. Actually, 
the spillover vibrations will increase if the control forces are increased. Observation spillover 
means that the motion of the controlled modes cannot be reconstructed, because the dis­
placement and velocity measurements from the sensors are influenced by the motion in the 
uncontrolled modes, Balas (1978). 
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In the analysis of spillover effects it is customary to consider a certain number of modes, 
which may be determined from the equations of motion describing either a distributed­
parameter system or a discretized system. These modes are referred to as modelled. In some 
cases, it may not be feasible to control all the modelled modes, and then the modelled modes 
are further divided into two categories, controlled and residual modes. 

When a control algorithm, designed for a discretized continuum is synthesized and applied 
to a real structure inevitable errors such as control and observation spillover are introduced, 
which may degrade the structural performance seriously, Soong and Chang {1982). The effect 
of control spillover has been explored in a qualitative manner by Meirovitch and Baruh {1982) 
in connection with independent modal space control of distributed-parameter systems. Both 
the influence of control and observation spillover has been studied by Chung et al. {1989) 
when only some of the modes associated with a discretized system are controlled. 

In the following the two phenomena - control and observation spillover - are elaborated in 
connection with the control of a distributed parameter system. 

4.1.1 Control Spillover 

The following derivations assume implicitly that the modelled modes are readily obtained as 
eigensolutions of a distributed-parameter system, as described in section 3.2.1. Further, let 
the modal equations of motion representing the controlled and residual modes, respectively, 
be internally decoupled. Then the equations of motion for the modal coordinates qe and qr 
associated with the controlled and residual modes are given, respectively, by (3.42) and the 
following differential equations 

( 4.1) 

In ( 4.1) the following vectors are introduced 

(4.2) 

where ne and nr are the number of controlled and residual modes, respectively. The compo­
nents of the matrices Er and Ar are obtained from equations (3.44) and (3.45) by replacing 
the index c with r, and by increasing the indices on the right-hand side by ne. By analogy 
with the specification of the modal control forces fe given by (3.47) and (3.46), the modal 
control forces fr associated with the residual modes can be expressed as 

(4.3) 

The components of the matrix hr in ( 4.3) are obtained from the definition of the modal 
control forces (3.41) by analogy with he, cf. (3.46). The physical control forces F(t) are 
assumed to be given in closed-loop form expressed in terms of the modal coordinates as 

( 4.4) 
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The feedback gains ge1 and gc2 in ( 4.4) could for instance be determined on the basis of the 
optimal control formalism, cf. (3.50). The action of the feedback forces is considered by 
substituting (4.3) and (4.4) into (3.42) and (4.1) 

(4.5) 

(4.6) 

Hereby, it is found that the resulting modal damping and stiffness are modified for the 
controlled modes, while there are no changes in the dynamic properties of the residual modes. 
On the other hand, equation ( 4.6) implies that the feedback control forces represented on the 
right hand side excite the residual modes. This phenomenon is known as control spillover. 
Theoretically, control spillover can be eliminated if the controllers are implemented in such 
a way that the control forces are applied at the nodal points of all residual mode shapes. 
Then br is equal to a zero matrix. 

4.1.2 Observation Spillover 

Implementation of the control law ( 4.4) requires the knowledge of the modal displacement 
qe(t) and modal velocity Ctc(t) at all times. In this section the problem of estimating qe,m 
and <ie,m, m = 1, 2, ... , ne from discrete measurements is considered. It is assumed that 
there are ns sensors capable of measuring displacements and velocities at discrete points. 
Za designates the measured displacement of the point with the referential coordinates x~ = 
[ Xat Xa2 Xa3 ) in a direction given by the unit vector e~ = [ eat ea2 ea3 ) • Since the 
displacement field u(x, t) is given by (3.38), the measured displacements can be expressed 
as 

00 

Za(t) = e~U(O)(xa, t) +Le~ ~(m>(xa)qm(t) a=1, .. . ,ns (4.7) 
m=l 

A vector of measured displacements Z = ( Z1 Z2 • • • Zn, ) is introduced. Equation ( 4. 7) 
can then be written in terms of qc(t) and qr(t) as 

(4.8) 

where the components of z<0>(t), He, Hr and .6-Z(t) are given by 

( 4.9) 

( 4.10) 
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(4.11) 

00 

L e~ ~(m)(xa)qm(t) a= 1,2, ... ,n~ (4.12) 

In order to reconstruct the controlled modal coordinates it is assumed, that only the con­
trolled modes contribute to Z(t), corresponding to qr(t) = 0 and .6.Z(t) = 0. Furthermore, 
it is required that He is quadratic, which is satisfied if the number of sensors are equal the 
number controlled modes, i.e. n. =ne, and is non-singular. On these assumptions equation 
( 4.8) yields 

( 4.13) 

In the same manner the modal velocities <ie(t) can be determined from the measured veloc­
ities Z(t) , Z(0)(t). This gives 

( 4.14) 

The feedback forces based on the approximate modal displacements qe(t) and modal veloci­
ties <ie(t) given by (4.13) and (4.14) are obtained by substituting into (4.4). Using (4.8), the 
result can be written 

( 4.15) 

Inserting (4.15) into (3.42) and (4.1), provides 

<ie + (Ee + hege2) Cte + (Ae +beget) qe = 

We(t)- he ( ge1H; 1 
[ Hrqr + 6Z] + ge2H;1 [Hr<ir + 6Z]) (4.16) 

W r ( t) - br (gel [ qe + H; 1 6Z] + ge2 [ Cte + H; 16 Z] ) ( 4.17) 

It appears from ( 4.17) that the dynamic properties of the modal coordinates associated with 
the residual modes are no longer the same as in ( 4.6). They are now influenced by the feed­
back gains and the eigenproperties of the controlled modes through He. This phenomenon 
is referred to as observation spillover. A consequence of observation spillover may be, that 
the resulting damping or stiffness matrix of ( 4.16) become negative definite, rendering the 
control system unstable. As in the case of control spillover, observation spillover can also be 
eliminated if the sensors are mounted at the nodal points of the residual mode shapes. 
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4.2 Discrete Time Control 

Implementation of a control algorithm in real-time requires on-line calculations in the control­
loop. Nowadays, due to flexibility, reliability and speed, there is a trend to apply digital 
computers to these on-line calculations instead of analog technology. As a consequence, the 
measurements of the structural response are digitized by analog-digital (A/D) converters 
and control forces are applied in the form of piecewise step functions through the use of 
digital-analog (D/ A) converters. Fig. 4.1 shows a basic scheme of a closed-loop computer 
control system. 

Control 
Actuators 1-------.; Structure 

Force 
Sensors 

,------------- - ---, 
I I 

Response 

Control 1 1 
L------------7

1
---l Computer t---..;-

1 
----' 

signal 
IL Digital controller I 
- ------- -- -- -- ---~ 

Figure 4.1: Closed-loop on-line computer control scheme. 

The control algorithms developed in Chapter 3 imply continuous functions for the measure­
ments and the control forces . As mentioned, these functions have a discrete-time nature 
for the digital controller and therefore, it is necessary to reformulate the already developed 
continuous-time control algorithms. 

In treating the continuous-time systems, the assumptions have been made that all operations 
in the control-loop as shown in fig. 4.1 can be performed instantaneously. In reality, however, 
time is consumed in processing measured information, in performing on-line computation, 
and in executing the control forces required. This time delay causes unsynchronized ap­
plication of the control forces, which, besides affecting the control effectiveness, may cause 
instability of the system. 

The importance of time-delay compensation in structural control has been demonstrated 
in the laboratory by Chung et al. (1988,1989). In these papers a compensation method 
based on a continuous-time formulation has been proposed, which include modification of 
the control gain by performing phase shift of the measured state variables in the modal 
domain. Different control algorithms with discrete-time nature have also been proposed. A 
method proposed by Rodellar et al. (1987a) computes the control force at the "present" 
time that produce a desired structural response over a certain prediction horizon. This 
predictive control algorithm has also been modified to compensate for time-delay, Rodellar 
et al. (1987b). Other algorithms based on the optimal control formalism with discrete-time 
nature and with time-delay compensation have been proposed by Chung et al. (1987), Pu 
and Hsu (1988). 

With the time-delay in mind, a discrete-time control algorithm is here formulated on the 
basis of the latter papers. Firstly, an optimal control algorithm is developed in the case 
of deterministic externalloadings and a completely measurable state vector. Secondly, the 
corresponding stochastic problem with incomplete state information is considered. 



54 Chapter 4 

4.2.1 Linear Quadratic Control 

The discretized linear structural system in consideration is represented in state space form. 
Assuming a time delay denoted by ~t in the control forces the equation of motion can be 
written as, cf. (2.33) 

Y(t) = A(t)Y(t) + B0(t)W(t) + B(t)F(t- ~t) , Y(O) = Yo (4.18) 

Suppose the state vector Y(t) is sampled with a period h for on-line calculation. Let the 
sampling instants be represented by the set { tk = kh, k = 0, 1, ... } . The sampled state is 
thus represented by the signal {Y(kh), k = 0, 1, ... }. 

A common situation in computer control is that the D /A converter is so constructed, that 
it holds the analog signal constant until a new conversion is commanded. Since the control 
signal is discontinuous, it is necessary to specify its behaviour at the discontinuities. The 
convention that the signal is continuous from the right is adopted. By choosing the sampling 
instants, tk, as the time instants when the control changes, the control force between two 
consecutive sampling instants is thus written as F(t) = F( kh), t E [kh, kh + h[. The external 
excitation is assumed to be constant between two consecutive sampling instants, and it is 
specified with the same notation as the control forces, i.e. W(t) = W(kh), t E [kh, kh + h[. 

The time-delay is assumed to be a multiple of the sampling period, i.e. ~t = dh, where d is 
an integer. Given the state at the sampling instant tk the state at the next sampling instant 
is then obtained by solving (4.18). This yields, 

Y(kh +h) = E>(kh + h, kh)Y(kh) + ro(kh + h, kh)W(kh) 

+ r(kh + h, kh)F(kh- dh) , Y(O) = Yo ( 4.19) 

In the above equation E>(·, ·) is the fundamental matrix of ( 4.18) satisfying 

a 
a/~(t, r) = A(t)E>(t, r) t>r, E>(r,r)=l ( 4.20) 

Further, the following matrices are defined in ( 4.19) 

ro(t,s) =it E>(t,r)B0(r)dr ( 4.21) 

r(t,s) = J.t E>(t,r)B(r)dr ( 4.22) 

The difference equation ( 4.19) describes the discrete-time system to be controlled. 

To suppress the structural vibrations over a time interval [dh, N h], the control forces F( kh) 
will be selected to minimize the quadratic performance index 

J[Y,F] = ~YT(Nh)S(Nh)Y(Nh) 
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N-1 

+ ~ L [YT(kh)Q(kh)Y(kh) + FT(kh- dh)R(kh- dh)F(kh- dh)] (4.23) 
lc::d 

in which S(Nh) and Q(Nh) are symmetric positive semi-definite weighting matrices, and 
R(kh) is a symmetric positive definite weighting matrix. J[Y, F) here specifies functional 
dependence on the discrete functions Y(kh) and F(kh). 

The objective is to determine the control sequence {F*(kh), k = 0, 1, ... , N- d- 1} to 
minimize (4.23) subject to the dynamic constraint (4.19). To solve this discrete-time op­
timal control problem the dynamic programming approach will be used. Hence, define 
J *(Y(kh), kh) as the minimum cost of the process, starting at t~c . Obviously, fork= N 

J*(Y(Nh), Nh) = ~YT(Nh)S(Nh)Y(Nh) ( 4.24) 

J*(Y(kh), kh), k = d, d + 1, .. . , N is determined recursively backwards from the terminal 
time tN . Thus, the optimal cost from time t1c on is equal to 

J*(Y(kh), kh) = min {-
2
1
YT(kh)Q(kh)Y(kh) 

F(lch-dh) 

+ ~FT(kh- dh)R(kh- dh)F(kh- dh) + J*(Y(kh +h), kh +h)} 

k=d,d+l, ... ,N-1 (4.25) 

This non-linear difference equation has the boundary condition given by ( 4.24). It is solved 
by assuming a solution of the form 

J*(y, kh) = ~yTS(kh)y + yTT(kh) + V(kh) , k = d, d + 1, .. . , N ( 4.26) 

where S is a symmetric positive semi-definite n x n matrix, T is an n x 1 vector, and V is 
a scalar. They will be selected so as to force ( 4.26) to satisfy ( 4.25). 

First ( 4.26) is inserted into the right hand side of ( 4.25), and next ( 4.19) is used to eliminate 
Y(kh+h). Since there are no restrictions on F(kh-dh), the minimizing F(kh-dh) is found 
by setting the gradient with respect to F(kh- dh) equal to zero. After some calculations 
this yields 

F*(kh- dh) = -D(kh)rT(kh + h, kh) [s(kh + h)9(kh + h, kh)Y(kh) 

+ S(kh + h)ro(kh + h, kh)W(kh) + T(kh +h)] 

where 

D(kh) = [R(kh- dh) + rT(kh + h, kh)S(kh + h)r(kh + h, kh)r
1 

( 4.27) 

( 4.28) 

Substituting ( 4.26)-( 4.28) into ( 4.25) and utilizing ( 4.19), the assumed form of J*(y, kh) can 
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be forced to be a solution for all y by requiring that the quadratic terms, the linear terms, 
and the terms not involving y all balance individually. This requires 

S(kh) = Q(kh) + eT(kh + h, kh) [S(kh +h) 

-S(kh + h)l'(kh + h, kh)D(kh)l'T(kh + h, kh)S(kh +h)] 0(kh + h, kh)(4.29) 

T(kh) = eT(kh + h, kh) [T(kh +h)+ S(kh + h)l'0(kh + h, kh)W(kh) 

- S(kh + h)l'(kh + h, kh)D(kh)I'T(kh + h, kh)S(kh + h)I'0 (kh + h, kh)W(kh) 

- S(kh + h)I'(kh + h, kh)D(kh)I'T(kh + h, kh)T(kh +h)] (4.30) 

V(kh) = ~WT(kh)l'~(kh + h, kh) [s(kh +h) 

-S(kh + h)I'(kh + h, kh)D(kh)l'T(kh + h, kh)S(kh +h)] l'0(kh + h, kh)W(kh) 

- wT(kh) [r5(kh + h, kh)S(kh + h)I'(kh + h, kh)D(kh)rT(kh + h, kh) 

- r~(kh + h, kh)] T(kh +h) 

+ ~T(kh + h)I'(kh + h, kh)D(kh)I'T(kh + h, kh)T(kh +h)+ V(kh + hX4.31) 

The boundary conditions are S(Nh) = SN, T(Nh) = 0, and V(Nh) = 0. Equation (4.29) 
is the discrete-time matrix Ricatti equation. 

In order to determine the optimal control force sequence {F*(kh), k = 0, 1, ... ,N- d- 1} 
given by (4.27), equation (4.29) is solved first, and next (4.30). Actually, (4.31) never 
needs to be solved if the only interest is finding the optimal control. V(kh) is only needed 
if J*(y, kh) has to be calculated. Solving (4.30) backwards in time requires an a priori 
knowledge of the externalloadings W(kh), which is generally not possible for excitations 
encountered in structural engineering. Therefore, the control law will be formulated by 
assuming W(kh) = 0, k = d, d + 1, . .. , N- 1, corresponding an autonomous system. Then 
(4.30) is a homogeneous equation with zero initial conditions T(Nh) = 0, so T(kh) = 0, k = 
d, d+1, . . . , N -1. Additionally, V(kh) = 0, k = d, d+ 1, ... , N -1. Given these assumptions 
the control signal at the time tk can be written as 

F*(kh) = -Gc(kh + dh)Y(kh + dh) ( 4.32) 

where Gc(kh) is a feedback gain sequence defined as 

Gc(kh) = D(kh)I'T(kh + h, kh)S(kh + h)S(kh + h, kh) ( 4.33) 

To compute the feedback control force F(kh) at the time tk it appears from (4.32) that 
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knowledge of the state Y(kh + dh) at the future time tk+d is needed. This is obtained by 
utilizing the state equation to predict Y(kh + dh) from the measured state Y(kh). By 
applying (4.19) repeatedly, where F(kh) is given by (4.32), the state Y(kh + dh) can be 
expressed as 

Y(kh + dh) = E>(kh + dh, kh)Y(kh) 

d-1 

+ L E>(kh + dh, kh + mh +h) (ro(kh + mh + h, kh + mh)W(kh + mh) 
m=O 

+I'(kh + mh + h, kh + mh)F(kh- dh + mh)) (4.34) 

To predic.t Y(kh+dh) from Y(kh) according to (4.34) it is required that the external loading 
W(kh + mh), m= 0, 1, ... , d -l is known a priori. This is usually not the case, and so, the 
states must be reconstructed by neglecting the term with W(kh) in (4.34). 

Steady-State Feedback Gains 

A time-invariant system is considered, in which the system matrices A, B 0 and B are con­
stant. Hereby, the fundamental matrix 9( t, r) becomes 

E>(t r) - eA(t--r) 
' - ' ( 4.35) 

where eAt is given by (2.44). The following matrices are defined 

Ad= E>(kh+ h,kh) = E>(h,O) (4.36) 

Bdo = I'o(kh + h, kh) = I'o(h, 0) ( 4.37) 

Bd = I'(kh + h, kh) = I'(h, 0) ( 4.38) 

According to the definitions ( 4.36)-( 4.38) the difference equation ( 4.19) for the structural 
behaviour can then be written as 

( 4.39) 

Furthermore, the weighting matrices Q and R are assumed to be time-invariant. Then, if 
the operating time of the digital control system is longer than the duration of the external 
excitations, it is often justifiable to use only the steady-state constant feedback gains. This 
is because S(kh), obtained by solving (4.29) backwards in time, reached constant values in 
a few time steps from the terminal time. When the sequence S has approached a constant 
value, we have S(kh- h) = S(kh). The steady-state solution of the discrete-time Ricatti 
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difference equation (4.29) is thus determined from the system of non-linear equations 

(4.40) 

Under the given assumptions of time-independent system and weighting matrices constant 
feedback gains can then be determined by applying the solution of ( 4.40) in ( 4.33). Since the 
steady-state gain matrix Gc is time-invariant and independent of the state of the structure, 
it can be precomputed and stored in the computer before the recursive control law ( 4.32) is 
implemented. 

