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ENGLISH SUMMARY 

Adipose-derived stem cells (ASCs) are increasingly being used for regeneration 

medicine and tissue engineering due to abundance and easy accessibility.  

Smooth muscle cells (SMCs) can be obtained from ASCs via various approaches: 

different growth factors, enhancement by mechanical force stimulation or changes in 

oxygen environment. Oxygen is a key factor influencing the stem cell proliferation 

and differentiation.  

The smooth muscle layer constitutes the intermediate layer of the esophagus and 

plays an important role for food transportation from pharynx to the stomach. A 

number of diseases might lead to esophageal anatomic damage and functional 

disorders. Utilizing tissue engineering approach to regenerate a smooth muscle layer 

is a prerequisite for successfully constructing tissue engineering esophagus. 

The goal of this thesis was to explore the effects of hypoxia, biochemical factor 

stimulation as well as mechanical stretching on differentiation of SMCs from human 

adipose-derived stem cells (hASCs), and investigate the feasibility of reconstructing 

the esophageal smooth muscle layer using porcine derived esophageal acellular 

matrix (EAM) scaffolds and SMCs differentiated from hASCs.  

In the first study, the effect of hypoxia on differentiation was investigated at oxygen 

concentrations of 2, 5, 10 and 20%. Contractile human aortic smooth muscle cells 

(hASMCs) were used as a control. Real time reverse transcription polymerase chain 

reaction (RT-PCR) and immunofluorescence staining results were used to evaluate 

the expression of smooth muscle cell (SMC)-specific markers including the early 

marker smooth muscle alpha actin (α-SMA), the middle markers calponin and 

caldesmon and the late marker smooth muscle myosin heavy chain (MHC). The 

specific contractile properties of cells were assessed using both a single cell 

contraction assay and a gel contraction assay. The combined results of marker 
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expression and contraction assays showed 5% hypoxia to be the optimal condition 

for differentiation of hASCs into contractile SMCs. 

In the second study, the combined effects of biochemical factor stimulation, 

mechanical force and oxygen levels on smooth muscle differentiation were studied. 

Both normal hASCs and hASCs preconditioned at 5% oxygen for 1 week were 

cultured on 6-well flexible-bottomed culture plates. HASMCs were used as a control. 

After reaching subconfluence, cells were subjected to either 10% cyclic tensile strain 

(CTS) alone or in combination with stimulation for 1 week. A combination of the 

biochemical factors transforming growth factor-β1 (TGF-β1) and bone 

morphogenetic protein-4 (BMP4) was used as differentiation factors. Cell 

reorientation, F-actin remodeling as well as SMC-specific markers were detected by 

immunofluorescence staining and real time RT-PCR assays. Cells were reoriented 

and F-actin cytoskeleton was realigned perpendicular to the direction of strain after 

10% CTS for 1 week. In addition, the cells differentiated with combined treatments 

for 1 week promoted the MHC expression as compared to the biochemical factors 

alone. 

In the third study, the potential for using differentiated ASCs to replace SMCs to 

regenerate the smooth muscle layer of EAM was studied. HASCs expanded and 

differentiated respectively in 5% or 20% oxygen concentrations were seeded onto 

muscle layer of porcine EAM scaffold. HASMCs were used as a control. The 

constructs consisting of scaffold and different types of cells were cultured for 24 

hours or 7 days. The morphology of EAM scaffold was evaluated by haematoxylin 

and eosin (H&E) staining, picrosirius red staining for collagen as well as Miller’s 

elastin staining for elastin. Cell proliferation ability, viability and migrate depth 

were examined via propidium iodide (PI) staining, cell counting as well as double 

staining assays. Our results showed that both proliferated and differentiated hASCs 

in 5% or 20% could attach on the porcine EAM scaffold in vitro after 24 hours and 

survive until 7 days. There is no significant difference between hASMCs and 

differentiated hASCs in terms of viability and migration depth, thus ASCs might be 
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a substitute for SMCs in the construction of tissue engineering (TE) esophageal 

muscle layer.  

In conclusion, the findings of this thesis have demonstrated that:  

1) HASCs can be differentiated into SMCs with biochemical factors TGF-β1 and 

BMP4 in combination, and 5% is the optimal oxygen concentration for 

differentiation process. 

2) Combined treatments containing cyclic stretch and biochemical factors promote 

SMC-specific marker MHC expression for both hASCs and hASCs preconditioned 

in 5% as compared to the biochemical factors alone. 

3) The SMCs differentiated from hASCs can attach, spread and survive on the EAM 

scaffold in vitro until 7 days, which is similar to hASMCs performance.  

Together the three studies indicate the feasibility of using ASCs in future clinical 

applications involving tissue regeneration of smooth muscle containing tissue.  
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DANSK RESUMÉ 

Adipøst afledte stamceller (ASCs) bliver i stigende grad anvendt til regenerativ 

medicin og genskabelse af væv, på grund af forholdsvis let tilgængelighed af en stor 

mængde celler. 

Glatte muskelceller (SMCs) kan udledes fra ASCs ved hjælp af forskellige metoder: 

vækstfaktor påvirkning, mekanisk stimulation eller ændringer i oxygen 

koncentration. Specielt oxygen er en vigtig faktor, der påvirker stamcellers 

proliferation og differentiering. 

Glatte muskelceller udgør det mellemliggende lag i spiserøret, og spiller en vigtig 

rolle for fødevaretransport fra svælget til maven. En række sygdomme i spiserøret 

kan medføre anatomiske skader og funktionslidelser. Brug af vævsgenopbyggelses 

teknikker til at regenerere et glat muskel lag er derfor en forudsætning for en 

vellykket rekonstruktion af spiserøret. 

Formålet med denne afhandling er at optimere dannelsen af glat muskelcellevæv fra 

humane adipøse stamceller (hASCs) ved at variere faktorer i 

differentieringsprocessen som oxygen, cytokiner samt mekanisk påvirkning. 

Desuden skal muligheden for at translatere resultaterne fra de basale undersøgelser 

til klinisk brug undersøges ved at undersøge de differentieredes cellers evne til at 

anlægge glat muskelcelle lag ved i esofagus acellulære matricer (EAM) afledt fra 

porcin esophagus. 

I første studie blev oxygens påvirkning på differentieringen af stamcelle til glat 

muskelcelle blev undersøgt ved 2, 5, 10 og 20% oxygen. Kontraktile humane aorta 

glatte muskel celler (hASMCs) blev anvendt som kontrol. Real time reverse 

transcription polymerase chain reaction (RT-PCR) og immunfluorescensfarvning 

blev anvendt til at evaluere ekspressionen af glatte muskelcelle (SMC)-specifikke 

markører, herunder tidlig-stadie markøren smooth muscle alpha actin (α-SMA), 

midt-stadie markørerne calponin og caldesmon og sen-stadie markøren smooth 
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muscle myosin heavy chain (MHC). De specifikke kontraktile egenskaber af celler 

blev bekræftet med både enkelt-celle kontraheringsforsøg og gel kontraktions-forsøg. 

De kombinerede resultater af markør udtryk og sammentrækning analyser viste, at 5% 

hypoxi er den optimale betingelse for differentiering af hASCs til kontraktile SMCs. 

I studie 2 blev den kombinerede effekt af mekanisk stimulering og ilt niveauer på 

glat muskel differentiering undersøgt. Både normale hASCs og hASCs, 

konditioneret ved 5% oxygen i 1 uge, blev dyrket i 6 brønds dyrkningsplader med 

fleksible bunde. HASMCs blev anvendt som kontrol celler. Efter at have nået sub-

konfluens, blev celler udsat for enten 10% uniaksialt cyklisk stræk (CTS) alene eller 

i kombination med biokemisk faktorer i 1 uge. Cytokin transforming growth factor-

β1 (TGF-β1) og bone morphogenetic protein-4 (BMP4) blev brugt til at differentiere 

stamcellerne. Celle reorientering, F-actin remodellering samt SMC-specifikke 

markører blev detekteret ved immunfluorescens og RT-PCR assays. Tre typer af 

celler blev reorienteret og cytoskelet blev observeret som værende orienteret 

vinkelret på retningen af den mekaniske stimulering efter 10% CTS i 1 uge, vurderet 

på farvning af F-aktin. Endvidere blev der, hos cellerne differentierede med 

kombinations behandling i 1 uge (mekanisk og biokemisk induktion) observeret 

nedsat α-SMA-ekspression men øget MHC-ekspression, i forhold til celler 

differentieret alene med biokemiske faktorer. 

