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Preface

This thesis is presented to the Faculty of Technology and Science at Aalborg
University in partial ful�llment of the requirements for the Degree of Doctor
of Philosophy. The work has been carried out at the Department of Control
Engineering, Institute of Electronic Systems, Aalborg University during a three
year period from October 1992 until September 1995.

The main e�ort in this work has been on bridging system identi�cation and ro-
bust control. In the early 1990'ies a growing awareness developed within the
automatic control community that the necessary information on model quality
needed in robust control could not be supplied by existing system identi�cation
methodologies. This spurred a renewed interest in methods for estimating mod-
els and model uncertainty from plant measurements. However, no concurrent
treatment of the results of this research has been presented in connection with
their application in robust control. Such a treatment is the main theme of this
thesis.

In order to present our results in a known framework an introduction to \clas-
sical" results within both system identi�cation and robust control will be given.
The emphasis will be on both theory and applications. However, mathematical
subtleties will be kept to a minimum whenever possible with references to more
complete mathematical descriptions.

Related Presentations and Publications

Parts of the work documented in this thesis has been presented at the following
conferences or workshops:

SYSID'94, the 10th IFAC Symposiumon System Identi�cation, 1994 in Copen-
hagen.

CCA'94, the 3rd IEEE Conference on Control Applications, 1994 in Glasgow.
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EURACO YRW'94, the EURACO1 Young Researchers Week on Robust and
Adaptive Control, 1994 in Dublin.

YAC'95, the IFAC Youth Automation Conference, 1995 in Beijing.

ECC'95, the 3rd European Control Conference, 1995 in Rome.

EURACO Workshop 1995, the EURACO Workshop on Recent Results in
Robust and Adaptive Control, 1995 in Florence.

Generally the thesis comprises the majority of information in the following pub-
lications:

[ATCP94] P. Andersen, S. T��ner-Clausen, and T.S. Pedersen. Estimation of
frequency domain model uncertainties with application to robust controller
design. In Proc. SYSID'94, volume 3, pages 603{608, Copenhagen, Denmark,
July 1994.

[BATC94] M. Blanke, P. Andersen, and S. T��ner-Clausen. Modelling and un-
certainty. Lecture Note for EURACO Young Researchers Week, Dublin. R94-
4064, Dept. of Control Engineering, Aalborg University, Frederik Bajers Vej
7, DK-9220 Aalborg �, Denmark, Aug. 1994.

[TC95] S. T��ner-Clausen. Identi�cation for control: Quanti�cation of uncer-
tainty. In Proc. Youth Automation Conference, pages 155{159, Beijing, China,
1995. IFAC.

[TCA93] S. T��ner-Clausen and P. Andersen. Quantifying frequency domain
model uncertainty in estimated transfer functions using a stochastic embed-
ding approach. Research Report W1D-06-001, Reliability and Robustness in
Industrial Process Control, Feb. 1993.

[TCA94] S. T��ner-Clausen and P. Andersen. Identi�cation for control: Esti-
mation of frequency domain model uncertainty. Research Report R94-4054,
Aalborg University, Dept. of Control Eng., Frederik Bajers Vej 7, DK-9220
Aalborg , Denmark, Aug. 1994.

[TCA95] S. T��ner-Clausen and P. Andersen. �-synthesis { a non-conservative
methodology for design of controllers with robustness towards dynamic and
parametric uncertainty. In Proc. EURACO Workshop on Recent Results in
Robust and Adaptive Control, pages 269{303, Florence, Italy, September 1995.

[TCABG95] S. T��ner-Clausen, P. Andersen, S.G. Breslin, and M.J. Grimble.
The application of �-analysis and synthesis to the control of an ASTOVL air-
craft. In Proc. EURACO Workshop on Recent Results in Robust and Adaptive
Control, pages 304{322, Florence, Italy, September 1995.

1European Network on Robust and Adaptive Control.
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[TCASN94a] S. T��ner-Clausen, P. Andersen, J. Stoustrup, and H.H. Niemann.
Estimated frequency domain model uncertainties used in robust controller de-
sign | a �-approach. In Proc. 3rd IEEE Conf. on Control Applications, vol-
ume 3, pages 1585{1590, Glasgow, Scotland, Aug. 1994.

[TCASN94b] S. T��ner-Clausen, P. Andersen, J. Stoustrup, and H.H. Niemann.
Estimated frequency domain model uncertainties used in robust controller de-
sign | a �-approach. Poster Session, EURACO Young Researchers Week,
Dublin, Aug. 1994.
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Abstract

The main purpose of this work is to develop a coherent system identi�cation
based robust control design methodology by combining recent results from system
identi�cation and robust control. In order to accomplish this task new theoretical
results will be given in both �elds.

Firstly, however, an introduction to modern robust control design analysis and
synthesis will be given. It will be shown how the classical frequency domain
techniques can be extended to multivariable systems using the singular value
decomposition. An introduction to norms and spaces frequently used in modern
control theory will be given. However, the main emphasis in this thesis will not
be on mathematics. Proofs are given only when there are interesting in their own
right and we will try to avoid messy mathematical derivations. Rather we will
concentrate on interpretations and practical design issues.

A review of the classical H1 theory will be given. Most of the stability results
frommodern control theory can be traced back to the multivariable generalization
of the famous Nyquist stability criterion. We will shown how the generalized
Nyquist criterion is used to establish some a the classical singular value robust
stability results. Furthermore it will be shown how a performance speci�cation
may be cast into the same framework. The main limitation in the standard H1
theory is that it can only handle unstructured complex full block perturbations
to the nominal plant. However, often much more detailed perturbation models
are available, e.g. from physical modeling. Such structured perturbation models
cannot be handled well in the H1 framework.

Fortunately theory exists which can do this. The structured singular value � is an
extension of the singular value which explicitly takes into account the structure
of the perturbations. In this thesis we will present a thorough introduction to
the � framework. A central result is that if performance is measured in terms of
the 1-norm and model uncertainty is bounded in the same manner, then, using
� it is possible to pose one necessary and su�cient condition for both robust sta-
bility and robust performance. The uncertainty is restricted to block-structured
norm-bounded perturbations which enter the nominal model in a linear fractional
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manner. This is, however, a very general perturbation set which includes a large
variety of uncertainty such as unstructured and structured dynamic uncertainty
(complex perturbations) and parameter variations (real perturbations). The un-
certainty structures permitted by � is de�nitely much more exible than those
used in H1.
Unfortunately � synthesis is a very di�cult mathematical problem which is only
well developed for purely complex perturbation sets. In order to develop our
main result we will unfortunately need to synthesize � controllers for mixed real
and complex perturbation sets. A novel method, denoted �-K iteration, has been
developed to solve the mixed � problem.

A general feature of all robust control design methods is the need for specifying
not only a nominal model but also some kind of quanti�cation of the quality
of that model. In this work we will restrict ourselves to block-structured norm-
bounded perturbations as described above. The speci�cation of the uncertainty
is, however, a non-trivial problem which to some extent has been neglected by
the theoreticians of robust control. An uncertainty speci�cation has simply been
assumed given.

One way of obtaining a perturbation model is by physical modeling. Applica-
tion of the fundamental laws of thermodynamics, mechanics, physics etc. will
generally yield a set of coupled non-linear partial di�erential equations. These
equations can then be linearized (in time and position) around a suitable working
point and Laplace transformed for linear control design. The linearized di�er-
ential equations will typically involve physical quantities like masses, inertias,
etc. which are only known with a certain degree of accuracy. This will give rise
to real scalar perturbations to the nominal model. Furthermore working point
deviations may also be addressed with real perturbations.

However, accurate physical modeling may be a complicated and time consum-
ing task even for relatively simple systems. An appealing alternative to physical
modeling for assessment of model uncertainty is system identi�cation where in-
put/output measurements are used to estimate a, typically, linear model of the
true system. From the covariance of the parameter estimate frequency domain
uncertainty estimates may be obtained.

In classical (i.e. Ljungian) system identi�cation, model quality has been assessed
under the assumption that the only source of uncertainty is noisy measurements.
Thus the structure of the model is assumed to be correct. This is, however, often
an inadequate assumption in connection with control design.

Recently, system identi�cation techniques for estimating model uncertainty have
gained renewed interest in the automatic control community. In this thesis, a
quick survey of these results will be given together with their Ljungian counter-
parts. Unlike the classical identi�cation methods these new techniques enables
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the inclusion of both structural model errors (bias) and noise (variance) in the
estimated uncertainty bounds. However, in order to accomplish this, some prior
knowledge of the model error must be available. In general, this prior informa-
tion is non-trivial to obtain. Fortunately one of these new techniques, denoted
the stochastic embedding approach, provides the possibility to estimate, given a
parametric structure of certain covariance matrices, the required a priori infor-
mation from the model residuals. Thus the a priori knowledge is reduced from
a quantitative measure to a qualitative measure. We believe that this makes the
stochastic embedding approach superior to the other new techniques for estimat-
ing model uncertainty. In this work, new parameterizations of the undermodeling
(bias) and the noise are investigated. Currently, the stochastic embedding ap-
proach is only well developed for scalar systems. Thus some work is needed to
extend it to multivariable systems. This will, however, be beyond the scope of
this work.

Using the stochastic embedding approach it is possible to estimate a nominal
model and frequency domain uncertainty ellipses around this model. It will then
be shown how these uncertainty ellipses may be represented or, more correct,
approximated with a mixed complex and real perturbation set. This is the link
needed to combine the results in robust control and system identi�cation into a
step-by-step design philosophy for synthesis of robust control systems for scalar
plant which is the main result presented in this thesis.

Throughout the thesis, the presented results will be illustrated by practical de-
sign examples. Some of these examples are quite simple, but a few are much
more complex. The point of view taken is that the theories presented should be
applicable to practical control systems design. The given examples thus represent
a major part of the work behind this thesis. They consequently serve not just
as illustrations but introduce many new ideas and should be interesting in their
own right.





Dansk Sammenfatning

Hovedform�alet med dette arbejde er at udvikle en metode til sammenh�ngende
system identi�kation baseret robust reguleringsdesign ved at kombinere nylige
resultater fra system identi�kation og robust reguleringsteori. I forbindelse med
udviklingen af denne designmetodik er der udviklet nye teoretiske resultater in-
denfor begge omr�ader.

F�rst vil der imidlertid gives en introduktion til moderne robust reguleringsanal-
yse og -design. Det vil vises, hvorledes de klassiske frekvens dom�ne teknikker
can udvides til multivariable systemer ved hj�lp af singul�r v�rdi opspaltnin-
gen. En introduktion til normer og rum, der ofte anvendes in moderne robust
reguleringsteori, vil blive givet. Hovedv�gten i denne afhandling vil imidlertif
ikke blive lagt p�a matematikken. Beviser vil kun blive medtaget, n�ar de i sig selv
er interessante. Vi vil istedet koncentrere os om fortolkninger samt praktiske
design sp�rgsm�al.

Der vil blive givet en gennemgang af den klassiske H1 teori. De este stabilitet-
sresultater fra moderne reguleringsteori kan f�res tilbage til den multivariable
generalisering af det ber�mte Nyquist stabilitets kriterie. Vi vil vise, hvorledes
det generaliserede Nyquist kriterie kan bruges til at udlede nogle af de klassiske
singul�r v�rdi robust stabilitets resultater. Desuden vil vi vise, hvordan perfor-
mance speci�kationer kan blive givet indenfor de samme teoretiske rammer. Hov-
edbegr�nsningen i standard H1 teori er, at det kun kan anvendes i forbindelse
med ustrukturerede komplekse fuld blok perturbationer p�a det nominelle system.
Imidlertid har vi ofte adgang til lange mere detaljerede usikkerhedsmodeller, for
eksempel fra fysisk modellering. S�adanne perturbations modeller kan ikke be-
handles naturligt indenfor H1.
Heldigvis eksisterer der teori, som kan g�re dette. Den strukturerede singul�r
v�rdi � er en generalisering af den singul�r v�rdi, som direkte tager h�jde for
strukturen af perturbationerne. I denne afhandling vil vi give en grundig intro-
duktion til �. Et centralt resultat er, at hvis vi m�aler performance ved hj�lp af
1-normen og beskriver model usikkerheden p�a samme vis kan vi ved � give en
n�dvendig og tilstr�kkelig betingelse for robust performance. Usikkerheden er
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begr�nset til blok-strukturerede norm-begr�nsede perturbationer, som p�avirker
den nominelle model line�rt. Dette er, til geng�ld en meget general usikker-
hedsstruktur, som inkluderer mange forskellige usikkerheder s�asom ustruktureret
og strukturetet dynamisk usikkerhed (komplekse perturbationer) samt parameter
variationer (reelle perturbationer). De usikkerhedsstrukturer, der tillades ved �
er bestemt meget mere genrelle end dem, der tillades ved H1.

Desv�rre er � synthese et meget vanskeligt matematisk problem, hvor design
strategier kun er veludviklede for udelukkende komplekse perturbationer. For
at kunne udvikle vores centrale resultat i afhandlingen er vi desv�rre n�dt til
a kunne designe regulatorer for blandede perturbation set. En ny metode kaldt
�-K iteration er blevet udviklet for at klare dette problem.

En generel egenskab ved alle robust reguleringsmetoder er, at man skal bruge ikke
bare en nominel model men ogs�a en kvanti�cering af kvaliteten af den model.
I denne afhandling har vi afgr�nset os til blok-struktureret norm-begr�nset
usikkerhed som ovenfor beskrevet. Det er imidlertid ikke trivielt at skulle speci�-
cere model usikkerheden p�a denne m�ade. Dette har til en vis grad v�ret overset
af teoretikerne indenfor robust regulering. Usikkerhedsspeci�kationen har sim-
pelthen v�re givet p�a forh�and.

En perturbationsmodel kan for eksempel bestemmes ved fysisk modellering.
Ved at anvende de fundamentale ligninger fra termodynamikken, mekanikken,
fysikken osv. kan man generelt opstille et sammenh�rende s�t af uline�re par-
tielle di�erential-ligninger, der beskriver den fysiske proces. Disse di�erential-
ligninger kan s�a lineariseres (i tid og sted) omkring et passende arbejdspunkt og
Laplace transformeres for regulator design. De lineariserede di�erential-ligninger
vil typisk indeholde udtryk, hvori masse, inerti osv. indg�ar. Disse fysiske
st�rrelser vil normalt kun v�re kendt med en vis usikkerhed. Dette vil give
anledning til reelle skalare perturbationer til den nominelle model. Desuden kan
arbejdspunktsvariationer ogs�a beskrives ved reelle perturbationer.

Imidlertid kan fysisk modellering v�re kompliceret og tidskr�vende, selv for ret
simple systemer. Et tiltr�kkende alternativ til fysisk modellering er system iden-
ti�kation, hvor input/output m�alinger bruges til at estimere en, typisk, line�r
model af det virkelige system. Fra kovariansen p�a parameterestimatet kan man
herefter opn�a et estimat af frekvens dom�ne usikkerheder.

I klassisk system identi�kation er model usikkerheden beregnet under den an-
tagelse at den eneste kilde til usikkerhed er stojfyldte m�alinger. Med andre ord,
det antages at modelstrukturen er korrekt. Dette er imidlertid ofte en urealistisk
antagelse i forbindelse med reguleringsdesign.

Fornyligt er interessen for system identi�kations metoder til estimering af model
usikkerhed atter vokset indenfor automatisk regulerings samfundet. I denne
afhandling vil vi give en hurtig oversigt over disse resultater og en sammen-
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ligning med de klassiske metoder vil blive givet. I mods�tning til de klassiske
metoder giver disse nye metoder mulighed for at inkludere b�ade strukturfejl and
st�jfejl i de estimerede usikkerhedsgr�nder. For at kunne opn�a dette m�a vi imi-
dlertid have en vis a priori viden om systemet. Denne a priori viden er generelt
vanskelig at f�a fat p�a. Heldigvis giver en af de nye metoder, nemlig the stochastic
embedding approach mulighed for, givet en parametrisk struktur p�a visse covari-
ans matrices, at estimere the n�dvendige a priori viden fra residualerne. S�aledes
kan den n�dvendige a priori viden reduceres fra en kvantitativ til en kvalita-
tiv. Vi mener, at dette g�r the stochastic embedding approach mere anvendelig
til estimering af modelusikkerheder end de andre ny teknikker. I denne afhan-
dling vil vi foresl�a nye parameteriseringer for covariansmatricerne for st�jen og
undermodelleringen. For nuv�rende er the stochastic embedding approach kun
udviklet for skalare systemer. Det b�r unders�ges, om det er muligt at udvide
den til multivariable systemer. Dette er imidlertid for omfangsrigt et emne til at
det vil blive behandlet i denne afhandling.

Ved hj�lp af the stochastic embedding approach kan vi estimere en nominel
model and frekvens dom�ne usikkerhedsellipser omkring denne model. Det vil
s�a blive vist, hvorledes disse ellipser kan repr�senteres eller rettere approksimeres
ved et blandet reelt og complekst perturbations set. Denne repr�sentation er det
n�dvendige bindeled til at kombinere resultaterne fra robust reguleringsteori og
system identi�kation til en skridt-for-skridt design philoso� til syntese af robust
regulerings systemer for skalare systemer. Denne design philoso� er hovedresul-
tatet i afhandlingen.

Igennem hele afhandlingen vil de pr�senterede teoretiske resultater blive illus-
treret med praktiske design eksemple. Nogle af disse eksempler er ret simple,
men et par stykker er langt mere involverede. Vi mener, at de givne teoretiske
metoder skal v�re anvendelige i forbindelse med praktisk regulator design. De
pr�senterede eksempler er s�aledes en v�sentlig del af det arbejde, der ligger bag
denne afhandling. De virker ikke bare som illustrationer, men introducerer mange
nye ideer og skulle v�re interessante i sig selv.
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Nomenclature

Part I, Robust Control { Theory and Design

Symbols

Symbol Denotes

s=z S/Z transform complex variable.

! Frequency [rad/sec].
d(s); �(s) Disturbance.

d0(s); �0(s) Normalized disturbance (d(s) = Wp1(s)d
0(s)).

e(s) Control error (e(s) = r(s)� y(s)).

e0(s) Measured control error (e0(s) = r(s)� ym(s)).

e0(s) Weighted control error (e0(s) = Wp2(s)e(s)).

m(s) Model output (m(s) = G(s)u(s)).

n(s) Sensor noise.

r(s) Reference.

u(s) Input.
w(s) Perturbation.

y(s) Output.

ym(s) Measured output (ym(s) = y(s) + n(s)).
z(s) Input to perturbation structure (w(s) = �(s)z(s)).

D(!);G(!) Scaling matrices for computation of � upper bound.

D(s) Scaling used in D-K iteration.
G(s);Gh(s) Additional scalings used in D,G-K iteration.

�(s); (s) Additional scalings used in �-K iteration.

G(s) Plant transfer function matrix.
GT (s) Perturbed plant transfer function matrix.

J(s) DGKF parameterization.

K(s) Controller transfer function matrix.
M(s) Control sensitivity.

N(s) Generalized plant.

ND(s) Augmented generalized plant for D-K iteration. ND = DND�1.

continued on next page
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xxx Nomenclature

continued from previous page

Symbol Denotes

NDG(s) Augmented generalized plant for D,G-K iteration. NDG =
(DND�1 � �?G)Gh.

ND�(s) Augmented generalized plant for �-K iteration. ND� =

�DND�1.

P (s) Generalized closed loop system.

Q(s) Free stable transfer matrix used in DGKF parameterization.

So(s)=Si(s) Sensitivity evaluated at plant output and input.

To(s)=Ti(s) Complementary sensitivity evaluated at plant output and input.

Wp1(s) Disturbance weight.

Wp2(s) Control error weight.

Wu1(s) Perturbation input weight.

Wu2(s) Perturbation output weight.
~�(s) Perturbation, ��(�) � `.

�(s) Normalized perturbation, ��(�) � 1.

�p(s) Performance block.
Fl(N(s);K(s)) Lower LFT (Fl(N(s);K(s)) = N11 +N12K(I �N21K)�1N21).

Fu(P (s);�(s)) Upper LFT (Fu(P (s);�(s)) = P22 + P21�(I � P11�)
�1P12).

A;B;C;D State space matrices.

Ts Sampling time [secs].

j
p�1, sometimes an index as in xij .

In n� n identity matrix.

Jnp Nominal performance cost function.
Ju Robust stability cost function.

Jrp Robust performance cost function.

�arg Change in argument as s traverses the Nyquist D contour.
det(A) Determinant of complex matrix A.

AT Transpose of A.

A� Complex conjugate transpose of A.
Aij The (i; j) element of A.

tr fAg Trace of A.

�i(A) The i'th eigenvalue of A.
�Ri The i'th real eigenvalue of A.

�(A) The spectral radius of A.

�R(A) The real spectral radius of A.
��(A) The structured singular value of A.

���(A) Upper bound for ��(A).

Ric(H) The Ricatti solution.

Sets, Norms and Spaces

Symbol Denotes

k � k Norm.

continued on next page
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Symbol Denotes

< � > Scalar product.
A = Y �U� Singular value decomposition of A.

��(A) Maximum singular value of A, ��(A) = �1(A) = kAk2.
�(A) Minimum singular value of A, �(A) = �k(A).

�i(A) The i'th singular value of A.

�(A) Condition number of A, �(A) = ��(A)=�(A).

kG(s)k2 Transfer 2-norm, kG(s)k2 =
q

1

2�

R
1

�1
tr
�
G(j!)HG(j!)

	
d!.

kG(s)k1 Transfer function 1-norm, kG(s)k1 = sup! ��(G(j!)).

K Field of real or complex numbers.
H A linear space.

Cn�m Set of complex n�m matrices.

Rn�m Set of real n�m matrices.
L Lebesgue spaces.

H Hardy spaces.

KS Set of all stabilizing controllers.
D0 Set of normalized generic disturbances, k�0k2 � 1.

D Set of generic disturbances, �(s) =Wp1(s)�
0(s).

� Block diagonal perturbation structure used with �.

�c Corresponding complex perturbation set.

B� Bounded subset of perturbations, B� = f�(s) 2
�j��(�(j!)) < 1g.

Q;D;G;D̂; Ĝ Sets of scaling matrices used for � upper and lower bounds.

Abbreviations

Abbreviation Denotes

ASTOVL Advanced short take-o� and vertical landing.

CD Compact disc.

DGKF Doyle, Glover, Khargonekhar and Francis H1 parameterization.
FDLTI Finite dimensional linear time invariant.

LFT Linear fractional transformation.

LHP/RHP Left/right half plane.
LMI Linear matrix inequality.

LQ Linear quadratic.

LQG Linear quadratic gaussian.
LTR Loop transfer recovery.

MIMO Multiple input multiple output.

SISO Single input single output.
SSV Structured singular value.
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Part II, System Identi�cation and Estimation of

Model Error Bounds

Symbols

Symbol Denotes

S Observed system.

E f�g Expectation.
�Ef�g Statistical expectation.
N The normal distribution.

�2 The chi-square distribution.
Cov Covariance.

q Shift operator.

s; z S=Z transform complex variable.

! Frequency [rad/sec].

� Mean value.

� Standard deviation.

H Hessian matrix.

M Fisher Information matrix.

Ts Sampling time [sec].

j
p�1, sometimes an index like in xij.

IN The N dimensional identity matrix.

p Number of model parameters.

� Parameter vector.

�̂N N measurements parameter estimate.

�̂� 1 measurements parameter estimate.

�0 True parameter vector.

N Number of measurements.

L Length of fir model for the undermodeling.

GT (z) True system discrete-time transfer function.

G�(z) Undermodeling discrete-time transfer function.

G(z; �̂N) N measurements model estimate.

H(z) Noise discrete-time transfer function �lter.
A;B;F;C;D Black box model polynominals.

y(k) Output.

ŷ(kj�) Predicted output.

u(k) Input.

e(k) Zero mean iid stochastic process.

� Variance of e(k).
�(k) Process noise.

�(k) Undermodeling output.

�(k) Undermodeling impulse response.

� Undermodeling impulse response vector.

continued on next page
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Symbol Denotes

h�(k) Process noise impulse response.
f� Probability density for the undermodeling �(k).

f� Probability density for the process noise �(k).

� Parameter vector for the undermodeling impulse response co-
variance matrix C�.

 Parameter vector for the process noise covariance matrix C� .

� Combined parameter vector [� ]T .
� Undermodeling fir regressor matrix.

� Undermodeling �lter �(q�1)u(k).

X Undermodeling �lter matrix.

�k kth �xed denominator model regressor.

� Fixed denominator model regressor matrix.

� Predictor state vector, ŷ(kj�) = �(k; �)�.

� Predictor �lter matrix.

 (k; �) Model gradient @ŷ(kj�)=@�.
	 Model gradient �lter matrix.
Y Output vector.

V Process noise vector.

VN (�;Z
N) Performance function for estimation problem.

�V (�) Limit function for VN (�;Z
N ).

�V 0(�) Derivative of VN (�;Z
N) with respect to �.

Q Variance of
p
NV 0N (�;Z

N ).


 (�T�)�1�.
P� Parameter vector covariance matrix.

P̂N Data estimate of P�.

C� Covariance matrix for the undermodeling impulse response.

C� Covariance matrix for the process noise.

a; c; �2e Noise covariance parameters.

�;� Undermodeling covariance parameters.

�̂N
�
�̂N 0

�
�0

�
�0 �

�
~g(z) Frequency domain model uncertainty.

�(z) Uncertainty �lter, ~g(z) = �(z)(��� �̂N ).
P~g Covariance matrix for the total model error.

� E
�
(�0 � �̂N)(�0 � �̂N )

T
	
.

�(k; �) Prediction errors.

R̂�
N (�) Data estimate of residual covariance.

R̂�;u

N (�) Data estimate of residual/input cross-covariance.

$ Transformed residuals vector.

R Transformation matrix.

P� [I ��(�T�)�1�T ].

L ($ jU; � ) The likelihood of $ given U and �.

continued on next page
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Symbol Denotes

` ($ jU; � ) The loglikelihood of $ given U and �.
f ($ jU; � ) The probability density function for $ given U and �.

� The covariance for the residuals $.

dn(S;B) n-width.

��� Kronecker delta.

Li(z;a) Laguerre �lters.

	i(z; b; c) Kautz �lters.

Abbreviations

Abbreviation Denotes

AR Auto-regressive.
ARX Auto-regressive with exogenous input.

FDLTI Finite dimensional linear time invariant.

FIR Finite impulse response.

LHP/RHP Left/right half plane.

MIMO Multiple input multiple output.

OE Output error.

PEM Prediction error methods.

SISO Single input single output.
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Control theory within the 20th century can conveniently be divided into 3 main
periods: classical control, optimal control and robust control. In Table 1.1 on
the next page some of the key results for each period is given. The period 1930{
1960 can be classi�ed as the \Classical Control" period. Here famous pioneers,
like Bode and Nyquist, developed control design tools which made it possible to
meet standard requirements on stability, robustness and performance for scalar
(single-input single-output) systems. These are e.g. Bode and Nyquist plots,
Nichols charts and root-locus plots. The chief paradigm for this period was the
frequency domain. The results from the classical control period make up the bulk
of industrial control practice to this day.

1
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Classical Control Optimal Control Robust Control
1930{1960 1960{1980 1980{present

Analysis Nyquist plots State space models Singular value plots
Bode plots Controllability � analysis
Root-locus Observability Balanced realiza-

tions
Gain/phase mar-
gins

Random processes Spectral factoriza-
tions

Synthesis PID controllers LQ state feedback H1 synthesis
Lead-lag compen-
sation

Kalman-Bucy
�lters

� synthesis

LQG control LQG/LTR control
Youla parameteri-
zations

Chief
paradigm

Frequency domain Time domain Frequency domain

Table 1.1: Control theory in this century [Dai90].

The period from 1960{1980 can be termed \Optimal Control". In the early
1960'ies Kalman and others introduced concepts like controllability, observabil-
ity, optimal state estimation and optimal state feedback. Concepts which were
based on state space matrix equations rather than frequency domain transfer
functions. It was shown that using the state space approach one could formulate
sensible performance measures and optimize the control scheme with respect to
these measures not only for scalar systems but also for multivariable systems.
When Kalman in a series of papers, see e.g. [Kal60, KHN62, Kal64], provided
a state-space solution to the Linear Quadratic Gaussian (LQG) optimal control
problem it almost created euphoria within the automatic control community. A
multivariable control design method was discovered which was optimal for the
given design criteria. Furthermore, it was possible to show that the full state
feedback linear quadratic (LQ) optimal control law possessed some very strong
robustness properties, namely at least 60� phase margin and in�nite gain margin
regardless of the choice of performance weights. Because of duality, the optimal
state estimator had similar �ne properties.

These and related results shifted the emphasis in control engineering from the
frequency domain to the time domain and for 20 years the frequency domain
approach was more or less considered to be obsolete.

Unfortunately it turned out that LQG controllers did not always work well in
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practice. In fact, poor stability and, in particular, very poor performance was
not an uncommon phenomena quite opposed to the theoretical results. However,
these practical problem were to a large extent ignored by the theoreticians of
automatic control and this created a gab between practitioners and theoreticians
in control engineering.

Then in 1979 Doyle & Stein showed in their famous paper [DS79] that even
though the control law and the state estimation law are optimal, there is no
guarantee that the combined LQG scheme possesses equivalent �ne properties.
Thus the problems encountered by control engineers with LQG in practice had
a �rm theoretical explanation. Doyle & Stein used standard frequency domain
methods to prove their point. The chief paradigm for the automatic control
community was beginning to shift once again.

Another key paper from that period is the frequently quoted paper [DS81] also by
Doyle & Stein. In this paper singular value sensitivity plots and norm bounded
uncertainty descriptions was introduced. The similarities between (multivari-
able) singular value analysis and classical (scalar) frequency domain analysis was
emphasized. The singular value plots represented the extension of the classical
scalar Bode plots to multivariable systems. They are thus also frequently termed
singular value Bode plots.

In both papers [DS79, DS81] a method for regaining the �ne loop properties of
the LQ state feedback from the LQG implementation is presented. This method,
known as loop transfer recovery (LTR), works by modifying the intensity of the
process noise in the Kalman-Bucy �lter. Thus, even though that the main empha-
sis was on the frequency domain, state space (or time domain) algorithms were
used to compute the controller. The papers by Doyle & Stein amongst many
others introduced a new period in control engineering. The mixture of frequency
domain analysis and state space formulations became symptomatic for the period
from 1980 until today. This period is usually termed \Robust Control".

The next decade witnessed an intensive research in robust control designs. The
term robust stressed the importance of developing methods which maintained
closed loop stability and performance not only for the nominal model of the
control object (plant) but also for a set of plants including the invariable dis-
crepancy between the nominal model and the true plant. The robust control
paradigm in fact represented a return to a more physically motivated basis for
control design. In order to pose a meaningful problem, the model uncertainty or
perturbations are assumed to be norm bounded. For example, a description of
the true multivariable plant GT (s) could be

GT (s) = (I +�(s))G(s) (1.1)

where G(s) is the nominal transfer function matrix and �(s) a multiplicative
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perturbation at the plant output. �(s) could then be bounded in magnitude as

k�(j!)k
2
= ��(�(j!)) < `(!) (1.2)

where �� denotes the maximum singular value, induced 2-norm or spectral norm
and `(!) is a frequency dependent scalar. The choice of bounding norm is a com-
promise between those that best describe the plant perturbations and those that
lead to mathematically tractable problems. The spectral norm has been a pop-
ular compromise since it describes well the e�ects of high frequency unmodeled
dynamics, non-linearities and time delays and a solution to the corresponding
control problem has been found. Using the celebrated Small Gain Theorem it is
e.g. possible to show that for the perturbation structure in (1.1) on the preced-
ing page with �(s) bounded by (1.2), the stability of the closed loop system is
maintained if and only if

��(T (j!)) = ��
�
G(j!)K(j!)(I + G(j!)K(j!))�1

� � `(!) (1.3)

If the process noise is assumed to be bounded by the same induced norm a
unifying framework can be used for considering both stability and disturbance
rejection.

Much of the literature on robust control have focused strongly on the compu-
tational engine of robust control, namely the H1 optimization algorithm. This
has, unfortunately, in some sense hampered the application of robust control in
practice since many practical issues have been left unattended. In fact, it turns
out that the standard state space H1 framework is not very suitable for formu-
lating practical control problems since the perturbation structures permitted in
H1 is much too restricted to deal with many practical speci�cations. A much
more general but less well known design framework is based on the structured
singular value or � theory. � theory allows the inclusion of much more natural
and specialized perturbation models and it furthermore nicely separates stability
and performance issues, a result which can not be obtained in the H1 frame-
work. Interestingly, the computational engine in � control synthesis is still the
H1 optimization algorithm.

Unfortunately, even though � theory is comprehensible straightforward with sim-
ple and insightful results, it has not been as widely recognized as H1 theory.
There are several reasons for this. First of all, the practical computation of the
structured singular value � is a very di�cult and in fact, yet unsolved, mathemat-
ical problem. Fortunately, tight upper and lower bounds on � may be e�ectively
computed. Furthermore, algorithms for computing these bounds have become
commercially available with the release of the MatLab �-Analysis and Synthe-
sis Toolbox [BDG+93]. Thus for practical controller design, the mathematical
complexity of � is no longer such a critical issue. Another reason for �-theory
not being more widespread is the limited amount of literature on �. Usually the
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simplicity of the theory is hidden in messy mathematical expressions connected
with the computation of �.

Since � cannot be directly computed unless in some special cases, it is clear that
controller synthesis using � must be problematic as well. The approach usually
taken is to pose an upper bound problem, which is solved iteratively through a
series of H1 optimizations and � upper bound computations. This scheme is
usually denoted D-K iteration. However, D-K iteration is only well developed for
purely complex perturbations. Many practical control problems unfortunately
call for the use of both real and complex perturbations. Thus a method for �
synthesis for mixed real and complex perturbation sets is needed.

One objective of this thesis is to provide a thorough introduction to robust con-
trol design with special attention to � methods. The treatment will not focus
excessively on �ner mathematical points but rather it will address practical de-
sign issues. A main result is a new algorithm, denoted �-K iteration, which solves
the mixed � problem.

Modern robust control synthesis techniques aim at providing robustness with
respect to both plant perturbations (robust stability) and additive disturbances
(robust performance). It is assumed that information of noise and perturbations
is available. One way of acquiring such information is by physical modeling.
However, this is usually a quite complex task unless extremely simple systems
are considered. A di�erent approach could be by system identi�cation. Unfor-
tunately, classical identi�cation methods assume that all uncertainty is in the
form of additive noise. There is thus a gab between robust control and system
identi�cation. This gab has hampered the application of robust control methods
to practical problems.

The gab between robust control methods and system identi�cation results was
realized by a number of researchers around 1990, see e.g. [GS89a, WL90b, Gev91].
The development of formal techniques for estimation of model uncertainty has
since been the focus of active research and numerous results have been published,
see [Bai92] and references therein.

In this thesis a discussion of these recent results will be provided. Unfortunately
the estimation of model error bounds from �nite noisy data becomes a very di�-
cult problem when the true system cannot be represented within the model set.
In fact, it is well-known that a priori knowledge of the noise and unmodeled dy-
namics is necessary to compute such bounds. Most of the attempts on estimation
of model error bounds have relied upon hard bound prior knowledge of the noise
and unmodeled dynamics to compute hard uncertainty bounds on the nominal
model. However, the necessary a priori knowledge of the unmodeled dynamics
seems very di�cult to obtain in practice. Here, we will consider some recent
results on estimation of frequency domain model error bounds where the model
bias is embedded in a stochastic framework. This approach is thus denoted the
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stochastic embedding approach. A central feature of the stochastic embedding
approach is that the necessary a priori knowledge can be estimated from the
model residuals.

The main point of this work is then that the results on the stochastic embedding
approach for uncertainty estimation can be combined with the derived method
for mixed real and complex � synthesis to constitute a coherent design approach
for linear systems control design. A step-by-step design method is proposed.
Currently only scalar control problems can be considered, since the stochastic
embedding approach has been developed for scalar systems only. Future research
will have to reveal whether an extension to multivariable systems is possible.

1.1 The Organization of the Thesis

The thesis is split into 4 parts. Part I consideres robust control, Part II system
identi�cation and estimation of model uncertainty and Part III the combination of
the results given in the previous parts into a coherent design philosophy. Finally
in Part IV the major results are reviewed and discussed.

1.1.1 Part I, Robust Control { Theory and Design

The purpose of this part is to formulate the necessary framework for the control
analysis and synthesis part of the proposed synergistic control design method-
ology. First in Chapter 3 an introduction to norms and spaces used in robust
control design is given. Then in Chapter 4 we will review \classical" singular
value H1 control design. In H1 control it is assumed that the model uncer-
tainty can be described by a single complex perturbation block. However, usually
much �ner perturbation structures are available including both real and complex
blocks. Such uncertainty structures can only be handled conservatively in an
H1 framework. Furthermore we will show how the robust performance prob-
lem, that is guaranteed performance in presence of uncertainty, also cannot be
non-conservatively addressed using an H1 approach even if the perturbation is
a single complex block.

This motivates us then in Chapter 5 to consider the structured singular value
�. Using �, we may develop a robust control framework where real and complex
perturbation blocks which enter the nominal system in a linear fractional manner
can be addressed without conservatism. A very large class of perturbation models
may be cast into this structure. Furthermore the robust performance problem can
be handled non-conservatively. We will start by presenting the \classical" results
on �. As discussed earlier, only upper and lower bounds on � can be computed
unless for some special very simple cases. Even though these bounds are usually



1.1 The Organization of the Thesis 7

quite tight, at least for purely complex perturbation sets, the control synthesis
problem becomes very di�cult. The usual approach for complex perturbation
sets is the iterative scheme D-K iteration which generally seems to work well in
practice although convergence cannot be guaranteed.

Unfortunately, in order to develop our central result, we will need a control syn-
thesis procedure which can be applied for mixed real and complex perturbation
sets. Some of the �rst results on mixed � synthesis was given in the thesis by Pe-
ter Young [You93]. Young proposes an iterative scheme denoted D,G-K iteration
which solves the mixed � problem. Unfortunately the approach is much more
involved that the corresponding D-K iteration for purely complex blocks. We will
present a di�erent approach, denoted �-K iteration which sacri�ces some of the
convergence properties that can be obtained with D,G-K iteration. In return,
�-K iteration can be performed more easily. Furthermore, the iteration seems to
work quite well in practice.

The �-K iteration procedure is the central result of Part I.

Finally, we will present two design examples. In Chapter 6 mixed � control of a
CD servo drive is considered. The second design in Chapter 7 is concerned with
control of a advanced short take o� and vertical landing aircraft.

1.1.2 Part II, System Identi�cation and Estimation of

Model Error Bounds

The main purpose of this part is to investigate methods for quanti�cation of fre-
quency domain model uncertainty. First in Chapter 9 we will review the \classi-
cal" results. In Chapter 10 we will consider some special cases, in particular �xed
denominator models with basis functions which are orthonormal in the space of
strictly proper stable transfer functions. The classical results can be applied in
the case where the true system can be represented within the model set. This is
however often an inadequate assumption in connection with robust control. Thus
we will next consider methodologies where this is not a requirement. Speci�cally,
in Chapter 11 we will consider the stochastic embedding approach where the
undermodeling is embedded in a stochastic framework. It is then possible to
extend the classical results to the case where undermodeling is present. In order
to evaluate the frequency domain uncertainty estimates, the covariance matrices
for the noise and the undermodeling must be known. It can be shown that if it
assumed that both the noise and the undermodeling impulse response are Gaus-
sian and the covariance matrices are parameterized, the parameters themselves
can be estimated through maximum likelihood techniques. The main result of
Part II is new parameterizations for these covariance matrices.

Finally, in Chapter 12 we will present an example where di�erent parameteriza-
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tions of the undermodeling have been compared.

1.1.3 Part III, A Synergistic Control Systems Design Phi-

losophy

In this part a coherent identi�cation based robust control design philosophy is
developed for scalar systems. In Chapter 13 it is shown how estimated frequency
domain uncertainty ellipses may be represented with a mixed real and complex
perturbation set. Then the proposed �-K iteration procedure can be applied to
solve the corresponding robust control problem. A step-by-step design procedure
for scalar systems is outlined.

To illustrate the design methodology, an example is given in Chapter 14. This
example considers control of a small domestic water supply system where the
control problem is to maintain water pressure for ow disturbances.

1.1.4 Part VI, Conclusions

In Chapter 15 the main results of the thesis are summarized and directions for
further research are given.
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Chapter 2

Introduction to Robust

Control
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Design of controllers with guaranteed closed loop stability and performance for
uncertain plants has been the focus of active research for almost 2 decades now.
Most of the research on robust control has focused onH1 like problems. However
it turns out that many practical problems do not readily �t the standard H1
problem setup since the involved model uncertainty is structured rather than
unstructured. An H1 control design will then be potentially conservative and
thus will limit the obtainable performance of the closed loop system.

11
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2.1 � Theory

Fortunately theory exists that non-conservatively handles these problems, namely
the structured singular value (SSV) or � theory. In many practical applications
� theory is more appropriate for system analysis and controller synthesis. � the-
ory has not been as widely recognized as H1 theory, probably due to the small
amount of literature on � and to the computational di�culties associated with �.
Recently however algorithms for computing �1 have become commercially avail-
able through the MatLab �-Analysis and Synthesis Toolbox [BDG+93]. Also
the literature on � is improving, see e.g. the excellent introduction to �-analysis
by Holohan [Hol94].

2.1.1 � Synthesis

An approach to controller synthesis using � for complex perturbations, frequently
denoted D-K iteration, has been known for some time now [DC85] and controller
synthesis for structured complex perturbation sets can be accomplished with the
aid of the MatLab � toolbox.

Unfortunately many practical application problem calls for the use of mixed real
and complex perturbation sets. For example, analysis of plant parameter varia-
tions which is an often encounted problem rely on the use of mixed or even purely
real perturbation sets. Until recently controller synthesis under mixed pertur-
bation sets was an unsolved problem. A solution to this problem was probably
�rst given by Young [You93, You94]. Unfortunately the synthesis procedure pro-
posed by Young is quite involved. Even though it relies on the same principles
it is certainly more mathematically complex than D-K iteration used for purely
complex perturbation sets.

The main emphasis in this part of the thesis will be on �-analysis and synthesis.
However, in order to put things into perspective, a survey of robust control design
methods using the H1 approach will be given initially. The role of singular values
will be discussed as will some of the commonly used singular value bounded
unstructured uncertainty descriptions. The potential conservatism inherent in
an unstructured uncertainty assumption will be emphasized. It will be shown
how the nominal performance problem and the robust stability problem can be
addressed with H1 methods. However, it turns out that the robust performance
problem cannot be non-conservatively formulated in an H1 framework. Then
it will be shown how the structured singular value may be used to overcome
the shortcomings of the H1 approach. Controller design using � will then be
presented both for purely complex and for mixed real and complex perturbation
structures. A novel approach to mixed � synthesis, denoted �-K iteration, will

1More accurately: upper and lower bounds on �.
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be presented. The �-K iteration procedure is computationally simpler than the
procedure proposed by Young. Furthermore, as we shall show, �-K iteration
seems to work quite well in practice.

2.2 An Overview

The remainder of this part of the thesis is organized as follows. In Chapter 3
an introduction to spaces and norms frequently used in modern robust control
is given. In Chapter 4 an introduction to \classical" singular value based H1
robust control analysis and synthesis is given. In Chapter 5 robust stability and
performance will be addressed using the structured singular value �. Various �
synthesis techniques will be presented and discussed. In Chapter 6 a mixed �
optimal controller will be designed for a simple model of a CD player servo using
�-K iteration. Finally in Chapter 7 a major ight control case study will be given.
The control of an Advanced Short Take-O� and Vertical Landing (ASTOVL)
aircraft will be considered at low speeds in the transition zone between jet-borne
and fully wing-borne ight. In this ight condition the aircraft is unstable in the
longitudinal axis and the nominal model is very ill-conditioned especially at low
frequencies.
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In order to fully comprehend and appreciate modern robust control theory some
mathematical prerequisites from functional analysis are necessary. In many �ne
textbooks on robust control this prior knowledge is either assumed or discussed
only very briey. However, we believe that an introduction to the relevant spaces
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and norms used in modern control theory is mandatory. Conversely, if the reader
is completely familiar with functional analysis he may skip this chapter. As it
turns out, the necessary mathematical tools are conceptually quite straightfor-
ward even though some are computationally involved. The results presented here
are taken mainly from [Dai90] and [Fra87] and are all given without proof.

3.1 Normed Spaces

Let H be a linear space over the �eld K, where K is either the �eld C of complex
numbers or the �eld R of real numbers. A norm on H is a function denoted k � k
from H to R having the following properties

kfk � 0 (3.1)

kfk = 0 i� f = 0 (3.2)

k�fk = j�jkfk (3.3)

kf + gk � kfk+ kgk (triangle inequality) (3.4)

where f; g 2 H and � 2 K. Thus a norm is a single real number measuring the
\size" of an element of H . Given a linear space H there may be many possible
norms on H . Given a linear space H and a norm k � k on H , the pair (H ; k � k) is
denoted a normed space.

3.1.1 Vector and Matrix Norms

Let H be the space Cn which is a linear space. Then x 2 Cn means that
x = (x1; x2; � � � ; xn) with xi 2 C; 8i. Clearly, Cn is the space of complex n-
vectors. For x 2 Cn the H�older or p-norms are de�ned by:

kxkp =
 

nX
i=1

jxijp
!1=p

(3.5)

In control theory, the 1-, 2- and 1-norm are most important since they have
obvious physical interpretations:

kxk1 =
nX
i=1

jxij (3.6)

kxk2 =
vuut nX

i=1

jxij2 =
p
x�x (3.7)

kxk1 = max
i
jxij (3.8)
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In (3.7) on the facing page, x� denotes the complex conjugate transpose of x.
Notice that the 2-norm kxk2 is the usual Euclidean length of the complex vector
x. All norms on Cn are equivalent norms which means that if k � k� and k � k�
are norms on Cn, then there exists a pair c1; c2 > 0 so that

c1kxk� � kxk� � c2kxk�; 8x 2 Cn (3.9)

In particular, 8x 2 Cn:

kxk2 � kxk1 �
p
nkxk2 (3.10)

kxk1 � kxk2 �
p
nkxk1 (3.11)

kxk1 � kxk1 � nkxk1 (3.12)

Now let us consider the space H = Cm�n, namely the space of m � n complex
matrices. Cm�n is also a linear space. Matrix p-norms on Cm�n are de�ned in
terms of the p-norms for vectors on Cn:

kAkp = sup
x2Cn;x6=0

kAxkp
kxkp ; 8A 2 Cm�n (3.13)

Notice that the matrix p-norms are induced norms. They are induced by the
corresponding p-norms on vectors. One can think of kAkp as the maximum
gain of the matrix A measured by the p-norm ratio of vectors before and after
multiplication byA. In general matrix p-norms are di�cult to compute. However,
for p = 1; 2, or 1 there exist simple algorithms to compute kAkp exactly. If
A = [aij] 2 Cm�n we have

kAk1 = max
j

mX
i=1

jaijj maximum column sum (3.14)

kAk2 = ��(A) maximum singular value (3.15)

kAk1 = max
i

nX
j=1

jaijj maximum row sum (3.16)

A fourth norm which is important in modern control theory is the F -norm or
Frobenius norm. It is given simply as the root sum of squares of the magnitude
of all the matrix elements:

kAkF =

vuut mX
i=1

nX
j=1

jaijj2; 8A 2 Cm�n (3.17)

Notice that the F -norm is not an induced norm.
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The F - and p-norms on Cm�n are also equivalent norms. Thus there are upper
and lower bounds on the ratio between any two di�erent norms applied to the
same matrix. If one type of norm for a given matrix tends towards zero or in�nity,
so do all other norms. Let A = [aij] 2 Cm�n. Then

kAk2 � kAkF �
p
nkAk2 (3.18)

max
i;j

jaijj � kAk2 �
p
mnmax

i;j
jaijj (3.19)

kAk2 �
p
kAk1kAk1 (3.20)

1p
n
kAk1 � kAk2 �

p
mkAk1 (3.21)

1p
m
kAk1 � kAk2 �

p
nkAk1 (3.22)

The matrix 2-norm and F -norm are invariant under multiplication by unitary or
orthogonal matrices. Assume that Q�Q = I and Z�Z = I for Q 2 Cm�m and
Z 2 Cn�n. Then

kQAZkF = kAkF (3.23)

kQAZk2 = kAk2 (3.24)

This property is crucial to many proofs in robust control theory.

3.1.2 Singular Values

In modern control theory singular values have been used to extend the classi-
cal frequency response Bode plot to multivariable systems. Consider the input-
output relation

y(s) = G(s)u(s) (3.25)

where G(s) is a transfer function matrix. How do we then evaluate the fre-
quency response G(j!)? An obvious choice would be to pick one of the induced
matrix norms introduced previously. The 1-, 2- and 1-norm all have potential
engineering applications. However, the control theory for using them in design or
analysis is only well-developed for the 2-norm. Thus let us evaluate the frequency
response of G(s) at the frequency ! by

kG(j!)k2 = sup
u2Cn;u 6=0

kG(j!)u(j!)k2
ku(j!)k2 = ��(G(j!)) (3.26)

Letting 0 � ! � 1 we may compute the matrix 2-norm for every ! to obtain a
upper bound for the \gain" of the transfer matrix G(s). However, we would like
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to have a lower bound on G(j!) as well. This lower bound can be obtained with
the minimum singular value given by

�(G(j!)) = inf
u2Cn;u 6=0

kG(j!)u(j!)k2
ku(j!)k2 (3.27)

Thus if we measure the \gain" of the system G(s) as the 2-norm ratio of the
input and output, then the maximum and minimum singular values of G(j!)
will constitute upper and lower bounds on this gain. In fact, we may assess
the system \gain" even more detailed using the singular value decomposition
given below. Let us, however, �rst introduce the following important lemma
which establishes the relation between the singular values and the eigenvalues of
a complex matrix.

Lemma 3.1 (Singular values and Eigenvalues) The singular values of a
complex matrix A 2 Cm�n, denoted �i(A), are the k largest nonnegative square
roots of the eigenvalues of A�A where k = minfn;mg. Thus

�i(A) =
p
�i(A�A) i = 1; 2; � � � ; k (3.28)

It is usually assumed that the singular values are ordered such that �i � �i+1.

Thus

��(A) = �1(A) = sup
u2Cn;u 6=0

kAuk2
kuk2 = kAk

2
(3.29)

�(A) = �k(A) = inf
u2Cn;u 6=0

kAuk2
kuk2 =

A�1�1
2

if A�1 exists (3.30)

The ratio between the maximum and minimum singular value is denoted the
condition number �:

�(A) =
��(A)

�(A)
(3.31)

Let us then introduce the singular value decomposition.

Lemma 3.2 (Singular Value Decomposition) Let G 2 Cm�n be a complex
matrix. Then there exist two unitary1 matrices Y 2 Cm�m

; U 2 Cn�n and a

1A unitary matrix U satis�es the equation U�U = I.
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diagonal matrix � 2 Rm�n such that

G = Y �U� (3.32)

=
�
y1 y2 � � � ym

� � �k 0
0 0

�
2
6664
u
�
1

u
�
2

...
u
�
n

3
7775 (3.33)

=
kX
i=1

yi�iu
�
i (3.34)

where

�k : diag (�1; �2; � � � ; �k).
y1 ! ym : The m columns of Y .
u
�
1 ! u

�
n : The n rows of U�

This is known as the singular-value decomposition (SVD) of the matrix G.

An interpretation for the SVD of real matrix A is as follows. Any real matrix A,
looked at geometrically, maps a unit radius hyper-sphere into a hyper-ellipsoid.
The singular values �i(A) give the lengths of the principal axis of the ellipsoid.
The singular vectors yi give the mutually orthogonal directions of these major
axes and the singular vectors ui are mapped into the yi vectors with gain �i, that
is, Aui = �iyi.

Example 3.1 (SVD of a Real Matrix) This example is taken from [MZ89].
Let A be given by

A =

�
0:8712 �1:3195
1:5783 �0:0947

�
(3.35)

The SVD of A is given by A = Y�U� with

Y =
1p
2

�
1 1
1 �1

�
;� =

�
2 0
0 1

�
; U =

1

2

� p
3 �1

�1 �p3
�

(3.36)

A geometrical interpretation is given in Figure 3.1 on the facing page with U =
[u1; u2] and Y = [y1; y2].

In the following some of the important properties of singular values are stated:

��(G) = sup
u2Cn;u 6=0

kGuk2
kuk2 (3.37)
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Figure 3.1: Singular value decomposition of a real matrix.

�(G) = inf
u2Cn;u 6=0

kGuk2
kuk2 (3.38)

�(G) � j�i(G)j � ��(G) (3.39)

��(G) =
1

�(G�1)
(3.40)

�(G) =
1

��(G�1)
(3.41)

��(�G) = j�j��(G) (3.42)

��(G+H) � ��(G) + ��(H) (3.43)

��(GH) � ��(G)��(H) (3.44)

maxf��(G); ��(H)g � ��([G H]) � p2maxf��(G); ��(H)g (3.45)
nX
i=1

�
2

i = tr fG�Gg (3.46)

where

�i(G) : The i-th eigenvalue of G.
Property (3.40) and (3.41) : Prerequisites the existence of G�1.
� : A constant (complex) scalar.
tr fG�Gg : The trace of G�G.
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Consider the input-output matrix equation:

y(j!) = G(j!)u(j!) (3.47)

Using Equation (3.34) on page 20 we may formulate this as:

y(j!) =
kX
i=1

yi�iu
�
iu(j!) (3.48)

Since U is unitary u�iuj will be orthogonal to each other so that u�iuj = 0, for
i 6= j and u�iui = 1. Now assume that u(j!) = �uj. The input-output equation
then becomes:

y(j!) =
kX
i=1

yi�iu
�
iuj� (3.49)

= �j�yj (3.50)

This illustrates that if the input vector u(j!) is in the direction of uj then the
gain of the system is precisely �j and the output vector y(j!) is then precisely
in the direction of yj . The sets fu1; u2; � � � ; ung and fy1; y2; � � � ; ymg are not
surprisingly known as the input respectively output principal directions. The
singular values �i are also known as the principal or directional gains of the
system matrix G.

Thus when G(s) is a transfer function matrix we can plot the singular values
�i(G(j!)) for i = 1; � � � ; k as functions of frequency !. These curves are the
multivariable generalization of the SISO amplitude-ratio Bode plot. For mul-
tivariable systems the ampli�cation of the input vector sinusoid uej!t depends
on the direction of the complex vector u as illustrated above. The ampli�cation
is at least �(G(j!)) and at most ��(G(j!)). The condition number �(G(j!)),
see (3.31) on page 19, plotted versus frequency ! outlines the system gain sen-
sitivity to the direction of the input vector. If �(G(j!)) � 1 the gain of the
transfer function matrix will vary considerably with the input direction and G(s)
is said to be ill-conditioned. Conversely, if �(G(j!)) � 1, 8! � 0, the gain of the
transfer matrix will be insensitive to the input direction and the system is said
to be well-conditioned. A well-conditioned multivariable system behaves much
like a single-variable system and controller design for well-conditioned system are
fairly straightforward. For ill-conditioned systems, however, much more care has
to be taken in both design and analysis.
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3.2 Banach and Hilbert Spaces

A scalar product (or inner product) on H is a function denoted < �; � > from
H � H to K having the following properties

< f; g + h > =< f; g > + < f; h > (3.51)

< f; �g > = � < f; g > (3.52)

< f; g > =< g; f >
� (Hermitian) (3.53)

< f; f > � 0 (3.54)

< f; f > = 0 i� f = 0 (3.55)

where f; g; h 2 H and � 2 K. A scalar product < �; � > induces a norm, namely,
kfk =< f; f >

1=2. Given the linear space H and a scalar product < �; � > on H ,
the pair (H ; < �; � >) is denoted a pre-Hilbert space.

3.2.1 Convergence and Completeness

Let (H ; k � k) be a normed space. Having de�ned a norm k � k we can assess
convergence in H . A sequence ffng, n = 1; 2; � � � in H converges to f 2 H , and
f is the limit of the sequence, if the sequence of real positive numbers kf � fnk
converges to zero. If such f exists, then the sequence is convergent.

A sequence ffng, n = 1; 2; � � � in H is called a Cauchy sequence if for each
� > 0 there exists a natural number n0 2 N such that for n;m � n0 we have
kfn� fmk � �. Intuitively, the elements in a Cauchy sequence eventually cluster
around each other. They are \trying to converge". Clearly every convergent
sequence is a Cauchy sequence. However, in an arbitrary normed space not every
Cauchy sequence is convergent. A normed space (H; k � k) is said to be complete
if every Cauchy sequence is convergent. A pre-Hilbert space (H ; < �; � >) is said
to be complete if it is complete with respect to the norm induced by the scalar
product < �; � >.
A complete normed space is called a Banach space and a complete pre-Hilbert
space is denoted a Hilbert space.

Example 3.2 Cn and Rn are Banach spaces under the norms k � k1, k � k2 and
k � k1 de�ned by (3.6)-(3.8) on page 16.

Example 3.3 Cn and Rn are Hilbert spaces under the scalar product

< x; y >=
mX
i=1

x
�
i yi = x

�
y (3.56)
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The corresponding induced norm is the 2-norm since

kxk =< x; x >
1=2=

p
x�x = kxk2 (3.57)

3.3 Lebesgue and Hardy Spaces

So far we have only considered the spaceCm�n, that is, spaces whose elements are
constant matrices (or constant vectors as special cases). However, the concepts
introduced above apply also to linear spaces whose elements are time domain or
frequency domain functions (or operators). Two such spaces are important in
robust control theory, namely Lebesgue and Hardy spaces. In H1 control theory,
H stands for Hardy.

3.3.1 Time Domain Spaces

Let us consider vector-valued functions of a continuous time variable. We may
then de�ne norms for such functions (operator norms) which are fully analogous
to the corresponding vector norms. Consider e.g. a function f(t) de�ned for all
time t 2 R and taking values in Rn (or Cn). Restrict f(t) to be square-Lebesgue
integrable: Z 1

�1
kf(t)k22dt <1 (3.58)

where the norm kf(t)k2 in (3.58) is the vector 2-norm introduced in Section 3.1.1
on page 16, see Equation (3.7). The set of all such signals is a Banach space
under the norm

kfk2 =
sZ 1

�1

kf(t)k2
2
dt =

sZ 1

�1

f(t)�f(t)dt (3.59)

This space is called the Lebesgue space L2(R;Rn) (L2(R;Cn)). The �rst ar-
gument gives the domain (D(f)), or input space, and the second gives the
range (R(f)), or output space. Quite often in the literature these arguments
are dropped for brevity. Thus, which version of the Lebesgue space is meant
must be determined form the context. To avoid any confusing we will keep the
arguments here. Notice the di�erence between the vector 2-norm:

kf(t0)k2 =
p
f(t0)�f(t0) (3.60)

for a given value of t0 of t and the operator 2-norm:

kfk2 =
sZ 1

�1

f(t)�f(t)dt (3.61)
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The subspace of L2(R;Rn) for which f(t) = 0; 8t < 0 (causal time functions) is
called a Hardy space H2(R;Rn) under the norm (3.59) on the facing page.

