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Abstract

Rank-metric codes and code pairs play a central role in reliable and secure
communications in different practical settings, such as linear network cod-
ing or storage systems with crisscross errors. The behaviour of rank-metric
codes is in many cases analogous to that of classical codes, also referred to
as Hamming-metric codes. However, there exist numerous cases where rank-
metric codes present unexpected properties with no analogy in the Hamming
case. In this thesis, we explore the similarities and differences between rank-
metric codes and Hamming-metric codes and, from this analysis, we provide
new applications in the previously mentioned settings. The results and pa-
pers in this thesis fall into three categories:

1. In the first four papers, we study rank-metric nested code pairs and
their relative generalized weights. These parameters measure the se-
curity performance of the corresponding code pairs in linear network
coding and storage systems with crisscross errors.

We prove that all the well-known bounds for (relative) generalized
Hamming weights hold for (relative) generalized rank weights; we es-
tablish new characterizations of vector space isometries between code
pairs of different lengths preserving rank-metric properties (rank equiv-
alences); we introduce the notion of relative generalized matrix weights,
which extend relative generalized rank weights to code pairs that are
linear over the base field and which allow us to obtain the first universal
secure rank-metric list-decodable nested code pair; we estimate the gen-
eralized rank weights of reducible codes and prove that all rank-metric
linear codes with optimal generalized rank weights for fixed packet
and code sizes are reducible; and finally we provide rank-metric nested
code pairs with optimal communication overheads based on previous
studies.

2. In the next three papers, we study skew cyclic codes seen as rank-metric
codes. We provide bounds on their minimum rank distance analogous
to the shift bound and the Hartmann-Tzeng bound; we relate the lat-
tices of skew cyclic codes and vector spaces of roots of skew polyno-
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mials in an analogous way to that of classical cyclic codes and classical
polynomials; we introduce the notion of rank error-correcting pairs,
which give new bounds and decoding algorithms for certain rank-
metric codes that include skew cyclic codes; and finally we study when
skew cyclic codes of different lengths can be rank equivalent and/or
rank degenerate, which has no analogy in the Hamming case.

3. The last two papers form a more miscellaneous collection. In the first of
these papers, we study the asymptotic behaviour of sequences of ramp
secret sharing schemes, in terms of partial information leakage. This
is done by means of the relative generalized Hamming weights of the
corresponding code pairs. In the next paper, we study a fundamental
algebraic tool for future research on reliable and secure communica-
tions: We give a footprint-type bound on the number of common zeros
of ideals of polynomials and a given finite collection of their consecutive
Hasse derivatives.

The thesis is divided into two parts:
Part I is an introduction to the works included in this thesis. It contains

no proofs and is scarce in technical details. It mainly serves as an overview
and summary of the main results in the thesis.

Part II collects the papers constituting this thesis in their full form, which
have been either peer-reviewed and published, or are currently under review.



Resumé

Rang-metriske koder og kodepar spiller en central rolle for pålidelig og sikker
kommunikationer i forskellige praktiske scenarier såsom lineær netværk-
skodning og distribueret lagring med crisscross-fejl. Rang-metriske koders
opførsel er i mange tilfælde analoge med de klassiske koders – også kendt
som Hamming-metriske koder. Imidlertid er der talrige tilfælde, hvor rang-
metriske koder viser uventede egenskaber uden analogi til Hamming-tilfældet.
I denne afhandling udforsker vi ligheder og forskelle mellem rang-metriske
koder og Hamming-metriske koder, og vi bruger denne analyse til at give
nye anvendelser i de tidligere nævnte scenarier. Resultaterne og artiklerne i
denne afhandling falder i tre kategorier:

1. I de første fire artikler studerer vi rang-metriske indlejrede kodepar og
deres relative generaliserede vægte. Disse parametre beskriver sikker-
heden når kodeparet anvendes i forbindelse med lineær netværkskod-
ning og lagringsystemer med crisscross-fejl. Vi viser, at alle velkendte
grænser for (relative) generaliserede Hammingvægte også gælder for
(relative) generaliserede rangvægte; vi giver nye karakteriseringer af
vektorrumsisomorfier mellem kodepar af forskellige længder, som be-
varer rang-metriske egenskaber (rang-ækvivalenser); vi introducerer et
koncept, som vi kalder relative generaliserede matrixvægte, hvilket ud-
vider relative generaliserede rangvægte til kodepar, der er lineær over
grundlegemet, og gør det muligt at konstruere det første universelle
sikre rang-metriske list-decodable indlejrede kodepar; vi evaluerer re-
ducerebare koders generaliserede rangvægte, og vi viser, at alle rang-
metriske lineære koder med optimale generaliserede rangvægte nød-
vendivis er reducerebare, når pakkelængden og kodestørrelsen er faste;
og til sidst angiver vi rang-metriske indlejrede kodepar med optimalle
kommunikationsoverhead ved hjælp af tidligere resultater.

2. I de næste tre artikler studerer vi skæv-cykliske koder set som rang-
metriske koder. Vi giver grænser for deres minimumsrangafstand, som
er analoge med shiftsgrænsen og Hartmann-Tzeng grænsen; vi relaterer
gitrene af vektorrum dannet af skæv-polynomiumsrødder til skæv-cy-
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kliske koder, hvilket svarer til den kendte forbindelse mellem klassiske
polynomier og klassiske cykliske koder; vi introducerer et koncept, som
vi kalder rangfejlkorrigerende par, hvilket angiver nye grænser og ko-
rrigerende algoritmer for visse rang-metriske koder – inklussive skæv-
cykliske koder; og til sidst udforsker vi hvornår skæv-cykliske koder
med forskellige længder kan være rang-ækvivalente og/eller rang-de-
genererede, hvilket ikke har nogen analogi til Hammings tilfælde.

3. De sidste to artikler udgør en mere blandet samling. I den første af
disse studerer vi de asymptotiske egenskaber for følger af ramp se-
cret sharing schemes i forbindelse med delvis informationsaflytning –
dette gøres ved at studere de tilhørende følger af relative generaliserede
Hammingsvægte. I den følgende artikel udforsker vi en grundlæggende
algebraisk værktøj med henblik på fremtidig forskning i pålidelig og
sikker kommunikation: Vi etablerer en slags fodaftryksgrænse for an-
tallet af fælles rødder af polynomier samt en endelig mængde af deres
fortløbende Hassesafledte.

Afhandlingen består af to dele:
Del I er en introduktion til afhandlingens arbejder. Denne del indeholder

ingen beviser, og alene få resultater præsenteres her. Den tjener som overblik
og resumé af de vigtigste resultater i afhandlingen.

Del II består af de artikler, som udgør afhandlingen. De præsenteres i
deres fuld form, hvori de er blevet peer-reviewed og publiserede, eller hvori
de er under bedømmelse ved tidsskrifter.
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Introduction

Reliability and security are desirable in many different communication or stor-
age scenarios. Historically, many of such scenarios were modelled under the
Hamming metric. Recently, new types of communication channels and stor-
age systems have required other types of metrics. This is the case of the
rank metric, which is suitable for reliable and secure linear network coding or
distributed storage with crisscross errors and erasures, among others.

Since the theory of Hamming-metric codes has been intensively studied
throughout the last century, many recent efforts have been made in the liter-
ature to obtain similarities between Hamming-metric codes and rank-metric
codes.

In this thesis, we further explore such similarities, and we obtain on the
way some new results for rank-metric codes that have no analogy in the
theory of Hamming-metric codes.

This Introduction serves as an overview of the main results obtained in
this thesis, and is organized as follows: The first section collects those results
concerning different notions of relative generalized weights and universal
security in linear network coding. The second section is devoted to the rank-
metric properties of skew cyclic codes and the related theory of rank error-
correcting pairs. The third section, which is of a more miscellaneous nature,
contains a study of the related problem of secret sharing based on relative
generalized Hamming weights, and it concludes with a new footprint-type
bound for common zeros of polynomials and some of their consecutive Hasse
derivatives.

Throughout this Introduction, we will mark those results taken from each
of our papers by its corresponding capital letter, as shown in the section
named Thesis Details.

Notation

Fix positive integers m, n and N, a prime power q, and denote by Fq the finite
field with q elements. For a field F, we denote by Fm×n the vector space of
m× n matrices over F, and by Fn the vector space of column vectors of length
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n over F.
For a basis α1, α2, . . . , αm of Fqm over Fq, we define the matrix representation

map Mα : Fn
qm −→ Fm×n

q associated to the previous basis by

Mα(c) = (ci,j)1≤i≤m,1≤j≤n, (1)

where ci = (ci,1, ci,2, . . . , ci,n) ∈ Fn
q , for i = 1, 2, . . . , m, are the unique vectors

in Fn
q such that c = ∑m

i=1 αici. The map Mα : Fn
qm −→ Fm×n

q is an Fq-linear
vector space isomorphism.

Thus we will usually identify Fn
qm and Fm×n

q throughout this Introduction.
Moreover, the rank metric in Fm×n

q can be extended to Fn
qm , via the map Mα,

by defining the rank weight of a vector c ∈ Fn
qm as wtR(c) = Rk(Mα(c)).

In this Introduction, codes will be subsets of either Fn
qm or Fm×n

q , whose
linearity properties are specified in each case, and whose dimensions will
be taken over the corresponding field, which will be understood from the
context.

Another concept that will be extensively used is that of Fqm -linear Galois
closed spaces and Galois closures, introduced in [61]:

Definition 0.1. We say that an Fqm -linear vector space V ⊆ Fn
qm is Galois

closed if
V q = {(vq

1, vq
2, . . . , vq

n) | (v1, v2, . . . , vn) ∈ V} ⊆ V .

We denote by Υ(Fn
qm) the family of Fqm -linear Galois closed vector spaces

in Fn
qm . Given an Fqm -linear code C ⊆ Fn

qm , we define its Galois closure as

C∗ = ∑m−1
i=0 C

qi
.

Observe that C∗ is the smallest Fqm -linear Galois closed space containing
the Fqm -linear code C ⊆ Fn

qm .

1 Generalized weights and universal secure linear
network coding

In the theory of Hamming-metric codes, the concept of relative generalized
Hamming weights [42, 65] has been proven to be crucial to investigate the
robustness of secret sharing schemes [7, 57] or codes for wire-tap channels of
type II [48] against information leakage [40, 42, 65].

The concept of relative generalized rank weights [39, 45] has shown simi-
lar applications in universal secure linear network coding [39, 60]

In this section, we collect our main results concerning different notions
of relative generalized weights used to measure universal security in linear
network coding. These results are contained in Papers A, B, C and D, and
correspond to the first group of results mentioned in the Abstract.
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1. Generalized weights and universal secure linear network coding

1.1 Preliminaries

In this subsection, we collect the main results in the literature concerning
reliable and secure linear network coding.

Consider a network with one source and several sinks, of which we may
choose one to focus on. Let n and N be the number of outgoing links from
the source and the number of ingoing links to the chosen sink, respectively.
Assume that the source wants to transmit a message to the sink. To that end,
the source encodes the message into a collection of n packets of length m,
seen as a matrix C ∈ Fm×n

q , being each packet sent through each outgoing
link from the source. In this context, linear network coding [1, 37, 41] over the
finite field Fq is the process by which relay nodes in the network forward
linear combinations of the received packets. According to [37, Def. 1], the
sink is expected to receive the matrix

Y = CAT ∈ Fm×N
q ,

where A ∈ FN×n
q is called the transfer matrix of corresponding source and

sink. For robustness and decentralization, it is desirable to choose A at ran-
dom by choosing the linear combinations randomly at each relay node (ran-
dom linear network coding [31]).

Reliability and security in this context was first considered in [10] and [11],
respectively. In [60], the authors consider for the first time coding tech-
niques to protect information simultaneously from link errors and link ob-
servations, independently and without knowledge of the underlying linear
network code. Hence such coding techniques are compatible with random
linear network coding.

According to the model in [60], we say that t errors and ρ erasures happened
if the sink receives

Y = CAT + E ∈ Fm×N
q ,

for matrices E ∈ Fm×N
q and A ∈ FN×n

q , where t = Rk(E) and ρ = n− Rk(A),
and we say that µ observations happened if the wire-tapper obtains

CBT ∈ F
m×µ
q ,

for a matrix B ∈ F
µ×n
q .

The authors in [60] obtained optimal coding techniques when n ≤ m by
using pairs of Fqm -linear Gabidulin codes in Fn

qm [21, 55] (one for reliability
and one for security) in a concatenated manner. In [39], nested coset coding
schemes are introduced in this context to apply pairs of codes in an integrated
way. The following is [39, Def. 7]:

Definition 0.2. A coset coding scheme over Fq with message set S is a family
of disjoint nonempty subsets of Fm×n

q , PS = {Cx}x∈S .
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For each x ∈ S , choose uniformly at random a matrix C ∈ Cx. Then C is
the encoding of x by the coset coding scheme.

We may use nested linear code pairs, introduced in [66, Sec. III.A], to obtain
coset coding schemes with linearity properties:

Definition 0.3. A nested Fq-linear code pair is a pair of Fq-linear codes C2 &
C1 ⊆ Fm×n

q . We may define a coset coding scheme with message set S = F`
q,

` = dim(C1/C2), based on such a code pair as follows: Choose an Fq-linear
subspaceW ⊆ C1 such that C1 = C2 ⊕W , define a vector space isomorphism
ψ : F`

q −→ W , and finally define Cx = ψ(x) + C2, for x ∈ F`
q.

Such coset coding schemes are called Fq-linear nested coset coding schemes
[39].

We may define similarly nested Fqm -linear code pairs in Fn
qm , by consider-

ing S = F`
qm .

In Paper A, it is shown that this defines a bijection between the family
of nested Fq-linear code pairs and the family of coset coding schemes with
message set S = F`

q that are Fq-linear in the following sense:

aCx + bCy ⊆ Cax+by,

for all a, b ∈ Fq and all x, y ∈ F`
q. Analogously for the Fqm -linear case.

As explained above, we are interested in coset coding schemes that are
universally reliable and secure. The following definition is given in a more
general form in [60]:

Definition 0.4. Given positive integers t, ρ and µ, we say that a coset coding
scheme PS is:

1. Universally t-error and ρ-erasure-correcting if, for every A ∈ FN×n
q with

Rk(A) = n− ρ, there exists a decoding function DA : Fm×N
q −→ S such

that DA(Y) = x, for every x ∈ S and every matrix of the form

Y = CAT + E,

where C ∈ Cx and E ∈ Fm×N
q is such that Rk(E) ≤ t.

2. Universally secure under µ observations if

H(x|CBT) = H(x),

for every B ∈ F
µ×n
q .

The universal error and erasure-correction capability of coset coding schemes
was obtained in terms of the rank metric chronologically in the following
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1. Generalized weights and universal secure linear network coding

works: First in [59, 60] when C2 = {0}, then in [39, Th. 4] for nested Fqm -
linear code pairs, and finally in Paper A for general coset coding schemes.
To state such result, we need to define the minimum rank distance of a coset
coding scheme PS , which is given in Paper A:

dR(PS ) = min{Rk(C− D) : C ∈ Cx, D ∈ Cy, x 6= y},

where we denote dR(C1, C2) = dR(PS ) for nested coset coding schemes.
Then we may state the following result, which is proven in Paper A in a

slightly different form:

Theorem 0.1 ([A]). For positive integers t and ρ, a coset coding scheme PS in
Fm×n

q is universally t-error and ρ-erasure-correcting if, and only if, 2t+ ρ < dR(PS ).

Universal security performance, as in Definition 0.4, is also measured by
the minimum rank distance, as proven in [60]. However, the concept of rela-
tive generalized rank weights, introduced independently in [39, 45] allows us to
give a deeper analysis on the information leakage to the wire-tapper:

Definition 0.5. Given nested Fqm -linear codes C2 & C1 ⊆ Fn
qm , we define their

r-th relative generalized rank weight as

dR,r(C1, C2) = min{dim(V) : V ∈ Υ(Fn
qm),

dim(C1 ∩ V)− dim(C2 ∩ V) ≥ r},

for r = 1, 2, . . . , dim(C1/C2). For one Fqm -linear code C ⊆ Fn
qm , we define its r-

th generalized rank weight as dR,r(C) = dR,r(C, {0}), for r = 1, 2, . . . , dim(C).

It holds that dR,1(C1, C2) = dR(C1, C2) [34, 39, 53]. The following result is
proven in [39]:

Theorem 0.2. Given nested Fqm -linear codes C2 $ C1 ⊆ Fn
qm , it holds that dR,r(C⊥2 , C⊥1 )

is the minimum number of links that an adversary needs to wire-tap in order to ob-
tain at least r units of information (number of bits multiplied by log2(q

m)) of the
sent message, for r = 1, 2, . . . , dim(C1/C2).

In particular, we deduce that the wire-tapper obtains no information about
the sent message when listening to less than dR(C1, C2) links in the network.

1.2 Equivalences and bounds for generalized rank weights

Theorem 0.1 is one of the main results in Paper A. Other results in that paper,
which we summarize in this subsection, establish new connections between
relative generalized rank weights and relative generalized Hamming weights.

Mainly, we obtain characterizations of vector space isomorphisms pre-
serving rank-metric properties between Fqm -linear codes. Using such isomor-
phisms, we are able to define relative generalized rank weights in terms of
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relative generalized Hamming weights. This will allow us to translate most
of the well-known bounds on the latter weights to bounds on the former
weights.

We will make use of the following alternative definition of relative gener-
alized rank weights given first in [34] for non-relative weights and extended
in Paper A to relative weights:

dR,r(C1, C2) = min{wtR(D) : D ⊆ C1,D ∩ C2 = {0}
dim(D) = r},

for r = 1, 2, . . . , dim(C1/C2), where we define wtR(D) = dim(D∗), for any
Fqm -linear subspace D ⊆ Fn

qm . It can be proven that wtR(c) = wtR(〈c〉), for
every c ∈ Fn

qm .
We may now establish the characterizations mentioned above:

Theorem 0.3 ([A]). Given an Fqm -linear vector space isomorphism φ : V −→ W ,
where V ∈ Υ(Fn

qm) andW ∈ Υ(Fn′
qm), the following are equivalent:

1. If c ∈ V and wtR(c) = 1, then wtR(φ(c)) = 1.

2. φ preserves rank weights, that is, wtR(φ(c)) = wtR(c), for all c ∈ V .

3. For all Fqm -linear subspaces D ⊆ V , it holds that wtR(φ(D)) = wtR(D).

4. For all U ⊆ V such that U ∈ Υ(Fn
qm), it holds that φ(U ) ∈ Υ(Fn′

qm).

5. There exists β ∈ F∗qm and an Fqm -linear vector space isomorphism φ′ : V −→
W such that φ′(V|Fq) ⊆ W|Fq and φ(c) = βφ′(c), for every c ∈ V . Equiv-
alently, there exists a matrix A ∈ Fn×n′

q and β ∈ F∗qm such that φ(c) = βcA,
for every c ∈ V .

In such case, we will say that φ is a rank equivalence.

We recall that the equivalence between Items 2 and 5 in the previous
theorem was obtained first in [5, Th. 1] when V =W = Fn

qm .
Observe that rank equivalences defined on the appropriate ambient spaces

preserve relative generalized rank weights and the full universal security per-
formance of Fqm -linear nested coset coding schemes by [39, Lemma 7].

Since every Fqm -linear code C ⊆ Fn
qm is contained in some Fqm -linear Ga-

lois closed space, namely C∗, we may use these spaces as ambient spaces for
the rank metric. Hence we may give the following definition:

Definition 0.6 ([A]). We say that two Fqm -linear codes C ⊆ Fn
qm and C ′ ⊆ Fn′

qm

are rank equivalent if there exists a rank equivalence φ between V and W
such that φ(C) = C ′, where C ⊆ V ∈ Υ(Fn

qm) and C ′ ⊆ W ∈ Υ(Fn′
qm).
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1. Generalized weights and universal secure linear network coding

Before stating our main results, we remark that the previous characteriza-
tions also allow us to prove the following: The last generalized rank weight
of an Fqm -linear code gives the range of all possible lengths n for which there
exists another Fqm -linear code that is rank equivalent to the given one.

Proposition 0.7 ([A]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k and any

positive integer n′, there exists an Fqm -linear code C ′ ⊆ Fn′
qm that is rank equivalent

to C if, and only if, n′ ≥ dR,k(C).

We may now give following interesting connection between relative gen-
eralized rank weights and relative generalized Hamming weights, introduced
in [42, 65]:

Theorem 0.4 ([A]). Given nested Fqm -linear codes C2 & C1 ⊆ Fn
qm , it holds that

dR,r(C1, C2) = min{dH,r(φ(C1), φ(C2)) : φ : Fn
qm −→ Fn

qm

is a rank equivalence},

where dH,r(D1,D2) denotes the r-th relative generalized Hamming weight [42, 65]
of nested Fqm -linear codes D2 & D1 ⊆ Fn

qm , for r = 1, 2, . . . , dim(D1/D2), that is,

dH,r(D1,D2) = min{#I : I ⊆ {1, 2, . . . , n},
dim(D1 ∩ VI)− dim(D2 ∩ VI) ≥ r},

where VI = {(c1, c2, . . . , cn) : ci = 0, ∀i /∈ I}, for a subset I ⊆ {1, 2, . . . , n}.

This result is used in Paper A to prove the following theorem:

Theorem 0.5 ([A]). Fix numbers ` and 1 ≤ r, s ≤ `, and functions fr,s, gr,s :
N −→ R, which may also depend on n, m, ` and q. If gr,s is increasing, then every
bound of the form

fr,s(dr(C1, C2)) ≥ gr,s(ds(C1, C2))

that is valid for relative generalized Hamming weights, for any pair of Fqm -linear
codes C2 & C1 ⊆ Fn

qm with dim(C1/C2) = `, is also valid for relative generalized
rank weights.

We now give a list of bounds of this form, most of which are taken from
[62]. Among them, only monotonicity [39, Lemma 4] and its refinement [19,
Prop. II.3] had been obtained before for (relative) generalized rank weights.
Fix positive integers 1 ≤ r ≤ s ≤ `, and denote dj = dR,j(C1, C2), for all
j = 1, 2, . . . , `, for nested Fqm -linear codes C2 & C1 ⊆ Fn

qm such that ` =

dim(C1/C2). The following bounds can be directly translated from relative
generalized Hamming weights to relative generalized rank weights:
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1. Monotonicity:
dr+1 ≥ dr + 1,

2. Griesmer-type ( [62, Bound (14)]):

dr ≥
r−1

∑
i=0

⌈
d1

qmi

⌉
,

3. Griesmer-type ( [62, Bound (16)]):

ds ≥ dr +
s−r

∑
i=0

⌈
(qm − 1)dr

(qmr − 1)qmi

⌉
,

4. [30, Th. 1] or [62, Bound (18)]:

(qms − 1)dr ≤ (qms − qm(s−r))ds,

5. [30, Cor. 1]:
(qmr − 1)d1 ≤ (qmr − qm(r−1))dr,

6. [19, Prop. II.3]:
(qmr − 1)dr−1 ≤ (qmr − qm)dr,

7. [62, Bound (20)]:

dr ≥ n−
⌊
(qm(`−r) − 1)(n− ds)

qm(`−s) − 1

⌋
.

1.3 Generalized rank weights of reducible codes

In this subsection, we estimate the generalized rank weights of reducible codes,
introduced in [23], and show that all Fqm -linear codes with optimal general-
ized rank weights, for fixed packet and code sizes, must be reducible. These
results are obtained in Paper B and have no analogy in the theory of general-
ized Hamming weights.

Reducible codes were introduced and defined in [23] as follows:

Definition 0.8. Fix positive integers l, ki and ni, for i = 1, 2, . . . , l, with n =
n1 + n2 + · · ·+ nl . We say that an Fqm -linear code C ⊆ Fn

qm , of dimension k,

is reducible with reduction R = (Gi,j)
i≤j≤l
1≤i≤l if it has a generator matrix of the

form

G =



G1,1 G1,2 G1,3 . . . G1,l−1 G1,l
0 G2,2 G2,3 . . . G2,l−1 G2,l
0 0 G3,3 . . . G3,l−1 G3,l
...

...
...

. . .
...

...
0 0 0 . . . Gl−1,l−1 Gl−1,l
0 0 0 . . . 0 Gl,l


,
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1. Generalized weights and universal secure linear network coding

where Gi,j ∈ F
ki×nj
qm , for i = 1, 2, . . . , l and j = i, i + 1, . . . , l.

For a given reduction R as in the previous definition, we define the main
components of the code C as the Fqm -linear codes C1, C2, . . . , Cl with generator
matrices G1,1, G2,2, . . . , Gl,l , respectively, its row components as the Fqm -linear
codes C ′i ⊆ Fn

qm with generator matrices

G′i = (0, . . . , 0, Gi,i, Gi,i+1, . . . , Gi,l),

for i = 1, 2, . . . , l, and its column components as the Fqm -linear codes Ĉj ⊆ F
nj
qm

generated by the matrices

Ĝj = (G1,j, G2,j, . . . , Gj,j)
T ,

for j = 1, 2, . . . , l, which need not have full rank.

When choosing n = lm and all codes C1, C2, . . . , Cl ⊆ Fm
qm as Gabidulin

codes [21, 55] of the same dimension k′, it holds that k = lk′ and dR(C) =
m − k′ + 1, which is the maximum possible [23]. This is, to the best of our
knowledge, the only family of maximum rank distance Fqm -linear codes in
Fn

qm whenever n > m. This idea can be extended, as we do in Paper B, to
obtain maximum rank distance Fqm -linear codes for other families of param-
eters when n > m.

The following lower and upper bounds are given in Paper B and allow us
to estimate the generalized rank weights of reducible codes in terms of their
components:

Theorem 0.6 ([B]). Let notation be as in Definition 0.8, and set dR,0(D) = 0 for
an Fqm -linear code D. For every r = 1, 2, . . . , k, we have that

dR,r(C) ≥ min{dR,r1(C1) + dR,r2(C2) + · · ·+ dR,rl (Cl)

: r = r1 + r2 + · · ·+ rl , 0 ≤ ri ≤ ki},

and

dR,r(C) ≤ min{dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl (C

′
l )

: r = r1 + r2 + · · ·+ rl , 0 ≤ ri ≤ ki}.

Moreover, it holds that

dR,r(C⊥) ≤ min{dR,̂r1
(Ĉ⊥1 ) + dR,̂r2(Ĉ

⊥
2 ) + · · ·+ dR,̂rl

(Ĉ⊥l )

: r = r̂1 + r̂2 + · · ·+ r̂l , 0 ≤ r̂j ≤ k̂ j},

for r = 1, 2, . . . , n− k̂, where k̂ j = dim(Ĉ⊥j ), for j = 1, 2, . . . , l, and k̂ = k̂1 + k̂2 +

· · ·+ k̂l .
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Observe that the first of these bounds was already given in [23, Lemma 2]
for r = 1.

On the other hand, if we fix the packet and code sizes, that is, m and k =
dim(C), and we allow n to vary, then all Fqm -linear codes whose generalized
rank weights are all optimal must be reducible. To show this, we use the
following upper bounds given in Paper A:

Lemma 0.9 ([A]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k, for each

r = 1, 2, . . . , k− 1, it holds that

1 ≤ dR,r+1(C)− dR,r(C) ≤ m.

As a consequence, for each r = 1, 2, . . . , k, it holds that

dR,r(C) ≤ rm.

The following result is proven in Paper B:

Theorem 0.7 ([B]). Throughout the theorem, fix positive integers k and m, and a
basis α1, α2, . . . , αm of Fqm over Fq.

Define the Fqm -linear code Copt = C1 × C2 × · · · × Ck ⊆ Fkm
qm , where all Ci are

equal and generated by the vector (α1, α2, . . . , αm) ∈ Fm
qm . Then dim(Copt) = k and

dR,r(Copt) = rm, for r = 1, 2, . . . , k.
Conversely, let C ⊆ Fn

qm be an Fqm -linear code of dimension k such that dR,r(C) =
rm, for every r = 1, 2, . . . , k. Then C is rank equivalent to the previous code
Copt ⊆ Fkm

qm . Moreover, the rank equivalence can be explicitly constructed in polyno-
mial time from any basis of C.

Such a decomposition theorem has no analogy in the theory of general-
ized Hamming weights.

1.4 Relative generalized matrix weights and universal secure
rank-metric list-decodable schemes

So far we have studied Fqm -linear codes in Fn
qm . In [53], a notion of gener-

alized weights is introduced for Fq-linear codes C ⊆ Fm×n
q , called Delsarte

generalized weights. However, its connection with information leakage was
proven in [53] only for Fqm -linear codes.

In this subsection, we introduce a notion of relative generalized weights
for nested Fq-linear codes C2 & C1 ⊆ Fm×n

q that measures their universal se-
curity performance in terms of worst-case information leakage as in Theorem
0.2. Such relative generalized weights can be defined over any field F, which
mathematically plays the role of Fq. In addition, they coincide with Delsarte
generalized weights [53] when F = Fq, C2 = {0} and m 6= n.

The results in this subsection are obtained in Paper C. We start with the
main definition:

12



1. Generalized weights and universal secure linear network coding

Definition 0.10 ([C]). Given nested F-linear codes C2 $ C1 ⊆ Fm×n, we de-
fine their r-th relative generalized matrix weight as

dM,r(C1, C2) = min{dim(L) : L ⊆ Fn, F− linear,

dim(C1 ∩ VL)− dim(C2 ∩ VL) ≥ r},

for r = 1, 2, . . . , dim(C1/C2), where we define

VL = {V ∈ Fm×n : Row(V) ⊆ L},

for an F-linear subspace L ⊆ Fn.
For one F-linear code C ⊆ Fm×n, we define its r-th generalized matrix

weight as dM,r(C) = dM,r(C, {0}), for r = 1, 2, . . . , dim(C).

In this case, it is proven in Paper C that dM,1(C1, C2) = dR(C1, C2), which
extends [53, Th. 30] when both notions of generalized weights coincide.

We may now state a result analogous to Theorem 0.2:

Theorem 0.8 ([C]). Given nested Fq-linear codes C2 $ C1 ⊆ Fm×n
q , it holds that

dM,r(C⊥2 , C⊥1 ) is the minimum number of links that an adversary needs to wire-tap in
order to obtain at least r units of information (number of bits multiplied by log2(q))
of the sent message.

In this case, we define the dual of an Fq-linear code C ⊆ Fm×n
q as

C⊥ = {D ∈ Fm×n
q : Trace(CDT) = 0, ∀C ∈ C}.

In particular, as in the Fqm -linear case, we conclude that the wire-tapper
obtains no information about the sent message when listening to less than
dR(C⊥2 , C⊥1 ) links in the network.

As expected, it holds that relative generalized matrix weights extend rel-
ative generalized rank weights. Moreover, due to the study on duality of
rank-metric codes given in [54], this shows that Theorem 0.8 extends Theo-
rem 0.2:

Theorem 0.9 ([C]). Let α1, α2, . . . , αm be a basis of Fqm as a vector space over Fq.
Given nested Fqm -linear codes C2 $ C1 ⊆ Fn

qm , and integers 1 ≤ r ≤ dim(C1/C2)
(over Fqm ) and 0 ≤ p ≤ m− 1, we have that

dR,r(C1, C2) = dM,rm−p(Mα(C1), Mα(C2)),

where Mα : Fn
qm −→ Fm×n

q is as in (1).

The two main applications of these new relative generalized weights are
the following, also given in Paper C: First, we obtain universal secure Fq-
linear codes for noiseless networks with largest possible message set S = F`

q
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-equivalently, information rate- for a given number of observations µ. To that
end, we use the Fq-linear maximum rank distance codes in [16]. This family
of optimal universal secure Fq-linear codes for noiseless networks extends
those obtained in [60] based on Gabidulin codes [21, 55].

Secondly, we obtain in Paper C the first family of universal secure rank-
metric list-decodable (Fq-linear) coset coding schemes. Such schemes are
based on a recent construction of rank-metric list-decodable codes by Gu-
ruswami et al [27].

We first extend the concept of rank list-decodable codes from [18, Def. 2]
to coset coding schemes:

Definition 0.11 ([C]). For positive integers e and L, we say that a coset coding
scheme PS = {Cx}x∈S is rank (e, L)-list-decodable if, for every Y ∈ Fm×n

q , we
have that

# {x ∈ S : Px ∩ B(Y, e) 6= ∅} ≤ L,

where B(Y, e) denotes the ball in Fm×n
q with center Y and rank radius e. The

number of list-decodable rank errors is e and the list sizes are said to be
polynomial in n if L = O(F(n)), for some polynomial F(x).

We may summarize the mentioned construction as follows:

Theorem 0.10 ([C]). Assume that n divides m and fix ε > 0 and positive integers s
and 0 ≤ k2 < k1 ≤ n such that 4sn ≤ εm and m/n = O(s/ε). We may explicitly
construct nested Fq-linear codes C2 $ C1 ⊆ Fm×n

q such that:

1. ` = dim(C1/C2) ≥ m(k1 − k2)(1− 2ε).

2. The corresponding coset coding scheme is universal secure under µ ≥ k2 ob-
servations.

3. The corresponding coset coding scheme is rank (e, L)-list-decodable for all e ≤
s

s+1 (n− k1), with L ≤ qO(s
2/ε2), and it admits a list-decoding algorithm that

obtains all corresponding uncoded messages with polynomial complexity in n.

This construction is based on the results in [27], and extends the rank
list-decodable codes in [27, Sec. IV], which are obtained by choosing k2 = 0.

To evaluate the near optimality of this construction informally, we may
compare it with the optimal universal secure and rank unique-decodable
nested Fqm -linear codes C2 $ C1 ⊆ Fn

qm , with n ≤ m, k1 = dim(C1) and
k2 = dim(C2), obtained in [60], which satisfy that:

1. ` = dim(C1/C2) = m(k1 − k2) (here dimensions of Fqm -linear codes are
taken over Fq).

2. The corresponding coset coding scheme is universal secure under µ =
k2 observations.

14



1. Generalized weights and universal secure linear network coding

3. The corresponding coset coding scheme is universal e-error-correcting
if e ≤ b n−k1

2 c.

When ε is small and s is large, our construction has parameters close to
those obtained in [60], and it can list-decode roughly twice as many rank
errors as the construction in [60] can unique-decode.

Finally, as a third application, we obtain the following extension of Theo-
rem 0.3:

Theorem 0.11 ([C]). Let φ : VL −→ VK be an Fq-linear vector space isomorphism,
for Fq-linear subspaces L ⊆ Fn

q and K ⊆ Fn′
q , and consider the following properties:

(P 1) There exist full-rank matrices A ∈ Fm×m and B ∈ Fn×n′ such that φ(C) =
ACB, for all C ∈ VL.

(P 2) A subspace U ⊆ VL is of the form U = VJ for an Fq-linear subspace J ⊆ Fn
q

if, and only if, so is φ(U ).

(P 3) For all Fq-linear subspaces D ⊆ VL, it holds that wtR(φ(D)) = wtR(D),
where

wtR(D) = dim

(
∑

D∈D
Row(D)

)
.

(P 4) φ is a rank isometry.

Then the following implications hold:

(P 1)⇐⇒ (P 2)⇐⇒ (P 3) =⇒ (P 4).

In addition, (P 3)⇐= (P 4) holds when L = K = Fn
q and m 6= n.

This result extends not only Theorem 0.3, which extends in turn [5, Th.
1], but also [43, Th. 1] and [44, Prop. 3].

1.5 Universal reliable and secure coset coding schemes with
optimal communications overheads

We conclude this study on universal secure linear network coding with an
application to secure distributed storage with crisscross errors and erasures.

Consider a distributed storage system where data is encoded into a ma-
trix, where errors may occur along columns (data centers) and/or rows (cor-
related data among data centers), where several columns may not be available
or contacted, and where an eavesdropper obtains information from several
columns. These type of errors are called crisscross errors and were first studied
in [55]. As noticed in that work, this type of reliability and security can be
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obtained by coset coding schemes that are reliable and secure as in Definition
0.4.

Informally, “rank reliability and security” is stronger than “crisscross re-
liability and security”. Hence we will consider the former type of reliability
and security throughout this subsection.

In Paper D, we give a construction of a coset coding scheme that is uni-
versal reliable and secure in this context and which has optimal information
rate and communication overheads. The ideas behing the modelling of this
scenario and the given optimal construction are based on those from commu-
nication efficient secret sharing [6, 33, 64].

To obtain the mentioned optimal communication overheads, we need to
divide packets (subpacketization). That is, we will consider matrices in Fαm×n

q
for some positive integer α.

We start by defining communication overheads:

Definition 0.12 ([D]). For a full-rank matrix A ∈ Fd×n
q with rows a1, a2, . . . , ad ∈

Fn
q , we say that certain preprocessing functions EA,i : Fαm

q −→ F
βim
q , for i =

1, 2, . . . , d, are t-error-correcting with respect to a coset coding scheme PS =

{CX}X∈S , S = Fαm×`
q , if there exists a decoding function DA : ∏d

i=1 F
βim
q −→

Fαm×`
q such that

DA

((
EA,i

(
CaT

i + ei

))d

i=1

)
= X,

for all C ∈ CX , all X ∈ Fαm×`
q and all error matrices E ∈ Fαm×d

q of rank at
most t with columns e1, e2, . . . , ed ∈ Fαm

q .
We define the communication overhead of the corresponding matrix A

and preprocessing functions as

CO(A) =
d

∑
i=1

βi
α
− `.

Recall from [60, Th. 12] that a general bound on ` -equivalently, on the
information rate- is the following:

` ≤ n− 2t− ρ− µ, (2)

with parameters as in Definition 0.4. In Paper D we obtain the following
lower bound on communication overheads based on its Hamming-analog
[33, Th. 1]. Observe that only erasures, and not errors, are considered in
communication efficient secret sharing. Thus, the following result is not a
trivial rank-analog of [33, Th. 1].

Proposition 0.13 ([D]). If a coset coding scheme is universally secure under µ
observations, then for a full-rank matrix A ∈ Fd×n

q and preprocessing functions
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2. Rank-metric properties of skew cyclic codes

EA,i : Fαm
q −→ F

βim
q , for i = 1, 2, . . . , d, that are t-error-correcting with respect to

such scheme, it holds that:

CO(A) ≥ `(2t + µ)

d− 2t− µ
. (3)

The optimal construction in Paper D is based on the optimal construc-
tions of communication efficient secret sharing schemes in [6, 33]. It can be
summarized as follows:

Theorem 0.12 ([D]). Choose integers k2, k1, t0 and ρ0 such that 0 ≤ k2 < k1 ≤ n
and 2t0 + ρ0 = n− k1, choose any subset D ⊆ [n− ρ0, n] such that n− ρ0 ∈ D,
and denote the elements in D by dh = n− ρ0 < dh−1 < . . . < d2 < d1.

Using Gabidulin codes [21, 55] in Fn
qm , we may explicitly construct a coset coding

scheme PS , S = Fαm×`
q , such that ` = k1 − k2, it is universally t-error and ρ-

erasure-correcting if 2t+ ρ ≤ n− k1, and is universally secure under µ observations
if µ ≤ k2. In particular, the scheme is optimal in the sense of (2). Moreover, it holds
that

α = LCM (d1 − 2t0 − k2, d2 − 2t0 − k2, . . . , dh − 2t0 − k2) .

In addition, for any d ∈ D and any full-rank matrix A ∈ Fd×n
q , there exist

preprocessing functions EA,i : Fαm
q −→ F

`αm/(d−2t0−k2)
q , for i = 1, 2, . . . , d, which

are t0-error-correcting and satisfying equality in (3), hence having optimal commu-
nication overheads for all d ∈ D.

2 Rank-metric properties of skew cyclic codes

In this section, we collect our main results concerning skew cyclic codes and
their rank-metric properties: Structure, minimum rank distance, rank error-
correcting algorithms and rank equivalences and degenerateness. These re-
sults are contained in Papers E, F and G, and correspond to the second group
of results mentioned in the Abstract.

2.1 Preliminaries

Skew cyclic codes play a similar role with respect to the rank metric as that
played by cyclic codes with respect to the Hamming metric.

Throughout this section, we will fix positive integers m, n and r such that
m divides rn, and we will consider the four finite fields Fq, Fqr , Fqm and Fqrn

shown in the following graph, where F −→ F′ means that F′ is an extension
of F:
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Fq
↙ ↘

Fqm Fqr

↘ ↙
Fqrn

For convenience, we will also denote coordinates from 0 to n − 1 and
consider them as integers modulo n. Moreover, throughout this subsection,
we will use the notation [i] = qi, for i = 0, 1, 2, . . ..

The concept of skew cyclic code in Fn
qm of order r, or qr-cyclic code, was

given first in [21] when r = 1 and m = n, then extended in [22] to the cases
m 6= n, and the general definition was first given in [8]:

Definition 0.14. Let C ⊆ Fn
qm be an arbitrary (linear or non-linear) code. We

say that it is skew cyclic of order r, or qr-cyclic if the qr-shifted vector

σr,n(c) = (c[r]n−1, c[r]0 , c[r]1 , . . . , c[r]n−2) (4)

lies in C, for every c = (c0, c1, . . . , cn−1) ∈ C.

The main property of Fqm -linear qr-cyclic codes is that they can be de-
scribed as left ideals of quotients of skew polynomial rings. These rings were
first introduced by Ore in [47], where the special case of skew polynomials
over finite fields, also named linearized polynomials, were studied with more
detail in [46].

Formally, a qr-linearized polynomial (abbreviated as qr-polynomial) over
Fqm is a polynomial in x of the form

F(x) = F0x + F1x[r] + F2x[2r] + · · ·+ Fdx[dr],

where F0, F1, . . . , Fd ∈ Fqm , for i = 0, 1, 2, . . . , d. We will denote degqr (F(x)) =
d if Fd 6= 0, also called qr-degree, and consider the symbolic product ⊗ in
Lqr Fqm [x], defined as follows

F(x)⊗ G(x) = F(G(x)),

for any F(x), G(x) ∈ Lqr Fqm [x]. Endowed with this product and usual ad-
dition, Lqr Fqm [x] is a left and right Euclidean domain, that is, left and right
Euclidean divisions exist.

The previously mentioned algebraic characterization was obtained inde-
pendently in [8, Th. 1] and [22, Lemma 3]:

Lemma 0.15. A code C ⊆ Fn
qm is Fqm -linear and qr-cyclic if, and only if, C(x) is a

left ideal in Lqr Fqm [x]/(x[rn] − x), where

C(x) = {c0x + c1x[r] + · · ·+ cn−1x[(n−1)r] + (x[rn] − x) : (c0, c1, . . . , cn−1) ∈ C}.
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2. Rank-metric properties of skew cyclic codes

In the following, we will identify C with C(x), and for a qr-linearized
polynomial F(x) ∈ Lqr Fqm [x], we will denote by F its residue class modulo
x[rn] − x.

Skew cyclic codes admit other analogous descriptions as those of cyclic
codes. These were proven in [9], in [22] for r = 1, and originally in [21] for
r = 1 and m = n:

Theorem 0.13. There exists a unique qr-polynomial G(x) = G0x + G1x[r] + · · ·+
Gn−kx[(n−k)r] over Fqm of qr-degree n − k that is monic and of minimal qr-degree
among the qr-polynomials whose residue class modulo x[rn] − x lies in C(x). It
satisfies that C(x) = (G). There exists another (unique) qr-polynomial H(x) =
H0x + H1x[r] + · · · + Hkx[kr] over Fqm such that x[rn] − x = G(x) ⊗ H(x) =
H(x)⊗ G(x). They satisfy:

1. A qr-polynomial F lies in C(x) if, and only if, G(x) divides F(x) on the right.

2. The qr-polynomials x ⊗ G, x[r] ⊗ G, . . . , x[(k−1)r] ⊗ G constitute a basis of
C(x).

3. The dimension of C is k = n− degqr (G(x)).

4. C has a generator matrix given by
G0 G1 . . . Gn−k 0 . . . 0
0 G[r]

0 . . . G[r]
n−k−1 G[r]

n−k . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . G[(k−1)r]
0 G[(k−1)r]

1 . . . G[(k−1)r]
n−k

 .

5. A qr-polynomial F lies in C(x) if, and only if, F⊗ H = 0.

6. C has a parity check matrix (over Fqm ) given by
hk hk−1 . . . h0 0 . . . 0
0 h[r]k . . . h[r]1 h[r]0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . h[(n−k−1)r]
k h[(n−k−1)r]

k−1 . . . h[(n−k−1)r]
0

 ,

where hi = H[(k−i)r]
i .

7. C⊥ is also qr-cyclic and its generator of minimal qr-degree is H⊥(x) = (hkx+
hk−1x[r] + · · ·+ h0x[kr])/h0.

The qr-polynomial G(x) will be called the minimal generator of C(x), and
H(x) will be called the minimal check qr-polynomial of C(x).
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One of the most well-known families of skew cyclic codes is a subfamily
of generalized Gabidulin codes. These codes were introduced first in [21] when
r = 1, and then in general in [38], and are defined as follows. Assume that
n ≤ m and r and m are coprime, and take a vector α = (α1, α2, . . . , αn) ∈ Fn

qm ,
where α1, α2, . . . , αn are linearly independent over Fq, and an integer 1 ≤ k ≤
n. We define the (generalized) Gabidulin code of dimension k in Fn

qm as the
Fqm -linear code Gabk,r(α) with generating matrix given by

α1 α2 α3 . . . αn

α
[r]
1 α

[r]
2 α

[r]
3 . . . α

[r]
n

α
[2r]
1 α

[2r]
2 α

[2r]
3 . . . α

[2r]
n

...
...

...
. . .

...
α
[kr]
1 α

[kr]
2 α

[kr]
3 . . . α

[kr]
n


.

These codes are maximum rank distance, that is, dR(Gabk,r(α)) = n −
k + 1. Moreover, they are qr-cyclic whenever m = n and α1, α2, . . . , αn form a
normal basis of Fqm over Fq.

2.2 Root spaces and bounds on the minimum rank distance

In this subsection, we establish an anti-isomorphism between the lattice of
skew cyclic codes and the lattice of vector spaces of roots of skew polyno-
mials. Then we use the description of skew cyclic codes in terms of roots
to obtain lower bounds on their minimum rank distance. These bounds are
based on the well-known shift bound and Hartmann-Tzeng bound, and they
extend the rank version of the BCH bound given in [12, Prop. 1].

Observe first that a qr-linearized polynomial F(x) ∈ Lqr Fqm [x] defines an
Fqr -linear map F : Fqrn −→ Fqrn , and in particular its set of roots in Fqrn is an
Fqr -linear vector space.

Definition 0.16 ([E]). Given a residue class F = F(x) + (x[rn] − x), we define
its root space, denoted as Z(F), as the Fqr -linear vector space of roots in Fqrn

of F(x).
Finally, define the map ρr between the family of Fqm -linear qr-cyclic codes

in Fn
qm and the family of qr-root spaces over Fqm in Fqrn by ρr(C) = T , where

T = Z(G) and G(x) is the minimal generator of C(x).

The first main result in Paper E is the following:

Theorem 0.14 ([E]). The map ρr in Definition 0.16 is a lattice anti-isomorphism.
More concretely, it is bijective and the following properties hold.

Let C1(x) and C2(x) be two qr-cyclic codes with minimal generators G1(x) and
G2(x), respectively. Set T1 = Z(G1) and T2 = Z(G2). We have that

20



2. Rank-metric properties of skew cyclic codes

1. C1(x)∩C2(x) is the qr-cyclic code whose minimal generator is given by M(x) =
lcm(G1(x), G2(x)) (on the right), and Z(M) = T1 + T2.

2. C1(x) + C2(x) is the qr-cyclic code whose minimal generator is given by
D(x) = gcd(G1(x), G2(x)) (on the right), and Z(D) = T1 ∩ T2.

3. C1(x) ⊆ C2(x) if, and only if, G2(x) divides G1(x) on the right, and this
holds if, and only if, T2 ⊆ T1.

Moreover, root spaces also give core information about the corresponding
skew cyclic codes:

Theorem 0.15 ([E]). Let T = ρr(C) as in Definition 0.16, then:

1. G(x) = ∏β∈T (x− β).

2. The dimension of C over Fqm is k = n− dimFqr (T ).

3. For a qr-polynomial F(x), it holds that F ∈ C(x) if, and only if, F(β) = 0, for
all β ∈ T .

4. Let β1, β2, . . . , βn−k be a basis of T over Fqr . Then the matrix
β1 β

[r]
1 β

[2r]
1 . . . β

[(n−1)r]
1

β2 β
[r]
2 β

[2r]
2 . . . β

[(n−1)r]
2

...
...

...
. . .

...
βn−k β

[r]
n−k β

[2r]
n−k . . . β

[(n−1)r]
n−k


is a parity check matrix of C over Fqrn .

5. A qr-polynomial G̃ generates C(x) if, and only if, Z(G̃) = T , which holds if,
and only if, G(x) = gcd(G̃(x), x[rn] − x) (on the right).

Finally, this root description will allow us in Paper E to give lower bounds
on the minimum rank distance of skew cyclic codes analogous to the shift
bound [28] and the Hartmann-Tzeng bound [63]. To that end, we need to
define independent sequences of Fqr -linear vector subspaces of Fqrn with re-
spect to some Fqr -linear subspace S ⊆ Fqrn .

Definition 0.17 ([E]). Given Fqr -linear subspaces S , I0, I1, I2, . . . ⊆ Fqrn , we
say that the sequence I0, I1, I2, . . . is independent with respect to S if the
following hold:

1. I0 = {0}.

2. For i > 0, either
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(a) Ii = Ij ⊕ 〈β〉, for some 0 ≤ j < i, Ij ⊆ S and β /∈ S , or

(b) Ii = I
[br]
j , for some 0 ≤ j < i and some integer b ≥ 0.

We say that a subspace I ⊆ Fqrn is independent with respect to S if it is a
space in a sequence that is independent with respect to S .

Our rank version of the shift bound [63, Th. 11] is the following:

Theorem 0.16 ([E]). Let F ∈ Lqr Fqm [x]/(x[rn] − x) and S = Z(F) = {β ∈
Fqrn : F(β) = 0}, as in Definition 0.16. If I ⊆ Fqrn is an Fqr -linear subspace
independent with respect to S , then

wtR(F) ≥ dimFqr (I),

where we use the notation

wtR(F0x + F1x[r] + · · ·+ Fn−1x[(n−1)r]) = wtR(F0, F1, . . . , Fn−1).

