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ABSTRACT 

Power system today is undergoing a green revolution toward smart grid, in which 

more renewable generations are increasingly penetrating into the grid dispersedly 

driven by both demonstrated economic and environmental benefits, which 

fundamentally changes the structure of paradigm system. At the same time, relying 

on advanced power electronics, energy storage, information and communication 

infrastructure and devices, other active elements such as demand response and 

transactive energy are emerging which again increase the heterogeneity and 

complicate the control of the system to achieve a desired performance. To facilitate 

the integration of the system, microgrid plays an important role in this process.  

The role of microgrid is previously viewed as an effective autonomous system in 

the distribution system to integrate the renewable energy. With it unique structure 

and characteristics, it also has the potential to integrate the entire heterogeneous 

system as a constitutional element, upon which the future distribution system built. 

To fulfil this potential, both the centralized control and distributed control will be 

applied in the control system of microgrids, where in most of the centralized 

applications power flow analysis is required as a basis steady state analysis tool and 

multiagent system is increasingly adopted in the application based on distributed 

control.  

Existing power flow analyses, which have not taken into account the ongoing 

changes of the system structure and specific characteristics of the control method 

for microgrid, are no longer suitable for the next generation distribution system 

composed of microgrids. To overcome their limitations and make them suitable for 

analysing the microgrid system, a new formulation is proposed to take into 

consideration the concepts of virtual impedance and droop control. New 

formulation is built and implemented for both AC and DC microgrids, with 

improved accuracy and controllability for microgrid. As a demonstration of it to the 

centralized control, the proposed power flow analysis is applied to the optimization 

of a DC community microgrid, where the purpose is to minimize the operation cost 

of the system considering both the fuel cost and demand response. 

For the multiagent system based distributed control, the application of two different 

consensus algorithms is explored in this work, to fulfil different control objectives. 

The average consensus is firstly applied to a microgrid with energy storage system 

in order to make the state of charge balanced. This approach is proven to be 

effective and superior to the previous control methods in term of flexibility and 

fault tolerance. The other two applications of multiagent system are aiming to 

minimize the operation cost, but in a distributed way, for AC microgrid and DC 

microgrid, respectively. The incremental cost consensus algorithm designed by the 
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author is applied to these two kinds of systems, and the total operation costs in both 

systems are successfully reduced. Regarding the specific control system 

implementation, the effects of communication condition and other related control 

parameters are analysed to give the guidance of the system design.  
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DANSK RESUME 

Elsystemet i dag gennemgår en grøn revolution mod smart grid, hvor mere 

vedvarende generationer i stigende grad at blive en del af elnettet drevet af både 

påviste økonomiske og miljømæssige fordele, som fundamentalt ændrer strukturen 

af paradigme system. Samtidig, bygger på avancerede effektelektronik, 

energilagring, information og kommunikation infrastruktur og udstyr, andre aktive 

elementer såsom efterspørgsel respons og transactive energi dukker der igen øger 

heterogenitet og komplicere kontrollen med systemet for at opnå et ønsket ydeevne. 

For at lette integration af systemet, microgrid spiller en vigtig rolle i denne proces. 

Microgrid er tidligere ses som et effektivt autonomt system i distributionssystemet 

at integrere vedvarende energi. Med den unikke struktur og egenskaber, det har 

også potentiale til at integrere hele heterogene systemet som et konstitutionelt 

element, som den fremtidige distributionssystem bygget på. For at opfylde dette 

potentiale, både den centraliserede kontrol og distribueret kontrol vil blive anvendt i 

kontrolsystemet med Microgrids, hvor i det meste af den centraliserede 

applikationer power flow analyse er påkrævet som grundlag steady state analyse 

værktøj og multiagent systemet er i stigende grad vedtaget i ansøgningen baseret på 

fordelt styring. 

Eksisterende power flow analyser, som ikke har taget den igangværende ændring af 

systemet struktur og særlige karakteristika kontrol metode til microgrid, ikke 

længere er egnet til den næste generation distributionssystem bestod af Microgrids. 

For at overvinde deres begrænsninger og gøre dem egnede til at analysere microgrid 

systemet, er en ny formulering foreslået at tage hensyn til begreberne virtuelle 

impedans og hænge kontrol. Ny formulering er bygget og implementeret for både 

AC og DC Microgrids, med forbedret præcision og styrbarhed for microgrid. Som 

en demonstration af det til den centraliserede kontrol, er den foreslåede effekt flow 

analyse anvendes til optimering af en DC samfund microgrid, hvor formålet er at 

minimere driftsomkostninger for systemet overvejer både omkostningerne 

brændstof og efterspørgsel respons. 