4.2.2 Linear Quadratic Gaussian Regulator 

The control algorithm developed in the preceding section was based on the assumption that 
the entire state vector can be measured without disturbances. Furthermore, implementation 
of the optimal control law implied a priori knowledge of the external excitation. Following, 
a control algorithm based on more realistic conditions is presented. For further reference, 
see Stengel (1986) and Sage and White (1977). 

For the structure in consideration the discrete-time equation of motion is represented by 
( 4.19). The external excitation {W(kh), k = 0, 1, ... , N -1} is modelled by a non-stationary 
white Gaussian random sequence independent of the initial condition Y 0 , where the first and 
second order moments are given by 

E[W(kh)J = 0 ( 4.41) 

[ T( )] { 0 , k =l=l 
E W(kh)W lh = tRw(kh) ' k = l ( 4.42) 

Rw(kh) is the covariance matrix of an equivalent continuous time Gaussian white noise 
process, as specified by (3.94) and (3.95). The initial condition on the state Y(kh) at the 
timet= 0 is a Gaussian random variable with mean y 0 and covariance matrix p 0 , see (3.110) 
and (3.111). 

The measurements Z( kh) of the structural movements at stage kh are assumed to be linearly 
related to the state by 

Z(kh) = H(kh)Y(kh) + V(kh) k = 0, 1, . . . N -1 ( 4.43) 

In the above equation H is a time-varying transformation matrix of dimension n 8 x n, 
and {V(kh), k = 0,1, ... ,N -1} is a white Gaussian random sequence independent of 
{W(kh), k = 0, 1, ... , N- 1} and the initial conditions Y0 , where the first and second 
moments are given by 

E[V(kh)) = 0 ( 4.44) 
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E [V(kh)VT(lh)] = { ~Rv(kh) ' ~ ~ ~ ( 4.45) 

where Rv(kh) is the covariance matrix of an equivalent continuous time Gaussian white 
noise process, as specified by (3.113) and (3.114). The objective of the control design is to 
find the control forces {F(kh), k = 0, 1, .. . , N- d- 1} which minimize the expected cost 

J = ~E[YT(Nh)S(Nh)Y(Nh) 

+ ~ (YT(kh)Q(kh)Y(kh) + FT(kh- dh)R(kh- dh)F(kh- dh)}] (4.46) 

subject to the dynamic constraint (4.19). This is the discrete-time linear quadratic Gaussian 
(LQG) problem. 

The result will not be derived here. Derivations would be in much the same way of the 
continuous-time case that has already been developed. Not surprisingly, it would show that 
the control algorithm is composed of a state estimator followed by a deterministic closed­
loop LQ regulator. Thus, the separation and certainty-equivalence principle also holds for 
discrete-time systems. 

According to the certainty-equivalence principle the optimal control is a feedback of the 
optimal state estimate Y and not Y . As a consequence of the time delay between the 
measuring of the state and the application of the associated feedback force, the control force 
becomes a feedback of the state estimate Y ( kh +dh ). The available information to determine 
this estimate is the measurements {Z(jh), j = 0, 1, . . . , k} up to and including the time tk. 
The predicted estimate based on this information set is denoted by Y(kh + dhlkh) . 

The optimal control law is then obtained by replacing Y(kh+dh) in (4.32) by Y(kh+dhlkh) . 
This yields 

( 4.4 7) 

The feedback gain Gc(kh) in (4.47) is the same as that determined in connection with the 
associated deterministic optimal control problem, cf. ( 4.33). From the derivation of the 
optimal control law, it follows that the estimate Y(kh + dhlkh) has to be taken as the 
conditional mean E[Y(kh + dh)I{Z(jh), j = 0,1, . . . ,k}]. By analogy with the associated 
continuous-time estimation problem, this estimate is equivalent to the minimum covariance 
of error estimate. Hence, the predicted estimate may be determined from the discrete-time 
version of the Kalman filter equations, cf. Appendix A. 

Given the state estimate Y(kh-h) = Y(kh-hlkh-h) at the previous time instant, tk-1! the 
equation of motion is first used to propagate this estimate to the present sampling instant, 
tk, without regard to measurements. This gives 

Y(khlkh- h)= E>(kh, kh- h)Y(kh- h)+ r(kh, kh- h)F(kh- dh- h) 

Y(OI- 1) = Yo ( 4.48) 
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Next, the state estimate update Y(kh) is determined from 

Y(kh) = Y(khikh- h)+ K 1(kh) [ Z(kh)- H(kh)Y(khikh- h)] ( 4.49) 

in which K1 is the filter gain. The criterion for choosing K1 is to minimize the norm of the 
estimation error matrix p( kh) defined as 

(4.50) 

Then, see (A.25) 

( 4.51) 

where the error covariance matrix propagates according to 

p(kh +h) = -9(kh + h, kh)p(kh)HT(kh) [~Rv(kh) + H(kh)p(kh)HT(kh) l-1 

H(kh)p(kh)er(kh + h, kh) + e(kh + h, kh)p(kh)er(kh + h, kh) 

1 + hl'o(kh + h, kh)Rw(kh)I'~(kh + h, kh) ( 4.52) 

The initial conditions for (4.52) are p(O) = Po, where p 0 is defined in (3.111). The filter 
equations, which are sequential in nature, are processed on-line. However, the filter gain 
and covariance computations are unaffected by the control forces, and therefore, equations 
( 4.51), ( 4.52) can be solved beforehand, if the structural dynamics are known. 

When the "filtered" estimate Y( kh) is determined from the measurements up to and includ­
ing the time tk, the predicted estimate Y(kh + dhlkh) is finally obtained by applying (4.48) 
repeatedly. This gives 

Y(kh + dhikh) = e(kh + dh, kh)Y(khikh) 

d-1 

+ 2.::: 9(kh + dh, kh + mk + h)l'(kh + mh + h, kh + mh)F(kh- dh + mh) (4.53) 
m:;;O 

Implementation of a closed-loop control system based on the predicted estimate ( 4.53) may 
cause some difficulties in practice. To utilize the filter equations it is assumed that exact 
descriptions of system dynamics and noise statistics are known. This is often not the case. 
When some information is not precise the effect of uncertainties for instance in connection 
with the structural dynamics may be investigated by sensitivity analysis. 
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4.3 Conclusions 

Some of the most important practical problems to be taken into account in a control scheme 
development has been treated in this chapter. The undesired spillover effects arise when 
a feedback control law based on a discretized model is used to reduce vibrations of a real 
structure. This problem has received a great deal of attention by researchers, and different 
methods of spill over compensation have been proposed. However, a thorough investigation 
has been omitted. Future research of this basic practical problem will among others be 
about demonstrating the practicability of the proposed compensation methods. Such ex­
perimental studies must be performed with large multi-degree-of-freedom structural models 
and experimental tests of that magnitude are beyond the scope of this study. 

In the second part of this chapter, an optimal control scheme is developed with regard to 
the discrete time nature in application of a control algorithm, and the time delay, due to 
the fact that all operations in a control-loop cannot be performed instantaneously. This 
control scheme forms the basis of a series of experimental tests, which were carried out in a 
laboratory and are described in Chapter 6. 



Chapter 5 

Optimal Control of N onlinear 
Structural Systems 

Active control has traditionally been applied to linear elastic structures and there is little 
information on its extension to nonlinear structures. However, the rationale for such an 
extension is simple. Under severe environmental loads, large flexible structures tend to 
exhibit a nonlinear behaviour as· the deformation increases. If these nonlinear deformations 
are excessive, extensive repairs or even demolition of the structure may be necessary. If, on 
the other hand, the structure is allowed to enter the nonlinear range, but we subsequently 
intervene with an active control mechanism to prevent the kind of deformations that would 
render the structure unserviceable, then an additional factor of safety is introduced and a 
lighter design is possible. 

The feasibility in controlling general nonlinear structures by means of pulse generators has 
been explored by Masri et al. (1982) and Miller et al. (1988). In a work done by Reinhorn et 
al. (1987) an active pulse control approach for reducing the response of structures undergoing 
inelastic deformations has been developed. The proposed control strategies in these papers 
fall into the category of bounded state control. In Abdel-Rohman and Nayfeh (1987b) the 
nonlinear oscillations of a hinged-hinged single-span bridge are controlled by a combined 
active and passive control mechanism. Here, a nonlinearity of geometrical nature has been 
eliminated and the resonance effect has been reduced. 

Concerning active vibration control of nonlinear structures there is a lack of research within 
the design of control schemes based on the optimal control formalism. The basic concept of 
optimal control of nonlinear systems is not new. It has been the subject of electrical and 
control engineering for the last 3 decades. However, within these areas only eigenvibrations 
from given initial conditions are usually to be controlled. Externalloadings do not appear in 
the equations of motion. Against it, external dynamic loads are the major sources inducing 
vibrations that should be controlled considering civil engineering structures. As a result, 
active control of nonlinear civil engineering structures presents a unique problem to be 
solved. 

In this chapter emphasis is placed on optimal control with respect to a quadratic performance 
index. Using this criterion two suboptimal control algorithms are presented (Section 5.1 ). 
Next, the control design based on a stochastic description of the external loading is treated, 
and in this connection the problem of measurement uncertainties is addressed (Section 5.2) . 
The utility of the proposed control strategies is demonstrated by considering a hysteretic 
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one-degree-of-freedom oscillator subjected to a white Gaussian noise (Section 5.3). Until now 
the dynamic parameters of the structural system have been assumed to be known. Next, the 
problem of incorporating an identification scheme which will sequentially update information 
of unknown system dynamics is addressed (Section 5.4). 

5.1 Optimal Control 

The concern of this section is the optimal control of non-linear time-varying structures with 
respect to a quadratic performance index. It is assumed that the structural system is rep­
resented by the non-linear state space model (2.32). With the general performance index 
(2.52) the necessary conditions for optimality have been given in Section 2.3.2, see equations 
(3.68)-(3. 70), and the optimal control law was found to satisfy (3. 72). In the special case of 
a quadratic performance index (2.53) it is easily verified that the optimal control law still 
satisfies (3.72) in the same form. By eliminating the optimal control force F(t) from the 
equation of motion (2.32) and the adjoint state equation (3.69), it is found that the optimal 
state Y(t) and the adjoint state vector of Lagrange multipliers ~(t) must satisfy 

Y(t) = G(Y, t) + B0 (t)W(t)- B(t)R-1(t)BT(t)~(t) , Y(O) = Yo (5.1) 

~(t) = -Q(t)Y(t)- oG~C:' t) ~(t) , ~(T) = 0 (5.2) 

The terminal value in (5.2) implies that the weighting matrix for the terminal state is taken 
as zero, i.e. S(T) = 0, cf. (3.69). 
The optimal control forces F*(t) depend linearly on the the eo-state vector ~(t), see (3.72). 
However, in general it is impossible to find a closed-form solution of the nonlinear two­
point boundary-value problem (5.1) and (5.2) to obtain ~(t) and with it, the control forces. 
Neither, would it in general be possible to determine a numerical solution and derive a 
precalculated control since the external loading history W(t) is not known a priori. Then 
in order to obtain a closed-loop controller which may be able to function in an on-line 
fashion for vibration suppression of real structures, there is no alternative except to use 
some suboptimal control algorithm. 

Within the area of electrical and control engineering a number of methods have been pro­
posed to determine approximate optimal control laws. Essentially, these take the form of 
a truncated series expansion of the control law and the optimal value function J*(Y, t) 
satisfying the H-J-B equation. 

Some techniques, Lukes (1969), Willemstein (1977), Yoshida and Loparo (1989), consist of 
representing the optimal feedback law as Taylor series either in the state or eo-state vector. 
Suboptimal control laws proposed by Baldwin and Sims Williams (1969) and Nishikawa et 
al. ( 1971) are, respectively, provided by a truncated perturbation series expansion for the 
optimal value function and the control law. Perturbation methods normally require, that 
a dominant linear term in the drift vector G(Y, t) and a dominant quadratic term in the 
performance index can be identified. Finally, Pearson (1962) has made a control algorithm 
by linearizing the equations of motion about their present state and then solving the optimal 
control problem for this instantaneous linear system. 
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In this chapter design of control algorithms for structural systems with a hysteretic restor­
ing force is dealt with. For these systems the drift vector G(Y, t) is a highly non-linear 
and non-analytical function of the state variables, for which no dominant linear term can 
be identified. Consequently, perturbation analysis is unsuitable in this case. Since, the 
proposed suboptimal control algorithms based on global Taylor series expansions require 
that the nonlinearities are analytical, these algorithms cannot be applied either. Further­
more, out of these methods only the one proposed by Baldwin and Sims Williams (1969) 
forms the basis of an on-line controller, as desired. Some other control algorithms have been 
proposed for optimal control of non-linear systems, Durbeck (1965), Friedland (1966), Gar­
rad et al. (1967), Burghart (1968), Eller and Aggarwal (1968), Chin and Pengilley (1970). 
However, none of these techniques are applicable for on-line control of structures for which 
the drift vector is non-analytical. The only control algorithm which is directly usable for 
non-analytical systems and which is formulated to operate on-line, is Pearson's equivalent 
linearization method. This method is presented briefly in the following section. 

5.1.1 Pearson's Equivalent Linearization Method 

The basis of this approach is the adoption of a linearized time and state dependent model of 
the nonlinear equations of motion (2.32). Hence, it is assumed that the equation of motion 
in the interval ]t, TJ can be represented by the linearized equations of motion 

Y(r) = G(y(t), r) + A(t, r)(Y(r)- y(t)) + B 0(r)W(r) + B(r)F(r) , 

Y(t) = y(t) 

where 

A(t,r) = 8G(Y(t),r)l 
fJY Y(t)=Y(t) 

T E ]t, T] 

(5.3) 

(5.4) 

It is assumed, that the state Y(t) = y(t) at the timet can be measured perfectly. Notice, 
that even for hysteretic systems, the gradient (5.4) exists almost everywhere in the state 
space. 

By considering the present time t as fixed, an optimal control law is derived for (5.3) to 
minimize the performance index 

liT J[Y, F, t] =- (YT(r)Q(t)Y(r) + FT(r)R(t)F(r)) dr 
2 t 

(5.5) 

This controller approximates the optimal control for the non-linear structure at the time t. 
This problem was presented in Section 3.2. Using a closed-loop approximation, corresponding 
to ignoring the equivalent loading G(y(t), r)- A(t, r )y(t) + B( r )W( r ), this derivation lead 
to the control law (3.28). The obtained control law involves the steady-state solution of the 
algebraic Ricatti equation (3.30), which is solved at each instant of time t with the current 
system matrix A(t) = A(t, t) defined by (5.4) . 

The described suboptimal control law is thus a linear feedback with a time-varying feedback 
gain, which is determined at each instant of time by minimizing a quadratic performance 
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index subjected to the equivalent linearized equations of motion. 

5.1.2 Invariant Embedding 

At the beginning of Section 5.1 it was explained that solving the optimal quadratic control 
problem for non-linear structures by using calculus of variations leads to a non-linear TPBVP. 
In what follows an approximate solution based on the invariant embedding technique is 
presented for this TPBVP. Furthermore, a closed-loop controller is designed. The derivations 
are analogous to those given in Section 3.2.3 for the linear quadratic control problem. 

The original TPBVP of (5.1) and (5.2) is imbedded into a class of more general single-point 
boundary-value problems by letting the terminal boundary condition on .\(t) take a general 
value c rather than 0. Furthermore, let r( c, T) denote the missing final condition on Y ( t) 
at the terminal timeT. Then (3.80) is replaced by 

:; + :: ( -Q(T)r- aG:~,T)c) = G(r,T) + B 0(T)W(T)- B(T)R-1(T)BT(T)c 

(5.6) 

The perturbation solution in the parameter c as given by (3.81) is next applied. Concurrently, 
truncated Taylor series expansions are introduced in the form G(r, t) = G(e, t) + ~S(t)c 
and ~C: = ;(· Subsequently, by analogy with the derivation of the invariant embedding 

equations (3.83) and (3.85), the assumed solution provides the following equations 

Y(t) = G(Y(t), t) + S(t)Q(t)Y(t) + B 0(t)W(t) , Y(O) = Yo (5.7) 

S(t) = aG(Y(t), t) S(t) + S(t) aGT(Y(t) , t) + S(t)Q(t)S(t)- B(t)R-1(t)BT(t) 
8Y 8Y 

S(O) = 0 (5.8) 

The differential equation (5. 7) describes, in combination with (5.8), the controlled state, 
obtained by application of the invariant embedding technique. However, the objective of the 
control design is to develop a control law which determines the control force. To achieve the 
control law, the same technique is employed as for the associated linear control problem in 
Section 3.2.3. 

The basic idea is to choose an algebraic form for the control law in which the coefficients 
will be determined. As for the linear structural system the control law is here assumed to 
be linear in the state vector as formulated by (2.38), where Gc(t) is an unknown feedback 
matrix to be determined. In the development of Gc(t) , it is assumed that at each instant 
of time t the nonlinear structural system may be modeled by a linear system of the form 
(5.3), which was introduced in connection with Pearson's method. Insertion of the assumed 
control law (2.38) then yields 

Y( T) = (A(t) + B(t)Gc(t)]Y(r) + G(y(t) , t)- A(t)y (t) + Bo(t)W( r ) , T E ]t, T] 
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Y(t) = y(t) (5.9) 

Correspondingly, a linear approach is adopted for the invariant embedding equation (5.7) of 
the form 

Y(r) = (A(t) + S(t)Q(t)]Y(r) + G(y(t), t)- A(t)y(t) + B0(t)W(r) 

Y(t) = y(t) 

T E Jt, T] 

(5.10) 

The matrix A(t) = A(t, t) of the linear system equations (5.9) and (5.10) is given by (5.4) 
for t = r. The associated initial state Y(t) = y(t) is assumed to be available at the 
present time t as measurements. The gain selection is then made at each instant of time t 
from the requirement that the eigenvalues of the system matrices (A(t) - B(t)Gc(t)) and 
(A(t) + S(t)Q(t)) must be equal and the deviation between the corresponding eigenvectors 
must be minimal. A method to determine Gc(t) from this requirement was represented in 
Section 3.2.3. 

The proposed suboptimal control algorithm forms the basis of an on-line controller. During 
the control, S(t) is determined by forward integration of (5.8), in which, the partial deriva­
tives are calculated from the present state Y(t) = y(t). From the solution S(t) at the present 
timet, the feedback gain Gc(t) is determined as described, and finally substituted into the 
control law (2.38) to obtain the control force. 

