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Abstract

The Internet of Things (IoT) is a term for the next generation of interconnected sensors
and actuators, which provide the opportunity for gathering and acting on large sets
of data over wide geographical locations. Novel RANs have been developed to serve
the various use-cases in IoT, one in particular is the Low Power Wide Area Networks
(LPWANs) which aims to connect massive amounts of power-constrained sensors over
a wide spatial area. This PhD thesis aims to model the performance of one such novel
LPWAN, namely LoRaWAN, and to develop Network Monitoring for IoT networks, that
can be used to evaluate the performance of unknown, so called ’black-box’, networks
without the hassle of modelling the network.
As of 2019, 93 Million LoRa devices were in existence according to Semtech who

owns the proprietary LoRa modulation, and the number of devices is predicted to grow
immensely in the coming years. This thesis investigates the scalability and Class A
end device (ED) performance in terms of latency and outage with specific attention
to regulatory requirements for operation in the ISM band and constraints imposed on
the performance by the receiver design at the PHY/MAC layer and investigated the
potential gain from receiver diversity. The thesis also documents the development of
methods for centralised fault-detection in networks with IoT devices that run subrou-
tines, each of which transmits quasi-periodically, such that the aggregate transmissions
of all subroutines of IoT device may seem Markovian on first look. These methods
detect faults, or outage, based on predictions made after analysis of traffic traces of
each device and hierarchical parameterization of quasi-periodic traffic models for each
identified subroutine.

Some of the models developed in this thesis are applicable to a wider set of prob-
lems than modelling the performance of IoT Networks. More specifically that applies
to i) modelling duty-cycling as a queuing problem, ii) approximating the distribution of
the maximal number of ongoing interfering transmissions during a transmitted symbol
of a reference frame, iii) a framework for modelling G/D/n/n queues and iv) the net-
work monitoring methods, which may be applied to other quasi-periodic processes - for
example production line monitoring.
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Resumé

Tingenes internet, bedre kendt under det engelske udtryk Internet of Things (IoT), er
et term for den næste generation af sammenkoblede sensorer og aktuatorer, der skaber
muligheder for at indsamle og agere på baggrund af store datasæt over store geografiske
områder. Nye radio netværks teknologier, såkaldte RANs, er blevet udviklet for at ser-
vicere de forskellige brugssager, der opstår i tingenes internet. En specifik type netværk
er de såkaldte lavenergi bredt netværk, på engelsk low-power wide area networks (LP-
WANs), der forsøger at tilbyde forbindelse til enorme mængder af batteridrevne enheder
over et stort geografisk område. Denne afhandling har til formål at modellere ydelsen
af et sådant LPWAN, mere specifikt LoRaWAN, og at udvikle netværk monitorering til
IoT netværk, der kan bruges til at evaluere ydeevnen af ukendte netværk, som alternativ
til ellers tidskrævende modellering.
Per 2019 eksisterede der 93 millioner LoRa enheder ifølge Semtech, der ejer LoRa

modulationen. Antallet af enheder er forudset til at stige stærkt i de kommende år.
Denne afhandling undersøger LoRaWANs skalerbarhed og klasse A enheders ydeevne i
form af latenstid og afbrydelser med et specifikt fokus på restriktioner fra regulativer
og implementeringen af PHY/MAC i modtagerenheden, samt den potentielle gevinst i
at anvende flere modtagere. Afhandlingen dokumenterer også udviklingen af metoder
til centraliseret fejl-detektion i netværk med IoT enheder, der kører et set ukendte
subrutiner, der hver især transmitterer kvasi-peridisk, sådan at den aggregerede trafik
for en enkelt enhed kan se tids-invariant ud ved første blik. Disse metoder detekterer fejl
og afbrydelser ved at lave forudsigelser for den indkommende trafik, baseret på analyse
og hierarkisk parametrisering af trafik modeller for hver sub-rutine på baggrund af den
observerede trafik.

Nogle af de modeller, der er udviklet i denne afhandling, er brugbare til et bredere ud-
snit af problemer end at modellere LoRaWAN. Mere specifikt, så gælder det for i) mod-
ellering af duty-cycle som et kø-problem, ii) approksimationen af distributionen for det
højeste antal af interfererende transmissioner i et hvilket som helst symbol i en reference
transmission, iii) en metodik til modellering af G/D/n/n-køer og iv) netværksovervågn-
ingsmetoderne, som kan anvendes til andre kvasi-periodiske processer - for eksempel
produktionslinjeovervågning.
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Introduction

1 Introduction
This subsection presents shortly the motivation for and overall targeted problem that
has been investigated and documented throughout the PhD.

1.1 Motivation
The Internet of Things (IoT) is a network of objects consisting of various sensors and
actuators, which are interconnected most often through the global internet. The premise
of some objects sensing real-world data and others acting upon said data gives rise
to a new set of business use-cases and is the foundation for the economy of digital
machines. In [] the IoT is rated as having the highest economic impact of several
disruptive technologies. The predicted potential ranging between 3.9 Trillion to 11.1
Trillion USD yearly by the year 2025. It is this huge potential and growth that fuels
the growth of infrastructure for IoT.
The exchange of information in the IoT is carried out over various networks with

wireless Radio Access Networks (RANs) at the front-end in many cases. The traffic
characteristics and requirements of machines differ significantly from both conventional
voice and broadband traffic, which is mirrored in the two new use-cases specified for
5G: massive Machine Type Communications (mMTC) and Low Latency (LL) & Ultra
Reliable (UR) communications. The larger set of machines in the IoT will need mMTC
capable networks, which provide connectivity for a large set of nodes, at a relatively low
data rate, see [2].

An enabler for mMTC in IoT is Low Power Wide Area Networks (LPWANs) that
provide a network, which enables wide area deployments of large numbers of sensors with
long battery-life. A variety of LPWANs have been developed in interest of becoming
the prevailing technology for IoT, such as SigFox, LoRaWAN and NB-IoT. Close to 100
million LoRa devices existed in 2019 according to [3], while 1.3 billion IoT devices are
connected by cellular per [4], most of which are 2G/3G connections and the segment of
NB-IoT connected devices is comparable to the number of LoRa devices. The number of
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Fig. 1: LoRaWAN network topology. LoRaWAN provides a RAN for EDs to transmit messages to
network servers. Several APs in the RAN may receive the same message over LoRaWAN and forward
it to the network server through an IP connection. The network server logs the messages from devices
and/or forwards them to their end-point.

connected IoT devices is expected to continue to grow, in particular LPWAN connected
critical and broadband devices connected by 4G/5G.
The potential of and interest in NB-IoT should not be disregarded, especially given

the current predictions of Ericsson, see [4]. Nonetheless, the scope of this thesis is
limited to modelling the performance of LoRaWAN, which has also seen vivid growth;
Per April 2019 there were 133 commercial LoRaWAN networks in 55 countries. There
are 114 certified LoRaWAN devices according to the LoRaWAN Alliance and according
to Semtech Corp. the number of LoRa end-nodes was 93 million, see [3], and the number
is growing.

1.2 A primer on the LoRaWAN protocol
LoRaWAN is an open standard managed by the LoRa Alliance R©. The LoRa Alliance R©
is a non-profit association of more than 500 member companies. The LoRaWAN stan-
dard defines a star-topology RAN that provides long range connectivity at a low bit rate
in collaboration with a backbone network comprised of a set of network-servers, see [5].
An access point (AP) serves multiple devices in a star topology, relaying received mes-
sages to a network-server. LoRaWAN implements an adaptive data rate (ADR) scheme,
which allows the network server to select both the data rate and the channels to be used
by each node connected to the AP.
LoRaWAN is based on the LoRa modulation as the PHY layer and LoRa MAC defined

in the LoRaWAN specification. The protocol stack for LoRaWAN is depicted in Fig. 2.
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Fig. 2: The protocol stack of LoRaWAN as defined in [5]. The deployment region dictates regulation.
Although regulations are depicted at the bottom of the protocol stack here as an abstraction of the
wireless medium, coherence with the regional requirements are implemented both in the PHY and MAC
layers.

We will clearly distinguish between LoRa as the PHY and the LoRaWAN protocol.

LoRa

LoRa is a proprietary modulation scheme based on Chirp Spread Spectrum (CSS) tech-
nique [6]. A chirp is signal transmitted at a constant power, which sweeps over the
entire symbol bandwidth (BW) within the symbol period. Symbols are represented by
different offsets in the frequency at which the chirp starts and ends. Chirps are insensi-
tive to frequency offsets, bursts of noise and it is a constant envelope modulation, which
allows for cheap power-efficient transceivers. The bit rate, chirp rate and symbol rate
of LoRa are dictated by the spreading factor (SF), which can be interpreted both as
the number of bits transmitted per symbol and a doubling factor of the symbol period.
LoRa defines the quasi-orthogonal SFs m ∈ M , M = {6, 7, ..., 12}. In one symbol pe-
riod TS, a chirp covers the entire bandwidth (BW). Thus the symbol rate RS can be
expressed as RS = 1/TS = BW/2SF. Taking into account the coding rate (CR), the bit
rate Rb, can be expressed as Rb = SF ·BW/2SF · 4/(4 + CR), where CR is selected from
1 through 4.
A LoRa message consists of a preamble, a header, a payload and a CRC for the payload

as depicted in Fig. 3. The preamble length can be set to between 6 and 65535 symbols.
The preamble also contains a 4.25-symbol length sync word. The sync word consists
of 2 upchirp symbols, which are chirps that sweep the BW in a positive manner, and
2.25 downchirp symbols. Thus the total transmission time of the preamble, Tpreamble,
is given by Tpreamble = Ts · (npreamble + 4.25), where npreamble is the preamble length. A
20 bit length header is included in explicit header mode to indicate the presence of a
CRC for payload and to inform of the payload length and the coding rate. The header
is transmitted at the highest coding rate (1/2). In implicit header mode, a header is
not transmitted to reduce the time on-air of transmissions, and the transmitter and the
receiver must have agreed on a fixed payload length, coding rate and CRC presence
beforehand.
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Preamble
Header Header CRC

Payload CRC
(Explicit header mode only)

The CRC size is 16 bitsThe header size is 20 bits

Tpayload = Ts  ∙ npayloadTpreamble = Ts ∙(npreamble + 4.25)

Fig. 3: Physical (PHY) layer LoRa frame structure.

According to Semtech, see [7], the number of symbols needed to transmit a LoRa
frame can then be found as

npacketm = 8 + max
(⌈ (8B − 4m+ 44)

(4m− 2 · IDE)

⌉
· (CR+ 4), 0

)
, (1)

where B is the payload of the PHY frame in bytes, IDE is a Boolean that indicates
whether data rate optimization is used. This feature improves robustness towards clock
drift and is mandatory for m ∈ {11, 12}.
The total frame length is then nframem = npacketm + npreamble.

LoRa MAC

Three different classes of nodes (A, B and C) are defined in LoRaWAN, each of which
has a distinct operational mode. Class A has the lowest complexity and energy usage
and all LoRaWAN devices are required to implement the class A capability. A class A
device operates with grant-less transmissions in the uplink (UL), but can only receive
messages in the downlink (DL) within ’receive windows’, that are scheduled at a fixed
time after a UL transmission finishes. There are two receive windows after a transmission
in the uplink. The first window is scheduled to open between 1 to 15 second(s) after
the end of an UL transmission with a negligible 20 ms margin of error in the same
channel as the UL transmission. The second window opens in a secondary channel
1 second after the end of the first. This operational mode gives class A devices the
opportunity to sleep at all times except for a short duration after they transmit in
the UL. Class C devices implement the Class A behaviour, but permanently listens for
DL transmissions. The receive windows for Class B devices are scheduled by beacons
transmitted by a GW whenever a network server queues a DL transmission at the GW.
Class B enables polling devices to avoid collisions and initiating DL transmissions from
the network server. Class B devices should operate on a separate channel to class A
and C devices.
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MHDR FHDR FPORT FRMPAYLOAD MIC

MAC payload

Fig. 4: LoRaWAN (MAC layer) frame structure.

LoRaWAN messages are transmitted as the payload of a LoRa message in Fig. 3.
The structure of LoRaWAN messages is shown in Fig. 4. A LoRaWAN message has a
MAC header (MHDR field) with 1 byte length specifying message type and version of
the encoded frame format. The MAC payload is 1 to B byte(s) where B is dictated by
region and spreading factor. The frame header (FHDR) is 6-21 bytes and contains the
address of the end-device, a field for frame control, a frame counter and an optional field
used to convey MAC commands. A single byte is used for the port field (FPort). The
frame payload is 1 to N byte(s) where N is dictated by region and spreading factor.
The message integrity code (MIC) in 4 bytes is appended and it is calculated over all
fields in the message. In total, the overhead of a LoRaWAN message transmitting a
payload with no optional MAC command included is 13 bytes.

Regulatory constraints

LoRaWAN utilizes the industrial, scientific and medical (ISM) radio bands for wireless
transmissions, see [8]. ISM bands are unlicensed and subject to regulations in terms of
maximum transmit power, duty limiting requirements and bandwidth limitations due
to the defined band sizes. In Europe the EU863-870 ISM band uses duty-cycling as a
mechanism to regulate usage of the band whereas for example in US and Canada the
US902-928 regulations dictate operation in either Frequency-Hopping, Spread-Spectrum
(FHSS) or Digital Transmission System (DTS) mode. Notably, India does not restrict
the usage of the physical medium beyond a limit on the emitted power. China, Asia,
Korea and Russia also implement a duty-cycling mechanism like that implemented in
Europe. Europe and Korea also allows for listen before talk (LBT) mechanisms instead
of duty-cycling.
The scope of this investigation will be limited to duty-cycling restrictions in particular

for the European EU863-870, since duty-cycling is widely allowed around the work,
Duty cycling limits the amount of time a device may transmit in the wireless medium
by imposing an off-period following transmission that is given by

TOff = TOn

(
1
Dc
− 1
)

(2)
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Table 1: EU863-870 ISM band available sub-bands [9].

Band f−-f+ [MHz] Power
[dBm]

Duty
cycle Channels

G 865-868 6,2
100 [/kHz] 1%

15 (125 kHz)
10 (250 kHz)
4 (500 kHz)

G1 868-868.6 14 1% 3 (125 kHz)
1 (250 kHz)

G2 868.7-869.2 14 0.1% 2 (125 kHz)
1 (250 kHz)

G3 869.4-869.65 27 10% 1 (125 kHz)
G4 869.7-870 7 100% 1 (125 kHz)
G4* 869.7-870 14 1% 1 (125 kHz)

where Dc is the duty cycle. For example, a 1% duty cycle means that if a device will
send a frame using a certain sub-band, the same sub-band is prohibited during the
next period that corresponds to the on-air duration of that frame multiplied with 99.
The device can transmit using the other available sub-band unless entire sub-bands are
prevented access. The sub-bands and their power and duty-cycling requirements are
listed in Table 1 for the European 863-870 MHz ISM band.
The end-device also obeys another duty cycling mechanism called the aggregated

duty cycle, which limits the radio emission of the device. An aggregated duty cycle of 1
corresponds to the device being allowed to transmit at any time, but still in accordance
with the regulatory duty cycling. The lowest aggregated duty cycle that can be set, 0,
is defined as turning off transmissions entirely for that particular device.

1.3 Thesis Objectives
It is key for both IoT service developers, network operators and network developers to
be able to asses the Quality of Service (QoS) of real-life IoT networks and deployments
in order to choose the technology that provides the best QoS at a feasible cost.

Prior state of the art

At the beginning of the PhD, the scalability in terms of capacity of LoRaWAN was
investigated in [10] where inter-arrival times are implicitly assumed to be fixed. In [11]
the scalability is evaluated in terms of goodput and network energy consumption. Duty
cycling was pointed out in [12] as a key mechanism in LoRaWAN. Duty cycling is
dictated by regulation in many countries as mentioned. It is a central factor limiting
the throughput and the latency of a fixed number of devices. The performance limits
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of duty-cycled LoRaWAN are pointed out in [13], but only aggregated duty cycle and
fixed inter-arrival arrivals are considered.
Performance restrictions in receiver design, capture conditions for LoRa messages,

inter-SF interference nor receiver diversity gains were not investigated in [10–13].
However, performance modelling is only one way of investigating the performance;

Another is network monitoring, which can provide real-life QoS data based on traffic
data from early IoT deployments while also being vital for monitoring and assessing
the status of massive numbers of connected IoT devices in order to enable responsible
entities to take corrective actions upon failure detection as noted in [14–16].

Research Objectives

This led to the formulation of a set of research questions that was explored through the
PhD.

1. Investigate the scalability and QoS of Class A LoRaWAN in terms of the number
of supported devices and the latency and outage experienced by devices.

(a) Identifying and modelling performance trade-offs for LoRaWAN incurred from
regulatory requirements of the EU863-870MHz ISM band.

(b) Identifying and modelling performance trade-offs in LoRaWAN transceiver
design at both the PHY and MAC layer.

(c) Describing the capture conditions for LoRa messages including co- and
inter-SF interference and modelling performance trade-offs for different SF-
allocations.

(d) Modelling the performance gain from AP diversity in a LoRaWAN deployment.

2. Develop Network Monitoring applicable to the newly developed and deployed IoT
networks intended for a massive number of connections.

(a) Identify traffic patterns of IoT Networks and shortcomings of conventional
Network Monitoring methods for the IoT.

(b) Develop Network monitoring methods, applicable to the network topology and
expected traffic of massive IoT deployments.

1.4 Structure of the Thesis
The thesis is divided into three parts; The section "Thesis contributions" follows after
this section to elaborate on the work done throughout the PhD and finally "Conclusion
and Further Work" contains reflections and concluding remarks.
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2 Thesis contributions
The motivation and main results for each contribution in this thesis are summarized in
this chapter. The contributions are divided into two sections. The first section includes
the work that aims to model the performance of LoRaWAN deployments and the second
section comprises the work done on Network Monitoring for IoT.
We refer to the research questions by the notation (RX.y), for example, (R1.a) refers

to the investigation and modelling of regulatory constraints.