I studie 3 blev mulighederne for at anvende ASCs som erstatning af SMCs til at 

regenerere glat muskel lag i acellulære esophagus matricer undersøgt. HASCs blev 

ekspanderet og differentieret i henholdsvis 5% eller 20% oxygen. HASMCs blev 

anvendt som kontrol. Disse blev efterfølgende udsået på det oprindelige muskellag i 

EAM matricen. Konstruktionerne bestående af EAM matrice samt forskellige typer 

af celler, blev dyrket i 24 timer og 7 dage. Morfologien af matricen blev evalueret 

ved hæmatoxylin og eosin (H&E) farvning, picrosirius red farvning for kollagen 

samt Miller elastin farvning for elastin. Celleproliferation, levedygtighed og 

migrationsdybde blev undersøgt via propidium iodid (PI) farvning. Celle tælling 

samt dobbelt farvning assays. Vores resultater viste, at både hASMCs og hASCs 
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kan hæfte på porcine EAM matricer in vitro efter 24 timer og efterfølgende 

overleve i mindst 7 dage. Der var  ingen signifikant forskel mellem cellekontrol og 

differentierede hASCs med hensyn til levedygtighed og migrationsdybde. Derfor 

kan viser studiet at ASCs er en mulig erstatning for SMCs i  opbygningen af det 

esophageale glatte muskellag. 

Sammenfattende har resultaterne af denne afhandling vist, at:  

1) Adipøse stamceller kan differentieres til glatte muskelceller med biokemiske 

faktorer TGF-β1 og BMP4 i kombination, og 5% er den optimale oxygen 

koncentration i differentieringsprocessen. 

2) A-SMA ekspression inhiberes, men MHC ekspression fremmes for hASCs, når 

disse behandles med en kombination indeholdende cyklisk mekanisk strækning samt 

biokemiske faktorer, i forhold til biokemiske faktorer alene. 

3) SMCs differentieret fra hASCs kunne vedhæfte, spredes og overleve på EAM 

matricer in vitro i mindst 7 dage, tilsvarende kontrolceller. 

Samlet peger dette på en vigtig rolle for adipøse stamceller i fremtidig klinisk 

applikationer af vævsregeneration involverende glatmuskelcelleholdigt væv. 
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1. INTRODUCTION 

Smooth muscle cells (SMCs) constitute an important part of the anatomic micro-

structure in esophagus. Esophageal congenital defects like atresia, 

tracheoesophageal fistula and acquired disorders such as esophageal cancer require 

the removal of the segmental esophagus and replacement with tissue engineered 

esophagus.
1
 Obtaining functional SMCs is indispensable to successful reconstruction 

of in vitro tissue engineered esophagus. SMCs can be obtained from autologous 

tissue, but the limited regeneration capability of mature SMCs limits their 

application. Adipose-derived stem cells (ASCs) are a preferred stem cell source due 

to the easy and repeatable access to adipose tissue and simple isolation procedures, 

thus SMCs differentiated from ASCs have been an ideal solution.
2
 The 

differentiation is determined by numerous local environmental cues and extrinsic 

factors including oxygen tension, biochemical factors as well as mechanical forces.
3
  

SMCs can be differentiated from ASCs using both biochemical and mechanical 

stimuli. Oxygen is a key signaling molecule in the stem niche and hypoxia 

influences stem cell proliferation and differentiation.
4
 Stem cells cultured or 

preconditioned in hypoxia have been extensively investigated to enhance the yield 

of stem cell or improve stem cell-based tissue engineering (TE) application. 

Therefore, hypoxic conditions have a profound significance for the optimization of 

ASCs differentiation, as well as adipose-derived stem cell (ASC)-based treatment 

and TE application. 
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2. BACKGROUND 

2.1 STEM CELL AND ADIPOSE-DERIVED STEM CELL 

Stem cells are characterized by their self-renewal and replication capability. Stem 

cells have two types of division. Symmetric division can produce two identical 

daughter cells with stem cell properties. By asymmetric replication, the stem cell 

produces one cell retaining its self-renewing capacity, the other cell generating one 

or more specialized cell types.
5
 Stem cells are classified into two sources with very 

different capabilities: embryonic stem cells (ESCs) and adult stem cells. ESCs are 

pluripotent and derived from the inner cell mass of the blastocyst.
6
 Multipotent adult 

stem cells originate from one of the three germ layers, the endoderm, mesoderm, 

ectoderm and contribute to the maintenance of tissue homeostasis.
7
  

ASC is a kind of adult stem cell originating from the mesoderm layer of the 

developing embryo. The stromal vascular fraction (SVF) pellet is a heterogenous 

combination of several stromal cells, adipose tissue stem cells, endothelial cells, 

erythrocytes, fibroblasts, lymphocytes, monocytes/macrophages and pericytes.
8
 Pure 

ASCs can be isolated from SVF pellet which has been verified in previous studies.
9, 

10 
Briefly, after obtaining the lipoaspirate, a wash step with PBS and further 

digestion step with crude collagenase are carried out. The resulting digested adipose 

tissue is centrifuged to remove mature adipocyte and obtain the SVF pellet. The 

SVF pellet is further centrifuged and filtered after lysis of erythrocytes, and 

subsequently seeded onto a plastic surface overnight in a standard incubator, after 24 

hours the non-adherent mononuclear cells are removed and mostly pure ASCs are 

produced (Figure 2-1).  

Mesenchymal stem cells (MSCs) are characterized by the expression of cell-specific 

proteins and CD markers. In 2006, the Mesenchymal and Tissue Stem Cell 

Committee of the International Society for Cellular Therapy proposed three criteria 

to define the identification of human MSCs.  
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1) The plastic-adherent feature.  

2) The ability to differentiate into adipogenic, chondrogenic and osteogenic lineages. 

3) The presence of molecular markers CD73, CD90, CD105, and absence of CD11b 

or CD14, CD19 or CD79α, CD34, CD45, HLA-DR.
11

  

MSCs can be found in different mesenchymal tissues including adipose tissue and 

bone marrow. A recent review from Bourin P, et al. compared the phenotypical 

differences between ASCs and bone marrow-derived mesenchymal stem cells (BM-

MSCs). ASCs can be distinguished from BM-MSCs by their expression of CD36 

and lack of CD106.
8  

However, due to the lack of a single definitive marker, the 

identification of ASCs, to satisfy all the criteria, still needs all of stem cell properties 

such as tissue origin, CD marker profile, self-renewal ability and pluripotency.  

      

Figure 2-1. Isolation process of ASCs from adipose tissue via enzymatic digestion and 

centrifugation method. Abbreviations: SVF, stromal vascular fraction; ASCs, adipose- 

derived stem cells.   

In addition, ASCs meet the important criteria in regenerative medicine applications 

based on the review from Gimble JM, et al.
12

  

1) Abundant numbers can be obtained from the adipose tissue. Krawiec et al. have 

stated that ASCs yield between 100,000 and 1,000, 000 stem cell per gram of fat, 
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whereas the yield of MSCs is 100 to 1,000 cells from one milliliter of bone marrow.
 

13, 14, 
 

2) Differentiation ability along multiple cell lineages is reproducible.  

3) The harvest procedure is minimally invasive and ASCs can be manufactured via 

current good manufacturing practice (cGMP) and transplanted safely to the host.  

Induction of ASCs under defined conditions can result in their differentiation to 

multiple cell types containing fat,
15

 bone,
16

 cartilage,
17

 muscle,
18

 endothelium,
19

 

cardiomyocyte,
20

 neurons
21

 and liver lineages.
22

 
 
Thus, ASC have been widely used 

as a promising stem cell source in regenerative medicine applications. 

HASCs used in this study were obtained from adipose tissue of two healthy patients 

in accordance with the above separation procedure. The study from our group has 

shown its adherence feature to plastic culture plates, proliferation abilities, as well as  

expression of  MSC molecular markers CD29, CD44, CD73, CD90 and CD105.
23,   

 

24, 25
 Likewise, our study has suggested that ASCs can be differentiated into 

adipocytes, chondrocytes and osteocytes.
26,

 
27 

Thus ASCs used in this study have 

been shown to satisfy all criteria, as stated preciously, and been approved be reliable 

and multipotent stem cells. 