5.2 Stochastic Optimal Control 

As in the design of control algorithms for linear structural systems, the design criteria for 
non-linear structures may be formulated according to a stochastic control formalism. In 
this connection the external excitation is represented by a stochastic process. Then the 
equation of motion constitutes a stochastic matrix differential equation and the control force 
is determined so that the expected value of the performance index defined in the deterministic 
formulation is minimized. 

5.2.1 Perfect Measurements 

The stochastic optimization of non-linear structures is considered in Section 3.3.1 for the case 
of perfect measurements. By using the dynamic programming approach the H-J-B equation 
for the optimal cost function J*(y, t) was set up, cf. (3.102). However, this equation is 
generally extremely difficult to solve for analytic expressions for the optimal cost and control. 
Therefore, the control algorithms based on the stochastic optimal control formalism may be 
suboptimal like the algorithms based on the deterministic formulation. 

A common approach in the literature is to divide the solution into nominal and perturba­
tional parts, where the former represents an off-line (prior) solution and the latter represents 
an on-line (real-time) solution, see e.g. Stengel (1986). For that purpose the external loading 
is considered to be composed of a deterministic mean value and a random part, where the for­
mer is known a priori and the latter is assumed to be small and additive. Then the resulting 
suboptimal solution suggests that the optimal controlled state history could well be approx­
imated by the sum of a deterministic non-linear control problem, computed off-line with 



Optimal Control of Nonlinear Structural Systems 67 

the deterministic external loading, plus a stochastic neighbouring-optimal response. The 
neighbouring-optimal solution is based on a linear perturbation from the nominal response, 
and involves the solution of a stochastic linear quadratic control problem. The developments 
are summarized in the following. 

The deterministic part of the external loading and the corresponding state is denoted w0 (t) 
and y 0(t), respectively. The nominal-optimal state, y0(t), is calculated using a numeri­
cal method to solve the non-linear TPBVP of (5.1) and (5.2) with w 0 (t), y0(t) replacing 
W(t), Y(t) . The associated nominal-optimal control force is denoted f;(t). Notice, that 
y0 (t) and f;(t) cannot be interpreted as the mean-value functions of the optimal solution to 
the stochastic control problem (5.1) and (5.2), unless these are linear. 

An approximate solution for the incremental state 6. Y(t) = Y(t)-y0(t) due to the stochastic 
part of the external loading is obtained by linearizing the equation of motion around the 
nominal state, 

6. Y(t) = A(t)6. Y(t) + B 0{t)6. W(t) + B(t)6.F(t) , 

where 6. W(t) = W(t)- Wo(t), 6.F(t) = F(t)- r;(t) and 

A(t) = 8G(Y(t), t) I 
8Y Y(t)=y0(t) 

6.Y(O) = 0 (5.11) 

(5.12) 

The additive random loading {6. W(t), t E (0, T]} is assumed to be a non-stationary zero­
mean Gaussian white noise process. 

The associated performance index is obtained from an expansion of the expected quadratic 
cost (3.103) about y0(t) and r;(t) retaining terms up to second order. By collecting terms 
of zero order, first order and second order in 6. Y(T), 6.F(T), 6. Y(t) and 6.F(t) this yields 

E [~y~T(T)S(T)y~(T) + ~ 1T (y~T(t)Q(t)y~(t) + r;T(t)R(t)f;(t)) dt 

+ y~T(T)S(T)6. Y(T) + 1T (y~T(t)Q(t)6. Y(t) + r;T (t)R(t)6.F(t)) dt 

+~ll. yT (T)S(T)ll. Y(T) + ~ J.T ( ll. yT (t)Q(t)ll. Y(t) + ll.FT ( t)R(t)ll.F(t)) dt l 
{5.13) 

Then, it is seen from (3.66),(5.11) that first order terms cancel, if y0(t), r;(t) is the optimal 
control due to the loading w 0(t). Hence, the optimal control of the incremental state vector 
is obtained by minimizing the performance index 
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(5.14) 

The optimal control, ~F'"(t), minimizing (5.14) subject to (5.11) is given by 

(5.15) 

where S(t) is the solution of the matrix Ricatti equation (3.24). The approximated total 
optimal control F'"(t) is thus given by 

F'"(t) r;(t) +.~F'"(t) 

r;(t)- R-1BT(t)S(t) (Y(t)- y~(t)) (5.16) 

In real-time control the perfect measurements Y(t) = y(t) at the time t are used for the 
state vector in (5.16). 

The method is based on an assumption, that the random response~ Y(t) is relatively small 
compared to the deterministic response y0 (t) caused by the mean value w 0 (t) of the external 
excitation, rendering the globallinearization (5.11), (5.12) of the nonlinear drift vector valid. 
Examples of this is a fast train passing a flexible bridge, where the stochastic loading is due 
to surface irregularities, and most wind gust loadings on buildings. Notice, that the mean 
wind loading w 0 and the mean wind response y0 are normally modelled as constants or 
quasi-static quantities, implying that f0 ( t) = 0. 

5.2.2 Imperfect Measurements 

The suboptimal control algorithms represented in the preceding sections are formulated as 
closed-loop controllers, where the control force can be modified in some way by feedback 
information that describes the actual state of the structural system. Obviously, feedback 
entails measurements, and these may be uncertain or indirect. If so, it is necessary to 
estimate the state history that is most likely to have caused the results of the measurements. 

In the general case of stochastic optimal control based on imperfect measurements, the con­
trol and estimation strategies must be designed concurrently, i.e. one depends on each other. 
Using the dynamic programming approach to solve the stochastic optimization problem leads 
to the H-J-B equation for the optimal cost J'"(Y(t), t). Given a non-linear structural model 
written in state space form by (2.32) and a general performance index (2.52), the H-J-B 
equation is given by (3.108). 

However, solving this equation backwards in time from the final condition (3.109) to some 
intermediate time t requires that the conditioning effect of the future measurements { Z( r ), 
r E]t, T]} on the future cost function is known. For the LQG regulator which possesses 
the separation property as described in Section 3.3.2, the conditioning effect is completely 
predictable, and hence stochastic control can be optimum. For non-linear structures the 
future conditioning effect can only be approximated, and then the stochastic control can 
only be suboptimal. 

In the remainder of this section the stochastic optimal control problem based on a quadratic 
performance index is considered. The objective is to minimize the quadratic performance 
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index (3.103) subject to the non-linear equation of motion (2.32) with an external excitation 
described by a Gaussian white noise. The state is observed through a noisy measurement 
described by the non-linear model 

Z(t) = C(Y(t), t) + V(t) (5.17) 

where the measurement noise {V(t), t E [0, oo[} is assumed to be a non-stationary Gaussian 
white noise process with the first and second moments (3.113) and (3.114), respectively. For 
this problem the performance index can be rewritten by analogy with (3.118). By this 
reformulation the conditional expectations Y(t) and P(t) have been defined, representing 
respectively, a state estimate and a state-estimate-error covariance, cf. (3.116) and (3.117). It 
is now desired to develop recursive equations determining present values for these estimates. 

State estimation is considerably more difficult when the structural system is nonlinear. Gaus­
sian externalloadings and measurement errors cause non-Gaussian response, and hence cal­
culation of the defined conditional mean estimate requires a predetermined estimate of the 
non-Gaussian probability density function /Y(t)(YI{Z( r ), r E (0, t]} ). Based on the theory of 
continuous Markov vector processes Minai and Suzuki (1987) have derived differential forms 
for this conditional probability density function given observations during a finite time inter­
val. These differential forms are called fundamental equations for stochastic estimates, and 
considered as an extension of the Fokker-Planck-Kolmogorov equation to stochastic estimate 
problems. From these fundamental equations, differential forms of the conditional moment 
equations are obtained. However, as might be suspected, solution of these equations will not 
often be a simple task. 

Instead the state estimate, Y(t) will be derived from the criterion of minimum covariance 
of the error in filtering, which leads to the extended Kalman filter. To derive these filter 
equations, the non-linear equations of motion (2.32) and the nonlinear observation equations 
(5.17) are expanded in Taylor series about an assumed optimum state Y(t) = Y(t). Re­
taining terms up to first order, this yields the following differential equation for the future 
states 

Y(r) = G(Y(t),r) + A(t,r) (Y(t)- Y(t)) + B0(r)W(r) + B(r)F(r) , 

T E Jt, TJ 

Z(r) = C(Y(t),r) + H(t,r) (Y(r)- Y(t)) + V(r) T E]t,TJ 

where 

A(t,r) = 8G(Y(t),r)l 
8Y Y(t)=Y(t) 

H(t, r) = 8C(Y(t) , r) I 
8Y Y(t)=Y(t) 

(5.18) 

(5.19) 

(5.20) 

The derivations leading to the optimum linear filter may now be repeated, cf. Appendix A. 
In this derivation it will be assumed that the estimate Y(t) in (5.18) and (5.19) is a known 
quantity. Thus, state updates are determined from the original nonlinear equations using a 
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linear function of the filter residual 

Y(t) = G(Y, t) + B(t)F(t) + K,(t) ( Z(t)- C(Y, t)) Y(O) = Yo (5.21) 

where the filter gain K1(t) is given by (3.124). The error covariance matrix p(t) fulfils 
(3.122), where A(t, t) and H(t, t) as given by (5.20) are inserted for A(t) and H(t) . In this 
connection equation (3.122) is an approximate expression for the error covariance based on 
the linearized equations of motion. Consequently, the extended Kalman filter is suboptimal. 
The partial derivative matrices given by (5.20) are evaluated at current values of the variable 
Y and therefore, they cannot be precomputed. Consequently, the gain matrix also depends 
on the state estimate, and all three filter equations (5.21), (3.122) and (3.124) must be 
calculated in real time. 

Although the extended Kalman filter equations are suboptimal, it becomes apparent that the 
control and estimation strategies depend on each other. The propagation of the estimation 
error covariance p(t) described by (3.122) depends on Y(t) through A(t, t), and the state 
estimate Y(t) is affected by the control force F(t) through (5.21). Hence, the control force 
affects the quality of the state estimates. Conversely, the feedback control force is dependent 
on the state estimate. This intercoupling of estimation and control, two roles that are 
possibly conflicting, is often called the dual effect. 

In the dual control problem the control forces are determined with the aim of improving 
state estimation, while providing a minimum cost, i.e. both terms in the split up version of 
the performance index (3.118) are minimized. Recalling that deterministic optimal control 
of nonlinear structural systems requires iteration and that optimal nonlinear estimation is 
so difficult that only suboptimum solutions are normally practical, it is not surprising that 
the dual control of nonlinear structures has similar limitations. 

An approximate control algorithm may be designed using the separation property of the 
LQG-regulator, where the control and estimation strategies can be developed independently. 
This approximate design technique is based on the assumption that the optimal performance 
index J can be determined by minimizing the two terms JE and Jc in (3.118) independently. 
The cost due to the estimation error JE is minimized by using the extended Kalman filter 
to estimate the state vector. The control forces are then obtained by minimizing the cost 
Jc subject to the dynamic constraint (5.21). Since the last term in (5.21) is a stochastic 
process this is an optimization problem identical to the non-linear stochastic problem in 
Section 5.2.1 with Y(t) replacing Y(t). Thus the suboptimal control law takes the form 

F(t) = -Gc(t)Y(t) (5.22) 

where the gain matrix Gc is determined according to the equivalent linearization technique 
in Section 5.1.1 or the invariant embedding technique in Section 5.1.2. Since G(t) is state 
dependent in both cases, its present value is determined from the estimate Y(t). 

5.3 Example 

The above control algorithms are validated by applying them to digital simulated data 
generated from a hysteretic one-degree-of-freedom oscillator subjected to a white Gaussian 
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noise. For an oscillator with viscous damping and a hysteretic restoring force the equation 
of motion may be written in the form 

mu+ cU + g( {u(r), T E [0, t]}) = f(t) + vW(t) (5.23) 

where m and c are, respectively, the mass and the viscous damping coefficient, f(t) is the 
control force, {W(t), T E [0, oo[} is a unit Gaussian white noise, v is a constant intensity 
factor, and g( { u{ T ), T E [0, t]}) represents the hysteretic restoring term which is a functional 
of the preceding deformation history { u( r), r E [0, t]} . Generally g can be decomposed into 
a linear, non-hysteretic term and a hysteretic component. Thus 

g = aku + (1 - a)kz1 (5.24) 

In the above equation z1(t) is the hysteretic component of the restoring force, a is a non­
dimensional factor measuring the relative contribution of the non-hysteretic term, and k is a 
linear stiffness coefficient. Here z1(t) will be described by the Bouc-Wen model, Bouc (1967) , 
Wen (1976), given in differential form as 

(5.25) 

In (5.25) /1> {3t, nB and A1 are "loop parameters", which control the shape of the hysteresis 
loop. The number of parameters in (5.27) and (5.25) may be reduced by one, by introducing 
the following new parameters 

z = z1(1- a)k 

1 = /t ({1- a)kr-ns 

kB = ak 

AB = At(1- a)k 

[ ]
1-ns 

{3 = f3t { 1 - a) k 

Equations (5.24) and (5.25) then become 

(5.26) 

(5.27) 

(5.28) 

The total structural model represented by {5.23), (5.27) and (5.28) is written in state space 
form as 

Y(t) = A(Y(t))Y(t) + Bf(t) + BoW(t) (5.29) 

where 

Bo= [ +] 
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(5.30) 

The control force is obtained by minimizing the quadratic performance index (2.53) in which 
Q is a 3 x 3 matrix chosen as 

[ 

w
2 0 0] 

Q= 0° 10 
0 0 0 

where w0 = ~ is the angular eigenfrequency for the corresponding linear oscillator. 
Since, there is only one control force R becomes a scalar designated r . The weighting matrix 
for the terminal state is chosen to be zero, i.e. S(T) = 0. 

5.3.1 Equivalent Linearization 

The basis of the equivalent linearization technique is the adoption of a linear model at the 
present timet in the form (5.3). For the defined problem the equivalent system matrix in the 
linearized model is simply chosen as A(t) = A(Y(t)), i.e A(t) is given by (5.30), rather than 
using the gradient (5.4). This corresponds to replacing tangential differentials of the drift 
vector with secantial differentials. This has been done in order to circumvent the problem of 
the lack of differentiability of the state vector in the equilibrium state Y(t) = 0. Then the 
suboptimal control force is determined by minimizing a quadratic performance index subject 
to the instantaneous time-invariant linear model. The solution to this problem is specified 
in terms of the stationary solution of the Ricatti equation. However, a unique solution to 
this equation only exists if the fictitious time-invariant linear system described by the pair 
{A(t), B} is completely controllable, see e.g. Levis (1986a). This condition is not satisfied 
for this example as described in the following. 

Consider the linear eigenvalueproblem 'associated with the linear eigenvibrations of (5.3), 
(>.ii- A(t)) ~(i)(t) = 0. Notice, that >.i(t) and ~(i)(t) are time-dependent through the 
dependence of A(t) and the state Y(t) from which the state equations are linearized. Further, 
formulate the adjoint eigenvalueproblem (>.J- AT(t)) q;(i)(t) = 0, which yields the same 
eigenvalues. The eigenvectors ~U>(t) and q;(i)(t) are orthogonal and can be normalized so 
as to satisfy 

q;(i)T(t)~U>(t) = { 01 , i # j 
, t =) 

Define the matrices 

A(t) = diag ( >.t(t) >.2(t) >.3(t) ) 

~(t) = [ ~(l)(t) ~(2>(t) ~(J)(t) ] 

'Ji(t) = [ q;(l)(t) lJi(2>(t) q;(J)(t) ] 

i,j=1,2,3 (5.31) 

(5.32) 
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Since the eigenvectors are linearly independent, the solution Y( T ), t E [t, TJ of the linearized 
stationary model (5.3), can be expressed as 

Y(r) = ~(t)q(r) (5.33) 

where q(r) is a 3-dimensional vector of modal coordinates. Substituting (5.33) into (5.29) 
and multiplying by q;T(t) from the left yield 

q(r) = A(t)q(r) + q;T(t)Bf(r) + q;T(t)B0W(r) (5.34) 

For the linearized hysteretic system one of the eigenvalues in A is zero and the component 
of q;TB in the model equation of motion associated with this eigenvalue is zero. Then the 
corresponding mode is unaffected by the control force, and hence the equivalent linear system 
is not completely controllable. 

In the following the eigenvalues Ai are ordered so that the first ne = 2 modal equations in 
(5.34) are those, which are affected by the control force. Next, the optimal control problem 
is modified according to the assumption, that the state vector can be expressed in terms of 
the modal coordinates associated with these controllable modes, 

Y( r) = ~c(t)qc(r) (5.35) 

whereqc = [ q1 q2 ]T and~c(t)= [ ~{l)(t) ~<2>(t) ] . Conversely,qc(r)canbeexpressed 
in terms of Y(r) by multiplying (5.33) by 'Pc(t) = [ q;(t)(t) w<2>(t)] from the left and 
using the orthogonality properties (5.31), yielding 

(5.36) 

The equations of motion for the controllable modes are then obtained by substituting (5.35) 
into (5.29) and by multiplying with 'l!~(t) from the left, leading to 

<lc(r) = Ac(t)qc(r) + 'l!~(t)BJ(r) + 'l!~(t)BoW(r) (5.37) 

where Ac(t) = diag ( .A1 (t) .A2(t) ). Next, substitute (5.35) into the performance in­
dex (5.5). With S(T) = 0 and the definition of a modified weighting matrix Qc(t) 
~~(t)Q(t)~c(t), this gives 

(5.38) 

The control force is then determined by minimizing the above modified performance index 
subject to the dynamic constraint (5.37). By using closed-loop control, this yields 

(5.39) 
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where Sc(t) is the solution of the algebraic Ricatti equation 

{5.40) 

The control force at the present timet is finally obtained by substituting {5.36) into {5.39), 

{5.41) 

5.3.2 Invariant Embedding 

By application of the invariant embedding technique the feedback gain is derived from the 
solution S(t) of the Ricatti equation {5.8), which involves the partial derivative aG~Vt),t), 
which for the considered hysteretic system exists everywhere, except in the equilibrium state 
for Y = 0 . On the basis of the solution S(t), the feedback gain is determined from the 
requirement that the eigenvalues of the equivalent linearized invariant embedding equation 
and the linearized equation of motion should be equal. For this example the matrix A{t) 
of the equivalent linear systems constructed as (5.9) and (5.10), are chosen to be equal to 
A(Y(t)) given by {5.30). 