As in the case of cyclic codes and the Hamming distance, we may derive
a rank version of the Hartmann-Tzeng bound [28]:

Corollary 0.18 ([E]). Take integers c > 0, δ > 0 and s ≥ 0, with δ + s ≤
min{m, n} and d = gcd(c, n) < δ, and let α ∈ Fqrn be such that A = {α[(i+jc)r] :
0 ≤ i ≤ δ− 2, 0 ≤ j ≤ s} is a linearly independent (over Fqr ) set of vectors, not
necessarily pairwise distinct.

If F ∈ Lqr Fqm [x]/(x[rn] − x) satisfies that A ⊆ T = Z(F), then wtR(F) ≥
δ + s. In particular, if C = ρ−1

r (T ), with ρr as in Definition 0.16, then

dR(C) ≥ δ + s.

Observe that the rank version of the BCH bound given in [12, Prop. 1] is
obtained when s = 0 and c = 1.

2.3 Rank error-correcting pairs

Error-correcting pairs for the Hamming metric were introduced indepen-
dently by Kötter [36] and Pellikaan [49, 50]. They serve as building blocks to
obtain error-correcting algorithms and bounds on the minimum Hamming
distance for many families of codes [20, 50, 51].

In this subsection, we will adapt this technique to rank-metric codes, as
done in Paper F. We will introduce rank error-correcting pairs for Fqm -linear
codes in Fn

qm and for Fq-linear codes in Fm×n
q , and relate both via the map

Mα from (1). Some skew cyclic codes, including generalized Gabidulin codes,
admit rank error-correcting pairs. Thus the results in this subsection enable
us to provide new rank error-correcting algorithms for skew cyclic codes.
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2. Rank-metric properties of skew cyclic codes

We also remark here that rank error-correcting pairs of type II (see def-
initions below) were obtained in the case m = n independently by Alain
Couvreur [14].

One of the main ingredients in the Hamming case is the coordinate-wise
or Schur product of codewords in Fn

q . The fact that such product preserves
products of polynomials after evaluation makes error-correcting pairs be ap-
plicable to many families of codes.

The main dificulty in obtaining rank error-correcting pairs is finding the
appropriate products of codewords in Fn

qm or Fm×n
q . Interestingly, the con-

ventional product of matrices in Fm×n
q induces a product in Fn

qm via Mα that
preserves symbolic products of q-linearized polynomials.

Unfortunately, this product depends on a prefixed basis of Fqm over Fq,
which throughout the subsection will be denoted by α1, α2, . . . , αm ∈ Fqm .

Definition 0.19 ([F]). Define the product ? : Fm
qm × Fn

qm −→ Fn
qm as follows.

For every c ∈ Fm
qm and every d ∈ Fn

qm , let

c ? d =
m

∑
i=1

cidi,

where d = ∑m
i=1 αidi and di ∈ Fn

q , for all i, and c = (c1, c2, . . . , cm).

The previously mentioned properties can be gathered in the following
proposition:

Proposition 0.20 ([F]). If we denote α = (α1, α2, . . . , αm), then it holds that α[j] ?
c = c[j], for all c ∈ Fn

qm and all j. In particular,

evb(F(x)⊗ G(x)) = evα(F(x)) ? evb(G(x)),

for all b ∈ Fn
qm and all F(x), G(x) ∈ LqFqm [x], where we use the notation evb(F(x)) =

(F(b1), F(b2), . . . , F(bn)). In addition, we have that

Mα(c ? d) = Mα(c)Mα(d),

for all c ∈ Fm
qm and all d ∈ Fn

qm .

We may now define rank error-correcting pairs for Fqm -linear codes in Fn
qm

and for Fq-linear codes in Fm×n
q :

Definition 0.21 ([F]). Given Fqm -linear codes A ⊆ Fn
qm and B ⊆ Fm

qm , the pair
(A,B) is called a t-rank error-correcting pair (t-RECP) of type I for C if the
following properties hold:

1. B ?A ⊆ C⊥, where B ?A denotes the Fqm -linear vector space generated
by b ? a, for b ∈ B and a ∈ A.
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2. dim(A) > t.

3. dR(B⊥) > t.

4. dR(A) + dR(C) > n.

Definition 0.22 ([F]). Given Fq-linear codes A ⊆ Fm×n
q and B ⊆ Fm×m

q , the
pair (A,B) is called a t-rank error-correcting pair (t-RECP) of type II for C if
the following properties hold:

1. BA ⊆ C⊥, where BA denotes the Fq-linear vector space generated by
BA, for B ∈ B and A ∈ A.

2. dim(A) > mt.

3. dR(B⊥) > t.

4. dR(A) + dR(C) > n.

As in the previous section, we define in this context the dual of an Fq-
linear code C ⊆ Fm×n

q as C⊥ = {D ∈ Fm×n
q : Trace(CDT) = 0, ∀C ∈ C}.

As stated in the beginning of this subsection, rank error-correcting pairs
of type II were obtained in the case m = n independently by Alain Couvreur
[14].

In both cases, these codes induce a rank error-correcting algorithm able to
correct t rank errors in polynomial time. We give a sketch of the procedure
for RECPs of type I:

Assume that the received codeword is r = c + e, with c ∈ C, L =
Row(Mα(e)) ⊆ Fn

q and dim(L) ≤ t. Compute the Fqm -linear vector space

K(r) = {a ∈ A : (b ? a) · r = 0, ∀b ∈ B},

which is equal to K(e) by the first condition of t-RECP. Observe that K(r)
can be described by a system of O(n) Fqm -linear equations.

By the third condition of t-RECP, it can be shown that A(L) = K(e) =
K(r), where

A(L) = {a ∈ A : Row(Mα(a)) ⊆ L⊥},

which was defined in [34].
By the second condition of t-RECP, it can be proven that A(L) = A ∩

V⊥L 6= {0}, and therefore we may take a nonzero a ∈ A(L). Define L′ =
Row(Mα(a))⊥. Since a ∈ A(L), we have that L ⊆ L′.

Now, by the fourth condition of t-RECP, we have that

dim(L′) = n−wtR(a) ≤ n− dR(A) < dR(C).
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2. Rank-metric properties of skew cyclic codes

Hence we may compute e or c by solving a system of Fqm -linear equations us-
ing a generator matrix G of L′⊥, or a parity check matrix H of C, respectively.
This has complexity O(n3) over Fqm .

We have the following connection between both types of RECPs:

Theorem 0.17 ([F]). Let α′1, α′2, . . . , α′m ∈ Fqm be an orthogonal basis of α1, α2, . . . , αm
over Fq. Take Fqm -linear codes A, C ⊆ Fn

qm and B ⊆ Fm
qm .

If (A,B) is a t-RECP of type I for C (in the basis α), then (Mα(A), Mα(B)) is
a t-RECP of type II for Mα′(C).

As examples, we see that generalized Gabidulin codes admit RECPs of
type I:

Proposition 0.23 ([F]). If t > 0, A = Gabt+1,r(α) ⊆ Fn
qm , B = Gabt,r(α) ⊆ Fm

qm

and C = Gab2t,r(α)
⊥ ⊆ Fn

qm , then (A,B) is a t-RECP of type I for C.

Some other skew cyclic codes also admit RECPs of type I. Instead of giv-
ing these details, we show that the rank Hartmann-Tzeng bound (Corollary
0.18) can be extended to general Fq-linear codes in Fm×n

q as follows:

Theorem 0.18 ([F]). Take Fq-linear codes A, C ⊆ Fm×n
q and B ⊆ Fm×m

q , and
assume that BA ⊆ C⊥. If dR(A⊥) > a > 0 and dR(B⊥) > b > 0, then dR(C) ≥
a + b.

2.4 Rank equivalences between skew cyclic codes

We conclude this section by analysing rank equivalences between skew cyclic
codes of different lengths. Observe that cyclic codes and skew cyclic codes of
different lengths cannot be equivalent to each other for the Hamming met-
ric, since Hamming-metric equivalences are given by permutations of coor-
dinates after coordinate-wise products with some constant non-zero factors.
Therefore the study in this subsection has no analogy for Hamming-metric
codes.

Our definition of rank equivalence is that of Definition 0.6 and Theorem 0.3.
All the results of this subsection (both statements and proofs) make repeated
use of that theorem.

Our objective is to find the Fqm -linear skew cyclic code of smallest length
that is rank equivalent to a given one. With this motivation, we consider
different types of lengths of a given skew cyclic code:

Definition 0.24 ([G]). Given an Fqm -linear code C ⊆ Fn
qm , an element a ∈ F∗q

and an integer r ≥ 0, we define the following numbers:

1. The rank length, lR(C), as the minimum n′ such that C is rank equiva-
lent to an Fqm -linear code of length n′.
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2. The r-th skew length, lSk,r(C), as the minimum n′ such that C is rank
equivalent to an Fqm -linear skew cyclic code of order r and length n′, if
such a code exists. We define lSk,r(C) = ∞ otherwise.

3. The (a, r)-shift length, lSh,a,r(C), as the minimum n′ such that C is rank
equivalent to a Fqm -linear code of length n′ by a rank equivalence φ such
that a(σr,n′ ◦ φ) = φ ◦ σr,n, if such a code exists. We define lSh,a,r(C) = ∞
otherwise.

4. The period length, lP(C), as the minimum integer 1 ≤ p ≤ n that gener-
ates the ideal modulo n defined as {p′ : ci+p′ = ci, ∀i, ∀(c0, c1, . . . , cn−1) ∈
C}, which necessarily divides n.

The following lemma will be useful, since our given characterizations of
rank equivalences in Theorem 0.3 make use of Galois closures as ambient
spaces:

Lemma 0.25 ([G]). If V ⊆ Fn
qm is Fqm -linear and Galois closed, then it is skew

cyclic of some order if, and only if, it is skew cyclic of all orders. Given an Fqm -linear
code C ⊆ Fn

qm , if it is skew cyclic of some order, then C∗ is skew cyclic (of all orders).

We recall from Proposition 0.7 that lR(C) = dR,k(C) = dim(C∗), for any
Fqm -linear code C ⊆ Fn

qm . However, it holds that lR(C) ≤ lSk,s(C) ≤ lSh,a,r(C)
and lSh,1,r(C) ≤ lP(C), where all of these inequalities are strict in many cases,
for positive integers s and r, and for a ∈ F∗q .

Fortunately, thanks to the previous lemma, we may use the (classical)
cyclic structure of skew cyclic Galois closed spaces to decide whether a rank
equivalence exists between them:

Theorem 0.19 ([G]). Let V ⊆ Fn
qm and W ⊆ Fn′

qm be Fqm -linear cyclic Galois
closed spaces with the same dimension k and check polynomials h(x) and h′(x),
respectively. Given a ∈ F∗q , an integer r ≥ 0 and β ∈ F∗qm such that β[r] = bβ, for
some b ∈ F∗q , the following are equivalent:

1. There exists a rank equivalence φ : V −→ W such that a(σr,n′ ◦ φ) = φ ◦ σr,n
and β is as in Theorem 0.3.

2. (ab)kh′(x) = h(abx).

As a consequence, we may derive the following relations between the
previously defined lengths. Here, for a ∈ Fq, we define the a-order of a
polynomial f (x) ∈ Fqm [x] as the minimum positive integer e such that f (x)
divides xe − ae (in Fqm [x]), if one such e exists, and denote it by orda( f (x)).
If no such e exists, we define orda( f (x)) = ∞.

Corollary 0.26 ([G]). For an integer s ≥ 0 and an Fqm -linear qs-cyclic code C ⊆
Fn

qm , where h0(x) is the check polynomial of C∗, it holds that
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2. Rank-metric properties of skew cyclic codes

1. lR(C) = deg(h0(x)).

2. lSh,1,0(C) = lP(C) = ord(h0(x)) ≤ n.

3. More generally, if a ∈ F∗q , then e = lSh,a,0(C) = orda(h0(x)).

4. More generally, if a ∈ F∗q and r ≥ 0, then

lSh,a,r(C) = min{ordab(h0(x)) : b ∈ F∗q , β ∈ F∗qm , β[r] = bβ}.

In particular, lR(C) = lSk,s(C) = lSh,1,r(C) = lP(C) if, and only if, deg(h0(x)) =
ord(h0(x)), which holds if, and only if, h0(x) = xe − 1, for some positive integer e.

Therefore we see that lR(C) < lSh,a,r(C) in many cases, and lSk,s(C) lies
in between. From our work, it is not clear whether we may guarantee that
lR(C) = lSk,s(C) or lSk,s(C) = lSh,a,r(C), when lR(C) < lSh,a,r(C). In particular,
we cannot guarantee that the smallest length of an Fqm -linear code that is
rank equivalent to a given skew cyclic code is attained by a skew cyclic code.
Fortunately, we can guarantee that it can be attain by a pseudo-skew cyclic code
in many cases.

For this purpose, we need some more definitions. Consider the center of
Lqr Fqm [x], denoted by C(Lqr Fqm [x]) and defined as the set of qr-polynomials
over Fqm that commute with every other qr-polynomial over Fqm . It is well-
known that

C(Lqr Fqm [x]) = Lql Fqd [x],

where l = lcm(m, r) and d = gcd(m, r). We may now define pseudo-skew
cyclic codes, which were introduced in [21] for r = 1 and n = m, and then
independently in [22] for r = 1 and in [9] for general parameters:

Definition 0.27. Let F(x) ∈ C(Lqr Fqm [x]) such that degqr (F(x)) = n. For an
Fqm -linear code C ⊆ Fn

qm , we define CF(x)(x) as the image of C in Lqr Fqm [x]/(F(x))
by the Fqm -linear vector space isomorphism Fn

qm −→ Lqr Fqm [x]/(F(x)) given
by

(c0, c1, . . . , cn−1) 7→ c0x + c1x[r] + · · ·+ cn−1x[(n−1)r].

Then we say that C is pseudo-skew cyclic (of order r) if CF(x)(x) is a left ideal
in Lqr Fqm [x]/(F(x)), for some F(x) ∈ C(Lqr Fqm [x]) such that degqr (F(x)) =
n.

Next, for a positive integer s, we may define a ring automorphism θs :
Lqr Fqm [x] −→ Lqr Fqm [x] based on the s-th Frobenius map:

θs(F0x + F1x[r] + · · ·+ Fdx[dr]) = F[s]
0 x + F[s]

1 x[r] + · · ·+ F[s]
d x[dr],
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for F0, F1, F2, . . . , Fd ∈ Fqm and a positive integer d. This map induces a ring
automorphism of Lqr Fqm [x]/(x[rn] − x), since θs(x[rn] − x) = x[rn] − x. With
this tool, we may compute the minimal generator and check qr-polynomials
of the Galois closure of a skew cyclic code in terms of its own minimal gen-
erator and check qr-polynomials:

Proposition 0.28 ([G]). Take an Fqm -linear qr-cyclic code C ⊆ Fn
qm with minimal

generator and check qr-polynomials G(x) and H(x), respectively. The minimal gen-
erator and check qr-polynomials of C∗ are G∗(x) and H0(x), respectively, where we
define

F⊥(x) =

(
Fd

F[dr]
0

)
x +

 F[r]
d−1

F[dr]
0

 x[r] + · · ·+
(

F[dr]
0

F[dr]
0

)
x[dr],

F>(x) =
(

Fd
F0

)[(n−d)r]
x +

(
Fd−1

F0

)[(n−d+1)r]
x[r] + · · ·+

(
F0

F0

)[nr]
x[dr],

F∗(x) = gcd(F(x), θ1(F(x)), . . . , θm−1(F(x))),

F0(x) = lcm(F(x)⊥, θ1(F(x))⊥, . . . , θm−1(F(x))⊥)>,

for F(x) = F0x + F1x[r] + · · ·+ Fdx[dr] ∈ Lqr Fqm [x] such that F0 6= 0.

Finally, we may state the above mentioned result on attaining the rank
length of a skew cyclic code by a pseudo-skew cyclic code:

Theorem 0.20 ([G]). Take an Fqm -linear qr-cyclic code C ⊆ Fn
qm and assume that

H0(x) is central. Then the map φ : Lqr Fqm [x]/(H0(x)) −→ (G∗(x))/(x[rn] − x)
given by

φ(F(x)) = F(x)⊗ G∗(x)

is well-defined, maps left ideals to left ideals and constitutes a rank equivalence when
seeing its domain and codomain as Fqm -linear Galois closed spaces.

Corollary 0.29 ([G]). With notation as in the previous theorem, if H0(x) is central,
then the length lR(C) is attained by an Fqm -linear pseudo-skew cyclic code that is a
left ideal in the quotient ring Lqr Fqm [x]/(H0(x)).

3 Secret sharing and further tools for raliable and
secure communications

In this section, we diverge from the previous studies on rank-metric codes
and consider the Hamming-analog of reliable and secure communications.
We will first study the partial information leakage, and thus security robust-
ness, of asymptotically good sequences of secret sharing schemes. Secondly,
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3. Secret sharing and further tools for raliable and secure communications

we will give further techniques for bounding zeros of polynomials and some
of their consecutive Hasse derivatives. These type of zeros and derivatives
have given applications in the theory of locally decodable codes [35] and
subspace designs [26].

3.1 Partial information leakage in asymptotically good secret
sharing

In this subsection, we will analyse the partial security behaviour of asymp-
totically good sequences of code-based secret sharing schemes. This study
relies on the relative generalized Hamming weights of the underlying linear
code pairs. Observe that this problem has no analogy in the theory of reliable
and secure communications based on rank-metric codes, since linear codes
with optimal rank-metric parameters exist for all possible lengths [16].

Secret sharing was introduced independently by Shamir [57] and Blakley
[7]. Informally, it is a method to encode a secret message into n shares in
such a way that some sets of shares can recover the secret, whereas other sets
give no information about it. As explained in [13] and [40], we may regard
secret sharing schemes as coset coding schemes (Definition 0.2), which can
also be constructed using nested linear code pairs as in Definition 0.3.

However, we need to slightly modify the definitions in Subsection 1.1.
We will always consider m = 1, replace F1×n

q by Fn
q = Fn×1

q , and we adapt
Definition 0.4 to this context as follows. We say that secret sharing scheme
has

1. t-privacy if for every subset I ⊆ {1, 2, . . . , n} of size at most t, it holds
that

H(x|cPT
I ) = H(x),

where PI ∈ F#I×n
q is the matrix obtained from restricting the n × n

identity matrix to its rows indexed by I.

2. r-reconstruction if for every subset J ⊆ {1, 2, . . . , n} of size at least r,
there exists a decoding function DJ : F

#J
q −→ S such that DJ(y) = x,

for every x ∈ S and
y = cPT

J ,

where c ∈ Cx.

However, our interest is in studying partial privacy and partial reconstruc-
tion of asymptotically good sequences of secret sharing schemes. We may
define, as in the previous items, the m-th privacy threshold of the scheme
as the maximum positive integer tm such that from no set of tm shares one
can recover m bits (multiplied by log2(q)) of information about the secret.
Analogously, we define the m-th reconstruction threshold of the scheme as
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the minimum positive integer rm such that from any set of rm shares one can
obtain m bits (multiplied by log2(q)) of information about the secret.

Consider now a sequence of secret sharing schemes built from a sequence
of nested linear code pairs (C2(i) & C1(i) ⊆ F

ni
q )∞

i=1, with ni −→ ∞, dim(C2(i))
/ni −→ R2 and dim(C1(i))/ni −→ R1, for i −→ ∞. Define L = R1 − R2,
which corresponds to the asymptotic information rate of the sequence, that
is, L = limi−→∞ `i/ni, where `i = dim(C1(i)/C2(i)), for all i. Next define

Ω(1) = lim inf
i→∞

ti
ni

, and Ω(2) = lim sup
i→∞

ri
ni

.

The sequence of secret sharing schemes is said to be asymptotically good if
Ω(1) > 0 and Ω(2) < 1.

Now for fixed ε1, ε2 > 0, we formalize with the following parameters the
asymptotic behaviour of the sequence in terms of partial privacy and partial
reconstruction:

Λ(1)(ε1) = sup
{

lim inf
i−→∞

tm1(i)

ni
: (m1(i))∞

i=1 satisfies

1 ≤ m1(i) ≤ `i, lim
i→∞

(m1(i)/ni) = ε1L
}

,

Λ(2)(ε2) = inf
{

lim sup
i−→∞

r`i−m2(i)+1

ni
: (m2(i))∞

i=1 satisfies

1 ≤ m2(i) ≤ `i, lim
i→∞

(m2(i)/ni) = ε2L
}

.

We have the following fundamental bounds on the previous parameters:

Λ(1)(ε1) ≤ R2 + ε1L, and Λ(2)(ε2) ≥ R1 − ε2L,

and in particular, Λ(2)(ε2)−Λ(1)(ε1) ≥ L(1− ε1 − ε2).
The first main result of this subsection is the following existential result on

asymptotically good sequences of secret sharing schemes whose parameters
Λ(1)(ε1) and Λ(2)(ε2) are arbitrarily close to the optimal values:

Theorem 0.21 ([H]). For any 0 < R2 < R1 < 1, there exists a sequence of secret
sharing schemes with L = R1 − R2 and having simultaneously Λ(1)(ε1) arbitrarily
close to R2 + ε1L and Λ(2)(ε2) arbitrarily close to R1 − ε2L, for all 0 ≤ ε1, ε2 ≤ 1.

Unfortunately, the proof of this result, which is given in Paper H, is only
existential and provides no explicit constructions. To overcome this issue,
we propose in Paper H different strategies to obtain asymptotically good
sequences of secret sharing schemes with near optimal values of Λ(1)(ε1)
and Λ(2)(ε2), based on explicit sequences of algebraic geometry codes with
good asymptotic parameters. Among these, we will concentrate on those
code sequences based on the well-known Garcia-Stichtenoth’s second tower
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3. Secret sharing and further tools for raliable and secure communications

of function fields [24]. Their main advantage is that the i-th algebraic geom-
etry code pair in the sequence can be explicitly constructed with complexity
O(ni

3 log3
q(ni)) over Fq [58].

We illustrate this idea from Paper H by stating one of its main conse-
quences:

Theorem 0.22 ([H]). Assume that q is a perfect square. We may construct a se-
quence of asymptotically good secret sharing schemes such that

1. If 1/(
√

q − 1) ≤ 1 − R2 and ε1 ≥
( q

q−1
1√
q−1 −

1
q−1 (1 − R2)

)
/L then

Λ(1)(ε1) ≥ R2 + ε1L.

2. If 1/(
√

q − 1) ≤ R1 and ε2 ≥
( q

q−1
1√
q−1 −

1
q−1 R1

)
/L then Λ(2)(ε2) ≤

R1 − ε2L.

Moreover, the i-th scheme can be explicitly constructed with complexityO(ni
3 log3

q(ni))
over Fq.

3.2 A footprint-type bound for consecutive Hasse derivatives
of polynomials

In this subsection, we provide a fundamental algebraic tool for upper bound-
ing the number of common zeros over a grid of some polynomials and a
finite collection of their consecutive Hasse derivatives. These type of zeros and
derivatives of polynomials have shown important applications in the theory
of locally decodable codes [35] and subspace designs [26].

Throughout this section we will work over an arbitrary field F of arbitrary
characteristic, and we will use the compact notation x = (x1, x2, . . . , xm) and
xi = xi1

1 xi2
2 · · · x

im
m , for a set of variables x1, x2, . . . xm and a multiindex i =

(i1, i2, . . . , im) ∈ Nm. We recall now the definition of Hasse derivative from
[29]:

Definition 0.30. Let F(x) ∈ F[x] be a polynomial. Given another family of
independent variables z = (z1, z2, . . . , zm), the polynomial F(x + z) can be
written uniquely as

F(x + z) = ∑
i∈Nm

F(i)(x)zi,

for some polynomials F(i)(x) ∈ F[x], for i ∈ Nm. For a given multiindex i ∈
Nm, we define the i-th Hasse derivative of F(x) as the polynomial F(i)(x) ∈
F[x].

We next formalize the concept of zero of a polynomial of at least a given
multiplicity as that of common zero of the given polynomial and a given finite
family of its derivatives:
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Definition 0.31 ([I]). Let F(x) ∈ F[x] be a polynomial, let a ∈ Fm be an affine
point, and let J ⊆ Nm be a finite set. We say that a is a zero of F(x) of
multiplicity at least J if F(i)(a) = 0, for all i ∈ J .

We are interested in consecutive derivatives, in a coordinate-wise sense,
which can be formalized by the concept of decreasing sets of multiindices.
In the following, � denotes the coordinate-wise ordering in Nm.

Definition 0.32 ([I]). We say that the set J ⊆ Nm is decreasing if whenever
i ∈ J and j ∈Nm are such that j � i, it holds that j ∈ J .

From now on, fix a decreasing finite set J ⊆ Nm, an ideal I ⊆ F[x]
and finite subsets S1,S2, . . . ,Sm ⊆ F. Write S = S1 × S2 × · · · × Sm, and
denote by Gj(xj) ∈ F[xj] the defining polynomial of Sj, that is, Gj(xj) =

∏s∈Sj
(xj − s), for j = 1, 2, . . . , m.

Our main result, proven in Paper I, is the following footprint-type bound
on the number of zeros of an ideal of polynomials of multiplicity at least J ,
for some decreasing set J :

Theorem 0.23 ([I]). For any monomial ordering �m, it holds that

#VJ (I) · #J ≤ #∆�m (IJ ) ,

where we define the ideal

IJ = I +

〈{
m

∏
j=1

Gj(xj)
rj : (r1, r2, . . . , rm) /∈ J

}〉
,

we define the set of zeros of multiplicity at least J of the ideal I in the grid S =
S1 × S2 × · · · × Sm as

VJ (I) =
{

a ∈ S : F(i)(a) = 0, ∀F(x) ∈ I, ∀i ∈ J
}

,

and where we define the footprint of an ideal J ⊆ F[x] as

∆�m(J) =
{

xi : xi /∈ 〈LM(J)〉
}

,

where LM(J) = {LM(F(x)) : F(x) ∈ J} with respect to the monomial ordering
�m.

The classical footprint bound (see Proposition 8 in [15, Sec. 5.3], and
[25, 32]) is a particular case of our bound:

Corollary 0.33. Setting J = {0}, we obtain that

#V(I) ≤ #∆ (I + 〈G1(x1), G2(x2), . . . , Gm(xm)〉) ,

where V(I) denotes the set of zeros of the ideal I in S .
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3. Secret sharing and further tools for raliable and secure communications

The case of zeros of standard multiplicity at least a given positive integer
was first obtained as Lemma 2.4 in the extended version of [52], and is also a
consequence of our result:

Corollary 0.34. Given an integer r ∈ N+, and setting J = {(i1, i2, . . . , im) ∈
Nm : ∑m

j=1 ij < r}, we obtain that

#V≥r(I) ·
(

m + r− 1
m

)
≤ #∆

(
I +

〈{
m

∏
j=1

Gj(xj)
rj :

m

∑
j=1

rj = r

}〉)
,

where V≥r(I) denotes the set of zeros of multiplicity at least r of the ideal I in S .

Another particular case is obtained by upper bounding each coordinate
of the multiindices separately:

Corollary 0.35 ([I]). Given a multiindex (r1, r2, . . . , rm) ∈ Nm
+, and setting J =

{(i1, i2, . . . , im) ∈Nm : ij < rj, j = 1, 2, . . . , m}, we obtain that

#VJ (I) ·
m

∏
j=1

rj ≤ #∆ (I + 〈G1(x1)
r1 , G2(x2)

r2 , . . . , Gm(xm)
rm〉) .

Finally, we observe that some important well-known results in algebraic
combinatorics are direct consequences of the footprint bound. In particu-
lar, we may obtain extensions of such algebraic combinatoric results to our
context. To that end, we define

JS =
{

i ∈Nm : i � (r1#S1, r2#S2, . . . , rm#Sm), ∀(r1, r2, . . . , rm) /∈ J
}

.

The following is an extension of the well-known Alon’s combinatorial
Nullstellensatz [2, Th. 1.2]. We recall that an extension to standard multiplic-
ities was given in [4, Cor. 3.2], which is also a particular case of the following
corollary:

Corollary 0.36 ([I]). Let F(x) ∈ F[x] be a non-zero polynomial, and let xi =
LM(F(x)) for some monomial ordering. If i ∈ JS , then there exist s ∈ S and
j ∈ J such that

F(j)(s) 6= 0.

Another important consequence is an extension of the existence and unique-
ness of Hermite interpolating polynomials over finite grids:

Corollary 0.37 ([I]). Given elements bj,a ∈ F, where j ∈ J and a ∈ S , there exists
a unique polynomial of the form

F(x) = ∑
i∈JS

Fixi ∈ F[x],

where Fi ∈ F for all i ∈ JS , such that F(j)(a) = bj,a, for all j ∈ J and all a ∈ S .
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Finally, we extend the collection of bounds given by DeMillo and Lipton
[17], Zippel [67, Th. 1], [68, Prop. 3], and Alon and Füredi [3, Th. 5]:

Corollary 0.38 ([I]). For any polynomial F(x) ∈ F[x], if xi = LM(F(x)) ∈ JS ,
for some monomial ordering, then it holds that

# (S \ VJ (F(x))) #J ≥ # {j ∈ JS : j � i} .

An interesting explicit bound can be obtained when bounding multi-
indices on each coordinate separately. This still gives an extension of the
previously mentioned bounds from the literature:

Corollary 0.39 ([I]). Let F(x) ∈ F[x] with xi = LM(F(x)), i = (i1, i2, . . . , im),
for some monomial ordering. If ij < rj#Sj, for j = 1, 2, . . . , m, then the number N
of elements s ∈ S such that F(j)(s) 6= 0, for some j = (j1, j2, . . . , jm) ∈ Nm with
jk < rk, for all k = 1, 2, . . . , m, satisfies

N ·
m

∏
j=1

rj ≥
m

∏
j=1

(
rj#Sj − ij

)
.
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1. Introduction

Abstract

Rank weights and generalized rank weights have been proven to characterize error
and erasure correction, and information leakage in linear network coding, in the
same way as Hamming weights and generalized Hamming weights describe classical
error and erasure correction, and information leakage in wire-tap channels of type
II and code-based secret sharing. Although many similarities between both cases
have been established and proven in the literature, many other known results in the
Hamming case, such as bounds or characterizations of weight-preserving maps, have
not been translated to the rank case yet, or in some cases have been proven after
developing a different machinery. The aim of this paper is to further relate both
weights and generalized weights, show that the results and proofs in both cases are
usually essentially the same, and see the significance of these similarities in network
coding. Some of the new results in the rank case also have new consequences in the
Hamming case.

Keywords: Rank weight, generalized rank weight, rank distance, rank-
metric codes, network coding, network error correction, secure network cod-
ing.

1 Introduction

Linear network coding has been intensively studied during the last decade
[1, 4, 15, 18–20, 22, 28, 29, 34, 35]. Consider a network with several sources
and several sinks, where each source transmits several packets through the
network to multiple sinks. Following [1, 15, 19, 22], “linear network coding”
is defined as the process by which, in each node of the network, linear com-
binations of the received packets are generated (possibly at random [15]) and
sent (see [19, Definition 1]). We assume no delays nor cycles.

In this context, errors are considered as erroneous packets that appear on
some links, and erasures are considered as the deficiency of the rank of the
matrix (called transfer matrix [19, 20, 29]) that describes the received packets
as combinations of the ones sent by a given source [20, 29]. In secure network
coding, an adversary (or several) may compromise the security of the network
by doing the following, among other attacks: introducing t erroneous packets
on t different links, modifying the transfer matrix and obtaining information
from the sent packets by wiretapping several links [20, 28, 29].

In classical coding for error and erasure correction [16], coding for wire-
tap channels of type II [24, 26, 33] and code-based secret sharing [5, 21, 27],
the original message is encoded into a vector c = (c1, c2, . . . , cn) ∈ Fn

q , where
Fq is some finite field. Then, errors, erasures and information leakage hap-
pen component-wise. This means that some components of c may be wrong
(errors), some components may be erased (erasures), and a wiretapping ad-
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versary may obtain some components (information leakage). Using source
coding on a network, as in [20, 28], all this is considered to happen on some
linear combinations: errors are wrong combinations, erasures are losses of
combinations, and information leakage is considered in the form of leaked
combinations.

In the classical case, Hamming weights [16] and generalized Hamming
weights [33] have been proven to describe error and erasure correction and
information leakage on wire-tap channels of type II. On the other hand, in
recent years there have been several attempts to find a suitable weight and
generalized weight to study linear network coding [18, 20, 25, 28, 34, 35].
Finally, rank weights and generalized rank weights, introduced in [11] and
[20, 25], respectively, have been proven to describe exactly the worst case
error and erasure correction capability [20, 28, 29], and worst case information
leakage on networks [20, 29].

Many similarities between Hamming weights and rank weights have been
considered since the paper [11], and for generalized ones since [20, 25]. How-
ever, many results on Hamming weights still have no counterpart in the rank
case, or require proofs using a different machinery.

The aim of this paper is to give some alternative definitions of rank
weights [11] and generalized rank weights [7, 17, 20, 25], and then show
that most of the well-known results for Hamming weights, classical error
and erasure correction and information leakage, can be directly translated to
rank weights, network error and erasure correction and information leakage
on networks, once the right definitions and tools are introduced.

After giving some preliminary tools from the literature in Section 2, the
new results in this paper are distributed as follows: In Section 3, we gather
alternative definitions of rank weights and generalized rank weights from
the literature, and propose some new definitions, proving the equivalence
between them. In contrast with [7, 17, 25], we also treat relative weights [20].
In Section 4, we study linear equivalences of codes, that is, vector space iso-
morphisms between codes that preserve rank weights (and generalized rank
weights), which allow to say when two codes perform exactly equally in
secure network coding. We establish new characterizations of these equiv-
alences that also give a connection with information leakage. We treat for
the first time the case of different lengths and obtain the minimum possible
lengths of codes, up to these equivalences. In Section 5, we establish a way
to derive bounds on generalized rank weights from bounds on generalized
Hamming weights, and give a list of some of these bounds. In the rest of
the section, we discuss what the Singleton bound in the rank case can be,
establishing a new alternative version. In Section 6, we introduce the concept
of rank-punctured codes, which plays the same role as classical punctured
codes, and which are a main tool for the study of rank weights, erasure
correction and information leakage, since punctured codewords are concep-
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tually the same as codewords with erasures. We use this to characterize MRD
ranks of codes and introduce the concept of information spaces. Finally, in
Section 7, we revisit some of the results regarding error and erasure correc-
tion and information leakage on networks. We obtain new relations regard-
ing information leakage and duality, estimate information leakage in terms
of dimensions of spaces, and propose a slightly different decoder than that
of [20, 28], proving also the characterization of the correction capability of
arbitrary (in particular, Fq-linear) coding schemes, which has not been stated
nor proven yet.

2 Definitions and preliminaries

Let q be a prime power and m and n, two positive integers. Fq denotes the
finite field with q elements. All vectors are considered to be row vectors, and
we use the notation AT to denote the transpose of a matrix A.

2.1 Linear network coding model

We will consider the network model with errors in [20, 28], where the original
message x ∈ Fk

qm (considered as k packets in Fqm ) is encoded by a given
source into c ∈ Fn

qm , whose n components (seen as packets) are sent through
a network with n outgoing links from that source node and where a given
receiver obtains y = cAT + e, for some transfer matrix A ∈ FN×n

q and some
error vector e ∈ FN

qm .
As in [20, 28], when treating error and erasure correction, we will con-

sider multicast networks with one source and several sinks, and no delays
nor cycles. In the noiseless case, for treating just information leakage to an
adversary, we may assume several sources as long as the packets sent by
different sources have no correlations. This allows to treat packets from a
different source as errors, which give no extra information to a wiretapping
adversary by [20, Proposition 5].

The length of the vector c is defined as n, and corresponds to the number
of outgoing links from the source in the network, while m corresponds to the
packet size. Therefore, m and n do not play a symmetric role.

Although it is usual in the literature to only consider the case n ≤ m, we
consider all cases, and we argue as follows (see also [20, Section I.A] for more
details): on the one hand, in some Internet protocols, the size of each packet
(m) is bounded by some parameters of the protocol, whereas the number of
outgoing links (n) is not necessarily bounded. On the other hand, since many
computations are carried out over the extension field Fqm , requiring m ≥ n
may extremely increase the computational complexity of the encoding and
decoding.
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2.2 Codes and coding schemes

A code in Fn
qm is just a subset C ⊂ Fn

qm , whose length is defined as n. We
say that C is linear (respectively Fq-linear) if it is an Fqm -linear subspace
(respectively Fq-linear). The term arbitrary is used for all codes, including
non-linear codes.

Definition A.1 ( [20, Definition 7]). A coding scheme (or binning scheme)
with message set S is a family of disjoint nonempty subsets of Fn

qm , PS =

{Cx}x∈S , together with a probability distribution over each of these sets.

Definition A.2. A coding scheme as in the previous definition is said to be
linear if S = F`

qm , where 0 < ` ≤ n, and

αCx + βCy ⊂ Cαx+βy,

for all α, β ∈ Fqm and all x, y ∈ F`
qm . Similarly in the Fq-linear case (where

S = F`
q, 0 < ` ≤ mn).

The encoding in the coding scheme is given in [20, Definition 7] as fol-
lows: for each x ∈ S , we choose at random (with the chosen distribution) an
element c ∈ Cx. With these definitions, the concept of coding scheme gener-
alizes the concept of code, since a code is a coding scheme where #Cx = 1, for
each x ∈ S , and thus no probability distribution is required. In the same way,
linear and Fq-linear coding schemes generalize linear and Fq-linear codes, re-
spectively.

An equivalent way to describe linear (and Fq-linear) coding schemes is
by nested linear code pairs, introduced in [36, Section III.A]. We use the
description in [5, Subsection 4.2].

Definition A.3 ( [5, 36]). A nested linear code pair is a pair of linear codes
C2  C1 ⊂ Fn

qm . Choose a linear space W such that C1 = C2 ⊕W (where ⊕
represents the direct sum of vector spaces) and an isomorphism ψ : F`

qm −→
W, where ` = dim(C1/C2). Then we define the sets Cx = ψ(x) + C2. They
form a linear coding scheme called nested coset coding scheme [20].

If we choose the probability distribution to be uniform, then the encoding
can be done as follows: Take uniformly at random c′ ∈ C2 and define c =
ψ(x) + c′.

A given code C ⊂ Fn
qm , seen as a pair 0  C is suitable for error correction,

but is not suitable for protection against information leakage. Ozarow and
Wyner proposed in [26] using the pair C  Fn

qm for protection against infor-
mation leakage on noiseless channels. The idea of nested linear code pairs
was introduced in [36] to protect against both information leakage and noise.
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Independently, the same idea was implicitly used by Shamir [27] and
Massey [5, Section 3.1] to construct secret sharing schemes, and general
nested linear code pairs were first used for this purpose in [5, Section 4.2],
where it is claimed in an informal way that they include all possible linear
coding schemes. We now state this in a formal way, omitting the proof, which
is straightforward. The Fq-linear case is completely analogous.

Proposition A.4. Given a linear coding scheme PS = {Cx}x∈S , define C1 =⋃
x∈S Cx and C2 = C0 (recall that S = F`

qm ). Then, C1 and C2 are linear codes
in Fn

qm and

1. C2  C1.

2. The relation given in C1 by c ∼ d if, and only if, there exists x ∈ F`
qm such

that c, d ∈ Cx, is an equivalence relation that satisfies the following:

c ∼ d ⇐⇒ c− d ∈ C2.

In particular, PS = C1/C2.

3. The map F`
qm −→ PS = C1/C2 : x 7−→ Cx is a vector space isomorphism.

In particular, if we take a subspace W ⊂ C1 such that C1 = C2 ⊕W, then we
can canonically define an isomorphism ψ : F`

qm −→ W by Cx ∩W = {ψ(x)}. Of
course, it satisfies that Cx = ψ(x) + C2.

On the other hand, if d : Fn
qm ×Fn

qm −→ N is the rank (respectively Ham-
ming) distance [11] (respectively [16]), we define the minimum rank (respec-
tively Hamming) distance of the coding scheme PS as

d(PS ) = min{d(c1, c2) | c1 ∈ Cx1 , c2 ∈ Cx2 , x1 6= x2}. (A.1)

For arbitrary codes we obtain the usual definition of minimum distance. For
arbitrary coding schemes, it is basically the minimum of the distances be-
tween the sets Cx, x ∈ S .

For a linear coding scheme PS and the Hamming distance d, d(PS ) coin-
cides with the minimum coset distance introduced in [9] or the first relative
generalized Hamming weight [24]. For a linear coding scheme and the rank
distance, it coincides with the first relative generalized rank weight [20].

2.3 Rank weights and rank supports

Now we turn to rank weights. We first observe the following obvious fact
from linear algebra.
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Lemma A.5. Let α1, α2, . . . , αm and β1, β2, . . . , βm be two bases of Fqm over Fq,
and let c ∈ Fn

qm be a vector. It can be written in a unique way as

c =
m

∑
i=1

ciαi =
m

∑
i=1

diβi,

where ci, di ∈ Fn
q . Moreover,

〈c1, c2, . . . , cm〉Fq = 〈d1, d2 . . . , dm〉Fq ⊂ Fn
q .

Definition A.6 ( [11], [20, Section II.D]). Choose one of such bases α1, α2, . . . , αm,
and a vector c ∈ Fn

qm . We define the rank support [20] of c as

G(c) = 〈c1, c2, . . . , cm〉Fq ,

where c = ∑m
i=1 ciαi and ci ∈ Fn

q . The rank weight of c [11] is then wtR(c) =
dim(G(c)).

From the previous lemma it follows that G(c) (and wtR(c)) does not de-
pend on the choice of the basis. However, from now on, we fix one such basis
α1, α2, . . . , αm.

Definition A.7 ( [17, Definition 1]). For each linear subspace D ⊂ Fn
qm , we

define its rank support as G(D) = ∑d∈D G(d) and its rank weight as wtR(D) =
dim(G(D)).

Remark A.8. We can associate each vector c ∈ Fn
qm with a matrix over Fq, which

we denote as follows:

µ(c) =


c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n

...
...

. . .
...

cm,1 cm,2 . . . cm,n

 ,

where c = ∑m
i=1 αici and ci = (ci,1, ci,2, . . . , ci,n) ∈ Fn

q . Note that αiej, where
ej is the canonical basis of Fn

qm , for i = 1, 2, . . . , m and j = 1, 2, . . . , n, is a basis
of Fn

qm over Fq. It follows that µ : Fn
qm −→ Fm×n

q is an Fq-linear vector space
isomorphism. Moreover, the rank support of c is the row space of µ(c), which we
denote by row(µ(c)), and the rank weight of c is the rank of µ(c), denoted by
Rk(µ(c)).

The rank weight of a subspace D ⊂ Fn
qm is then the rank of the matrix obtained

by appending all rows of all matrices corresponding to the vectors in D. It can be
shown [17, Proposition 3 (4)] that we can take the vectors in a basis of D.

Note that G(c) = G(〈c〉) and thus wtR(c) = wtR(〈c〉), for every c ∈ Fn
qm .
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2.4 Trace codes, subfield codes and Galois closures

Now we gather some tools from the literature regarding trace and subfield
codes, and Galois closures. More details can be found in [13], [16, Section
3.8], [30, Section II] or [31, Chapter 9]:

Definition A.9. For a vector x = (x1, x2, . . . , xn) ∈ Fn
qm and any integer i ≥ 0,

we define xqi
= (xqi

1 , xqi

2 , . . . , xqi

n ). Then we define the trace map on vectors as
follows

Tr : Fn
qm −→ Fn

q : x 7−→
m−1

∑
i=0

xqi
.

For a linear subspace D ⊂ Fn
qm , we define its Galois closure [30, Definition]

as

D∗ =
m−1

∑
i=0

Dqi
,

its trace code as Tr(D) = {Tr(d) | d ∈ D} and its subfield code as D|Fq =
D ∩Fn

q . We say that D is Galois closed if D = D∗. If D ⊂ Fn
q and is Fq-linear,

we define its extended code as D⊗Fqm , that is, the code generated over Fqm

by the set D, also denoted as 〈D〉Fqm ⊂ Fn
qm .

Note that Tr is Fq-linear and D∗ is the smallest Galois closed linear code
containing D [30]. Moreover, a linear subspace D ⊂ Fn

qm is Galois closed if,
and only if Dq ⊂ D, which is equivalent to Dq = D.

The following proposition easily follows from [30, Lemma 1]. The equiv-
alence between items 1, 2, 4 and 5 were also noticed in [13, 17].

Proposition A.10 ( [30]). For every linear code C ⊂ Fn
qm of dimension k, the fol-

lowing are equivalent:

1. C is Galois closed.

2. C admits a basis of vectors in Fn
q .

3. C has a basis consisting of vectors of rank weight 1.

4. C = C|Fq ⊗Fqm .

5. C = Tr(C)⊗Fqm .

6. Tr(C) = C|Fq .

7. dim(Tr(C)) = k.

8. dim(C|Fq) = k.

We give a final tool due to Delsarte [6, Theorem 2]:

Lemma A.11 (Delsarte [6]). For every linear code C ⊂ Fn
qm , we have that

(C|Fq)
⊥ = Tr(C⊥), and (C⊥)|Fq = (Tr(C))⊥.
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3 Equivalent definitions of rank weights and gen-
eralized rank weights

In this section we give new equivalent definitions of generalized rank weights
[20, 25]. In contrast with [7, 17, 25], we also treat relative weights [20]. Both
have been proven to characterize worst-case information leakage and error
and erasure correction on networks [20, 25].

3.1 The Hamming case

We briefly recall the definitions of Hamming weights, generalized Hamming
weights [33] and their relative versions [24]. Following [33, Section II] (see
also [16, Section 7.10]), given a linear subspace D ⊂ Fn

qm , we define its support
as Supp(D) = {i | ∃d ∈ D, di 6= 0} and its Hamming weight as wtH(D) =
#Supp(D). The r-th generalized Hamming weight of a code C [33], and r-th
relative generalized Hamming weight of a nested linear code pair C2  C1
[24] are, respectively,

dH,r(C) = min{wtH(D) | D ⊂ C, dim(D) = r}, (A.2)

MH,r(C1, C2) = min{wtH(D) | D ⊂ C1,

D ∩ C2 = 0, dim(D) = r}.
(A.3)

3.2 Existing equivalent definitions

We briefly review the existing equivalent definitions of generalized rank
weights and their relative versions. We attribute the following lemma to a
combination of [30] with [20] for dim(D) = 1, and a combination of [30]
with [17] for the general case, and show why:

Lemma A.12 ( [17, 20, 30]). For any linear subspace D ⊂ Fn
qm ,

wtR(D) = wtR(D∗) = dim(Tr(D)) = dim(D∗).

Proof. It is immediate that dim(D∗) = dim(Tr(D∗)) from Proposition A.10,
and moreover it holds that Tr(D∗) = Tr(D).

The equality wtR(D) = dim(D∗) is proven in [20, Lemma 11] for dim(D) =
1, hence the result follows immediately in that case.

On the other hand, [17, Theorem 16] states that G(D) = Tr(D), hence
wtR(D) = dim(Tr(D)) and the result follows in the general case.

Now we define generalized rank weights, introduced in [25] for n ≤ m,
and their relative versions, both introduced in general in [20]:

52



3. Equivalent definitions of rank weights and generalized rank weights

Definition A.13 ( [20, Definition 2]). For a linear code C ⊂ Fn
qm and 1 ≤ r ≤

k = dim(C), we define its r-th generalized rank weight as

dR,r(C) = min{dim V | V ⊂ Fn
qm , V = V∗,

dim(C ∩V) ≥ r}.
(A.4)

For a nested linear code pair C2  C1 ⊂ Fn
qm , we define its r-th relative

generalized rank weight as

MR,r(C1, C2) = min{dim V | V ⊂ Fn
qm , V = V∗,

dim((C1 ∩V)/(C2 ∩V)) ≥ r}.
(A.5)

Fix a linear code C ⊂ Fn
qm and 1 ≤ r ≤ k = dim(C). We have the following

equivalent definitions from the literature:

Lemma A.14 ( [17, Corollary 17]). The r-th generalized rank weight dR,r(C) is
equal to

min{wtR(D) | D ⊂ C, dim(D) = r}. (A.6)

Lemma A.15 ( [7, Proposition II.1]). If n ≤ m, the r-th generalized rank weight
dR,r(C) is equal to

min{max{wtR(x) | x ∈ D∗} | D ⊂ C, dim(D) = r}. (A.7)

3.3 New equivalent definitions

In this subsection, we give new equivalent definitions of rank weights, gen-
eralized rank weights and their relative versions.

Theorem A.1. For any linear subspace D ⊂ Fn
qm , we have that

wtR(D) = min{wtH(ϕB(D)) | B ⊂ Fn
q is a basis of Fn

qm},

where ϕB : Fn
qm −→ Fn

qm is the linear map defined as ϕB(c) = x, where c =

∑n
i=1 xivi and B = {vi}n

i=1. In particular, for every vector c ∈ Fn
qm , we have that

wtR(c) = min{wtH(x) | c =
n

∑
i=1

xivi,

B = {vi}n
i=1 ⊂ Fn

q is a basis of Fn
qm}.

The following inequality is obtained when choosing the basis B as the
canonical basis. It also follows easily from the definitions and was first no-
ticed by Gabidulin [11] when dim(D) = 1:

wtR(D) ≤ wtH(D). (A.8)
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Proof of Theorem A.1. We first prove the inequality ≤: Let B = {vi}n
i=1 ⊂ Fn

q
be a basis of Fn

qm . If c = ∑n
i=1 xivi and j ≥ 0, then

cqj
=

(
n

∑
i=1

xivi

)qj

=
n

∑
i=1

xqj

i vqj

i =
n

∑
i=1

xqj

i vi,

since vi ∈ Fn
q . It follows that ϕB(cqj

) = ϕB(c)qj
, for all c ∈ Fn

qm and all j ≥ 0,
and therefore,

ϕB(D∗) =
m−1

∑
j=0

ϕB(Dqj
) =

m−1

∑
j=0

ϕB(D)qj
= ϕB(D)∗.