For det multiagent system baseret distribueret kontrol, er anvendelsen af to 

forskellige konsensus algoritmer udforsket i dette arbejde, for at opfylde forskellige 

mål kontrol. Den gennemsnitlige konsensus først påføres en microgrid med 

energilagringssystem for at gøre ladningstilstanden afbalanceret. Denne 

fremgangsmåde har vist sig at være effektiv og overlegen i forhold til de tidligere 

kontrolmetoder i sigt af fleksibilitet og fejltolerance. De to andre anvendelser af 

multiagent systemet søger at minimere driftsomkostninger, men i et distribueret 

måde, for både AC microgrid og DC microgrid. Den ekstraomkostning konsensus 

algoritme designet af forfatteren påføres disse to former for systemer, og de 

samlede driftsomkostninger i begge systemer er lykkedes reduceres. For den 
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specifikke styresystem implementering, er virkningerne af kommunikation tilstand 

og andre parametre relateret kontrol analyseres for at give vejledning af systemets 

design 
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CHAPTER 1. INTRODUCTION  

1.1. MICROGRID IN THE CONTEXT OF SMART GRID 

Increasing awareness of energy crisis, global warming and severer impact of the 

power outage ignites the ongoing revolution of the power system [ 1 ]. The 

revolution in the grid is featured by the continuing expansion of renewable 

generation, energy storage, and other emerging advanced technologies and new 

components to improve the reliability, sustainability and efficiency of the system 

[2][3]. With Distributed Energy Resources (DER), the grid is no longer a one-way 

power flow grid, in which the large power plants serve the consumers far away via 

a transmission and distribution system. Rather, it is becoming a networked system 

where a number of small and distributed resources will also serve the entire grid 

along with large plants and at the same time past consumers will become prosumer, 

both importing and exporting power from/to the grid. This transition toward a 

future smart grid can be illustrated as in Fig. 1.1.  

 

Figure 1.1. Transition from traditional grid to smart grid 

Where the revolution will happen most is the distribution part, where a feeder is 

traditionally taken as passive lumped load referred to the upper grid or  the 

substation and with considerably limited visibility and controllability [ 4 ]. To 

effectively tackle the emerging new devices and increasing DER on the customer 

side, an aggregator is an essential part needed to synthesize the heterogeneous 

components through the distribution system. As is initially proposed to integrate 

various generators, especially the renewables in a small autonomous grid, microgrid 
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is appealing to extend its definition into a constitutional unit/aggregator of the 

distribution system to facilitate the revolution of smart grid [1], [5] and [6].  

The following parts describe the physical structure of the microgrid which suitable 

for this extension and the corresponding system architecture for the management of 

the whole distribution system. 

1.1.1. PHYSICAL STRUCTURE OF MICROGRID IN SMART GRID 

Apart from other forms of the autonomous power systems like that in vessels or in 

airplanes, the microgrid in the distribution system can be defined according to U.S. 

Department of Energy (DOE) as a group of interconnected loads and distributed 

energy resources within clearly defined electrical boundaries that act as a single 

controllable entity with respect to the grid; A microgrid can connect and disconnect 

from the grid to enable it to operate in both grid-connected and islanded-mode 

[7]−[10]. 
[7][8][9][10]

. 

Microgrids in the distribution system can be classified into several different groups 

in terms of different categorical methods. Fig. 1.2 shows the classification of them 

in terms of transmission type, ownership, and number of Point of Common 

Couplings (PCCs).  

 
Figure 1.2. Classification of microgrids in distribution system 
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The future microgrid will be an indispensable part of the distribution system to 

scalable integrate various kinds of DERs which ranging from solar, wind to fuel 

cells and electrified transportation fleet. Moreover, with the increasing load such as 

customer electronics and DERs like energy storage and solar panel are actually DC 

in nature, more DC microgrids will also appear in the distribution system [11]−[14]. 

Interaction between the DC microgrid and AC microgrid can form a hybrid 

microgrid.
 [11][12][13][14]

  

The physical structure of the future distribution system can be seen as is showed in 

Fig. 1.3, which manifests itself as a cluster of interconnected microgrids. This 

definition of the physical structure for the distribution system is also consistent with 

the classification of microgrid in term of the transmission type, which makes the 

microgrid as its building block viable.  