When the present time t is considered as fixed, it was found above that the fictitious time­
invariant linear system described by the pair {A(t), B} is not completely controllable. Con­
sequently, it is not possible to achieve any set of closed-loop eigenvalues by applying a state 
feedback matrix Gc(t), because the eigenvalues of A(t) associated with the non-controllable 
eigenmodes will remain unchanged in the closed-loop system. 

In this example the eigenvalue associated with the non-controllable eigenmode is zero. Hence, 
the desired set of closed-loop eigenvalues is specified by {>.1 (t), A2(t), 0}. One of the eigenval­
ues of the closed-loop matrix [A(t)+BGc(t)] is always zero no matter how Gc(t) is selected, 
i.e. the remaining eigenvalues A1{t) and A2(t) must be obtained by selecting the 3 parameters 
of Gc(t). Gc must satisfy Gc [~»(l) (»(2)] = [F(A1)a(A1) F(A2)a(A2)], cf. (3.92), which has 
no unique solution. Here, the feedback coefficient multiplied by the hysteretic component 
z(t) is selected to be zero, i.e. Gc,3 = 0, and hence the remaining feedback coefficients must 
satisfy 

(5.42) 

5.3.3 Simulation Results 

The simulation results were generated by numerically integrating equation (5.29), using the 
fourth-order Runge-Kutta algorithm with automatic step size, i.e. it takes larger steps where 
the solution is more slowly changing, cf. PC-MATLAB (1989). Two series of simulation were 
carried out using each of the two aforementioned control algorithms. By application of the 
invariant embedding technique equations, (5.8) was integrated simultaneously in order to 
calculate the control force. 
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For convenience, all the parameters and variables in the state space model (5.29) are taken 
to be non-dimensional. The normalization has been made in such a way, that the stationary 
variance of the deflection u and the velocity it is equal to 1 for the corresponding linear 
oscillator (a = 1 ), when the oscillator is subjected to a unit intensity Gaussian white noise, 
i.e E[W(t1 )W(t2)] = 6(t1 - t2 ). This condition requires that w0 = 1 and v = 2mJ(. 
Consequently, the timet has been made non-dimensional with respect to 1/w0 • 

The hysteresis parameters /, {3, AB and nB which control the shape and scale of the hys­
teresis loops are selected in proportion to the introduced normalisation. To see the variation 
of the hysteretic component z with u, integration of (5.25) is performed. Depending on the 
conditions of it and z being positive or negative this yields 

(5.43) 

which can be integrated in closed-form. Provided ( 1 + {3) > 0 the hysteresis loop converges 
towards the horizontal asymptotes -Zsup and Zsup for which ~~ = 0. Then according to (5.43) 

( 
AB )1/na 

Zsup =sup z(t) = I+ f3 (5.44) 

Conversely, z(t) is unbounded for (I+ {3) < 0. 

Zsup is normalised in proportion to the stationary standard deviation of the corresponding 
linear oscillator. Hence, this parameter becomes a measure of the excitation level. Small 
values indicate heavy excitation and vice versa. In the following Zsup is selected to be equal the 
prescribed standard deviation for the corresponding linear oscillator, i.e. Zsup = 1, indicating 
a heavy non-linear response. The particular parameter values are 1 = 0.5, f3 = 0.5, AB = 1.0 
and nB = 5. The remaining structural parameters are selected as m = 1, ( = 0.1 and 
a= 0.1. 

The white noise excitation is approximated with a realization of a broad-banded zero-mean 
Gaussian process. Define a set of equidistant time instants { tk = k~t, k = 1, 2, ... } 
with intervals ~t, and let {W(tk), k = 1, 2, ... } be a sequence of mutually independent 
stochastic variables, all identically distributed N(O, a~). Then the external excitation 
W(t), t E]tk, tk+t[ is determined by linear interpolation between W(tk) and W(tk+d· 

The autospectral density function of this process is given by, see Clough and Penzien (1974) 

S ( ) _ 6- 8 cos(w~t) + 2 cos(2w~t) S 
ww w - (w~t)4 o 

in which So is given by 

So= a~~t 
211' 

(5.45) 

(5.46) 

It is evident as ~t ~ 0, that this simulated process becomes a Gaussian white noise of inten­
sity So over the entire frequency range. In order, that S0 should represent the autospectral 
density of a unit intensity white noise process with autospectral density Sww = 2

11r , it follows 
that u~ = 1/(~t). From the requirement that Sww(w) is not allowed to deviate more than 
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(5.47) 

where To = 27r jw0 is the eigenperiod for the corresponding linear undamped system. Ac­
cording to this requirement generation is then performed with the time step D.t =To/50. 

The uncontrolled structural response, corresponding to the selected parameters and for a 
given realization of the external excitation, is first determined. The associated hysteresis 
loops for z and the total restoring force g are shown in fig. 5.1. From this, it is evident that 
the restoring force characteristics are rather non-linear at the selected level of excitation. 

(a) (b) 
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Figure 5.1: Variation of the hysteretic restoring force with displacement u for f = 0. (a) Hysteretic 
restoring force component, z1 • (b) Total hysteretic force, g. 

Subsequently, the structural response is simulated for the same external excitation, apply­
ing different time-series of the control force determined from the equivalent linearization 
technique in Section 5.3.1 and the invariant embedding technique in Section 5.3.2. With a 
weighting parameter of r = 10 the controlled displacements based on each of the two control 
algorithms are compared to the uncontrolled level in fig. 5.2. The applied control forces 
are shown in fig. 5.3. It appears, that the vibration level has been reduced considerably, 
and that the time-series for the controlled displacements are very much alike. If a greater 
reduction of the structural response is desired the control force should be given less weight 
in the objective function (smaller r), which results in larger control forces . 

In order to assess the control efficiency of the applied control strategies, numerical integration 
has been carried out to determine the performance index for the simulated data. By using 
this measure the invariant embedding algorithm (J = 5.19) gives a better result than the 
equivalent linearization algorithm ( J = 5.92). The control procedure has been repeated 
for different values of r using the same external excitation. Comparing the performance 
indices associated with the applied control strategies, see fig. 5.4, the invariant embedding 
technique seems generally to be more effective than the equivalent linearization technique. 
The tendency is the same for other realizations of the external excitation. 
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Figure 5.2: Comparison of uncontrolled and controlled displacements, r = 10. 
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Figure 5.3: Control forces, r == 10. 
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Figure 5.4: Comparison of performance indices for different values of r 
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For small values of r ( < 10) the minimum value of the performance indices are almost equal. 
When the control systems are operating in this region the control forces become large and 
a substantial reduction in response is obtained. This means that the hysteretic component 
of the restoring force is negligible and thus, the response becomes linear. And for linear 
systems the feedback gains for the two control schemes converge quickly towards the same 
values, so that the deviation in the performance is insignificant. 

In practice the weighting coefficient r must be selected according to the available actuator 
and an acceptable maximum vibration level. If the actuator is able to generate large con­
trol forces, it is of course possible to reduce the vibrations significantly. However, energy 
dissipation due to hysteretic effect will limit the structural response and therefore, the ex­
ploitation effect of the control force in proportion to the attained vibration suppression could 
be increased, if a vibration level with some hysteretic characteristics is acceptable. 

5.4 Adaptive Control 

Control algorithms designed from the criterion of minimizing a performance index are based 
on the availability of appropriate models for the structural dynamics. In structural control 
the models are mainly developed from a theoretical approach, which makes use of physical 
laws that govern the structural system (e.g. Newton's law), as described in Section 2.1. 
However, implementation of a control algorithm based on an assumed structural model pro­
vides a knowledge of the model parameters, such as mass, stiffness and damping. A common 
procedure is to determine these parameters from measurements of the structural behaviour 
by means of a system identification scheme and use these estimates in the control design. 
However, under heavy excitation the stiffness and damping parameters of the structural 
system may change due to local or global damage. For such systems more complicated so­
called adaptive control algorithms have been developed. These control schemes estimate the 
structural parameters and perform vibration control on-line. 

A survey of adaptive control theory and its application has been presented by Astrom (1983). 
In a paper by Yao (1979) there is a literature review in which the problem of system identifi­
cation in conjunction with on-line control has received some attention. Some of the principles 
of adaptive control of single-input and single-output dynamic systems are outlined in Astrom 
and Wittenmark (1971), Safak (1989a,1989b). 

Addressing the adaptive optimal control problem for non-linear structural systems the equa­
tion of motion is assumed to be written in state space form as 

Y(t) = G(O(t), Y(t), t)Y(t) + B0 (9(t), t)W(t) + B(9(t), t)F(t) (5.48) 

where 9 is an np-dimensional vector of the unknown parameters. The associated performance 
index J is formulated as in the case of known structural parameters, cf. the general function 
(2.52) or the quadratic function (2.53). The aim of adaptive control is to find the optimal 
control forces minimizing the performance index, together with the optimal estimation of 
the unknown parameters, 9( t ) . 

If the external excitation W(t) is described by a stochastic model the objective is to minimize 
the expected value E[J] subject to the stochastic constraints (5.48). In what follows the 
stochastic description is applied. To perform the estimation of the parameters, measurements 
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of the structural response are needed. Let the measurements Z(t) be a non-linear function 
of the state Y(t) and affected by the random noise V(t), cf. (5.17). 

The problem of finding a control, which minimizes the expected cost function, is difficult to 
solve. On the assumption that a solution exists, a functional equation (a H-J-B equation) can 
be derived for the optimal cost function J•(Y(t), t) using dynamic programming. The H-J-B 
equation can be solved analytically only in very simple cases, e.g. in relation to the LQG 
regulator problem with known structural parameters. When the structural parameters are 
unknown the H-J-B equation associated with the LQG problem becomes very complicated 
and cannot be solved analytically. The adaptive LQG problem has been investigated by 
Morimoto (1990), Casiello and Loparo (1989), Caines and Chen (1985), Rishel (1986), Hijab 
(1983,1986). This is an extremely difficult problem, where there is no closed-form solution 
for the control forces. Hence, for the defined adaptive control problem there is often no 
alternative except to use some suboptimal control. 

By analogy with the stochastic optimal regulator based on imperfect measurements, the 
adaptive optimal regulator can be thought of as composed of two parts: a nonlinear estimator 
and a feedback regulator, Astrom (1987). The estimator generates the conditional probability 
of the state and parameters on condition of the measurements, /yo(t)(y,BI{Z(r), r E 
[0, t]} ). In principle, there is no distinction between the parameters and the other state 
variables for adaptive schemes derived from the stochastic control theory. The feedback 
regulator is a nonlinear functional, which maps this distribution into control forces. This 
functional can be computed off-line. The distribution /yo(t)(y,BI{Z(r), rE [O,t]}) must, 
however, be updated on-line, which in general requires the solution of a complicated nonlinear 
filtering problem. 

A suboptimal control scheme introduced here belongs to the category of so-called self-tuning 
controllers, which are developed according to the described solution strategy, Astrom and 
Wittenmark (1973), Astrom et al. (1977). This is designed for control systems with un­
known but constant or slowly varying structural parameters. The regulator is accomplished 
by designing a control law as if the parameters were known exactly and by introducing 
a recursive estimator. The true parameter values are then concurrently replaced by their 
estimated values in the control law. 

Comparing the self-tuning regulator with the optimal regulator some principal differences 
are ascertained. In the self-tuning regulator, the states are separated into two groups, the 
ordinary state variables of the underlying constant parameter model and the parameters 
which are assumed to vary slowly. In the optimal stochastic regulator there is no distinction 
between the parameters and the other state variables. The design calculations in the self­
tuning regulators are made as if the parameters were known exactly. There are no attempts 
to modify the control law when the estimates are uncertain. In the optimal stochastic 
regulator, there is a feedback from the conditional distribution of the parameters and states 
which take full account of uncertainties. The comparison indicates that it may be useful to 
add parameter uncertainties to the self-tuning regulator. However, the regulator in many 
cases has the desirable self-tuning property, i.e. the controller converges to the one that 
could be designed if the structural model was known a priori. In the following, a self-tuning 
controller is proposed. 
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5.4.1 Self-Tuning Regulator 

There are many possible self-tuning regulators depending on the control design and param­
eter estimation techniques used. Two methods to generate a sequential control law were 
proposed by Sage (1966a,l966b). However, these methods are based on the assumption that 
the structural system is stationary over subintervals. The type of regulator considered em­
ploys a recursive estimator set up from the extended Kalman filter and a suboptimal control 
design based on the invariant embedding technique. 

The extended Kalman filter provides a basis for sequential estimation of the unknown struc­
tural parameters that is straightforward. The applied technique is analog to algorithms 
proposed by Detchmendy and Shridar (1966), Desai and Lalwani (1969), and it has among 
others been investigated for parametric identification of hysteretic systems by Distefano and 
Rath {1975), Roberts and Sadeghi (1990) in the case without control forces. Further, Sei­
bold and Fritzen {1991) have applied the extended Kalman filter to recursive identification 
of the parameters in a nonlinear model representing a simple rotor. The basic idea is to 
augment the physical system of equations (5.48) by a differential equation modelling the 
unknown parameters. Assuming they are constant the augmented system is governed by a 
state equation of the following form 

Y A(t) = GA(Y A(t), F(t), t) + BoA(Y A(t), t)W(t) , YA(O) = YAo (5.49) 

where 

[ 
Y(t) l y A(t) = 9(t) GA(Y A(t), t) = [ G(Y A(t), t) + :(Y A(t), t)F(t) l 

BoA(YA(t),t) = [ Bo(Y~(t),t) l (5.50) 

Notice, unlike the preceding state space formulations that the matrices B and B0 are now 
dependent on the state vector Y A(t) due to their dependence on 9(t) The initial values Y A(O) 
contain the initial values Y(O) of the state vector and the initial guess 0(0) of the system 
parameters. From (5.49) it may appear that O(t) will always be 0(0). This is because (5.49) 
deals with the dynamics of the system with exact state variables and exact system parameters 
9(t). In reality these parameters must be estimated based on measurements. Equation (5.49) 
is then replaced by an updating differential equation specifying the development of the state 
variables estimates. 

The measurements are assumed to be the same as in the case of known structural parameters, 
cf. (5.17). Thus, the observation equation in terms of the augmented state vector becomes 

Z(t) = CA(Y A(t), t) + V(t) (5.51) 

in which CA(Y A(t), t) = C(Y(t), t). The statistics of the external excitation and the mea­
surement noise is defined as before, cf. (3.94),(3.95) and (3.113),(3.114). The recursive 
estimator for the augmented system follows Section 5.2.2 directly. The state estimate is 
found by integrating the nonlinear differential equation that models structure and parame-
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ter dynamics and that is driven by measurement residuals, 

Y A(O) = Y Ao (5.52) 

The filter gain K,(t) is defined as 

(5.53) 

and the covariance update is determined from 

p(t) = AA(t)p(t) + p(t)A~(t) + BoA(Y A(t), t)Rw(t)B~A(Y A(t), t) 

- p(t)H~(t)Rv1 (t)HA(t)p(t) , p(O) = Po (5.54) 

where 

HA(t) = 8CA(Y A(t), t) I 
ay A Y A(t)= Y A(t) 

The initial conditions for p(t) reflecting the initial uncertainty in the initial values and the 
a priori estimate iJ of the structural parameters will usually be unknown and may therefore 
be chosen in a more-or-less arbitrary manner. In principle, the larger the norm of p(O) = p0 , 

the greater the rate of convergence. However, for very large values of the matrix elements, 
the estimation scheme can be unstable. It is convenient to set p0 = ..\01, where I is a unit 
matrix of dimension (n + np) x (n + np) and ..\0 is a number to be selected by the designer. 

The control law generated from the estimated states and parameters is here based on the 
suboptimal control solution derived from the invariant embedding technique. In the case 
of known structural parameters a linear feedback in the state estimate was proposed, cf. 
(5.22) , where the feedback gain was determined from the solution S(t) of (5.8). The same 
control law is utilized for the self-tuning regulator except that the structural parameters are 
concurrently replaced by their present estimate in the equations, which are used to determine 
the feedback coefficients. 

5.4.2 Numerical Example 

The proposed self-tuning regulator based on the invariant embedding control scheme and the 
extended Kalman filter is validated by application to the hysteretic one-degree-of freedom 
oscillator utilized in Section 5.3. Thus, the equation of motion written in state space form is 
given by (5.29) . In this example a reduced estimation problem is considered where the mass 
m = 1 and the hysteretic parameter nA = 5 are assumed to be known. Hence, the vector 
of unknown structural parameters becomes 9T = [c kB 1 (3 ABf· The state and parameter 
estimation is performed from measurements made on the displacement u and the velocity u 
as described by the observation model (5.51). The intensity of the measurement noise was 
selected to be 10% of the intensity of the external loading. 

The simulation results were generated using the same values for the structural parame­
ters, and the same realization for the external excitation as in the example in Section 
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5.3. The controlled state Y(t) was determined by numerically integrating the equation 
of motion (5.29) given the initial condition yT = [0 0 of. Recursive state and parame­
ter estimates were obtained by simultaneously integrating (5.52) from the initial condition 
Y~(O) = [YT(o); 8T(o)] = [0 0 0; 0.1 0.15 0.38 0.38 0.45]. The initial values for the un­
known structural parameters deviate 50% from their true value. Finally, equation (5.54) was 
integrated from the initial condition p(O) = >.0! where ..l.o was selected as 0.1. 

Given the described conditions the obtained estimates of the state variables are shown in 
fig. 5.5. The estimates of the directly measured variables u and u are seen to nearly match 
their true values. The hysteretic restoring force z converge to its true value within the time 
corresponding to 3 eigenperiods. Within the same period of time the structural parameters 
kB and AB approach their true values. The convergence of the parameter 1 is relatively 
good, but it is slowly. However, the remaining parameters c and f3 differ a good deal from 
their true values. 
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Figure 5.5: Evolution of estimated state variables of the augmented model during self-tuning 
control, r = 10. The dashed lines indicate the true values. 
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Although some of the parameter estimates are inaccurate the reduction in control efficiency 
is limited compared to the case of known parameters, which appears from a comparison of 
the displacements as seen in fig. 5.6. 
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Figure 5.6: Controlled displacement obtained from a perfectly known structural model and a 
sequentially estimated model, respectively, compared to the uncontrolled response. 