Modelling the performance of LoRaWAN networks

2.1 Paper A
Analysis of Latency and MAC-Layer Performance for Class A LoRaWAN, R.
B. Sørensen, D. M. Kim, J. J. Nielsen and P. Popovski, IEEE Wireless Communications
Letters, vol. 6, no. 5, pp. 566–569, Oct. 2017.

Motivation

The scalability and capacity of Class A LoRaWAN was investigated in [10] and [11]
under assumptions of an Aloha network and orthogonality between SFs, in terms of
goodput and network energy consumption in the latter and in terms of the number
of EDs suppoted in different configurations in the former. The limits of duty-cycled
LoRaWAN are pointed out in [13], but only aggregated duty cycle and fixed inter-arrival
arrival times are considered.
The regulation in Europe, Asia, China, Russia and Korea dictates duty cycling for

individual devices on a per sub-band basis allowing an optional aggregate duty-cycle over
all sub-bands bands, see [8]. Semtechs ’LoRaMAC’ driver implements duty-cycling over
multiple channels and sub-bands so a detailed analysis of the duty-cycling mechanisms
impact on traffic division and transmission latency is warranted.

Paper content

This paper introduces a queuing model for the sub-bands and channel candidates for
transmission in order to evaluate the internal queuing latency of devices and the ag-
gregate arrival rate from groups of devices in each channel. The model basis is the
approximation of a M/D/c-queue based on a M/M/c-queue and it is applicable to both
per-sub-band regulatory duty-cycle and the optional aggregated duty-cycle.
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Main Results

The main results of this contribution is that we found limits on the throughput and
internal queuing latency of individual devices and and the aggregate arrival rate from
groups of devices in each channel. We also showed how utilization of multiple sub-bands
can increase the throughput and minimizing the latency of individual devices.
This work contributed to the identification of regulatory performance constraints

(R1.a) and in particular constraints of the duty-cycling in ’LoRaMAC’, Semtech’s soft-
mac implementation of LoRaWAN (R1.b). Furthermore, the presented model is appli-
cable to any duty-cycled network.

2.2 Paper B
Analysis of LoRaWAN Uplink with Multiple Demodulating Paths and Cap-
ture Effect, R. B. Sørensen, N. Razmi, J. J. Nielsen and P. Popovski, 2019 IEEE
International Conference on Communications (ICC), pp. 1–6, 2019.

Motivation

Single cell LoRaWAN deployments was investigated using stochastic geometry in [17]
under the assumption of orthogonal SFs. The SFs of LoRaWAN were found not to be
quasi-orthogonal and capture conditions were given in [18]. Then, [19–21] proceeded to
evaluate single cell LoRaWAN using stochastic geometry based on the capture conditions
found in [18]. In [19] the allocation of SFs was tuned by assigning SFs to devices based
on their distance to the gateway and the reception sensitivities of each SF in order to
maximize the average coverage probability.
Another mechanism impacting frame reception was identified experimentally in [22].

Failure was found to happen upon secondary transmission capturing the channel after
an earlier transmission had been detected and was being demodulated for the SX1276
LoRa transceiver chipset.

Paper content

We developed a joint spatio-temporal model for LoRaWAN that takes both capture
effect and the demodulation capabilities of LoRa transceivers into account by joining
the state of art stochastic geometry models for capture effect with Markovian arrival
models and queuing theory. The model is based of the SX1301 chipset, which is capable
of demodulating 8 frames; however, the model and the methodology can be applied for
any architecture. Previous models have not included the temporal-domain constraint
given by the number of demodulation paths. Furthermore, we evaluate the performance
of single cell LoRaWAN for several SF allocation schemes.
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Main Results

We used the developed model to evaluate coverage, throughput and outage in a sin-
gle GW LoRaWAN deployment and showed that frame dropping due to busy demod-
ulation paths is a non-negligible factor in modelling the performance of LoRaWAN.
Additionally, we presented results for several SF-allocation schemes and showed how
the SF-allocation scheme is key in determining the throughput, coverage and outage of
LoRaWAN deployments.
This work contributed to modelling the demodulation path constraint of the receiver

design at the PHY layer (R1.b) and models the performance of LoRaWAN taking into
account capture conditions and investigates trade-offs for different SFs (R1.c).

2.3 Paper C
On Symbol-wise Collisions and Demodulation Path Blocking in Multi-
Gateway LoRaWAN, R. B. Sørensen, N. Razmi, J. J. Nielsen and P. Popovski, IEEE
Wireless Communications Letters, submitted, 2020.

Motivation

Multiple GW LoRaWAN deployments have been evaluated in [23–25] for various capture
and interference conditions. Packet reception in a real-world, multiple GW deployment
has been evaluated experimentally in [26]. Interestingly, the maximal RSSI and SNR
for a transmission was not found to be among the geographically closest GW-ED pairs,
although closer GWs had, on average, better RSSI and received SNR. Also, multiple
GWs were found to receive each transmission, sometimes even very remote GWs.
We presented a joint spatio-temporal model in Analysis of LoRaWAN Uplink with

Multiple Demodulating Paths and Capture Effect, which takes into account PHY level
receiver constraints, which is not taken into account in [23–25]. Furthermore, the tem-
poral interference models of [23–25, 27, 28] evaluate the average number of interferering
transmissions during a reference transmission, which is incoherent with actual receiver
behavior where symbols are demodulated individually.

Paper content

Here, we took the asynchronism among the interfering frames into account by analyz-
ing the maximal number of ongoing interfering transmissions during any symbol in a
reference transmission. This novel model can be used in previous works to evaluate
LoRaWAN more realistically under various capture conditions.
In this paper we focused on a simple collision model for a graph-network of EDs

connected to GWs with stochastic links. We used this model investigated the benefits
in terms of diversity gain from deploying multiple SX1301-based GWs, each operating
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under the constraint that the demodulation paths are reserved for decoding ongoing
frames.

Main Results

One major result of this work is the good approximation of the distribution of the
maximal number of ongoing transmissions during any symbol of a frame. This work
modelled the performance gain from AP diversity in a LoRaWAN deployment (R1.d)
taking into account capture conditions (R1.c) and modelled the demodulation path
constraint of the receiver design at the PHY layer (R1.b). The results showed how
diversity gain diminishes both as either more GWs or more EDs are deployed. The model
developed in this work is broadly applicable to analysis of any RAN that modulates and
demodulates symbols individually.
A quirk in the receiver design was also identified, the preamble detection stage acts

as a filter upon the received packet stream, which sorts out colliding or non-capturing
packets that arrive with close-inter-arrival times. The resulting packet stream after
the detection stage is therefore non-Markovian, so the Erlang B formula does not yield
accurate results on blocking for the demodulation stage.

Paper D

On multi server queues with degenerate service time distributions and no
waiting lines (G/D/n/n), R. B. Sørensen, J. J. Nielsen and P. Popovski, IEEE
Wireless Communications Letters, submitted, 2020.

Motivation

A distinctive feature of machine operations, is that they are likely to perform different
tasks within an almost-deterministic time. This brings relevance to queues with degen-
erate service times and non-Markovian arrival times. For example, in Paper C we found
a LoRa receiver, would filter out colliding transmissions with short inter-arrival times,
so that a Markovian arrival process at the front-end of teh receiver would result in a
non-Markovian arrival process at the demodulation paths.

Paper content

In this paper, a framework for modelling G/D/n/n queues is presented and we derive a
bounds on the blocking probability and close approximation of the blocking probability.
Our bounds and approximation are based on an analysis of the counting process for the
arrival process rather than cumbersome analysis of the timing of arrivals.
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Main Results

Here, we created a model that is applicable in modelling the receiver constraint of LoRa
receivers due to having a fixed number of demodulation paths accurately (R1.c).
The main result here is the framework, bounds and approximation itself, which allows

for analysis of G/D/n/n queues. We also show how the framework may be applicable
to general service times distributions, that is, G/G/n/n queues. The framework is
applicable for solving a large set of general problems. Hopefully, the approach taken
in our analysis may inspire future research into degenerate queues and general queuing
models.
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Network Monitoring for IoT

2.4 Paper E
Machine Learning Methods for Monitoring of Quasi-Periodic Traffic in Mas-
sive IoT Networks, R. B. Sørensen, J. J. Nielsen and P. Popovski, IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 7368–7376, Aug. 2020.

Motivation

Numerous methods for network monitoring in wireless sensor networks (WSNs) exist,
see [15, 16] and can be combined in frameworks such as the one in [29], which is based
fuzzy logic. The approaches for monitoring can be categorized into ’active’, ’passive’ and
’hybrid’ approaches where active monitoring involves polling devices, passive methods
do not add traffic to the network whereas hybrid approaches poll only some devices.
Introducing polling traffic for network monitoring in massive IoT deployments would
not only create a massive overhead on both UL and DL traffic, but also drain the battery
of energy constrained devices, so the potential of passive approaches seems to outweigh
the potential of active and hybrid approaches.
In general, the fault detection methods for WSNs assume a PAN multi-hop mesh

topology like 6LoWPAN or ZigBee. One example of such a fault detection method is
PAD, a passive monitoring method detecting failures based on routing changes that is
presented in [30]. Not only is detection of routing changes not applicable in one-hop
LPWANs, but PAD and many similar methods add a few bytes of overhead to transmis-
sions, which is non-negligible for energy-constrained devices in low-rate networks. The
fault detection methods of [31] and [32] are more interesting since they rely on statis-
tical inference based on the timing of incoming traffic to detect faults in the network.
However, both methods also assume that you can gather a set of ’well behaving’ data
a-priori to starting the fault detection, which only seems feasible in practise for privately
owned IoT networks where the traffic models of all devices are well-known a-priori, and
in that case faults can be detected in a deterministic manner.

Paper content

Wemade no assumption about the topology of the network and assumed a quasi-periodic
traffic model for IoT devices instead. This approach allowed us to evaluate the state
and link performance of individual devices passively by parameterizing the traffic model
for each device. This allows for identification of poorly performing and malfunctioning
devices in massive IoT deployments so corrective actions can be taken. We developed
machine learning methods for parameterizing such traffic models for both devices run-
ning ’thin’ single application clients and for ’thick’ clients running multiple applications.
We observed ’thick’ client behaviour in a data-set from a LoRaWAN deployment, where
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mains-powered sensors and actuators were used to control and manage street lights in
rural towns.
We proposed parametric machine learning methods for high resolution, centralised

and passive fault detection in arbitrary IoT deployments. The methods use temporal
correlations in observed traffic for parameterizing quasi-periodic traffic models. Inter-
estingly, methods from astronomy, where unevenly sampled time series are common,
provided inspiration and the methodological basis for the developed algorithms. Specif-
ically, phase-folding [33] inspired the gradient-descent type approach presented called
normalised harmonics mean (NHM) while Lomb-Scargle analysis, which is a variant of
the classical Fourier periodogram generalised for uneven time-series, see [34–37], was
the foundation for a hierarchical clustering approach for parameterizing traffic models
for ’thick’ clients.

Main Results

This work contributed to the study and development of Network Monitoring for IoT
networks (R2.a, R2.b). We developed algorithms practically applicable for fault detec-
tion in massive IoT deployments, and investigated the accuracy through simulation and
by analysis fo a real-life Smart Metering deployment.
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3 Conclusion and Further Work
The main goal of this thesis was to develop tools to ascertain the performance of novel
RAN standards intended for usage in massive IoT deployments in particular LoRaWAN,
focusing on (i) realistically modelling LoRaWAN by observing transceiver design, regu-
latory constraints and capture conditions (ii) investigating the scalability of LoRaWAN
networks in terms of the supported number of EDs and QoS and (iii) developing network
monitoring methods for IoT networks.
We have shown that LoRaWAN scales to an arbitrary number of devices given a large

enough set of GWs providing coverage and reception diversity, however at a diminishing
return. We found that a single SX1301-based GW can support 1200 Class A EDs
spread over 8 channels at an outage of 30% for an average inter-arrival time of 10
minutes of 50 bytes transmissions, given the maximally allowed transmission power and
an SF allocation that maximizes the coverage probability throughout the cell. We can
scale the number of EDs and the average time between transmissions by any factor to
evaluate the number of supported devices at any transmission rate that does not incur
non-negligible waiting due to duty-cycling.

We developed network monitoring methods, which can be applied in black-box de-
ployments where neither the network specifications or the parameterized traffic models
of devices needs to be known a-priori as long as individual devices are transmitting
quasi-periodically. Indeed, these methods allow for ascertaining the performance of in-
dividual devices and of the network overall. The latter can be found even if only a
subset of devices are transmitting periodically.

We have developed models that do not only model constraints in LoRaWAN, which
other works have failed to account for, but they are also applicable to a more general
set of problems outside the scope of this thesis. This applies to considering duty-
cycling a queuing problem, the approximation of the maximal number of interfering
transmissions in any transmitted symbol, the framework for modelling G/D/n/n queues
and the network monitoring methods, which may be applied to other quasi-periodic
processes - for example production line monitoring.

Future work

There is a fair amount of research questions, which have not been addressed in this thesis.
The performance of Class B and Class C LoRaWAN has been modelled in [38, 39], but
without considering the restrictions identified in this thesis. Mechanisms such as the
adaptive data rate (ADR), the join procedure and broadcasting for eg. firmware over
the air (FOTA) are also very interesting areas for study and potentially optimization.
The potential of employing new disruptive technologies in GW-receivers in order to to
enhance the reception probability is also very interesting, for example SIC as proposed
in [40] or MIMO for enhanced coverage.
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Abstract
We propose analytical models that allow to investigate the performance of Long Range
Wide Area Network (LoRaWAN) uplink in terms of latency, collision rate, and through-
put under the constraints of the regulatory duty cycling, when assuming exponential
inter-arrival times. Our models take into account sub-band selection and the case of
sub-band combining. Our numerical evaluations consider specifically the European ISM
band, but the analysis is applicable to any coherent band. Protocol simulations are used
to validate the proposed models. We find that sub-band selection and combining have
a large effect on the QoS experienced in a LoRaWAN cell for a given load. The pro-
posed models allow for optimizing resource allocation within a cell given a set of QoS
requirements and a traffic model.

1 Introduction
Services utilizing communications between machines are expected to receive a lot of
attention, such as health monitoring, security monitoring and smart grid services [1].
These Internet of Things (IoT) services generate new demands for wireless networks.
The spectrum of service scenarios in the IoT is wide and as a result the required quality
of service (QoS) across IoT services is also wide. In some scenarios ultra high reliability is
required, in others a low latency is required and supporting massive numbers of low-cost
and low-complexity devices is still important issue. The devices can be served by the
cellular networks and, specifically, by their M2M-evolved versions, such as Narrowband
IoT (NB-IoT) [2]. However, there is a low-cost alternative for serving these devices
using Low Power Wide Area (LPWA) networks that operate in unlicensed bands. The
number of IoT devices connected by non-cellular technologies is expected to grow by 10
billions from 2015 to 2021 [3]. It is therefore of interest to develop QoS models for the
LPWA protocols in order to analyze which protocol is best suited for a given service.
Long Range Wide-area Network (LoRaWAN) is an emerging protocol for low-

complexity wireless communication in the unlicensed spectrum using Long Range
(LoRa) modulation. The scalability and capacity of LoRaWAN is investigated in [4]
where it is implicitly assumed that the inter-arrival times are fixed. In [5] the scalability
is evaluated in terms of goodput and network energy consumption. One of the key
elements of LoRaWAN is the use of duty cycling in order to comply with the require-
ments for unlicensed operation. Duty cycling is imposed per sub-band by regulation
and optionally also aggregated for all bands. It is the central factor that sets limitation
on the throughput and the latency of the network. The limits of duty-cycled LoRaWAN
are pointed out in [6], but only aggregated duty cycle and fixed inter-arrival arrivals are
considered.

The contribution of this paper is an analytical model of the LoRaWAN uplink (UL)
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that characterizes the performance, in terms of latency and collision rate, under the
influence of regulatory and aggregated duty cycling, assuming exponential inter-arrival
times. The obtained latency and collision rate results from the analysis are verified
through simulation.
We summarize the key features of LoRaWAN in Section 2. A system model is pre-

sented in Section 3 and analysed in Section 4. Numerical results based on the analysis
and simulation is shown in Section 5. Concluding remarks are given in Section 6.

2 Long Range Wide Area Network
LoRaWAN is a wireless communication protocol providing long range connectivity at a
low bit rate. LoRaWAN is based on the LoRa modulation. LoRaWAN supports LoRa
spreading factors 7 to 12. The overhead of a LoRaWAN message with a payload and
no optional MAC command included is 13 bytes.
LoRaWAN defines a MAC layer protocol to enable low power wide area networks

(LPWAN) [7]. A gateway serves multiple devices in a star topology and relays messages
to a central server. LoRaWAN implements an adaptive data rate (ADR) scheme, which
allows a network server to select both the data rate and the channels to be used by each
node.
Three different classes (A, B and C) of nodes are defined in LoRaWAN. Class A has

the lowest complexity and energy usage. All LoRaWAN devices must implement the
class A capability. A class A device can receive downlink messages only in a receive
window. There are two receive windows after a transmission in the uplink. The first
window is scheduled to open 1 to 15 second(s) after the end of an uplink transmission
with a negligible 20 ms margin of error. The second window opens 1 second after the
end of the first.
LoRaWAN utilizes the industrial, scientific and medical (ISM) radio bands, which

are unlicensed and subject to regulations in terms of maximum transmit power, duty
cycle and bandwidth. The end-device also obeys a duty cycling mechanism called the
aggregated duty cycle, which limits the radio emission of the device. An aggregated
duty cycle of 100 % corresponds to the device being allowed to transmit at any time,
but still in accordance with the regulatory duty cycling. The lowest aggregated duty
cycle of 0 % means that the particular device turns off the transmissions completely.