2.2 SMOOTH MUSCLE CELL 

2.2.1. SMOOTH MUSCLE CELL CHARACTERISTICS  

The SMCs originate from varied progenitors including neural crest, secondary heart 

field, somites, mesoangioblasts, proepicardium, splanchnic mesoderm, mesothelium 

and various stem cells and constitute part of major components of human body, 

including the respiratory, digestive, cardiovascular, urinary, reproductive and 

excretory systems.
28

  

SMCs exhibit two phenotypes with different morphological characteristics, 

proliferative and migration ability, as well as specific gene marker expression. 
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Contractile SMCs are elongated spindle cells with rich contractile filaments in the 

cytoplasm. Synthetic SMCs contain highly developed organelles such as rough 

endoplasmic reticulum (RER) which is crucial to protein and extracellular matrix 

(ECM) synthesis. In addition, synthetic SMCs exhibit higher growth rates and 

higher migratory activity than contractile SMCs. Contractile phenotypical SMCs are 

characterized by increased expression of specific contractile proteins including 

smooth muscle alpha actin (α-SMA), calponin, caldesmon, smooth muscle myosin 

heavy chain (MHC) and specific contractile function.
 
Both visceral and vascular 

SMCs are not terminally differentiated cells in the adult organism and are capable of 

switching between phenotypes in response to local environmental changes include 

mechanical forces, a variety of biochemical factors and growth factors (Figure 2-

2).
29,  30, 31 

 

The contraction of SMC is regulated by calmodulin (CaM), a kind of cellular 

calcium receptor in the smooth muscle. The contraction can be initiated once the 

calcium ions binding to CaM. The CaM-calcium complex activates myosin light 

chain kinase (MLCK), which phosphorylates the regulatory subunits of myosin light 

chain (MLC20). The phosphorylation of MLC20 activates myosin ATPase, eliciting 

the cycling of myosin heads (crossbridges) binding to the actin filament causing 

smooth muscle contraction.
32, 33

 Thus the increased expression of myosin protein is 

essential for contractile phenotypical SMCs and  specific contractility.  
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Figure 2-2. Characteristics of synthetic and contractile phenotypes of SMC. Abbreviations: 

RER, rough endoplasmic reticulum; ECM, extracellular matrix; SMC, smooth muscle cell.  

2.2.2. SMOOTH MUSCLE CELL DIFFERENTIATION 

Control of cellular differentiation is regulated by the level of gene transcription.
34

 

Gene transcription and SMC differentiation is controlled by a dynamic array of local 

environmental cues and extrinsic factors (Figure 2-3).
3, 35

 Oxygen is one of the most 

important environmental components within stem cell specific niche, serving as 

metabolic substrate and signaling molecule and influencing the self-renewal and 

differentiation potential.
4
 The effects of hypoxia on proliferation and differentiation 

on stem cells have been extensively explored. It has been shown that hypoxia 

promotes undifferentiated cell states and enhances cell proliferation in various stem 

cell populations such as neural stem cells, rat mesencephalic precursor cells, 

hematopoietic stem cells and ASCs.
36, 37, 38, 39

 However, the effect of hypoxia on 

differentiation varies markedly depending on oxygen concentrations and committed 

cell lineages. According to the review from Zachar et al. 1% or 2% O2 decreased 

chondrogenesis of ASCs when cells were seeded as human 3-D cultures. On the 

contrary, 2% O2 increased the chondrogeneis of ASCs in human alginate cultures. 

Both 2% and 5% O2 decreased osteogenesis of ASCs.
24

  

In addition to oxygen regulation, biochemical factors associated with signaling 

pathways are critical elements. A number of different protocols have been classified 

to drive the differentiation of ASCs towards a smooth muscle like cell type, 

exhibiting similar morphology, gene and protein expression profiles as well as 

contractility.  

1) Rodriguez et al. used 100 unit/ml heparin in medium MCDB131 for 6 weeks to 

successfully drive hASCs to differentiate into phenotypic and functional SMCs.
40

  

2) Wang et al. used combination of TGF-β1 and BMP4 for 1 week to obtain SMC-

like cells from ASCs.
41
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3) 5 ng/mL transforming growth factor-β1 (TGF-β1) along with 50 ng/mL platelet-

derived growth factor (PDGF)-BB increased SMC-specific marker expression in 

ASCs.
42

  

4) TGF-β1 alone (2 ng/ml for 3 weeks) enhanced SMC-specific marker expression 

in ASCs.
43

   

5) Bradykinin,
 
sphingosine1-phosphate, angiotensin II, sphingosylphosphorylcholine 

have shown to be able to induce ASCs to express SMC-specific markers.
44, 45, 46,

 
47, 48

  

  

Figure 2-3. The major influencing factors of SMCs differentiation. Abbreviations: TGF-β, 

transforming growth factor-β; BMP4, bone morphogenetic protein-4; SMC, smooth muscle 

cell.  

Apart from chemical signal modulation, cells and tissues are continuously subjected 

to diverse mechanical forces. It has been demonstrated that mechanical stimuli affect 

stem cell morphology, proliferation and differentiation.
49

 For example, ASCs 

stimulated with 10% strain at 1Hz for 7 days inhibited proliferation and caused the 

cellular realignment perpendicular to the strain direction.
50

 Huang et al. suggested 

that mechanical strain (10% cyclic stretching, 0.5 Hz, 48 hours) enhanced the 

proliferation of aging ASCs.
51

 Another study suggested that cyclic uniaxial strain 

(10% cyclic strain, 1Hz, 24 hours) caused the myogenic differentiation of rat 

ASCs.
52
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With respect to underlying mechanism of SMCs differentiation, studies are roughly 

divided into two types, some studies explore the mechanism of phenotypical switch 

and SMC-specific markers expression, other studies induce stem cells to 

differentiate into SMCs using chemical stimulation and investigate the underlying 

mechanism. However, two kinds of studies have been shown the consistent results. 

During the processes of both phenotypical switch of SMCs and stem cell 

differentiation into SMCs, the critical signaling molecules involve serum response 

factor (SRF), myocardin family containing myocardin, myocardin-related 

transcription factor-A (MRTF-A) and myocardin-related transcription factor-B 

(MRTF-B), CArG (CC(AT)6GG) box, a 10 bp cis-element located in the promoter 

of many genes restricted to adult SMCs. The nuclear localization and recruitment of 

the transcription factor SRF and coactivator myocardin binding to the CArG 

sequence initiating the SMC gene transcription.
53, 54, 55

 For mechanical stimulation-

associated SMCs differentiation mechanism, several key elements include ECM 

ligands such as collagen and fibronectin, the focal adhesions consisted of clustered 

integrins and accumulated cytoskeletal proteins, and phosphorylated signaling 

molecules such as focal adhesion kinase (FAK).
56

 In addition, small GTPase 

RhoA/Rho associated kinase (ROCK) and intact cytoskeleton are essential for the 

expression of differentiation-related proteins in SMCs.
57   

 

A set of SMC-specific marker proteins have been used as a measure to detect 

differentiation of ASCs towards SMCs. SMCs express contractile proteins that are 

important for the physiologic needs in different stages of maturation and 

differentiation. Some of the most important SMC markers are α-SMA, caldesmon, 

calponin and MHC. All of these markers are contractile proteins that contribute to 

the contractile function.  

Actins are highly conserved proteins including α, β, γ actins. The α-actins are found 

in muscle tissues including α-smooth muscle, α-cardiac, α-skeletal considered as 

tissue-specific actins. They are major constituents of the contractile apparatus. The β 

and γ actins co-exist in most cell types as components of the cytoskeleton. A-SMA 

is a 42-KDα globular protein (G-protein) and forms two-stranded helical filaments 
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(F-actin) after polymerization. Normally α-SMA can be expressed in vascular 

smooth muscle, but it can also be expressed in myofibroblasts. It is the first known 

protein detectable in differentiated SMCs and its level of expression goes up initially 

as the cell matures. It is also an abundant structure protein accounting for 40% of 

total cell protein and required for the generation of mechanical forces and 

contraction of differentiated SMCs.
3,
 
31, 32,58

 