Hence, using this and Lemma A.12, we see that

wtR(D) = dim(D∗) = dim(ϕB(D∗))

= dim(ϕB(D)∗) = wtR(ϕB(D)) ≤ wtH(ϕB(D)),

where the last inequality follows from (A.8).
Now we prove the inequality ≥: We will show that we may select an

appropriate basis B from the given family such that wtR(D) ≥ wtH(ϕB(D)).
By Proposition A.10, since D∗ is Galois closed, it has a basis v1, v2, . . . , vs

of vectors in Fn
q . We may extend it to a basis B = {v1, v2, . . . , vn} of Fn

q ,
which is then a basis of Fn

qm as an Fqm -linear space. Then Supp(ϕB(D)) ⊂
{1, 2, . . . s}, since ϕB(vi) = ei, where the vectors ei constitute the canonical
basis. Therefore, wtR(D) = dim(D∗) = s ≥ wtH(ϕB(D)), as desired, and the
inequality follows.

We now give the following new equivalent definitions of generalized rank
weights:

Theorem A.2. For a linear code C ⊂ Fn
qm and 1 ≤ r ≤ k = dim(C), the r-th

generalized rank weight of C is equal to:

dR,r(C) = min{dH,r(ϕB(C)) | B ⊂ Fn
q

is a basis of Fn
qm}

(A.9)

= n−max{dim(LG
U) | U ⊂ Fk

qm , dim(U) = k− r}, (A.10)

where G is a generator matrix of C, ϕB is as in Theorem A.1 and LG
U = {x ∈ Fn

q |
GxT ∈ U}.

Definition (A.10) is an analogous description as that of [14, Lemma 1]
for generalized Hamming weights, and is expressed in terms of a genera-
tor matrix of the code. We now give new equivalent definitions of relative
generalized rank weights. Observe that Definition (A.11) is an extension of
Definition (A.6) for relative weights.
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Theorem A.3. For a nested linear code pair C2  C1 ⊂ Fn
qm and 1 ≤ r ≤ ` =

dim(C1/C2), the r-th relative generalized rank weight of C2  C1 is equal to:

MR,r(C1, C2) = min{wtR(D) | D ⊂ C1,

D ∩ C2 = 0, dim(D) = r}
(A.11)

= min{MH,r(ϕB(C1), ϕB(C2)) | B ⊂ Fn
q

is a basis of Fn
qm}

(A.12)

= n−max{dim(LG
U) | U ⊂ F

k1
qm ,

dim(U) = k1 − r, dim(U I) = k2},
(A.13)

where ϕB is as in Theorem A.1, G is a generator matrix of C1, the first k2 rows of G
are a basis of C2 and U I is the projection of U onto the first k2 coordinates.

Now, the last definition is analogous to [37, Lemma 2] for the Haming
case. We only prove Theorem A.3, since Theorem A.2 is obtained from it by
choosing C2 = 0.

Proof of Theorem A.3. We first prove (A.5) ≥ (A.11): Take a V as in (A.5).
Since dim((C1 ∩ V)/(C2 ∩ V)) ≥ r, we may choose a linear subspace D ⊂
C1 ∩V such that dim(D) = r and D ∩ (C2 ∩V) = 0. Hence D is as in (A.11).
Moreover, since D ⊂ V, we have that D∗ ⊂ V∗ = V, hence wtR(D) ≤ dim(V)
by Lemma A.12, and the inequality follows.

No we prove (A.5) ≤ (A.11): Take D as in (A.11), and define V = D∗,
which is Galois closed. The natural linear map D −→ (C1 ∩ V)/(C2 ∩ V) is
one to one, and hence dim((C1 ∩V)/(C2 ∩V)) ≥ dim(D) = r, and V is as in
(A.5). Moreover, dim(V) = dim(D∗) = wtR(D) by Lemma A.12, hence the
inequality follows.

Using Theorem A.1 and the expression (A.3), we see that (A.11) = (A.12).
Finally, we prove that (A.11) = (A.13). Fix U ⊂ F

k1
qm as in (A.13), and

define V = U⊥ and D = {vG | v ∈ V}. It holds that dim(D) = r and
D ∩ C2 = 0 since U I = F

k2
qm . For any x ∈ Fn

q , we have that

GxT ∈ U ⇐⇒ vGxT = 0, ∀v ∈ V

⇐⇒ d · x = 0, ∀d ∈ D ⇐⇒ x ∈ D⊥,

and thus LG
U = (D⊥)|Fq . Using Lemma A.12 and Delsarte’s Lemma A.11,

wtR(D) = dim(Tr(D)) = n− dim(LG
U),

and we are done.
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4 Equivalences of codes

The purpose of this section is to characterize the Fqm -linear vector space iso-
morphisms φ : V −→ V′ that preserve rank weights, where V, V′ are Galois
closed.

Observe first of all that wtR(V) = dim(V) and wtR(V′) = dim(V′) by
Lemma A.12, hence dim(V) = dim(V′) is necessary if we want to preserve
all possible rank weights.

A first characterization has been given in [3, Theorem 1], for V = V′ =
Fn

qm . We will see that, due to our new characterizations, equivalent codes
are guaranteed to exactly perform in the same way in secure network cod-
ing, and not only regarding worst cases (which would be guaranteed just by
having the same minimum rank distance). Moreover, in contrast with [3], we
consider equivalent codes with different lengths, which allows to consider
equivalent codes that can be applied to networks with different number of
outgoing links. As a consequence, we will see which is the minimum possi-
ble length of a code equivalent to a given one, that is, which is the minimum
number of outgoing links that a given code requires.

4.1 New characterizations

Define the sets Υ(Fn
qm) and Λ(Fn

qm) as the set of Galois closed linear subspaces
of Fn

qm and the set of subspaces of the form VI = {c ∈ Fn
qm | ci = 0, ∀i /∈ I},

for some I ⊂ J = {1, 2, . . . , n}, respectively, as in [20]. We will write just Υ
and Λ if there is no confusion on the space Fn

qm . For convenience, we also
define LI = {c ∈ Fn

q | ci = 0, if i /∈ I}.
The rank weights are defined in terms of the spaces in Υ (see (A.4) or

[20]), and the Hamming weights are defined in terms of the spaces in Λ
(see [20, 21]). We will use this analogy in the rest of the paper.

We have the following two collections of characterizations of Hamming-
weight and rank-weight preserving vector space isomorphisms. To the best
of our knowledge, only the equivalence between items 2 and 5 has been no-
ticed in the Hamming case, which is an obvious consequence of MacWilliams
extension theorem (see [16, Section 7.9]). We only prove the rank case, that
is, Theorem A.5, being the proof of Theorem A.4 analogous.

Theorem A.4. Given an Fqm -linear vector space isomorphism φ : V −→ V′, where
V ∈ Λ(Fn

qm) and V′ ∈ Λ(Fn′
qm), the following are equivalent:

1. If c ∈ V and wtH(c) = 1, then wtH(φ(c)) = 1.

2. φ preserves Hamming weights, that is, wtH(φ(c)) = wtH(c), for all c ∈ V.

3. For all linear subspaces D ⊂ V, it holds that wtH(φ(D)) = wtH(D).
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4. For all U ∈ Λ(Fn
qm), U ⊂ V, it holds that φ(U) ∈ Λ(Fn′

qm).

5. φ is a monomial map. That is, if V = VI and V′ = VJ , with N = #I = #J,
then there exists a bijection σ : I −→ J and elements γ1, γ2, . . . , γN ∈ Fqm

such that φ(ei) = γieσ(i), for all i ∈ I.

In such case, we will say that φ is a Hamming-weight preserving transformation or
a Hamming equivalence.

Theorem A.5. Given an Fqm -linear vector space isomorphism φ : V −→ V′, where
V ∈ Υ(Fn

qm) and V′ ∈ Υ(Fn′
qm), the following are equivalent:

1. If c ∈ V and wtR(c) = 1, then wtR(φ(c)) = 1.

2. φ preserves rank weights, that is, wtR(φ(c)) = wtR(c), for all c ∈ V.

3. For all linear subspaces D ⊂ V, it holds that wtR(φ(D)) = wtR(D).

4. For all U ∈ Υ(Fn
qm), U ⊂ V, it holds that φ(U) ∈ Υ(Fn′

qm).

5. There exists β ∈ F∗qm = Fqm \ {0} and an Fqm -linear vector space isomor-
phism φ′ : V −→ V′ such that φ′(V|Fq) ⊂ V′|Fq and φ(c) = βφ′(c), for
every c ∈ V. Equivalently, there exists a matrix A ∈ Fn×n′

q and β ∈ F∗qm

such that φ(c) = βcA, for every c ∈ V.

In such case, we will say that φ is a rank-weight preserving transformation or a
rank-metric equivalence.

Proof. It is obvious that item 2 implies item 1 and item 3 implies item 2.
We now see that item 4 implies item 3. First, the number of sets in the

family Υ(Fn
qm) that are contained in V is the same as the number of sets

in the family Υ(Fn′
qm) that are contained in V′, since dim(V) = dim(V′). It

follows that, given a linear subspace U ⊂ V, U ∈ Υ(Fn
qm) if, and only if,

φ(U) ∈ Υ(Fn′
qm). Now given a linear subspace D ⊂ V, since D∗ is the smallest

set in Υ(Fn
qm) that contains D, it follows that φ(D∗) = φ(D)∗. Therefore,

wtR(D) = dim(D∗) = dim(φ(D∗)) = dim(φ(D)∗) = wtR(φ(D)) by Lemma
A.12.

To prove that item 5 implies item 4, it is enough to show that, for a
given subspace U ⊂ V, if Uq ⊂ U, then φ(U)q ⊂ φ(U). Take bases B =
{v1, v2, . . . , vN} and B′ = {v′1, v′2, . . . , v′N} of V and V′ in Fn

q , respectively,
such that φ(vi) = βv′i. Take u ∈ U, and write it as u = ∑i,j λi,jαjvi, where
λi,j ∈ Fq. Then φ(u)q = ∑i,j λi,jβ

qα
q
j v′i. Since φ(uq) = ∑i,j λi,jβα

q
j v′i ∈ φ(U), it

follows that φ(u)q ∈ φ(U).
Finally, we prove that item 1 implies item 5, which is a slight modification

of the proof given in [3]. Taking a basis of V in Fn
q as before, it holds that
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φ(vi) = βiui, for some ui ∈ Fn
q and βi ∈ F∗qm . Since φ is an isomorphism, the

vectors ui are linearly independent.
Now take i 6= j and assume that βi 6= ai,jβ j, for every ai,j ∈ Fq. Then there

exists a basis of Fqm over Fq that contains βi and β j. Therefore φ(vi + vj) =
βiui + β juj, but wtR(φ(vi + vj)) = wtR(vi + vj) = 1 and also wtR(βiui +
β juj) = 2, since ui and uj are linearly independent.

We have reached an absurd, so there exists ai,j ∈ F∗q such that βi = ai,jβ j,
for all i, j. Defining β = β1 = a1,jβ j and v′i = a−1

1,i ui, we obtain a description
of φ as in item 5.

This motivates the following definition.

Definition A.16. We say that two (arbitrary) codes C ⊂ Fn
qm and C′ ⊂ Fn′

qm are
rank-metric equivalent if there exists a rank-metric equivalence φ between V
and V′ such that φ(C) = C′, where C ⊂ V ∈ Υ(Fn

qm) and C′ ⊂ V′ ∈ Υ(Fn′
qm).

Similarly for Hamming equivalent codes.

Remark A.17. Observe that item 2 states that equivalent codes behave exactly in
the same way regarding error and erasure correction, and not just in worst cases,
since corresponding codewords have the same rank weight (see [28, Subsection IV.C]
for MRD codes, and [20, Theorem 4] and [29, Theorem 2] in general). On the
other hand, item 4 states that equivalent linear codes behave exactly in the same way
regarding information leakage, and not only in worst cases, since the information
leaked by wiretapping links is measured by the dimension of C ∩U, for some U ∈ Υ,
as stated in [20, Lemma 7]. The previous theorem thus states that one property is
preserved if, and only if, the other is preserved.

The same holds for the Hamming case, where item 4 states that equivalent codes
behave exactly in the same way regarding information leakage in code-based secret
sharing [12, 21], and item 2 states that equivalent codes behave exactly in the same
way regarding usual error and erasure correction.

Item 1 states that it is only necessary for codes to be equivalent that they behave
in the same way regarding “unitary” errors.

Remark A.18. Observe that, due to the equivalence between items 2 and 3, rank
weight preserving transformations preserve not only minimum rank distances and
rank weight distributions, but also generalized rank weights and generalized rank
weight distributions.

Remark A.19. In the Hamming case, if φ : C1 −→ C2 is an Fqm -linear vector space
isomorphism that preserves Hamming weights, for arbitrary linear codes C1 ⊂ Fn

qm

and C2 ⊂ Fn′
qm , then it can be extended to a Hamming weight preserving isomorphism

φ̃ : VI −→ VJ , where I = Supp(C1) and J = Supp(C2). This is known as
MacWilliams extension theorem (see [16, Section 7.9]).

However, this is not true in the rank case. For a counterexample, see [2, Example
2.9 (c)].
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As a consequence, we can now establish the following relations between
Hamming and rank weights:

Theorem A.6. For any linear codes D, C ⊂ Fn
qm , we have that

wtR(D) = min{wtH(φ(D)) | φ : Fn
qm −→ Fn

qm

is a rank-metric equivalence},

dR,r(C) = min{dH,r(φ(C)) | φ : Fn
qm −→ Fn

qm

is a rank-metric equivalence},

where 1 ≤ r ≤ k = dim(C). Moreover, if n ≤ m, we have that

wtH(D) = max{wtR(φ(D)) | φ : Fn
qm −→ Fn

qm

is a Hamming equivalence},

dH,k(C) = max{dR,k(φ(C)) | φ : Fn
qm −→ Fn

qm

is a Hamming equivalence}.

Proof. The second equality follows from the first one, which we now prove.
By Theorem A.5, the map ϕB in Theorem A.1 is a rank-metric equivalence,
for any basis B ⊂ Fn

q of Fn
qm , since it maps vectors in Fn

q to vectors in Fn
q .

On the other hand, given a rank-metric equivalence φ : Fn
qm −→ Fn

qm , with β

and φ′ as in item 5 in Theorem A.5, define vi = φ′−1(ei), where ei is the i-th
vector in the canonical basis and B = {vi}n

i=1. Hence φ′ = ϕB and φ = βϕB.
Multiplication by β preserves Hamming weights, and hence we see that the
first equality follows from Theorem A.1.

The last equality follows from the third one, which we now prove. First,
for every Hamming equivalence φ, it follows from Theorem A.4 and Equation
(A.8) that wtH(D) = wtH(φ(D)) ≥ wtR(φ(D)), and therefore the inequality
≥ follows.

To conclude, we need to prove that there exists a Hamming equivalence φ
such that wtH(D) = wtR(φ(D)). By taking a suitable Hamming equivalence,
we may assume that D has a generator matrix G of the following form: the
rows in G (a basis for D) are g1, g2, . . . , gr, and there exist 0 = t0 < t1 < t2 <
. . . < tr ≤ n such that, for every i = 1, 2, . . . , r, gi,j = 1 if ti−1 < j ≤ ti, and
gi,j = 0 if ti < j. Observe that tr = wtH(D).

Finally, choose a basis γ1, γ2, . . . , γm of Fqm over Fq, and define the Ham-
ming equivalence φ(c1, c2, . . . , cn) = (γ1c1, γ2c2, . . . , γncn). Then, φ(D) has a
generator matrix whose rows are hi = φ(gi), which satisfy that hi,j = γj if
ti−1 < j ≤ ti, and hi,j = 0 if ti < j.

It follows that G(φ(D)) = ∑r
i=1 G(hi) = VI , where I = {1, 2, . . . , tr}, and

we are done.
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4.2 Rank degenerateness and minimum length

Now we turn to degenerate codes in the rank case, extending the study in [17,
Section 6].

Definition A.20. A linear code C ⊂ Fn
qm is rank degenerate if it is rank-metric

equivalent to a linear code C′ ⊂ Fn′
qm with n′ < n.

Hamming degenerate codes are defined in the analogous way. As in the
Hamming case, rank degenerate codes are identified by looking at their last
generalized rank weight. This is the definition of rank degenerate codes used
in [17]. However, note that our definition actually states whether a given code
does not require the given length, which in network coding means whether
a code can be implemented with less outgoing links from the source node.

The next proposition actually gives the whole range of lengths of linear
codes rank-metric equivalent to a given one. To prove it, for every V ∈
Υ(Fn

qm) and every basis B ⊂ Fn
q of V, we define the Fqm -linear map

ψB : V −→ F
dim(V)
qm (A.14)

given by ψB(c) = x, if B = {vi}
dim(V)
i=1 and c = ∑

dim(V)
i=1 xivi. It is a rank-metric

equivalence by Theorem A.5.

Proposition A.21. Given a linear code C ⊂ Fn
qm of dimension k and any positive

integer n′, there exists a linear code C′ ⊂ Fn′
qm that is rank-metric equivalent to C if,

and only if, n′ ≥ dR,k(C).

Proof. For a given n′, assume that there exists a linear code C′ ⊂ Fn′
qm that

is rank-metric equivalent to C. Then C′ has dimension k and dR,k(C) =
dR,k(C′) ≤ n′.

Now fix n′ = dR,k(C) = dim(C∗). Take V = C∗ and ψB as in (A.14) for
some basis B ⊂ Fn

q of V. As remarked before, ψB is a rank-metric equivalence

and thus C is rank-metric equivalent to C′ = ψB(C) ⊂ Fn′
qm .

Finally, take n′′ ≥ n′ = dR,k(C) and C′ as in the previous paragraph.
Append n′′ − n′ ≥ 0 zeroes to every codeword in C′. The obtained code
C′′ ⊂ Fn′′

qm is linear and rank-metric equivalent to C′, and thus also to C, and
we are done.

Therefore, dR,k(C) gives the minimum possible length (minimum number
of outgoing links required by C) of a linear code that is rank equivalent to C.
As an immediate consequence, we obtain the following:

Corollary A.22. A linear code C ⊂ Fn
qm of dimension k is rank degenerate if, and

only if, dR,k(C) < n, or equivalently, C∗ 6= Fn
qm .
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On the other hand, we obtain the following result. The first part is [17,
Corollary 30].

Proposition A.23. If mk < n, then every linear code C ⊂ Fn
qm of dimension k

is rank degenerate. On the other hand, if mk ≥ n, then there exists a linear code
C ⊂ Fn

qm of dimension k that is not rank degenerate.

Proof. The first part follows from the previous corollary and the fact that
dim(C∗) ≤ mk.

Now, if mk ≥ n, choose λ
(i)
l,j ∈ Fq, for 1 ≤ i ≤ k, 1 ≤ j ≤ n and 1 ≤ l ≤ m,

such that 〈{xl,i}1≤i≤k
1≤l≤m〉 = Fn

q , where xl,i = ∑n
j=1 λ

(i)
l,j ej and ej is the canonical

basis of Fn
q . This is possible since mk ≥ n.

On the other hand, define ui = ∑m
l=1 αlxl,i ∈ Fn

qm , and C′ = 〈u1, u2, . . . , uk〉.
Then, C′∗ = Fn

qm and dim(C′) ≤ k. Taking C′ ⊂ C, with dim(C) = k, we ob-
tain the desired code.

5 Bounds on generalized rank weights

In this section we establish a method to derive bounds on generalized rank
weights from bounds on generalized Hamming weights, and afterwards we
discuss what the Singleton bound can be for generalized rank weights. Due
to [20, Lemma 7 and Theorem 2], bounds on generalized rank weights di-
rectly translate into bounds on worst case information leakage on networks,
and therefore are of significant importance.

5.1 Translating bounds on GHWs to bounds on GRWs

Some attempts to give bounds similar to the ones in the Hamming case have
been made [7, 20, 25]. In this subsection, we prove that most of the bounds
in the Hamming case can be directly translated to the rank case.

Note that, since rank weights are smaller than or equal to Hamming
weights (by Equation (A.8)), every bound of the form

M ≥ gs1,s2,...,sN (ds1(C), ds2(C), . . . , dsN (C)),

that is valid for Hamming weights, where M > 0 is a fixed positive real
number and gs1,s2,...,sN is increasing in each component, is obviously also
valid for rank weights. This is the case of the classical Singleton or Gries-
mer bounds [16, Section 7.10]. On the other hand, the next result is not
straightforward if we do not use (A.9) or (A.12).

Theorem A.7. Fix numbers k and 1 ≤ r, s ≤ k, and functions fr,s, gr,s : N −→ R,
which may also depend on n, m, k and q. If gr,s is increasing, then every bound of the
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form
fr,s(dr(C)) ≥ gr,s(ds(C))

that is valid for generalized Hamming weights, for any linear code C ⊂ Fn
qm with

dim(C) = k, is also valid for generalized rank weights. The same holds for relative
weights.

Proof. By Theorem A.2, there exists a basis B ⊂ Fn
q of Fn

qm such that dR,r(C) =
dH,r(ϕB(C)). Therefore,

fr,s(dR,r(C)) = fr,s(dH,r(ϕB(C)))

≥ gr,s(dH,s(ϕB(C))) ≥ gr,s(dR,s(C)),

where the last inequality follows again from Theorem A.2. Similarly for rel-
ative weights.

Remark A.24. The previous theorem is also valid, with the same proof, for the more
general bounds

fr,s1,s2,...,sN (dr(C))

≥ gr,s1,s2,...,sN (ds1(C), ds2(C), . . . , dsN (C)),

where gr,s1,s2,...,sN is increasing in each component. However, most of the bounds in
the literature are of the form of the previous theorem.

In [14] and [32, Part I, Section III.A], many of these kind of bounds are
given for generalized Hamming weights. One of these (a particular case
of [32, Corollary 3.6]) is proven for rank weights in [7, Proposition II.3], using
(A.4). Some of these are also valid for relative weights (see [37, Proposition
1 and Proposition 2] or [38]). We next list some of these bounds, where
1 ≤ r ≤ s ≤ k, and dj = dR,j(C), for all j. Note that monotonicity is one of
these bounds, and therefore it does not need a specific proof. Also recall that
linear codes in this paper are Fqm -linear, and hence the field size is qm, not q.

1. Monotonicity:
dr+1 ≥ dr + 1,

2. Griesmer-type ( [32, bound (14)]):

dr ≥
r−1

∑
i=0

⌈
d1

qmi

⌉
,

3. Griesmer-type ( [32, bound (16)]):

ds ≥ dr +
s−r

∑
i=0

⌈
(qm − 1)dr

(qmr − 1)qmi

⌉
,
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4. [14, Theorem 1] or [32, bound (18)]:

(qms − 1)dr ≤ (qms − qm(s−r))ds,

5. [14, Corollary 1]:

(qmr − 1)d1 ≤ (qmr − qm(r−1))dr,

6. [7, Proposition II.3]:

(qmr − 1)dr−1 ≤ (qmr − qm)dr,

7. [32, bound (20)]:

dr ≥ n−
⌊
(qm(k−r) − 1)(n− ds)

qm(k−s) − 1

⌋
.

Remark A.25. A trivial lower bound that is valid for every linear code is dR,r(C) ≥
r, for all 1 ≤ r ≤ k. Observe that a linear code C satisfies that dR,r(C) = r, for every
1 ≤ r ≤ k if, and only if, C is Galois closed. This gives another characterization
of Galois closed spaces to those in Proposition A.10, in terms of generalized rank
weights. In the Hamming case, dH,r(C) = r, for every 1 ≤ r ≤ k if, and only if,
C = VI , for some I ⊂ {1, 2, . . . , n}.

5.2 On the Singleton bound

In this subsection, we discuss the possible extensions of the Singleton bound
to rank weights. We start by giving a brief overview of the bounds in the
literature that resemble the usual Singleton bound, both for a linear code
C ⊂ Fn

qm and a nested linear code pair C2  C1 ⊂ Fn
qm :

dR,r(C) ≤


n− k + r [20],
(m− 1)k + r [20],
m
n (n− k) + 1, if r = 1 [23],

MR,s(C1, C2) ≤


n− k1 + s [20],
(m− 1)(k1 − k2) + s [20],
m(n−k1)

n−k2
+ 1, if s = 1 [20],

where 1 ≤ r ≤ k = dim(C) and 1 ≤ s ≤ k1 − k2, k1 = dim(C1) and k2 =
dim(C2).

In [8, Proposition 6], a refinement of the classical Singleton bound is given
for cyclic codes. By [8, Proposition 5] and duality [7, Theorem], this bound
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is dR,1(C) ≤ dR,k(C) − k + 1. Hence this bound is implied by the classical
bound and Proposition A.21, or by monotonicity. The description in [8] gives
then an alternative description of this bound for cyclic codes.

As a tool for future bounds, we establish the following one. It shows how
to obtain bounds for all generalized weights from bounds on the first one or
the last one.

Lemma A.26. For every linear code C ⊂ Fn
qm , and for every 1 ≤ r ≤ k − 1,

k = dim(C), it holds that

1 ≤ dR,r+1(C)− dR,r(C) ≤ m.

The same bound applies to relative generalized rank weights.

Proof. It is enough to prove that, if D ⊂ D′ and dim(D′) = dim(D) + 1,
then wtR(D′) ≤ wtR(D) + m. Take d ∈ D′ such that D′ = D ⊕ 〈d〉. Then
D′∗ = D∗ + 〈d〉∗, and the result follows, since wtR(d) ≤ m.

Note that this bound implies that an inverse statement to Theorem A.7 is
not possible: Take for instance m = 1, then we have the bound dR,r+1 = dR,r +
1, which holds for all linear codes. However, the bound dH,r+1 = dH,r + 1
does not hold for all linear codes.

The case r = 1 of the following bound was established and proven by
Loidreau in [23] and for relative weights by Kurihara et al. in [20, Proposition
3]. The general case follows from these and the previous lemma.

Proposition A.27 (Alternative Singleton bound). If n > m, then for every lin-
ear code C ⊂ Fn

qm , and every 1 ≤ r ≤ k = dim(C),

dR,r(C) ≤
m
n
(n− k) + m(r− 1) + 1.

For a code pair C2  C1 ⊂ Fn
qm , with ki = dim(Ci), i = 1, 2, and every 1 ≤ r ≤

dim(C1/C2),

MR,r(C1, C2) ≤
m(n− k1)

n− k2
+ m(r− 1) + 1.

Now, for generalized rank weights, it is easy to see that this bound is
sharper than the usual Singleton bound if, and only if,

r ≤
⌊

n(n− 1)− (n−m)k
n(m− 1)

⌋
, (A.15)

which is a number in (1, k] if n ≤ mk (the case where the code is not neces-
sarily rank degenerate, see Proposition A.23). However, as it is usual and for
convenience, we give the following definition:
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Definition A.28 ( [7, Definition 1]). A linear code C ⊂ Fn
qm of dimension k is

r-MRD if dR,r(C) = n− k + r. We say it is MRD if it is 1-MRD. Similarly for
r-MDS and MDS codes, replacing dR,r by dH,r (see [33, Section VI]).

We also obtain the bound dR,r(C) ≤ rm from the previous lemma, by
induction on r. Therefore, the overview of the Singleton bound becomes
now as follows, with notation as above, which improves the bounds in the
previous overview:

dR,r(C) ≤


n− k + r,
rm,
m
n (n− k) + m(r− 1) + 1,

MR,s(C1, C2) ≤


n− k1 + s,
sm,
m(n−k1)

n−k2
+ m(s− 1) + 1.

Remark A.29. The bound dR,r(C) ≤ rm is sharper than the alternative Singleton
bound if, and only if, n ≥ mk. We know that in this case, C is rank degenerate
(Proposition A.23). Therefore, for codes that are not rank degenerate, the usual and
alternative Singleton bounds are the sharpest ones.

Remark A.30. When n ≤ m the usual Singleton bound is the sharpest general
upper bound on the rank distance, since Gabidulin codes (see [11]) are MRD and
may have length n, for all n ≤ m, and dimension k, for all 1 ≤ k ≤ n.

Since the alternative Singleton bound is sharper for r = 1 when n > m, it follows
immediately that, given 1 ≤ k ≤ n, and m, there exists an MRD code over Fn

qm , with
length n and dimension k, if and only if, n ≤ m. This gives a result analogous to the
MDS conjecture (see [16, page 265]) for the rank distance – although in this case it
is not a conjecture.

Also note that the inequality (A.15) gives a lower bound on the number r such
that C is r-MRD.

Remark A.31. One might ask if a bound of the form dR,r(C) ≤ m
n (n− k)+ r holds,

when n > m. However, this is not true even for r = 2. Take for example m = 2, n =
4, α ∈ Fq2 \Fq, and the code C = 〈(1, α, 0, 0), (0, 0, α, 1)〉, which has dimension k =

2. It is easy to see that C∗ has dimension 4, since (1, α, 0, 0), (1, αq, 0, 0), (0, 0, α, 1)
and (0, 0, αq, 1) are linearly independent over Fqm . Thus, for r = k = 2,

dR,2(C) = 4, and
m
n
(n− k) + r =

2
4
(4− 2) + 2 = 3.

Moreover, we see that dR,2(C) attains the alternative Singleton bound.
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We conclude the section with a simple fact that connects r-MRD codes
with r-MDS codes, and which follows directly from (A.9).

Proposition A.32. A linear code C ⊂ Fn
qm is r-MRD if, and only if, ϕB(C) is

r-MDS, for all bases B ⊂ Fn
q of Fn

qm .

Thus, if C is a Gabidulin code [11], it is obviously MDS, but also the codes
ϕB(C) are MDS. It can also be easily shown that the codes ϕB(C) are again
Gabidulin codes. Therefore, to prove that they are MRD, it is only necessary
to prove that they are MDS.

6 Rank-puncturing and rank-shortening

In this section we discuss what are the operations on rank-metric codes anal-
ogous to puncturing and shortening [16, Section 1.5]. The main importance
of the concept of puncturing is that a punctured codeword is essentially the
same as a codeword with erasures, as in the Hamming case. Recall that the
shortened and punctured codes of a given code C ⊂ Fn

qm on the coordinates
in the set I ⊂ J are defined, respectively, as

CI =C ∩VI = {c ∈ C | ci = 0, ∀i /∈ I},
CI ={(ci)i∈I | c ∈ C}.

6.1 The definitions

For a linear subspace L ⊂ Fn
q , fix another subspace L′ ⊂ Fn

q such that Fn
q =

L′ ⊕ L⊥. Observe that dim(L) = n− dim(L⊥) = dim(L′), which we will use
throughout the section. We then define the projection map

πL,L′ : Fn
qm −→ V′ = L′ ⊗Fqm ,

such that πL,L′(c) = c1, where c = c1 + c2, c1 ∈ V′ = L′⊗Fqm and c2 ∈ V⊥ =

L⊥ ⊗Fqm . We then write CL,L′ = πL,L′(C), for an (arbitrary) code C ⊂ Fn
qm .

Lemma A.33. For any two subspaces L′, L′′ ⊂ Fn
q such that Fn

q = L′ ⊕ L⊥ =

L′′ ⊕ L⊥, and for any code C ⊂ Fn
qm , we have that the codes CL,L′ and CL,L′′ are

rank-metric equivalent in a canonical way.

Proof. Define φ : V′ −→ V′′ by φ(c) = πL,L′′(c), where V′ = L′ ⊗ Fqm and
V′′ = L′′ ⊗Fqm .

First we see that φ is a vector space isomorphism. Since dim(V′) =
dim(V′′), we only need to prove that it is one to one. Assume that πL,L′′(c) =
0. This means that c ∈ V⊥, but also c ∈ V′ and V′ ∩V⊥ = 0, hence c = 0.
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On the other hand, since Fn
q = L′′ ⊕ L⊥, if c ∈ L′, then φ(c) ∈ L′′. In

other words, φ(V′|Fq) ⊂ V′′|Fq . By Theorem A.5, item 5, φ is a rank-metric
equivalence.

Finally, we see that φ(CL,L′) = CL,L′′ . If c1 ∈ CL,L′ , then there exists
c = c1 + c2 ∈ C, with c2 ∈ V⊥. Write c = c̃1 + c̃2, with c̃1 ∈ V′′ and c̃2 ∈ V⊥.
Then c1 = c̃1 + (c̃2 − c2) and hence φ(c1) = c̃1 ∈ CL,L′′ .

Therefore, the next definition of rank-punctured code is consistent.

Definition A.34. For every Fq-linear space L ⊂ Fn
q , and every code C ⊂ Fn

qm ,

we define its rank-punctured and rank-shortened codes over L as CL = CL,L′

and CL = C ∩V, respectively, for some L′ as before, where V = L⊗Fqm .
Similarly, for a coding scheme PS = {Cx}x∈S , we can define its rank-

punctured and rank-shortened schemes over L as P L
S = {CL

x }x∈S and PS L =
{CxL}x∈S , respectively. For a linear coding scheme built from C2  C1 ⊂ Fn

qm ,
they are the schemes built from CL

2 ⊂ CL
1 and C2L ⊂ C1L, respectively.

Observe that it is not always true that CL ⊂ CL, as opposed to the usual
shortening and puncturing. On the other hand, we see that, for every I ⊂ J ,
VI ∈ Υ. Then, it is easy to see that CI = CLI and CI = CLI , regarded as
subspaces of VI . Thus the previous definition extends the usual definition of
puncturing and shortening. For brevity, we will use just the words punctur-
ing and shortening for rank-puncturing and rank-shortening, respectively.

Remark A.35. Note that, given L ⊂ Fn
q , there may be more than one subspace

L′ ⊂ Fn
q such that Fn

q = L′ ⊕ L⊥ (later we will actually see how to obtain them). If
V = L⊗ Fqm , then V⊥ = L⊥ ⊗ Fqm , and what we are doing is finding a subspace
V′ ∈ Υ such that Fn

qm = V′ ⊕V⊥.
On the other hand, if V = VI ∈ Λ, then V⊥I = VI and VI is the unique subspace

V′ ∈ Λ such that Fn
qm = V′ ⊕ V⊥. Therefore, punctured codes in the Hamming

case are defined in a unique way, in contrast with the rank case.

Usually, CI and CI are considered as subspaces of F#I
qm . This is obvious

since Supp(CI) ⊂ I and VI is Hamming equivalent to F#I
qm . For rank-metric

codes, we can fix bases B, B′ of L, L′ ⊂ Fn
q , respectively, and consider ψB(CL)

and ψB′(CL), where ψB and ψB′ are as in (A.14). That is, we can consider that
CL, CL ⊂ F

dim(L)
qm .

6.2 r-MRD characterizations

In this subsection, we give characterizations of r-MRD (and r-MDS) codes
in terms of dimensions of punctured codes. We start with a tool that gen-
eralizes Forney’s Lemmas [10, Lemmas 1 and 2] and that is useful to relate
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dimensions of punctured and shortened codes. Note that [20, Lemma 10] is
essentially the second equality in this lemma.

Lemma A.36. For every linear code C ⊂ Fn
qm of dimension k and every subspace

L ⊂ Fn
q , it holds that

dim(CL) = dim(L)− dim((C⊥)L) = k− dim(CL⊥).

Proof. The second equality is [20, Lemma 10]. Now dim(CL) = dim(πL,L′(C)) =
k− dim(ker(πL,L′)) = k− dim(CL⊥).

We will need the duality theorem for generalized rank weights, which has
been established and proven in [7] (we will give a shorter proof in Appendix
B):

Theorem A.8 (Duality [7]). Given a linear code C ⊂ Fn
qm of dimension k, write

dr = dR,r(C) for 1 ≤ r ≤ k, and d⊥s = dR,s(C⊥), for 1 ≤ s ≤ n− k. Then it holds
that

{1, 2, . . . , n} ={d1, d2, . . . , dk}∪
{n + 1− d⊥1 , n + 1− d⊥2 , . . . , n + 1− d⊥n−k},

where the union is disjoint.

Note that, in the next propositions, the equivalence of the two first condi-
tions follows directly from Wei’s duality and its corresponding theorem for
rank weights, as proven in [32, Proposition 4.1] and [7, Corollary III.3], re-
spectively. The equivalence between item 2 and item 4 for Hamming weights
is proven in [16, Theorem 1.4.15], and the case r = 1 (C is MDS) is fully proven
in [16, Theorem 2.4.3]. It also generalizes [16, Corollary 1.4.14] and [16, The-
orem 1.5.7 (ii)].

Proposition A.37. The following conditions are equivalent for a linear code C ⊂
Fn

qm of dimension k, and every 1 ≤ r ≤ k:

1. The code C is r-MDS.

2. dH,1(C⊥) ≥ k− r + 2.

3. For all I ⊂ J such that #I ≤ k− r + 1, we have that dim(CI) = #I.

4. For all I ⊂ J such that #I ≥ n− k + r − 1, we have that dim((C⊥)I) =
n− k.

Proposition A.38. The following conditions are equivalent for a linear code C ⊂
Fn

qm of dimension k, and every 1 ≤ r ≤ k:
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1. The code C is r-MRD.

2. dR,1(C⊥) ≥ k− r + 2.

3. For all L ⊂ Fn
q such that dim(L) ≤ k − r + 1, we have that dim(CL) =

dim(L).

4. For all L ⊂ Fn
q such that dim(L) ≥ n− k+ r− 1, we have that dim((C⊥)L) =

n− k.

Proof. The equivalence between the first two conditions follows from the du-
ality Theorem A.8, as proven in [7], and the equivalence between the last two
conditions follows from Lemma A.36.

Now, we prove that condition 3 implies condition 2. Take c ∈ C⊥ \ 0
and assume that wtR(c) = dim(L) ≤ k − r + 1, where L = (〈c〉∗)|Fq (recall
wtR(c) = dim(〈c〉∗) from Lemma A.12). Then by Lemma A.36,

dim(L) = dim(CL) = dim(L)− dim((C⊥)L),

and thus (C⊥)L = 0, but this implies that c = 0, which is a contradiction.
Hence wtR(c) ≥ k− r + 2.

Finally, we prove that condition 2 implies condition 3. Let L ⊂ Fn
q be such

that dim(L) ≤ k− r + 1. Then, by the definition of minimum rank distance
(recall (A.4)), we have that dim((C⊥)L) = 0, and thus by Lemma A.36,

dim(CL) = dim(L)− dim((C⊥)L) = dim(L).

After showing how to compute generator matrices for punctured codes, it
can be easily proven that the equivalence between items 2 and 3 generalizes
[11, Theorem 1].

Corollary A.39. The smallest integer r such that C is r-MDS is r = k− dH,1(C⊥)+
2, and similarly for rank weights.

6.3 Information spaces

Next, we define the notion of information space, which plays the same role
as information sets in the Hamming case: any original codeword can be
recovered from the punctured codeword if (and also only if in the linear
case) we puncture on an information space. Therefore, information spaces
completely describe the erasure correction capability of a code, and not only
worst cases.

Definition A.40. Given a linear code C ⊂ Fn
qm , we say that a subspace L ⊂ Fn

q

is an information space for C if dim(CL) = dim(C). Equivalently, if the
restriction πL,L′ : C −→ CL is an Fqm -linear vector space isomorphism.
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For an (arbitrary) code C ⊂ Fn
qm , we say that L is an information space for

C if πL,L′ : C −→ CL is bijective.
On the other hand, given a code pair C2  C1 ⊂ Fn

qm , we say that L is an
information space for C1, C2 if dim(CL

1 /CL
2 ) = dim(C1/C2). In general, for

an (arbitrary) coding scheme PS = {Cx}x∈S , we say that L is an information
space for PS if πL,L′(Cx1) ∩ πL,L′(Cx2) = ∅, whenever x1 6= x2.

Observe that a set I ⊂ J is an information set for C if, and only if, LI is
an information space for C. Note also that πL,L′ is always surjective, so it is
only necessary to be injective in order to be bijective.

On the other hand, Proposition A.38, item 4, shows threshold values on
the dimension of a space to guarantee that it is an information space for a
given code, in terms of its minimum rank distance, as in the Hamming case.

Now we characterize MRD codes using information spaces, in the same
way as MDS codes are characterized using information sets. Note that the
result is a particular case of Proposition A.38, taking r = 1. After knowing
how to compute generator matrices of punctured codes, it can be shown that
this proposition is essentially [11, Theorem 2].

Proposition A.41. A linear code C ⊂ Fn
qm is MRD if, and only if, every L ⊂ Fn

q ,
with dim(L) = k = dim(C), is an information space for C.

The following two propositions essentially describe erasure correction on
networks. The second one also describes the correction capability of punc-
tured codes. They are analogous to [16, Theorem 1.5.7 (ii)] and [16, Theorem
1.5.1], respectively. The first one also extends [11, Theorem 1] to arbitrary
codes.

Proposition A.42. Given an (arbitrary) code C ⊂ Fn
qm , if ρ < dR(C), then every

subspace L ⊂ Fn
q with dim(L) ≥ n− ρ is an information space for C. If ρ ≥ dR(C),

there exists a subspace L ⊂ Fn
q with dim(L) = n− ρ which is not an information

space for C.

Proof. First we prove in the first case that πL,L′ : C −→ CL is injective. Take
c1, c2 ∈ C such that πL,L′(c) = 0, where c = c1 − c2. Then, c ∈ V⊥, V =
L⊗Fqm , and therefore, wtR(c) ≤ dim(V⊥) ≤ ρ, which is absurd.

For the second statement, take c1, c2 and c = c1 − c2 such that wtR(c) =
dR(C), write D = 〈c〉∗ = 〈v1, v2, . . . , vs〉, with vi ∈ Fn

q , and extend this to a
basis B = {vi}n

i=1 of Fn
q . Consider L⊥ = 〈v1, v2, . . . , vρ〉Fq , then dim(L) =

n− ρ and πL,L′(c1) = πL,L′(c2).

Proposition A.43. Given an (arbitrary) code C ⊂ Fn
qm with ρ < dR(C), every

subspace L ⊂ Fn
q with dim(L) ≥ n− ρ satisfies that dR(CL) ≥ dR(C)− ρ. More-

over, there exists a subspace L ⊂ Fn
q with dim(L) = n − ρ such that dR(CL) =

dR(C)− ρ.
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Proof. With the same notation as in the previous proof, we have that wtR(πL,L′(c)) =
dim(〈πL,L′(c)〉∗) ≥ dim(〈c〉∗)− ρ, and the first statement follows.

Finally, take c1, c2 such that wtR(c) = dR(C), and write D = 〈c〉∗ =
〈v1, v2, . . . , vs〉, with vi ∈ Fn

q , and extend this to a basis B = {vi}n
i=1 of

Fn
q . Consider L⊥ = 〈v1, v2, . . . , vρ〉Fq and L′ = 〈vρ+1, vρ+2, . . . , vn〉Fq , then

ker(πL,L′) ∩ D = L⊥ ⊗ Fqm , and therefore wtR(πL,L′(c)) = wtR(c)− ρ, and
the last statement follows.

We can extend this to (arbitrary) coding schemes, just by substituting the
code C with a coding scheme PS = {Cx}x∈S . The proof is the same.

6.4 Computing rank-punctured codes

We conclude the section showing how to compute punctured codes. In the
Hamming case, this is obvious, since we only have to project on some of
the coordinates. In the rank case, we need to solve some systems of linear
equations, which is still an efficient computation.

Proposition A.44. Given a subspace L ⊂ Fn
q and one of its generator matrices A

(L = row(A) and A has full rank [16]), we have that a subspace L′ ⊂ Fn
q satisfies

Fn
q = L′ ⊕ L⊥ if, and only if, it has a generator matrix A′ such that A′AT = I.

Proof. First assume that Fn
q = L′ ⊕ L⊥ and B is a generator matrix for L′.

Take x such that xBAT = 0, then xB ∈ L′ ∩ L⊥ and therefore, xB = 0, which
implies that x = 0. Hence, BAT is full rank and there exists an invertible
matrix M such that MBAT = I. Taking A′ = MB we obtain the desired
matrix.

Now assume that L′ has a generator matrix A′ with A′AT = I. Since
dim(L′) = dim(L) = n − dim(L⊥), we need to prove that L′ ∩ L⊥ = 0.
Suppose that xA′ ∈ L⊥, then x = xA′AT = 0, and we are done.

Therefore, to compute subspaces L′ with Fn
q = L′ ⊕ L⊥, we just need to

solve the equations Aa′Ti = eT
i , i = 1, 2, . . . , dim(L). Different solutions give

different spaces.
Note that if A is a generator matrix of L ⊂ Fn

q over Fq, then it is a gener-
ator matrix of V = L⊗Fqm over Fqm .

Lemma A.45. With the same notation as in the previous proposition, we have that,
for every c ∈ Fn

qm ,

πL,L′(c) = cAT A′.

And now we give a method to compute the generator matrix of a punc-
tured code CL, given generator matrices of C and L. The proof is straightfor-
ward and follows from the previous lemma.
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Proposition A.46. Let C ⊂ Fn
qm be a linear code with generator matrix G, and let

L, L′ ⊂ Fn
q be subspaces with generator matrices A and A′, respectively, and such

that A′AT = I.
We have that GAT A′ satisfies that row(GAT A′) = CL,L′ = CL, and thus by

deleting linearly dependent rows, we obtain a generator matrix for CL. Moreover, if L
is an information space for C, then GAT A′ is full rank and therefore it is a generator
matrix for CL.

7 Secure network coding

In this section we revisit the description of secure linear network coding in
view of the results in the previous sections. Recall from Subsection 2.1 the
linear network coding with errors that we are considering, which is the one
in [20, 28], and recall from Subsection 2.2 that we assume that the source
encodes the original message x ∈ Fk

qm into c ∈ Fn
qm using some coding scheme

PS = {Cx}x∈S .
As explained in the introduction, we consider an adversary that may com-

promise the security of the network by doing three things: introducing t er-
roneous packets on t different links, modifying the transfer matrix A and
obtaining information about the original message x by wiretapping several
links.

As in [20, 28], if the receiver obtains the vector y = cAT + e, t = wtR(e)
and ρ = n − Rk(A), then we say that t errors and ρ erasures occurred. In
Appendix C, we will see how to consider erasures as errors.

7.1 Erasure correction and information leakage revisited

In this subsection we study the problems of erasure correction and informa-
tion leakage, which are closely related. The amount of leaked information on
networks was studied in [20]. We will see how the punctured construction in
Section 6 can describe this.

Consider a linear coding scheme built from C2  C1 ⊂ Fn
qm . Denote by S

and X the random variables corresponding to the original message and the
encoded message by the previous nested coset coding scheme, respectively,
and πI the projection onto the coordinates in I ⊂ J . It was shown in [12]
and [21] that

I(S; πI(X)) = dim((C⊥2 )I/(C⊥1 )I) = dim(CI
1/CI

2), (A.16)

for every I ⊂ J , assuming a uniform distribution, where the last equality
follows from Lemma A.36, and I(X; Y) = H(X) − H(X|Y) is the mutual
information of the random variables X and Y.
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On the other hand, by wiretapping s links in a network, an adversary
obtains the variable XBT , for some matrix B ∈ Fs×n

q . Assuming uniform
distributions, and defining L = row(B) ⊂ Fn

q , it is proven in [20, Lemma 7]
that

I(S; XBT) = dim((C⊥2 )L/(C⊥1 )L) = dim(CL
1 /CL

2 ), (A.17)

where the last equality follows from Lemma A.36.
Therefore, the information leakage is tightly related to the dimension of

punctured and shortened codes.
Observe that I(S; XBT) ≤ dim(C1/C2) and the equality holds if, and only

if, L is an information space for C1, C2 as in Definition A.40. Remember from
Proposition A.42 that if n− Rk(B) < dR(PS ), then L = row(B) is an infor-
mation space for PS . In Appendix A, we show how to efficiently obtain the
original message if L is an information space.

Next we give a relation between information leakage and duality, whose
philosophy is similar to that of MacWilliams equations, since it means that
knowing the information leakage using the code pair C2  C1 is equivalent
to knowing the information leakage using the “dual” code pair C⊥1  C⊥2 . It
is convenient to introduce the definition of access structures:

Definition A.47 ( [12]). We define the Hamming access structure of the nested
linear code pair C2  C1 as the collection of the following sets

A(C1, C2)r = {I ⊂ J | dim(CI
1/CI

2) = r},

for 0 ≤ r ≤ ` = dim(C1/C2). Given a set A ⊂ P(J ), we define its Hamming
dual as A⊥ = {I ⊂ J | I ∈ A}.

Definition A.48. We define the rank access structure of the nested linear code
pair C2  C1 as the collection of the following linear subspaces of Fn

q

B(C1, C2)r = {L ⊂ Fn
q | dim(CL

1 /CL
2 ) = r},

for 0 ≤ r ≤ ` = dim(C1/C2). Given a set B ⊂ {L ⊂ Fn
q linear subspace}, we

define its rank dual as B⊥ = {L ⊂ Fn
q | L⊥ ∈ B}.

We now present the relation with duality, where the Hamming case for
r = 0 was already proven in [5, Proof of Theorem 1] for the Massey-type
scheme [5, Section 3]. The rank case and the general Hamming case are new.

Proposition A.49. Given a nested linear code pair C2  C1 ⊂ Fn
qm and 0 ≤ r ≤

` = dim(C1/C2), we have that

A(C⊥2 , C⊥1 )r = A(C1, C2)
⊥
`−r.
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Proof. It follows from the following equality, which follows from Lemma
A.36,

dim((C⊥2 )I/(C⊥1 )I) + dim(CI
1/CI

2) = `.

Proposition A.50. Given a nested linear code pair C2  C1 ⊂ Fn
qm and 0 ≤ r ≤

` = dim(C1/C2), we have that

B(C⊥2 , C⊥1 )r = B(C1, C2)
⊥
`−r.

Proof. Again, it follows from the following equality, which follows from Lemma
A.36,

dim((C⊥2 )L/(C⊥1 )L) + dim(CL⊥
1 /CL⊥

2 ) = `.

Finally, as consequences of Proposition A.37 and Proposition A.38, we
obtain the description of the access structures for MDS and MRD code pairs,
respectively. The Hamming case (Corollary A.51) also follows immediately
from [12, Section III].

Corollary A.51 ( [12, Section III]). If both C1 and C2 are MDS, then

dim(CI
1/CI

2) =


` , if k1 ≤ #I,
#I − k2 , if k2 ≤ #I ≤ k1,
0 , if #I ≤ k2,

for every I ⊂ J .

Corollary A.52. If both C1 and C2 are MRD, then

dim(CL
1 /CL

2 ) =


` , if k1 ≤ dim(L),
dim(L)− k2 , if k2 ≤ dim(L) ≤ k1,
0 , if dim(L) ≤ k2,

for every linear subspace L ⊂ Fn
q .

