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English abstract

Currently we observe a dramatical increase of wireless data traffic and a ris-
ing number of mobile radio transceivers like Bluetooth, WiFi or LTE. Wireless
networks become more robust and deliver data rates many times higher than
rates available a couple of years ago. LTE, which is the currently imple-
mented standard for mobile communication, implements performance param-
eters which not so long ago were available only for cable networks.

There is also observed a trend to implement many radio receivers in a
single integrated circuit. Radio receivers become more software-based, due
to significant increase of computational power avaialible in integrated circuits.
Nevertheless, some necessary analog-domain processing is still a must. Analog
elements are an obstacle in integrated implementation of radio receivers, dig-
itization of radio receivers is desirable. Unfortunatelly, due to the constantly
increasing traffic, there is a problem of interference, which makes digitization
of radio receivers even more difficult. High-order low-pass filters are needed
to remove interfering signals and secure a high-quality reception.

In the mid-2000s a new method of signal acquisition, called compressed
sensing, emerged. Compressed sensing is a mathematical tool which allows
for sub-Nyquist signal sampling. In this thesis the author opens a new possi-
bility of relaxing requirements for analog signal filtering in a direct conversion
receiver by applying compressed sensing. In the proposed solution,high-order
low-pass filters which separate the downconverted baseband signal and inter-
ference, may be replaced by low-order filters. Additional digital signal pro-
cessing is a price to pay for this feature. Hence, the signal processing is moved
from the analog to the digital domain.

Filtering compressed sensing, which is a new application of compressed
sensing, is proposed. The author shows that by applying appropriate signal
acquisition it is possible to filter out the wanted signal with a reduced signal
sampling frequency and reduced filter order. A compressed-sensing based
direct conversion receiver is proposed. An LTE signal generator, which is a
side accomplishment of the project is also presented.
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Dansk abstrakt

I tiden ser vi en dramatisk stigning i tr̊adløs data trafik og et stigende antal
mobile radiotranscievere, s̊asom Bluetooth, WiFi og LTE. Tr̊adløse netværk
bliver mere robuste og overfører datarater mange gange højere end det var
muligt for nogle f̊a år siden. LTE, som er den nuvæ rende, implementerede
standard til mobilkommunikation, implementerer ydelses parametre, som for
ikke s̊a lang tid siden kun var mulige i kablede netværk.

Der ses ogs̊a en tendens til at implementere mange radiomodtagere i et
enkelt integreret kredsløb. Radiomodtagere bliver mere softwarebaserede, p̊a
grund af en signifikant stigning i tilgængelig beregningskraft i integrerede
kredsløb. Dog m̊a en del af signalbehandlingen stadig foreg̊a i det analoge
domæne. Analoge komponenter er en hindring i implementationen af integr-
erede kredsløb i radiomodtagere, digitalisering af radiomodtagere er at fore-
trække. Uheldigvis, p̊a grund af konstant stigende trafik, er interferens et
problem, som komplicerer digitalisering af radiomodtagere yderligere. Lav-
pasfiltre af høj orden er nødvendige for at fjerne interfererende signaler og
sikre signalmodtagelse af høj kvalitet.

I midten af 2000’erne opstod en ny metode til signal m̊a linger, kaldet com-
pressive sensing. Compressive sensing er et matematisk værktj, som tillader
at tage m̊alinger af signalet under Nyquistraten. I denne afhandling åbner for-
fatteren for muligheden for at sænke kravene til den analoge signal filtrering
i en direct conversion modtager, ved at anvende compressive sensing. I den
foresl̊aede løsning kan lavpassfiltre af høj orden, som separerer the nedkonvert-
erede baseband signal og det interfererende signal, erstattes af lavpassfiltre af
lav orden. En ulempe ved denne teknik er en stigning i digital signal pro-
cessering. Dermed flyttes signal processeringen fra det analoge til det digitale
domæne.

Ydermere foresl̊as filtering compressive sensing, som er en ny anvendelse
af compressive sensing. Forfatteren viser at ved at anvende passende signal
m̊alinger er det muligt at filtrere det ønskede signal ud med en sænket sig-
nalm̊alingsfrekvens og reduceret filter orden. En compressive sensing-baseret

v



DANSK ABSTRAKT vi

direct conversion modtager foresl̊as. En LTE signal generator, som er et bipro-
dukt af projektet, præsenteres ogs̊a.
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Chapter 1

Introduction

1.1 Problem overview

1.1.1 Demand for integration and digitization

In 1956 an integrated circuit was invented in AT&T labs. Integrated circuit
implements electronic circuits on a chip of silicon material, hence its colloquial
name ”chip”. It is impossible to overestimate influence of this invention on
electronics engineering. Nowadays, finding an electronic device which does
not contain at least one integrated circuit would be a difficult task, if not
impossible. For the last couple of decades there is a trend to integrate more
and more electronic circuits into silicone chips. There are both technological
and economical reasons behind this tendency. Using integrated circuits sig-
nificantly simplifies electronic circuits design. Electronic devices built with
integrated circuits are also cheaper and far more reliable. There is observed a
constant progress in integrated circuits fabrication technology, thus the pro-
cess of increasing integration is practically possible. In the year 2000 180 nm
fabrication process was the best technology available - now (2013) 14 nm fabri-
cation process is available. It is probable that the recent invention in material
technology (graphen etc.) will allow fabrication of even more miniaturized
integrated circuits.

Together with integration of electronic circuits comes a strong demand
for digitization. Digital electronic circuits process data which is quantized in
values and discrete in time. There are few strong arguments for digitization.
Firstly, digital systems are significantly easier in practical implementation.
As it was mentioned, a huge part of today’s electronic devices is build using
integrated circuits. Field effect transistors, which construct modern digital
electronic circuits, are relatively easy in integrated circuits implementation.

1



CHAPTER 1. INTRODUCTION 2

On the other hand passive analog elements, like resistors, capacitors or coils
are difficult and problematic in implementation. Furthermore, digitization is
a desired process from an electronics designer perspective. Currently, virtu-
ally all electronic circuits are designed with use of systems for computer-aided
design (CAD systems). Automatization of digital circuits design is relatively
easy when compared to automatization of analog circuits design. Finally, dig-
ital data can be stored without signal quality loss. It must be mentioned
however, that digital data storage requires more memory than analog data
storage. Fortunately, in the last 2 decades technology of digital memory de-
vices made a resplendent progress, hence it’s no longer a practical problem.
Therefore, currently in electronics engineering there is an unstoppable trend
to digitlize as many parts of the devices as possible, which in signal processing
circuits means moving signal processing from the analog to the digital domain.

This tendency to digitization is also present in radio receivers. It is ex-
pected that future radio receivers will be more software-based than hardware-
based. It can be already observed that heterodyne receivers, which consist
of many analog blocks, are displaced by direct conversion receivers [23]. Ad-
ditionally to already mentioned adventages for digitization, software-based
receivers will allow for more flexible implementation of new radio commu-
nication standards - a receiver can be updated by uploading new software
instead of changing the whole hardware. This paradigm is known as soft-
ware defined radio [19, 23, 21]. Furthemore, digitization of radio receivers
is a promising process due to implementation of electronic filters and mixers
which are commonly used in radio receivers. Analog filters occupy large space
on a chip and cause many dificulties in integrated circuit implementation. Di-
tial filters do not have this disadventages, hence are far more implementable
[24, 11, 10, 13, 14]. Unfortunatelly, due to noise and interference [34, 35, 36]
there are sginificant obstacles in digitization of analog filters. Removing analog
filtering completely would force enourmous sampling frequency of analog-to-
digital converters, and huge data flow from an analog-to-digital converter to
a digital signal processing circuit [9, 2, 11, 23]. In this thesis the author tries
to open a path to obey the interference obstacle in receiver digitization by
applying a relatively new mathematical technique called compressed sensing
[37, 38, 39, 40, 42, 41] to acquire signals. Strictly speaking, the author put
the following hypothesis: It is possible to relax analog filtering in a direct con-
version receiver and move more signal processing into the digital domain by
applying compressed sensing to the acquisition of downconverted signals.
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1.1.2 Organization of the thesis

The thesis is organized as follows. Chapter 1 (current) brings necessary entry
knowledge. To put this thesis in some historical context, run-down of radio
receivers and computational machines is briefly recalled in Section 1.1.3. Ba-
sics of analog-to-digital conversion are recalled in Section 1.2. Background of
compressed sensing theory is recollected in Section 1.3. Motivation for the
conducted research is presented in Section 1.4. Some radio receivers theory is
recalled in this Section. The current thesis is written as a collection of papers.
Three scientific papers are included as appendices. Scientific contribution of
these papers is discussed in Section 1.5 of the introductory Chapter.

1.1.3 Historical context

In the last century radio communication systems made a stunning career. We
are surrounded by radio receivers, even though usually we do not even no-
tice this fact. Most of the radio receivers are not AM/FM receivers, which
are colloquially called ”radios”, but data receivers present in mobile phones
and computers, like GSM/3G/LTE or Bluetooth peripherials. Due to popu-
larization of mobile systems, in developed countries there are multiple radio
receivers per household and this number is constantly increasing.

Inventions in radio transmission date as back as late 19th century, when
german inventor Heinrich Hertz transmitted and received electromagnetic
waves for the first time. After Hertz, famous italian inventor Guglielmo Mar-
coni and american Nicola Tesla independently continued work on radio. Mar-
coni in 1901 firstly transmitted radio signal over the Atlantic Ocean, from
Cornwall, Great Britain to Newfoundland in Canada. At its beginning ra-
dio communication used Morse code to transmit information, even though
canadian scientist Reginald Fessenden firstly transmitted voice over the radio
waves as early as 1901. The breakthrough in speach transmission came after
invention of a superhetrodyne receiver in 1918 by american Edwin Armstrong.
Just a decade after, first radio receivers became enough small and portable
to be installed in cars and soon become a standard equipment in personal
vehicles. After the Second World War the market of radio receivers started
to develop quickly and new higher-frequency bands were utilized. License-
free ISM (Industry, Scientific, Medicine) band was established in 1985, which
launched new applications of short-distance radio transmission. First cellu-
lar network system, yet still analog, was Nordic Mobile Telephony (NMT)
established in early 1980s in the Nordic countries.

Similarly to radio receivers, computational circuits are present today in so
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many devices, that usually we do not even notice them. Counter intuitively,
most of these computers are not personal computers, but embedded systems
which are present in consumer electronics, vehicles and industrial machines.
In the last couple of decades, computers were implemented into a large number
of business and industrial processes, which raised automatization of industry
into a new level and tremendously increased economic efficiency of services and
production. Hence to computer systems today’s transportation facilites, like
cars, aircrafts or trains, are less dangerous. It is because in many time-critical,
complex control tasks computer systms are far more reliable than humans and
can predict potential faults in these transport facilites faster and more reliable.
Last but not least, we can not forget computer systems embedded into medical
devices, which very literally save lifes of millions of humans.

All the above is well-known as digital revolution, and its origins date back
to the Second World War. Let us recall some important milestones of this
process. Nearly a century ago not only computing machines were extremely
expensive, heavy and huge in size, but also very unrealiable. At that time
computers were purely analog systems of a very limited practical application.
Second World War brought a breakthrough, since computing machines were
found very successful for military code-breaking tasks. Soon it apeared that
in application to computing, digital systems are far better solution than ana-
log technology. After the war, british mathmatician Allan Turing proposed an
idea of Turing’s machine which is an important foundation for today’s comput-
ing. At the same time american hungarian-born scientist John von Neuman
developed Von Neumann computer architecture, in which program and data
share the same memory. Most of the modern computers implement this ar-
chitecture. In 1947 Shockley, Brattain and Bardeen during their research in
AT&T Labs invented a transitor. Transistors substituted big, cumbersome
and unreliable electron tubes as basic elements for building computers. In
1958 Jack Kilby invented an integrated circuit, which enabled miniaturization
and mass-production of computer elements. On the physical, implementation
level transitors implemented into integrated circuits are the nuts-and-bolts of
absolutely every modern computer. For their invention, Shockley, Brattain
and Bardeen got the Nobel Prize in Physics in 1956, while Kilby need to wait
until 2000 for being honored by Royal Swedish Academy of Sciences for his
invention. In the late 1970s Intel brought the first x86 architecture micropro-
cessor into the market. Few years after IBM introduced their first IBM-PC
computer, which is based on x86 microporcessor, and made IBM-PC standard
open and publicily available. The IBM-PC soon became a world standard, and
now is an ordinary household appliance in developed countries.

History of development of radio systems and history of computers were
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Figure 1.1: Timeline with milestones in history of radio, computer and radio
data transmission/software defined radio

recalled separatelly, because unitl 1980’s radio transceivers technology and
computer systems technology were separate areas of the electrical engineer-
ing. Standard IEEE 802.11, also known as WI-FI, implemented an idea of
wireless local area network. This standard brought possibility of radio data
communication between computer systems and significantly increased mobility
of personal computers. Few years later, wireless Bluetooth standard enabled
short-distance communication between many types of different electronics de-
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vices, like phones, computers or tablets. The second, already digital genera-
tion of cellular networks, Global System for Mobile Communication (GSM),
started in Europe in early 1990s. Currently, fourth generation of digital cellu-
lar networks, called Long Term Evolution is being deployed in many countries
around the globe. Currently, most of the state-of-the-art consumer electronics
is equipped with a multistandard data radio transceiver.

Not only radio transmitters became present in computer systems, but also
computational circuits became a part of radio transmitters and receivers. For
many decades radio receivers were designed as purely analog circuits. Super-
heterodyne was the most widely used receiver architecture due to its superior
performance quality, and remained the most popular receiver architecture un-
til late 1990s. In 1991 Joe Mitola coined a term ”Software Defined Radio”,
in which antenna signal is directly sampled by an analog-to-digital converter
and further processed by a digital signal processing circuit. Unfortunatelly,
this idea is impossible to be implemented with today’s technology and turned
out to stay fully conceptual - among practical engineers it is often an object of
derision. It is due to huge sampling frequency needed to acquire antenna sig-
nals which induces enormous energy dissipation and massive data flow, which
in practice cannot be handled. Nevertheless, computational power available
to be implemented in integrated circuits increases, and the digitization of ra-
dio receivers is an ongoing process. Around the year 1990 very most of all
the receivers were heterodyne, but already in the late 1990s direct conversion
receivers outnumberred superheterodyne receivers due to implementation is-
sues - a direct conversion receivers consist of significantly less analog elements.
Analog elements occupy large space on chip and cause far more difficulties in
design. Currently, engineers aim to reduce the analog part of the receiver by
moving signal processing into the digital part of a receiver. Antenna signal
is preprocessed in the analog domain and than sampled by analog-to-digital
converters. The sampled signal is processed by digital signal processing sys-
tem. Soon it came into sight that digitized radio receivers are faster, more
stable and more universal than analog architectures.
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Figure 1.2: The analog-to-digital converters constitute a boudnary between
digital circuits and the real analog world. Sensors changes phyiscal values into
voltage, which is then translated into digital values. Computer system may
interact with a real world by digital-to-analog converters.