Calponin is known as a family of actin filament-associated proteins. Calponin is 

expressed in both smooth muscle and non-smooth cells containing three isoforms: 

h1, h2 and h3 calponin. The h1 isoform of calponin is specific to differentiated 

smooth muscle cells. The h2 and h3 calponins are found in various tissue including 

smooth muscle and non-muscle tissue. Calponin is an inhibitor of actin-activated 

myosin ATPase. Calponin binding to actin leads to inhibition of the actomyosin 

Mg
2+

-ATPase and decrease of the sliding of actin filaments over myosin. When 

calponin is phosphorylated in vitro by protein kinases either Ca
2+

/CaM-dependent 

protein kinase II (CAMK II) or protein kinase C (PKC), the inhibitory action is 

reversed. Thus calponin plays an important role in the regulation of actin-myosin 

interaction.
59, 60, 61  

Caldesmon is a thin filament-associated, actin and CaM-binding protein with an 

ample quantity in a variety of smooth muscles. Caldesmon has two kinds of 

isoforms, the heave caldsmon (h-CaD) found in differentiated SMCs and light 

isoform (l-CaD) in most types of cells. In SMCs, caldesmon also inhibits the 

actomyosin ATPase activity and myosin binding to actin. The inhibition is reversed 

when this protein is phosphorylated by a number of protein kinases including 

CAMK II, protein kinase A (PKA) or PKC. Therefore, caldesmon modulates the 

SMCs contraction process. Calponin and caldesmon constitute mid-phase markers of 

SMCs differentiation.
60, 62,

 
63

 

MHC is a hexamer composed of two heavy chains and four light chains of 20 KDα 

and 17 KDα (MLC20 and MLC17). The heavy chains comprise globular heads and 

helical tails. Each globular head contains a binding site for actin and actin-activated 
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magnesium-adenosine triphosphatase (ATPase). The phosphorylation of light chain 

of myosin is necessary for activating myosin ATPase, leading to the heads of 

myosin heavy chain repeatedly binding to the actin filament. Therefore, MHC plays 

a key role in the regulation of smooth muscle contraction. In addition, MHC, as an 

later marker of mature SMCs, is the most important marker for identification of 

differentiated SMCs.
31,

 
60, 63

 

2.3. OXYGEN, A KEY MODULATOR  

2.3.1. HYPOXIA AND HYPOXIA–INDUCIBLE FACTOR  

Stem cells reside in specific niche and oxygen is a critical component of this 

microenvironment affecting the  stem cell proliferation and differentiation.
64, 65 

In 

general, environmental hypoxia refers to oxygen concentrations below the 

atmospheric 20% O2 concentration. Physiological hypoxia is an effect of oxygen 

demand being higher than oxygen supply in the cellular microenvironment.
66, 67

 

Although most cell cultures and expansion are performed in vitro at 20% oxygen 

concentration, the actual oxygen tensions of many tissues in physiological 

environment are considerably lower: 1) in arterial blood around 13%, 2) in the veins 

5%, 3) 1-6% in the bone marrow, 4) 2-8% in adipose tissue.
24,

 
64 

Therefore, the 

"normoxic" oxygen concentration (20% O2) used in cell biology studies does not 

reflect in vivo real conditions. On the contrary, traditional environmental hypoxia 

concentrations (below the atmospheric 20% O2) should more precisely be referred to 

as in situ normoxia or physiological normoxia depending on the tissues.
67, 68 

The hypoxia-inducible factor (HIF) is a master regulator controlling cellular 

responses to hypoxia and maintenance of cellular homeostasis. HIF-α has three 

isoforms, hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-

2α) and hypoxia-inducible factor-3α (HIF-3α). Hypoxia-inducible factor 1(HIF-1) is 

a heterodimer composed of HIF-1α and a constitutively expressed hypoxia-inducible 

factor-1β (HIF-1β), which is also known as the aryl hydrocarbon receptor nuclear 

translocator (ARNT). HIF-1 is a member of the basic helix-loop-helix-Per-ARNT-

Sim (bHLH-PAS) family of environmental sensors and can bind to hypoxia 
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response element (HRE) DNA sequences. In contrast to the HIF-1β subunit, the 

protein stability, cellular location, and transcription factor activity of the HIF-1α 

subunit is affected by oxygen. HIF-1α is rapidly degraded by the ubiquitin 

proteasome system under normoxia. On the contrary, the HIF-1α subunit is 

stabilized in hypoxic conditions, allowing the HIF-1 heterodimer to act as a 

transcription factor facilitating cell specific gene expressions (Figure 2-4).
69,

 
70, 71  

The study from Jiang et al. quantitated HIF-1 DNA-binding activity and protein 

level in Hela cells under different oxygen concentrations indicating that HIF-1 

DNA-binding activity and protein expression increased exponentially when cells 

were exposed decreasing oxygen concentrations. The maximum response was 

around 0.5% oxygen concentration, and a half maximal response between 1.5 and 

2%. 5% was a critical point where HIF-1 DNA-binding activity and protein level 

were almost equal to the 20% level, which implied that oxygen concentration below 

2% is real hypoxia, but from 5% to 20% was not the real hypoxia for Hela cells.
72

 

However, for distinct cell lines, the hypoxic critical point which can activate HIF-1 

binding to DNA varies thus leading to different cellular responses for hypoxia levels.  

When the expression of HIF-1α is increased due to hypoxic stimulation, hypoxia 

responsive genes and cellular physiological activities are regulated or controlled by 

HIF-1α along the signaling pathway direction.
73

 For instance, hypoxia promoted the 

undifferentiated cell state in various stem and precursor cell populations.
74, 75

 

Hypoxia environment improves growth kinetics, genetic stability thus increasing in 

vitro expansion for MSCs by regulating HIF-1α mediated gene expression.
64

 

Gustafsson et al. demonstrated hypoxia (1% O2) led to recruitment of HIF-1α to a 

Notch-responsive promoter and increased the Notch downstream genes, blocking 

myogenic differentiation in a Notch-dependent manner in myogenic cell line 

C2C12.
76

 In addition, prolonged growth of ASCs in 5% oxygen enhanced vascular 

endothelia growth factor (VEGF) expression.
39

 The hypoxia-induced expression of 

VEGF is mediated by the transcription factor HIF-1.
77

 VEGF is able to activate 

mitogen-activated protein kinase (MAPK) signaling pathway which controls cell 

fate and differentiation processes.
78
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Figure 2-4. The effects of normoxia and hypoxia on HIF-1 protein. Abbreviations: HIF-1α, 

hypoxia-inducible factor-1α; HIF-1β, hypoxia-inducible factor-1β; OH, hydroxylation; Ub, 

ubiquitination; HRE, hypoxia response element. 

2.3.2. HYPOXIA CONDITONING 

Hypoxia has been shown to modify the metabolism and gene expression of MSCs 

thereby modulating their proliferation and differentiation abilities.
79

 As a 

consequence, different levels of hypoxia have been tried as factors in stem cell 

differentiation and yield improvement.  

In vivo different types of stem cells exist in a hypoxia microenvironment, which is 

beneficial for the maintenance of these cells and continuous replenishment.
38

 

Likewise, ASCs in the body are in relatively oxygen-deficient environment (1-5% 

O2).
80

 Several studies compared the environmental hypoxia concentrations with 20% 

O2 in terms of the effects of hypoxia on the stem cell proliferation and maintenance 

of stemness showing consistent results: Närvä et al. suggested that prolonged 

hypoxia (4% O2 for 7 days) enhanced the self-renewal ability and maintenance of 

the pluripotent state in human ESCs.
81

 1% oxygen promotes the maintenance of 

stemness of ASCs, 2% and 5% oxygen enhance the proliferation ability of ASCs.
39, 

82, 83 
The results can be explained by proliferating cells have a high metabolic rate 
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requiring more oxygen supply, cells in real tissues of the body may experience lower 

oxygen due to oxygen depletion and diffusion limitation, therefore, in vitro hypoxia 

culture condition might be more similar to in vivo stem cell niche microenvironment 

in terms of oxygen concentration leading to the better proliferation rate in hypoxia. 

However, studies regarding differentiation of ASCs under hypoxic conditions 

focusing on chondrogenesis and osteogenesis of ASCs showed different results: 

Malladi et al. indicated that 2% oxygen strongly inhibited chondrogenesis and 

osteogenesis in ASCs, but other groups suggested that 5% oxygen enhanced 

chondrogenesis and osteogenesis in ASCs and rat BM-MSCs.
84, 85, 86

 Interestingly, 

Pilgaard et al. demonstrated that 15% oxygen provided the most suitable 

environment for inducing chondrogenesis in ASCs.
26

 The varied results are 

depending on the committed differentiation lineages, hypoxia level as well as culture 

conditions. 