3 System Model
Consider M devices connected to a single LoRaWAN gateway. Each device is assigned
a spreading factor to use for transmission by a network server. We account for the
interference through the collision model, where collision occurs when two or more devices
try to transmit simultaneously in the same channel using the same spreading factor. We
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also consider a LoRa-only configuration, in this work, such that no interference from
other technologies is present. Different spreading factors are considered to be entirely
orthogonal. A fixed payload size is assumed. We further assume that all devices are
class A and have successfully joined the network and transmit the messages without
acknowledgement so that there are no downlink transmissions. Due to the absence of
acknowledgements, retransmissions are not considered.
Among all sub-bands, a device is given a subset of the sub-bands. Enumerate these

sub-bands 1 through c. Let ni, i = 1..c and δi, i = 1..c be the number of channels and
the duty-cycle1 in sub-band i, respectively. As described in the specifications [7] and
in the source code of the reference implementation of a LoRa/LoRaWAN device2, the
scheduling of a LoRaWAN transmission happens as follows:

1. A device waits until the end of any receive window.

2. A device waits for any off-period due to aggregated duty cycling.

3. A device checks for available sub-bands, i.e., ones that are not unavailable due to
regulatory duty cycling:

(a) A channel is selected uniformly randomly from the set of channels in all avail-
able sub-bands.

(b) If there is no free sub-band, the transmission is queued in the first free sub-
band. A random channel in that sub-band will be selected.

A transmission, limited by the duty cycle δ, with a transmission period Ttx infers a
holding period, which, including the transmission itself is given by:

Thold = Ttx + Ttx

(
1
δ
− 1
)

= Ttx
1
δ
. (A.1)

The service rate is the inverse of the holding time, µ = δ/Ttx. Sub-bands can have
different duty cycles and in turn different service rates. Let λ be the generation rate of
packets for a device. When several sub-bands are defined for the device the sub-band
for the next transmission is selected according to the step 3-a) and 3-b). We define
service ratio ri as the fraction of transmissions carried out in the i−th sub-band.

4 Analytical Model
In this section the analytical models for latency and collision probability are presented.

1δi is a normalized value between [0, 1].
2https://github.com/Lora-net



30 Paper A.

4.1 Single Device Model: Latency
The latency of a transmission is the time spent on processing, queueing, transmission
of symbols, and propagation. Assuming that the time for processing and propagation
are negligible, we hava:eq:

Ttotal = Ttx + Tw. (A.2)

We model the wait for reception windows and aggregated duty cycling ( steps 1) and 2)
) as a single traffic shaping M/D/1 queue. The service rate of this M/D/1 queue is the
slowest mean rate of service in step 1) and 2). For step 3), we model the regulatory duty
cycling as an M/D/c queue with heterogeneous servers, where each server corresponds
to a sub-band. The waiting time Tw for a transmission and the service ratio of each
sub-band can then be found from queue theory.
The waiting time, Tw, due to regulatory duty-cycling can be calculated for asymmetric

M/D/c queue3 that models step 3) of the scheduling procedure, but as it is easier to
model and compute on a M/M/c queue relative to a M/D/c queue, we use the rule of
thumb that the waiting line of a symmetric M/M/c queue is approximately twice that
of an M/D/c queue [8] to simplify our analysis. Our simulations show that this is a
good approximation also for asymmetric queues.

The waiting time in sub-band i is then:

Twi = pbusy,all
(
∑c
i=1 µi + λ) · 2

, (A.3)

where pbusy,all is the Erlang-C probability that all servers are busy. The transmission
latency in each band can then be found from Eq. (A.2). The mean latency is given as
a weighted sum of the transmission latencies in each sub-band, where the weights are
given by the service rate of each sub-band.
The fraction of transmissions in sub-band i, λi, is the product of the holding-efficiency

of the sub-band (fraction of time it is held) and the service rate of the band throughout
that period. Then the service ratio is:

ri = µi
λ
· (1− pi,idle), (A.4)

where pi,idle is the probability that the sub-band i is idle.
The service ratio can be expressed in short-hand forms for the two extreme cases of

all sub-bands being available or busy all of the time. When all sub-bands are available
at the time of a transmissionthe channel of transmission is selected uniformly from the
set of all channels as per step 3-a):

lim
λ→0

(ri) = ni∑c
j=1 nj

. (A.5)

3The term “asymmetric" captures the heterogeneous service rates of sub-bands.
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In the case that all sub-bands are unavailable at the time of a transmissionthe trans-
mission is carried out in the next available sub-band as per step 3-b):

lim
λ→µc

(ri) = δi∑c
j=1 δj

. (A.6)

In order to describe ri between these extremes, we must find pi,idle. Hence, we wish
to find the steady-state probabilities given a Markov model of the sub-band selection
behaviour. For this purpose the model of a jockeying4 M/M/c queue from [9] has been
adopted. The Markov model of the jockeying queue has a limited state space since, by
definition, the difference in the number of queued transmissions in any two sub-bands
may not be larger than one. This allows us to put up a matrix A containing all state
transition probabilities, which can be used to evaluate the steady state probabilities, P,
by solving the linear system A · P = 0. It also allows adoption of a Markov model for
LoRaWAN device behaviour, which is step 3) in the sub-band selection, by introducing
state transition probabilities based on the number of channels in each non-busy sub-band
in A.

The jockeying queue does has a limited state space. As in [9] we approximate the
model by making it finite by limiting the queue sizes to 1000. The model now allows
us to compute the steady state probabilities of all states; Amongst them pbusy,all and
pi,idle. Then Twi and ri can be calculated from Eq. (A.3) and Eq. (A.4). Note that
waiting times are lower for a jockeying queue than a regular queue. Hence applying
the rule of thump for approximation of an M/D/c queue from a M/M/c queue on a
M/M/c : jockeying queue, will yield a lower latency approximation of the M/D/c
queue.

4.2 Multiple Devices Model: Collisions
In this work we assume that no devices are making use of the optional acknowledgement
feature of LoRaWAN. Hence there is no DL in the model and as another consequence
no retransmissions occur upon collision.
It is empirically found in [10] that spreading factors are not orthogonal in practice and,

due to capture effect, one transmission may be received successfully if the power of the
wanted transmissions is sufficiently greater than the interfering one. Unfortunately, at
present there is no model of capture effect in LoRaWAN and in this work, for simplicity,
we assume that all channels and all SFs are orthogonal. When two or more transmissions
happen in the same channel, using the same SF, at the same time, they collide. This
means we can model the access scheme as multichannel ALOHA random access, as
in [4, 6, 11]. Since there are 6 spreading factors defined for LoRaWAN, we have 6 sets

4Jockeying: A packet changes queue to a shorter queue if, upon the end of service of another packet,
it is located in a longer queue.
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of ni orthogonal Aloha-channels in sub-band i. The collision rate must be evaluated for
each spreading factor.
We found the service ratios of each sub-band in Section 4.1. Since the number of

devices, the transmission time for the spreading factor being evaluated and the mean
inter arrival time are known, we can calculate the load within a sub-band. The load
within the sub-band is spread uniformly over the channels allocated to that band. Hence
the traffic load of M devices, in sub-band i, given SFi,j is

L(i, j) =
λ · ri · Ttx,j ·M · pSFi,j

ni
(A.7)

where pSFi,j is the percentage of all devices M , which use the j’th spreading factor in
sub-band i.
The collision probability is then

pcol,i,j = exp (−2 · L(i, j)) . (A.8)

In the paper, only unacknowledged UL transmissions are considered. So DL limitations
and retransmissions are not considered in this work. Therefore the outage is caused by
collisions can be quantified by our model.

5 Performance Evaluation
In this section the latency given by Eq. (A.2), the service ratios given by Eq. (A.4) and
the collision probability given by Eq. (A.8) are evaluated numerically. The evaluation
is done for SF 12 based on 125 kHz channels, 50 bytes payload, 13 bytes overhead, code
rate 4 and preamble length npreamble = 8.
The latency including the transmission time and the waiting time due to regulatory

duty cycling as a function of arrival rate are depicted in Fig. A.1. The latency is plotted
for stand-alone usage of each sub-band (G to G4) and for two sub-band combinations
(G+G1 and G+G2).
The analytical approximation using Eq. (A.3) for a heterogeneous M/M/c queue

provides a tight upper bound of the cases for the multiple sub-bands (G+G1 and G+G2)
and a tight approximation for the single band cases. The latency obtained by the
jockeying M/M/c queue provides a lower approximation. The results show that lower
latencies and higher capacities can be achieved for sub-bands with higher duty-cycles
and combinations of bands with high duty-cycles.
The service ratios for the cases with combined sub-bands are plotted in Fig. A.2. We

see that combining G with G1 and G2, respectively, leads to very different service ratios
for the bands. G contains 15 channels and G1 contains just 3, but they have the same
duty-cycle. The combination of G and G1 yields the service ratio limit 15/(15+3) = .834
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Fig. A.1: c©2017 IEEE: Latencies on all sub-bands and combinations of sub-bands. Results denoted
Upper and Lower are calculated using ordinary M/M/c model and jockeying model, respectively.

for G for low arrival rates, but since the duty-cycling is the same for the sub-bands we
have the limit .01/(.01 + .01) for a high arrival rate.

The consequence of the sub-band pairing becomes evident by the collision rates de-
picted in Fig. A.3. We see that the collision rate for G+G1 is larger than that of G
alone or G+G2. This is due to the traffic not being spread equally on the channels
for high arrival rates for G+G1. Since the limits of G+G2 are much closer, the load
is spread more uniformly over the channels at high arrival rates and we see a drop in
collision rate by adding the sub-band. Notice that the devices reach their capacities µc
before the collision rate comes close to 1. In this way duty-cycling limits the collision
rate for each band, allowing for more devices to share the band, but in practice arrivals
beyond the capacity of each device would be dropped.
From Fig. A.1 it seems that the sub-band with the highest duty-cycle, G4, is attractive

as it delivers low latency even at very high loads. However, when collisions are taken
into account, we see that the sub-band has a very high collision rate as it only contains
a single sub-channel. On the other hand, the lowest duty-cycle is found in sub-band
G2, which has relatively high latency even at low loads, but with a lower collision rate
than G4.

In Fig. A.4 the service ratios for G+G4 with an aggregate duty cycle of 0.05 (equiv-
alent to a service rate capacity of the M/D/1 queue is 0.0146) and an aggregate duty
cycle of 0.075 (equivalent to 0.0219) are plotted. The introduction of the aggregated
duty cycle (M/D/1 queue) was found to effect the regulatory duty cycle queue (M/D/c
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Fig. A.2: c©2017 IEEE: Service ratios for G+G2 and G+G1.

queue) by the service capacity, which freezes the sub-band service ratios of the regulatory
queue and limits the obtainable latency.

6 Concluding Remarks
A model for evaluating the performance of LoRaWAN UL in terms of latency and
collision probability was presented. The numerical evaluation was done for EU868 ISM
band regulations, but the analysis is also valid for other bands utilizing duty cycling,
such as the CN779-787 ISM band.
Short-hand forms for the limits of ri were presented. Equalizing the limits keeps the

collision rate of sub-band combining at a minimum. The trade-off for this is a higher
latency. The traffic shaping effect of aggregated duty-cycling was shown and may be
used as a built-in tool for collision-latency trade-off when combining sub-bands.
The UL model presented in this work, can be combined with DL models for Class A,

B and C LoRaWAN devices and more sophisticated collision models to give insight into
the bi-directional performance in LoRaWAN.



References 35

10-6 10-5 10-4 10-3 10-2

Arrival rate [packets/sec]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

C
ol

G
G1
G2
G3
G4
G+G1
G+G2

Fig. A.3: c©2017 IEEE: Sub-band collision rates for 100 devices transmitting with SF12.

0 0.005 0.01 0.015 0.02 0.025 0.03

Arrival rate [packets/sec]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

vi
ce

 r
at

io r
G4

: G+G4, ADC=0.05, Sim.

r
G

: G+G4, ADC=0.05, Sim.

r
G4

: G+G4, ADC=0.075, Sim.

r
G

: G+G4, ADC=0.075, Sim.

Aggregate DC: 0.05

Aggregate DC: 0.075

Fig. A.4: c©2017 IEEE: Effect of aggregated duty cycle on service ratios.

References
[1] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid,

“Internet of things in the 5g era: Enablers, architecture, and business models,”



36 References

IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 510–527,
Mar. 2016.

[2] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grövlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband internet of things
(NB-IoT),” arXiv preprint arXiv:1606.04171, 2016.

[3] “Ericsson Mobility Report,” AB Ericsson, Tech. Rep., June 2016.

[4] K. Mikhaylov, J. Petäjäjärvi, and T. Haenninen, “Analysis of capacity and scala-
bility of the LoRa low power wide area network technology,” in European Wireless
Conference (EW 2016), 2016.

[5] M. Bor, U. Roedig, T. Voigt, and J. Alonso, “Do LoRa low-power wide-area net-
works scale?” in ACM MSWiM 2016), Nov. 2016.

[6] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, and J. Melia, “Under-
standing the limits of LoRaWAN,” arXiv preprint arXiv:1607.08011, 2016.

[7] N. Sorni, M. Luis, T. Eirich, T. Kramp, and O. Hersent, LoRaWAN Specification,
v1.0 ed., LoRa Alliance, Jan. 2015.

[8] H. Tijms, “New and old results for the M/D/c queue,” AEU - International Journal
of Electronics and Communications, vol. 60, no. 2, pp. 125–130, 2006.

[9] E. A. Elsayed and A. Bastani, “General solutions of the jockeying problem,” Euro-
pean Journal of Operational Research, vol. 22, no. 3, pp. 387–396, Dec. 1985.

[10] K. Mikhaylov, J. Petajajarvi, and J. Janhunen, “On LoRaWAN Scalability: Em-
pirical Evaluation of Susceptibility to Inter-Network Interference,” ArXiv e-prints,
Apr. 2017.

[11] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa: Long
range & low power networks for the internet of things,” Sensors, vol. 16, no. 9,
2016.



Paper B

Analysis of LoRaWAN Uplink with Multiple Demodulating
Paths and Capture Effect

René Sørensen, Nasrin Razmi, Jimmy Jessen Nielsen, Petar Popovski

The paper has been published in the
Proceedings of IEEE International Conference on Communications (ICC), 2019.



c© 2019 IEEE
The layout has been revised.



1. Introduction 39

Abstract
Low power wide area networks (LPWANs), such as the ones based on the LoRaWAN
protocol, are seen as enablers of large number of IoT applications and services. In this
work, we assess the scalability of LoRaWAN by analyzing the frame success probability
(FSP) of a LoRa frame while taking into account the capture effect and the number
of parallel demodulation paths of the receiving gateway. We have based our model on
the commonly used SX1301 gateway chipset, which is capable of demodulating up to
eight frames simultaneously; however, the results of the model can be generalized to
architectures with arbitrary number of demodulation paths. We have also introduced and
investigated three policies for Spreading Factor (SF) allocation. Each policy is evaluated
in terms of coverage probability, FSP, and throughput. The overall conclusion is that the
presence of multiple demodulation paths introduces a significant change in the analysis
and performance of the LoRa random access schemes.

1 Introduction
LoRaWAN is a popular low power wide area network (LPWAN) protocol. It is based on
Semtechs’ proprietary LoRa modulation, which uses a chirp spread spectrum (CSS) to
enable long range and resilient transmissions. The access scheme of LoRaWAN resem-
bles a pure Aloha protocol, however LoRaWAN provides several narrow-band channels
and quasi-orthogonal spreading factors (SF) to make LoRaWAN scalable. A consid-
erable research interest has arisen recently about the obtainable link budget of LoRa
transmissions, along with studies of capture effect, collisions, and the non-orthogonality
of SFs in LoRa-based networks.
There are three mechanisms in LoRaWAN that determine the network performance:

coverage, capture effect, and the demodulation capabilities of the receiver. All of these
are affected by the SF allocation. The coverage probability is determined by the device
location and the sensitivity of the SF. The capture probability is a function of the in-
terference from transmissions using the same SF (co-SF interference) or different SFs
(inter-SF interference). Finally the choice of the SF controls the tradeoff between the
transmission robustness and collision probability. On one hand, the transmissions that
use lower SFs are less robust to noise and interference, resulting in a worsened cover-
age. On the other hand, lower SF results in a higher rate, which, for fixed payload,
translates into a shorter packet duration. This implies that the probability to cause or
experience collision (interference) for that packet is lowered for lower SFs. In addition,
a transmission with a lower SF occupies a demodulation path in the demodulator for a
shorter time interval compared to a transmission with a larger SF.

The initial research in LoRaWAN modeled the protocol as pure Aloha channels for
each SF and channel pair as in [1]. This work neglects inter-SF interference and capture
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Preamble LoRa Header Header 

CRC

Payload  + Payload CRC

Fig. B.1: c©2019 IEEE: LoRa Frame structure as described in [8]. LoRaWAN frames, consisting of
header and payload, are transmitted as the payload of a LoRa frame.

effect. The performance of LoRa has been analyzed and modeled for a single LoRaWAN
cell using stochastic geometry and considering capture effect in [2–6]. The authors in [2]
model the co-SF interference by considering the interference from the strongest co-SF
interferer device. The results show that, the co-SF interference effect increases as the
number of devices increases, such that the network becomes interference-limited. The
authors in [3] provide a framework to evaluate only the co-SF interference by considering
the level of overlap between the interfering packets. Inter-SF interference is modeled
with the Co-SF interference in [4–6]. The authors of [4] consider the allocation of SFs
in order to maximize the average coverage probability by assigning SFs to devices based
on their distance to the gateway and SF sensitivities. The scalability and throughput
of LoRaWAN deployments have been evaluated in [5, 6] based on the capture effect and
coverage models. Both papers verify that both co-SF and inter-SF transmissions have a
considerable effect on the capture probability, and thereby on the LoRaWAN scalability.
A mechanism impacting frame reception beyond coverage and the capture effect was

identified experimentally in [7]. The SX1276 LoRa transceiver is found to lock onto
frames after detecting four symbols of a preamble. The reception will fail if another
frame (even one that captures the channel) begins transmission before the first LoRa
frame has been received or certain other timing conditions have been fulfilled.
In this paper, we evaluate the scalability of LoRaWAN analytically by developing a

joint model for coverage, capture effect and demodulation capabilities for LoRa trans-
missions. We build and evaluate our model on the basis of a SX1301 gateway; however,
the model and the methodology can be applied for any architecture. The SX1301 is
capable of demodulating 8 frames, simultaneously, any transmissions beyond this will
be dropped. To our knowledge, this practical limitation has not been included in the
previous models from the literature. Finally, we evaluate the performance of several SF
allocation schemes based on the developed model.
The rest of paper is organized as follows: In Section 2, we explain the scenario,

assumptions, conditions and parameters of our analysis. The analysis is contained
within Section 3. Section 4 presents the numerical results and the associated discussion.
Finally, the paper is concluded in Section 5.
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2 Scenario
We consider a single LoRa channel with a bandwidth BW = 125 [kHz]. Each device
transmits LoRaWAN frames with payloads of size B bytes at a rate λd. A device is
assigned a fixed SF m to be used for transmission, where M = {7, 8, ..., 12} and m ∈M
as allowed in LoRaWAN [9]. The symbol period for a given m is Tsm = 2m

BW
. A LoRA

frame uses the LoRaWAN frame as a payload. Each LoRa frame contains a preamble of
10 to 65539 symbols (default is 12), a LoRa header, payload and, optionally, a CRC for
the payload as depicted in Fig. B.1. The number of symbols needed for transmission of
the LoRa header and the LoRaWAN payload using SF m can be found as (B.1) from [8].

npktm = 8 + max
(⌈ (8B − 4m+ 44)

(4m− 2 · IDE)

⌉
· (CR+ 4), 0

)
, (B.1)

where CR is the coding rate. CR = i for i ∈ {1, 2, 3, 4} corresponds to a coding rate
equal to 4

4+i . The indicator IDE = 1 if low data rate optimization is used and IDE = 0
otherwise. Low data rate optimization increases robustness towards clock drift and is
mandatory for SF {11, 12}.