1.2 Analog-to-digital conversion

As it was mentioned above, absolutely all today’s computers are digital ma-
chines. The real world, however, is analogue, because in reality we treat the
time and any other signal value as continuous. Maybe it is not entirely true
- physicist introduced Planck length and Planck time, because it is possible
that in micro-scale the real world is discrete. Nevertheless, this dicretization
is so small, that in macro-scale the time and any real value are virtually con-
tinuous. This difference between computers and the real world enforces using
devices which transforms continuous, real values into discrete values. These
devices are analog-to-digital converters (ADCs). As Figure 1.2 shows, analog-
to-digital converters [1, 2, 3, 4, 5, 9] connect the real, analog domain with
the digital domain, while digital-to-analog converters perform the vice-versa
translataion. Information theory states that it is easier to build a digital-to-
analog converter than an analog-to-digital converter, which is beyond question
confirmed in practice. In modern radio receivers analog-to-digital converters
are used to acquire a preprocessed radio signal and transform it into the dig-
ital domain [3, 10, 11, 12, 13, 14]. Theory of analog-to-digital conversion is
recalled in the following subsection.
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1.2.1 Sampling rate

Analog to digital conversion is a process of transforming an analog signal into
a sequence of numbers (Figure 1.3). Let us analyze an analog, continuos signal
s(t):

s(t) = cos(2πft), −∞ < t < +∞ (1.1)

where f is a signal frequency, t is time. Uniform sampling [1, 15, 16, 17] is the
most widely used sampling scheme. In this scheme a given signal is sampled
in regular time moments, which are uniformly distributed (hence the name).
Uniform sampling transforms a signal s(t) into a discrete series of samples
s[k], k ∈ Z according to:

s[k] = cos(2πfkTs), k ∈ Z (1.2)

where Ts is a uniform sampling period. The signal sampling frequency is
fs = T−1s . Very important in the theory of sampling is Dirac’s delta function
δ(t). Generalized function δ(t) [18] can be approximated as:

δ(t) =
1

x
√
π
e
−t2

x2 x→∞ (1.3)

This function has the follwing characteristic:∫ +∞

−∞
δ(t) = 1 (1.4)

Function σ(t) consists of N →∞ Dirac’s delta functions δ(t) shifted in time.
These shifts are multiples of the sampling period Ts:

σ(t) =
∑
k∈Z

δ(t− kTs) (1.5)

From strictly mathmatical point of view, sampling of a given signal s(t) is a
convolution between σ(t) and the given signal s(t):

s[k] = s(t) ∗ σ(t) (1.6)

It can be observed that sampling gives a very limited information about the
sampled signal, since it is unknown how does the signal look like in between
the moments of sampling. It is easy to prove, that a series of samples s[k] is
identical for the signal s(t) = cos(2πft) and any other signal f(t) = cos(2πft+
nTs), n ∈ Z, if the uniform sampling period is Ts [15, 16, 17]. Therefore, for
a given Ts, many different signals corresponds to the same series of samples
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Figure 1.3: Analog to digital conversion. Two different signals are represented
with the same series of samples. Sampled signal on the right is discrete in
time and quantized in values. The signal in red is clearly sampled with too
low sampling frequency

s[k]. This principle is presented in Figure 1.3. The famous Shannon-Nyquist
sampling theorem [15, 16, 17] addresses this problem. The theorem states
that a finite energy signal of the highest signal frequency component B can
be unambigously represented by a sequence of uniform samples s[k], if the
samples are taken with a sampling frequency fs, which is at least twice higher
than the highest frequency component present in the signal:

fs > 2B (1.7)

The above is a crucial theorem for digital signal processing. The Nyquist
frequency of a signal s(t) is equal to twice the highest frequency component
present in the signal:

fN = 2B (1.8)

Ratio of a signal sampling frequency to the Nyquist frequency of this signal
is known as the oversampling ratio (OSR):

β =
fs
fN

(1.9)

If the oversampling ratio β is lower than 1, then, according to Nyquist-Shannon
sampling theorem, signal is not represented correctly and can not be recon-
structed. In the last decade, a new sampling theorem known as compressed
sensing arised, which enables sub-Nyquist sampling if certain conditions are
fulfilled.

1.2.2 Analog-to-digital converter model

Conceptual model of an ADC converter is presented in Figure 1.4. Sample-
and-hold is a central element of an ADC. The sample-and-hold consists of a
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Figure 1.4: Conceptual model of an ADC converter

sampler, which samples signal in a given moments of time and a zero-order
memory which holds the sampled values. The sampler is externally controlled
by a clock signal. An analog-to-digital converter has its certain maximum
frequency of an input signal. This maximum frequency, called Full-Power
Bandwidth (FPBW), comes from technological constraints. If the highest
frequency component of an input signal is higher than FPBW, then the signal
is distorted by input circuitry of the ADC before the signal is sampled. After
the signal is sampled, the sampled values are quantized [7, 6]. Quantization
function Q(s[n]) transforms the sampled signal values s[n] ∈ R into an N -bit
discrete-valued signal y[n] ∈ Q, where Q is the quantized domain:

y[n] = Q(s[n]) (1.10)

The number of output bits N , usually called resolution, is one of the basic
parameters of an analog-to-digital converter. Currently, there are ADCs with
resolution from 8 to 24 bits available on the market [2, 9]. Quantization
interval 4N is the largest possible difference between two different values
of the sampled signal which gives the same quantized value. If a uniform
quantization is used, then 4N is:

4N =
L+
ref

2N + 1
(1.11)

where L+
ref is the higer reference level. The above assumes that zero is treated

as the lower reference level. There are many different formulas for quantization
function. An example of quantization function is:

y[n] =

⌊
s[n] + 0.54N

4N

⌋
(1.12)

where bc is a floor rounding function. In this case limitations for the sampled
signal are as follows:

−0.54N ≤ s[n] < L+
ref + 0.54N (1.13)
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It can be observed that two different values of s[n] may give the same
quantized value y[n]. Due to the above, quantization introduce an information
loss. Error between the real sampled value s[n] and the sampled value which
corresponds to the quantized value y[n] is known as quantization noise e[n]
[8]:

e[n] = 4N · y[n]− s[n] (1.14)

If the uniform quantization is used, signal-to-noise ratio of a quantized signal
is:

SNRideal [db] = 6.02N − 1.76 + 10log(β) (1.15)

where β (1.9) is the signal oversampling ratio . The above SNRideal is a the-
oretical ideal value of an SNR, valid only if an analog-to-digital converter
is modeled as ideal. Noise and other hardware imperfections made that
the signal-to-noise ratio is lower in practical implementations. Nevertheless,
SNRideal sets the limit of the signal-to-nosie ratio and gives an overview about
the possible performance of signal conversion. It is clear from 1.15, that the
higher ADC resolution, the better quality of signal sampling.

1.2.3 Implementation issues of analog-to-digital conversion

Currently, there are several types of practical realizations of analog-to-digital
converters [1, 2, 4, 5, 7, 9], of which the most important are: sigma-delta, flash
(direct conversion), half-flash, pipelined, and succesful approximation (SAR).
In all of these realizations of analog-to-digital converters there is always a
tradeoff between available maximum sampling frequency, available quantiza-
tion, power dissipation and a price of a converter. In his famous paper [1]
Walden gives two figures-of-merit which combine performance parameters of
analog-to-digital converters:

P = 2N · fs (1.16)

F =
2N · fs
Pdiss

(1.17)

where Pdiss is the power dissipated by an ADC. According to [1] the F pa-
rameter increases in time, while P stays more or less constant. However, Le
et. al. [2] observed that the P parameter also increases with a development of
ADC technology and updated Walden’s findings. Fig. 1.5 shows the availiable
analog-to-digital converters produced by one of the largest manufacturers [9].
Red line shows the highest possible sampling frequency available for different
quantization. Prices for the high-end converters are also given. Blue line shows
the highest possible sampling frequency availiable for different quantization,
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Figure 1.5: The highest available sampling frequency fs vs. the quantizationN
(red plot). Prices for the high-end converters are given. The highest available
sampling frequency fs vs. the quantization N if the price limit is $10 p. unit.
(blue plot).

with an additional requirement that the price p. unit does not exceed $10.
It can be observed, that sampling frequency available for N = 24 is few hun-
dreds lower than the sampling frequency available for N = 8. It is also clear
that the high-end converters are significantly more expensive. Obviously, it
is only an example of a manufacturer, nevertheless the general rule is similiar
for all manufacturers. The data rate fd of information given by a converter
and the disspated power Pdiss increase if the average sampling frequency fs or
the resolution N increase [1, 2]:

fd ∝ fsN (1.18)

Pdiss ∝ fsN (1.19)

When combining the above with (1.15) it can be stated, that to increase the
quality of a signal acquisition, it is reasonable to apply these solutions which
require low sampling frequency.
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1.3 Background on compressed sensing

1.3.1 Mathmatical model of compressed sensing

Nyquist-Shannon sampling theorem [15, 17] assumes that the only knowledge
about the sampled signal is its bandwidth B, which is the highest frequency
component present in the signal spectrum. It is a very limited knowledge and
as its consequence the minimum signal sampling frequency according to this
theorem is set up high - as twice the signal bandwidth B. Compressed sensing
[39, 41, 38, 37, 40, 42] emerged in the mid 2000s as a mathmatical theory
which enables below-Nyquist signal sampling. With this theory it is possible
to acquire significantly fewer signal samples than in the Nyquist sampling and
still reconstruct the sampled signal perfectly. Applying compressed sensing
into a direct conversion receiver is the core solution proposed to support the
main hypothesis of this work.

A concept of signal compressibility is strongly connected to the theory of
compressed sensing. Let us define a zero norm ‖v‖00 as:

‖v‖00 = card{vi : |vi| > 0}, i ∈ {1, ..., L} (1.20)

where vi are coefficients of a given vector v ∈ CL×1. In english, zero norm
defines the number of non-zero coefficients in a vector. A vector is sparse if
most of its coefficients are zeros. Strictly speaking, a vector v is S-sparse, if
S of its coefficients are non-zero:

‖v‖00 = S (1.21)

Let us define a signal vector x ∈ RN×1. The given signal x is compressible if
it can be well-approximated by a sparse vector v ∈ RL×1 in some dictionary
matrix Ψ ∈ RN×L

x ≈ Ψv (1.22)

During an acquisition process the signal vector x is acquired and translated
into an observation vector y ∈ RM×1:

y = Φx, Φ ∈ RN×M (1.23)

where Φ ∈ RN×M is an observation matrix. The number of rows M in the
matrix Φ is lower than the number of columns N . Therefore, the observed
signal y is shorter than the original signal x. Compressed sensing theory
states, that it is possible to reconstruct the original signal x from the observed
shorter signal y, if the original signal x is compressible as defined above (1.22).



CHAPTER 1. INTRODUCTION 14

Coefficients
vector

CPU

Dictionary
matrix Signal Measurement matrix

Observed 
vector

Reconstruction
procedure

Reconstructed
signal

Signal model Compressed sensing acquistion

= 

Signal

= 
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A reconstruction algorithm R generates a reconstructed vector with signal
coefficients v̂ based on the observed signal y, the signal dictionary Ψ and the
measurement matrix Φ:

R(y,Ψ,Φ) ; v̂ (1.24)

Then, the reconstruted signal x̂ is:

x̂ = Ψv̂ (1.25)

Figure C.8 shows the canonical model of a compressed sensing system. Signal
x, which is modeled as in (1.22), is acquired by the measurement matrix Φ,
hence the observed vector y is created. The orignal signal is reconstructed
computationally.

It is easy to show a connection between compressed sensing and sub-
Nyquist spectrum sensing when a generalized inverse Fourier transform dic-
tionary ΨI ∈ RN×Q is used. This dictionary is a matrix ΨI:

ΨI =

ψ1,−K · · · ψ1,0 · · · ψ1,K
...

. . .
. . .

. . .
...

ψN,−K · · · ψN,0 · · · ψN,K

 (1.26)

where:
ψn,k = exp[j2πtnfk] (1.27)

The number of columns in the matrix ΨI is Q = 2K + 1, where K is
the number of posititve frequencies represented by the dictionary. Frequency
separation between columns of the matrix ΨI is γ. A k-th column of the
matrix ΨI corresponds to a tone of a frequency fk:

fk = kγ k ∈ {−K, ..., 0, ...,K} (1.28)
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Time period represented by the dictionary ΨI is td. Signal representation
sampling frequency fr of the dictionary columns is:

fr =
N

td
(1.29)

Bandwidth reflected by the dictionary is B = Kγ. Dictionary oversampling
ratio βΨ is:

βΨ =
fr

2Kγ
(1.30)

In practical applications if the acquistion as in (1.23) holds the inequality:

M <
N

βΨ
(1.31)

than the acquistion reflects the sub-Nyquist spectrum sampling if the original
signal x is modeled with a given dictionary ΨI.

1.3.2 Signal reconstruction

If a signal is sampled according to the Nyquist principle, then its reconstruc-
tion is straightforward. On the contrary, signal reconstruction in compressed
sensing requires usage of extensive computational algorithms. As a tradeoff,
rate of a signal acquisition is relaxed. Since computational circuits are imple-
mented in the digital domain, it can be stated that with compressed sensing
it is possible to move some part of a signal acquisition from the analog to the
digital domain.

Reconstruction of a vector with frequency coefficients v as in (1.24) is
a non-trivial task. Currently, there are extensive research tasks performed
in many institutions on methods of compressed sensing reconstruction, and
already many algorithms were elaborated [41, 38, 44, 45, 40, 46]. These meth-
ods differ in reconstruction performance, execution time and memory con-
sumption. Hence, in practical application a reconstruction method must be
matched to a given problem.

To make the compressed sensing possible, the original signal x must be
compressible. If this signal is compressible, the correctly reconstructed vector
with dictionary coefficients is sparse. The naive reconstruction is based on a
search for the most sparse signal:

v̂ = argmin
v
‖v‖0 subj. to: ‖Θv − y‖2 = 0 (1.32)

where matrix Θ ∈ CM×Q is:
Θ = ΦΨ (1.33)
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The reconstruction as in (1.32) gurantees the best possible reconstruction
performance [41]. Unofortunatelly, in virtually all practical applications this
reconstruction is impossible to be performed. It is because the problem of
looking for the most sparse signal is an NP-hard computational problem and
size of this problem is so huge, that the reconstrucion as in (1.32) is impracti-
cal. To make the problem feasible, it is possible to replace the reconstruction
which is based on `0 minimization with a reconstrucion based on `1 minimiza-
tion. Such a reconstruction it is:

v̂ = argmin
v
‖v‖1 subj. to: ‖Θv − y‖2 = 0 (1.34)

In the theory of compressed sensing the above is known as basis pursuit. Solv-
ing the above optimization problem is feasible because, if certain conditions
are met, this problem is convex. In practice, reconstrucion performance of `1
minimization as in (1.34) is insignificantly lower than `0 minimization as in
(1.32).

In real world, the sampled signal is polluted with noise. In this case recon-
struction as in (1.34) is incorrectly stated becasue its feasible region is defined
too strictly. Therefore, the feasible region of the `1 minimization must be
relaxed:

v̂ = argmin
v
‖v‖1 subj. to: ‖Θv − y‖2 < ε (1.35)

Optimization defined as in the the above is known as basis pursuit denois-
ing. The higher the signal noise level, the higher ε value should be used.
Reconstruction performance of basis pursuit denoising depends significantly
on accuracy of adjusting value of the ε parameter. Too low ε makes the
optimization problem infasible. Too high epsilon compromise the quality of
reconstruction, since the feasibly region is too large. In practice, adjusting
the ε cause problems since the level of noise may be difficult to predict. Basis
pursuit denoising regularization is another version of a reconstruction based
on `1 optimization:

v̂ = argmin
v

λ‖v‖1 + 0.5‖y −Θv‖22 (1.36)

Similarly to the ε parameter in basis pursuit denoising, in the above optimiza-
tion the λ parameter must be adjusted to the noise level.