 

Figure 1.3. Cluster of microgrids as building blocks of future distribution system 

To make this physical structure more abstract, a fair analogy for the future 

distribution grid can be depicted as the topology of multiple cellular microgrids 

interconnected and interacted together, which is represented as inter-linked 

hexagons. For a larger microgrid, there might be smaller microgrid inside. One of 

the convenient examples is the community microgrid with smart home as smaller 

microgrid inside. In some part, a microgrid can even be built by different parts from 

other microgrids. This structure is necessary in that the future prosumers might 

share the common DREs. This abstraction can be illustrated as Fig. 1.4.  



ANALYSIS AND CONTROL FOR AC AND DC MICROGRIDS 

18
 

 

Figure 1.4. Abstract structure of future distribution system formed by microgrids 

With a microgrid becoming the building blocks of the future distribution system, 

more requirements will be imposed on the control system of the microgrid. The 

features are summarized by the author in the following part.  

1.1.2. SYSTEM COORDINATION FRAMEWORK OF MICROGRID IN 
SMART GRID 

Future distribution system desires a control system with following qualities during 

operation [1]:  

1. Security  

2. Efficiency 

3. Minimum environmental footprint  

4. Reliability 

5. Flexibility (scalability and plug and play)  

To achieve all these qualities, the microgrid, as the building block, needs to 

response differently to all the possible internal or external disturbances according to 

different response speed requirements and different objectives. To list a few, it will 

encompass a myriad of elements: primary droop control, frequency and voltage 

regulation, power quality enhancement, economic dispatch, power balancing, 

stabilization and so on [8]. All these valid elements are required to be fulfilled by 

adequate visibility and controllability by the aid of the development of information 

and communication system (ITC). The ITC architecture of the community 

microgrid control system can be illustrated as in Fig. 1.5. 
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The control applications which fulfil the sub-objectives can be implemented in 

either centralized or distributed way. As the system physical components are 

distributed in nature, the distributed control is gaining more popularity. However, 

the topper the application, the large the amount of information and sophisticated 

calculation are required for analysis and therefore a centralized controller is still 

needed in this way. Two different kinds of implement methods for the application 

are shown as in Fig. 1.6. For the centralized control method, it requires that all the 

local controllers have to establish the communication connection with the 

centralized controller. In this way, the centralized controller can make decisions 

based on the collective information gathered. For the distributed control, there is no 

such centralized controller, the local controllers need to “talk” to other local 

controllers with an agreed mechanism to get the global information of the system 

and cooperatively act toward a common goal locally.  

 

Figure 1.5. ITC architecture of the microgrid control system 
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(a) Centralized control way (b) Distributed control way
 

Figure 1.6. (a) Centralized and (b) distributed control  

As control is divided across many sub-applications and the process of aligning 

control (coordination) must take into account the structure of control in the whole 

microgrid. This does not mean that the coordination framework of the future 

microgrid and its extension is an ad-hoc system; instead, the structure needs to be 

scalable and clearly defined. One of the appealing possibilities of it can be 

formulated as in the Fig. 1.7. The applications that fulfil different control objectives 

are organized in a layered structure, where a lower layer top application can become 

the sub-application for an upper layer application, no matter how they are 

implemented − either by a centralized way or distribution method. The lowest layer 

will be composed by the Sensor Notes (SN), which are closest to the physical 

components, and collect the primary data for the control system. All these 

applications will make a collective effort to make all the desired qualities of the 

system fulfilled. 

1.2. MOTIVATION OF THIS WORK 

As both the centralized and distributed control are crucial elements for the 

synthesized control system of microgrids. The fundamental technology and its 

applications are significant for the integration of the whole control system. In an 

effort to contribute to the whole control system for the microgrid as the 

constitutional element in the future smart grid, as most of the centralized 

applications require the power flow analysis as the sub-function, and Multiagent 

System (MAS) is the one of the trendy technologies for realizing distributed 

control, the work of the author involves both these two concepts and their 

applications, as is in the five papers attached in this collection.  

 



CHAPTER 1. INTRODUCTION 

21 

 

Figure 1.7. System coordination framework for microgrid control  

1.2.1. POWER FLOW ANALYSIS AND ITS APPLICATION IN THE 
CONTEXT OF CENTRALIZED CONTROL FOR MICROGRIDS 

1.2.1.1 Motivation for new formulation of power flow for AC and DC 

microgrids 

As a basic steady state analysis tool for any electrical network, power flow analysis 

is essential to get the overall view of the system for both design and operation. 