The effect of hypoxia on SMCs proliferation and phenotypic switch has been 

investigated. Chronic level of hypoxia at 1% was shown to induce SMC 

proliferation and prolong cell life.
87

 Hypoxic exposure at 3% level for 48 hours 

leaded to an increased cell number and a significant downregulation of SMC- 

specific marker.
88

 However, according to Berthelemy et al., 5% O2 switched the 

cellular morphology to SMC-like spindle shape and expressed the SMC contractile 

phenotypic markers when peripheral blood mononuclear cells were cultured with 

specific angiogenic growth factors.
89

 These results highlight the importance of 

oxygen as well as differential regulatory role of hypoxia on the physiological 

proliferation and differentiation processes.  

In addition to affecting ASCs proliferation rate and differentiation commitment,  

hypoxia can modulate the paracrine activity improving the survival and 

angiogenesis.
90, 91

 Cell survival and angiogenesis are key factors to stem cell-based 

treatment and TE applications.
92

 According to Barros et al. study, aging-related 

decrease of hASCs angiogenic potential was improved by hypoxia 

preconditioning.
93

 Similarly, another study indicated that gene expression of pro-

angiogenic factors including VEGF, placental growth factor (PIGF) and hepatic 
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growth factor (HGF) were downregulated with age, but partially restored by hypoxia 

(1% O2 for 48 hours). Sun et al. study concluded that the conditioned medium from 

hypoxia-preconditioned ASCs improved wound healing in a rat skin defect model 

via angiogenesis and recruitment of circulating stem cells.
94

 Another study from 

Hollenbeck et al. suggested that conditioned medium from hypoxia-preconditioned 

ASCs (0.5% O2) increased VEGF levels and enhanced endothelial cell tubule 

formation. Additionally, this kind of conditioned medium improved flap viability 

likely through the effect of VEGF release in the rat model of flap ischemia.
95

 

All these results demonstrated that hypoxia preconditioning is a feasible method to 

ameliorate ASC-based treatment. 

2.4. GROWTH FACTORS 

The generation of SMCs from ASC progenitors has been extensively investigated, 

indicating different biochemical factors are able to induce the ASCs differentiation 

into SMCs. The transcription regulation of SMC markers is related to the complex 

combination of cis-acting elements and trans-acting factors. Cis-acting elements are 

located within the promoters of vascular smooth muscle cells (VSMCs). The CArG 

box found in the promoters of contractile genes is a cis-acting element which is vital 

for the regulation of VSMCs gene expression.
30

 Extensive studies have shown TGF-

β to be the potent soluble growth factor promoting a number of cell types including 

ESCs, BM-MSCs, neural crest stem cells differentiate into SMCs.
96, 97,

 
98, 99 

TGF-β1 

is a multifunctional protein which plays critical roles in a variety of biological 

processes including cell growth, differentiation and migration.
100, 101,

 
102

 Bone 

morphogenetic proteins (BMPs) are multifunctional growth factors representing the 

largest group in the TGF cytokine superfamily.
103,

 
104

 Lagna et al. reported that the 

BMPs signaling pathway effectively induced contractile phenotype and SMC-

specific genes transcription. Nuclear localization and recruitment of the MRTF-A 

and MRTF-B transcription factors to a smooth muscle α-actin promoter were 

observed in response to BMP4.
105  

In addition, a combination of TGF-β1 (5 ng/ml) 

and BMP4 (2.5 ng/ml) stimulation for 1 week was shown to drive efficiently the 
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ASCs into mature contractile SMCs.
41

 Similarly, TGF-β1 and BMP4 was shown to 

reduce VSMCs proliferation and migration and promote expression of VSMCs 

contractile genes.
43

 The study from Lagna et al. provided evidence that SMC 

phenotypic switch induced by BMP4 from synthetic to contractile was dependent on 

the Smad and RhoA/Rho kinase signaling pathway. The BMP4 pathway activated 

transcription of SMC genes by inducing nuclear translocation of the transcription 

factors MRTF-A and MRTF-B, binding the CArG box found within many SMC-

specific gene promoters.
105

  

 

Figure 2-5. TGF-β and BMP signaling pathway of SMCs differentiation. Abbreviations: 

SRF, serum response factor; MRTFs, myocardin-related transcription factors; SBE, Smad 

binding element; CArG, CC(A/T)6GG.   

Therefore, both TGF-β1 and BMP4 induce SMC contractile genes, but may in 

combination exert a synergistic influence on differentiation through two independent, 

but crosstalking signaling pathways (Figure 2-5). Based on the Kretschmer et al. 

study, Smad2, 3 and 4 were shown to contribute to the regulation of TGF-β 

responses to different extents.
106

 Signal transduction studies revealed that Smad1, 5 

and 8 are the immediate downstream molecules of BMP receptors and play a central 

role in BMP signal transduction.
104

 In general, signaling is initiated with ligand-

induced oligomerization of serine/threonine receptor kinases and phosphorylation of 

the cytoplasmic signaling molecules Smad2/3 for the TGF-β pathway, or Smad1/5/8 
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for the BMP pathway. Activated Smads complex with the common signaling 

transducer Smad4 and then translocate to the nucleus.
107

 Activation of TGF-β1or 

BMP4 related signaling molecules induce the expression of SRF and coactivator 

myocardin and further translocation to the nucleus.
105

 The Smads contain DNA 

binding motifs and can bind to Smad binding elements (SBE). However, due to the 

low affinity of Smads and SBE, they regulate transcription in combination with 

additional transcription factors and cofactors.
35

 The complex of transcription factor 

comprising SRF dimers and its coactivators, such as myocardin, MRTF-A or   

MRTF-B can bind to the CArG sequence initiating the SMC gene transcription.
108

  

RhoA/ROCK is closely related to SMC gene transcriptional regulation. As shown in 

Figure 2-6, RhoA activates its effector Dia1 and actin-binding factor profilin, which 

triggers actin polymerization. ROCK also inhibits MLC phosphatase, indirectly 

leading to increased phosphorylation of myosin monomers and myosin filament 

polymerization. Therefore, RhoA regulates actin and myosin filament 

polymerization. In addition, SRF activation and nuclear translocation can be induced 

both by ROCK and by changes in stress fiber dynamics such as cell stretching. SRF 

dimers are bound to CArG boxes of the promoter triggering the SMC-specific gene 

transcription processes.
29
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Modified from plasticity in skeletal, cardiac and smooth muscle invited review: molecular 

mechanisms of phenotypic plasticity in smooth muscle cells. Journal of Applied Physiology, 

2001(90), 358-368. 

Figure 2-6. RhoA/ROCK signaling pathway of SMCs differentiation. Abbreviations: ROCK, 

Rho associated kinase; MLC, myosin light chain; MLCK, myosin light chain kinase; SRF, 

serum response factor; CArG, CC(A/T)6GG.  

2.5. MECHANICAL STRETCH 

Mechanical stretch also plays a vital role in controlling cell morphology, 

proliferation, lineage commitment and differentiation.
109, 110

 All cells within the 

context of a 3D microenvironment are exposed to diverse mechanical forces in the 

body, for instance, the smooth muscle of media of arterial vessel wall is always 

exposed to mechanical cyclic strain in the circumferential direction.
 
To mimic the 

physiological mechanical environment in vivo, various techniques of mechanical 

stimulation have been applied. Such as shear stress generated by flow fluid, 

mechanical stretching, compressive load exerted by hydrostatic presure.
111, 112 

Cyclic 

tensile strain (CTS) is a common approach to mimic in vivo cyclic circumferential 

strain experienced by SMCs, as shown in Figure 2-7. Stretching parameters such as 

mode (uniaxial, biaxial and equiaxial), magnitude and duration have been found to 

elicit distinct cellular responses.
109, 113, 114

 Hamilton et al. utilized a FX-4000T strain 

unit to upregulate a-SMA and h1-calponin in rat bone marrow-derived progenitor 

cells (BMPCs) after 10% uniaxial cyclic strain at 1 Hz for 7 days.
115

 Another study 

showed that rat BMPCs were able to differentiate toward a SMC-like lineage which 

was verified by increased expression of SMC markers a-SMA and h1-calponin after 

BMPCs were suspended in fibrin gel, pipetted into the trough of  Flexcell plates and 

then stimulated with 10% longitudinal cyclic stretch at 1 Hz for 6 days.
116
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Figure 2-7. (A) Schematic diagram of Flexcell tension system. The system can drop the 

silicon membrane through the vacuum, therefore producing the horizontal direction 

stretching for the cells on the membrane. (B) One well of 6-well culture plate showing the 

custom-made rectangular piston in the middle. Vacuum system can produce the strain for 

the cell on the membrane.  