In general, we can compute the information leaked in many cases, but if
the involved codes are not MDS (respectively, MRD), then there is always a
collection of sets (respectively, subspaces) for which we do not completely
know the information leaked. We first establish this fact for the rank case,
which follows from Proposition A.38, and give an example in the Hamming
case:
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Proposition A.53. Let C2  C1 ⊂ Fn
qm be a nested linear code pair such that ki =

dim(Ci), i = 1, 2, ` = k1 − k2, C1 is r1-MRD and C⊥2 is r2-MRD, or equivalently,
dR(C⊥1 ) ≥ k1 − r1 + 2 and dR(C2) ≥ n− k2 − r2 + 2. If L ⊂ Fn

q is a subspace
such that k2 + r2− 1 ≤ dim(L) ≤ k1− r1 + 1, then dim(CL

1 /CL
2 ) = dim(L)− k2,

which only depends on dim(L) and not on the space L.
If moreover, k2 + r2− 1 < k1− r1 + 1, and taking s1 = n− k1− d(C1) + 1 and

s2 = k2 − d(C⊥2 ) + 1, then for every subspace L ⊂ Fn
q , it holds that dim(CL

1 /CL
2 )

is
= ` , if k1 + s1 ≤ dim(L),
≥ `− r1 + 1 , if k1 − r1 + 1 < dim(L) < k1 + s1,
= dim(L)− k2 , if k2 + r2 − 1 ≤ dim(L) ≤ k1 − r1 + 1,
≤ r2 − 1 , if k2 − s2 < dim(L) < k2 + r2 − 1,
= 0 , if dim(L) ≤ k2 − s2.

Example A.54. If C1 and C2 are algebraic geometric codes constructed from
a function field of genus g [32], then we have the Goppa bound [32, Theorem
4.3]: dH,1(Ci) ≥ n − dim(Ci) + 1 − g and dH,1(C⊥i ) ≥ dim(Ci) + 1 − g. It
follows from Proposition A.37 that, for the code pair C2  C1,

dim(CI
1/CI

2)


= ` , if k1 + g ≤ #I,
≥ `− g , if k1 − g < #I < k1 + g,
= #I − k2 , if k2 + g ≤ #I ≤ k1 − g,
≤ g , if k2 − g < #I < k2 + g,
= 0 , if #I ≤ k2 − g.

7.2 Error and erasure correction revisited

In this subsection we see how the rank-puncturing can describe error and
erasure correction in networks. We will follow a slightly different approach
than that of [20, 28].

We will treat the coherent case, that is, the case in which the matrix A is
known by the receiver. For simplicity, we will consider the case of one code
C ⊂ Fn

qm , which may be non-linear. At the end we will show how to adapt the
results to arbitrary coding schemes. Observe that [20, Theorem 4] only deals
with linear (meaning Fqm -linear, as in the rest of the paper) coding schemes.

As we saw in the previous subsection (see also Appendix A), if the sink
node receives y = cAT and the number of erasures is less than dR(C), we can
perform erasure correction. For that, we can take a submatrix Ã of A which
is a generator matrix of L = row(A), since the other rows in A are redundant.
All choices of Ã will give the same unique solution.

When there are errors, we would also like to take a submatrix as before
and the corresponding subvector of y. However, it is not clear that the de-
coder in [20, 28] for A and for Ã will behave in the same way. We now
propose a slightly different approach.
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Fix the positive integer N and the matrix A ∈ FN×n
q , which are assumed

to be known by the receiver.

Definition A.55 ( [28, Equations (9), (12)]). For each c ∈ Fn
qm and y ∈ FN

qm ,
we define the discrepancy between them as

∆A(c, y) = min{r | ∃z ∈ Fr
qm , D ∈ FN×r

q

with y = cAT + zDT} = wtR(y− cAT).

Fix nonnegative integers ρ, t, with Rk(A) ≥ n− ρ. We will assume that,
if c ∈ Fn

qm is sent and y ∈ FN
qm is received, then ∆A(c, y) ≤ t, or equivalently,

that y = cAT + e, with wtR(e) ≤ t. Define L = row(A). We will denote
Ã ⊂ A if Ã is a submatrix of A that is a generator matrix of L.

Next we recall the decoder in [28] and present a slightly different one.

Definition A.56 ( [28, Equation (10)]). We define the decoder

c = argminc∈C∆A(c, y).

Definition A.57. For each Ã ⊂ A, we define the decoder:

ĉ = argminc∈C∆Ã(c, ỹ),

where ỹ is the vector obtained from y taking the coordinates in the same
positions as the rows of Ã.

We will say that one of the previous decoders is infallible [28, Section
III.A] if ĉ = c (or c = c), when c is the sent message, for every c ∈ C.

In [20, 28], sufficient and necessary conditions for the decoder correspond-
ing to A being infallible are given. We will now state that the same conditions
are valid for the decoders corresponding to all the submatrices Ã. In partic-
ular, all of them give the correct (and thus, the same) answer.

The main difference is that now the proof only relies on Proposition A.42
and Proposition A.43, where we do not need the machinery developed in [20,
28], in total analogy with the Hamming case, as proven in [16, Theorem 1.5.1],
and for the decoding, we do not need all rows in A. Moreover, although it
is not difficult to adapt the proof in [20, Theorem 4] for Fq-linear coding
schemes, our proof works for any (arbitrary) scheme.

Theorem A.9. Given an (arbitrary) code C ⊂ Fn
qm , if dR(C) > 2t + ρ, then the

decoders in Definition A.57 are infallible for every Ã ⊂ A, and in particular, they
all give the same answer. If dR(C) ≤ 2t + ρ, then there exists a matrix A ∈ FN×n

q

such that for every Ã ⊂ A, the decoder in Definition A.57 is not infallible.
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Proof. First, assume dR(C) > 2t + ρ and fix a matrix A ∈ FN×n
q and Ã ⊂ A.

Assume also that the sent message is c ∈ C and we receive y = cAT + e,
with wtR(e) ≤ t. Define ỹ and ẽ as the vectors obtained from y and e,
respectively, taking the coordinates in the same positions as the rows in Ã.
Therefore, ỹ = cÃT + ẽ.

We have that Rk(Ã) = Rk(A) and wtR(ẽ) ≤ wtR(e) ≤ t, and on the other
hand,

∆Ã(c, ỹ) = wtR(ẽ) = wtR(ẽA′),

where A′ ÃT = I.
Now, cÃT A′ = πL,L′(c) by Lemma A.45. Since dR(CL) > 2t by Proposi-

tion A.43, and since L is an information space for C by Proposition A.42, c is
the only vector in C with dR(ỹA′, πL,L′(c)) ≤ t, and we are done.

Finally, if dR(C) ≤ 2t + ρ, then take A such that dim(L) = n − ρ and
dR(CL) = dR(C)− ρ ≤ 2t, which exists by Proposition A.43. Then, take Ã ⊂
A and c, c′ ∈ C such that dR(πL,L′(c), πL,L′(c′)) = dR(cÃT , c′ ÃT) ≤ 2t. There
exists e, e′ ∈ FN

qm such that wtR(e), wtR(e′) ≤ t and cÃT + ẽ = c′ ÃT + ẽ′, and

hence the decoder associated with Ã gives both c and c′ as solutions.

To adapt this to (arbitrary) coding schemes, we just need to replace dis-
tances between vectors by distances between cosets

dR(Cx, Cx′) = min{dR(c, c′) | c ∈ Cx, c′ ∈ Cx′},

and the choice of vectors in C by the choice of representatives of a coset Cx
in PS .

A The role of CL
1 /CL

2 in information leakage

In this appendix we explain the role of CL
1 /CL

2 in information leakage beyond
the expression (A.17). Let the notation be as in Subsection 7.1.

If the adversary knows the matrix B, then he or she may obtain πL,L′(c) =
cB̃T B̃′, where B̃ is a submatrix of B that is a generator matrix of L, and B̃′ B̃T =
I. Assuming uniform distributions, it can be shown that the adversary still
obtains the same amount of information from πL,L′(c):

I(S; XBT) = I(S; πL,L′(X)) = dim(CL
1 /CL

2 ). (A.18)

Actually, we can effectively compute the set of possible sent messages,
regardless of the distributions used. If ψ : F`

qm −→W is the map in Definition
A.3, we can see both ψ and πL,L′ as maps

F`
qm

ψ−→ C1/C2
πL,L′−→ CL

1 /CL
2 ,
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where ψ is an isomorphism and πL,L′ is surjective. Therefore, knowing c′ =
πL,L′(c+C2) = πL,L′(ψ(x)), where c = ψ(x), we can obtain the set of possible
sent messages, which is

(πL,L′ ◦ ψ)−1(c′) = x + ker(πL,L′ ◦ ψ),

regardless of the distribution, and in the case of uniform distributions, dim
(ker(πL,L′ ◦ψ)) = `−dim(CL

1 /CL
2 ) = H(S)− I(S; πL,L′(X)) = H(S|πL,L′(X)).

Moreover, if we know B, we can obtain all vectors in x + ker(πL,L′ ◦ ψ) by
performing matrix multiplications and solving systems of linear equations.

Assume that G1, G2, G′ are generator matrices of C1, C2, W, respectively,
where C1 = C2 ⊕W, and the first rows of G1 are the rows in G2, and the last
rows are the rows in G′. Then, for a message x ∈ F`

qm , the encoding consists in

generating uniformly at random a vector x2 ∈ F
k2
qm and defining c = x2G2 +

xG′ = (x2, x)G1. Therefore, the projections onto the last ` coordinates of
the solutions of the system πL,L′(c) = x̃(G1B̃T B̃′) will be all the vectors in
x + ker(πL,L′ ◦ ψ).

If L is an information space for C2  C1, i.e., dim(CL
1 /CL

2 ) = `, then all
solutions of the previous system coincide in the last ` coordinates, which
constitute the original message x ∈ F`

qm .

B Alternative proof of the duality theorem

We will now give a different proof of the duality Theorem A.8 (proven in [7])
that follows from Proposition A.50. Note that a theorem analogous to Wei’s
duality theorem [33, Theorem 3] has not been given for relative generalized
Hamming weights, nor for the rank case. However, Proposition A.50 and its
Hamming version work for any nested linear code pair.

We will need the following lemma:

Lemma A.58 ( [20, Lemma 4]). For any linear code C ⊂ Fn
qm and any 1 ≤ r ≤ k,

we have that

dR,r(C) = min{j | max{dim(CL) | dim(L) = j} = r}.
The proof is as follows. By monotonicity and cardinality, it is enough to

prove that both sets on the right-hand side are disjoint. Assume that they are
not disjoint, then there exist i, j, s such that di = j and d⊥s = n + 1− j. By the
previous lemma, the first equality implies that

max{dim(CL) | dim(L) = j} = i.

Now take C1 = C and C2 = 0 in Proposition A.50. From the fact that
B(Fn

qm , C⊥)r = B(C, 0)⊥`−r and the previous lemma, the second equality im-
plies that

max{dim(CL) | dim(L) = j− 1} = s + k− n− 1 + j.
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C. Seeing errors as erasures

Again by the previous lemma, i > s + k − n − 1 + j. Now interchanging
the role of C and C⊥, which also interchanges the roles of i, s; the roles of
j, n + 1− j; and the roles of k, n− k; we have that i ≤ s + k− n− 1 + j, which
is absurd.

C Seeing errors as erasures

We will show now that erasure correction is equivalent to error correction if
the rank support of the error vector is known. This is analogous to the fact
that usual erasure correction is equivalent to usual error correction where the
positions of the errors (the Hamming support of the error vector) are known.
This is a basic fact used in many decoding algorithms for the Hamming
distance, which now we hope can be translated to the rank case.

Proposition A.59. Assume that c ∈ C and y = c+ e, where wtR(e) = t < dR(C)
and L = G(e). Then, c is the only vector c′ ∈ C such that wtR(y− c′) < dR(C)
and L = G(y− c′).

Moreover, if A is a generator matrix of L⊥, then c is the unique solution in C of
the system of equations yAT = xAT , where x is the unknown vector.

Proof. Assume that y = c + e = c′ + e′, where c′ ∈ C and G(e) = G(e′).
Then yAT = cAT = c′AT . Since Rk(A) = n − t and t < dR(C), it follows
from the previous theorem that c = c′.
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1. Introduction

Abstract

Reducible codes for the rank metric were introduced for cryptographic purposes. They
have fast encoding and decoding algorithms, include maximum rank distance (MRD)
codes and can correct many rank errors beyond half of their minimum rank distance,
which makes them suitable for error-correction in network coding. In this paper, we
study their security behaviour against information leakage on networks when applied
as coset coding schemes, giving the following main results: 1) we give lower and up-
per bounds on their generalized rank weights (GRWs), which measure worst-case
information leakage to the wire-tapper, 2) we find new parameters for which these
codes are MRD (meaning that their first GRW is optimal), and use the previous
bounds to estimate their higher GRWs, 3) we show that all linear (over the extension
field) codes whose GRWs are all optimal for fixed packet and code sizes but varying
length are reducible codes up to rank equivalence, and 4) we show that the informa-
tion leaked to a wire-tapper when using reducible codes is often much less than the
worst case given by their (optimal in some cases) GRWs. We conclude with some
secondary related properties: Conditions to be rank equivalent to cartesian products
of linear codes, conditions to be rank degenerate, duality properties and MRD ranks.

Keywords: Generalized rank weight, rank-metric codes, rank distance,
rank equivalent codes, reducible codes, secure network coding.

1 Introduction

Linear network coding was first studied in [1, 14], further formalized in [12],
and provides higher throughput than storing and forwarding messages on
the network. Two of the main problems in this context are error and erasure
correction, and security against information leakage to a wire-tapper, which
were first studied in [3] and [4], respectively.

Rank-metric codes were found to be universally suitable (meaning inde-
pendently of the underlying network code) for error and erasure correction
in linear network coding in [22], used as forward error-correcting codes, and
they were found to be universally suitable against information leakage in [23],
used in the form of coset coding. Both constructions can be treated separately
and applied together in a concatenated way (see [23, Sec. VII-B]).

On the security side, generalized rank weights (GRWs) of codes that are
linear over the extension field were introduced in [13, 18] to measure the
worst-case information leakage for a given number of wire-tapped links.
Later, GRWs were extended in [21] and [17] to codes that are linear over
the base field, where they are called Delsarte generalized weights and gener-
alized matrix weights, respectively. We will use the term GRWs for the latter
parameters, which were also found to measure the worst-case information
leakage for codes that are linear over the base field [17, Th. 3].

85



Paper B.

Gabidulin codes [8] constitute a family of maximum rank distance (MRD)
codes that cover all cases when the number of outgoing links n is not larger
than the packet length m, and all of their GRWs are optimal (meaning largest
possible).

Cartesian products of these codes are proposed in [23, Sec. VII.C] for the
case n > m both for error correction and security against information leak-
age. A generalization of these codes, called reducible codes, were introduced
earlier in [9] as an alternative to Gabidulin codes [8] to improve the security
of rank-based public key cryptosystems [10]. On the error correction side,
it was shown in [9] that reducible codes have fast encoding and rank error-
correcting algorithms, their minimum rank distance is not worse than that
of cartesian products of codes [23, Sec. VII.C], being actually MRD in some
cases, and they can correct many rank errors beyond half of their minimum
rank distance (even in the MRD cases). Therefore they seem to be the best
known codes for error correction in linear network coding when n > m.

However, on the security side, only the existence of codes with optimal
first GRW (MRD codes) has been studied in the case n > m [17, Sec. IV-B],
but no bounds nor estimates of higher GRWs of rank-metric codes or other
properties related to their worst-case information leakage are known when
n > m, except for cyclic codes with minimal GRWs [7].

In this paper, we study the security provided by reducible codes in linear
network coding when used for coset coding as in [23] by studying their GRWs
and showing their optimality in several cases. In particular, we study for the
first time the GRWs of a concrete family of rank-metric codes with n > m,
which moreover include MRD codes for several parameters.

1.1 Main contributions

Our main contributions are the following:

1. We give lower and upper bounds on GRWs of reducible codes, and ex-
act values for cartesian products, giving a first step in the open problem
of estimating or bounding the GRWs of a family of rank-metric codes
for n > m.

2. We give new families of parameters for which reducible codes are MRD
(some were given in [9]), meaning that their first GRW is optimal and
thus they are optimal regarding zero information leakage among all
linear (over the extension or the base field) codes, by [17, Th. 3]. Using
the estimates and exact values of GRWs of these codes in the previous
item, we also give a first step in the open problem of finding the GRWs
of a family of MRD codes for n > m.

3. We show that all linear (over the extension field) codes whose GRWs
are all optimal for fixed packet and code sizes, but varying length, lie
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in the family of reducible codes from the previous item, up to rank
equivalence.

4. Finally, we show that information leakage when using reducible codes
is often much less than the worst case given by their GRWs. In particu-
lar, they often provide strictly higher security than the known security
provided by other MRD codes [17, Sec. IV-B].

1.2 Organization of the paper

After some preliminaries in Section II, the paper is organized as follows: In
Section III, we give lower and upper bounds on the GRWs of reducible codes,
extending the lower bound on the minimum rank distance given in [9], and
see that the given upper bound on the minimum rank distance can be reached
by some reduction. In Section IV, we obtain new parameters for which re-
ducible codes are MRD (or close to MRD) and with MRD components, and
obtain explicit estimates on their GRWs, including those MRD codes found
in [9] and considered for secure network coding in [23]. In Section V, we
obtain all linear codes whose GRWs are all optimal, for all fixed packet and
code sizes, up to rank equivalence. In Section VI, we see that the actual infor-
mation leakage occuring when using reducible codes is often much less than
the worst case given by their GRWs, providing higher security than other
known MRD codes. Finally, in Section VII, we study secondary but related
properties: Conditions to be rank equivalent to cartesian products and con-
ditions to be rank degenerate. We study their duality properties and MRD
ranks. Finally, we propose alternative constructions to the classical (u, u + v)
construction.

2 Definitions and preliminaries

2.1 Rank-metric codes

Fix a prime power q and positive integers m and n, and let Fq and Fqm denote
the finite fields with q and qm elements, respectively. We may identify vectors
in Fn

qm with m× n matrices over Fq: Fix a basis α1, α2, . . . , αm of Fqm over Fq.
If c = (c1, c2, . . . , cn) ∈ Fn

qm , cj = ∑m
i=1 αici,j, and ci,j ∈ Fq, for i = 1, 2, . . . , m

and j = 1, 2, . . . , n, we may identify c with the matrix

M(c) =
(
ci,j
)1≤i≤m

1≤j≤n . (B.1)

The rank weight of a vector c ∈ Fn
qm is defined as the rank of the matrix M(c)

and denoted by wtR(c). In this paper, a code is a subset of Fn
qm . The term

rank-metric code is used for codes with the rank metric.
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2.2 Universal secure linear network coding

We consider a network with several sources and several sinks as in [1, 14]. In
this model, a given source wants to transmit k packets in Fm

q to one or several
sink nodes, and does so by encoding them into a vector, c ∈ Fn

qm , which can
be seen as n packets in Fm

q by (B.1), being n the number of outgoing links
from the source.

In linear network coding, as considered in [1] and [14], the nodes in the net-
work forward linear combinations of received packets (see [12, Definition 1]),
achieving higher throughput than just storing and forwarding. This means
that a given sink is assumed to receive the vector

y = cAT ∈ FN
qm ,

for some matrix A ∈ FN×n
q , called a transfer matrix.

Two of the main problems in linear network coding considered in the liter-
ature are the following:

1. Error correction [3]: Several packets are injected on some links in the
network, hence the sink receives

y = cAT + e ∈ FN
qm ,

for an error vector e ∈ FN
qm .

2. Information leakage [4]: A wire-tapper listens to µ > 0 links in the
network, obtaining

z = cBT ∈ F
µ
qm ,

for a matrix B ∈ F
µ×n
q .

In [22], it is proven that rank-metric codes are suitable for error correction
when used as forward error-correcting codes, and in [23], it is proven that
they are also suitable to protect messages from information leakage when
used as coset coding schemes, which were introduced in [25] and [19]. Both
coding techniques can be treated separately and applied together in a con-
catenated way (see [23, Sec. VII-B]).

Moreover, rank-metric codes are universal [23] in the sense that they cor-
rect a given number of errors and erasures, and protect against a given num-
ber of wire-tapped links, independently of the matrices A and B, respectively.

We consider the particular coding schemes in [23, Sec. V-B] with uniform
distributions:

Definition B.1 ( [23]). Given an Fqm -linear code C ⊆ Fn
qm with generator ma-

trix G ∈ Fk×n
qm , we define its coset coding scheme as follows: For x ∈ Fk

qm , its
coset encoding is a vector c ∈ Fn

qm chosen uniformly at random and such that
x = cGT .
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This type of encoding has been recently extended to Fq-linear codes in [17,
Sec. II-D].

In this paper we will focus on rank-metric codes used for security against
information leakage in the form of coset coding.

2.3 Generalized rank weights and information leakage

The information leaked to a wire-tapping adversary when using coset coding
schemes was obtained in [23, Lemma 6], then generalized in [13, Lemma 7] to
Fqm -linear nested coset coding schemes [26], and in [17, Prop. 4] to Fq-linear
coset coding schemes.

We need the concept of Galois closed spaces [24]:

Definition B.2 ( [24]). Denote [i] = qi for an integer i ≥ 0. If C ⊆ Fn
qm is

Fqm -linear, we denote

C[i] = {(c[i]1 , c[i]2 , . . . , c[i]n ) | (c1, c2, . . . , cn) ∈ C},

we define the Galois closure of C as C∗ = ∑m−1
i=0 C[i], and we say that it is

Galois closed if C = C∗.

The next lemma is [23, Lemma 6]. Throughout the paper, I(X; Y) denotes
the mutual information of the random variables X and Y, taking logarithms
with base qm.

Lemma B.3 ( [23]). Let S be the uniform random variable in Fk
qm , let X be its coset

encoding using an Fqm -linear code C ⊆ Fn
qm according to Definition B.1, and denote

W = XBT , where B ∈ F
µ×n
q . Then

I(S; W) = dim(C ∩V), (B.2)

where V ⊆ Fn
qm is the Fqm -linear vector space with generator matrix B.

Since Galois closed spaces in Fn
qm are those Fqm -linear spaces with a gener-

ator matrix over Fq [24, Lemma 1], the previous lemma motivates the defini-
tion of generalized rank weights, introduced independently in [18] for n ≤ m,
and in [13, Def. 2] for the general case:

Definition B.4 ( [13]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k, we

define its r-th generalized rank weight (GRW), for 1 ≤ r ≤ k, as

dR,r(C) = min{dim(V) | V ⊆ Fn
qm , Fqm -linear and

V = V∗, dim(C ∩V) ≥ r}.

We also define dR,0(C) = 0 for convenience.
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Hence dR,r(C) is the minimum number of links that a wire-tapper needs
to listen to in order to obtain at least the amount of information contained
in r packets. In other words, r− 1 packets is the worst-case information leakage
when at most dR,r(C)− 1 links are wire-tapped.

The next lemma corresponds to [11, Th. 16, Cor. 17]:

Lemma B.5 ( [11]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k and 1 ≤

r ≤ k, it holds that

dR,r(C) = min{wtR(D) | D ⊆ C, Fqm -linear and

dim(D) = r},

where wtR(D) = dim(D∗) for an Fqm -linear D ⊆ Fn
qm .

In particular, it is shown in [13, Cor. 1] that dR,1(C) is the minimum rank
distance of the code C (also denoted by dR(C)). Thus the minimum rank
distance is of particular importance, since it gives the maximum number
of wire-tapped links that guarantee zero information leakage, and we may
evaluate the code’s optimality among all rank-metric codes (linear and non-
linear) in this sense using the Singleton bound [5, Th. 6.3]:

#C ≤ qmax{m,n}(min{m,n}−dR(C)+1), (B.3)

where C ⊆ Fn
qm is an arbitrary rank-metric code. Codes attaining this bound

are called maximum rank distance (MRD) codes.

2.4 Existing MRD code constructions

We briefly revisit two existing code constructions that have already been con-
sidered in the literature:

1. Assume n ≤ m and 1 ≤ k ≤ n: Take elements β1, β2, . . . , βn ∈ Fqm

that are linearly independent over Fq. The Fqm -linear code CGab ⊆ Fn
qm

generated by the matrix
β1 β2 . . . βn

β
[1]
1 β

[1]
2 . . . β

[1]
n

...
...

. . .
...

β
[k−1]
1 β

[k−1]
2 . . . β

[k−1]
n


has dimension k and minimum rank distance dR(CGab) = n − k + 1,
and hence is MRD. These codes are known as Gabidulin codes and
were introduced in [8]. Their GRWs were given in [13, Cor. 2]:

dR,r(CGab) = n− k + r.
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2. Assume n = lm and k = lk′, for some positive integers l and k′ ≤ m:
The Fqm -linear code C ⊆ Fn

qm defined as C = C1 × C2 × · · · × Cl , where
each Ci ⊆ Fm

qm is a k′-dimensional Gabidulin code, has dimension k and
minimum rank distance dR(C) = m − k′ + 1, and hence is also MRD.
These codes were introduced in [9, Cor. 1] and considered in [23, Sec.
VII-C] for secure network coding. In contrast with Gabidulin codes,
although a first analysis of these codes is given in [23], their GRWs are
still not known. We will find all of them in Section 4.2.

The two previous constructions are particular cases of reducible codes,
introduced in [9], which we will study in the rest of the paper.

2.5 Reducible codes and reductions

Consider positive integers l, n1, n2, . . . , nl and Fqm -linear codes C1 ⊆ F
n1
qm , C2 ⊆

F
n2
qm , . . . , Cl ⊆ F

nl
qm of dimensions k1, k2, . . . , kl , respectively. Consider matrices

Gi,j ∈ F
ki×nj
qm , for i = 1, 2, . . . , l and j = i, i + 1, . . . , l, where Gi,i generates Ci.

Definition B.6 ( [9]). We say that an Fqm -linear code C ⊆ Fn
qm is reducible

with reduction R = (Gi,j)
i≤j≤l
1≤i≤l if it has a generator matrix of the form

G =



G1,1 G1,2 G1,3 . . . G1,l−1 G1,l
0 G2,2 G2,3 . . . G2,l−1 G2,l
0 0 G3,3 . . . G3,l−1 G3,l
...

...
...

. . .
...

...
0 0 0 . . . Gl−1,l−1 Gl−1,l
0 0 0 . . . 0 Gl,l


.

The length of the code C is n = n1 + n2 + · · · + nl and its dimension is
k = k1 + k2 + · · ·+ kl . C is the cartesian product of the codes C1, C2, . . . , Cl if
Gi,j = 0, for all j > i.

Definition B.7. For a given reduction R as in the previous definition, we
define its main components as the codes C1, C2, . . . , Cl , its row components
as the Fqm -linear codes C′i ⊆ Fn

qm with generator matrices

G′i = (0, . . . , 0, Gi,i, Gi,i+1, . . . , Gi,l), (B.4)

for i = 1, 2, . . . , l, and its column components as the Fqm -linear codes Ĉj ⊆
F

nj
qm generated by the matrices

Ĝj = (G1,j, G2,j, . . . , Gj,j)
T , (B.5)

for j = 1, 2, . . . , l, which need not have full rank.

91



Paper B.

It holds that ki = dim(C′i), k̂ j = dim(Ĉj) ≥ k j, C = C′1 ⊕ C′2 ⊕ · · · ⊕ C′l and
C ⊆ Ĉ = Ĉ1 × Ĉ2 × · · · × Ĉl .

Different reductions always have the same main components if their block
sizes are the same. See Appendix A for a discussion on the uniqueness of
reductions of a reducible code.

3 Bounds on GRWs of reducible codes and exact
values

With notation as in Subsection 2.5, it is proven in [9, Lemma 2] that

dR,1(C) ≥ min{dR,1(C1), dR,1(C2), . . . , dR,1(Cl)}. (B.6)

We now present the main result of this section, which generalizes (B.6) to
higher GRWs and also gives upper bounds. As observed below, it gives the
exact values for cartesian products.

Theorem B.1. With notation as in Subsection 2.5, for every r = 1, 2, . . . , k, we
have that

dR,r(C) ≥ min{dR,r1(C1) + dR,r2(C2) + · · ·+ dR,rl (Cl)

| r = r1 + r2 + · · ·+ rl , 0 ≤ ri ≤ ki},
(B.7)

and

dR,r(C) ≤ min{dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl (C

′
l)

| r = r1 + r2 + · · ·+ rl , 0 ≤ ri ≤ ki}.
(B.8)

The proof can be found at the end of the section. We now elaborate on
some particular cases of interest.

First, observe that the bound (B.7) gives the bound (B.6) for the mini-
mum rank distance (the case r = 1), and the bound (B.8) gives the following
(immediate) upper bound:

dR,1(C) ≤ min{dR,1(C′1), dR,1(C′2), . . . , dR,1(C′l)}. (B.9)

The previous theorem also gives the following corollary for cartesian
products:

Corollary B.8. If C = C1 × C2 × · · · × Cl and 1 ≤ r ≤ k, with notation as before,
then

dR,r(C) = min{dR,r1(C1) + dR,r2(C2) + · · ·+ dR,rl (Cl)

| r = r1 + r2 + · · ·+ rl}.
(B.10)
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Now we illustrate Theorem B.1 with the following example that includes
the MRD Fqm -linear codes in Subsection 2.4, item 2, for l = 2:

Example B.9. With notation as in Theorem B.1, assume that l = 2, n1, n2 ≤ m,
k1 ≤ k2 and take C1 and C2 as MRD codes (the matrix G1,2 can be arbitrary).
In particular, dR,ri (Ci) = ni − ki + ri [13] as in Subsection 2.4, 1 ≤ ri ≤ ki,
i = 1, 2. We estimate dR,r(C) considering three cases:

1. Assume 1 ≤ r ≤ k1: The bounds (B.7) and (B.8) give

min{n1 − k1, n2 − k2}+ r ≤ dR,r(C) ≤ n2 − k2 + r.

2. Assume k1 < r ≤ k2 (if k1 < k2): In this case, in both bounds in Theorem
B.1, it is necessary that r2 > 0. Hence, these bounds coincide and give
the value dR,r(C) = n2 − k2 + r.

3. Assume k2 < r ≤ k: As in the previous case, now it is necessary that
r1 > 0 and r2 > 0, and thus Theorem B.1 gives the value dR,r(C) =
n− k + r, which is optimal by the Singleton bound [13, Proposition 1].

Finally, it is natural to ask whether different reductions (see Definition B.6)
may give different bounds in Theorem B.1. In Appendix A, we show that all
reductions have the same main components, thus (B.7) remains unchanged.
We now show that (B.9) can always be attained by some particular reduction.
Other cases where (B.8) may be attained by some reduction are open.

Proposition B.10. With notation as in Subsection 2.5, there exists a reductionR =

(Gi,j)
i≤j≤l
1≤i≤l of C such that the bound (B.9) is an equality.

Proof. Assume that the minimum rank distance is attained by wtR(c) =
dR,1(C), for c ∈ C. It holds that c = c′1 + c′2 + · · · + c′l , with c′i ∈ C′i , and
c′i = xiG′i,i (recall (B.4)), for some xi ∈ F

ki
qm and all i = 1, 2, . . . , l.

We may assume without loss of generality that x1 6= 0. We just need to

define Gi,i = Gi,i and choose matrices A1,j ∈ F
k1×kj
qm and Gi,j ∈ F

ki×nj
qm , for

1 ≤ i ≤ l − 1 and i + 1 ≤ j ≤ l, such that the k× k matrix

A =



I A1,2 A1,3 . . . A1,l−1 A1,l
0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0
0 0 0 . . . 0 I


satisfies that G = AG, where G is the generator matrix of C corresponding to
R = (Gi,j)

i≤j≤l
1≤i≤l , and

x1 A1,j = −xj,
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for j = 2, 3, . . . , l. It is possible to choose such matrices A1,j because x1 6= 0.
Then c = (xA)G lies in the first row component of the reductionR and hence
dR,1(C) = wtR(c) ≥ dR,1(C

′
1), implying the result.

We conclude the section with the proof of Theorem B.1. We need the
following lemma:

Lemma B.11. With notation as in Subsection 2.5, define the sets

Ai = {0}n1 × · · · × {0}ni−1 × (Fni
qm \ {0})×F

ni+1
qm × · · · ×F

nl
qm ,

for i = 1, 2, . . . , l. For an Fqm -linear vector space D ⊆ Fn
qm , there exist subspaces

D′i ⊆ 〈D ∩ Ai〉, for i satisfying D ∩ Ai 6= ∅, such that D =
⊕

D∩Ai 6=∅ D′i and
D′i ∩ Aj = ∅ for j > i.

Proof. We may prove it by induction on the number of indices i such that
D ∩ Ai 6= ∅. If such number is 1, the result is trivial by taking D′i = D, since
D = 〈D ∩ Ai〉.

Assume that it is larger than 1 and i is the smallest index such that D ∩
Ai 6= ∅. Define D̃ = ∑l

j=i+1〈D ∩ Aj〉 6= {0}, and let D′i 6= {0} by one of its
complementaries in D. It follows that D′i ⊆ 〈D ∩ Ai〉 and D′i ∩ Aj = ∅, for
j > i.

Now, by induction hypothesis, D̃ has a decomposition as in the theorem,
which together with D′i gives the desired decomposition of D.

Proof of Theorem B.1. We first prove (B.7). Take an r-dimensional Fqm -linear
subspace D ⊆ C. With notation as in Lemma B.11, define Di ⊆ Ci as the
projection of D′i onto the i-th main component, for i such that D ∩ Ai 6= ∅.
We see that dim(Di) = dim(D′i), since D′i ⊆ 〈D ∩ Ai〉 and D′i ∩ Aj = ∅ for
j > i, and by collecting the preimages in D∗ by the projection map of bases
of D∗i , for i such that D ∩ Ai 6= ∅, we see that

wtR(D) ≥ ∑
D∩Ai 6=∅

wtR(Di),

and the result follows by Lemma B.5.
To prove (B.8), take a decomposition r = r1 + r2 + · · ·+ rl , with 0 ≤ ri ≤ ki,

for i = 1, 2, . . . , l, and take Fqm -linear subspaces Di ⊆ C′i with dim(Di) = ri
and wtR(Di) = dR,ri (C

′
i). Then define the Fqm -linear subspace D = D1 ⊕

D2 ⊕ · · · ⊕ Dl ⊆ C, which satisfies dim(D) = r. By definition, it holds that
D∗ = D∗1 + D∗2 + · · ·+ D∗l . Hence

wtR(D) ≤ wtR(D1) + wtR(D2) + · · ·+ wtR(Dl)

= dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl (C

′
l),

and the result follows again by Lemma B.5.
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Remark B.12. Observe that the bound (B.8) is valid with the same proof for a gen-
eral Fqm -linear code that can be decomposed as a direct sum of Fqm -linear subcodes
C = C′1 ⊕ C′2 ⊕ · · · ⊕ C′l .

Remark B.13. In the general setting of Theorem B.1, the same result as in Corollary
B.8 holds whenever Ci and C′i are rank equivalent (see Section 5), for each i =
1, 2, . . . , l, since in that case it holds that dR,r(Ci) = dR,r(C′i) for all i = 1, 2, . . . , l
and all r = 1, 2, . . . , ki.

4 MRD reducible codes with MRD main compo-
nents, and their GRWs

Among all GRWs, the first weight (the minimum rank distance) is of special
importance, as explained at the end of Subsection 2.3. Therefore, it is of
interest to study the GRWs of a family of MRD codes, that is, codes that are
already optimal for the first weight.

In this section, we find new parameters for which reducible codes are
MRD or close to MRD when n > m, extending the family of MRD codes
in [9] (see Subsection 2.4), and then give bounds on their GRWs and exact
values in the cartesian product case, using the results in the previous section.
Hence we give for the first time estimates and exact values of the GRWs of
a family of MRD codes with n > m. We will also compare the performance
of these codes with those Fq-linear MRD codes obtained by transposing the
matrix representations of codewords in a Gabidulin code [17, Sec. IV-B].

4.1 Definition of the codes

Assume n > m and fix an integer 1 ≤ k ≤ n. In view of the bound (B.6),
we will consider a reducible code Cred ⊆ Fn

qm of dimension k whose main
components C1, C2, . . . , Cl (with notation as in Subsection 2.5) have as sim-
ilar parameters as possible. This will allow to obtain reducible codes with
minimum rank distance as large as allowed by (B.3).

First we need the following parameters:

1. There exist unique l > 0 and 0 ≤ t ≤ m− 1 such that

n = lm− t.

2. There exist unique k′ > 0 and 0 ≤ s ≤ l − 1 such that

k = lk′ − s.

3. Define then

a =

⌈
km
n

⌉
− k′, and b =

⌈
t
l

⌉
− 1.
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4. Finally, define
t′ = l(m− b)− n,

which satisfies 0 < t′ ≤ l.

We need the next inequalities to define the desired codes:

Lemma B.14. It holds that k′ ≤ m− b if b ≥ 0, and k′ ≤ m if b = −1.

Proof. For b = −1, we have that t = 0 and k = lk′ − s ≤ n = lm implies that
k′ ≤ m + s/l. Since s < l, the result holds in this case.

Now assume that b ≥ 0. We have that k + s ≤ n + l. Writing k and n as
above, this inequality reads

(lk′ − s) + s ≤ (lm− t) + l,

that is, lk′ + t ≤ l(m + 1) and, dividing by l, it is equivalent to

k′ +
t
l
− 1 ≤ m.

The result follows by the definition of b.

Finally, we give the construction, distinguishing three cases:

Definition B.15. Define the reducible code Cred ⊆ Fn
qm of dimension k with

MRD main components C1, C2, . . . , Cl as follows:

1. If t = 0 (i.e. b = −1): Choose C1, C2, . . . , Cl such that l − s of them have
length m and dimension k′, and s of them have length m and dimension
k′ − 1. By (B.6), we have that

dR,1(Cred) ≥ m− k′ + 1.

2. If t > 0 and t′ ≤ s: Choose C1, C2, . . . , Cl such that l − s of them have
length m − b and dimension k′, s − t′ of them have length m − b and
dimension k′ − 1, and t′ of them have length m− b− 1 and dimension
k′ − 1. By (B.6), we have that

dR,1(Cred) ≥ m− b− k′ + 1.

3. If t > 0 and t′ > s: Choose C1, C2, . . . , Cl such that l − t′ of them have
length m − b and dimension k′, t′ − s of them have length m − b − 1
and dimension k′, and s of them have length m− b− 1 and dimension
k′ − 1. By (B.6), we have that

dR,1(Cred) ≥ m− b− k′.
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The next theorem is the first main result of this section, and it gives fami-
lies of parameters m, n and k such that Cred is MRD or almost MRD:

Theorem B.2. Assume that 0 ≤ t ≤ l or n ≥ m2. The following holds:

1. If t ≤ s or tk′ > ms, then

dR,1(Cred) =
⌊m

n
(n− k) + 1

⌋
,

attaining (B.3) if n divides mk.

2. If t > s and tk′ ≤ ms, then

dR,1(Cred) ≥
⌊m

n
(n− k)

⌋
.

Proof. First we see that we only need to assume 0 ≤ t ≤ l. Assume that
n ≥ m2. Since n = lm − t ≥ m2 and t ≥ 0, it holds that l ≥ m. Therefore
t ≤ m− 1 ≤ l − 1.

Next we observe that⌊m
n
(n− k) + 1

⌋
= m− a− k′ + 1. (B.11)

Before considering the different cases, we will see that a ≥ 0, and a = 0 if
and only if k′t ≤ sm.

First it holds that −1 < km/n− k′ if and only if

(k′ − 1)n < km.

Using that n = lm− t and k = lk′ − s, and rearranging terms, this inequality
reads

sm + (k′ − 1)t < lm + n,

which is always true since s < l and k′t ≤ k ≤ n. Hence a ≥ 0. On the other
hand, km/n− k′ ≤ 0 if and only if

nk′ ≥ km.

Using again that n = lm − t and k = lk′ − s, and rearranging terms, this
inequality reads k′t ≤ sm. This is then the case when a = 0.

Now we prove item 1 in the theorem:
Assume first that t = 0, then dR,1(Cred) ≥ m− k′ + 1 and a = 0, hence the

result follows in this case by (B.11).
Now assume that 0 < t ≤ s. Then dR,1(Cred) ≥ m− k′ + 1 (since b = 0)

and k′t ≤ sm holds, since k′ ≤ m. Then a = 0 and the result follows in this
case by (B.11).
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Next assume that tk′ > ms. Then we know that a ≥ 1 and⌊m
n
(n− k) + 1

⌋
≤ m− k′.

Since b = 0, we know that dR,1(Cred) ≥ m− k′, hence the result follows in this
case by (B.11).

Finally, we prove item 2:
Assume that t > s and tk′ ≤ ms. Then we know that a = b = 0 and

dR,1(Cred) ≥ m− b− k′. Therefore the result follows also in this case by (B.11)
and we are done.

Remark B.16. Observe that the MRD reducible codes in Subsection 2.4, item 2,
are the subfamily of the codes Cred obtained by choosing t = s = 0, and hence are
particular cases of the codes in the previous theorem.

Remark B.17. Observe that the conditions 0 ≤ t ≤ l and n ≥ m2 only depend on
m and n, but not on k. Hence, for the previous families of values of n and m, we have
obtained MRD or almost MRD codes for all dimensions.

Remark B.18. In general, the difference b− a will be big if t is much bigger than l.
As n grows, the fact t > l happens for fewer values of t. Hence the codes Cred are far
from optimal when n is small compared to m (still n > m) and t is much bigger than
l.

4.2 Estimates and exact values of their GRWs

The next theorem is the second main result in this section, and it gives esti-
mates of the GRWs of the MRD (or almost MRD) reducible codes Cred from
Theorem B.2, using the lower bound (B.7).

Theorem B.3. Let the parameters be as in Theorem B.2.
Assume first that t ≤ s.

1. If 1 ≤ j ≤ l − s and (j − 1)k′ < r ≤ jk′, or if l − s < j ≤ l − s + t and
(j− 1)(k′ − 1) + l − s < r ≤ j(k′ − 1) + l − s, then

dR,r(Cred) ≥ j(m− k′) + r.

2. If l − s + t < j ≤ l and (j− 1)(k′ − 1) + l − s < r ≤ j(k′ − 1) + l − s, then

dR,r(Cred) ≥ j(m− k′) + r + (j− l + s− t).

Assume now that t > s.

1. If 1 ≤ j ≤ t− s and (j− 1)k′ < r ≤ jk′, then

dR,r(Cred) ≥ j(m− k′ − 1) + r.
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2. If t − s < j ≤ l − s and (j − 1)k′ < r ≤ jk′, or if l − s < j ≤ l and
(j− 1)(k′ − 1) + l − s < r ≤ j(k′ − 1) + l − s, then

dR,r(Cred) ≥ j(m− k′) + r− t + s.

These cases cover all r = 1, 2, . . . , k and moreover, if Cred is the cartesian product of
its main components C1, C2, . . . , Cl , then all the previous lower bounds are equalities.

Proof. The result follows from Theorem B.1. To see it, we just have to use
that dR,ri (Ci) = ni − ki + ri and see in which way we have to choose ri = 0 or
ri > 0 to obtain the minimum in the bound (B.7), for i = 1, 2, . . . , l. This is a
straightforward extension of the calculations in Example B.9.

4.3 Comparison with other MRD codes

In this subsection, we will compare the codes Cred ⊆ Fn
qm from Definition

B.15 with the Fq-linear MRD codes CT
Gab ⊆ Fn

qm obtained by transposing
the matrix represenations (see (B.1)) of the codewords in a given Fqn -linear
Gabidulin code CGab ⊆ Fm

qn (see Subsection 2.4), when n > m.
The codes CT

Gab were obtained previously by Delsarte [5, Th. 6] and have
been recently considered for universal secure linear network coding in [17,
Sec. IV-B].

We next argue the advantages of the codes Cred over the codes CT
Gab:

1. Generalized rank weights: Although GRWs have recently been extended
to Fq-linear codes [17, 21] and its connection to worst-case information
leakage has been obtained [17, Th. 3], little is known about them for
codes that are not linear over Fqm . In particular, the GRWs of the codes
CT

Gab are not known yet, except for their minimum rank distance.

2. Encoding and decoding complexity: The complexity of coset encoding and
decoding with an Fqm -linear code, as in Definition B.1, is equivalent to
the complexity of encoding with one of its generator matrices.

If kred denotes the dimension of Cred over Fq, then the complexity of
encoding with a generator matrix coming from one of its reductions is
O(kredm2) operations over Fqm , whereas if kGab denotes the dimension
of CGab over Fq, then the complexity of encoding with one of its gener-
ator matrices is O(kGabn2) operations over Fqn . Therefore it is a higher
complexity since n > m, and the difference between both complexities
becomes higher the bigger n is with respect to m.

3. Possible parameters obtained: Since the codes CT
Gab are obtained from Fqn -

linear codes, their sizes are of the form qN , where N is some multiple

99



Paper B.

of n, whereas the sizes of the codes Cred are of the form qM, where M is
some multiple of m.

Since we are assuming n > m, in a given interval of positive integers,
there are more possible parameters attained by the codes Cred than by
the codes CT

Gab.

4. Stronger security: The information leakage for a given number of wire-
tapped links when using the codes Cred is often much less than the
worst case given by their GRWs, as we will see in Section 6. In par-
ticular, looking at their first GRW, we will see that more links can be
wire-tapped and still guarantee zero information leakage when using
Cred than when using CT

Gab.

5 All Fqm-linear codes with optimal GRWs for all
fixed packet and code sizes

In this section, we obtain all Fqm -linear codes whose GRWs are all optimal
for fixed packet and code sizes (m and k, respectively), but varying length, n,
up to rank equivalence. These codes are particular cases of the codes Cred in
the previous section.

Definition B.19. For fixed k and m, and for a basis α1, α2, . . . , αm of Fqm over
Fq, define the Fqm -linear code Copt = C1 × C2 × · · · × Ck ⊆ Fkm

qm , where all Ci

are equal and generated by the vector (α1, α2, . . . , αm) ∈ Fm
qm .

To claim the above mentioned optimality of these codes, we need the
following bounds given in [16, Lemma 6]:

Lemma B.20 ( [16]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k, for each

r = 1, 2, . . . , k− 1, it holds that

1 ≤ dR,r+1(C)− dR,r(C) ≤ m. (B.12)

As a consequence, for each r = 1, 2, . . . , k, it holds that

dR,r(C) ≤ rm. (B.13)

Observe that these bounds only depend on the packet and code sizes (m
and k, respectively), and they do not depend on the length n.

We first show that the codes Copt attain the previous bounds, and then
prove that they are the only ones with this property:

Proposition B.21. Let Copt ⊆ Fkm
qm be the Fqm -linear code in Definition B.19 for

given k and m. Then dim(Copt) = k and dR,r(Copt) = rm, for r = 1, 2, . . . , k.
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Proof. It holds that dR,1(Ci) = m, for i = 1, 2, . . . , k, since these codes are one-
dimensional Gabidulin codes in Fm

qm (see Subsection 2.4). Hence, by Corollary
B.8, we have that

dR,k(Copt) =
k

∑
i=1

dR,1(Ci) = km.

By (B.12), it holds that dR,r(Copt) = rm, for r = 1, 2, . . . , k.

We will use the definition of rank equivalences from [16, Def. 8], which
are stronger than vector space isomorphisms that preserve rank weights:

Definition B.22 ( [16]). If V ⊆ Fn
qm and V′ ⊆ Fn′

qm are Fqm -linear Galois closed
spaces, we say that a map φ : V −→ V′ is a rank equivalence if it is a vector
space isomorphism and wtR(φ(c)) = wtR(c), for all c ∈ V.

We say that two codes C and C′ are rank equivalent if there exists a rank
equivalence between Fqm -linear Galois closed spaces V and V′ that contain C
and C′, respectively, and mapping bijectively C to C′.

Finally, we show that the codes Copt are the only Fqm -linear codes attaining
(B.13) for fixed packet and code sizes up to rank equivalence:

Theorem B.4. Let C ⊆ Fn
qm be an Fqm -linear code of dimension k such that dR,r(C) =

rm, for every r = 1, 2, . . . , k.
Then, for every basis α1, α2, . . . , αm of Fqm over Fq, the code C is rank equivalent

to the code Copt ⊆ Fkm
qm in Definition B.19. Moreover, the rank equivalence can be

explicitly constructed in polynomial time from any basis of C.

We need some preliminary lemmas to prove this result. We start by the
following characterization of rank equivalences, which is a particular case
of [16, Th. 5]:

Lemma B.23 ( [16]). Let φ : V −→ V′ be an Fqm -linear vector space isomorphism,
where V ⊆ Fn

qm and V′ ⊆ Fn′
qm are Fqm -linear Galois closed spaces.

It is a rank equivalence if and only if there exist bases v1, v2, . . . , vt ∈ Fn
q and

w1, w2, . . . , wt ∈ Fn′
q of V and V′, respectively, and a non-zero element β ∈ Fqm ,

such that φ(vi) = βwi, for i = 1, 2, . . . , t.

We now introduce some notation. For a given vector c = (c1, c2, . . . , cn) ∈
Fn

qm , define c[i] = (c[i]1 , c[i]2 , . . . , c[i]n ), for all integers i ≥ 0. Then define the trace
map Tr : Fn

qm −→ Fn
q of the extension Fq ⊆ Fqm as follows

Tr(c) = c + c[1] + c[2] + · · ·+ c[m−1],

for all c ∈ Fn
qm . We have the following two lemmas:
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Lemma B.24. For a basis α1, α2, . . . , αm of Fqm over Fq, the matrix A = (α
[j−1]
i )1≤i,j≤m

over Fqm is invertible.

Proof. Well-known. See for instance [8].

Lemma B.25. For a basis α1, α2, . . . , αm of Fqm over Fq and the matrix A =

(α
[j−1]
i )1≤i,j≤m, define

(β1, β2, . . . , βm) = e1 A−1,

where e1 ∈ Fm
qm is the first vector in the canonical basis. Then β1, β2, . . . , βm is also

a basis of Fqm over Fq.

Moreover, if B = (β
[j−1]
i )1≤i,j≤m, then

(α1, α2, . . . , αm) = e1B−1.