Normally, this kind of application is implemented in a centralized manner by the 

utility or the Independent System Operator (ISO) [15]. As a fundamental element, 

this can be the applied for various importance functions of the control system. The 

typical applications of power flow analysis in a microgrid network can be illustrated 

as are listed in Fig. 1.8, which covers both the planning stage and operation stage in 

the system. The work of this thesis takes the application in the operation stage as 

the focus, as it is involved most in the control system of the microgrid. 
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Figure 1.8. Power flow analysis application domain 

The traditional power flow analysis is challenged by the ever-changing grid 

structure. The limitation of previous power flow formulations for AC microgrids 

mainly lies in the following items [16] and [17]: 

1) The amount of the power supplied by each DG unit is usually not pre-specified, 

and thus these DG units cannot simply be modelled as PQ buses;  

2) Despite more flexible control of power electronic interfaces for distributed 

generators, the limited capacity of a single DG unit makes it impractical to be taken 

as the slack bus, especially in islanded mode, while in conventional methods at least 

one slack bus must be assigned to balance the real and reactive power losses;  

3) In islanded mode, the frequency of the microgrid is no longer fixed but changes 

frequently within a range due to the uncertainty of primary resources, load and 

intra-day market factors [18], and this cannot be shown in traditional methods. In 

addition, the emerging concept of DC microgrid requires more research on power 

flow analysis to take its special steady state characteristics into account [19]. 
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The problem of tailoring conventional power flow programs for microgrid 

applications has been recently addressed in [ 20 ], [ 21 ] and [ 22 ]. The study 

performed in [20] emphasizes modelling the AC system in the sequence-component 

frame to represent all the control purposes, but it still uses the traditional method in 

each component frame by assuming the existence of a slack bus. In [21], a two-step 

power flow analysis approach is proposed so as to represent electronically-coupled 

DG units, with the feature to calculate the internal variables of each DG unit. 

However, in most cases, the impact of different internal variables on the system is 

of more interest but cannot be evaluated by this approach. The method proposed in 

[22] represents correctly the actual distributed slack buses by modelling the DG 

units as droop buses. However, the traditional droop control with P-f and Q-V 

droop is derived from the approximation of power flow equations under the 

assumption that the output impedance of the converter is inductive. It might not be 

the case when the transmission line is not inductive, and in this situation traditional 

droop will not be valid due to the coupling of the active and reactive power [7], 

[23]. Although some variations of the droop method, such as resistive droop, are 

proposed to address the resistive output impedance, they cannot be generalized 

[13], [23] and [24]. To make P-f and Q-V droop control valid, virtual impedance 

loops should be added to local controllers of the converters to provide the desired 

output impedance and to increase the stability of the system in AC microgrids [25], 

[26] and [27]. In addition, these studies do not consider the case of DC microgrids. 

In a DC microgrid, the load sharing mechanism is achieved by droop control 

through feeding back the output current via a virtual resistance to the voltage loop. 

Power flow analysis methods which do not consider virtual impedance compromise 

the accuracy of the power flow results. 

In order to solve the aforementioned problems, new power flow analysis with new 

formulation taking the concept of virtual impedance into consideration is needed for 

both AC and DC microgrid. 

1.2.1.2 Motivation for optimal power flow for DC community microgrid 

The proposed power flow tool mentioned previously will replace the old power 

analysis as a sub-function for optimal power flow (OPF), which has the potential 

for many optimization applications. The generalized flowchart for optimal power 

flow program can be seen as in Fig. 1.9.  
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Figure 1.9. Generalized flowchart for optimal power flow program 

 

As the cable resistance impact is no longer neglected and increasing time-varying 

pricing is adopted on the residential side as demand response, optimization of a 

community DC microgrid in the operation stage needs to take all these parts into 

consideration [28]-[32].[28][29][30][31][32] 

Previous works have been conducted to optimize similar DC systems. A way to 

improve the system efficiency by coordinating Energy Storage System (ESS) is 

proposed in [ 33 ]. However, no other microgrid components except ESS are 

considered in this work. In [34], the authors provide a method to maximize the 

utility of the power produced in a microgrid by each load to improve the system 

efficiency. In this case, the retail electricity price in the demand response is not 

taken into account. In [35], a coordinated control for the economic operation of a 

grid-connected DC microgrid is presented. However, no details about dispatch 

strategy for the tertiary control are given. In [36], researchers formulate a multi-

objective optimization problem for a DC microgrid. Nevertheless, the power losses 

in the electricity transmission network are not considered, which often contribute up 

to 5% of the total power losses [37]. Furthermore, an optimal demand response 

model is provided to minimize the total daily cost of electricity consumption for a 

household application, which needs to add the cost of other backup generation into 

the model for a microgrid application [ 38 ]. In contrast, [ 39 ] considers the 

distribution network of a microgrid, while optimizing the dispatch of the system 
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through decomposing the problem into unit commitment and optimal power flow. 