The total number of symbols transmitted for a complete frame with SF m is nfm =
nprem +npktm where nprem denotes the number of symbols in the preamble for m. Then,
the total transmission time is Tfm = Tsm · nfm .

2.1 Deployment Model
We consider N devices distributed uniformly in a circular region with radius R with
a gateway at the center. The distribution of distance r between the gateway and the
devices is defined as gR(r)

gR(r) =
{

2r
R2 0 ≤ r ≤ R
0 r ≥ R

(B.2)

The aggregated arrival rate of all devices can be computed as λ = N · λd as long as
λd < µd where µd is equal to

1
Tfm/DC

and DC is the duty-cycle given as a fraction [10].

Our model is based on SX1301 gateways, which is in widespread use for outdoor
LoRaWAN deployments. SX1301 is capable of detecting preambles for all SFs for up to
8 channels at a time. This discrepancy between detection and demodulation is due to
the fact that the SX1301 architecture separates the preamble detection from the data
acquisition [11, 12].



42 Paper B.

2.2 Channel model
All devices transmit with power equal to P0 = 14 [dBm]. Let A(fc) be the deterministic
part of the path loss model with carrier frequency fc and noise power o2

n = −174 +
10 log(BW ) [dBm], where the noise figure is aassumed to be 0 [dB]. With the assumed
bandwidth, we get A(fc) = f2

c · 10−2.8. We define c as in [6]

c = P0A(fc)
o2
n

(B.3)

We denote the required receiver sensitivity for SF m by θRXm and let γ
(i)
m , γ(i)

co,m

and γ
(i)
int,m denote the received signal to noise ratio (SNR), the signal to noise plus

interference ratios (SINR) of only co-SF interference and only inter-SF interferences for
frame i, respectively. γ(i)

co,int,m denotes the received SINR in the presence of co-SF and
inter-SF interferences. γ(i)

m , γ(i)
co,m, γ(i)

int,m and γ(i)
co,int,m are defined as

γ(i)
m = c|hi|2r−αi , (B.4)

γ(i)
co,m = |hi|2r−αi∑

k∈kco,m
|hk|2r−αk + 1

c

, (B.5)

γ
(i)
int,m = |hi|2r−αi∑

k∈kint,m
|hk|2r−αk + 1

c

, (B.6)

γ
(i)
co,int,m = |hi|2r−αi∑

k∈kco,m
|hk|2r−αk +

∑
k∈kint,m

|hk|2r−αk + 1
c

, (B.7)

where α is the path loss exponent and h is the channel coefficient, which is assumed
to be Rayleigh distributed. kco,m and kint,m denote the number of interferer users with
the same SF and different SFs, respectively.

2.3 Transmission success
A transmission must capture the channel in order to be successfully received. The chan-
nel is captured if the signal passess the thresholds Γm, Γco and Γint,m for capturing the
channel with respect to noise, co-SF interference and inter-SF interference, respectively.



2. Scenario 43

The probabilities for these events happening are:

Pr
(
γ

(i)
m > Γm

)
, (B.8)

Pr
(
γ

(i)
co,int,m > max(Γco,Γint,m)

)
, (B.9)

Pr
(
γ

(i)
co,m > Γco

)
, (B.10)

Pr
(
γ

(i)
int,m > Γint,m

)
. (B.11)

In the case where there is no inter-SF or co-SF transmission condition 2) reduces to
3) or 4), respectively. Table B.1 lists Γm and Γint,m for m ∈ M . Notice that Γco is 6
[dB], which is always larger than Γint,m so condition 2) simplifies to Pr(γ(i)

co,int,m > Γco).
A transmission may be received by the gateway if all the conditions for capturing

the channel are fulfilled. However, we must consider the demodulation capability of
the receiver which affects the probability of successful reception. If all demodulation
paths are busy, then any additional detected frame is dropped. A demodulation path
will be assigned to a frame after its preamble has been detected, i.e. four consecutive
symbols of the preamble are detected. The header will then be demodulated and if it is
correct, so will the rest of the frame. Therefore, the timing of the transmissions must
be carefully accounted for in the model.

2.4 SF Allocation
SFs are allocated according to a scheme that is based on annuli, i.e. the radial distance
of the device from the BS. Each annuli begins at the radial distance lm−1 from the
center of the cell and goes to lm, such that l12 = R, as depicted in Fig. B.2. Let
δm denote the fraction of the device population assigned to m and let gm(r) be the
device density distribution for SF m. We define ∆X as a set of mapping parameters
∆X = {{δ7, δ8, ..., δ12}, {l7, l8, ..., l12}, {g7, g8, ..., g12}} for the SF allocation scheme X.
We present three different allocation schemes and compute ∆ in Sec. 3.3.

Table B.1: c©2019 IEEE: Channel capture threshold parameters [6]

SF θRXm [dBm] Γm [dB] Γint,m [dB]
7 -125 -6 -7.5
8 -128 -9 -9
9 -131 -12 -13.5
10 -134 -15 -15
11 -136 -17.5 -18
12 -137 -20 -22.5
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l7
l8

l9

l10

l11

l12

Fig. B.2: c©2019 IEEE: SF allocation scheme based on annuli in a single gateway LoRaWAN cell.

3 Uplink analysis
In this section, we first analyze the FSP by taking into account the capture effect and
the timing of collisions. Then, we investigate different SF allocation schemes.
A frame is received successfully if it captures the channel and is not dropped due to

all demodulation paths being in use. To evaluate the uplink performance, we derive the
probability of a LoRa frame from device i being received successfully, which is denoted
by FSP (i)

m .

FSP (i)
m = FCP (i)

m · (1− FDP (i)), (B.12)

where FCP (i)
m denotes the probability that the frame captures the channel. FDP (i) is

the probability a frame being dropped due to all demodulation paths being busy.
To evaluate FCP (i)

m and FDP (i), we need to describe the number of packets which col-
lide with the desired packet. Let kco,m and kint,m denote the number of co-SF and inter-
SF frame transmissions, respectively, which interfere with the transmission of frame i
using SFm. Notice that we implicitly assume that all interfering frames overlap in time
by evaluating the total number of interfering frames over a an entire frame. Realisti-
cally, several low SF frames could be placed non-overlapping times within the duration
of a high SF frame. Therefore, we derive a lower bound on the FCP (i)

m .
We define the traffic load for each source of co-SF and inter-SF interference loads over

a period τ by Lco,m(τ) and Lint,m(τ), respectively. When we evaluate the load over a
period τ , Lco,m(τ) = (Tfm + τ) · λ · δm such that we take into account interference from
frame transmissions, which had begun before the start of the observed period τ , but
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have not ended yet. By equivalent definition, Lint,m(τ) =
∑
p∈M,p6=m(Tfp + τ) · λ · δp is

the inter-SF load where p denotes all SFs different from m. Omitting τ in the notation,
the distributions of kco,m and kint,m are given as:

Pkco,m = (Lco,m)kco,m · exp(−Lco,m)
kco,m! . (B.13)

Pkint,m = (Lint,m)kint,m · exp(−Lint,m)
kint,m! . (B.14)

3.1 Derivation of FCP i
m

To derive the probability of capturing the channel, we evaluate the 4 conditions for
capture effect from Sec. 2.3

kco,m + kint,m = 0

The probability of a single transmission being transmitted in the channel, is the prob-
ability of the devices in our deployment not generating a packet within two packet
times.

Pnocolm = exp

−∑
p∈M

(Tfm + Tfp) · δp · λ

 . (B.15)

Then the probability of successfully transmitting the frame is equal to

P (i)
snocol

= Pnocolm · CP (i)
m , (B.16)

where the probability of capturing the channel is the coverage probability, CP (i)
m , which

can be determined as

CP (i)
m = Pr(γ(i)

m > Γm) = Pr(c|hi|2r−αi ≥ Γm)

=
∫ lm

lm−1

exp(−Γmrαi
c

)gm(ri)dri. (B.17)

Eq. (B.17) can be derived easily based on |hi|2 being exponentially distributed with
average unit power and the PDF of the population to ri being gm(ri).
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kint,m = 0

In the case that there is solely co-SF interference, we can express the probability of
capturing the channel as

CP (i)
co,m(kco,m) = Pr( |hi|2r−αi∑kco,m

k=1 |hk|2r
−α
k + 1

c

≥ Γco|kco,m)

∫ lm

lm−1

exp(−Γcor
α
i

c
)gm(ri)[I(ri)]kco,mdri,

(B.18)

where I(ri) is equal to

I(ri) =
∫ lm

lm−1

1
1 + Γco( rir )α gm(r)dr. (B.19)

kco,m = 0

In this case, there is no co-SF interference, CP (i)
int,m(kint,m) can be expressed as

CP
(i)
int,m(kint,m) = Pr( |hi|2r−αi∑kint,m

k=1 |hk|2r−αk + 1
c

≥ Γint,m|kint,m)

∫ lm

lm−1

exp(−Γint,mr
α
i

c
)gm(ri)[Ĩ(ri)]kint,mdri,

(B.20)

Ĩ(ri) is defined as

Ĩ(ri) =
∫
R\Rm

1
1 + Γint,m( rir )α gp(r)dr, (B.21)

kco,m · kint,m 6= 0

In case both co-SF and inter-SF interference are present. CP
(i)
int,m((kint,m)) can be

expressed as

CP
(i)
co,int,m(kco,m, kint,m) =

pr

(
|hi|2r−αi∑kco,m

k=1 |hk|2r
−α
k +

∑kint,m
j=1 |hj |2r−αj + 1

c

≥ max(Γco,Γint,m)|kint,m, kco,m

)

=
∫ lm

lm−1

exp(−Γcor
α
i

c
)gm(ri)[I(ri)]kco,m [I ′(ri)]kint,mdri,

(B.22)



3. Uplink analysis 47

where max(Γco,Γint,m) is always equal to Γco. I ′(ri) is defined as

I ′(ri) =
∫
R\Rm

1
1 + Γco( rir )α gp(r)dr. (B.23)

Then the probability of capturing the channel can be expressed as a weighed sum of
the derived capture probabilities, where the weights are the probabilities of the particular
capture scenario taking place.

Pcapm = Pnocolm · CP (i)
m

+
∞∑

kco,m=1
P(kint,m=0) · Pkco,m · CP (i)

co,m(kco,m)

+
∞∑

kint,m=1
P(kco,m=0) · Pkint,m · CP

(i)
int,m(kint,m)

+
∞∑

kint,m=1

∞∑
kco,m=1

Pkco,m · Pkint,m · CP
(i)
co,int,m(kco,m, kint,m)

(B.24)

Then, FCP (i)
m is given by

FCP (i)
m = Pcapm(τ = Tfm). (B.25)

3.2 Calculation of FDP (i) and Throughput
A SX1276 based LoRa receiver will ’lock onto’ a frame once it has received 4 preambles
as supported by [7, 8]. Preamble detection and frame demodulation are separated in the
SX1301 and while it is capable of demodulating 8 frames simultaneously as supported
by [11, 12], it is able to detect 48 preambles at once, i.e. a preamble for every SF and
channel combination.
Since the preamble symbols and the 4 concurrent symbols needed for detection only

constitute a small fraction of the total frame size, we approximate the capture proba-
bility as the coverage probability.

CP (i)
prem ≈ CP

(i)
m . (B.26)

We evaluate the FDP using the CDF of the Poisson distributed number of frames
received by the demodulator at any given instant, kM =

∑12
m=7 km where km denotes
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the number of frames being received using m such that
LM =

∑12
m=7 Lm where Lm = λ · δm · Tfm · CP

(i)
prem ·(1− FDP (i))

FDP (i) = 1− exp(−LM ) ·
7∑
k=0

(LM )k

k! (B.27)

Eq. (B.27) can be interpreted as the probability of there not being 7 or less concurrent
frame receptions at the beginning of the reception of a new frame. FSP

(i)
m is now

computable as Eq. (B.12) by using Eq. (B.25) and Eq. (B.27).
The throughput of the cell can then be calculated as

T∆Scheme =
∑
m∈M

FSP (i)
m · δm · λ ·B (B.28)

where the throughput is defined as successfully received bytes of LoRaWAN payload
per second.

3.3 SF Allocation
In this subsection, we compute δm, lm and gm(r) for m ∈ M for three SF allocation
schemes. The cell center and edge for every scheme are defined as l6 = 0 and l12 = R.
All parameters for ∆ which are presented in this subsection, can be found in Tab. B.2.

Uniform

In this scheme, the cell is not divided into annuli and instead SFs are assigned to devices
uniformly. We denote the SF allocation set for this scheme by ∆Uni. Thus, δm = 1

6 and
gm(r) = gR(r). In this case, lm = R and lm−1 = 0 for m ∈M is used in the model.

Distance

We denote the SF allocation set for this scheme by ∆Dist. We compute the borders of
each annulus based on the deterministic path loss and the receiver sensitivity such that

lm =
(
P0 ·A(fc)
θRXm

) 1
α . Then, we calculate δm as a function of the area of a given annulus

to the total cell area δm = Nm
N

= Am
A

. Nm is the number of devices that are assigned

SF m and Am denotes the area of the annuli m. This means that gm(r) = gR(r)
δm

.
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Table B.2: c©2019 IEEE: SF Allocation schemes

SF ∆Uni ∆Dist ∆Eqload
δm lm δm lm δm lm

7 1/6 - .2 .45 .47 .45
8 1/6 - .08 .54 .25 .54
9 1/6 - .11 .64 .14 .64
10 1/6 - .17 .76 .08 .76
11 1/6 - .19 .88 .04 .88
12 1/6 - .25 1 .02 1

Equivalent load

We let the lm be the same as for ∆Dist. In this allocation scheme, denoted ∆Eqload,
we calculate Tfm for each SF and assign SFs to keep the load equal for each SF such

that δm = 1/Tfm∑
s=M 1/Tfs

. We keep the device density uniform throughout each annulus,

but we assume a higher device density in the annuli closer to the gateway such that∑
m∈M (δm|lm) = 1.

4 Results and discussion
We have evaluated CP, FCP, FDP and FSP analytically using Eq. (B.17), Eq. (B.25),
Eq. (B.27) and Eq. (B.12), which are derived in Sec. 3. Furthermore, a Matlab-based
simulation of the unacknowledged LoRaWAN uplink was implemented and results were
simulated. In the simulation, the reception conditions 1-4 are evaluated at the symbol
level, whereas the analytical approximation is evaluated at the frame-level due to (B.13)
and (B.14). This results in the FCP approximation being lower-bound. SX1301 is
capable of parallel reception on 8 LoRa channels, 1 ≤ Nc ≤ 8. In this article we have
assumed that the frequency of all Nc channels is the same for the evaluation of FCP,
which is a fair assumption since all LoRaWAN channels in the EU 863-870MHz ISM
Band are fairly close in frequency. The channels are still considered orthogonal to each-
other when evaluating the FCP. The FDP takes into account traffic on all channels
as discerned LoRa frames compete for the same demodulation paths. The FCPs of
SF {7, 10, 12} are plotted in Fig. B.3 for ∆Dist. Calculating the load contribution on
the FDP for each SF m, Lm/LM , we get .59 for SF 12, .1 for SF 10 and .015 for
SF 7. Although calculated for a specific allocation scheme, we can make some general
assertions with regards to the impact of different SFs on the reception probability.
The higher SFs take up demodulations paths for much longer time, which makes any
transmission for SF m ∈ M more likely to be dropped. The FCP is also lower for the
higher SF frames, which have a greater chance of experiencing interference. A higher
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coverage probability is seen for SF 7, which can be explained by SF 7 being allocated
to devices in a punctured disc around the gateway.
In Fig. B.4 and Fig. B.5, we observe that the coverage probability for ∆Dist and

∆Eqload are .84 and .88, respectively. The slight increase in coverage probability from
∆Dist to ∆Eqload can be explained by the allocation of more devices in the SF 7 annulus.
It is also evident that the FDP has a non-negligible effect on the FSP especially when
more devices are allocated to higher SFs, which is the case for ∆Dist.
Results for the CP , FCP (i)

m and FSP
(i)
m are not plotted for the uniform allocation

scheme because the frame-based evaluation of interference results in a very low bound
for FCP (i)

m . This is due to the mixture of frames of both high and low SFs in the uniform
allocation scheme.
The throughput of the three allocation schemes are depicted Fig. B.6. While the

∆Dist provides better coverage than ∆Uni, it does not provide a much larger throughput
on a cell basis since many devices are assigned to higher SFs. The equivalent-load
allocation scheme assumes an uneven distribution of devices, which may not be the case
often in actual deployments, but we see that the throughput is much larger in this case.
This hints to cooperative assignment of SFs between gateways may possibly provide
remarkable throughput improvements in LoRaWAN.