Similarly to the operator 2-norm we may construct operator 1- and 1-norms.

� L1(R;Rn) is the (Banach) space of absolute-Lebesgue integrable vector-
valued functions of time:Z 1

�1
kf(t)k1dt =

Z 1

�1

nX
i=1

jfi(t)jdt <1 (3.62)

with norm

kfk1 =
Z 1

�1

nX
i=1

jfi(t)jdt (3.63)

H1(R;Rn) is the subspace of L1(R;Rn) for which f(t) = 0; 8t < 0.

� L1(R;Rn) is the (Banach) space of bounded real vector-valued functions
of time:

sup
t2R

max
i
jfi(t)j <1 (3.64)

with norm

kfk1 = sup
t2R

max
i
jfi(t)j (3.65)

H1(R;Rn) is the subspace of L1(R;Rn) for which f(t) = 0; 8t < 0.

A large class of causal time domain signals have �nite values for the above 3
norms and thus are members of all three spaces H1(R;Rn), H2(R;Rn) and
H1(R;Rn). The following example, taken from [Dai90], demonstrate some of
the distinctions.

Example 3.4 (Hardy Spaces for Scalar Functions) Consider the two
functions

f1(t) =

�
0 8t < 0
2e�t=2 sin(3t) 8t � 0

(3.66)

f2(t) =

�
0 8t < 0
1 8t � 0

(3.67)

Notice that f2(t) is the ordinary step functions. Now f1(t) belongs to all three
spaces H1(R;R), H2(R;R) and H1(R;R). Both its absolute and its square are
integrable from 0 to 1 and it has �nite peak. In contrast, the step function f2(t)
is a member of H1(R;R) only, since neither of the 1- or 2-norms have �nite
values. f1(t) and f2(t) is shown in Figure 3.2 on the following page.
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Figure 3.2: The functions f1(t) (left) and f2(t) (right).

In both the new robust control theory and the older LQG theory, only L2(R;Rn)
is used for time-domain signals. The operator 2-norm kfk2 can be thought of
as the (square root of the) energy of a signal and is obviously closely related to
the root-mean-square (RMS) level of signals. The time domain spaces L1(R;Rn)
and L1(R;Rn) do have potential engineering applications but the control theory
for using them in design or analysis is not yet well-developed even though it is
an area of intensive research. Since L1(R;Rn) can represent fuel usage, and
L1(R;Rn) can treat the issue of actuator or sensor saturation, there are strong
motivations for developing such theories.

Example 3.5 L2(R;Rn) and L2(R;Cn) are Hilbert spaces under the scalar
product

< f; g >=

Z 1

�1

f(t)�g(t)dt (3.68)

The corresponding induced norm is the 2-norm since

kfk =< f; f >
1=2=

sZ 1

�1
f(t)�f(t)dt =

sZ 1

�1
kf(t)k2

2
dt = kfk2 (3.69)
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3.3.2 Frequency Domain Spaces

Now consider the vector valued function f(j!) which is de�ned for all frequencies
�1 < ! <1 (that is, on the imaginary axis), takes values in Cn and is square-
Lebesgue integrable on the imaginary axis. The space of all such functions is a
Hilbert space under the scalar product

< f; g >=
1

2�

Z 1

�1

f(j!)�g(j!)d! (3.70)

It is denoted the Lebesgue space L2(jR;Cn). The corresponding induced norm
is

kfk =< f; f >
1=2=

s
1

2�

Z 1

�1

f(j!)�f(j!)d! = kfk2 (3.71)

Next, H2(C;Cn) is the (Hardy) space of all functions f(s) which are analytic in
<e(s) > 0 (i.e., no right half plane (RHP) poles), take values in Cn and satisfy
the uniform square-integrability condition

sup
�

1

2�

Z 1

�1

f(� + j!)�f(� + j!)d! <1 (3.72)

Functions in H2(C;Cn) are not de�ned a priori on the imaginary axis. However,
we can get there in the limit. If f(s) 2 H2(C;Cn) then the limit

~f (j!) = lim
�!0

f(� + j!) (3.73)

exists and belong to L2(jR;Cn). The mapping f(s) ! ~f (j!) fromH2(C;Cn) to
L2(jR;Cn) is norm-preserving. It is therefore customary to consider H2(C;Cn)
as a Hilbert space under the scalar product (3.70) and with induced norm (3.71).

Notice that we have used the same notation for the time- and frequency domain
operator 2-norm kfk2. It can be shown that they are closely related. To do so
we need the following de�nition

De�nition 3.1 (Isomorphisms) Let H1 and H2 be normed space. An operator
U from H1 into H2 is called an isometry, if D(U ) = H1 (the domain of U is H1)
and kUfk2 = kfk1 (the norm of f on H1 equals the norm of Uf on H2) for all
f 2 H1. An isometry U from H1 into H2 is called an isomorphism of H1 onto
H2 if R(U ) = H2 (the range of U is H2). Thus an isomorphism is a one-to-one
mapping from one normed space to another which preserves norms.

We then have the following important lemma, see e.g. [Fra87].
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Lemma 3.3 (Fourier Transform) The Fourier transform is a Hilbert space
isomorphism from the time domain Lebesgue space L2(R;Rn) to the frequency
domain Lebesgue space L2(jR;Cn) and from the time domain Hardy space
H2(R;Rn) to the frequency domain Hardy space H2(C;Cn).

Lemma 3.3 says in particular that H2(C;Cn) is just the set of Laplace transforms
of signals in H2(R;Rn). Furthermore, if f(t) 2 H2(R;Rn), then its Laplace
transform f(s) 2 H2(C;Cn) and

sZ 1

0

f(t)�f(t)dt =

s
1

2�

Z 1

�1

f(j!)�f(j!)d! (3.74)

since they are related by a norm preserving isomorphism. Equation (3.74) can
also be recognized as a result of Parcevals Theorem.

Finally we will present 4 frequency domain spaces of matrix-valued functions.

� L2(jR;Cm�n) is the space of all functions F (j!), de�ned on the imaginary
axis, which take values inCm�n and are square-integrable on the imaginary
axis. L2(jR;Cm�n) is a Hilbert space under the scalar product

< F;G >=
1

2�

Z 1

�1
tr fF (j!)�G(j!)gd! (3.75)

The corresponding induced norm is given by

kFk2 =< F;F >
1=2=

s
1

2�

Z 1

�1

tr fF (j!)�F (j!)gd! (3.76)

� H2(C;Cm�n) is the space of all functions F (s) which are analytical in
<e(s) > 0 (no RHP poles), take values in Cm�n and satisfy the uniform
square-integrability condition

sup
�>0

1

2�

Z 1

�1

tr fF (� + j!)�F (� + j!)gd! <1 (3.77)

Using similar arguments as in the H2(C;Cn) case it is customary to con-
sider H2(C;Cm�n) as a Hilbert space under the scalar product (3.75) and
with induced norm (3.76).

� L1(jR;Cm�n) is the space of all functions F (j!), de�ned on the imaginary
axis, which take values in Cm�n and are bounded on the imaginary axis:

sup
!2R

kF (j!)k2 <1 (3.78)
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The 2-norm in (3.78) on the facing page is the usual (constant) matrix 2-
norm, see (3.15) on page 17, which is equal to the maximum singular value.
L1(jR;Cm�n) is a Banach space under the norm

kFk1 = sup
!2R

kF (j!)k2 = sup
!2R

��(F (j!)) (3.79)

� H1(C;Cm�n) is the space of all functions F (s) which are analytic in
<e(s) > 0 (no RHP poles), take values in Cm�n and are bounded in the
RHP:

sup
<e(s)>0

kF (s)k2 <1 (3.80)

With similar arguments as in theH2(C;Cn) case it is customary to consider
H1(C;Cm�n) as a Banach space under the norm (3.79).

Notice that (frequency domain) functions in L2(jR;Cm�n) and L1(jR;Cm�n)
are de�ned only on the imaginary axis, their domain is jR. It is thus not mean-
ingful to talk about their poles and zeros or their stability. They are simply
frequency responses, not transfer functions. Conversely, the domain of functions
in H2(C;Cm�n) and H1(C;Cm�n) is the entire complex plane C. They are
(stable) transfer functions, not just frequency responses.

H2(C;Cm�n) and H1(C;Cm�n) are stable spaces since they do not allow poles
in the RHP. Transfer functions in H2(C;Cm�n), however, must roll o� at high
frequencies to ful�ll (3.77) on the facing page. In contrast, transfer functions in
H1(C;Cm�n) may maintain non-zero gain as ! ! 1. In terms of state-space
realizations (A;B;C;D), the D matrix must be zero for a transfer function in
H2(C;Cm�n).

3.3.3 Transfer Function Norms

Let G(s) 2 H2(C;Cm�n) be a stable transfer function matrix. The norm

kG(s)k2 =
s

1

2�

Z 1

�1

tr fG(j!)�G(j!)gd! (3.81)

is then called the transfer function 2-norm. We will use the notation kG(s)k2 to
emphasize that we are dealing with a norm of a transfer function matrix. Methods
for reliable and e�cient computation of (3.81) are commercially available e.g.
through the MatLab �-Analysis and Synthesis Toolbox [BDG+93].

An popular interpretation of the transfer function 2-norm goes as follows. Let
the input-output relation be

y(s) = G(s)u(s) (3.82)
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and let u(t) be a vector white noise process with covariance matrix
E
�
u(t)uT (t)

	
= I. Then the RMS output power of y(t) is given by

E
�
y
T (t)y(t)

	
= kG(s)k2

2
(3.83)

Thus, the 2-normmeasures the RMS response to white noise. All quadratic-norm
control schemes, like e.g. LQ optimal control and Kalman-Bucy optimal �ltering,
minimizes the 2-norm of a closed loop transfer function matrix. In classical LQG
theory, cost functions are given in the time domain. However, it is now well-
known that they have frequency domain interpretations. Minimizing the 2-norm
of a transfer function matrix thus controls the output for a speci�c input signal,
namely vector white noise. In contrast, as we shall see shortly, minimizing the
1-norm of a transfer function matrix controls the output for a speci�ed set of
bounded input signals.

Let G(s) 2 H1(C;Cm�n) be a stable transfer function matrix. The norm

kG(s)k1 = sup
!

��(G(j!)) (3.84)

is then called the transfer function 1-norm. Methods for reliable and e�cient
computation of (3.84) are commercially available e.g. through the MatLab �-
Analysis and Synthesis Toolbox [BDG+93]. We then have the following lemma,
see e.g. [Fra87].

Lemma 3.4 If G(s) 2 H1(C;Cm�n), y(s) = G(s)u(s) with u(s) 2 H2(C;Cn)
then y(s) 2 H2(C;Cn) and

kG(s)k1 = sup
u(s)6=0

kG(s)u(s)k2
ku(s)k2 (3.85)

where k�k2 is the frequency domain operator 2-norm (3.71) on page 27. Similarly
if u(t) 2 H2(R;Rn), then y(t) 2 H2(R;Rn) and

kG(s)k1 = sup
u(t)6=0

kyk2
kuk2 (3.86)

where k � k2 is the time domain operator 2-norm (3.59) on page 24.

Thus the transfer function1-norm can be interpreted as induced by the operator
2-norm. kG(s)k1 is the transfer function analogue to the induced matrix 2-norm
for a constant matrix; compare (3.85)with (3.13) on page 17. In contrast, kG(s)k2
is the transfer function analogue to the Frobenius norm kAkF for a constant
matrix. Like the Frobenius norm, the norm kG(s)k2 is not an induced norm.
Thus it is not equal to the maximum possible gain for any of the three operator
norms k � k1, k � k2 or k � k1. Conversely, the transfer function1-norm equals the
maximum possible gain in signal energy measured by the operator 2-norm for a
set of bounded input signals, namely u(t) 2 H2(R;R

n).
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3.4 Summary

Sets, norms and spaces frequently used in robust control theory were discussed.
It was illustrated how the familiar vector p-norms induce corresponding matrix
norms. Of particular interest are the matrix 1, 2 and 1 norms partly because
they have obvious physical interpretations and partly because they can be ef-
fectively computed. In \classical" robust control theory the main emphasis has
been put on the matrix 2-norm. However, recently also the 1- and 1-norm have
attracted considerable attention. It is well known that the matrix 2-norm equals
the maximum singular value. In Section 3.1.2 on page 18 a thorough introduction
to singular values and the singular value decomposition were given. The singular
value concept has played a key role in modern control theory for a number of
reasons, in particular because it enables us to extend the classical Bode plot to
multivariable systems. A well known problem with multivariable systems is that
the \gain" of a transfer function matrix is not unique: it depends on the direction
of the input vector. The maximum (minimum) singular value measures the max-
imum (minimum) possible gain of a transfer matrix frequency response G(j!) in
terms of the 2-norm of the input vector before and after multiplication by G(j!).
Thus the gain of G(j!) is bounded by its maximumand minimum singular value
as the input vector varies over all possible directions. By plotting the singular
values ��(G(j!)) and �(G(j!)) for each frequency ! we obtain a singular value
Bode plot; the multivariable generalization of the classical magnitude Bode plot.

Next, Banach and Hilbert spaces were introduced. In particular, Lebesgue and
Hardy were considered. These spaces are standard in robust control theory. We
then illustrated how the concepts introduced for constant vectors and matrices
can be extended to linear spaces whose elements are time domain or frequency
domain functions. In particular, the transfer function 2-norm and the transfer
function 1-norm were considered. An important interpretation of the transfer
function 1-norm is that it is induced by the frequency domain 2-norm and
thus represents the transfer function analogue to the induced matrix 2-norm for
a constant matrix. The transfer function 1-norm equals the supremum over
frequency of the maximum singular value. Thus it measures the maximum gain
of G(j!) for all input directions and all frequencies. Furthermore, it was shown
that the transfer function 1-norm also equals the maximum possible gain in
signal energy measured by the time domain 2-norm for a signals in H2(R;R

n).
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Consider the general multivariable feedback scheme shown in Figure 4.1 on the
following page. The plant and controller transfer function matrix are denoted
G(s) and K(s) respectively.

Notice that the control con�guration in Figure 4.1 on the next page is a one-
degree-of-freedom control con�guration. Disturbances d(s) and reference sig-

33
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-�
��

- K(s) - G(s) -�
��?

-� �
r(s) e0(s) u(s) m(s)

d(s)

y(s)

?

�
��
�

6
�

n(s)

Figure 4.1: General feedback control con�guration.

nals r(s) have apart from the sign the same e�ect on the control error e(s) =
r(s) � y(s). If r and d vary in a similar manner then one only a single con-
troller is needed to compensate for r and d in e. However, if d and r behave
di�erently then using a one-degree-of-freedom control scheme some compromise
has to be found. If there are strict requirements on both set-point tracking and
disturbance attenuation, an acceptable compromise might not exist. Then addi-
tional controller blocks have to be included into the control con�guration. For
example, a pre-compensator on r(s) is often included to improve the transient
response of the closed loop system. Using two-degree-of-freedom control con�g-
urations design of the feedback controller K(s) and the pre-compensator can be
handled sequentially and independently. First the feedback compensator K(s) is
designed to ful�ll the following goals:

� Nominal closed loop stability.

� Rejection of disturbances and measurement noise for the nominal closed
loop system (nominal performance).

� Robust closed loop stability.

� Robust performance.

Robust stability means that the closed loop system is stable under all possible
perturbations to the plant G(s). Robust performance will be used to indicate
that the closed loop system is stable and that the performance requirements are
met under all possible perturbations to the plant G(s).

Having determined the feedback controller K(s) it can secondly be judged
whether a pre-compensator is needed to improve the transient response prop-
erties of the controlled system. The determination of such a compensator is then
reduced to an open loop problem which can usually be solved through simple
pole-zero cancellations.
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In this work we will deal exclusively with the feedback problem.

4.1 Nominal Stability

The stability of a multivariable feedback control system is determined by the
extended or generalized Nyquist stability criterion [MZ89].

Theorem 4.1 (Generalized Nyquist Stability Criterion I) If the open
loop transfer function matrix G(s)K(s) has p poles in the right-half s-plane, then
the closed loop system is stable if and only if the map of det(I +G(s)K(s)), as s
traverses the Nyquist D contour once, encircles the origin p times anticlockwise
assuming no right-half s-plane zero-pole cancellations have occurred forming the
product G(s)K(s).

Remember that the Nyquist D contour goes up the imaginary axis from the origin
to in�nity, then along a semicircular arc in the right half plane until it meets the
negative imaginary axis and �nally up to the origin. If any poles of G(s)K(s)
are encountered on the imaginary axis the contour is indented so as to exclude
these poles.

An equivalent criterion can be established using characteristic loci. If �i(!)
denotes an eigenvalue of G(j!)K(j!) the characteristic loci is de�ned as the
graphs of �i(!) for 1 � i � n where n is the size of the product G(s)K(s) as j!
encircles the Nyquist D contour. Now let �arg [rad] denote the change in the
argument as s traverses the D contour so that �arg=(2�) equals the number of
origo encirclements. Since the determinant equals the product of the eigenvalues
we then have that

�argfdet(I +G(s)K(s))g = �arg

(Y
i

�i(I +G(s)K(s))

)
(4.1)

= �arg

(Y
i

(1 + �i(G(s)K(s)))

)
(4.2)

=
X
i

�arg (1 + �i(G(s)K(s))) (4.3)

Since the number of encirclements of 1 + �i(G(j!)K(j!)) around origo equals
the number of encirclements of �i(G(j!)K(j!)) around the Nyquist point -1 we
thus have the equivalent generalized Nyquist criterion in Theorem 4.2 on the
following page.
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Theorem 4.2 (Generalized Nyquist Stability Criterion II) If the open
loop transfer function matrix G(s)K(s) has p poles in the right-half s-plane, then
the closed loop system is stable if and only if the characteristic loci of G(s)K(s)
encircle the point (�1 + 0j) p times anticlockwise assuming no right-half s-plane
zero-pole cancellations have occurred.

The Generalized Nyquist Stability Criterion will be used in assessing not only
nominal stability but also robust stability of an uncertain closed loop system, see
Section 4.3 on page 42.

4.2 Nominal performance

From Figure 4.1 on page 34 it is easily seen that

y(s) = To(s) (r(s) � n(s)) + So(s)d(s) (4.4)

e0(s) = So(s) (r(s)� d(s)� n(s)) (4.5)

e(s) = r(s) � y(s) = So(s) (r(s) � d(s)) + To(s)n(s) (4.6)

u(s) =Mo(s) (r(s) � n(s) � d(s)) (4.7)

where

To(s) = (I + G(s)K(s))�1G(s)K(s) = G(s)K(s) (I + G(s)K(s))�1 (4.8)

So(s) = (I + G(s)K(s))�1 (4.9)

Mo(s) = K(s) (I +G(s)K(s))�1 = (I +K(s)G(s))�1K(s) (4.10)

are the complementary sensitivity, sensitivity and control sensitivity functions
respectively. The subscript (�)o emphasizes that the sensitivity functions are all
evaluated at the plant output. Since matrix multiplication is not commutative
G(s)K(s) 6= K(s)G(s) in general. It is thus necessary to distinguish between the
sensitivity functions evaluated at the plant input and at the plant output, i.e. at
the actuators and the sensors respectively. The sensitivity functions at the plant
input are given by:

Ti(s) = K(s)G(s) (I +K(s)G(s))
�1

= (I +K(s)G(s))
�1
K(s)G(s) (4.11)

Si(s) = (I +K(s)G(s))�1 (4.12)

Mi(s) = (I +K(s)G(s))�1K(s) =Mo(s) (4.13)

It is seen that Mi(s) = Mo(s) = M (s), so the control sensitivity is independent
of the chosen loop breaking point. The relevance of the input sensitivities will
become clear shortly.



4.2 Nominal performance 37

Now let �(s) = r(s)�d(s) denote the \generic" external disturbance. Then from
Equation (4.4)-(4.7) on the facing page the following observations can be made

� For good disturbance error reduction, that is for �(s) to a�ect e(s) to the
least extent, (4.6) on the facing page shows that the sensitivity So(s) should
be small.

� For good sensor noise error reduction, that is for n(s) to a�ect e(s) to
the least extent, (4.6) on the facing page shows that the complementary
sensitivity To(s) should be small.

� For disturbances �(s) and noise n(s) to a�ect the control input u(s) to
the least extent Equation (4.7) on the facing page shows that the control
sensitivity M (s) should be small.

For scalar systems the size of the (scalar) transfer functions So(s), To(s) andM (s)
are naturally measured by the absolute value of the complex valued frequency
responses jSo(j!)j, jTo(j!)j and jM (j!)j. However, for multivariable systems the
frequency responses So(j!), To(j!) and M (j!) will be complex valued matrices.
Thus some scalar measure of the size of a complex valued matrix is needed. Since
eigenvalues are used in Theorem 4.2 on the facing page it is tempting to use the
spectral radius �

�(A) = max
i
j�i(A)j (4.14)

as measure. However, it is a well known fact that eigenvalues may give poor
indication of the \gain" of a transfer function matrixG(j!) if the gain is measured
as the 2-norm ratio of the output y(j!) to the input u(j!), see Example 4.1.
As discussed in Chapter 3 there is a sound physical motivation for using the
2-norm gain as measure for the size of G(j!). Other equally well motivated
measures (norms) exists, but the control theory is not yet fully developed for
these measures.

In Chapter 3 it was shown that the singular values of G(j!) for all ! � 0 is
the multivariable generalizations of the SISO amplitude Bode plot if we use the
2-norm as measure.

Example 4.1 (Eigenvalues and Singular Values) Consider the plant G(s)
is given by:

G(s) =

�
7 �8
�6 7

��
1

s+1
0

0 2

s+2

� �
7 �8
�6 7

�
(4.15)

=
1

(s+ 1)(s + 2)

�
2� 47s �56s
42s 2 + 50s

�
(4.16)
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In Figure 4.2 the size of the eigenvalues j�i(G(j!))j are compared with the sin-
gular values �i(G(j!)). Notice that the eigenvalues do not show that the 2-norm
gain of the system is very dependent on the direction of the input vector. The
current example is a slightly modi�ed version of Example 1 in [Ber94].
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Figure 4.2: The eigenvalues (left) and singular values (right) of G(j!).

Let us then return to the sensitivity functions So(s), To(s) and M (s). Using
largest singular value as measure, we may now specify standard performance
requirements in terms of the maximum singular value. For good rejection of
generic disturbances �(s) we will e.g. require that:

�� (So(j!)) = kSo(j!)k2 � 1 (4.17)

Similarly, for good sensor noise rejection we will require:

�� (To(j!)) = kTo(j!)k2 � 1 (4.18)

and for low sensitivity of the input to noise and disturbances

�� (M (j!)) = kM (j!)k2 � 1 (4.19)

However, because To(j!) + So(j!) = I the sensitivity So(j!) and the comple-
mentary sensitivity To(j!) cannot both be small in the same frequency range.
Consequently it is demonstrated by (4.17) and (4.18) that optimal tracking or
disturbance rejection and optimal sensor noise rejection cannot be obtained in
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the same frequency range! This is a well-known result from classical control.
Fortunately the spectra of disturbances �(s) are usually concentrated at low fre-
quencies whereas the spectra of measurement noise n(s) is concentrated at higher
frequencies. Thus one may shape the complementary sensitivity To(j!) and the
sensitivity So(j!) such that ��(So(j!)) is small at low frequencies and ��(To(j!))
is small at high frequencies. In modern process control systems, sensor noise
will frequently not be of primary concern. However, as we shall see in the next
section, robustness to unstructured uncertainty places bounds on the sensitivity
functions as well.

Applying weighting functions on the sensitivity functions we may select the fre-
quency area of interest. A typical performance speci�cation for robust control is
given as a weighted sensitivity speci�cation:

sup
!

�� (Wp2(j!)So(j!)Wp1(j!)) = kWp2(s)So(s)Wp1(s)k1 � 1 (4.20)

where Wp1(s) and Wp2(s) denotes the input and output weight respectively, see
Figure 4.3. It is assumed that the weights have been scaled such that a unity
bound on the RHS makes sense. The norm k�k1 in (4.20)is the transfer function
1 norm introduced in Section 3.3.3 on page 29.

- Wp1(s) - So(s) - Wp2(s) -�
0(s) �(s) e(s) e

0(s)

Figure 4.3: Output sensitivity So(s) with input weight Wp1(s) and output weight
Wp2(s).

The normalized input vector �0(s) is assumed to belong to the Hardy space
H2(C;Cn) with norm bounded by 1.

D0 =
(
�
0(s)

�����k�0k2 = 1

2�

sZ 1

�1

�(j!)��(j!)d! � 1

)
(4.21)

The input weight Wp1(s) is used to transform the normalized inputs �0(s) to
the physical inputs �(s) = Wp1(s)�

0(s). For example, disturbances � are usually
expected to have small amplitude at high frequencies. Thus, if disturbance rejec-
tion is of primary interest a low pass �lter would be a possible choice for Wp1(s).
If step set-point changes are most important we should choose an input weight
such that the physical input �(s) = s

�1, see Example 4.2 on the following page.
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Also if the physical inputs are measured in di�erent units, Wp1(s) can used to
normalize �(s) such that �0(s) have equal relative magnitude.

Example 4.2 (Performance Input Weights) The following example is
from [MZ89]. Assume that we expect steps on �(s). Thus we must choose an
input weight Wp1(s) such that �(s) = s

�1 and �0(s) 2 D0. For scalar systems a
seemingly obvious choice would be Wp1(s) = s

�1 corresponding to an impulse on
the normalized input �0(s). However, �0(s) = 1 is not a member of the set D0
since the integral becomes unbounded. Thus this will not work. The weight

Wp1(s) =
s + �

s
p
2�

� > 0 (4.22)

has the desired characteristics since the normalized input

�
0(s) =

p
2�

s+ �
(4.23)

satis�es

k�0k2 =
s

1

2�

Z 1

�1

�(j!)��(j!)d! =

s
1

2�

Z 1

�1

2�

!2 + �2
d! = 1

(4.24)

so that �0(s) 2 D0 and �(s) will be given by

�(s) = Wp1(s)�
0(s) =

s+ �

s
p
2�

p
2�

s+ �
=

1

s
(4.25)

The physical inputs �(s) are consequently assumed to belong to the set

D =
n
�(s)

���W�1
p1 �


2
� 1

o
(4.26)

Treating sets of generic disturbances �(s) is attractive because at the design
stage it is rarely possible to predict exactly what type of set-point changes r(s)
or disturbances d(s) are going to occur during actual operation. Of course, in
principle, the control performance could deteriorate signi�cantly if the assumed
disturbances for the design is not exactly equal to the input encountered in
practice.

The output weight Wp2(s) is used to trade o� the relative importance of the
individual errors in e(s) and to weigh the frequency range of primary interest.

Using Lemma 3.4 on page 30 we may give the following interpretation of the
performance speci�cation (4.20) on the preceding page. Let D0t denote the set of
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normalized causal inputs in the time domain

D0t =
(
�
0(t)

�����k�0k2 =
sZ 1

0

�0(t)T �0(t)dt � 1

)
(4.27)

Clearly �0(t) belongs to the Hardy space H2(R;Rn). If �0(t) 2 D0t then �0(s) 2 D0.
Then if Wp2(s)So(s)Wp1(s) 2 H1(C;Cm�n) (a stable proper transfer function
matrix with no poles on the imaginary axis) the normalized output e0(t) will
belong to H2(R;Rn) and the 2-norm of e0(t) will be bounded by

sup
�0(t)2D0t

ke0k2 = sup
�0(t)2D0t

sZ 1

0

e0(t)T e0(t)dt = kWp2(s)So(s)Wp1(s)k1(4.28)

The nominal performance objective is then de�ned as follows.

De�nition 4.1 (Nominal Performance Problem) The nominal perfor-
mance problem is, given weighting functions Wp1(s) and Wp2(s), to design a
stabilizing controller K(s) such that the cost function

Jnp = kWp2(s)So(s)Wp1(s)k1 (4.29)

is minimized. Thus

K(s) = arg min
K(s)2KS

kWp2(s)So(s)Wp1(s)k1 (4.30)

where KS denotes the set of all stabilizing controllers and inf(�) denotes the in-
�mum. If a controller can achieve kWp2(s)So(s)Wp1(s)k1 < 1, we say that the
closed loop system has nominal performance.

A very convenient way of formulating the nominal performance problem is by
use of the 2�2 Block Problem Formulation. In Figure 4.4 on the next page it is
shown how the weights Wp1(s) and Wp2(s) may be include into the closed loop
system in Figure 4.1 on page 34 if disturbance attenuation is considered. The
augmented closed loop system may then be represented as a 2�2 block problem.
The generalized plant N (s) contains the nominal plant G(s) as well as weighting
functions to reect nominal performance objectives. If set-point changes are of
primary importance d0(s) may be replaced by a normalized reference r0(s).

The transfer function from d
0(s) to e0(s) is given by the linear fractional trans-

formation (LFT):

e
0(s) = Fl(N (s);K(s))d0(s) (4.31)

=
�
N11(s) + N12(s)K(s)(I �N22(s)K(s))�1N21(s)

�
d
0(s) (4.32)

= Wp2(s)So(s)Wp1(s)d
0(s) (4.33)
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Figure 4.4: Nominal performance problem. Augmented closed loop system and
corresponding 2� 2 block problem.

Now the optimal nominal performance problem is one of �nding a controller such
that:

K(s) = arg min
K(s)2KS

kFl(N (s);K(s))k1 (4.34)

The problem (4.34) is a standard H1 problem which can be solved with well-
known techniques, see Section 4.5 on page 55.

The above formulation of performance objectives are not restricted to \ordinary"
sensitivity problems. If e.g. disturbances enter the loop not only on the output
y(s) but also on the input or even as an additional input to G(s) this will merely
change the transfer matrix expression in (4.20) on page 39. Similar rejection of
generic disturbances on both error e(s) and control signal u(s) may also easily
be incorporated. However, we will then consider the complete transfer matrix
from all disturbance inputs d0(s) to all error signals e0(s), thus including all cross-
terms. True multi-objective performance measures cannot be considered in the
standard H1 framework.

4.3 Robust Stability

In the early 1980's it was realized by a number of researchers, see e.g [DS81],
that robustness to unmodeled dynamics place upper bounds on the sensitivity
functions introduced in Section 4.2 on page 36.
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Let G(s) and GT (s) denote the nominal model and true system respectively.
Then introduce the following perturbation models:

� Additive uncertainty: GT (s) = G(s) + ~�(s).

� Input multiplicative uncertainty: GT (s) = G(s)(I + ~�(s)).

� Output multiplicative uncertainty: GT (s) = (I + ~�(s))G(s).

� Inverse input multiplicative uncertainty: GT (s) = G(s)(I + ~�(s))�1.

� Inverse output multiplicative uncertainty: GT (s) = (I + ~�(s))�1G(s).

The perturbation block ~�(s) is now assumed to be an unstructured full complex
block bounded using the matrix 2-norm:

k ~�(j!)k2 = ��( ~�(j!)) � `(!); 8! � 0 (4.35)

The perturbation ~�(j!) is thus a full complex matrix bounded in magnitude
by a frequency dependent scalar. As before, the choice of the bounding norm
is a compromise between those that best describe the plant perturbation and
those that lead to tractable mathematical problems. Using the 2-norm the per-
turbation models above describes well the e�ects of high frequency unmodeled
dynamics, in�nite-dimensional electro-mechanical resonances and time delays.
The perturbation structure (4.35)will, however, lead to conservative descriptions
of structured uncertainty like parameter variations. An important reason for us-
ing the 2-norm to bound ~�(j!) is that it leads to simple expressions for robust
stability.

Usually two diagonal weighting matricesWu1(s) and Wu2(s) are introduced such
that

~�(s) = Wu2(s)�(s)Wu1(s) (4.36)

and ��(�)(j!) � 1, 8!. Usually the input weight Wu1(s) is used to perform
any necessary scaling and Wu2(s) is used as a frequency weight to approximate
`(!). There is seldom any reason not to choose Wu1(s) and Wu2(s) as diagonal
matrices.

4.3.1 The Small Gain Theorem

Now the celebrated Small Gain Theorem, see e.g. [DV75], will be introduced
and applied in connection with the above uncertainty structures. Consider the
closed loop system in Figure 4.1 on page 34 and let P (s) = G(s)K(s) be a square
transfer function matrix.
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Theorem 4.3 (Small Gain Theorem) Assume that P (s) is stable. Then the
closed loop system is stable if the spectral radius �(P (j!)) < 1, 8!.

Proof of Theorem 4.3 (By contradiction) Assume that the spectral radius

�(P (j!)) < 1, 8! and that the closed loop system is unstable. Applying Theorem 4.1

on page 35 instability implies that the map of det(I + P (s)) encircles the origin as s
traverses the Nyquist D contour. Because the Nyquist contour is closed so is the map

of det(I + P (s)). Then there exists an � 2 [0; 1] and a frequency !� such that

det(I + �P (j!�)) = 0 i.e. the map goes through the origin (4.37)

,
Y
i

�i(I + �P (j!�)) = 0 (4.38)

, 1 + ��i (P (j!
�)) = 0 for some i (4.39)

, �i (P (j!
�)) = �1

�
for some i (4.40)

) j�i (P (j!�))j � 1 for some i (4.41)

which is a contradiction since we assumed that �(P (j!)) < 1, 8!.

Theorem 4.3 states that for an open-loop stable system, a su�cient condition for
closed loop stability is to keep the loop \gain" measured by �(P (j!)) less than
unity. Fortunately this is only a su�cient condition for stability. Otherwise the
usual performance requirement of high controller gain for low frequencies could
not be achieved. Theorem 4.3 thus provides only a su�cient, that is, a potentially
(very) conservative condition for stability.

The SmallGain Theorem will now be used to assess the closed loop stability under
unstructured norm bounded perturbations of the form (4.35) on the preceding
page. This application is classic in H1 control theory. A famous and often
quoted paper on this is [DS81]. Let us e.g. assume an additive perturbation:

GT (s) = G(s) +Wu2(s)�(s)Wu1(s) (4.42)

where ��(�(j!)) � 1. This can be represented in block-diagram form as in
Figure 4.5 on the facing page. Let P (s) denote the transfer matrix \seen" by �,
see also Figure 4.5 on the facing page. It is easily seen that

P (s) = Wu1(s)K(s)(I + G(s)K(s))�1Wu2(s) (4.43)

= Wu1(s)M (s)Wu2(s) (4.44)

We then have the following theorem.

Theorem 4.4 (Robust Stability) Assume that the interconnection P (s) is
stable and that the perturbation �(s) is of such a form that the perturbed closed
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Figure 4.5: Closed loop system with additive perturbation. P (s) denotes the trans-
fer function \seen" by the perturbation �.

loop system is stable if and only if the map of det(I�P (s)�(s)) as s traverses the
D contour does not encircle the origin. Then the closed loop system in Figure 4.5
is stable for all perturbations �(s) with ��(�(j!)) � 1 if and only if one of the
following four equivalent conditions are satis�ed:

det(I � P (j!)�(j!)) 6= 0 8!, 8�(j!) 3 ��(�(j!)) � 1 (4.45)

, �(P (j!)�(j!)) < 1 8!, 8�(j!) 3 ��(�(j!)) � 1 (4.46)

, ��(P (j!)) < 1 8! (4.47)

, kP (s)k1 < 1 (4.48)

Proof of Theorem 4.4 Assume that there exist a perturbation ��(s) such that
��(��(j!)) � 1 and that the closed loop system is unstable. Then the map of

det(I � P (s)�(s)) encircles the origin as s traverses the Nyquist D contour. Because

the Nyquist contour is closed so is the map of det(I � P (s)�(s)). Consequently there

exists an � 2 [0; 1] and a frequency !� such that

det(I � P (j!�)���(j!�)) = 0: (4.49)
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Since

��(���(j!�)) = ���(��(j!�)) � 1 (4.50)

���(s) is just another perturbation from the set of possible perturbations. Thus the
closed loop system is stable if and only if (4.45) on the preceding page is satis�ed. The

su�ciency of (4.46) on the page before follows directly from Theorem 4.3 on page 44.

Since

�(P (j!)�(j!)) � ��(P (j!)�(j!)) � ��(P (j!))��(�(j!))

� ��(P (j!)) � kP (s)k
1

(4.51)

both (4.47) on the page before and (4.48) on the preceding page are su�cient conditions
for closed loop stability.

To prove necessity of (4.46) on the page before assume that there exists a ��(s) for

which ��(��(j!)) � 1 and a frequency !� such that �(P (j!�)��(j!�)) = 1. Then

j�i(P (j!�)��(j!�))j = 1 for some i (4.52)

, �i(P (j!
�)��(j!�)) = e

j� for some i (4.53)

, �i(P (j!
�)e�j���(j!�)) = +1 for some i (4.54)

, �i(P (j!
�) ~��(j!�)) = +1 for some i (4.55)

where ~��(s) is just another perturbation from the set and �(P (j!�) ~��(j!�)) = 1.

Therefore

det(I � P (j!�) ~��(j!�)) = 0 (4.56)

and the necessity of (4.46) on the preceding page) has been shown.

To prove necessity of (4.47) on the page before we will show that there exists a per-

turbation ��(s) for which ��(��(j!)) � 1 such that det(I � P (j!�)��(j!�)) = 0 if
��(P (j!�)) = 1. To do so, let D = diagf1; 0; � � � ; 0g and perform a singular value

decomposition of P (j!�):

P (j!�) = U�V H (4.57)

where U and V are unitary matrices. Let ��(j!�) = V DUH . Since U and V are

unitary ��(��) = 1. We then have that

det(I � P (j!�)��(j!�)) = det(I � U�V H
V DU

H) = det(I � U�DUH) =

det
�
U(I � �D)UH

�
= det(U) det(I ��D) det(UH) = det(I ��D) = 0 (4.58)

since the �rst row and column in I��D are zero. In fact, there exists an in�nite number
of perturbations for which (4.58)is ful�lled since we may choose D = diagf1; �2; � � � ; �kg
where �i � 1 for i = 2; � � � ; k.
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The above proof is due to Lethomaki [Let81]. Theorem 4.4 on page 44 states
that if kP (s)k1 < 1, there is no perturbation �(s) (��(�(j!)) � 1) which makes
det(I�P (s)�(s)) encircle the origin as s traverses the Nyquist D contour. Notice
that we assumed that the absence of encirclements is necessary and su�cient to
maintain stability. This is the case, for example, when all perturbations �(s)
are stable or when GT (s) and G(s) has the same number of unstable (right half
plane) poles. Any one of these assumptions are standard in robust control.

Notice that the 1-norm constraint (4.48) on page 45 in Theorem 4.4 is not
conservative since we have bounded the uncertainty in terms of the spectral norm
(maximum singular value). Thus if kP (s)k1 � 1 there exists a perturbation
��(s) for which ��(��(j!)) � 1 that will destabilize the closed loop system. If
the uncertainty is tightly represented by �(s), then the singular value bound on
P (j!) is thus a tight robustness bound.

Now let us return to the additively perturbed closed loop system in Figure 4.5
on page 45. From Theorem 4.4 on page 44, robust stability of the closed loop
system is thus obtained if and only if

��(P (j!)) < 1 8! (4.59)

, ��
�
Wu1(j!)K(j!) (I +G(j!)K(j!))�1Wu2(j!)

�
< 1 8! (4.60)

, �� (Wu1(j!)M (j!)Wu2(j!)) < 1 8! (4.61)

As for additive uncertainty, we may compute singular value bounds that ensure
robust stability under other perturbation models. In Table 4.1 results are given
for the uncertainty structures introduced previously.

Perturbation Stability Norm Bound

Additive uncertainty kWu1(s)M (s)Wu2(s)k1 < 1
Input multiplicative uncertainty kWu1(s)Ti(s)Wu2(s)k1 < 1
Output multiplicative uncertainty kWu1(s)To(s)Wu2(s)k1 < 1
Inverse input mult. uncertainty kWu1(s)Si(s)Wu2(s)k1 < 1
Inverse output mult. uncertainty kWu1(s)So(s)Wu2(s)k1 < 1

Table 4.1: Di�erent uncertainty descriptions and their inuence on the sensitivity
functions.

The robust stability objective is thus, given e.g. an additive uncertainty speci�-
cation Wu2(s)�(s)Wu1(s), to design a nominally stabilizing controller K(s) such
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Figure 4.6: Uncertain closed loop system and corresponding 2� 2 block problem.

that the cost function

Ju = kWu1(s)M (s)Wu2(s)k1 (4.62)

is minimized. Thus

K(s) = arg min
K(s)2KS

kWu1(s)M (s)Wu2(s)k1 (4.63)

where KS denotes the set of all nominally stabilizing controllers. If a controller
can achieve Ju < 1, we say that the closed loop system is robustly stable. Notice
then how the structure of the robust stability problem (4.63)equals the structure
of the nominal performance problem (4.30) on page 41. Consequently the robust
stability problem may be formulated as a 2 � 2 block problem as well. Given
an additive uncertainty speci�cation, a 2� 2 block problem formulation may be
derived, see Figure 4.6. Compare also with Figure 4.5 on page 45.

The transfer function from w(s) to z(s) s given by the LFT

z(s) = Fl(N (s);K(s))w(s) (4.64)



4.4 Robust Performance 49

= Wu1(s)K(s) (I + G(s)K(s))�1Wu2(s)w(s) (4.65)

= Wu1(s)M (s)Wu2(s)w(s) (4.66)

The optimal robust stability problem is thus one of �nding the controller given
by

K(s) = arg min
K(s)2KS

kFl(N (s);K(s))k1 (4.67)

Like the nominal performance problem, the robust stability problem (4.67) is a
standard H1 problem with a known solution.

4.4 Robust Performance

The robust performance objective is derived from (4.29) on page 41 with nominal
sensitivity So(s) replaced by perturbed sensitivity ~So(s):

Jrp =
Wp2(s) ~So(s)Wp1(s)


1

(4.68)

Let us once more illustrate with an additive uncertainty model. The robust
performance problem can then be formulated as in Figure 4.7 on the following
page.

Let P (s) = Fl(N (s);K(s)). Then the transfer function from d
0(s) to e0(s) is

given by the LFT

e
0(s) = Fu(P (s);�(s))d

0(s) (4.69)

=
h
P22(s) + P21(s)�(s) (I � P11(s)�(s))�1 P12(s)

i
d
0(s) (4.70)

= Wp2(s) (I + G(s)K(s) + G(s)Wu2(s)�(s)Wu1(s))
�1
Wp1(s) (4.71)

= Wp2(s) ~So(j!)Wp1(s) (4.72)

The optimal robust performance problem can then be formulated

K(s) = arg min
K(s)2KS

sup
�(s)3k�(s)k

1
�1
kFu(Fl(N (s);K(s));�(s))k1 (4.73)

If

kFu(Fl(N (s);K(s));�(s))k1 = kFu(P (s);�(s))k1 < 1 (4.74)

for all �(s) with k�(s)k1 � 1, we say that the closed loop system has robust
performance. Notice that the robust performance condition (4.74)is similar to the
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Figure 4.7: Robust performance problem with additive uncertainty.

robust stability condition (4.48) in Theorem 4.4 on page 44. Hence we conclude:
the system Fu(P (s);�(s)) satis�es the robust performance condition (4.74) on
the page before if and only if it is robustly stable for a norm bounded matrix
perturbation �p(s) with ��(�p(j!)) � 1. Thus by augmenting the perturbation
structure with a full complex performance block �p(s) the robust performance
condition can be equivalenced with a robust stability condition, see also Figure 4.8
on the facing page.

Let ~�(s) = diagf�(s);�p(s)g denote the augmented perturbation matrix. We
then have the following theorem.

Theorem 4.5 (Robust Performance) Assume that the interconnection
P (s) = Fl(N (s);K(s)) is stable and that the perturbation ~�(s) is of such a form
that the perturbed closed loop system in Figure 4.8 on the facing page is stable



4.4 Robust Performance 51

�p(s)

d
0(s) e

0(s) �!

� �(s)
�p(s)

Fl(P (s);�(s))-
Fl(N (s);K(s))

-
-

�
�w(s)

d
0(s)

z(s)

e
0(s)

Figure 4.8: Block diagram structure for robust performance check. The pertur-
bation structure is augmented with a full complex performance block
�p(s).

if and only if the map of det(I � P (s) ~�(s)) as s traverses the D contour does
not encircle the origin. Then the system Fu(P (s);�(s)) will satisfy the robust
performance criterion (4.74) on page 49 if and only if P (s) is stable for all
perturbations ~�(s) with ��( ~�(j!)) � 1:

det(I � P (j!) ~�(j!)) 6= 0 8!; 8 ~�(j!) 3 ��( ~�(j!)) � 1 (4.75)

, �(P (j!) ~�(j!)) < 1 8!; 8 ~�(j!) 3 ��( ~�(j!)) � 1 (4.76)

( kP (s)k1 < 1 (4.77)

Proof of Theorem 4.5 Follows from Theorem 4.4 on page 44. Since the structure on
~�(s) is restricted, (4.77) is a su�cient condition only.

Clearly robust performance implies both nominal performance and robust sta-
bility. Thus a necessary condition for robust performance in connection with
additive uncertainty is:

Jnp = kWp2(s)So(s)Wp1(s)k1 < 1 (4.78)

Ju = kWu1(s)M (s)Wu2(s)k1 < 1 (4.79)

The su�cient condition for robust performance (4.77) implies that the transfer
function P (s) = Fl(N (s);K(s)) from [w(s); d0(s)] to [z(s); e0(s)] has1-norm less
than one. We may thus formulated an H1 problem:

K(s) = arg min
K(s)2KS

kFl(N (s);K(s))k1 (4.80)

with a known solution. If

kFl(N (s);K(s))k1 < 1 (4.81)
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the closed loop system will have robust performance. However, since (4.77) on
the preceding page is a su�cient condition only it may be arbitrarily conservative.
The next two examples will shed some light on this issue.

Example 4.3 (Robust Performance Problem I) Assume that a perfor-
mance speci�cation on the output sensitivity function So(s) of the form (4.20)
on page 39 is given. Also an additive robust stability speci�cation on the control
sensitivity function M (s) of the form (4.61) on page 47 is assumed. The problem
considered is thus the one illustrated in Figure 4.7 on page 50. The closed loop
system Fl(N (s);K(s)) is then given by

Fl(N (s);K(s)) = �
�
Wu1(s)M (s)Wu2(s) Wu1(s)M (s)Wp1(s)
Wp2(s)So(s)Wu2(s) Wp2(s)So(s)Wp1(s)

�
(4.82)

A su�cient conditions for robust performance is thus kFl(N (s);K(s))k1 < 1.
Furthermore since

kFl(N (s);K(s))k1 < 1 (4.83)

, ��

��
Wu1(j!)M (j!)Wu2(j!) Wu1(j!)M (j!)Wp1(j!)
Wp2(j!)So(j!)Wu2(j!) Wp2(j!)So(j!)Wp1(j!)

��
< 1 8!(4.84)

) max(��(Wu1(j!)M (j!)Wu2(j!)); ��(Wu1(j!)M (j!)Wp1(j!));

��(Wp2(j!)So(j!)Wu2(j!)); ��(Wp2(j!)So(j!)Wp1(j!))) < 1 8!(4.85)
) ��(Wu1(j!)M (j!)Wu2(j!)) < 1; ��(Wp2(j!)So(j!)Wp1(j!)) < 1 8!(4.86)

the robust performance condition will imply both robust stability and nominal
performance. However, due to the o�-diagonal elements in Fl(N (s);K(s)), the
robust performance criterion may be conservative in the general case. If the
weighting functions Wp1(s) and Wu2(s) are restricted to scalar transfer functions
multiplied with a unity matrix of appropriate dimension, that is if

Wp1(s) = wp1(s) � I; Wu2(s) = wu2(s) � I (4.87)

where wp1(s) and wu2(s) are scalar systems, it will now be shown that the su�-
cient robust performance conditions (4.77) on the preceding page is only slightly
conservative. Because of (4.87) the uncertainty weights may be gathered in
~Wu1(s) = Wu1(s)wu2(s) and the performance weights in ~Wp2(s) = Wp2(s)wp1(s).
The robust performance requirement can then be written

��(Fl(N (j!);K(j!))) < 1 8! (4.88)

, ��

��
~Wu1(j!)M (j!) ~Wu1(j!)M (j!)
~Wp2(j!)So(j!) ~Wp2(j!)So(j!)

��
< 1 8! (4.89)
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, ��

��
~Wu1(j!)M (j!)
~Wp2(j!)So(j!)

��
<

1p
2

8! (4.90)

( maxf��( ~Wu1(j!)M (j!)); ��( ~Wp2(j!)So(j!))g < 1

2
8! (4.91)

The inequality (4.90) follows since

��

��
~Wu1(j!)M (j!) ~Wu1(j!)M (j!)
~Wp2(j!)So(j!) ~Wp2(j!)So(j!)

��
=
p
2��

��
~Wu1(j!)M (j!)
~Wp2(j!)So(j!)

��
(4.92)

Thus (4.91) becomes a su�cient condition for robust performance. Consequently
if the nominal performance and robust stability criterions are satis�ed with some
margin { namely a factor 2 { robust performance will be guaranteed. Conversely,
for a nominal performance and additive uncertainty speci�cation restricted as
in (4.87) on the facing page, robust performance can not be arbitrarily poor if
nominal performance and robust stability is obtained since kFl(N (s);K(s))k1
then will be bounded by two (implied by (4.91)! (4.88)). Fully equivalent results
can be found for output multiplicative uncertainty.

Example 4.4 (Robust Performance Problem II) Now let us assume a
standard performance speci�cation as in Example 4.3 but an input multiplica-
tive robust stability speci�cation on the input complementary sensitivity Ti(s),
see Table 4.1 on page 47. We may rewrite this as an additive perturbation simply
by multiplying Wu2(s) in Example 4.3 with the plant transfer function G(s). The
(su�cient) robust performance condition then becomes

��(Fl(N (j!);K(j!))) < 1 , (4.93)

��

��
Wu1(j!)M (j!)G(j!)Wu2(j!) Wu1(j!)M (j!)Wp1(j!)
Wp2(j!)So(j!)G(j!)Wu2(j!) Wp2(j!)So(j!)Wp1(j!)

��
< 1 (4.94)

for all ! � 0. Note that M (s)G(s) = Ti(s). Again, due to the o�-diagonal
elements in Fl(N (s);K(s)), the condition (4.94) may be conservative. In fact,
even if the weightings are restricted as in (4.87) on the facing page it will be
shown that (4.94) may be arbitrarily conservative. With weightings restricted as
in (4.87) on the facing page note that the robust stability criterion becomes

��
�
~Wu1(j!)M (j!)G(j!)

�
< 1 8! (4.95)

( ��
�
~Wu1(j!)M (j!)��(G(j!))

�
< 1 8! (4.96)

, ��
�
��(G(j!)) ~Wu1(j!)M (j!)

�
< 1 8! (4.97)

which corresponds to robust stability for an additive perturbation
�(s)��(G(s)) ~Wu1(s). Thus if the system is stable for the additive pertur-
bation �(s)��(G(s)) ~Wu1(s) it will also be stable for the input multiplicative
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perturbation �(s) ~Wu1(s). Notice that this corresponds to approximating G(s)
with its largest singular value and moving it to the uncertainty input weight
~Wu1(s), see Figure 4.9.

G(s) �
��

-�

�
��

G(s) -�

u(s) y(s)

u(s) y(s)

- Wu1(s) - �(s) -wu2(s)I - G(s)

?
- -

- ��(G(s)) ~Wu1(s) - �(s)

?
- -

#

Figure 4.9: Approximating G(s) with its largest singular value in the uncertainty
speci�cation.

A su�cient condition for robust performance is then that for all ! � 0:

��(Fl(N (j!);K(j!))) < 1 (4.98)

( ��

��
��(G(j!)) ~Wu1(j!)M (j!) ��(G(j!)) ~Wu1(j!)M (j!)

~Wp2(j!)So(j!) ~Wp2(j!)So(j!)

��
< 1(4.99)

, ��

��
��(G(j!)) ~Wu1(j!)M (j!)

~Wp2(j!)So(j!)

��
<

1p
2

(4.100)

(
8<
:

��(G(j!))��( ~Wu1(j!)Ti(j!)G�1(j!)) <
1

2

��( ~Wp2(j!)So(j!)) <
1

2

(4.101)

(

8>><
>>:

��(G(j!))

�(G(j!))
��( ~Wu1(j!)Ti(j!)) <

1

2

��( ~Wp2(j!)So(j!)) <
1

2

(4.102)
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,

8>><
>>:

��( ~Wu1(j!)Ti(j!)) <
1

2�(G(j!))

��( ~Wp2(j!)So(j!)) <
1

2

(4.103)

Thus (4.103) becomes a su�cient condition for robust performance. Inequal-
ity (4.103) shows that even when nominal performance and robust stability are
satis�ed with reasonable margin, the (su�cient) robust performance criterion
can be violated by an arbitrarily large amount if the plant is ill-conditioned. Con-
versely, if �(G(j!)) � 1, 8!, then robust performance can not be arbitrarily poor
if nominal performance and robust stability are obtained.

4.5 Computing the H1 Optimal Controller

Let us �nally briey present a solution to the H1 optimal control problem. The
problem of solving minimizations of the form

K(s) = arg min
K(s)2KS

kFl(N (s);K(s))k1 (4.104)

was probably the single most important research area within the automatic con-
trol community in the 1980'ies. At �rst, only algorithms that produced1 optimal
controllers of very high order were available, see e.g. [Fra87]. For polynominal sys-
tems numerical algorithms were available which provided H1 optimal controllers
of the same order as the augmented plant N (s), see e.g [Gri86, Gri88, Kwa85].
However, the numerics were only e�cient for scalar systems. Then in early
1988, Doyle, Glover, Khargonekhar and Francis announced an state-space H1
solution which, like the LQG solution, involved only two Ricatti equations and
yielded a controller with the same order as the generalized plant. The results
were presented at the 1988 American Control Conference and in the 1989 IEEE
paper [DGKF89]. This was a major breakthrough for H1 control theory. The
parallels now apparent between H1 and LQG theory are pervasive. Both con-
trollers have a state estimator-state feedback structure, two Ricatti equations
provides the full state feedback matrix Kc and the output injection matrix Kf

in the estimator, respectively. The paper [DGKF89] is now known simply as the
DGKF paper.

Given a block 2�2 system N (s) like in Figure 4.4 on page 42 and a required upper
bound  on the closed loop in�nity norm kFl(N (s);K(s))k1 the solution returns
a parameterization, which we will denote the DGKF Parameterization, K(s) =
Fl(J(s); Q(s)) of all stabilizing controllers such that kFl(N (s);K(s))k1 < ,
see Figure 4.10 on the following page. Any stable transfer function matrix
Q(s) satisfying kQ(s)k1 <  will stabilize the closed loop system and cause
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kFl(N (s);K(s))k1 < . Any Q(s) which is unstable or has kQ(s)k1 >  will
destabilize the closed loop system, or cause kFl(N (s);K(s))k1 >  or both. The
solution is provided by Theorem 4.6.

Q(s)

N (s)
-

uQ(s) yQ(s)

- -d
0(s) e

0(s)

�
J(s)

y(s)u(s)

�

-

Figure 4.10: The DGKF parameterization of all stabilizing controllers.

De�nition 4.2 (Ricatti Solution) Denote the solution X to the Ricatti equa-
tion

A
T
X +XA �XRX +Q = 0 (4.105)

by X = Ric(H) where H is the associated Hamiltonian matrix

H =

�
A �R
�Q �AT

�
(4.106)

Theorem 4.6 (H1-Suboptimal Control Problem) The following solution
is taken from [Dai90]. Let N (s) be given by its state-space matrices A, B, C
and D and introduce the notation:

N (s) =

2
4 A B1 B2

C1 D11 D12

C2 D21 D22

3
5 (4.107)

Make the following assumptions:

1. (A;B1) and (A;B2) are stabilizable.
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2. (C1; A) and (C2; A) are detectable.

3. DT
12D12 = I and D21D

T
21 = I.

4. D11 = D22 = 0.

Let

~D12 = I �D12D
T
12;

~D21 = I �D
T
21D21 (4.108)

and solve the two Ricatti equations:

X1 = Ric

�
A� B2D

T
12C1 

�2
B1B

T
1 � B2B

T
2

�CT
1
~DT
12
~D12C1 � �A� B2D

T
12C1

�T
�

(4.109)

Y1 = Ric

" �
A� B1D

T
21C2

�T

�2
C
T
1 C1 � C

T
2 C2

�B1
~D21

~DT
21B

T
1 � �A� B1D

T
21C2

�
#

(4.110)

Form the state feedback matrix Kc, the output injection matrix Kf and the ma-
trix Z1:

Kc =
�
D
T
12C1 +B

T
2 X1

�
(4.111)

Kf =
�
B1D

T
21 + Y1C

T
2

�
(4.112)

Z1 =
�
I � 

�2
Y1X1

��1
(4.113)

If X1 � 0 and Y1 � 0 exist and if the spectral radius �(X1Y1) < 
2, then the

H1 DGKF Parameterization is given by:

J(s) =

2
4 A1 Z1Kf Z1

�
B2 + 

�2
Y1C

T
1 D12

�
�Kc 0 I

� �C2 + 
�2
D21B

T
1
X1

�
I 0

3
5(4.114)

=

�
J11(s) J12(s)
J21(s) J22(s)

�
(4.115)

where A1 is given by

A1 = A�B2Kc + 
�2
B1B

T
1
X1 � Z1Kf

�
C2 + 

�2
D21B

T
1
X1

�
(4.116)

Stabilizing controllers K(s) may now be constructed by connecting J(s) to any
stable transfer function matrix Q(s) with kQ(s)k1 < :

K(s) = Fl(J(s); Q(s)) = J11(s) + J12(s)Q(s) (I � J22(s)Q(s))�1 J21(s) (4.117)

The 1-norm of the closed loop system Fl(N (s); Fl(J(s); Q(s))) satisfy:

kFl (N (s); Fl(J(s); Q(s)))k1 <  (4.118)

The controller obtained for Q(s) = 0 is known as the central H1 controller.
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4.5.1 Remarks on the H1 Solution

Notice that Theorem 4.6 on page 56 does not provide the optimalH1 control law.
Rather it provides a control law satisfying kFl(N (s);K(s))k1 <  after  has
been speci�ed, provided that a control law exists which can do this. Consequently
the designer must iterate on  to approach the optimal 1-norm 0. This is
di�erent to the LQG-optimal control problem where the optimal solution is found
without iteration. The central controller obtained for Q(s) = 0 is not generally
the controller achieving the smallest1-norm of the closed loop system. However,
since it is a valid controller, given the desired bound , it is customary to choose
this particular controller for implementation. Speci�cally, in the commercially
available software [CS92, BDG+93], this is the controller returned by the H1
control synthesis algorithms.