A number of sensory elements are inherent in cells and can sense external forces 

such as stretch through mechanosensing process. Mechanotransduction is the 

conversion process by which the cells sense  mechanical stimuli and translate this 

into biochemical signals.
117

 The focal adhesions as a kind of mechanosensory 

complexes play an important role during mechanosensing and mechanotransduction 

processes, and the dynamic protein complexes consist of clustered integrins and 

accumulated cytoskeletal proteins and phosphorylated signaling molecules such as 

FAK.
56

 They link the ECM and actomyosin cytoskeleton serving as a conduit 

through which signal transduction occurs in response to physical force.
117

 The 

cytoskeleton is the primary mechanical component of cellular structure and it is 

responsible for maintaining mechanical homeostasis. Also, cytoskeletal 

reorganization are the main processes during mechanically induced cellular 

differentiation.
109

 The study suggested that Rho and an intact cytoskeleton are 

essential for mechanotransduction and the expression of differentiation related 

proteins in SMCs.
118, 119

 In addition, RhoA/ROCK is also a key factor for inducing 

myogenic differentiation through regulating the actin polymerization, reorganization 

of actomyosin filaments, MLC phosphorylation, as well as activity of SRF and 

cofactor MRTFs.
29, 57, 120
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Based on the previous studies, the possible SMCs differentiation signaling pathway 

induced by stretching is summarized in Figure 2-8, including the integrins, integrin-

linked kinase (ILK), FAK, RhoA/ROCK, cytoskeletal proteins and cytoskeletal 

reorganization. Integrins are transmembrane heterodimers receptor composed of 

non-covalently bound transmembrane α and β subunits. Each subunit of the integrin 

heterodimers contains a large extracellular domain, a transmembrane domain and a 

short cytoplasmic tail.
121 

Integrins are capable of binding numerous ECM ligands 

including fibronectin, fibrinogen as well as collagens, transmitting forces from the 

external environment across the cell membrane.
117, 122 

Mechanical stimulation can 

affect the extracellular matrix, making the ligands in extracellular matrix bind to the 

integrins. The integrin then transmits extracellular stimuli into intracellular signaling 

events including phosphorylation of  tyrosine kinases  such as FAK, Src, as well as 

adaptor protein p130Cas.
56

 FAK phosphorylation can result in tyrosine 

phosphorylation of cytoskeletal proteins resulting in rapid cytoskeletal 

reorganization.
122

 There are several key focal adhesions involved in establishing and 

maintaining the integrin cytoskeleton linkage.  

1) Talin, α-actinin and filamin, integrin-bound proteins, can directly bind to actin.  

2) FAK, ILK and paxillin, also integrin-bound proteins, can indirectly bind the      

cytoskeleton.  

3) Non-integrin bound actin-binding protein such as vinculin.  

4) Adaptor and signaling molecules which regulate the interactions of proteins.
121

  

Ligand binding and the phosphorylation of signaling molecules lead to the assembly 

of actin filaments and the activation of downstream small G protein signaling 

molecule such as RhoA, which can affect actin polymerization and cytoskeleton 

reorganzization.
121, 123 

In addition, ILK is a multidomain adaptor protein which 

directly binds integrin tails and indirectly associates with actin through its main 

binding partner parvin. The study showed that ILK and parvin complex can 

modulate the actin cytoskeleton and the actin polymerization through its interactions 
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with paxillin, vinculin or other signaling molecules.
124

 Thus, a stretch signal can be 

transduced into internal biochemical signal through a series of cascading proteins 

resulting in the cytoskeletal reorganization.
122, 124

 RhoA/ROCK activation, 

cytoskeletal organization and stress fibers changes can induce SRF activation and 

nuclear translocation by binding to the CArG box, inducing SMC-specific gene 

transcription.  

 

Figure 2-8. Signaling pathway of mechanotransduction of stretching affecting SMCs 

differentiation. Abbreviations: ILK, integrin-linked kinase; FAK, focal adhesion kinase; 

ROCK, Rho associated kinase; SRF, serum response factor; CArG, CC(A/T)6GG. 

2.6. ESOPHAGEAL MUSCLE LAYER TISSUE ENGINEERING 

Esophageal cancer is the leading cause of cancer-related deaths worldwide with high 

morbidity and mortality. In addition, every year 5000-10000 patients are diagnosed 

with congenital or acquired diseases such as atresia, Barrett's esophagus and 
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strictures.
125

 Current treatment often requires the removal and reconstruction of 

segmental esophagus and severe complications limit its clinical application.
126

  

A tissue engineered esophagus is an ideal method for the reconstruction of damaged 

esophagus. The two key elements in tissue engineered esophagus are the suitable 

scaffold as a support for cell growth and tissue development and the viable 

specialized cells. Recent decades witnessed the rapid advances in field of the 

scaffold of esophagus. The use of double layered collagen/silicone tubes, absorbable 

constructs and decellularized matrices are the most commonly scaffolds in 

esophageal reconstruction. Earlier artificial conduit replacements made from 

polytetrafluoroethylene (PTEE) were used to replace damaged esophageal tissue, 

however, these replacements were unsuccessful due to complications such as 

leakage, extrusion and stenosis.
127

 Some studies used collagen scaffolds and silicon 

stents for in vivo esophageal tissue regeneration, but post-operation stenosis limits 

their usage.
128

 Synthetic polymers were attempted as a substrate to support epithelial 

cells or SMCs of tissue engineered esophagus.
129, 130 

However, The surface of these 

synthetic materials are biologically inert impeding the integrity of cells and 

polymers.
131

 As noted in the preceding sections, obtaining mature and contractile 

SMCs from smooth muscle tissue of human body were rather difficult, thus using 

ASCs derived SMCs for esophagus TE is an important clinical application.  

The esophagus is composed of four distinct layers: mucosa, submucosa, muscularis 

externa and adventitia. The muscularis externa are divided into two distinct layers: 

the inner circular muscle cells and an outer longitudinal muscle layer. The 

esophagus consists of mainly three types of cells: stratified squamous epithelial cells, 

smooth or skeletal muscle cells and fibroblasts. Skeletal muscle constitutes the upper 

third, a mixture of skeletal and smooth muscle exists in the middle third, and only 

smooth muscle in the lower third of the esophageal muscle layer.
127

  The esophageal 

conduit extends from the stomach to the intestine conducting the major function of   

peristaltic food transport. Esophagus is stretched circumferentially to 50% under 3-

5KPa form normal food bolus, which requires the special mechanical properties 

such as sufficient elasticity.
127

 The presence of elastic and collagen fibers is 
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advantageous for mechanical properties. The SMCs or skeletal muscle cells in the 

media of esophagus contribute its particular peristalsis and motility. In view of the 

requirements of structure and function of native esophagus, one review summarized 

the important factors while designing the scaffold, 1) mechanical properties of the 

scaffold itself, 2) porosity to meet gas and nutrient exchange, 3) degradation rates 

and biocompatibility.
132

 

All in vivo cells are surrounded by ECM, ECM is not only a simple supporting 

structure, but provides the appropriate physical and chemical cues guiding cellular 

survival, proliferation and differentiation.
133, 134,

 
135

 Thus ECM-mimicking scaffolds 

should be an ideal candidate for constructing tissue engineering esophagus. 

However, native ECM is composed of many kinds of proteins presenting intricate 

structures. Some studies have demonstrated that the components of ECM contain 

collagen, glycosminoglycans (GAGs), fibronectin, laminin, various growth factors 

as well as a number of unidentified proteins.
136, 137

 Therefore, it is difficult to mimic 

the same composition and microstructure as that of the native esophageal ECM.  

However, acellular matrix scaffolds from a variety of tissues such as acellular 

porcine aorta matrix,
138

 gastric acellular matrix,
139

 decellularized human skin 

(AlloDerm),
140

 porcine urinary bladder
141

 and porcine acellular small intestinal 

submucosa (SIS)
142

 have been widely utilized as a scaffold for cell repopulation in 

preclinical animal studies for esophagus repair. In comparison with these grafts, 

EAM scaffold from esophagus has more advantages due to similar microarchitecture, 

biomechanical properties and biochemical cues to the native esophagus, which is 

important in directing cells to generate appropriate cellular responses during the 

structure and functional regeneration.  

The production methods of decellularized matrices have been demonstrated to  

completely remove the cellular components while remaining the ECM intact.
133

 

Common approaches include physical sonication, cyclic freezing and thawing, 

chemical alkalis, acids, organic solvents, hypotonic solutions, as well as nuclease 

treatment.
133

 In this study, we used a combination of methods to obtain the EAM 
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from the porcine esophagus, which has been verified an effective method to remove 

all cell components while keeping the structure and composition of the native ECM 

intact, as verified by the integrity of the collagen matrix after cell removal (Figure 2-

9).  