5 Conclusion
We have evaluated the uplink performance of a single gateway LoRaWAN deployment
in terms of coverage, frame reception success probability and throughput. Collisions
are evaluated in the time domain based on a traffic model in contrast to other works
on capture effect in LoRaWAN, which evaluate capture effect for a fixed number of
concurrent transmissions. Unlike previous works, we have considered the demodulation
capabilities of the gateway and specifically evaluated SX1301, although the model is
applicable to any chipset. We showed that the demodulation capabilities of the receiver
have a large impact on the probability of receiving frames successfully.
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Fig. B.3: c©2019 IEEE: Contribution of SFs 7, 10 and 12 on frame capture probability and frame
drop probability for ∆Dist. The considered traffic model was a payload size of 50 Bytes and a mean
inter-frame generation time of ten minute for each device. The traffic model is assumed to be the same
for the 8 channels, which are considered.
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Fig. B.4: c©2019 IEEE: Probabilities associated with frame capture for ∆Dist.
λd = 1/600, B = 50 and Nc = 8 .
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Fig. B.5: c©2019 IEEE: Probabilities associated with frame capture for ∆Eqload.
λd = 1/600, B = 50 and Nc = 8 .
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Abstract
LoRaWAN has received much attention from industry and academia as a candidate for
low-cost LPWAN connectivity. Thus the performance of LoRaWAN has been evaluated
for various capture and collision models, but so far all works have evaluated frame
reception failure against the average number of collisions or average SNR over the entire
frame duration. In this letter, we consider individual symbol failures due to collisions and
develop an approximation of the distribution of number of maximal number of colliding
frames within a any symbol of the frame. We use this novel approach to analyze frame
reception in multi-gateway LoRaWAN under an important practical limitation posed by
the finite number of demodulation paths. The results show that in the case of a collision
model, increasing the number of gateways yields better performance in terms of outage
for individual devices, but with exponentially diminishing diversity gains. The exponent
by which the diversity gains diminishes is proportional to the number of end devices.

1 Introduction
An important enabler of Internet of Things (IoT) is the technology of Low Power Wide
Area Networks (LPWANs), and in particular Long Range Wide Area Network (Lo-
RaWAN). LoRaWAN is a MAC protocol based on the LoRa PHY-layer, which modu-
lates messages in chirps with different frequency-time gradients depending on Spreading
Factors (SFs). LoRaWAN provides connectivity for end devices (EDs) through gateways
(GWs) deployed in a star-topology as depicted in Fig. C.1. The RAN relays messages
to network servers that collect received messages from multiple GWs and combine them
to recreate the message history of each individual ED.
LoRaWAN’s performance has been evaluated for various capture and collision models,

see [1–4]. The authors in [1], provide a framework to evaluate co-SF interference by
considering the level of time-frequency overlap of the interfering packets. In [2] and [3]
the performance of LoRaWAN was evaluated by taking capture effect into account,
which has been expanded upon in [3, 5] where the non-orthogonality between SFs was
taken into account. In [4] a capture model for multiple simultaneous frames on a single
SF LoRaWAN is presented. The performance given a multiple gateway deployment has
been evaluated in [6–8] using stochastic geometry for various capture and interference
conditions. Packet reception in real-world, multiple GW deployment has been evaluated
experimentally in [9]. Interestingly, the maximal RSSI and SNR for a transmission was
not found to be among the geographically closest GW-ED pairs, although closer GWs
had, on average, better RSSI and received SNR. Also, multiple GWs were found to
receive each transmission, sometimes even very remote GWs.

Notably, SIC has been evaluated for LoRa transceivers in [10] using stochastic geom-
etry in combination with a capture model to realistically evaluate the potential gain of
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G1 G2 G3

E1 E2 E3

Fig. C.1: I resized the E and G, are they OK?An illustration of a graph network consisting of three
groups of EDs connected to three different GWs. In this example G1 is connected to all groups, G2 to
E1 ∪ E2 and G3 to E1. E1 is similarly connected to all GWs, E2 to G1 ∪G2 and E3 to G1 only.

employing SIC for LoRa. However, SIC is not currently employed in Semtechs modems
so in [11] the SX1276 LoRa transceiver chipset was found to drop both transmissions
when the first has been detected and a second transmission causes capture during de-
modulation of the first transmission. Based on this timing-consideration, we presented
a joint timing and capture effect model in [12] for the performance of LoRaWANs uplink
in a single cell. The model was based on the SX1301 chipset, that is widely used in
GWs.
The commonly used time-domain model in [12] and similar works finds the number of

interfering transmissions over an entire frame. In this letter we generalize this model by
catering for the asynchronism among the interfering frames and analyze the maximal
number of ongoing interfering transmissions during a particular transmitted symbol.
This new collision model can also be imported into models based on stochastic geometry
to account for the capture effect. In this work we will focus on the a simple collision
model for a graph network, ie. a set of nodes connected by stochastic links as in Fig. C.1,
in order to investigate the benefits in terms of diversity gain from deploying multiple
SX1301-based GWs, each operating under the constraint that the demodulation paths
are reserved for decoding ongoing frames.

2 System model
We consider a deployment with nE groups of Class A EDs and nG GWs. A group of
EDs Ei for i ∈ I = {1, 2, ..., nE} is connected to a GW Gj for j ∈ J = {1, 2, ..., nG}
with a probabilistic adjacency matrix P, whose elements pi,j are probabilities that a
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given frame is exchanged successfully between an ED in Ei and Gj .
This scenario is sketched in Fig. C.1 for nE = nG = 3 and

P =

.5 .5 .5
.5 .5 0
.5 0 0

 . (C.1)

The EDs in Ei transmit at an aggregated rate λEi yielding Markovian arrivals with
the rate λGj =

∑
i∈I pi,jλGi at Gi. Each ED is assigned a fixed SF m to be used for

transmission, where M = {7, 8, ..., 12} and m ∈ M as allowed in LoRaWAN [13].
Furthermore, the ED is assigned a specific channel ch where ch ∈ C = {0, 1, ..., c− 1}
for a total of c channels, each assumed to have bandwidth BW = 125 [kHz]. The symbol
period for a given SF m is TmSym = 2m

BW
. The fraction of UEs that are allocated to SF m

is denoted αm. We consider a uniform distribution for the allocation of SFs, αm = 1/6,
but the model is applicable to any SF allocation.
Each transmission is a LoRa frame with a payload of B bytes. A LoRa frame consists

of a preamble that is ηpre at 8 symbols long in the EU868 ISM band, a LoRa header,
payload and, optionally, a CRC for the payload. The number of symbols in the LoRa
header and payload of a LoRa frame for SF m, ηmpay is [14]:

ηpaym = 8 + max
(⌈

(8B − 4m+ 44)
(4m− 2 · IDE)

⌉
· (CR+ 4), 0

)
, (C.2)

where CR = i for i ∈ {1, 2, 3, 4} and corresponds to a coding rate of 4
4+i . The

indicator IDE is one if low data rate optimization is used and zero otherwise. Low data
rate optimization is mandatory for SF {11, 12} because it increases robustness towards
clock drift. The total number of symbols in a LoRa frame for SFm is ηmfrm = ηmpre + ηmpay
and the total transmission time is Tmfrm = TmSym · ηmfrm. We assume that all EDs transmit
at such a rate that duty cycling does not impact transmission times and furthermore
that the aggregate transmission times are a Markovian process.
In order for a symbol to be received correctly, the signal-to-interference-ratio (SIR)

for co-SF and inter-SF must be larger than the thresholds as given by [5], corresponding
to the maximal number of allowable concurrent transmissions, θmref,mint , as listed in
Tab. C.1. For example, θ12,7 = θ12,8 = θ12,9 = 316 so an SF 12 modulated frame is lost
if there are more than 316 concurrent interfering SF 7, SF 8, or SF 9 transmissions.
In order to successfully receive a LoRa frame, the GW must detect the preamble and

demodulate both the header and payload [11]. A LoRa receiver chain is depicted in Fig.
C.2 for the SX1301 chipset, which is designed and widely used in GWs. Sx1301 is capable
of detecting 48 preambles at once, corresponding to each possible SF in 8 channels in
parallel. The receiver only detects a transmission if ηcon = 4 consecutive symbols in
the preamble are received correctly. If a preamble is detected, a demodulation path
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SFref\SFint 7 8 9 10 11 12
7 0 6 7 7 7 7
8 12 0 12 15 19 19
9 31 19 0 19 25 31
10 79 63 50 0 50 63
11 158 158 125 99 0 99
12 316 316 316 251 199 0

Table C.1: The maximal number of concurrent transmissions, θmref,mint , of mint for successful trans-
mission of mref given the SIRs for Sx1271 in [5] and the channel gain of 1 considered in our system
model.

Channel 1 to c

PHY/MAC Payload

Extraction
Preamble Detector

Demodulation Path d

Demodulation Path 1

Fig. C.2: Reception chain for a LoRa transceiver. Sx1301 is capable of detecting 48 preambles at
once, corresponding to each possible SF in 8 channels, and d = c = 8 [15].

will be assigned to the frame. SX1301 has 8 demodulation paths that allow parallel
demodulation of frames across any combination of SFs and channels. Any detected
excess concurrent frame is dropped.

3 Analysis
We divide a reference frame into ηref reference symbol periods. Let the number of
transmissions initiated in period j be a random variable denoted Kj . We enumerate
j starting at j = 1 exactly one interfering frame period away from the beginning of a
reference frame by defining an extended period where initiated transmissions will still
be ongoing within the first symbol of the reference frame. The number of reference

symbols in this extended period is ηint =
⌈
Tmint
frm
Tmref
Sym

⌉
. This enumeration of symbol periods

is depicted in Fig. C.3.
The number of ongoing transmissions within symbol i of the reference frame is then

a random variable denoted by Si, is the sum of the transmissions initiated within the
period of an interfering frame.

Si =
i+ηint∑
j=i

Kj . (C.3)
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ref-Tfrm
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...
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Fig. C.3: Representation of a reference frame and an extended interference period as a set of symbol
periods.

The total number of ongoing transmissions within the period of the reference frame is
denoted by F such that F =

∑ηint+ηref
j=1 Kj .

Then we have that

Pr(Ki = ki) = Pois(ki, λk) ,
Pr(S1 = s1) = Pois(s1, λk(ηint + 1)) ,

Pr(F = f) = Pois(f, λk(ηint + ηref)) ,

where λK is the arrival rate within each reference symbol period λK = TmSymλGiαm/c
and τS is the period that initiating interfering transmissions will interfere with the
reference symbol τS = Tmref

Sym (ηint + 1). We also point out that for Poisson distributions
we have that

Pr(S1−K1=s1−k1) = Pois(s1−k1, λk(ηint)) ,

First we describe the probability distribution of the maximum number of ongoing
transmissions within one symbol period. It is clear that, Si+1 = Si−Ki +Ki+ηint so to
find the CMF for each subsequent time-slot we must consider probability distributions
that are conditioned on the number of ongoing transmissions in the previous time-slot.
Since Si and Ki are Poisson distributed we can find Ki conditioned on Si easily as

Pr(Ki=ki|Si=si) = Pr(Ki=ki) Pr(Si−Ki=si−ki)
Pr(Si=si)

(C.4)

Then similarly, since si+1 = si−ki+kj we have that

Pr(Si+1 = si+1|Si = si)

=
∞∑
si=0

(
Pr(Ki=ki) Pr(Si−Ki=Si−ki) Pr(Kj=kj)

Pr(Si=si)

)
(C.5)
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Fig. C.4: Approximation accuracy for the maximum number of concurrent transmissions in a single
symbol for λK = 0.1 and λK = 0.01, respectively.

where j = i+ηint. We evaluate (C.5) numerically and found heuristically that a good ap-
proximation of the maximum number of ongoing transmissions during any one reference
symbol, when λK << 1 is

Pr(Smax = x) ≈ Pr(S1 = x) Pr(Si+1 ≤ si+1|Si = si)ηref . (C.6)

Another heuristic that gives a good approximation when λK ≈ 1 is

Pr(Smax = x) ≈

Pr(Si ≤ x)
ηref
ηint+1 Pr(S1 = x) Pr(S2 ≤ x|S1)ηref−

ηref
ηint+1 .

In our scenario λK << 1, so we use (C.6). The accuracy of this approximation is
depicted in Fig. C.4 along with a comparison to Pr(F = f), which is the distribution
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naively used to evaluate the number of collisions within the frame. It is clear that
Pr(F = f) is a poor approximation of Pr(Smax = x), whereas the presented model is a
close approximate.
Now, we can evaluate the probability that the payload is demodulated correctly as

Pr(Smax ≤ θmref,mint), where Smax is evaluated for the arrival rate of the interfering SF
mint within a symbol period of the reference SF mref. Then we can find the probability
of not failing due to collisions at GW Gj

Pr(GjPayOK) =
∑
i∈M

αmi
∏
j∈M

PayOKmi,mj . (C.7)

The preamble is relatively small, so we can in good faith assume that the probability
of receiving the preamble correctly is equivalent to the probability of receiving a single
symbol correctly as before

Pr(GjPreOK) =
∑
i∈M

αmi
∏
j∈M

Pr(S1 ≤ θmref,mint) . (C.8)

We make the assumption that frames are received at the GW as a Markovian process,
because a large number of independent EDs are transmitting in an uncoordinated fash-
ion. Then the well-known formula for Erlang-B can be applied in order to compute the
blocking rate

Pr(GjDemOK) = 1−

λdDP
d!∑d

x=1
λxDP
x!

, (C.9)

where the arrivals at the demodulation paths is the arrivals for which preambles are
detected, so the arrival rate is λDP =

∑
m∈M (λdTmfrmndevsαm Pr(PreOKmi)) and d = 8

for the SX1301 chipset.
In order for a frame to be received successfully the preamble must be detected, a

demodulation path must be available, and the payload must be received correctly. We
assume, Pr(PreOKi|PayOKi = 1) ≈ 1 for a transmission i, since the preamble is
small, so the probability of outage for a transmission in Gj is

Pr(GjOutage) = 1− Pr(DemOK) Pr(PayOK) . (C.10)

If we make the assumption that frame receptions at all GWs are independent, then
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the factors of outage from the perspective of a UE in Ei is

Pr(EiPreOK) = 1−
∏
j∈J

(1−pi,j · (1−Pr(GjPreOK))) , (C.11)

Pr(EiPayOK) = 1−
∏
j∈J

(1−pi,j · (1−Pr(GjPayOK))) , (C.12)

Pr(EiDemOK) = 1−
∏
j∈J

(1−pi,j · (1−Pr(GjDemOK))) , (C.13)

Pr(EiOutage) =
∏
j∈J

(1−pi,j · Pr(GjOutage)) . (C.14)

4 Results
In addition to the analytical results we have simulated the scenario in Fig. C.1 using
the parameters given in Sec. 2. Note that the number of EDs in each ED group is set
to 500, so a total of 1500 EDs are connected to G1, 1000 EDs are connected to to G2
and 500 EDs are connected with G3.
The outage factors as seen from the perspective of each GW is plotted in Fig. C.5a.

Outage increases with the number of EDs. Notice that although failed payload de-
modulation is a major factor, failures at all stages in the receiver chain contribute in
a non-negligible way to the overall outage. The analytical results are coherent with
simulation results with the exception of the demodulation path blocking rate, which
is lower in simulations than it should be for an Erlang-B queue. It is clear that the
Erlang B formula is correct, so necessarily the assumption of Markovian arrivals at the
demodulation paths of the receiver chain must be incorrect. Upon further investigation
we found that collisions in the preamble detection shifts the inter-arrival distribution
towards longer inter-arrival times as shown for the distribution of simulated values in
Fig. C.6a for G1. So the Markovian assumption of time-invariant arrivals does not hold,
because arrivals at the demodulation paths are likely to be further apart in time. Thus
the Erlang B formula appears to be an upper bound.
In Fig. C.5a we also see that using F instead of Smax yields a food approximation for

GjPayOK when λK << 1. This is an effect of the adopted collision model where collision
failures almost exclusively happens for same SF transmissions when Smax ≥ 1. which
is Pr(Smax = 0) = Pr(F = 0). The difference in the distributions of F and Smax would
however not be negligible for capture models.
The outage factors as perceived by a ED in group E1, E2 and E3 is plotted in Fig.

C.7a. Here, the analytical result for the demodulation path blockage is too high due
to the discrepancy in the analytical blocking rate for each GW, but also due to the
assumed independence in blocking between the gateways.
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(a) Quality of service as seen from a GW’s perspective.
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(a) Inter-arrival distribution shift in B1 with increasing traffic. At higher
traffic intensity, it becomes non-Markovian as short-inter arrival times are
likely to experience collisions.

EDs see a diversity gain in performance from being connected to more GWs, although
with a diminishing return. We can also observe this in Fig. C.7b that depicts the mean
outage as seen by a ED in a group of 500 EDs for an increasing amount of GWs.

5 Conclusion
In this work we modelled the probability distribution of the maximal number of ongoing
transmissions in any symbol, instead of the number of ongoing transmissions over an
entire frame as is the conventional approach. We applied the model on a graph-network
with a simple collision model for LoRaWAN.
Our analytical results fit well with simulation results and show as one would expect

that given a fixed number of EDs we can add a sufficient number of GWs in order
to provide any level of reception probability for an ED. However, the gain of each
additional GW is diminishing. As the number of EDs is increased the diminishing effect
is increased as a result of both an increase in collisions experienced by the GWs and
increased blocking of the demodulation paths in the GWs.
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Abstract
The growth of Machine-Type Communication (MTC) increases the relevance of queuing
scenarios with deterministic service times. In this letter, we present a model for queues
without waiting lines and with degenerate service time distributions and show how the
framework is extendable to model general service time distributions. Simple bounds and
a close approximation of the blocking probability are derived and the results are shown
to hold for simulated queues with Markovian and degenerate arrival processes.