Furthermore note that even though theH1 problem is stated in the frequency do-
main, the solution is presented in state space form. This combination of frequency
domain speci�cations and state space computation has become symptomatic in
modern control theory with polynominal systems being an exception.

Consider the necessary assumptions 1-4. Assumption 1 and 2 are clearly rea-
sonable. They simply state that the generalized plant shall be stabilizable and
detectable. Assumption 3 can only be met, ifD12 has no more columns than rows
(is \tall") and if D21 has no more rows than columns (is \fat"). This implies
that:

dim e
0(s) � dim u(s); dim d

0(s) � dim y(s) (4.119)

where dim x denotes the dimension of x. Consequently the number of external
outputs (error signals) must be equal to or exceed the number of controlled
inputs (actuators) and equivalently, the number of external inputs must be equal
to or exceed the number of measured outputs (sensors). For SISO systems, since
dim u = dim y = 1, it simply means that both d

0 and e
0 should be present.

Clearly a fair assumption. For MIMO systems, however, we may form sensible
problems where (4.119) is not ful�lled. By adding �ctitious inputs or outputs
with small weights this may be avoided.

Given a general D matrix where D12 and D
T
21

has full column rank and the
desired upper bound , a series of scalings and loop shifting operations can be
carried out to put D into the form:

D11 = 0 (4.120)

D12 =

�
0
I

�
(4.121)

D21 =
�
0 I

�
(4.122)

D22 = 0 (4.123)
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so that assumptions 3 and 4 are ful�lled. A suitable loop shifting and scaling
algorithm is described in Appendix A on page 287. The necessary rank conditions
on D12 and D21 imply that:

rank D12 = dim u; rank D21 = dim y (4.124)

These two conditions are very common in the literature on robust control. In
the MatLab software [CS92, BDG+93] they must be ful�lled both for the H2

and the H1 problem. The rank condition on D12 states that there must be a
direct path from the control input u(s) to the error output e0(s). In other words,
the open loop transfer function from u(s) to e0(s) must have equal number of
poles and zeros. Equivalently for the rank condition on D21 to be ful�lled there
must be a direct path from the external input d0(s) to the measured output y(s).
However it is easy to formulate sensible control problems within the 2� 2 block
structure that do not ful�ll the rank conditions (4.124). These problems may
usually be reformulated so as to ful�ll (4.124), but it does mean that care has to
be taken when formulating the 2� 2 problem.

The structure of the H1 controller is shown in Figure 4.11 on the following page.
Like the LQG solution it involves a feedback estimator for the estimated state
vector x̂(s) and a full state feedback matrixKc. In contrast to the LQG solution,
a scaling matrix Z1 appears in series with the output injection matrix Kf and
a few extra terms appear for BY = 

�2
D21B

T
1
X1, BX = 

�2
B1B

T
1
X1 and

BQ = Z1(B2 + 
�2
Y1C

T
1 D12).

It can be shown, see e.g [TCB95], that for  ! 1 the corresponding Youla
parameterization for the H2 (or LQG) problem is recovered from the DGKF
Parameterization. Consequently the H2 problem is simply a special case of the
H1 problem. Comparing the Hamiltonians for the H1 and H2 Ricatti equations
reveal that the only di�erence is the extra terms �2B1B

T
1 and �2C1C

T
1 in the

upper right corners. The H2 full state feedback matrix Kc does not depend on
B1; that is, the way in which the external signal d0(s) enter the system does
not a�ect the H2 state feedback solution. However it does a�ect the H1 state
feedback solution. Similarly, the H2 optimal state estimator (the Kalman �lter)
does not depend on C1; that is, equal weight is put on all states. In contrast, the
H1 state estimator is inuenced by C1; that is, by which linear combination of
states appears at the external output e0(s).

Most of the robustness problems of LQG optimal control stem from the degra-
dation of the closed loop response when Kalman �lter state estimates are substi-
tuted for measured states in the state feedback control law. Some states usually
contribute more to the loop gain than others, but LQG or H2 state estimation
cannot compensate for this, since all states are weighted equally. In the H1
state estimator, the designer can tradeo� the contribution of the di�erent states
through the C1 matrix and thus make the closed loop response more insensitive
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Figure 4.11: H1 suboptimal control con�guration. N (s) is within the top dashed
box, J(s) within the middle dashed box and Q(s) in the lower dashed
box. BQ = Z1(B2 + 

�2
Y1C

T
1 D12), BY = 

�2
D21B

T
1 X1 and

BX = 
�2
B1B

T
1 X1.
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to modeling errors. Similarly a tradeo� of the external inputs can be made when
computing the full state feedback matrixKc, thus enhancing the closed loop per-
formance. H1 synthesis simply chooses from a wider set of possible stabilizing
control laws than H2, so naturally one would expect to be able to obtain higher
performance and robustness levels using H1, given a �xed set of sensors and
bandwidth constraints.

There exists commercially available software, e.g. [CS92, BDG+93] for solving
the H1 control problem. The software performs an iteration on  to �nd the
optimal controller.

4.6 Discrete-Time Results

In the current chapter we have only presented continuous-time results. However,
it is well-known, see e.g. [KD88], that for su�ciently small sampling time the
bilinear transformation:

z = e
sTs � 1 + s

Ts
2

1� s
Ts
2

(4.125)

, s � 2

Ts

z � 1

z + 1
(4.126)

links the continuous-time and discrete-time results. Here Ts denotes the sampling
time. Thus if the robust design problem is posed in discrete-time, we may trans-
form N (z) to continuous-time via (4.125), compute the H1 optimal continuous-
time control law and back-transform the controller to discrete-time via (4.126). In
particular, this is the approach taken in theMatLab toolboxes [CS92, BDG+93].

Discrete-time algorithms which solves the Z-domain 2� 2 problem directly have
been developed. For a detailed treatment see [Sto92]. However, the discrete-time
results are rather messy and the commercially available software which supports
it are yet limited.

4.7 Summary

The classical H1 results in robust control were presented. It was shown how
both nominal performance and robust stability can be addressed using a 2 � 2
block problem formulation. Given any of the unstructured complex perturbations
introduced in Section 4.3 on page 42 the closed loop system may be rewritten
in P� form as in Figure 4.5 on page 45. Then, assuming that every plant in
the set described by �(s) with ��(�) � 1 can occur in practice, kP (s)k1 < 1
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is a non-conservative condition for robust stability. It was then shown how the
robust performance problem can be addressed by augmenting the robust stability
problemwith a full complex performance block. The robust performance problem
then can be formulated as a 2� 2 block problem.

However, even though the robust stability criterion (4.48) on page 45 is non-
conservative, in formulating the controller synthesis as a 2 � 2 block problem
some conservatism will always be introduced when robust performance is con-
sidered. This is so because the perturbation structure of the robust performance
problem is diagonal ( ~� = diagf�;�pg). Unfortunately, with H1 we can only
consider full blocks. Thus the o�-diagonal elements in this full block will in-
troduce conservatism in the H1 solution. For standard additive and output
multiplicative uncertainty, the robust performance condition will be reasonably
tight, namely up to a factor 2. This applies also for standard input multiplicative
uncertainty provided the plant is well-conditioned. For ill-conditioned plants, ro-
bust performance may be arbitrarily poor even though nominal performance and
robust stability are obtained. In other words, for ill-conditioned plants the closed
loop properties at the plant input may be very di�erent from those at the plant
output. For example, the robustness to output multiplicative uncertainty may
be satisfactory even though the robustness to input multiplicative uncertainty is
very poor.

Generally it can be concluded, that if an unstructured complex perturbation
model is tight, that is if all plants included by the perturbation structure can
occur in practice, and if the plant is reasonably well-conditioned, the optimal
H1 controller will not be very conservative in the sense that robust performance
will not be arbitrarily poor given nominal performance and robust stability.

On the other hand, if an unstructured complex perturbation model is conser-
vative or if the plant is ill-conditioned, an 2 � 2 block problem H1 optimal
controller may be very conservative. In such cases much is to be gained using
the structured singular value �. In the next section robust control design with
structured singular values will be considered.
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63



64 Robust Control Design using Structured Singular Values

anH1 robustness test. The other main limitation is that the robust performance
problem can only be considered conservatively even for a full complex perturba-
tion set because performance and robustness cannot be separated in the H1
framework. The conservatism introduced depends on the applied perturbation
model and the condition number of the plant. In this chapter we shall shown that
both these limitations may be overcome using the structured singular value �.

Firstly we will consider the analysis problem, that is, given a controller K(s) how
do we test for robust stability and robust performance using �? Secondly the
synthesis problem of �nding K(s) will be investigated.

5.1 � Analysis

5.1.1 Robust Stability

Wewill consider control problems which can be represented in aN�K-framework
as illustrated in Figure 5.1.

K(s)

N (s)
-

�

u(s) y(s)

�(s) �

-

w(s) z(s)

Figure 5.1: The N�K formulation of robust stability problem.

Comparing with Figure 4.6 on page 48 the similarities with the 2 � 2 block
problem are obvious. However, now �(s) will not be restricted to only a full
complex block. Rather it is assumed that �(s) has a block diagonal structure as
follows. Assume that �(s) is a member of the bounded subset:

B� = f�(s) 2� j��(�(j!)) < 1g (5.1)
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where � is de�ned by:

� =
�
diag

�
�
r
1Ir1 ; � � � ; �rmr

Irmr ; �
c
1Irmr+1

; � � � ; �cmc
Irmr+mc ;�1; � � � ;�mC

� j
�
r
i 2 R; �ci 2 C;�i 2 Crmr+mc+i�rmr+mc+i

	
(5.2)

Thus we are considering real and complex uncertainty which enters the nominal
model in a linear fractional manner. Very general classes of robustness problems
can be cast into this formulation including for example parametric uncertainty,
see Example 5.1. Clearly, the block diagonal structure on � allows much more
detailed uncertainty models compared with the H1 approach where �(s) is sim-
ply a full complex block. Notice that a full complex block is of course just a
special element of the above set �.

Let us also de�ne also the corresponding complex perturbation set �c:

�c =
�
diag

�
�
c
1
Ir1 ; � � � ; �cmr+mc

Irmr+mc ;�1; � � � ;�mC

� j
�
c
i 2 C;�i 2 Crmr+mc+i�rmr+mc+i

	
(5.3)

where the real perturbations �r have been replaced by complex perturbations �c.
This uncertainty set will be use in connection with mixed � synthesis.

Example 5.1 (Diagonal Perturbation Formulation I) This example is a
slightly modi�ed version of that given in [Hol94]. Suppose the plant is given
by:

G(s) =
�

�s + 1
(5.4)

where the DC gain � and the time constant � is only known within �10%, say

� = [27:0; 33:0]; � = [0:9; 1:1] (5.5)

We now want to express � and � by their nominal values 30 and 1 and some
perturbations�� and �� where j��;�j � 1. This can for example be accomplished
as follows:

� = 30

�
1 +

1

10
��

�
(5.6)

� = 1:0

�
1 +

1

10
��

�
(5.7)

with the constraints:

�� 2 [�1;+1]; �� 2 [�1;+1] (5.8)
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Let us by B� denote the set [�1;+1]. Then the transfer function G(s) may be
written:

G(s) =
30 (1 + 0:1��)

(1 + 0:1��) s + 1
(5.9)

with

��;�� 2 B� (5.10)

In block diagram form G(s) may be given as in Figure 5.2.

- n- n
6

�� 0.1 �

-
s
�1 - 30

- 30

10
��

?n -

6

u(s)
� � �

y(s)

�

-

-

o�(s) i�(s)

o�(s)i�(s)

Figure 5.2: Example 5.1 on the page before: Block diagram of G(s).

Now in order to �nd the corresponding N�K form we need to remove the �-
blocks in Figure 5.2 and �nd the transfer functions from the three inputs i�(s),
i�(s) and u(s) to the three outputs o�(s), o�(s) and y(s). In matrix form one
may �nd that

2
4 o�(s)
o�(s)
y(s)

3
5 =

2
64

0 � 30

10(s+1)
30

10(s+1)

0 � s
10(s+1)

s
10(s+1)

1 � 30

s+1
30

s+1

3
75
2
4 i�(s)
i�(s)
u(s)

3
5 (5.11)

The uncertainty blocks are described by:�
i�(s)
i�(s)

�
=

�
��o�(s)
��o�(s)

�
=

�
�� 0
0 ��

� �
o�(s)
o�(s)

�
(5.12)

Now let:

w(s)
4
=

�
i�(s)
i�(s)

�
(5.13)
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z(s)
4
=

�
o�(s)
o�(s)

�
(5.14)

N (s)
4
=

2
64
0 � 30

10(s+1)
30

10(s+1)

0 � s
10(s+1)

s
10(s+1)

1 � 30

s+1
30

s+1

3
75 (5.15)

�(s)
4
= diag f��;��g =

�
�� 0
0 ��

�
(5.16)

Then the uncertain system is described by the equations:�
z(s)
y(s)

�
= N (s)

�
w(s)
u(s)

�
(5.17)

w(s) = �(s)z(s) (5.18)

and can readily be put into the N�K structure.

Example 5.2 (Diagonal Perturbation Formulation II) Let us next con-
sider a standard second order lag:

G(s) =
�!

2
n

s2 + 2�!n + !2n

(5.19)

Assume that the gain �, damping coe�cient � and natural frequency !n is known
only to belong to the following sets

� = �o(1 + ����) (5.20)

� = �o(1 + ����) (5.21)

!n = !no(1 + �!�!) (5.22)

with

��;��;�! 2 B� B� = [�1;+1] (5.23)

A state-space representation of G(s) is given in Figure 5.3 on the next page. Due
to the increased complexity of this system compared with the �rst order system
in Example 5.1 on page 65 we will work with state space representations. De�ne
the states as:

x1 = _y; x2 = y (5.24)
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A few manipulations reveal that the augmented system N (s) can be written

N (s) =

�
A B

C D

�
=

2
66666666664

�2�o!no �!2no !
2
no

!no 1
1 0 0 0 0
0 0 0 0 0

�2�!�o ��!!no �!!no 0 0
�2�!�o!no ��!!2no �!!

2
no

�!!no 0
�!!

�1
no

0 0 0 0
2���o!�1no 0 0 0 0

0 1 0 0 0

2�o!
2
no

�!2no �!
2
no

0 0 0
0 0 ���

2�!�o!no ��!!no �!�!no

2�!�o!2no ��!!2no �!�!
2
no

�! 0 0
�2���o 0 0

0 0 0

3
77777777775

(5.25)

where we have used the notation introduced in Theorem 4.6 on page 56.

Proceeding as in Example 5.1 on page 65, de�ne

w(s) =
�
i1(s) i2(s) i3(s) i4(s) i5(s)

�T
(5.26)

z(s) =
�
o1(s) o2(s) o3(s) o4(s) o5(s)

�T
(5.27)

�(s) = diag f��;�!;�!;�!;��g (5.28)

Then the uncertain second order lag is described by the equations�
z(s)
y(s)

�
= N (s)

�
w(s)
u(s)

�
(5.29)

w(s) = �(s)z(s) (5.30)

and can readily be put into the N�K structure. Notice that in this example the
perturbation block structure includes repeated scalar blocks:

� =

2
4 �1 0 0

0 �2I3�3 0
0 0 �3

3
5 (5.31)

As illustrated by the 2 above examples, highly structured uncertainty descrip-
tions can be represented in the N�K framework in a straightforward manner.
However, the extraction of the uncertainty blocks may involve a lot of tedious
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algebra. Fortunately, in the MatLab �-Analysis and Synthesis Toolbox a very
handy m-function (sysic.m) is available which automizes the necessary system
interconnections.

Dynamic uncertainty as introduced in Section 4.3 on page 42 may be included
through complex blocks of appropriate size.

As before, denote by Fl(N (s);K(s)) = P (s) the transfer function obtained by
closing the lower loop in Figure 5.1 on page 64. P (s) is the generalized closed
loop transfer function. P (s) is given by the LFT

P (s) = Fl(N (s);K(s)) (5.32)

= N11(s) + N12(s)K(s) (I �N22(s)K(s))�1N21(s) (5.33)

Robust stability under structured perturbations �(s) 2 B� is then determined
by the following theorem which is an extension of Theorem 4.4 on page 44.

Theorem 5.1 Assume that the interconnection P (s) is stable and that the per-
turbation �(s) is of such a form that the perturbed closed loop system is stable if
and only if the map of det(I � P (s)�(s)) as s traverses the Nyquist D contour
does not encircle the origin. Then the closed loop system in Figure 5.1 on page 64
is stable for all perturbations �(s) 2 B� if and only if

det(I � P (j!)�(j!)) 6= 0 8!, 8�(j!) 2 B� (5.34)

, �(P (j!)�(j!)) < 1 8!, 8�(j!) 2 B� (5.35)

( ��(P (j!)) < 1 8! (5.36)

Proof of Theorem 5.1 The proof follows easily from Theorem 4.4 on page 44 with

�(s) 2 B�.

Note that (5.36) is only a su�cient condition for robust stability. The necessity
of the similar condition (4.47) on page 45 for unstructured perturbations fol-
lows from the fact that the unstructured perturbation set include all �(s) with
��(�(j!)) � 1. Here, however, we restrict the set of perturbations to �(s) 2 B�
and therefore, in general, condition (5.36)can be arbitrarily conservative. Rather
than a singular value constraint we need some measure which takes into account
the structure of the perturbations �(s). This is precisely the structured singular
value �.

Given a matrix P 2 Cn�m, the positive real-valued function � is then de�ned
by:

��(P )
4
=

1

minf��(�) : � 2�; det(I � P�) = 0g (5.37)
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unless no � 2 � makes I � P� singular, in which case ��(P ) = 0. Thus
1=��(P ) is the \size" of the smallest perturbation �, measured by its maximum
singular value, which makes I � P� singular (det(I � P�) = 0). If P (s) is
a transfer function we can interpret 1=��(P (j!)) as the size of the smallest
perturbation �(j!) which shifts the characteristic loci of the transfer matrix
P (s) to the Nyquist point �1 at the frequency !.
From the de�nition of � and Theorem 5.1 on the facing page we now have the
following theorem for assessing robust stability, see also [DP87, PD93]:

Theorem 5.2 (Robust Stability with �) Assume that the interconnection
P (s) is stable and that the perturbation �(s) is of such a form that the per-
turbed closed loop system is stable if and only if the map of det(I �P (s)�(s)) as
s traverses the Nyquist D contour does not encircle the origin. Then the closed
loop system in Figure 5.1 on page 64 is stable for all perturbations �(s) 2 B�

if and only if :

k�� (P (s))k1 � 1 (5.38)

where:

k�� (P (s))k1
4
= sup

!
�� (P (j!)) (5.39)

5.1.2 Robust Performance

For robust performance we will include the normalized exogenous disturbances
d
0(s) and the normalized error signals (controlled outputs) e0(s) into the N�K
formulation. Then we may obtain the general framework for robustness analysis
and synthesis of linear systems illustrated as in Figure 5.4 on the next page. Any
linear interconnection of control inputs u, measured outputs y, disturbances d0,
controlled outputs (error signals) e0, perturbations w and a controller K can be
expressed within this framework.

Within the general framework analysis and synthesis constitutes two special cases
as illustrated in Figure 5.4 on the following page. Like the 2� 2 block problem,
scalings and weights are conventionally absorbed into the transfer function N

in order to normalize d0, e0 and �(s) to norm 1. Notice that if we partition
P (s) into four blocks consistent with the dimensions of the two input (w, d0)
and two output (z, e0) vectors we can identify P11(s) as the transfer matrix P (s)
introduced in the previous section, see e.g. Theorem 5.2. Context will determine
which P (s) we refer to.

For robust performance the transfer function Fu from d
0 to e0 may be partitioned
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Figure 5.4: A general framework for analysis and synthesis of linear control sys-
tems.

as a linear fractional transformation:

e
0(s) = Fu(P (s);�(s))d

0(s) (5.40)

=
h
P22(s) + P21(s)�(s) (I � P11(s)�(s))�1 P12(s)

i
d
0(s) (5.41)

Here P22(s) is the weighted nominal performance function and Fu(P (s);�(s)) is
thus the weighted perturbed performance function. Now from (5.41) the robust
performance objective becomes

kFu(P (s);�(s))k1 = sup
!

�� (Fu(P (j!);�(j!))) < 1 8�(j!) 2 B� (5.42)

As in Section 4.4 on page 49 we notice that the condition for robust performance
is a singular value constraint similar to the robust stability condition (4.47) on
page 45 and conclude: the robust performance objective (5.42) is satis�ed if and
only if the interconnection Fu(P (s);�(s)) is robustly stable for a norm bounded
matrix perturbation �p(s) with ��(�p(j!)) � 1. Hence by augmenting the pertur-
bation structure with a full complex performance block �p(s) the robust perfor-
mance condition can be equivalenced with an unstructured robust stability con-
dition, see Figure 4.8 on page 51. However, in the �-framework we can perform
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this augmentation naturally since the allowed perturbation structure is block
diagonal.

We thus have the following theorem for assessing robust performance, see [DP87,
PD93]:

Theorem 5.3 (Robust Performance with �) Let an H1 performance spec-
i�cation be given on the transfer function from d

0 to e
0 { typically a weighted

sensitivity speci�cation { of the form:

kFu(P (s);�(s))k1 = sup
!

�� (Fu(P (j!);�(j!))) < 1 (5.43)

Then Fu(P (s);�(s)) is stable and kFu(P (s);�(s))k1 < 1, 8�(s) 2 B� if and
only if � ~�(P (s))1 � 1 (5.44)

where the perturbation set is augmented with a full complex performance block:

~� =
�
diag (�;�p)

��� 2�;�p 2 Ck�k
	

(5.45)

Theorem 5.3 is the real payo� for measuring performance in terms of the1-norm
and bounding model uncertainty in the same manner. Using � it is then possible
to test for both robust stability and robust performance in a non-conservative
manner. Indeed, if the uncertainty is modeled exactly by �(s), i.e. if all plants in
the norm-bounded set can really occur in practice, then the � condition for robust
performance is necessary and su�cient. Notice how the � theorems provides
much tighter conditions for robust performance compared with the H1 results in
Section 4.4 on page 49. Performance and stability conditions are now separated,
much tighter uncertainty descriptions may be given due to the diagonal structure
on � and non-conservative results are provided for all perturbation models and
even for ill-conditioned systems.

Equation (5.44) provides a very simple test for checking robust performance.
Plotting � ~�(P (j!)) versus frequency ! will reveal whether the conditions of
Theorem 5.3 are met.

Since �1 = diagf�; 0g and �2 = diagf0;�pg are special cases of � 2 ~� it is
clear that

� ~�(P (j!)) � maxf��(P11(j!)); ��p
(P22(j!)) = ��(P22(j!))g

(5.46)

which implies that for robust performance it is necessary that the closed loop
system is robustly stable and satis�es the nominal performance objective.
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5.1.3 Computation of �

As we have shown above � is a powerful tool for assessing robust stability and
robust performance under structured and/or unstructured perturbations. Unfor-
tunately the computation of � is a very di�cult and yet unsolved mathematical
problem. Equation (5.37) on page 70 is not suitable for computing � since the
implied optimization problem may have multiple local maxima [DP87, FTD91].
However tight upper and lower bounds for � may be e�ectively computed for
both complex and mixed perturbations sets. Algorithms for computing these
bounds have been documented in several papers, see e.g. [DP87, YND91]. For
simplicity assume in the following that P 2 Cn�n is square.

5.1.3.1 � with Complex Perturbations

Let us �rst consider computation of � when the perturbation structure consists
of complex elements only; thus mr = 0 in (5.2) on page 65. Then we can
relate ��(P ) to familiar linear algebra quantities when � is one of two extreme
sets [DPZ91]:

� If � = f�cIn j�c 2 Cg (mr = 0, mc = 1, mC = 0 in (5.2)), then ��(P ) =
�(P ), the spectral radius.

� If� = f� j� 2 Cn�n g (mr = 0, mc = 0, mC = 1 in (5.2)), then ��(P ) =
��(P ), the maximum singular value.

For a general complex perturbation � we have that

f�cIn j�c 2 Cg �� � �� ��� 2 Cn�n
	

(5.47)

Thus, directly from the de�nition of � (5.37) on page 70 we conclude that

�(P ) � ��(P ) � ��(P ) (5.48)

However, these bounds are insu�cient since the gab between �(P ) and ��(P ) can
be arbitrarily large. Thus the bounds (5.48) must be tightened. This is done
through transformations on P that do not a�ect ��(P ) but do a�ect �(P ) and
��(P ). De�ne the following two subsets of Cn�n:

Q =
n
Q 2�

���mr = 0; �c
�

i �
c
i = 1;��

i�i = Irmc+i

o
(5.49)

D =
n
diag

�
D1; � � � ; Dmc

; d1Irmc+1 ; � � � ; dmC
Irmc+mC

�
��Di 2 Cri�ri ; D

�
i = Di > 0; di 2 R; di > 0

	
(5.50)
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It can then be shown, see e.g. the original paper on � by Doyle [Doy82], that for
any � 2� (with mr = 0), Q 2 Q and D 2D,

Q
� 2 Q; Q� 2�; �Q 2�; ��(Q�) = ��(�Q) = ��(�); (5.51)

D� = �D (5.52)

From (5.51) and (5.52) follows the next theorem.

Theorem 5.4 (Upper and Lower Bounds on Complex �) For all Q 2 Q

and D 2 D

��(PQ) = ��(QP ) = ��(P ) = ��(DPD
�1) (5.53)

Thus the bounds in Equation (5.48) may be tightened to

max
Q2Q

�(QP ) � ��(P ) � inf
D2D

��(DPD�1) (5.54)

The lower bound maxQ2Q �(QP ) is in fact an equality [Doy82] but �(QP ) is un-
fortunately non-convex with multiple local maxima which are not global. Hence
local search cannot be guaranteed to obtain � but can only yield a lower bound.
Computation of the upper bound is a convex problem, so the global minimum
infD2D ��(DPD�1) can, in principle at least, be found. Unfortunately, the upper
bound is not always equal to �. It can be shown that for block structures � with
mr = 0 and 2mc+mC � 3, the upper bound is always equal to ��(P ). However
for block structures with 2mc+mC > 3, there exists matrices for which � is less
than the in�mum. Nevertheless even in the case where the upper bound do not
equal � exactly numerical experience suggests that the upper bound in general
is reasonably tight.

With the release of the MatLab �-Analysis and Synthesis Toolbox [BDG+93]
in 1993 commercially available routines exists for computing the bounds in The-
orem 5.4. In practical control design (with purely complex perturbations), the
mathematical problems with computation of � may thus be considered rather
theoretical.

5.1.3.2 � with Mixed Real and Complex Perturbations

Computation of the mixed real and complex � problem has been the focus of
intensive research over the last decade, see e.g. [FTD91, YND91, YND92, You93].
It is beyond the scope of this work to treat the bounds on mixed �1 in any great
detail. A complete treatment may be found in the thesis by Young [You93]. Here

1We will often refer to themixed real and complex� problem simply as the mixed� problem.
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we will merely state some of the important results on the subject. Let us start
by de�ning the following sets:

Q =
n
Q 2�

����ri 2 [�1; 1]; �c�i �ci = 1;��
i�i = Irmr+mc+i

o
(5.55)

D =
�
diag

�
D1; � � � ; Dmr+mc

; d1Irmr+mc+1
; � � � ; dmC

Irm

�
��Di 2 Cri�ri ; D

�
i = Di > 0; di 2 R; di > 0

	
(5.56)

G =
�
diag

�
G1; � � � ; Gmr

; Ormr+1
; � � � ; Orm

� ��Gi 2 Cri�ri ; Gi = G
�
i

	
(5.57)

D̂ =
�
diag

�
D1; � � � ; Dmr+mc

; d1Irmr+mc+1
; � � � ; dmC

Irm

�
��Di 2 Cri�ri ; det(Di) 6= 0; di 2 C; di 6= 0

	
(5.58)

Ĝ = fdiag (g1; � � � ; gnr ; Onc) jgi 2 Rg (5.59)

where rm = rmr+mc+mC
, nr =

Pmr

i=1 ri and nc = n � nr. Notice that for
compatibility with P (s) we must have that

Pm
i=1 ri = n.

We then have the upper and lower bounds as in Theorem 5.5 [FTD91].

Theorem 5.5 (Upper and Lower Bounds on Mixed � [FTD91]) Let ��R
denote the largest real eigenvalue and let �R(P ) denote the real spectral radius of
P :

�R(P )
4
= maxfj�R(P )j : �R(P ) is a real eigenvalue of Pg (5.60)

If P has no real eigenvalues then �R(P ) = 0. Furthermore suppose that �� is the
result of the minimization problem

�� = inf
D2D;G2G

min
�2R

�
�
����R (P �DP + j (GP � P

�
G)� �D) � 0

	
(5.61)

then

�R(P ) � ��(P ) �
p
max(0; ��) (5.62)

Notice that computation of the upper bound involves a Linear Matrix Inequality
(LMI). A variety of numerical techniques exist to tackle such minimizations.
Furthermore, numerical recipes for solving LMIs is an area of intensive research.
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However, even for comparatively medium size problems (n � 100), the opti-
mization over the D and G scaling matrices could involve thousands of parame-
ters. Thus, in order to tackle such problems with reasonably computation times,
straightforward application of brute force optimization techniques will not suf-
�ce. Therefore the above bounds have been reformulated exploiting the speci�c
structure of the mixed � upper bound problem, see e.g. [YND92]. Several forms
of the upper bound can be found as stated in Theorem 5.6.

Theorem 5.6 (Reformulation of Mixed � Upper Bound) Suppose we
have a matrix P 2 Cn�n and a real scalar � > 0. Furthermore for any
D 2 Cn�n denote PD = DPD

�1. Then the following statements are equivalent:

1. There exists matrices D1 2D, G1 2 G such that:

��R
�
P
�
D1P + j(G1P � P

�
G1) � �2D1

� � 0 (5.63)

2. There exists matrices D2 2D, G2 2 G (or D2 2 D̂, G2 2 Ĝ) such that:

��R
�
P
�
D2
PD2

+ j(G2PD2
� P

�
D2
G2)

� � �
2 (5.64)

3. There exists matrices D3 2D, G3 2 G (or D3 2 D̂, G3 2 Ĝ) such that:

��

��
PD3

�
� jG3

��
I +G

2

3

��1
2

�
� 1 (5.65)

4. There exists matrices D4 2D, G4 2 G (or D4 2 D̂, G4 2 Ĝ) such that:

��

��
I +G

2

4

�� 1
4

�
PD4

�
� jG4

��
I + G

2

4

�� 1
4

�
� 1 (5.66)

Proofs may be found in [You93]. Using the equivalence relations from the above
Theorem we may easily form alternative upper bounds on �. In particular, the
bound implemented in the MatLab � toolbox is derived from (5.66). De�ne ��

as:

�
� = inf

�2R+;G2Ĝ;D2D̂
f� j�� (PDG) � 1g (5.67)

with PDG given by

PDG =
�
I + G

2
�� 1

4

�
DPD

�1

�
� jG

��
I +G

2
��1

4 (5.68)

then

max
Q2Q

�(QP ) � ��(P ) � �
� (5.69)
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5.2 � Synthesis

For robust synthesis the transfer function Fl from [w d
0]T to [z e0]T may be par-

tioned as the linear fractional transformation:�
z(s)
e
0(s)

�
= Fl(N (s);K(s))

�
w(s)
d
0(s)

�
=

h
N11(s) +N12(s)K(s) (I �N22(s)K(s))�1N21(s)

i �
w(s)
d
0(s)

�
(5.70)

Noticing that Fl(N (s);K(s)) = P (s) and using Theorem 5.3 on page 73 a stabiliz-
ing controller K(s) achieves robust performance if and only if for each frequency
! 2 [0;1], the structured singular value satis�es:

� ~� (Fl(N (j!);K(j!))) < 1 (5.71)

Consequently the robust performance problem becomes one of synthesizing a
nominally stabilizing controller K(s) that minimizes � ~� (Fl(N;K)) across fre-
quency:

K(s) = arg min
K(s)2KS

� ~� (Fl(N (s);K(s)))

1

(5.72)

where KS denotes the set of all nominally stabilizing controllers.

5.2.1 Complex � Synthesis { D-K Iteration

Unfortunately (5.72)is not tractable since � cannot be directly computed. Rather
the upper bound on � is used to formulate the control problem. For purely
complex perturbations, mr = 0 in (5.2) on page 65, the upper bound problem
becomes

K(s) = arg min
K(j!)2KS

sup
!

inf
D(!)2D

�
��
�
D(!)Fl (N (j!);K(j!))D�1(!)

�	
(5.73)

Unfortunately, it is also not known how to solve (5.73). However an approxima-
tion to complex � synthesis can be made by the following iterative scheme. For
a �xed controller K(s), the problem of �nding D(!) at a set of chosen frequency
points ! is just the complex � upper bound problem which is a convex problem
with known solution. Having found these scalings we may �t a real rational stable
minimumphase transfer function matrixD(s) to D(!) by �tting each element of
D(!) with a real rational stable minimumphase SISO transfer function. We may
impose the extra constraint that the approximations D(s) should be minimum
phase (so that D�1(s) is stable too) since any phase in D(s) is absorbed into
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the complex perturbations. For a given magnitude of D(!), the phase corre-
sponding to a minimum phase transfer function system may be computed using
complex cepstrum techniques. Accurate transfer function estimates may then be
generated using standard frequency domain least squares techniques.

For given scalings D(s) the problem of �nding a controller K(s) which minimizes
the norm kFl(D(s)N (s)D�1(s);K(s))k1 will be reduced to a standard H1 prob-
lem. Repeating this procedure, denoted D-K iteration, several times will yield
the complex � optimal controller provided the algorithm converges. Even though
the computation of the D scalings and the optimalH1 controller are both convex
problems, the D-K iteration procedure is not jointly convex inD(s) and K(s) and
counter examples of convergence has been given [Doy85]. However, D-K iteration
seems to work quite well in practice and has been successfully applied to a large
number of applications. The D-K iteration procedure may be outlined as below.

Procedure 5.1 (D-K Iteration)

1. Given an augmented system N (s), let i = 1 and D?
i (!) = I; 8!.

2. Fit a stable minimum phase transfer function matrix Di(s) to the pointwise
scalings D?

i (!). Augment Di(s) with a unity matrix of appropriate size
such that Di(s) is compatible with N (s). Construct the interconnection
NDi

(s) = Di(s)N (s)D�1
i (s).

3. Find the H1 optimal controller Ki(s):

Ki(s) = arg min
K(s)2KS

kFl(NDi
(s);K(s))k1 (5.74)

4. Compute the new scalings D?
i+1(!) solving the complex � upper bound prob-

lem

D
?
i+1(!) = arg min

D(!)2D

�
��
�
D(!)Fl(N (j!);Ki(j!))D

�1(!)
�	

(5.75)

pointwise across frequency !.

5. Compare D?
i+1(!) and D

?
i (!). Stop if they are close. Otherwise let i = i+1

and repeat from 2.

Notice that we use the H1 optimal control solution to synthesize the controller
in step 3. The K-step of the procedure may be illustrated as in Figure 5.5 on
the following page.

With the release of the MatLab �-Analysis and Synthesis Toolbox commercially
available software now exists to support complex � synthesis using D-K iteration.
The procedure 5.1 may be implemented quite easily with the aid of the toolbox.
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Figure 5.5: K-step of D-K iteration. nu and ny are the number of manipulated
and controlled variables respectively.

In the current release of the � toolbox (Version 2.0), repeated scalar complex
blocks are not supported in connection with D-K iteration. For repeated scalar
blocks, notice that the corresponding D scaling is a full matrix. Thus the num-
ber of SISO transfer function approximations needed in connection with D-K
iteration grows quadratically with the number of repeated scalar perturbations.
An approximation to D-K iteration with repeated scalar blocks can of course
be made simply by considering them as uncorrelated. However, the design will
then not be optimal but by analyzing the �nal design with the true perturbation
structure the amount of conservatisms introduced can be assessed.

Notice furthermore that an approximation to mixed real and complex � synthesis
can be achieved with D-K iteration by approximating the mixed perturbation set
� with the corresponding complex set �c, see (5.3) on page 65. Thus all real
perturbations are approximated with complex ones. Again, the design will not
be optimal but through � analysis the design may be tested against the true
perturbation structure.

5.2.2 Mixed � Synthesis { D,G-K Iteration

The general mixed real and complex � problem is unfortunately much more
di�cult than the purely complex � problem. In fact, until recently it was an
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unsolved problem. In his thesis [You93] and the papers [Y�A94, You94] Young
has presented a solution, denoted D,G-K iteration, to the mixed � synthesis
problem. This approach is strongly motivated by the D-K procedure for purely
complex perturbations. Young chooses the formulation 3 from Theorem 5.6 on
page 77 to pose the mixed � upper bound problem

K(s) = arg min
K(j!)2KS

sup
!

inf
D(!)2D;G(!)2G

inf
�(!)2R+

f�(!) j��(�(!)) � 1g (5.76)

where

�(!) =

�
D(!)Fl(N (j!);K(j!))D�1(!)

�(!)
� jG(!)

��
I + G

2(!)
��1

2 (5.77)

We will denote this a direct upper bound problem emphasizing that the problem
is posed directly in line with the way the upper bound is computed. Again no
known solution to (5.77) exists. Rather it must be solved iteratively similarly to
D-K iteration. For �xed K(s) the problem of �nding D(!), G(!) and �(!) is
just the mixed � upper bound problem. Having found these scalings we may �t
real rational transfer function matrices to them such that the interconnection is
stable. For given �, D(s) and G(s) transfer matrices the problem of �nding the
controller K(s) will be reduced to a standard H1 problem.

However, the upper bound problem in (5.76)-(5.77) is not in the form of a sin-
gular value minimization such as (5.73), but rather a minimization subject to a
singular value constraint. Thus we cannot proceed as before for purely complex
perturbations. Instead we need the following 2 theorems which tell us how the
mixed � upper bound scales. Easy proofs may be found in [You93].

Theorem 5.7 (Scaling of Mixed � Upper Bound I) Suppose we have ma-
trices P 2 Cn�n, D 2D, G 2G and a real scalar � > 0 such that

��

��
DPD

�1

�
� jG

��
I +G

2
�� 1

2

�
� 1 (5.78)

Thus � is an upper bound on ��(P ). Then for any real �̂ > � there exists
matrices D̂ 2D, Ĝ 2 G such that

��

  
D̂P D̂

�1

�̂

� jĜ
!�

I + Ĝ
2

�� 1
2

!
< 1 (5.79)

Theorem 5.8 (Scaling of Mixed � Upper Bound II) Suppose we have
matrices P 2 Cn�n, D 2 D, G 2 G and real scalars � > 0 and 0 < r � 1 such
that

��

��
DPD

�1

�
� jG

��
I +G

2
�� 1

2

�
� r (5.80)
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Then there exists matrices D̂ 2D, Ĝ 2G such that

��

  
D̂P D̂

�1

r�
� jĜ

!�
I + Ĝ

2

�� 1
2

!
� 1 (5.81)

such that r� is an upper bound on ��(P ).

Both these results are obviously true in the complex case for G = On since

��

�
DPD

�1

�

�
� 1, �

�̂

��

�
DPD

�1

�

�
� �

�̂

, ��

�
DPD

�1

�̂

�
< 1 (5.82)

��

�
DPD

�1

�

�
� r, ��

�
DPD

�1

r�

�
� 1 (5.83)

However, the results are not so obvious in the mixed case. In particular, note
that Theorem 5.8 on the page before applies only for r � 1.

Young then proposes the following iterative scheme for mixed � synthesis.

Procedure 5.2 (D,G-K Iteration [You93])

1. Given an augmented system N (s), let i = 1, D?
i (w) = In; 8!, G?

i (!) =
On; 8! and �?i =1.

2. Fit transfer function matrices Di(s) and Gi(s) to the pointwise scalings
D
?
i (!) and jG

?
i (!) so that Di(j!) approximates D?

i (!) and Gi(j!) ap-
proximates jG?

i (!). Replace Di(s) and Gi(s) with appropriate factors so
that Di(s), D

�1
i (s), Gh;i(s) and Gi(s)Gh;i(s) are all stable, where Gh;i(s)

is a spectral factor satisfying (I + Gi(s)Gi(�s)T )�1 = Gh;i(s)Gh;i(�s)T .
Augment Di(s) and Gh;i(s) with identity matrices, and Gi(s) with a zero
matrix of appropriate dimensions so that Di(s), Gi(s) and Gh;i(s) are all
compatible with N (s). Construct the interconnection

NDGi
(s) = (Di(s)N (s)D�1

i (s) � �
?
iGi(s))Gh;i(s) (5.84)

3. Find the H1 optimal controller Ki(s):

Ki(s) = arg min
K(s)2KS

kFl(NDGi
(s);K(s))k1 (5.85)

4. Compute the maximum upper bound �?i+1 = k� ~�(Fl(N (s);K(s)))k1:

�
?
i+1 = sup

!2R
inf

D(!)2D;G(!)2G
inf

�(!)2R+
f�(!) j��(�) � 1g (5.86)

where � is given by

� =

�
D(!)Fl(N (j!);Ki(j!))D

�1(!)

�(!)
� jG(!)

��
I +G

2(!)
�� 1

2 (5.87)
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5. Calculate the new scalings D?
i+1(!) and G

?
i+1(!) solving the minimization

problem

inf
D?
i+1

(!)2D;G?
i+1

(!)2G
��

  
D
?
i+1(!)Fl(N (j!);Ki(j!))D?�1

i+1 (!)

�
?
i+1

�

jG
?
i+1(!)

��
I +G

?2

i+1(!)
�� 1

2

�
(5.88)

pointwise across frequency.

6. Compare the new scalings D?
i+1(!) and G

?
i+1(!) with the previous ones.

Stop if they are close. Otherwise let i = i + 1 and repeat from 2.

The similarities between the D-K iteration, see Procedure 5.1 on page 79, and
the above D,G-K iteration are obvious. However, there is one notable di�erence,
namely the determination of the scaling matrices in step 5 of the D,G-K iteration.
Notice that D?

i+1(!) and G
?
i+1(!) are not the scalings from the � upper bound

computation in step 4. Rather it is a similarminimizationwith constant � = �
?
i+1.

As we shall soon see, this \twist" is necessary to avoid \pop-up" type phenomena
where for some frequencies a small increase in the maximumsingular value creates
a very large increase in �.

D,G-K iteration, as the corresponding D-K iteration for complex perturbations,
cannot be guaranteed to converge to the global minimum of (5.76) on page 81
since the procedure is not jointly convex in the scalings and the controller. How-
ever, we can show that is it monotonically non-increasing in � ~�(Fl(N (s);K(s)))
given perfect realizations of the scaling matrices. Then under weak conditions
the procedure will converge to a local minimum of �. Having converged to such
a point, the controller Ki(s) from step 3 in Procedure 5.2 on the facing page is
the �nal mixed � controller which satis�es

sup
!2R

� ~�(Fl(N (j!);K(j!))) � �
�
i+1 (5.89)

Again we have used the H1 optimal control solution to synthesize the controller
in step 3. The K-step of D,G-K iteration can be illustrated as in Figure 5.6 on
the next page

In order to show that Procedure 5.2 on the facing page is non-increasing in � we
will need the results from Theorem 5.7 and 5.8 on page 81. Note that �?i+1 was
de�ned in step 4 as the maximumof the � upper bound across frequency. Thus if
�i+1(!) denotes the � upper bound across frequency !, then �?i+1 � �i+1(!) for
all frequencies, with �?i+1 = �i+1(!) only for those frequency points where the
maximum is achieved. Then Theorem 5.7 on page 81 guarantees that in step 5
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-
-Gh;i(s)

Inu

-
-

D
�1
i (s)

Inu

-
- N (s)

��?i Gi(s)

Ony�nu
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Di(s) - n
- n

?
?

Ki(s)

~�(s) �
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Figure 5.6: K-step of D,G-K iteration. nu and ny are the number of manipulated
and controlled variables respectively.

we can achieve:

��

  
D
?
i+1(!)Fl(N (j!);Ki(j!))D?�1

i+1 (!)

�?i+1

� jG
?
i+1(!)

!

�
I +G

?2

i+1(!)
�� 1

2

�
< 1 (5.90)

for all frequency points where �?i+1 > �i+1(!) and

��

  
D
?
i+1(!)Fl(N (j!);Ki(j!))D?�1

i+1 (!)

�?i+1

� jG
?
i+1(!)

!

�
I +G

?2

i+1(!)
�� 1

2

�
= 1 (5.91)

for points where �?i+1 = �i+1. Then note that for perfect realizations of the (new)
scalings Di+1(s) and Gi+1(s) in step 2 of the next iteration we will have thatFl(NDGi+1

(s);Ki(s))

1
= �

?
i+1 (5.92)

Thus if we close the new augmented system NDGi+1
(s) with the previous con-

troller, the maximum singular value of the interconnection equals �?i+1. Thus we
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are guaranteed the existence of a stabilizing controller in step 3 achieving at least
this level since we may simply choose the previous controller. Thus the new H1
optimal controller Ki+1(s) will satisfyFl(NDGi+1

(s);Ki+1(s))

1
= r�

?
i+1 (5.93)

for some r 2 [0; 1]. Then Theorem 5.8 on page 81 implies that r�?i+1 is now an
upper bound for mixed � across frequency. Thus the new � = �

?
i+2 in step 4

will yield �?i+2 � r�
?
i+1 � �

?
i+1. Consequently the iteration is monotonically non-

increasing in the upper bound. Furthermore if the new H1 optimal controller
Ki+1(s) achieves any improvement over the old one Ki(s) so that r < 1 then
the peak value of the mixed � upper bound across frequency ! will be strictly
decreased.

Thus the way the interconnection NDGi+1
(s) is constructed guarantees that if

the new controller Ki+1(s) reduces the H1 norm of Fl(NDGi+1
(s);Ki+1(s)),

then the peak value of the mixed � upper bound across frequency is reduced.
It is important to have this guarantee because it ensures that we do not su�er
from any \pop-up" type phenomena as discussed above. The possibility of this
type of behavior is a direct consequence of the fact that Theorem 5.8 on page 81
does not hold for r > 1. The D,G-K iteration procedure explicitly inhibits such
\pop-up" type of behavior.

The necessary factorizations required to carry out step 2 in the D,G-K iteration
above are described in [You93]. Note however that for the general upper bound
problem the scalings cannot in general be restricted to be minimum phase since
the phase is not absorbed into the (real) perturbations. Thus the scalings must
be �tted both in magnitude and phase. One exception is the diagonal elements
of the D-scalings. For the G scalings we must require that the phase of the
diagonal elements of Gi(j!) is 90� for all frequencies !. The �tting of these
purely imaginary diagonal elements can only be obtained using high order all
pass structures. Since the order of G?

i (s) adds to the order of the controller
K(s), the �nal controller will usually be of very high order.

Successful results on D,G-K iteration has been reported for simple mixed � prob-
lems, see e.g. [You94]. However, the need for �tting purely complex scalings with
high order all-pass transfer functions as well as the general need for �tting both
in phase and magnitude severely hampers the practical use of D,G-K iteration
for mixed � synthesis. In many applications the G scalings seem to change quite
suddenly. Thus it may be very di�cult to obtain any reasonable �t for G.

5.2.3 Mixed � Synthesis { �-K Iteration

As discussed above the general D,G-K approach for controller synthesis with
mixed perturbation sets � provides a procedure which is monotonically non-
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increasing in the mixed � upper bound. Unfortunately, the D,G-K-iteration is
much more complicated than the corresponding D-K iteration for purely complex
perturbations. In particular the �tting of scaling matrices is much more complex
in the mixed case since we are forced to �t both in phase and magnitude. Espe-
cially �tting the purely imaginary diagonal elements of jG?(!) with high order
all-pass structures will be di�cult and furthermore result in augmented systems
NDGi

(s) of very high orders. Even though the commercially available software
tools for H1 optimal controller synthesis works quite well also for high order sys-
tems, when the order exceeds 100, the algorithms slow down rather dramatically,
even on high-performance unix installations.

In the following we will propose a new approach to mixed � synthesis, denoted
�-K iteration, which sacri�ces some of the guaranteed convergence properties of
D,G-K iteration, but which on the other hand only requires that scalings are
�tted in magnitude.

Whereas the D,G-K approach is a direct upper bound minimization,�-K iteration
is an indirect upper bound minimization in the sense that the augmented system
matrix corresponding to NDG(s) above does not directly reect the structure of
the � upper bound as in (5.77) on page 81.

The main idea of the proposed �-K iteration scheme is to perform a scaled D-K
iteration where the ratio between mixed and complex � is taken into account
through an additional scaling matrix �(s). Given the augmented system N (s)
and any stabilizing controller K(s) we may compute upper bounds for � across
frequency given both the \true" mixed perturbation set ~� and a fully complex
approximation ~�c, see Equation (5.3) on page 65. In order to \trick" the H1
optimal controller in the next iteration to concentrate more on mixed �, we will
construct a system ND�(s) such that ��(Fl(ND�(j!);K(j!))) approximates the
mixed � upper bound just computed. This is fully equivalent to D,G-K iteration.
In �-K iteration, however, the structure of the approximation is di�erent. ND�(s)
is constructed by applying two scalings to the original system N (s). A D scaling
such that ��(Fl(ND�(j!);K(j!))) approximates the complex � upper bound and
a � scaling to shift from complex to mixed �. In order to avoid the \pop-up"
type phenomena discussed in connection with D,G-K iteration, the � scalings are
�ltered through a �rst order �lter with �lter constant �.

The iteration is performed as follows:

Procedure 5.3 (�-K Iteration)

1. Given the augmented system N (s), let 0(s) = 1, D0(s) = I and ND�0(s)
be given by

ND�0(s) =

�
0(s)Inze 0

0 Iny

�
D0(s)N (s)D�1

0
(s) (5.94)

= �0(s)D0(s)N (s)D�1
0
(s) = N (s): (5.95)
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ny denotes the number of controlled outputs y(s) and nze denotes the num-
ber of external outputs z(s) + e

0(s). Let K0(s) = K1(s) be a stabilizing
controller and i = 1.

2. Compute the mixed and corresponding complex � upper bounds
�� ~� (Fl(N (j!);Ki(j!))) and �� ~�c

(Fl(N (j!);Ki(j!))) at each
frequency !. Note that the complex � upper bound equals
��(D?

i (!)Fl(N (j!);Ki(j!))D?�1

i (!)) where the scalings D
?
i (!) are

found solving the minimizations

D
?
i (!) = arg min

D2D
��
�
DFl(N (j!);Ki(j!))D

�1
� 8! � 0: (5.96)

3. Compute �i(!) given by:

�i(!) =
�� ~� (Fl(N (j!);Ki(j!)))

�� ~�c

(Fl(N (j!);Ki(j!)))

1

ji�1(j!)j � 1 (5.97)

4. Fit, in magnitude, a stable minimum phase transfer function matrix Di(s)
to D?

i (!) so that Di(j!) approximates D?
i (!) across frequency !. Augment

Di(s) with a unity matrix of appropriate size such that Di(s) is compatible
with N (s).

5. Determine an upper bound for the constant �i 2 [0; 1] according to

��i(!) =

8<
:

minf1; �i(!)g if �i(!) > 0

1 if �i(!) � 0
(5.98)

where �i(!) is given by

�i(!) =

 Fl(ND�i�1 (s);Ki�1(s))

1

��
�
Fl(Di(j!)N (j!)D�1

i (j!);Ki(j!))
� ji�1(j!)j � 1

!
1

�i(!)
(5.99)

6. Choose a constant �i = � inf! ��i(!) where � 2 [0; 1] and compute for all !:


?
i (!) = (1� �i)ji�1(j!)j + �i

�� ~� (Fl(N (j!);Ki(j!)))

�� ~�c

(Fl(N (j!);Ki(j!)))
(5.100)

Fit, in magnitude, a stable minimum phase scalar transfer function i(s)
to ?i (!) such that i(j!) approximates 

?
i (!) across frequency !.
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7. Construct

ND�i (s) =

�
i(s)Inze 0

0 Iny

�
Di(s)N (s)D�1

i (s) (5.101)

= �i(s)Di(s)N (s)D�1
i (s) (5.102)

and compute the optimal H1 controller:

Ki+1(s) = arg min
K(s)2KS

kFl(ND�i(s);K(s))k1 (5.103)

8. Compute the mixed and corresponding complex � upper bounds
�� ~� (Fl(N (j!);Ki+1(j!))) and �� ~�c

(Fl(N (j!);Ki+1(j!))) at each fre-
quency !. Computation of �� ~�c

(Fl(N (j!);Ki+1(j!))) provides the scalings
D
?
i+1(!) for the next iteration.

9. Compute �i+1(!) given by:

�i+1(!) =
�� ~� (Fl(N (j!);Ki+1(j!)))

�� ~�c

(Fl(N (j!);Ki+1(j!)))

1

ji(j!)j � 1 (5.104)

10. If sup! j�i+1(!)j > sup! j�i(!)j return to 6 and reduce �. Otherwise let
i = i + 1.

11. Compare Di+1(s) and i(s) with the previous scalings Di(s) and i�1(s).
Stop if they are close and sup! j�i+1(!)j � 0. Otherwise repeat from step 4.

Clearly, �-K iteration is not so conceptually straight forward as D-K iteration for
purely complex perturbation nor D,G-K iteration for mixed perturbation sets.
The main obstacle is to avoid the \pop-up" phenomena.

In order to clarify matters a bit, let us assume perfect realizations of the D and
� scalings and that we may choose �1 = 1. Then

�� (Fl (ND�1(j!);K1(j!))) = Fl

�
�1(j!)D1(j!)N (j!)D�1

1
(j!);K1(j!)

�
(5.105)

= j1(j!)j��
�
Fl

�
D1(j!)N (j!)D�1

1
(j!);K1(j!)

��
(5.106)

= j1(j!)j�� ~�c

(Fl (N (j!);K1(j!))) (5.107)

= �� ~� (Fl (N (j!);K1(j!))) for �1 = 1 (5.108)

and the controller K2(s) will minimize the 1-norm of an augmented system
which closed with the previous controller K1(s) has maximum singular value ap-
proximating mixed �. New mixed and complex � bounds may then be computed
and the procedure may be repeated. Unfortunately it is not possible to choose
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�i = 1 in general since we may then su�er from \pop-up" type phenomena, where
for some frequencies a small increase in the maximum singular value of ND�i(s)
creates a very large increase in �. However by reducing �, that is by �ltering 
through a stable �rst order �lter, the \pop-up" type phenomena may be avoided
with proper choice of �. Thus �ltering (s) in �-K iteration is the equivalent of
step 5 in D,G-K iteration. Filtering (s) does not provide the same guarantee
for a monotonically non-increasing � upper bound as we can achieve in D,G-K
iteration. However, numerical experience suggests that it works well in practice.

As before we use the H1 optimal control solution to synthesize the controller in
step 7. The K-step of �-K iteration can be illustrated as in Figure 5.7.

D
�1
i (s)

Inu

-

-
N (s)

-

-

Di(s)

Iny

~�(s)

Ki(s)

-

-

iInze

Iny

�

�

-

-

ND�i(s)

Figure 5.7: K-step of �-K iteration. nu, ny and nze are the number of manipu-
lated inputs u(s), measured outputs y(s) and exogenous outputs z(s)
and e0(s) respectively.

As shown in Equation (5.108) on the facing page, �� (Fl (ND�i (j!);Ki(j!)))
equals the upper bound �� ~� (Fl (N (j!);Ki(j!))) for perfect realizations of the
scalings i(s) and Di(s) and for �i = 1. For �i 6= 1 this is not true. However if

ji�1(j!)j ! �� ~� (Fl(N (j!);Ki(j!)))

�� ~�c

(Fl(N (j!);Ki(j!)))
for i!1 (5.109)

then from (5.100) on page 87 and perfect realization of i(j!):

ji�1(j!)j ! ji(j!)j for i!1 (5.110)

and

��
�
Fl(�i(j!)Di(j!)N (j!)D�1

i (j!);Ki(j!))
�! �� ~� (Fl(N (j!);Ki(j!))) (5.111)



90 Robust Control Design using Structured Singular Values

for i ! 1. Notice that Equation (5.109) on the preceding page implies that
�i(!)! 0. Thus in order to reach a local minimum for k�� ~�(Fl(N (s);K(s)))k1
the necessary conditions are:

1. The iteration must be monotonically non-increasing in
kFl(ND�i(s);Ki(s))k1, that is

kFl(ND�i(s);Ki(s))k1 � kFl(ND�i�1 (s);Ki�1(s))k1 8i (5.112)

2. Furthermore the iteration must be monotonically non-increasing in
k�i(!)k1, that is

k�i(!)k1 � k�i�1(!)k1 8i (5.113)

In Appendix B on page 293 it is shown that the criteria (5.112) can be met by
choosing ��i(!) as in (5.98). If � then can be chosen to ful�ll the criteria (5.113)
the iteration will converge to a local minimum for k�� ~�(Fl(N (s);K(s)))k1.

We then have the following lemma:

Lemma 5.1 The �-K iteration procedure described above is monotonically non-
increasing in kFl(ND�i(s);Ki(s))k1 given perfect realizations of the D(s) and
(s) scalings. Provided k�(!)k1 converges to zero the procedure will converge to
a local minimum for k�� ~� (Fl(N (j!);Ki(j!))) k1.

Numerical evidence suggests that � can indeed be chosen to ful�ll (5.113). For
�i = 0, i(s) = i�1(s) and we will only concentrate on reducing the H1 bound
in (5.112). Conversely, if �i(!) > 0, for some !, then for � = 1 it can be shown,
see Appendix B, that

kFl(ND�i (s);Ki(s))k1 = kND�i�1 (s);Ki�1(s))k1 (5.114)

Thus in this situation, we will only concentrate on the criteria (5.113)during the
i'th step of the iteration. By choosing � (or �) in between these two extremes,
we may attempt to ful�ll both criteria (5.112) and (5.113). However, it is likely
that examples may be constructed where no � ful�lling (5.113) can be found.

Notice that for a purely complex perturbation set, if we choose � = 1 then
�i(!) = 0, 8!; 8i and i(s) = 1, 8i. Then �-K iteration will reduce to standard
D-K iteration.