However, this approach does not consider the primary control of the microgrid, 

which requires the modification of the traditional power flow models due to the 

lack of slack bus, otherwise leading to inaccuracy in the calculation results [40].  

In light of the previous limitations, in this work, utilizing the new formulation of 

DC microgrid power flow analysis, an optimal power flow is applied to minimize 

the operation cost of for DC community microgrid  

1.2.2. MULTIAGENT SYSTEM AND ITS APPLICATION IN THE CONTEXT 
OF DISTRIBUTED CONTROL FOR MICROGRIDS  

An MAS is a computerized system composed of multiple interacting intelligent 

agents within an environment, with the agent act autonomously on the basis of 

information from the environment or other agents to fulfil a global task of the 

system [41].  

The coordination mechanism of MAS is the way different agents reach an 

agreement regarding a certain quantity of interest which depends on the state of all 

the agents [42]. There are basic the following ways as are shown in Fig. 1.10. 
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Figure 1.10. Agent coordination mechanism of MAS 

The decentralized category is matching more with the distributed characteristic of 

the agent and widely used in the real-time control of the dynamic system. The merit 

of this also lies in lower computation cost, higher fault tolerance, higher flexibility, 

and expendability. In light of these, author tried to explore ways to establish this 

kind of mechanism to facility the application of microgrid control. 

1.2.2.1 Motivation for State of Charge Balancing Control for Distributed 

Energy Storage Units in AC Microgrids based on MAS 

Distributed energy storage (DES) is an indispensable part throughout the entire 

grid. Due to the high price of the battery, DES is still among the most costly part in 

a microgrid. To ensure the possibly high cycle life, the application of it needs extra 

attention paid to the management of DES to make sure the battery life is not 

deteriorated during various operation modes [43]. One of the main factors to look at 

is State of Charge (SoC) in DES units. To ensure higher efficiency and State-of-

Health (SoH), DES units need to maintain their SoC within a certain range which 

depends on specific technology that different batteries are produced, e.g. between 

20% and 80%. It is desired that for multiple DES units, the SoC of them stays equal 

throughout the operation. In this way, the power capacity of the DES is maximized 

all the time, since not a single unit tends to go out of allowable SoC band and to be 

forced offline consequentially, simply because no single unit is allowed to 

charge/discharge more than other units in the DES. 

There are several previous works made the effort to achieve the SoC balancing of 

the system. The works that made the effort to achieve SoC balancing can be 

roughly divided into three categories. One is based on the centralized controller 

[44], [45] and [46], one is based decentralized way, the third is based on distributed 

approach. For the first category, either a special topology is necessary [46], or a 

centralized controller is required as a master to delegate the specific amount of 

power that one DES unit should support to maintain SoC balance [44], [45]. This 

class of the methods was mainly proposed to act as the battery manage system) 

(BMS) for controlling the units which are not far away in distance and thus can be 

easily implemented by standard field communication in industry.  

The modern methods suitable for the microgrid application, as the energy storage 

system goes more into the structure of distributed system, are mainly based on the 

droop control which is the primary control in a hierarchical approach [7]. These 

methods can further be identified as decentralized and distributed ones. For the first 

sub-category, the control is fully decentralized without any aids from the 

communication [47]–[49]. Yet in the distributed method, all the controllers are local 

and the low-band communication is required [50], [51]. In this way, it can improve 

the system’s robustness under communication changes or failures compared with 
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the methods using the centralized controller, and at the same time, endow more 

flexibility compared with the system fully decentralized. Therefore, this paper aims 

to explore a distributed method to achieve SoC balance. [47][48][49] [50][51] 

1.2.2.2 Motivation for operation cost minimization of droop-controlled 

AC and DC microgrids based on MAS 

The higher lever control can be classified into two types according to how they 

realize the economic dispatch [52]. One is based one centralized control [53]–[56], 

while the other is based on distributed control [57]–[70]. In order to dispatch the 

power optimally, in [53]–[56] authors use a centralized controller to make the 

decision for generating the optimal power generation command based on the 

generation cost. In [54], the regulation of the power generation is realized through 

directly changing the droop coefficients according to the stability constrained 

optimization. Although centralized control enjoys the merits of accurate control and 

easy implementation, it encounters these aforementioned disadvantages compared 

with distributed control. In [57] and [58], the operation cost information is 

incorporated in a weighted droop expression through calibrating the minimum and 

maximum operation cost in a linear way with respect to the droop gain. Although it 

works very well under most of the cases, it will lose the effectiveness when two DG 

units have the same maximum and minimum generation costs. Another work 

improves this idea by introducing a weighted droop expression which considers the 

nonlinear characteristic of the operation cost function [59]. However, despite the 

merits that there is no communication overhead, this method lacks the adaptation to 

external change of the cost without communication, which enables the higher level 

control to obtain cost information timely. [53][54][55][56] [57][58][59][60][61] 