1 Introduction
A number of emerging use cases in Machine Type Communication (MTC) [1] require
queueing models that are significantly different from traditional models used in teletraf-
fic theory. A distinctive feature of many MTC applications is that machines are likely
to perform different tasks within an almost-deterministic time. This brings relevance
to queues with degenerate service times and non-Markovian, in particular periodical,
arrival times. While networks in general have become packet-switched, relying heavily
on buffering, there are still switching operations within communications that require
immediate service or service within a very short time. Let us, for example, take the case
of LoRa, where messages are modulated with one of seven different spreading factors.
In LoRaWAN six spreading factors are used to create six quasi-orthogonal sub-channels
in each channel within the network. LoRa gateway transceiver chipsets are capable of
detecting preambles for every spreading factor simultaneously on multiple channels, but
only a finite amount of demodulation paths are available [2, 3]. So messages in excess
of the available demodulation paths are lost. Other general examples in telecommu-
nications include: service of critical real-time interrupts [4], scheduling of immediate
resources in FDMA networks and packet demodulation in FDMA networks.
We use Kendall’s notation [5], noting that ∼/∼/n/n refers to queues of finite capacity

equivalent to the number of servers. The steady state solution for the M/D/n/n queue
is well known as derived by A. K. Erlang. This solution was later shown to be valid for
M/G/n/n queues [6].
In this paper, a framework for modelling G/D/n/n queues is presented and a close

approximation of and bounds on the blocking probability are derived. It is also shown
how the framework is applicable to general service times distributions, that is, G/G/n/n
queues. The approximation is shown to comply with simulation for Markovian and
Degenerate arrival distributions. In the Markovian case, this entails that it also fits well
with well-known exact solutions for M/G/n/n queues.

The presented model and investigation of the G/D/n/n queue is applicable more
generally, beyond the motivating scenarios with MTC.
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2 System model
We will develop a general analytical model for queues with deterministic service times,
but we will treat the concrete problem of reservations of demodulation paths in Lo-
RaWAN gateways as mentioned in the introduction. SX1301 is a chipset meant for
usage in LoRaWAN gateways. This chipset is capable of demodulating up to 8 frames
in parallel [7].

2.1 Arrival process
Let the number of messages transmitted within a fixed time T be denoted k. The
probability of at-least k0 transmissions within a time step of τ is

B0(λ, τ) = Pr(k ≥ 0|
∑
x∈{}

tx ≤ τ, λ) := 1 , (D.1)

Bk(λ, τ) = Pr(k ≥ k0|
k0∑
x=1

tx ≤ τ, λ) =
∫∫

D

(f1,2,...,p) dD ,

D ∈{t1, ..., tx|
k0∑
x=1

tx ≤ τ} .

Then we can find the probability of transmitting exactly k messages in a period τ by

Ak(λ, τ) = Pr(k = p|
p∑
x=1

tx ≤ τ, λ) , (D.2)

= Pr(k ≥ p|
p∑
x=1

tx ≤ τ, λ)− Pr(k ≥ p+ 1|
p+1∑
x=1

tx ≤ τ, λ) ,

= Bk(λ, τ)−Bk+1(λ, τ) , for 0 ≤ k ≤ ∞ .

The set of received messages is a subset of the set of transmitted messages due to
outage caused by for example poor channel conditions, noise or interference. Let po be
the outage probability for a transmission not to be received. Then the probability for
the number of received messages can be found by transforming the probability of the
number of transmissions as

A�k(λ, τ) =
∞∑
x=k

(Ak(λ, τ)(1− po)kpx−ko

(
k

x

)
) .
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0 10 20 30 40 50

S2

S1

Arrivals

Fig. D.1: Example of arrivals, service times and blocking in a G/D/2/2 queue. Messages occupy
servers for a fixed service time, τ . Messages who arrive to find all servers occupied are blocked.

2.2 Queue behaviour
We denote the number of transmissions being demodulated at ti−1 by Ki−1 and the
number transmissions taking up demodulation paths after ti−1 + τ by Ki. Denote new
arrivals in the queue by KA

i , demodulated transmissions by KD
i and the number of

blocked transmissions by KB
i . transmissions are blocked when they arrive to find all

demodulation paths unavailable as depicted in Fig D.1. Then we have

Ki = Ki−1 +KA
i −KD

i −KB
i , (D.3)

0 ≤ Ki ≤ n .

KB
i = max(Ki−1 + Zi − n, 0) , (D.4)

where Zi = KA
i −KD

i ,

so fZi = fKA
i
∗ f̂KD

i
,

where f̂KD
i

[k] = fKD
i

[−k] ,

and fKA
i

[k] = A�k .

All messages that arrived within the prior period and weren’t blocked are served, so

KD
i = min(KA

i−1, n) (D.5)

3 Analysis

3.1 Bounds on the blocking probability
The blocking probability is defined as

Pb = E[KB
i ]

E[Ki]
= E[KB

i ]
E[KB

i ] + n
, (D.6)
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where the substitution E[Ki] = E[KB
i ] +n in the denominator in (D.6) is valid, because

the blocking probability is zero until the amount of messages in queue is larger than the
total number of demodulation paths n. This also means that

fKD
i

[k] =
{

1 , for k = n ,

0 , otherwise .
(D.7)

Assume that there’s no spill-over between messages in the observed periods i− 1 and
i, then Ki−1 = 0 and we obtain a lower bound on the blocking probability.

Pblower =

∞∑
k=1

fKB
i
|Ki=n[k] · k

∞∑
k=1

fKB
i
|Ki=n[k] · k + n

,

=

∞∑
k=n+1

(Ak(λ, τ) · (k − n))

∞∑
k=n+1

(Ak(λ, τ) · (k − n)) + n
. (D.8)

In the same manner, we can assume that there’s complete spill-over between messages
in period i − 1 and i, then Ki−1 = n and we obtain an upper bound on the blocking
probability.

Pbupper =

∞∑
k=1

fKB
i
|Ki=0[k] · k

∞∑
k=1

fKB
i
|Ki=0[k] · k + n

,

=

∞∑
k=n

(Ak(λ, τ) · k)
∞∑
k=n

(Ak(λ, τ) · k) + n
. (D.9)

3.2 Blocking probability
To describe the exact blocking probability we need to describe the spill-over between
observation period i− 1 and i, Ki−1. We let Xi = Ki−1 + Zi so that

fXi [xi] =
n∑

ki−1=0
fKi−1,Zi [ki−1, xi − ki−1] , (D.10)

fKi−1,Zi [ki−1, zi] = (D.11)
fZi [Zi =z|Ki−1 = ki−1] · fKi−1 [Ki−1 = ki−1] .
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Then we can describe the probability of blocking k transmissions as

fKB
i

[k] =


n∑

x=−∞
fXi [x] , for k = 0 ,

fXi [k + n] , for k ≥ 1 ,
0 , otherwise .

(D.12)

Then we can use a prior for f ′Ki−1
to approximate f ′

KD
i

, f ′Zi and fXi ≈
fXi |f ′Ki−1∑
(fXi |f ′Ki−1

)
and then approximate the blocking probability, Pb, using (D.6).

In case a prior is not evident for an arrival process G, then we may use

fKi−1 [k] =



0∑
x=−∞

fKA
i

[Xi = x] , for k = 0 ,

fXi [KA
i = k] , for 0 < k < n ,

∞∑
x=n

fKA
i

[Xi = x] , for k = n ,

0 , otherwise .

(D.13)

3.3 Server state probability and server utilization
The server utilization can be found by considering the timing within the queue. Consider
the case of n = 1, then the time spent without messages in queue can be described as
the time between completion of service of one message till the arrival of the next. Hence:

T0 =
∞∑
k=0

Ck and T1 = τ , (D.14)

where Ck is the mean time spent without a message in queue if the k’th message is the
first one received after the demodulation of another message finishes,

Ck =
∫ ∞
t=τ

Pr(
k+1∑
x=1

tx = t|
k∑
x=1

tx ≤ τ) · (t− τ) dt , (D.15)

for k ≥ 0 .

The complexity of describing the timing in this way increases greatly as n increases.
The state ratio for state y is given by

qy = Ty∑
Ty

. (D.16)
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Based on the state ratios we can compute the average number of messages being served
as (D.17) and the server utilization as (D.18).

L =
n∑
y=0

qy · y . (D.17)

η = L

n
. (D.18)

ζ = η(1− Pb) , (D.19)

where ζ is the non-blocking server utilization, which is the probability that the demod-
ulation path is being used and message demodulation is not being blocked.

3.4 Jobs with non-homogeneous service times
We divide messages into classes C1 through Cm corresponding to the different spreading
factors in LoRaWAN. The service time of class x is given as τx ∈ τ = {τ1, τ2, ..., τm}
for corresponding mean arrival rates of λx ∈ λ = {λ1, λ2, ..., λm}.
Denoting the number of messages from class y by ky, the probability of ky messages

arriving within the service period, τy, is Ak(λy, τy) and the arrival distribution fKA
i
, we

have

fKA
i

(λ, τ ) =
m∑
y=1

fKA
i

(λy, τy) λy∑m
x=1 λx

. (D.20)

Any service time distribution can be represented by binning with infinitesimally small
bins, so that we obtain two infinite sets for λ and τ , where λx = px · λ and
px = fServiceDist(τx). Practically, the service time distribution can be accurately
approximated by binning with an appropriately small finite bin size. In this way we
may be able to represent any G/G/n/n queue in the described framework by binning
the service time distribution.

4 Degenerate and Markovian arrival processes
In this section the transmission count probability, Ak, is derived for degenerate and
Markovian arrival processes by solving (D.2). The mean arrival-rate, λ′, and priors,
f ′Ki−1

, are also discussed for each arrival process.

4.1 Degenerate inter-arrival distribution
Let transmissions occur with inter-arrival times tx that are distributed according to a
degenerate distribution; ft(t) = px for t = tx where tx ∈ {t1, t2, ..., ty} for a corre-
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sponding set px ∈ {p1, p2, ..., py} where
∑y
x=1 px = 1. Solving (D.1) and (D.2) for the

D/D/n/n queue we obtain

B0(λ, τ) =
∑
D

px , for D = {x|tx ≥ τ} ,

B1(λ, τ) =
∑
D

px , for D = {x|tx ≤ τ} ,

B2(λ, τ) =
∑
D

2∏
i=1

pxi , for D = {x1, x2|
2∑
y=1

txy ≤ τ} ,

Bk(λ, τ) =
∑
D

k∏
i=1

pxi , for D = {x1, x2, ..., xk|
k∑
y=1

txy ≤ τ} ,

Ak(λ, τ) = Bk(λ, τ)−Bk+1(λ, τ) . (D.21)

The prior of (D.13) gives good approximations for n > 1. When n=1, it is clear that
Ki−1 = 0 holds, so our prior should be fKi−1 [k] = 1 for k = 0 where fKi−1 [k] =

0. for k 6= 0 The mean arrival-rate is λ′ = 1∑y
x=1

px
tx

. Ck can be found to be

Ck(λ, τ) =
∑
D

(
k+1∏
i=1

pxi · (
k+1∑
i=1

txi − τ)) , (D.22)

for D = {x1, x2, ..., xk+1|
k∑
y=1

txy ≤ τ,
k+1∑
y=1

txy > τ} ,

4.2 Exponential inter-arrival distribution
Let transmissions occur with inter-arrival times tx that are distributed according to an
exponential distribution; ft(t) = λ exp(−λt) for t ≥ 0. Solving (D.2) for this arrival
process we obtain

A0(λ, τ) = exp(−λτ) ,
A1(λ, τ) = λτ · exp(−λτ) ,

A2(λ, τ) = (λτ)2

2 · exp(−λτ) ,

A3(λ, τ) = (λτ)3

6 · exp(−λτ) ,

Ak(λ, τ) = (λτ)k

k! · exp(−λτ) . (D.23)
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ID n t1 t2 t3 p1 p2 p3 po
1 1 0.3 0.6 1.5 1/3 1/3 1/3 0
2 2 0.3 0.6 1.5 1/3 1/3 1/3 0
3 1 0.3 0.6 1.5 1/3 1/3 1/3 0.5
4 2 0.3 0.6 1.5 1/3 1/3 1/3 0.5

Table D.1: Various degenerate arrival process configurations.

The mean arrival-rate is λ. We shall use the prior in (D.13) when approximating Pb.
Ck can be found to be

Ck(λ, τ) = exp (−λτ)λk−1τk

k! . (D.24)

5 Results
In this section we present results for the accuracy of this framework for modelling
M/D/n/n and D/D/n/n queues for a fixed service time and a set of heterogeneous
service times. Then we discuss the impact of the results on the example case of blockage
in the demodulation paths of a LoRaWAN gateway.
The approximated blocking probability and bounds for the M/D/n/n queue can be

found in Fig. D.2a. The approximation is close to the exact value, i.e. Erlang-B result.
The server efficiency and non-blocking server efficiency are plotted in Fig. D.3a. Here
the result is exact owing to the timing analysis in Sec. 3.3 for n = 1.
The arrival count as a function of the service time in a D/D/n/n queue changes as

a nontrivial step-wise function of the service time τ and inter-arrival rate as depicted
in Fig. D.3b. We observe that the index x of the smallest neglible Ax grows with the
offered traffic load in Erlang. This also applies to the M/D/n/n queue, but in that case
the count probability is a smooth function. The blocking probability exhibits the same
behaviour as depicted in Fig. D.4a. The approximated blocking probability, here is also
very close to simulated values. The Server efficiency and non-blocking server efficiency
can be found in Fig. D.5a. Notice that the mean arrival rate in the analysis of the
D/D/n/n queue is fixed at λ′ = 1/(0.3 · 1/3 + 0.6 · 1/3 + 1.5 · 1/3 ) = 1.25.
In Fig. D.5b the blocking probabilities for the M/D/n/n queue and D/D/n/n queue

are plotted for a service process that is defined by px ∈ p = {1
2 ,

1
2} and τx ∈ τ =

{2
3 ,

4
3}. The results are a close approximation, indicating the (D.20) holds.

The results of our investigation are straightforward to interpret as trade-offs in our mo-
tivating example of the blocking probability of demodulation paths in a LoRa receiver;
Clearly a larger number of demodulation paths n yields a lower blocking probability,
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(a) The blocking probabilities for the M/D/n/n queue for expected offered load ρ and intermittent
arrival processes for po = 0 and po = 0.5. Notice that bounds hold and the approximation is close
to the exact solution.

however the cost of increasing n should yield an equivalent gain in performance. In gen-
eral the distribution of the arrival-process is of course of dire importance. We observe
a higher blocking probability Pb = .25 in the M/D/2/2 queue than Pb = .068 in the
D/D/2/2 queue (configured as ID 2 in D.1) for τ = 1 and λ′ = .8. It is also evident that
given Degenerate arrival times tuning the service time relatively little can yield large
gains.
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(a) State probabilities, q0 and q1, server efficiency, η = q1, and non-blocking server efficiency, ζ,
for the M/D/1/1 queue.
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(b) The probabilities Ax of x arrivals within the service time τ in D/D/n/n queues for the config-
urations of the degenerate arrival process outlined in Tab. D.1. Ax does not depend on the number
of servers n so the results are equivalent for configurations ID 1 & 3 and ID 2 & 4, respectively.
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(a) The blocking probability in D/D/n/n queues as a step-wise function of the service time τ for
the four configurations of the degenerate arrival process outlined in Tab. D.1.
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(a) State probabilities, q0 and q1, server efficiency, η = q1, and non-blocking server efficiency,
ζ, for the D/D/1/1 queue for ID 1 in Tab. D.1.
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(b) Pb for Markovian (above) and degenerate (below) arrival processes and a service process

that is defined by px ∈ p = {
1
2
,

1
2
} and τx ∈ τ = {

2
3
,

4
3
}. The degenerate arrival processes

in this example is ID 1&ID 2 where τ is scaled to achieve the mean service rate.
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6 Conclusion
In this paper, a framework for modelling G/D/n/n queues was presented and we looked
at the case of blocking demodulation paths in LoRaWAN receivers. The proposed
framework assesses the arrival count in service periods to model blocking probabilities
in G/D/n/n quite accurately. Bounds valid for the blocking probability in G/D/n/n
queues were also presented. In essence, we showed how blocking probability depends
on the arrival process, which is therefore essential for describing the exact blocking
probability for e.g. demodulation in LoRaWAN receivers. In general, increasing n,
decreases the blocking probability as one would expect intuitively. Exponential inter-
arrival times are often assumed for the arrival process of communication networks, but
for example in the case of the LoRaWAN receiver, this transmission process will be
filtered by capture effect, yielding a non-Markovian distribution at the demodulation
paths.
The framework depends on finding counting functions, which may be relatively easy

to find by induction given the tools available today for integrating symbolic expressions.
Moreover, the framework is directly applicable when the distribution of the inter-arrival
times is given numerically as ’binned’ or Degenerate approximation of the arrival process,
but it is not available on an explicit analytical form. The methodology was shown to
yield close approximates of the well known results for the M/G/n/n queue along with
close approximates for the D/D/n/n queue. The framework was extended to G/G/n/n-
queues, but verification was limited to a small set of service times due to simulation
complexity.
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Abstract
One of the central problems in massive Internet of Things (IoT) deployments is the
monitoring of the status of a massive number of links. The problem is aggravated by the
irregularity of the traffic transmitted over the link, as the traffic intermittency can be
disguised as a link failure and vice versa. In this work we present a traffic model for IoT
devices running quasi-periodic applications and we present unsupervised, parametric ma-
chine learning methods for online monitoring of the network performance of individual
devices in IoT deployments with quasi-periodic reporting, such as smart-metering, en-
vironmental monitoring and agricultural monitoring. Two clustering methods are based
on the Lomb-Scargle periodogram, an approach developed by astronomers for estimating
the spectral density of unevenly sampled time series. We present probabilistic perfor-
mance results for each of the proposed methods based on simulated data and compare
the performance to a naïve network monitoring approach. The results show that the
proposed methods are more reliable at detecting both hard and soft faults than the naïve-
approach, especially when the network outage is high. Furthermore, we test the methods
on real-world data from a smart metering deployment. The methods, in particular the
clustering method, are shown to be applicable and useful in a real-world scenario.