5.3 Summary

An introduction to the structured singular value � has been given. Using a N�K
framework we addressed the robust stability problem for possibly repeated real
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and complex uncertainties which enter the nominal model in a linear fractional
manner. This uncertainty description is superior to the assumption in connec-
tion with H1 control where only full complex blocks can be considered. Using �
we then derived simple expressions for both robust stability and robust perfor-
mance with an 1 norm bounded performance cost function. Thus we can con-
sider robust performance non-conservatively for a very large class of perturbation
structures, including parametric uncertainty and mixed dynamic and parametric
uncertainty.

Unfortunately, � cannot be directly computed since the implied optimization
problem is non-convex and may have multiple local minima. This fact has natu-
rally hampered the application of � theory to real control systems design. Rather
than trying to compute � itself, it is then customary to look for upper and lower
bounds on �. From the de�nition of � it is easy to see that � is bounded from
below by the spectral radius and from above by the singular value. The idea is
to utilize transformations which are �-invariant to re�ne these bounds. In the
original paper on � [Doy82], Doyle derived such bounds for purely complex per-
turbation sets. The complex � upper bound is generally very close to the true �
value.

However, one of the powerful features of � is that it can handle real perturbations
(parametric uncertainty) as well. Unfortunately, the purely real (for robust sta-
bility analysis with parametric uncertainty only) or the mixed real and complex
(for robust stability analysis for mixed uncertainty or for robust performance
analysis in general) upper bound is more complicated. During the past 5 years,
formulation of mixed � upper and lower bounds have received considerable at-
tention within the automatic control community. Today, some of these bounds
are commercially available through the MatLab � toolbox. However, in general
the bounds on mixed � seem to be much more conservative than the purely com-
plex � bounds. In particular, for a large number of real perturbations, the gab
between the upper and lower bound may be quite large.

Nevertheless, for a limited number (less than 10-15) of non-repeated real uncer-
tainties, the bounds on � seem in general to be quite tight. Thus from a control
engineer's point of view, the mathematical subtleties in � is of minor importance
in connection with � analysis.

This is unfortunately not true when it comes to � synthesis. Since we cannot
compute � (unless in some very simple cases, where the upper bound is equal
to �) it is clear that controller design with � will be di�cult. The approach
usually taken is to consider an upper bound problem instead. However, even
for purely complex perturbations this is still an unsolved mathematical problem
despite the fact that it has received much attention. For complex perturbation
sets an iterative scheme, known as D-K iteration, has been known for some time.
This approach possesses no guaranteed convergence properties. Nevertheless it
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seems to work quite successfully in practice and has been applied to a large
number of applications. Furthermore, with the release of theMatLab �-Analysis
and Synthesis Toolbox commercially available software exists to support D-K
iteration.

On the other hand, for mixed real and complex perturbations until recently
no known methodology was available for solving the synthesis problem. Then
in 1993, Young [You93] presented a iterative solution procedure, denoted D,G-
K iteration, to the mixed � problem. The D,G-K iteration is a more or less
straightforward generalization of D-K iteration. Unfortunately, since the problem
is posed directly in line with the way � is computed we now need to �t scalings
both in magnitude and phase. In complex � synthesis, we need only to �t in
magnitude since any phase is absorbed into the complex perturbations. In mixed
real and complex � synthesis, the phase is not absorbed since the perturbations
are real; thus the need for �tting both in phase and magnitude. This considerably
complicates matters, in particular since one of the scaling matrices are purely
imaginary for all frequencies.

A novel approach for mixed � synthesis is then proposed. Here we consider a
corresponding complex problem, where we approximate all real perturbations
with complex ones. Then we only need to �t scalings in magnitude. We then
introduce an additional scaling matrix to shift from complex to mixed �. With
this new approach, denoted �-K iteration, we cannot obtain the same guarantee
for monotonically non-increasing behavior as for D,G-K iteration. However, as
we shall show in the next Chapter, �-K iteration seems to work quite well in
practice.
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The main purpose of this chapter is to illustrate how the proposed �-K iteration
performs on a practical design example. A compact disc (CD) servo drive has be
chosen as application partly because it is a simple and illustrative example and
partly because it enables us to compare the results with reported results from
D,G-K iteration by Young [You93, Y�A94].

The servo arm for a computer disc drive or a compact disc player is essentially
a small exible structure, whose dynamics will depend on various physical quan-
tities. Provided the product is to be mass produced, the control design for the
servo should work for any product from the assembly line and thus the design
should be insensitive to variations in the parameters of the servo model.

Here a very simple idealized model of the servo is considered. The control problem

93
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formulation is identical to that in [Y�A94]. It is assumed that the low frequency
plant dynamics can be approximated by a double integrator with an uncertain
gain:

GT (s) =
kp

s2
; 0:1 � kp � 10: (6.1)

Notice that the ratio of kp;max to kp;min is as large as 100. The model is as-
sumed valid up to the frequency !o = 100 rad/s. The parameters kp and !o

do not necessarily reects physical meaningful numbers. This is, however, of
minor importance here, since the main objective is to illustrate di�erent design
techniques. The robust performance control problem is thus to design a �xed
dynamic controller which stabilizes the plant and complies with performance de-
mands for all possible plants. To ensure that the controller rolls o� at frequencies
above !o a complementary sensitivity speci�cation is included into the design.
Performance requirements are given as a standard sensitivity speci�cation. The
control problem can then be speci�ed as in Figure 6.1.

- m
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Figure 6.1: Control problem set-up for the compact disc servo drive.

Notice that the perturbed low frequency plant (6.1) can be written

GT (s) =
1

s2
(5:05 + 4:95�r) =

5:05

s2

�
1 +

4:95

5:05
�
r

�
= G(s) (1 +Wr�

r) (6.2)
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where �r 2 R is a real scalar perturbation �r 2 [�1; 1]. The sensitivity weights
on S(s) and T (s) are standard weights taken from [Y�A94]:

Wu1(s) = Wu2(s) =
5(s+ 0:001)

s + 5
(6.3)

Wp1(s) = Wp2(s) =
0:03

s + 0:05
(6.4)

Notice that we have gathered the weighted sensitivity functions Wp2SWp1 and
Wu1TWu2 into a single performance speci�cation. We in fact believe that this is
a somewhat awkward way of specifying the control problem, since the comple-
mentary sensitivity weightsWu1(s) andWu2(s) introduced to make the controller
roll o� at high frequencies reect an uncertainty speci�cation rather than a per-
formance speci�cation. Thus it could have been introduced via a separate scalar
uncertainty block �c. In this way we would decouple the speci�cations on the sen-
sitivity and complementary sensitivity. However, in order to compare our results
with those reported in [You93, Y�A94] we will keep the formulation in Figure 6.1
on the facing page.

6.1 Complex � Design

Our �rst approach will be to design a complex � optimal controller:

K�c (s) = arg min
K(j!)2KS

sup
!
� ~�c

(Fl(N (j!);K(j!))) (6.5)

Hence, at �rst we approximate the real perturbation �r with a complex one �c.
The complex � problem was solved using D-K iteration as outlined in Proce-
dure 5.1 on page 79. The results from the iteration is shown in Figure 6.2 on the
next page and tabulated in Table 6.1 on page 97.

In Figure 6.2 on the next page � ~�c

(Fl(N (j!);K(j!))) for each iteration is shown
across frequency. As seen the iteration converges rapidly with a �nal complex
� peak at 1.40. Using a third order approximation for D(s), the �nal complex
� controller had 12 states. Using the standard model reduction facilities in the
MatLab � toolbox it was possible to reduce the order to 7 with very little
increase in � ~�c

(Fl(N (j!);K(j!))).

In Figure 6.2 on the following page also the mixed � result for the �nal con-
troller K�c (s) is shown. Notice how there is a noticeable dive in mixed � around
0.5 rad/s. It thus seem possible that a signi�cant improvement in control perfor-
mance can be obtained by applying mixed � synthesis.

Finally in Figure 6.2 on the next page the step responses for kp = 1 (nominal),
kp = 0:1 and kp = 10 are shown. Even though the controller performs quite well,
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Figure 6.2: Results from D-K iteration on the CD player servo. Shown are on the
left � ~�c

(Fl(N (j!);K(j!))) for each iteration 1{4 and for the 7th order reduced
controller (dash-dotted). Also on the left are � ~� (Fl(N (j!);K�c (j!))) (dashed).
On the right are the step responses for kp = 1 (solid), kp = 0:1 (dash-dotted) and
kp = 10 (dashed).

see also Table 6.1 on the facing page, the responses for di�erent values of the
gain kp are very di�erent, with the high gain response being much faster than
the low gain response as expected. If it is desired that the closed loop response
is invariant to variations in kp a pre�lter may be included in the design as it is
done in [Y�A94]. Our objective here will however be the feedback design.

The results in Figure 6.2 are similar to the results presented in [Y�A94].

6.2 Mixed � Design

In order to improve the results from the D-K iteration, �-K iteration as outlined
in Procedure 5.3 on page 86 was applied to the servo problem. The complex
� optimal controller K�c (s) is then an obvious choice for the initial controller
K0(s). Let us illustrate the �rst run through of the �-K iteration. Thus let N (s)
be the augmented open loop plant derived from Figure 6.1 on page 94. Then
ND�0(s) = D0(s)N (s)D�1

0
(s) where D0(s) is the scaling matrix from step 2 in

the �nal D-K iteration. Furthermore K0(s) = K1(s) = K�c (s). The complex



6.2 Mixed � Design 97

Iteration No.
1 2 3 4 7th order K

k� ~�c

Fl(N (s);Ki(s))k1 3.75 1.60 1.41 1.40 1.42
k� ~�Fl(N (s);Ki(s))k1 { { { 1.40 1.42

Overshoot Settling time
kp = 0:1 1.14 6.4 secs
kp = 1 1.13 13.6 secs
kp = 10 1.08 1

Table 6.1: Results from D-K iteration on the CD player servo.

and mixed � upper bounds in step 2 of Procedure 5.3 on page 86 are the bounds
illustrated in Figure 6.2 on the facing page. The scalings D?

1(!) are returned by
the MatLab �-Analysis and Synthesis Toolbox mu.m command. We may then
compute �1(!) as

�1(!) =
�� ~� (Fl(N (j!);K1(j!)))

�� ~�c

(Fl(N (j!);K1(j!)))

1

j0(j!)j � 1 (6.6)

=
�� ~� (Fl(N (j!);K1(j!)))

�� ~�c

(Fl(N (j!);K1(j!)))
� 1 (6.7)

since 0(!) = 1; 8!. �1(!) is shown in Figure 6.3 on the following page. Note
that �1(!) is simply the ratio between mixed and complex � minus 1. Using
the � toolbox command musynfit.m we may next �t the scalings D?

1
(!) with

a real rational stable minimum phase transfer function matrix as required in
step 4 of �-K iteration. musynfit.m furthermore automatically augment with an
appropriate unity matrix. Since mixed � is always smaller than the corresponding
complex �:

�� ~� (Fl(N (j!);K1(j!))) � �� ~�c

(Fl(N (j!);K1(j!))) 8! (6.8)

we will always have that �1(!) � 0; 8! in the �rst run through of �-K iteration.
Thus in step 5 of Procedure 5.3 on page 86 we will have that ��i(!) = 1; 8!. Thus
there is no need for calculating �1(!), see Equation (5.99) on page 87.

Then in step 6 let us choose � = 1. Then 
?
1
(!) will be equal to the mixed to

complex � ratio:


?
1 (!) =

�� ~� (Fl(N (j!);K1(j!)))

�� ~�c

(Fl(N (j!);K1(j!)))

1

j0(j!)j = �1(!) + 1 (6.9)
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Figure 6.3: Results from �rst iteration on the CD player servo. On
the left is shown �2(!) and �1(!) (dashed) and on the right is shown
��(Fl(ND�0(j!);K0(j!))) (dashed) and ��(Fl(ND�1(j!);K1(j!))).

A scalar transfer function 1(s) is then �tted, in magnitude, to ?1 (!). Here we
may use the �tting routine fitmag.m from the � toolbox. Next the augmented
system ND�1 (s) is formed:

ND�1(s) =

�
1(s)I3 0

0 1

�
D1(s)N (s)D�1

1
(s) (6.10)

and the H1 optimal controller K2(s):

K2(s) = arg min
K(s)2KS

kFl(ND�1(s);K(s))k1 (6.11)

is computed, e.g. using the hinfsyn.m function from the � toolbox.

Then in step 8 of the �-K iteration we compute upper bounds for mixed and
complex �, the latter providing the D-scalings D?

2(!) for the next iteration. In
step 9 we �nally �nd �2(!) given by:

�2(!) =
�� ~� (Fl(N (j!);K2(j!)))

�� ~�c

(Fl(N (j!);K2(j!)))

1

j1(j!)j � 1 (6.12)

�2(!) is also shown in Figure 6.3. Since

sup
!
j�2(!)j < sup

!
j�1(!)j (6.13)
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the condition in step 10 for terminating the �rst run through is ful�lled. Since
sup! j�2(!)j is not close to zero we will repeat the iteration from step 4.

The second parameter besides � which we use to judge the convergence properties
of the �-K iteration is the 1-norm kFl(ND�i(s);Ki(s))k1. Note that we need
this norm to compute �i(!) in step 5. In Figure 6.3 on the facing page we have
plotted ��(Fl(ND�0 (j!);K0(j!))) and ��(Fl(ND�1(j!);K1(j!))) across frequency
!. Note that Appendix B guarantees that

kFl(ND�i(s);Ki(s))k1 � kFl(ND�i�1 (s);Ki�1(s))k1 (6.14)

for perfect realizations of the D and  scalings. The results in Figure 6.3 on the
facing page con�rms this except for a little overshoot at low frequencies due to
imperfect scalings. This is in fact trivial for the �rst iteration since K0(s) = K1(s)
and j1(j!)j � 1 = j0(j!)j for all frequencies !. However, for the next iterations
this result is not so trivial, see Appendix B on page 293.
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Figure 6.4: � results from �rst �-K iteration on the CD servo. New (solid) and
previous (dashed) mixed � upper bound and new (dash-dotted) and
previous (�) complex � upper bound.

Finally let us have a look at �. In Figure 6.4 � ~�(Fl(N (j!);K1(j!))) (initial
mixed �), � ~�(Fl(N (j!);K2(j!))) (new mixed �), � ~�c

(Fl(N (j!);K1(j!))) (ini-
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tial complex �) and � ~�c

(Fl(N (j!);K1(j!))) (new complex �) are shown versus
frequency.

Note that with the  scaling we have put less emphasis on the mid-frequency
range thus providing the opportunity for reducing � outside this frequency range.
Then, of course, the new mixed � value will increase in the mid frequency range.
Here we have not obtained any decrease in the maximum � upper bound across
frequency, since k� ~�(Fl(N (s);K1(s)))k1 � k� ~�(Fl(N (s);K2(s)))k1. Note that
we have not postulated that this would be the case in every iteration. However,
we have shifted the emphasis of mixed � and as we shall see, during the next
iterations sup! �i(!)! 0 and mixed � will decrease down to approximately one.

In Table 6.2, the results of the �-K iteration is given. Notice how sup! �(!) con-
verges to zero indicating that the  scalings approximates the mixed to complex
� ratio. The 1-norm kFl(Pi(s);Ki(s))k1 is monotonically decreasing as shown
in Appendix B. � had to be reduced from iteration 3+ in order to reduce the �
peaks (mixed � pop-up phenomena).

�-K Iteration
Iteration No. 1 2 3 4 5 6 7� ~�c

(Fl(N (s);Ki(s)))

1

1.40 { { { { { 2.46� ~� (Fl(N (s);Ki(s)))

1

1.40 1.43 1.15 1.06 1.08 1.06 1.02
sup! �i(!) 0.61 0.42 0.30 0.13 0.07 0.06 0.04
kFl(Pi(s);Ki(s))k1 1.40 1.41 1.32 1.12 1.05 1.024 1.019
inf1 !��i(!) { 1 0.95 1 1 0.62 0.32
� { 1 1 0.5 0.5 0.5 1

Overshoot Settling time
kp = 0:1 1.32 13.9 secs
kp = 1 1.36 20.6 secs
kp = 10 1.10 102 secs

Table 6.2: Results from �-K iteration on the C.D. player servo.

In Figure 6.5 on the facing page, mixed and complex � is shown for the initial
(complex � optimal) and �nal mixed � optimal controller. Mixed � peaks at
approximately 1.02 and a 25% improvement has thus been obtained through �-K
iteration. Notice how this is achieved at the expense of complex �, which peaks
at almost 2.5 for the mixed � optimal controller K�(s).

In Figure 6.5 on the facing page, also the step responses are shown for di�erent
values of the uncertain gain kp. Comparing with the results for the the complex
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Figure 6.5: Results from �-K iteration on the C.D. player servo. Shown are on
the left � ~� (Fl(N (j!);K(j!))) (dashed and solid) and � ~�c

(Fl(N (j!);K(j!)))
(dash-dotted and dotted) for the initial (complex � optimal) and �nal mixed �

optimal controller respectively. On the right are the step responses for kp = 1
(solid), kp = 0:1 (dash-dotted) and kp = 10 (dashed).

� optimal controller K�c (s), see Figure 6.2 on page 96, we note that the mixed
� controller is more invariant to changes in kp. The worst-case rise- and settling
time (for kp = 0:1) has been much improved. The expense has been an increase
in overshoot. Using a pre�lter, these overshoots may be removed.

In [Y�A94], D,G-K iteration is used to �nd a mixed � controller for the C.D. player
servo. Here mixed � was reported to peak at 1.25 for a ninth order realization
of the �nal mixed � controller. In order to compare this result with the �-K
iteration result, the �nal controller K�(s), which had 26 states, must be reduced
using model reduction. Using the routines provided in the MatLab � toolbox,
K�(s) was reduced to ninth order with virtually no increase in �. With the
reduced order controller K�;r(s) � ~� (Fl(N (j!);K�;r(j!))) also peaked at 1.02.
For lower order realizations there were, however, a signi�cant increase in mixed
�.

In this case, it thus seems that �-K iteration performs better than D,G-K itera-
tion. We believe that the reason for this is problems in �tting the G scalings. In
Figure 6.6 on the following page, G(!) is shown for the �nal mixed � controller
K�(s). Notice that G(!) is identically zero for a large part of the frequency range
(namely at those frequency points where mixed and complex � are identical) but
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Figure 6.6:  scalings to be �tted in �-K iteration (top) and G scalings to be �tted
in D,G-K iteration (bottom).

rapidly rise to approximately 2 � 104 at those frequencies where mixed and com-
plex � di�ers. Fitting an all-pass transfer function to this kind of data will be
very di�cult. The corresponding  scaling in �-K iteration behaves much better
as can be seen in Figure 6.6.

6.3 Summary

The control of compact disc servo drive was considered. A very simple model
of a CD drive is a double integrator with uncertain gain. Here the ratio of the
maximum to minimum gain was 100. Using weighting functions from [Y�A94]
the control design was formulated as a N�K problem. Initially a complex �
design was performed, thus treating the real perturbation as a complex one. The
result (after model reduction) was a 7th order controller which achieved a real
� peaking at 1.42. The complex � value � ~�c

(Fl(N (j!);K(j!))) peaked also

at 1.421. However, whereas complex � was at across frequency ! there was a

1Note that �~�(Fl(N(j!);K(j!))) and �~�c
(Fl(N(j!);K(j!))) are equal for w = 0 and1

because then Fl(N(j!);K(j!)) is real.
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noticeable dive in the mixed � response. Thus signi�cant improvement should
be possible with a mixed � design. This was con�rmed using �-K iteration. The
�nal controller had 9 states (after model reduction) and the corresponding mixed
� response peaked at 1.02. Thus the complex � result was improved by 25%. This
was achieved at the expense of complex � which peaked at 2.5 for the mixed �
controller. Compared with the results reported by Young & �Astr�om on D,G-K
iteration for the same system (mixed � peaked at 1.25) we obtained much better
results using �-K iteration.
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In this chapter the methods introduced in Chapter 5 will be applied in control of
an advanced short take-o� and vertical landing (ASTOVL) aircraft. The model
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applied for the vehicle is valid at low speeds in the transition zone from jet-borne
to fully wing-borne ight. In this ight condition the aircraft is unstable in the
longitudinal axis and there is very poor decoupling between pilot commands and
aircraft response. Furthermore the aircraft is extremely ill-conditioned as the gain
of the system decays to zero at steady-state for one particular input direction.
The limits this assign on the closed loop system will be thoroughly investigated.
The control objectives for the aircraft will be discussed and a performance speci�-
cation will be derived with due attention to the special gain characteristics of the
system. For robustness to dynamic uncertainty, a diagonal dynamic multiplica-
tive perturbation models will be applied at both input and output. A classical
control con�guration will then be investigated. For a modern design approach
the general N�K framework becomes a very natural way of formulating the
control problem. This furthermore possesses the advantage that the uncertainty
speci�cation may easily be augmented with a parametric uncertainty description
as well. This has been investigated in [TCABG95]. Here we will however con�ne
ourselves to considering dynamic uncertainty. A complex � optimal controller
will be designed for the aircraft usign D-K iteration.

7.1 The Aircraft Model

The aircraft model describes a complete pitch axis system for a generic canard-
delta con�guration with ap and foreplane angles �xed, see [Irv91]. The aircraft
is controlled using vectored thrust produced from engine nozzles at the front and
the rear of the aircraft. The thrust is split with one part being directed through
the rear nozzle at a variable angle, �R to the horizontal, producing a thrust, TR,
and the remainder through the front nozzle inclined at a �xed angle, �F to the
horizontal, producing a thrust, TF . The forward thrust can be augmented with
plenum chamber burning when required. The aircraft is controlled by varying the
real nozzle angle, �R, and the magnitude of the thrusts, TR and TF . The pilot
commands for pitch attitude �, height rate _h and longitudinal acceleration ax

are processed by the ight control computer hardware Gc(s) which also converts
pilot commands into demands on the controlled variables �R, TF and TR through
a 3� 3 axis transformation matrix. The thrusts produced by the engine, GE(s),
are then resolved via a force transformation matrix, Fmat, into an axial force,
XF , a normal force, ZF , and a pitching moment,M , which are the inputs to the
rigid aircraft model, denoted GA(s).

The model for the rigid aircraft, GA(s), represents the linearized, rigid-body dy-
namics of a canard-delta con�gured aircraft. The model is linearized for straight
and level ight at 100 ft, Mach no. 0.151 and 6� angle of attack. The dynamics
at this particular operating point are unstable.
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Figure 7.1: The rigid-body model of the aircraft G(s).

The pitch rate q [deg/s], pitch attitude � [deg], height rate _h [ft/s] and longitu-
dinal acceleration ax [g] are measured and available for feedback. The diagonal
transfer function matrix modeling the sensors is denoted GS(s).

The complete model of the aircraft is thus given as in Figure 7.1. A detailed
description of the rigid body aircraft model is given in Appendix C. The open
loop transfer function G(s) = GS(s)GA(s)FmatGEng(s)Gc(s) has 26 states, 4
outputs and 3 inputs. The aircraft model is thus a high order non-square system.

7.1.1 Plant Scaling

Notice that the input/outputs of the aircraft model are measured in di�erent
units. If norm-based control design methods likeH1 or � are applied, the control
problem will be skewed if not due attention is taken to scale the plant so that
the relative magnitude (or importance) of the di�erent input/outputs will be
approximately equal. This is done by multiplication on the left and right with 2
diagonal matrices Nu(s) and Ny(s):

Gs(s) = Ny(s)G(s)N
�1
u (s) (7.1)

Nu(s) and Ny(s) should be chosen so that the relative magnitude of the in-
puts/outputs equal unity and so that the input and output are scaled to norm
1. A popular method for choosing the scaling matrices is the use of expected
maximum magnitude. In Table 7.1 the expected maximum magnitude for each
input/output are given.

Signal u� u _h uax q � _h ax

Units � ft/s g �/s � ft/s g
Expected max. value � 30 � 100 � 2 � 30 � 30 � 100 � 2

Table 7.1: Expected maximum magnitude for each input/output component.
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From Table 7.1 on the preceding page the scalings are then chosen as

Nu = diag

�
1

30
;
1

100
;
1

2

�
; Ny = diag

�
1

30
;
1

30
;
1

100
;
1

2

�
(7.2)

Now the system \seen" by the controller will have input and output with max-
imum magnitude scaled to norm one. If the controller for the scaled system is
denoted Ks(s), the controller for the true system K(s) will be given by:

K(s) = N
�1
u (s)Ks(s)Ny(s) (7.3)

Throughout the remainder of this chapter we will almost exclusively deal with
the scaled plant Gs(s) and controller Ks(s). In order not to lengthen the notation
excessively, unless any confusion may occur, we will from now on use G(s) and
K(s) to denote the scaled plant and controller respectively.

7.1.2 Dynamics of the Scaled Aircraft Model

The dynamics of the scaled aircraft model will now be investigated using singular
values. In Figure 7.2 on the facing page the singular value Bode plot of the
(scaled) plant G(s) is shown. The plant is seen to be very ill-conditioned. Notice
how one of the singular values decays to zero at steady-state (! = 0), thus making
the condition number of the plant in�nity at steady-state. In other words, the
plant model G(j!) looses rank at steady-state. This of course impose some
unusual limitations on the achievable performance of the closed loop system.

Let the singular value decomposition of G(j!) be

G(j!) = Y (!)�(!)U�(!) (7.4)

=
�
y1 y2 y3 y4

�
2
664
�1 0 0
0 �2 0
0 0 �3

0 0 0

3
775
2
4 u

�
1

u
�
2

u
�
3

3
5 (7.5)

Here yi and ui are the output and input principal directions respectively, see
Section 3.1.2 on page 18. Since U is unitary u1, u2 and u3 will be mutually
orthogonal and we may partition the input u(j!) after the input principal direc-
tions:

u(j!) = �1(!)u1(!) + �2(!)u2(!) + �3(!)u3(!) (7.6)

In other words we express u(j!) in the coordinate system de�ned by U . The
output is then given by:

y(j!) = Y (!)�(!)U�(!) (�1(!)u1(!) + �2(!)u2(!) + �3(!)u3(!)) (7.7)
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Figure 7.2: Singular value Bode plot of the plant G(s) (solid) and plant condition
number (dashed).

=
3X
i=1

yi(!)�i(!)�i(!) (7.8)

= �1(!)�1(!)y1(!) + �2(!)�2(!)y2(!) + �3(!)�3(!)y3(!) (7.9)

Thus the output y(j!) will be con�ned to the region spanned by y1(!), y2(!)
and y3(!). We cannot require outputs in direction of y4(!) since we can only
control as many output directions as we have inputs.

Furthermore, at steady-state, �3 tends to zero as well and the output y(j0)
becomes con�ned to the region spanned by y1(0) and y2(0). It turns out that
for frequencies below 10�4 rad/s, Y (!) remains fairly constant. A good constant
approximation is

Y (!) � ~Y =
�
~y1 ~y2 ~y3 ~y4

�
for ! < 10�4 (7.10)

=

2
664

0 0 0 �1j
0:923 �0:291 0:252j 0
0:300 �0:954 0 0
�0:240 �0:076 �0:968j 0

3
775 for ! < 10�4 (7.11)
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where the imaginary parts are due to plant transmission zeros at s = 0. Since
~y11 = 0 and ~y21 = 0 the pitch rate q cannot be controlled in the low frequency
area. However, we have no intentions of trying to do so. In fact, in the exist-
ing classical PI design, the pitch rate is used to stabilize the plant, but is not
controlled itself.

Now ~y3 is mainly in the direction of the longitudinal acceleration ax(s) and there-
fore independent low frequency control of the longitudinal acceleration becomes
di�cult. That is, we cannot achieve acceleration in the low frequency range with-
out changing either the height rate _h(s) or the pitch attitude �(s). This is not
surprising, since our model is valid in the transition zone between jet-borne and
wing-borne ight where any change in longitudinal velocity strongly a�ects the
aircraft lift.

The above singular value analysis has revealed that care must be taken when
formulating the control objectives for the system. In the next section it will be
shown how the singular value decomposition of G(s) may be utilized to choose
adequate weighting functions for robust control design.

7.2 Control Objectives

The singular value analysis made above illustrated that independent control of
the pitch rate q(s) will be di�cult in the low frequency area. It is furthermore
obvious that control of pitch attitude and pitch rate cannot be accomplished
independently. It thus seems reasonable to omit direct control of the pitch rate
and just use q(s) as feedback (without reference).

A control con�guration for the aircraft can thus be formulated as illustrated in
Figure 7.3 on the facing page. The pilot commands for pitch attitude, r�(s),
height rate, r _h(s), and longitudinal acceleration, rax(s) are compared with the
measured values and the corresponding error signals, e�(s), e _h(s) and eax (s) are
fed into the controller K(s) together with the measured pitch rate qm(s).

There are four main control objectives that will be considered when designing a
controller for the ASTOVL vehicle.

1. Stability. The controller must stabilize the aircraft. The closed loop poles
must thus all be located in the left half s-plane.

2. Robust stability. The controller must be robustly stable in the face of
unmodeled dynamics and parametric uncertainty.

3. Nominal performance. There are two main performance demands to the
controlled aircraft. It must have adequate response to pilot commands
for pitch attitude, height rate and longitudinal acceleration. Furthermore,
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Figure 7.3: Block diagram of controlled aircraft.

rejection of gust disturbances on the airframe must be satisfactory. Here
we will consider pilot command response only.

4. Robust performance. Nominal performance speci�cations must be met by
uncertain closed loop system as well.

7.2.1 Robustness

It is critical that the controller stabilizes not only the nominal plant, but also
a family of plants covering the inevitable parametric and dynamic uncertainty
in the model. Here we will lump all the e�ects of uncertainty into a dynamic
uncertainty description.

The robustness towards unmodeled dynamics can be investigated using the sin-
gular value methods in Section 4.3 on page 42. If, e.g. an unstructured input
multiplicative uncertainty model is used, the true system is assumed to be given
by:

GT (s) = G(s)
�
I + ~�(s)

�
(7.12)

where ~�(s) is bounded in magnitude by:

��( ~�(j!)) < `(!); 8! � 0 (7.13)

From Theorem 4.4 on page 44, the perturbed system will remain stable if and
only if:

��(Ti(j!)) < `
�1(!); 8! � 0 (7.14)
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Usually a diagonal weighting function Wu(s) is introduced so that:

~�(s) =Wu(s)� (7.15)

where ��(�) < 1 and ��(Wu(j!)) = `(!), 8! � 0. Wu(s) is often given as:

Wu(s) = w(s) � I (7.16)

where w(s) is a SISO transfer function satisfying jw(j!)j = `(!) and I is the
identity matrix of appropriate dimension.

Unfortunately completely unstructured uncertainty descriptions as above may be
very conservative for ill-conditioned or poorly scaled systems. To see this assume
an unstructured input multiplicative uncertainty description like (7.12) with ~�(s)
given by (7.15). It is then easy to show that the perturbed plant GT (s) is given
by:

GT (s) = G(s) + G(s)�Wu(s) = G(s) + G�(s) (7.17)

where G�(s) is given by

G�(s) = G(s)�1Wu(s) = w(s) �

2
664
G11�11 +G12�21 + G13�31

G21�11 +G22�21 + G23�31

G31�11 +G32�21 + G33�31

G41�11 +G42�21 + G43�31

G11�12 +G12�22 +G13�32 G11�13 + G12�23+ G13�33

G21�12 +G22�22 +G23�32 G21�13 + G22�23+ G23�33

G31�12 +G32�22 +G33�32 G31�13 + G32�23+ G33�33

G41�12 +G42�22 +G43�32 G41�13 + G42�23+ G43�33

3
775 (7.18)

Here �ij denotes the i; j'th entry of �. The dependency on s has been omitted
for clarity. Now if there is large di�erences in the gains of Gij(s) row-wise that
is, if for example

jG11(j!)j � jG12(j!)j; jG13(j!)j; for some frequency range (7.19)

we will have that for those frequencies

jG�11
(j!)j = jw(j!)j jG11(j!)�11 +G12(j!)�21 + G13(j!)�31j (7.20)

� jG11(j!)j (7.21)

unless jw(j!)j is very small. Consequently the uncertainty assumption on G11(s)
can be very conservative. Generally, if we have large row-wise gain variations
in G(s) an unstructured input multiplicative uncertainty description will be po-
tentially very conservative. Equivalently it can be shown that if signi�cantly
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column-wise gain variations exist in G(s) an unstructured output multiplicative
uncertainty description will be potentially very conservative.

Such gain variations occur typically for poorly scaled or ill-conditioned systems.
For the aircraft model it can be checked that there are considerable row-wise gain
variations across the entire frequency range and column-wise gain variations in
the low frequency area. Thus unstructured perturbation models will surely result
in very conservative control designs.

How can we now avoid this conservatism? One remedy is to diagonalize �:

� = diagf�11;�22; � � � ;�nng ; j�ii(j!)j < 1; 8! � 0 (7.22)

Then for the case of input multiplicative uncertainty the plant uncertainty G�(s)
becomes

G�(s) = G(s)�1Wu(s) = w(s)I

2
664
G11�11 G12�22 G13�33

G21�11 G22�22 G23�33

G31�11 G32�22 G33�33

G41�11 G42�22 G43�33

3
775 (7.23)

which is less potentially conservative. The diagonalization of � corresponds to
assuming that the uncertainty acts individually on each input (or output for
output multiplicative uncertainty). We will assume this diagonal uncertainty
structure for the aircraft control design. Notice that the control design will now
be a �-problem, since we have enforced a structure on �(s). We can thus not
use the singular value tests from Table 4.1 on page 471. Rather we must use
the results from Chapter 5 to assess whether the closed loop system is robustly
stable. From Theorem 5.2 on page 71 the closed loop system will remain stable
under perturbations � if and only if

sup
!
��(P (j!)) � 1 (7.24)

where P (s) is the transfer function matrix \seen" by the perturbation.

Another well-known design problem in connection with ill-conditioned systems is
that the closed loop properties can be very di�erent when evaluated at di�erent
loop breaking points. In [TCB95] it is shown that for the current aircraft the
robustness to diagonal multiplicative uncertainty like (7.22) may be adequate
when the uncertainty acts at the plant output, but very poor if the uncertainty
acts at the plant input. Thus the robustness properties may be very di�erent at
the plant input and output. In order to avoid this situation we will assume a
diagonal multiplicative perturbation at both plant input and output. It is thus
assumed that the true plant belongs to the set given by

GT (s) = (I + ~�o(s))G(s)(I + ~�i(s)) (7.25)

1They will at least be potentially conservative.
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where ~�o=i(s) is a diagonal perturbation:

~�i=o(s) =Wi=o(s)�(s) = wi=o(s)I�(s) (7.26)

where wi=o(s) is a scalar transfer function specifying the expected maximum

magnitude of ��( ~�i=o(j!)) and �(s) is given by (7.22) on the page before. Since
the plant has been scaled, it is assumed that wi(s) = wo(s) = wu(s). Since the
nominal model is believed to be structurally correct in the low frequency range,
the dynamic uncertainty at low frequencies will be quite small { say 5%. How-
ever, at higher frequencies the nominal model becomes more and more uncertain
and in the neighborhood of the natural frequency of the airframe the dynamic
uncertainty will be large, probably more that 100%. wu(s) was chosen as:

wu(s) =
1015=20(s + 1)

s + 112
(7.27)

In Figure 7.4 the singular value Bode plot of wu(s) is shown. Notice that the
steady-state gain is 0:05 � �26 dB, corresponding to 5% uncertainty. The uncer-
tainty then rise to 100% around 20 rad/sec and continues to increase above that
frequency in order to illustrate the large uncertainty of the rigid-body airframe
model around the natural frequency of the airframe.
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Figure 7.4: Singular value Bode plot of the uncertainty speci�cation Wu(s) =
wu(s)I.
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7.2.2 Performance

The major performance demand on the controlled aircraft is probably that the
pilot command response should be satisfactory. Thus the transfer function from
references r(s) to the control error e(s) should be small across the controlled
frequency range (up to the closed loop bandwidth !b). Since we have not included
the pitch rate q(s) into the control error e(s) this transfer matrix will not be
equal to the standard output sensitivity So(s). Nevertheless we will use the
term output sensitivity since the implied transfer matrix measures the sensitivity
to disturbances (references) at the plant output. However, as was shown in
Section 7.1.2 on page 108, independent control of the longitudinal acceleration
ax(s) in the low frequency range is not feasible. If we attempt to obtain this
by specifying standard performance weightings with uniform high gain for low
frequencies, the controller will use a lot of e�ort to try to accomplish an impossible
task. This will surely deteriorate the overall control performance.

To avoid this we must specify a control error weight We(s) which does not pe-
nalize error signals in the direction of ~y3 in the low frequency range. Fortunately
such a weighting matrix can be easily constructed from ~Y . Let We(s) be given
by:

We(s) =

2
4 w1(s) 0 0

0 w2(s) 0
0 0 w3(s)

3
5Y T

W (7.28)

where YW is given by:

YW = <e ( ~Y2:4;1:3) =
�
yw1 yw2 yw3

�
(7.29)

=

2
4 �0:923 �0:291 0:252

0:300 �0:954 0
�0:240 �0:076 �0:968

3
5 (7.30)

w1(s) and w2(s) are standard error weights with high gain at low frequencies.
w3(s) has low gain at low frequencies, but should be equal to w(1;2)(s) for frequen-

cies above, say 0.1 rad/sec. Notice that YW is equal to ~Y , see Equation (7.11)
on page 109, except that the subsystem corresponding to the controlled vari-
ables has been selected and that the imaginary parts have been changed into real
parts. For a norm based design method like � the latter changes nothing and real
weighting matrices seem more natural. Now if the error e(j!) is in the direction
of ~y3 (e(j!) = �~y3), the weighted signal will be given by:

e
0(j!) = We(j!)e(j!) (7.31)

= We(j!)�~y3 (7.32)

=
�
0 0 j�w3(j!)

�T
(7.33)
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Consequently, if the gain of w3(s) is small in the low frequency range, less weight
will be put on the unreachable output direction. The following performance
weightings were chosen for the aircraft design:

w1(s) =
0:5(s+ 1:25)

s + 6:25 � 10�3 (7.34)

w2(s) =
0:5(s+ 1:25)

s + 6:25 � 10�3 (7.35)

w3(s) =
0:5(s+ 1:25)(s+ 1:25 � 10�4)
(s + 0:03125)(s+ 0:0125)

(7.36)

In Figure 7.5, the singular value Bode plot of We(s) is shown. Notice that
because YW is unitary, the singular values are simply the gain characteristics
of the individual weightings w1(s) ! w3(s). Notice also how w3(s) reects the
small weight we impose on the unreachable output at low frequencies.
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Figure 7.5: Singular value Bode plot of the performance weight We(s).
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7.3 Formulation of Control Problem

Now the aircraft robust performance control problem will be formulated using
the N�K framework introduce in Section 5.1.2 on page 71. With simultaneous
input and output multiplicative diagonal uncertainty and a command response
performance speci�cation as above, the control problem set-up then becomes as
illustrated in Figure 7.6.

K(s)

G(s)n -- - n?

�
�

- Wu(s)

Wu(s)-

?

6

n? - We(s)

�
�
�

� �

�
e(s)

y(s)u(s)

z1(s)

z2(s)

w1(s)

w2(s)

d
0(s) = r(s) e

0(s)

q(s)

e(s)

�(s)

�p(s)

N (s)

Figure 7.6: N�K formulation of aircraft robust performance control problem.

The results from Section 5.1 on page 64 may then be utilized to assess the per-
formance and robustness of the controlled system as follows. The perturbation
�(s) belongs to the bounded subset

B� = f�(s) 2� j��(�(j!)) < 1g (7.37)
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where � is given by

� = fdiagf�1; �2; �3; �4; �5; �6; �7g j�i 2 Cg (7.38)

We then have:

� The closed loop system will be robustly stable i�:

sup
!
�� (P11(j!)) � 1 (7.39)

where P (s) = Fl(N (s);K(s)). P11(s) is thus the transfer matrix from the
perturbations w(s) = [w1(s); w2(s)]T to z(s) = [z1(s); z2(s)]T .

� The system will have nominal performance if:

sup
!

�� (P22(j!)) � 1 (7.40)

P22(s) is the transfer matrix from the disturbances d0(s) to the control
errors e0(s).

� The system will have robust performance, that is, it will be robustly stable
and:

sup
!

�� (Fu(P (j!);�(j!))) � 1 (7.41)

i�

sup
!
� ~� (P (j!)) � 1 (7.42)

The augmented uncertainty block ~� is given by:

~� =
�
diag(�;�p)

��� 2 �;�p 2 C3�3
	

(7.43)

Since ~� consists of purely complex non-repeated blocks we may apply standard
D-K iteration to �nd the optimal � controller for the system. We will thus
iteratively solve the minimization problem:

inf
K(s)2KS

sup
!

inf
D(!)2D

�
��
�
D(!)Fl(N (j!);K(j!))D�1(!)

�	
(7.44)

The algorithms provided in the MatLab �-Analysis and Synthesis Toolbox may
be readily applied to do so.
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7.4 Evaluation of Classical Control Design

Before we proceed with the � design let us evaluate the existing classical con-
troller design for the aircraft. The existing classical PI controller con�guration
is displayed in Figure 7.7. The aircraft dynamics were �rst stabilized using pitch
rate feedback through a PI controller Kq(s) with lead �lter Lf (s):

Kq(s) =
13(s + 0:5)

s
(7.45)

Lf (s) =
1 + 0:125s

1 + 0:0208s
(7.46)

The remaining loops were closed in the order pitch attitude K�(s), height rate
K _h(s) and longitudinal acceleration Kax (s):

K�(s) = 0:95 (7.47)

K _h(s) =
�15(s + 0:175)

s
(7.48)

Kax (s) =
20(s + 10:0)

s
(7.49)
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Figure 7.7: Classical controller con�guration.

The individual controllers may be gathered in one transfer function matrixK(s),
like in Figure 7.3 on page 111. It is easy to see that

K(s) =

2
4 Kq(s)Lf (s) Kq(s)K�(s) 0 0

0 0 K _h(s) 0
0 0 0 Kax(s)

3
5 (7.50)
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The above controllers are for the true unscaled plant. In order to evaluate the
closed loop system against the robustness and performance demand introduced
previously, we will use the scaled plant and scale the classical controller:

Ks(s) = NuK(s)N�1
y (7.51)

where Ks(s) denotes the scaled version of the classical controller K(s).

In order to check whether the classical controller comply with the stated demands
we check the performance and robustness conditions given in Section 7.3 on
page 117. It can easily be veri�ed that the closed loop system in nominally stable,
since all poles of Fl(N (s);Ks(s)) are situated in the left-half s-plane. Robust
stability, nominal performance and robust performance will then be checked.

In Figure 7.8 on the facing page ��(P11(j!)), the singular values of P22(j!) and
� ~�(P (j!)) are shown across frequency !. Notice from Figure 7.8 on the facing
page that the closed loop system is not robustly stable since ��(P11(j!)) peaks
at approximately 1.4. Thus, with the applied perturbation model there exists a
perturbation with

��(�(j!)) =
1

1:4
= 0:71 (7.52)

for which the closed loop system will become unstable. Furthermore since
sup! ��(P22(j!)) > 10 the nominal performance speci�cation is far from being met
and as a consequence we of course cannot obtain robust performance. � ~�(P (j!))
peaks at approximately 11.8. This means that there exists a perturbation �(s)
with

��(�(j!)) =
1

11:8
= 0:085 (7.53)

for which the perturbed weighted sensitivity speci�cation Fu(�(s); P (s)) gets
large

��(Fu(�(j!); P (j!))) = 11:8 (7.54)

Whether or not the performance speci�cation is met for the perturbed closed
loop system is of course of minor importance when closed loop stability cannot
be guaranteed.

Notice how the robustness problems are concentrated at high frequencies whereas
the performance problems occur at low frequencies. This should indicate that it
will be possible to improve the design.

In Figure 7.9 on page 122 the (nominal) step responses of the system are shown
for maximumsize steps applied on pitch attitude �, height rate _h and longitudinal
acceleration ax. The results are further investigated in Table 7.2 on page 123,
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Figure 7.8: Results from applying the classical controller on the aircraft. Shown
are ��(P11(j!)) (top), �(P22(j!)) (center) and � ~�(P (j!)) (bottom).
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Figure 7.9: Transient responses for classical control con�guration. Shown are step
responses from step on pitch (top), height rate (center) and acceler-
ation (bottom). Shown signals are pitch rate (solid), pitch (dashed),
height rate (dotted) and longitudinal acceleration (dash-dotted).
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Maximum absolute deviation on

Step on step size pitch rate _� pitch � height rate _h acc. ax
[�/sec] [�] [ft/sec] [g]

pitch � 30 � 26.5 { 5.3 0.08

height rate _h 100 ft/sec 36.7 8.2 { 1.54
long. acc. ax 2 g 1.24 1.07 11.3 {

Maximum relative deviation on

Step on step size _� � _h ax

[%] [%] [%] [%]
pitch � 30 � { { 5.3 % 4 %

height rate _h 100 ft/sec { 27.3 % { 77 %
long. acc. ax 2 g { 3.6 % 11.3 % {

Table 7.2: Maximum absolute and relative-to-maximum step-size deviation on
pitch rate q(t), pitch attitude �(t), height rate _h(t) and longitudinal
acceleration ax(t) for each reference step.

where the maximum cross coupling e�ects are given. Both absolute and relative-
to-maximum-step-size values are given.

The cross coupling from height rate to pitch (27.3%) and longitudinal acceleration
(77%), see Table 7.2, are unacceptable.

7.5 Controller Design using �

Now we will apply �-synthesis in order to improve the classical design. The
control problem is thus formulated as in Figure 7.6 on page 117 and we will
apply D-K iteration to solve it. In Figure 7.10 on the following page, the result
of the D-K iteration is shown. The maximum upper bound for � ~�(P (j!)) for
selected iterations are also given in Table 7.3 on the next page.

Note that compared with the CD servo example presented in Chapter 6, the
D-K iteration procedure here converges very slowly. However, after 25 iterations
we obtain closed loop robust performance. After 28 iterations the decrease in �
per iteration became negligible. The �nal controller was of very high order (92
states). However, using model reduction methods it was possible to reduce the
order to 30 with very little degradation in control performance, see Table 7.3 on
the following page. However, using controller approximations with fewer states
implied a signi�cant increase in �. Since the nominal model (without weighting
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Iteration No. sup
!
�� (P11(j!)) sup

!
�� (P22(j!)) sup

!
� ~� (P (j!))

1 (H1 controller) 0.722 8.40 8.48
2 0.737 2.67 2.81
3 0.436 1.91 2.01
4 0.575 1.58 1.68
5 0.840 1.45 1.54
10 0.462 1.17 1.27
15 0.467 1.04 1.14
20 0.443 0.956 1.06
25 0.467 0.897 0.999
28 0.595 0.869 0.969

Reduced order K� 0.589 0.869 1.00

Table 7.3: Maximum upper bound for ��(P11(j!)), ��(P22(j!)) and �~�(P (s)) in
each step of D-K iteration.
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Figure 7.10: Upper bound on the structured singular value
� ~� (Fl(N (j!);K(j!))) in D-K iteration.
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matrices) has 26 states, a 30th order controller does maybe not seem unreason-
able. However, this is still a very high order controller and there will certainly
be open questions with regards to numerics in connection with actual implemen-
tation. It is, however, beyond the scope of this work to treat this in any detail.
Fixed order H1 algorithms may be a solution to the very high order controllers
produced by D-K, D,G-K and �-K iteration.

In Figure 7.11 on the next page the closed loop system obtained with the reduced
order controller is analyzed using �. FromFigure 7.11 on the following page notice
that robust stability and nominal performance are obtained with some margin
to allow for robust performance.

In Figure 7.12 on page 127 the transient response of the closed loop system is
evaluated. Here maximum size steps has been applied on pitch attitude �, height
rate _h and longitudinal acceleration ax. The results are further investigated in
Table 7.4, where the maximum cross coupling e�ects are given.

Maximum absolute deviation on

Step on step size pitch rate _� pitch � height rate _h acc. ax
[�/sec] [�] [ft/sec] [g]

pitch � 30 � 25.3 { 1.82 0.073

height rate _h 100 ft/sec 5.14 1.24 { 0.20
long. acc. ax 2 g 1.81 1.42 3.25 {

Maximum relative deviation on

Step on step size pitch rate _� pitch � height rate _h acc. ax
[%] [% ] [%] [%]

pitch � 30 � { { 1.8 % 3.67 %

height rate _h 100 ft/sec { 4.1 % { 10.2 %
long. acc. ax 2 g { 4.7 % 3.3 % {

Table 7.4: Maximum absolute and relative-to-maximum-step-size deviation on
pitch rate q(t), pitch attitude �(t), height rate _h(t) and longitudinal
acceleration ax(t) for each reference step.

As can be seen from Table 7.4, the transient response has been dramatically im-
proved in comparison with the classical controller. The cross couplings between
pitch attitude, height rate and longitudinal acceleration are now acceptable. Fur-
thermore, the � analysis guarantee that these properties are more or less main-
tained under the uncertainty allowed by the applied perturbation model. The
steady-state errors for pitch attitude, height rate and longitudinal acceleration
are 0.75%, 0.63% and 6.3%. The steady-state error for the acceleration may seen
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Figure 7.11: Results from applying the � controller on the aircraft. Shown are
��(P11(j!)) (top), �(P22(j!)) (center) and � ~�(P (j!)) (bottom).
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Figure 7.12: Transient responses for � control system. Shown are step responses
from step on pitch (top), height rate (center) and acceleration (bot-
tom). Shown signals are pitch rate (solid), pitch (dashed), height
rate (dotted) and longitudinal acceleration (dash-dotted).
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quite high. Remember, however, that the singular value analysis in Section 7.1.2
on page 108 revealed that low frequency control of the acceleration ax is infea-
sible. In fact, if the simulation in Figure 7.12 on the page before is continued
for t!1 it can be seen that ax(t) slowly rolls o� towards zero. Thus the term
steady-state above for the acceleration is somewhat misused. However, these
phenomena occur far below the frequency range of interest.
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Figure 7.13: Nominal sensitivity and performance bounds for the aircraft design.
Shown are ��(Fl(N (j!);K(j!))) (solid) for the reduced order con-
troller and ��(We(j!)) (dashed).

Finally, let us investigate the nominal output sensitivity function. As discussed
previously in Section 7.2.2 on page 115 the sensitivity function for the aircraft
design does not equal the standard output sensitivity So(s) because the pitch
rate feedback signal is not included in the control error e(s). Let ~S(s) denote the
transfer function from the reference r(s) to the control error e(s). In Figure 7.13,
the singular values of ~S(j!) are shown together with the singular values of the
performance speci�cation We(s). Note how smoothly the � controller has shaped
~S(s) to comply with the speci�cations.
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7.6 Summary

The rigid body dynamics of the aircraft was investigated using singular values.
It was demonstrated that the system is very ill-conditioned. In fact, the con-
dition number increases to in�nity at steady-state. It then becomes impossible
to use uniform weightings for controller design. One possible method of choos-
ing performance weights in this case was suggested. A diagonal multiplicative
perturbation structure was applied at both plant input and output. A classical
control con�guration was investigated and it was demonstrated that the cross
coupling attenuation of this controller was poor. An optimal � controller was
designed using D-K iteration. � analysis of the closed loop system revealed that
the controller gave signi�cant improvement in both robust stability and perfor-
mance compared with the classical controller. The transient response for the
controller was investigated using step responses. These proved quite satisfactory
for the � design with very good decoupling of pitch, height rate and longitudinal
acceleration.
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The use of system identi�cation in control engineering has been a popular alter-
native to physical modeling for obtaining model descriptions of a given physical
system. Application of the fundamental laws from mechanics, thermodynamics,
chemistry etc. are often quite complex and time consuming tasks especially if
large scale engineering systems are considered. In such cases, when plant in-
put/output measurements are available, system identi�cation provides an alter-
native for generating a model for use in control design. Usually, system identi-
�cation involves linear discrete-time models. However, the general ideas are not
restricted to such systems, but apply for non-linear continuous-time models as
well. In this work, however, we will consider linear discrete-time models exclu-
sively. Considering linear systems the obtained models will be readily applicable
in connection with linear control systems design.
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The construction of a parametric model from input/output measurements in-
volves four basic entities:

� The data set.

� The model set (candidate models).

� The objective function for the estimation (performance function).

� Model validation.

The data-set used for the identi�cation procedure must be \informative" of the
actual physical plant during normal operation. If the system is not excited prop-
erly, we will not obtain a reasonable accurate model of the system. In more pre-
cise terms, we must require the input(s) to be persistently exciting, see [Lju87,
Sec. 14.2]. Sometimes, the input/output data are recorded during a speci�cally
designed identi�cation experiment where the user may choose the input signals.
Experiment design then is concerned with choosing the input signals such that
the data set becomes maximally informative subject to possible constraints at
hand. Unfortunately, in other cases the user may not have the possibility to af-
fect the experiment but must use data sets from normal operation of the system.
Generally we will only obtain knowledge of the system in the particular point
of operation from which the data set was obtained. If the plant model is to be
used outside this operation point considerations must be made to capture any
deviations from the nominal model.

A set of candidate models is obtained by specifying within which collection of
models we will look for a suitable one. This is the most important and, unfor-
tunately, the most di�cult choice of the system identi�cation procedure. Much
engineering intuition and insight is needed to choose the appropriate set of mod-
els. Usually we refer to two types of model sets, black box and gray box models.
If the candidate model set is a set of standard linear models employed with no
reference to the physical background it is a black box model set. Then the model
parameters have no physical interpretation but are merely knobs for adjusting
the �t to the data. If, on the other hand, the candidate model is obtained by
physical modeling with some unknown physical parameters, it is a grey box model
set. Then the model parameters are physical quantities, e.g. masses or moments
of inertia. In this work, we will deal with black box modeling only.

Having determined our candidate model set we need to determine the \best"
model within this set guided by the available measurements. This is the iden-
ti�cation method. Typically the assessment of model quality is based on how
the models perform when they attempt to reproduce the measured data. Three
parameter estimation methods have gained particular interest; prediction error
methods (PEM), maximum likelihood methods and instrument variable methods.
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Here we will consider mainly the PEM approach. However in connection with
estimation of uncertainty bounds we will use maximum likelihood methods as
well.

Finally, having determined the best model in our candidate model set we need to
assess the quality of this model. This is especially important in connection with
robust control, since this is precisely the information needed for constructing an
appropriate perturbation structure. In classical identi�cation theory, model qual-
ity has been assessed under the assumption that the only source of uncertainty
is noisy measurements. It is thus assumed that within our candidate model set
there exists a unique model which is a perfect description of the true plant. Of
course such a strict condition is never met in practice. However, if the prediction
errors, that is, the deviation between the measured and predicted outputs, are
almost white noise, the classical results holds with reasonable accuracy.

Unfortunately, in connection with control systems design, it is often desired to
have a low order approximation of the plant together with a simple quanti�cation
of the implied model imperfections in order to avoid very high order controllers.
For restricted complexity models, the classical approach is inadequate since then,
very often, the main source of uncertainty is due to the e�ect of incomplete model
structures. Thus the results from classical system identi�cation theory cannot
be readily applied in estimation of model uncertainty for modern robust control
design.

This gab between control theory and identi�cation theory was recently realized
by a number of researchers, see e.g. [GS89b, WL90a, Gev91]. The development
of formal techniques for estimation of model uncertainty has since been the focus
of active research and numerous results have been published, see e.g. [Bai92] and
references therein.

8.1 Soft versus Hard Uncertainty Bounds

Considering �nite dimensional linear time invariant (FDLTI) systems, estima-
tion of model uncertainty in the case of restricted complexity model structures
and a �nite set of noisy data becomes a very di�cult problem. On one hand,
the structural model error (bias) should be considered a deterministic quantity,
since the true system is hopefully deterministic. Consequently the part of the
model residuals associated with the undermodeling is deterministic. On the other
hand, the model error due to noise (variance) will be a stochastic quantity, since
it is caused by the noise in the data. The part of the model residuals associ-
ated with the noise is thus stochastic. Consequently the two components of the
total model error are fundamentally di�erent quantities and require in principle
fundamentally di�erent treatment. However in order to make coherent estima-
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tion procedures of the total model error most of the reported results in this �eld
have relied upon treating the undermodeling and the noise as similar quantities.
Generally speaking two main paths have been taken:

� The deterministic approach. The model residuals are assumed to be deter-
ministic and bounded in magnitude. These methods will be referred to as
hard bound methods.

� The stochastic approach. The model residuals are assumed to be stochastic,
but non-stationary and correlated with the input. These methods will be
referred to as soft bound methods.

The research on the deterministic approach has evolved along two di�erent paths.
The residuals may be assumed to be deterministic and bounded either in the fre-
quency domain or in the time domain. The frequency domain approach is usually
known as H1 identi�cation. Here noisy frequency response measurements1 are
used to obtain models with k � k1 norm error bounds that apply with probability
one. In order to compute the bounds prior knowledge of the relative stability
of the plant and of the noise bound on the frequency domain measurements
is required. This approach is originally due to Parker & Bitmead [PB87] but
has been further developed by Helmicki & co-workers [HJN91] and Gu & Khar-
gonekar [GK92]. However as pointed out in [NG94] the error bounds obtained
through H1 identi�cation can be very conservative. Furthermore, assessing the
prior information needed to compute the bounds is a non-trivial task.

The time domain deterministic approach usually relies on set-member-ship iden-
ti�cation assuming unknown but bounded noise on the time domain data points.
In the �ne paper by Wahlberg & Ljung [WL92] a thorough discussion of hard
bound estimation from a least-squares perspective is presented. Hard total model
error bounds are derived using prior information of the smoothness of the under-
modeling impulse response, the shape of the undermodeling frequency response
and a hard bound on the measurement noise. Again, the uncertainty estimates
tend to be rather conservative and the necessary prior information may be di�-
cult to obtain.

The research on the stochastic approach is mainly due to Goodwin & co-workers.
In a series of papers, see e.g. [GS89b, GSM89, GGN91, GGN92] a methodology
for estimation of total model error for restricted complexity models has been de-
veloped through stochastic embedding of the model bias. As were the case for the
hard bound approaches some prior knowledge regarding the true plant and the
noise is needed in order to compute the error bounds. Speci�cally the probability
distributions for both the noise and the bias must be known. Also the second
order properties { the covariances { of the noise and bias distributions must be

1Usually obtained through sine-sweep tests.
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known. However in the crucial paper [GGN92] it is demonstrated that if the
covariances for the noise and the bias are parameterized the parameters them-
selves may be estimated from the available data set through maximum likelihood
methods. Thus the characterization of the necessary prior knowledge becomes
qualitatively rather than quantitatively.

For a thorough discussion of the di�erent methods for assessing the model un-
certainty refer to the excellent survey paper by Ninness & Goodwin [NG94].