 

Figure 2-9. Histological evaluation of EAM scaffold. (A) Decellularized porcine esophagus 

stained with H&E staining. (B) Fine elastin fibers in gray color and collagen in pink color 

preserved and stained with picrosirius red and Miller’s elastin staining.  

Several studies compared the performance of combined EAM with stem cells or 

EAM alone in animal trials to investigate the better methods for clinical application 

of engineered tissues. Tan et al. used engineered esophagus comprised of the 

porcine acellular SIS and autologous BM-MSCs to repair esophagus excised dogs. 

Results indicated that the BMSC-SIS construct promoted reepithelialization, 

revascularization and muscular regeneration as compared with the SIS alone.
142

 

Similarly, Marzaro et al indicated that acellular matrix implant showed SMCs 

ingrowth and decreased inflammation response compared with acellular matrix 

alone 3 week after surgery in a pig animal model.
143

 Likewise, results from Badylak 

group showed that ECM bioscaffold plus autologous muscle tissue, but not ECM 

alone could facilitate in situ reconstitution of esophagus tissue.
144

 Based on these 

data, there are significant positive results when cell-scaffold constructs are 

implanted in the body of animals. In contrast, scaffold alone as a replacement leads 

to poor results. Therefore an integrated construct containing SMCs from ASCs and 
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esophageal EAM scaffold was utilized to reconstruct tissue engineering muscle layer 

in this study. 
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3. AIMS AND HYPOTHESES 

The goal of this thesis was to explore the effects of hypoxia, mechanical stretching 

as well as biochemical factor stimulation on differentiation of SMCs from hASCs, 

and investigate the feasibility of constructing esophageal smooth muscle layer using 

porcine derived EAM scaffold and SMCs differentiated from hASCs.  

There are three hypotheses and corresponding studies in this thesis:  

1. Hypoxia can enhance differentiation of hASCs into SMCs. To test this hypothesis, 

hASCs was differentiated with 5 ng TGF-β1 and 2.5 ng BMP4 in combination for 2 

weeks in four different oxygen concentrations. Expression of SMC-specific marker 

genes and proteins as well as specific contractility were determined.  

2. Combined effects of biochemical factors and mechanical stretching can promote 

the differentiation of SMCs from hASCs or hASCs preconditioned in hypoxia. To 

test this hypothesis, hASCs or hASCs preconditioned in 5% O2 were treated with 

biochemical factors and mechanical stretching in combination. Cell reorientation, F-

actin realignment as well as expression of SMC-specific markers were detected.  

3. Tissue engineered esophageal muscle layer can be reconstructed using the porcine 

esophageal EAM scaffold and SMCs differentiated from hASCs. To test this 

hypothesis, proliferated or differentiated status of hASCs in 5% or 20% O2 were 

seeded on the porcine esophageal EAM scaffold. Morphology of EAM scaffold was 

analyzed and cellular proliferation ability, viability and migration depth were 

examined.  
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4. RESULTS 

STUDY I 

HYPOXIA ENHANCES DIFFERENTIATION OF ADIPOSE-DERIVED 

STEM CELLS TO SMOOTH MUSCLE CELLS 

STUDY II 

COMBINED EFFECTS OF BIOCHEMICAL FACTORS AND CYCLIC 

STRAIN ON THE SMOOTH MYOGENIC DIFFERENTIATION OF 

ADIPOSE-DERIVED STEM CELLS PRECONDITIONED IN HYPOXIA 

STUDY III 

REGENERATION OF THE ESOPHAGEAL MUSCLE LAYER FROM 

ESOPHAGUS ACELLULAR MATRIX SCAFFOLD USING  

ADIPOSE-DERIVED STEM CELLS 
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5. SUMMARIZING DISCUSSION AND 

CONCLUSIONS 

ASCs have been a preferred stem cell source in the repair of damaged tissue and 

reconstruction of diseased organs and have a potential to differentiate into functional 

SMCs. Thus, SMCs differentiated from ASCs is an ideal source of cells for tissue 

engineering requiring SMC for normal tissue function such as blood vessels, 

esophagus, intestines etc. ASCs can be driven into SMCs via different approaches 

such as biochemical or mechanical stimulation, oxygen being a key factor affecting 

the differentiation process. This thesis investigated the differentiation process and 

the effects of the environmental factors oxygen, biochemical and physical 

stimulation on the differentiation process. In addition, reconstructing the muscle 

layer of esophagus using the ASCs in different oxygen concentrations was tested to 

obtain preliminary results anticipating future clinical applications. 

1) Hypoxia enhances differentiation of hASCs to SMCs in combination with 

biochemical factors stimulation 

HASCs were differentiated into functional SMCs with TGF-β1 and BMP4 in 

combination for 2 weeks. Differentiated hASCs expressed the SMC-specific 

markers α-SMA, calponin, caldesmon and MHC. Differentiated hASCs were able to 

contract in response to a muscarinic agonist. The dynamic contraction process of 

differentiated hASCs was clearly shown using different cell contraction assays.  

Although there is no previous data on the effect of hypoxia on the SMCs 

differentiation from ASCs, a study by Lennon et al. showed that the markers of 

osteogenic differentiation were elevated when grown at 5% oxygen in rat BM-

MSCs.
86

 Khan et al. reported that 5% oxygen enhanced chondrogenesis.
145

 It was 

implied that 5% oxygen might be an appropriate oxygen concentration for ASCs 

differentiation along certain lineages. When comparing the effect of hypoxia on the 

differentiation of SMCs from hASCs, four oxygen concentrations of 2, 5, 10 and 20% 
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were performed, the expression of SMC-specific genes and proteins, single cell 

optimal oxygen environment for the ASC to SMC differentiation process. 

Normoxic oxygen concentrations (20% O2) typically used in cell biology studies 

does not reflect the in vivo situation since the actual oxygen tensions of most tissues 

are much lower, for example, the physiological relevant oxygen concentration in 

normal adipose tissue is approximately 2-8%. Thus, 5% oxygen probably does not 

reflect the real hypoxia condition for ASCs, instead, it might be closer to normal in 

situ oxygen levels experienced by the cells providing the optimal oxygen 

concentration beneficial to ASCs differentiation. Prolonged growth of adipose stem 

cells in 5% oxygen was previously shown by our group to enhance VEGF 

expression.
39

 In smooth muscle, stimulation with TGF-β was shown to activate 

VEGF transcription initiated by a Smad3-HIF-1α complex.
146

 VEGF was also 

shown to increase expression of α-SMA and initiate cell contraction measured in a 

gel contraction assay.
147

 Thus we hypothesize that hypoxia enhances the effect of 

TGF-β, possibly by the autocrine stimulation by VEGF, acting on the VEGF 

receptors. Both TGF-β and VEGF activates mitogen-activated protein kinase 

(MAPK) signaling pathway which controls cell fate and differentiation processes.
78

  

2) Combined effects of biochemical factors and CTS promote the differentiation of 

hASCs and preconditioned hASCs into SMCs 

We demonstrated in the first study that TGF-β1 and BMP4 in combination with 5% 

oxygen provides the best conditions for the ASC to SMC differentiation process. 

Subsequently these were used as reference conditions in the second study on 

mechanical stimulation. To explore the effects of mechanical stimulation, 

biochemical molecules as well as oxygen level on the hASCs differentiation into 

SMCs. HASCs were subjected to differentiation by biochemical factors and CTS for 

1 week. In addition, hASCs differentiated in 5% O2 for 1 week (hASCspre) were used 

to investigate the effect of hypoxic preconditioning, mechanical stimulation and 

biochemical factors stimulation on differentiation of ASCs.  
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MHC, as a later marker of mature SMCs, is the most important gene and protein 

marker in the differentiation process, therefore we chose MHC to evaluate the 

differentiation status of SMCs by real time RT-PCR and immunofluorescence 

staining assays. The results showed the combined treatments promoted expression of 

MHC for both hASCs and hASCspre. Additionally we showed mechanical 

stimulation of cells reoriented the cytoskeleton of both hASCs and hASCspre, 

visualized by F-actin staining. Our study demonstrated that mechanical stimulation, 

biochemical molecules as well as oxygen level are vital regulators of cell 

differentiation acting in synergy to promote the ASCs differentiation into SMCs.  