The degradation for the performance due to uncertainty in the estimated structural parame­
ters may also be illustrated by comparing the function values for the associated performance 
index. As seen from the comparison in fig. 5. 7 of the performance index for different values 
of r the uncertainty is seen to have moderate effect. Hence it is concluded that the ex­
tended Kalman filter yields sufficiently accurate parameter estimates and that the proposed 
self-tuning controller is applicable to vibration suppression of hysteretic systems . 
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Figure 5. 7: Comparison of values for the performance index in case of known and unknown 
structural parameters, respectively. 
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5.5 Conclusions 

Design of optimal control strategies for nonlinear structures has been dealt with in this 
chapter. The applicability of a linear feedback controller has been emphasized, which is de­
veloped by use of the invariant embedding technique. By application to a numerical example 
the proposed control algorithm has been compared to Pearson's method of equivalent lin­
earization. For the given example the invariant embedding method leads to the best results 
according to the defined performance index. 

The last section represents an adaptive controller which concatenates the invariant embed­
ding control scheme and the extended Kalman filter for state and parameter estimation. 
Although the parameter estimates obtained from the sequential identification scheme are 
not perfect the resulting controller seems to operate satisfactorily. 

Either of the considered control algorithms are suitable for on-line control of typical flexi­
ble structures subjected to arbitrary dynamic environments. However, by implementation 
in real-time control one has to take into account that a certain amount of computational 
effort is required for calculations involved in determining the control law. Consequently, a 
discretization in time of the applied control strategy must be accomplished in such a way, 
that the control force only has to be changed at discrete time instants. 

If a reduction in calculation time is desired for either of the considered control strategies, e.g. 
by control of large structures with many degrees-of-freedom, then the calculations required 
to determine the feedback gains may easily be reduced. Using the invariant embedding 
method a considerable reduction may be obtained, if the feedback coefficients are determined 
from the requirement that just a certain number of eigenvalues of the linearized equation 
of motion and of the invariant embedding equation are identically equal. Correspondingly, 
the calculation time will be reduced by Pearson's method if just a certain number of modes 
associated with the linearized model are controlled. 
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Experimental Study 

Experiments of active control were carried out in the laboratory in order to study the possible 
application of active control to structures under seismic excitation. A control scheme based 
on the discrete-time LQG regulator described in Section 4.2 was employed to reduce the 
structural response under base motion generated by a seismic simulator. 

Most of the previous work done in active structural control has been analytical and numerical, 
assuming ideal conditions on which active control is implemented. The feasibility of the 
LQG-regulator used in these tests has been validated by applying it to simulated data, see 
e.g. Pu and Hsu (1988) and Suhardjo and Spencer (1990). However, within the framework of 
structural control a demand for experimental evidence of the applicability on more realistic 
conditions led to this study. 

An important question to be treated and verified through experimental studies is the effect 
of the inevitable uncertainties in parametric identification on the performance of the active 
control system. Yao (1987) has examined some types of uncertainties and discussed their 
effect on the reliability of the structural performance. A sensitivity study has been con­
ducted by Yang and Akbarpour (1990) to investigate this effect by using a simple simulation 
approach. However, this numerical study neglects the modelling error for a real structure 
and assume that the entire state vector is available without noise. These errors are present 
in experimental studies. 

Experimental studies performed by Chung et al. (1988,1989), Carotti and Lio (1991) have 
demonstrated the feasibility of the active tendon control system to suppress vibrations of 
seismic frame buildings. In this experimental test an active, tuned mass damper (TMD) 
is implemented. Numerical investigations of the active mass damper system for reduction 
of adverse effects of earthquake and wind have been made, using different control schemes 
showing varying degrees of efficiency, see e.g Hrovat et al. (1983), Yang and Samali {1983a) 
and Abdel-Rohman (1987a). 

A detailed description of the experimental setup is given in Section 6.1, and a formulation of 
a mathematical model describing the structural behaviour is given in Section 6.2. In Section 
6.3 the identification techniques used to determine the dynamic parameters are presented. 
The control algorithm for this specific structural system is set up in Section 6.4 and the 
results are shown in Section 6.5. 
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6.1 Experimental Setup 

The experimental setup used in this study consists of a cantilever model on a seismic sim­
ulator and an active mass damper implemented a.t the top of the model. The earthquake 
simulator used to shake the model is controlled by a. microcomputer. Based on measurements 
of the forced vibrations the same computer is used to calculate a.nd generate control signals 
for the active control device. The model structure and a diagram of the experimental setup 
are shown in fig. 6.1. 

xo 

Figure 6.1: Model structure and diagram of control system. 

The model structure is simply a 3 m high box profile (70mm X 70mm x 4mm) - called 
the pile. The pile is bolted to a plate of steel which is in turn mounted on two vertically 
placed sheets, one at each end of the plate. This foundation represents a movable base. The 
base movements are created by a vibration exciter, Bniel & Kjrer, type 4818, using a signal 
generated by the computer. By computer generated signals, any kind of base movements 
can be produced. 

At the top of the pile, an active mass damper is mounted to generate the desired control 
force. It consists of a vibration exciter (called the actuator), Briiel & Kjrer, type 4809, and 
a movable secondary mass. The maximum force amplitude in harmonic excitations of this 
actuator is 44.5 N. The actuator and the secondary mass are mounted on a console on either 
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side of the pile to avoid considerable excentric loading. The actuator is controlled by a drive 
voltage generated by the computer. 

- .. -~. -

Figure 6.2: Active mass damper. 

The secondary mass is mounted on a roller bearing nearly without friction and rigidly con­
nected with the moving element of the actuator. The maximum displacement of the moving 
element is 8 mm peak to peak, which is less than the maximum displacement of the roller 
bearing. The secondary mass is an assembly of small masses, each of approximately 1 kg, 
to make the total secondary mass variable. 

Accelerometers are mounted on the model structure to provide feedback information about 
the structural behaviour. One accelerometer is mounted on the steel plate which is part of 
the base, one is mounted at the top of the pile, and one is mounted on the secondary mass. 

The on-line calculations of the control algorithm are carried out by an ARIANE 386-PC mi­
crocomputer. The microprocessor is operated by MS-DOS 5 operating system and real-time 
processed Turbo Pascal 5.0 commands. The acquired data are transferred to the micropro­
cessor and the computed data are transmitted to the actuator and base exciter, using an 
analog and digital 1/0 board, DT2821. 

6.2 Modelling 

A compound model for the experimental setup is obtained by making a mathematical de­
scription of the behaviour of each component and afterwards synthesizing each model to a 
joint model. 

The vibration exciter used to generate the control force operates like a loudspeaker, where the 
movement is produced by a current passing through a coil in a magnetic field. The vibration 
level of the moving element and with it the secondary mass is controlled by regulating the 
drive voltage U3 (t). The generated force f(t) will be modelled by 

f(t) = ~~U~ (t) (6.1) 

where Is is a constant depending on the amplifier and the exciter. The vibration level of 
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the exciter has to be controlled in the interval about 2-10 Hz. In this region experimental 
tests have shown that the moving mass and its suspension may be represented by a spring­
dashpot-mass system. 

The vibration exciter used to generate the base motion operates in the same way as the 
actuator. But, unlike the actuator, it is not necessary to have a precis~ model describing the 
behaviour of the base, because the only requirement for the movement is, that the spectral 
density of the base acceleration x0 (t) becomes broad-banded. Since the absolute value of 
the frequency response function between the drive voltage U0 (t) and x0(t) is flat, this is 
simply obtained by generating U0 (t) as a realization of a white noise. In order to control the 
vibration level the following approximate model is formulated, 

xo(t) = "(oUo(t) (6.2) 

where 'Yo is a constant depending on the exciter and the amplifier. 

The model structure is a continuum with a distributed mass and a concentrated mass rep­
resenting the fixed part of the actuator. This system will be modelled by a one-degree-of­
freedom system corresponding to the first mode. The vibrations of the higher order modes 
are negligible compared with the first mode. 

In the description of the interaction between the three components - vibration exciter, pile 
and actuator - it is assumed, that the base motion is not affected by the movements of the 
pile and actuator. To make this assumption acceptable, the vibration exciter is designed in 
such a way, that the mass is about 10 times bigger than the mass of the remaining part of the 
model structure. Hence the inertia forces which affect the latter part and are transmitted to 
the base, become small compared to the driving force used to accelerate the base. 

The compound experimental setup may according to the assumptions introduced be repre­
sented by the structural model shown in fig. 6.3. The eigenfuction in the first mode has been 
normalized so its argument at the position of the mass damper is equal to 1. The correspond­
ing modal coordinate Xp can then physically be interpreted as the horizontal displacement of 
the pile at the position of the mass damper. mp, Cp and kp are modal mass, modal damping 
coefficient and modal spring stiffness corresponding to this normalization. The mass damper 
is modelled as a single-degree-of-freedom linear elastic, linear viscous damped system with 
mass m,, damping coefficient c,, and spring stiffness k,. The horizontal displacement of 
the mass m, is termed x,. The internal electro-magnetic force between the pile and the 
mass-damper is designated f(t) 

For the system of fig. 6.3, it is straightforward to derive the following system equations 

(6.3) 

(6.4) 

It is the strategy to suppress the movements of the pile relative to the the base. Hence, 
introduce the displacement of the pile at the position of the mass damper relative to the 
base as Vp = Xp - x 0 and the displacement of the mass damper relative to the pile as 
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Figure 6.3: Structural model of experimental setup. 

V 3 = X 8 - Xp· Use of these quantities in (6.3) and (6.4) provides 

Mv + Cv + Kv = boxo(t) + bf(t) 

where 

V= [ ~: l 
ho = [ =::] 
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(6.5) 

The system matrices M, C and K in (6.5) and the loading parameters / 3 and /o in (6.1) 
and (6.2) are not known a priori, and consequently, they are going to be estimated. 

The control scheme will be based on the following state space representation of the equation 
of motion (6.5) written in terms of (6.1), 

Y(t) = AY(t) + Boxo(t) + BU.,(t) (6.6) 

In equation (6.6) , Y(t) and A take the same form as in (2.34), and 

(6.7) 

6.3 System Identification 

System identification deals with the problem of building mathematical models of dynamic 
systems, based on observed system data. The area has an established collection of basic 
techniques, and some of these will be applied to estimate the unknown parameters in the 
selected mathematical model for t he structure. 
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The basic idea behind the different identification techniques is to select the unknown pa­
rameters so that the equations of motion fit a set of observed input-output data as well as 
possible. The equations of motion describe the relationship between continuous time input 
and output signals, but the observed data are here obtained by digital sampling at discrete 
equidistant instants of time. Therefore, the differential equations describing the controlled 
system will be represented by discrete-time approximate models, in which the unknown pa­
rameters will be estimated. Afterwards, a connection is established between the parameters 
in the discrete-time model and the continuous-time model. 

The system identification is carried out from tests with a single-input and a single-output. 
The input signal used to excite the model in a particular test is assumed to be known and 
is designated U(t). Hence, in the case of a single-input the equations of motion (6.5) are 
expressed in state space form as 

Y(t) = AY(t) + BuU(t) (6.8) 

in which Y(t) and A take the same form as in (2.34). The vector Bu is dependent on 
the applied input signal, which may either be a drive voltage or the base acceleration. 
The observed output data for the system identification are accelerations. To identify the 
parameters from a particular test the relative accelerations at one of the two degrees-of­
freedom is used, designated Zv(t) and Z.,(t), respectively. The associated directly measured 
absolute accelerations are de~ignated. Zp,a(t) ~nd Z,,a(t) .. Hence .according to the defined 
relative movements, we have Z.,(t) = Z.,,a(t).- Zp,a(t) and Zp(t) = Zp,a(t)- x0(t), where x0 (t) 
is the measured base accelerations. Let Z(t) represent either of the two defined relative 
accelerations. This signal can be expressed in terms of the state vector by the general 
observation model 

Z(t) = HY(t) (6.9) 

where the time-invariant transformation matrix H = [0 0 1 0) for Z(t) = Zp(t) and H = 
[0 0 0 1) for Z(t) = Z.,(t). In the following generalized formulation Y(t) is assumed to be an 
n-dimensional vector. 

6.3.1 Discrete-time Model for Input-Output Data 

The input signals contained in U(t) and the measured output signals given by Z(t) are in 
principle discrete-time functions, which are specified at equidistant time instants tk = kh, 
where h is the sampling period. The signals are specified with the convention defined in 
section 4.2.1. In what follows the objective is to derive a difference equation describing the 
relationship between the input and output signals. For that purpose equation (6.8) is solved 
to obtain the future state Y(kh +h) given Y(kh). Hereby, we have 

(6.10) 

where Ad is given by ( 4.36) and Bdu = J: eAtBu dt = A -I (Ad - I)Bu. The measured 
response Z(kh + jh) at the future sampling instant tk+i can be expressed in terms of the 
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state vector by substituting (6.8) into (6.9), 

Z(kh + jh) = HAY(kh + jh) + HBuU(kh + jh) (6.11) 

Next, by applying (6.10) repeatedly in (6.11), the future measurements can be formulated 
in terms of Y(kh). After some straightforward rewriting, this yields 

j 

Z(kh + jh) = HAA~Y(kh) + L HA~-i(Ad- I)BuU(kh- h + ih) 
i=1 

+ HBuU(kh + jh) (6.12) 

In (6.12) it has been used, that A~- 1 A= AA~-1 , which is satisfied because the considered 
matrices have the same eigenvectors. 

Introduce the characteristic equation det(pl- Ad) = 0. When the determinant is expanded, 
it yields the characteristic polynomial 

(6.13) 

where an = 1. Multiplying each Z(kh + jh) in (6.12) by a3 for j = 0, 1, ... , n, and adding 
all the equations together, the following is obtained 

Z(kh + nh) + an-1Z(kh + nh- h)+·· · + a 1 Z(kh +h)+ aoZ(kh) = 

HA (A~+ an-tA:i-1 + · · · + a1Ad + aol) Y(kh) 

+fJnU(kh + nh) + fJn-tU(kh + nh- h)+ ··· + fJoU(kh) 

in which (Jj, j = 0, 1, ... , n have been introduced. From the derivation it follows that 

fJn = HBu 

n 

(33 = L aiHA~-j-1 (Ad- I)Bu + a3HBu , j = 0, 1, . .. , n- 1 
i=j+I 

(6.14) 

(6.15) 

(6.16) 

In the second line of equation (6.14) the terms inside the brackets represent the characteristic 
matrix polynomial D.d(Ad)· According to the Cayley-Hamilton theorem every matrix satisfies 
its own characteristic equation, i.e D.d(Ad) = 0. Hence, the second line in (6.14) is cancelled, 
and hereby equation (6.14) represents the desired discrete-time relationship between the 
input and the output data. 

To facilitate the formulation of equation (6.14) the polynomial Aa(q) is introduced as 

(6.17) 
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where q is the shift operator 

q-; Z(kh) = Z(kh- ih) (6.18) 

In addition, the polynomial Bp( q) is introduced as 

(6.19) 

Utilizing the defined expressions (6.17) - (6.19), equation (6.14) can be written as 

Ao(q)Z(kh) = Bp(q)U(kh) (6.20) 

According to the difference equation (6.20), the structural output Z(kh) can be exactly cal­
culated once the input U(kh) is known. This is unrealistic. In most cases such a linear model 
cannot describe the structural behaviour exactly. Furthermore, the sensors that measure the 
output are usually subjected to noise. Within this linear framework it is assumed that the 
effects of such uncertainties can be lumped into an additive term e(kh) at the output, 

Aa(q)Z(kh) = Bp(q)U(kh) + e(kh) (6.21) 

When the disturbance { e( kh ), k = 1, 2, ... } is a white noise sequence, equation ( 6.21) rep­
resents a so-called ARX model, where AR refers to the autoregressive part Aa(q)Z(kh) and 
X to the extra input B13(q)U(kh), cf. Ljung (1987). Subsequently, the coefficients in Aa(q) 
and Bp(q) are determined by means of an estimation procedure. 

Define a vector 8 containing the unknown parameters to be determined as 

8 = [ C¥n-1 C¥n-2 • • • ao f3n f3n-1 • • • f3o ] T (6.22) 

and the vector 

cp(kh) = [ -Z(kh- h) -Z(kh- nh) U(kh) .. · U(kh- nh) ]T (6.23) 

Then equation (6.21) can be rewritten as 

Z(kh) = cpT(kh)8 + e(kh) (6.24) 

The model (6.24) predict the measurement at the time kh on the basis of information pro­
vided by other observed variables cp(kh). Therefore, e(kh) is designated the prediction 
error. Having observed a set of input data {U(kh), k = 1, 2, ... , N} and output data 
{ Z ( kh), k = 1, 2, . . . , N} estimates of 8 are determined by minimizing the square of the 
prediction errors. Hence, the criterion function to be minimized is 

N 2 

JN(8) = L ( Z(kh)- cpT(kh)8) (6.25) 
k=l 

This is the least squares estimate. In order to find the estimate iJ which minimizes (6.25), 
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define the N -dimensional column vector 

ZN = [ Z(h) Z(2h) . . . Z(Nh) ]T (6.26) 

and theN x (2n + 1) matrix 

iflN = ( t;'(h) <p(2h) · · · t;'(Nh) ]T (6.27) 

Then the criterion (6.25) can be written in the form 

(6.28) 

Minimizing JN(9) yields the following estimate, see e.g. Ljung (1987) 

(6.29) 

6.3.2 Expressions for the Dynamic Parameters 

Given estimates of the parameters in the ARX model (6.21) it is desired to determine the 
structural parameters in the continuous time model (6.5). 

The estimated AR-parameters a,, i = 0, 1, ... , n- 1 correspond to the coefficients in the 
characteristic polynomial of Ad, cf. (6.13). Hence, the eigenvalues J-li of Ad can be found by 
solving the associated characteristic equation D..d(f.L) = 0. 