In compressed sensing columns of the Θ matrix are non-orthogonal. Pos-
sibility of successful reconstruction of the sampled signal depends on level of
this non-orthogonality. Restricted isometry property (RIP) [41, 38, 43] quan-
tifies how much non-orthogonal are the columns of the matrix Θ, if only S
columns from the matrix are considered at a time.
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The RIP constant ζS of the matrix Θ is the smallest number which fulfills the
inequality:

(1− ζS)||q||22 ≤ ||Aq||22 ≤ (1 + ζS)||q||22 (1.37)

for all vectors q, for all the possible matrices A which consits of S columns
from a given matrix Θ. The lower ζS, the more orthogonal are columns of a
matrix A. The restricted isometry property is based on an observation that
the more non-orthogonal are columns of a given matrix A, the less preserved is
length of a vector mutliplied by this matrix. Definition as in (C.31) is correct
if columns of the matrix A are orthonormal. If columns of the matrix A are
not normalized, but still have identical length, then correct is the inequality:

√
λ(1− ζS)||q||22 ≤ ||Aq||22 ≤

√
λ(1 + ζS)||q||22 (1.38)

where the rescaling parameter λ is equal to the length of columns the matrix
A:

λ = ‖as‖22 as = {1, ..., S} (1.39)

Let us consider the following example of systems of vectors, which are showed
in Figure 1.7. On the left hand side of the Figure 1.7 there is a coordinate
system A defined as

A =

[
4 3
−3 4

]
= [a b] (1.40)
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This system consists of two vectors a and b which are clearly orthogonal to
each other. Length of these two vectors is ‖a‖2 = ‖b‖2 = 5, hence the rescaling
parameter λ = 5. Let us define in the system A a vector qA = [ 1 1 ]T, length
of the vector defined in the system A is ‖qA‖2 =

√
2. The canonical system

B is:

B =

[
0 1
1 0

]
(1.41)

Vector qA defined in the canonical system B is:

qB = AqA. (1.42)

hence in the presented example it is qB = [ 1 7 ]T. It ieasy to check that
the inequality (1.38) holds for ζS = 0. If the system A is as given, inequality
(1.38) holds for any vector q. In the second example, on the right hand side
of the Figure 1.7 vectors which constitute the system A are non-orthogonal
to each other. When a vector qA = [ 1 1 ]T defined in the system A is
represented in the canonical system B length of the vector is changed, so in
general, the inequality (1.38) holds for ζS > 0.

The second class of reconstruction algorithms, are greedy algorithms [45,
46]. These algorithms are not based on a convex optimization. Although the
computational complexity of these algorithms is signifcantly lower if compared
to the convex-based reconstruction algorithms, usuall reconstruction perfor-
mance of greedy algorithms is substantially poorer. Therefore, in this thesis
the author concentrates on `1-based reconstruction algorithms.

1.3.3 Signal acquistion

Quality of signal reconstruction depends to a high degree on the resticted
isometry property of a given matrix Θ. The matrix Θ (1.33), depends on a
measurement matrix Φ and a dictionary matrix Ψ. Hence, for a given dic-
tionary matrix Ψ performance of a signal reconstruction depends to a high
degree on a compressed sensing acquisition, which is reflected by the measure-
ment matrix Φ. Quite some work has been done in the area of Compressed
Sensing acquisition. Kirolos et al. [47] proposed a Random Demodulator
framework, further developed in [49]. The Random Demodulator uses modu-
lation and filtering before signal sampling. This acquisition system provides
good performance and high durability against clock jitter effect, however it
requires massive analog preprocessing applied to the input signal. Further-
more, Random Demodulator is also sensitive to the filter imperfections [48].
Mishali and Eldar [51, 52] presented their work on sub-Nyquist sampling of
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sparse wideband analog signals. They developed a Modulated Wideband Con-
verter (MWC) which is a multi-sampler, analog system dedicated to sample
wideband signals. This work combine a Random Demodulator approach with
Multi Coset Sampling [54] strategy. Albeit the MWC guarantees good perfor-
mance, expanded analog preprocessing is an unavoidable part of the MWC.
Furthermore, multi-sampler architecture makes this system useless in many
mobile and power-constraint applications.

In the thesis, compressed sensing is applied to a radio receiver. hence, a
multi-sampler compressed sensing acquisition system is not suitable for this
thesis. Furthermore, an acquisition system should not impose additional sig-
nal preprocessing in the analog domain. Therefore, a single-ADC sampling
acquisition system, which implements random sampling is considered in the
thesis.

1.4 Motivation - digitization and silicon
integration of data receivers

General structure of a data receiver is shown in Figure 1.8. Signal from the
antenna is firstly preprocessed in the analog domain by an analog front-end
of a receiver. The preprocessed signal is then sampled by an analog-to-digital
converter and further processed in the digital domain by a digital signal pro-
cessing system. The analog-to-digital converter is a border between the two
domains, therefore it is desired to place the analog-to-digital converter as close
to the antenna as possible, to minimize signal processing in the analog domain.
There superheterodyne receiver and a direct conversion receiver are recalled
in this Section. Furthermore, an idea of software defined radio is recalled and
discussed. Finally, motivation and main hypothesis of this work is discussed.
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1.4.1 Superheterodyne receiver

The architecture of a 2-stage superheterodyne receiver is shown in Fig. 1.9.
Frequency mixer is the core of a stage of the receiver. Ideal frequency mixer is
an electronic circuit which output signal is a product of its two input signals.
In superheterodyne receivers one of a mixer input is driven by a local frequency
oscilator, a remaing input is treated as a signal input. The mixer output signal
sout(t) it is:

sout(t) = sin(t) · slo(t) (1.43)

where sin(t) is a mixer input signal, slo(t) is a local oscilator signal. If the
mixer input signal sin(t) is a modulated signal sin(t) = a(t) cos (2πfint) and
the frequency oscilator signal slo(t) is a wave with constant frequency and
amplitude slo(t) = cos (2πflot) than the mixer output signal is:

sout(t) =
1

2
a(t) cos (2π(fin − flo)t)︸ ︷︷ ︸

downconverted signal

+
1

2
a(t) cos (2π(fin + flo)t)︸ ︷︷ ︸

upconverted signal

(1.44)

The above is a fundamental equation which describes a frequency mixer. The
mixer output signal consists of two separate signals with two different fre-
quencies. The first signal component (downconverted) is the input signal
sin(t) moved down in the frequency domain from fequency fin to fin − flo.
For contradiction, the second signal component is the input modulated signal
sin(t) shifted up in the frequency domain from fequency fin to fin + flo. For
simplicity, it is convenient to use the frequency notation to describe the mixer
input/output:

fout = fin − flo︸ ︷︷ ︸
downconversion

+ fin + flo︸ ︷︷ ︸
upconversion

(1.45)

A superheterodyne receiver consists of multiple stages. Before the wanted
antenna signal of a frequency fr is downconverted to the desired low frequency
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flow, the antenna signal is downconverted in the stages to intermediate fre-
quencies. Frequency oscilator in a k-stage, generates a signal of a frequency
flok. This signal is mixed with a stage input signal. Hence, in every k-stage
the input signal is downconverted in the frequncy domain to a lower interme-
diate frequency fink. According to (1.45), the intermediate frequency signal

fink consists of the wanted downconverted component f
(l)
ink and the unwanted

upconverted component f
(h)
ink :

fink = f
(l)
ink + f

(h)
ink (1.46)

The upconverted component f
(h)
ink must be filtered out, therefore in every stage

there is a band-pass filter applied after the mixer. Furthemore, in a super-
heterodyne receiver there is a problem of an image signal. Let us consider the
first stage of the superheterodyne architecture. The wanted antenna signal fr
is downconverted to a lower intermediate frequency f

(l)
in1. It is easy to show

that there may exists an image signal of a frequency fim1 6= fr which is moved
by a frequency mixer to the same intermediate frequency:

f
(l)
in1 = flo1 − fim1 (1.47)
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Frequency of the wanted antenna signal is fr = flo1 + f
(l)
in1, frequency of the

image signal is fim1 = flo1−f
(l)
in1. This image signal overlaps the wanted signal

in the intermediate frequency and therefore causes severe signal corruption.
Similiar problem occurs in every next stage of a superheterodyne receiver.
Therefore, an additional filter which rejects the unwanted image signal is often
used in superheterodyne receivers. In Figure 1.9 architecture of a 2-stage
superheterodne receiver is presented. Conversion of signals in a receiver is
shown in Figure 1.10.

The superheterodyne receiver was invented in 1918 and for many years
this architecture was the most widely used receiver architecture. The most
important reason for adopting the superheterodyne architecture as the world
standard was its superior performance. In 1995 more than 98% of all the
receivers were heterodyne [22]. Nevertheless, currently superheterodyne is
considered as a declining technology. Due to multiple frequency mixers and
local signal generators, which are fully-analog elements, the superheterodyne
architecture is difficult in integrated circuit implementation. Furthermore,
band-pass filters are implemented off-chip, which generates additional imple-
mentation problems, especially in signal routing. Therefore, in the current
implementations, a direct conversion architecture takes place of the super-
heterodyne architecture.

1.4.2 Software defined radio

Software defined radio (SDR) architecture is shown in Figure 1.11. Software
defined radio, which was firstly proposed by Mitola in [19] is a receiver ar-
chitecture which goes in a completely diffent direction than superheterodyne
receiver. In this architecture signal from an antenna is directly sampled by an
analog-to-digital converter. Althought there is no analog preprocessing, the
idea of software defined radio is unrealizable for typical radio frequencies used
for data transmission (fr > 100MHz). As for now, the full software defined
radio stays only conceptual. It is due to extremely high sampling frequency

ADC
Digital
Signal

Processing

Data

analog 
domain

digital 
domain

Figure 1.11: Concept of full software defined radio
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needed to acquire the antenna signal, which would cause huge energy dissi-
pation and very high data rate infeasible to be processed by a digital signal
processing circuit. According to the Nyquist theory [15, 17] the antenna sig-
nal must be sampled with a frequency fs higer than twice the antenna signal
bandwidth:

fs > 2B (1.48)

The analog-to-digital converter has a resolution of N bits, hence the rate of
data flow from the converter is:

fd[bps] > 2BN (1.49)

For instance, if bandwidth of an antenna signal is B = 4GHz, and the reso-
lution is N = 10 bits, than the sampling frequency fs must be higher than
8GHz and the data flow fd is higher than 80bps, which is infeasible in real-
ization. Furthermore, due to the noise present in the antenna signal there is
a need for high signal oversampling, and accoridng to Abidi [22] N = 10 bits
of resolution is not enough.

But even though the idea of software defined radio is impractical, it points
a direction of an evolution of radio receivers. Instead of a revolutionary trans-
formation into software defined radio, an evolutionary change in radio receiver
architectures can be observed in the last two decades [22, 23, 21, 24, 14, 12].
The costdriven evolution has been proceeding towards implementation in in-
tegrated circuits and moving more signal processing from the analog to the
digital domain.

1.4.3 Direct conversion receiver

In Figure 1.12 an architecture of a direct conversion receiver is presented. In
this architecture the input antenna signal is filtered with a band-pass filter,
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amplified and downconverted by a mixer directly to a baseband signal. The
mathmatical description of this operation is as follows. The mixer input signal
is the antenna signal sr(t) = a(t) cos (2πfint). In the described architecture,
frequency of a signal slo generated by a local oscilator is equal to the frequency
of the received antenna signal:

slo(t) = cos (2πfint) (1.50)

The converted signal sc(t) = sr(t) · slo(t) is then:

sc(t) = a(t) cos (2πfint) · cos (2πfint) (1.51)

The above can be transformed to:

sc(t) = s(l)c + s(h)c =
1

2
a(t)︸ ︷︷ ︸

baseband signal

+
1

2
cos (4πfrt)︸ ︷︷ ︸

high frequency signal

(1.52)

The transformed signal consists of the low frequency component s
(l)
c and the

high frequency component s
(h)
c . The low frequency component is the wanted

baseband signal, the high frequency component must be removed by a low-pass
filter. The baseband signal is then sampled by an analog-to digital converter.
Conversion of signals in a direct conversion receiver is presented in Figure 1.13.
The direct conversion architecture have serious drawbacks, if compared to the
superheterodyne architecture. Firstly, due to only one stage of signal process-
ing this architecture is more vulnerable to distortion. The signal slo generated
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by the local oscilator has the high frequency flo equal to the frequency of the
received radio signal fr, which may cause problems in implementation of the
local oscilator. Furthermore, together with imperfections in mixer implemen-
tation, the high frequency generated by the local generator causes spurious
leackage and DC-offset present in the baseband signal. Nevertheless, direct
conversion receivers consist of significantly fewer analog elements than super-
heterodyne receivers. Hence, the direct conversion receivers are more conve-
nient in integrated circuit implementation. Therefore, in the last two decades
implementations of direct conversion architecture outnumbered implementa-
tions of superheterodyne architecture, even though performance of the latter
is visibly better.

1.4.4 Motivation and the main hypothesis

A block diagram of a quadrature direct conversion receiver is shown in Figure
1.14. After the antenna there is a bank of band-pass filters, which choose the
wanted radio channel. Then the filtered radio signal is amplified and down-
converted by a quadrature downconverter. In the quadrature downconverter
there are two separated paths for I and Q signals. Frequency mixers are
used to downconvert the I and Q signals, low-pass filters are used to separate
wanted baseband signals with unwanted high-frequency components. When
the high frequency components are removed by the low-pass filters, analog-
to-digital converters acquire the baseband signal, which is transformed to the
digital domain.
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The band-pass filters are implemented off-chip. The amplifier, the mixers
and the low-pass filters are on-chip analog elements. Low-pass filters used
in practical realizations of the direct conversion architecture must be high-
order filters. It is due to interference signals which are present in the radio
antenna signal and were not removed by the band-pass filters. In currently
implemented stanards (LTE, WiMAX) there are many possible radio channels
with a different frequency width. In receivers which are dedicated for many
standards it is virtually impossible to implement all the needed band-pass
filters and efficiently remove all interference signals. Let us assume that there
is an interfering signal sb in the radio spectrum:

sb(t) = b(t) cos (2πfbt), fb = fr + fx (1.53)

where fr is the frequency of the wanted radio signal, fx is the frequency
separation between the interfering signal and the wanted radio signal. The

signal after the mixer sc consists of a low frequency component s
(l)
c and a high

frequency component s
(h)
c . If there is an interfering signal, then s

(l)
c and s

(h)
c

in the in-phase path are as follows:

s(l)c =
1

2
a(t)︸ ︷︷ ︸

baseband

+
1

2
b(t) cos (2πfxt)︸ ︷︷ ︸

interference

(1.54)

s(h)c =
1

2
a(t) cos 4πfrt︸ ︷︷ ︸

baseband

+
1

2
b(t) cos (2π(2fr + fx)t)︸ ︷︷ ︸

interference

(1.55)

It is easy to show that the interfering signal is present in the signal after
the mixer. The same problem occurs in quadrature-phase path. Now, let as
assume that the interfering signal sb is close to the wanted radio signal, such
that

fx � fr (1.56)

Impact of the interfering signal on the conversion of radio signal in a direct
conversion receiver is presented in Figure 1.15. Removing the whole high-

frequency component s
(h)
c (together with the interference) can be easily done

with a low-order filter. However, after the mixers, there is an unwanted low-
frequency interfering signal which also must be removed. If the interfering
signal is close to the radio signal as in (1.56), than characteristics of the
low-pass filters after the mixers must be very sharp to separate the wanted
baseband signal from the interference (blue line in Figure 1.15). Furthermore,
there must be many low-pass high-order filters implemented, for different sizes
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of the bandwidth of the wanted signal. These low-pass filters cause severe im-
plementation problems. According to Nyquist principle, avoiding these high-
order filters would require a very high signal sampling frequency, which would
also casue implementation problems and extreme energy dissipation, In many
cases such a high sampling frequency is impossible to being implemented in
practice.

In this thesis the author tries to answer the following problem: is it pos-
sible to avoid high-order low-pass filters and apply a first-order filter on a
baseband signal after the mixer without increasing the analog-to-digital sam-
pling frequency to the Nyquist frequency of the interfered signal?

New possibilities for solving this problem appear with increasing compu-
tational power available in receivers. In 2000 a high performance semi-SDR
limited to high frequency signals was proposed [21]. A new receiver architec-
ture which was supposed to be feasible for Software Defined Radio for GSM
(Global System for Mobile Communications) frequencies was proposed in [23].
Recently, Ben-Romdhane et al. [24, 25, 26] proposed a direct conversion cir-
cuit in which uniform sampling is replaced with a pseudorandom sampling
technique, then the sampled signal is reconstructed in a DSP (Digital Signal
Processing) system. Hence, a minor reduction of the order of the quadrature
downconverter filters was possible.