We feel that the possibility of estimating the necessary prior knowledge from the
available measurements makes the stochastic embedding approach advantageous
to the hard bound approaches. Whereas the necessary prior knowledge of the true
system is qualitatively similar for both the soft and the hard bound approaches,
the stochastic embedding approach provides the possibility of estimating from
data the quantitative part of the otherwise necessary prior knowledge. Further-
more the measurement noise may then be treated as a stochastic process which
is most appropriate.

8.2 An Overview

The remainder of this part of the thesis is organized as follows. In Chapter 9,
classical prediction error methods are reviewed for a general set of discrete-time
linear models. This includes e.g. the classical approach to estimation of frequency
domainmodel uncertainty. Next in Chapter 10, some special cases are considered,
in particular �xed denominator models with basis functions which are orthogonal
in H2. Then in Chapter 11, following the path outlined by Goodwin and co-
workers in [GGN92], we will show how the stochastic embedding approach may
result in non-conservative transfer function error bounds.

8.3 Remarks

Our treatment will be limited to scalar systems. The classical estimationmethods
can be extended to multivariable systems without great di�culty, whereas the
extension is not so straightforward for the stochastic embedding approach.

This year, De Vries and Van Den Hof [VH95] have published results on a mixed
soft and hard bound approach to the estimation of model error bounds. Here
periodic input signals are used to distinguish bias and variance contributions to
the total model error. Their results show promise but time has not allowed any
treatment of this new approach here.
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books [Lju87, SS89]. Here we will treat only the PEM approach. Furthermore
we shall concentrate on results which are relevant for our purpose, namely es-
timation of model uncertainty. Speci�cally, the asymptotic distribution of the
parameter estimates will be investigated under di�erent assumptions. The rep-
resentation and notation generally follows [Lju87, Chap. 9].

The general black-box model structure

A(q)y(k) =
B(q)

F (q)
u(k) +

C(q)

D(q)
e(k) (9.1)

will be assumed with

A(q) = 1 + a1q
�1 + a2q

�2 + � � �+ anaq
�na (9.2)

B(q) = b1q
�1 + b2q

�2 + � � �+ bnbq
�nb (9.3)

F (q) = 1 + f1q
�1 + f2q

�2 + � � �+ fnf q
�nf (9.4)

C(q) = 1 + c1q
�1 + c2q

�2 + � � �+ cncq
�nc (9.5)

D(q) = 1 + d1q
�1 + d2q

�2 + � � �+ dndq
�nd (9.6)

e(k) 2 N (0; �) denotes normal distributed zero mean noise with variance � (white
noise). q is the shift operator (qu(k) = u(k + 1)). By u(k) we mean the k'th
element of the sequence fu(k)g. Let e.g. fu(k)g be a sequence obtained by
sampling the continuous-time signal uc(t) with sampling time Ts. Then fu(k)g
is given by

fu(k)g = uc(kTs) k = 1; 2; � � � ; N (9.7)

Frequently, we will not distinguish between the sequence fu(k)g and the value
u(k) if the meaning is clear from the context. The optimal one-step-ahead pre-
dictor for (9.1) is given by

ŷ(kj�) = D(q)B(q)

C(q)F (q)
u(k) +

C(q)�D(q)A(q)

C(q)
y(k) (9.8)

where � is the parameter vector:

� =
�
a1; � � � ; ana; b1; � � � ; bnb; f1; � � � ; fnf ; c1; � � � ; cnc; d1; � � � ; dnd

�T
(9.9)

A quadratic performance measure:

VN (�; Z
N ) =

1

N

NX
k=1

1

2
�
2(k; �) (9.10)
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will be used for the PEM approach. Here �(k; �) = y(k)� ŷ(kj�) denote the pre-
diction errors and ZN emphasize the measurement dependency. The parameter
vector estimate �̂N given N measurements is found as

�̂N = argmin
�

VN (�; Z
N ) (9.11)

In Appendix D on page 303 an easy implementable (in e.g. MatLab) search

algorithm for computing �̂N is given. We then have

V
0
N (�̂N ; Z

N ) = 0 (9.12)

with prime denoting di�erentiation with respect to �. Furthermore we have:

V
0
N (�; Z

N ) = � 1

N

NX
k=1

@ŷ(kj�)
@�

(y(k) � ŷ(kj�)) (9.13)

= � 1

N

NX
k=1

 (k; �)�(k; �) (9.14)

V
00
N (�; Z

N ) =
�1
N

NX
k=1

�
@
2
ŷ(kj�)
@�2

y(k) � @ŷ(kj�)
@�

@ŷ(kj�)
@�

� @
2
ŷ(kj�)
@�2

ŷ(kj�)
�
(9.15)

=
1

N

NX
k=1

 (k; �) T (k; �) � 1

N

NX
k=1

@ (k; �)

@�
�(k; �) (9.16)

Here  (k; �) = @ŷ(kj�)=@� is denoted the model gradient.

9.1 The Cram�er-Rao Inequality for any Unbi-

ased Estimator

Suppose that the true system is given by:

y(k) = G0(q; �0)u(k) +H0(q; �0)e0(k) (9.17)

where e0(k) 2 N (0; �0). Then it is a well-known result that for any unbiased

estimate �̂N of �0 (i.e., estimators such that Ef�̂Ng = �0 regardless of the true
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value �0) the parameter covariance will obey the Cram�er-Rao Inequality:

Cov
�p

N�̂N

�
= NE

��
�̂N �E

n
�̂N

o��
�̂N � E

n
�̂N

o�T�
(9.18)

= NE

��
�̂N � �0

��
�̂N � �0

�T�
(9.19)

� �0

"
1

N

NX
k=1

E
�
 (k; �0) 

T (k; �0)
	#�1

(9.20)

Notice that this bound applies for any N and all parameter estimation meth-
ods! Unfortunately, (9.20) is not suitable for computation of Cov(�̂N ) since the
true parameter �0 is unknown. In the next section we shall develop asymptotic
expression for the parameter variance.

9.2 Time Domain Asymptotic Variance Expres-

sions

Given the problem set-up described above it can be shown, see [Lju87,
Lemma 8.2], that under weak conditions:

sup
�

��VN (�; ZN )� �V (�)
�� ! 0; for N !1 (9.21)

where

�V (�) = �E

�
1

2
�
2(k; �)

�
(9.22)

and �E denotes \statistical expectation":

�E

�
1

2
�
2(k; �)

�
= lim

N!1

1

N

NX
k=1

E

�
1

2
�
2(k; �)

�
(9.23)

Thus the performance function VN (�; ZN ) converge to the limit function �V (�).

Furthermore the minimizing argument �̂N of VN (�; ZN ) converges to the mini-
mizing argument �� of �V (�):����̂N � �

�
���! 0; for N !1 (9.24)

If V 0N (�̂N ; Z
N ) (for given N ) is a di�erentiable function, then the mean value

theorem guarantees the existence of a value ~� \between" �̂N and �� such that

V
0
N (�̂N ; Z

N ) = V
0
N (�

�
; Z

N ) + V
00
N (~�; Z

N )
�
�̂N � ��

�
= 0 (9.25)
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Under weak assumptions we then have [Lju87, pp 240]:

V
00
N (

~�; ZN )! �V 00(��); for N !1 (9.26)

Thus for N !1 we have

V
0
N (�

�
; Z

N ) + �V 00(��)
�
�̂N � ��

�
= 0 (9.27)

,
�
�̂N � �

�
�
= � ��V 00(��)��1 V 0N (��; ZN ) (9.28)

The second factor on the right-hand side is given by:

�V 0N (��; ZN ) =
1

N

NX
k=1

 (k; ��)�(k; ��) (9.29)

For N ! 1 this is a sum of random variables  (k; ��)�(k; ��) with zero mean
values. Assuming they had been independent we would have:

�
p
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0
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�
; Z

N ) =
1p
N

NX
k=1

 (k; ��)�(k; ��) 2 N (0; Q) for N !1 (9.30)

with:
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�To

(9.32)

However,  (k; ��) and �(k; ��) are not independent but under weak assumptions
the dependency between distant terms will decrease and (9.30) will hold approx-
imately. If so we have from (9.28):

p
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= lim
N!1

NE

n�
�V 00(��)

��1 �
V
0
N (�

�
; Z

N )
� �
V
0
N (�

�
; Z

N )
�T � �V 00(��)��To (9.36)

=
�
�V 00(��)

��1
lim
N!1

NE

n�
V
0
N (�

�
; Z

N )
� �
V
0
N (�

�
; Z

N )
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=
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�V 00(��)
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�
�V 00(��)
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(9.38)
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For a more rigorously justi�cation of (9.33) and (9.38), see [Lju87, Appendix 9A],
where it is shown that the above results hold under weak assumptions.

Let us take a closer look at the parameter estimate covariance matrix P�. It is
easily seen that �V 00(��) is given by

�V 00(��) = lim
N!1

1

N

NX
k=1

E
�
 (k; ��) T (k; ��)

	 �
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NX
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�
@ (k; ��)

@�
�(k; ��)

�
(9.39)
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 (k; ��) T (k; ��)

	� �E
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(9.40)

Furthermore Q can be written as:
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N!1
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k=1

NX
�=1

E
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 (k; ��)�(k; ��)�(�; ��) T (�; ��)

	
: (9.43)

It is now tempting to believe that �V 00(��) and Q may be estimated from data

simply by substitution of �� with �̂N . However, replacing �
� with �̂N in the

expression for Q, see (9.32) on the preceding page, gives, trivially, Q = 0, which
is a useless estimate. It is consequently di�cult to estimate the covariance P�
under the given weak assumptions.

The expressions for �V 00(��) and Q may however be signi�cantly reduced in com-
plexity by strengthening the assumptions. Speci�cally, assume that the model
structure admits an exact description of the true system:

y(k) = G0(q; �0)u(k) +H0(q; �0)e0(k) (9.44)

where �0 is the true parameter value and e0(k) 2 N (0; �0). Then under (other-
wise) weak assumptions ����̂N � �0

���! 0; for N !1 (9.45)
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Furthermore it is easy to show that:

�(k; �0) = y(k) � ŷ(kj�0) (9.46)

= y(k) �H�1(q; �0)G(q; �0)u(k)�
�
1�H�1(q; �0)

�
y(k) (9.47)

= H
�1(q; �0)y(k) �H

�1(q; �0)G(q; �0)u(k) (9.48)

= e0(k) (9.49)

Equation (9.49) may be used to simplify the expression for P� considerably. We
now have:

�V 00(��) = �V 00(�0) (9.50)

= �E
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	� �E
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(9.52)
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T (k; �0)
	

(9.53)

The last equality follows because @ (k; �0)=@� is formed from Z
t�1 (past data)

only and hence is uncorrelated with e0(k). Q is now given by:
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since e0(k) is white noise with variance �0. The expression for P� then reduces
to:

P� = �0

�
�E
�
 (k; �0) 

T (k; �0)
	��1

(9.58)

= �0

"
lim
N!1

1

N

NX
k=1

E
�
 (k; �0) 

T (k; �0)
	#�1

(9.59)

Now notice that the asymptotic covariance matrix P� equals the limit (as N !
1) of the Cram�er-Rao bound in (9.20) on page 142. Consequently, in this sense
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the prediction-error estimate has the best possible asymptotic properties one can
hope for.

Another very important aspect of the expression for P� in (9.59) on the preceding
page is that it can be estimated from data. Having processed N data points and
computed �̂N a consistent1 estimate of P� is given by:

P̂N = �̂N

"
1

N

NX
k=1

 (k; �̂N ) 
T (k; �̂N )

#�1
(9.60)

�̂N =
1

N

NX
k=1

�
2(k; �̂N ) (9.61)

The estimates (9.60) and (9.61) are the classical result on the covariance of the

parameter estimate. Notice that the covariance Cov(�̂N ) is given by:

Cov(�̂N ) =
1

N
P� (9.62)

9.3 Frequency Domain Asymptotic Variance Ex-

pressions

Frequency domain expression for the covariance matrix P� in (9.59) on the pre-
ceding page may also be derived. To ease notation introduce the following de�-
nitions:

T (q; �)
4
=
�
G(q; �) H(q; �)

�
(9.63)

�(k)
4
=
�
u(k) e(k)

�T
(9.64)

Wu(q; �)
4
= H

�1(q; �)G(q; �) (9.65)

Wy(q; �)
4
= 1�H

�1(q; �) (9.66)

W (q; �)
4
=
�
Wu(q; �) Wy(q; �)

�
(9.67)

z(k)
4
=
�
u(k) y(k)

�T
(9.68)

	(q; �)
4
=
@W (q; �)

@�
(9.69)

The above notation corresponds to the one used in [Lju87]. Now the general
model structure may be written

y(k) = G(q; �)u(k) +H(q; �)e(k) (9.70)

= T (q; �)�(k) (9.71)

1A consistent estimate is an estimate that converges to the true value for N !1.
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ProvidedH(q; �) is minimumphase, the optimal predictor for (9.71) on the facing
page is

ŷ(kj�) = H
�1(q; �)G(q; �)u(k) +

�
1�H�1(q; �)

�
y(k) (9.72)

which may be written

ŷ(kj�) = Wu(q; �)u(k) +Wy(q; �)y(k) = W (q; �)z(k) (9.73)

Furthermore, the model gradient  (k; �) becomes

 (k; �) =
@ŷ(kj�)
@�

=
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@�
z(k) = 	(q; �)z(k) (9.74)

We may now derive an expression for 	(q; �):
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The model gradient hence becomes:
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The last equality follows since

�(k; �) = y(k) � ŷ(kj�) (9.83)

= y(k) �H
�1(q; �)G(q; �)u(k) � �1�H

�1(q; �)
�
y(k) (9.84)

= �H�1(q; �)G(q; �)u(k) +H
�1(q; �)y(k) (9.85)
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If the true system can be represented within the model set, we have �(k; �0) =
e0(k) and:
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�0(k) (9.86)

where �0(k) = [u(k) e0(k)]T . Using Parseval's relation and Equation (9.59) on
page 145 we obtain:
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since

��(!) = �0

��H �ej!Ts ; �0����2 (9.91)

��0(!) is the spectrum of �0(k):

��0(!) =

�
�u(!) �ue(!)
�eu(!) �0

�
(9.92)

�ue(!) = �eu(!) is the cross-spectrum between the input u(k) and the innova-
tions e0(k). When the system operates in open loop the cross-spectrum is zero
and ��0(!) becomes a 2-by-2 diagonal matrix. Clearly approximate expressions

for P� may be obtained from data by substituting �0 with �̂N in (9.90).

9.4 Con�dence Intervals for �̂N

If a random vector � has a Gaussian distribution:

� 2 N (0; P ) (9.93)

it is well-known that the scalar:

z = �
T
P
�1
� (9.94)
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has a �2 distribution with dim(�) = d degrees of freedom:

z 2 �2(d) (9.95)

Thus from (9.33) on page 143 we draw the conclusion that the scalar

�N = N �
�
�̂N � �0

�T
P
�1
�

�
�̂N � �0

�
(9.96)

converges to a �2 distribution with dim � = n degrees of freedom as N ! 1.
Equation (9.96) may be used to \draw" n-dimensional con�dence ellipsoids for

�̂N .

9.5 Frequency Domain Uncertainty Bounds

Previously we have concentrated on parameter covariance. However in connection
with control design frequency domain expression for the uncertainty is usually
required. Hence we need to translate the estimated parameter covariance P̂N into
bounds on the frequency response of the estimated model G(q; �̂N ). However

we will face the di�culty that the estimated frequency response G(ej!Ts; �̂N )

generally will be non-linear in �̂N . Instead we may approximate G(ej!Ts; ��)

with a Taylor series expansion around � = �̂N :

G(ej!Ts; ��) � G(ej!Ts; �̂N ) +
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so that
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�
e
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�
e
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� � �̂N

�
(9.100)

Now
p
N ~g(ej!Ts) will have asymptotic normal distribution for N ! 1 with

covariance Pg(!):

p
N~g(ej!Ts) 2 N (0; Pg(!)); for N !1 (9.101)
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where the covariance matrix Pg(!) is given by

Pg(!) = lim
N!1

E

np
N~g(ej!Ts)~gT (ej!Ts)
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o
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= �(ej!Ts)P��
T (ej!Ts) (9.104)

Using arguments similar to Section 9.4 on page 148 the scalar

z(!) = N~gT (ej!Ts)P�1g (!)~g(ej!Ts) (9.105)

= ~gT (ej!Ts)

�
�(ej!Ts)

1

N
P��

T (ej!Ts)

��1
~g(ej!Ts) (9.106)

will have �2 distribution with dim ~g(ej!Ts) = 2 degrees of freedom. Equa-
tion (9.106) may then be used to draw con�dence ellipsis in the complex plane

for the frequency response estimate G(ej!Ts; �̂N ).

Completely analogue, con�dence ellipses may be computed for the frequency
response estimate H(ej!Ts; �̂N ).

9.6 A Numerical Example

To illustrate the classical approach to system identi�cation and estimation of
frequency domain error bounds we will give a practical example. We will consider
identi�cation of a discrete-time model for a wind turbine. The model should be
suitable for subsequent controller synthesis.

The wind turbine considered is a 400 kW, variable pitch, but constant speed
machine. The control system consists of 3 independent controllers:

� A speed controller which during start-up procedure synchronize the angular
velocity of the generator shaft with the grid frequency 50 Hz before the
generator is connected to the grid. This controller is used only during
start-up of the wind turbine.

� A pitch servo loop which controls the hydraulic pitch actuators. The pur-
pose is to make the pitch follow a given pitch reference from either the
speed controller above or the power controller below.

� A power controller which becomes active after the generator has been con-
nected to the grid. The operation of the power controller is twofold. If
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wind speed is less than rated, the control output (pitch reference) will sim-
ply follow some pre-speci�ed \optimal" curve empirically determined from
wind-tunnel experiments. If wind speed exceeds rated value, the power
controller shall maintain 400 kW output.

Usually the power controller for wind speeds above rated value is the most di�-
cult part of the control system design. It seems reasonable that modern robust
control design methods here should be superior to classical designs. We will
thus assume that the control problem at hand is one of maintaining rated power
output (400 kW) (attenuating wind speed uctuations) by varying the pitch of
the turbine blades. Thus a nominal model and an uncertainty estimate will be
required in rated operation mode, that is for average wind speeds above rated
value (approximately 10 m/s). For this purpose 14.400 samples were collected
with sampling frequency 8 Hz. The input signal was a fundamental square wave
with period 40 secs applied as pitch reference. 45 periods were thus collected. As
outlined above the control system includes also a pitch servo mechanism. During
the experiment it was equipped with a non-linear proportional controller. How-
ever, the intention is not to include the pitch servo into the model of the turbine
itself. Thus the actual pitch # [deg] was also recorded and used as input for the
identi�cation procedure. The �rst period of the pitch # is shown in Figure 9.1 on
the following page together with measured power output P [100kW] and wind
speed v [m/sec] measured at the top of the nacelle. Note how the actual pitch is
not purely square due to the pitch servo loop. Furthermore it is clear that the
wind speed uctuations introduce considerable noise on the power output. It is
tempting, since a wind speed measurement is available, to include this measure-
ment as an additional input to the estimated model. Unfortunately, because the
wind speed measurement is taken at the top of the nacelle, it will be a�ected by
changes in the pitch angle. Also, every time a blade passes the tower disturbances
in the wind �eld around the turbine will be introduce. This will further distort
the wind measurement. It is therefore most common to treat the wind speed as a
non-measurable disturbance when designing controllers for wind turbines. Thus
we will consider it in the same manner for our identi�cation experiment.

Pitch # [deg] Power P [100kW] Wind speed v [m/sec]
Working point 11 346 14.2

Table 9.1: Working point values for the signals displayed in Figure 9.1 on the
following page.

We have subtracted mean values from the signals in Figure 9.1 on the next page.
The means are given in Table 9.1. Note that the working point for the power
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Figure 9.1: First period of the signals used for identi�cation of the wind turbine.
Shown are small signal values for pitch [deg] (solid), power [100kW]
(dashed) and wind speed [m/sec] (dash-dotted, o�-set 2 m/sec).

output is slightly below nominal value. However, during an open loop experiment
it will be very di�cult to maintain an average power output of 400 kW without
considerable risc of overloading the generator. Closed loop experiments could
have been considered instead. However, this has not been treated in this work.

9.6.1 Choosing the Model Structure

As discussed in Chapter 8 choosing a set of candidate models for the identi�cation
procedure is by no means a trivial task. Much engineering ingenuity is often
necessary to make this choice and some iterations with di�erent model structures
is almost always necessary to obtain useful results. The detailed physics for the
wind turbine are very complicated, see e.g. [Lei89]. However, a useful model for
control need not be so involved. In Figure 9.2 a block diagram representation of
the main components in a dynamic model of the wind turbine is shown.

The wind ow around the turbine blades results in an axial force Ft which bends
the tower and a force in the rotational direction which creates the driving torque
M on the main shaft. The torque is then transmitted to the generator via
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Figure 9.2: Simple model of a pitch controlled wind turbine.

the drive train. A reasonable physical model of the drive train (including the
generator) is two rotating masses, one on each side of the gearbox, connected
with a spring and damped; the generator also acting like a damper. The three
necessary states to describe this system is the velocity of the two masses and the
di�erence of their angle.

The tower can also be modeled with a spring and damper. This will require two
additional states (position and velocity of the hub). Furthermore, recent results
indicate that dynamical e�ects in the wind ow around the blades also exists.
The explanation is that when the pitch changes, the wind distribution around
the turbine will also change creating a new wind \tail". A �rst order system with
time constant from 1{5 secs is a reasonable approximation for single turbines.
However, if the turbine is placed in connection with several other turbines, then
for certain wind directions the time constant could be much larger.

Furthermore notice how not only the power output but also the tower motion
is a�ected when controlling the pitch. Tower movements then a�ect the relative
wind speed vrel. Thus we have closed loops in the system.

The spectrum for the power output will generally have two high frequency peaks.
The �rst peak is located at the rotational frequency of the rotor. This frequency
is usually denoted 1P. A non-symmetric rotor with e.g. one blade having a
slightly di�erent pitch than the others cause this peak. The second peak, which
is normally more signi�cant, occurs at the 3P frequency and is caused by the
three blades passing through the inhomogeneous wind �eld around the tower.
A possible model for the 3P (1P) e�ect could be white noise �ltered through a
second order system with a sharp resonance.
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Finally the dynamics of the wind speed are also important. These dynamics are
very complex. Low-pass �ltered white noise can be used to model wind speed
variations around the 10 mins average wind speed. However, both dominating
frequencies and variance grow with increasing wind speeds. Consequently, if the
wind speed is fully described by �ltered white noise we will expect the necessary
order to be quite large.

Since the wind speed a�ects the driving torque and thus passes through the same
dynamics as the pitch angle a reasonable discrete-time linear model structure for
the wind turbine, neglecting the 1P e�ect, could be

yp(k) = Gt(q) (Gf (q)#(k) + kvv(k)) + d(k) (9.107)

where yp, #, v and d denote power output, pitch angle, wind speed and 3P
disturbance respectively. Gt(q) is a transfer function describing the drive train
and Gf (q) describes the pitch rotor dynamics. A possible model for the wind
speed could be �ltered white noise

v(k) = Gw(q)ev(k) ev(k) 2 N (0; �v) (9.108)

Similarly �ltered white noise could be used for d(k):

d(k) = Gd(q)ed(k) ed(k) 2 N (0; �d) (9.109)

Let Gx(q) be given by

Gx(q) =
Nx(q)

Dx(q)
(9.110)

with

Nx(q) = n1q
�1 + n2q

�2 + � � �+ nnxq
�nx (9.111)

Dx(q) = 1 + d1q
�1 + d2q

�2 + � � �+ ddxq
�dx (9.112)

Then yp(k) can be written

yp(k) = Gt(q)Gf (q)#(k) + kvGt(q)Gv(q)ev(k) +Gd(q)ed(k) (9.113)

=
Nt(q)Nf (q)

Dt(q)Df (q)
#(k) + kv

Nt(q)

Dt(q)

Nv(q)

Dv(q)
ev(k) +

Nd(q)

Dd(q)
ed(k) (9.114)

=
Nt(q)Nf (q)

Dt(q)Df (q)
#(k) +

kvNt(q)Nv(q)Dd(q)ev(k) +Nd(q)Dt(q)Dv(q)ed(k)

Dt(q)Dv(q)Dd(q)
(9.115)

Note that since we have two white noise sources, the general PEM model (9.1)
on page 140 does not include (9.115). However, the nominator in the last term
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of (9.115) can be modeled by a moving average (MA) process with a single noise
source. Then the wind turbine model �ts the PEM structure with

A(q) = Dt(q) (9.116)

B(q) = Nt(q)Nf (q) (9.117)

F (q) = Df (q) (9.118)

D(q) = Dv(q)Dd(q) (9.119)

and C(q) some polynominal modeling the single noise source MA process.

Neglecting the tower dynamics, the degrees for each polynominal were chosen as
follows

deg(A) = 3 (9.120)

deg(B) = 2 (9.121)

deg(F ) = 1 (9.122)

deg(C) = deg(D) = k (9.123)

where k is some positive natural number. The identi�cation procedure was then
repeated for increasing values of k until the residuals were close to white noise.

9.6.2 Estimation and Model Validation

A Marquardts search procedure as outlined in Appendix D on page 303 was im-
plemented inMatLab in order to �nd the least squares estimate of the parameter
vector �. 320 samples were used to get rid of initial conditions e�ects. The data
set was split into two parts, each consisting of 7200 samples. The identi�cation
procedure was then used on the �rst data set and the other set was used for
model validation. Model validation was performed by analysis of the residuals.
The standard two residual tests were performed:

� Are the residuals white noise?

� Are the residuals and past inputs independent?

The typical whiteness test is to determine the covariance estimate

R̂
�
N (�) =

1

N

N��X
k=1

�(k; �̂N )�(k + �; �̂N ) (9.124)

If f�(k; �̂N )g indeed is a white noise sequence with variance � then for � � N

R̂
�
N (�) will be approximately normal distributed with zero mean and variance
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�
2
N
�1 (as usual N denotes the number of measurements):

E

n
R̂
�
N (�)

o
= 0 ; � � 1 (9.125)

E

n
R̂
�
N (�)R̂

�
N (�)

o
= �

2
N
�1 (9.126)

Since R̂�
N (0) is an estimate of � we may reject the hypothesis that the prediction

errors are white noise on an � level if

R̂
�
N (�)

R̂�
N(0)

>
�p
N

(9.127)

For example, if � = 2:58 we obtain 99% con�dence levels. We may thus plot
R̂
�
N (�)=R̂

�
N (0) for 0 < � � N and if the maximum numerical value exceeds

2:58=
p
N for any value of � the white noise hypothesis must be rejected.

Note that white residuals will require both the deterministic part G(q; �) and the
stochastic part H(q; �) to be an adequate description of the true system. If we
are mainly interested in the deterministic system GT (q) the question is whether

the residuals �(k; �̂N ) are independent of the inputs. If not, there is more in
the output that originates from the input than explained by the current model
G(q; �̂N ). Independence between inputs and residuals is usually tested using the
cross-covariance estimate:

R̂
�;u
N (�) =

1

N

NX
k=�

�(k)u(k � �) (9.128)

If f�(k; �̂N )g and fu(k)g are independent then
p
NR̂

�;u
N (�) will be asymptotically

normal distributed with zero mean and variance P [Lju87, pp 429]:

p
NR̂

�;u
N (�) 2 N (0; P ) for N !1 (9.129)

with P given by

P =
1X

�=�1

R
�(�)Ru(�) (9.130)

and

R
�(�) = lim

N!1

1

N

NX
k=1

�(�; �̂N )�(�� k; �̂N ) (9.131)

R
u(�) = lim

N!1

1

N

NX
k=1

u(�)u(�� k) (9.132)
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Using a data estimate P̂N for the covariance we may reject the hypothesis that
the inputs and prediction errors are independent on an � level if

���R̂�;u
N (�)

��� > �

s
P̂N

N
(9.133)

Residual tests should always be performed on a separate test set di�erent from
the data set used for the identi�cation procedure.

9.6.3 Results

As described above the degree of the C and D polynominals was increased until
the residual tests were both passed. The required number of states for the noise
�lter was 18. Thus 42 parameters were estimated. Despite the high number
of parameters the identi�cation algorithm converged without di�culty. Using
numerical search algorithms only convergence to local minima can be obtained.
For large number of parameters it can be very di�cult to judge whether a given
local minima is in fact the global minima. Experiments with di�erent initial
values indicated however that the obtained minimumwas global.

The corresponding residual tests are shown in Figure 9.3 on the next page. Here
99% con�dence levels has been used. The pole-zero con�guration for the deter-
ministic and stochastic part of the system is shown in Figure 9.4 on the following
page and the Bode plots are given in Figure 9.5 on page 159.

The deterministic part G(q; �̂N ) has one pair of complex poles with relative damp-
ing 0.3 and natural frequency 1.1 Hz (6.91 rad/s). This corresponds well to values
obtained from the turbine manufacturer Vestas Wind Systems A/S for a second
order approximation to the drive train. We then have an additional pole in -
0.15 from A(q) and the pole 0.18 from F (q). The latter corresponds to a time
constant of 0.07 secs. This is much faster than reported results on the rotor
dynamics. We then have two zeros at z = 0 since nna + nnf � nnb = 2 trailing

zeros must be added in the nominator of G(q; �̂N ) in order to comply with the
MatLab Control Toolbox format. Finally we have a zero outside the unit cir-
cle at approximately -2. It is then customary to term the system non-minimum
phase. However, the interpretation of non-minimumphase zeros for discrete-time
systems is not straightforward. The step-response of G(q; �̂N ) does not show tra-
ditional minimum-phase behavior, see Figure 9.6 on page 159.

Notice how the poles and zeros for the stochastic part H(q; �̂N ) mostly comes in
pole-zero pairs. Traveling up the unit circle from the point (1; 0), the �rst three
pole-zero pairs are very lightly damped. The e�ects of these pole-zero pairs can
be seen in the Bode plot for H(q; �̂N ) as sharp resonances; one placed at the
3P frequency and one at the 1P frequency. Furthermore there is a resonance at
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Figure 9.3: Residual tests for the wind turbine identi�cation. 99% con�dence
limits are indicated in each plot.
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Figure 9.4: Pole-zero con�guration for the deterministic part G(q; �̂N ) (left) and

stochastic part H(q; �̂N ) (right).
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Figure 9.5: Bode plot for the deterministic (solid) and stochastic (dashed) part of
the estimated wind turbine model.
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Figure 9.6: Step response of deterministic part of estimated wind turbine model.
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Figure 9.7: Estimated power spectrum for the pitch input signal (dashed), a pure
square wave with the same amplitude and frequency (dash-dotted) and
the power output (solid).

approximately 7 rad/sec corresponding to the second pole-zero pair encountered
traveling up the unit circle. This probably stems from the tower resonance which
has been included in the noise model. The tower resonance clearly belongs in
the A(q) polynominal since it is struck both by the pitch input and the wind
speed. Several identi�cation experiments have been conducted with additional
parameters in A(q) and B(q). However, it has not been possible to represent the
tower resonance in the deterministic part of the model. An explanation of this
can be given from the estimated power spectra of both input and output, see
Figure 9.7. Note that the spectrum of the pitch input signal in the frequency
range where the tower resonance is located has decayed with more than 60 dB
compared with the DC value. Thus in our model the output power P in this
frequency range must be almost completely characterized by white noise �ltered
through C(q)=(D(q)A(q)). However, then it is not possible to distinguish between
high frequency poles in A(q) and D(q). For some reason the resonant poles for
the tower is placed in D(q) together with the 1P and 3P dynamics whereas the
complex poles for the drive train is placed in A(q).

In other words the frequency content in the input signal (pitch angle) is too small
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in the high frequency range. The main problem is that the pitch servo loop is
much too slow so that the square wave input in fact is �ltered through a low pass
�lter with small cut-o� frequency, see Figure 9.7 on the facing page. However
even a pure square wave input with period 40 secs will have little relative energy
around 10 rad/sec as shown in Figure 9.7 on the facing page. In order to avoid
this problem the pitch servo loop must be retuned and preferably another pitch
input signal applied with more energy in the high frequency area.

In Figure 9.7 on the facing page note the resonant peak for the 1P, tower and
3P dynamics can be easily identi�ed in the output power spectrum. Compare
with the Bode plot in Figure 9.5 on page 159. Also notice that the drive train
complex pole pair are located at almost exactly the same frequency as the tower
resonance. If they were included in the same �lter it would be very di�cult for
the identi�cation procedure to distinguish between them. It will furthermore be
very di�cult for the controller to compensate for both. Finally note that the
noise �lter also contains a pole at approximately 0.99 corresponding to a time
constant of 13.5 secs. This pole is probably due to the rather slow rotor dynamics.
The time constant is somewhat larger than usually reported in the literature,but
is probably due to neighboring wind turbines. Again the corresponding pole
actually belongs in F (q) or A(q) rather than the noise �lter denominator D(q).
However, the phenomena could be described by �ltered white noise which is
probably the case here due to the high number of parameters in D(q).

The frequency domain model uncertainty was estimated using the approach out-
lined in Section 9.5 on page 149. In Figure 9.8 on the next page the nominal
Nyquist for the deterministic part G(q; �̂N ) is shown with superimposed 2 stan-
dard deviation (95.5%) uncertainty ellipses. These uncertainty ellipses may then
be used in a robust control design. In standard H1 control, only frequency do-
main uncertainty circles can be represented. Thus an H1 design approach could
be taken by approximating the ellipses by circumscribed circles. This will pro-
vide a set of additive uncertainty circles at each frequency !. Fitting the radii
of these circles with a stable transfer function GA(z) will provide the uncertain
system description

~G(z) = G(z; �̂N ) +GA(z) = G(z; �̂N )

 
1 +

GA(z)

G(z; �̂N )

!
(9.134)

Given the results in Table 4.1 on page 47 a controller will robustly stabilize the
plant i�

��T (ej!Ts)�� <
����� GA(ej!Ts)

G(ej!Ts; �̂N )

����� (9.135)

where T (z) denotes the closed loop transfer function as usual. Thus by plotting

GA(ej!Ts)=G(ej!Ts; �̂N ) against frequency ! we may obtain an upper bound on
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Figure 9.8: Nominal Nyquist curve with 2 standard deviations uncertainty el-
lipses.
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the achievable closed loop bandwidth. This is done in Figure 9.9. The maximum
bandwidth is approximately 20 rad/sec which is quite close to the Nyquist fre-
quency !n = �=Ts = 25 rad/sec. Thus a fast control design should be possible
with the derived model.

However, because the tower resonance was not included into the deterministic
part of the system, the high frequency uncertainty estimates will probably be
misleading even though the residual tests were passed. Since the true system
will have a resonance in the high frequency area, if the pitch input # has large
energy in this area the resonance will be struck from the input. This will surely
deteriorate the performance properties in the high frequency area and may even
result in instability.

The above example illustrates that care must be taken in connection with high
order noise models since some of the deterministic behavior of the true system
may in fact be explained by �ltered white noise.

9.7 Summary

Classical system identi�cation using the prediction error method (PEM) was
reviewed for a general class of black-box models. In particular we considered
asymptotic expressions for the parameter variance and showed how these param-
eter uncertainties can be translated to frequency domain uncertainty ellipses. For
the general model structure we must use a �rst order Taylor approximation since
the model is not linear in the parameter vector �. Unfortunately we may only
obtain consistent data estimates of the parameter covariance in the case where
the model admits an exact description of the true system. This severely hampers
the usefulness of the classical approach in connection with robust control design.
Finally a numerical example was presented, namely identi�cation of a model for
a 400 kW constant speed, variable pitch wind turbine from a set of input/output
measurements. The input applied was a 0.025 Hz fundamental square wave. The
model structure was chosen from physical considerations. The order of the deter-
ministic part was �xed and the order of the noise �lter was then increased until
the prediction errors for a separate test-set became white. The result was a third
order model for the deterministic part and a 18th order model for the noise �lter.
Frequency domain uncertainty ellipses were then estimated for the deterministic
part. However, it was argued that some of the truly deterministic dynamics were
in fact explained by �ltered white noise and thus included in the noise �lter. The
main reason for this was inadequate excitation in the high frequency area. This
caused the frequency domain uncertainty estimate for the deterministic part to
be overly optimistic in the high frequency area.
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Throughout this chapter we assume that the true system is �nite-dimensional,
linear and time-invariant (FDLTI) and given by

y(k) = GT (q)u(k) +HT (q)e0(k) (10.1)

where e0(k) 2 N (0; �0) is white noise.

10.1 ARX Models

A very popular set of models is the autoregressive structure with exogenous input,
abbreviated ARX models. The ARX model structure can be derived as follows.
Assume that our model set is given by

y(k) = G(q; �)u(k) +H(q; �)e(k) (10.2)

where e(k) is white noise with variance �. If the noise �lter H(q; �) is minimum
phase the optimal predictor for y(k) is

ŷ(kj�) = H
�1(q; �)G(q; �)u(k) +

�
1�H�1(q; �)

�
y(k) (10.3)

Then if H�1(q; �)G(q; �) and H�1(q; �) are both stable1 we may write:

H
�1(q; �)G(q; �) =

1X
k=1

bkq
�k (10.4)

H
�1(q; �) � 1 =

1X
k=1

akq
�k (10.5)

Truncating these expansions at k = n we may rewrite (10.2) as

 
1 +

naX
k=1

akq
�k

!
y(k) =

nbX
k=1

bkq
�k
u(k) + e(k) (10.6)

, A(q)y(k) = B(q)u(k) + e(k) (10.7)

with A(q) and B(q) as in (9.2) and (9.3) on page 140. This is the ARX model
structure. For na = 0 a �nite impulse response (FIR) model is derived and for
nb = 0 we obtain an autoregressive (AR) model structure. For the ARX model,
the optimal predictor (10.3) becomes

ŷ(kj�) = (1�A(q))y(k) + B(q)u(k) (10.8)

1This is assured, of course, if H(q; �) is minimum-phase and if H(q; �) and G(q; �) have the
same unstable poles.
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Thus, if we take

� = [a1; � � � ; ana; b1; � � � ; bnb]T (10.9)

and

�(k) = [�y(k � 1); � � � ;�y(k � na); u(k � 1); � � � ; u(k � nb)]T (10.10)

we may write

ŷ(kj�) = �
T (k)�: (10.11)

The predictor for the ARX model structure is consequently linear in �. The
prediction errors �(k; �) are given by

�(k; �) = y(t) � (1� A(q))y(t) �B(q)u(t) (10.12)

= [A(q)GT (q) �B(q)] u(t) +A(q)HT (q)e(k) (10.13)

In Appendix D on page 303 it is shown that the parameter estimate

�̂N = argmin
�

VN (�; Z
N ): (10.14)

with VN (�; ZN ) as in (9.10) on page 140 is given by the analytic expression

�̂N =

"
NX
k=1

�(k)�T (k)

#�1 NX
k=1

�(k)y(k) (10.15)

If we de�ne

Y
4
= [y(1); y(2); � � � ; y(N )]T (10.16)

�
4
=
�
�
T (1); �T (2); � � � ; �T (N )

�T
(10.17)

it is easily shown that an equivalent expression for (10.15) is

�̂N =
�
�T�

��1
�TY (10.18)

10.1.1 Variance of ARX Parameter Estimate

Let us then investigate the quality of the estimate. Under weak assumptions we
then have from (9.33) on page 143 that:

p
N

�
�̂N � �

�
�
2 N (0; P�) for N !1 (10.19)
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where �� is de�ned by

�
� 4= argmin

�

(
lim
N!1

1

N

NX
k=1

E

�
1

2
�
2(t; �)

�)
(10.20)

The covariance matrix P� is given by (9.38) on page 143:

P� =
�
�V 00(��)

��1
Q
�
�V 00(��)

��1
(10.21)

with �V 00(��) and Q as in (9.40) and (9.43) respectively. For the ARX structure,
the model gradient  (k; �) is given by

 (k; �) =
@ŷ(kj�)
@�

= �(k) (10.22)

Thus @ (k; �)=@� = 0 and the expressions for �V 00(��) and Q reduce to

�V 00(��) = lim
N!1

1

N

NX
k=1

E
�
�(k)�T (k)

	
(10.23)

Q = lim
N!1

1

N

NX
k=1

NX
l=1

E
�
�(k)�T (l)�(k; ��)�(l; ��)

	
(10.24)

where the prediction errors are given by (10.13) on the preceding page. The
expression for the parameter covariance P� is, however, still quite complicated.
The data estimates (9.60) and (9.61) on page 146 will not be a consistent estimate,
that is converge for N ! 1, unless in the special case where GT (q) = G(q; �0)
and HT (q) = H(q; �0) (the true system can be represented within the model set).
In this case �� = �0, �(k; ��) = e0(k) and the expression for P� reduce to

P� = �0

"
lim
N!1

1

N

NX
k=1

E
�
�(k)�T (k)

	#
(10.25)

Thus we need to require that both the deterministic and stochastic part of the
true system can be exactly modeled by the ARX structure in order for the data
estimate

P̂N = �̂N

"
1

N

NX
k=1

�(k)�T (k)

#�1
(10.26)

�̂N =
1

N

NX
k=1

�
2(k; �̂N ) (10.27)
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to be a consistent estimate of the parameter covariance matrix P�. A well-known
related problem with ARX models is that even if the true system GT (q) can be
described by G(q; �0) then if the true noise �lter HT (q) cannot be represented by

H(q; �) = A(q), the parameter estimate �̂N will not converge to the true value
�0 for N !1 because G(q; �) and H(q; �) are not independently parameterized.

10.2 Output Error Models

The output error (OE) model structure is given by

y(k) = G(q; �)u(k) + e(k) =
B(q)

F (q)
u(k) + e(k) (10.28)

with B(q) and F (q) de�ned by (9.3) and (9.4) on page 140. The optimal predictor
for the OE model structure is given by

ŷ(kj�) = H
�1(q; �)G(q; �)u(k) +

�
1�H�1(q; �)

�
y(k) (10.29)

= G(q; �)u(k) (10.30)

Note that the OE predictor is not linear in �. This means that we have no analytic
expression for the parameter estimate �̂N but must resort to numerical methods
to determine �̂N as in the general PEM case. The model gradient  (k; �) for the
OE model structure is given by

 (k; �) =
@G(q; �)

@�
u(k) (10.31)

Thus  (k; �) is a deterministic sequence; a crucial property we will utilize in
computing the parameter covariance P�. The prediction errors �(k; �) are given
by

�(k; �) = y(k) � ŷ(kj�) (10.32)

= (GT (q)� G(q; �))u(k) +HT (q)e0(k) (10.33)

We will then consider the case where GT (q) = G(q; �0), that is, GT (q) is a member
of the model set G(q; �). We will, however, not assume that the true noise �lter
HT (q) is given by H(q; �) = 1. Since G(q; �) and H(q; �) are independently
parameterized, then according to [Lju87, Theorem 8.4]:

�
� = argmin

�

(
lim
N!1

1

N

NX
k=1

E

�
1

2
�
2(t; �)

�)
= �0 (10.34)

and the prediction errors becomes

�(k; ��) = HT (q)e0(k) (10.35)
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10.2.1 Variance of OE Parameter Estimate

Now the the parameter covariance is given by

P� = lim
N!1

1

N
E

��
�̂N � �0

��
�̂N � �0

�T�
(10.36)

=
�
�V 00(�0)

��1
Q
�
�V 00(�0)

��1
(10.37)

�V 00(�0) is given by

�V 00(�0) = lim
N!1

1

N

NX
k=1

E
�
 (k; �0) 

T (k; �0)
	 �

lim
N!1

1

N

NX
k=1

E

�
@ (k; �0)

@�
HT (q)e0(k)

�
(10.38)

= lim
N!1

1

N

NX
k=1

 (k; �0) 
T (k; �0)� 0 (10.39)

= lim
N!1

1

N
	T (�0; Z

N )	(�0; Z
N ) (10.40)

since  (k; �) is deterministic. 	(�; ZN ) is given by

	(�; ZN ) = [ (1; �);  (2; �); � � � ;  (N; �)]T (10.41)

Q is given by

Q = lim
N!1

1

N

NX
k=1

NX
h=1

E
�
 (k; �0) 

T (h; �0)�(k; �0)�(h; �0)
	

(10.42)

= lim
N!1

1

N

NX
k=1

NX
h=1

 (k; �0) 
T (h; �0)E fHT (q)e0(k) �HT (q)e0(h)g(10.43)

= lim
N!1

1

N
	T (�0; Z

N )C�	(�0; Z
N ) (10.44)

where C� is given by

C� = E
�
V V

T
	
; V = [�(1); �(2); � � � ; �(N )] (10.45)

with �(k) = HT (q)e0(k). Thus the parameter covariance P� is given by

P� = lim
N!1

N
�
	T
o 	o

��1
	T
o C�	o

�
	T
o 	o

��1
(10.46)
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with 	o = 	(�o ; ZN ). Then

P̂N = N
�
	T
N	N

��1
	T
NC�	N

�
	T
N	N

��1
(10.47)

with 	N = 	(�̂N ; ZN ) will be a consistent estimate of the covariance P�. Notice
that this is true even if the true noise �lter HT (q) cannot be captured within the
model set H(q; �) = 1. Thus we can obtain a consistent estimate of the parameter
covariance provided the true system GT (q) can be described by our model set
G(q; �). This is an important property for OE models. Of course, in order to
evaluate (10.47) the covariance matrix for the true noise �(k) must be known.
However, provided G(q; �0) = GT (q) we have that �(k; �0) = �(k), see (10.35) on
page 169. If we assume that �(k) is a stationary stochastic process such that

E f�(k)�(h)g = E f�(m)�(n)g for k � h = m � n (10.48)

C� will be constant along the diagonal and all o�-diagonals as well. Furthermore,
we may estimate these diagonals from the prediction errors by averaging over all
�(i)�(j) for which i � j = M with M constant. M = 0 then corresponds to
the main diagonal, M = 1 to the �rst o�-diagonal etc. The covariance estimate
R
�
N (�) in (9.124) on page 155 used for model validation in Section 9.6.2 on

page 155 is precisely what we need. Note, of course that C� is symmetric.

We may then replace C� by its estimate in (10.47) to obtain an estimate of the
parameter covariance.

10.3 Fixed Denominator Models

Now we consider models which are linear in � (�xed denominator models):

G(q; �) = �(q)� (10.49)

with

�(q) = [�1(q); � � � ;�n(q)] (10.50)

� = [�1; � � � ; �n]T (10.51)

�i(q) is know as the basis functions for G(q; �). The optimal predictor in this
case is

ŷ(kj�) = �(q)�u(k) = �(k)� (10.52)

Clearly

�(k) = �(q)u(k) (10.53)
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is a deterministic sequence. Thus for �xed denominator models, the predictor
is linear in � and the regressor �(k) is deterministic. With Y and � as before,
see (10.16) and (10.17) on page 167, the least squares estimate of � is given by

�̂N =
�
�T�

��1
�TY (10.54)

The output vector Y may be written

Y =

2
64

y(1)
...

y(N )

3
75 =

2
64

GT (q)u(1)
...

GT (q)u(N )

3
75+

2
64

HT (q)e0(1)
...

HT (q)e0(N )

3
75 (10.55)

= GT (q)

2
64

u(1)
...

u(N )

3
75+

2
64

�(1)
...

�(N )

3
75 (10.56)

= GT (q)U + V (10.57)

Thus

�̂N =
�
�T�

��1
�T (GT (q)U + V ) (10.58)

10.3.1 Variance of Fixed Denominator Parameter Estimate

Since � and GT (q)U are deterministic we may easily compute the expectation of

�̂N :

E

n
�̂N

o
= �

� =
�
�T�

��1
�TGT (q)U (10.59)

Then

~�N = �̂N � �
� =

�
�T�

��1
�TV (10.60)

which gives us the covariance matrix for the parameter estimate

P� = NE

n
~�N ~�TN

o
= N

�
�T�

��1
�TC��

�
�T�

��1
(10.61)

where C� = E
�
V V

T
	
. Note that (10.61) is not an asymptotic expression

like (10.46) on page 170. Thus the data estimate will be equal to the true co-
variance matrix for �nite data. Furthermore this holds regardless of the form
of the true system GT (q). That is, for �xed denominator models, an �nite-data
unbiased estimate of the parameter variance can be obtained even in the case
of undermodeling. Then of course the parameter �� will not reect the \true"
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properties of GT (q). Thus when our main objective is to estimate the total
model error, it is of little use that we can estimate P�. This will only provide the
\variance" part of the total model error, see Section 13.1.1 on page 227.

If GT (q) can be represented within the model set (GT (q) = �(q)�0) then �� ! �0

for N !1 and we may use (10.61) to map the parametric uncertainty into the
frequency domain. Here we furthermore have the advantage that G(q; �) is linear
in � so we need not to resort to Taylor approximations. Let

~g(ej!Ts)
4
=

2
4 <e

n
G(ej!Ts; �0)�G(ej!Ts ; �̂N )

o
=m

n
G(ej!Ts; �0) �G(ej!Ts; �̂N )

o
3
5 (10.62)

�(ej!Ts)
4
=
� <e ��(ej!Ts)	 =m��(ej!Ts)	 �T (10.63)

so that

~g(ej!Ts) = �(ej!Ts)(�0 � �̂N ): (10.64)

Now
p
N ~g(ej!Ts) will have asymptotic normal distribution for N ! 1 with

covariance Pg(!):

p
N~g(ej!Ts) 2 N (0; Pg(!)); for N !1 (10.65)

where the covariance matrix Pg(!) is given by

Pg(!) = lim
N!1

E

np
N~g(ej!Ts)~gT (ej!Ts)

p
N

o
(10.66)

= lim
N!1

E

n
�(ej!Ts)

p
N (�0 � �̂N )(�0 � �̂N )T

p
N�T (ej!Ts)

o
(10.67)

= �(ej!Ts)P��
T (ej!Ts): (10.68)

Thus the scalar

z(!) = N~gT (ej!Ts)P�1g (!)~g(ej!Ts) (10.69)

= ~gT (ej!Ts)

�
�(ej!Ts)

1

N
P��

T (ej!Ts)

��1
~g(ej!Ts) (10.70)

will have �2 distribution with 2 degrees of freedom. Equation (10.70)may then be
used to draw con�dence ellipsis in the complex plane for the frequency response
estimate G(ej!Ts; �̂N ).
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10.3.2 FIR Models

The most well-known �xed denominator model structure is probably the Finite
Impulse Response (FIR) model:

G(q; �) =
nX

k=1

gkq
�k (10.71)

The basis functions for the FIR model is q�k, k = 1; � � � ; n. Let H�2(C;C) denote
the Hilbert space of scalar functions G(z) which are analytical in jzj > 1 (no
unstable poles) and continuous in jzj � 1 (strictly proper). The scalar product
on H�

2
(C;C) is given as

< G;F > =
1

2�j

Z �

��

G
�(e�j!)F (e�j!)d! (10.72)

=
1

2�j

I
jzj=1

G
�(z)F (z)

dz

z
(10.73)

where G�(z) = G(z�1). H�
2
(C;C) is the space of all real rational stable strictly

proper scalar discrete-time transfer functions and is the discrete-time counterpart
of H2(C;C) introduced in Section 3.3.2 on page 27.

Before we proceed, let us review the concept of orthonormal basis.

Lemma 10.1 (Orthonormal Basis) Let H be a Hilbert space. Then the set of
elements M = fe� : � 2 Ag from H is called an orthonormal system if

< e�; e� >= ��� for �; � 2 A (10.74)

where ��� denotes the Kronecker delta, i.e. ��� = 1, 8� 2 A and ��� = 0 for
� 6= �. An orthonormal system M is called an orthonormal basis of H if M is
total in H which means that the smallest subspace of H that contains M is dense.

Example 10.1 (Orthonormal Basis) The set of unit vectors fe1; � � � ; eng is
an orthonormal basis in Rn. ej is the vector with 1 at the jth place and zero
otherwise.

An important property of orthonormal basis functions is that ifM is an orthonor-
mal basis in H , then every element of H may be given as a linear combination of
M .

It is now easy to show that the basis functions �k = e
�j!Tsk are orthonormal in
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H�2(C;Cn);

< �k;�l > =
1

2�j

Z �

��

e
j!Tske

�j!Tsld! (10.75)

=
1

2�j

Z �

��

e
j!Ts(k�l)d! (10.76)

= �kl (10.77)

Since e�j!Tsk, k = 1; 2; � � � form an orthonormal basis for functions in H�2(C;C),
then for G(z) 2 H�2(C;C) there exists a sequence such that

G(ej!Ts) =
1X
k=1

gke
j!Tsk (10.78)

or equivalent

G(z) =
1X
k=1

gkz
�k (10.79)

(10.79) is the well known relation between G(z) and its impulse response gk.

The orthonormality properties of the basis functions �k(q) ensure that the cor-
responding asymptotic covariance matrix for the regression vector �(k):

R = lim
N!1

1

N

NX
k=1

�(k; �)�T (k; �) (10.80)

= lim
N!1

1

N
�T� (10.81)

has a certain (Toeplitz) structure, see [Wah94], which can be shown to improve
the numerics in the least squares estimate of �.

The above properties for FIR models are all quite well-known. It is probably
less well-known that the FIR model structure is in some sense an optimal �xed
denominator model structure if the only a priori information we have about the
system is that it is exponentially stable. To see this we must introduce the so-
called n-width of a set of transfer functions. The following de�nition is taken
from [Wah94]:

De�nition 10.1 (n-Width Measures) Assume that we know that the transfer
function G(z) belongs to an a priori given bounded set G(z) 2 S. The n-width
then measures the smallest approximation error for the worst possible system
G(z) 2 S using the best possible n-dimensional �xed denominator model set:

dn(S;B) = inf
�n2Mn(B)

sup
G(z)2S

inf
Gn(z)2�n

kG(z)� Gn(z)kB (10.82)
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where B denotes some Banach space with norm B, e.g. H2 or H1. �n is the
n-dimensional linear subspace spanned by the basis functions f�kg, k = 1; � � � ; n.
Mn(B) denotes the collection of all such subspaces. If

dn(S;B) = sup
G(z)2S

inf
Gn(z)2��n

kG(z) �Gn(z)kB (10.83)

then ��n is called an optimal subspace for dn(S;B).

Using the above de�nition we may now address the optimal model set problem
for �xed denominator model structures. Now assume that the only a priori
information about G(z) is exponential stability. This means that G(z) belongs
to S = H�

2;R(C;C), the Hardy space of real rational strictly proper stable scalar
discrete-time transfer functions which are analytic outside the disc jzj � R, R <

1. Thus we know that the poles of G(z) are all located within the disc jzj � R.
The impulse response of G(z) thus decreases at least as Rk. Then we have the
following theorem from [Wah94]

Theorem 10.1 (n-Width of FIR Models) The space ��n spanned by
fz�1; � � � ; z�ng is an optimal n-dimensional subspace in the n-width sense for
H�
2;R(C;C).

Thus the FIR model structure is \optimal" if the a priori information is just
exponential stability. The main drawback of the FIR model structure is that
it may converge quite slowly if the true system has poles located closed to the
unit circle; thus if R above is close to one such that the a priori information is
\weak". Then very high order models must be used. However, implementation,
information and sensitivity aspects limit the allowable size of the model order n
that can be tolerated in practice.

10.3.3 Laguerre Models

Using more appropriate basis functions than the delay operator q�1 we may
dramatically reduce the number of parameter necessary for obtaining a useful
estimate of GT (q). The problem is that the delay operator is not a suitable
operator if the true system has poles closed to the unit circle because it has too
short memory. Using operators with longer memory, the number of parameters
necessary to describe useful approximations can be reduced. We will, however,
for numerical purposes like to preserve the orthonormality properties of the basis
functions and to maintain the asymptotic properties of the parameter estimate.

The Laguerre functions are a popular alternative to FIR models which comply
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with the above. The discrete-time Laguerre models are de�ned by:

G(z; �) =
nX
i=1

�i(z)�i (10.84)

�i(z) = Li(z; a) =

p
1� a2

z � a
�
1� az

z � a

�i�1
; a 2 R; jaj< 1; i = 1; � � � ; n(10.85)

It can be shown, see e.g. [NG94], that the Laguerre functions form an orthonormal
basis for functions in H�2(C;C). This means that if G(z) 2 H�2(C;C) then there
exists a sequence fgkg such that

G(z) =
1X
k=1

gkLk(z; a) ; a 2 R; jaj < 1 (10.86)

=
1X
k=1

gk

p
1� a2

z � a

�
1� az
z � a

�k�1
; a 2 R; jaj < 1 (10.87)

Notice the similaritywith the FIR representation. For Laguerre models, however,
the necessary number of basis functions Lk(z; a) to obtain a useful estimate of
G(z) is much smaller than for the FIR models.

It can be shown that the Laguerre model structure is optimal in the n-width
sense if a priori information about the dominating time constant of the system is
available. This is a very common situation. We may obtain this knowledge from
e.g. physical insight or step response experiments. Here we will �rst present the
continuous-time results since they are more transparent.

Assume that the true system GT (s) is analytical outside the disc js + �j � r in
the left half s-plane with 0 < r < �. This corresponds to the situation where we
know that the (dominating) poles of the system are located within js + �j � r,
see Figure 10.1 on the following page. It can then be shown that the continuous-
time Laguerre functions are the optimal �xed denominator model structure in
the n-width sense. Again the following theorem is from [Wah94].

Theorem 10.2 (n-Width of Continuous-time Laguerre Models)

The space ��n spanned by the continuous-time Laguerre basis functions
fL1(s; a); � � � ; Ln(s; a)g with

Lj(s; a) =

p
2a

s + a

�
s� a

s+ a

�j�1
; j = 1; 2; � � � ; n (10.88)

and a =
p
�2 � r2 is an optimal n-dimensional subspace in the n-width sense for

functions G(s) 2 H2(C;C) which are analytical outside the domain js + �j � r,
0 < r < �.
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Figure 10.1: A priori information for Laguerre (solid) and Kautz (dashed) mod-
els.

Note that the optimal Laguerre pole a is smaller than the center pole � of the
set js+�j � r. Thus the Laguerre pole should generally be chosen slightly faster
than the dominant pole of the system to be approximated.

The corresponding discrete-time result is as follows [Wah94].

Theorem 10.3 (n-Width of Discrete-Time Laguerre Models) The space
��n spanned by the discrete-time Laguerre basis function fL1(z; a); � � � ; Ln(z; a)g
with

a =
1

2�

�
1 + �

2 � r2 +
q
(1 + �2 � r2)2 � 4�2

�
(10.89)

is an optimal n-dimensional subspace in the n-width sense for functions G(z) 2
H�
2
(C;C) which are analytic outside the domain jz � �j � r, with r > j�j+ 1.

The Laguerre model (10.87) on the page before can be represented by a Laguerre
Network, see Figure 10.2 on the facing page. The structure is the same for
continuous-time and discrete-time systems. Notice that the network consists of
a single low-pass �lter in series with several �rst order all-pass �lters.
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Figure 10.2: Laguerre network. LP denotes a �rst order low-pass �lter and AP
denotes �rst order all-pass �lters.