Multiagent system has been applied to the control of the microgrid for economics in 

many previous works [60]–[66]. By combining the advantage of MAS with 

simplicity, various consensus algorithms are proposed to manage the resources of a 

microgrid in the economic fashion previously [67]–[70]. In [67], a consensus-based 

algorithm is proposed to coordinate ESS units of a microgrid according to the 

efficiency. However, one leader agent is needed to broadcast the total active power 

deviation, thus compromising the feature of decentralization. In [68], although a 

consensus algorithm is developed to optimize the cost, it is only validated by using 

numerical simulations. In [69] and [70] an incremental cost consensus is proposed 

in the smart grid context, nevertheless, the details of the power regulation 

realization are not given. [62][63][64][65][66][67][68][69][70]. 

To overcome the limitations of previous work, a new way of realizing operation 

cost minimization is worth exploring based on MAS for both AC and DC microgrid 

[71]–[73]. Moreover, the impact of implementation of consensus algorithm on the 

system is also worthy investigation [74]–[77]. The stability of the system 
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considering the interaction different control layer is worthy more work with this 

new paradigm [78]–[80]. [71][72][73][74][75][76][77] [78][79][80].  

1.3. ORGANIZATION OF THESIS 

The thesis is organized into seven chapters with the five of the chapters consisted 

by five attached papers. Two of the paper are related to the centralized control 

which based on the power flow analysis proposed by the author. Three different 

applications using MAS have been explored in the following three papers, which 

cover from state of charge balance of the energy storage system to economic 

dispatch problem for both AC and DC microgrid. The structure is as follows: 

Chapter 2 gives the first paper, which is published in IEEE Transactions on Smart 

Grid as early-accepted paper. This paper has presented the formulation and 

implementation of power flow analyses for AC and DC microgrid in the LV 

network. By considering the virtual impedance in both AC and DC microgrid, the 

proposed methods obtain more accurate calculate the result for the power flow 

analyses. In the DC system, with proposed formulation, it realized the distributed 

slack buses which avoid the impractical single slack bus in the system formulation. 

In the AC system, with modelling the virtual impedance in the power flow 

formulation, calculation accuracy is improved compared with those using 

traditional methods. The improvement is especially remarkable for the reactive 

power. This feature can be more attractive, if in the future reactive power will 

participate in the electricity market. Comparing with the method considering only 

the droop control, the improvement is not with a high cost—the computation 

overhead only increased slightly. 

Chapter 3 presents the second paper, which has been submitted to in IEEE Journal 

of Emerging and Selected Topics in Power Electronics. This work is an application 

of power flow analysis proposed in the first paper for DC microgrid. In this work, 

in order to improve the system efficiency of a 380V DC microgrid network while 

participating in demand response, an optimal power flow problem is formulated. 

The cost function represents not only the operation cost within the microgrid 

incurred by the fuel and efficiency of the components and the power loss in the 

transmission line, but also the demand response requirements from the utility by 

considering the real-time pricing. The proposed algorithm is implemented by means 

of a heuristic method based on Genetic Algorithm. A six-bus DC microgrid is tested 

to verify the proposed algorithm in a 24-hour span. Test results show that Genetic 

Algorithm can find the optimal control parameters to manage optimally the 

dispatchable resources. Finally, the proposed algorithm successfully reduces the 

operation cost compared to the case study in which the system is managed without 

optimization. 
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Chapter 4 presents the third paper, which has been submitted to in IEEE 

Transactions on Industry Applications. This paper proposed a distributed control 

method to achieve SoC balance for DES based on MAS. Instead of using adaptive 

droop gain, the possibility of modifying the frequency given is explored. A simple 

method based on the dynamic consensus is implemented to discover the 

information of average SoC in DES. Frequency scheduling method is analysed 

through small signal model to give the guidance for choosing the control parameters 

of it. The convergence characteristics of the dynamic consensus are also 

investigated to guide the control parameter choosing. Proposed distributed control 

algorithm is verified through experiments with different case studies. Promising 

features of the proposed approach with robustness to communication failure, 

scalability, and “plug and play” are tested. 