Compressed sensing opens new areas in the theory of signal acquistion,
however, there is still a shortage of practical applications of compressed sens-
ing. In this thesis the author puts the following hypothesis: By applying
compressed sensing to the acquisition of downconverted signals it is possible
to relax analog filtering in a direct conversion receiver and move more sig-
nal processing into the digital domain without increasing the analog-to-digital
sampling frequency to the Nyquist frequency of the interfered signal.

1.5 Research contribution

This section summarizes the main research contributions in Publications A to
C.

1.5.1 Publication A

The first paper published, it is a paper about LTE system simulations in Mat-
lab. The paper was published in Microwave Journal. During work on modern
communication systems it was found that there is a shortage of publicly-
availalbe software dedicated to LTE simulations. The LTE standard intro-
duces significant performance increase when compared to the previous stan-
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dards, but as a tradeoff, there is a high level of system complexity. Therefore,
simulation of LTE systems is a non-trivial task.

Methodology of simulating LTE systems was proposed. A relevant software
was developed and published on a website. Additionally, some visualization
software, called ”LTE Professor”, was developed. The paper comments phys-
ical layer of the LTE standard (downlink) and presents the proposed method-
ology. The developed software and some simulations are demonstrated.

1.5.2 Publication B

The second paper was published in Proceedings of the International Sym-
posium on Communication and Information Technologies ISCIT 2012. The
paper presents the problem of high-order low-pass filters in a direct conversion
receiver, which are needed to filter out the interference.

A method which relaxes requirements for low-pass signal filtering in a
receiver is presented. In this method compressed sensing is proposed to mit-
igate the problem of interference. Idea of the relaxed compressed sensing
reconstruction problem, in which only a part of a sampled spectrum is to be
reconstructed is presented. Random single-ADC sampling device is proposed
as a sampler. Both the theoretical and experimental results show that with
the proposed method it is possible to apply first-order filters after the mixers
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in a direct conversion receiver and still filter out interfering signals without a
huge increase of the sampling rate.

1.5.3 Publication C

The third paper is submitted to the IEEE Transactions on Wireless Commu-
nications. In this paper the method of compressed sensing filtering, firstly
presented in the paper B, is developed. Filtering restricted isometry property
is introduced. With this parameter it is possible to assess sampling patterns
in respect of compressed sensing filtering. Additionally, an idea of interference
scenario generator, which significantly decreseas the amount of computations
needed to calculate the restricted isometry parameter, is presented.

An algorithm which generates random sampling patterns with additional
constraints is presented in the paper, together with a method and a system
which chooses the best sampling pattern. It is shown that sampling grid has
a huge impact on the compressed sensing filtering.

The above allow for finding a sampling pattern which enables a compressed
sensing filtering. An experiment which proves that method works well in
practice is presented.

1.5.4 Conclusion

A method of compressed sensing-based interference mitigation, and its appli-
cation to a direct conversion receiver is a results of the research conducted
in this work. Based on the proposed compressed sensing-based method of re-
laxing the low-pass filtering it can be concluded that By applying compressed
sensing to the acquisition of downconverted signals it is possible to relax analog
filtering in a direct conversion receiver and move more signal processing into
the digital domain without increasing the analog-to-digital sampling frequency
to the Nyquist frequency of the interfered signal.
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A.1 Introduction

Long Term Evolution (LTE) is a state-of-the-art standard for wireless com-
munication, currently in technical implementation [3, 4, 5]. The standard has
been defined by the 3GPP organization and it is publicly available – every
engineer, researcher or student can download the official specification from
the www.3gpp.org website. The 3GPP organization manages an international
project called EPS (Evolved Packet System), which is widely known as the
4th generation of mobile telecommunication systems (4G). The Evolved Packet
System includes the entire architecture of the 4G mobile systems, both packet
network and radio interface. LTE is a part of the EPS project, which refers
to a 4G air interface standard. Currently many companies in the world, as
well as many universities, conduct research and development on this technol-
ogy. The authors of this paper are in volved in research on signal processing
for LTE systems, and they found that there is a lack of free software able to
generate LTE signals. Although open source advanced LTE system simula-
tors exist, no easy-to-use, public domain signal generators exist to be used in
signal processing research and development. This article presents a toolbox
to fill this gap. Functions able to generate the downlink LTE signals are the
main part of the toolbox. Together with the functions, a module named LTE
Professor is presented. LTE Professor is a GUI (Graphical User Interface)
which is able to generate LTE signals, analyze these signals and visualize LTE
time/frequency resources utilization. The whole source code is GPL licensed
and is publicly available at the authors website [8].

The presented article is divided into two main parts. The first part is an
introduction to the LTE downlink Physical Layer. Here we discuss basics of
the LTE downlink time/frequency resources and signal generation. The second
part of the article presents usage and architecture of the software, together
with some examples of generated LTE signals.

A.2 LTE downlink introduction

The 4th generation of mobile telecommunication systems has, at least in the-
ory, very good performance parameters in comparison to the previous gen-
erations [5]. Unfortunately, this gain came at a price of significant compli-
cation of the whole system. The LTE protocol stack is divided into several
layers. Additionally, there is a distinction between the downlink and uplink
protocol stacks, since there are significant asymmetries between the different
directions of data transmission. Description of the entire LTE system would
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Figure A.1: Time/frequency resources organization

exceed the limitations of a single article. Therefore, this work is focused on a
MATLAB toolbox which emulates the LTE downlink transmitter. This trans-
mitter translates codewords, which are the input to the transmitter, into the
LTE radio signal. The software is dedicated to engineers and scientists who
are involved in research on modern communication signals and systems. In
particular, this toolbox is useful in research on the LTE BTS transmission
circuits, antenna systems and User Equipment (UE) receiver front ends. It
can also be practical in investigation of the LTE and OFDM channel models.
In addition, this software can cooperate with models of higher LTE downlink
layers.

During the downlink data is passed from a base station (BTS) to a number
of user equipment (UE) which is currently within a range of the BTS. To pro-
vide downlink data transmission service for multiple users, LTE systems use
Orthogonal Frequency Division Multiple Access (OFDMA). The baseband sig-
nal is created using Orthogonal Frequency Division Modulation (OFDM). In
OFDMA resources are represented in a time/frequency plane (Figure 2) - one
Resource Element (RE) is an atomic unit in the plane. The LTE standard fully
supports multi antenna technology, so there may be up to 8 time/frequency
planes.

The accessible bandwidth is divided into a number of subcarriers [1]. In
the LTE standard the separation between subcarriers is 15kHz during regular
transmission. Subcarriers are gathered in Resource Blocks (RB), where one
RB consists of 12 subcarriers. The number of subcarriers depends on the size of
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Figure A.2: The LTE downlink transmitter in the LTE stack

the baseband. However, there is always an integer number of resource blocks
in the baseband. There are six possible bandwidths in the LTE standard:
1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, and 20MHz.

The time organization is a bit more complicated [1, 3, 5]. One symbol
is an atomic unit of the time/frequency plane. The base length of a symbol
(ts) is equal to a multiplicative inverse of the subcarriers separation, so ts =
(15kHz)−1 = 66.7µs. The Inverse Fast Fourier Transform (IFFT) operation
is used to generate a downlink signal. To ensure reliable transmission, a copy
of the last part of a symbol is copied to the beginning of every symbol, this
copy is called ’Cyclic Prefix’ (CP). Cyclic Prefix has a length tCP, and this
length may differ depending on the current CP settings. There are two basic
CP settings: normal CP and extended CP.

The symbols are grouped in Radio Slots (RS). The duration of a single
RS is always 500µs. The number of symbols in one RS depends on the cyclic
prefix type currently in use. There are six symbols in one RS in case of the
extended cyclic prefix. In case of the normal cyclic prefix there are seven
symbols in one RS. Additionally, in the latter case every first symbol in a
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Figure A.3: The LTE trassmitter model architecture

RS has a longer cyclic prefix. A longer LTE time unit is a Subframe (SF).
The subframe has a time length of 1 ms and it consists of two Radio Slots.
A group of consecutive ten Subframes constructs a Radio Frame (RF). The
RF is the longest time unit in the LTE standard. The duration of one RF is
10ms (Figure 2). In the LTE downlink bandwidth resources are granted to a
specific UE as a group of resource blocks. The resource assignment is renewed
in every SF and cannot be changed until the end of a SF.
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A.3 The MATLAB models of the LTE transmitter

A.3.1 LTE downlink transmitter

Figure 1 shows the position of the LTE downlink transmitter in the LTE pro-
tocol stack. There are two main parts of the LTE Physical Layer responsible
for processing data from the higher layers. The upper part is responsible for
multiplexing and channel coding [2]. The bottom part is responsible for phys-
ical channels modulation and mapping to the resource elements [1]. The MAC
layer controls the entire physical layer [1, 2, 3, 5]. The presented MATLAB
model emulates the bottom part of the Physical Layer.

The resource planes, in which signals and channels are mapped, are given
to the OFDM modulator. The modulator generates the baseband signal. The
baseband signal is then up-converted to the LTE radio signal. The presented
software emulates both the baseband signal generator and the radio frequency
generator. The baseband in-phase and quadrature signals (I and Q signals),
as well as the radio frequency signal are the output from the presented model.
Additionally, users have access to the resource planes and modulation symbols
mapped to all physical signals and channels. Downlink data comes to the
transmitter in the form of codewords. Codewords are mapped to physical
channels. Different physical channels can be in use depending on the current
type of transmission. In the LTE standard different types of transmission
are used on different Antenna Ports (AP). The implemented MATLAB model
supports the most common type, the transmission with Cell Specific Reference
(CRS) signals [1]. The multi antenna transmission is supported. In the current
software version the first and the second transmission modes are implemented.

A.3.2 The LTE transmitter model and supplementary
software

The presented MATLAB model is available in the form of a toolbox. The
detailed description of the toolbox can be found in [8]. The ’LTE scenario’
structure must be passed as an argument to the main generator function.
This structure is necessary to run the generator. It groups user settings and
settings coming from the MAC layer. The toolbox contains examples of LTE
scenario files to be used by users as a base for their own LTE scenario

The second data structure passed to the generator is a structure with
codewords data. In general this structure is not required since in the case
of no input data the LTE generator sends random bits. Additionally, it is
possible to include codewords only for a few physical channels the missing
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Figure A.4: Power spectral density of the baseband signals (1.4 MHz band-
width).

Figure A.5: Baseband signals in the time domain (1.4 MHz bandwidth).

data will be randomly generated.
The generator returns one structure. Obviously this structure contains the

baseband and radio band signals. Beside of these signals there are resource
matrices that indicate signals/channels mapping and modulation mapping,
matrices with symbols mapped to particular channels and structures with LTE
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Physical Layer specific parameters. The detailed description of this structure
can be found in [8].

The next essential part of the presented toolbox is the ’LTE Professor’
module. This module consists of two main parts. The first part is dedicated
to be a graphical interface for the developed MATLAB LTE model functions.
With this part users are able to set all parameters of the LTE scenario used by
the LTE transmitter function. It is possible to get information about time and
frequency parameters of the signal which corresponds to the adjusted scenario
settings. Finally the user is able to generate the LTE downlink signal and
store in the chosen file.

The second part of the LTE Professor is able to analyze and visualize
generated signals. Users can observe the detailed view of the signals and
channels mapping. This view gives information about modulation schemes
and values mapped to all Resource Elements used in the analyzed LTE signal
(Figure 6). It is possible to generate the indicative ’helicopter view’ of the
entire resources plane (Figure 7). Moreover, the entire LTE signal, as well
as every particular LTE symbol in the generated transmission, can be viewed
and analyzed in the frequency and time domains (Figures 4, 5). The extensive
description of the LTE Professor is available at [8].

The validation of the software was performed in a few different ways. The
LTE Professor module, which is also a part of the presented toolbox, was
originally dedicated to validate the generator. The generated signals were an-
alyzed with the LTE Professor. Mapping of LTE signals into time/frequency
resources were compared with the maps that can be found in literature. Ad-
ditionally, the peak-to-average- power ratio of the generated LTE bandwidth
signals was measured to ensure that the generated signals are correct.

A.3.3 The software internals

Figure 3 shows the architecture of the implemented MATLAB models. The
main ’LTE DL1a’ script controls the whole process. The LTE Resource Pa-
rameters Calculation unit (RPC) is run as the first sub module. This unit
generates three structures: ’sP’,’sF’ and ’sT’, which contain LTE system pa-
rameters, LTE bandwidth parameters and LTE time parameters respectively.
These three structures are used in all later steps of the LTE signal generation.
After running the RPC unit, three identical matrices are allocated in the
Resources Allocation (RA) unit. These matrices reflect the time/frequency
resources. The number of rows in the matrices is equal to the number of
subcarriers and the number of columns is equal to the number of symbols in
the entire LTE transmission. The reference and synchronization signals are
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Figure A.6: Screen shot of the LTE Professor.
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added in the Signals Mapping (SM) unit. The channels are mapped to the
time/frequency resources in the Channel Mapping (CM) unit.

When all signals and channels are mapped to the LTE resources, the IFFT
module generates the pure OFDM signal (without CPs). Adding cyclic pre-
fixes to the pure OFDM signal generates the final baseband signal. Afterwards,
the signal is up-converted to the radio frequency.

A.3.4 Examples of signals generated by the software

Figure 4 shows the power spectrum density of the example baseband signal
generated by the software. The signal on this figure is a 1.4 MHz LTE base-
band signal. It appears that the power is not uniformly distributed, which is
due to the nonuniform channels and signals mapping. In the LTE standard
not all resource elements are in use during transmission. Rules of the channel
and signal mapping can vary due to the current bandwidth settings.

In Figure 5 the above LTE baseband signals are shown in the time domain.
The time length of the shown signals is equal to the time length of one symbol
with a cyclic prefix. The cyclic prefix, marked in black, is exactly the same as
the last part of the symbol it is correct according to the LTE standard. The
presented plots are generated automatically using the LTE Professor software.
A screenshot of this software, with a view on the resource elements with
mapped signals and channels is presented in Figure 6. Figure 7 show the LTE
signal in the time/frequency domain. The resource elements, in which the
LTE signals and channels are mapped, are depicted. This map is generated
by the ’helicopter view’ option in the LTE Professor. The map presents the
first Subframe in the Radio Frame.

The signal presented above is just an example of the LTE signal which can
be generated by the software. Hence, due to the GUI interface and predefined
scenarios delivered with the software, it is easy to generate signals that cor-
respond to the demands of the user. With relevance to reproducible research
the authors prepared MATLAB scripts which can be used to generate the
presented signals. The scripts are available on the project website [8].

A.3.5 Summary

The MATLAB toolbox which is able to generate LTE downlink signals has
been presented. This program is published under the GPL open source license.
The authors have prepared a website where the code is available for users. The
website also contains also a blog about the MATLAB LTE signal generator
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Figure A.7: LTE signals and physical channels map made by the software (1.4
bandwidth).

and a message board for information and comments exchange. The signals
generated by the software are also included.
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Abstract

Due to the continuously increasing computational power of modern
data receivers it is possible to move more and more processing from the
analog to the digital domain. This paper presents a compressed sensing
approach to relaxing the analog filtering requirements prior to the ADCs
in a direct conversion receiver. In the presented solution, the filtered
down-converted radio signals are randomly sampled with an average sam-
pling frequency lower than its Nyquist rate, and then reconstructed in a
DSP system. To enable compressed sensing, this approach exploits the
frequency domain sparsity of the down-converted radio signals.

As shown in an experiment presented in the article, when the pro-
posed method is used, it is possible to relax the requirements for the
quadrature down-converter filters. A random sampling device and an
additional digital signal processing module is the price to pay for these
relaxed filter requirements.