The Laguerre functions provide useful approximations for well-damped systems
with one dominating time constant. However for poorly damped systems the
convergence will be slow since resonant poles occur in complex conjugate pairs.
Furthermore systems with scattered poles cannot be well described. To obtain
useful approximations for such systems we must use other basis functions, like
e.g. the Kautz functions introduced in the next section.

10.3.4 Kautz Models

Assume that we know that the true continuous-time system GT (s) is resonant
and that we know approximately the corresponding dominant mode. This is
equivalent to assuming that the system is analytic outside the two regions shown
in Figure 10.1 on the facing page. In order to determine which basis functions
should be used when approximating resonant systems the methodology is to �nd
a mapping which maps these regions onto js+�j � r for which we know that the
Laguerre functions are optimal. Then the Laguerre functions are mapped into
the �rst domain and the result will be the desired basis functions for resonant
systems. Because this mapping is two-to-one the procedure becomes somewhat
technical and it will be beyond the scope of this work to treat it in detail. The
interested reader may refer to [Wah94] and references therein. In [Wah94] it is
shown that the continuous-time Laguerre functions map into the Kautz functions
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de�ned by

	k(s; b; c) =

8>>>>><
>>>>>:

p
2bs

s2 + bs+ c

�
s
2 � bs+ c

s2 + bs+ c

� k�1
2

; k odd

p
2bc

s2 + bs+ c

�
s
2 � bs+ c

s2 + bs+ c

� k�2
2

; k even

(10.90)

b > 0, c > 0, k = 1; 2; � � � . The Kautz functions form an orthonormal basis for
functions in H2(C;C). Furthermore the Kautz functions are optimal in the n-
width sense for functions G(s) 2 H2(C;C) which are analytic outside the domain
j(s2 + �s + c)=sj � r, r < � since this set is mapped onto js + �j � r by the
transformation in question. j(s2 + �s + c)=sj � r describes a rather complicated
set; nevertheless it can capture a priori information about complex poles as well
as multiple real ones. Formally we have the following theorem [Wah94].

Theorem 10.4 (n-Width of Continuous-time Kautz Models) The space
��n spanned by the Kautz basis functions f	1(s; b; c); � � � ;	n(s; b; c)g with b =p
�2 � r2 is an optimal 2n-dimensional subspace in the n-width sense for func-

tions G(s) 2 H2(C;C), which are analytic outside the domain j(s2+�s+c)=sj �
r, r < �.

The discrete-time Kautz functions given by

	k(z; b; c) =

8>>>>><
>>>>>:

p
1� c2(z � b)

z2 + b(c� 1)z � c
��cz2 + b(c� 1)z + 1

z2 + b(c� 1)z � c
� k�1

2

; k odd

p
(1� c2)(1� b2)

z2 + b(c� 1)z � c
��cz2 + b(c� 1)z + 1

z2 + b(c� 1)z � c

� k�2
2

; k even

(10.91)

with �1 < b < 1, �1 < c < 1 and k = 1; 2; � � � form an orthonormal basis for
functions in H�2(C;C) such that any G(z) 2 H�2(C;C) may be written

G(z) =
1X
k=1

gk	k(z; b; c) b; c 2 R; jbj< 1; jcj < 1 (10.92)

Theorem 10.5 (n-Width of discrete-time Kautz Models) The space ��n
spanned by the discrete-time Kautz basis functions f	1(z; b; c); � � � ;	n(z; b; c)g
with

c =
1

2�

�
1 + �

2 � r2 +
q
(1 + �2 � r2)2 � 4�2

�
(10.93)
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is an optimal 2n-dimensional subspace in the n-width sense for functions G(s) 2
H�2(C;C), which are analytic outside the domain����z(z � b)1� bz � �

���� � r (10.94)

Assume we know that the dominating resonant mode in the true system is given
approximately by the complex pair of poles � and ��. Then the choice

b =
� + �

�

1 + ���
; c = ���� (10.95)

places the resonant mode of the Kautz �lters close to that of the true system.

10.4 Combined Laguerre and Kautz Structures

Due to the linear properties of the Laguerre and Kautz model structures we can
approximate systems with several possibly real and complex poles by cascading
a number of Laguerre and Kautz �lters. Such a general �xed denominator model
structure can be written

G(q; �) = �(q)� (10.96)

=
mLX
i=1

nLiX
k=1

Lk(q; ai)�
L;i
k +

m	X
i=1

n	iX
k=1

	k(q; bi; ci)�
	;i
k (10.97)

10.5 Summary

The prediction error method was considered for some special cases. First the
popular ARX model structure was investigated. An analytical expression for the
parameter estimate could be obtained since the predictor for the ARX model
is linear in �. Unfortunately, the corresponding expression for the parameter
covariance does not allow for a consistent data estimate unless in the case when
both the deterministic and stochastic part of the model admit a perfect description
of the true system. It is well known that if the ARX model admits a perfect
description of the deterministic part G(q; �) of the true system, if the same is not
true for the stochastic part, then the parameter estimate for the deterministic
part will be biased.

Next output error (OE) models were considered. The OE predictor is not linear

in �. Thus the parameter estimate �̂N must be found using numerical search,
using e.g. Marquardts algorithm. On the other hand it was shown that the
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expression for the parameter covariance P� was considerably simpli�ed in the
case where G(q; �) admits a perfect description for the deterministic part of the
true system regardless of the true stochastic part. A consistent estimate can then
be obtained from the data.

Finally, �xed denominator models were considered. Models which are linear in
the parameter vector have attracted much attention within the system identi-
�cation community during the last 5 years. From a classical point of view it
seems odd that the poles of the model is determined a priori and just the zeros
estimated from the data. However, in many cases, very good a priori estimates
of the dominating poles of the system can be obtained from e.g. step response
tests. The predictor for �xed denominator models is linear in �. Thus analytic
expressions for the parameter estimate can be derived. Furthermore the regres-
sors �(k) are deterministic. This enables us to derive non-asymptotic expressions
for the parameter covariance P� in the general case. Thus an unbiased estimate
of the parameter estimate can be obtained even in the case of undermodeling. Of
course, for \true" frequency domain error bounds we must require that the true
system can be represented within the model set. Otherwise we will only obtain
the variance part of the model error. Finite impulse response (FIR), Laguerre
and Kautz model structures were then presented. Using n-width measures for
optimality it was shown that the FIR model structure is an optimal �xed denom-
inator model set if the only a prori information is exponential stability. However,
usually we know more than that. If we know that the (dominating) poles of the
system is located within a disc with radius r located at (�a; 0) in the complex
plane, then the Laguerre model structure becomes the optimal one in the n-width
sense. Thus Laguerre models are useful in modeling well damped systems with
one dominating time constant. For lightly damped systems or for systems with
scattered poles, Kautz models provides useful descriptions.
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In this chapter we will give an introduction to the stochastic embedding approach
for estimation of frequency domain model error bounds. It is shown how the ap-
proach may be developed to construct a exible framework for estimation of error
bounds under di�erent noise and undermodeling conditions. Furthermore quan-
titative properties of prior assumptions on the noise and the undermodeling may
be estimated from current data. The main contribution of this work is to in-
vestigate and improve the qualitative prior assumptions regarding the covariance
structures of the noise and undermodeling.

11.1 The Methodology

As discussed in the introduction on page 133 estimation of frequency domain
model error bounds from a �nite set of noisy data is a very di�cult problem
unless we assume that the true system can be represented within our model
set. Some sort of a priori knowledge of the noise and the undermodeling will
be required to obtain such bounds in the general case. The main paradigm of
the stochastic embedding approach is to assume that the undermodeling is a
realization of a stochastic process with known distribution. Henceforth the true
transfer function of the system is assumed to be a realization of a stochastic
process.

It is furthermore assumed that the transfer function for the true system may be
decomposed into a parametric part G(q; �0) and a bias contribution G�(q). Thus
the frequency response of the true system is supposed given by:

GT

�
e
j!Ts

�
= G

�
e
j!Ts; �0

�
+G�

�
e
j!Ts

�
(11.1)

We then assume that G�(ej!Ts) is a realization of a zero mean stochastic process

E
�
G�

�
e
j!Ts

�	
= 0 (11.2)

) E
�
GT

�
e
j!Ts

�	
= G(ej!Ts ; �0) (11.3)

The expectation E f�g in Equation (11.2) and (11.3) means averaging over dif-
ferent realizations of the undermodeling. Of course, for any given system we will
have just one realization and the undermodeling will be deterministic. However,
the stochastic embedding of the undermodeling enables us to treat it within the
same framework as the noise and to derive results which can be viewed as a
natural extension of the classical results.

11.1.1 Necessary Assumptions

The following assumptions will be made:
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1. The observed data are assumed to be generated by the linear system S
according to:

S : y(k) = GT (q)u(k) +HT (q)e0(k) (11.4)

where GT (q) and HT (q) are strictly stable rational transfer functions, e0(k)
is a zero mean i.i.d. (independent identically distributed) stochastic pro-
cess, u(k) is a quasi-stationary sequence (see [Lju87, pp 27]). Furthermore
u(k) and e(k) are independent. Applying Equation (11.1) on the facing
page we may write (11.4) as:

y(k) = G (q; �0) u(k) +G� (q)u(k) +H (q) e0(k) (11.5)

2. The process noise �(k) = HT (q)e0(k) is independent of the undermodeling
described by �(k) = G� (q) u(k).

3. The probability density function f� for the zero mean stochastic process
�(k) can be parameterized as a function of a parameter vector �.

4. The probability density function f� for the process noise �(k) can be pa-
rameterized as a function of a parameter vector .

Assumption 1 is more or less standard in system identi�cation. Note that we
have not restricted the distribution function for the noise to be Gaussian. As-
sumption 2 is obviously reasonable. From assumption 3 we now get:

f� = f�(G�; �) (11.6)

and similar from 4:

f� = f�(H; ) (11.7)

11.1.2 Model Formulation

We will use �xed denominator modeling both for the parametric part G(q; �) and
the undermodeling G�(q). In particular we will use a FIR model of order L � N

for G�(q):

G�(q) =
LX
k=1

�(k)q�k (11.8)

where �(k) denotes the model error impulse response. Replacing q with ej!Ts we
get the frequency response:

G�

�
e
j!Ts

�
= �

�
e
j!Ts

�
� (11.9)
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with

�
�
e
j!Ts

� 4
=
�
e
�j!Ts; e

�2j!Ts; � � � ; e�Lj!Ts� (11.10)

�
4
= [�(1); �(2); � � � ; �(L)]T (11.11)

where T denotes transpose. We will use a general �xed denominator model for
the parametric part G(q; �):

G(ej!Ts ; �) = �
�
e
j!Ts

�
� (11.12)

with

�
�
e
j!Ts

� 4
=
�
�1

�
e
j!Ts

�
;�2

�
e
j!Ts

�
; � � � ;�n

�
e
j!Ts

��
(11.13)

where n is the order of the model. Hence the Laguerre and Kautz model struc-
tures introduced in Section 10.3 on page 171 will be valid model structures
whereas the general polynominal model (9.1) on page 140 cannot readily be
used.

We may now rewrite Equation (11.4) on the page before as:

y(k) = GT (q)u(k) +HT (q)e0(k) (11.14)

= G(q; �0)u(k) + G�(q)u(k) + �(k) (11.15)

= �(q)�0u(k) + �(q)�u(k) + �(k) (11.16)

= �
T (k)�0 + �

T (k)� + �(k) (11.17)

where

�
T (k)

4
= �(q)u(k) = [�1(k); �2(k); � � � ; �n(k)] (11.18)

�
T (k)

4
= �(q)u(k) = [u(k � 1); u(k� 2); � � � ; u(k� L)] (11.19)

Introducing:

Y
4
= [y(1); y(2); � � � ; y(N )]T (11.20)

V
4
= [�(1); �(2); � � � ; �(N )]

T
(11.21)

Equation (11.17) may be rewritten as:

Y =

2
6664

y(1)
y(2)
...

y(N )

3
7775 =

2
6664

�
T (1)�0
�
T (2)�0
...

�
T (N )�0

3
7775+

2
6664

�
T (1)�
�
T (2)�
...

�
T (N )�

3
7775+

2
6664

�(1)
�(2)
...

�(N )

3
7775 (11.22)

= ��0 +X� + V (11.23)
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with � and X de�ned by:

�
4
=

2
6664

�1(1) �2(1) � � � �n(1)
�1(2) �2(2) � � � �n(2)
...

...
. . .

...
�1(N ) �2(N ) � � � �n(N )

3
7775 (11.24)

X
4
=

2
6664

�1(1) �2(1) � � � �L(1)
�1(2) �2(2) � � � �L(2)
...

...
. . .

...
�1(N ) �2(N ) � � � �L(N )

3
7775 (11.25)

=

2
6664

u(1� 1) u(1� 2) � � � u(1� L)
u(2� 1) u(2� 2) � � � u(2� L)

...
...

. . .
...

u(N � 1) u(N � 2) � � � u(N � L)

3
7775 (11.26)

11.1.3 Computing the Parameter Estimate

Adopting a quadratic performance function for the estimation problem gives:

VN (�; Z
N ) =

NX
k=1

(y(k) � ŷ(kj�))2 (11.27)

=
NX
k=1

�
y(k) � �T (k)��2 (11.28)

= (Y � ��)T (Y � ��) (11.29)

= Y
T
Y � Y

T�� � �
T�TY + �

T�T�� (11.30)

The derivative of VN (�; ZN ) with respect to � is henceforth given by:

V
0
N (�; Z

N ) = 0� @

@�

�
Y
T��

	 � @

@�

�
�
T�TY

	
+

@

@�

�
�
T�T��

	
(11.31)

= ��TY � �TY +
�
�T�+

�
�T�

�T�
� (11.32)

= �2�TY + 2
�
�T�

�
� (11.33)

Minimizing the performance function gives the desired estimate of the parameter
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vector � as:

�̂N = argmin
�

�
VN (�; Z

N )
	

(11.34)

) �̂N = arg
�

�
V
0
N (�; Z

N ) = 0
	

(11.35)

, �TY =
�
�T�

�
�̂N (11.36)

, �̂N =
�
�T�

��1
�TY (11.37)

Equation (11.37) is the well known solution to the standard linear regression
least-squares estimate of �.

If the matrix �T� is ill-conditioned numerically more robust algorithms exists
for computing the parameter estimate, e.g. through QR factorization, see Ap-
pendix F on page 313. However, as we noted in Section 10.3.2, see page 175,
if we use orthonormal basis functions for G(q; �) then �T� will asymptotically
(for N ! 1) have a Toeplitz structure which guarantees that the parameter
estimate (11.37) will be well conditioned.

11.1.4 Variance of Parameter Estimate

In order to evaluate the covariance of the parameter estimate �rst introduce:



4
=
�
�T�

��1
�T (11.38)

to achieve:

�̂N = 
Y (11.39)

= 
��0 + 
X� +
V (11.40)

=
�
�T�

��1
�T��0 + 
X� +
V (11.41)

= �0 + 
X� +
V (11.42)

equivalent to:

�̂N � �0 = 
X� +
V (11.43)

The covariance of the parameter vector �̂N with respect to the nominal value �0
is consequently given as:

Cov
�
�̂N � �0

�
= E

��
�̂N � �0

��
�̂N � �0

�T�
(11.44)
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= E

n
(
X� +
V ) (
X� +
V )T

o
(11.45)

= E
�

 (X� + V )

�
�
T
X
T + V

T
�

T
	

(11.46)

= E
�


�
X��

T
X
T +X�V

T + V �
T
X
T + V V

T
�

T
	

(11.47)

= E
�


�
X��

T
X
T + V V

T
�

T
	

(11.48)

since � and V are assumed uncorrelated. De�ning the covariance matrices for
the noise C� and the undermodeling C� as:

E
�
��

T
	 4
= C� (11.49)

E
�
V V

T
	 4
= C� (11.50)

Equation (11.48) may be written as:

Cov
�
�̂N � �0

�
= 


�
XC�X

T +C�

�

T (11.51)

=
�
��T

��1
�T
�
XC�X

T +C�

�
�
�
�T�

��1
(11.52)

Equation (11.52) states that under the assumptions given the variance on the
parameter estimate is a combination of a bias term (
XC�XT
T ) and a noise
term (
C�
T ). Compare with the classical expression for �xed denominator
models (10.61) on page 172.

11.1.5 Estimating the Model Error

Combine Equation (11.1) on page 184, (11.9) on page 185 and (11.12) on page 186
to obtain:

GT

�
e
j!Ts

�
= ��0 + �� (11.53)

Furthermore substituting �0 with �̂N in (11.12) on page 186 gives:

G

�
e
j!Ts ; �̂N

�
= ��̂N (11.54)

Combining Equation (11.53) and (11.54) we �nd that:

GT

�
e
j!Ts

�� G

�
e
j!Ts ; �̂N

�
= �

�
�0 � �̂N

�
+�� (11.55)

Combining this with Equation (11.43) on the facing page we achieve the key
result:

GT

�
e
j!Ts

��G�ej!Ts; �̂N� = � (�
X� �
V ) + �� (11.56)

= (�� �
X) � � �
V (11.57)
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Equation (11.57) is a central result of the stochastic embedding approach. � and
� are known functions of the frequency ! whereas 
 and X are known functions
of the input signals. Consequently, Equation (11.57) expresses the modeling error
as a known linear combination of two independent random vectors � and V .

The expression (11.57) furthermore clearly separates the bias term (�� �
X)�
and the noise term �
V . The bias term is especially interesting since it separates
into an a priori term ��, see Equation (11.9) on page 185, and a data induced

correction term �
X�, which compensate for the di�erence between �0 and �̂N ,
see also Equation (11.43) on page 188.

Also notice, that if �̂N = �0 then:

GT

�
e
j!Ts

�� G

�
e
j!Ts ; �̂N

�
= ��; if �̂N = �0 (11.58)

that is, our a priori estimate of G�

�
e
j!Ts

�
will not be changed as we will expect

from Equation (11.1) on page 184 and the assumptions.

We will now investigate the second order properties of the modeling error. In-
troduce the following parameters:

�̂N
4
=

�
�̂N

0

�
; �0

4
=

�
�0

�

�
(11.59)

�
�
e
j!Ts

� 4
=

� <e �� �ej!Ts� ;� �ej!Ts�	
=m�� �ej!Ts� ;� �ej!Ts�	

�
(11.60)
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2
4 <e

n
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e
j!Ts

� �G�ej!Ts; �̂N�o
=m

n
GT

�
e
j!Ts

� �G�ej!Ts ; �̂N�o
3
5

(11.61)

to obtain:

�
�
e
j!Ts

�
(�0 � �̂N ) = (11.62)

� <e ��1 � � ��n; e�j!Ts � � �e�Lj!Ts
	

=m��1 � � ��n; e�j!Ts � � �e�Lj!Ts
	 �

2
666666664

�0(1)� �̂N (1)
...

�0(n)� �̂N (n)
�(1)
...

�(L)

3
777777775

(11.63)

=
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4 <e
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(�1�0(1) + � � �+�n�0(n))�

�
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�
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n
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�
+
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e
�j!Ts�(1) + � � �+ e

�Lj!Ts�(L)
�	

+
�
e
�j!Ts�(1) + � � �+ e

�Lj!Ts�(L)
�	 � (11.64)
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n
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e
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� �G�ej!Ts; �̂N�o
3
5 (11.66)

= ~g
�
e
j!Ts

�
(11.67)

From Equation (11.67) follows:

P~g(!)
4
= E

n
~g
�
e
j!Ts

�
~g
�
e
j!Ts

�To
(11.68)

= E

n
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e
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T �T
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e
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T
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�T
�
e
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�
(11.70)

= �
�
e
j!Ts

�
��T

�
e
j!Ts

�
(11.71)

Remembering that � and V are assumed uncorrelated, we obtain:

� = E

n
(�0 � �̂N ) (�0 � �̂N )

T
o

(11.72)
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=

�


�
XC�X

T + C�

�

T �
XC�

�C�XT
T C�

�
(11.78)

The second order properties of the total model error is then described by Equa-
tion (11.71) and (11.78). Once the distributions f� and f� are determined (and
the parameterizations of C�(�) and C�() have been estimated) we may use
(11.71) to map the uncertainty levels into the frequency domain.
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We will now show how to �nd the magnitude expectation of the squared under-
modeling (the total model error variance in the stochastic setting). We �rst show
that it may be expressed as the trace of the covariance matrix P~g:

E

����G(ej!Ts; �̂N )� GT

�
e
j!Ts

����2�

= E

n�
G(ej!Ts; �̂N ) �GT
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���
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���o
(11.79)
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(11.80)

= E
�
~g21
�
e
j!Ts

�
+ ~g22

�
e
j!Ts
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(11.81)

= tr fP~g(!)g (11.82)

Wemay also express the undermodeling directly via Equation (11.57) on page 189
as:
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����2�
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= (� � �
X)E
�
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X)� + 0� 0 + �
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�
V V

T
	

T�� (11.85)

= (� � �
X)C� (�� �
X)� + �
C�

T�� (11.86)

Notice that in Equation (11.86)we have separated the contributions from the bias
error and the variance error. Notice furthermore that in (11.86) and (11.71) on
the preceding page everything but C� and C� are uniquely determined from the
parametric model structure and the input. Thus the total model error is shaped
by the covariance matrices for the undermodeling and the noise. Remember
that in the classical approach for �xed denominator models, see Section 10.3 on
page 171, the model error was shaped by the noise covariance matrix in a similar
manner.

The preliminary approach by Goodwin & Salgado [GS89b] { in which C� and
C� were assumed quantitatively given a priori { su�ers from the fact that no
input/output information was in fact used to estimate the model error! It conse-
quently seems essential to obtain good estimates of C� and C� from the available
data.
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11.1.6 Recapitulation

We have now demonstrated the main results of the stochastic embedding ap-
proach as proposed by Goodwin et al. Let us shortly recapitulate the key as-
sumptions and results:

Main assumptions:

� We will describe the (deterministic) undermodeling of our process as
one realization of a stochastic process. From this realization we will
estimate the properties of the stochastic description.

� We assume that the true system GT

�
e
j!Ts

�
may be decomposed as:

GT

�
e
j!Ts

�
= G(ej!Ts ; �0) +G�

�
e
j!Ts

�
where:

E
�
G�

�
e
j!Ts

�	
= 0

and consequently:

E
�
GT

�
e
j!Ts

�	
= G(ej!Ts; �0)

where E f�g means expectation over di�erent realizations of the
stochastic process we associate with the undermodeling.

� The model G(ej!Ts; �0) shall be linear in the parameter vector � as
e.g. are the class of Laguerre/Kautz models.

Main Results:

� The di�erence between the true system GT

�
e
j!Ts

�
and the estimated

model G(ej!Ts; �̂N ) is given by:

GT

�
e
j!Ts

�� G(ej!Ts; �̂N ) = (�� �
X) � � �
V

with symbols as de�ned above. This central result shows that un-
der the stochastic embedding approach the modeling error may be
expressed as a known linear combination of two independent random
vectors � and V . Furthermore the expression separates the undermod-
eling from the noise contribution. The undermodeling contribution to
the total model error (�� �
X) � consists of two terms. �� is an
a priori assumption of the undermodeling based on estimates of the
impulse response �. �
X� is a data-induced correction term to this
prior due to the shift from �0 to �̂N .
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Furthermore:

E

����G(ej!Ts; �̂N )� GT

�
e
j!Ts

����2� =

(� � �
X)C� (�� �
X)� + �
C�

T��

In the above expression for the total model error variance the covari-
ances C� and C� are the only unknowns. If reasonable estimates of
these matrices may be obtained and substituted in the above expres-
sion, estimates of the total model error and its contributions may be
determined.

� With ~g
�
e
j!Ts

�
de�ned as in Section 11.1.5 we have:

E
�
~g
�
e
j!Ts

�	
= 0

E

n
~g
�
e
j!Ts

�
~g
�
e
j!Ts

�To 4
= P~g = �

�
e
j!Ts

�
��
�
e
j!Ts

�T
E

����G(ej!Ts; �̂N ) �GT

�
e
j!Ts

����2� = tr fP~gg

Assumptions NOT made

� No assumptions have been made on the probability density functions
for the undermodeling and the process noise other than that they may
be parameterized as functions of � and .

� Also we have not limited us to consider special structures of the
parametrization of these density functions. For the undermodeling
this is equivalent to specifying the structure of undermodeling impulse
response variance E

�
�
2(k)

	
.

For the process noise, selection of parameterization structure amounts
to specifying the necessary parameters for the chosen probability func-
tion.

11.2 Estimating the Parameterizations of f� and

f�

Having presented the central methodology, we now turn to specifying and esti-
mating the parameterizations of the undermodeling and process noise.
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11.2.1 Estimation Techniques

Goodwin et al. [GGN92] propose maximum likelihood methods in order to esti-
mate the parameter vectors � and  from the residuals vector � de�ned by:

�
4
= Y ���̂N (11.87)

= Y ��
Y (11.88)

=
h
I � �

�
�T�

��1
�T
i
Y (11.89)

4
= P�Y (11.90)

where P� is a N � N matrix. However it is possible to show that the rank of
P� is only N � p and hence � will have a singular distribution and maximum
likelihood methods will fail.

However we may transform � into another coordinate system by:

$
4
= R

T
� (11.91)

= R
T
Y �RT��̂N (11.92)

= R
T��0 +R

T
X� + R

T
V � R

T��̂N (11.93)

= R
T�
�
�0 � �̂N

�
+R

T
X� + R

T
V (11.94)

If we choose a full rank (N � N � p) transformation matrix R so that:

R
T� = 0 (11.95)

then

$ = R
T
Y = R

T
X� +R

T
V (11.96)

With R chosen as above the distribution on $ will be non-singular. Notice that
the transformed data vector $ has only N�p elements. Possible ways of choosing
R is discussed in Section 11.2.3.1 on page 198.

From Equation (11.96), note that $ is the sum of two independent random
vectors, � and V , whose probability density functions we have parameterized as
functions of � and , see Equation (11.6) and (11.7) on page 185.

Now introduce the combined parameter vector � as:

�
4
=

�
�



�
(11.97)

Then it will be possible to compute the likelihood function for the data vector $
given � and the inputs U under the given assumptions on the probability density
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functions. The likelihood function will be denoted L($jU; �). Maximizing the
likelihood function will yield the desired estimate for the parameter vector �:

�̂ = argmax
�

L($jU; �) (11.98)

Notice that in the above procedure we have not narrowed the applicable class of
probability density functions to be chosen.

11.2.2 Choosing the Probability Distributions

To proceed further we now have to make a speci�c choice of the assumed proba-
bility structure of the undermodeling and process noise. Assume that these are
zero mean Gaussian distributed:

� � N (0; C�(�)) (11.99)

V � N (0; C�()) (11.100)

with C�(�) being the parameterized covariance matrix for the impulse response
of the undermodeling and C�() the parameterized covariance matrix for the
noise.

With these prior distributions on f� and f� the parameter estimate �̂N and
~g
�
e
j!Ts

�
will be Gaussian distributed as well:

�̂N � N (�0; P�) (11.101)

~g
�
e
j!Ts

� � N (0; P~g) (11.102)

Remember that this is still averaging over di�erent realizations of a class of
systems, from where the true system is just one realization. Consequently we
will not generally expect �̂N to converge against �0 for N !1.

Equation (11.102) describes the assumed probability characteristics of the total
model error for the class of systems de�ned. Since the true system is one such
system it will constitute one event in the probability space assumed.

Since ~g
�
e
j!Ts

�
is zero mean Gaussian distributed with covariance P~g the scalar

z
�
e
j!Ts

�
given by:

z
�
e
j!Ts

�
= ~g

�
e
j!Ts

�T
P~g

�1~g
�
e
j!Ts

�
(11.103)

has �2 distribution with dim~g
�
e
j!Ts

�
= 2 degrees of freedom.

Equation (11.103) may thus be used to draw con�dence ellipses in the complex

plane for the frequency response estimate G(ej!Ts; �̂N ) with respect to the class
of true systems de�ned by Equation (11.1) on page 184.
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The tractability of the results for the Gaussian assumptions on � and V motivates
us to use the corresponding results in practice.

11.2.3 Maximum Likelihood Estimation of �

Equation (11.98) on the facing page may now be solved (numerically) under
the given assumptions on the probability distributions and the structure of the
covariance matrices. Unfortunately this may be a non-convex problem with mul-
tiple local maxima so we cannot guarantee to �nd the global maximum. The
likelihood function of the N � p data vector $ is equvalent to the probability
density of $. Since f� and f� are assumed Gaussian the probability density of
$ will be an N � p dimensional Gaussian distribution with zero mean:

f($jU; �) = 1

(2�)(N�p)=2
� 1

(det�)1=2
� e� 1

2
$T

�
�1$ (11.104)

where � is given by:

�
4
= E

�
$$

T
	

(11.105)

= E

n�
R
T
X� +R

T
V
� �
R
T
X� +R

T
V
�To

(11.106)

= E
�
R
T
X��

T
X
T
R
	
+ E

�
R
T
V V

T
R
	

(11.107)

= R
T
XC�X

T
R+R

T
C�R (11.108)

with given parameterizations onC� andC�. Maximizing the likelihood function is
equivalent to maximizing the loglikelihood function. For computational purposes
this is preferred. The loglikelihood function `($jU; �) is given by:

`($jU; �) 4= ln (f($jU; �)) (11.109)

= �N � p

2
ln(2�) � 1

2
ln(det �)� 1

2
$
T��1$ (11.110)

= �1
2
ln(det �)� 1

2
$
T��1$ + k (11.111)

where k = � ln(2�)(N�p)=2 is some constant. In Appendix G it is demonstrated
how we may derive explicit expressions for the partial derivatives of `($jU; �)
with respect to the elements of � and for the Hessian matrix. This enables us
to construct numerical search algorithms for the maximumbased on Marquardts
method. Such search procedures usually converge quickly and e�ciently at least
to a local maximum.

Assuming that the global maximum is found, it will now be possible to �nd the
parameter vector � that maximizes the loglikelihood function for $ given the
parameterizations on C� and C�.
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11.2.3.1 Choosing the Transformation R

The choice of R a�ect the singular value ratio1 of the $ covariance matrix �.
This is important since taking the loglikelihood of $ involves inversion of �, see
Equation (11.111) on the page before. Consequently we must require that the
singular value ratio of � is reasonably small. Furthermore since the determinant
of � is the product of the eigenvalues, then if some of the eigenvalues are close
to zero2 then the determinant will be close to zero as well and we may have
problems when taking the logarithm in Equation (11.111) on the preceding page.
Consequently we will also require that the ratio of the largest eigenvalue of � to
the smallest should be reasonably small.

We propose that R is obtained in either of the following two ways:

� as the orthonormal basis for P� in (11.90) on page 195.

� through QR-factorization of �, see Appendix F.

Both these choices result in well balanced covariances � both with respect to
eigenvalue and singular value ratios.

11.3 Parameterizing the Covariances

Parameterizing C� and C� we may now estimate the parameters themselves as
described in the previous section. Several parameterizations have been investi-
gated.

11.3.1 Parameterizing the Noise Covariance C�

Two assumptions on the noise �(k) have been investigated:

� �(k) is assumed to be white measurement noise. This corresponds to
H (q) = 1, see Equation (11.4) on page 185.

� �(k) is assumed to be white noise �ltered through a �rst order ARMA �lter
H (q) = (1 + cq

�1)=(1 + aq
�1), see Equation (11.4).

1The condition number.
2Relatively to the remaining eigenvalues.
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11.3.1.1 White Noise Assumption

The white noise assumption on �(k) is equivalent to specifying the covariance
matrix for the noise as a diagonal matrix of the white noise variance �2e :

C�() = �
2

e � IN (11.112)

where N is the number of measurements. The parameterization in (11.112) con-
stitutes the simplest possible assumption on the noise, but may prove adequate
in many applications.

11.3.1.2 Colored Noise Assumption

Assume that �(k) is given by a �rst order ARMA model

�(k) =
1 + cq

�1

1 + aq�1
e(k) (11.113)

where e(k) 2 N (0; �2e) is white noise with variance �
2
e. It is then straightforward

to show, see Appendix J on page 325 that the noise impulse response h�(k) will
be given by:

h�(k) =

�
1 ; k = 0
(�a)k�1(�a+ c) ; k > 0

(11.114)

The corresponding noise covariance matrix C�() will furthermore be given by:

C�(i; j) = �
2

e

1X
k=0

h�(k)h�(k + j � i) (11.115)

=

8>>>><
>>>>:

�
2

e

�
1 +

(c� a)2

1� a2
�

; i = j

�
2
e(�a)M

�
1 + c

2 � a � c� c=a
�

1� a2 ; jj � ij =M

(11.116)

where j � j denotes absolute value. Other noise assumptions may be incorporated
into C�() e.g. if more detailed noise models are available. The computational
labour for higher order noise descriptions may however be quite severe.

11.3.2 Parameterizing the Undermodeling Covariance C�

3 di�erent parameterizations of the undermodeling impulse response covariance
have been investigated:
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� A constant diagonal structure corresponding to a constant undermodeling
impulse response variance.

� An exponential decaying diagonal structure corresponding to an exponen-
tially decaying undermodeling impulse response variance.

� A non-diagonal structure corresponding to a 1st order undermodeling im-
pulse response.

11.3.2.1 A Constant Diagonal Assumption

The simplest possible structure on the covariance matrix for the undermodeling
impulse response would be a constant diagonal matrix:

C�(�) = � � IL (11.117)

where L is the order of the undermodeling FIR description. The corresponding
undermodeling impulse response variance is:

E
�
�
2(k)

	
= � (11.118)

This corresponds for example to the assumption that 68,3% (1 standard devia-
tion) of the undermodeling impulse responses will fall within the rectangle shown
in Figure 11.1 on the facing page for

p
� = 5 and L = 25.

Generally we would expect the undermodeling impulse response to decay with
time. However the parameterization of C� need not be a strict physical descrip-
tion. Equation (11.117) simply represents an unstructured description of the
undermodeling.

Notice that the diagonal assumption on C� causes the impulse response �(k) to
be mutually uncorrelated:

E f�(k)�(� )g = 0 for k 6= � (11.119)

It is then easy to show that the initial estimate of the undermodeling is given by:

E

n��G�

�
e
j!Ts

���2o = � �L (11.120)

Consequently the initial estimate of
��G�

�
e
j!Ts

���2 is a frequency domain station-
ary process. However, if the true system is strictly proper its frequency response
will decay to zero at high frequencies and as a consequence, so should the absolute
modeling error.
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Figure 11.1: A constant diagonal assumption on the undermodeling impulse re-
sponse. Shown are the one standard deviation borders for

p
� = 5

and L = 25.

11.3.2.2 An Exponentially Decaying Assumption

Goodwin and co-workers [GGN92] proposes a diagonal structure on the covari-
ance matrix for the undermodeling:

C�(�) = diag
1�k�L

��
k (11.121)

Corresponding to the undermodeling impulse response variance:

E
�
�
2(k)

	
= ��

k (11.122)

This corresponds for example to the assumption that 68,3% (1 standard devia-
tion) of the undermodeling impulse responses will fall within the rectangle shown
in Figure 11.2 on the next page for

p
� = 5,

p
� = 0:9 and L = 25.

Compared with the constant undermodeling impulse response variance above we
now have decaying properties on the undermodeling impulse response.

Notice however that the diagonal assumption on C� still causes the impulse re-
sponse �(k) to be mutually uncorrelated:

E f�(k)�(� )g = 0 for k 6= � (11.123)
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Figure 11.2: A exponentially decaying assumption on the undermodeling impulse
response. Shown are the one standard deviation borders for

p
� = 5,p

� = 0:9 and L = 25.

It is then easy to show that the initial estimate of the undermodeling is given by:

E

n��G�

�
e
j!Ts

���2o =
��

1� �
(11.124)

Consequently the initial estimate of
��G�

�
e
j!Ts

���2 is still a frequency domain
stationary process which is undesirable.

11.3.2.3 A Non-Diagonal Assumption

In order to obtain a frequency domain non-stationary initial estimate of��G�

�
e
j!Ts

���2 we propose that the covariance matrix C� may be parameterized
as:

C�(�) =
�
��

0 � � ���L�1�T ���0 � � ���L�1� (11.125)

corresponding to a �rst order undermodeling impulse response �. Notice that
the above C� is singular. Thus the undermodeling impulse response f�(k)g is a
stochastic process with singular distribution and in fact of the form:

�(k) = a�
k�1 (11.126)
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Figure 11.3: A �rst order decaying assumption on the undermodeling impulse
response. Shown are the one standard deviation borders for � = 5, � = 0:9 and
L = 25. The impulse response is smooth in precisely a �rst order fashion.

where a 2 N (0; �2) and � some �xed number. The covariance matrix for the
stochastic process (11.126) on the facing page is namely given by:

C� = E

n
[�(1); �(2); � � � ; �(L)]T [�(1); �(2); � � � ; �(L)]

o
(11.127)

= E

n�
a�

0
; a�

�1
; � � � ; a�L�1�T �a�0; a��1; � � � ; a�L�1�o (11.128)

= E

n
a
2
�
�
0
; �
�1
; � � � ; �L�1�T ��0; ��1; � � � ; �L�1�o (11.129)

= E
�
a
2
	 �
�
0
; �
�1
; � � � ; �L�1�T ��0; ��1; � � � ; �L�1� (11.130)

= �
2
�
�
0
; �
�1
; � � � ; �L�1�T ��0; ��1; � � � ; �L�1� (11.131)

which is the same as (11.125). Consequently every realization of � is smooth
in precisely a �rst order fashion. This is a highly structured description of the
undermodeling compared with the diagonal assumptions on C�(�). The parame-
terization (11.125) on the facing page corresponds for example to the assumption
that 68,3% (1 standard deviation) of the undermodeling impulse responses will
fall within the rectangle shown in Figure 11.3 for � = 5, � = 0:9 and L = 25.
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The corresponding initial undermodeling estimate will then be given by:

E

n��G�

�
e
j!Ts

���2o = �
�
e
j!Ts

�
C�(�)�

T
�
e
j!Ts

�
(11.132)

which is, in general, not frequency domain stationary. Notice that we have not
increased the number of parameters.

11.3.3 Combined Covariance Structures

The di�erent structures on the noise and undermodeling covariances may then
be combined to provide 6 di�erent parameterizations of the covariance matrices
C�() and C�(�).

11.4 Summary

The stochastic embedding approach for estimation of frequency domain model
uncertainty was introduced. The main paradigm for the stochastic embedding
approach is to assume that the undermodeling is a realization of a stochastic
process. With this \technical" assumption we may extend the classical results
on �xed denominator modeling to the case where no exact description of the
true system exists within the model set. The expression for the parameter co-
variance matrix then contains two contributions: one due to the noise in the
data set and one due to the undermodeling. We may furthermore derive an
explicit expression for the total model error which nicely separates bias and vari-
ance contributions. In the expression for the frequency domain error bounds two
covariance terms appear; one for the noise and one for the undermodeling im-
pulse response. An estimate of these two covariances must be obtained in order
to evaluate the frequency domain expression. Remember that for the classical
�xed denominator approach we could quite easily obtain a non-parametric esti-
mate of the noise covariance matrix C� from the model residuals. Unfortunately
this is not the case now, since the residuals contain contributions both from the
noise and the undermodeling. Instead a maximum likelihood approach is taken.
If we parameterize the covariances the parameters themselves may then be es-
timated from the residuals. Unfortunately this approach is only tractable for
small data series, see the remarks below. Two parameterizations for the noise
were investigated, one corresponding to white noise and one corresponding to a
�rst order ARMA noise model. Three parameterizations for the undermodeling
were suggested corresponding to a constant undermodeling impulse response, an
exponentially decaying undermodeling impulse response and �nally a �rst order
decaying undermodeling impulse response.
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11.4.1 Remarks

We have only presented results for single-input single-output systems. We believe
that the general stochastic embedding methodology can be straightforwardly
extended to multivariable systems. However, the parameterization of the noise
and undermodeling covariances and the maximum likelihood estimation of the
parameters do not seem to readily �t into a multivariable framework.

The maximum likelihood estimation is also a severe bottleneck for large data
series. The approach outlined here is only tractable for rather small data series
(less than 300 measurements) because evaluation of the N �p dimensional Gaus-
sian distribution for the transformed residuals $ involves inversion of N � N

matrices.
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12.1 The True System

Suppose that the true system is given by:

GT (s) =
458

(s + 1)(s2 + 30s+ 229)
(12.1)

GT (s) is taken from the well-known paper by Rohrs et al. [RVAS85]. The system
was sampled with sampling frequency 10 [Hz], the input sequence was a 0.4 [Hz]
fundamental square wave and the output were corrupted by the white noise
sequence:

�(k) � N (0; 0:05) (12.2)

200 samples were collected, 125 of which were used to get rid of initial condition
e�ects. The last 75 samples were used for estimation. It is thus assumed that
only a very limited data set is available for the identi�cation procedure. A second
order Laguerre model:

G(q; �) =
�1q

�1

1 + �q�1
+
�2q

�1
�
1� ��1q�1�

(1 + �q�1)2
(12.3)

was �tted to the data. The Laguerre pole �� was chosen as 0.85. The order of
the FIR model for the undermodeling G�(q) was chosen as L = 20.

The discrete-time equivalent of the true system assuming zero order holds on the
input is:

GT (q) =
0:0370q�1 + 0:0717q�2+ 0:00785q�3

1� 1:34q�1+ 0:446q�2� 0:0450q�3
(12.4)

The discrete-time poles of the true system are consequently:

p1 = 0:905
p2 = 0:219+ 0:0443j
p2 = 0:219� 0:0443j

(12.5)

The Laguerre pole is thus slightly faster than the dominant pole of the true
system as usually recommended for Laguerre models.

The least squares estimate of � averaging over 100.000 realizations of the noise
was found as:

�
� � �̂N;av =

�
0:1079
0:0138

�
(12.6)
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The estimated covariance matrix was

P� = E

n
(�̂N � �

�)(�̂N � �
�)T
o

(12.7)

= 10�4 �
�

0:7366 �0:0502
�0:0502 0:0096

�
(12.8)

This corresponds nicely with the estimated covariance matrix for �, given a �xed
denominator model structure. Given the results in Section 10.3.1 P̂N is found as

P̂N = 
C�

T (12.9)

= 10�4 �
�

0:7419 �0:0505
�0:0505 0:0096

�
(12.10)

Furthermore 
 is deterministic such that the covariance estimate (12.10) applies
for any realizations of the noise. Note that P̂N is estimated from just 75 samples.
Of course, we are cheating here since we assume that we know C� . However, we
can use P̂N to evaluate the frequency domain uncertainty bounds obtained with
a classic approach.

The distributions of the �-estimate is shown in Figure 12.1. As seen the distri-
butions correspond very nicely to the standard normal distribution as predicted
by (9.33) on page 143.

0.05 0.1 0.15 0.2
0

5000

10000

15000

Theta_1

N
o.

 o
f 

ev
en

ts

Theta_1 distribution

0.005 0.01 0.015 0.02
0

5000

10000

15000

Theta_2

N
o.

 o
f 

ev
en

ts

Theta_2 distribution

Figure 12.1: Distribution of Laguerre model parameter estimates. Also shown
are scaled normal distributions with computed mean and standard
deviation.
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12.2 Error Bounds with a Classical Approach

Given a realization of the noise we may now compute frequency domain uncer-
tainty ellipses around the estimated Nyquist. Since G(q; �) is linear in � we may
write

G(q; �) = �(q)� (12.11)

where �(q) for the present example is given by

�(q) =

�
q
�1

1 + �q�1

q
�1(1� �

�1
q
�1)

1 + 2�q�1 + �2q�2

�
(12.12)

Then ~g(ej!Ts) de�ned as before

~g(ej!Ts) =

2
4 <e

n
G
�
e
j!Ts ; �

�
�� G

�
e
j!Ts; �̂N

�o
=m

n
G
�
e
j!Ts ; �

�
��G�ej!Ts; �̂N�o

3
5

(12.13)

will be given by

~g(ej!Ts) = �(ej!Ts)
�
�
� � �̂N

�
(12.14)

Under our standard assumptions, ~g(ej!Ts) will be normal distributed with co-
variance P~g(!):

~g(ej!Ts) 2 N (0; P~g(!)) (12.15)

where P~g(!) is given by

P~g(!) = �(ej!Ts)P��
T (ej!Ts) (12.16)

Thus the scalar

z(!) = ~gT (ej!Ts)
�
�(ej!Ts)P��

T (ej!Ts)
��1

~g(ej!Ts) (12.17)

will have �2 distribution with 2 degrees of freedom and may be used to draw
con�dence ellipses in the complex plane for the frequency response estimate
G(ej!Ts; �̂N ). Notice, however, that G(q; ��) does not represent the true system
GT (q) due to undermodeling. Thus we will expect the estimated error bounds
to be inaccurate.

Given a particular realization of the noise �(k), the least squares estimate for �
was found as

�̂N =

�
0:1092
0:0143

�
(12.18)
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In Figure 12.2 the true and predicted output is given. Furthermore, the true and
estimated Nyquist are compared. Uncertainty ellipses corresponding to 2 stan-
dard deviations are shown superimposed on the estimated frequency response.
Whilst the estimated uncertainty in the low frequency range corresponds well
to the true Nyquist curve, notice how the correspondence vanishes in the high
frequency area. If a controller design was based on the illustrated uncertainty
estimates, the robustness to high frequency model uncertainty could very well be
quite small.
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Figure 12.2: Results from classical identi�cation on Rohrs Counterexample. On
the left are true and estimated output and on the right are true and
estimated Nyquist with error bounds.

In the next section we will use stochastic embedding of the bias in order to
improve the classical error bounds.

12.3 Error bounds with Stochastic Embedding

Approach

Estimating the total model error, the probability density functions for the noise
and the undermodeling shall be identi�ed. The parameterization of the noise was
chosen as in (11.112) on page 199 corresponding to white measurement noise. The
3 di�erent parameterizations of the undermodeling presented in Section 11.3.2
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were investigated. The transformation matrix R was chosen through QR fac-
torization of � as outlined in Section 11.2.3.1 on page 198. The loglikelihood
function `($jU; �) was maximized using a Marquardt search algorithm.

12.3.1 Case 1, A Constant Undermodeling Impulse Re-

sponse

First the undermodeling parameterization (11.117) on page 200 corresponding to
a constant undermodeling impulse response variance will be investigated. The
parameter vector � is consequently given by:

� =

�
�

�
2
e

�
(12.19)

1000 realizations of the process noise �(k) were processed. 702 of the 1000 search
procedures converged. The remainder mainly approached [0; �2e] corresponding
to zero uncertainty1.

The convergent estimates of � is displayed in Figure 12.3 together with the max-
imum values of `($jU; �).
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Figure 12.3: Case 1: Montecarlo testing of the maximum likelihood estimation
of �. 1000 realizations of �(k) were investigated, 702 converged. Shown are
histograms for �, �2e and maxf`($jU; �)g together with the corresponding scaled
normal distributions.

The mean value and standard deviation on � was estimated as:

�̂N =

�
1:165 � 10�3
4:816 � 10�2

�
(12.20)

1Notice that � < 0 corresponds to a negative de�nite covariance matrix for the undermod-
eling. Consequently a lower bound of 10�10 was enforced on �.
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�̂� =

�
0:963 � 10�3
0:851 � 10�2

�
(12.21)

In Figure 12.3 also scaled normal distributions corresponding to the estimated
means and standard deviations are shown. We have not made any assumptions
with regard to the distribution of �. However, if � is normal distributed, we
would expect the estimation procedure to be in some sense \well-conditioned".
Notice that the �-estimate is not normal distributed whereas both �

2
e and the

loglikelihood `($jU; �) corresponds well to a normal distribution. Notice also
that an accurate estimate of the noise variance �2e = 0:05 is obtained. The
loglikelihood mean was found to be:

�maxf`($jU;�)g = 72:43 (12.22)

Now let us consider a particular realization of the noise. We will use the same
realization as in Section 12.2 on page 210. The corresponding estimate of � was
found as:

�̂ =

�
�

�
2
e

�
=

�
2:365 � 10�3
5:830 � 10�2

�
(12.23)

Notice that this realization is representative with respect to �, see Figure 12.3 on
the facing page.

The results of the uncertainty estimation is displayed in Figure 12.4 on the next
page and 12.5 on page 215. Notice from Figure 12.4 that a reasonable uncer-
tainty estimate is obtained through this simple parameterization of the noise and
undermodeling. The uncertainty estimate is slightly conservative and with lit-
tle phase information in the high frequency area. Small uncertainty is correctly
predicted around the fundamental frequency of the square wave input. In Fig-
ure 12.5 the di�erent contributions to the error estimate is shown. Recall from
Equation (11.86) on page 192 that the total model error estimate is given by:

E

����G�ej!Ts; �̂N��GT

�
e
j!Ts

����2�
= (�� �
X)C� (� � �
X)� + �
C�


T�� (12.24)

= �C��
� + �
XC�X

T
T�� � �
XC��
� �

�C�X
T
T�� +�
C�


T�� (12.25)

The components of (12.25) will be denoted as follows:

� A priori estimate: �C��
�.

� Data induced term: �
XC�X
T
T��.
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Figure 12.4: Case 1: Nominal Nyquist (solid) with 1 std. deviation error bounds.
Also shown is the true Nyquist (dashed). Each frequency point is marked (�) to
provide insight in the quality of the uncertainty estimates.

� Cross terms: �
XC��
� +�C�X

T
T��.

� Noise term: �
C�

T��.

From Figure 12.5 on the facing page the following observations may be made:

A priori estimate. The frequency response of the a priori estimate is inde-
pendent of frequency. This is due to the simple parameterization of the
undermodeling, see Section 11.3.2.1 on page 200. The total model error
estimate converges to the a priori estimate as the frequency ! approaches
the Nyquist frequency �=Ts.

Data induced and noise term. Both terms predicts smoothly decaying
model error. Notice that even though the data seems rather noisy, see
Figure 12.2 on page 211, the noise contribution to the total model error is
very small compared with the bias terms.

Cross terms. These terms provide the \shaping" of the otherwise very smooth
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Figure 12.5: Case 1: Total model error components and comparison with true
model error. Upper: The total model error (solid), a priori estimate (o), data in-
duced term (dashed), cross terms (dash-dotted) and noise term (+). Lower: True
model error (solid) and estimated total model error standard deviation (dashed).

error estimate. They represent a mixture of a priori information and data
induced knowledge and seem to be somewhat di�cult to interpret.

The comparison of the true model error magnitude with the estimated model
error standard deviation provides another mean of assessing the performance of
the uncertainty estimate. As seen from Figure 12.5 there is reasonable agreement
between the true model error and the estimate although the error estimate is
somewhat conservative.

12.3.2 Case 2: An Exponentially Decaying Undermodeling

Impulse Response

Now the undermodeling parameterization (11.121) on page 201 corresponding
to an exponentially decaying undermodeling impulse response variance will be
investigated. The parameter vector � is consequently given by:

� =

2
4 �

�

�
2
e

3
5 (12.26)
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Again 1000 realizations of the noise �(k) were processed. This time however, only
429 converged. The convergence hit-rate for this undermodeling parameterization
is consequently considerably lower than for the constant undermodeling impulse
response parameterization examined in the previous section. 241 realizations did
not converge due to the lower bound on �, see footnote (1) on page 212. The
remaining realizations diverged.
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Figure 12.6: Case 2: Montecarlo testing of the maximum likelihood estimation
of �. 1000 realizations of �(k) were investigated, 429 converged. Shown are his-
tograms for �, �, �2e and maxf`($jU; �)g together with the corresponding scaled
normal distributions.

The convergent estimates of � is displayed in Figure 12.6 together with the max-
imum values of `($jU; �)g. The mean value and standard deviation on � were
estimated as:

�̂N =

2
4 4:830 � 10�2

8:581 � 10�1
4:744 � 10�2

3
5 (12.27)

�̂� =

2
4 41:12 � 10�2

3:336 � 10�1
0:824 � 10�2

3
5 (12.28)

The corresponding normal distributions are also shown in Figure 12.6. Notice
that approximately half of the realizations converged to � > 1 corresponding to
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Figure 12.7: Case 2: Nominal Nyquist (solid) with 1 std. deviation error bounds.
Also shown is the true Nyquist (dashed). Each frequency point is marked (�) to
provide insight in the quality of the uncertainty estimates.

an exponentially rising undermodeling impulse response. This is equivalent to an
unstable transfer function G�(q) for an in�nite impulse sequence. However since
only 20 samples of the impulse response is used as approximation for G�(q) this
is generally not the case here.

Notice that the estimate of the noise variance �2e again corresponds nicely with
the true value. The loglikelihood mean was found to be:

�maxf`($jU;�)g = 72:91 (12.29)

that is, slightly better than for the undermodeling parameterization in Sec-
tion 12.3.1 on page 212.

We now turn to the particular realization of the process noise introduced above.
The corresponding estimate of � was determined as:

�̂ =

2
4 �

�

�
2
e

3
5 =

2
4 2:282 � 10�3

1:0035
5:830 � 10�2

3
5 (12.30)
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Figure 12.8: Case 2: Total model error components and comparison with true
model error. Upper: The total model error (solid), a priori estimate (o), data in-
duced term (dashed), cross terms (dash-dotted) and noise term (+). Lower: True
model error (solid) and estimated total model error standard deviation (dashed).

The results of the uncertainty estimation is displayed in Figure 12.7 on the page
before and 12.8. Notice that the uncertainty estimate presented in Figure 12.7
is almost exactly identical to the estimate in Section 12.3.1, see Figure 12.4 on
page 214. This is not surprising since � � 1 and the estimates of � and �2e are
very similar, compare Equation (12.30) and (12.23).

The di�erent components of the total model error, see Figure 12.8, are also almost
identical with the results from Section 12.3.1 and hence the conclusions presented
there also apply for the current parameterization of the undermodeling. The ad-
ditional parameter � introduced in the exponentially decaying parameterization
of the undermodeling consequently is of little use in the current example. Fur-
thermore the convergence rate of exponentially decaying parameterization of the
undermodeling was rather poor compared with the simple constant parameteri-
zation introduced in Case 1.
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12.3.3 Case 3: A First Order Decaying Undermodeling Im-

pulse Response.

Finally the undermodeling parameterization (11.125) on page 202 corresponding
to a 1st order decaying undermodeling impulse response will be investigated. The
parameter vector is still given by (12.26) on page 215 and again 1000 realizations
of the noise were processed. This time 773 of the realizations converged; the
highest hit-rate of the three di�erent undermodeling parameterizations. The
remaining maximizations collided with the lower bound on �.
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Figure 12.9: Case 3: Montecarlo testing of the maximum likelihood estimation
of �. 1000 realizations of �(k) were investigated, 773 converged. Shown are his-
tograms for �, �, �2e and maxf`($jU; �)g together with the corresponding scaled
normal distributions.

The resulting estimates of � is displayed in Figure 12.9 together with the achieved
loglikelihood of $ and the computed normal distributions. The mean and stan-
dard deviation of � were found as:

�̂N =

2
4 1:533 � 10�1

1:357 � 10�1
4:979 � 10�2

3
5 (12.31)
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Figure 12.10: Case 3: Nominal Nyquist (solid) with 1 std. deviation error bounds.
Also shown is the true Nyquist (dashed). Each frequency point is marked (�) to
provide insight in the quality of the uncertainty estimates.

�̂� =

2
4 0:629 � 10�1

3:193 � 10�1
0:861 � 10�2

3
5 (12.32)

Notice that the spread of � is rather large, speci�cally � takes negative values
corresponding to that neighbor points in the undermodeling impulse response
have di�erent signs. This is a somewhat odd interpretation but does not violate
our identi�cation scheme since the covariance C�(�; �) is still positive de�nite.

Again a �ne estimate of the noise covariance is obtained. The mean value of the
obtainable loglikelihood was:

�maxf`($jU;�)g = 72:75 (12.33)

that is, close to the means for the two other undermodeling parameterizations.
It may consequently be concluded that level of the performance surfaces for the
di�erent parameterizations of the undermodeling are quite similar. For a given
input-output realization, a considerable di�erence in the obtainable loglikelihood
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Figure 12.11: Case 3: Total model error components and comparison with true
model error. Upper: The total model error (solid), a priori estimate (o), data in-
duced term (dashed), cross terms (dash-dotted) and noise term (+). Lower: True
model error (solid) and estimated total model error standard deviation (dashed).

may be used to distinguish and classify the goodness of di�erent noise and un-
dermodeling parameterizations.

The results of the uncertainty estimate for the particular realization discussed
before is displayed in Figure 12.10 and 12.11. The corresponding estimate of �
was found to be:

�̂ =

2
4 �

�

�
2
e

3
5 =

2
4 1:182 � 10�1
2:523 � 10�1
6:769 � 10�2

3
5 (12.34)

Now the uncertainty estimate is considerably improved compared with the pre-
vious estimates. It is less conservative and the phase information of the error
estimates have substantially improved. Furthermore notice from Figure 12.11
that the a priori estimate �C�� is now decaying with frequency. The data in-
duced term �
XC�X

T
T�� is concentrated around the fundamental frequency
of the input square wave, where the information in the data is large. The noise
contribution is of approximately similar size as in connection with the previous
undermodeling parameterizations. However the noise part of the total model
error is now greater since the uncertainty estimate is less conservative.
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12.4 Summary

Estimation of model uncertainty was performed for a second order Laguerre
model applied in connection with a third order true system. From the above
presented results the following conclusions were drawn:

� The estimated uncertainty regions using a classical approach and a second
order Laguerre representation did not capture the true model uncertainty
in the high frequency area.

� The estimated uncertainty regions using the stochastic embedding approach
gave a fair indication of the model uncertainty, especially for the �rst order
undermodeling impulse response parameterization.

� The maximum likelihood identi�cation of the parameters in the noise and
undermodeling covariance matrices converged for 70%, 43% and 77% of
the noise realizations for the constant, exponentially decaying and 1st or-
der decaying parameterizations of the undermodeling respectively. For the
exponentially decaying parameterization, this is not satisfactory.

� The variance of the maximum likelihood estimate of � was rather high for
all three parameterizations of the undermodeling.

� The covariance �2e of the measurement noise was accurately predicted for
all three undermodeling parameterizations.

� The uncertainty around the fundamental frequency of the input square
wave was correctly predicted to be small.

Generally speaking, the stochastic embedding method produced reliable uncer-
tainty estimates, but the \robustness"2 of the method seems somewhat poor. The
problem is probably that the performance surface for the maximum likelihood
estimate is rather shallow due to the small number of measurements. As noted
in Section 11.4.1 on page 205 the maximum likelihood procedure unfortunately
becomes intractable for large data series.