1 Introduction
Iot deployments can provide a large variety of services capable of cyber-physical interac-
tions through sensors, actuators and data analysis by utilizing fog or cloud computing.
Such deployments can be cyber-physical systems, consisting of devices that exchange
messages with servers through networks, as depicted in Fig. E.1, which also shows the
common IoT architecture [1]. In such deployments the traffic generated by sensors is
intermittently filtered by the network before being received by the IoT server. This
intermittency is caused random network effects, such as medium access delays, outage
in the network and queuing of transmissions.
During the past decade, techniques and standards have been developed to provide

adequate networking features and improve the Quality of Service (QoS) for the vast
number of IoT use cases. An overview of the architecture of IoT services and enabling
technologies and protocols is given in [1]. Specifically, in the context of wireless commu-
nications, the term IoT usually refers tomassive machine-type communication (mMTC),
one of the three connectivity types in 5G [2]. Here, a number of pre-5G IoT systems
for massive connectivity have been developed and are currently being deployed. These
include the low power wide area networks (LPWANs): SigFox, LoRaWAN, NB-IoT and
LTE-M [3–5].
A central problem of wireless IoT connectivity is monitoring and status detection

for a massive number of connected devices, which provides insights into the status of
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Cloud Service
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Networking layer
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DevicesA BC

AP AP
1 2

Fig. E.1: c©2020 IEEE: IoT deployment topology and architecture. A gateway could be, for example,
a cellular towers, a LPWAN access point, or a satellite. The network topology between devices and
gateways may be a mesh or a star-topology. The IoT deployment is connected to a virtual IoT server
in the cloud, which manages the network and makes application features available to end users. The
different tiers of the network are directly sensing different information about the network. Information
regarding link quality of connected devices is available to the APs, but only to the management tier if
this information is relayed.

the links and devices and can potentially lead to corrective actions [1, 6, 7]. Network
monitoring for wireless sensor networks (WSN) has been researched for decades. A
comprehensive survey of network monitoring in wireless sensor networks (WSNs) can
be found in [6] and [7]. Arguments for the importance of network monitoring is given by
these surveys; network monitoring can enhance data reliability, bandwidth utilization,
and the lifetime of the WSN due to the opportunity to identify faulty devices and hence
better utilize constrained resources. Multiple monitoring methods can be combined
through frameworks, such as fuzzy logic [8] to optimize decision making for fault toler-
ance. In general, the fault detection methods for WSNs assume a PAN mesh topology
such as 6LoWPAN or ZigBee. For example, PAD, a passive monitoring method relying
on inference based on routing changes is presented in [9]. Nevertheless, LPWANs are
one-hop star-topology networks and additionally, PAD introduces a few bytes of over-
head to transmissions, which is a major drawback for energy-constrained devices and
networks supporting massive numbers of devices. Notably, the fault detection methods
of [10] and [11] rely on statistical inference based on the timing of incoming traffic to
detect faults in the network. These methods may readily be modified for and applied to
LPWANs since they do not rely on topology changes in a mesh network, but they have
the drawback of requiring fault-less training data in order to recognise healthy behavior
and the detected errors are only quantifiable at a low resolution, ie. "no errors, some
errors or many errors".
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Fig. E.2: c©2020 IEEE: Devices generate traffic depending on their applications. Here the traffic
patterns are depicted for three types of devices; Dev. a) runs two applications that generate quasi-
periodic traffic. The received traffic streams are shown for both labeled and unlabeled traffic. Dev. b)
runs three quasi-periodic applications, but does not label the traffic.

In this paper, we make no assumption about the topology of the network and instead
we assume a quasi-periodic1 traffic model as that depicted in Fig. E.2 for device A and B,
which is common for IoT applications. This approach allows us to evaluate the state and
link performance of individual devices passively, which is important for identifying poor
performers and malfunctioning devices in massive IoT deployments. In our model de-
vices can run ’thin’ clients (a single application) or ’thick’ clients (multiple applications).
We have observed the latter behaviour in a data-set from a LoRaWAN deployment,
where mains-powered sensors and actuators were used to control and manage street
lights in rural towns. We propose parametric machine learning methods for high resolu-
tion, centralised and passive fault detection in arbitrary IoT deployments. The methods
use temporal correlations in observed traffic to parameterize quasi-periodic applications.
The modelled applications are used to infer the state and the QoS of individual devices.
Interestingly, the methodological basis for this work has been drawn from research in
astronomy, where unevenly sampled time series are common. Astronomers have devel-
oped techniques for analyzing such series including phase-folding [12] and a variant of
the classical Fourier periodogram that is generalised for uneven time-series [13–16].
The paper is structured as follows: We introduce our traffic model, the traffic meta-

data that can be expected to be available for analysis, and targeted network KPIs in
Sec. 2. In Sec. 3.1 we analyze the sub-problem of parametric regression for traffic that
is labeled by its parent application. The classification problem of labeling traffic when
the traffic parameters are known, but the parent applications are unknown, is examined
in Sec. 3.2. In Sec. 4 we treat the clustering problem that arises when no a priori
information is given. Performance results for the algorithms presented throughout can

1Quasi-periodic applications generate transmissions at a constant, or near constant, inter-arrival
time. See Sec. 2.2 for more details.
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be found in Sec. 5 and the results of using the fault-detection algorithms on a real-world
smart metering deployment can be found in Sec. 6. Sec. 7 contains concluding remarks.
Table E.2 on page 109 provides a list of symbols and mathematical notations.

2 System Model and Key Performance Indicators
Consider an IoT deployment like that of Fig. E.1 & Fig. E.2 where sporadically trans-
mitting devices are connected to a server by an arbitrary networking technology, for
example an LPWAN, or a mesh network. Here, a virtual server running in the cloud
acts as a centralised management layer for network monitoring. The wireless network
acts as a filter upon transmitted data introducing intermittency in the form of outage
and delays in the received data. In this section we generalise this model to any num-
ber of gateways and devices running any number of applications. First, we present the
meta-data available in a passive monitoring scenario, define a traffic model for quasi-
periodic IoT devices, a set of key performance indicators (KPIs) and a naïve method
for evaluating the KPIs. Lastly, we examine how meta-data changes the nature of the
machine learning problem.

2.1 Available Traffic Meta-Data
In Fig. E.1 the devices A and C transmit data through AP1 while device B transmits
data through AP2. The data that is available for analysis at the server depends on
how much meta-data AP1 and AP2 relay to the server in addition to how much meta-
data is included in the transmissions. When a network is licensed from a network
provider then it is considered to be a public network [17]. A network that is closed
to the public, privately owned or purpose-built specifically for an IoT deployment, is
considered a private network. The same network can be considered private to its owner
and public to licencees. In private networks link level metrics, such as received signal
strength indicator, link quality indicator, signal to noise ratio, channel state information,
modulation and coding rate, are available whereäs they are not necessarily available in
public networks. Some network technologies and protocols have specific meta-data built
in to the protocol, for example GPS coordinates in SigFox. Such metrics can not always
be expected to be available in public networks.
We define a minimal set of metrics that are available in any type of network, {Network

ID, Device ID, Reception Timestamp, Payload size}. Device and Network identifiers
are a necessary part of a useful transmission. The transmission size and reception time
can likewise be found for any transmission. This ensures that the network monitoring is
applicable both for network operators, who licence their networks to IoT deployments,
but do not have in-depth knowledge of the IoT deployment or access to transmitted data
and IoT vendors and operators, who do not have insight into the networking components
or access to link-level meta-data.
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In addition to this minimal set of metrics, devices may include the ID of their parent
application as meta-data within the transmission. This is the behavior of device A in
Fig. E.2 in contrast to device C, which does not label its traffic. The implication of
labeling is that we may pose the fault detection problem as a regression problem instead
of a clustering problem. We discuss this implication further in Sec. 2.5 after defining
our traffic model and KPIs.

2.2 Traffic model
The traffic generated by a device is the composite of the traffic generated by all the
applications running on the device. We denote the number of apps running on a device
by Iapps. Traffic of one app may influence the jitter of traffic of another app due to
queuing of transmissions in the device.

T xRX = T 1
RX ∪ T 2

RX ∪ ... ∪ T
(i)
RX ∪ ... ∪ T

Iapps
RX (E.1)

Where T iRX = {T i1, T i2, ..., T im, ...T iM−1, T
i
M} denotes the received transmissions from ap-

plication i.
We define Quasi-periodic applications:
These are applications, which send periodic reports, but where the received traffic is

intermittent due to queuing and filtering by the network. Common IoT use cases such
as gas-, water- and electric smart metering, smart agriculture and smart environment
[18, 19], are considered by 3GPP to be quasi-periodic [18].

The ith quasi-periodic app generates transmissions at approximately constant inter-
vals, such that the reception times of transmissions from app i can be described by:

T imi = βi + αi · (mi + oimi) + J imi (E.2)

where βi is a time offset, αi is the inter-arrival time of app i, J im is a random delay
introduced by the network (jitter), mi is the index of the received packets while oimi
is the cumulative number of transmissions that were not received until observation mi.
Let ni be the index of the transmissions such that ni = mi + oimi . Then we know that
T in−1

∼= T in
∼= T in+1 (mod αi) for the quasi periodic app i.

2.3 Key Performance Indicators
We wish to monitor the link quality and status of individual devices in IoT networks.
Based on the available meta-data we choose to monitor network outage and online/offline
status, which are common KPIs in wireless network performance modelling. In this
subsection we define each of these KPIs.
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Offline detection

An app or a device is considered to be offline if it stops generating transmissions. An
intuitive classifier for offline status is detecting whether k consecutive expected transmis-
sions have been missed. This can be done at the application level to classify applications
as offline or at the device level, to classify an entire device as offline. Offline applica-
tions are not expected to generate transmissions and so they do not count towards the
calculated outage. We define a classifier for offline entities, COff.

COff : oi(t) ≥ k (E.3)

where oi(t) =
⌊
t− T imi
αi

⌋
computes the expected number of transmissions at time t since

the last reception at T imi if the quasi-periodic app i was online.

Outage probability

We define the outage probability as the ratio of the number of packets lost to the number
of transmitted packets over a window τw at time t.

p∗o =
Iapps∑
i=1

omi(t,τw)

/
Iapps∑
i=1

ni(t, τw) (E.4)

where the number of transmitted and received packets for app i from time t − τw
to t are denoted by ni(t, τw) and mi(t, τw), respectively. As ni(t) approaches ∞ the
observed outage, p∗o, approaches the network outage probability, po, if po is stationary
over observation period.
omi(t) and ni(t) are latent variables from the IoT server’s perspective. Then the

goal of fault detection can be posed as the problem of estimating these latent variables
correctly.

2.4 Naïve monitoring method
Here, we introduce a naïve monitoring method, which we will compare other methods to.
The approach is straightforward; Denote the number of transmissions received within
τw at time t, mobs(t, τw), and let mmax denote the maximum value of mobs(t, τw) for
t < tnow. Then we have (E.5).

p∗o(t, τw) = mmax −mobs(t, τw)
mmax

(E.5)

Devices where p∗o(t, τw) > ε are classified as offline.
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Determining problem Known applications
nature and applicable and traffic parameters
methodology Yes No

Labelled traffic Yes KPI calculation Regression
No Classification Clustering

Table E.1: c©2020 IEEE: Diagram of the classes of the fault detection problem.

2.5 A priori knowledge and labeled traffic
We may have a priori knowledge about online devices and applications, and we may
receive meta-data identifying the app source of traffic. This changes the nature of the
fault monitoring problem as depicted in Table E.1. In the case where we know the
parameters of the traffic model and transmissions are labeled (or all clients are ’thin’)
it is straightforward to calculate the KPIs. In case the traffic model is unknown, but
traffic is labeled we must perform a regression of the traffic parameters in order to
calculate the KPIs, which is treated in Sec. 3.1. In Sec. 3.2 we examine the case that
traffic parameters are known, but the traffic is unlabeled (and from a ’thick’ client) we
must classify received packets as belonging to one app or another to evaluate the KPIs.
Finally, we tackle the problem of clustering when the traffic parameters are unknown
and the traffic is unlabelled in Sec. 4.

3 Regression and Classification

3.1 Regression
In case transmissions are labeled by their parent application, the composite stream of
received packets from all applications can easily be sorted by application such that the
stream of any periodic application is on the form of (E.2). We wish to learn αi and oimi
given a set of reception times, T iRX = {T i1, T i2, ...T im...T iM−1, T

i
M}. Phase-folding methods

like phase dispersion minimization [12] could solve this problem in a brute-force manner
by estimating the fit of all potential αi, but the associated computational overhead is
undesired for massive online network monitoring.
Instead, we propose Normalised Harmonics Mean (NHM), which is an online method

we developed for finding an estimate αi∗ of αi in a set T iRX with a relatively low amount
of computational effort.
Consider a MMSE of the distance between a reception time and transmission time,

min(|T i
ni
mi
− T imi |

2) where nim = mi + omi . Here omi and nmi are unknown to the
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receiver, but we know that the generating function for T inmi is periodic. We may solve
the problem by brute-force using least-squares, however this requires finding nmi , which
minimizes the MSE for every arrivalmi for every proposed αi, which makes this solution
computationally expensive and the accuracy depends on the αi grid chosen for the anal-
ysis. This is similar to the brute-force approach of phase dispersion minimization [12].
We propose to use a periodic function, specifically the cosine, to describe the problem.

Then we have (E.6) at the transmitter side and (E.7) at the receiver side.

cos
(
T inim

− T inim−1

αi
· 2π

)
= 1 (E.6)

cos
(
T imi − T

i
mi−1

αi
· 2π

)
> 0 , 0 < J imi <

αi

2 (E.7)

So we need to solve for αi that maximizes (E.7), which may be rephrased as trying
to get (T imi − T

i
mi−1)/αi to be as close to an integer as possible.

NHM is based on this observation and attempts to find αi in a gradient-descent
manner, by searching for the set of best fitting integers to normalise the distances
between elements in T iRX. The step-wise procedure of NHM is described by Alg. 1.

Algorithm 1: c©2020 IEEE: Normalised Harmonics Mean (NHM)
Data: dT iRX
Result: αi∗

1 Make a preliminary hypothesis for αi∗.
2 while αi∗ has not converged do
3 Estimate ηimi for α

i∗.
4 Update the hypothesis for αi∗ based on ηimi .
5 Calculate KPIs based on app parameters.

Let the set dT iRX denote the set of the distances between neighboring elements T iRX.
The preliminary hypothesis for αi could be αi∗ = mean(dT iRX).
Outage creates harmonic contributions of orders higher than 1, oimi > 0, in the set

dT iRX as depicted in Fig. E.3. In the next step we seek to normalize these harmonics
by estimating the series of latent variables ηimi given by (E.8). We do this under the

condition that ||J || < αi

4 (or equivalently 0 ≤ J <
αi

2 ) such that aliasing is avoided,
nimi ≤ n

i
mi+1 + 1, which in practice means that a transmission is never received earlier

than a previous transmission.

ηimi =
⌊
T imi − T

i
mi−1

αi∗

⌉
(E.8)
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Fig. E.3: c©2020 IEEE: Histogram of dT i
RX where Ji

m ∼ exp(.25) ·αi/2 and po = 0.2. The red crosses
indicate the iterations of αi∗ in NHM, which can be seen to approach αi, even when few samples are
available. In this example, the initial hypothesis of αi∗ was based on the mean of dT i

RX.

where nimi =
∑mi

k=1 η
i
k ⇔ ηim = nim − nim−1.

The initial hypothesis for αi∗ is unlikely to be correct, but it serves to provide an
initial estimate of the latent series ηimi , which we can now use to estimate αi. Given
the hypothesis that αi is the mean of a normalised version of dT iRX we have (E.9).

αi∗ = 1
M i

Mi∑
mi=2

(
T imi − T

i
mi−1

ηimi

)
(E.9)

Iterative updates of ηimi and α
i∗ Eq. (E.9) will gradually go towards αi as depicted in

Fig. E.3. The required number of iterations for convergence depends on the accuracy of
the initial estimate of αi, which is dependent on po and the number of samples. After the
algorithm convergences the estimated number of transmissions lost between successive
receptions is given by the latent variables oimi = nimi − n

i
mi−1. Furthermore βi can be

found by linear regression of (E.2) as both αi and nimi have been estimated, but is not
necessary for computing the KPIs in our case.
NHM can be run in an online manner by saving dT iRX and T iM+1 and updating both

upon reception of a new transmission for app i before repeating step 2 starting from the
previous αi∗.
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3.2 Classification
In case the parameters αi and βi are known for all applications i ∈ I, but transmissions
are not labeled by their parent application, we need to classify which application a new
reception belongs to. Let f(T iRX, α

i, βi) be the transmission generating function, then
we may propose a periodic likelihood function g(T iRX, α

i, βi), such that

f(T iRX, α
i, βi) ∝ g(T iRX, α

i, βi) =
cos
(
T iRX − βi

αi
· 2π

)
+ 1

2 (E.10)

Then i is found by maxi∈{1:Iapps}(g(T iRX, α
i, βi)). Here, we chose a cosine function as

a likelihood function and added 1 before normalizing to keep the probability between
0 and 1. In practice the maximization yields the same result regardless of these linear
operations due to the associative property of the periodic likelihood function.
A sub-problem here is the initial classification when βi is not known, while αi is

known, we must find the most likely sequence of packets to belong to the process that
has the inter-arrival time αi for some βi. Then g(T ia − T ib , αi, βi = 0) is the likelihood
that transmissions a and b belong to the same sequence with inter-arrival time αi. If we
then let transmission m be a newly received packet and mi be the last packet received
by app i, then we can simply find i by maxi∈{1:Iapps}(g(T im − T imi , α

i, βi = 0)). Notice,
that errors in the estimate of α will results in a error in the output of g, which increases
as the distance between two timestamps increases, or in other words, labeling is more
likely to be erroneous as po increases or after offline periods.