B.1 Introduction

Twenty years ago around 98% of the radio frequency communication receivers
were heterodyne [1], but the cost-driven evolution dethroned heterodyne re-
ceivers from this position. At present, direct conversion receivers [1, 3, 4]
are widely used in mobile devices, though heterodyne receivers are still used
in more expensive equipment due to superior performance. There are many
disadvantages of the direct conversion receiver architecture [3, 4], of which
the most important is sensitivity to distortion produced by strong interfering
signals, spurious leakage of local oscillators, DC offset after the mixer, mis-
matching between in-phase and quadrature-phase signals and generally poor
sensitivity. Nevertheless, direct conversion receivers consist of significantly
less analog elements than heterodyne receivers, which makes them cheaper
and more suitable for integration.

The current challenge is to relax the requirements for the analog parts of
a direct conversion receiver, due to design and integration problems which are
caused by the analog parts. New possibilities for solving this problem appear
with increasing computational power available in receivers. The present paper
investigates the problem of relaxing the requirements for the quadrature down-
converter filters. In the direct-conversion receivers there are high requirements
for the down-conversion filters due to noise, interference, and high frequencies
generated by the down-conversion process. These filters cause challenges in
integration, mostly due to IC (Integrated Circuit) area required to implement
these filters. Recently there was proposed a direct conversion circuit in which
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uniform sampling is replaced with a pseudorandom sampling technique [8, 7,
6]. Afterwards, the sampled signal is reconstructed in a DSP (Digital Signal
Processing) system. Hence, a minor reduction of the order of the quadrature
down-converter filters was possible.

In the presented solution, the frequency domain sparsity of a down-converted
signal is exploited. In this paper the authors propose to randomly sample the
down-converted signals with an average frequency lower than the Nyquist
rate of the signal. Then, a reconstruction of the down-converted signals is
performed using compressed sensing reconstruction algorithms. Compressed
sensing is a signal processing technique which allows sampling of a signal below
its Nyquist rate and, under certain assumptions, recover the signal afterwards
using a reconstruction algorithm [9, 10, 11, 12]. To make a compressed sensing
process possible, the sampled signal must be compressible. A signal is com-
pressible if it possible to approximate this signal in some domain with a sparse
vector. In this paper the authors show that the down-converted radio signal
is sparse in the frequency domain and hence, it can be compressively sampled.
A random sampler which acquires the signal and a modified reconstruction
method is presented. Hence to the proposed solution, the down-converted
radio signal can be compressively sampled without a high order post-mixer
low-pass filter. A random sampling process and an additional DSP module is
the price pay in order to enable the proposed modifications.

The paper is organized as follows. The problem of the down-converter
filters and the idea of the compressed sensing-based homodyne receiver is
presented in Section B.2. A practical experiment is presented in section B.3.
Finally, some conclusions are presented in section B.4.

B.2 Compressed sensing-based direct conversion
receiver

B.2.1 Quadrature down-converter filters in a direct
conversion receiver

A typical direct conversion receiver dedicated to digital communication is
presented in Fig. 1. A radio frequency signal from the antenna is filtered by
a bank of RF band-pass filters, which selects the currently received band, and
amplified by a low noise amplifier. The filtered radio frequency signal sr(t) is:

sr(t) = s(t) + sb(t) + nr(t) (B.1)
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Figure B.1: The analog and the digital part of a direct conversion receiver

where s(t) is the wanted radio signal to be received:

s(t) = I(t) · cos(2πf0t)−Q(t) · sin(2πf0t) (B.2)

where f0 is the carrier frequency, I(t) and Q(t) are transmitted information-
carrying band-limited signals. The non-bandlimited noise nr(t) in (B.1) rep-
resents all analog noise (including noise from the entire receiver, the channel
and from the transmitter). The sb(t) component in (B.1) represents adjacent
channel interference signals (blockers) present in the filtered radio signals due
to the size of frequency spectrum allowed by the band-pass radio filters (Fig.
B.2):

sb(t) = sb1(t) + sb2(t) + · · ·+ sbN (t) (B.3)

where N is the current number of blockers. The frequency range of the radio
filter pass-band is [f0 − fr, f0 + fr]. The blockers are distributed somewhere
in this spectrum, neither the number of blockers nor their exact frequency
distribution is known.

The filtered radio frequency signal is processed by a quadrature down-
converter circuit. In the down-converter (Fig. 3) the radio frequency signal is
split into I and Q, and mixed with a signal of a frequency equal to the radio
carrier frequency f0. This process separates the bandpass signal (B.1) into a
low-frequency component (λI(t) in the I-path and λQ(t) in the Q-path) and
high frequency component (XI(t) in the I-path and XQ(t) in the Q-path):

sI(t) = λI(t) +XI(t) + nI(t) (B.4)

sQ(t) = λQ(t) +XQ(t) + nQ(t) (B.5)

where sI(t) and sQ(t) are the down-converted signals in the I and Q respec-
tively (Fig. 3a). In the above equation, the nI(t) and nQ(t) represent the
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non-bandlimited noise. The low-frequency components λI(t) and λQ(t) con-
sist of wanted information-carrying band-limited signals I(t) and Q(t), and
unwanted low-frequency down-converted blockers:

λI(t) =
1

2
· I(t) + bI1(t) + · · ·+ bIN (t)︸ ︷︷ ︸

Blockers in the I path

(B.6)

λQ(t) =
1

2
·Q(t) + bQ1(t) + · · ·+ bQN (t)︸ ︷︷ ︸

Blockers in the Q path

(B.7)

In the current paper, it is assumed that there is no co-channel interference, so
the blockers are distributed in the frequency domain from the wanted signal
baseband B until the fr ([f0 +B, f0 + fr]) (Fig. 4).

In the conventional direct conversion receivers the down-converted signals
sI(t) and sQ(t) are filtered by high-order low-pass filters (Fig. 3a) which
remove the high frequency components XI and XQ, virtually all the noise
and the downconverted blockers (Fig. 4). It can be stated that in the above
case the filtered signals s??I and s??Q consist of only the information carrying
band-limited signals I(t) and Q(t):

s??I =
1

2
I(t), s??Q =

1

2
Q(t) (B.8)

The filtered signals s??I (t) and s??Q (t) are then uniformly sampled by ADCs:

s??I [n] = s??I

(
n

1

fu

)
, s??Q [n] = s??Q

(
n

1

fu

)
, n ∈ N (B.9)

where fu is the uniform sampling frequency which must be higher than the
Nyquist frequency of the band-limited signals I(t) and Q(t). Eventually, dis-

f
 f 0

Frequencies allowed by 
the radio band-pass filter

B B 
 f r f r f r f r

BlockersDesired signalNoise

 s b2 s b1  s 

Figure B.2: The filtered radio signal sr in the frequency domain. Beside of the
desired signal there are blockers in the signal spectrum, due to wide frequency
range allowed by the radio filter
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Figure B.3: Conventional and proposed down-converter, samplers and DSP
System in a direct conversion receiver

crete signals s??I [n] and s??Q [n] are processed by the DSP hardware. In this
paper it is assumed that there is no I/Q imbalance in the receiver [17].

The low-pass anti-aliasing quadrature down-converter filters need to be
of a high order, which creates severe problems in IC implementation. This
is due to the chip area occupancy and the needed accuracy in filter design.
Relaxing requirements for these filters without quality loss in a received signal
is a problem which attracts more and more attention in radio communication
engineering [8, 7, 6].

B.2.2 Low-order filters in homodyne receivers

In the presented solution the high order low-pass filters are replaced by 1st or-
der low-pass filters (Fig. 3b). With this filter the high-frequency components
XI and XQ and most of the noise are removed. The downconverted blockers
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are still present in the filtered signal (Fig. 4). The signals filtered with a 1st
order low-pass filter s?I and s?Q are:

s?I(t) =
1

2
· I(t) + b?I1(t) + · · ·+ b?IN (t)︸ ︷︷ ︸

Filtered blockers (I path)

+n?I(t) (B.10)

s?Q(t) =
1

2
·Q(t) + b?Q1(t) + · · ·+ b?QN (t)︸ ︷︷ ︸

Filtered blockers (Q path)

+n?Q(t) (B.11)

where n?I(t) and n?Q(t) reflect the noise present in the filtered signal. Due to
the fact that blockers present in the signal may be distributed in the frequency
domain until the frequency fr (Fig. 4), the sampling rate needed to acquire
the filtered signals s?I(t) and s?Q(t) is significantly higher than the sampling
frequency needed to acquire the signals s??I (t) and s??Q (t) from (B.9). Imple-
mentation of Analog-to-Digital Converters (ADCs) which operate at such a
high sampling frequency is impractical due to huge energy dissipation, and is
virtually impossible in many applications.

B.2.3 Compressed sensing methodology

Let us consider a continuous analog signal x(t), 0 ≤ t ≤ tx with the highest
frequency component B and the Nyquist frequency fN = 2B. A given signal
x(t) is sampled:

y = φ(x(t)) (B.12)

where φ represents the signal sampling process, y ∈ RM×1 is a discrete ob-
served signal. Let us assume that the average sampling rate fs of the observed
signal y is lower than the Nyquist frequency fN of the sampled signal x(t):

fs =
M

tx
, fs < fN (B.13)
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where tx is the time lenght of the signal x(t). According to the compressed
sensing theory [9, 10, 11], under certain conditions it is possible to reconstruct
the vector x ∈ CN×1, from the undersampled observed signal y. The vector
x is a discrete model of the sampled signal x(t):

x[n] = x(nTr), Tr =
1

fr
, fr > fN (B.14)

The reconstruction is performed with a reconstruction procedure R : y → x.
The sampling frequency fr of the discrete reconstructed signal x is higher than
the average sampling frequency fs and higher than the Nyquist rate fN of the
signal x(t).

The first condition which must be fulfilled to enable compressed sensing is
that the sampled signal x(t) is compressible. The signal x(t) is compressible if
its discrete model x can be approximated in a given domain Ψ ∈ CN×K , K ≤
N with a sparse vector v ∈ CK :

x ≈ Ψv, ‖v‖0 < K (B.15)

where the ’zero norm’ [9] describes the number of non-zero elements in the
vector. The more sparse the vector v is, the lower sampling frequency fs is
needed to successfully reconstruct the discrete signal x [9, 10]. Using the vector
x it is possible to represent the acquistion procedure φ with a measurement
matrix Φ ∈ RM×N :

y = Φx (B.16)

The relation between the sparse vector and the observed vector may be ex-
pressed as:

y = Θv, Θ = ΦΨ, Θ ∈ CM×K (B.17)

B.2.4 Sampler

The Restricted Isometry Property (RIP) was introduced in [10]. This property
denotes, how close the matrix Θ = ΦΨ behaves like an orthonormal matrix
if the vector v is K-sparse (only K entries of the vector are non-zero). It was
showed in [12] that if the measurement matrix Φ is a random matrix, then
the matrix Θ = ΦΨ fulfills the requirement of Restricted Isometry Property
(RIP) for most of the possible sparse vectors. Therefore, the sampling process
should be maximally randomized to ensure the correct signal reconstruction.
In practical signal sensing circuits it is, however, nontrivial to comply with the
demand of randomness. The random demodulator [15] is a well-known single-
ADC solution for compressed sensing signal acquisition. Unfortunatelly, the
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(a) Uniform sampling measurement ma-
trix

(b) Measurement matrix used in the re-
ceiver

(c) Gaussian-random measurement ma-
trix

Figure B.5: Comparison of different measurement matrices Φ. The measure-
ment matrix used in the experiment is a compromise between the randomness
in the sampling process and the complexity of the acqusition device

random demodulator contains a multiple-order low-pass filter. Furthermore,
imperfections of this filter may severely influence the signal reconstruction [16].
Due to these drawbacks, usage of the Random Demodulator is unacceptable
in the considered application.

In the following system we use a random sampler following the post-mixer
filters in the quadrature down-converter. The sampler does not include any
preconditioning in the derivations to follow. In a practical context it may
be necessary with conditioning as always to ensure that the input signals
comply with the dynamic range of the sampler and following quantizer. The
compressed sensing system processes the sampled signal in blocks of length
tB. The moments in which the signal is acquired are gathered in a sampling
pattern set S:

S = {t1, t2, ..., tM} tM ≤ tB (B.18)

Let us introduce a sampling grid set G:

G = {τ1, τ2, ..., τK}, τk = kTg (B.19)

where Tg is a sampling grid period. The sampling pattern is always a subset
of the grid set S ⊂ G. In other words, the sampling moments can occur only at
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multiples of the sampling grid period Tg. Therefore, the sampling grid period
describes the resolution of sampling. The average sampling ratio fs is:

fs =
Ns

tB
(B.20)

where Ns is the number of samples in a sampling pattern. The sampling grid
period Tg is shorter than the shortest time between adjacent signal sampling
moments required by the ADC used in the system. It can be stated that Tg ≤
Tmin ≤ Ts where Ts is the average sampling period. The sampling patterns
are generated such that the minimum time between sampling moments Tmin

is kept. An example of a measurement matrix Φ is compared to a Gaussian
random measurement matrix and a uniform sampling measurement matrix
in Fig. 5. The matrix generated by the proposed random sampler contains
sufficient level of randomness, as it is shown later in numerical experiments.

B.2.5 Signal reconstruction procedure

The filtered signals s?I(t) and s?Q(t) can be approximated as sparse in the

frequency domain (Fig. 4). Therefore, the dictionary Ψ ∈ CN×K used in the
experiment is the discrete Fourier transform dictionary:

Ψ = [ψ1, ψ2, ..., ψK ] (B.21)

where a column ψk of the dictionary matrix corresponds to a tone of frequency
kγ, where γ is frequency separation between dictionary tones. A column ψk

of the dictionary matrix:

ψk = cos(2kπnTr) + j · sin(2kπnTr) (B.22)

where n ∈ {1, ..., N}, Tr is the sampling period of the reconstructed signal.
The frequency separation γ depends on the time length of the processed signal
tB:

γ <
1

tB
(B.23)

In the proposed reconstruction γ is set to

γ =
1

2tB
(B.24)

The highest tone used in the receiver depends on the maximum frequency
component which may be found in the signals filtered with a 1st-order low-
pass filter:

K =
fr
γ

(B.25)
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The signal reconstruction algorithms are based on the `1 optimization
procedure:

RI : vI = min ‖v̂I‖1 sub. to : ‖yI −ΦIRe(Ψv̂I)‖2 < εI (B.26)

RQ : vQ = min ‖v̂Q‖1 sub. to : ‖yQ −ΦQRe(Ψv̂Q)‖2 < εQ (B.27)

where RI and RQ are the reconstruction procedures for the I- and Q-paths
respectively. The matrices ΦI and ΦQ are the measurements matrices which
reflect the randomized sampling process in the I- and Q-paths. The param-
eters εI and εQ relax the feasible area of optimization due to noise present
in the observed signal. These parameters should be adjusted to the current
level of noise. The vectors yI and yQ are the signals observed in the I- and
Q-paths.