2By robustness we here mean the probabilityof �nding the global maximumin the maximum
likelihood search for �.
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So far we have mainly considered robust control and system identi�cation inde-
pendently. This reects the traditional segregation of the two �elds within the
automatic control community. In this part of the thesis we will suggest various
schemes which combines the results from robust control presented in Part I with
the results from system identi�cation presented in Part II. The presentation will
fall naturally into three parts. Section 13.1 summarizes the presented results on
estimation of frequency domain model error bounds. Section 13.2 discusses how
frequency domain uncertainty ellipses may be represented in a robust control
framework and �nally Section 13.3 addresses the question of posing an identi-
�cation based robust control design strategy; the main result of this thesis. In
the next chapter we will provide an example to illustrate the proposed design
philosophy.

13.1 System Identi�cation for Robust Control

When we use system identi�cation for robust control we generally have two aims.
The �rst aim, of course, is to obtain a useful description of the system. By the
term useful we emphasize that this description is aimed at subsequent use for
control design. Thus it need not be a very accurate detailed model which is
valid throughout the entire physical envelope of the system. Rather it should
a reasonable simple model which is valid (that is, describes the real system as
accurately as \necessary") in the vicinity of the normal operating point of the
system. The second aim using system identi�cation for robust control is to get
an estimate of the model quality. In fact, in many practical control designs, we
would rather have a simple low-order model together with a quanti�cation of
the involved model uncertainty than a high-order very accurate model with very
little uncertainty. The reason for this is that the order of the controller, using
most modern control design methods, equals at least that of the generalized
plant. Implementation of high-order controllers can be quite di�cult, e.g. due to
numerics, available memory etc.. Since we may often overbound the uncertainty
of a simple model with a simple �rst or second order perturbation models, we
can usually obtain low-order controllers for simple plant models.

Increasing performance demands will necessitate decreasing uncertainty levels
and thus more accurate descriptions of the plant. Consequently it is in some sense
the desired closed loop performance which determine the degree of accurateness
with which we must know the plant. The robust control approach provides
the designer with the opportunity of weighing out robustness and performance
demands.
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13.1.1 Bias and Variance Errors

Let us recapitulate what we mean by bias errors and variance errors. Decompose,
at each frequency point, the total model error as

GT (e
j!Ts)�G(ej!Ts ; �̂N ) = GT (e

j!Ts)� G(ej!Ts; ��) +

G(ej!Ts; ��) �G(ej!Ts; �̂N ) (13.1)

where �� denotes the asymptotic (for N !1) estimate of � as before. The �rst
contributionGT (ej!Ts)�G(ej!Ts; ��) is denoted the bias error. The bias error is a
deterministic quantity. Clearly it is non-zero, at least at some frequencies, unless
there exists a parameter vector �� such that GT (q) = G(q; ��). If so �0 = �

�

is denoted the true parameter vector. The second contribution G(ej!Ts; ��) �
G(ej!Ts; �̂N ) is denoted the variance error. The variance error is a random
variable with respect to the probability space of the noise distribution. It vanishes
when there is no noise or when the number of data tends to in�nity.

13.1.2 What Can We Do with Classical Techniques

In Table 13.1 on the following page we have summarized some of the results on
classical system identi�cation presented in Chapter 9 and 10.

There is a few points we would like to emphasize:

� Local minima in the performance surface VN (�; ZN ) can be a severe prob-
lem if the parameter estimate cannot be found analytically, e.g. for the
general PEM model and for output error (OE) models. This is of course
especially true when the number of estimated parameters gets large. Vari-
ous approaches can be made to circumvent this problem. The most obvious
way is to repeat the minimization procedure (e.g. the Marquardt search)
with di�erent initial conditions. Alternatively, having determined a (local)
minimum, we may step away from it again in such a way that the predic-
tor is still stable and observe whether it will return to the same minimum.
Di�erent minima may of course be compared by the corresponding values
of VN (�; ZN ).

� Clearly the data estimate P̂N of the parameter covariance matrix P� must
be consistent: that is, converge for N ! 1, if we are to obtain a proper
estimate of the frequency domain model uncertainty ~g(ej!Ts).

� To obtain a consistent estimate of the parameter covariance matrix P� for
the general PEM structure we must assume that both the deterministic
and the stochastic part of the true system can be represented within our
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model set. Thus we need a complete description of the true system. Of
course, due to e.g. non-linear e�ects this is often (always) impossible in
practice. However, using high-order descriptions we can usually obtain a
quite accurate model at least around a speci�ed working point. This, how-
ever, implies that many parameters must be estimated in the identi�cation
procedure. In order to perform this estimation with adequate accuracy a
large data set will be needed, usually several thousand measurements.

We can check the model quality by white noise analysis of the residuals
f�(k; �̂N )g. However, as illustrated by the wind-turbine example in Sec-
tion 9.6 on page 150, if we use high-order noise �lters some parts of the
output y(k) which are truly due to the deterministic part of the system
GT (q) may be explained by �ltered white noise and thus represented in the
noise �lters. The residual tests were not capable of rejecting the hypothesis
that the residuals were not white. This situation usually occur when the
excitation in the input in the given frequency range is too small.

� The above applies for ARX models as well.

� With the output error model a consistent estimate of the covariance matrix
P� can be obtained if the true deterministic system GT (q) can be repre-
sented within the model set G(q; �). Thus we need not an exact description
of the noise �lter. The estimate for P� is then given by

P̂N = N
�
	T
N	N

��1
	T
NC�	N

�
	T
N	N

��1
(13.2)

where C� is the covariance matrix for the noise �(k) = HT (q)e(k) and 	N =

	(�̂N ; ZN ) is the model gradient matrix, see Section 10.2.1 on page 170.
Assuming that f�(k)g is a stationary stochastic process we may estimateC�
from the residuals as described on page 170. This makes the output error
approach an appealing method for estimation of model uncertainty. One
di�culty is that the parameter estimate �̂N cannot be obtained analytically.
Another problem might be that the uncertainty regions gets too large since
we are not trying to use knowledge of the noise �lter H(q) to reduce the
error bounds. However, this will partly be weighed out by the need for
identifying additional parameters.

We may use cross-correlation analysis between the input fu(k)g and the

residuals f�(k; �̂N )g to evaluate whether the structure on G(q; �) is su�cient
to describe the real system.

� With a �xed denominator model structure a consistent estimate of the
parameter covariance P� can always be obtained since the estimate on
page 172

P̂N = N
�
�T�

��1
�TC��

�
�T�

��1
(13.3)
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will work even in the case of undermodeling and with �nite data. Thus
�xed denominator models seem an obvious choice for system identi�cation
for robust control. However, if GT (q) 6= G(q; ��) then the parameter covari-
ance will only reect the variance part of the total model error, see (13.1)
on page 227. Thus it must generally be assumed that the bias part of the
error is zero; thus that the true deterministic system can be represented
within the model set. From a traditional point of view this is unrealistic,
even if the true system is stable and FDLTI, since we have a �xed denomi-
nator structure such that the poles of the system is determined prior to the
identi�cation procedure. However, if the basis functions �k(q), k = 1; 2; � � �
forms an orthonormal basis inH�2(C;C), by taking the order n of the model
high enough we can make the error arbitrarily small.

13.1.3 The Stochastic Embedding Approach

The stochastic embedding approach is treated in Chapter 11. The key idea is to
treat the bias error as if it was a stochastic process. This is done by decomposing
the true system as

GT (q) = G(q; �0) +G�(q) (13.4)

and assuming that the undermodeling frequency response G�(ej!Ts) is a realiza-
tion of a stochastic process with zero mean

E
�
G�(e

j!Ts)
	
= 0 (13.5)

where E f�g means expectation over di�erent realizations of the undermodeling.
Then if we use a �xed denominator model structure for G(q; �) we may extend
the results reviewed above on �xed denominator models to the situation where
undermodeling is present. The parameter covariance then becomes

P� = N
�
�T�

��1
�T
�
XC�X

T +C�

�
�
�
�T�

��1
(13.6)

where X is given by (11.26) on page 187 and C� is the covariance matrix for the
undermodeling impulse response vector

C� = E
�
��

T
	

(13.7)

Compare (13.3) and (13.6). It is seen that the noise contribution to the parameter
covariance for the stochastic embedding approach equals the classical covariance
result for the �xed denominator structure. However, (13.6) also contains a con-
tribution from the bias. Assuming that the undermodeling impulse response is
zero mean Gaussian distributed we may map the parameter covariance into the
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frequency domain using a similar approach to the classical one with due attention
to extra terms, see Section 11.2.2 on page 196.

As for the classical �xed denominator case we then need an estimate of the
covariance matrices for the undermodelingC� and noise C�. Again we will use the
residuals to estimate C� and C�. However, since we cannot readily separate the
bias and variance contributions it becomes more complicated for the stochastic
embedding approach. Fortunately, it turns out, that if we parameterize C� and
C� we may estimate the parameters through maximum likelihood methods. The
drawback of this approach is that it is only numerically e�cient for small data
series (< 300 data points). Thus currently, the stochastic embedding approach
is only tractable for small data series.

The stochastic embedding approach can be viewed as an extension of the classical
results on �xed denominator model structures to the case where G(q; �) cannot
provide a correct description of the true system.

13.1.4 Proposed Approach

The approach we will propose for identi�cation of frequency domain error bounds
is twofold:

� If large data series are available it is recommended that the classical output
error approach is used. Since we have a large number of measurements we
may use quite high-order estimates G(q; �) with reasonable little variance.
A noise covariance estimate for computing the parameter covariance can be
obtained from the residuals. Note that we will not obtain a parameterized
model for the noise �lter HT (q) in this case. If the main purpose of the
subsequent control design is disturbance attenuation it is sometimes desir-
able to include an input weight on the noise (this is the weight denoted
Wp1 in Section 4.2 on page 36). The obvious choice for this weight is then
(an approximation to) the estimated noise �lter H(q; �). In that case the
general PEM approach could be an alternative.

� If small data series are available we recommend that the stochastic em-
bedding approach is used to estimate the model error. Di�erent param-
eterizations for the undermodeling and the noise covariances should be
investigated.

13.2 Robust Control from System Identi�cation

Regardless of the system identi�cation approach taken, the results are (for scalar
systems) a nominal model and a set of frequency domain uncertainty ellipses
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around the nominal frequency response. The purpose of this section is to discuss
how we may represent these uncertainty ellipses in a robust control framework.
Generally we will represent the uncertain system as

GT (z) = G(z; �̂N ) +G�(z) (13.8)

where G�(z) is some unknown but norm bounded transfer function for the model
uncertainty. We will thus consider the robust stability problem with a norm
bounded additive uncertainty. The set-up can be viewed as in Figure 13.1 where
the problem then is to determine the most suitable structure on �(z) and N (z)
such that an adequate formulation of the control problem is obtained.

�
��

- K(z) -

-

?

�
��

- -

6

�
e(z)

�
u(z)

y(z)

z(z) w(z)

K(z)

N (z)

�(z) �

-

�

-

z(z)w(z)

e(z)u(z)

�

G�(z)

G(z; �̂N )

Figure 13.1: Approximating estimated frequency domain uncertainty ellipses with
a norm bounded perturbation set.

13.2.1 The H1 Approach

In the H1 solution to the robust stability problem it is assumed that �(z)
is an unstructured full complex block bounded in norm by ��(�(ej!Ts)) � 1.
This means that we can represent uncertainty circles in the complex plane. In
particular let

G�(z) =Wu(z)�(z) (13.9)

with

�(z) = �
c

�
c 2 C; j�cj � 1 (13.10)

Then the uncertainty description will corresponds to frequency domain uncer-
tainty circles with radius jWu(ej!Ts)j at each frequency !. Consequently the
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H1 approach could be outlined as follows. Given the estimated frequency do-
main uncertainty ellipses, approximate each ellipse with a circumscribed circle.
Fit a stable transfer function Wu(z) to these circles such that��Wu

�
e
j!Ts

��� � R(!) (13.11)

where R(!) denotes the radius of the circle evaluated at frequency !. Construct
the augmented system

N (z) =

�
0 Wu(z)

�1 �G(z; �̂N )
�

(13.12)

and solve the optimal robust stability problem

K(z) = arg min
K(z)2KS

kFl(N (z);K(z))k1 (13.13)

for example by bilinear transformation to continuous-time. If the controller K(z)
achieves kFl(N (z);K(z))k1 < 1, the system will be robustly stable.

13.2.1.1 Robust Performance

If we consider the robust performance problem rather than the robust stability
problem we may formulate a 2�2 block problem as in Figure 13.2 on the following
page with N (z) given by

2
4 u

0(z)
e
0(z)
u
0(z)

3
5 = N (z)

�
r(z)
u(z)

�
=

2
4 0 Wu(z)
Wp(z) �Wp(z)G(z)
1 �G(z)

3
5� r(z)

u(z)

�
(13.14)

It is then easy to show that

�
e
0(z)
u
0(z)

�
= Fl(N (z);K(z))r(z) =

�
Wp(z)S(z)
Wu(z)M (z)

�
r(z) (13.15)

where Wp(z) is a sensitivity speci�cation
1 and S(z) and M (z) are the sensitivity

and control sensitivity respectively. Thus we can formulate an H1 problem as

K(z) = arg min
K(z)2KS

kFl(N (z);K(z))k1 (13.16)

1Note that we do not distinguish between the input and output sensitivity since they are

identical for scalar systems.
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Figure 13.2: 2� 2 block problem used for robust performance with H1 approach.

For scalar systems it is easy to show that a necessary and su�cient condition for
robust performance given an additive uncertainty and a sensitivity speci�cation
is

sup
!

���Wp

�
e
j!Ts

�
S
�
e
j!Ts

���+ ��Wu

�
e
j!Ts

�
M
�
e
j!Ts

���� < 1 (13.17)

Let us investigate how this corresponds to the H1 solution. Omitting the de-
pendency on ! we have

��

��
WpS

WuM

��
=

s
�

��
WpS

WuM

�� �
WpS

WuM

��
(13.18)

=

q
jWpSj2 + jWuM j2 (13.19)

=

8<
:

1p
2
(jWpSj + jWuM j) , if jWpSj = jWuM j

jWpSj + jWuM j , if jWpSj = 0 _ jWuM j = 0

(13.20)

Thus if we tighten our robust performance condition slightly to

sup
!

��

��
WpS

WuM

��
<

1p
2

(13.21)

we obtain in the above extreme cases

kjWpSj+ jWuM jk1 < 1 if jWpSj = jWuM j (13.22)

kjWpSj + jWuM jk1 <
1p
2

if jWpSj = 0 _ jWuM j = 0 (13.23)
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and robust performance will thus be guaranteed. The H1 solution will be non-
conservative if the supremum is reached for jWpSj = jWuM j and in general it
will be conservative up to a factor

p
2. Compare with the multivariable results

in Example 4.3 on page 52.

13.2.2 The Complex � Approach

In the H1 approach above two types of conservatism were introduced. Firstly,
the frequency domain uncertainty ellipses were approximated by the circum-
scribed circle. If the ratio of the principal axis of a given ellipse is close to
one, the ellipse will be \round" and may be quite accurately approximated by
a circle. However if the principal axis ratio is much larger that one, the circle
approximation will be potentially very conservative. Secondly, the \usual" H1
conservatism in connection with robust performance problems cannot be avoided.
However, for scalar systems the conservatism will be less than a factor

p
2 and for

most designs it will in fact be quite small since the supremum for jWpSj+ jWuM j
is usually obtained in the frequency area where jWpSj � jWuM j.
Let us now investigate what can be gained by a complex � approach. We thus
allow the perturbation set �(z) to be structured. However, only complex per-
turbations are allowed. The sad facts are then that this does not enhance our
description of the uncertainty ellipses. Using a complex perturbation set we may
still only describe circles in the complex plane. Thus for the robust stability
problem, the complex � approach reduce to a standard H1 problem and nothing
is gained.

13.2.2.1 Robust Performance

The robust performance problem may be addressed non-conservatively, since it
may be formulated as a complex � problem with the augmented perturbation
block

~�(z) = diagf�c; �cpg; �
c
; �

c
p 2 C; j�cj � 1; j�cpj � 1 (13.24)

The N�K formulation can then be given as in Figure 13.3 with N (z) given by

N (z) =

2
4 0 0 Wu(z)

�1 1 �G(z; �̂N )
�Wp(z) Wp(z) �Wp(z)G(z; �̂N )

3
5 (13.25)

The control problem is thus one of �nding a controller which satis�es

K(z) = arg min
K(z)2KS

� ~�(Fl(N (z);K(z)))

1

(13.26)
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Figure 13.3: N�K framework used for robust performance with complex � ap-
proach.

The optimal complex � controller (13.26) on the preceding page can then be
found using D-K iteration as outlined in Procedure 5.1 on page 79. If the con-
troller obtains k� ~�(Fl(N (z);K(z)))k1 < 1 the closed loop system has robust
performance. Even though the robust performance problem may be speci�ed
without conservatism using a complex � formulation, the enhancement in com-
parison with the H1 approach will be less than a factor

p
2. We �nd that the

� formulation is more natural due to the N�K framework. However, actual
computation of the optimal complex � controller is much more involved than the
standard H1 solution. Furthermore the order of the controller is higher for the
� approach. The achievements using a complex � approach over the standard
H1 solution thus seems to be very marginal.

13.2.3 The Mixed � Approach

As shown above, a structured, but purely complex perturbation set does not
allow for an accurate description of the frequency domain uncertainty ellipses
obtained from the system identi�cation procedure. We will now show that using
a mixed perturbation set with one real and one complex perturbation we may in
fact construct an reasonable accurate approximation to the uncertainty ellipses.
The conservatism will be bounded by a factor 4=�.

The idea is as follows. In connection with the complex � approach we noted
that using a complex scalar perturbation we describe uncertainty circles in the
frequency domain. If we combine this description with a real scalar perturbation
we may thus describe a region in the complex plane constructed by successive
circles placed along a straight line of some given length and some given angle.
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Figure 13.4: Fitting an uncertainty ellipse (dashed) with a mixed perturbation set
(solid). A, a and b denote the angle of rotation and major and minor
principal axis of the ellipse respectively.

We may then use this as an approximation for an ellipse, see Figure 13.4.

We will thus approximate the additive model uncertainty G�(z) with the per-
turbation set

L(z) = Wu;c(z)�
c +Wu;r(z)�

r (13.27)

where �c and �r are a complex respectively real perturbation:

�
c 2 C; j�cj � 1 (13.28)

�
r 2 R; � 1 � �

r � 1 (13.29)

and Wu;c(z) andWu;r(z) are stable weighting functions. If A, a and b denote the
angle of rotation and major and minor principal axis of the ellipse respectively
the weighting functions Wu;c(z) and Wu;r(z) should be �tted to the ellipses in
such a way that ��Wu;c

�
e
j!Ts

��� � b (13.30)��Wu;r

�
e
j!Ts

��� � a� b (13.31)

\
�
Wu;r

�
e
j!Ts

�� � A (13.32)
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In Appendix K on page 329 it is shown how the relevant information about A,
a and b can easily be extracted from the form matrix P~g(!) for the uncertainty
ellipse. Notice that the weighting function Wu;r(z) must be �tted both in ampli-
tude and phase. This is not a trivial task. However, in the MatLab �-Analysis
and Synthesis Toolbox the script �le fitsys.m performs such a �t. The routine
works for continuous-time transfer functions only but, of course, the result may
be transformed into discrete-time time using e.g. a pre-warped Tustin approxi-
mation. The other weight Wu;c(z) needs only to be �tted in magnitude2.

The quality of the approximation assuming perfect realizations of the weighting
functions can easily be checked by investigation of the ratio between the surface
of the approximation and the surface of the ellipse:

�A =
AL

Aell
(13.33)

=
4jWu;cjjWu;rj+ �jWu;cj2
�jWu;cj(jWu;rjjWu;cj) (13.34)

=
4jWu;rj+ �jWu;cj
�(jWu;rj+ jWu;cj) (13.35)

For the two extremes jWu;rj = 0 and jWu;cj = 0 we obtain

jWu;rj = 0) AL = Aell (13.36)

jWu;cj = 0) AL =
4

�
Aell (13.37)

Thus for perfect realizations of the weightings

Aell � AL � 1:27Aell (13.38)

13.2.3.1 Robust Performance

The robust performance problem may then be considered with the augmented
perturbation block

~�(z) = diagf�c; �r; �cpg; �
c
; �

c
p 2 C; �r 2 R (13.39)

with j�cj � 1, j�cpj � 1 and �1 � �
r � 1. The N�K formulation can be given as

in Figure 13.5 on the facing page with N (z) given by

N (z) =

2
664

0 0 0 Wu;c(z)
0 0 0 Wu;r(z)

�1 �1 1 �G(z; �̂N )
�Wp(z) �Wp(z) Wp(z) �Wp(z)G(z; �̂N )

3
775 (13.40)

2fitmag.m from the � toolbox may be used to perform the �t.
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The optimal controller is thus given by

K(z) = arg min
K(z)2KS

� ~� (Fl(N (z);K(z)))

1

(13.41)

No known solution to (13.41) exists but an approximation to the robust perfor-
mance problem can be considered using �-K iteration as outlined in Procedure 5.3
on page 86. If the �nal controller achieves k� ~�(Fl(N (z);K(z)))k1 < 1 the closed
loop system will have robust performance.
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Figure 13.5: N�K formulation for robust performance problem with a mixed �
approach.

13.3 A Synergistic Approach to Identi�cation

Based Control

As shown above we can address the control problem with very little conservatism
using a mixed � approach . The price we must pay is a signi�cant increase in the
complexity of the solution, since we have to solve a mixed � control problem. The
optimalmixed � controller will usually be of very high order and even though the
number of controller states normally can be signi�cantly reduced, the reduced
controller will often have more states than the augmented plant. This may in-
crease the costs of the actual implementation since, e.g. more memory will be
needed in the process computer. Consequently, the increase in controller perfor-
mance must be weighed out with the additional complexity of the control design
and implementation. A sensible design methodology for system identi�cation
based robust control can thus be outlined as in Procedure 13.1.
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Procedure 13.1 (A Synergistic Design Approach to Robust Control)

1. Using either of the two proposed system identi�cation methods outlined in

Section 13.1.4 on page 231 estimate a nominal model G(q; �̂N ) and fre-
quency domain uncertainty ellipses at a set of chosen frequency points !.
Thus if large data series are available use a classical approach. Use an
output error model structure if a noise model is not important for the sub-
sequent control design. If disturbance attenuation is of primary impor-
tance in the control design, use a more general model structure to obtain
a noise model H(q; �̂N ) as well. If only small data sets are available, use
the stochastic embedding paradigm to extend the classical results on �xed
denominator models to the case with both bias and variance errors.

2. Design a H1 optimal controller for the system using the approach outlined
in Section 13.2.1 on page 232. Thus approximate the uncertainty ellipses
determined in Step 1 with circumscribed circles. Then pose the 2� 2 block
problem shown in Figure 13.2 on page 234 where the stable uncertainty
weight Wu(z) has been �tted in magnitude to R(!), the radius of the cir-
cle evaluated at frequency !. Use a standard sensitivity speci�cation for
the performance weight Wp(z). Of course more specialized performance re-
quirements can be incorporated into the design. However, the H1 solution
may then become more conservative.

3. Evaluate the H1 control design. Thus check for robust performance
by (13.21) on page 234. Also check e.g. the open loop Nyquist with uncer-
tainty ellipses, the transient response and any other performance demands
in question. If these tests are passed satisfactorily, stop. If not, continue
to Step 4.

4. Design a mixed � optimal controller for the system using the approach out-
lined in Section 13.2.3 on page 236. Thus approximate the uncertainty
ellipses with a mixed real and complex perturbation set and pose the con-
trol problem as in Figure 13.5 on the page before. The uncertainty weight
Wu;r(z) must be �tted in magnitude to the di�erence between the major
and minor principal axis of the ellipses and in phase to the ellipses angle
as indicated in Figure 13.4 on page 237. The uncertainty weight Wu;c(z)
must be �tted in magnitude to the minor principal axis of the ellipses. Use
a standard sensitivity speci�cation for the performance weight Wp(z). If
more specialized performance requirements should be incorporated into the
design this can be done without conservatism as long as they can be speci-
�ed within the N�K framework. Solve the control problem, e.g. using �-K
iteration as outlined in Procedure 5.3 on page 86.

5. Evaluate the control mixed � design. Thus check for robust performance us-
ing � ~�(Fl(N (z);K(z))). Additional checks may be performed as in Step 3.
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Compare with the H1 solution to assess any increase in performance ob-
tained with the mixed � approach. If the performance increase is signi�cant
and of importance in connection with the actual operation of the plant, se-
lect the mixed � controller. If not, use the H1 controller determined in
Step 2 or redo the design with modi�ed uncertainty and/or performance
speci�cations. For example, a new set of plant measurements for the iden-
ti�cation procedure may be needed to reduce the uncertainty level. Also the
performance requirements perhaps must be reduced in order to ful�ll the
robust performance criterion.

6. Finally, when necessary, use model reduction techniques to iteratively reduce
the number of states in the controller until just before a signi�cant increase
in � ~�(Fl(N (z);K(z))) will occur.

The above procedure is a central result of this thesis. It outlines a complete iden-
ti�cation based robust control design approach for scalar systems. The extension
to multivariable systems are straightforward with the exception of the following
points. The stochastic embedding approach is only well developed for scalar sys-
tems. Furthermore the mapping of parametric uncertainty into the frequency
domain for multivariable systems is not straightforward.

Of course, the design procedure need not be terminated in Step 3 even though the
H1 design is satisfactory. The mixed � controller can be computed to investigate
the possible increase in controller performance. Generally, if the uncertainty
ellipses contain little phase information (are \round") we will expect the H1
design to have similar control performance to the mixed � controller. On the
other hand, if the ellipses are narrow we will generally expect the mixed � design
to be signi�cantly superior to the H1 design.

13.4 Summary

The combination of the results presented in Part I and Part II was addressed.
At �rst, system identi�cation for robust control was considered. A brief discus-
sion of the classical techniques was given. Speci�cally we reviewed under which
circumstances the data estimate P̂N of the parameter covariance matrix will be
consistent. For the general PEM structure, the requirement is that the models
for both the deterministic and stochastic part of the true system will admit an
exact description. The same is true for the popular ARX model. However, for
output error models, the parameter covariance estimate will be consistent even
if the noise model (H(q; �) = 1) is inadequate. For �xed denominator models
the parameter covariance estimate will be consistent even in the case of under-
modeling, but then the corresponding frequency domain uncertainty regions will
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represent the variance error only. The conclusion was that if large data sets are
available, the classical output error approach may be applied if a disturbance
model is unimportant in connection with the control design. We will then proba-
bly require the model order to be quite large in order to obtain residuals which are
uncorrelated with the input signal. This could be impractical in connection with
standard H1 or � design since the order of the controller will increase accord-
ingly. Fixed order H1 algorithms may be a solution to this problem. However,
this has not been considered in this work.

If only short data series are available, the classical approach does not seem ad-
equate. Then we propose that the stochastic embedding approach is used to
estimate a �xed denominator model and corresponding frequency domain uncer-
tainty ellipses. Di�erent parameterizations of the noise and the undermodeling
should be investigated.

Next, robust control from system identi�cation was considered. For both the
classical and the stochastic embedding approach the result is a nominal model
and frequency domain uncertainty ellipses. Thus we need to synthesize a con-
trol design methodology which non-conservatively can capture these uncertainty
templates. Here, three di�erent design approaches were investigated: An H1
approach, a complex � approach and a mixed real and complex � approach. It
was illustrated how both H1 and complex � will allow only frequency domain
uncertainty circles. With proper formulation of a mixed sensitivity problem, the
conservatism in the H1 approach ccompred with the complex � approach can
be bounded by

p
2. Since the design of the complex � controller is considerably

more involved and will result in a controller with more states, the H1 design
seems to be the most appropriate of the two. However, using a mixed � approach
we may obtain a quite accurate description of the uncertainty ellipses through a
mixed perturbation set with one real and one complex scalar. The conservative-
ness in this description was bounded by 4=� = 1:27. This approach furthermore
has the advantage that more complicated performance measures may be included
without conservatism.

Finally a synergistic system identi�cation based robust control design algorithm
was outlined. It was recommended that an initial H1 design was applied and
checked. If this design was not satisfactory, the mixed � approach could be
applied instead.
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The purpose of this chapter is to provide an applications example of the
proposed system identi�cation based robust design approach, see Proce-
dure 13.1 on page 239. The design procedure has been applied in con-
trol of a small domestic water supply system consisting of a centrifugal
pump driven by a 840 Watt frequency modulated micro-computer controlled
asynchronous type induction motor. The pump was a typical domestic
water supply pump with a maximum capacity of approximately 3 m3/hr
at 2.5 barg. A 3.5 liter (0.92 gallon) rubber membrane bu�er tank was
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placed in the outlet pipe from the pump. The size of the bu�er tank is
much smaller compared with more traditional domestic installations, where
the volume of the bu�er tank is usually around 60 liters (15.9 gallons).

Motor Pump

inlet

outlet

}

fr

Membrane

bu�er

Figure 14.1: The water supply system.
The induction motor speed is controlled
via the frequency fr . Outlet water pres-
sure } is recorded as output.

The small bu�er tank makes it pos-
sible to design a very compact water
supply unit which takes up much less
space than a traditional system. On
the other hand the small bu�er tank
increase the performance demands to
the control system signi�cantly, since
the bu�er tank have only very lim-
ited operating range. The traditional
on/o� control will then have unsatisfac-
tory performance. Therefore, the elec-
tric motor has been equipped with fre-
quency modulation in order to control
the velocity of the pump. The input to
the system was the frequency reference
fr [Hz] for the motor and the recorded
output was the outlet water pressure
} [barg]. The system is sketched in Fig-
ure 14.1.

The data acquisition and control of the system were performed using an A/D,D/A
data acquisition card and a 486 PC interface to the micro-computer.

14.1 Identi�cation Procedure

The system was sampled with sampling frequency 50 Hz and the input used for
identi�cation was a 0.4 Hz fundamental square wave. 500 samples were collected,
300 of which were used to get rid of initial condition e�ects. The last 200 samples
were used for identi�cation. In Figure 14.2 on the facing page, the data sequence
is shown. The working point of the system is given in Table 14.1.

Pressure } Motor frequency fr Flow Q

[barg] [Hz] [m3/hr]
Working point 2.33 90.7 0.90

Table 14.1: Working point values for the data sequence used for estimation.
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Figure 14.2: Input/output sequence used for identi�cation of pump system.
Shown are working point deviations for the motor frequency refer-
ence fr [Hz] (solid) and for the outlet water pressure } [0.01 barg].

The system dynamics was dominated by a low frequency �rst order component
with a time constant of approximately 1 sec. The low frequency component
originates from the membrane bu�er tank. Furthermore smaller high frequency
components can also be identi�ed from Figure 14.2. These originates mainly
from the inertia in the induction motor and centrifugal pump.

A second order Laguerre model

G(q; �) =
�1q

�1

1 + �q�1
+
�2q

�1
�
1� ��1q�1�

(1 + �q�1)2
(14.1)

was �tted to the data using a standard least squares estimate. The Laguerre pole
�� was chosen as 0.96, corresponding to a time constant � � 0:5 secs which is
slightly faster than the dominating time constant of the true system. The least
squares estimate of the parameter vector � was found as

�̂N =

�
0:6845
0:1213

�
(14.2)

corresponding to a zero at z = 0:9433. In Figure 14.3 on the next page the true
and simulated output is shown together with the estimated Nyquist. Here also
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Figure 14.3: True (solid) and simulated (dashed) output together with estimated
Nyquist (solid) and measured discrete frequency points (�).

measured discrete frequency point estimates are shown. These frequency point
estimates were obtained from the true system by applying pure sines inputs at
di�erent frequencies and measuring the gain and phase shift in the output.

Notice how a fairly accurate estimate of the low frequency behavior of the pump
system is obtained with the Laguerre model. However, in the high frequency
range considerable deviations between the nominal Nyquist and the measured
frequency points can be identi�ed.

14.1.1 Estimation of Model Uncertainty

The stochastic embedding approach were used for estimating the model uncer-
tainty. The order of the FIR model describing the undermodeling was chosen
as L = 50. The following parameterizations for the noise and undermodeling
covariance matrices were chosen

C
i;j
� () =

8>>>><
>>>>:

�
2

e

�
1 +

(c � a)2
1� a2

�
; i = j

�
2
e(�a)M

�
1 + c

2 � a � c� c=a�
1� a2

; jj � ij =M

(14.3)



14.1 Identi�cation Procedure 247

C�(�) = diag
1�k�L

��
k (14.4)

corresponding to a �rst order ARMA noise model and an exponentially decaying
undermodeling impulse response. Thus the combined parameter vector � for the
covariances is given by

� =

�
�



�
=

2
66664

�

�

a

c

�
2
e

3
77775 (14.5)

An estimate of � was found using the maximum likelihood approach outlined in
Section 11.2.1 on page 195:

�̂ = argmax
�

L($jU; �) (14.6)

where U is the input vector and $ is the transformed residuals

$ = R
T
� (14.7)

The transformation matrix R ensures that the distribution on $ in non-
singular. R was chosen through QR-factorization as described in Section 11.2.2
on page 196. The result of the maximum likelihood estimation is displayed in
Figure 14.4 where the parameter tracks are shown together with the loglikelihood
function.

The estimate of � was found as

�̂ =

2
66664

�

�

a

c

�
2
e

3
77775 =

2
66664

0:3145
0:6264
�0:9687
�0:5095
0:0794

3
77775 (14.8)

The covariance functions C� and C� were then replaced by their corresponding
estimates C�() and C�(�) in the expression for P~g(!), see Equation (11.71) on
page 191. A 90% con�dence interval was chosen corresponding to the uncertainty
ellipses shown in Figure 14.5 on the next page.

Generally the uncertainty ellipses provide a useful description of the model un-
certainty. The uncertainty estimates seem rather conservative at low frequencies
compared with the discrete frequency point estimates. This will, as we shall
show later, limit the obtainable closed loop performance. The high frequency
uncertainty ellipses nicely captures the rather large model uncertainty in the
high frequency area. Furthermore, little uncertainty is predicted around the fun-
damental frequency of the square wave input. This also corresponds well with
the measured frequency points.
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Figure 14.4: Results from the maximum likelihood estimation of �. Shown are
parameter tracks for each parameter and the expiration of the log-
likelihood function.
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Figure 14.5: Nominal Nyquist with 90% uncertainty ellipses. Measured frequency
response estimates also shown (�).
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14.1.2 Constructing A Norm Bounded Perturbation

Now we will use the 90% con�dence ellipses to construct a norm bounded addi-
tive uncertainty description as discussed in Section 13.2. As suggested in Pro-
cedure 13.1 on page 239 we will consider two design approaches, namely an H1
design and a mixed � design. We thus need two perturbation models; one based
on a single complex perturbation corresponding to circumscribed circles and one
based on a mixed perturbation set corresponding to the \oval" uncertainty region
shown in Figure 13.4 on page 237.

14.1.2.1 A Single Complex Perturbation Model

Using the circumscribed circles as approximation to the estimated uncertainty
circles the undermodeling G�(z) is described as

G�(z) =Wu(z)�
c
; �

c 2 C, j�cj � 1 (14.9)

The weighting function Wu(z) then must be �tted to the uncertainty ellipses in
such a way that ��Wu

�
e
j!Ts

��� � R(!) (14.10)

where R(!) denotes the radius of the circumscribed ellipse. Clearly R equals the
major principal axis a of the ellipse. A slightly modi�ed version of the sysfit.m
routine from the MatLab �-Analysis and Synthesis Toolbox [BDG+93] was used
to perform the �t. A second order weighting function quite accurately matched
R(!). In Figure 14.6 on the following page some of the uncertainty ellipses
are shown together with the frequency regions described by the perturbation
model (14.9). Clearly, this perturbation model is rather conservative for narrow
ellipses. However, the orientation of the ellipses are also important in assessing
the conservatism. In the low frequency area, for example, it seems that the cir-
cumscribed circles are very conservative. However, since the sign of the gain is
known, the low frequency uncertainty regions will not destabilize the closed loop
plant. Furthermore, assume that we use a controller without pure integral action
(�nite real steady-state frequency response) and that our performance speci�ca-
tion bounds the sensitivity function S(z). A sensitivity speci�cation corresponds
to requiring that the open loop Nyquist G(ej!Ts)K(ej!Ts) for each frequency !
remains outside a circle centered at the Nyquist point (�1; 0) and with radius
jS�1p (ej!Ts)j where Sp(z) denotes the upper bound on the sensitivity function.
In this case, the low frequency uncertainty circles will not be conservative from
a performance point of view since the distance from the open loop uncertainty
circles/1 and the open loop uncertainty ellipses to the Nyquist point will be
approximately the same close to steady-state.

1By open loop uncertainty we mean the plant uncertainty multiplied by the controller.
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Figure 14.6: Comparison of uncertainty ellipses and perturbation model. H1 ap-
proach

14.1.2.2 A Mixed Real and Complex Perturbation Model

Using ovals as approximation to the estimated uncertainty circles the undermod-
eling G�(z) is described as

G�(z) = Wu;c(z)�
c +Wu;r(z)�

r
; �

c 2 C, �r 2 R, j�c;rj � 1 (14.11)

The weighting functions Wu;c(z) and Wu;r(z) must be �tted to the uncertainty
ellipses in such a way that ��Wu;c

�
e
j!Ts

��� � b (14.12)��Wu;r

�
e
j!Ts

��� � a� b (14.13)

\
�
Wu;r

�
e
j!Ts

�� � A (14.14)

where a and b denote major and minor principal axis respectively and A the
angle of the ellipse. A third order weighting function was used for Wu;r(z) and
a �fth order weight for Wu;c(z). The results of the �tting procedure is shown in
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Figure 14.7: Fitting weighting functions (dashed) to the principal axis and angles
of the uncertainty ellipses
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Figure 14.8: Comparison of uncertainty ellipses (solid) and frequency domain re-
gions described by the weights (dashed).
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Figure 14.7 and 14.8 on the preceding page. In Figure 14.7 a comparison is shown
of the principal axis and angles extracted from the ellipses with the frequency
response of the weighting functions according to Equation (14.12){(14.14). Fur-
thermore, in Figure 14.8 a comparison is made between the estimated ellipses
and the frequency domain uncertainty regions corresponding to the weighting
functions. It can be seen that with the given orders of the weighting functions a
reasonable accurate �t is obtained.

The identi�cation part of the design has then been completed. We obtained a
2nd order Laguerre model of the pump system and 90% con�dence ellipses were
estimated using the stochastic embedding approach. These uncertainty ellipses
were then approximated with a purely complex perturbation set for H1 design
and a mixed real and complex perturbation set for mixed � design.

14.2 Robust Control Design

We then turn to the controller design. First we will perform an H1 design as
outlined in Section 13.2.1 on page 232 and secondly a mixed � control design will
be made and compared with the H1 design.

14.2.1 Performance Speci�cation

We will consider the robust performance problem. Thus a performance speci-
�cation must be constructed. There exists generally no explicit formalisms for
obtaining such speci�cations. In this paper we have used time domain demands
on the pump pressure response towards sudden changes in water ow Q, to formu-
late a maximum sensitivity bound. A standard step of �Q = 2=3 m3/h was used
as the performance measure. The time domain demands on the outlet pressure
}(t) given a standard step on �Q(t) were formulated as:

� maximum transient error: 0.4 bar,

� max 0.1 bar settling time: 2 sec,

� max stationary error: 0.1 bar.

These demands originates in design goals from amajor Danish pump producer. It
was observed that step disturbances on the ow �Q acted approximately through
a �rst order system to d}, the disturbance on the outlet pressure. For a standard
step �Q(s) = Kss

�1 with Ks = 2=3 we then have2:

d};step(s) =
K

s + ��1
� Ks

s
(14.15)

2In order to make the approach more transparent we will carry out the derivation for a

continuous-time system and simply transform the results to discrete-time.
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Figure 14.9: Time domain response }step(t) (upper) corresponding to the chosen
performance speci�cation S}(z) (lower).

where K and � are the gain and time constant of the �rst order �lter respectively.
~K = KKs and � were measured on the pump set-up as ~K = 1:3 bar/(m3/h) and
� = 0:75 sec.

Given a sensitivity speci�cation S(s) = }(s)=d}(s) the corresponding time do-
main response }step(t) may then be computed. We will then use the heuristic
assumption that our time demands will be ful�lled for a given compensated sys-
tem having a sensitivity which falls below the speci�cation for all frequencies.
This is probably not guaranteed to be true for all systems, but it seems to work
well in practice.

Here a �rst order discrete-time sensitivity speci�cation was chosen:

Sp(z) =
1:413z � 1:413

z � 0:951
(14.16)

As seen in Figure 14.9 the corresponding time domain response }step(t) ful�ll the
stated demands.

The standard H1 performance speci�cation, see e.g. Theorem 5.3 on page 73,
puts a unity bound on the transfer function from the normalized disturbances
d
0 to the normalized errors e0. Letting d

0 = d} and e
0 = Wpe} we have the
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performance speci�cation:

e}(z)

d}(z)
� Sp(z))Wp(z) = S

�1
p (z) (14.17)

14.2.2 H1 Design

Let us then consider the H1 control design. The control problem is then de�ned
as the 2� 2 block problem shown in Figure 13.2 on page 234. The optimal H1
controller is given by

K(z) = arg min
K(z)2KS

sup
!

��
�
Fl(N (ej!Ts);K(ej!Ts))

�
(14.18)

N (z) is given by (13.14) on page 233 with G(z) being the Laguerre model (14.1)
on page 245. dhfsyn.m from the MatLab � toolbox was used to computed the
optimal H1 controller which achieved

sup
!

��
�
Fl(N (ej!Ts);K(ej!Ts))

�
= 0:775 (14.19)
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Figure 14.10: H1 approach: Nominal Nyquist with error bounds. Shown are also
the measured frequency response estimates multiplied by the controller.
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Figure 14.11: H1 approach: Nominal sensitivity with error bounds. Shown are
also the upper bound for the sensitivity function S(ej!Ts) (dash-
dotted) and the measured sensitivity estimates.

Remember that in order to guarantee robust performance the robust performance
condition had to be strengthen to 1=

p
2 = 0:707. Thus the optimal H1 did just

miss guaranteed robust performance. In Figure 14.10 on the facing page and 14.11
we have checked for robust stability and nominal performance.

In Figure 14.10 the nominal Nyquist with open loop uncertainty ellipses are
shown. In Appendix L on page 333 it is shown how the form matrix for an open
loop ellipse is obtained. Furthermore, the discrete frequency points obtained by
multiplying the measured plant frequency response with the controller are dis-
played. Since none of the uncertainty ellipses includes the Nyquist point (�1; 0)
we conclude that the system is robust stable.

In Figure 14.11 the nominal sensitivity function S(z) is shown together with
90% con�dence bounds. The error bounds on the sensitivity were calculated as
the inverse of the minimum respectively maximum distance from the open loop
uncertainty ellipses to the Nyquist point (�1; 0). Also the upper bound on the
sensitivity and a measured sensitivity estimate is shown. The latter was obtained
by multiplying the measured discrete frequency point estimates by the controller,
adding one and inverting. Note that the error bounds exceed the performance
speci�cation for frequencies below 0.5 rad/sec and around 10 rad/sec thus indicat-
ing a violation of the robust performance criteria. We may also check for robust
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Figure 14.12: Robust performance check for the H1 controller. Shown are
jWp(ej!Ts)S(ej!Ts )j+ jWu(ej!Ts)M (ej!Ts)j versus frequency !.

performance by Equation (13.17) on page 234. In Figure 14.12 we have plotted
jWp(ej!Ts)S(ej!Ts )j+ jWu(ej!Ts)M (ej!Ts)j versus frequency !. Note the corre-
spondence between Figure 14.11 and 14.12. In the high frequency area the robust
performance check in Figure 14.12 does not match the corresponding bounds on
the sensitivity function in Figure 14.11. This is due to the conservativeness in
the perturbation approximation and, possible, to imperfect realizations of the
weighting functions.

Even though the H1 design does not obtain robust performance, generally the
design is quite satisfactory.

14.2.3 Mixed � Design

Then let us turn to the mixed � control design. The N�K formulation is thus
given as in Figure 13.5 on page 239 with N (z) given by (13.40) on page 238 and

G(z; �̂N ) given by the Laguerre model (14.1) on page 245. The optimal mixed �
control problem is thus

K(z) = arg min
K(z)2KS

sup
!
� ~�(Fl(N (ej!Ts);K(ej!Ts))) (14.20)
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Figure 14.13: Result of �-K iteration on the pump system. Shown are
� ~�(Fl(N (ej!Ts);K(ej!Ts))) for 1st (dashed), 2nd (dash-dotted),
3rd (dotted) and 4th (solid) iteration.

As noted several times, the above problem cannot be solved directly, since only
upper and lower bounds for � can be computed. Our approach here will be �-K
iteration as outlined in Procedure 5.3 on page 86. Of course the iteration will
be performed in discrete-time3. The results of the �-K iteration is shown in
Figure 14.13 where the upper bound for � ~�(Fl(N (ej!Ts);K(ej!Ts))) is shown
for each iteration. Furthermore some of the central variables in the iteration
is tabulated in Table 14.2 on the next page. Note that the iteration converge
quickly and that �� = 1 and � = 1 for each iteration.

Since � ~�(Fl(N (ej!Ts);K(ej!Ts))) peaks at 0.935 for the �nal full order controller
robust performance was achieved. The �nal controller was of very high order
(45) but it was possible to reduce the number of states down to 6 with very little
increase in � ~�(Fl(N (ej!Ts);K(ej!Ts))), see Table 14.2 on the following page.

In Figure 14.14 and 14.15 on page 259 the nominal Nyquist with open loop
uncertainty ellipses and the nominal sensitivity function with error bounds are

3The discrete-time �-K iteration is identical to the continuous-time iteration with s and
j! replaced by z and ej!Ts . Since some of the MatLab � toolbox routines can be applied
only for continuous-time systems them , if they are used, some bilinear transformations from
continuous-time to discrete-time must be employed.
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�-K iteration
Iteration No. 1 2 3 4 Red.� ~�(Fl(N (z);K(z)))


1

1.028 0.950 0.935 0.935 0.936
sup! �i(!) 0.114 0.0248 0.0133 0.0130 {

kFl(Pi(z);Ki(z))k1 1.302 1.031 0.966 0.935 {
inf! ��i(!) 1 1 1 1 {

� 1 1 1 1 {

Table 14.2: Results from �-K iteration on the pump system.
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Figure 14.14: � approach: Nominal Nyquist with error bounds. Shown are also
the measured frequency response estimates multiplied by the con-
troller.
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Figure 14.15: � approach: Nominal sensitivity with error bounds. Shown are also
the upper bound for the sensitivity function S(ej!Ts) (dash-dotted)
and the measured sensitivity estimates.

shown respectively. The reduced order controller has been used in computing
the results given in both �gures. In both plots we have furthermore included the
measured frequency response estimates for comparison.

Compare Figure 14.14 and 14.15 with Figure 14.10 and 14.11 on page 255. From
Figure 14.14 we conclude that the system is robustly stable since none of the un-
certainty ellipses include the Nyquist point. In Figure 14.15, notice how smooth
the mixed � controller shapes the perturbed sensitivity function according to the
performance speci�cation.

Finally, in Figure 14.16 on the following page the results of implementing the
sixth order controller on the pump system are shown. Here the system response
to standard ow steps �Q = 2=3 m3/hr is investigated. As seen we quite easily
comply with the demands given in Section 14.2.1 on page 252.

14.3 Summary

A robust control design for a domestic water supply unit was considered. The
design methodology outlined in Procedure 13.1 on page 239 was applied to the
system. A second order Laguerre model was identi�ed and frequency domain
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Figure 14.16: Results from implementing the reduced order mixed � controller
on the pump system. Shown are the pressure response (solid) to
standard ow steps (dashed)

uncertainty ellipses were estimated using stochastic embedding of the bias. Dis-
crete frequency response measurement obtained by applying pure sinusoids at
the input veri�ed the obtained uncertainty estimates. Two control designs were
then performed; an H1 design and a mixed � design. Both designs produced
satisfactory results even though the H1 controller did not quite achieve robust
performance. The mixed � controller very smoothly shaped the closed loop sen-
sitivity function such that the perturbed sensitivity fell below the performance
speci�cation. The mixed � controller was of very high order (45). However it
could be reduced down to sixth order with very little increase in �. The sixth
order controller was implemented on the system with satisfactory results.
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Now we will summarize the main results from the thesis. The main purpose of
this work has been to develop a coherent design procedure for identi�cation based
robust control design.

15.1 Part I, Robust Control { Theory and Design

In Part I we presented the robust control design framework necessary for our
approach. In Chapter 3 some of the important norms and spaces used in robust
control design were discussed. It was shown how the familiar vector 1,2 and 1
norms induce corresponding matrix norms. Furthermore the norm concept was
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extended to operator norms or norms on sets of functions both in the time- and
frequency domain. Of particular interest is the matrix 2-norm since we can use
it to extend the classical Bode plot for scalar systems to multivariable frequency
responses. Let e.g. G(s) be a multivariable transfer function matrix. Then

kG(j!)k2 = sup
u2Cn;u 6=0

kG(j!)uk2
kuk2 = ��(G(j!)) (15.1)

where kuk2 is the usual Euclidean length of the vector u and ��(�) denotes the
maximum singular value. Thus the matrix 2-norm kG(j!)k2 measures the max-
imum possible \gain" of G(j!) in terms of the 2-norm of the input vector before
and after multiplication by G(j!). Performing a singular value decomposition,
see Lemma 3.1 on page 19, of G(j!) also the minimum singular value:

�(G(j!)) = inf
u2Cn;u 6=0

kG(j!)uk2
kuk2 (15.2)

can be determined. Thus the gain of G(j!) is bounded by its maximum and
minimum singular values as the input vector varies over all possible directions.
By plotting the singular values ��(G(j!)) and �(G(j!)) for each frequency ! we
obtain the multivariable generalization of the classical magnitude Bode plot. The
peak of the singular value Bode plot equals the transfer function 1-norm:

kG(s)k1 = sup
!

��(G(j!)) (15.3)

kG(s)k1 thus measures the maximum possible gain of G(j!) for all frequencies
and all possible input directions. Another important interpretation of the transfer
function1-norm is that it also measures the maximumampli�cation of the input
in terms of the time-domain operator 2-norm:

kG(s)k1 = sup
u(t)2R;u 6=0

ky(t)k2
ku(t)k2 (15.4)

The space of all stable transfer functions for which (15.3) is �nite is the Hardy
space H1.
In Chapter 4, the \classical" H1 control theory is reviewed. Robust control
design is essentially a question of weighing out robustness and performance in an
optimal way. In H1 control design the uncertainty is assumed to be in the form
of a single unstructured complex perturbation, e.g. like

GT (s) = G(s) + ~�(s) (15.5)

where GT (s) and G(s) denote the true system and nominal model respectively
and ~�(s) 2 Cm�n is some unknown perturbation which is bounded by its maxi-
mum singular value:

��( ~�(j!)) � `(!) (15.6)
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Usually diagonal weighting matrices are introduced to normalize �(s) to norm
one

~�(s) = Wu2(s)�(s)Wu1(s) (15.7)

where ��(�(j!)) � 1. There are two main reasons for picking such a perturbation
model. First of all, it captures well the e�ects of high-frequency unmodeled
dynamics, non-linearities, time-delays, etc. and secondly, it leads to tractable
expressions for robust stability. In particular, using the Small Gain Theorem on
page 44 it is straightforward to show, see Theorem 4.4 on page 44, that for the
additive perturbation model (15.5) on the facing page, a necessary and su�cient
condition for robust stability of the closed loop system is:

��(Wu1(j!)M (j!)Wu2(j!)) < 1 8! � 0 (15.8)

where M (s) = K(s)(I + G(s)K(s))�1 is usually denoted the control sensitivity.
It is a commonmistake to believe that (15.8)is a conservative stability condition.
This is not true. The condition (15.8)is tight such that there exists a perturbation
��(s) with ��(��(j!)) � 1 for which the closed loop system becomes unstable un-
less (15.8)is satis�ed. The conservatism in H1 does not lie in the condition (15.8)
but in the assumed structure of the perturbation. We will return to this shortly.
Let us �rst, however, look at the performance measures in H1 robust control.
Generally in any control design, there are two main performance goals, namely
command following (tracking problem) and disturbance attenuation (regulation
problem). However, the tracking problem can to a large extent be considered by
two-degree-of-freedom control concepts using a pre�lter to improve the transient
response of the system. Thus the performance demand for the feedback controller
is mainly one of attenuating disturbances. A typical performance speci�cation
uses the output sensitivity function So(s) = (I + G(s)K(s))�1. Since So(s) is
the transfer function matrix from disturbances on the output y(s) to the control
error e(s) a performance demand can be written

��(Wp2(j!)So(j!)Wp1(j!)) � 1 8! � 0 (15.9)

where Wp1(s) and Wp2(s) are weighting functions, see Figure 4.3 on page 39.
The input weight Wp1(s) is used to tranform the normalized input vector �0(s)
to the physical inputs �(s) = Wp1(s)d0(s). The normalized inputs are assumed
to belongs to the bounded set

D0 =
(
�
0(s)

�����k�0k2 = 1

2�

sZ 1

�1
�(j!)��(j!)d! � 1

)
(15.10)

The output weight Wp2(s) is used to trade o� the relative importance of the in-
dividual components of the control error e(s) and to specify the attenuation level
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across frequency. An important interpretation of the performance speci�cation is
that the time-domain 2-norm of the weighted control error e0(t) will be bounded
by kWp2(s)So(s)Wp1(s))k1:

sup
d0(s)2D0

ke0(t)k2 = sup
d0(s)2D0

sZ 1

0

e0(t)T e0(t)dt = kWp2(s)So(s)Wp1(s))k1 (15.11)

If a controller is designed such that (15.9) on the preceding page is ful�lled, the
closed loop system is said to have nominal performance. In Chapter 4 it is then
shown how a 2 � 2 block problem may be posed both for the robust stability
problem and for the nominal performance problem. For both control problems
the optimal design problem will be of the form

K(s) = arg min
K(s)2KS

kFl (N (s);K(s))k1 (15.12)

where N (s) is the augmented plant. (15.12) is the standard H1 optimal control
problem. An iterative state space solution with K(s) having the same number
of states as N (s) were presented by Doyle, Glover, Khargonekhar and Francis in
1988.

We may also consider robust stability and nominal performance simultaneously
within the framework of the 2�2 block problem. However, often our main objec-
tive is robust performance, that is, our performance demands should be satis�ed
for all possible plants GT (s). Unfortunately as shown in Section 4.4 on page 49
nominal performance and robust stability does not necessarily imply robust per-
formance. In fact, if the plant is ill-conditioned, robust performance can be
arbitrarily poor even though we have robust stability and nominal performance.
On the other hand, if the plant is well-conditioned, robust performance cannot be
arbitrarily poor if we have robust stability and nominal performance. Generally,
if an unstructured uncertainty description is tight, we believe that robust per-
formance can be considered non-conservatively in the H1 framework if a little
care is taken when formulating the control problem, that is, when choosing the
performance and uncertainty weights. We believe that the main problem with
the H1 approach is that we can only handle full complex perturbation blocks.
Often much more detailed uncertainty descriptions will be available and they
may consequently only be handled with conservatism in the H1 framework.

Fortunately theory exists which can handle structured uncertainty in a non-
conservative manner. Using the structured singular value � we may address
robust stability problem with mixed real and complex perturbation structures
where the perturbation has a block diagonal structure. We thus can consider
structured uncertainty which enters the nominal model in a linear fractional
manner. The permitted perturbations in the � framework are much more detailed
than those permitted forH1 problems. Using � we can then derive necessary and
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su�cient conditions for robust stability. Furthermore, the robust performance
problem can be considered non-conservatively by augmenting the perturbation
structure with a full complex perturbation block.

Very general control problems can be naturally formulated within the N�K
framework introduced in Section 5.1.2 on page 71 and simple conditions for nom-
inal performance, robust stability and robust performance can be given with �.

Unfortunately, � cannot be directly computed unless in some very restrictive spe-
cial cases. This has naturally hampered the practical use of of � theory. However,
reasonable tight upper and lower bounds for � can be e�ectively computed and
today commercially available hardware exists which support this. Thus from a
control engineering point of view, the mathematical problems concerning � are
more or less insigni�cant. Of much greater importance is whether we can solve
the optimal � control problem:

K(s) = arg min
K(s)2KS

k� ~�(Fl(N (s);K(s)))k1 (15.13)

Since we cannot normally compute � it is clear that the problem (15.13) is not
tractable. However, we may formulate the control problem in terms of the upper
bound on � instead. The upper bound problem is, however, also an yet unsolved
problem. However, for purely complex perturbation sets, an approximation to
� synthesis can be made through a series of minimizations, �rst over the con-
troller K(s) and then over the scalings D(!) involved in the upper bound. This
procedure, known as D-K iteration, see Section 5.2.1 on page 78, seems to work
quite well in practice even though the iteration cannot be guaranteed to con-
verge. Thus for systems with purely complex perturbations a well-documented
and software-supported design approach exists for optimal � design.

Unfortunately the same is not true for mixed real and complex perturbation sets.
During the past 5 years, the mixed � synthesis problem has received considerable
interest in the automatic control community. Peter Young [You93] was probably
the �rst who presented a solution to this problem. However, the procedure
outlined by Young, denoted D,G-K iteration, see Section 5.2.2 on page 80, is
much more involved than D-K iteration. It involves a lot of spectral factorizations
theory and unlike in D-K iteration the scaling matrices must be �tted both in
phase and magnitude. Since the G-scalings are purely imaginary, this severely
hampers the practical use of D,G-K iteration.

One of the major results of this thesis is a new approach for mixed real and
complex � synthesis. By sacri�cing some of the convergence properties in D,G-K
iteration we have obtained an iterative procedure denoted �-K iteration where
we only need to �t scaling matrices in magnitude.

In Chapter 6 a case study is performed in order to compare the results of the
D,G-K iteration with our new approach. For this particular system it turns out,
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that �-K iteration performs 20% better in terms of achieved � levels.

In Chapter 7 a complex � design for an ASTOVL aircraft was performed. This
particular system was very ill-conditioned so that a special performance weight
had to be introduced. The �nal complex � design gave signi�cant improvement
over the existing classical design.