Mechanical stretching affects a variety of cellular properties and biological response, 

such as cell shape, orientation, cell realignment and cytoskeletal remodeling.
148, 149, 

150, 151 
Cells randomly orient themselves prior to mechanical stimulation, and once 

exposed to mechanical strain, cells realign the long axis in the direction of minimal 

strain.
150

 Our results showed that after 7 days stretching, cells displayed an 

elongated morphology compared to biochemical factors stimulation alone. The 

percentage of cells angles between 80-100 degree reaches 16% compared to 6% 

prior to stretching. Also our study showed that cellular F-actin realigned 

perpendicular to the stretching direction. Differentiation can cause changes in cell 

shape and function, changes in cell shape can alter the differentiation of 

mesenchymal lineages. In addition, the actin cytoskeletal pattern determines cell 

shape, which in turn influences cell phenotypic expression.
151

 Rho/ROCK signaling 

pathway is associated with the cytoskeleton and cellular contractility and is 

responsible for upregulating stress fibers in response to increased force.
152

 

Rho/ROCK has known to exert a critical effect on the commitment of cells as 

reduced Rho activity favors adipogenesis and increased Rho activity favors 

myogenesis.
153

 Thus the cell shape switch and F-actin remodeling might be in a 

certain way by which cells can recognize and activate signal pathway relevant to 

Rho/ROCK leading to the SMCs differentiation. 
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3) Differentiated ASCs as an alternative cell source for SMCs in esophageal muscle 

layer reconstruction 

Our study found that the differentiated hASCs were able to attach onto the muscle 

layer of EAM scaffold when the cells were seeded from the outer muscle layer of a 

porcine esophagus, independent on oxygen conditions. Differentiated hASCs 

exhibited similar behavior to hASMCs after 7 days in terms of attachment, 

proliferation and viability. All these results suggested that the ASCs might be a 

substitute for SMCs when reconstructing the esophageal muscle layer in tissue 

engineering applications. 

The muscularis externa includes the inner circular muscle cells and the outer 

longitudinal muscle cells. Using an acellular matrix has the advantage of mimicking 

the native ECM due to its similar anatomic structure, physical properties and 

chemical cues. The molecules fibronectin and laminin were demonstrated to be 

present in the EAM.
154

 Ubiquitous fibronectin mediates adhesion of human 

microvascular endothelial cells to the porcine derived extracellular matrix.
155

 Our 

data showed that after 24 hours, constructs composed of scaffolds and different cells 

exhibited good integrity between EAM scaffolds and cells, which implied adhesion 

molecules of surface in EAM were appropriate for the initial cell attachment.  

Bhrany et al. demonstrated the EAM proteins collagen, elastin, laminin and 

fibronectin were retained after the decellularization process. However, laminin was 

either disrupted or disorganized after the decellularization, and this alteration might 

lead to the decrease of proliferation capability for esophageal muscle cells in the 

EAM.
154

  Consistent with their study, in our study all types of cells attached to the 

EAM scaffold after 24 hours, but, compared to cells cultured in common culture 

dishes, proliferation capability of cells on the EAM substrate is limited with 

thousands of cells per cm
2
 after 7 days.  
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Fibronectin and collagen were located in the intermuscular septae surrounding 

individual muscle cells.
156

 However, the concentration of these two proteins 

decreased after the decellularization process, moreover, the collagen structure was 

changed from a characteristic banding pattern to loosely fiber bundles.
154

 These 

alterations might affect the cell migration ability. In respect to cellular viability, the 

result showed that most cells survived after 7 days in culture on the EAM scaffold, 

which implied that the oxygen and nutrient was sufficient for most cells on the 

surface of substrate. In addition, our results showed that the hASCs differentiated in 

5% or 20% oxygen concentrations did not show great difference either in the 

migration depth and cellular viability although we previously confirmed the 5% 

oxygen increased the expression of SMC-specific markers and contractile ability.  

In conclusion, the findings of this thesis have demonstrated that: 

1) HASCs could be differentiated into SMCs by in vitro induction with a 

combination of TGF-β1 and BMP4 for 2 weeks. 5% oxygen was the optimal 

condition to generate SMCs derived from hASCs. Differentiated ASC exhibited the 

high expression of SMC-specific genes and proteins as well as SMC-specific 

contractile ability.  

2) Biochemical factors and CTS in combination promoted both hASCs and hASCspre 

to express SMC-specific late marker MHC. CTS reoriented hASCs and hASCspre 

and realigned the stress fiber perpendicular to the direction of strain. These results 

make it promising for enhancing ASCs differentiation into SMCs using combined 

treatments along with the cellular precondition in hypoxia. 

3) Differentiated hASCs in hypoxia and normoxia could attach and survive on the 

porcine EAM scaffold muscle layer in vitro and exhibited abilities similar to 

hASMCs in terms of attachment, proliferation capability and viability, providing a 

promising alternative cell source for esophageal muscle layer tissue engineering. 
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6. LIMITATIONS AND FUTURE 

PERSPECTIVES 

The main theme of this thesis has been describing the role of oxygen in driving the 

differentiation process of turning adipose stem cells into functional smooth muscle 

cells, in combination with both biochemical and mechanical stimuli. The results 

clearly showed an effect of oxygen and added further evidence to the feasibility of 

using ASCs in future tissue engineering applications requiring smooth muscle tissue 

and cells. However, the studies in this thesis were not complete due to several 

limitations. 

For example, in the single cell contractile assay, due to experimental constraints, it 

was only carried out at 20% O2 which limits the direct comparison of dynamic 

contractility of SMCs between hypoxia concentrations and 20% O2. In addition, only 

two cell lines were used and more samples from different age, sex as well as fat 

tissue location should be compared to ensure the accuracy of the methodology and 

clinical application. Although we demonstrated that the SMCs from hASCs were 

differentiated successfully in gene, protein expression as well as cellular contractile 

function, the mechanism underlying the differentiation process was not investigated. 

We also demonstrated that carbachol could induce differentiated hASCs to contract, 

but the underlying mechanism should be further investigated. 5% oxygen was found 

to be the optimal concentration both for SMC-specific gene expressions and 

contractile ability, the expression of proteins HIF1α and relevant signaling 

molecules VEGF should be investigated to clarify the underlying mechanisms of 

oxygen signaling in the process of SMCs differentiation from ASCs.  

Future studies should link influencing factors to mimic in vivo stem cell 

microenvironment cues inducing cells to response for the integrated stimulation. 

Since integrins, FAK and cellular cytoskeletal proteins, Rho/ROCK activation are 

all related to the mechanical induction of ASC to SMCs differentiation, these 
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signaling molecules will be relevant target proteins to clarify the converging point of 

the crosstalk pathway between mechanical and chemical factors. 

Mechanical properties and chemical cues of the acellular scaffold obtained from 

porcine esophagus are similar to original esophagus. The hASMCs were acquired 

from human aorta. Thus constructs closely resembled in vivo esophageal smooth 

muscle layer. But constructs were cultured for only one week in vitro, which limits 

the results in terms of cell migration depth and long term viability of cells. 

Additionally, this study did not conduct animal trials or clinical trials to verify the 

results of experiments, which is needed for subsequent clinical application. It has 

been shown that epithelial cells could be seeded and grown on EAM scaffold. A 

future study should combine the application of both ASCs and epithelial cells to 

produce a more complete esophagus structure. Utilizing bioreactor producing 

dynamic culture environment should be beneficial to oxygen and nutrient supply as 

well as cell migration.  
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SUMMARY
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Adipose-derived stem cells (ASCs) are increasingly being used for regen-
erative medicine and tissue engineering. Smooth muscle cells (SMCs) can 
be differentiated from ASCs. Oxygen is a key factor influencing the stem 
cell differentiation. Tissue engineered esophagus has been a preferred solu-
tion for diseased esophagus replacement. The first part involved the effect 
of hypoxia on differentiation. The results showed 5% hypoxia to be the op-
timal condition for differentiation of ASCs into contractile SMCs. In the 
second part, the combined effects of mechanical strain (10% cyclic tensile 
strain) and biochemical factor stimulation on SMCs differentiation were 
studied. The results showed that combined treatments promoted the late 
SMC-specific marker smooth muscle myosin heavy chain (MHC) expres-
sion. In the third part, the potential for using ASCs to replace SMCs to regen-
erate the smooth muscle layer of esophagus was studied. Our results showed 
that both SMCs and ASCs could attach on the porcine esophageal acellular 
matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus 
ASCs might be a substitute for SMCs in the construction of tissue engineered 
esophageal muscle layer.
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