The vI and vQ are the reconstructed vectors of frequency coefficients (Fig.
6). The discrete representation of the wanted information-carrying baseband
signals Ir and Qr is reconstructed as

Ir = Ψ†v†I , Qr = Ψ†v†Q (B.28)

where v†I ∈ CK†×1 and v†Q ∈ CK†×1 are the truncated reconstructed vectors
of frequency coefficients. These vectors contain only the frequency coefficients
which correspond to the frequencies of the wanted information-carrying signals
I and Q:

v†I(k) = vI(k), v†Q(k) = vQ(k) (B.29)

where k = {1, ..,K†}. The index K† is:

K† =
B

γ
(B.30)

where B is the bandwidth of the signals I and Q. The dictionary Ψ† ∈ CN×K†

is the truncated dictionary used in the reconstruction:

Ψ† = [ψ1, ψ2, ..., ψK† ] (B.31)

B.3 Numerical Experiment

The numerical experiment was conducted to test the presented concept. The
experiment is presented in Fig. 7. The time of the simulation is ts = 10 µs.
In the experiment white Gaussian noise signals are transmitted as the I and
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0

Figure B.6: The vector with frequency coefficients which covers the range
[0, fr] is used in the convex optimization procedures (26) and (27). The
vector v† is used in final reconstruction (28)

Q signals. The baseband of the I and Q signals is B = 3 MHz, the average
power is PB = 1 W each. The I and Q signals are upconverted to a bandpass
radio signal stx with a carrier frequency f0 = 800 MHz. The power Ptx of the
radio signal stx is 1 W. The signal is summed with interference signal sint.
The sint signal consists of 10 continuous wave signals:

sint =

10∑
i=1

ai cos(2πfit) (B.32)

where the frequencies fi of the interfered signals are in the range (f0 − fr ≤
fi ≤ f0 − B) or (f0 + B ≤ fi ≤ f0 + B). There are two possible bandwidths
considered, within which the interfering signals are contained: fr = 40 MHz
and fr = 80 MHz. Two levels of the power Pint of the interference signal sint
considered in the experiment: Pint = 0.1W and Pint = 1W. The received radio
signal sr is amplified, downconverted and filtered with a 1st order low-pass
filter with a cut-off frequency f−3dB = 20 MHz. The filtered baseband signals
are polluted with white Gaussian noise signals. There are 6 levels of noise
power considered in the experiment (SNRn): 10 dB, 15 dB, 20 dB, 25 dB,
30 dB, 35 dB, 40 dB where

SNRn =
P ?

Pn
(B.33)

where P ? is the power of the filtered signal, Pn is the power of noise signals
nI and nQ. The baseband signals are sampled by a random sampler with
the average random sampling frequency fs = 30 MHz, which corresponds to
oversampling OSR = 0.375 and OSR = 0.1875 for the size of two possible
frequency ranges given by fr = 40 MHz and fr = 80 MHz respectively. The
baseband signals are reconstructed with the compressed sensing reconstruction
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Figure B.7: The conducted numerical experiment

method described in B.2.5. The reconstructed signals Ir and Qr are compared
to the orignal baseband signals I and Q. For evaluation purposes, the average
power of each of the reconstructed signals Ir and Qr is adjusted to PB (1 W).
Before the comparison, the reconstructed signals are shifted in time to com-
pensate delays introduced by the filters. The time shift is set experimentally.
Both the reconstructed and the original signals are windowed with the Tukey
window to suppress effects of numerical errors at the beginning and at the end
of the reconstructed signal. The error vectors eI and eQ are computed:

eI = Iwr − Iw, eQ = Qw
r −Qw (B.34)

where Iwr and Qw
r are the time-shifted and windowed reconstructed baseband

signals, the Iw and Qw are the windowed original baseband signals. The
signal-to-noise ratios of the reconstructed baseband signals are:

SNRI =
PIw

PeI

, SNRQ =
PQw

PeQ

(B.35)

where PIw and PQw are the power of the windowed orignal signals Iw and Qw

respectively. The PeI and PeQ are the power of the error vectors eI and eQ
signals respectively. The average of the values SNRI and SNRQ is treated
as the measure of the reconstruction quality:

SNRr =
1

2
(SNRI + SNRQ) (B.36)

The results of the experiment are shown in Fig. 8. As it can be seen in Fig.
8 the baseband signal can be reconstructed in adverse conditions even if 1st
order low-pass filters are used as the quadrature down-converter filters. As
expected, the less polluted with noise, the better reconstruction is achieved.
The 10 dB increase of the power of interference causes 5-6 dB loss in the
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Figure B.8: Results of the experiment. Reconstructed signal SNRr plotted vs.
noise SNRn. The range of the inteference is fr = 40 MHz and fr = 80 MHz.
The power of interference is Pin = 1 W and Pin = 0.1 W. (fr = 40 MHz
Pin = 1 W: ·, fr = 80 MHz Pin = 1 W: ◦, fr = 40 MHz Pin = 0.1 W: �,
fr = 80 MHz Pin = 0.1 W: �)

reconstruction. For the lower value of the size of the possible frequency range
which must be checked for interference (fr = 40 MHz) the baseband signal
reconstruction quality is 2-3 dB better than in the case of wider frequency
range (fr = 80 MHz).

B.4 Conclusions

In this paper, a modified architecture for direct conversion radio receivers is
proposed. The architecture is based on compressed sensing principles. It is
shown that the proposed solution enables relaxing the requirements for the
order of the quadrature filters in a direct conversion receiver. An experiment
is presented in which the transmitted quadrature signal is polluted with noise
and interference. The experiment demonstrates that the proposed architecture
is able to succesfully receive the baseband signal under adverse conditions with
the usually high-order quadrature filters reduced to first-order filters.
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Abstract

In many practical applications of receivers or signal detection systems
there is a problem of interference signals. Efficient filtering of interference
signals requires either massive analog filtering of the input signal or high
sampling frequency applied to the signal. Both of these methods have
significant disadventages - chip implementation problems for multiorder
low-pass analog filters or high energy dissipation caused by high signal
sampling frequency. In this paper, the authors propose a frequency-
selective compressed sensing method which allows for digital interfer-
ence filtering with reduced signal sampling frequency. The authors show
that the quality of this frequency-selective compressed sensing depends
significantly on a sampling pattern used in the signal acquisition. The
authors introduce sampling pattern error parameters and a filtering-RIP
parameter, which assess a sampling pattern for a given filtering problem.
Finally, a sampling pattern search algorithm is proposed. This system
attempts for the best compressed sensing sampling pattern for a given
interference filtering problem. A simple experiment is shown to illustrate
the method in practice.

C.1 Introduction

The Shannon-Nyquist sampling theorem states that perfect signal reconstruc-
tion of any signal requires a sampling frequency higher than twice the max-
imum frequency component in the signal [1]. In practical situations we thus
need analog anti-aliasing fllters prior to the analog-to-digital conversion (ADC)
to facilitate the above [2, 4, 5, 6]. Further, in cases where we have prior in-
formation on the desired signal with respect to frequency content it may be
possible by clever analog filtering to reduce any disturbing or interfering signal
at other frequencies to e.g. reduce the risk of saturating the ADC, causing non-
linear distortion [5, 6, 7]. Applying such adaptive analog filtering is, however,
design and implementation challenging [8, 9, 10, 11], and a digital solution
would be preferred if possible. This is only possible provided the ADC has
sufficient dynamic range though [5].

To the authors’ best knowledge, there are very few solutions which allow for
reduced analog filtering and do not require increasing the sampling frequency
above the Nyquist frequency of the unfiltered signal. Subsampling [2, 3],
which is a well-know technique, is useless in many practical applications. Ben-
Romdhane et. al. [12, 13, 14] proposed a nonuniform sampling scheme to relax
requirements for filtering in radio receivers. However, in some communication
systems, the achieved filter relaxation is minor [14].
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In this paper the authors propose a frequency-selective sampling method
based on the compressed sensing technique. In recent years a new idea of signal
sensing, known as compressed sensing (CS) has emerged [15, 16, 17, 18, 19].
This technique can be used to successfully reconstruct signals that are sampled
at a sub-Nyquist rate, provided the signal is sparse in some domain. In general,
compressed sensing can be divided into acquisition and reconstruction. There
are two classes of signal reconstruction algorithms: greedy algorithms [22] and
convex optimization-based methods [23]. These methods are well elaborated,
however, none of them is designed for signal filtering, in which compressed
sensing reconstruction selectively favors certain signal spectrum frequencies
over others. Quite some work has been done in compressed sensing signal
acquisition. The random demodulator framework [24, 25, 26] uses modula-
tion and filtering before signal sampling. The modulated wideband converter
(MWC) [27, 28], is a multi-channel analog system dedicated to wideband signal
sampling [29]. Albeit the above solutions guarantee good performance, exten-
sive analog preprocessing is a crucial part of all these acquisition systems.
Moreover, the modulated wideband converter is a multi-channel architecture.
Hence, these solutions may be too costly in terms of power consumption and
chip area in many mobile and power-constrained applications. Furthermore,
like the reconstruction methods, none of these solutions is designed to exploit
the principle of a signal filtering problem.

Frequency-selective compressed sensing proposed in this paper allows for
relaxed input signal filtering without increasing the sampling frequency to the
Nyquist frequency of the input signal poluted by unwanted high-frequency
signals. The method provides a good quality of the reconstructed signal,
also for low signal-to-interference ratio. The main idea is to divide the com-
pressed sensing reconstruction procedure into two phases: an optimization
phase and a final signal reconstruction phase, and to use a limited dictionary
in the final signal reconstruction phase. Furthemore, the authors show that
for different sampling patterns, different sampling frequencies are correctly re-
constructed. We introduce a new sampling pattern analysis tailored to wanted
reconstructed frequencies, which may differ among applications. To facilitate
this, a new method of sampling pattern generation and analysis, based on
the restricted isometry principle [20, 21], is presented. The paper outlines the
idea of frequency-selective compressed sensing, with the main focus on the
frequency-selective compressed signal acquisition.

The paper is organized as follows. The problem considered in this paper
is discussed in Section C.2. Frequency-selective compressed sensing and the
problem of optimal sampling patterns is described in Section C.3. A proposed,
modified restricted isometry analysis dedicated to signal filtering is discussed
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in the Section C.4. The proposed method of the sampling pattern generation
is presented in Section C.5. The performance of the proposed solution is
empirically assessed in Section C.6. The paper is concluded in Section C.7.

C.2 Problem formulation

Let us define a bandlimited (−Bb ≤ f ≤ Bb) baseband signal sb ∈ RN×1.
The signal sb contains information and is received and processed by a given
digital processing system. The Nyquist rate of the signal sb is fNb = 2Bb,
the power of this signal is Pb. The signal is polluted by a blocking bandpass
±(Bb < f ≤ Bx) signal sI ∈ RN×1, the power of this signal is PI. The blocking
signal sI consists of NI blockers:

sI =

NI∑
i=1

s
(i)
I (C.1)

f
–

|A|

B+B {bb B+ xBx–

Signal poluted with unwanted blockers (   )ssx

Unwanted blockers(   )
      

Wanted signal(   )sb sI

Figure C.1: Frequency spectrum of the received signal sx. The signal consists
of the wanted signal sb (green) and the unwanted blockers sI (red). The
signal’s frequency range is (−Bx < f ≤ Bx).

where s
(i)
I is the i-th blocker of power P

(i)
I . In general, the blockers s

(i)
I

occupy non-overlapping continuous frequency ranges in positive and negative
frequencies. Furthermore, we assume there is a certain unused frequency range
between blockers. Hence, it can be stated that the blocking signal is sparse in
the frequency domain. The received signal sx ∈ RN×1 is a sum of the wanted
signal sb and the blocking signal sI: sx = sb + sI (Fig. C.1). The signal sx is
bandlimited (−Bx ≤ f ≤ Bx), its Nyquist rate is fNx = 2Bx.

Due to the blocking signal sI, the Nyquist rate fNx of the received signal
sx is in many applications significantly higher than the Nyquist rate fNb of
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Figure C.2: Frequency spectrum of the loosely filtered signal s†x which consists
of the wanted signal sb (green) and the loosely filtered interference signal s†I
(red) which is still partly present in the signal. A part of the unwanted
frequencies was removed (pale red).

      Input y

High-order 
LP filter

ADC

(High energy dissipation, 
large chip area, design problems)

f >s f Nb

x s

f

|A|
      

f

|A|
      

bs

Figure C.3: Solution 1: High-order filtering enables lowered sampling fre-
quency. Large filters utilize considerable chip area and cause high energy
dissipation and integrated circuit design problems.

the wanted baseband signal sb. To enable of sampling the signal with a low
sampling frequency fs (fNb < fs � fNx) the signal sx must be filtered with
a high-order low-pass filter which removes the unwanted blockers (Fig. C.3).
Unfortunately, high-order filters cause design and IC (Integrated Circuit) im-
plementation problems due to high energy dissipation and chip area required
to implement these filters [9, 10, 11].

Another possibility is to ”loosely” filter a signal with a low-order filter
(Fig. C.4). This approach reduces the mentioned problems caused by higher-

order filters. Let us consider a bandlimited (−B†x ≤ f ≤ B†x) signal s†x,
which is created by applying a 1st-order filter on the received signal sx. This
partly removes high-frequency blockers (Fig. C.2). Nevertheless, there are
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Figure C.4: Solution 2: Low-order filtering requires high sampling frequency.
High sampling frequency causes high energy dissipation and is infeasible to
implement in certain applications.

still considerable blocker signal content present in the filtered signal s†x. The
Nyquist frequency of the signal s†x is f †Nx = 2B†x. The baseband B†x of the

filtered signal depends on the powers of the blocker signals P
(i)
I and filter’s cut

off frequency fc. The Nyquist rate f †Nx of the filtered signal s†x is lower than
the Nyquist rate fNx of the unfiltered, received signal sx. Nevertheless, in
many applications, it is still significantly higher than the Nyquist rate fNb of
the wanted signal sb:

fNb � f †Nx � fNx (C.2)

Therefore, if a 1st-order filter is used, a high signal sampling frequency must
be applied on the signal (Fig. C.4). The high sampling frequency causes
high energy dissipation [6, 7, 8] and may be infeasible to implement in certain
applications [4, 37, 38].

The authors’ aim is to decrease the necessary sampling frequency in case
the received signal is s†x with bandwidth (−B†x ≤ f ≤ B†x), while only a low-
frequency part (−Bb ≤ f ≤ Bb) of the signal sx is needed to be correctly
reconstructed. The rest of the received signal’s frequency spectrum are un-
wanted blockers. The filtering problem is constituded by four parameters:
baseband of the interfered signal B†x, Bb, wanted signal baseband Bb, dictio-
nary Φ, and a wanted average sampling frequency f?s . Hence, we can introduce
a filtering problem P(B†x, Bb,Ψ, f?s ). The solution presented in this paper is
mostly dedicated to mobile systems, so it is assumed that there is a single
analog-to-digital converter (ADC) present in a system. The authors present
a frequency-selective compressed sensing method which allows for digital sig-
nal filtering and significant sampling frequency reduction under the described
conditions. Although this paper presents a whole view on the presented sig-
nal filtering method, it focuses mostly on the signal acquisition part of the



APPENDIX C. SAMPLING PATTERNS FOR
FREQUENCY-SELECTIVE COMPRESSED SENSING 71

f

|A|

      
      

f

Remaining unwanted 
blockers

      
Wanted signal(   )sb

|A|

Incorrectly 
reconstructed 

blockers

      

Shortened
freq. coef. 
vector (   ) 

Correctly 
reconstructed 
wanted signal

High 
certainty

– B+B bb B+ x
†Bx

†–

– B+B bb B+ x
†Bx

†–

Uncertainty
Uncertainty

Freq. coef.
vector (   )

vbvb
vv
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method.

C.3 Frequency-selective compressed sensing

C.3.1 Compressed sensing basics

Compressed sensing [15, 16, 17, 18, 19] is a process of acquiring a signal such
that a vector of its observed samples is shorter than the original signal:

y = Φx (C.3)

where x ∈ CN×1 is the original signal, y ∈ CM×1 is the vector of observed
samples, and Φ ∈ CM×N , M � N , is a measurement matrix which reflects
the process of signal acquisition. This paper narrows its scope to real signals,
so x ∈ RN×1, y ∈ RM×1, Φ ∈ RM×N .
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The signal is compressible if it can be well-approximated by a sparse vector
v ∈ CL×1 in some dictionary Ψ ∈ CN×L:

x ≈ Ψv (C.4)

In other words, most of the coefficients in the vector v are small enough to be
well approximated as zero. The vector of observed samples y is shorter than
the original signal x. Nevertheless, it is still possible to retrieve the original
signal x if it is compressible. It is done using a reconstruction algorithm R:

R(y,Φ,Ψ) ; x̂ ≈ x (C.5)

Significant work has been done in the area of compressed sensing reconstruc-
tion algorithms. There are two main classes of these algorithms: greedy al-
gorithms [16, 22] and `1-norm relaxation-based optimization algorithms [16,
18, 23]. The latter algorithms are developments of a reconstruction algorithm,
which is based on the following convex optimization problem:

v̂ = argmin
v
‖v‖1 subj. to: ‖ΦΨv − y‖2 < ε (C.6)

After the above, the reconstructed signal x̂ can be computed as x̂ = Ψv̂.
Setting the constraint ε > 0 makes the above optimization problem feasible
if there is noise present in the oberved signal samples y [23]. The higher the
noise level, the higher the ε needed to make the optimization problem feasible.
As a tradeoff, the higher ε, the bigger the reconstruction error ê = ‖x̂ − x‖2
is.