Chapter 5 presents the fourth paper, which has been submitted to Energies. In this 

work, an MAS based distributed operation cost minimization method is proposed to 

dispatch the power economically based on the different generation cost of DG units. 

Each DG unit is acting as an agent which regulates the power according to the 

command obtained by the consensus algorithm with only using communication 

with direct neighbours. Detailed power regulation method based on frequency 

scheduling is proposed, analysed, and implemented. An incremental cost consensus 

algorithm is designed to obtain the power dispatch command for each DG unit. The 

proposed algorithm is verified in a testbed microgrid with three different DG units. 

With this strategy, the operation cost is reduced effectively. Further, the system is 

robust under communication failures and the unplanned trip of a generation unit.  

Chapter 6 gives the fifth paper, which has been presented in 2016 IEEE Applied 

Power Electronics Conference and Exposition (APEC). In this paper, a multiagent 

system is proposed aiming at minimizing the operation cost for DC microgrids. 

Each local controller for each converter is taken as an agent, which optimizes the 

local converter autonomously in a hierarchical way with only communication with 

their neighbours. Compared with methods without optimization, the operation cost 

is reduced effectively under different load conditions. The impact of 

communication issues on the MAS convergence is investigated to shed light on the 

system design. Experimental results are expected in the future work. 

Chapter 7 presents the conclusions of this thesis, which highlights the contributions 

and offers the remarks regarding future research directions in light of the limitation 

of the conducted work. 
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2.1. PAPER INTRODUCTION 

Abstract— In the Low-Voltage (LV)  AC microgrids (MGs), with a relatively high 

R/X ratio, virtual impedance is usually adopted to improve the performance of 

droop control applied to Distributed Generators (DGs). At the same time, LV DC 

microgrid using virtual impedance as droop control is emerging without adequate 

power flow studies.  In this paper, power flow analyses for both AC and DC 

microgrids are formulated and implemented. The mathematical models for both 

types of microgrids considering the concept of virtual impedance are used to be in 

conformity with the practical control of the distributed generators.  As a result, 

calculation accuracy is improved for both AC and DC microgrid power flow 

analyses, comparing with previous methods without considering virtual impedance. 

Case studies are conducted to verify the proposed power flow analyses in terms of 

convergence and accuracy.  Investigation of the impact to the system of internal 

control parameters adopted by distributed generators is also conducted by using 

proposed method. 
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CHAPTER 3. PAPER B 

Economic Dispatch for Operation Cost Minimization 

under Real Time Pricing in Droop Controlled DC 

Microgrid 
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3.1. PAPER INTRODUCTION 

Abstract— In this paper, an economic dispatch problem for total operation cost 

minimization in DC microgrids is formulated. To each generator in the microgrid, 

including the utility grid, an operation cost is associated, which combines the cost-

efficiency of the system with demand response requirements of the utility. The 

power flow model is included in the optimization problem, thus the transmission 

losses can be considered for generation dispatch. By considering the primary (local) 

control of the grid-forming converters of a microgrid, optimal parameters can be 

directly applied to this control level, thus achieving higher control accuracy and 

faster response. The optimization problem is solved in a heuristic method. In order 

to test the proposed algorithm, a six-bus droop-controlled DC microgrid is used in 

the case studies. The simulation results show that under variable renewable energy 

generation, load consumption, and electricity prices, the proposed method can 

successfully reduce the operation cost by dispatch economically the resources in the 

microgrid. 
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CHAPTER 4. PAPER C 

Multiagent Based Distributed State of Charge 

Balancing Control for Distributed Energy Storage Units 

in AC Microgrids 
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4.1. PAPER INTRODUCTION 

Abstract— In this paper, a multiagent based distributed control algorithm has been 

proposed to achieve state of charge (SoC) balance of distributed energy storage 

(DES) units in an AC microgrid. The proposal uses frequency scheduling instead of 

adaptive droop gain to regulate the active power. Each DES unit is taken as an 

agent and they schedule their own frequency reference given of the real power 

droop controller according to the SoC values of all the other DES units. Further, to 

obtain the average SoC value of DES, dynamic average consensus algorithm is 

adapted by each agent. A generalized small-signal model of proposed frequency 

scheduling for the proposed frequency scheduling is developed in order to verify 

the stability of the control system and guide control parameters design. The 

convergence characteristics for the dynamic consensus adapted in multiagent 

system are also analysed to choose the proper control parameter. Experimental 

results verified the effectiveness, the robustness against communication topology 

changes, and capability of plug and play of the proposed multiagent system through 

different case studies. 