4 Clustering
When traffic parameters are unknown and the traffic is unlabeled by its parent applica-
tion we need to perform clustering of the received traffic. In this section we propose a
clustering algorithm that estimates clusters in a hierarchical manner based on the Lomb-
Scargle periodogram and an online version, which assigns newly received transmissions
to already known clusters in a greedy manner.
Let the set of all unassigned traffic received by device x be T x∗RX.The procedure for the

hierarchical clustering method, Successive Periodicity Clustering (SPC) is described in
Alg. 2.
NHM can be used for creating a hypothesis for αi. This is a robust approach as

long as α1 << α2 << ... << αIapps with an estimation error that increases greatly as
αi

αi+1 → 1. However, it may often be the case that αi

αi+1 ≈ 1 so we will examine using
the Lomb-Scargle periodogram for hypothesis creation instead.
Lomb in [13] proposed a least-squares periodogram, which tested for the best fitting set

of frequencies for a unevenly sampled time-series. In [14], Scargle proposed a generalised
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Algorithm 2: c©2020 IEEE: Successive Periodicity Clustering (SPC)
Data: T xRX
Result: {T i∗RX, αi∗ , βi∗ }, T iRX ∈ T xRX

1 while do
2 Hypothesize αi∗ for an app i, given T x∗RX.
3 if αi∗ is significant then
4 Label data points that best fit αi∗ and extract βi∗ and T i∗RX.
5 Calculate KPIs based on αi∗, βi∗ and T i∗RX.
6 Remove T i∗RX from the set of unlabeled data. T x∗RX = T x∗RX\T i∗RX
7 else
8 return {T i∗RX, αi∗ , βi∗ }, T iRX ∈ T xRX

form of the classical Fourrier periodogram, which turns out to be equivalent to the least-
squares fitting of sinusoids from [13]. Hence, this periodogram was termed Lomb-Scargle
periodogram and [15] treats its statistical properties, including a close-upper limit on
the probability of falsely detecting a peak frequency in a data set comprised solely of
noise. The Lomb-Scargle periodogram is well-known in some scientific communities, but
was recently introduced to a wider audience in [16] by surveying works on and related
to the Lomb-Scargle periodogram and lending conceptual intuitions. The Lomb-Scargle
algorithm has been implemented in Python in the Astropy package [20, 21].

4.1 Lomb-Scargle-based hypothesis creation for α
The classical Fourier periodogram requires evenly sampled data, but the Lomb-Scargle
algorithm can find a PSD-like density for unevenly spaced times series [13, 14, 16].
Preprocessing of our data is required. We generate a series V which is the same size

as T x∗RX and holds the value 1 for each of the timestamps. Then we interpolate V with 0’s
to permit sine-based analysis. We carry out this interpolation in a heuristic manner by
finding places in dT x∗RX larger than dT x∗RX in an attempt to avoid interpolation between
transmissions that are very close in time, i.e., to avoid giving credibility to very high
frequencies.
We must identify the frequency spectrum that is relevant for analysis. The size of the

set of frequencies within the grid dictates both accuracy and computational effort, since
’false positive’ local peaks in the periodogram are less likely to be found to be the global
peak, but at the expense of evaluating the periodogram in more points. The minimum
detectable frequency will be a signal that completes one oscillation over the entire period
of the data-set, fmin = 1

T x∗Mx∗ − T x∗1
. The spacing of the frequency grid, δf = 1

n0τw
,

depends on an oversampling factor, n0. The higher n0 is, the higher the chance that a
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peak frequency is not missed in the analysis. Typically, 8 is used [16]. The Nyquist limit
does not always exist for the unevenly sampled Lomb-Scargle periodogram and in our
case it will inevitably be very large since fNy = 1/(2p), where p is the largest value that
all T x∗RX can be written as an integer multiple of [22]. Instead we shall use a heuristic
to determine fmax. Say that Iapps applications are generating packets with rates αi and
there is no outage. In this case the mean observed inter-arrival time is always less than
or equal to 1

M i − 1
∑Mi−1
mi=1 (dT imi) ≤ mini∈{1:Iapps}(αi). Then if we choose fmax such

that

fmax = L
1

Mx∗ − 1
∑Mx∗−1
mx∗=1 (dT x∗mx∗)

(E.11)

where L is scalar used to take into account the effect of outage. Given 50% outage in a
set of times one would expect to find a mean inter-arrival time that is twice as long. So
assuming L = 2, our heuristic limit for the frequency grid should cover the maximum
frequency of any observed app for po ≤ 50%.
Let Z = P (f) be the periodogram value at frequency f . In [14] it was observed that

the probability of observing a periodogram value less than Z in pure Gaussian noise can
be expressed as (E.12).

Psingle(Z) = 1− exp (−Z) (E.12)

A close-upper limit for the false alarm probability, FAP(Z), was found by Baluev
in [15]. We access this limit at the peak-value of the periodogram, Z0, with significance,
σ and only accept the hypothesis α∗ = 1/f0 if FAP(Z) < σ.

4.2 Labeling and collision resolution
If a significant peak is detected we need to label data that fits the suggested αi∗. Since
up to Iapps apps have generated T xRX we must attempt to find the sequence of data points
that is the best fit for our proposed application i. We do this by labeling transmissions,
which fit coarsely and then sorting out incoherent false positive transmissions. Given a
significant proposal for αi∗ the procedure is:

1. Mark transmissions that seem to be a good fit for αi∗.

2. Remove marks from transmissions that are incoherent with the rest of the labeled
transmissions.

3. Label marked transmissions as belonging to app i.

4. Calculate KPIs based on app parameters and labeled packets.
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We calculate the fit between all times in all possible sequences by building a matrix
IA = Tx*

RXU−T
x*
RXU

T where U is a vector of ones [1,1,1,...,1] of lengthM and Tx*
RX is

a vectorized version of the set of unlabeled transmissions. We then proceed to estimate
the fit, φm, of each transmission to all other transmissions given αi∗ as (E.13).

φm =
M∑
n=1

(
g(IA(m,n), α

i∗, βi = 0)
)

(E.13)

Now, a preliminary sorting of transmissions is performed by labeling only transmis-
sions for which φm >

1
2Mx∗

∑Mx∗

m=1(φm). This coarse sorting of packets results in a fair
amount of false positives in T i∗RX. False positives can in many cases (especially when po
is low) be identified as clearly incoherent transmissions that ’collide’ in time with other

transmissions in the set. The minimal period between packets is α
i∗

2 before a pair of

transmissions are considered to collide. This is conditioned by ||J i|| < αi∗

4 . Colliding
pairs are resolved by checking the fit of the colliding packets and removing the worst
fitting transmission from the set of transmissions for the new app. Given a collision at
T xl and T xl+1 we have that

Cl∈{1:Mi}|appi : φl > φl+1 (E.14)

Now we have estimated T iRX from the set of unlabeled data. Since the Lomb-Scargle
method is only as accurate as the frequency grid we use in its analysis, we can attempt
to use NHM on the estimated set T iRX, to get better estimate for αi. Then we can
compute KPIs for the application and finally remove the labeled traffic from T x∗RX and
attempt SPC again.

4.3 Greedy online clustering
SPC does batch processing and is relatively computationally heavy. An online version
of the algorithm that minimizes the computational effort and can be used for real-time
monitoring is warranted. So we introduce a greedy online clustering (GOC) algorithm.
Upon the reception of a new transmission T xMX GOC runs as described in Alg. 3.
Once a new transmission is received, it should be checked if the reception time

fits with the expected reception time of any known applications. GOC estimates
φi = g(T xMX − T iMi , αi∗, βi = 0) for all known i. Then assigns the transmission to
T iRX if maxi∈{1:Iapps}(φi) is positive. Then the KPIs are updated for app i.
In case maxi∈{1:Iapps}(φi) ≤ 0 the new transmission is added to the set of unlabeled

transmissions T x∗RX and SPC is attempted.
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Algorithm 3: c©2020 IEEE: Greedy Online Clustering (GOC)
Data: T xMX ,{T i∗RX, αi∗ , βi∗ }, T iRX ∈ T xRX
Result: {T i∗RX, αi∗ , βi∗ }, T iRX ∈ T xRX

1 Estimate the fit φi∗ of the new arrival T xMX for every previously known app i.
2 if max(φi) > 0 then
3 Add the transmission T xMX to the app j which had the best fit.
4 Update the parameters, αi∗ , βi∗.and the KPIs for i.
5 else
6 Add the transmission to the set of unlabeled transmissions T x∗RX. and run

SPC on T x∗RX.

5 Probabilistic Performance
In this section numerical results for the performance of the algorithms introduced
throughout this paper are presented. The performance is evaluated in terms of the
accuracy of the outage estimation and offline state detection.
All the presented algorithms and the naïve method presented in Sec. 2.4 have been

implemented in Python. The implementations are based on functionality from the
Numpy package [23] and the Lomb-Scargle algorithm of the Astropy package [20, 21].
A parameter ψ that reduces the computational requirements and enhances the accuracy
of SPC and GOC has been introduced. ψ ensures that SPC is only ever run when T x∗RX
is larger than ψ. Furthermore after labeling and collision resolution the size of the
proposed set T iRX is checked and only accepted if it is larger than ψ.
The performance has been evaluated against network outage probabilities, po =

[0, .1, .2, .3, .5]. For each data point 1000 stochastic transmission sequences with jitter
and outage have been generated. Outage has been randomly induced in the sequences
by generating samples for T iRX and discarding T imi with probability po until the specified
sample size was reached. Sample sizes of 5, 10, 25, 50 and 100 transmissions have been
used. The traffic parameters are drawn from the following distributions:

α1 ∼ U(100, 200)
α2 ∼ U(1, 5) · α1

βi ∼ U(0, 0.5) · αi

jim ∼ exp(0.2) · α
i

20
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Fig. E.4: c©2020 IEEE: Absolute error in network outage estimation for NHM, GOC, SPC and the
naïve approach. The naïve method is applied to both the labeled data-set and the unlabeled data-set
(τw = 1500). The bars indicate the mean absolute errors, the arrows indicate the size of the standard
deviation and the 95th percentile is denoted by the black crosses.

5.1 Network outage detection and estimation
The absolute estimation error, |po − p∗o|, is plotted in Fig. E.4 for NHM and the naïve
method on a labelled sequence and SPC, GOC and the naïve method for unlabelled
sequences. The labelled sequence is T 1

RX, and the unlabelled sequence is T xRX = T 1
RX ∪

T 2
RX and ψ = min(smin, 25) for SPC and GOC, where smin = min(M1,M2).
The naïve approach works well when there is little to no uncertainty, but both the

mean error and the variation in error increases rapidly as po increases. Notice that NHM
has both a lower mean and less variance in the estimation error, especially as the number
of available samples increase. Indeed, NHM has a <5% estimation error at po = 0.3 for
50 available samples. On unlabeled data-sets, The naïve approach is found to perform
a little better, which is expected due to the increased number of samples within the
’windowing’ function of the naïve approach. Still, both SPC and GOC outperforms
the naïve approach as po increases. We observe that SPC performs a little worse at 100
samples compared to 50 samples - this can be explained by the periodic labelling function
performing worse over such a long period of samples, which is exaggerated when SPC
then tries to find an ’imaginary’ application to label transmissions that should have
been assigned previously. In GOC, the inaccuracy of the periodic labelling function
causes errors when only a few samples are available, here ’false positive’ labels result in
the secondary application not finding sufficient samples to satisfy ψ.
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Fig. E.5: c©2020 IEEE: Probabilities of detecting offline-state in different conditions for the real-time
clustering method, GOC, and the naïve approach (ε = .25, τw = 1500). FAP denotes the false alarm
probability. oMx denotes the number of consecutively missed transmissions during the offline period.

5.2 Offline state detection
In this scenario the device goes offline and we denote the number of transmissions
since the device went offline, oxM . We define the false alarm probability (FAP) as the
probability that an offline state is detected when the device is not offline. In Fig. E.5
the resulting probabilities are plotted. We observe that GOC identifies devices as offline
correctly with a high probability. The probability of correctly identifying offline devices
increases with the number of sampled reception times. The FAP for GOC increases with
the network outage, as αi∗ is more prone to be inaccurate, which is also the case when a
very small number of samples are available before the device goes offline. Furthermore,
when the network outage is high, the device is more likely to appear offline due to random
outage in the received sequence T xRX , which affects the naïve method significantly more
than GOC.

5.3 Sampling and Computation time
The total computation time of each algorithm is plotted in Fig. E.6. The computation
time of GOC is significantly larger than that of SPC, since GOC will attempt SPC
multiple times as transmissions are received, however, one should note that the cmputing
time of GOC when receiving transmissions from known apps is very low, near that of
NHM. The computation time of NHM is significantly lower than that of any other
method. The naïve approach beats both clustering methods in terms of computation
time. Still, in the special case that min(αi) is 1 hour for a group of devices, GOC
supports initial analysis of up to 12240 devices in serial on a single thread of a 4.00 GHz
i7-6700 if 100 samples are received as batch for each device, but processed in an online
manner using GOC (worst-case). In practice, the sampling time for MAR-P traffic [18]
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Fig. E.6: c©2020 IEEE: Mean computation time for NHM, SPC, GOC and the naïve approach. Mind
that the y-axis is logarithmic.

would be much greater, such that even more devices could be supported.

6 Case study: smart metering deployment
This section presents monitoring results from using GOC on a data-set from a real-world
wireless smart metering deployment. The data consists of timestamps, device IDs and
IDs of the receiving concentrators for a total of 1048576 received transmissions from
4522 smart meters. The smart meters are deployed in a large area with 6 concentrators
that provide coverage for all meters. Meters are connected to concentrators in a star-
topology.

Meters broadcast quasi-periodically to the concentrators at an inter-arrival time that
is normally distributed around three hours. It should be noted that meters, which do
not receive an acknowledgement will include the data of any missed transmissions in
their broadcast. Effectively this means that the app layer QoS is kept high even in poor
link level conditions. Here, we monitor the network performance at the link level from
the perspective of individual concentrators and the perspective of a centralised service
gathering data from all concentrators.

The distribution of estimated αi∗’s using GOC and NHM are plotted in Fig. E.7 for
the perspective of a central server and as a joint distribution for all concentrators. Here
we find that the estimated α∗i’s are normally distributed around 3 hours for GOC,
which is coherent with the deployment case. NHM on the other hand shows a fat tail
in the distribution, which is not coherent with our prior knowledge of the transmission
rate distribution. This inconsistency can be ascribed to the number of available data,
noise in the data and the inaccuracy of NHM at increasingly higher network outages as
seen in Fig. E.4.
Overlapping concentrator coverage enhances the application level-performance; Using
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Fig. E.8: c©2020 IEEE: CDFs of estimated outages for each device as seen by each concentrator and a
centralised server. The CDFs are evaluated against the entire population of devices in the deployment.

GOC, we find that 20.3% of the meters are connected to at-least one concentrator
without outage at the link-level, while the same measure is 54.8% from the perspective of
a centralised server. The PDF of estimated outages for all meters from the perspective of
the concentrators and the centralised server can be found in Fig. E.8. Each given device
is not necessarily in the range of each deployed concentrator, such that, as expected, we
see varying connectivity levels for the different concentrators. The estimated outage at
the link level as seen by the server is much lower than that of any individual concentrator.
We have used a parameter of ψ = 10 for the analysis. This means that 3.4% of the
devices represented in the data were not analysed due to being sampled less than 10
times while another 1.1% did not exhibit clear periodicity due to having few samples and
likely a relatively high outage. This group of devices are clear outliers in the deployment
and warrant further investigation.
The distribution of the estimated outage by NHM and GOC converges after p∗0 = 5%.
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Fig. E.9: c©2020 IEEE: Histogram of estimated outages for devices in the deployment at the central
server and concentrator C2. Devices can be grouped in spectra, which increase in width in proportion
to the estimated outage, or equivalently, as reliability of the estimate goes down.

Both methods identify roughly the same sets of devices for different groups of outliers.
The naïve method continually overshoots it’s outage estimation. In Fig. E.9 we take a
closer look at the links experienced by the concentrator "C2" and the links as experienced
by the server. Here a histogram of the estimated outage at the link-level is depicted.
In this way groups of outliers can be identified both at the application level and at the
level of individual concentrators. In summary, the methods can quantify the coverage
of concentrators in practice, which enables evaluation of their placement. The locations
of concentrators and devices would be known by the smart metering company, making
it relatively easy to assess spatial correlation of poorly performing devices. Installing
a local concentrator is sensible in areas with many poorly performing devices, whereas
antenna upgrades might be more cost beneficial for solitary, poorly performing devices.
The methods can also help identifying Byzantine transmissions and seasonality in the
outage.

7 Conclusion
In this paper we introduced methods for passive detection in IoT networks in deploy-
ments with quasi-periodic reporting, such as smart-metering, environmental monitoring
and agricultural monitoring. The methods are applicable in both mesh networks and
LPWA and cellular networks, setting them apart from the state-of-art methods for fault
detection in WSNs.
The SPC and GOC algorithms were shown to perform well even at high outage for

composite sequences, which makes them well suited for monitoring devices and networks
in ’black-box’ networks where the outage may be quite high. The cost of the utility and
precision of these methods is computational effort, which was measured for a 4.0GHz
i7-6700 CPU. Furthermore, the utility of NHM and GOC has been exhibited through a
short analysis of real-world data from a smart meter deployment.
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Symbol Meaning Symbol Meaning
Ixapps The number of applications

running on device x.
mi The index of the received

packets from application i.
τw A time window. T xTX The set of all transmissions

from device x.
T im The reception time of the

m’th packet from application
i.

ηimi The harmonic order of an
observed inter-arrival rate.
Used in NHM.

T iTX The set of all transmissions
from application i on device
x.

αi The period between
transmission generation for
quasi-peridic application i.

∗ The star denotes estimated
values.

T xRX The set of all received
transmassions from device x.

βi The offset in the period of
application i.

fmin, δf The corner- and
step-frequencies used in
Lomb-Scargle.

dT xRX The observed inter-arrival
period for device x.

J imi The E2E delay between
generating a transmission to
reception.

IA A matrix of all potential
inter-arrival times for a set,
T xRX.

T iRX The set of all received
transmissions from
application i.

Coff A classification of being
offline.

φm The likelihood of
transmission m being a part
of a given application.

dT iRX The observed inter-arrival
period for application i.

po The network outage

Ψ The minimal number of
observations in an
application.

oimi The cumulative number of
missed receptions up to index
m from application i.

k The limit of consecutively
missed transmissions before a
device is classified as being
offline.

FAP (Z) A likelihood estimator for
packet m to belong to a
specific application.

ni The index of the
transmissions from
application i.

Table E.2: c©2020 IEEE: Index of notations and variables
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