As the dictionary Ψ in this paper the authors use a generalized Inverse
Discrete Fourier Transform (IDFT) dictionary ΨI ∈ CN×2K as the signal
dictionary:

ΨI =

ψ1,−K · · · ψ1,K
...

. . .
...

ψN,−K · · · ψN,K

 (C.7)

where
ψn,k = exp[j2πtnfk] (C.8)

Frequencies of the columns of the matrix Ψ are:

fk = k · γ k ∈ ±{1, . . . ,K} (C.9)

where γ is the frequency separation between the columns of the ΨI dictionary,
K is the number of positive frequencies reflected in the dictionary. Signal
representation time steps tn:

tn = nTr, Tr =
td
N

(C.10)
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where Tr is the signal representation sampling period, td is the time period
represented by the columns of the dictionary ΨI.

C.3.2 Frequency-selective compressed sensing

In the canonical compressed sensing methodology, the signal reconstruction
uses the whole reconstructed vector with the coefficients v̂:

x̂ = Ψv̂ (C.11)

In the proposed, frequency-selective compressed sensing, only a low-frequency
part of the frequency coefficients is in use during the signal reconstruction:

x̂ = Ψbv̂b (C.12)

where:
v̂b = v̂(k), k = {−Kb, ...,Kb} (C.13)

It is because in a given filtering problem P(B†x, Bb,Ψ, f?s ) spectrum of the
wanted signal is limited to Bb.

The number of elements (2Kb) in the shortened freq. coeficient vector v̂b

depends on the baseband Bb of the wanted signal sb:

Kb =

⌈
Bb

γ

⌉
(C.14)

The shortened dictionary Ψb ⊂ Ψ contains columns of the dictionary Ψ core-
sponding to the baseband frequency range of the wanted signal sb.

During the `1-optimization (C.6) the vector with reconstructed frequency

coefficients v̂ represents the whole spectrum (−B†x ≤ f ≤ B†x) of the received
signal sx. Hence, the unwanted blockers are present in the reconstructed co-
efficients instead of being reflected in an increased feasibility region in (C.6)
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(increased ε). Increasing the feasibility region would compromise the recon-
struction quality, the proposed solution does not have this disadvantage. Only
the frequency coefficients which correspond to the baseband signal sb must be
reconstructed corectly, while corectness of the rest of the coefficients is unim-
portant. The above relaxes the requirements for the signal reconstruction,
since these requirements concern only the wanted part of the spectrum. This
idea is shown in Fig. C.5.

A sampling system which implements the idea of frequency-selective com-
pressed sensing is shown in Fig. C.6. The sampling patterns are stored in the
sampling system. It is explained in Section C.5 how these patterns are gener-
ated off-line. The sampling pattern is chosen according to the current wanted
average sampling frequency f?s . The loosely filtered signal s†x is sampled by
an ADC using the sampling pattern. Frequency-selective compressed sensing
system reconstructs the wanted signal sb.

C.3.3 Random sampling patterns

This paper focuses on generation and analysis of random sampling patterns
for the frequency-selective compressed sensing problem. A sampling pattern
T is a set with Ks fixed sampling time points:

T = {t1, t2, ..., tKs} (C.15)

The set T is ordered:
t1 < t2 < · · · < tKs (C.16)

The time length τ of the sampling pattern may be higher than the value of
the last time point in the pattern: τ ≥ tKs . The time length τ is equal to the
time length td (10) of a signal on which the sampling pattern is applied.

Any sampling point tk ∈ T is a multiple of the sampling grid period Tg:

tk = mTg, m ∈ N∗ (C.17)

The sampling grid is a set:

G = {Tg, 2Tg, ...,KgTg}, Kg =

⌊
τ

Tg

⌋
(C.18)

where Kg is the number of sampling grid points in the sampling pattern. The
sampling pattern is always a subset of the sampling grid T ⊂ G. The sam-
pling grid period Tg defines the maximum resolution of the sampling process.
The lower the sampling grid period is, the better the maximum resolution of
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Figure C.7: The compressed sensing sampling pattern.

sampling. In practice, the minimum sampling grid period Tg depends on the
performance of the ADC circuitry [5, 6, 7].

The sampling pattern T is applied to a signal x(t) of a length τ = td:

yk = x(tk), tk ∈ T (C.19)

where yk is k-the entry in the observed vector y.

C.3.4 Requeirements for random sampling patterns

Sampling patterns are generated either on-the-fly, or generated off-line by a
sampling pattern generator and stored in a sampling system (Fig. C.6). In
this paper the latter solution is discussed. There are certain requirements for
the patterns generator. These requirements are presented below.

The average sampling frequency fs of the random sampling pattern T of
a timelength τ , depends on the number of sampling time points Ks in the
pattern:

fs =
Ks

τ
(C.20)

The sampling pattern generator must produce sampling patterns which have
a given average sampling frequency f?s . If the average sampling frequency fs
is lower than the requested sampling frequency f?s , then the quality of signal
reconstruction may be compromised. In the following we introduce a statistical
error parameters which assess a system that randomly generates some number
of sampling patterns which we must subsequently assess the quality of. Firstly,
we introduce a statistical error parameter which indicates about how well
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the assessed generator obeys the imposed requirement of average sampling
frequency f?s :

ef =
1

Nt

Nt∑
n=1

∣∣∣∣∣f?s − f (n)s

f?s

∣∣∣∣∣ (C.21)

where f
(n)
s is the average sampling frequency of the n-th generated sampling

pattern. The ef parameter should be as low as possible. The number of
analyzed patterns Nt depends on the desired confidence intervals of the ef
parameter.

Due to ADC technological constraints there are requirements for minimum
distance between sampling moments. Violation of this requirement may cause
the sampling pattern to be impossible to implement on a given ADC. Every
sampling time point tk must occur at least time tmin after the previous time
point (Fig. C.7):

tk+1 − tk ≤ tmin (C.22)

Generating an adequate random sampling pattern is realizable, if tmin < T ?
s ,

where T ?
s = 1

(f?
s )

is the requested average sampling period.
The next statistical error parameter denotes the number of intervals be-

tween the sampling moments which do not fulfil the requirement of a minimum
interval (C.22). Let us define a set D of Kd = Ks − 1 intervals between the
sampling time points in a pattern T:

D = {d1, d2, ..., dK}, K = Kd (C.23)

where:
dk = tk+1 − tk, tk ∈ T (C.24)

If all the intervals are equal (d1 = d2 = ... = dK = Ts, K = Ks), then T is a
uniform sampling pattern with the sampling period equal to Ts. If the time
intervals are random, then T is a random sampling pattern. An example of a
random sampling pattern is shown in Fig. C.7. For a given sampling pattern
T let us create a subset D− ⊂ D with intervals between samples such that:
containing the admissible intervals (with respect to tmin) in D:

D− = {d−i ∈ D : d−i < tmin} (C.25)

In words, intervals between the sampling points which are shorter than tmin

are stored in a subset D−. For a given sampling pattern T we can calculate
how many of the intervals between sampling points in this pattern violate the
imposed requirement in relation to the number of all the intervals:

e− =
|D−|
|D|

(C.26)
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We define the parameter emean to quantify how well the assessed pattern gen-
erator obeys the imposed requirements of tmin. The error parameter is:

emin =
1

Nt

Nt∑
n=1

e−n (C.27)

where e−n is the parameter e− of the n-th generated sampling pattern.
The last error parameter concerns the randomness in generation of sam-

pling moments in the generated sampling patterns. It gives an information
about the average number of different intervals between the sampling time
points in a sampling pattern. Let us create a subset D? ⊂ D which contains
unique time differences from the set D:

d?i ∈ D? ⇔ d?i ∈ D ∧ @ d?j ∈ D? : d?j = d?i (C.28)

Now it is possible to calculate ratio e? of the number of unique intervals
between samples to the number of all the intervals in the sampling pattern
and a statistical parameter ed calculated based on Nt generated patterns:

e? =
|D?|
|D|

ed = 1− 1

Nt

Nt∑
n=1

e?n (C.29)

where e?n is the ratio e? calculated for n-th sampling pattern. The error pa-
rameter ed = 1 means that assessed patterns generator produces only uniform
sampling patterns.

C.3.5 Optimum sampling pattern

The sampling pattern is always a subset of its sampling grid: T ⊂ G. Hence,
if no additional constraints are imposed on the sampling pattern, the number
of possible different sampling patterns is:

Np =

(
Kg

Ks

)
(C.30)

where Ks is the number of sampling time points in a sampling pattern, Kg is
the number of grid points in the grid.

Here a problem arises: how to generate sampling patterns which satisfy the
given constraints: minimum distance between samples tmin and the average
sampling frequency f?s ? Then how to choose the sampling pattern which
corresponds to the best measurement matrix Φ - such that the matrix Θ =
ΦΨ guarantees the best possible reconstruction quality for the given filtering
problem P(B†x, Bb,Ψ, fs)?
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C.4 Filtering restricted isometry property analysis

In [18] the authors introduce the concept of the Restricted Isometry Property
(RIP). The RIP constant ζS measures how closely the columns of the matrix
Θ = ΦΨ, Θ ∈ CM×2K behave like orthonormal vectors, for any subset of
S ≤ 2K columns at a time. The RIP constant ζS is the smallest number
which fulfills the inequality:

(1− ζS)||q||22 ≤ ||Aq||22 ≤ (1 + ζS)||q||22 (C.31)

for all the possible matrices A, which consists of S ≤ 2K columns of the matrix
Θ. The lower the ζS is, the higher the probability of successful reconstruction
of S-sparse signals from an incomplete data set, in particular from a short
observed vector y.

Computing ζS constant is a problem of a combinatorial nature. For the
predominant number of realistic frequency sparse signals, computation of the
ζS defined as above, would require enormous computational power - it is an
NP-hard problem. The computation algorithm needs to evaluate all the pos-
sible

(
2K
S

)
combinations of the columns of the Θ matrix (if Θ is a IDFT, and

only real signals are considered, the problem shrinks to
(
K
S

)
combinations).

Fig. 6 (blue plot) shows the number of combinations needed to evaluate for
different sparsity (S) of the signals for 60-tones frequency dictionary. Black
plot on Fig. 6 shows the number of combinations needed to evaluate for differ-
ent size of the frequency dictionary, when it is assumed that sparsity is equal
to half of the dictionary.

C.4.1 Atomic filtering-RIP analysis of combination of vectors

Let us consider a matrix Θ = ΦΨ where Φ (C.3) is a given measurement
matrix, Ψ is the IDFT dictionary matrix defined as in (C.7). Moreover, let
us assume that support of the compressively sampled signal sx corresponds
to a subset A of S columns of the dictionary matrix Ψ. Now, for a given
matrix Θ, our aim is to quantify the possibility of correct reconstruction of
i-th entry of the vector v, using reconstruction as in (C.6). The i-th entry of
the vector v, corresponds to i-th column a = Θi and to one tone in the wanted
signal sb. Hence, we can measure how well a corresponding frequency tone can
be compressively filtered from the sampled signal when a given measurement
matrix Φ is used.

Let us create a matrix A ⊂ Θ which consists of S columns of the matrix Θ,
corresponding to the subset A. The authors propose a filtering-RIP analysis,
which is a modified RIP analysis (C.31). The filtering-RIP constant ζ̂A

a is a
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Figure C.8: Comparision between the number of combinations which must be
performed to compute the canonical RIP parameter and the proposed filtering-
RIP parameter. Blue plot: The number of combinations in canonical RIP for
different sparsity, when the size of a dictionary (the number of tones) K = 60.
Black plot: The number of combinations in canonical RIP for different size of
a dictionary, when sparsity is equal to half of the size of a dictionary. Red plot:
The number of combinations for interference scenarios (used in filtering-RIP)
for different sparsity (different number of blockers). It is assumed that KI = 5,
the size of a dictionary K = 60. Violet plot: The number of combinations for
interference scenarios (used in filtering-RIP) for different size of a dictionary.
It is assumed that KI = 5. Consider the logarithmic scale.

constant which satisfies the below inequality for the matrix A for all possible
normalized vectors q̂:

(1− ζ̂A
a )|q̂i| ≤ ‖u�‖22 ≤ (1 + ζ̂A

a )|q̂i|, u = Aq̂ (C.32)

The notations of filtering-RIP constant ζ̂A
a denotes that it corresponds to a

vector a from the matrix A. In (C.32) q̂i is i-th entry of the normalized vector
q̂ which corresponds to the vector a (i is a position of the column a in the
matrix A). Length of the vector u = Aq̂ in the direction pointed by the
vector a is:

‖u�‖22 = ‖a(aTa−1)aTu‖22 (C.33)
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Figure C.9: The idea of creating possible interference scenarios (example for
one blocker is shown). Since the blocker occupies continous frequency range
in positive and negative frequencies, the scenario can be created by ”sliding”
the blocker down the spectrum.

Since it is impossible to compute the ζA
a for all the possible normalized vectors

q̂, a Monte Carlo analysis is performed. Let us introduce a random normalized
vector q̂ ∈ CS×1

q̂ =
q

‖q‖
, q(i) = xni + jyni , i ∈ {1, . . . , S} (C.34)

where xni , y
n
i ∈ N (0, 1). An atomic filtering-RIP parameter ζA

a , computed for
Kq random normalized vectors q̂k is:

ζA
a = max(ζ̂A

a (k)) (C.35)

where ζ̂A
a (k) is a ζ̂A

a (C.32) computed for the k-th vector q̂k. The number
of test vectors Kq depends on the desired confidence. The parameter ζA

a is
atomic, since it corresponds to reconstruction of a single tone a for one possible
subset A (and the corresponding matrix A) of columns of the matrix Θ.

C.4.2 Scenarios of combinations

To enable the possibility of sub-Nyquist sampling, the received signal sx must
be sparse in some domain. The more sparse is the signal sx, the higher is
a chance of a correct reconstruction. As stated in Sec. II, the given signal
sx is sparse in the frequency domain. Sparsity of the signal sx depends on
the number of blocking signals NI (Sec. II) and the size of the spectrum
occupied by these signals. Hence, there is a need to assign to a filtering
problem P(B†x, Bb,Ψ, fs) a worst-case interference scenario S(Nmax

I ,KI) with

the maximum number Nmax
I of blocking signals s

(i)
I , and the maximum number

KI of positive frequency tones occupied by each i-th blocking signal s
(i)
I .
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The total maximum number of positive frequency tones present in the
spectrum of the blocking signal sI is K̂I = Nmax

I KI. The number of possible
spectrum combinatons (MI) in the canonical RIP analysis is:

MI =

(
K −Kb

K̂I

)
(C.36)

where K (C.7) is the number of positive frequencies reflected in the used
dictionary Ψ ∈ P, Kb (C.14) is the number of tones in half of the spectrum
0 ≤ f ≤ Bb of the wanted baseband signal sb.