Proof. Write β = (β1, β2, . . . , βm). Then βA = e1, which means that ∑m
i=1 βiα

[j−1]
i

= δj,1, where δ is the Kronecker delta. By raising this equation to the power

[l − 1] = ql−1 and using that δj,l is 0 or 1, we see that ∑m
i=1 β

[l−1]
i α

[j−1]
i = δj,l ,

that is, β[l−1]A = el , for l = 1, 2, . . . , m.
Let λ ∈ Fm

q be such that λ · β = 0. By raising this equation to the power

[l − 1], for l = 1, 2, . . . , m, we see that λ · β[l−1] = 0 or, equivalently, λ ·
(el A−1) = 0, since λ ∈ Fm

q .
Write µ = (µ1, µ2, . . . , µm) = λ(A−1)T . It holds that

0 = λ · (el A−1) = (λ(A−1)T) · el = µ · el = µl ,

for l = 1, 2, . . . , m. Therefore, µ = 0, thus λ = 0. Hence the elements
β1, β2, . . . , βm are linearly independent over Fq.

Finally, since ∑m
i=1 β

[l−1]
i α

[j−1]
i = δj,l , it holds that ∑m

i=1 αiβ
[j−1]
i = δ1,j = δj,1,

which means that (α1, α2, . . . , αm)B = e1, and we are done.

We may now prove Theorem B.4:

Proof of Theorem B.4. Choose any basis b1, b2, . . . , bk of C. Since dim(C∗) =

km and C∗ is generated by the elements b[j−1]
s , for s = 1, 2, . . . , k and j =

1, 2, . . . , m, it follows that these elements are linearly independent over Fqm .
Define the vector β = (β1, β2, . . . , βm) = e1 A−1, with notation as in the

previous lemma. By that lemma, β1, β2, . . . , βm constitute a basis of Fqm over
Fq, and (α1, α2, . . . , αm) = e1B−1.

Consider the vectors vs,i = Tr(βibs) ∈ Fn
q , for s = 1, 2, . . . , k and i =

1, 2, . . . , m. Assume that there exist λs,i ∈ Fq such that ∑k
s=1 ∑m

i=1 λs,ivs,i = 0.
Then it holds that

m

∑
j=1

k

∑
s=1

(
m

∑
i=1

λs,iβ
[j−1]
i

)
b[j−1]

s = 0.
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Hence ∑m
i=1 λs,iβ

[j−1]
i = 0, for s = 1, 2, . . . , k and j = 1, 2, . . . , m, which implies

that λs,i = 0, for s = 1, 2, . . . , k and i = 1, 2, . . . , m.
Therefore, the elements vs,i, for s = 1, 2, . . . , k and i = 1, 2, . . . , m, consti-

tute a basis of C∗ and are vectors in Fn
q . Now define the Fqm -linear vector

space isomorphism ψ : C∗ −→ Fkm
qm by ψ(vs,i) = e(s−1)m+i, for s = 1, 2, . . . , k

and i = 1, 2, . . . , m. By Lemma B.23, ψ is a rank equivalence and, moreover,

bs =
m

∑
j=1

m

∑
i=1

αiβ
[j−1]
i b[j−1]

s =
m

∑
i=1

αiTr(βibs) =
m

∑
i=1

αivs,i.

It follows that vs = ψ(bs) = ∑m
i=1 αie(s−1)m+i, and the vectors vs, for s =

1, 2, . . . , k, constitute a basis of ψ(C). Finally, this means that ψ(C) = Copt
and we are done.

Remark B.26. As explained in Subsection 2.2, given an Fqm -linear code C ⊆ Fn
qm of

dimension k, the parameter m represents the packet length, k represents the number of
linearly independent packets that we may send using C, or its size, and n represents
the number of outgoing links from the source.

Due to the bounds (B.13), if m and k are fixed and n is not restricted, then the
code Copt is the only Fqm -linear code whose GRWs are all optimal, and hence is the
only Fqm -linear optimal code regarding information leakage in the network, up to
rank equivalence.

Remark B.27. The codes Copt ⊆ Fkm
qm do not only have optimal GRWs, but the

difference between two consecutive weights is the largest possible by (B.12):

dR,r+1(Copt) = dR,r(Copt) + m,

for r = 1, 2, . . . , k− 1. However, for a Gabidulin code CGab as in Subsection 2.4, the
difference between two consecutive weights is the smallest possible by (B.12):

dR,r+1(CGab) = dR,r(CGab) + 1,

for r = 1, 2, . . . , k− 1.
Therefore, when using Copt, an adversary that obtains r packets of information,

by listening to the smallest possible number of links, needs to listen to at least m
more links in order to obtain one more packet of information. However, when using
CGab, the adversary only needs to listen to one more link to obtain one more packet
of information.

6 Stronger security of reducible codes

On the error correction side, it is well-known that reducible codes can cor-
rect a substantial amount of rank errors beyond half of their minimum rank
distance [9, Sec. III.A].
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The aim of this section is to show that, on the security side, when using
a reducible code C, an eavesdropper may in many cases obtain less than r
packets of information even if he or she wire-taps at least dR,r(C) links in the
network (see Subsection 2.3).

Setting r = 1 and using an MRD reducible code (as in Section 4.1), this
means that the eavesdropper obtains no information even when wire-tapping
strictly more links than those allowed by other MRD codes (Fqm -linear or Fq-
linear), by [17, Th. 3].

The above mentioned stronger security is obtained by upper bounding the
dimensions of the code intersected with Galois closed spaces, due to Equation
(B.2). We explain this in the remarks at the end of the section.

The following is the main result of this section, where we denote by πi :
Fn

qm −→ F
ni
qm the projection map onto the coordinates corresponding to the i-

th main component Ci ⊆ F
ni
qm , for i = 1, 2, . . . , l, with notation as in Subsection

2.5.

Theorem B.5. Let V ⊆ Fn
qm be an Fqm -linear Galois closed space and assume that,

for each i = 1, 2, . . . , l, there exists 0 ≤ ri ≤ ki such that dim(πi(V)) ≤ dR,ri (Ci),
with notation as in Subsection 2.5. Then

dim(C ∩V) ≤
(

l

∑
i=1

ri

)
− #{i | dim(πi(V)) < dR,ri (Ci)}.

In particular, if dim(πi(V)) < dR,1(Ci), for i = 1, 2, . . . , l, then

dim(C ∩V) = 0.

Before proving this theorem, we give two consequences of interest. In the
first, we give a sufficient condition for the eavesdropper to obtain less than
r packets of information, for a given r, as in the second paragraph of this
section:

Corollary B.28. Let the notation be as in Subsection 2.5, let 1 ≤ r ≤ k and let
V ⊆ Fn

qm be an Fqm -linear Galois closed space. Assume that r = ∑l
i=1 ri, where

1 ≤ ri ≤ ki and dim(πi(V)) ≤ dR,ri (Ci), for i = 1, 2, . . . , l, and for some j it holds
that dim(πj(V)) < dR,rj(Cj). Then

dim(C ∩V) < r.

The second consequence is just the previous theorem applied to the codes
in Definition B.19:

Corollary B.29. Let Copt ⊆ Fkm
qm be the code in Definition B.19, and let V ⊆ Fkm

qm

be an Fqm -linear Galois closed space. Then

dim(Copt ∩V) ≤ #{i | πi(V) = Fm
qm}.
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Finally, we prove Theorem B.5. We need the following lemma:

Lemma B.30. Let V ⊆ Fn
qm be an Fqm -linear Galois closed space, and let the nota-

tion be as in Subsection 2.5. It holds that

dim(C ∩V) ≤
l

∑
i=1

dim(Ci ∩ πi(V)).

Proof. Let D = C ∩ V ⊆ C and let the notation be as in Lemma B.11. Since
D =

⊕
D∩Ai 6=∅ D′i , we just need to show that dim(D′i) ≤ dim(Ci ∩πi(V)), for

i such that D ∩ Ai 6= ∅.
Fix such an index i, and let ρi : D′i −→ Ci ∩ πi(V) be the restriction of

πi to D′i . It is well-defined since πi(D′i) ⊆ πi(V) by definition of D, and
πi(D′i) ⊆ Ci since D′i ⊆ 〈C ∩ Ai〉.

Finally, we see that ρi is one to one since D′i ⊆ 〈C ∩ Ai〉 and D′i ∩ Aj = ∅
for j > i, and we are done.

Proof of Theorem B.5. First observe that πi(V) ⊆ F
ni
qm is again Galois closed,

for i = 1, 2, . . . , l. By definition of GRWs, if dim(πi(V)) < dR,ri (Ci), then
dim(Ci ∩πi(V)) < ri, for i such that ri > 0. On the other hand, if dim(πi(V)) ≤
dR,ri (Ci) and ri < ki, then by monotonicity of GRWs [13, Lemma 4], it holds
that dim(πi(V)) < dR,ri+1(Ci), which implies that dim(Ci ∩ πi(V)) < ri + 1,
that is, dim(Ci ∩ πi(V)) ≤ ri. Finally, if dim(πi(V)) ≤ dR,ki

(Ci), then it is
trivial that dim(Ci ∩ πi(V)) ≤ dim(Ci) = ki.

The result follows then from the previous lemma.

Remark B.31. In the situation of Corollary B.28, if dim(πi(V)) ≤ dR,ri (Ci), for
i = 1, 2, . . . , l and with strict inequality for some j, then an eavesdropper that obtains
cBT , where B generates V, gains less than r packets of information about the original
packets by Equation (B.2).

Observe that the previous condition implies that dim(V) < ∑l
i=1 dR,ri (Ci). We

know from the bound (B.7) that if dim(V) < ∑l
i=1 dR,si (Ci) for all possible decom-

positions r = ∑l
i=1 si, then dim(C ∩V) < r.

However, many Fqm -linear Galois closed spaces may satisfy dim(πi(V)) <

dR,ri (Ci), for i = 1, 2, . . . , l, and a given decomposition r = ∑l
i=1 ri, but may also

satisfy dim(V) ≥ ∑l
i=1 dR,si (Ci) for some other decomposition r = ∑l

i=1 si.
Take for instance V = V1 × V2 × · · · × Vl , where Vi ⊆ F

ni
qm are Fqm -linear

Galois closed spaces satisfying dim(Vi) ≤ dR,ri (Ci), for i = 1, 2, . . . , l and with
strict inequality for some j, but dim(V) = ∑l

i=1 dim(Vi) ≥ dR,r(C).

Remark B.32. In the particular case of Corollary B.29, to obtain at least r packets
of information, it must hold that πi(V) is the whole space Fm

qm for at least r indices
i. Take for instance V = V1 ×V2 × · · · ×Vk, where Vi ( Fn

qm satisfies dim(Vi) =
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m− 1, for i = 1, 2, . . . , k. In that case, dim(V) = k(m− 1), which is usually much
bigger than dR,1(C) = m. However, the adversary still obtains no information about
the original packets.

7 Related properties of reducible codes

In this section, we study some secondary properties of reducible codes that
are related to their GRWs.

7.1 Cartesian product conditions

In this subsection, we gather sufficient and necessary conditions for reducible
codes to be rank equivalent to cartesian products (see Section 5 for the defi-
nition of rank equivalence).

We start by using Galois closures and generalized rank weights to see
whether an Fqm -linear code that can be decomposed as a direct sum of
smaller codes is rank equivalent to the cartesian product of these codes. It
can be seen as a converse statement to Corollary B.8.

Proposition B.33. Given an Fqm -linear code C = C′1 ⊕ C′2 ⊕ · · · ⊕ C′l ⊆ Fn
qm ,

with ki = dim(C′i), for i = 1, 2, . . . , l, and k = dim(C), we have that C∗ =
C′∗1 + C′∗2 + · · ·+ C′∗l and the following conditions are equivalent:

1. C is rank equivalent to a cartesian product C1 × C2 × · · · × Cl ⊆ Fn
qm , where

Ci ⊆ F
ni
qm is rank equivalent to C′i , and the equivalence map from C to the

product is the product of the equivalence maps from C′i to Ci.

2. C∗ = C′∗1 ⊕ C′∗2 ⊕ · · · ⊕ C′∗l .

3. dR,k(C) = dR,k1(C
′
1) + dR,k2(C

′
2) + · · ·+ dR,kl

(C′l).

4. For all r = 1, 2, . . . , k, it holds that

dR,r(C) = min{dR,r1(C
′
1) + dR,r2(C

′
2) + · · ·+ dR,rl (C

′
l)

| r = r1 + r2 + · · ·+ rl , 0 ≤ ri ≤ ki}.

Proof. It is trivial that item 1 implies item 4 by Corollary B.8. It is also trivial
that item 4 implies item 3, and items 2 and 3 are equivalent since dR,k(C) =
dim(C∗) and dR,ki

(C′i) = dim(C′∗i ), for i = 1, 2, . . . , l, by Lemma B.5.
Now we prove that item 2 implies item 1. Define Vi = C′∗i , for i =

1, 2, . . . , l, and V = C∗. We may assume that C is not rank degenerate, that
is, V = Fn

qm . Therefore, n = dim(V), ni = dim(Vi), for i = 1, 2, . . . , l, and
n = n1 + n2 + · · ·+ nl .
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On the other hand, define a vector space isomorphisms ψi : Vi −→ F
ni
qm ,

for i = 1, 2, . . . , l, by sending a basis of Vi of vectors in Fn
q to the canonical

basis of F
ni
qm . It is a rank equivalence by Lemma B.23. Define Ci = ψi(C′i).

Therefore, Ci and C′i are rank equivalent by definition.
Finally, define ψ : V = V1 ⊕V2 ⊕ · · · ⊕Vl −→ Fn

qm by

ψ(c1 + c2 + · · ·+ cl) = (ψ1(c1), ψ2(c2), . . . , ψl(cl)),

where ci ∈ Vi, for all i = 1, 2, . . . , l. It holds that ψ maps vectors in Fn
q

to vectors in Fn
q and is a vector space isomorphism. Hence, it is a rank

equivalence by Lemma B.23 and verifies the required conditions.

Corollary B.34. With notation as in Subsection 2.5, if Ci is rank equivalent to C′i ,
for all i = 1, 2, . . . , l, then C is rank equivalent to C1 × C2 × · · · × Cl .

Observe that the previous corollary states that Remark B.13 is actually
implied by Corollary B.8.

On the other hand, we may use the column components to see wether
C = C1 × C2 × · · · × Cl exactly. The proof is straightforward:

Proposition B.35. With notation as in Subsection 2.5, the following conditions are
equivalent:

1. C = C1 × C2 × · · · × Cl .

2. C = Ĉ.

3. ki = k̂i, for all i = 1, 2, . . . , l.

4. For each j = 2, 3, . . . , l, the rows in Gi,j, 1 ≤ i ≤ j− 1, are contained in the
main component Cj.

7.2 Rank degenerate conditions

Recall the definition of rank degenerate codes from [16, Def. 9]:

Definition B.36 ( [16]). An Fqm -linear code C ⊆ Fn
qm of dimension k is rank

degenerate if dR,k(C) < n.

In network coding, a code is rank degenerate if it can be applied to a
network with strictly less outgoing links from the source node (see [11, 16]
for more details).

In this subsection, we study sufficient and necessary conditions for re-
ducible codes to be rank degenerate.

Proposition B.37. With notation as in Subsection 2.5, it holds that:
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1. If C is rank degenerate, then there exists an 1 ≤ i ≤ l such that Ci is rank
degenerate.

2. If there exists an 1 ≤ j ≤ l such that Ĉj is rank degenerate, then C is rank
degenerate.

Proof. We prove each item separately:

1. It follows from

dR,k(C) ≥ dR,k1(C1) + dR,k2(C2) + · · ·+ dR,kl
(Cl),

which follows from Theorem B.1, and the fact that C has length n and
Ci has length ni, for i = 1, 2, . . . , l.

2. We have that C ⊆ Ĉ. Hence C∗ ⊆ Ĉ∗ and

dR,k(C) = dim(C∗) ≤ dim(Ĉ∗) = dR,̂k(Ĉ),

by Lemma B.5, and

dR,̂k(Ĉ) = dR,̂k1
(Ĉ1) + dR,̂k2

(Ĉ2) + · · ·+ dR,̂kl
(Ĉl),

by Corollary B.8, hence the item follows, using now that Ĉj has length
nj, for j = 1, 2, . . . , l.

Corollary B.38. If C = C1 × C2 × · · · × Cl , then C is rank degenerate if and only
if there exists an 1 ≤ i ≤ l such that Ci is rank degenerate.

7.3 Duality and bounds on GRWs

With notation as in Subsection 2.5, it is shown in [9] that the dual of the
reducible code C has a generator matrix of the form

H =



H1,1 0 0 . . . 0 0
H2,1 H2,2 0 . . . 0 0
H3,1 H3,2 H3,3 . . . 0 0

...
...

...
. . .

...
...

Hl−1,1 Hl−1,2 Hl−1,3 . . . Hl−1,l−1 0
Hl,1 Hl,2 Hl,3 . . . Hl,l−1 Hl,l


,

where Hi,i is a generator matrix of C⊥i , for i = 1, 2, . . . , l.
We see that reversing the order of the row blocks does not change the

code, and reversing the order of the column blocks gives a rank equivalent
code. Hence, denoting by (C⊥)′i the subcode of C⊥ generated by the matrix

H′i = (Hi,1, . . . , Hi,i−1, Hi,i, 0, . . . , 0),
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for i = 1, 2, . . . , l, we may obtain analogous bounds on the generalized rank
weights of C⊥ to those in Theorem B.1. We leave the details to the reader.

An upper bound on the GRW of C⊥ using column components of C that
follows from Corollary B.8 is the following:

Proposition B.39. With notation as in Subsection 2.5, it holds that

dR,r(C⊥) ≤ min{dR,̂r1
(Ĉ⊥1 ) + dR,̂r2(Ĉ

⊥
2 ) + · · ·+ dR,̂rl

(Ĉ⊥l )

| r = r̂1 + r̂2 + · · ·+ r̂l , 0 ≤ r̂i ≤ k̂i},
(B.14)

for r = 1, 2, . . . , n− k̂ (observe that n− k̂ ≤ n− k).

Proof. It holds that C ⊆ Ĉ, hence Ĉ⊥ ⊆ C⊥, and the result follows then from
Corollary B.8 and the fact that Ĉ⊥ = Ĉ⊥1 × Ĉ⊥2 × · · · × Ĉ⊥l .

In particular, if k̂ < n, it holds that

dR,1(C⊥) ≤ min{dR,1(Ĉ⊥1 ), dR,1(Ĉ⊥2 ), . . . , dR,1(Ĉ⊥l )}. (B.15)

7.4 MRD rank

Recall from [13, Prop. 1] the (classical) Singleton bound on GRWs:

dR,r(C) ≤ n− k + r, (B.16)

for any Fqm -linear code C ⊆ Fn
qm , where k = dim(C) and 1 ≤ r ≤ k. By

monotonicity of GRWs [13, Lemma 4], if the r-th weight of C attains the
Singleton bound, then the s-th weight of C also attains it, for all s ≥ r. The
minimum of such r is called the MRD rank of the code [6, Def. 1]:

Definition B.40 ( [6]). For an Fqm -linear code C ⊆ Fn
qm of dimension k, we

define its MRD rank as the minimum positive integer r such that dR,r(C) =
n− k + r, and denote it by r(C).

If dR,k(C) < n, then we define r(C) = k + 1.

Observe that the last part of the previous definition is a redefinition of
rank degenerate codes. We have the next characterization of r(C) given in [6,
Cor. III.3]:

Lemma B.41 ( [6]). For an Fqm -linear code C ⊆ Fn
qm of dimension k, it holds that

r(C) = k− dR,1(C⊥) + 2,

defining dR,1({0}) = n + 1 for the case C = Fn
qm .

In particular, from the bounds obtained so far, we derive the following
result on the MRD rank of a reducible code:
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Proposition B.42. Let the notation be as in Subsection 2.5. It holds that

k− r(C) ≥ min{k1 − r(C1), k2 − r(C2), . . . , kl − r(Cl)} (B.17)

and
k− r(C) ≤ min{k̂1 − r(Ĉ1), k̂2 − r(Ĉ2), . . . , k̂l − r(Ĉl)}. (B.18)

Moreover, denote by ki,j and ri,j the dimension and MRD rank of the Fqm -linear
code with parity check matrix Hi,j, respectively, with notation as in the previous
subsection, for i = 2, 3, . . . , l and j = 1, 2, . . . , i− 1. Then

k− r(C) ≤ min{ki − r(Ci) + ∑
Hi,j 6=0

(ki,j − ri,j + 2)

| i = 1, 2, . . . , l}.
(B.19)

Proof. The bound (B.17) follows from the previous lemma and the bound
(B.6). The bound (B.18) follows from the previous lemma and the bound
(B.15).

Now we prove the bound (B.19). From the previous lemma and the bound
(B.9), we obtain that

k− r(C) ≤ min{dR,1((C⊥)′1, (C⊥)′2, . . . , (C⊥)′l)},

with notation as in the previous subsection. Now, if di,j denotes the minimum
rank distance of the Fqm -linear code with parity check matrix Hi,j, it follows
that

dR,1((C⊥)′i) ≤ dR,1(C⊥i ) + ∑
Hi,j 6=0

di,j,

and the result follows again from the previous lemma.

The MRD rank of the code C in Example B.9 was obtained directly us-
ing Theorem B.1. However, it could be directly obtained using the previous
proposition.

We conclude with the cartesian product case:

Corollary B.43. With notation as in the previous proposition, if C = C1 × C2 ×
· · · × Cl , it holds that

k− r(C) = min{k1 − r(C1), k2 − r(C2), . . . , kl − r(Cl)},

and all the bounds in the previous proposition are equalities.
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7.5 Particular constructions

To conclude, in this subsection we briefly recall some constructions of re-
ducible codes in the literature introduced to improve the minimum Ham-
ming distance of cartesian products of codes, and see when they may give
improvements for the rank distance.

Recall the well-known (u, u + v)-construction by Plotkin [20]. Take Fqm -
linear codes C1, C2 ⊆ Fn

qm , and define the Fqm -linear code C ⊆ F2n
qm by

C = {(u, u + v) | u ∈ C1, v ∈ C2}.

Denoting by dH(D) the minimum Hamming distance of a code D, it holds
that dH(C1 × C2) = min{dH(C1), dH(C2)}, whereas dH(C) = min{2dH(C1),
dH(C2)}, hence improving the minimum Hamming distance of the cartesian
product if dH(C1) < dH(C2).

Observe that C is reducible. However, its first row component is obviously
rank equivalent to its first main component. By Proposition B.33, C and
C1 × C2 are rank equivalent. Hence the (u, u + v)-construction gives nothing
but cartesian products for the rank metric.

We may apply the same argument for the so-called matrix-product codes
[2], which are a generalization of the previous construction. Let the notation
be as in Subsection 2.5, fix a non-singular matrix A ∈ Fl×l

qm and assume that
N = n1 = n2 = . . . = nl . Define the Fqm -linear code C = (C1, C2, . . . , Cl)A ⊆
Fn

qm with generator matrix

G =


a1,1G1 a1,2G1 . . . a1,lG1
a2,1G2 a2,2G2 . . . a2,lG2

...
...

. . .
...

al,1Gl al,2Gl . . . al,lGl

 .

If A is upper triangular, we see that C is a reducible code. Just as before,
if A ∈ Fl×l

q , then C is rank equivalent to C1 × C2 × · · · × Cl , and thus this
construction gives nothing but cartesian products.

In the following examples we see that, as an alternative, the (u, αu + v)-
construction, for α ∈ Fqm \ Fq, and (u, u[i] + v)-construction, for 0 < i < m,
may improve the minimum rank distance of the cartesian product.

Example B.44. Consider α ∈ Fqm \ Fq, n = 3, C1 ⊆ F3
qm generated by (1, 0, 0)

and C2 ⊆ F3
qm generated by (0, α, α[1]) and (0, α[1], α[2]). Let C be the (u, αu +

v)-construction of the codes C1 and C2.
It holds that dR,1(C1 × C2) = 1, whereas dR,1(C) = 2.

Example B.45. Consider α ∈ Fqm \Fq, n = 3, C1 ⊆ F3
qm generated by (α, 0, 0)

and C2 ⊆ F3
qm generated by (0, α, α[1]) and (0, α[1], α[2]). Let C be the (u, u[1] +

v)-construction of the codes C1 and C2.
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Again, it holds that dR,1(C1 × C2) = 1, whereas dR,1(C) = 2.

8 Conclusion and open problems

In this paper, we have studied the security performance of reducible codes
in network coding when used in the form of coset coding schemes. We have
obtained lower bounds on their generalized rank weights (GRWs) that extend
the known lower bound on their minimum rank distance [9] and which give
exact values for cartesian products, and we have obtained upper bounds that
are always reached for the minimum rank distance and some reduction. We
have obtained maximum rank distance (MRD) reducible codes with MRD
main components for new parameters, extending the families of MRD codes
for n > m considered in [9] and [23].

We have obtained all Fqm -linear codes whose GRWs are all optimal, for all
fixed packet and code sizes up to rank equivalence. The given code construc-
tion is a cartesian product of full-length one-dimensional Gabidulin codes
and has the minimum possible length required by the optimality of their
GRWs. As we have shown, these codes do not only have optimal GRWs,
but the difference between every two consecutive GRWs is the packet lenght,
which is optimal, in constrast with Gabidulin codes, for which this difference
is the minimum possible. Thus if the length of the code is big enough or not
restricted, then the given construction behaves much better than Gabidulin
codes in secure network coding.

Afterwards we have shown that, when using reducible codes, a wire-
tapping adversary obtains in many cases less information than that described
by their GRWs. In particular, when using MRD reducible codes or those with
optimal GRWs for fixed packet and code sizes, the eavesdropper obtains no
information about the sent packets even when wire-tapping more links than
those allowed by other MRD codes.

Finally, we have studied some secondary related properties of reducible
codes: Characterizations to be rank equivalent to cartesian products of codes,
characterizations to be rank degenerate, bounds on their dual codes, MRD
ranks, and alternative constructions to the well-known (u, u+v)-construction.

To conclude, we list a few open problems of interest regarding the security
behaviour of reducible codes:

1. Find other cases when the bounds in Theorem B.1 are equalities, apart
from the cases covered in Corollary B.8 and Proposition B.10.

2. Find new parameters for which reducible codes are MRD, or prove the
impossibility that a reducible code is MRD for certain parameters.

3. Prove or disprove the optimality of the codes in Section 5 among Fq-
linear codes. We remark here that no sharp bounds such as those in
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A. Uniqueness of reductions

Lemma B.20 are known for general Fq-linear codes, to the best of our
knowledge.

A Uniqueness of reductions

In this appendix, we discuss the uniqueness of the main components, row
components and column components of a reducible code (see Subsection
2.5). We will show that the main components remain unchanged by chang-
ing the reduction or by rank equivalence, hence the bound (B.7) remains
unchanged. However, the row components may change by changing the
reduction, and the column components may change by a rank equivalence.
Hence the bounds (B.8) and (B.14) may change in those cases. See Proposition
B.10, for instance.

Fix a reducible code C ⊆ Fn
qm , with notation as in Subsection 2.5.

Proposition B.46. Given another reduction R̂ of C with the same row and column
block sizes as R, it holds that the main components and column components of R̂
and R are the same, respectively.

Proof. Let R̂ = (Ĝi,j)
i≤j≤l
1≤i≤l and let Ĝ be the generator matrix of C given by

this reduction. Since the matrices Gi,i have full rank, there exist matrices

Ai,j ∈ F
ki×kj
qm , for i = 1, 2, . . . , l and j = i, i + 1, . . . , l, such that the k× k matrix

A =



A1,1 A1,2 A1,3 . . . A1,l−1 A1,l
0 A2,2 A2,3 . . . A2,l−1 A2,l
0 0 A3,3 . . . A3,l−1 A3,l
...

...
...

. . .
...

...
0 0 0 . . . Al−1,l−1 Al−1,l
0 0 0 . . . 0 Al,l


satisfies that Ĝ = AG. Then it holds that Ĝi,i = Ai,iGi,i, for i = 1, 2, . . . , l, and
the main components of both reductions coincide. In addition, it holds that

Ĝ1,j
Ĝ2,j

...
Ĝj,j

 =


A1,1 A1,2 . . . A1,j

0 A2,2 . . . A2,j
...

...
. . .

...
0 0 . . . Aj,j




G1,j
G2,j

...
Gj,j

 ,

and the column components of both reductions also coincide.

Proposition B.47. Assume that the main components of the reduction R of C are
not rank degenerate. Let R′ be a reduction of an Fqm -linear code C′ that is rank
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equivalent to C, with the same row and column block sizes as R, and such that the
rank equivalence maps the rows of the generator matrix corresponding to R to the
rows of the generator matrix corresponding to R′. Then the main components and
row components of R′ and R are rank equivalent, respectively.

Proof. Let R′ = (G′i,j)
i≤j≤l
1≤i≤l and let G′ be the generator matrix of C′ given by

this reduction. By hypothesis and by Lemma B.23, we may assume that the
rank equivalence is given by φ(c) = cA, for c ∈ Fn

qm , for some n× n matrix

A =



A1,1 A1,2 A1,3 . . . A1,l−1 A1,l
A2,1 A2,2 A2,3 . . . A2,l−1 A2,l
A3,1 A3,2 A3,3 . . . A3,l−1 A3,l

...
...

...
. . .

...
...

Al−1,1 Al−1,2 Al−1,3 . . . Al−1,l−1 Al−1,l
Al,1 Al,2 Al,3 . . . Al,l−1 Al,l


,

with coefficients in Fq, and such that G′ = GA. Looking at the generator
matrices of the last row components of R and R′, we see that

(0, . . . , 0, G′l,l) = (Gl,l Al,1, Gl,l Al,2, . . . , Gl,l Al,l),

which implies that Gl,l Al,j = 0, for j = 1, 2, . . . , l − 1. This means that the
columns of Al,j are in C⊥l . However, since their coefficients lie in Fq, these
columns have rank weight equal to 1.

On the other hand, we are assuming that the main components of R are
not rank degenerate, which in particular means that dR(C⊥l ) > 1 (see [11, Def.
26 and Cor. 28]). Therefore, all the columns in Al,j are the zero vector, that is,
Al,j = 0, for j = 1, 2, . . . , l − 1.

If we now look at the generator matrices of the (l− 1)-th row components
of R and R′, we see that

(0, . . . , 0, G′l−1,l−1, G′l−1,l) = (Gl−1,l−1 Al−1,1, . . .

Gl−1,l−1 Al−1,l−1, Gl−1,l−1 Al−1,l + Gl−1,l Al,l),

which implies that Gl−1,l−1 Al−1,j = 0, for j = 1, 2, . . . , l − 2. In the same way
as before, we see that this implies that Al−1,j = 0, for j = 1, 2, . . . , l − 2.

Continuing iteratively in this way, we see that Ai,j = 0, for i > j. In other
words, we have that A is again of the form

A =



A1,1 A1,2 A1,3 . . . A1,l−1 A1,l
0 A2,2 A2,3 . . . A2,l−1 A2,l
0 0 A3,3 . . . A3,l−1 A3,l
...

...
...

. . .
...

...
0 0 0 . . . Al−1,l−1 Al−1,l
0 0 0 . . . 0 Al,l


.
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As in the proof of Proposition B.46, this implies that the main components
and row components of R and R′ are rank equivalent, respectively.
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1. Introduction

Abstract

Universal security over a network with linear network coding has been intensively
studied. However, previous linear codes and code pairs used for this purpose were
linear over a larger field than that used on the network, which restricts the possible
packet lengths of optimal universal secure codes, does not allow to apply known list-
decodable rank-metric codes and requires performing operations over a large field. In
this work, we introduce new parameters (relative generalized matrix weights and rel-
ative dimension/rank support profile) for code pairs that are linear over the field used
in the network, and show that they measure the universal security performance of
these code pairs. For one code and non-square matrices, generalized matrix weights
coincide with the existing Delsarte generalized weights, hence we prove the connec-
tion between these latter weights and secure network coding, which was left open.
As main applications, the proposed new parameters enable us to: 1) Obtain optimal
universal secure linear codes on noiseless networks for all possible packet lengths,
in particular for packet lengths not considered before, 2) Obtain the first universal
secure list-decodable rank-metric code pairs with polynomial-sized lists, based on a
recent construction by Guruswami et al, and 3) Obtain new characterizations of
security equivalences of linear codes. Finally, we show that our parameters extend
relative generalized Hamming weights and relative dimension/length profile, respec-
tively, and relative generalized rank weights and relative dimension/intersection pro-
file, respectively.

Keywords: Network coding, rank weight, relative dimension/rank sup-
port profile, relative generalized matrix weight, universal secure network
coding.

1 Introduction

Linear network coding was first studied in [1], [23] and [25], and enables us
to realize higher throughput than the conventional storing and forwarding.
Error correction in this context was first studied in [5], and security, mean-
ing information leakage to an adversary wire-tapping links in the network,
was first considered in [6]. In that work, the authors give outer codes with
optimal information rate for the given security performance, although using
large fields on the network. The field size was later reduced in [15] by reduc-
ing the information rate. In addition, the approach in [14] allows us to see
secure network coding as a generalization of secret sharing [4, 37], which is
a generalization of the wire-tap channel of type II [33].

However, these approaches [6, 14, 15] require knowing and/or modifying
the underlying linear network code, which does not allow us to perform, for
instance, random linear network coding [21], which achieves capacity in a
decentralized manner and is robust to network changes. Later, the use of

121



Paper C.

pairs of linear (block) codes as outer codes was proposed in [39] to protect
messages from errors together with information leakage to a wire-tapping
adversary (see Remark C.4), depending only on the number of errors and
wire-tapped links, respectively, and not depending on the underlying linear
network code, which is referred to as universal security in [39].

In [39], the encoded message consists of n (number of outgoing links
from the source) vectors in Fqm or Fm

q , called packets, where m is called the
packet length and where Fq is the field used for the underlying linear net-
work code, as opposed to previous works [6, 14, 15], where m = 1. The
universal performance of the proposed linear codes in [39] is measured by
the rank metric [9], and the authors in [39] prove that linear codes in Fn

qm

with optimal rank-metric parameters when n ≤ m [17, 36] are also opti-
mal for universal security. This approach was already proposed in [38, 40]
for error correction, again not depending on the underlying network code.
Later the authors in [20] obtained the first list-decodable rank-metric codes
whose list sizes are polynomial in the code length and which are able to list-
decode universally on linearly coded networks roughly twice as many errors
as optimal rank-metric codes [17, 36] can correct. The rank metric was then
generalized in [24] to relative generalized rank weights (RGRWs) and rela-
tive dimension/intersection profiles (RDIPs), which were proven in [24] to
measure exactly and simultaneously the universal security performance and
error-correction capability of pairs of linear codes, in the same way as rela-
tive generalized Hamming weights (RGHWs) and relative dimension/length
profiles (RDLPs) [26, 42] do on wire-tap channels of type II.

Unfortunately, the codes studied and proposed in [24, 38–40] for univer-
sal security are linear over the extension field Fqm . This restricts the possible
packet lengths of optimal universal secure codes, requires performing com-
putations over the larger field Fqm and leaves out important codes, such as
the list-decodable rank-metric codes in [20], which are only linear over Fq.

In this work, we introduce new parameters, called relative generalized
matrix weights (RGMWs) and relative dimension/rank support profiles (RDRPs),
for codes and code pairs that are linear over the smaller field Fq, and prove
that they measure their universal security performance in terms of the worst-
case information leakage. As main applications, we obtain the first optimal
universal secure linear codes on noiseless networks for all possible packet
lengths, we obtain the first universal secure list-decodable rank-metric code
pairs with polynomial-sized lists, and obtain new characterizations of secu-
rity equivalences of linear codes.

1.1 Notation

Let q be a prime power and m and n, two positive integers. We denote by Fq
the finite field with q elements, which we will consider to be the field used
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Table C.1: New and existing notions of generalized weights

Work Paremeters Codes they are used on Measured security

Def. C.10 & C.11, & Th. C.1 RGMW & RDRP C2 & C1 ⊆ Fm×n
q , Fq-linear Universal security on networks

[24, 32] RGRW & RDIP C2 & C1 ⊆ Fn
qm , Fqm -linear Universal security on networks

[34] DGW C2 = {0} & C1 ⊆ Fm×n
q , Fq-linear Universal security on networks for Fqm -linear

[26, 42] RGHW & RDLP C2 & C1 ⊆ Fn
q , Fq-linear Security on wire-tap channels II

[31, 45] RNGHW C2 & C1 ⊆ Fn
q , Fq-linear Non-universal security on networks

Table C.2: New and existing optimal secure codes for noiseless networks (N = # links, µ = #
observations, t = # destinations)

Work Universality Field size (q) used over the network Packet length (m)

Theorem C.2 Yes Any Any
[39] Yes Any m ≥ n or n = lm
[6] No q > (N

µ) –
[15] No q = Θ(Nµ/2) –

[14] No q > (N−1
µ−1) + t or q > (2n3t2−1

µ−1 ) + t –

for the underlying linear network code (see [23, Definition 1]).
Most of our technical results hold for an arbitrary field, which we denote

by F and which mathematically plays the role of Fq. Fn denotes the vector
space of row vectors of length n with components in F, and Fm×n denotes the
vector space of m× n matrices with components in F. Throughout the paper,
a (block) code in Fm×n (respectively, in Fn) is a subset of Fm×n (respectively,
of Fn), and it is called linear if it is a vector space over F. In all cases,
dimensions of vector spaces over F will be denoted by dim.

Finally, we recall that we may identify Fn
qm and Fm×n

q as vector spaces over
Fq. Fix a basis α1, α2, . . . , αm of Fqm as a vector space over Fq. We define the
matrix representation map Mα : Fn

qm −→ Fm×n
q associated to the previous basis

by
Mα(c) = (ci,j)1≤i≤m,1≤j≤n, (C.1)

where ci = (ci,1, ci,2, . . . , ci,n) ∈ Fn
q , for i = 1, 2, . . . , m, are the unique vectors

in Fn
q such that c = ∑m

i=1 αici. The map Mα : Fn
qm −→ Fm×n

q is an Fq-linear
vector space isomorphism.

The works [24, 38–40] consider Fqm -linear codes in Fn
qm , which are a sub-

family of Fq-linear codes in Fm×n
q through the map given in (C.1). In this

paper, we will consider arbitrary linear (meaning F-linear) codes in Fm×n.

1.2 Our motivations

Our main motivation to study universal secure network coding is to avoid
knowing and/or modifying the underlying linear network code, and in par-
ticular be able to apply our theory on random linearly coded networks [21],
which achieve capacity in a decentralized manner and are robust to network
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Table C.3: New and existing characterizations of linear isomorphisms between vector spaces of
matrices preserving certain properties

Work Domain & codomain Linearity Properties preserved

Theorem C.4 φ : V −→ W , V ,W ∈ RS F-linear Universal security on networks
[28] φ : V −→ W , V ,W ∈ RS Fqm -linear Ranks & universal security on networks
[3] φ : Fn

qm −→ Fn
qm Fqm -linear Ranks

[27, 30] φ : Fm×n −→ Fm×n F-linear Ranks, determinants & eigenvalues
[10] φ : Fn×n −→ Fn×n F-linear Invertible matrices

changes.
Our main motivation to study pairs of linear codes is to be able to protect

messages simultaneously from errors, erasures and information leakage to a
wire-tapper. See also Section 2 and more concretely, Remark C.4.

Our main motivations to study codes which are linear over the base field
Fq instead of the extension field Fqm are the following:

1) Fq-linear codes with optimal rank-metric parameters [9], and thus with
optimal universal security and error-correction capability, cannot be Fqm -
linear for most packet lengths m when m < n. In many applications, packet
lengths satisfying m < n are required (see the discussion in [24, Subsection
I-A], for instance).

2) The only known list-decodable rank-metric codes [20] with polynomial-
sized lists are linear over Fq, but not over Fqm . Hence the previous studies
on universal security cannot be applied on these codes. In particular, no
construction of universal secure list-decodable rank-metric coding schemes
with polynomial-sized lists are known.

3) In previous works [38–40], the proposed codes are Fqm -linear and m ≥
n. In many cases, this requires performing operations over a very large field,
instead of the much smaller field Fq.

1.3 Related works and considered open problems

We consider the following four open problems in the literature, which corre-
spond to the main four contributions listed in the following subsection:

1) Several parameters have been introduced to measure the security per-
formance of linear codes and code pairs on different channels, in terms of
the worst-case information leakage. The original RGHWs and RDLPs [26, 42]
measure security performance over wire-tap channels of type II, and relative
network generalized Hamming weigths (RNGHWs) [31, 45] measure secu-
rity performance over networks depending on the underlying linear network
code (non-universal security). Later, RGRWs and RDIPs were introduced
in [24, 32] to measure universal security performance of Fqm -linear code pairs
C2 & C1 ⊆ Fn

qm . A notion of generalized weight for one Fq-linear code (that
is, for an arbitrary C1 and for C2 = {0}) in Fm×n

q , called Delsarte generalized
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weights (DGWs), was introduced in [34], but its connection with universal
security was only given for Fqm -linear codes. Thus, no measure of universal
security performance for all Fq-linear codes or code pairs is known. See also
Table C.1.

2) The first optimal universal secure linear codes for noiseless networks
were obtained in [39, Section V], whose information rate attain the information-
theoretical limit given in [6]. However, these codes only exist when m ≥ n.
The cartesian products in [39, Subsection VII-C] are also optimal among Fq-
linear codes (see Remark C.22), but only exist when m divides n. No optimal
universal secure Fq-linear codes for noiseless networks have been obtained
for the rest of values of m. See also Table C.2 for an overview of existing
optimal constructions, including non-universal codes [6, 14, 15].

3) In [20], the authors introduce the first list-decodable rank-metric codes
in Fn

qm able to list-decode close to the information-theoretical limit and roughly
twice as many errors as optimal rank-metric codes [17, 36] are able to correct,
in polynomial time and with polynomial-sized lists (on the length n). How-
ever, no universal secure coding schemes with such list-decoding capabilities
are known. Observe that list-decoding rank errors implies list-decoding er-
rors in linear network coding in a universal manner [38].

4) Several characterizations of maps between vector spaces of matrices
preserving certain properties have been given in the literature [3, 10, 27,
28, 30]. The maps considered in [3] are linear over the extension field Fqm

and preserve ranks, and the maps considered in [10, 27, 30] are linear over
the base field (Fq or an arbitrary field) and preserve fundamental properties
of matrices, such as ranks, determinants, eigenvalues or invertible matrices.
Characterizations of maps preserving universal security performance were
first given in [28], although the considered maps were only linear over Fqm .
No characterizations of general Fq-linear maps preserving universal security
are known. See also Table C.3.

1.4 Our contributions and main results

In the following, we list our four main contributions together with our main
result summarizing each of them. Each contribution tackles each open prob-
lem listed in the previous subsection, respectively.

1) We introduce new parameters, RGMWs and RDRPs, in Definitions C.10
and C.11, respectively, which measure the universal security performance of
Fq-linear code pairs C2 & C1 ⊆ Fm×n

q , in terms of the worst-case information
leakage. The main result is Theorem C.1 and states the following: The r-th
RGMW of the code pair is the minimum number of links that an adversary
needs to wire-tap in order to obtain at least r bits of information (multiplied
by log2(q)) about the sent message. The µ-th RDRP of the code pair is the
maximum number of bits of information (multiplied by log2(q)) about the
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sent message that can be obtained by wire-tapping µ links of the network.
Since Fqm -linear codes in Fn

qm are also Fq-linear codes in Fm×n
q , RGMWs

and RDRPs must coincide with RGRWs and RDIPs [24], respectively, for Fqm -
linear codes in Fn

qm , which we prove in Theorem C.7.
When C2 = {0} and m 6= n, we will also show in Theorem C.9 that the

RGMWs of the pair coincide with their DGWs, given in [34], hence proving
the connection between DGWs and universal security for general Fq-linear
codes, which was left open.

2) We obtain optimal universal secure Fq-linear codes for noiseless net-
works for any value of m and n, not only when m ≥ n or m divides n, as in
previous works [39]. The main result is Theorem C.2, which states the follow-
ing: Denote by ` the number of packets in Fm

q that the source can transmit
and by t the number of links the adversary may wire-tap without obtain-
ing any information about the sent packets. For any m and n, and a fixed
value of ` (respectively t), we obtain a coding scheme with optimal value of t
(respectively `).

3) We obtain the first universal secure list-decodable rank-metric code
pairs with polynomial-sized lists. The main result is Theorem C.3, and states
the following: Defining ` and t as in the previous item, assuming that n
divides m, and fixing 1 ≤ k2 < k2 ≤ n, ε > 0 and a positive integer s such
that 4sn ≤ εm and m/n = O(s/ε), we obtain an Fq-linear code pair such that
` ≥ m(k1 − k2)(1− 2ε), t ≥ k2 and which can list-decode s

s+1 (n − k1) rank

errors in polynomial time, where the list size is qO(s
2/ε2).

4) We obtain characterizations of vector space isomorphisms between cer-
tain spaces of matrices over Fq that preserve universal security performance
over networks. The main result is Theorem C.4, which gives several char-
acterizations of Fq-linear vector space isomorphisms φ : V −→ W , where
V and W are rank support spaces in Fm×n

q and Fm×n′
q (see Definition C.7),

respectively.
As application, we obtain in Subsection 6.2 ranges of possible parameters

m and n that given linear codes and code pairs can be applied to without
changing their universal security performance.

1.5 Organization of the paper

First, all of our main results are stated as Theorems. After some preliminaries
in Section II, we introduce in Section III the new parameters of linear code
pairs (RGMWs and RDRPs), give their connection with the rank metric, and
prove that they exactly measure the worst-case information leakage univer-
sally on networks (Theorem C.1). In Section IV, we give optimal universal
secure linear codes for noiseless networks for all possible parameters (The-
orem C.2). In Section V, we show how to add universal security to the list-
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decodable rank-metric codes in [20] (Theorem C.3). In Section VI, we define
and give characterizations of security equivalences of linear codes (Theorem
C.4), and then obtain ranges of possible parameters of linear codes up to
these equivalences. In Section VII, we give upper and lower Singleton-type
bounds (Theorems C.5 and C.6) and study when they can be attained, when
the dimensions are divisible by m. Finally, in Section VIII, we prove that
RGMWs extend RGRWs [24] and RGHWs [26, 42], and we prove that RDRPs
extend RDIPs [24] and RDLPs [16, 26] (Theorems C.7 and C.8, respectively).
We conclude the section by showing that GMWs coincide with DGWs [34]
for non-square matrices, and are strictly larger otherwise (Theorem C.9).

2 Coset coding schemes for universal security in
linear network coding

This section serves as a brief summary of the model of linear network coding
that we consider (Subsection 2.1), the concept of universal security under
this model (Subsection 2.2) and the main definitions concerning coset coding
schemes used for this purpose (Subsection 2.3). The section only contains
definitions and facts known in the literature, which will be used throughout
the paper.

2.1 Linear network coding model

Consider a network with several sources and several sinks. A given source
transmits a message x ∈ F`

q through the network to multiple sinks. To that
end, that source encodes the message as a collection of n packets of length m,
seen as a matrix C ∈ Fm×n

q , where n is the number of outgoing links from this
source. We consider linear network coding on the network, first considered
in [1, 25] and formally defined in [23, Definition 1], which allows us to reach
higher throughput than just storing and forwarding on the network. This
means that a given sink receives a matrix of the form

Y = CAT ∈ Fm×N
q ,

where A ∈ FN×n
q is called the transfer matrix corresponding to the consid-

ered source and sink, and AT denotes its transpose. This matrix may be
randomly chosen if random linear network coding is applied [21].

2.2 Universal secure communication over networks

In secure and reliable network coding, two of the main problems addressed
in the literature are the following:
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1. Error and erasure correction [5, 24, 38–40]: An adversary and/or a noisy
channel may introduce errors on some links of the network and/or
modify the transfer matrix. In this case, the sink receives the matrix

Y = CA′T + E ∈ Fm×N
q ,

where A′ ∈ FN×n
q is the modified transfer matrix, and E ∈ Fm×N

q is
the final error matrix. In this case, we say that t = Rk(E) errors and
ρ = n − Rk(A′) erasures occurred, where Rk denotes the rank of a
matrix.

2. Information leakage [6, 14, 15, 24, 39]: A wire-tapping adversary listens
to µ > 0 links of the network, obtaining a matrix of the form CBT ∈
F

m×µ
q , for some matrix B ∈ F

µ×n
q .

Outer coding in the source node is usually applied to tackle the previous
problems, and it is called universal secure [39] if it provides reliability and
security as in the previous items for fixed numbers of wire-tapped links µ,
errors t and erasures ρ, independently of the transfer matrix A used. This
implies that no previous knowledge or modification of the transfer matrix is
required and random linear network coding [21] may be applied.

2.3 Coset coding schemes for outer codes

Coding techniques for protecting messages simultaneously from errors and
information leakage to a wire-tapping adversary were first studied by Wyner
in [43]. In [43, p. 1374], the general concept of coset coding scheme, as we
will next define, was first introduced for this purpose. We use the formal
definition in [24, Definition 7]:

Definition C.1 (Coset coding schemes [24, 43]). A coset coding scheme over
the field F with message set S is a family of disjoint nonempty subsets of
Fm×n, PS = {Cx}x∈S .

If F = Fq, each x ∈ S is encoded by the source by choosing uniformly at
random an element C ∈ Cx.

Definition C.2 (Linear coset coding schemes [28, Definition 2]). A coset cod-
ing scheme as in the previous definition is said to be linear if S = F`, for some
0 < ` ≤ mn, and

aCx + bCy ⊆ Cax+by,

for all a, b ∈ F and all x, y ∈ F`.

With these definitions, the concept of coset coding scheme generalizes the
concept of (block) code, since a code is a coset coding scheme where |Cx| = 1,
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for each x ∈ S . In the same way, linear coset coding schemes generalize
linear (block) codes.

An equivalent way to describe linear coset coding schemes is by nested
linear code pairs, introduced in [44, Section III.A]. We use the description
in [7, Subsection 4.2].

Definition C.3 (Nested linear code pairs [7, 44]). A nested linear code pair
is a pair of linear codes C2 $ C1 ⊆ Fm×n. Choose a vector spaceW such that
C1 = C2 ⊕W , where ⊕ denotes the direct sum of vector spaces, and a vector
space isomorphism ψ : F` −→ W , where ` = dim(C1/C2). Then we define
Cx = ψ(x) + C2, for x ∈ F`. They form a linear coset coding scheme called
nested coset coding scheme [24].