. 
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CHAPTER 5. PAPER D 
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5.1. PAPER INTRODUCTION 

 

Abstract— Recently, microgrids as promising technologies to integrate renewable 

energy resources in the distribution system, are gaining increasing research 

interests. Although many works have been done on droop control applied to 

microgrids, they mainly focus on achieving proportional power sharing based on 

the power rating of the power converters. With various types of distributed 

generator (DG) units in the system, factors that closely related to the operation cost, 

such as fuel cost of the generators and losses should be taken into account in order 

to improve the efficiency of the whole system. In this paper, a multiagent based 

distributed method is proposed to minimize the operation cost in AC microgrids. In 

the microgrid, each DG is acting as an agent that regulates the power individually 

using a novel power regulation method based on frequency scheduling. An optimal 

power command is obtained through carefully designed consensus algorithm by 

using sparse communication links only among neighbouring agents. Experimental 

results for different cases verified that the proposed control strategy can effectively 

reduce the operation cost.   
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CHAPTER 6. PAPER E 

Convergence Analysis of Distributed Control for 
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6.1. PAPER INTRODUCTION 

Abstract—In this paper we present a distributed control method for minimizing the 

operation cost in DC microgrid based on multiagent system. Each agent is 

autonomous and controls the local converter in a hierarchical way through droop 

control, voltage scheduling and collective decision making. The collective decision 

for the whole system is made by proposed incremental cost consensus, and only 

nearest-neighbor communication is needed. The convergence characteristics of the 

consensus algorithm are analyzed considering different communication topologies 

and control parameters. Case studies verified the proposed method by comparing it 

without traditional methods. The robustness of system is tested under different 

communication latency and plug and play operation. 
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CHAPTER 7. CONCLUDING REMARKS 

7.1. SUMMARY OF MAIN RESULTS 

In this work, the contribution involves analysis and control for both the centralized 

control and distributed control of microgrids. Firstly, new formulations of power 

flow analyses are proposed for both AC and DC microgrid by considering the 

concept of the virtual impedance. It improves the accuracy of calculation results as 

well as brings more controllability into the analysis and its applications. By using 

this, a DC community microgrid is optimized in term of operation cost 

minimization by adjusting the virtual impedance of dispatchable generators. 

Secondly, by applying the MAS based on different algorithms designed, different 

objectives such as SoC balancing for AC microgrid, operation cost minimization for 

both AC and DC microgrid are achieved. Moreover, the system analyses of these 

systems are also explored, which investigate the communication impact on theses 

networked controlled system along with other traditional control parameters related 

to droop control. The work conducted will facilitate the microgrid into being the 

building blocks for future smart distribution grid.  

7.2. RESEARCH PERSPECTIVES 

Although many aspects have been documented in this thesis for advanced analyses 

and control for AC and DC microgrids, there are still a lot of possibilities for 

theoretical and technology improvement. Some issues of high interest for future 

investigations are listed below: 

1) More realistic and timely applications of power flow analysis for the 

microgrids and distribution system considering different system 

requirements can be further investigated. For example, in the planning, it 

can address how the specific kind of emerging renewable resource and 

new devices such as PV and EV charging will influence the existing grid 

and what is the mitigation solution considering advanced control capability 

provided by power electronics. In the operation stage, this tool again can 

be sub-function of the decision-making component to facilitate system 

control in different modes and scenarios.  

2) The algorithm of power flow analysis and optimal power flow themselves 

are also worth more research work. For power flow analysis, to make it 

implemented also in a distributed way will be an interesting endeavour. 

For the optimal power flow, to make it non-deterministic by taking 

account of uncertainty will be very necessary for the increasing penetration 

of intermitted resources. Moreover, multi-objective optimization can be 

combined with OPF to analyse the system in different angles.  
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3) For the distributed control based on MAS, there also open doors for a 

myriad of existing control problems while shedding a new light on the new 

applications by adding more intelligence to the local controllers to form 

new system and new methodology to solve new problems. One of the 

possibilities will be the application of it into domestic EV chargers, to 

make them forming a charging network based on MAS.  

4) The system analysis modelling and method of MAS is worth exploring 

more for taking account of different factors in synthesizing the networked 

system.  

5) Moreover, to make a microgrid really work, issues from policy, regulation, 

economics, and finance are needed to be taken into account in the planning 

and operation as a holistic solution for the control system. 
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