The eigenvalues Ai of A are determined from the characteristic equation det(AI- A) = 0. 
Expanding the determinant the following characteristic polynomial is obtained 

(6.30) 

According to (2.44) it follows, that Ad = eAh and A have the same eigenvectors, and that 
Ad has the eigenvalues J-li = exp(Aih ). When J-li is determined, Ai is then simply given by 

(6.31) 

The invariants a1, i = 0, 1, ... , n -1 in (6.30) can be set up by inserting the estimated values, 
Ai, repeatedly, into the characteristic equation D.(>.) = 0. This yields, 

1 At ).n-1 
1 ao >,n - 1 

1 ).2 ).n-1 at ->.2 2 
(6.32) -

1 An >,n- 1 
n an- 1 -An n 

By solving (6.32) an estimate of the invariants in the characteristic equation (6.30) is ob­
tained, designated a,, i = 0, 1, ... , n - 1. These coefficients may also be expressed in terms 
of the still unknown structural parameters by expanding the determinant det( >.I - A). In 
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the experimental setup in Section 6.2, n = 2 and the unknown structural parameters are 
mp, m8 , ep, c8 , kp, k8 , see (6.5). Matrix A is given by (2.34), (6.5). Hence, the following system 
of nonlinear equations is obtained for the identification of the structural parameters 

i = 0, 1, 2, 3 (6.33) 

In (6.33) there are 4 equations, but there are 6 unknown structural parameters. A general 
method to determine the additional 2 unknowns will not be given here. Instead, the addi­
tional 2 equations required to estimate the 6 structural parameters according to algorithm 
described above are simply obtained by performing an additional test with the pile alone 
without the secondary mass, called test I. 

Test I 

For test I the secondary mass is removed, and hence the equation of motion is given by 

(6.34) 

In this test the base is driven by a band-limited white-noise voltage. Equation (6.34) is 
written in state space form as (6.8) with Y = [vp vpf· The associated ARX model is 
formulated, and the AR-parameters are estimated using the base acceleration as input, i.e 
U(t) = x0 (t), and the relative velocity of the pile at the position of the mass damper as 
output. The observation model (6.9) then takes the form Z(t) = [0 1] Y(t). Next, estimates 
of the coefficients in the associated characteristic polynomial (6.30) are determined from 
(6.31) and (6.32), designated apt, ap2 • Equations for these coefficients in terms of mp, ep and 
kp are set up by formulating the characteristic polynomial (6.30) from the state space model 
of (6.34). By analogy with (6.33), this leads to the following equations 

(6.35) 

(6.36) 

Test 11 

In test 11 the total model was considered, but the base was fixed, i.e. x0 (t) = 0. The input 
used to excite the model was a band-limited white-noise voltage driving the actuator, and the 
measured structural output was the acceleration xp(t), i.e U(t) = U8 (t) and according to the 
formulated state space model Z(t) = [0 0 1 0] Y(t), cf. (6.9). Based on the observed input­
output data the coefficients a0 , a1 , a2 , a3 are estimated as described above. Mathematical 
expressions for these parameters written in terms of the unknown structural parameters are 
developed from the equations of motion (6.3) and (6.4). This leads to 

(6.37) 
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(6.38) 

(6.39) 

(6.40) 

Equations (6.35)-(6.40) constitute a system of 6 non-linear equations for the unknown struc­
tural parameters. The solution is obtained by means of the MATLAB algorithm /solve, 
which is based on the Gauss-Newton method to find roots in non-linear equations, see PC­
MATLAB (1989). The results are shown in table 6.1. 

m, Cp k, m~~ c~~ k., 

kg Ns/m 103 N/m kg Ns/m 103N/m 

122.61 57.6 1 16.1 111.11 40.4 1 8.85 

Table 6.1: Estimated structural parameters 

The eigenvalues used to estimate the structural parameters may also be expressed in terms of 
angular eigenfrequencies and damping ratios according to the definition (2.37). The dynamic 
parameters associated with the pile (w,, (,), the actuator (w8 , ( 8 ) and the combined system 
(w1,w2,(t,(2) are shown in table 6.2. 

~ ~ ~ ~ (, (., (t (2 21r 211" 211" 211" 

Hz Hz Hz Hz % % % % 

14.2514.3812.9616.171 o.7616.313.718.3 1 

Table 6.2: Estimated dynamic parameters 

As seen from table 6.2, the mass damper is tuned to work as a passive vibration absorber 
against vibrations in the first mode of the structure (w, r-J w11 ). Only vibration frequencies 
different from w, are basically controlled actively. Further, it should be noted that the 
secondary mass m 8 is 50% of the primary mass m,. For prototypes of tuned mass dampers 
this ratio will typically be 1% - 5%. However, in this experimental study the practicable 
maximum displacement of the secondary mass relative to the pile is small and following, 
its maximum acceleration. Therefore, to increase it s inertia force and with it the damping 
effect , the secondary mass has been increased. 
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6.3.3 Loading parameters 

The level of the control force and the base acceleration is controlled by the computer accord­
ing to the relations (6.1) and (6.2). In each of these two equations the loading parameters 
I• and /o are contained, respectively. These still unknown parameters are estimated in the 
following. 

For that reason, the input signal U(t) used in each of the two tests carried out to estimate I• 
and /o, respectively, is a drive voltage. The loading parameters are in each of the two tests 
contained in the vector Bu, and are related to the estimated ARX parameters as described 
by (6.15) and (6.16). Consider the problem of estimating I• from test 11, where Bu = B, 
given in (6.7). For test 11 n = 4, and hence (6.15) and (6.16) represent 5 equations. However, 
in these equations the only unknown is I• and consequently, there is no unique solution for 
I•· This is also the fact for /o, which may be determined from test I. Because of this problem, 
the loading parameters are estimated on the basis of a spectral analysis. 
By using a spectral analysis, transfer functions for the observed input-output data are esti­
mated directly, without using a parametric model. Next the loading parameters are selected 
so that the transfer function based on the equations of motion fit the estimated transfer 
function as well as possible. 
An estimate of a transfer function associated with a single-input U(t) and a single-output 
Z(t) is obtained from 

H~ . ( ) _ i zu( w) 
zu w - ~ 

~uu(w) 
(6.41) 

where izu(w) and iuu(w) are estimated cross-spectral and auto-spectral density func­
tions. The above estimate is determined for ~ -1 equidistant frequencies, Wk = 2trk/(Nh), 
k = 1, 2, ... , ~ - 1. Here, the estimate is calculated by means of the MATLAB algorithm 
spectrum, see PC-MATLAB (1989), which implements the Welch method. For further infor­
mation, see e.g. Oppenheim and Schafer (1975). 

Next, the corresponding frequency response function based on the equation of motion (6.8) 
and the observation model (6.9) is set up. For that purpose the Fourier transform is intro­
duced, 

Y(w) = 1: Y(t)e-iwtdt (6.42) 

where Y(w) is the Fourier transform of the function Y(t). By determining the Fourier 
transform of (6.8) and (6.9), the frequency response function Hzu(w) is obtained as 

Z(w) 
Hzu(w) = U(w) 

= (iw)H[iwl- Ar1Bu 

(6.43) 

It is convenient to define ~( iw) = det( iwl-A) corresponding to the characteristic polynomial 
~(-\) in (6.30). Then [iwl- A]-1 = Adj[iwl- A]/~( iw ), where Adj( ·) is the transposed of 
a matrix formed by cofactors of its argument. The frequency response function Hzu(w) can 
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then be rewritten as 

H
. ( ) _ (iw)HAdj[iwl- A]Bu 
zu w - d(iw) (6.44) 

In the model based frequency response function ( 6.44) the unknown loading parameter is 
contained in Bu for the particular test. Consider the problem of estimating I• from test 
II. In that case, H = [0 0 1 0], A takes the same form as in (2.34), and Bu = B as given 
by (6. 7). According to these specifications the numerator in (6.44) can be expressed as a 
product of the loading parameter I• and a polynomial Pzu(w) of order n = 4, i.e. 

(iw)HAdj[iwl- A]Bu = I•Pzu(w) 

= ')'.(~(iw? + b2(iw? + btiw + bo)iw (6.45) 

in which the coeffiCients bm, m = 0, 1, 2, 3 follow from this rewriting. The model based 
frequency response function ( 6.44) then takes the form 

H . ( ) - Pzu(w)l. 
zu w - d(iw) (6.46) 

Let the polynomials in the numerator and the denominator of (6.46) be expressed in terms 
of the already estimated structural parameters, using the designation Pzu(w) and Ll(iw). 
Then, given the non-parametric estimate Hzu(w), the loading parameter is determined by 

. ' .. mm1rmzmg 

(6.47) 

For test I the model based frequency response function can be written in the same form as 
(6.46), and the cost function to be minimized as (6.47) with ')'o replacing Is· In the present 
tests Z(t) = iip(t). The loading parameter ')'o is determined from the frequency response 
function estimate flvpU0 (w). Based on the equation of motion (6.34) this function expressed 
in terms of the estimated dynamic parameters becomes 

(6.48) 

For test II the applied frequency response function is 

(6.49) 

By performing the minimization of Jy in (6.47) associated with each of the two tests, the 
estimates shown in table 6.3 are obtained. Besides being dependent on the exciters the 
loading parameters are also dependent on the amplifiers, since the drive voltages used to 
estimate the parameters are the input voltages for the amplifiers. Consequently, the two 
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parameters are not comparable, and do not directly express the required voltage to generate 
the base acceleration and the control force, respectively. 

/0 ,. 

N/(V· kg) N/V 

0.467 1 o.o22 1 

Table 6.3: Estimated loading parameters 

The directly estimated frequency response functions as given by (6.41) and the corresponding 
one based on the estimated structural and loading parameters as given by (6.48) and (6.48) 
are compared in fig. 6.4 and fig. 6.5. 

(a) (b) 
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Figure 6.4: Directly and model based transfer function estimates for test I. The dashed line 
indicates the model based estimate. 
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Figure 6.5: Directly and model based transfer function estimates for test IT. The dashed line 
indicates the model based estimate. 

A comparison of a direct and model based frequency response function estimate may be used 
to confirm, whether the estimated model is a realistic approximation of the actual structure 
or not. From fig. 6.4 (a) it is clear that the response of the pile without the mass damper, due 
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to a broad-banded "seismic voltage" U0 (t), is dominated by the fundamental frequency of 
the pile as described by the model. However, the phase shift between U0 and the response of 
the pile cannot be described by the applied model. This deviation is due to uncertainties in 
the simplified model (6.2) for the relation between U0 (t) and xo(t). However, as mentioned in 
connection with the set up of this model, the aim is to control the absolute value of the base 
acceleration with the drive voltage. Hence, it is most important that there is a reasonable 
agreement between the absolute value of the model based transfer function estimate and 
the absolute value of the corresponding non-parametric estimate, and less important for the 
phase. By considering the complete model, the results in fig. 6.5 seem to confirm that the 
model is able to describe the structural behaviour caused by the control voltage, U8 (t). 

6.4 Control Design 

In order to formulate the control law, with the discrete-time nature of the digital control 
procedure in mind, the equation of motion (6.6) is approximated by a difference equation. 
By using the same approximation procedure as in section 4.2.1 the relation between two 
consecutive sampling instants with the time difference h can be written as 

(6.50) 

in which Ad, Bdo, and Bd are given, respectively, by (4.36)-(4.38). 

In this experimental study the sampled structural response Z( kh) is assumed to be linearly 
related to the state Y(kh) and affected by an additive noise V(kh) as described by ( 4.43). 
The state vector contains the relative velocity and displacement of the secondary mass and 
of the pile at the mass damper, cf. (6.5). However, the response at these places is measured 
by means of accelerometers, designated Zp,a and Z8 ,a, where the index a indicates that it 
is the absolute acceleration. In analogy with the continuous-time definitions introduced in 
connection with the observation model (6.9), let Z8 (kh) = Z.,,a(kh)- Zp,a(kh) and Zp(kh) = 
Zp,a(kh) - x0 (kh), where x0(kh) is the measured base acceleration. Then ~he "me.asured 
relative velocities", Zikh), Zp(kh), are obtained by numerical integration of Z8 (kh), Zp(kh) . 
A temporary value Z6 ,T( kh) is first determined by using the trapezoidal rule, 

(6.51) 

Since the mean value of the base excitation is zero and the structural model is approximately 
linear, the mean value of Z.,(kh) has to be zero. To satisfy this requirement the velocity is 
determined as the output of the following moving average filter of order N0 , 

(6.52) 

The ''measured velocity" Zp(t) is determined similarly. Hence, Z(kh) and H in the observa-
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tion model (4.43) are given by 

Z(kh)- [ Zp(kh) l 
- z.(kh) 

H- [0 0 1 0] 
- 0 0 0 1 

101 

(6.53) 

The additive noise {V(kh), k = 1,2, ... } represents deviations between the integrated sig­
nals Z(kh) and the true velocities v(kh). This signal and the base acceleration {x0 (kh), k = 
1, 2, . . . } are modelled as mutually independent sequences of zero-mean, independent Gaus­
sian random variables with covariances given by 

(6.54) 

E [xo(kh)xo(lh)] = { 
0 

2 ' kk =/: 1
1 

cro ' -
(6.55) 

The standard deviation cr0 in (6.55) is estimated from measurements of x0 • It is difficult to 
estimate crv in (6.54) and therefore, it is just considered as a weighting coefficient which is 
chosen by the designer. For smaller crv, the measurements are perceived as more reliable. 

The control law for the driving voltage U.(kh) is found by minimizing a quadratic perfor­
mance index of the same form as ( 4.46). Here, the time-delay dh between the measured 
structural response and the application of the corrective force must be specified. For this ex­
perimental test the time-delay is only due to on-line calculations which have to be performed 
within each sampling interval, i.e. d = 1. Concerning the weighting matrices in ( 4.46), the 
matrix S(Nh) weighting the relative importance attached to the final state is taken as zero. 
The remaining weighting matrices are chosen to be constant. Hence, the performance index 
for this problem becomes 

[

N-1 ] 
J = ~E £; yT(kh)QY(kh) + rU?(kh- h) (6.56) 

The optimal closed-loop control voltage u;( kh) that minimizes (6.56) is given by the feedback 
law (4.47) with u;(kh) replacing F*(kh). The feedback gain Gc(kh) is time-varying for the 
optimal control problem, but as an approximation a time-invariant gain is used based on 
a solution to the steady-state part of the Ricatti equation ( 4.40). Then, the control law is 
given by 

(6.57) 

where Gc is given according to ( 4.28) and ( 4.33) as 

(6.58) 

The predicted estimate Y(kh + hjkh) in (6.57) is determined from the Kalman filter equa­
tions ( 4.48)-( 4.52). The filter gain contained in this estimation algorithm may be found by 
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computing (4.51)-(4.52) recursively, which can be done off-line. However, the convergence 
properties of the filter gain K J( kh) determined hereby, are the same as for the feedback gain 
Gc, i.e. that all the components of K, in a short period of time reach a stationary value. 
Therefore, to simplify the estimation procedure the steady-state solution for the filter gain 
is used for the entire control period. 

The recursive equation for the one-step ahead predicted estimate Y(kh+hlkh) can be written 
in the form, cf. Appendix A 

Y(kh + hjkh) = AdY(khjkh- h)+ BdUa(kh- h) 

+ AdLf ( Z(kh)- HY(khlkh- h)) (6.59) 

The filter gain L1 in (6.59) is related to K 1 in the way given by (A.25), and it takes the 
form, cf. (A.21) 

L1 = AdHT (O'~l + HpHTr
1 

(6.60) 

The stationary solution for the covariance of the estimation error, p, is determined from 
(A.22). With p(kh +h)= p(kh) = p, this yields 

(6.61) 

Equation ( 6.61) is of the same form as the steady-state Ricatti equation ( 4.40) of the optimal 
control problem . Hence, the computer program available to solve this equation can also be 
used to solve (6.61) for p. 

6.5 Results 

The effect of using active vibration control was examined by using the control algorithm 
described in Section 6.4 to suppress the relative vibrations caused by a banded white noise 
excitation. Furthermore, the passive damping effect of the mass damper was examined. 

To see the passive damping effect the frequency response function from the base acceleration 
x0 (t) to the relative acceleration of the pile was estimated and compared for two different 
tests. In the first test the secondary mass was removed, and in the second test it was 
implemented. Modulus of the two frequency response functions are depicted in fig. 6.6. From 
this it is evident that the structural response caused by components of the base excitation 
in the interval 3.5 - 5 Hz can be reduced considerably by means of a passive mass damper. 
But the disadvantage of passive vibration control is revealed, too. In the interval around the 
two eigenfrequencies of the combined system, 2.96 Hz and 6.17 Hz, the vibration level will 
be increased. 

The actively controlled test was performed on the basis of the system parameters listed 
in Table 6.4. The weighting coefficients in Q were selected so that the first term in the 
performance index (6.54) represents the mechanical energy associated with the pile alone 
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Figure 6.6: Comparison of directly transfer function estimates for the model structure without 
and with the secondary mass. 

Parameter 

Control weighting parameters, Q 

Control gain, Gc 

Transformation matrix, H 

Filter parameters, uo 

uv 

Filter gain, L 1 

Filter order, No 

Sampling period, h 

r 

Quantity 

[ 

7~2 ~ ~ ~ l 
0 0 1 0 
0 0 0 0 
5 x 10-9 

[ 1.41 0.695 -0.052 -0.073 J x 105 

[0 01 0] 
0 0 0 1 

0.33 V 
1 X 10-3 mjs 

[ 

-0.0128 0.0099] 
-0.0109 -0.0302 

0.9936 -0.0020 
-0.0029 0.9744 

17 

0.02 s 

Table 6.4: System parameters of controlled system. 
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at each sampling instant, i.e. Q(l, 1) = w~ and Q(3, 3) = 1. The weighting coefficient r 
associated with the control force was selected from information on performance limits on the 
actuator. Concerning the filter parameters, u0 was estimated directly from the knowledge 
of the excitation, whereas uv was chosen more or less randomly from comparisons of the 
measured and estimated signals. The measured signals were considered as reliable, and 
therefore uv was selected to obtain a good agreement between the two signals. As expected 
the agreement was better for smaller values of uv. On the other hand, due to inevitable 
measurement errors it should not be taken as zero. Both the relative velocity of the pile 
and the secondary mass were measured for the state estimation. If only one of the velocities 
associated with the two-degree-of-freedom system was measured, an improvement of the 
passive mass damper could not be obtained. 

The effect of the actively controlled mass damper is illustrated in fig. 6. 7, where the one­
sided auto-spectral density function ~vp(w) for the relative velocity vp is depicted for the 
actively and passively controlled mass damper, respectively. A reduction of the energy level 
is obtained at the lowest eigenfrequency of the combined system, i.e 2.97 Hz. Around the 
second eigenfrequency, 6.17 Hz, there is only a small difference in the two tests. The spectral 
peak at 9 Hz is due to an enhanced energy level in the base excitation. This frequency 
fits the eigenfrequency of the vibration exciter. The associated standard deviations, which 
corresponds to the area below the curve of the power spectral density functions, are 0.013 
by passive control and 0.011 by active control. This is a reduction of 15 %. 