Remark C.4. As observed in [33] for the wire-tap channel of type II, linear code
pairs where C1 = Fm×n are suitable for protecting information from leakage on
noiseless channels. Analogously, linear code pairs where C2 = {0} are suitable for
error correction without the presence of eavesdroppers. Observe that these two types
of linear code pairs are dual to each other (see Definition C.15 and Appendix A):
If C ′1 = C⊥2 and C ′2 = C⊥1 , then C1 = Fm×n if, and only if, C ′2 = {0}. To treat
both error correction and information leakage, we need general linear coset coding
schemes.

We recall here that the concept of linear coset coding schemes and nested
coset coding schemes are exactly the same. An object in the first family
uniquely defines an object in the second family and vice-versa. This is for-
mally proven in [28, Proposition 1].

Finally, we recall that the exact universal error and erasure correction
capability of a nested coset coding scheme was found, in terms of the rank
metric, first in [38, Section IV.C] for the case of one code (C2 = {0}) that is
maximum rank distance, then in [39, Theorem 2] for the general case of one
linear code (again C2 = {0}), then in [24, Theorem 4] for the case where both
codes are linear over an extension field Fqm , and finally in [28, Theorem 9]
for arbitrary coset coding schemes (linear over Fq and non-linear).

3 New parameters of linear coset coding schemes
for universal security on networks

This is the main section of the paper, which serves as a basis for the rest of
sections. The next sections can be read independently of each other, but all
of them build on the results in this section. Here we introduce rank support
spaces (Subsection 3.1), which are the main technical building blocks of our
theory, then we define of our main parameters and connect them with the
rank metric (Subsection 3.2), and we conclude by showing (Theorem C.1) that
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these parameters measure the worst-case information leakage universally on
linearly coded networks (Subsection 3.3).

3.1 Rank supports and rank support spaces

In this subsection, we introduce rank support spaces, which are the mathe-
matical building blocks of our theory. The idea is to attach to each linear code
its rank support, given in [22, Definition 1], and based on this rank support,
define a vector space of matrices containing the original code that can be seen
as its ambient space with respect to the rank metric.

We remark here that the family of rank support spaces can be seen as the
family of vector spaces in [35, Notation 25] after transposition of matrices, or
the family of vector spaces in [22, Definition 6] taking C = Fm×n

q . We start
with the definitions:

Definition C.5 (Row space and rank). For a matrix C ∈ Fm×n, we define its
row space Row(C) as the vector space in Fn generated by its rows. As usual,
we define its rank as Rk(C) = dim(Row(C)).

Definition C.6 (Rank support and rank weight [22, Definition 1]). Given a vec-
tor space C ⊆ Fm×n, we define its rank support as

RSupp(C) = ∑
C∈C

Row(C) ⊆ Fn.

We also define the rank weight of the space C as

wtR(C) = dim(RSupp(C)).

Observe that RSupp(〈{C}〉) = Row(C) and wtR(〈{C}〉) = Rk(C), for
every matrix C ∈ Fm×n, where 〈A〉 denotes the vector space generated by a
set A over F.

Definition C.7 (Rank support spaces). Given a vector space L ⊆ Fn, we de-
fine its rank support space VL ⊆ Fm×n as

VL = {V ∈ Fm×n | Row(V) ⊆ L}.

We denote by RS(Fm×n) the family of rank support spaces in Fm×n.

The following lemma shows that rank support spaces behave as a sort
of ambient spaces for linear codes and can be attached bijectively to vector
spaces in Fn, which correspond to the rank supports of the original linear
codes.

Lemma C.8. Let L ⊆ Fn be a vector space. The following hold:
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1. VL is a vector space and the correspondence L 7→ VL between subspaces of Fn

and rank support spaces is a bijection with inverse VL 7→ RSupp(VL) = L.

2. If C ⊆ Fm×n is a vector space and L = RSupp(C), then VL is the smallest
rank support space containing C.

We conclude the subsection with the following characterizations of rank
support spaces, which we will use throughout the paper. In particular, item
2 will be useful to prove Theorem C.4, and item 3 will be useful to prove
Theorem C.1.

Proposition C.9. Fix a set V ⊆ Fm×n. The following are equivalent:

1. V is a rank support space. That is, there exists a subspace L ⊆ Fn such that
V = VL.

2. V is linear and has a basis of the form Bi,j, for i = 1, 2, . . . , m and j =
1, 2, . . . , k, where there are vectors b1, b2, . . . , bk ∈ Fn such that Bi,j has the
vector bj in the i-th row and the rest of its rows are zero vectors.

3. There exists a matrix B ∈ Fµ×n, for some positive integer µ, such that

V = {V ∈ Fm×n | VBT = 0}.

In addition, the relation between items 1, 2 and 3 is that b1, b2, . . . , bk are a basis of
L, B is a (possibly not full-rank) parity check matrix of L and dim(L) = n−Rk(B).

In particular, it holds that

dim(VL) = m dim(L). (C.2)

Proof. We prove the following implications:

• 1 ⇐⇒ 2: Assume item 1, let b1, b2, . . . , bk be a basis of L, and let Bi,j
be as in item 2. Then we see that V = 〈{Bi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ k}〉.
The reversed implication follows in the same way by defining L =
〈b1, b2, . . . , bk〉 ⊆ Fn.

• 1 ⇐⇒ 3: Assume item 1 and let B ∈ Fµ×n be a parity check matrix of
L. That is, a generator matrix of the dual L⊥ ⊆ Fn. Then it holds by
definition that V ∈ Fm×n has all its rows in L if, and only if, VBT = 0.
Conversely, assuming item 3 and defining L as the code with parity
check matrix B, we see that V = VL by the same argument. Hence the
result follows.
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3.2 Definition and basic properties of the new parameters

Definition C.10 (Relative Generalized Matrix Weight). Given nested linear
codes C2 $ C1 ⊆ Fm×n, and 1 ≤ r ≤ ` = dim(C1/C2), we define their r-th
relative generalized matrix weight (RGMW) as

dM,r(C1, C2) = min{dim(L) | L ⊆ Fn,

dim(C1 ∩ VL)− dim(C2 ∩ VL) ≥ r}.

For a linear code C ⊆ Fm×n, and 1 ≤ r ≤ dim(C), we define its r-th general-
ized matrix weight (GMW) as

dM,r(C) = dM,r(C, {0}). (C.3)

Observe that it holds that

dM,r(C1, C2) ≥ dM,r(C1), (C.4)

for all nested linear codes C2 $ C1 ⊆ Fm×n, and all 1 ≤ r ≤ ` = dim(C1/C2).

Definition C.11 (Relative Dimension/Rank support Profile). Given nested lin-
ear codes C2 $ C1 ⊆ Fm×n, and 0 ≤ µ ≤ n, we define their µ-th relative
dimension/rank support profile (RDRP) as

KM,µ(C1, C2) = max{dim(C1 ∩ VL)− dim(C2 ∩ VL) |
L ⊆ Fn, dim(L) ≤ µ}.

Now, if U ⊆ V ⊆ Fm×n are vector spaces, the natural linear map C1 ∩
U/C2 ∩ U −→ C1 ∩ V/C2 ∩ V is one to one. Therefore, since we are taking
maximums, it holds that

KM,µ(C1, C2) = max{dim(C1 ∩ VL)− dim(C2 ∩ VL) |
L ⊆ Fn, dim(L) = µ}.

We remark here that some existing notions of relative generalized weights
from the literature are particular cases of RGMWs. The corresponding con-
nections are given in Section 8. In particular, GMWs of one linear code coin-
cide with DGWs (introduced in [34]) for non-square matrices.

We next obtain the following characterization of RGMWs that gives an
analogous description to the original definition of GHWs by Wei [42]:

Proposition C.12. Given nested linear codes C2 $ C1 ⊆ Fm×n, and an integer
1 ≤ r ≤ dim(C1/C2), it holds that

dM,r(C1, C2) = min{wtR(D) | D ⊆ C1,D ∩ C2 = {0},
dim(D) = r}.
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Proof. Denote by dr the number on the left-hand side and by d′r the number
on the right-hand side. We prove both inequalities:

dr ≤ d′r: Take a vector space D ⊆ C1 such that D ∩ C2 = {0}, dim(D) = r
and wtR(D) = d′r. Define L = RSupp(D).

Since D ⊆ VL, we have that dim((C1 ∩ VL)/(C2 ∩ VL)) ≥ dim((C1 ∩
D)/(C2 ∩D)) = dim(D) = r. Hence

dr ≤ dim(L) = wtR(D) = d′r.

dr ≥ d′r: Take a vector space L ⊆ Fn such that dim((C1 ∩ VL)/(C2 ∩
VL)) ≥ r and dim(L) = dr.

There exists a vector space D ⊆ C1 ∩VL with D∩C2 = {0} and dim(D) =
r. We have that RSupp(D) ⊆ L, since D ⊆ VL, and hence

dr = dim(L) ≥ wtR(D) ≥ d′r.

Thanks to this characterization, we may connect RGMWs with the rank
distance [9]. This will be crucial in the next section, where we will use max-
imum rank distance codes from [9] to obtain optimal universal secure linear
codes for noiseless networks. Recall the definition of minimum rank distance
of a linear coset coding scheme, which is a particular case of [28, Equation
(1)], and which is based on the analogous concept for the Hamming metric
given in [13]:

dR(C1, C2) = min{Rk(C) | C ∈ C1, C /∈ C2}. (C.5)

The following result follows from the previous theorem and the defini-
tions:

Corollary C.13 (Minimum rank distance of linear coset coding schemes). Given
nested linear codes C2 $ C1 ⊆ Fm×n, it holds that

dR(C1, C2) = dM,1(C1, C2).

By Theorem C.9, the previous corollary coincides with item 1 in [34, The-
orem 30] when C2 = {0} and m 6= n.

We conclude by showing the connection between RDRPs and RGMWs:

Proposition C.14 (Connection between RDRPs and RGMWs). Given nested
linear codes C2 $ C1 ⊆ Fm×n and 1 ≤ r ≤ dim(C1/C2), it holds that

dM,r(C1, C2) = min{µ | KM,µ(C1, C2) ≥ r}.

Proof. It is proven as [24, Proof of Lemma 4].
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3.3 Measuring information leakage on networks

In this subsection, we show how the introduced parameters (RGMWs and
RDRPs) measure the universal security performance of nested linear code
pairs.

Assume that a given source wants to convey the message x ∈ F`
q, which

we assume is a random variable with uniform distribution over F`
q. Following

Subsection 2.3, the source encodes x into a matrix C ∈ Fm×n
q using nested

linear codes C2 $ C1 ⊆ Fm×n
q . We also assume that the distributions used in

the encoding are all uniform (see Subsection 2.3).
According to the information leakage model in Subsection 2.2, item 2, a

wire-tapping adversary obtains CBT ∈ F
m×µ
q , for some matrix B ∈ F

µ×n
q .

Recall from [8] the definition of mutual information of two random vari-
ables X and Y:

I(X; Y) = H(Y)− H(Y | X), (C.6)

where H(Y) denotes the entropy of Y and H(Y | X) denotes the conditional
entropy of Y given X, and where we take logarithms with base q (see [8] for
more details).

We will need to use the concept of duality with respect to the Hilbert-
Schmidt or trace product. In Appendix A, we collect some basic properties
of duality of linear codes. We now give the main definitions:
Definition C.15 (Hilbert-Schmidt or trace product). Given matrices C, D ∈
Fm×n, we define its Hilbert-Schmidt product, or trace product, as

〈C, D〉 = Trace(CDT)

=
m

∑
i=1

ci · di =
m

∑
i=1

n

∑
j=1

ci,jdi,j ∈ F,

where ci and di are the rows of C and D, respectively, and where ci,j and di,j
are their components, respectively.

Given a vector space C ⊆ Fm×n, we denote by C⊥ its dual:

C⊥ = {D ∈ Fm×n | 〈C, D〉 = 0, ∀C ∈ C}.

We first compute the mutual information of the message and the wire-
tapper’s observation via rank support spaces:

Proposition C.16. Given nested linear codes C2 $ C1 ⊆ Fm×n
q , a matrix B ∈

F
µ×n
q , and the uniform random variables x and CBT , as in the beginning of this

subsection, it holds that

I(x; CBT) = dim(C⊥2 ∩ VL)− dim(C⊥1 ∩ VL), (C.7)

where I(x; CBT) is as in (C.6), and where L = Row(B).
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Proof. Define the map f : Fm×n
q −→ F

m×µ
q given by

f (D) = DBT ,

for the matrix B ∈ F
µ×n
q . Observe that f is a linear map. It follows that

H(CBT) = H( f (C)) = logq(| f (C1)|) = dim( f (C1))

= dim(C1)− dim(ker( f ) ∩ C1),

where the last equality is the well-known first isomorphism theorem. On the
other hand, we may similarly compute the conditional entropy:

H(CBT | x) = H( f (C) | x) = logq(| f (C2)|) = dim( f (C2))

= dim(C2)− dim(ker( f ) ∩ C2).

However, it holds that ker( f ) = VL⊥ ⊆ Fm×n
q by Proposition C.9, since B is a

parity check matrix of L⊥. Therefore

I(x; CBT) = H(CBT)− H(CBT | x)

= (dim(C1)− dim(VL⊥ ∩ C1))− (dim(C2)− dim(VL⊥ ∩ C2)).

Finally, the result follows by Lemmas C.64 and C.65 in Appendix A.

The following theorem follows from the previous proposition, Corollary
C.13 and the definitions:

Theorem C.1 (Worst-case information leakage). Given nested linear codes C2 $
C1 ⊆ Fm×n

q , and integers 0 ≤ µ ≤ n and 1 ≤ r ≤ dim(C1/C2), it holds that

1. µ = dM,r(C⊥2 , C⊥1 ) is the minimum number of links that an adversary needs
to wire-tap in order to obtain at least r units of information (number of bits
multiplied by log2(q)) of the sent message.

2. r = KM,µ(C⊥2 , C⊥1 ) is the maximum information (number of bits multiplied by
log2(q)) about the sent message that can be obtained by wire-tapping at most
µ links of the network.

In particular, t = dR(C⊥2 , C⊥1 )− 1 is the maximum number of links that an adver-
sary may listen to without obtaining any information about the sent message.

Remark C.17. Proposition C.16 extends [24, Lemma 7, item 2] from Fqm -linear
codes in Fn

qm to Fq-linear codes in Fm×n
q due to Lemma C.53 in Subsection 8.1.

Furthermore, as we will explain in Theorem C.7, our Theorem C.1 extends in the
same sense [24, Theorem 2] and [24, Corollary 5].

Remark C.18. In Section 8, we will prove that GMWs coincide with DGWs [34]
when using one code (C⊥1 = {0} in Theorem C.1) and non-square matrices. Hence
the results in this subsection prove that DGWs measure the worst-case information
leakage in these cases, which has not been proven in the literature yet.
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4 Optimal universal secure linear codes for noise-
less networks and any packet length

In this section, we obtain linear coset coding schemes built from nested
linear code pairs C $ Fm×n, which in this section will refer to those with
C2 = C and C1 = Fm×n, with optimal universal security performance in
the case of finite fields F = Fq (Theorem C.2). Recall from Subsection 2.3
that these linear coset coding schemes are suitable for noiseless networks, as
noticed in [33] (see also Remark C.4).

In this section, we consider perfect universal secrecy (the adversary ob-
tains no information after wire-tapping a given number of links), thus we
make use of the theory in last section concerning the first RGMW. In Section
7, we will consider bounds on the rest of RGMWs, for general code pairs
(suitable for noisy networks), and their achievability.
Definition C.19. For a nested linear code pair of the form C $ Fm×n

q , we
define its information parameter as ` = dim(Fm×n

q /C) = dim(C⊥), that is
the maximum number of log2(q) bits of information that the source can con-
vey, and its security parameter t as the maximum number of links that an
adversary may listen to without obtaining any information about the sent
message.

Due to Theorem C.1, it holds that t = dR(C⊥)− 1. We study two prob-
lems:

1. Find a nested linear code pair C $ Fm×n
q with maximum possible secu-

rity parameter t when m, n, q and the information parameter ` are fixed
and given.

2. Find a nested linear code pair C $ Fm×n
q with maximum possible infor-

mation parameter ` when m, n, q and the security parameter t are fixed
and given.

We will deduce bounds on these parameters from the Singleton bound on
the dimension of rank-metric codes [9, Theorem 5.4]:

Lemma C.20 ( [9, Theorem 5.4]). For a linear code C ⊆ Fm×n
q , it holds that

dim(C) ≤ max{m, n}(min{m, n} − dR(C) + 1). (C.8)

As usual in the literature, we say that C is maximum rank distance (MRD)
if equality holds in (C.8).

Thanks to Theorem C.1 and the previous lemma, we may give upper
bounds on the attainable parameters in the previous two problems:
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Proposition C.21. Given a nested linear code pair C $ Fm×n
q with information

parameter ` and security parameter t, it holds that:

` ≤ max{m, n}(min{m, n} − t), (C.9)

t ≤ min{m, n} −
⌈

`

max{m, n}

⌉
. (C.10)

In particular, ` ≤ mn and t ≤ min{m, n}.

Proof. Recall that ` = dim(Fm×n
q /C) = dim(C⊥) and, due to Theorem C.1,

t = dR(C⊥)− 1. Hence the result follows from the bound (C.8) for C⊥.

On the other hand, the existence of linear codes in Fm×n
q attaining the

Singleton bound on their dimensions, for all possible choices of m, n and
minimum rank distance dR [9, Theorem 6.3], leads to the following existence
result on optimal linear coset coding schemes for noiseless networks.

Theorem C.2. For all choices of positive integers m and n, and all finite fields Fq,
the following hold:

1. For every positive integer ` ≤ mn, there exists a nested linear code pair C $
Fm×n

q with information parameter ` and security parameter t = min{m, n}−
d(`/ max{m, n})e.

2. For every positive integer t ≤ min{m, n}, there exists a nested linear code
pair C $ Fm×n

q with security parameter t and information parameter ` =
max{m, n}(min{m, n} − t).

Remark C.22. We remark here that, to the best of our knowledge, only the linear
coset coding schemes in item 2 in the previous theorem, for the special case n ≤ m,
have been obtained in the literature. It corresponds to [39, Theorem 7].

Using cartesian products of MRD codes as in [39, Subsection VII-C], linear coset
coding schemes as in item 2 in the previous theorem can be obtained when n > m,
for the restricted parameters n = lm and ` = mlk′, where l and k′ < m are positive
integers.

5 Universal secure list-decodable rank-metric lin-
ear coset coding schemes

In this section, we will obtain nested linear code pairs C2 $ C1 ⊆ Fm×n
q when

n divides m that can list-decode rank errors on noisy networks (as opposed
to the scenario in last section), whose list sizes are polynomial on the code
length n, while being univeral secure under a given number of wire-tapped
links. As in last section, we consider perfect universal secrecy, and thus make
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use of the results in Section 3 concerning the first RGMW of the dual code
pair.

We give the construction in Subsection 5.1, together with its parameters
(Theorem C.3): information parameter `, security parameter t and number
of list-decodable rank errors e. To measure the quality of the proposed code
pair, we will compare in Subsection 5.2 their parameters with those obtained
when choosing C1 and C2 as MRD codes [17, 36], which provide coset coding
schemes with both optimal universal security and optimal error-correction
capability [39]. We will also show (Subsection 5.3) the near optimality of the
obtained construction in terms of the introduced uncertainty on the secret
message and the number of list-decodable rank errors.

5.1 The construction and its main properties

We start by extending the definition of rank list-decodable codes from [11,
Definition 2] to coset coding schemes:

Definition C.23. For positive integers e and L, we say that a coset coding
scheme PS = {Cx}x∈S over Fq is rank (e, L)-list-decodable if, for every Y ∈
Fm×n

q , we have that

| {x ∈ S | Px ∩ B(Y, e) 6= ∅} | ≤ L,

where B(Y, e) denotes the ball in Fm×n
q with center Y and rank radius e. The

number of list-decodable rank errors is e and the list sizes are said to be
polynomial in n if L = O(F(n)), for some polynomial F(x).

Remark C.24. Observe however that, if a coset coding scheme can list-decode e
rank errors with polynomial-sized lists of cosets, we still need to decode these cosets
to obtain the uncoded secret messages. In general, it is possible that the union of such
cosets has exponential size while the scheme can still obtain all the corresponding
uncoded messages via an algorithm with polynomial complexity. This is the case in
the construction below.

We now give the above mentioned construction, which exists whenever n
divides m. The main objective is to obtain simultaneously large information
parameter `, security parameter t and number of list-decodable rank errors
e.

Construction C.25. Assume that n divides m and fix ε > 0 and positive in-
tegers s and 1 ≤ k2 < k1 ≤ n such that 4sn ≤ εm and m/n = O(s/ε). In
the next subsection, mk1 and mk2 will be the dimensions of the MRD linear
codes constituting an optimal universal secure nested coset coding scheme,
but here they are just fixed parameters.
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Fix a basis α1, α2, . . . , αm of Fqm as a vector space over Fq, such that
α1, α2, . . . , αn generate Fqn (recall that Fqn ⊆ Fqm since n divides m).

Recall that a q-linearized polynomial over Fqm is a polynomial of the form

F(x) = ∑d
i=0 Fixqi

, where Fi ∈ Fqm , for some positive integer d. Denote also
evα(F(x)) = (F(α1), F(α2), . . . , F(αn)) ∈ Fn

qm , and finally define the linear
codes

C2 = {Mα(evα(F(x))) | Fi = 0 for i < k1 − k2 and i ≥ k1},

C1 = {Mα(evα(F(x))) | Fi ∈ Hi for 0 ≤ i < k1 − k2,

Fi ∈ Fqm for k1 − k2 ≤ i < k1, Fi = 0 for i ≥ k1},

where Mα is the map given in (C.1) and H0,H1, . . . , Hk1−k2−1 ⊆ Fqm are
the Fq-linear vector spaces described in [20, Theorem 8]. We recall this de-
scription in Appendix B. Observe that these vector spaces depend on ε and
s.

Let ` = dim(C1/C2) = dim(H0 ×H1 × · · · × Hk1−k2−1). We now show
how C2 $ C1 ⊆ Fm×n

q form a coset coding scheme as in Definition C.3. Define
the vector space

W = {Mα(evα(F(x))) | Fi ∈ Hi for i < k1 − k2

and Fi = 0 for i ≥ k1 − k2},

which satisfies that C1 = C2 ⊕W . Now consider the secret space as H0 ×
H1× · · · ×Hk1−k2−1

∼= F`
q, and define the vector space isomorphism ψ : H0×

H1 × · · · × Hk1−k2−1 −→ W as follows: For x ∈ H0 ×H1 × · · · × Hk1−k2−1,

take F(x) = ∑k1−k2−1
i=0 Fixqi

such that x = (F0, F1, . . . , Fk1−k2−1), and define

C = ψ(x) = Mα(evα(F(x))).

We may now state the main result of this section:

Theorem C.3. With the same assumptions and notation, the nested coset coding
scheme in Construction C.25 satisfies that:

1. ` = dim(C1/C2) ≥ m(k1 − k2)(1− 2ε).

2. Its security parameter (Definition C.19) satisfies t ≥ k2.

3. It is rank (e, L)-list-decodable for all e ≤ s
s+1 (n − k1), with L ≤ qO(s

2/ε2),
and it admits a list-decoding algorithm that obtains all corresponding uncoded
messages with polynomial complexity in n.
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We devote the rest of the subsection to prove this theorem. We need to
recall some definitions and results from [20]:

Definition C.26 (Subspace designs [20, Definition 3]). Assuming that n di-
vides m and given positive integers r and N, a collection of Fq-linear sub-
spaces U1,U2, . . . ,UM ⊆ Fqm is called an (r, N, n) Fq-linear subspace design
if

M

∑
i=1

dim(Ui ∩ V) ≤ N,

with dimensions taken over Fq, for every Fqn -linear subspace V ⊆ Fqm of
dimension at most r over Fqn .

The following lemma is part of [20, Theorem 8]:

Lemma C.27 ( [20]). With assumptions and notation as in Construction C.25, the
spaces H0,H1, . . .Hk1−k2−1 defined in Appendix B form an (s, 2(m/n− 1)s/ε, n)
Fq-linear subspace design.

Definition C.28 (Periodic subspaces [20, Definition 9]). Given positive inte-
gers r, l, k, we say that an affine subspace H ⊆ Flk

qn is (r, l, k)-periodic if there

exists an Fqn -linear subspace V ⊆ Fl
qn of dimension at most r over Fqn such

that, for every j = 2, 3, . . . , k and a ∈ F
(j−1)l
qn , the affine space

{π[(j−1)l+1,jl](x) | x ∈ H, π[1,(j−1)l](x) = a} ⊆ Fl
qn

is contained in va + V , for a vector va ∈ Fl
qn that depends on a. Here, πJ

denotes the projection over the coordinates in J, and [a, b] denotes the set of
integers i such that a ≤ i ≤ b.

We may now prove our main result:

Proof of Theorem C.3. We prove each item separately:
1) By Lemma C.70 in Appendix B, it holds that dim(Hi) ≥ m(1− 2ε), for

i = 0, 1, 2, . . . , k1 − k2 − 1. Therefore

` = dim(H0 ×H1 × · · · ×Hk1−k2−1) ≥ m(k1 − k2)(1− 2ε).

2) By Theorem C.1, the security parameter is t = dR(C⊥2 , C⊥1 ) − 1 ≥
dR(C⊥2 ) − 1. Since C2 is MRD, then so is its trace dual [9], which means
that dR(C⊥2 ) = k2 + 1, and the result follows.

3) As shown in [20, Subsection IV-B], we may perform list-decoding for
the Gabidulin code G1 ⊇ C1,

G1 = {Mα(evα(F(x))) | Fi = 0 for i ≥ k1},
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and obtain in polynomial time a list containing all possible sent messages
that is an (s− 1, m/n, k1)-periodic subspace of F

k1m/n
qn

∼= F
k1
qm (isomorphic as

Fqn -linear vector spaces).
Project this periodic subspace onto the first k1 − k2 coordinates, which

gives a (s− 1, m/n, k1 − k2)-periodic subspace of F
k1−k2
qm , and intersect it with

H0 × H1 × · · · × Hk1−k2−1. Since H0,H1, . . .Hk1−k2−1 form an (s, 2(m/n −
1)s/ε, n) Fq-linear subspace design by Lemma C.27, such intersection is an
Fq-linear affine space of dimension at most O(s2/ε2) (recall that m/n =
O(s/ε)) by the definition of subspace designs and periodic subspaces.

5.2 Comparison with optimal unique-decodable linear coset
coding schemes based on MRD codes

In this subsection, we compare the schemes in Construction C.25 with those
obtained when using MRD codes [17, 36], whose information parameter ` is
optimal for given security parameter t and number of unique-decodable rank
errors e, due to Theorems 11 and 12 in [39].

Proposition C.29 ( [39]). Assume that n ≤ m and C2 $ C1 ⊆ Fm×n
q are MRD

linear codes of dimensions dim(C1) = mk1 and dim(C2) = mk2 (recall that, by the
Singleton bound (C.8), dimensions of MRD codes are multiple of m when n ≤ m).

The linear coset coding scheme (Definition C.3) constructed from this nested lin-
ear code pair satisfies that:

1. Its information parameter is ` = m(k1 − k2).

2. Its security parameter is t = k2.

3. If the number of rank errors is e ≤ b n−k1
2 c, then rank error-correction can be

performed, giving a unique solution.

Therefore, assuming that n divides m and given MRD linear codes C2 $
C1 ⊆ Fm×n

q of dimensions dim(C1) = mk1 and dim(C2) = mk2, the linear
coset coding scheme in Construction C.25 has at least the same security pa-
rameter t as that obtained using C1 and C2, an information parameter ` that is
at least 1− 2ε times the one obtained using C1 and C2, and can list-decode in
polynomial time (with list of polynomial size) roughly n− k1 errors, which
is twice as many as the rank errors that C1 and C2 can correct, due to the
previous proposition and Theorem C.3.

5.3 Near optimality of the obtained construction

In this subsection, we will show the near optimality of Construction C.25 in
terms of its introduced uncertainty H(C|x) compared to the maximum observed
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information H(CBT) by the wire-tapper, and the number of rank errors e that
the scheme can list-decode.

Let x ∈ F`
q and C ∈ Fm×n

q denote the random variables representing the
secret message and the transmitted codeword, respectively, as in Subsection
3.3.

The quantity H(C|x) measures the amount of randomness of C given x
introduced by the corresponding coset coding scheme, and we would like it
to be as small as possible since generating randomness is difficult in practice.
Observe that H(C|x) = dim(C2) for nested coset coding schemes. On the
other hand, the quantity H(CBT) measures the amount of observed infor-
mation by wire-tapping µ links if B ∈ F

µ×n
q , which satisfies H(CBT) ≤ mµ,

being the inequality usually tight when I(x; CBT) = 0 or even an equality, as
is the case for Gabidulin codes. Thus the following bound is a weaker version
of a bound of the form mt ≤ dim(C2), which we leave as open problem.

Proposition C.30. Fix an arbitrary coset coding scheme in Fm×n
q with message set

S = F`
q, let x ∈ F`

q, and let C ∈ Fm×n
q be its encoding. It holds that

max{H(CBT) | B ∈ F
µ×n
q , I(x; CBT) = 0} ≤ H(C|x).

Proof. Fix B ∈ F
µ×n
q . The result follows from the following chain of inequali-

ties:

I(x; CBT)

= H(CBT)− H(CBT |x)
= H(CBT)− H(CBT |C, x)

+H(CBT |C, x)− H(CBT |x)
= H(CBT)− H(CBT |C)

+H(CBT |C, x)− H(CBT |x)
(since x→ C → CBT is a Markov chain [8])

= I(C; CBT)− I(C; CBT |x)
≥ H(CBT)− H(C|x).

Now consider the coset coding scheme in Construction C.25, and fix µ ≤
k2 ≤ k1. Define the Gabidulin code

G1 = {Mα(evα(F(x))) | Fi = 0, i ≥ k1} ⊆ Fm×n
q ,

and let G be the uniform random variable on G1. It holds that

max
B∈F

µ×n
q

H(GBT) = mµ, (C.11)
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since µ ≤ k1. Equation (C.11) together with dim(G1/C1) ≤ 2mε(k1 − k2)
implies that

max
B∈F

µ×n
q

H(CBT) ≥ m(µ− 2ε(k1 − k2)).

Using that H(C|x) = dim(C2) = mk2, we see that the bound in the previous
proposition is tight for Construction C.25:

0 ≤H(C|x)−max{H(CBT) | B ∈ F
µ×n
q , I(x; CBT) = 0}

≤m(k2 − t + 2ε(k1 − k2)) ≤ 2εm(k1 − k2).

Next we show that the rank list-decoding capability cannot be improved
for large s and small ε, compared to general nested coset coding schemes.
Since rank list-decodable nested coset coding schemes still require decoding
each coset, we will consider those such that a complementary space W as in
Definition C.3 is rank list-decodable with polynomial-sized lists after adding
an error matrix from the smaller code C2:

Proposition C.31. Fix a nested linear code pair C2 & C1 ⊆ Fm×n
q and a subspace

W ⊆ C1 such that C1 = C2 ⊕W , and denote by M the maximum rank of a matrix
in C2. IfW is rank (e + M, L)-list-decodable with polynomial list sizes L, then

e ≤ n− dim(C1)

m
.

Proof. By [11, Proposition 1], if the linear code W is rank (e + M, L)-list-
decodable with polynomial-sized lists L, then

e + M ≤ n− dim(W)/m.

On the other hand, the maximum rank of codewords in C2 is at least dim(C2)/m
by [35, Proposition 47]. Hence

e ≤ n− dim(W)

m
− dim(C2)

m
= n− dim(C1)

m
,

and we are done.

For the nested coset coding scheme in Construction C.25, it holds that

e =
s

s + 1
(n− k1), and

n− dim(C1)

m
= n− k1(1− 2ε)− 2εk2,

which are closer as s becomes larger and ε becomes smaller.
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6 Security equivalences of linear coset coding schemes
and minimum parameters

In this section, we study when two nested linear code pairs C2 $ C1 ⊆ Fm×n

and C ′2 $ C ′1 ⊆ Fm′×n′ have the same universal security and/or reliability
performance.

First, we define security equivalences and give several characterizations
of these in Theorem C.4 (Subsection 6.1), which show that they also preserve
error and erasure correction capabilities. As applications, we study ranges
and minimum possible parameters m and n for linear codes (Subsection 6.2),
and we study when they are degenerate (Subsection 6.3), meaning when they
can be applied to networks with strictly smaller length n.

6.1 Security equivalences and rank isometries

In this subsection, we first give in Theorem C.4 the above mentioned char-
acterizations, and we define afterwards security equivalences as maps sat-
isfying one of such characterizations. We continue with Proposition C.37,
which shows that security equivalences actually preserve universal security
performance as in Subsection 2.2, thus motivating our definition. We con-
clude by comparing Theorem C.4 with related results from the literature (see
also Table C.3).

Due to the importance of the rank metric for error and erasure correction
in linear network coding (see Subsection 2.2), and for universal security (by
Theorem C.1 and Corollary C.13), we start by considering rank isometries:

Definition C.32 (Rank isometries). We say that a map φ : V −→ W between
vector spaces V ⊆ Fm×n and W ⊆ Fm′×n′ is a rank isometry if it is a vector
space isomorphism and Rk(φ(V)) = Rk(V), for all V ∈ V . In that case, we
say that V andW are rank isometric.

We have the following result, which was first proven in [27, Theorem 1]
for square matrices and the complex field F = C. In [30, Proposition 3] it is
observed that the square condition is not necessary and it may be proven for
arbitrary fields:

Proposition C.33 ( [27, 30]). If φ : Fm×n −→ Fm×n is a rank isometry, then there
exist invertible matrices A ∈ Fm×m and B ∈ Fn×n such that

1. φ(C) = ACB, for all C ∈ Fm×n, or

2. φ(C) = ACT B, for all C ∈ Fm×n,

where the latter case can only happen if m = n.
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We will define security equivalences as certain vector space isomorphisms
satisfying one of several equivalent conditions. We first show their equiva-
lence in the following theorem, which is the main result of this section:

Theorem C.4. Let φ : V −→ W be a vector space isomorphism between rank
support spaces V ∈ RS(Fm×n) and W ∈ RS(Fm×n′), and consider the following
properties:

(P 1) There exist full-rank matrices A ∈ Fm×m and B ∈ Fn×n′ such that φ(C) =
ACB, for all C ∈ V .

(P 2) A subspace U ⊆ V is a rank support space if, and only if, φ(U ) is a rank
support space.

(P 3) For all subspaces D ⊆ V , it holds that wtR(φ(D)) = wtR(D).

(P 4) φ is a rank isometry.

Then the following implications hold:

(P 1)⇐⇒ (P 2)⇐⇒ (P 3) =⇒ (P 4).

In particular, a security equivalence is a rank isometry and, in the case V = W =
Fm×n and m 6= n, the reversed implication holds by Proposition C.33.

Proof. See Appendix C.

Remark C.34. Unfortunately, the implication (P 3) ⇐= (P 4) does not always
hold. Take for instance m = n and the map φ : Fm×m −→ Fm×m given by φ(C) =
CT , for all C ∈ Fm×m.

Remark C.35. Observe that, in particular, security equivalences also preserve (rela-
tive) generalized matrix weights, (relative) dimension/rank support profiles and dis-
tributions of rank weights of vector subspaces, and they are the only rank isometries
with these properties.

Property (P 1) will be useful for technical computations and, in particular,
for Proposition C.37 below. As explained in Appendix C, (P 2) allows us to
connect (P 1) with (P 3), and (P 3) allows us to connect the first two with
the rank metric (P 4), crucial for error and erasure correction as in Subsec-
tion 2.2. Finally, Property (P 2) also explains why we will consider security
equivalences defined between rank support spaces, and intuitively explains
that such spaces behave as ambient spaces in our theory, as mentioned in
Subsection 3.1.
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Definition C.36 (Security equivalences). We say that a map φ : V −→ W
between rank support spaces V ∈ RS(Fm×n) and W ∈ RS(Fm×n′) is a secu-
rity equivalence if it is a vector space isomorphism and satisfies condition (P
1), (P 2) or (P 3) in Theorem C.4.

Two nested linear code pairs C2 $ C1 ⊆ Fm×n and C ′2 $ C ′1 ⊆ Fm×n′

are said to be security equivalent if there exist rank support spaces V ∈
RS(Fm×n) and W ∈ RS(Fm×n′), containing C1 and C ′1, respectively, and a
security equivalence φ : V −→ W with φ(C1) = C ′1 and φ(C2) = C ′2.

We now motivate the previous definition with the next proposition, which
makes use of Theorem C.4. Observe that Remark C.35 above already shows
that security equivalences preserve the worst-case information leakage as de-
scribed in Theorem C.1. Now, given nested linear code pairs C2 $ C1 ⊆ Fm×n

q

and C ′2 $ C ′1 ⊆ Fm×n′
q , Proposition C.37 below shows that if the dual pairs

are security equivalent, then there exists a bijective correspondence between
wire-tappers’ transfer matrices (matrix B in Subsection 2.2, item 2) that pre-
serves the mutual information with the original sent message. If the original
pairs are also security equivalent, we conclude that encoding with C2 $ C1 ⊆
Fm×n

q or C ′2 $ C ′1 ⊆ Fm×n′
q yields exactly the same universal error and erasure

correction performance, and exactly the same universal security performance
over linearly coded networks, as in Subsection 2.2.

Proposition C.37. Assume that F = Fq and the dual pairs of C2 $ C1 ⊆ Fm×n
q

and C ′2 $ C ′1 ⊆ Fm×n′
q are security equivalent by a security equivalence given by

matrices A ∈ Fm×m
q and B ∈ Fn×n′

q as in item 1 in Theorem C.4. For any matrix

M ∈ F
µ×n
q , it holds that

I
(

x; CMT
)
= I

(
x; C′(MB)T

)
, (C.12)

with notation as in Proposition C.16, where C ∈ Fm×n
q and C′ ∈ Fm×n′

q are the
encodings of x using C2 $ C1 ⊆ Fm×n

q and C ′2 $ C ′1 ⊆ Fm×n′ , respectively.
Furthermore, assuming n ≤ n′, the correspondence M 7→ MB is one to one

and, for any matrix N ∈ F
µ×n′
q , there exists M ∈ F

µ×n
q such that I

(
x; C′NT) =

I
(
x; C′(MB)T).

Proof. Denote by φ the security equivalence. Take a matrix M ∈ F
µ×n
q , define

L = Row(M) ⊆ Fn
q and L′ = Row(MB) ⊆ Fn′

q . Then φ(VL) = VL′ and

dim(φ(C⊥1 ) ∩ VL′) = dim(φ(C⊥1 ∩ VL)) = dim(C⊥1 ∩ VL),

and similarly for C2. Thus Equation (C.12) follows from Proposition C.16.
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Observe that we may assume n ≤ n′ without loss of generality, since the
inverse of a security equivalence is a security equivalence. Thus the injectivity
of M 7→ MB follows from the fact that B has full rank.

Finally, if N ∈ F
µ×n′
q , L = Row(N) and K = Row(B), then C⊥1 ⊆ VK and

C⊥1 ∩ VL = C⊥1 ∩ (VL ∩ VK),

and similarly for C⊥2 . Since VL ∩ VK = VL∩K and L ∩ K = Row(MB) for a
matrix M ∈ F

µ×n
q , the last statement follows again from Proposition C.16.

The topic of vector space isomorphisms φ : Fm×n −→ Fm×n preserving
some specified property has been intensively studied in the literature (see
also Table C.3), where the term Frobenius map is generally used for maps of
the form of those in Proposition C.33.

When m = n, it is proven in [10, Theorem 3] that Frobenius maps are
characterized by being those preserving invertible matrices and in [27] they
are characterized by being those preserving ranks (this is extended to m 6= n
in [30, Proposition 3]), those preserving determinants and those preserving
eigenvalues.

On the other hand, [3, Theorem 1] shows that Fqm -linear vector space
isomorphisms φ : Fn

qm −→ Fn
qm preserving ranks are given by φ(c) = βcA, for

β ∈ Fqm \ {0} and an invertible A ∈ Fn×n
q . This is extended in [28, Theorem

5] to Fqm -linear vector space isomorphisms whose domain and codomain are
Fqm -linear Galois closed spaces in Fn

qm , which correspond to rank support
spaces in Fm×n

q (see Lemma C.53 below).
Therefore, we extend these works in three directions simultaneously: First,

we consider the stronger properties (P 1), (P 2) and (P 3) than those consid-
ered in [3, 10, 27, 30], which are essentially (P 4). Second, we extend the
domains and codomains from Fm×n to general rank support spaces whose
matrices do not necessarily have the same sizes. Finally, in the case F = Fq,
we consider general Fq-linear maps, instead of the particular case of Fqm -
linear maps as in [3, 28].

6.2 Minimum parameters of linear codes

As main application of the previous subsection, we study in this subsection
the minimum parameters m and n for which there exists a linear code that is
security equivalent to a given one. Recall from Subsection 2.1 that m corre-
sponds to the packet length used in the network, and n corresponds to the
number of outgoing links from the source.

Both cases of one linear code, that is C2 = {0} and C1 = Fm×n, are covered
since they are dual of each other (see also Remark C.4 and Appendix A). Since
security equivalences are rank isometries by Theorem C.4, in the first case we
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find minimum parameters for error and erasure correction, and in the second
case we find minimum parameters for universal security on noiseless linearly
coded networks.

Proposition C.38. Fix a linear code C ⊆ Fm×n of dimension k. There exists a linear
code C ′ ⊆ Fm×n′ that is security equivalent to C if, and only if, n′ ≥ dM,k(C).

Proof. First, if C ′ ⊆ Fm×n′ is security equivalent to C, then dim(C ′) = k and
dM,k(C) = dM,k(C ′) ≤ n′.

On the other hand, assume that n′ ≥ dM,k(C). Take a subspace L ⊆ Fn

with d = dim(L) = dM,k(C) and dim(C ∩ VL) ≥ k, which implies that C ⊆
VL. Take a generator matrix A ∈ Fd×n of L. There exists a full-rank matrix
A′ ∈ Fn×d such that AA′ = I ∈ Fd×d.

The linear map φ : VL −→ Fm×d, given by φ(V) = VA′, for V ∈ VL, is a
vector space isomorphism. By dimensions, we just need to see that it is onto.
Take W ∈ Fm×d. It holds that W = WI = WAA′ = φ(WA), and WA ∈ VL by
definition.

On the other hand, φ is a security equivalence by Theorem C.4. Therefore
φ(C) ⊆ Fm×d is security equivalent to C. Finally, we see that appending n′− d
zero columns to the matrices in φ(C) gives a security equivalent code to C in
Fm×n′ .

By transposing matrices, we obtain the following consequence, where we
consider linear codes that are rank isometric to a given one. By [28, Theorem
9], such equivalent codes perform equally when used for error and erasure
correction, and by Theorem C.1 and Corollary C.13, they perform equally
regarding the maximum number of links that an adversary may wire-tap
without obtaining any information on noiseless networks.

Corollary C.39. For a linear code C ⊆ Fm×n, define the transposed linear code

CT = {CT | C ∈ C} ⊆ Fn×m.

If m′ ≥ dM,k(CT), where k = dim(C), then there exists a linear code C ′ ⊆ Fm′×n

that is rank isometric to C.

Proof. It follows from Theorem C.4 and Proposition C.38.

As a related result, [28, Proposition 3] computes the minimum parameter
n for which there exists an Fqm -linear code C ⊆ Fn

qm that is rank isometric to
a given one. In contrast, we consider both parameters m and n, we consider
security equivalences for the parameter n, and not only rank isometries, and
as the biggest difference with [28], we consider general linear codes, and not
only Fqm -linear codes in Fn

qm .
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7. Monotonicity and Singleton-type bounds

6.3 Degenerate codes

In this subsection, we study degenerate codes, which by the study in the
previous subsection, can be applied to networks with less outgoing links or,
by transposing matrices, with smaller packet length. Degenerateness of codes
in the rank metric has been studied in [22, Section 6] and [28, Subsection IV-
B], but only for Fqm -linear codes in Fn

qm . We extend those studies to general
linear codes in Fm×n.

Definition C.40 (Degenerate codes). We say that a linear code C ⊆ Fm×n is
degenerate if it is security equivalent to a linear code C ′ ⊆ Fm×n′ with n′ < n.

The following lemma follows from Proposition C.38:

Lemma C.41. A linear code C ⊆ Fm×n is degenerate if, and only if, dM,k(C) < n,
where k = dim(C).

Now we may give characterizations in terms of the minimum rank dis-
tance of the dual code thanks to Proposition C.66 in Appendix A.

Proposition C.42. Given a linear code C ⊆ Fm×n, the following hold:

1. Assuming dim(C⊥) ≥ m, C is degenerate if, and only if, dM,m(C⊥) = 1.

2. If dR(C⊥) > 1, then C is not degenerate.

Proof. From Proposition C.66, we know that

Wk(C) ∪W0(C⊥) = {1, 2, . . . , n},

where the sets on the left-hand side are disjoint, and where k = dim(C). Now,
the smallest number in Wk(C) is n + 1− dM,k(C), and the smallest number in
W0(C⊥) is dM,m(C⊥). Item 1 follows from this and the previous lemma. Item
2 follows from item 1 and Proposition C.44 in Subsection 7.1.

7 Monotonicity and Singleton-type bounds

In this section, we give upper and lower Singleton-type bounds on RGMWs.
We start with the monotonicity of RDRPs and RGMWs (Subsection 7.1),
which have their own interest, but which are a crucial tool to prove the main
bounds (Theorems C.5 and C.6 in Subsection 7.2). Finally we study linear
codes C ⊆ Fm×n, meaning C1 = C and C2 = {0}, that attain these bounds
and whose dimensions are divisible by m (Subsection 7.3).
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7.1 Monotonicity of RGMWs and RDRPs

The monotonicity bounds presented in this subsection are crucial tools for
Theorems C.5 and C.6, but they also have an interpretation in terms of the
worst-case information leakage, due to Theorem C.1: An adversary wire-
tapping more links in the network will obtain more information in the worst
case, and to obtain more information than the worst case for a given number
of links, the adversary needs to wire-tap more links. We also bound the
corresponding differences.

Proposition C.43 (Monotonicity of RDRPs). Given nested linear codes C2 $
C1 ⊆ Fm×n, and 0 ≤ µ ≤ n− 1, it holds that KM,0(C1, C2) = 0, KM,n(C1, C2) =
dim(C1/C2) and

0 ≤ KM,µ+1(C1, C2)− KM,µ(C1, C2) ≤ m.

Proof. The only property that is not trivial from the definitions is KM,µ+1(C1, C2)−
KM,µ(C1, C2) ≤ m. Consider L ⊆ Fn with dim(L) ≤ µ + 1 and dim(C1 ∩
VL)− dim(C2 ∩ VL) = KM,µ+1(C1, C2).

Take L′ $ L with dim(L′) = dim(L)− 1. Using (C.2), a simple computa-
tion shows that

dim(C1 ∩ VL′) + m ≥ dim(C1 ∩ VL).
Since dim(C2 ∩ VL′) ≤ dim(C2 ∩ VL), it holds that

dim(C1 ∩ VL′)− dim(C2 ∩ VL′) + m

≥ dim(C1 ∩ VL)− dim(C2 ∩ VL),
and the result follows.

Proposition C.44 (Monotonicity of RGMWs). Given nested linear codes C2 $
C1 ⊆ Fm×n with ` = dim(C1/C2), it holds that

0 ≤ dM,r+1(C1, C2)− dM,r(C1, C2) ≤ min{m, n},

for 1 ≤ r ≤ `− 1, and

dM,r(C1, C2) + 1 ≤ dM,r+m(C1, C2),

for 1 ≤ r ≤ `−m.

Proof. The first inequality in the first equation is obvious. We now prove the
second inequality. By Proposition C.12, there exists a subspace D ⊆ C1 with
D ∩ C2 = {0}, dim(D) = r and wtR(D) = dM,r(C1, C2). Now take D ∈ C1
not contained in D ⊕ C2, and consider D′ = D ⊕ 〈{D}〉. We see from the
definitions that RSupp(D′) ⊆ RSupp(D) + Row(D), and hence

wtR(D′) ≤ wtR(D) + Rk(D) ≤ dM,r(C1, C2) + min{m, n}.

Therefore it follows that dM,r+1(C1, C2) ≤ dM,r(C1, C2) + min{m, n}.
The last inequality follows from Proposition C.14 and Proposition C.43.
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7. Monotonicity and Singleton-type bounds

Due to Theorem C.9, the first and third inequalities in the previous propo-
sition coincide with items 3 and 4 in [34, Theorem 30] when C2 = {0} and
m 6= n.

7.2 Upper and lower Singleton-type bounds

Due to Theorem C.1, it is desirable to obtain nested linear code pairs with
large RGMWs. The following result gives a fundamental upper bound on
them, whose achievability for one linear code (C2 = {0}) is studied in the
next subsection.

Theorem C.5 (Upper Singleton-type bound). Given nested linear codes C2 $
C1 ⊆ Fm×n and 1 ≤ r ≤ ` = dim(C1/C2), it holds that

dM,r(C1, C2) ≤ n−
⌈
`− r + 1

m

⌉
+ 1. (C.13)

In particular, it follows that

dim(C1/C2) ≤ max{m, n}(min{m, n} − dR(C1, C2) + 1),

which extends (C.8) to nested linear code pairs.

Proof. First of all, we have that dM,`(C1, C2) ≤ n by definition. Therefore the
case r = ` follows.

For the general case, we will prove that mdM,r(C1, C2) ≤ mn− `+ r + m−
1. Assume that 1 ≤ r ≤ ` − hm, where the integer h ≥ 0 is the maximum
possible. That is, r + (h + 1)m > `. Using Proposition C.44, we obtain

mdM,r(C1, C2) ≤ mdM,r+hm(C1, C2)− hm

≤ mdM,`(C1, C2)− hm ≤ mn− `+ r + m− 1,

where the last inequality follows from mdM,`(C1, C2) ≤ mn and r+(h+ 1)m−
1 ≥ `.

Finally, the last bound is obtained by setting r = 1 and using Corollary
C.13 for the given nested linear code pair and the pair obtained by transpos-
ing matrices.

Due to Theorem C.9, the previous theorem coincides with item 5 in [34,
Theorem 30] when C2 = {0} and m 6= n.