Since all the blocking signals s
(i)
I occupy continous frequency range in

positive and negative frequencies, the number of combinations needed to be
tested is substantially reduced (Fig. C.8). Let us consider one blocking signal

s
(1)
I which occupies KI tones in the positive frequency spectrum. The number

of possible combinations of support of the received signal sx, and hence the
number of different matrices A ⊂ Θ (Sec. C.4.1) with columns of the matrix
Θ is:

MI = K −KI −Kb + 1 (C.37)

All the spectrum combinations can be created by ”sliding” the blocking signal
down the spectrum (Fig. C.9). The number of combinations for Nmax

I blockers
is:

MI =

=

K−K0∑
iN−1

( iN−1−K0∑
iN−2

(
. . .

i3−K0∑
i2

(
i2−K0∑

i1︸ ︷︷ ︸
Nmax

I

(i1 −Ki + 1)

)
. . .

))
(C.38)

where K0 = Kb +KI, initial values of sum indices: i0k = kKI.

For a given worst case scenario S(Nmax
I ,Ki) and a filtering problem P(B†x, Bb,Ψ, fs)

it is possible to generate a set A = {A1,A2, . . . ,AM} with all the M = MI

possible matrices A with S = 2K̂I +Kb columns of the Θ matrix. Hence, for
a given measurement matrix Φ such that, Θ = ΦΨ, it is possible to calculate
a single-tone filtering-RIP parameter ζAa for the column a of the matrix Θ and
a given set A:

ζAa = max(ζma ), m = {1, . . . ,MI} (C.39)

where ζma is an atomic filtering-RIP parameter ζA
a (C.35) computed for m-th

matrix Am from the set M. The filtering-RIP parameter which asses a given
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Figure C.10: The best sampling pattern search system.

matrix Φ for the filtering problem P and the worst-case interference scenario
S is:

ζΦ
P,S = max(ζAa−K

, . . . , ζAaK
), K = Kb (C.40)

where ζAak
is single-tone filtering parameter (C.39) computed for k-th column

a ∈ Θ = ΦΨ which corresponds to a k-th tone in the wanted signal spectrum
(−Bb) ≤ f ≤ Bb).

C.5 Best pattern search

The sampling patterns are prepared by the patterns search system presented
in Fig. (C.10). The best pattern is a pattern which corresponds to a measure-
ment matrix Φ (C.3) such that matrix Θ = ΦΨ has the best filtering-RIP

parameters ζΦ
P,S (C.40) for the given filtering problem (P(B†x, Bb,Ψ, fs)), a

worst case scenario S(Nmax
I ,Ki), and a set Q = {T (1)

g , T
(2)
g , . . . , T

(KQ)
g } of KQ

acceptable sampling grid periods (C.17).

C.5.1 Grid analysis

Firstly, the set Q is ranked from the point of the given filtering problem. A

set U = {T(1)
U ,T(2)

U , . . . ,T(KQ)
U } of KQ uniform sampling patterns is generated.

The uniform sampling periods of the patterns in the set U are identical as the
sampling grid periods in the set Q. For all the generated uniform sampling

patterns, filtering-RIP values ζ
Φ

(k)
U
P,S are computed for the given filtering prob-

lem P and the given worst case scenario S. The values are stored in a set

Y = {ζΦ
(1)
U
P,S , ζ

Φ
(2)
U
P,S , . . . , ζ

Φ
(K)
U
P,S },K = KQ, where Φ

(k)
U is a measurement matrix

(C.3) which corresponds to a k-th uniform sampling pattern T(k)
U ∈ U. Let us

introduce a set Y4(1), which is a sorted set Y. A set Q4(1) is sorted accordingly
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Φ

(k)
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U ∈
U. Consider the logarithmic scale.

to Y4(1), such that T
(k)
g ∈ Q4(1) corresponds to ζ

Φ
(k)
U
P,S ∈ Y4(1). The sampling grid

adjustment is further discussed in (C.5.1).

An example result of computing filtering-RIP parameters ζ
Φ

(k)
U
P,S for different

grids T(k)
U ∈ U is on Fig. C.11. The given filtering problem is P(B†x, Bb,Ψ, fs),

where Bb = 20 kHz, B†x = 100 kHz, separation between dictionary Ψ columns
γ = 5 kHz. The worst case scenario is S = {1, 1}. I can be observed that the
best filtering-RIP parameter is computed for grid value Tg = 8µs.

C.5.2 Methodology

After grid ranking is done, the actual pattern search is started. A set V(n) =

{T(1)
(n),T

(2)
(n), . . . ,T

(Kv)
(n) } of Kv sampling patterns is generated by a random sam-

pling patterns generator. The number Kv of generated sampling patterns de-
pends on the desired confidence parameters. All the sampling patterns are
generated with a sampling grid Tg = Q4(n)(1) The random sampling patterns

generator is described in (C.5.3). A set X(n) = {ζ
Φ

(1)
(n)

P,S , ζ
Φ

(2)
(n)

P,S , . . . , ζ
Φ

(K)
(n)

P,S } of

K = Kv filtering RIP-values ζ
Φ

(k)
(n)

P,S is created, where Φ
(k)
(n) is a measurement

matrix which corresponds to a k-th sampling pattern T(k)
(n) ∈ V(n). A sampling

pattern Tmin
(n) = T

(k)
(n) ∈ V(n) which corresponds to the lowest ζ

Φ
(k)
(l)

P,S ∈ X(n) is

stored in a set L = {Tmin
1 , Tmin

2 , . . .}. The corresponding lowest filtering RIP-

value ζ
Φmin

(n)

P,S ∈ X(n) is stored in a set M = {ζ
Φmin

(1)

P,S , ζ
Φmin

(2)

P,S , . . .}. The set Y4(n+1)
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is updated such that:

ζ
Φ

(k)
U
P,S ∈ Y4(n+1) ⇔ ζ

Φ
(k)
U
P,S ∈ Y4(n) ∧ ζ

Φ
(k)
U
P,S < ζ

Φmin
(n)

P,S ∈ X(n) (C.41)

Furthermore, the currently filtering-RIP parameter which corresponds to the

tested sampling grid period is removed from the set: Y4(n+1) = Y4(n+1) \ ζ
Φ

(1)
U
P,S .

The set Q4(n+1) is updated accordingly. The above is repeated until Y4(l+1) 6= ∅.
The best sampling pattern T̂Q

P,S for the given filtering problem P and the
worst-case scenario S with the acceptable set of sampling grids Q is a sampling
pattern Tmin

(k) which corresponds to the lowest filtering-RIP value in the set M.

C.5.3 Patterns generator

It was authors aim to develop a new algorithm which generates random sam-
pling patterns. The patterns must be generated in a way that time intervals
between adjacent sampling moments in the patterns must not be shorter than
a given minimum time tmin. Therefore, the quality attribute emin (C.27) must
be equal to 0. Furthermore, average sampling frequency fs (C.20) in a given
pattern time τ must be equal to the given expected sampling frequency f?s .
Therefore, the quality attribute ef (C.21) must be equal to 0.

A new algorithm which generates a random sampling pattern is proposed.
There are 5 input variables to the algorithm: time of the sampling pattern τ ,
sampling grid period Tg, average sampling frequency of a pattern f?s , minimum
time between sampling moments tmin and a standard deviation of internal
random process σ.

Before the algorithm starts, the following precomputations must be done.
The number of sampling moments Ks in a generated pattern, the number of
grid points in the pattern Kg, and the number Nmin of grid points in the
minimum time tmin between samples are:

Ks = [τf?s ], Kg =

[
τ

Tg

]
, Nmin =

⌈
tmin

Tg

⌉
(C.42)

The proposed algorithm works as follows. It is assumed that the algorithm
draws the sampling moments chronologically:

∀k : tk−1 < tk < tk+1, k ∈ {1, . . . ,Ks} (C.43)

All the computations are performed on integer numbers which represent the
sampling grid periods. In the last step (C.55) the sampling grid periods are
recalculated to the time values.
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The first sampling point is calculated differently than the rest of the sam-
pling points. Firstly, the average sampling period is calculated:

n‡1 =

[
Kg

Ks

]
(C.44)

Than, the first sampling moment is drawn as:

n1 = dξun‡1e (C.45)

where ξu ∈ U(0, 1) is a uniformly-distributed random number. Algorithm of
generation of the rest of sampling time points is as follows. For any k-th
sampling point (k > 1) the number of sampling points left is calculated:

nlk = Ks − k + 1 (C.46)

The delimiters of a k-th sampling point, which are virtually first and last
possible position of the k-th sampling point are calculated as:

n−k = Nk−1 +Nmin (C.47)

n+k = Kg −Nmin(k − 1) (C.48)

The current average sampling period for the rest of sampling points is:

n‡k =

[
Kg −Nk−1

nlk

]
(C.49)

The expected position of the k-th sampling point is:

E[nk] = nk−1 + n‡k (C.50)

It must be checked if the expected position is not higher than the delimiter
n+k of the current sampling point:

E[nk] =

{
E[nk] for E[nk] ≤ n+k
n+k for E[nk] > n+k

(C.51)

In the proposed algorithm, a k-th sampling point Nk can differ from its
exected position E[nk] by the distance ndk. This distance it is:

ndk = min(|E[nk]− n−k |, n
+
k − E[nk]) (C.52)

Finally, sampling moment nk can be drawn as:

nk = [E[nk] + σndkx
n
k], xnk ∈ N (0, 1) (C.53)
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where σ is the internal variable of the proposed algorithm. The distribution
of the random variable xnk is windowed such that −3 ≤ xnk ≤ 3. In the last
step of the k-th iteration of the algorithm it is checked if the drawn sampling
moment nk does not violate its delimiters n−k and n+k .

nk =



n+k for nk > n+k

n−k for nk < n−k

nk otherwise

(C.54)

All Ks drawn sampling moments are recalculated from the number of sampling
grid periods to the time values:

∀k : tk = nkTg, k ∈ {1, . . . ,Ks} (C.55)

The proposed algorihm is presented on the alg. 1. The above algorithm gu-

Algorithm 1 Random sampling pattern generator - pseudo code

1: function [T] = A1(τ ,Tg,f
?
s , tmin,σ)

2: Compute Ks, Kg, Nmin as in (C.42)

3: Compute the average samp. period n‡1 as in (C.44)
4: Draw the first samp. moment n1 according to (C.45)
5: FOR k = 2 TO Ks

6: Update the no. of samp. points left nlk as in (C.46)
7: Compute the delimiters n−k and n+k as in (C.47)

8: Compute the average samp. period n‡k as in (C.49)
9: Compute the expected position E[nk] as in (C.50)

10: Check and correct E[nk] as in (C.51)
11: Compute the distance ndk as in (C.52)
12: Draw the samp. moment nk according to (C.53)
13: Check and correct nk as in (C.54)
14: Assign T(k) = nk
15: END
16: Recalculate the pattern as in (C.55)

rantess that the generated sampling pattern T has the errors emin = 0 and ef =
0 if the algorithm is realizable for a given set of parameters (τ, Tg, f

?
s , tmin).

Fig. C.12 compares the proposed algorithm with a well-known Additive Rad-
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Figure C.12: Comparison between the proposed algorithm (A1) which gen-
erates random sampling patterns and Additive Random Sampling (ARS) al-
gorithm for parameters τ = 200µs, Tg = 4µs, f?s = 50, tmin = 8µs. The
parameters λ ∈ {0.1, 0.2, . . . , 2.4}, σ ∈ {10−12.5, 10−12.0, . . . , 10−0.5}

nom Sampling (ARS) [31, 32] in which every next point is drawn as:

tk =

{
T ?
s + σ2xnk for k = 1

tk−1 + T ?
s + σ2xnk for k ∈ {2, . . . ,Ks}

(C.56)

where xnk ∈ N (0, 1), the variance σ2 = λTs. It can be seen that the ARS
violates the requirements of minimum distance between sampling moments
and does not keep the requested average sampling frequency. For very low
values of λ, for which the frequency and minium distance errors (ef, emin)
improves, the ARS algorithm generates uniform smpling patterns (ed = 1).

C.6 Numerical simulations

To demonstrate the proposed method in practice, an experiment was con-
ducted. The parameters of the filtering problem P(Bb, B

†
x,Ψ, fs) are as fol-

lows. Spectrum where the wanted signal can be found is −20kHz ≤ f ≤
20kHz, (Bb = 20kHz), there is 1 tone in the baseband signal. Frequency range

of the interference signal is B†x = 100kHz. The frequency separation (C.9) be-
tween columns of the IDFT dictionary Ψ is γ = 5kHz, the signal representa-
tion period (C.10) of the dictionary Ψ is Tr = 1µs, the number of positive fre-
quencies represented by the dictionary Ψ isK = 20. There are 10 average sam-
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Figure C.13: The best filtering-RIP parameter found for different average
sampling frequencies, for the filtering problem presented in the experiment.

pling frequencies tested: f
(1)
s = 10kHz, f

(2)
s = 20kHz, . . . , f

(10)
s = 100kHz.

For simplicity, the worst-case interference scenario is S(Nmax
I = 1,KI = 1).

The found filtering-RIP parameters ζ
Φ

(k)
U
P,S for different sampling grids T(k)

U ∈
U are shown in Fig. C.11. It can be clearly seen that grid size Tg = 8µs is sig-
nificantly better than any other grid size. The best filtering sampling patterns
for all the tested average sampling frequencies were found for this grid value.
The filtering-RIP parameters (C.40) corresponding to the best patterns found
for the average sampling frequencies are shown on Fig C.13.

Fig. C.14 shows reconstruction performance of the proposed method

for average sampling frequencies {f (3)s = 30kHz, f
(4)
s = 40kHz, f

(5)
s =

50kHz. f
(7)
s = 70kHz}. The best found sampling patterns for the correspond-

ing average sampling frequencies were used, while the spectrum containg the
wanted signal was swept Bb ∈ {5kHz, 10kHz, . . . , 95kHz}. The sampling pat-
terns were searched for signal spectrum corresponding to Bb = 20kHz, so as
expected, there is clearly a ”cut-off point” of the reconstruction when the sig-

nal spectrum Bb > 20kHz. For the average sampling frequency f
(7)
s = 70kHz,

all the sampled and reconstructed signals were reconstructed successfully for
the Bb ≤ 20kHz. It was experimentally verified that the average sampling fre-

quency f
(7)
s = 70kHz is the lowest frequency which guarantees perfect signal

reconstruction for Bb ≤ 20kHz.
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Figure C.14: The ratio of succesful signal reconstruction for different average
sampling frequencies and different wanted signal spectrum Bb for sampling
patterns adjusted to a given filtering problem. fs = 70kHz: black �, fs =
50kHz: cyan ◦, fs = 40kHz: blue ◦, fs = 30kHz: purple �

C.7 Conclusions

In this paper a new application of compressed sensing was presented. Com-
pressed sensing is used to filter wanted signal from interferening signals with-
out rising the sampling frequency to the Nyquist frequency of the interference-
polluted signal. Filtering-RIP parameter, which assesses applicability of a
sampling pattern for a given filtering problem, was introduced. This param-
eter is different from the canonical RIP parameter since it relates specifically
to how well a wanted frequency range may be reconstructed. Furthermore, a
method of filtering-RIP parameter estimation was proposed. In this method
combinations needed to compute the filtering-RIP are created based on fore-
seen scenarios of filtering. This method significantly decreases the number of
combinations which must be evaluated to compute the filtering-RIP. It makes
the computation of filtering-RIP parameter practical in engineering applica-
tions.

Theory of sampling patterns was presented. A set of error parameters was
proposed, to assess the random sampling patterns generator. It was explained
why the sampling pattern has significant impact on the quality of reconstruc-
tion. A system for generating and choosing the best sampling pattern for a
given filtering problem was introduced. A simple experiment was prepared
to demonstrate the proposed method in practice. It was shown, that with
compressed sensing, it is possible to move the filtering process from analog to
the digital domain without increasing the sampling frequency to the Nyquist
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frequency of the sampled signal. The above may increase area of applicability
of compressed sensing.
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