3~--~----~----~--~----~--~----. 

2 . 5 

2 

Q, ... 
191 1 . 5 

Hz 

pa:ssive control 

active control 

10 12 14 

Figure 6. 7: One-sided auto-spectral densities for Vp obtained from experimental tests with passive 
and active control. 

A comparison between the displacements for the uncontrolled and controlled tests shows the 
same tendencies as those emphasized in connection with the velocities. The relatively modest 
reduction is due to the fact, that the response of the present test structure is dominated by 
the first mode, and the passive mass damper is optimally tuned against these vibrations. 

Next, it is examined whether the control efficiency is sensitive to the applied state estima­
tion algorithm or not. This sensitivity analysis is performed from simulated data generated 
from the equations of motion for the structural model. First, the control procedure is sim­
ulated with the assumption that the entire state vector is available, i.e. the control force 
is a feedback of the true state. In the simulat ion the same seismic excitation is used as in 
the experimental test. Next, the control force is obtained as a feedback of the estimated 
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state, which is determined from the simulated structural accelerations according to the al­
gorithm used in the experimental test. In the calculation of the "measured" velocity there 
is not introduced any measurement noise in excess of the errors introduced by the numerical 
integration. 

The one-sided auto-spectral density functions for the two simulations show a good agreement, 
see fig. 6.8. Hence, the control efficiency seems not to be sensitive to the applied state 
estimator, if the mathematical model describes the structural behaviour exactly. 
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Figure 6.8: One-sided auto-spectral densities for Vp with active control obtained from simulated 
data. (a) Perfectly known state. (b) Estimated state. 

By comparison of the spectral density functions in fig. 6.8 and the corresponding one given 
by the dashed line in fig. 6.7, there is seen to be some discrepancy, which of course is due 
to uncertainties in the mathematical model. The standard deviation Uvp obtained by the 
numerical simulation of the passive and active control system is 0.017 and 0.011, respectively. 
This is a reduction of Auvp = 35% obtained by a control force with a standard deviation 
uu. = 0.49 V. The corresponding values for the experimental test are D.u.vP = 13% and 
uu. = 0.67 V. Using these results as a measure of the control efficiency, it is evident that 
the model uncertainty has an effect. During the experimental test these uncertainties affect 
the control algorithm through the state estimation, which is based on the Kalman filter. 
State estimates determined from uncertain equations of motion will of course be defective 
and hence, the feedback control force is less effective than expected according to numerical 
simulations. In this test, the model uncertainties implied, that the velocity associated with 
each degree-of-freedom had to be measured in order to obtain satisfactory state estimates 
and with it, to improve the tuned mass damper by controlling it actively. 

6.6 Conclusions 

Active structural control by a LQG control algorithm has been carried out experimentally 
using active mass damper control. Implementation of the control algorithm requires knowl­
edge of a structural model and of its parameters, such as damping and stiffness. Therefore, 
a mathematical model describing the structural behaviour was set up with regard to the 
interaction between the structure and the control device. 
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The structural parameters were determined from the estimated parameters in two different 
ARX-models representing measured input-output data. A connection between these param­
eters was developed by setting up the characteristic equation for the poles of the structural 
system, both based on of the continuous time model and on the ARX-model. However, it 
was not possible to make an unambiguous determination of the loading parameters from the 
estimated ARX-parameters. For that reason the loading parameters were determined by 
fitting the frequency response function for the continuous time model to a directly estimated 
transfer function obtained from a spectral analysis method. 

Comparison of the direct and model based transfer function estimates showed small dis­
crepancies. However, due to uncertainties in the mathematical model, it was not possible 
to make adequate estimates of the state vector from one sensor. Only, when the velocity 
associated with each of the two degrees-of-freedom was measured, an improvement of the 
passive mass damper could be obtained by active control. This indicates as expected, that 
the state estimates may be improved by employing more sensors, and that a closed-loop 
algorithm based on state feedback is sensitive to uncertainties in the state estimate. Hence, 
it is evident that an analysis of the efficiency of a given control algorithm ought to include a 
sensitivity study with respect to these effects, either by numerical studies or by experimental 
tests. 

The experimental tests carried out in this study have shown some prospects of applying active 
mass dampers in structures under earthquake excitation. In spite of model uncertainties, it 
was possible to improve the properties of the passive mass damper by controlling it actively 
according to a closed-loop control scheme in which the feedback gains were determined from 
the optimal control formalism and the state provided for feedback were estimated via the 
Kalman filter. 
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Conclusions 

Active vibration control of civil engineering structures has been studied. In the work carried 
out main emphasis has been attached to the design of optimal control schemes, where the 
objective is to minimize the vibrations of a structure by using "acceptable" levels of control 
forces. According to this formalism a new control algorithm has been developed on the basis 
of the invariant embedding technique. This control strategy is applicable both to vibration 
control of nonlinear structural systems and to adaptive control of structures with unknown 
dynamic parameters. Furthermore, a laboratory test has been carried out to study the 
prospects of an active mass damper for vibration suppression of structures under earthquake 
excitation. A survey of the complete study and the obtained results is presented in Section 
7.1. 

On the basis of the simulation results obtained here and by other researchers it appears that 
active structural control is applicable as a concept of vibration abatement of civil engineering 
structures. Likely, the experimental study carried out here and laboratory tests carried out 
by other researchers give promising results for this concept. But a general application of 
active control for vibration suppression of civil engineering structures will not be prominent 
before some key problems are solved. 

Civil engineering structures are complex systems, but there is a demand for simple control 
systems to improve reliability and reduce the cost, typically tantamount to control schemes 
based on greatly simplified models of the structural behaviour. Hence, problems caused by 
modelling errors, control and observation spillover arise. Furthermore, active control of large 
civil engineering structures requires the ability to generate and apply large control forces over 
sustained periods of time to the structure. This problem requires among others a hardware 
development. Finally, problems exist with respect to acceptance by the civil engineering and 
construction profession, especially when structural safety is to rely upon an active control 
system. 

The solution of these key problems provides a continuation of the theoretical research within 
the field of active structural control and concurrently with this, more laboratory test must 
be performed using larger multi-degree-of-freedom structural models. Driven by the evident 
advantages of active structural control to ensure safety and comfort these problems will 
probably be solved in the future. Hence, for the next generation of buildings active structural 
control may be an alternative to traditional static methods of conservative design and become 
an integral part of the building system. 



108 Chapter 7 

7.1 Summary of the Thesis 

Chapter 2. Analysis and design of control schemes for active structural control generally 
imply an analytical model which describes the structural behaviour under environmental 
loads and the applied control forces. Such a model has been set up from a theoretical 
approach, which makes use of Cauchy's law of motion and the mechanical properties of 
the structure (e.g. mass, stiffness, damping, etc.). This continuous model is based on 
the assumption of distributed continuous control forces and the fact that civil engineering 
structures in nature are distributed parameter systems. However, a control design based 
on continuous systems is generally quite complicated and therefore, a discretized model is 
introduced in which the control forces are discrete elements. In preparation for the following 
analysis the equations of motion for both the distributed and discrete parameter system are 
written in state space form. 

Given the equations of motion for a structure, it is in principle possible to design a control 
system on ideal conditions according to a specified performance criterion for the structural 
response. Some of the most common categories of performance specifications applied in 
structural control are presented. Using the pole assignment method the control is determined 
in such a way that the eigenvalues of a closed-loop system take a set of values prescribed by 
the designer. The purpose of another method, bounded state control, is to maintain a set of 
structural response variables within an allowable region. Finally, there is a broad category 
of optimal control algorithms concerned with developing control systems which are the best 
possible with respect to a standard, a so-called performance index. In the case of a time­
dependent performance index, which is quadratic in the present states and the present control 
forces, the resulting control scheme has been presented, known as instantaneous optimal 
control. In contradiction, a classical optimal control algorithm is derived by minimizing the 
structural response with a minimum of control forces over a specified period of time. This 
study has mainly been about the derivation of control algorithms according to the latter 
performance specification. 

Chapter 3. Optimal control of a structure described by a distributed parameter model 
possesses some complicated numerical problems. Further, even if it is possible to determine 
a control law, its practicability is enclosed by a requirement of distributed measurements of 
the structural response. These problems are pointed out. Hence, both to simplify the control 
design and to improve the applicability of the derived control schemes, a general method is 
to discretize the model equations in space. 

Given a distributed model, one approach is to expand the distributed dependent variables 
into a finite set of eigenfunctions and then control this discretized system. This technique 
becomes of particular interest when the corresponding modal equations are decoupled. Then, 
the modal control forces may be determined separately according to a prescribed performance 
specification for the particular mode and next, the physical control forces are synthesized, 
called independent modal space control. Besides this method, optimal control design has 
been treated for discretized systems in which the dependent variables describe the displace­
ment at discrete points. The optimality conditions to be satisfied in this case have been 
formulated both by means of calculus of variations and dynamic programming. Use of the 
former method leads to a two-point boundary-value problem for the controlled state and 
the eo-state, while the latter approach results in the Hamilton-Jacobi-Bellman equation for 
the minimum cost function. In the case of special interest, where the performance index is 
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quadratic, it has been demonstrated that the two types of equations yield the same control 
law, called the LQ-regulator. 

The optimal control design possesses a principal difficulty, because a determination of the 
optimal control force requires that the external loading is known a priori. Hence, it is called 
a backwards-in-time solution. Unfortunately, this is usually not the case by control of civil 
engineering structures subjected to environmental loads. Instead, one may use an optimal 
closed-loop control law, which is obtained by ignoring the external loading in the derivation. 

However, another approximate solution is derived in this thesis on the basis of the invariant 
embedding technique. The basic idea of this method is to change the original TPBVP 
into a class of more general initial value problems. Hereby, a set of differential equations 
for the controlled state has been derived, and they can be solved by integrating forward 
in time from specified initial conditions. However, an explicit expression for the control 
force is not obtained by using the invariant embedding technique and therefore, a new 
control algorithm has been developed in order to find the control forces. For that purpose, 
the idea of the pole assignment method has been utilized by letting the control force be 
determined by closed-loop feedback. The control gain matrix is then selected in such a way, 
that the eigenvalues of the system matrix associated with the equation of motion and with 
the invariant embedding equation for the controlled state, are equaL This solution for the 
control gain matrix is not unique and therefore, it is furthermore required that the deviation 
between the corresponding eigenvectors must be minimal. The developed control algorithm 
has been generalized to include non-linear structural systems, and its feasibility has been 
explored by optimal control of a hysteretic system to be described later. 

Chapter 4. The formulated control algorithms in Chapter 3 are based on idealized struc­
tural models on ideal conditions. Hence, implementation of such a control scheme give rise 
to practical considerations. One type of problem due to ideal system descriptions, called 
spillover, is described in Chapter 4. It is common to distinguish between control and ob­
servation spillover. The former phenomenon designates the fact that a state feedback force 
developed from a discrete structural model will inevitably affect the uncontrolled modes by 
application to real structures. Since this action is more-or-less random, the vibration level 
of the uncontrolled modes may be increased due to the control forces. Observation spillover 
means that the motion of the controlled modes cannot be reconstructed, because the mea­
surements of the structural response are influenced by the motion in the uncontrolled modes, 
This phenomenon may lead to instability. 

Another important consideration in real-time control implementation is the discrete-time 
nature of a control scheme when it is processed by a digital computer. In preparation for 
accomplishment of an experimental test the LQ-regulator described in Chapter 3 is refor­
mulated from an assumption of known variation of the structural dynamics and the external 
loading between consecutive time instants. This reformulation also takes into account the 
time delay between a measured information and the execution of the associated control force. 

Chapter 5. When a large civil engineering structure is subjected to severe external load­
ings, the deformation may increase, even by application of active vibration control, to a 
level where the behaviour becomes nonlinear. To include this effect the proposed control 
algorithm based on the invariant embedding technique is extended to encompass nonlin­
ear structures. The developed control scheme is validated by application to simulated data 
generated from a single-degree-of-freedom hysteretic system subjected to a white Gaussian 
noise. A comparison is made with another control algorithm, which has also been derived 
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from the criterion of minimizing a quadratic performance index, called Pearson's equivalent 
linearization technique. According to the simulated data the algorithm developed from the 
invariant embedding technique showed the best properties. 

Under heavy external excitation the dynamic parameters such as stiffness and damping may 
change due to local or global damage. If the structural parameters and their variation are 
unknown, more complicated, so-called adaptive control algorithms have been developed. 
These control schemes estimate the structural parameters and perform control on-line, si­
multaneously. A self-tuning controller has been developed, where unknown but constant or 
slowly varying structural parameters are estimated while the control is performed. In this 
algorithm the control forces are calculated from the invariant embedding control scheme by 
substituting the unknown parameters by their present estimate. The self-tuning controller 
has been documented by simulation results generated from a hysteretic structural model. 

Chapter 6. An experimental test has been carried out in the laboratory in order to study 
the possible application of active control to structures under seismic excitation. The experi­
mental setup consist of a cantilever model on a seismic simulator and an active mass damper 
implemented at the top of the model. The mass damper is tuned to reduce the vibrations at 
the fundamental frequency of the model structure. A feedback control law is implemented 
where the feedback gains were determined according to the optimal control formalism and 
the state vector was estimated from the Kalman filter. The basis for this control algorithm 
is a mathematical model for the structural behaviour. Such a model is set up from a the­
oretical approach, and the included parameters are estimated from a system identification 
scheme. Here, the parameters in an equivalent discrete-time model are first identified and 
then the corresponding parameters of the continuous-time model were derived. On the basis 
of the estimated model it was possible to improve the passive mass damper by controlling it 
actively according to the above-mentioned control algorithm. 

Finally, the report contains an appendix of optimal filtering and prediction. 
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Appendix A 

Optimal Filtering and Prediction 

Consider the development of recursive algorithms for estimation of the individual variables 
in a state space model, when the measurements are indirect and contain random errors . The 
recursive process of determining the most likely values of the state variables given a set of 
measurements up to the present time is called filtering or prediction, depending on whether 
present or future values of the state variables are found. The resulting dynamic system 
representing the recursive estimator is called a filter regardless of the filtering or prediction 
problem is solved. The development in this appendix is mainly based on Sage and White 
(1977), Bryson (1975), Astrom (1984), and Stengel (1986). 

Suppose that the intention is to estimate the state vector Y(t) of a linear time-varying 
structural system described in state space form by 

Y(t) = A(t)Y(t) + B 0 (t)W(t) + B(t)F(t) , Y(O) = Yo (A.1) 

where F(t) and W(t) represent known control forces and unknown random loadings, re­
spectively. Y 0 is the initial values, which are assumed to be normally distributed random 
variables. {W(t), t E [0, oo[} is a Gaussian white noise process independent of Y 0 • The 
first and second order moments of the external excitation and the initial state vector are 

E[W(t)] = 0 (A.2) 

(A.3) 

E[Y(O)] = Yo (AA) 

E [(Y(O)- Yo)(Y(O) - Yo)T] = Po (A.5) 

A noise-corrupted linear observation of the state vector 

Z(t) = H(t)Y(t) + V(t) (A.6) 
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is available for processing. The measurement disturbance {V(t), t E [0, oo[} is a Gaussian 
white noise process independent of {Y(t), t E [0, oo[} and {W(t), t E [0, oo[} with first and 
second order moments 

E[V(t)] = 0 (A.7) 

V (tt , t2) E [0, oo[ x [0, oo[ (A.8) 

Discrete-Time Optimum Filter 

An optimum filter for the discrete-time equivalent of the defined model is first derived. In the 
sampled version of the continuous-time model, the time-dependent functions in (A.l)-(A.8) 
are specified at a set of discrete time instants { tk, k = 0, 1, 2, ... } which are assumed to be 
equally spaced in time with a period h, i.e. tk = kh. The transformation matrix H(t) in 
(A.6) is considered as constant in the interval [kh, kh + h[, and F(t), W(t) and V(t) are 
represented by stochastic variables F(kh), W(k) and V(k) in the same interval. Equations 
( A.l) and ( A.6) can then be represented by the following difference equation 

Y(kh +h)= E>(kh + h, kh)Y(kh) + r 0(kh + h, kh)W(k) + r(kh + h, kh)F(kh) (A.9) 

Z(kh) = H(kh)Y(kh) + V(k) (A.10) 

where the matrices 9(-, ·), ro(·, ·) and r(·, ·)may be defined by (4.20), (4.21) and (4.22). 
{W(k), k = 0, 1, . .. } and {V(k), k = 0, 1, .. . } are assumed to be mutually independent 
Gaussian zero mean stochastic sequences with 

(A.ll) 

(A.12) 

To simplify the notation in the following, let Y(k) = Y(kh), Z(k) = Z(kh), E>(k + 1, k) = 
E>(kh + h, kh), ro(k + 1, k) = r 0 (kh + h, kh), r(k + 1, k) = r(kh + h, kh) and H(k) = 
H(kh). Formulating the one-step ahead prediction problem, the objective is to determine 
the regression of first kind Y(k +Ilk) of Y(k + 1) on the set of measurements {Z(j), j = 
0, 1, . .. , k}. The notation Y(k +Ilk) is used to indicate, that it is an estimate based on 
measurements from the time interval [0, tk]· In the development it is required that the 
function Y ( k + Ij k) must have the following characteristics: It is linearly dependent on the 
past observations {Z(j), j = 0, I, ... , k }, i.e. the regression is assumed to be linear, it is 
unbiased in that E [Y(k + Ilk)] = E [Y(k + 1)), and it minimizes a suitable norm of the 
covariance matrix E[L\ Y(k + Ijk)L\ YT(k +Ilk)), where 

L\ Y(k + 1lk) = Y(k +I)- Y(k +Ilk) (A.l3) 
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is called the one~stage prediction estimation error. The dynamic system for Y(k + Ilk) 
satisfying these requirements is called a linear minimum error variance one-step ahead filter. 