Remark C.45. In view of [24, Proposition 1] or [26, Equation (24)], it is natural to
wonder whether a sharper bound of the form

dM,r(C1, C2) ≤ n−
⌈

dim(C1)− r + 1
m

⌉
+ 1

holds. However, this is not the case in general, as the following example shows.
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Example C.46. Consider m = 2, the canonical basis e1, e2, . . . , en of Fn, and
the linear codes C1 = F2×n and

C2 =

〈(
e1
0

)
,
(

e2
0

)
, . . . ,

(
en
0

)〉
.

Observe that ` = dim(C1/C2) = n. A bound as in the previous remark
would imply that dM,n(C1, C2) ≤ dn/2e. However, a direct inspection shows
that dM,n(C1, C2) = n, since all vectors e1, e2, . . . , en must lie in the row space
of any D with C1 = C2 ⊕D.

On the other hand, we have the following lower bound:

Theorem C.6 (Lower Singleton-type bound). Given nested linear codes C2 $
C1 ⊆ Fm×n and 1 ≤ r ≤ dim(C1/C2), it holds that mdM,r(C1, C2) ≥ r, which
implies that

dM,r(C1, C2) ≥
⌈ r

m

⌉
. (C.14)

Proof. Take a subspace D ⊆ Fm×n and define L = RSupp(D). We have that
D ⊆ VL. Using (C.2), we see that

mwtR(D) = m dim(L) = dim(VL) ≥ dim(D).

The result follows from this and Proposition C.12.

Due to Theorem C.9, the previous theorem coincides with item 6 in [34,
Theorem 30] when C2 = {0} and m 6= n.

7.3 Linear codes attaining the bounds and whose dimensions
are divisible by the packet length

In this subsection, we study the achievability of the bounds (C.13) and
(C.14) for one linear code whose dimension is divisible by the packet length
m. As we will show in Subsection 8.3, DGWs [34] of one linear code coincide
with its GMWs when m 6= n. Thus the two propositions below coincide with
Corollaries 31 and 32 in [34] when m 6= n.

Recall from (C.8) that, if a linear code is MRD and n ≤ m, then its dimen-
sion is divisible by m. In the next proposition, we show that GMWs of MRD
linear codes for n ≤ m are all given by m, n and dim(C), and all attain the
upper Singleton-type bound (C.13):
Proposition C.47. Let C ⊆ Fm×n be a linear code with dim(C) = mk. The follow-
ing are equivalent if n ≤ m:

1. C is maximum rank distance (MRD).

2. dR(C) = n− k + 1.
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7. Monotonicity and Singleton-type bounds

3. dM,r(C) = n− k +
⌊

r−1
m

⌋
+ 1, for all 1 ≤ r ≤ mk.

Proof. Item 1 and item 2 are equivalent by definition, and item 3 implies item
2 by choosing r = 1.

Now assume item 2 and let 1 ≤ r ≤ mk. Let r = hm + s, with h ≥ 0 and
0 ≤ s < m. We need to distinguish the cases s > 0 and s = 0. We prove only
the first case, being the second analogous. By Proposition C.44, we have that

dM,r(C) ≥ h + dM,s(C) ≥ h + dR(C) = n− k + h + 1.

On the other hand, d(mk− r + 1)/me = k− h, and therefore the bound (C.13)
implies that

dM,r(C) ≤ n− k + h + 1,

and hence dM,r(C) = n − k + b(r − 1)/mc + 1 since b(r − 1)/mc = h, and
item 3 follows.

Regarding the lower Singleton-type bound, we show in the next proposi-
tion that rank support spaces are also characterized by having the minimum
possible GMWs in view of (C.14):

Proposition C.48. Let C ⊆ Fm×n be a linear code with dim(C) = mk. The follow-
ing are equivalent:

1. C is a rank support space. That is, there exists a subspace L ⊆ Fn such that
C = VL.

2. dM,km(C) = k.

3. dM,r(C) = dr/me, for all 1 ≤ r ≤ mk.

Proof. Assume that C = VL, as in item 1. By taking a sequence of subspaces

{0} $ L1 $ L2 $ . . . $ Lk = L,

we see that dM,rm−p(C) ≤ dim(Lr) = r, for 1 ≤ r ≤ k and 0 ≤ p ≤ m− 1,
since dim(C ∩ VLr ) = dim(VLr ) = mr ≥ mr− p. Hence item 3 follows.

Item 3 implies item 2 by taking r = km.
Finally, assume item 2. Take a subspace L ⊆ Fn such that dim(L) =

dM,km(C) = k and dim(C ∩ VL) ≥ mk. By definition and by (C.2), it holds
that dim(C ∩ VL) ≥ mk = dim(VL), which implies that C ∩ VL = VL, or in
other words, VL ⊆ C. Since dim(C) = mk = dim(VL), we see that VL = C
and item 1 follows.
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8 Relation with other existing notions of general-
ized weights

In this section, we study the relation between RGMWs and RDRPs and other
notions of generalized weights (see Table C.1). We first show that RGMWs
and RDRPs extend RGRWs and RDIPs [24, 32] (Theorem C.7 in Subsection
8.1), respectively, then we show that they extend RGHWs and RDLPs [16,
26, 42] (Theorem C.8 in Subsection 8.2), respectively, and we conclude by
showing that GMWs coincide with DGWs [34] for one linear code, meaning
C1 = C arbitrary and C2 = {0}, when m 6= n, and are strictly larger when
m = n (Theorem C.9 in Subsection 8.3).

8.1 RGMWs extend relative generalized rank weights

In this subsection, we prove that RGMWs and RDRPs extend RGRWs and
RDIPs [24, 32], respectively.

Definition C.49 (Galois closed spaces [41]). We say that an Fqm -linear vector
space V ⊆ Fn

qm is Galois closed if

V q = {(vq
1, vq

2, . . . , vq
n) | (v1, v2, . . . , vn) ∈ V} ⊆ V .

We denote by Υ(Fn
qm) the family of Fqm -linear Galois closed vector spaces in

Fn
qm .

RGRWs and RDIPs are then defined in [24] as follows:

Definition C.50 (Relative Generalized Rank Weigths [24, Definition 2]). Given
nested Fqm -linear codes C2 $ C1 ⊆ Fn

qm , and 1 ≤ r ≤ ` = dim(C1/C2) (over
Fqm ), we define their r-th relative generalized rank weight (RGRW) as

dR,r(C1, C2) = min{dim(V) | V ∈ Υ(Fn
qm),

dim(C1 ∩ V)− dim(C2 ∩ V) ≥ r},

where dimensions are taken over Fqm .

Definition C.51 (Relative Dimension/Intersection Profile [24, Definition 1]).
Given nested Fqm -linear codes C2 $ C1 ⊆ Fn

qm , and 0 ≤ µ ≤ n, we define their
µ-th relative dimension/intersection profile (RDIP) as

KR,µ(C1, C2) = max{dim(C1 ∩ V)− dim(C2 ∩ V) |
V ∈ Υ(Fn

qm), dim(V) ≤ µ},

where dimensions are taken over Fqm .
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The following is the main result of the subsection, which shows that The-
orem C.1 extends the study on worst-case information leakage on Fq-linearly
coded networks in [24] (see its Theorem 2 and Corollary 5) from Fqm -linear
codes in Fn

qm to general Fq-linear codes in Fm×n
q , when considering uniform

probability distributions.

Theorem C.7. Let α1, α2, . . . , αm be a basis of Fqm as a vector space over Fq. Given
nested Fqm -linear codes C2 $ C1 ⊆ Fn

qm , and integers 1 ≤ r ≤ ` = dim(C1/C2)
(over Fqm ), 0 ≤ p ≤ m− 1 and 0 ≤ µ ≤ n, we have that

dR,r(C1, C2) = dM,rm−p(Mα(C1), Mα(C2)),

mKR,µ(C1, C2) = KM,µ(Mα(C1), Mα(C2)),

where Mα : Fn
qm −→ Fm×n

q is as in (C.1).

The theorem follows from the next two lemmas, where we take the first
one from [41]:

Lemma C.52 ( [41, Lemma 1]). An Fqm -linear vector space V ⊆ Fn
qm is Galois

closed if, and only if, it has a basis of vectors in Fn
q as a vector space over Fqm .

Lemma C.53. Let α1, α2, . . . , αm be a basis of Fqm as a vector space over Fq, and let
V ⊆ Fn

qm be an arbitrary set. The following are equivalent:

1. V ⊆ Fn
qm is an Fqm -linear Galois closed vector space. That is, V ∈ Υ(Fn

qm).

2. Mα(V) ⊆ Fm×n
q is a rank support space. That is, Mα(V) ∈ RS(Fm×n

q ).

Moreover, if Mα(V) = VL for a subspace L ⊆ Fn
q , then

dim(V) = dim(L),

where dim(V) is taken over Fqm and dim(L) over Fq.

Proof. We first observe the following. For an arbitrary set V ⊆ Fn
qm , the

previous lemma states that V is an Fqm -linear Galois closed vector space if,
and only if, V is Fq-linear and it has a basis over Fq of the form vi,j = αibj, for
i = 1, 2, . . . , m and j = 1, 2, . . . , k, where b1, b2, . . . , bk ∈ Fn

q . By considering
Bi,j = Mα(vi,j) ∈ Fm×n

q , we see that this condition is equivalent to item 2 in
Proposition C.9, and we are done.

Remark C.54. The results in this subsection can be extended to Galois extensions
of fields F ⊆ F̃ of finite degree m. For that purpose, we only need to define Galois
closed spaces as those F̃-linear subspaces V ⊆ F̃n that are closed under the action
of every field morphism in the Galois group of the extension F ⊆ F̃. The rest of
definitions and results in this subsection can be directly translated word by word to
this case, except for Lemma C.52, which would be replaced by [18, Theorem 1].

Thus the results in this subsection can be applied to generalizations of rank-metric
codes such as those in [2].
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8.2 RGMWs extend relative generalized Hamming weights

In this subsection, we show that RGMWs and RDRPs also extend RGHWs
and RDLPs [16, 26, 42], respectively. We start with the definitions of Ham-
ming supports and Hamming support spaces:

Definition C.55 (Hamming supports). Given a vector space C ⊆ Fn, we de-
fine its Hamming support as

HSupp(C) = {i ∈ {1, 2, . . . , n} |
∃(c1, c2, . . . , cn) ∈ C, ci 6= 0}.

We also define the Hamming weight of the space C as

wtH(C) = |HSupp(C)|.

Finally, for a vector c ∈ Fn, we define its Hamming support as HSupp(c) =
HSupp(〈{c}〉), and its Hamming weight as wtH(c) = wtH(〈{c}〉).

Definition C.56 (Hamming support spaces). Given a subset I ⊆ {1, 2, . . . , n},
we define its Hamming support space as the vector space in Fn given by

LI = {(c1, c2, . . . , cn) ∈ Fn | ci = 0, ∀i /∈ I}.

We may now define RGHWs and RDLPs:

Definition C.57 (Relative Generalized Hamming Weigths [26, Section III]).
Given nested linear codes C2 $ C1 ⊆ Fn, and 1 ≤ r ≤ ` = dim(C1/C2), we
define their r-th relative generalized Hamming weight (RGHW) as

dH,r(C1, C2) = min{|I| | I ⊆ {1, 2, . . . , n},
dim(C1 ∩ LI)− dim(C2 ∩ LI) ≥ r}.

As in Proposition C.12, it holds that

dH,r(C1, C2) = min{wtH(D) | D ⊆ C1,D ∩ C2 = {0},
dim(D) = r}.

Given a linear code C ⊆ Fn, we see that its r-th GHW [42, Section II] is
dH,r(C) = dH,r(C, {0}), for 1 ≤ r ≤ dim(C).

Definition C.58 (Relative Dimension/Length Profile [16, 26]). Given nested
linear codes C2 $ C1 ⊆ Fn, and 0 ≤ µ ≤ n, we define their µ-th relative
dimension/length profile (RDLP) as

KH,µ(C1, C2) = max{dim(C1 ∩ LI)− dim(C2 ∩ LI) |
I ⊆ {1, 2, . . . , n}, |I| ≤ µ}.
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To prove our results, we need to see vectors in Fn as matrices in Fn×n. To
that end, we introduce the diagonal matrix representation map ∆ : Fn −→
Fn×n given by

∆(c) = diag(c) = (ciδi,j)1≤i≤n,1≤j≤n, (C.15)

where c = (c1, c2, . . . , cn) ∈ Fn and δi,j represents the Kronecker delta. In
other words, ∆(c) is the diagonal matrix whose diagonal vector is c.

The map ∆ : Fn −→ Fn×n is linear, one to one and, for any vector space
D ⊆ Fn, it holds that

wtR(∆(D)) = wtH(D).

We may now give the main result of this subsection:

Theorem C.8. Given nested linear codes C2 $ C1 ⊆ Fn, and integers 1 ≤ r ≤ ` =
dim(C1/C2), and 0 ≤ µ ≤ n, we have that

dH,r(C1, C2) = dM,r(∆(C1), ∆(C2)),

KH,µ(C1, C2) = KM,µ(∆(C1), ∆(C2)).

Proof. We prove the first equality, being the second analogous. Denote by dr
the number on the left-hand side and by d′r the number on the right-hand
side, and prove both inequalities:

dr ≤ d′r: Take a vector space L ⊆ Fn such that dim(L) = d′r and dim((∆(C1)∩
VL)/(∆(C2) ∩ VL)) ≥ r. It holds that VL ∩ ∆(Fn) = ∆(LI), for some subset
I ⊆ {1, 2, . . . , n}. We have that dim((C1 ∩ LI)/(C2 ∩ LI)) ≥ r and

dr ≤ |I| = wtR(∆(LI)) ≤ wtR(VL) = dim(L) = d′r.

dr ≥ d′r: Take a subset I ⊆ {1, 2, . . . , n} such that |I| = dr and dim((C1 ∩
LI)/(C2 ∩ LI)) ≥ r. Now it holds that ∆(LI) = VLI ∩ ∆(Fn). Therefore
dim((∆(C1) ∩ VLI )/(∆(C2) ∩ VLI )) ≥ r and

d′r ≤ dim(LI) = |I| = dr.

8.3 Relation with Delsarte generalized weights

A notion of generalized weights, called Delsarte generalized weights (DGWs),
for a linear code, which in this section means C1 = C arbitrary and C2 = {0}
has already been proposed in [34] as an algebraic invariant of the code. We
will prove that GMWs are strictly larger than DGWs when m = n, and we
will prove that both coincide in the other cases.

These weights are defined in terms of optimal anticodes for the rank met-
ric:
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Definition C.59 (Maximum rank distance). For a linear code C ⊆ Fm×n, we
define its maximum rank distance as

MaxRk(C) = max{Rk(C) | C ∈ C, C 6= 0}.

The following bound is given in [35, Proposition 47]:

dim(C) ≤ mMaxRk(C). (C.16)

This leads to the definition of rank-metric optimal anticodes:

Definition C.60 (Optimal anticodes [34, Definition 22]). We say that a linear
code V ⊆ Fm×n is a (rank-metric) optimal anticode if equality in (C.16) holds.

We will denote by A(Fm×n) the family of linear optimal anticodes in
Fm×n.

In view of this, DGWs are defined in [34] as follows:

Definition C.61 (Delsarte generalized weights [34, Definition 23]). For a lin-
ear code C ⊆ Fm×n and an integer 1 ≤ r ≤ dim(C), we define its r-th Delsarte
generalized weight (DGW) as

dD,r(C) = m−1 min{dim(V) | V ∈ A(Fm×n),

dim(C ∩ V) ≥ r}.

Observe that dD,r(C) is an integer since the dimension of optimal anti-
codes is a multiple of m by definition.

Before giving the main result, we need the following proposition:

Proposition C.62. If a set V ⊆ Fm×n is a rank support space, then it is a (rank-
metric) optimal anticode. In other words, RS(Fm×n) ⊆ A(Fm×n). The reversed
inclusion also holds if m 6= n.

Proof. We first prove that RS(Fm×n) ⊆ A(Fm×n). Let V ∈ RS(Fm×n) and let
Bi,j, i = 1, 2, . . . , m and j = 1, 2, . . . , k, be a basis of V as in Proposition C.9,
item 2. For any V = ∑m

i=1 ∑k
j=1 λi,jBi,j ∈ V , with λi,j ∈ F, it holds that

Rk(V) ≤ dim(〈b1, b2, . . . , bk〉) = k,

where b1, b2, . . . , bk are as in Proposition C.9, item 2. Therefore dim(V) =
mk ≥ mMaxRk(V) and V is an optimal anticode.

We now prove that A(Fm×n) ⊆ RS(Fm×n) when m 6= n. Let V ∈
A(Fm×n). By [34, Theorem 26], there exist full-rank matrices A ∈ Fm×m

q and
B ∈ Fn×n

q such that V = {ACB ∈ Fm×n
q | C ∈ VL}, where L = Fk

q × {0}n−k

for some positive integer k. By Proposition C.9, V is a rank support space
and we are done.
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In [34, Theorem 18] it is proven that V ⊆ Fn
qm is an Fqm -linear Galois closed

vector space if, and only if, it is an Fqm -linear vector space satisfying equality
in (C.16). Hence due to Lemma C.53, the previous proposition strengthens
[34, Theorem 18] when m 6= n by showing that the Fqm -linearity of V may be
weakened to Fq-linearity. Moreover, our result holds for any field F 6= Fq.

The main result of this subsection is the next theorem, which follows from
the previous proposition and the corresponding definitions:

Theorem C.9. For a linear code C ⊆ Fm×n and an integer 1 ≤ r ≤ dim(C), we
have that

dD,r(C) ≤ dM,r(C) if m = n, and

dD,r(C) = dM,r(C) if m 6= n.

Due to Theorem C.1, when considering universal security on linearly
coded networks it is desirable to obtain linear codes C ⊆ Fm×n

q with large
GMWs. Therefore, linear codes with large DGWs serve this purpose, but
linear codes with low DGWs may still have large GMWs when m = n.

The next example shows that not all linear optimal anticodes are rank
support spaces when m = n, that is, RS(Fn×n) $ A(Fn×n), for any n and
any field F. As a consequence, in some cases GMWs are strictly larger than
DGWs. To that end, we will use the characterization of rank support spaces
as matrix modules from Appendix D.

Example C.63. Consider m = n = 2 and the linear code

C =
〈(

1 0
0 0

)
,
(

0 1
0 0

)〉
⊆ F2×2.

It holds that dim(C) = 2, m = 2 and MaxRk(C) = 1. Therefore C is an
optimal anticode. However, it is not a matrix module, and therefore it is not
a rank support space (see Appendix D), since(

0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
/∈ C.

In other words, RS(F2×2) $ A(F2×2).
On the one hand, we have that dD,1(C) = dD,2(C) = 1, by [34, Corollary

32], or just by inspection.
On the other hand, it is easy to check that dM,1(C) = 1, and since RSupp(C) =

F2, it holds that dM,2(C) = 2. Therefore dM,2(C) > dD,2(C).
Observe that we may trivially extend this example to any value of m = n,

and it holds for an arbitrary field F.
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9 Conclusion and open problems

In this work, we have extended the study of universal security provided by
Fqm -linear nested coset coding schemes from [24, 39] to that provided by Fq-
linear schemes, where Fq is the field used on the network and m is the packet
length.

Thanks to this study, we have completed the list of parameters `, t, m
and n for which we can obtain optimal universal secure Fq-linear codes for
noiseless networks from [39], and we have added near optimal universal se-
curity to the rank list-decodable codes from [20], providing the first uni-
versal secure linear coset coding schemes able to list-decode in polynomial
time roughly twice the rank errors that optimal universal secure schemes
can unique-decode, with almost the same secret message size ` and security
parameter t.

Motivated by our study, we defined a family of security equivalences be-
tween linear coset coding schemes and gave mathematical characterizations
of such equivalences, which allowed us to obtain, in terms of the last gener-
alized matrix weight, ranges of parameters m and n of networks on which a
linear code can be applied with the same security performance.

Finally, we give the following list of open problems:
1) Obtain optimal universal secure and error-correcting linear coset cod-

ing schemes for noisy networks for all possible parameters `, t, m, n, and
number of rank errors.

2) Extend the concept of universal strong security from [24, Definition 6] to
general Fq-linear coset coding schemes, and provide optimal universal strong
secure schemes as those in [24, Section V] for all possible parameters `, t, m
and n, for either noiseless or noisy networks.

3) Subsection 5.3 implies that ` is close to but smaller than n− t− e, where
e is the number of list-decodable rank errors with polynomial list sizes L. We
conjecture, but leave as open problem, that a bound similar to ` ≤ n− t− e
holds in general.

4) Study the sharpness of the bounds given in Theorem C.6.

A Duality theory

In this appendix, we collect technical results concerning trace duality of linear
codes in Fm×n used throughout the paper. Some of the results are taken or
expanded from the literature, and some are new. Recall first the definition of
trace product and dual of a linear code in Fm×n (Definition C.15).

First, since the trace product in Fm×n coincides with the usual inner prod-
uct in Fmn, it holds that

dim(C⊥) = mn− dim(C), C ⊆ D ⇐⇒ D⊥ ⊆ C⊥,
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A. Duality theory

C⊥⊥ = C, (C +D)⊥ = C⊥ ∩D⊥, (C ∩ D)⊥ = C⊥ +D⊥,

for linear codes C,D ⊆ Fm×n. We have the following:

Lemma C.64 ( [35, Lemma 27]). If V ∈ RS(Fm×n), then V⊥ ∈ RS(Fm×n).
More concretely, for any subspace L ⊆ Fn, it holds that

(VL)⊥ = V(L⊥).

Lemma C.65 (Forney’s duality [16]). Given vector spaces C,V ⊆ Fm×n, it holds
that

dim(V)− dim((C⊥) ∩ V) = dim(C)− dim(C ∩ (V⊥)).

We now show that all GMWs of a linear code determine uniquely those
of the corresponding dual code. Since GMWs and DGWs [34] coincide when
F = Fq and m 6= n by Theorem C.9, the next result coincides with [34,
Corollary 38] in such cases:

Proposition C.66. Given a linear code C ⊆ Fm×n with k = dim(C), and given an
integer p ∈ Z, define

Wp(C) ={dM,p+rm(C) | r ∈ Z, 1 ≤ p + rm ≤ k},
Wp(C) ={n + 1− dM,p+rm(C) | r ∈ Z, 1 ≤ p + rm ≤ k}.

Then it holds that
{1, 2, . . . , n} = Wp(C⊥) ∪Wp+k(C),

where the union is disjoint.

The proof of this proposition can be translated word by word from the
proof of [34, Corollary 38] using the monotonicity properties from Proposi-
tion C.44. However, [34, Corollary 38] relies on [34, Theorem 37], and there-
fore we need to extend such result to the cases F 6= Fq or m = n. The
following lemma constitutes such extension:

Lemma C.67. Given a linear code C ⊆ Fm×n with k = dim(C), and given 1 ≤
r ≤ k and 1 ≤ s ≤ mn− k, it holds that

dM,s(C⊥) 6= n + 1− dM,r(C)

if r = p + k + r′m and s = p + s′m, for some integers p, r′, s′ ∈ Z.

Proof. Assume that equality holds for a pair of such r and s. Denote CL =
C ∩VL, for a linear subspace L ⊆ Fn, and rewrite Proposition C.14 as follows:

dM,r(C) = min{µ | max{dim(CL) | L ⊆ Fn,

dim(L) = µ} ≥ r}.
(C.17)

161



Paper C.

Write dM,r(C) = µ. Then Equation (C.17) implies that

max{dim(CL) | L ⊆ Fn, dim(L) = µ} ≥ r, (C.18)

and µ is the minimum integer with such property. Now write dM,s(C⊥) =
ν = n + 1− µ. In the same way, Equation (C.17) implies that

max{dim((C⊥)L) | L ⊆ Fn, dim(L) = ν} ≥ s.

On the other hand, given a subspace L ⊆ Fn with dim(L) = ν, we have that

dim(CL⊥) = dim(C ∩ (VL)⊥) = k−mν + dim((C⊥)L),

where the first equality follows from Lemma C.64, and the second equality
follows from Lemma C.65 and Equation (C.2). Therefore, it holds that

max{dim(CL) | L ⊆ Fn, dim(L) = µ− 1}
≥ k−mν + s = k−mn−m + mµ + s.

(C.19)

From the fact that µ is the minimum integer satisfying Equation (C.18), and
from Equation (C.19), we conclude that

k−mn−m + mµ + s < r.

Now if we interchange the roles of C and C⊥, and the roles of r and s, then
we automatically interchange the roles of µ and n + 1− µ, and the roles of k
and mn− k. Therefore, we may also conclude that

k−mn + mµ + s > r.

Using the expressions r = p + k + r′m and s = p + s′m, and dividing every-
thing by m, the previous two inequalities are, respectively

s′ − n− 1 + µ < r′, and s′ − n + µ > r′,

which contradict each other. Hence the lemma follows.

Observe that the duality theorem for GRWs [12] is a direct consequence
of Theorem C.7 and Proposition C.66:

Corollary C.68 ( [12]). Given an Fqm -linear code C ⊆ Fn
qm of dimension k over

Fqm , denote dr = dR,r(C) and d⊥s = dR,s(C⊥), for 1 ≤ r ≤ k and 1 ≤ s ≤ n− k.
Then

{1, 2, . . . , n} = {d1, d2, . . . , dk}

∪{n + 1− d⊥1 , n + 1− d⊥2 , . . . , n + 1− d⊥n−k},

where the union is disjoint.
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Finally, we show that the duality theorem for GHWs [42] is a consequence
of Theorem C.8 and Proposition C.66:

Corollary C.69 ( [42]). Given a linear code C ⊆ Fn of dimension k, denote dr =
dH,r(C) and d⊥s = dH,s(C⊥), for 1 ≤ r ≤ k and 1 ≤ s ≤ n− k. Then

{1, 2, . . . , n} = {d1, d2, . . . , dk}

∪{n + 1− d⊥1 , n + 1− d⊥2 , . . . , n + 1− d⊥n−k},

where the union is disjoint.

Proof. We will use the notation in Proposition C.66 during the whole proof.
First of all, by Theorem C.8 it holds that Wp(∆(C)) = {dH,p(C)} if 1 ≤ p mod
n ≤ k and Wp(∆(C)) = ∅ if k + 1 ≤ p mod n ≤ n − 1 or p mod n = 0.
Therefore

n⋃
p=1

Wp−k(∆(C)) = {d1, d2, . . . , dk}.

On the other hand, from Proposition C.66 it follows that n⋃
p=1

Wp−k(∆(C))

 ∪
 n⋂

p=1

Wp(∆(C)⊥)

 = {1, 2, . . . , n},

where the union is disjoint. Hence we only need to show that n + 1− d⊥s ∈
Wp(∆(C)⊥), for p = 1, 2, . . . , n and s = 1, 2, . . . , n− k.

Denote by Dn ⊆ Fn×n the vector space of matrices with zero components
in their diagonals. It holds that ∆(C)⊥ = ∆(C⊥)⊕Dn.

Fix 1 ≤ s ≤ n − k and denote d = dH,s(C⊥). First, consider a subspace
D ⊆ C⊥ with wtH(D) = d and dim(D) = s, and define D′ ⊆ ∆(C)⊥ as the
direct sum of ∆(D) and all matrices in Dn with columns in the Hamming
support of D. Since dim(D′) = d(n− 1) + s and wtR(D′) = d, by Proposition
C.12 it follows that

dM,d(n−1)+s(∆(C)⊥) ≤ d. (C.20)

On the other hand, assume that dM,(d−1)(n−1)+s(∆(C)⊥) = d′ < d. Let
E ⊆ ∆(C)⊥ be such that wtR(E) = d′ and dim(E) = (d − 1)(n − 1) + s.
Denote by ED the vector space of matrices obtained by replacing the elements
outside the diagonal of those matrices in E by zero. If L = RSupp(E) ⊆ Fn,
we claim that

dim(E ∩ Dn) ≤ nwtR(E)−wtH(L). (C.21)

It is sufficient to show that dim(VL ∩ Dn) = n dim(L) −wtH(L). Denote
by VLD the vector space of matrices obtained by replacing the elements out-
side the diagonal of those matrices in VL by zero. Then, by Proposition

163



Paper C.

C.9, dim(VLD) = wtH(L), and dim(VL ∩ Dn) = dim(VL) − dim(VLD) =
n dim(L)−wtH(L).

By monotonicity (Proposition C.44), we have that d′ = d − 1, and thus
dim(E) = d′(n− 1) + s. Therefore, by (C.21), dim(∆−1(ED)) = dim(ED) =
dim(E)−dim(E ∩Dn) ≥ s+wtH(L)− d′. Choose indices i1, i2, . . . , iwtH(L)−d′

from HSupp(∆−1(ED)), and define

W = {c ∈ ∆−1(ED) | cij = 0, 1 ≤ j ≤ wtH(L)− d′}.

Then W ⊆ C⊥, dim(W) ≥ s, and wtH(W) ≤ wtH(∆−1(ED)) −wtH(L) +
d′ ≤ d′, which implies dH,s(C⊥) = d′ < d, which is a contradiction. Hence

dM,(d−1)(n−1)+s(∆(C)⊥) ≥ d. (C.22)

Combining Equation (C.20) and Equation (C.22), we conclude that

dM,(d−1)(n−1)+s+j(∆(C)⊥) = d,

for j = 0, 1, 2, . . . , n − 1, which implies that n + 1 − d⊥s ∈ Wp(∆(C)⊥), for
p = 1, 2, . . . , n, and we are done.

B Construction of explicit subspace designs

In this appendix, we recall how to construct the subspace design formed by
H0,H1,H2, . . . ⊆ Fqm in Section 5. This construction is given in [20], based
on a construction in [19], and is explicit in the sense that it can be constructed
using an algorithm of polynomial complexity on q.

Fix ε > 0 and a positive integer s such that 4sn ≤ εm, and assume that n di-
vides m. Let d1 = qm/n−1, d2 = qm/n−2, . . . , dm/n = 1 and let γ1, γ2, . . . , γm/n
be distinct non-zero elements of Fqn . Define

fi(x1, x2 . . . , xm/n) =
m/n

∑
j=1

γi
jx

dj
j ,

for i = 1, 2, . . . , s, and let S ⊆ Fm/n
qn be the set of common zeros of f1, f2, . . . , fs,

which is an Fq-linear vector space. We may assume that S ⊆ Fqm by an Fqn -
linear vector space isomorphism Fm/n

qn
∼= Fqm (any isomorphism works).

Let β be a primitive element of Fqn . For α ∈ F
qnb εm

2ns c
, let

Sα =
{

αqj
βi | 0 ≤ j <

⌊ εm
2ns

⌋
, 0 ≤ i < 2s

}
.

The algorithm in [19, Subsection 4.3] gives in polynomial time over q a set
F ⊆ F

qnb εm
2ns c

of size qΩ( εm
ns ) such that:
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C. Proof of Theorem C.4

1. Fq(α) = F
qnb εm

2ns c
, for all α ∈ F ,

2. Sα ∩ Sβ = ∅, for all distinct α, β ∈ F , and

3. |Sα| = 2sb εm
2ns c, for all α ∈ F .

Define the Fqn -linear vector space Vα ⊆ Fm/n
qn as

Vα = {(a0, a1, . . . , am/n−1) ∈ Fm/n
qn |

m/n−1

∑
i=0

ai(αβj)i = 0 | 0 ≤ j < 2s},

for every α ∈ F , where we may consider Vα ⊆ Fqm as before.
Finally, the Fq-linear vector spaces H0,H1,H2, . . . ⊆ Fqm in Section 5 are

defined as Hi = S ∩ Vαi , for distinct αi ∈ F .
The constructions of F and Vα appeared first in [19, Subsection 4.2] and

S appeared first in [20, Corollary 6].
We conclude the appendix by computing the dimensions of the vector

spaces H0,H1,H2, . . . ⊆ Fqm , which is done in the proof of [20, Theorem 8]:

Lemma C.70 ( [20]). The vector spaces H0,H1,H2, . . . ⊆ Fqm have dimension at
least m(1− 2ε) over Fq.

C Proof of Theorem C.4

In this appendix, we give the proof of Theorem C.4.
First we prove (P 1) =⇒ (P 2): It follows immediately from the character-

ization of rank support spaces in Proposition C.9, item 3.
Now we prove (P 2) =⇒ (P 3): Let L = RSupp(D) ⊆ Fn and L′ =

RSupp(φ(D)) ⊆ Fn′ . It holds that VL ⊆ V and VL′ ⊆ W , and they are the
smallest rank support spaces in V and W containing D and φ(D), respec-
tively, by Lemma C.8. Since φ preserves rank support spaces and their inclu-
sions, we conclude that φ(VL) = VL′ , which implies that dim(L) = dim(L′)
by (C.2), and (P 3) follows.

Next we prove (P 2) ⇐= (P 3): Assume that U ⊆ V is a rank support
space. This means that mwtR(U ) = dim(U ) by (C.2). Since φ satisfies
(P 3) and is a vector space isomorphism, we conclude that mwtR(φ(U )) =
dim(φ(U )), and thus φ(U ) is a rank support space also by (C.2). Similarly
we may prove that, if φ(U ) is a rank support space, then U is a rank support
space.

Now we prove (P 3) =⇒ (P 4): Trivial from the fact that wtR(〈{C}〉) =
Rk(C), for all C ∈ V .
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Finally we prove (P 1) ⇐= (P 2): Denote dim(V) = dim(W) = mk and
consider bases of V and W as in Proposition C.9, item 2. By defining vector
space isomorphisms Fm×k −→ V and W −→ Fm×k, sending such bases to
the canonical basis of Fm×k, we see that we only need to prove the result for
the particular case V =W = Fm×n.

Denote by Ei,j ∈ Fm×n the matrices in the canonical basis, for 1 ≤ i ≤ m,
1 ≤ j ≤ n, that is, Ei,j has 1 in its (i, j)-th component, and zeroes in its other
components.

Consider the rank support space Uj = 〈E1,j, E2,j, . . . , Em,j〉 ⊆ Fm×n, for 1 ≤
j ≤ n. Since φ(Uj) is a rank support space, it has a basis Bi,j, i = 1, 2, . . . , m,
as in Proposition C.9, item 2, for a vector bj ∈ Fn. This means that

φ(Ei,j) =
m

∑
s=1

a(j)
s,i Bs,j,

for some a(j)
s,i ∈ F, for all s, i = 1, 2, . . . , m and j = 1, 2, . . . , n. If we define the

matrix A(j) ∈ Fm×m whose (s, i)-th component is a(j)
s,i , and B ∈ Fn×n whose

j-th row is bj, then a simple calculation shows that

φ(Ei,j) = A(j)Ei,jB,

and the matrices A(j) and B are invertible. If we prove that there exist non-
zero λj ∈ F with A(j) = λj A(1), for j = 2, 3, . . . , n, then we are done, since
we can take the vectors λjbj instead of bj, define A = A(1), and then it holds
that

φ(Ei,j) = AEi,jB,

for all i = 1, 2, . . . , m and j = 1, 2, . . . , n, implying (P 1).
To this end, we first denote by a(j)

i ∈ Fm the i-th column in A(j) (written
as a row vector). Observe that we have already proven that φ preserves ranks.
Hence Rk(φ(Ei,j + Ei,1)) = 1, which means that Rk(A(j)Ei,j + A(1)Ei,1) = 1,
which implies that there exist λi,j ∈ F with

a(j)
i = λi,ja

(1)
i .

On the other hand, a matrix calculation shows that

φ

(
m

∑
i=1

n

∑
j=1

Ei,j

)
=

(
m

∑
i=1

a(1)i ,
m

∑
i=1

a(2)i , . . . ,
m

∑
i=1

a(n)i

)
B

=

(
m

∑
i=1

a(1)i ,
m

∑
i=1

λi,2a(1)i , . . . ,
m

∑
i=1

λi,na(1)i

)
B.

Since Rk(∑m
i=1 ∑n

j=1 Ei,j) = 1 and the vectors a(1)i , 1 ≤ i ≤ m, are linearly
independent, we conclude that λi,j depends only on j and not on i, and we
are done.
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D. Matrix modules

D Matrix modules

Rank support spaces can also be seen as left submodules of the left module
Fm×n over the (non-commutative) ring Fm×m. This has been used in Exam-
ple C.63. Since we think this result is of interest by itself, we include the
characterization in this appendix.

Definition C.71 (Matrix modules). We say that a set V ⊆ Fm×n is a matrix
module if

1. V + W ∈ V , for every V, W ∈ V , and

2. MV ∈ V , for every M ∈ Fm×m and every V ∈ V .

Proposition C.72. A set V ⊆ Fm×n is a rank support space if, and only if, it is a
matrix module.

Proof. Assume that V is a rank support space. Using the characterization in
Proposition C.9, item 3, it is trivial to see that V is a matrix module.

Assume now that V is a matrix module. It holds that V is a vector space.
Let L = RSupp(V), and take v ∈ L. There exist V1, V2, . . . , Vs ∈ V and
vj ∈ Row(Vj), for j = 1, 2, . . . , s, such that v = ∑s

j=1 vj.
For fixed 1 ≤ i ≤ m and 1 ≤ j ≤ s, it is well-known that there exists

Mi,j ∈ Fm×m such that Mi,jVj has vj as its i-th row and the rest of its rows
are zero vectors. Since V is closed under sums of matrices, we conclude that
VL ⊆ V and therefore both are equal.
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1. Introduction

Abstract

We study the problem of reducing the communication overhead from a noisy wire-tap
channel or storage system where data is encoded as a matrix, when more columns
(or their linear combinations) are available. We present its applications to reduc-
ing communication overheads in universal secure linear network coding and secure
distributed storage with crisscross errors and erasures and in the presence of a wire-
tapper. Our main contribution is a method to transform coding schemes based on
linear rank-metric codes, with certain properties, to schemes with lower communica-
tion overheads. By applying this method to pairs of Gabidulin codes, we obtain coding
schemes with optimal information rate with respect to their security and rank error
correction capability, and with universally optimal communication overheads, when
n ≤ m, being n and m the number of columns and number of rows, respectively.
Moreover, our method can be applied to other families of maximum rank distance
codes when n > m. The downside of the method is generally expanding the packet
length, but some practical instances come at no cost.

Keywords: Communication overheads, crisscross error-correction, decod-
ing bandwidth, information-theoretical security, rank-metric codes.

MSC: 94A60, 94A62, 94B99.

1 Introduction

Universal secure linear network coding with errors and erasures was first
studied in [22], where rank-metric coding schemes were proposed to protect
messages sent over a linearly coded network from link errors, erasures and
information leakage to a wire-tapper. Similarly, rank-metric codes have been
applied to storage systems where data is stored as a matrix and where errors
and erasures affect several rows and/or columns, also called crisscross errors
and erasures [21]. These errors and erasures have been recently motivated
by correlated and mixed failures in distributed storage systems where data
is stored in several data centers (columns), which in turn store several blocks
of data (rows). See [14].

In this paper, we study how to reduce the communication overhead from
such a noisy wire-tap channel or storage system to the receiver, when more
columns, or their linear combinations, are available: Less ingoing links to
the receiver fail in the network case, or more data centers are available and
contacted in the distributed storage case. As it has been noticed in secret
sharing in the literature [2, 13, 24], which corresponds to Hamming-metric
erasure-correction and security, if more pieces of data (columns in our case)
are available, they can be preprocessed via subpacketization so that the over-
all transmitted information from the channel or storage system to the receiver
is reduced.
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A similar concept of subpacketization has been recently developed for
Reed-Solomon codes in [10]. In another direction, coding schemes recovering
part of the encoded data (a node in a storage system, for instance), with
respect to the Hamming metric, have already been studied, giving rise to
regenerating codes [5, 6, 20], which reduce communication bandwidth, and
locally repairable codes [9, 12, 23], which reduce the number of contacted nodes.
The latter codes have been recently extended to the rank metric in [14]. In
contrast, our aim is to recover the whole uncoded data while reducing the
communication bandwidth, as in [2, 13, 24], but with respect to the rank
metric and, as a consequence, with respect to the crisscross metric.

We illustrate and motivate the problem with a pair of examples. The
details of the constructions will be given in Subsection 5.1.

Example D.1. Consider a linearly coded network, as in [22, Sec. VII-A], over
a finite field of size q = 256 (8-bit symbols), with packet length m = 2048,
number of outgoing links from the source n = 40, at least N ≥ n ingoing
links to the sink, and where µ ≤ 8 links may be wire-tapped and ρ ≤ 16
ingoing links to the sink may fail.

In [22, Th. 11], a coding scheme is given with optimal information rate
16/40, able to correct the given number of erasures and secure under the
given number of observations over such network, independently of its inner
code (universally). The overall communication overhead from the last ingoing
links to the sink is of 8 packets: The source wants to transmit 16 uncoded
packets and the sink receives 24 encoded packets.

Thanks to Theorem D.2 and dividing each packet into 32 subpackets of
length 64 each, we will obtain a coding scheme with the same parameters, but
such that the overall communication overhead at the ingoing links to the sink
is of 4 packets (the minimum possible) if none of them fail (only 20 packets
are received by the sink).

Example D.2. Let again n = 40 and m = 2048, and consider a distributed
storage system where data is stored as an m× n matrix over the same finite
field (q = 256), where each column corresponds to a data center that stores n
symbols over Fq, that is, 40 8-bit symbols. Assume that ρ data centers may
fail or not be available, errors occur along t rows and/or columns due to
certain correlations, and a wire-tapper eavesdrops µ data centers. Assume
also that ρ + 2t ≤ 16 and µ ≤ 8.

As in the previous example, the use of a pair of maximum rank distance
codes allows to obtain the desired reliability and security while achieving the
optimal information rate 16/40 (see [21]), with a communication overhead
of 8 packets from the contacted data centers to the receiver. Again, in this
work we obtain a coding scheme with the same parameters but where the
communication overhead is reduced to 4 packets (the minimum possible) if
no errors occur and all data centers are available and contacted.
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2. Information-theoretical setting and preliminaries

The paper is organized as follows: In Section 2, we establish the information-
theoretical setting, defining coherent linearized noisy wire-tap channels, which
we take from [22], and we establish a method of subpacketization that allows
to use linear codes over the extension field. In Section 3, we define com-
munication overheads for these linearized channels and give lower bounds
on these parameters similar to those in [13]. In Section 4, we give the main
contribution of this paper, which is a general method to transform coding
schemes based on pairs of linear rank-metric codes, with certain properties,
into coding schemes with lower communication overheads. In Section 5, we
apply Gabidulin codes [8, 21] to obtain coding schemes with optimal infor-
mation rates and communication overheads for n ≤ m, which can be seen
as a rank-metric analog of the constructions in [2, 13]. However, our method
allows us to correct errors, and not only erasures as in the secret sharing
case [2, 13], and can be applied to other families of maximum rank distance
codes, such as those in [7] for n > m. Finally, in Section 6, we discuss the
applications in universal secure linear network coding and secure distributed
storage with crisscross errors and erasures.

Notation

Throughout the paper, we fix a prime power q and positive integers m, n,
N, α, `, t, ρ and µ. We denote by Fq the finite field with q elements, Fn

q
denotes the set of row vectors of length n over Fq, and Fm×n

q denotes the set
of m × n matrices over Fq. In this paper, a code is a subset of either Fn

q or
Fm×n

q , whose linearity properties are specified in each case. For an Fqm -linear
code C ⊆ Fn

qm , we will denote by C⊥ its dual code with respect to the usual
Fqm -bilinear inner product. We also use the notation [n] = {1, 2, . . . , n} and
[m, n] = {m, m + 1, . . . , n} whenever m ≤ n, and we denote by H(X), H(X |
Y) and I(X; Y) the entropy, conditional entropy and mutual information of
the random variables X and Y, respectively (see [3]), where logarithms will
always be taken with base q.

2 Information-theoretical setting and preliminar-
ies

2.1 Coherent linearized channels and coset coding schemes

We will consider the secret message S to be a uniform random variable in
S = Fαm×`

q , and we will consider noisy wire-tap channels (which can also be
thought of as distributed storage systems) as given in [22]:
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Definition D.3 (Coherent linearized channel [22]). We define a coherent lin-
earized noisy wire-tap channel with t errors, ρ erasures with erasure matrix
A ∈ FN×n

q of rank at least n− ρ, and µ observations as a channel with input
a variable X ∈ X = Fαm×n

q , output to the receiver Y ∈ Y = Fαm×N
q , and

output to the eavesdropper W ∈ W = F
αm×µ
q , together with a conditional

probability distribution P(Y, W|X) such that

YX = {Y ∈ Fαm×N
q |Y = XAT + E,

E ∈ Fαm×N
q , Rk(E) ≤ t},

WX = {W ∈ F
αm×µ
q |W = XBT , B ∈ F

µ×n
q },

where YX = {Y ∈ Y | P(Y|X) > 0} and WX = {W ∈ W | P(W|X) > 0}, for
a given X ∈ X .

In [22], it is shown that a linearly coded network over Fq with link errors,
erasures and information leakage, and where the last coding coefficients are
known to the receiver, can be modelled as a coherent linearized noisy wire-
tap channel. We will focus on this scenario and discuss how to translate the
results to the distributed storage scenario with crisscross errors and erasures
in Subsection 6.2, since the latter can be seen as a simpler case.

As encoders, we consider coset coding schemes as in [16, Def. 7], which
are a particular case of those in [22].

Definition D.4 (Coset coding schemes [16]). A coset coding scheme over the
field Fq with secret message set S = Fαm×`

q and coded message set X =

Fαm×n
q is a randomized function

F : Fαm×`
q −→ Fαm×n

q ,

where, for every S ∈ Fαm×`
q , C = F(S) is the uniform random variable over a

set CS ⊆ Fαm×n
q . To allow correct decoding, we also assume that CS ∩ CT = ∅

if S 6= T. Finally, we define the information rate of the scheme as

R =
logq(#S)
logq(#X )

=
αm`

αmn
=

`

n
. (D.1)

In linear network coding, universal reliability and security means correct-
ing a number of link errors and erasures and being secure under a number
of link observations, independently of the network inner code. This leads
in [22] to the following definition:

Definition D.5 (Universal schemes [22]). We say that the coset coding scheme
F : Fαm×`

q −→ Fαm×n
q is:
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1. Universally t-error and ρ-erasure-correcting if, for every coherent lin-
earized channel with t errors, ρ erasures and erasure matrix A ∈ FN×n

q ,
there exists a decoding function DA : Y −→ S such that

DA(Y) = S,

for all Y ∈ ⋃X∈CS
YX and all S ∈ S .

2. Universally secure under µ observations if, for every coherent linearized
channel with µ observations, it holds that

H(S|W) = H(S),

or equivalently I(S; W) = 0, for all W ∈ ⋃X∈CS
WX and all S ∈ S .

2.2 Using linear codes over the extension field

In what follows, we will make use of codes that are linear over the extension
field Fqm . To that end, we need to see how to identify matrices in Fαm×n

q with
matrices in Fα×n

qm :

Definition D.6. Fix a basis γ1, γ2, . . . , γm of Fqm as a vector space over Fq,
and define the map

ϕn : Fα×n
qm −→ Fαm×n

q (D.2)

as follows: Given a matrix C ∈ Fα×n
qm with entries ci,j ∈ Fqm , for i = 1, 2, . . . , α

and j = 1, 2, . . . , n, we define ϕn(C) as the unique αm× n matrix with coeffi-
cients dl,j ∈ Fq, for l = 1, 2, . . . , αm and j = 1, 2, . . . , n, such that

ci,j =
m

∑
u=1

d(i−1)m+u,jγu,

for i = 1, 2, . . . , α and j = 1, 2, . . . , n. Finally, we define the rank over Fq of a
matrix E ∈ Fα×n

qm as the rank over Fq of the matrix ϕn(E) ∈ Fαm×n
q , and we

denote it by Rkq(E).

The key result is that the effect of coherent linearized noisy wire-tap chan-
nels in Definition D.3 remains unchanged by the map ϕn, as we will now see:

Lemma D.7. Let C ∈ Fα×n
qm , A ∈ FN×n

q and E ∈ Fα×N
qm . It holds that

ϕN

(
CAT + E

)
= ϕn(C)AT + ϕN(E),

and Rkq(E) = Rk(ϕN(E)) by definition.
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Proof. The additive property of ϕn is clear from the definition, so we may
assume that E = 0. Denote the entries of C and ϕn(C) as in Definition D.6,
and let av,j, c̃i,j and d̃l,j be the entries of A, CAT and ϕN

(
CAT), respectively,

for v = 1, 2, . . . , N, i = 1, 2, . . . , α, l = 1, 2, . . . , αm and j = 1, 2, . . . , n. It holds
that

c̃i,j =
n

∑
v=1

ci,vaj,v =
n

∑
v=1

(
m

∑
u=1

d(i−1)m+u,vγu

)
aj,v

=
m

∑
u=1

(
n

∑
v=1

d(i−1)m+u,vaj,v

)
γu,

but it also holds that

c̃i,j =
m

∑
u=1

d̃(i−1)m+u,jγu,

for i = 1, 2, . . . , α and j = 1, 2, . . . , n. Since γ1, γ2, . . . , γm is a basis of Fqm over
Fq and ∑n

v=1 d(i−1)m+u,vaj,v ∈ Fq, for i = 1, 2, . . . , α, and j = 1, 2, . . . , n, we
conclude that

d̃(i−1)m+u,j =
n

∑
v=1

d(i−1)m+u,vaj,v,

for i = 1, 2, . . . , α, u = 1, 2, . . . , m and j = 1, 2, . . . , n, which means that
ϕN
(
CAT) = ϕn(C)AT , and the result follows.

Hence we may identify the sets Fαm×n
q and Fα×n

qm , seen as Fq-linear vec-
tor spaces together with the metric given by the rank and the function Rkq,
respectively. We will do this repeatedly throughout the paper.

To conclude the section, we recall the construction of coset coding schemes
in [16, Def. 4] based on pairs of Fqm -linear codes with α = 1 (no subpacketi-
zation).

Definition D.8 (Nested coset coding schemes [16]). A nested coset coding scheme
(with α = 1) is a coset coding scheme such that CS = ϕ(S) + C2, where
C2 $ C1 ⊆ Fn

qm are Fqm -linear codes and ϕ : F`
qm −→ W is a vector space iso-

morphism over Fqm , for an Fqm -linear spaceW ⊆ Fn
qm such that C1 = C2⊕W ,

where ⊕ denotes the direct sum of vector spaces.