15.2 Part II, System Identi�cation and Estima-

tion of Model Error Bounds

In Part II the problem of estimating a nominal model and frequency domain
error bounds was considered. In robust control theory the uncertainty bounds
are usually simply assumed given a priori. However, the determination of these
bounds are by no means a trivial problem. It is therefore appealing to think that
they may simply be estimated using system identi�cation methods. However, as
shown in Chapter 9, classical identi�cation techniques will only produce consis-
tent estimates of the model error provided the true system can be described by
the chosen model structure. For the general model structure (9.1) on page 140,
in order to obtain consistent estimated of the parameter covariance, we must
require that both the deterministic and stochastic part of the true system can
be described within our model set. In Chapter 10 di�erent special cases are re-
viewed. In particular we notice that with an output error model structure we will
obtain consistent estimates of the parameter covariance if the deterministic part
of the true system can be represented within our model set regardless whether
this goes for the stochastic part as well. Furthermore, using a �xed denominator
model, we may obtain consistent estimates of the parameter covariance even in
the case of undermodeling, that is, even though the true system cannot be repre-
sented within our model set. Since the least-squares parameter estimate for �xed
denominator structures furthermore are analytical, there are strong motivations
for using such model structures. During the last 5 years intensive research in
�xed denominator model structures have been performed e.g. by Bo Wahlberg.
Unfortunately, even though our parameter covariance estimates are consistent,
if the true system cannot be represented within the model set, the frequency
domain model error bounds will be misleading. Thus to obtain useful estimates
of the frequency domain uncertainty with the classical approach we still need to
assume that the true system can be represented within the model set.

Unfortunately this is often an inadequate assumption in connection with robust
control, since we will like to have simple plant descriptions in order to avoid
high order controllers. Consequently, the last decade have witnessed a growing
awareness of that classical identi�cation methods can not provide us with the
frequency domain uncertainty bounds that we need for robust control design.
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As a result, intensive research has been done on developing new techniques for
estimation of model error bounds.

However, estimating of model error bounds from �nite noisy data is a very di�cult
problem if the true system cannot be described within the model set. In that
case, the model residuals will contain two parts; a deterministic part due to the
undermodeling and a stochastic part due to the noise. However, the approach
taken by most researchers has been to assume that either the noise is deterministic
(unknown, but bounded in magnitude) nor that the undermodeling is stochastic
(non-stationary and correlated with the input).

It is then well-known that some a priori knowledge of the noise and the undermod-
eling must be available in order to compute the model error bounds. However,
as shown in Chapter 11, the stochastic embedding approach provides the oppor-
tunity of estimating the quantitative part of the necessary a priori knowledge.
We feel that this makes the stochastic embedding approach superior to the other
new approaches for estimation of model uncertainty. In Chapter 11 a thorough
introduction to the stochastic embedding approach is provided. The main idea
is to assume that the undermodeling is a realization of a zero mean stochastic
process. We may then derive results for �xed denominator models which can be
viewed as an extension to the classical results.

Our main contribution in this part of the thesis is investigation of new param-
eterizations for the covariance matrices for the noise and the undermodeling.
In Chapter 12 a case study is performed where di�erent parameterizations for
the undermodeling are investigated. It is shown that we may obtain reasonable
accurate estimates of the model error using the stochastic embedding approach.

15.3 Part III, A Synergistic Control Systems De-

sign Methodology

Finally in Part III we have combined the results from Part I and Part II into a
coherent design approach for identi�cation based robust control design for scalar
systems. If a large number of measurements are available we suggest that a
classical output error approach is used for system identi�cation. If only few
measurements are available the stochastic embedding approach is suggested. In
any case, the result will be a nominal model and frequency domain uncertainty
ellipses.

It is then shown how a mixed perturbation set may be used to approximate the
estimated uncertainty ellipses. The corresponding control problem will thus be a
mixed � problem. We suggest that �-K iteration is applied in order to solve the
control problem. A full step-by-step design procedure is outlined in Section 13.3
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on page 239. This design procedure is the main result of the thesis. The design
approach has been applied in control of a compact domestic water supply unit,
see Chapter 14. The �nal mixed � controller was implemented on the pump
system with satisfactory results.

15.4 Future Research

The design methodology presented in this thesis can be applied only to scalar
systems. However, modern design methods like H1 and � based synthesis algo-
rithms have potential in particular for multivariable systems where the classical
design methods become more \unpredictable". The results presented on robust
control design in Chapter 4 and Chapter 5 thus apply for multivariable systems
in general. On the other hand, it seems that the emphasis in system identi�-
cation has been placed mostly on scalar systems. It is possible to extend the
classical PEM approach to multivariable systems without much di�culty. How-
ever, the asymptotic properties of the estimate seem not to have attracted much
attention. One exception is the work by Zhu and co-workers, see e.g. [ZBE91].
These methods, however, are asymptotic not only in the number of data N , but
also in the model order n. Thus the error bounds will only be valid for very
high order models and for large data series. The stochastic embedding approach
produce promising results for scalar systems. However, the maximum likelihood
estimation of the covariance matrices for the noise and the undermodeling is only
developed for scalar systems and only tractable for small data series.

In our future research on the subject we will try to extend the results presented
on system identi�cation in Chapter 9, 10 and 11 to multivariable systems.

Another area for future research is the proposed new algorithm for mixed real
and complex � synthesis, �-K iteration. We established two necessary condi-
tions for convergence of �-K iteration. Firstly, the iteration must be mono-
tonically non-increasing in the 1-norm of the augmented closed loop system
Fl(ND�i(s);K(s)). Thus

kFl(ND�i(s);Ki(s))k1 � kFl(ND�i�1 (s);Ki�1(s))k1 8i (15.14)

Secondly, the iteration must be monotonically non-increasing in the 1-norm of
�i(!). Thus

k�i(!)k1 � k�i�1(!)k1 8i (15.15)

�i(!) is a measure of how well the augmented closed loop system approximates
the mixed � upper bound. We were able to prove the �rst of the two conditions
above. We believe that we cannot always achieve the second condition. However,
this is certainly an area which requires more research.
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Appendix A

Scaling and Loop Shifting

for H1

In this appendix the necessary scalings and loop shifting for transforming a gen-
eral D state space matrix into the form required by Theorem 4.6 on page 56 will
be given. The main idea is that these transformations do not change the1-norm
of the closed loop system. Let the general plant N (s) be given by:

N (s) =

2
4 A B1 B2

C1 D11 D12

C2 D21 D22

3
5 (A.1)

where A 2 Rn�n, B1 2 Rn�d, B2 2 Rn�m, C1 2 Re�n, C2 2 Rr�n, D11 2
Re�d, D12 2 Re�m, D21 2 Rr�d and �nally D22 2 Rr�m. Consequently n is
the order of the generalized plant and the dimensions of the inputs d0 and u and
the outputs e0 and y are given by:

d = dim (d0) (A.2)

m = dim (u) (A.3)

e = dim (e0) (A.4)

r = dim (y) (A.5)

It will be required that D12 is \tall" with full column rank and that D21 is \fat"
with full row rank. This means that:

rank (D12) = dim (u) = m (A.6)

rank (D21) = dim (y) = r (A.7)

Now complete the following steps:
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Step 1. Use the singular value decomposition (SVD) to factor D12 and D21:

D12 = U1

�
0(e�m)�m

�1

�
V
T
1 (A.8)

D21 = U2

�
0r�(d�r) �2

�
V
T
2 (A.9)

where U1 2 Re�e, V1 2 Rm�m, U2 2 Rr�r and V2 2 Rd�d are unitary
matrices and �1 2 Rm�m and �2 2 Rr�r are diagonal matrices of singular
values. Notice that the above SVD is not in the standard format provided
by e.g. MatLab, so the columns of U1 and the rows of V2 may have to be
rearranged to suit this format.

Step 2. Scale D11 and partition it into a block 2� 2 matrix:

~D11 = U
T
1 D11V2 =

�
~D1111

~D1112

~D1121
~D1122

�
(A.10)

where ~D11 2 Re�d, ~D1111 2 R(e�r)�(d�m), ~D1112 2 R(e�r)�m, ~D1121 2
Rr�(d�m) and ~D1122 2 Rr�m.

Step 3. Let

K1 = �
�
~D1122 + ~D1121

�

2
I � ~DT

1111
~D1111

��1
~DT
1111

~D1112

�
(A.11)

such that K1 2 Rr�m.

Step 4. Calculate

~D11 = ~D11 +

�
0 0
0 K1

�
=

�
~D1111

~D1112

~D1121
~D1122 +K1

�
(A.12)

and the transformation matrix

� =

�
�11 �12

�21 �22

�
(A.13)

=

2
6664

� ~D11

�
I � �2 ~D11

~D
T

11

�1=2

�
I � 

�2 ~D
T

11
~D11

�1=2


�2 ~D

T

11

3
7775 (A.14)
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Step 5. Let

~D12 = ��1
12

�
0
I

�
(A.15)

~D21 =
�
0 I

�
��1
21

(A.16)

~D22 =
�
0 I

�
�22�

�2
12

�
0
I

�
(A.17)

denote the last m columns of ��1
12
, the last r rows of ��1

21
and the last r�m

rows and columns of �22�
�2
12

respectively.

Step 6. Use the singular value decomposition (SVD) to factor ~D12 and ~D21:

~D12 = U3

�
0(e�m)�m

�3

�
V
T
3 (A.18)

~D21 = U4

�
0r�(d�r) �4

�
V
T
4 (A.19)

where U3 2 Re�e, V3 2 Rm�m, U4 2 Rr�r and V4 2 Rd�d are unitary
matrices and �3 2 Rm�m and �4 2 Rr�r are diagonal matrices of singular
values.

Step 7. Calculate the combined transformation above (T1) and below (T2) N (s),
see Figure A.1 on page 291.

T1 =

�
U
T
3
�11V4 U

T
3
�12U

T
1

V2�21V4 V2�22U
T
1

�
(A.20)

T2 =

�
T211 T212

T221 T222

�
(A.21)

where

T211 = V1�
�1
1
K1�

�1
2
U
T
2 (I � L1)�1 (A.22)

T212 = V1�
�1
1

(I � L2)�1 V3��13 (A.23)

T221 = ��1
4
U
T
4 �

�1
2
U
T
2 (I � L1)

�1 (A.24)

T222 = ���14 U
T
4

h
��1
2
U
T
2 D22V1�

�1
1

(I � L2)
�1 � ~D22

i
V3�

�1
3
(A.25)

L1 = �D22V1�
�1
1
K1�

�1
2
U
T
2

(A.26)

L2 = �K1��1
2
U
T
2 D22V1�

�1
1

(A.27)

Step 8. Form the transformed system:

~N (s) = Fl(T1; Fl(N (s); T2)) (A.28)
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The D state-space matrix of ~N (s) can now be shown to satisfy:

D11 = 0 (A.29)

D12 =

�
0
I

�
(A.30)

D21 =
�
0 I

�
(A.31)

D22 = 0 (A.32)

Step 9. Compute the suboptimal H1 controller ~K(s) for the transformed sys-
tem ~N (s) and back-transform it to the original system N (s). This is done
via the linear fractional transformation:

K(s) = Fl(T2; ~K(s)) (A.33)

Note that the transformation matrix T1 is not needed to back-transform
the controller.

The scalings and loop shifting operations described above is illustrated in block-
diagram form in Figure A.1 on the facing page. Notice that since �nding a
optimal H1 controller requires iteration on , for each iteration the scaling and
loop shifting involving  must be redone.
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Figure A.1: Scaling and loop shifting for H1 suboptimal control.





Appendix B

Convergence of �-K

Iteration

Here proof will be given for Lemma 5.1 on page 90. It will be shown that the
minimizations:

Ki(s) = arg min
K(s)2KS

sup
!

�
��
�
Fl

�
ND�i�1 (j!);K(j!)

��	
(B.1)

D
�
i (!) = arg min

D2D
��
�
DFl(N (j!);Ki(j!))D

�1
�
; 8! (B.2)

from �-K iteration are monotonically non-increasing in kFl(ND�i ;Ki)k1. Given
a controller Ki(s) and scaling matrices �i(s) and Di(s) it is easy to show that:

kFl(ND�i(s);Ki(s))k1 = sup
!

��
�
Fl

�
�i(j!)Di(j!)N (j!)D�1

i (j!);Ki(j!)
��
(B.3)

= sup
!
ji(j!)j��

�
Fl

�
Di(j!)N (j!)D�1

i (j!);Ki(j!)
��
(B.4)

Furthermore, assuming perfect realizations of the i(s) scalings, we have that

ji(j!)j = (1� �i)ji�1(j!)j + �i
�� ~� (Fl (N (j!);Ki(j!)))

�� ~�c

(Fl (N (j!);Ki(j!)))
(B.5)

= ji�1(j!)j
 
1 + �i

 
�� ~� (Fl (N (j!);Ki(j!)))

�� ~�c

(Fl (N (j!);Ki(j!)))

1

ji�1(j!)j � 1

!!
(B.6)

= ji�1(j!)j (1 + �i�i(!)) (B.7)
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Consequently:

kFl(ND�i (s);Ki(s))k1 = sup
!

(1 + �i�i(!)) ji�1(j!)j �
��
�
Fl

�
Di(j!)N (j!)D�1

i (j!);Ki(j!)
��

(B.8)

In order to achieve a monotonically non-increasing algorithm it is thus required
that

sup
!

(1 + �i�i(!)) ji�1(j!)j��
�
Fl

�
Di(j!)N (j!)D�1

i (j!);Ki(j!)
�� �Fl(ND�i�1 (s);Ki�1(s))

1

(B.9)

We now have the inequalities

ji�1(j!)j��
�
Fl

�
Di(j!)N (j!)D�1

i (j!);Ki(j!)
��

� ji�1(j!)j��
�
Fl

�
Di�1(j!)N (j!)D�1

i�1(j!);Ki(j!)
��

(B.10)

� sup
!
ji�1(j!)j��

�
Fl

�
Di�1(j!)N (j!)D�1

i�1(j!);Ki(j!)
��

(B.11)

� sup
!
ji�1(j!)j��

�
Fl

�
Di�1(j!)N (j!)D�1

i�1(j!);Ki�1(j!)
��

(B.12)

=
Fl(ND�i�1 (s);Ki�1(s))


1

(B.13)

The �rst inequality follows from (B.2) on the preceding page with perfect real-
izations of the scalings Di(s). The last inequality follows from (B.1) on the page
before. Since �i 2 [0; 1] and �i(!) � �1 it then becomes clear from (B.10)-(B.13)
and (B.8) that if �i(!) � 0, 8! � 0 then

kFl(ND�i(s);Ki(s))k1 � Fl(ND�i�1 (s);Ki�1(s))

1
; sup

!
�i(!) � 0(B.14)

and the algorithm will be monotonically non-increasing for all values of �i. We
may hence choose �i = 1. If �i(!) < 0, 8! � 0 it is thus guaranteed that
the 1-norm kFl(ND�i (s);Ki(s))k1 will be reduced during the i'th step of the
iteration.

If �i(!) > 0 for any frequency ! we must choose � so that (B.9) is ful�lled.
Since the frequency at which the supremum is reached depends on �i we must
solve the inequality for all frequences !. Let ��i denote the solution to (B.9) with
inequality replaced with equality. It is easily veri�ed that

��i(!) =

 Fl(ND�i�1 (s);Ki�1(s))

1

��
�
Fl(Di(j!)N (j!)D�1

i (j!);Ki(j!))
� ji�1(j!)j � 1

!
1

�i(!)
(B.15)

Thus if we choose �i such that �i � min! ��i(!) then (B.9) will be ful�lled and
the algorithm will be monotonically non-increasing if �i � 0. From (B.10) we



295

have thatFl(ND�i�1 (s);Ki�1(s))

1
�

��
�
Fl(Di(j!)N (j!)D�1

i (j!);Ki(j!))
� ji�1(j!)j (B.16)

where the equality holds only if Di(j!) = Di�1(j!) and Ki(j!) = Ki�1(j!) at
the particular frequency at which the maximum is reached. Since �i(!) > 0 it
is then clear from (B.15) and (B.16) that � � 0. If min! ��i(!) > 0 we may
choose �i > 0 and it will be guaranteed that the1-norm kFl(ND�i(s);Ki(s))k1
is reduced during the i'th step of the iteration.





Appendix C

Rigid Body Model of

ASTOVL Aircraft

In the following descriptions and numerical values are given for the rigid body
aircraft model introduced in Chapter 7, see Figure 7.1 on page 107.

C.1 Flight Control Computer Hardware Gc(s)

The ight control computer and sample and hold delays are each represented by
a �rst order Pad�e approximation in each input channel:

Gfcc(s) =
�0:00725s+ 1

0:00725s+ 1
(C.1)

Gs=h(s) =
�0:00208s+ 1

0:00417s+ 1
(C.2)

Furthermore, the input signals are converted into demands on the rear nozzle
angle �R, forward thrust TF and rear thrust TR through a 3 � 3 transformation
matrix T given by

T =

2
4 �2:8610 � 10�5 5:6070 � 10�4 �1:7920 � 10�2

1:5120 � 10�1 �4:8362 � 10�1 �7:3830 � 10�2
�1:6560 � 10�1 �5:2706 � 10�1 1:3958 � 10�1

3
5 (C.3)

Gc(s) is then given by

Gc(s) = Gfcc(s)Gs=h(s)I3 � T (C.4)
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C.2 Engine and Actuation Model GE(s)

A block diagram representation of the engine and actuation model is given in
Figure C.1. The thrust generated by the engine compressor is split into two
parts, one part is ejected through the rear nozzle at a varying angle �R, to the
horizontal, to produce a thrust TF . The remaining thrust is directed to the
forward nozzles where it can be augmented by plenum chamber burning before
being ejected at a �xed angle �F , to produce the thrust TF . The controller
generates demands for rear nozzle actuator angle, and the magnitudes of the
thrust ejected through the forward and rear nozzles.

j j

-GA(s)

5:292 -

GED(s) 4:016-GE(s)

- -

2:263

6

GDL(s)

GBD(s)

6

�Rd

TFd

TRd

�R

TF

TR

Figure C.1: Engine and actuation system.

The dynamics of the rear nozzle actuator are represented by a second order delay
given by,

GA =
w
2
nA

s2 + 2�AwnAs +w2
nA

(C.5)

where �A = 0:7 and wnA = 20:75.

The plenum chamber burner delay is represented by a �rst order delay as,

GBD =
a1

1 + �BDs
(C.6)

where a1 = 0:1885 and �BD = 0:06.

The duct lag is also represented as a �rst order delay as,

GDL =
a2

1 + �DLs
(C.7)
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where a2 = 1:713 and �DL = 0:085.

The engine time delay is approximated by a 2nd order Pad�e approximation as,

GED =
1� �ED

2
s+

�ED

96
s
2

1 +
�ED

2
s+

�ED

96
s2

(C.8)

where �ED = 0:125.

The engine dynamics are represented by a second order transfer function as,

GE =
a3w

2
nE

s2 + 2�EwnEs +w2
nE

(C.9)

where a3 = 0:442, �E = 0:5 and wnE = 8:0.

C.3 Force Transformation Matrix Fmat

The force transformation matrix resolves the forward and rear thrusts and the
rear nozzle angle into an axial force, a normal force and a pitching moment. The
relationship is: 2

4 XF

ZF

M

3
5 = Fmat

2
4 �R

TF

TR

3
5 (C.10)

where Fmat is given by

Fmat =
1

1

2
�V 2Sref

57:3

2
�

2
4 �TR sin �R cos �F cos �R

TR cos �R �sin�F �sin�R
TR(�zR sin �R�xR cos �R)

lT

xF sin �F+zF cos �F
lT

zR cos �R�xR sin �R
lT

3
5 (C.11)

where the parameters xF , zF , xR and zR denotes the position of the nozzles with
respect to the center of gravity, Sref is the wing area, � the air density, V the
true air speed and �nally lT the tail arm.

Substitution of the numerical values for this ight condition and the scalings
mentioned above yield the following matrix:

Fmat = 28:6499

2
4 �6:6210 � 10�1 1:5700 � 10�3 1:6800 � 10�3
�9:3520 � 10�2 �1:1900 � 10�2 �1:1880 � 10�2
�9:3050 � 10�2 7:4100 � 10�3 �6:2900 � 10�3

3
5(C.12)
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C.4 Rigid Aircraft Frame GA(s)

The linearized equations of motion for the longitudinal dynamics of the rigid
body aircraft ying at Mach 0.151, 100ft and 6o angle of attack are given by the
following state-space equations :

d

dt

2
664
u

w

�

q

3
775 = A

2
664
u

w

�

q

3
775+ B

2
4 Xforce

Zforce

M

3
5 (C.13)

2
664

q

�

_h
ax

3
775 = C

2
664
u

w

�

q

3
775+D

2
4 Xforce

Zforce

M

3
5 (C.14)

where A;B;C and D are given by,

A =

2
664
�0:0017 0:0413 �5:3257 �9:7565
�0:0721 �0:3393 49:5146 �1:0097
�0:0008 0:0138 �0:2032 0:0009

0 0 1:0000 0

3
775 (C.15)

B =

2
664

0:2086 �0:0005 �0:0271
�0:0005 0:2046 0:0139
�0:0047 0:0023 0:1226

0 0 0

3
775 (C.16)

C =

2
664

0 0 57:2958 0
0 0 0 57:2958

0:1045 �0:9945 0:1375 51:3791
�0:0002 0:0045 0 0

3
775 (C.17)

D =

2
664

0 0 0
0 0 0
0 0 0

0:0212 0 0

3
775 (C.18)

C.5 Sensor Transfer Matrix GS(s)

The delays in each sensor channel are represented by :

Gs(s) =
1� 0:005346s+ 0:0001903s2

1 + 0:03082s+ 0:0004942s2
(C.19)
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In addition, anti-aliasing �lters are included in the pitch rate and pitch attitude
channels, given by :

Gaa(s) =
1

1 + 0:00398s+ 0:0000158s2
(C.20)

Thus GS(s) is given by

GS(s) =

2
664
Gs(s)Gaa(s) 0 0 0

0 Gs(s)Gaa(s) 0 0
0 0 Gs(s) 0
0 0 0 Gs(s)

3
775 (C.21)





Appendix D

Computing the Parameter

Estimate �̂N

In this appendix a brief description of a general search algorithm for �nding the
parameter estimate �̂N will be given. The algorithm is easy to implement in e.g.
MatLab. The search for �̂N is considerably simpli�ed for the special case where
the predictor can be written as a linear expression in �:

ŷ(kj�) = �
T (k)� (D.1)

where �(k) is known as the state vector. An example of a model with linear
predictor is the well-known ARX model structure

A(q)y(k) = B(q)u(k) + e(k) (D.2)

Notice that the ARX model corresponds to the general model (9.1) on page 140
with F (q) = C(q) = D(q) = 1. The ARX model predictor is thus given by

ŷ(kj�) = B(q)u(k) + (1� A(q))y(k) = �
T (k)� (D.3)

for

�
T (k) = [�y(k � 1); � � � ;�y(k � na); u(k � 1); � � � ; u(k� nb)] (D.4)

�
T = [a1; � � � ; ana ; b1; � � � ; bnb] (D.5)

A minimum for the criterion (9.10) on page 140 can now be computed from

V
0
N (�̂N ; Z

N ) = 0 (D.6)

, � 1

N

NX
k=1

 (k; �̂N )�(k; �̂N ) = 0 (D.7)
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where the model gradient  (k; �̂N ) is given by

 (k; �̂N ) =
@ŷ(kj�̂N )

@�
= �(k) (D.8)

Note that the model gradient for the ARX model structure is independent of the
parameter vector �. We then have:

� 1

N

NX
k=1

�(k)(y(k) � �T (k)�̂N ) = 0 (D.9)

,
NX
k=1

�(k)�T (k)�̂N =
NX
k=1

�(k)y(k) (D.10)

, �̂N =

"
NX
k=1

�(k)�T (k)

#�1
NX
k=1

�(k)y(k) (D.11)

Consequently the expression for �̂N is analytical provided
PN

k=1 �(k)�
T (k) is

invertible. Since

V
00
N (�; Z

N ) =
1

N

NX
k=1

�(k)�T (k) (D.12)

this is ensured if V 00N (�̂N ; Z
N ) is positive de�nite.

In the general case, however, the predictor will not be linear in � and we cannot
derive analytical expressions for the parameter estimate �̂N . Instead we must
use numerical search algorithms based on the gradient (9.14) and Hessian ma-
trix (9.16) of the performance function. A popular search scheme is known as
Marquardts algorithm. The i'th step in Marquardts algorithm is

�i = �i�1 �
�
V
00
N (�i�1; Z

N ) + �iI
��1

V
0
N (�i�1; Z

N ) (D.13)

where I is a na + nb + nf + nc + nd unity matrix and where �i should be chosen
as small as possible (to increase convergence speed) but so that VN (�i; ZN ) <
VN (�i�1; ZN ). Usually the approximation

V
00
N (�; Z

N ) � 1

N

NX
k=1

�(k; �)�T (k; �) (D.14)

is used for the Hessian. The corresponding search scheme for (D.14) is sometimes
denoted Gauss-Newtons algorithm, see [KR82].
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D.1 Computation of �(k; �) and  (k; �)

The remaining question is now how to e�ciently compute the state vector �(k; �)
and the model gradient  (k; �) for 1 � t � N . For this purpose it proves
convenient to write the predictor in the pseudo-linear form

ŷ(kj�) = �
T (k; �)� (D.15)

For the general predictor (9.8) on page 140, �T (k; �) can be found as follows.
Rearrange (9.8) to get

C(q)F (q)ŷ(kj�) = F (q) [C(q)�D(q)A(q)] y(k) +D(q)B(q)u(k) (D.16)

, �C(q)F (q) [y(k) � ŷ(kj�)] = �F (q)D(q)A(q)y(k) +D(q)B(q)u(k)(D.17)

, �(k; �) = y(k) � ŷ(kj�) = D(q)

C(q)

�
A(q)y(k) � B(q)

F (q)
u(k)

�
(D.18)

Now introduce

w(k; �) =
B(q)

F (q)
u(k); v(k; �) = A(q)y(k) � w(k; �)

(D.19)

to get

�(k; �) =
D(q)

C(q)
v(k; �) (D.20)

We now have:

w(k; �) = b1u(k � 1) + � � �+ bnbu(k � nb) � f1w(k � 1; �)� � � � �
� fnfw(k � nf ; �) (D.21)

v(k; �) = y(k) + a1y(k � 1) + � � �+ anay(k � na)� b1u(k � 1)� � � � �
� bnbu(k � nb) + f1w(k � 1; �) + � � �+ fnfw(k � nf ; �) (D.22)

�(k; �) = y(k) + a1y(k � 1) + � � �+ anay(k � na)� b1u(k � 1)� � � � �
� bnbu(k � nb) + f1w(k � 1; �) + � � �+ fnfw(k � nf ; �) +
+ d1v(k � 1; �) + � � �+ dndv(k � nd; �)� �c1�(k � 1; �)� � � � �
� cnc�(k � nc; �) (D.23)

and may write the predictor as

ŷ(kj�) = y(k) � �(k; �) = � (�(k; �)� y(k)) (D.24)

= �a1y(k � 1)� � � � � anay(k � na) + b1u(k � 1) + � � �+ bnbu(k � nb)�
� f1w(k � 1; �)� � � � � fnfw(k � nf ; �) + c1�(k � 1; �) + � � �+
+ cnc�(k � nc; �)� d1v(k � 1; �)� � � � � dndv(k � nd; �) (D.25)

= �
T (k; �)� (D.26)



306 Computing the Parameter Estimate �̂N

with

�
T (k; �) = [�y(k � 1); � � � ;�y(k � na); u(k � 1); � � � ; u(k � nb);

�w(k � 1; �); � � � ;�w(k � nf ; �); �(k � 1; �); � � � ; �(k � nc; �);
�v(k � 1; �); � � � ;�v(k � nd; �)] (D.27)

and � given by (9.9) on page 140. From (D.26) on the preceding page a convenient
expression for the predicted output vector

Ŷ (�; ZN ) = [ŷ(ksj�); ŷ(ks + 1j�); � � � ; ŷ(N j�)]T (D.28)

can be derived. ks is given by

ks = maxfna; nb; nf ; nc; ndg+ 1 (D.29)

We thus do not start the prediction until the state vector �(k; �) is �lled with
measurements. Now let �(�; ZN ) be given by

�(�; ZN ) =2
666666666666666666666666666664

-y(ks-1) -y(ks) -y(ks+1) � � � -y(N -1)
...

...
...

...
...

-y(ks-na) -y(ks-na+1) -y(ks-na+2) � � � -y(N -na)
u(ks-1) u(ks) u(ks+1) � � � u(N -1)

...
...

...
...

...
u(ks-nb) u(ks-nb+1) u(ks-nb+2) � � � u(N -nb)
-w(ks-1,�) -w(ks,�) -w(ks+1,�) � � � -w(N -1,�)

...
...

...
...

...
-w(ks-nf ; �) -w(ks-nf+1,�) -w(ks-nf+2,�) � � � -w(N -nf ,�)
�(ks-1,�) �(ks; �) �(ks+1,�) � � � �(N -1,�)

...
...

...
...

...
�(ks-nc; �) �(ks-nc+1,�) �(ks-nc+2,�) � � � �(N -nc; �)
-v(ks-1,�) -v(ks; �) -v(ks+1,�) � � � -v(N -1,�)

...
...

...
...

...
-v(ks-nd; �) -v(ks-nd+1,�) -v(ks-nd+2,�) � � � -v(N -nd; �)

3
777777777777777777777777777775

(D.30)

Then it is easy to see that

Ŷ (�; ZN ) = �T (�; ZN )� (D.31)

E(�; ZN ) = Y � Ŷ (�; ZN ) (D.32)

VN (�; Z
N ) =

1

N � ks

1

2
E
T (�; ZN )E(�; ZN ) (D.33)
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where the prediction error vector E(�; ZN ) is given by

E(�; ZN ) = [�(ks; �); �(ks + 1; ; �); � � � ; �(N; �)]T (D.34)

The above expression for Ŷ (�; ZN ), E(�; ZN ) and VN (�; ZN ) can be easily and
e�ciently implemented in MatLab, see Appendix E on page 311.

Let us now return to the computation of the model gradient  (k; �). From
Equation (D.26) on page 305 we have

 (k; �) =
@ŷ(kj�)
@�

= �(k; �) +
@�

T (k; �)

@�
� (D.35)

=

�
@ŷ(kj�)
@a1

; � � � ; @ŷ(kj�)
@ana

;
@ŷ(kj�)
@b1

; � � � ; @ŷ(kj�)
@bnb

;
@ŷ(kj�)
@f1

; � � � ; @ŷ(kj�)
@fnf

;

@ŷ(kj�)
@c1

; � � � ; @ŷ(kj�)
@cnc

;
@ŷ(kj�)
@d1

; � � � ; @ŷ(kj�)
@dnd

�T
(D.36)

Let us derive an expression for the derivative  i(k; �) = @ŷ(kj�)=@ai where 1 �
i � na:

 i(k; �) =
@ŷ(kj�)
@ai

= �i(k; �) +
@�

T (k; �)

@ai
� = �y(k � i) + @�

T (k; �)

@ai
� (D.37)

where

@�
T (k; �)

@ai
=

�
�@y(k � 1)

@ai
; � � � ;�@y(k � na)

@ai
;
@u(k � 1)

@ai
; � � � ; @u(k � nb)

@ai
;

� @w(k � 1; �)

@ai
; � � � ;�@w(k � nf ; �)

@ai
;
@�(k � 1; �)

@ai
; � � � ; @�(k � nc; �)

@ai
;

�@v(k � 1; �)

@ai
; � � � ;�@v(k � nd; �)

@ai

�
(D.38)

=

�
0; � � � ; 0;�@ŷ(k � 1j�)

@ai
; � � � ;�@ŷ(k � ncj�)

@ai
;�y(k � 1� i); � � � ;

�y(k � nd � i)] (D.39)

since �(k; �) = y(k) � ŷ(kj�) and

v(k) = y(k) + a1y(k � 1) + � � �+ anay(k � na) �w(k; �) (D.40)

Notice that w(k; �) is independent of ai. We then have

@ŷ(kj�)
@ai

= �y(k � i) � c1 @ŷ(k � 1j�)
@ai

� � � � � cnc

@ŷ(k � ncj�)
@ai

�
d1y(k � 1� i) � � � � � dndy(k � nd � i) (D.41)
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Thus

�
1 + c1q

�1 + � � �+ cncq
�nc
� @ŷ(kj�)

@ai

=�
1 + d1q

�1 + � � �+ dndq
�nd
�
y(k � i) (D.42)

and

 i(k; �) =
@ŷ(kj�)
@ai

= �D(q)
C(q)

y(k � i) = D(q)

C(q)
�i(k; �) (D.43)

If [ 1(k; �); � � � ;  na(k; �)]T and [�1(k; �); � � � ; �na(k; �)]T are denoted  A(k; �)
and �A(k; �) respectively we may write

 A(k; �) =
D(q)

C(q)
�A(k; �) (D.44)

The �rst na elements of the model gradient  (k; �) is consequently found by �l-
tering of the �rst na elements of the state vector �(k; �) with the �lterD(q)=C(q).
Unlike for the ARMAX model structure

A(q)y(k) = B(q)u(k) +C(q)e(k) (D.45)

where it can be shown, see e.g. [Knu93], that

 (k; �) =
1

C(q)
�(k; �) (D.46)

the �lters for the general model structure are not equal for the di�erent \parts"
of �(k; �). Using similar arguments as above it is straightforward to show that

 na+i(k; �) =
@ŷ(kj�)
@bi

=
D(q)

F (q)C(q)
u(k � i) =

D(q)

F (q)C(q)
�na+i(k; �) (D.47)

 na+nb+i(k; �) =
@ŷ(kj�)
@fi

= � D(q)

F (q)C(q)
w(k � i; �) =

D(q)

F (q)C(q)
�na+nb+i(k; �) (D.48)

 na+nb+nc+i(k; �) =
@ŷ(kj�)
@ci

=
1

C(q)
�(k � i; �)

=
1

C(q)
�na+nb+nc+i(k; �) (D.49)
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 na+nb+nf+nc+i(k; �) =
@ŷ(kj�)
@di

= � 1

C(q)
v(k � i; �)

=
1

C(q)
�na+nb+nf+nc+i(k; �) (D.50)

Thus with

�BF (k; �) =
�
�na+1; � � � ; �na+nb+nf (k; �)

�T
(D.51)

�CD(k; �) =
�
�na+nb+nf+1; � � � ; �na+nb+nf+nc+nd (k; �)

�T
(D.52)

the model gradient can be written

 (k; �) =

2
6666666664

D(q)

C(q)
�A(k; �)

D(q)

F (q)C(q)
�BF (k; �)

1

C(q)
�CD(k; �)

3
7777777775

(D.53)

Notice that for the special case of the ARMAX model structure (D(q) =
F (q) = 1) the general expression for  (k; �) (D.53) reduce to (D.46) on the
facing page.

In order to �nd a convenient expression for the gradient V 0N (�; Z
N ) and the

Hessian V 00N (�; Z
N ) introduce

yf (k) = �D(q)
C(q)

y(k) (D.54)

uf (k) =
D(q)

F (q)C(q)
u(k) (D.55)

wf (k; �) = � D(q)

F (q)C(q)
w(k; �) (D.56)

�f (k; �) =
1

C(q)
�(k; �) (D.57)

vf (k; �) = � 1

C(q)
v(k; �) (D.58)
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and

	(�; ZN ) =2
666666666666666666666666666664

-yf (ks-1) -yf (ks) -yf (ks+1) � � � -yf (N -1)
...

...
...

...
...

-yf (ks-na) -yf (ks-na+1) -yf (ks-na+2) � � � -yf (N -na)
uf (ks-1) uf (ks) uf (ks+1) � � � uf (N -1)

...
...

...
...

...
uf (ks-nb) uf (ks-nb+1) uf (ks-nb+2) � � � uf (N -nb)
-wf (ks-1,�) -wf (ks,�) -wf (ks+1,�) � � � -wf (N -1,�)

...
...

...
...

...
-wf (ks-nf ; �) -wf (ks-nf+1,�) -wf (ks-nf+2,�) � � � -wf (N -nf ,�)
�f (ks-1,�) �f (ks; �) �f (ks+1,�) � � � �f (N -1,�)

...
...

...
...

...
�f (ks-nc; �) �f (ks-nc+1,�) �f (ks-nc+2,�) � � � �f (N -nc; �)
-vf (ks-1,�) -vf (ks; �) -vf (ks+1,�) � � � -vf (N -1,�)

...
...

...
...

...
-vf (ks-nd; �) -vf (ks-nd+1,�) -vf (ks-nd+2,�) � � � -vf (N -nd; �)

3
777777777777777777777777777775

Then it is easily checked that

V
0
N (�; Z

N ) = � 1

N � ks
	(�; ZN )E(�; ZN ) (D.59)

V
00
N (�; Z

N ) � 1

N � ks

NX
k=ks

 (k; �) T (k; �) =
1

N � ks
	(�; ZN )	T (�; ZN ) (D.60)

The above expressions for V 0N (�; Z
N ) and V 00N (�; Z

N ) can be easily and e�ciently
implemented in MatLab, see Appendix E on the facing page.

Having determined computable expressions for the criterion function VN (�; ZN )
and its �rst and second derivatives we may construct simple and e�ective search
algorithms based on Marquardts iteration scheme. If we want to get rid of initial
condition e�ects using delayed start of the criterion function, simply replace ks
with N1 � ks in (D.33), (D.59) and (D.60) and let

E(�; ZN ) = [�(N1; �); �(N1 + 1; �); � � � ; �(N; �)]T : (D.61)



Appendix E

A MatLab Function for

Computing �(�) and 	(�)

The following is an example of how the expressions for �(�) and 	(�) derived in
Appendix D may be e�ciently implemented into MatLab.

function [FI,PSI] = mk_signals(theta,nn,U,Y)

% [FI,PSI] = mk_signals(theta,nn,U,Y,) creates

% the state vector matrix FI and the model gradient

% matrix PSI from the parameter vector theta,

% nn=[na,nb,nf,nc,nd], input vector U and output

% vector Y.

% S. Toffner-Clausen, Last revised: 95.02.21

% Copyright (c) by the authors

% All Rights Reserved.

N = length(U);

ks = max(nn)+1;

na=nn(1);nb=nn(2);nf=nn(3);nc=nn(4);nd=nn(5);

ns = sum(nn);

Ns = N-ks+1;

PSI = zeros(ns,Ns); % allocating space for PSI

FI = zeros(ns,Ns); % allocating space for FI

jj = ks:N;

A = [1 theta(1:na)']; % A polynominal

B = theta(na+1:na+nb)'; % B polynominal
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F = [1 theta(na+nb+1:na+nb+nf)']; % F polynominal

C = [1 theta(na+nb+nf+1:na+nb+nf+nc)']; % C polynominal

D = [1 theta(na+nb+nf+nc+1:ns)']; % D polynominal

w = filter([0 B],F,U'); % use filter.m for fast

v = filter(A,1,Y')-w; % computation of signals

e = filter(D,C,v);

yf = filter(-D,C,Y');

uf = filter(D,conv(F,C),U');

wf = filter(-D,conv(F,C),w);

ef = filter(1,C,e);

vf = filter(-1,C,v);

for i = 1:na % computing FI and PSI

FI(i,:) = -Y(jj-i)';

PSI(i,:) = yf(jj-i);

end;

for i = 1:nb

FI(na+i,:) = U(jj-i)';

PSI(na+i,:) = uf(jj-i);

end;

for i = 1:nf

FI(na+nb+i,:) = -w(jj-i);

PSI(na+nb+i,:) = wf(jj-i);

end;

for i = 1:nc

FI(na+nb+nf+i,:) = e(jj-i);

PSI(na+nb+nf+i,:) = ef(jj-i);

end;

for i = 1:nd

FI(na+nb+nf+nc+i,:) = -v(jj-i);

PSI(na+nb+nf+nc+i,:) = vf(jj-i);

end;



Appendix F

Computing the � Estimate

through QR Factorization

Recall the performance function for the least squares parameter estimate given
as Equation (11.29) on page 187:

VN (�; Z
N ) = (Y � ��)T (Y ���) (F.1)

= kY � ��k2
2

(F.2)

where k � k2 is the usual Euclidean norm. Given an (N �N ) orthonormal matrix
T
1 the performance function VN (�; ZN ) is clearly not a�ected by the orthonormal

transformation:

VN (�; Z
N ) = kT (Y ���)k2

2
(F.3)

Now choose T such that:

T� =

�
Q

0

�
(F.4)

where Q is an (n � n) upper triangular matrix, where n is the order of the
parametric model.

Now rewrite Equation (F.4) as:

T
T
T� = T

T

�
Q

0

�
(F.5)

, � = T
T

�
Q

0

�
(F.6)

1An orthonormal matrix T satis�es TTT = I.
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Equation (F.6) on the preceding page is known as the QR Factorization of �.
QR factorizations is easily performed in e.g. MatLab.

Having determined a T and Q according to (F.6) introduce:

TY =

�
#

%

�
(F.7)

where # is a n vector and % is a N � n vector. Inserting (F.4) and (F.7) into
(F.3) it is easily seen that:

VN (�; Z
N ) =


�
#

%

�
�
�
Q

0

�
�


2

2

(F.8)

=


�
#� Q�

%

�
2

2

(F.9)

= k#� Q�k2
2
+ k%k2

2
(F.10)

The performance criterion given by (F.10) is clearly minimized for:

Q�̂N = # (F.11)

, �̂N = Q
�1
# (F.12)

The minimum of VN (�; ZN ) is then:

VN (�̂N ; Z
N ) = k%k2

2
(F.13)

Notice that from (F.4) on the page before it follows that:

Q
T
Q = �TTTT� = �T� = R(N ) (F.14)

where R(N ) is the coe�cient matrix for the non-transformed estimation problem,
see Equation (11.37) on page 188. It can now be shown that the ratio between
the smallest and largest eigenvalue of Q is the square root of that of R(N ),
see [Lju87, pp 276]. Consequently the inversion of Q is better conditioned that
the conversion of �T� and the parameter estimate given by Equation (F.12) has
superior numerical properties than the estimate given by (11.37) on page 188.

F.1 Transforming the Residuals

When applying maximum likelihood estimation on the parameter vector � the
residuals � shall be transformed into a non-singular distribution:

$ = R
T
� (F.15)
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where $ has non singular distribution. The choice of R a�ects the condition
number of the covariance matrix � for $. Since the numerical solution to the
maximum likelihood estimate involves inversion of � this should be well con-
ditioned. Inspired by the above QR factorization we suggest that R is chosen
as:

R
T = � ~T (F.16)

where � is a scalar scaling factor and ~T is the last (N � p) columns of T found
by the QR factorization above.

This particular transformation yielded very nice numerical properties of the max-
imum likelihood estimate. � scales the numerical value of the loglikelihood func-
tion.





Appendix G

First and Second Order

Derivatives of `($jU; �)

It will now be demonstrated how one may derive explicit expressions for the par-
tial derivatives of the loglikelihood function ` ($ jU; � ) with respect to �. Knowl-
edge of these derivatives enables us to construct the Fisher Information Matrix
given by:

M
4
= E

(�
@`

@�

��
@`

@�

�T)
= �E

�
@
2
`

@�2

�
(G.1)

) [M� ]ij = E

�
@`

@�i
� @`
@�j

�
(G.2)

Remember that the Hessian matrix H is given as:

H =
@
2
`

@�2
(G.3)

so that:

M = �E fHg (G.4)

Thus Fishers Information Matrix is the estimated Hessian.
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G.1 Partial First Order Derivatives of `($jU; �)

Recall Equation (11.111) on page 197:

` ($ jU; � ) = �1
2
ln(det �)� 1

2
$
T��1$ + k (G.5)

where � is given by:

� = R
T
XC�X

T
R+ R

T
C�R (G.6)

In order to evaluate the partial derivatives we need the following two Lemma's:

Lemma G.1 Consider an invertible square matrix � parameterized by a set of
scalars f�1; � � � ; �ng. The partial derivative of lndet(�) with respect to one of
the parameterizing constants �i may be written:

@ ln det (�)

@�i
= tr

�
��1

@�

@�i

�
(G.7)

Lemma G.2 Consider a matrix � as above. The partial derivative of ��1 with
respect to �i may be written:

@��1

@�i
= ���1 @�

@�i
��1 (G.8)

The proofs of these Lemma's are straightforward and may be found in [GGN92].
Applying the Lemma's to Equation (G.5) one obtain:

@` ($ jU; � )
@�i

= �1
2

@

@�i
flndet �g � 1

2
$
T @

@�i

�
��1

	
$ + 0 (G.9)

= �1
2
tr

�
��1

@�

@�i

�
+
1

2
$
T��1

@�

@�i
��1$ (G.10)

= �1
2
tr

�
��1

�
R
T
X
@C�

@�i

X
T
R+ R

T @C�

@�i

R

��

+
1

2
$
T��1

�
R
T
X
@C�

@�i

X
T
R+R

T @C�

@�i

R

�
��1$ (G.11)

When the parameterizations of the covariance matrices C�(�) and C�() have
been chosen the corresponding partial derivatives with respect to each element in
� may then be determined, and from (G.11) the partial derivatives of ` ($ jU; � )
can be found.
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G.2 Partial Second Order Derivatives of

`($jU; �)

Applying Equation (G.2) with (G.11) will yield the desired expression for the
Fisher Information Matrix. In [GGN92] it is shown that the Fisher Matrix can
be written:

[M� ]ij = E

�
@`

@�i

� @`
@�j

�
(G.12)

=
1

2
tr

�
��1

@�

@�i
��1

@�

@�j

�
(G.13)

=
1

2
tr

�
��1

�
R
T
X
@C�

@�i
X
T
R+R

T @C�

@�i
R

�
�

��1
�
R
T
X
@C�

@�j
X
T
R+R

T @C�

@�j
R

��
(G.14)

We may then use (G.14) to obtain an estimate of the Hessian matrix. With the
�rst and second order partial derivatives we may then construct powerful search
algorithms for the maximum of the loglikelihood function.

The partial derivatives of the noise covariance for the investigated parameteriza-
tions is presented in Appendix H on page 321. The results for the undermodeling
is given in Appendix I on page 323.





Appendix H

Partial Derivatives of the

Noise Covariance

The partial derivatives of the noise covariance matrix for the di�erent assump-
tions on the covariance structure will be derived. The partial derivatives is used to
compute the gradient and Fisher for the loglikelihood function of the transformed
residuals $ when searching for the maximum of the loglikelihood function.

Two di�erent parameterization of the noise covariance has been investigated:

C�1 = �
2

e � IN (H.1)

C�2(i; j) =

8>>>><
>>>>:

�
2
e

�
1 +

(c� a)2
1� a2

�
; i = j

�
2
e(�a)M

�
1 + c

2 � a � c� c=a
�

1� a2
; jj � ij =M

(H.2)

For C�1 the obvious solution is:

@C�1

@�2e

= IN (H.3)
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For C�2 a few hand calculations yield the following three derivatives:

@C�2(i; j)

@a
=8>>><

>>>:
�
2
e

�
2a(c�a)2�2(c�a)(1�a2)

(1�a2)2

�
; i = j

�
�2e(�a)

M [(1+c2�a�c�c=a)(M+(2�M)a2)+(a�a3)(c=a2�c)]
a(1�a2)2

�
; jj � ij =M

(H.4)

@C�2(i; j)

@c
=

8>>><
>>>:

�
2
e

�
2(c�a)
1�a2

�
; i = j

�
2
e

�
(�a)M(2c�a�a�1)

1�a2

�
; jj � ij =M

(H.5)

@C�2(i; j)

@�2e

=

8>>><
>>>:

�
1 + (c�a)2

1�a2

�
; i = j

�
(�a)M(1+c2�ac�c=a)

1�a2

�
; jj � ij =M

(H.6)



Appendix I

Partial Derivatives of the

Undermodeling Covariance

The partial derivatives of the undermodeling impulse response covariance matrix
for the di�erent assumptions on the covariance structure will be derived. The
partial derivatives is used to compute the gradient and Fisher for the loglikelihood
function of the transformed residuals $ when searching for the maximum of the
loglikelihood function.

Three di�erent parameterization of the undermodeling covariance has been in-
vestigated:

C�1 = � � IL (I.1)

C�2 = diag
1�k�L

�
��

k
	

(I.2)

C�3 =
�
��

0 � � ���L�1�T ���0 � � ���L�1� (I.3)

The partial derivatives are easily found as:

@C�1

@�
= IL (I.4)

@C�2

@�
= diag

1�k�L
�
k (I.5)

@C�2

@�
= diag

1�k�L
�k�

k�1 (I.6)

@C�3

@�
= 2�

�
�
0 � � ��L�1�T ��0 � � ��L�1� (I.7)
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@C�3

@�
= �

2

2
6664

0 1 � � � (L � 1)�L�2

1 2� � � � L�
L�1

...
...

. . .
...

(L� 1)�L�2 L�
L�1 � � � 2(L� 1)�2L�3

3
7775 (I.8)



Appendix J

ARMA(1) Noise Covariance

Matrix

Assume that the process noise �(k) is given by the ARMA(1) description:

�(k) = H(q) =
1 + cq

�1

1 + aq�1
e(k) (J.1)

where e(k) is white noise with variance �2e . If h�(k) is the impulse response of
H(q) we may write �(k) as:

�(k) =
1X
�=0

h�(�)e(k � �) (J.2)

The (i; j)'th element of the covariance C� is then de�ned by:

C�(i; j)
4
= E f�(i)�(j)g (J.3)

= E

(
1X
�=0

h�(�)e(i � �)
1X
�=0

h�(�)e(j � �)

)
(J.4)

= E

(
1X
�=0

1X
�=0

h�(�)h�(�)e(i � �)e(j � �)

)
(J.5)

Now since:

E fe(i � �)e(j � �)g = 0 (i � �) 6= (j � �) (J.6)

E fe(i � �)e(j � �)g = �
2

e (i � k) = (j � l) (J.7)
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we may write the covariance as:

C�(i; j) = �
2

e

1X
�=0

h�(�)h�(�+ j � i) (J.8)

Given the ARMA(1) noise description (J.1) on the page before we may write the
di�erence equation for �(k) as:

�(k) = �a�(k � 1) + e(k) + ce(k � 1) (J.9)

The impulse response h�(k) is then obtained by setting e(k) = �0(k):

h�(0) = 1 (J.10)

h�(1) = �a + c (J.11)

h�(2) = �a(�a + c) (J.12)

h�(3) = (�a)2(�a + c) (J.13)

h�(n) = (�a)n�1(�a+ c) (J.14)

or:

h�(k) =

�
1 ; k = 0
(�a)k�1(�a+ c) ; k > 0

(J.15)

We may now compute the (i; j)'th element of C� as follows:

C�(i; j) = �
2

e

 
1 +

1X
�=1

�
(�a)��1(�a + c)

�2!
j-i=0 (J.16)

= �
2

e

 
1 + (�a + c)2

1X
�=1

�
(�a)2���1

!
j-i=0 (J.17)

= �
2

e

�
1 + (�a + c)2

1

1� a2
�

j-i=0 (J.18)

C�(i; j) = �
2

e

 
(�a + c) +

1X
�=1

(�a)��1(�a + c)(�a)�(�a + c)

!
j-i=1 (J.19)

= �
2

e

 
(�a + c) + (�a + c)2(�a)1

1X
�=1

�
(�a)2���1

!
j-i=1 (J.20)

= �
2

e

�
(�a+ c) + (�a+ c)2(�a)1 1

1� a2
�

j-i=1 (J.21)
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C�(i; j) = �
2

e

�
(�a)M�1(�a + c)+

1X
�=1

(�a)��1(�a + c)(�a)��1+M (�a + c)

!
j-i=M (J.22)

= �
2

e

 
(�a)M�1(�a+ c) + (�a+ c)2(�a)M

1X
�=1

�
(�a)2���1

!
j-i=M (J.23)

= �
2

e

�
(�a)M�1(�a + c) + (�a + c)2(�a)M 1

1� a2
�

j-i=M (J.24)

for M > 0. However since C� is symmetric we may generalize the above expres-
sions. A little rearranging then gives:

C�(i; j) =

8>>>><
>>>>:

�
2
e

�
1 +

(c � a)2
1� a2

�
; j = i

�
2
e

�
(�a)M 1 + c

2 � ac� c=a

1� a2

�
; jj � ij =M

(J.25)

where j � j denotes absolute value.





Appendix K

Extracting Principal Axis

from Form Matrix

Here it will shown how the principal axis and the angle of an ellipse with form
matrix P can be extracted from the form matrix. Let the ellipse in Figure K.1
on the following page with major and minor principal axis a and b respectively
and angle A be given by the ellipse equation

x
T
P
�1
x = 1 (K.1)

In order to �nd the major and minor principal axis and the angle we perform an
eigenvalue decomposition of the form matrix P�1:

P
�1 = V DV

�1 (K.2)

where D = diagf�1; �2g is a diagonal vector of eigenvalues and V is a 2-by-2
matrix whose columns are the corresponding eigenvectors. We may then write

x
T
V DV

�1
x = 1 (K.3)

) x
T
V D

1
2D

1
2V

�1
x = 1 (K.4)

) y
T
y = 1 (K.5)

with

y = D
1
2V

�1
x (K.6)

) x =
�
D

1
2V

�1
��1

y (K.7)

, x = V D
� 1
2 y (K.8)
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Figure K.1: Ellipse with major and minor principal axis a and b respectively and
angle A.

Thus the ellipse given by (K.2) on the page before can be seen as the circle (K.5)
on the preceding page transformed by

x = V D
� 1
2 y (K.9)

For V = I2 we obtain

�
x1

x2

�
=

"
�
� 1
2

1
0

0 �
� 1
2

2

# �
y1

y2

�
(K.10)

, x1 =
1p
�1

y1; x2 =
1p
�2

y2 (K.11)

corresponding to a pure scaling in the y1�y2 plane. Assuming that the eigenvalue
decomposition has been ordered such that �1 � �2 the major and minor principal
axis are given by

a =
1p
�1

; b =
1p
�2

(K.12)

The eigenvector matrix V performs a rotation of the scaled circle, see Figure K.2
on the facing page.
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�0:5

y
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Figure K.2: Rotation of ellipse.

Then it is easy to check that � in Figure K.2 may be written as the following
transformation of �

� = R�; R =

�
cos(A) � sin(A)
sin(A) cos(A)

�
(K.13)

Thus the angle A of the ellipse is given by the solution to the equation

V =

�
cos(A) � sin(A)
sin(A) cos(A)

�
(K.14)

The solution in degrees can then be determined as follows

� First quadrant:

cos(A) � 0
sin(A) � 0

�
) V11 � 0

V21 � 0

�
) A = arccos(V11)

180

�
(K.15)

� Second quadrant:

cos(A) < 0
sin(A) � 0

�
) V11 < 0

V21 � 0

�
) A = arccos(V11)

180

�
(K.16)

� Third quadrant:

cos(A) < 0
sin(A) < 0

�
) V11 < 0

V21 < 0

�
) A = 360� � arccos(V11)

180

�
(K.17)

� Fourth quadrant:

cos(A) � 0
sin(A) < 0

�
) V11 � 0

V21 < 0

�
) A = 360� � arccos(V11)

180

�
(K.18)





Appendix L

Determining Open Loop

Uncertainty Ellipses

The open loop Nyquist G(ej!Ts)K(ej!Ts) with estimated error bounds can be
quite useful in assessing the robustness of the closed loop system. Clearly, pro-
vided the plant is stable, a necessary and su�cient condition for closed loop
stability is that none of the open loop uncertainty ellipses include the Nyquist
point (�1; 0). In this appendix we will show how the form matrices for the open
loop uncertainty ellipses are determined from the plant uncertainty ellipses and
the controller.

Clearly the open loop uncertainty ellipse at frequency ! is centered at the nominal
open loop Nyquist G(ej!Ts)K(ej!Ts). The ellipse is ampli�ed by jK(ej!Ts)j and
rotated \(K(ej!Ts)) degrees in comparison with the plant uncertainty ellipse at
that frequency. We wish to determine the transformation matrix R which must
be multiplied onto the form matrix P~g for the plant uncertainty ellipse to obtain
the form matrix for the open loop ellipse Pol. Let the plant uncertainty ellipse
at frequency ! be given by

z = x
T
P
�1
~g x (L.1)

Then let us start by considering the two vectors y and v given in Figure L.1 on
the following page.

Let jyj = jvj and let y and v be given by

y =

�
y1

y2

�
=

� jyj cos( )
jyj sin( )

�
(L.2)

v =

�
v1

v2

�
=

� jvj cos( � �)
jvj sin( � �)

�
(L.3)
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Figure L.1: Rotating the vector y � degrees.

Thus v is the vector y rotated � deg. Let us determine the transformation matrix
R which performs this rotation. Thus:

v = Ry (L.4)

)
� jvj cos( � �)
jvj sin( � �)

�
= R

� jyj cos( )
jyj sin( )

�
(L.5)

)
�
cos( � �)
sin( � �)

�
=

�
R11 R12

R21 R22

��
cos( )
sin( )

�
(L.6)

)
8<
:

cos( � �) = R11 cos( ) +R12 sin( )

sin( � �) = R21 cos( ) + R22 sin( )
(L.7)

The equations (L.7) are ful�lled for the transformation matrix R given by

R =

�
cos(��) � sin(��)
sin(��) cos(��)

�
(L.8)

Note that � in Figure L.1 was a negative rotation. If we use standard sign
convention for �, the transformation matrix R becomes

R =

�
cos(�) � sin(�)
sin(�) cos(�)

�
(L.9)

If jvj = kjyj, the result is
v = kRy (L.10)

with R given by (L.8).
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Then let us consider the ellipse equation for z = 1:

x
T
P
�1
~g x = 1 (L.11)

) x
T
V DV

�1
x = 1 (L.12)

) x
T
V D

1
2D

1
2V

�1
x = 1 (L.13)

) �zT �z = 1 (L.14)

Here P~g = V DV
�1 is the eigenvalue decomposition of the form matrix and �z is

obviously given by �z = D
1
2V

�1
x. (L.14)is the equation for a circle. Consequently,

a point �z0 on a circle can be transformed to a point x0 on the ellipse with form
matrix P~g = V DV

�1 via

x
0 =

�
D

1
2 V

�1
��1

�z0 = V D
� 1
2 �z0 (L.15)

Then a point y0 on the open loop ellipse ampli�ed by k and rotated by � is given
by the transformation (L.10) on the facing page:

y
0 = kRx

0 = kRV D
� 1
2 �z0 (L.16)

) �z0 =
�
kRV D

� 1
2

��1
y
0 =

1

k
D

1
2 V

�1
R
�1
y
0 (L.17)

and

�zT �z = 1 (L.18)

) 1

k2
y
T
�
D

1
2V

�1
R
�1
�T �

D
1
2V

�1
R
�1
�
y = 1 (L.19)

) 1

k2
y
T
R
�T
V D

1
2D

1
2V

�1
R
�1
y = 1 (L.20)

) 1

k2
y
T
R
�T
P
�1
~g R

�1
y = 1 (L.21)

) y
T
P
�1
ol y = 1 (L.22)

where Pol is given by

Pol = k
2
RP~gR

T (L.23)

which is the desired transformation for k = jK(ej!Ts)j and � = \(K(ej!Ts)).