Let the estimator have the form 

Y(k +Ilk) = E>(k +I, k)Y(klk- I)+ r(k +I, k)F(k) 

+ L 1(k) [z(k)- H(k)Y(klk- I)] (A.I4) 

in which L,(k) is an unknown filter gain to be determined. Substituting (A.9) and (A.I4) 
into (A.I3) the governing equation for the prediction error becomes 

~ Y(k +Ilk) = (E>(k + 1, k)- L 1(k)H(k)] ~ Y(klk- 1) + ro(k +I, k)W(k) 

- L,(k)V(k) (A.I5) 

The filter gain L,(k) in (A.I5) is optimally selected to minimize the error variance, which is 
denoted by p( k) 

p(k) = E [ (~ Y(kjk- I)- E [~ Y(klk- I)))(~ Y(klk- I)- E [~ Y(kjk- I)) )T] 

(A.I6) 

The mean value of~ Y(kjk- I) is obtained by taking expectation of (A.I5). According to 
(A.2) and (A.7), this yields 

E[~ Y(k +Ilk))= ( S(k + 1, k)- L1(k)H(k) )E[~ Y(klk - 1)) (A.l7) 

Assuming E[Y(OI-I)] = Yo, it follows from (A.l3) that E[~ Y(OI-1)] = 0. Consequently, 
E[~Y(k +Ilk)] = 0 for all k ~ 0 and that is, Y(k +Ilk) is unbiased. Utilizing equation 
(A.l5) the error variance defined by (A.I6) now gives 

p(k +I) = ( E>(k + 1,k)- L,(k)H(k))p(k)( S(k +I, k)- L 1(k)H(k))T 

I I 
+ -;;,ro(k + 1, k)Rw(k)r~(k +I, k) + y;L1(k)Rv(k)LJ'(k) (A.I8) 

since ~ Y(klk- I), W(k) and V(k) are uncorrelated. From (A.I8) it follows that if p(k) 
is positive semi~definite, then p( k + 1) is also positive semi-definite. Then the criterion of 
minimizing the error variance is satisfied by minimizing the scalar aT p( k + 1 )a, where a 
is an arbitrary vector. It is assumed that the optimal gain matrix, L" is known up to the 
time tk-I· From (A.I8) 

aTp(k + I)a = 

aT ( S(k + I, k)p(k)E>T(k +I, k) + *ro(k + 1, k)Rw(k)r~(k +I, k) 
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- L1(k)H(k)p(k)9T(k + 1, k)- 9(k + 1, k)p(k)HT(k)LJ(k) 

+ L1(k) [~Rv(k) + H(k)p(k)HT(k)l LJ(k)) a 
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{A.19) 

Equation (A.19) is rewritten by adding and subtracting equal terms to the right hand side 
as follows 

aTp(k+1)a= 

aT { 9p(k)EIT + ~roRwrr- Elp(k)HT GRv + Hp(k)HT) -
1 

Hp(k)ElT }a 
+aT { [L1 - Elp(k)HT GRv + Hp(k)HT) -

1

] [~Rv + Hp(k)HT] 

[L,- Elp(k)HT GRv + Hp(k)HT rT} a (A.20) 

The scalar to be minimized in (A.20) has two terms, where the first part is independent 
of L1. The second part is non-negative because the matrix (kRv + Hp(k)HT) is positive 
definite. The minimum is thus obtained if L1 is chosen such that the second part of (A.20) 
is zero. Then 

(A.21) 

1 
p(k + 1) = S(k + 1, k)p(k)er(k + 1, k) + hi'0 (k + 1, k)Rw(k)I'~(k + 1, k) 

- El(k +I, k)p(k)HT(k) (iRv(k) + H(k)p(k)HT(k)) -
1 

H(k)p(k)ElT(k + 1, k) , 

p(O) = Po (A.22) 

The reconstruction defined by (A.14), (A.21), and (A.22) is called the Kalman filter. Equa­
tion (A.14) represents a recursive description of the linear minimum error variance single­
stage predictor which requires the Kalman gain L1 given by (A.21). Calculation of the 
Kalman gain requires knowledge of the minimum error variance represented in the recursive 
equation (A.22). 

Next, it is desired to determine the filter estimate Y(klk) = Y(k) to the state Y(k) based 
on the observations {Z(j), j = 0, 1, ... , k }. Having in mind that the estimates are unbiased, 
they are related according to the difference equation 

Y(k +Ilk)= 9(k + 1, k)Y(k) + I'(k + 1, k)F(k) (A.23) 
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Substituting (A.23) into (A.l4) and premultiplying both sides by e-1(k + 1, k), yield 

Y(k) = Y(klk- 1) + K 1(k) [z(k)- H(k)Y(klk -I)] Y(O) = Yo (A.24) 

where 

Kt(k) = S(k + 1, kt1Lt(k) 

= HT(k) GRv(k) + H(k)p(k)HT(k)) _, (A.25) 

The last line in equation (A.23) is obtained by insertion of (A.21). Having determined the 
filtered estimate Y(k), a prediction of arbitrary time steps is simply obtained by applying 
(A.23) repeatedly. 

Continuous-Time Optimum Filter 

The continuous-time version of the Kalman filter will be derived from the discrete case. 
For that purpose the following simple approximation of the equations of motion (A.1) is 
introduced 

Y(t +h)= [I+ A(t)h]Y(t) + B0(t)W(t)h + B(t)F(t)h + o(h) (A.26) 

In order that the approximation (A.26) correspond to the applied difference equation for the 
state (A.9), it is seen that 

0(k + 1, k) =[I+ A(t)h]t=kh (A.27) 

r(k + 1, k) = B(t)hlt=kh (A.28) 

ro(k + 1, k) = Bo(t)hlt=kh (A.29) 

The continuous-time equivalent of the covariance update in (A.22) is developed by inserting 
(A.27) and (A.29) into this equation and next dividing by h. After rearranging 

p(kh + h1- p(kh) = A(kh)p(kh) + p(kh)AT(kh) + A(kh)p(kh)AT(kh)h 

+ B 0 (kh) [Rw(kh)] B0(kh) - (I+ A(kh)h] p(kh)HT(kh) 

(Rv(kh) + H(kh)p(kh)HT(kh)h] -t H(kh)p(kh) (I+ A(kh)h]T (A.30) 

In the limit as h goes to zero (A.30) approaches the differential equation 

p(t) = A(t)p(t) + p(t)AT(t) + B0 (t)Rw(t)B5(t) - p(t)HT(t)Ry1(t)H(t)p(t) , 
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p(O) = Po (A.31) 

The state estimation equation is derived similarly. Substituting (A.21), (A.27) and (A.28) 
into (A.l4) and dividing by h yield 

Y(kh + hlkh)- Y(khlkh- h) 
-

h 

A(kh)Y(khlkh- h)+ B(kh)F(kh) + [1 + A(kh)h] p(kh)HT(kh) 

[Rv(kh) + H(kh)p(kh)HT(kh)h] -t [z(kh)- H(kh)Y(khlkh- h)] (A.32) 

In the limit as h goes to zero [Y(kh + hlkh)- Y(khlkh- h)J/h becomes dY(t)jdt, and the 
state estimate is seen to fulfil the stochastic differential equation 

-{r(t) = A(t)Y(t) + B(t)F(t) + K 1(t) [z(t)- H(t)Y(t)] Y{O) = Yo {A.33) 

. where the continuous optimal filter gain KJ(t) is given as 

(A.34) 

In the limit as h-+ 0, LlY(kh + hlkh) = Y(kh +h)- Y(kh + hlkh) will approa:h the 
error of the state estimation Y(kh) - Y(kh) . The covariance matrix of (Y(kh) - Y(kh)) 
on condition of the set of measurements {Z(jh), j = 0, 1, ... , k} is P(kh), see (3.117). The 
unconditioned covariance matrix is then E [P( kh)], according to the representation theorem. 
In the limit as h-+ 0, we then have 

p(t) = E (P(t)] {A.35) 

This completes the derivation of the continuous-time version of the Kalman filter. The linear 
unbiased state estimator is given by (A.33), where the optimally selected gain to minimize 
the error variance is given {A.34). The associated covariance of the estimation error is 
propagating as specified by the matrix differential equation (A.31). 
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Resume in Danish 

Formalet med den foreliggende afhandling har vreret at konstruere styringsalgoritmer til ak­
tiv svingningsdrempning af bygningskonstruktioner samt at eftervise deres anvendelighed, 
hvilket er opnaet gennem numerisk simulering og ved udfj;>jrelse af laboratorieforsjljg. Ud­
gangspunktet for dette arbejde er kravet om effektive drempningssystemer, som skal tilveje­
bringe en njljdvendig sikkerhed og/eller komfort for brerende konstruktioner, nar de udsrettes 
for dynamiske pavirkninger som jordskrelv, vindstjljd eller bj;>jlgelaster. 

Design af styringssystemer baseres generelt pa et sret bevregelsesligninger, som beskriver 
responset af konstruktionen under pavirkning af savel ydre laster som kontrolkrrefter. Der 
formuleres et sadan sret ligninger ud fra en referencebeskrivelse af Cauchys bevregelsesligning 
og ved indfj;>jrelse af linerere fysiske og geometriske betingelser. Denne kontinuerte model med 
et uendeligt antal frihedsgrader inkluderer det generelle tilfrelde, hvor kontrolkrrefterne er 
kontinuert fordelte laster. Det er imidlertid temmelig kompliceret at designe et styringssys­
tem ud fra en kontinuer model, og derfor indfj;>jres en diskret model med et endeligt antal 
frihedsgrader. I denne model antages, at kontrolkrrefterne er koncentrerede laster, hvilket ud 
fra en praktisk betragtning er mere realistisk end antagelsen om kontinuerligt fordelte kon­
trollaster. Med henblik pa den efterfj;>jlgende analyse opstilles de to typer bevregelsesligninger 
pa tilstandsform svarende til sret af 1. ordens differentialligninger. 

Styringssystemer til aktiv svingningsdrempning kan designes ud fra forskellige kriterier om 
hvordan og i hvilken grad bevregelsen jljnskes drempet. De mest almindeligt benyttede 
drempningskriterier inden for aktiv svingningsdrempning af bygningskonstruktioner omtales. 
En metode benytter en feedback styring, som er linerert propertional med tilstandsvektoren, 
hvor feedback matricen er valgt saledes, at egenvrerdierne (polerne) til systemmatricen for 
tilstandsligningerne antager foreskrevne vrerdier. En anden kategori af styringssystemer 
benytter pulsbelastninger, som udlj;>jses, nar flytningerne i visse punkter overskrider en fast­
sat grrensevrerdi. Endelig er der en bred kategori af optimale kontrolalgoritmer, som bestem­
mer styrekraften ved at minimere et sakaldt tabsindeks. Der er udviklet en speciel type af 
styringssystemer, der minimerer en tidsafhrengig tabsfunktion, men i den klassiske formuler­
ing designes styringssystemet saledes, at konstruktionens respons minimeres med anvendelse 
af de mindst mulige kontrolkrrefter over en tidsperiode svarende til varigheden af den ydre 
belastning. I forbindelse med dette studium har opgaven vreret at designe styresystemer i 
forhold til det sidstnrevnte kriterium. 

Optimal kontrol af konstruktioner beskrevet ved kontinuerte modeller giver almindeligvis 
anledning til meget komplicerede numeriske problemer. Selv om det i et tilfrelde skulle vrere 
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muligt at bestemme en feedback kontrollov vil den i pra.ksis ikke kunne implementeres, idet 
den forudsretter, at bevregelsen males kontinuert fordelt over hele konstruktionen. Disse 
problemer er beskrevet. For at simplificere beregningerne i forbindelse med formuleringen 
af en kontrollov samt for at forenkle implementeringen foretages der en diskretisering af de 
kontinuerte bevregelsesligninger. 

For et givet diskretiseret system er betingelsesligningerne for et optimalt kontrolsystem op­
stillet hhv. ved hjrelp af variationsregning og dynamisk programmering. Den fszsrstnrevnte 
metode fszsrer til et to-punkts randvrerdiproblem for den kontrollerede og den adjungerede 
tilstand, mens den sidstnrevnte metode fszsrer til Hamilton-J acobi-Bellman ligningen for den 
minimale tabsfunktion. I det specielle tilfrelde, hvor tabsindekset er kvadratisk i tilstandsvek­
toren og kontrolkrrefterne, er det vist, at de to typer af ligninger fszsrer til den samme kon­
trollov, ka.ldet en LQ-regulator. 

Optimalt design af et styringssystem til aktiv svingningsdrempning af bygningskonstruk­
tioner er principielt ikke muligt, idet det forudsretter, at den ydre lastpavirkning er kendt a 
priori. Dette er almindeligvis ikke tilfreldet for den type laster, som giver anledning til store 
uszsnskede svingninger. I stedet benyttes i mange tilfrelde en feedback regulering, som kun er 
optimal for en fri svingning uden nogen ydre lastpavirkning. 

Som et nyt forslag til lszssning af det optimale styringsproblem for konstruktioner under 
pavirkning af ydre !aster er der opstillet en kontrollov ud fra invariant embedding teknikken. 
Ideen i denne metode er, at det oprindelige to-punkts randvrerdiproblem omformuleres til 
et mere generelt begyndelsesvrerdiproblem. Ved dernrest at benytte en pertubationsanal­
yse til lszssning a.f dette problem er der udledt et sret differentialligninger for den kon­
trollerede tilstand af konstruktionen. Disse ligninger ka.n I0ses ved integration fremad i 
tiden ud fra en givet begyndelsestilstand og krrever saledes ikke et forhandskendskab til 
den ydre lastpavirkning. Den udledte l0sning giver imidlertid ikke et eksplicit udtryk for 
kontrolkraften. Som forslag til en kontrollov for styrekraften er der benyttet en feedback 
regulering, hvor feedback matricen er fastsat ud fra et krav om, at egenvrerdierne til sys­
temmatricerne i tilstandsligningerne for den kontrollerede tilstand givet henholdsvis ved 
bevregelsesligningen og den invariante imbedding ligning ska.l vrere ens. Denne l0sning for 
feedback matricen er ikke entydig, og derfor krreves det ydermere, at afvigelsen mellem de 
tilhszsrende egenvektorer er minimal. Kontrolalgoritmen ka.n udvides til ogsa et omfatte ikke 
linerere systemer, som er behandlet senere i rapporten, og anvendeligheden af metoden er 
unders0gt i denne forbindelse. 

De opstillede kontrolalgoritmer er baseret pa idealiserede strukturelle modeller. Ved im­
plementering af en af disse kontrolalgoritmer vil der saledes i praksis kunne opsta proble­
mer pga. afvigelser mellem modellen og den virkelige konstruktion. En type af problemer, 
kaldet spillover, er beskrevet i kapitel 4. Der skelnes mellem to typer a.f spillover, nemlig 
kontrol- og observations-spillover. Kontrol spillover betegner den uundgaelige pavirkning 
fra styrekraften af de egensvingningsformer, som ikke er modelleret i de benyttede bevregel­
sesligninger. Da denne effekt er mere eller mindre tilfreldig, kan dette frenomen bevirke, at 
svingningerne af de ukontrollerede egensvingningsformer forstrerkes. Observations-spillover 
refererer til det frenomen, at de kontrollerede egensvingningsformer ikke kan identificeres 
eksakt, pga. at m<'Uingerne af det strukturelle respons er infiueret af de ukontrollerede 
egensvingningsformer. Dette frenomen kan f0re til instabilitet af kontrolsystemet. 

I det ideelle tilfrelde er det forudsat, at styrekraften kan rendres kontinuerligt, samt at pro­
cesserne i en kontroll0kke kan udf0res momentant. I praksis kan disse forudsretninger ikke 
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opfyldes. Ved anvendelse af en digital computer til on-line beregninger og regulering af 
kontrolkraften kan styringsprocessen kun korrigeres til diskrete tidspunkter. Under hensyn­
tagen til denne tidsdiskrete natur samt tidsforsinkelsen i styringsprocessen er der lavet en 
omformulering af LQ-regulatoren. 

Under ekstreme belastninger, som f~rer til store deformationer, vil den dynamiske opf~rsel af 
bygningskonstruktioner ofte vrere ulinerer, ogsa ved anvendelse af aktiv svingningsdrempning. 
For at tage h~jde for disse ulineariteter er den foreslaede kontrolalgoritme, der er udledt ud 
fra invariant imbedding, udvidet til ogsa at omfatte ulinerere strukturelle systemer. Dens an­
vendelighed er dokumenteret ved simulering af et hysteresesystem med en frihedsgrad under 
pavirkning af Gaussisk hvid st~j . Der er lavet en sammenligning med en anden algoritme, 
Pearsons rekvivalente lineariseringsmetode, som ogsa er udledt ud fra et kriterium om at min­
imere et tabsindeks. Bed~mt ud fra de simulerede data fremgar det, at kontrolalgoritmen 
baseret pa den invariante imbedding metode er m est effektiv. 

I tilfrelde af ekstreme dynamiske belastninger vil de dynamiske karakteristika kunne rendre 
sig pga. lokale eller globale !lldelreggelser. Aktiv svingningsdrempning som korrigerer for 
disse rendringer benrevnes adaptiv styring. En adaptiv kontrolalgoritme estimerer saledes de 
strukturelle parametre, samtidig med at kontrolkrrefterne reguleres. Et forslag til et adaptivt 
styringssystem er udarbejdet, hvor ukendte strukturelle parametre, som enten er konstante 
eller varierer langsomt, bliver estimeret l~bende under kontrolafviklingen. Kontrolkraften 
beregnes ud fra den invariante imbedding algoritme ved at benytte de ~jeblikkelige esti­
mater til bestemmelse af feedback koefficienterne. Effektiviteten af denne kontrolalgoritme 
er ligeledes eftervist ved simulering af et hysteresesystem. 

Muligheden for at anvende aktiv svingningsdrempning for bygninger udsat for et jordskrelv er 
blevet unders~gt gennem et laboratoriefors!llg. Fors~gsmodellen bestar af en fast indsprendt 
s!lljle placeret pa en jordskrelvssimulator, samt en aktiv massedremper monteret i toppen 
af sr6jlen. Massedremperen er tunet til at reducere svingningerne ved den laveste egen­
frekvens. Den modificerede LQ-regulator, der er udledt i kapitel 4, benyttes til regulering 
af massedremperen. Implementeringen af denne kontrolalgoritme err baseret pa en valgt 
matematisk model, hvor de indgaende parametre er bestemt ved systemidentifikation. Pa ba­
sis af den benyttede kontrolalgoritme er det muligt at for!llge effektiviteten af massedremperen 
ved at styre denne aktivt. Effektivitetsfor!llgelsen som f!lllge af den aktive drempning er dog 
begrrenset sammenlignet med den passive drempning, hvilket skyldes, at dremperen er opti­
malt tunet, og konstruktionens respons er domineret af den f!llrste egensvingning. 
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