To measure the reliability and security of these coding schemes, we need
the concept of relative minimum rank distance, which is a particular case of [16,
Def. 2]:

Definition D.9 (Relative minimum rank distance [16]). Given Fqm -linear codes
C2 $ C1 ⊆ Fn

qm , we define their relative minimum rank distance as

dR (C1, C2) = min
{

Rkq(e) | e ∈ C1, e /∈ C2
}

.

The minimum rank distance of a single code C ⊆ Fn
qm is defined as dR(C) =

dR(C, {0}).
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The next result, which follows directly from [16, Cor. 5 and Th. 4], gives
the mentioned reliability and security performance of nested coset coding
schemes. Recall that we denote by C⊥ the dual of an Fqm -linear code C ⊆ Fn

qm

with respect to the usual Fqm -bilinear inner product in Fn
qm .

Lemma D.10 ( [16]). Given Fqm -linear codes C2 $ C1 ⊆ Fn
qm , the nested coset

coding scheme in Definition D.8 is universally t-error and ρ-erasure-correcting if,
and only if, 2t + ρ < dR(C1, C2), and is universally secure under µ observations if,
and only if, µ < dR

(
C⊥2 , C⊥1

)
.

Observe that dR(C1) ≤ dR(C1, C2) and dR
(
C⊥2
)
≤ dR

(
C⊥2 , C⊥1

)
, hence the

minimum rank distances of C1 and C⊥2 give sufficient conditions on the num-
ber of correctable errors and erasures and on the number of links that may
be wire-tapped without information leakage, respectively.

3 Communication overheads in coherent linearized
channels

In this section we formalize how, as in communication efficient secret sharing
[2, 13, 24], if a coset coding scheme is able to correct t errors and ρ erasures,
but d > n − ρ pieces of information are available (the rank of A is at least
d), then we may reduce the communication overhead from the channel to the
receiver by making use of the additional d− n + ρ > 0 linearly independent
rows of A. Observe that only erasures, and not errors, are considered in the
Hamming analog described in [2, 13, 24].

Let F : Fαm×`
q −→ Fαm×n

q be a coset coding scheme, let A ∈ Fd×n
q be

of rank d (if A ∈ FN×n
q has rank d < N, we may delete or ignore linearly

dependent rows), let a1, a2, . . . , ad ∈ Fn
q be its rows, and let EA,i : Fαm

q −→
F

βim
q be preprocessing functions, where 1 ≤ βi ≤ α, for i = 1, 2, . . . , d. We

define their correction capability with respect to F as follows:

Definition D.11. For a full-rank matrix A ∈ Fd×n
q , the preprocessing func-

tions EA,i : Fαm
q −→ F

βim
q , for i = 1, 2, . . . , d, are t-error-correcting with

respect to the coset coding scheme F : Fαm×`
q −→ Fαm×n

q if there exists a

decoding function DA : ∏d
i=1 F

βim
q −→ Fαm×`

q such that

DA

((
EA,i

(
CaT

i + ei

))d

i=1

)
= S, (D.3)

for all C ∈ CS, all S ∈ Fαm×`
q and all error matrices E ∈ Fαm×d

q of rank at most
t with columns e1, e2, . . . , ed ∈ Fαm

q .
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We define then the decoding bandwidth and communication overhead as
q-analogs of those in [13, Def. 2]:

Definition D.12 (Decoding bandwidth and communication overhead). For a
full-rank matrix A ∈ Fd×n

q and functions EA,i : Fαm
q −→ F

βim
q , for i =

1, 2, . . . , d, we define their decoding bandwidth and communication over-
head, respectively, as

DB(A) =
∑d

i=1 βim
αm

=
d

∑
i=1

βi
α

and CO(A) =
d

∑
i=1

βi
α
− `.

Thus, if a packet is a vector in Fαm
q , then the decoding bandwidth is the

amount (which need not be an integer due to the subpacketization) of packets
that the receiver obtains, or needs to obtain, from the channel, and the com-
munication overhead is the difference with respect to the original number of
uncoded packets.

Observe that, fixing n and ` (thus the information rate), we may only
focus on communication overheads, since both behave equally.

To measure the quality of a coset coding scheme, we need the following
two bounds. The first is given in [22, Th. 12] and can be seen as a q-analog
of the bound in [13, Prop. 1], although considering also errors and not only
erasures:

Proposition D.13 ( [22]). If the coset coding scheme F : Fαm×`
q −→ Fαm×n

q is
universally t-error and ρ-erasure-correcting, and universally secure under µ obser-
vations, then

` ≤ n− 2t− ρ− µ. (D.4)

Next we give a q-analog of the bound in [13, Th. 1], again adding the
effect of errors, which was not considered in [13]:

Proposition D.14. If the coset coding scheme F : Fαm×`
q −→ Fαm×n

q is universally
secure under µ observations, then for a full-rank matrix A ∈ Fd×n

q and preprocessing

functions EA,i : Fαm
q −→ F

βim
q , for i = 1, 2, . . . , d, that are t-error-correcting with

respect to F, it holds that:

CO(A) ≥ `(2t + µ)

d− 2t− µ
, (D.5)

Proof. We may assume without loss of generality that β1 ≤ β2 ≤ . . . ≤ βd as
in the proof of [13, Th. 1].

First, we prove that the preprocessing functions EA,i : Fαm
q −→ F

βim
q , for

i = 1, 2, . . . , d− 2t are 0-error-correcting with respect to F : Fαm×`
q −→ Fαm×n

q .
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If they were not, then there would exist C1 ∈ CS1 and C2 ∈ CS2 , with S1 6= S2,
such that (

EA,i

(
C1aT

i

))d−2t

i=1
=
(

EA,i

(
C2aT

i

))d−2t

i=1
.

On the other hand, there exist ei ∈ Fαm
q such that C1aT

i + ei = C2aT
i , for

i = d− 2t+ 1, d− 2t+ 2, . . . , d− t, and C1aT
i = C2aT

i + ei, for i = d− t+ 1, d−
t+ 2, . . . , d. Thus we see that the preprocessing functions EA,i : Fαm

q −→ F
βim
q ,

for i = 1, 2, . . . , d, cannot be t-error-correcting with respect to F, which is a
contradiction.

Next, defining fi = EA,i
(
CaT

i
)
, where C = F(S), for i = 1, 2, . . . , d − 2t

and S ∈ Fαm×`
q , we may prove exactly as in the proof of [13, Th. 1] that

d−2t

∑
i=1

βi
α
≥ `(d− 2t)

d− 2t− µ
, (D.6)

and also
βd−2t−µ

α
≥ `

d− 2t− µ
. (D.7)

Now using that βd−2t−µ ≤ βd−2t−µ+1 ≤ . . . ≤ βd, and combining Equations
(D.6) and (D.7), we conclude that

DB(A) =

(
d−2t

∑
i=1

βi
α

)
+

(
d

∑
i=d−2t+1

βi
α

)

≥ `(d− 2t)
d− 2t− µ

+ 2t
`

d− 2t− µ
=

`d
d− 2t− µ

,

and the bound on CO(A) follows by substracting ` to this inequality.

4 A general construction based on linear rank-metric
codes

In this section, given a nested coset coding scheme (Definition D.8) able to
correct t0 errors and ρ0 erasures, for fixed positive integers t0 and ρ0, and
given an arbitrary set D ⊆ [n − ρ0, n] such that n − ρ0 ∈ D (in particular
for D = [n − ρ0, n]), we construct a coset coding scheme able to correct t0
errors and any n− d erasures with lower communication overheads than the
original scheme, for all d ∈ D. Moreover, both the original scheme and the
modified one are universally secure under the same number of observations.
The downside of the method is multiplying the packet length of the original
coset coding scheme by a parameter α, depending on the involved codes, to
achieve the desired subpacketization. The main result of the section is the
following:
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Theorem D.1. Take Fqm -linear codes C2 $ C1 ⊆ Fn
qm , a positive integer ρ0 such

that ρ0 < dR(C1, C2), and choose any subset D ⊆ [n− ρ0, n] such that n− ρ0 ∈ D.
Denote D = {d1, d2, . . . , dh}, where dh = n− ρ0 < dh−1 < . . . < d2 < d1, and
assume that there exists a sequence of nested Fqm -linear codes

C1 = C(h) $ C(h−1) $ . . . $ C(2) $ C(1) ⊆ Fn
qm

such that
dR

(
C(j), C2

)
≥ n− dj + 1,

for j = 1, 2, . . . , h. Define then k1 = dim(C1), k2 = dim(C2), ` = k1 − k2,
αj = k(j) − k2 for j = 1, 2, . . . , h, and

α = LCM(α1, α2, . . . , αh).

There exists a coset coding scheme F : Fα×`
qm −→ Fα×n

qm that is universally t-error
and ρ-erasure-correcting if 2t + ρ < dR (C1, C2), and is universally secure under µ

observations if µ < dR

(
C⊥2 , C(1)⊥

)
.

In addition, for any d ∈ D and any full-rank matrix A ∈ Fd×n
q , there exist

preprocessing functions EA,i : Fαm
q −→ F

βim
q , for i = 1, 2, . . . , d, which are t-error-

correcting with respect to F, whenever 2t < dR

(
C(j), C2

)
− n + d, and such that

CO(A) =
`
(

d− k(j) + k2

)
k(j) − k2

,

where k(j) = dim
(
C(j)

)
, for j such that d = dj.

4.1 Description of the construction for Theorem D.1

Let the notation be as in Theorem D.1 and take a generator matrix G2 ∈ F
k2×n
qm

of C2 and a generator matrix G1 ∈ F
k1×n
qm of C1 of the form

G1 =

(
G2
Gc

)
∈ F

k1×n
qm ,

for some matrix Gc ∈ F`×n
qm . Decreasingly in j = h− 1, h− 2, . . . , 2, 1, take a

generator matrix G(j) ∈ Fk(j)×n
qm of C(j) of the form

G(j) =

(
G(j+1)

G(j+1)
c

)
∈ Fk(j)×n

qm ,
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for some matrix G(j+1)
c ∈ F

(k(j)−k(j+1))×n
qm . Next define the following positive

integers, which are analogous to the integers defined in [13, Eq. (11)]:

pj =

{
`α
α1

if j = 1,
`α
αj
− `α

αj−1
if 1 < j ≤ h.

Let S ∈ Fα×`
qm be the secret message and generate uniformly at random a

matrix R ∈ F
α×k2
qm . Divide S and R as follows:

S =


S1
S2
...

Sh

 , R =


R1
R2
...

Rh

 ,

where
Sj ∈ F

pj×`
qm and Rj ∈ F

pj×k2
qm ,

for j = 1, 2, . . . , h. Next, we define the matrices

M1 = (R1 S1 D1,1 D1,2 . . . D1,h−1),
M2 = (R2 S2 D2,1 D2,2 . . . 0),
M3 = (R3 S3 D3,1 D3,2 . . . 0),

...
...

...
Mh−1 = (Rh−1 Sh−1 Dh−1,1 0 . . . 0),

Mh = (Rh Sh 0 0 . . . 0),

where Mu ∈ F
pu×k(1)
qm , and where the matrices Du,v ∈ F

pu×(αh−v−αh−v+1)
qm are

defined iteratively as follows: For v = 1, 2, . . . , h− 1, the components of the
v-th column block 

D1,v
D2,v

...
Dh−v,v

 ∈ F
`α/αh−v×(αh−v−αh−v+1)
qm ,

are the components (after some fixed rearrangement) of

(Sh−v+1|Dh−v+1,1|Dh−v+1,2| . . . |Dh−v+1,v−1),

whose size is ph−v+1 × αh−v+1 (observe that pj+1αj+1 = (αj − αj+1)`α/αj).
For convenience, we define the matrices

M′j =


M1
M2

...
Mj

 ∈ F
`α/αj×k(1)

qm , (D.8)
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for j = 1, 2, . . . , h.
Finally, we define the coset coding scheme F : Fα×`

qm −→ Fα×n
qm by

C = F(S) = M′hG(1) ∈ Fα×n
qm . (D.9)

To conclude, we define EA,i : Fα
qm −→ F

`α/αj
qm as follows. For j = 1, 2, . . . , h,

for i = 1, 2, . . . , dj, and for a full-rank matrix A ∈ F
dj×n
q , we define EA,i(yi) ∈

F
`α/αj
qm by restricting yi ∈ Fα

qm to its first `α/αj rows.

4.2 Proof of Theorem D.1

Let the notation be as in Theorem D.1 and as in the previous subsection. We
prove each statement in Theorem D.1 separately:

1) The coset coding scheme is universally t-error and ρ-erasure-correcting if 2t +
ρ < dR(C1, C2): Take A ∈ FN×n

q of rank at least n − ρ and an error matrix
E ∈ Fα×N

qm such that Rkq(E) ≤ t. Divide E in the same way as S and R, that
is,

E =


E1
E2
...

Eh

 ∈ Fα×N
qm ,

where Ej ∈ F
pj×N
qm , and observe that Rkq(Ej) ≤ Rkq(E) ≤ t, for j = 1, 2, . . . , h.

From
(Sh|Rh|0)G(1)AT + Eh = (Sh|Rh)G1 AT + Eh

we obtain Sh by Lemma D.10, since Rkq(Eh) ≤ t and 2t + ρ < dR(C1, C2).
By definition, we have obtained Du,1, for u = 1, 2, . . . h− 1. Hence substract-

ing Dh−1,1G(h)
c AT from (Sh−1|Rh−1|Dh−1,1| 0)G(1)AT + Eh−1, we may obtain

(Sh−1|Rh−1)G1 AT + Eh−1, and thus we obtain Sh−1 again by Lemma D.10.
Now, we have also obtained Du,2, for u = 1, 2, . . . , h − 2. Proceeding itera-
tively in the same way, we see that we may obtain all the matrices Sj, for
j = 1, 2, . . . , h, and thus we obtain the whole message S.

2) The coset coding scheme is universally secure under any µ < dR
(
C⊥2 , C⊥1

)
observations: We first need the following preliminary lemma, which follows
from [18, Th. 3]:

Lemma D.15. Let B ∈ F
µ×n
q and let C2 $ C1 ⊆ Fn

qm be Fqm -linear codes. If
Rk(B) < dR

(
C⊥2 , C⊥1

)
, then

C2BT = C1BT ,

where CBT =
{

cBT | c ∈ C
}
⊆ F

µ
qm , for a code C ⊆ Fn

qm .
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Proof. See Appendix A.

Take B ∈ F
µ×n
q , and assume that the eavesdropper obtains

W = CBT = M′hG(1)BT ∈ F
α×µ
qm .

The random variable W has support inside the Fqm -linear vector space

C(1)B,α =
{

MG(1)BT | M ∈ Fα×k(1)
qm

}
⊆ F

α×µ
qm .

Recall from [3, Th. 2.6.4] that, if a random variable X has support in the set
X , then H(X) ≤ logq(#X ). Hence

H(W) ≤ logq

(
#C(1)B,α

)
= m dim

(
C(1)B,α

)
= αm dim

(
C(1)BT

)
,

where dimensions are taken over Fqm . On the other hand, using the analo-
gous notation C2B,α for C2 instead of C(1), it holds that

H(W | S) = logq (#C2B,α) = m dim (C2B,α) = αm dim
(
C2BT

)
,

since, given a value of S, the variable W is a uniform random variable over an
Fqm -linear affine space obtained by translating the vector space C2B,α. Hence
we obtain that

0 ≤ I(S; W) = H(W)− H(W | S)

≤ αm
(

dim
(
C(1)BT

)
− dim

(
C2BT

))
= 0,

where the last equality follows from Lemma D.15. Thus I(S; W) = 0 and we
are done.

3) The preprocessing functions are t-error-correcting for any 2t < dR

(
C(j), C2

)
−

n + d, where d = dj: Fix d ∈ D and a full-rank matrix A ∈ Fd×n
q , and let

EA,i : Fα
qm −→ F

`α/αj
qm be preprocessing functions as in the previous subsec-

tion, for i = 1, 2, . . . , d, and where j is such that d = dj.
Let E ∈ Fα×d

qm be an error matrix such that Rkq(E) ≤ t, and let e1, e2, . . . , ed ∈
Fα

qm be its columns. By definition, EA,i
(
CaT

i + ei
)

is the i-th column of

M′jG
(1)AT + E′j ∈ F

`α/αj×d
qm ,

for i = 1, 2, . . . , d, and a submatrix E′j ∈ F
`α/αj×d
qm of E, which thus satisfies

that Rkq(E′j) ≤ Rkq(E) ≤ t. Therefore, we may obtain the matrix M′j as in

item 1, since 2t+ n− d < dR(C(j), C2). By definition, the matrices S1, S2, . . . , Sj
are contained in M′j. Moreover, the matrices D1,h−j, D2,h−j, . . . , Dj,h−j are also
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contained in M′j, and from them we obtain by definition Sj+1 and Dj+1,1,
Dj+1,2, . . . , Dj+1,h−j−1. Now, the matrices D1,h−j−1, D2,h−j−1, . . . , Dj,h−j−1 are
contained in M′j and we also have Dj+1,h−j−1, hence we may obtain by def-
inition Sj+2 and Dj+2,1, Dj+2,2, . . . , Dj+2,h−j−2. Continuing iteratively in this
way, we may obtain all S1, S2, . . . , Sh and hence the message S.

Finally, we have that

CO(A) =
d

∑
i=1

βi
α
− ` =

d

∑
i=1

`α

αjα
− `

=
`d
αj
− ` =

`(d− αj)

αj
=

`
(

d− k(j) + k2

)
k(j) − k2

.

5 MRD codes and coset coding schemes with opti-
mal communication overheads

In this section, we apply Theorem D.1 to pairs of Gabidulin codes [8, 21]
and their cartesian products [7]. The first family yields optimal coset coding
schemes when n ≤ m in the sense of (D.4) and (D.5), and the second family
constitutes a family of maximum rank distance (MRD) codes when n > m [7,
Cor. 1].

We recall the definition of MRD codes for convenience of the reader. The
Singleton bound for an arbitrary (linear or not) code C ⊆ Fn

qm was first given
in [4, Th. 6.3]:

#C ≤ qmax{m,n}(min{m,n}−dR(C)+1). (D.10)

We then say that C is MRD if equality holds in (D.10). In another direction,
a Singleton bound on the relative minimum rank distance of a pair of Fqm -
linear codes C2 $ C1 ⊆ Fn

qm was first given in [16, Prop. 3]:

dR(C1, C2) ≤ min
{

n− dim(C1),
m(n− dim(C1))

n− dim(C2)

}
+ 1. (D.11)

Thus if C1 is MRD and n ≤ m, then equality is satisfied in (D.11).

5.1 Coset coding schemes based on Gabidulin codes

In this subsection we will make use of Gabidulin codes, which were intro-
duced independently in [8, Sec. 4] and [21, Sec. III]. Throughout this subsec-
tion, we will assume that n ≤ m.

Definition D.16 ( [8, 21]). Fix a basis γ1, γ2, . . . , γm of Fqm as a vector space
over Fq, and let 0 ≤ k ≤ n. The Gabidulin code of dimension k and length n

188



5. MRD codes and coset coding schemes with optimal communication overheads

over Fqm , constructed from the previous basis, is the Fqm -linear code Gk ⊆ Fn
qm

with parity-check matrix given by

γ1 γ2 γ3 . . . γn
γ

q
1 γ

q
2 γ

q
3 . . . γ

q
n

γ
q2

1 γ
q2

2 γ
q2

3 . . . γ
q2

n
...

...
...

. . .
...

γ
qn−k−1

1 γ
qn−k−1

2 γ
qn−k−1

3 . . . γ
qn−k−1

n


∈ F

(n−k)×n
qm .

It was proven in [8, Th. 6] and [21, Th. 2] that the code Gk ⊆ Fn
qm satisfies

dim (Gk) = k, and dR(Gk) = n− k + 1, (D.12)

constituting thus a family of MRD codes covering all parameters when n ≤ m.
Moreover it is clear from the definition that, for a fixed basis of Fqm over Fq,
they form a nested sequence of codes:

{0} = G0 $ G1 $ G2 $ . . . $ Gn−1 $ Gn = Fn
qm . (D.13)

Thus the next theorem follows directly from Theorem D.1:

Theorem D.2. Choose integers k2, k1, t0 and ρ0 such that 0 ≤ k2 < k1 ≤ n and
2t0 + ρ0 = n− k1, and choose any subset D ⊆ [n− ρ0, n] such that n− ρ0 ∈ D.

Now, fix a basis of Fqm over Fq, let C2 $ C1 ⊆ Fn
qm be Fqm -linear Gabidulin

codes of dimensions k2 and k1 (that is, Gk2 and Gk1 ), respectively, and denote the
elements in D by dh = n− ρ0 < dh−1 < . . . < d2 < d1.

The coset coding scheme F : Fα×`
qm −→ Fα×n

qm in Theorem D.1 based on this pair

of codes and the subsequence of (D.13) given by the Gabidulin codes C(j) = Gdj−2t0 ,

that is, k(j) = dj − 2t0, for j = 1, 2, . . . , h, satisfies ` = k1 − k2, is universally
t-error and ρ-erasure-correcting if 2t + ρ ≤ n− k1, and is universally secure under
µ observations if µ ≤ k2. In particular, the scheme is optimal in the sense of (D.4).
Moreover, it holds that

α = LCM (d1 − 2t0 − k2, d2 − 2t0 − k2, . . . , dh − 2t0 − k2) .

In addition, for any d ∈ D and any full-rank matrix A ∈ Fd×n
q , there exist

preprocessing functions EA,i : Fαm
q −→ F

`αm/(d−2t0−k2)
q , for i = 1, 2, . . . , d, which

are t0-error-correcting and satisfying equality in (D.5), hence having optimal com-
munication overheads for all d ∈ D.

Observe that the packet length m of the original Gabidulin codes is mul-
tiplied by α, which depends only on the maximum number of observations,
the number of correctable errors and the set of possible erasures D.
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However, there are instances as Example D.1 where, due to a particular
subpacketization, we need not expand the packet length, hence we obtain a
strict improvement on the communication overheads at no cost on the rest of
the parameters.

We now give the details of Example D.1 and Example D.2, which share
the same construction: With the given parameters, the construction in [22, Th.
11] gives ` = 16 by choosing k1 = 24 and k2 = 8. However, decomposing
the packet length as αm = 2048, with m = 64 and α = 32, we may choose
D = {24, 40}, k(1) = 40, k1 = 24 and k2 = 8, thus α1 = 32, α2 = 16, and
α = 32, and the example follows.

5.2 Coset coding schemes based on MRD cartesian products

In this subsection, we will make use of cartesian products of Gabidulin codes,
which yield again MRD codes, but in the case n > m, in contrast with plain
Gabidulin codes as in the previous subsection. To the best of our knowledge,
this is the only known family of MRD Fqm -linear codes in Fn

qm when n > m.
Throughout this subsection, we will assume that n = lm, for some positive

integer l. Take another integer 1 ≤ k ≤ m, and consider the cartesian product

C = G l
k ⊆ Fn

qm ,

where Gk ⊆ Fm
qm is a Gabidulin code as in Definition D.16. It is proven

in [7, Cor. 1] that

dim(C) = lk, and dR(C) = m− k + 1, (D.14)

and therefore C is MRD. Since the codes Gk can be taken in a nested sequence
for a fixed basis of Fqm over Fq, as in Equation (D.13), the next result also
follows directly from Theorem D.1:

Theorem D.3. Choose integers k1, k2, t0 and ρ0 such that 0 ≤ k2 < k1 ≤ m
and 2t0 + ρ0 = m − k1, and choose any subset D ⊆ [n − ρ0, n] with elements
dh = n− ρ0 < dh−1 < . . . < d2 < d1.

Define k(j) = dj − (l − 1)m− 2t0 and the Fqm -linear codes

C2 = G l
k2
$ C(j) = G l

k(j) ⊆ Fn
qm ,

for j = 1, 2, . . . , h, and observe that k(h) = k1, hence C(h) = C1 = G l
k1

.

The coset coding scheme F : Fα×`
qm −→ Fα×n

qm in Theorem D.1 based on these codes
satisfies ` = l(k1 − k2), is universally t-error and ρ-erasure-correcting if 2t + ρ ≤
m− k1, and is universally secure under µ observations if µ ≤ k2. Moreover, it holds
that

α = LCM
{

l(dj − 2t0 − k2)− (l − 1)n | j = 1, 2, . . . , h
}

.
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In addition, for any d ∈ D and any full-rank matrix A ∈ Fd×n
q , there exist pre-

processing functions EA,i : Fαm
q −→ F

`αm/(l(d−2t0−k2)−(l−1)n)
q , for i = 1, 2, . . . , d,

which are t0-error-correcting and such that

CO(A) =
` (l(2t0 + k2) + (l − 1)(n− d))

l(d− 2t0 − k2)− (l − 1)n
.

Observe that the particular case l = 1 corresponds to the particular case
n = m in Theorem D.2.

6 Applications

6.1 Universal secure linear network coding

Consider a network with n outgoing links from a source and N ingoing links
to a sink, and where the source wants to transmit ` packets, encoded into n
packets (all of the same length), to the sink. Linear network coding, intro-
duced in [1, 15, 17], consists in sending linear combinations over Fq of the
received packets at each node of the network, which increases throughput
with respect to storing and forwarding.

In this scenario, link errors and erasures expand through the network and
an eavesdropper may obtain linear combinations of the sent packets. Thus
if the coefficients of the final linear combinations are known to the receiver,
then a linearly coded network, with link errors, erasures and observations,
can be modelled as a coherent linearized noisy wire-tap channel [22], as in
Definition D.3.

Assume that the packet length is at least n, and fix positive integers t, ρ
and µ with 2t + ρ + µ < n and ρ ≤ N. In [22, Th. 11] a construction (pairs of
Gabidulin codes) is given such that ` = n− 2t− ρ− µ, which is optimal due
to (D.4).

However, assuming that q is big enough and the erasure matrix A ∈ FN×n
q

(see Definition D.3) is taken at random as in [11], then it will be full-rank with
high probability and ρ can be thought of as a number of erased ingoing links
to the sink, due to noise, link failure or the action of the adversary.

Theorem D.2 gives an alternative construction to [22, Th. 11] with opti-
mal ` = n− 2t− ρ− µ, where if more than n− ρ ingoing links to the sink
are available, the sink can contact the corresponding nodes after exchanging
feedback on the number of available nodes, and reduce the communication
overhead (hence the amount of packets received by the sink) to its optimal
value in view of (D.5).
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6.2 Secure distributed storage with crisscross errors and era-
sures

Errors and erasures occurring along several rows and/or columns of a matrix
over Fq are called crisscross errors and erasures in the literature, and can hap-
pen in memory chips and magnetic tapes, for instance (see [21]). Recently,
crisscross error and erasure-correction has gained attention in the context of
distributed storage where data is stored in several data centers (columns),
which in turn store several blocks of data (rows), where mixed and/or corre-
lated failures may occur (see [14]).

In this work, we consider a storage system where data is stored as an
αm× n matrix over Fq, where columns are thought of as data centers that are
contacted to obtain information from, and rows are blocks of data expanding
across the different data centers and sharing correlated errors. More formally,
we consider column erasures (equivalently, data centers being available and
contacted) together with crisscross errors and where an eavesdropper may
listen to a number of columns (data centers).

We formalize crisscross error-correction in the following definitions, which
we take from [21, Sec. I]:

Definition D.17 (Crisscross weights [21]). A cover of a matrix E ∈ Fαm×n
q is

a pair of sets X ⊆ [αm] and Y ⊆ [n] such that if ei,j 6= 0, then i ∈ X or j ∈ Y.
We then define the crisscross weight of E as

wtc(E) = min {#X + #Y | (X, Y) ⊆ [αm]× [n] is a cover of E} . (D.15)

We may then formalize crisscross error and erasure-correction, together
with security, as follows:

Definition D.18. For a subset I ⊆ [n], define the matrix PI ∈ F#I×n
q as that

constituted by the rows of the n× n identity matrix indexed by I. We say that
the coset coding scheme F : Fαm×`

q −→ Fαm×n
q is:

1. Crisscross t-error and ρ-erasure-correcting if, for every I ⊆ [n] with
#I = n− ρ, there exist a decoding function DI : F

αm×(n−ρ)
q −→ Fαm×`

q
such that

DI

(
CPT

I + E
)
= S,

for all C ∈ CS, all E ∈ F
αm×(n−ρ)
q with wtc(E) ≤ t, and all S ∈ Fαm×`

q .

2. Secure under µ column-observations if

H(W | S) = H(S),

for any matrix W ∈ F
αm×µ
q constituted by µ columns of C = F(S), for

all S ∈ Fαm×`
q .
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In this scenario, pieces of data correspond to columns, instead of linear
combinations of columns, hence we will consider preprocessing functions
EI,i : Fαm

q −→ F
βim
q depending on a subset of columns I ⊆ [n], where i ∈ I.

Hence we may formalize the crisscross error-correction capability of prepro-
cessing functions as follows:

Definition D.19. For a subset I ⊆ [n] with d = #I, the preprocessing func-
tions EI,i : Fαm

q −→ F
βim
q , for i = 1, 2, . . . , d, are t-crisscross error-correcting

with respect to F if there exists a decoding function DI : ∏d
i=1 F

βim
q −→ Fαm×`

q
such that

DI

(
(EI,i (ci + ei))

d
i=1

)
= S, (D.16)

where C ∈ CS and ci denotes the i-th column of C, for i = 1, 2, . . . , d, for all
S ∈ Fαm×`

q and all error matrices E ∈ Fαm×d
q of crisscross weight at most t

with columns e1, e2, . . . , ed ∈ Fαm
q .

The decoding bandwidth and communication overhead of such functions
are defined as in Definition D.12.

We now see that the bounds (D.4) and (D.5) also hold in this context:

Proposition D.20. If the coset coding scheme F : Fαm×`
q −→ Fαm×n

q is crisscross
t-error and ρ-erasure-correcting, and secure under µ column-observations, then

` ≤ n− 2t− ρ− µ. (D.17)

Moreover, for a subset I ⊆ [n] with d = #I and preprocessing functions EI,i :
Fαm

q −→ F
βim
q , for i = 1, 2, . . . , d, that are t-crisscross error-correcting with respect

to F, it holds that:

CO(I) ≥ `(2t + µ)

d− 2t− µ
, (D.18)

Proof. Define ρ′ = ρ + 2t. We will prove that F is ρ′-crisscross erasure-
correcting. If it is not, then there exists a subset I ⊆ [n] with #I = n − ρ′,
and there exist C1 ∈ CS1 and C2 ∈ CS2 , where S1 6= S2, such that

C1PT
I = C2PT

I .

Next take a set of the form I1 = I ∪ J1 ∪ J2, where #I1 = n− ρ and t = #J1 =

#J2 (recall that n− ρ = n− ρ′ + 2t). There exist matrices E1, E2 ∈ F
αm×(n−ρ)
q

of crisscross weight at most t such that

C1PT
I1
+ E1 = C2PT

I1
+ E2.

Hence F cannot be crisscross t-error and ρ-erasure-correcting, and we reach
a contradiction. Now, this implies that F is a classical secret sharing scheme
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with alphabet Fαm
q , reconstruction ρ′ and privacy µ. Thus it follows directly

from [13, Th. 1] that

` ≤ n− ρ′ − µ = n− ρ− 2t− µ,

and we are done.
Finally, the bound (D.18) can be proven in the same way as the bound

(D.5).

To conclude, we observe that a coset coding scheme, together with prepro-
cessing functions, which are universally (rank) error and erasure-correcting
and universally secure in the sense of Definitions D.5 and D.11 are also criss-
cross erasure and error-correcting and secure under a given number of col-
umn observations in the sense of Definitions D.18 and D.19, with exactly the
same parameters. Thus all constructions in this paper can be directly trans-
lated into the context of this subsection.

For illustration purposes, we show how to translate Theorem D.2 to this
context, thus obtaining coset coding schemes which are optimal in the sense
of (D.17) and (D.18) for all parameters, whenever n ≤ m.

Corollary D.21. Assume n ≤ m, choose integers k2, k1, t0 and ρ0 such that 0 ≤
k2 < k1 ≤ n and 2t0 + ρ0 = n− k1, and choose any subset D ⊆ [n− ρ0, n] with
elements dh = n− ρ0 < dh−1 < . . . < d2 < d1.

The coset coding scheme F : Fα×`
qm −→ Fα×n

qm in Theorem D.2 with these param-
eters satisfies ` = k1 − k2, is crisscross t-error and ρ-erasure-correcting if 2t + ρ ≤
n − k1, and is secure under µ column-observations if µ ≤ k2. In particular, the
scheme is optimal in the sense of (D.17). Moreover, it holds that

α = LCM (d1 − 2t0 − k2, d2 − 2t0 − k2, . . . , dh − 2t0 − k2) .

In addition, for any d ∈ D and any subset I ⊆ [n] with d = #I, there exist pre-
processing functions EI,i : Fαm

q −→ F
`αm/(d−2t0−k2)
q , for i = 1, 2, . . . , d, which are

t0-crisscross error-correcting and satisfying equality in (D.18), hence having optimal
communication overheads for all d ∈ D.

Observe that optimal crisscross error and erasure-correcting coding schemes
can also be obtained by using maximum distance separable (MDS) codes in
Fαm×n

q , by identifying this vector space with Fαmn
q , as noticed in [21]. How-

ever, such constructions may require extremely large finite fields, for instance
q > αmn for Reed-Solomon codes, whereas rank-metric codes allow to obtain
optimal coding schemes with the only constraint n ≤ m, being q unrestricted,
allowing in particular using binary fields (q = 2).
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7 Conclusion and open problems

In this paper, we have studied the problem of reducing the communication
overhead on a noisy wire-tap channel or storage system where data is en-
coded as a matrix. The method developed in Section 4 allows to reduce the
communication overhead, when more columns are available, at the cost of
expanding the packet length (number of rows). However, in the optimal case
of pairs of Gabidulin codes (Section 5), strict improvements on the commu-
nication overheads are possible at no cost on the rest of the parameters, as
shown in Example D.1 for practical instances in the applications. We leave
as open problem to study when the packet length need not be expanded.
Another interesting open problem is to extend our method to codes that are
linear over the base field Fq, instead of the extension field Fqm . This would
allow to use all possible MRD codes [4].

A Proof of Lemma D.15

Fix Fqm -linear codes C2 & C1 ⊆ Fn
qm and a matrix B ∈ F

µ×n
q in the rest of the

appendix.
We start with an auxiliary result, which is a particular case of [18, Th. 3]:

Lemma D.22 ( [18]). It holds that

dR(C1, C2) = min{Rk(A) | A ∈ Fν×n
q , ν ∈N, and

dim (C1 ∩ Row(A)/C2 ∩ Row(A)) ≥ 1},

where Row(A) ⊆ Fn
qm denotes the Fqm -linear vector space generated by the rows of

the matrix A ∈ Fν×n
q .

Given an Fqm -linear code C ⊆ Fn
qm , consider the map C −→ CBT defined

by c 7→ cBT , for c ∈ C. It is surjective and its kernel is C ∩
(
V⊥
)
, where

V = Row(B). Therefore

dim(C) = dim
(
CBT

)
+ dim

(
C ∩

(
V⊥
))

.

Using this equation and computing dimensions, it follows that

dim
(
C1BT/C2BT

)
= dim

(
C⊥2 ∩ V/C⊥1 ∩ V

)
. (D.19)

Now, using that Rk(B) < dR
(
C⊥2 , C⊥1

)
and the previous lemma, it holds that

C⊥2 ∩ V = C⊥1 ∩ V . Hence the result follows by (D.19).
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1. Introduction

Abstract

Skew cyclic codes play the same role as cyclic codes in the theory of error-correcting
codes for the rank metric. In this paper, we give descriptions of these codes by root
spaces, cyclotomic spaces and idempotent generators. We prove that the lattice of
skew cyclic codes is anti-isomorphic to the lattice of root spaces, study these two
lattices and extend the rank-BCH bound on their minimum rank distance to rank-
metric versions of the van Lint-Wilson’s shift and Hartmann-Tzeng bounds. Finally,
we study skew cyclic codes which are linear over the base field, proving that these
codes include all Hamming-metric cyclic codes, giving then a new relation between
these codes and rank-metric skew cyclic codes.

Keywords: Cyclic codes, finite rings, Hamming distance, linearized poly-
nomial rings, rank distance, skew cyclic codes.

MSC: 15A03, 15B33, 94B15.

1 Introduction

Cyclic codes play a very important role in the theory of error-correcting codes
in the Hamming metric. On the other hand, error-correcting codes in the
rank metric [7] have been proven to be crucial in applications to network
coding (see [18]). Only a few families of rank-metric codes are known (for
instance [7, 12]) and only for a restricted choice of parameters. Therefore it is
of interest to study new and different families of codes with good rank-metric
parameters, simple algebraic descriptions and fast encoding and decoding
algorithms.

Usual cyclic codes have been considered for the rank metric in [5, 19]
and a new construction, the so-called rank q-cyclic codes, was introduced
in [7] for square matrices and has been generalized in [8] for other lengths.
Independently, this notion has been generalized to skew or qr-cyclic codes in
the work by Ulmer et al. in [1–3], where r may be different from 1.

Some Gabidulin codes consisting of square matrices are q-cyclic (see [7,
8]), which implies that the family of q-cyclic codes includes some maximum
rank distance (MRD) codes. In [7], in [8] and in [1–3], it is also shown (in
increasing order of generality) that these codes can be represented as left ide-
als in a quotient ring of linearized polynomials. Therefore, this construction
of rank-metric codes seems to be the appropriate extension of cyclic codes to
the rank metric.

In this paper, we focus on two objectives: First, studying the minimum
rank distance of skew cyclic codes by giving new lower bounds and by relat-
ing it with the Hamming metric. Secondly, studying and relating the lattices
of skew cyclic codes and root spaces, which in particular allows to easily con-
struct skew cyclic codes and compare the sharpness of the obtained bounds.
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After some preliminaries in Section 2, the results are organized as follows:
In Section 3, we give descriptions of skew cyclic codes by root spaces and cy-
clotomic spaces. In Section 4, we prove that the lattices of skew cyclic codes
and root spaces are anti-isomorphic (isomorphic with the orders reversed),
and study these lattices. In Section 5, we give bounds on their minimum
rank distance, extending the rank-BCH bound obtained in [3] to rank-metric
versions of the Hartmann-Tzeng bound [10] and the van Lint-Wilson shift
bound [21]. Finally, in Section 6, we study skew cyclic codes that are lin-
ear over the base field, proving that classical cyclic codes equipped with the
Hamming metric are a particular case of skew cyclic codes equipped with the
rank metric, giving then new relations between both.

2 Definitions and preliminaries

2.1 Finite field extensions used in this work

Fix from now on a prime power q and positive integers m, n and r, and
assume that m divides rn. We will consider the four finite fields Fq, Fqr , Fqm

and Fqrn shown in the following graph, where F −→ F′ means that F′ is an
extension of F:

Fq
↙ ↘

Fqm Fqr

↘ ↙
Fqrn

Dimensions of vector spaces over a field F will be denoted by dimF, or
just dim if the field is clear from the context. For a field extension F ⊆ F′

and a subset A ⊆ F′n, we denote by 〈A〉F the F-linear vector space in F′n

generated by A.

2.2 Rank-metric codes and generalized Gabidulin codes

For convenience, all coordinates from 0 to n− 1 or m− 1 will be considered
as integers modulo n or m, respectively. Given c = (c0, c1, . . . , cn−1) ∈ Fn

qm ,
its rank weight [7] is defined as wtR(c) = dimFq(〈c0, c1, . . . , cn−1〉Fq). Equiv-
alently, if α0, α1, . . . , αm−1 is a basis of Fqm over Fq and c = ∑m−1

i=0 αici, where
ci ∈ Fn

q , then wtR(c) = dimFq(〈c0, c1, . . . , cm−1〉Fq).
For an Fqm -linear code C ⊆ Fn

qm , its minimum rank distance is dR(C) =

min{wtR(c) | c ∈ C \ {0}}. We have the Singleton bound [7] dR(C) ≤ n−
dim(C) + 1, and we say that C is maximum rank distance (MRD) if equality
holds.
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Sometimes we will use a normal basis, that is, a basis of Fqm (or Fqn ) over
Fq of the form α, α[1], α[2], . . . , α[m−1] (or α[n−1]), for some α ∈ Fqm , where we
use the notation [i] = qi. Normal bases exist for all values of m (or n). See for
instance, [13, Theorem 3.73].

We will consider the following family of MRD codes, usually called Gabidulin
codes. They were originally defined in [7] for r = 1, and generalized for any
r in [12]. Assume that n ≤ m and r and m are coprime, and take a vector
β = (β0, β1, . . . , βn−1) ∈ Fn

qm , where β0, β1, . . . , βn−1 are linearly independent
over Fq, and an integer 1 ≤ k ≤ n. We define the (generalized) Gabidulin
code of dimension k in Fn

qm as the Fqm -linear code Gabk,r(β) with parity check
matrix given by

Hk,r(β) =



β0 β1 β2 . . . βn−1

β
[r]
0 β

[r]
1 β

[r]
2 . . . β

[r]
n−1

β
[2r]
0 β

[2r]
1 β

[2r]
2 . . . β

[2r]
n−1

...
...

...
. . .

...
β
[(n−k−1)r]
0 β

[(n−k−1)r]
1 β

[(n−k−1)r]
2 . . . β

[(n−k−1)r]
n−1


.

2.3 Linearized polynomials

Denote by Lqr Fqm [x] the set of qr-linearized polynomials (abbreviated as qr-
polynomials) over Fqm (see [7, 15, 16] or [13, Chapter 3]), that is, the polyno-
mials in x of the form

F(x) = F0x + F1x[r] + F2x[2r] + · · ·+ Fdx[dr],

where F0, F1, . . . , Fd ∈ Fqm , for i = 0, 1, 2, . . . , d. We will denote degqr (F(x)) =
d if Fd 6= 0 and consider the symbolic product ⊗ in Lqr Fqm [x], defined as
follows

F(x)⊗ G(x) = F(G(x)),

for any F(x), G(x) ∈ Lqr Fqm [x] (see [7, 13, 15, 16]). This product is distributive
with respect to usual addition, associative, non-commutative and x is a left
and right unit. Endowed with it and usual addition, Lqr Fqm [x] is a left and
right Euclidean domain, that is, left and right Euclidean divisions exist (see
[15, 16]). The term “product” will mean “symbolic product”, and we will use
the term “conventional” for the usual product.

2.4 Skew cyclic codes: Generator and check polynomials

Definition E.1 ( [1–3, 7, 8]). Let C ⊆ Fn
qm be an arbitrary (linear or non-linear)

code. We say that it is skew cyclic or qr-cyclic if the qr-shifted vector

σr,n(c) = (c[r]n−1, c[r]0 , c[r]1 , . . . , c[r]n−2) (E.1)
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lies in C, for every c = (c0, c1, . . . , cn−1) ∈ C.

Observe that we may assume that 1 ≤ r ≤ m. Moreover, by taking r = m,
we recover the definition of cyclic codes.

Since m divides rn, x[rn]− x commutes with every qr-polynomial in Lqr Fqm [x]
and we may consider the quotient ring Lqr Fqm [x]/(x[rn] − x), isomorphic as
Fqm -linear vector space to Fn

qm by the map γr : Fn
qm −→ Lqr Fqm [x]/(x[rn] − x),

where

γr(F0, F1, . . . , Fn−1) = F0x + F1x[r] + F2x[2r] + · · ·+ Fn−1x[(n−1)r]. (E.2)

In the rest of the paper, given F(x) ∈ Lqr Fqm [x], we will use the notation F
for the class of F(x) modulo x[rn] − x, that is, for the element F = F(x) +
(x[rn] − x) ∈ Lqr Fqm [x]/(x[rn] − x).

For C ⊆ Fn
qm , we define C(x) = γr(C), that is, the image of C by the map

γr. The following characterization is obtained independently in [1, Theorem
1] and [8, Lemma 3]:

Lemma E.2 ( [1, 8]). A code C ⊆ Fn
qm is Fqm -linear and qr-cyclic if, and only if,

C(x) is a left ideal in Lqr Fqm [x]/(x[rn] − x).

Remark E.3. In [1–3], and in [8] for r = 1, left ideals in the rings Lqr Fq[x]/(L(x))
are also considered, where L(x) commutes with every other qr-polynomial in Lqr Fqm [x].
We will call these codes pseudo-qr-cyclic codes. The results in this paper concerning
qr-root spaces and left ideals in Lqr Fqm [x]/(x[rn]− x) may be directly generalized to
left ideals in Lqr Fq[x]/(L(x)), if L(x) has simple roots and if we replace Fqrn by the
splitting field of L(x). The results are written for L(x) = x[rn] − x for simplicity.

From now on, we will fix a left ideal C(x). The following theorem sum-
marizes the main properties of the generator and check polynomials of C.
These were proven in [2], in [8] for r = 1, and originally in [7] for r = 1 and
m = n:

Theorem E.1 (Generator and check polynomials [2, 7, 8]). There exists a unique
qr-polynomial G(x) = G0x + G1x[r] + · · · + Gn−kx[(n−k)r] over Fqm of degree
q(n−k)r that is monic and of minimal degree among the qr-polynomials whose residue
class modulo x[rn] − x lies in C(x). It satisfies that C(x) = (G). There exists an-
other (unique) qr-polynomial H(x) = H0x + H1x[r] + · · ·+ Hkx[kr] over Fqm such
that x[rn] − x = G(x)⊗ H(x) = H(x)⊗ G(x). They satisfy:

1. A qr-polynomial F lies in C(x) if, and only if, G(x) divides F(x) on the right
(in the ring Lqr Fqm [x]).

2. The qr-polynomials x⊗ G, x[r] ⊗ G, . . . , x[(k−1)r] ⊗ G constitute a basis (over
Fqm ) of C(x).
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3. The dimension of C (over Fqm ) is k = n− degqr (G(x)).

4. C has a generator matrix (over Fqm ) given by

G =


G0 G1 . . . Gn−k 0 . . . 0
0 G[r]

0 . . . G[r]
n−k−1 G[r]

n−k . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . G[(k−1)r]
0 G[(k−1)r]

1 . . . G[(k−1)r]
n−k

 .

Moreover, if C has another generator matrix G ′ with the same form, for the
values G′i , i = 0, 1, 2, . . . , n− k, then G′i = G′n−kGi, for all i.

5. A qr-polynomial F lies in C(x) if, and only if, F⊗ H = 0.

6. C has a parity check matrix (over Fqm ) given by

H =


hk hk−1 . . . h0 0 . . . 0
0 h[r]k . . . h[r]1 h[r]0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . h[(n−k−1)r]
k h[(n−k−1)r]

k−1 . . . h[(n−k−1)r]
0

 ,

where hi = H[(k−i)r]
i .

7. C⊥ is also qr-cyclic and its generator of minimal degree is H⊥(x) = (hkx +
hk−1x[r] + · · ·+ h0x[kr])/h0.

The qr-polynomial G(x) will be called the minimal generator of C(x), and
H(x) will be called the minimal check qr-polynomial of C(x).

2.5 The assumptions on the lengths of skew cyclic codes

To conclude, we see that restricting to the case where m divides rn does not
leave any qr-cyclic code out of study. Assume that N is a positive integer,
and take an arbitrary qr-cyclic code C ⊆ FN

qm . Define n = lcm(m, N), which
satisfies that n = sm = tN for positive integers s and t, and define ψ : FN

qm −→
Fn

qm by

ψ(c0, c1, . . . , cN−1) = (c0, c1, . . . , cN−1; c0, c1, . . . , cN−1; . . . ; c0, c1, . . . , cN−1),

where we repeat the vector (c0, c1, . . . , cN−1) t times. It holds that ψ is Fqm -
linear, one to one and wtR(c) = wtR(ψ(c)), for all c ∈ FN

qm . Moreover, if we
define σr,n and σr,N as in Definition E.1, then ψ(σr,N(c)) = σr,n(ψ(c)), for all
c ∈ FN

qm , and therefore, C ⊆ FN
qm is qr-cyclic if, and only if, so is ψ(C). The

same holds for Fq-linearity and Fqm -linearity. To sum up, every qr-cyclic code
can be seen as a code in Fn

qm , where m divides rn.
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3 Root spaces and cyclotomic spaces

In this section we will describe left ideals in Lqr Fqm [x]/(x[rn] − x) in terms of
qr-root spaces and qr-cyclotomic spaces, which are a subfamily of the former
one and will which allow to easily construct skew cyclic codes. As in the
classical theory of cyclic codes, we will see that the lattice of qr-cyclic codes is
anti-isomorphic (isomorphic with the orders reversed) to the lattice of qr-root
spaces. In Section 5 we will use this qr-root space description of qr-cyclic
codes to extend the rank-BCH bound in [3, Proposition 1] to more general
bounds on the minimum rank distance of qr-cyclic codes.

3.1 The root space associated to a skew cyclic code

A qr-polynomial F(x) over Fqm defines an Fqr -linear map F : Fqrn −→ Fqrn ,
and in particular its set of roots or zeroes in Fqrn is an Fqr -linear vector space.

Definition E.4 (Root spaces). An Fqr -linear subspace of Fqrn will be called
a qr-root space over Fqm if it is the space of roots in Fqrn of some F(x) ∈
Lqr Fqm [x].

On the other hand, for a residue class F = F(x) + (x[rn] − x), we define its
root space, denoted as Z(F), as the root space in Fqrn of F(x).

Finally, define the map ρr between the family of Fqm -linear qr-cyclic codes
in Fn

qm and the family of qr-root spaces over Fqm in Fqrn by ρr(C) = T, where
T = Z(G) and G(x) is the minimal generator of C(x).

Observe that the second definition is consistent, since if F1 = F2, then
F1(x)− F2(x) is divisible on the right by x[rn] − x, and hence F1(x) and F2(x)
have the same roots in Fqrn . The following lemma is a particular case of [13,
Theorem 3.50]:

Lemma E.5 ( [13]). Given F(x) ∈ Lqr Fqm [x], assume that the set of its roots T lie
in Fqrn and all roots are simple. Then

degqr (F(x)) = dimFqr (T).

The following theorem gathers the basic relations between C and ρr(C):

Theorem E.2. Let T = ρr(C) as in Definition E.4, then:

1. G(x) = ∏β∈T(x− β).

2. The dimension of C over Fqm is k = n− dimFqr (T).

3. For a qr-polynomial F(x), it holds that F ∈ C(x) if, and only if, F(β) = 0,
for all β ∈ T.
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4. Let β1, β2, . . . , βn−k be a basis of T over Fqr . Then the matrix

M(β) =


β1 β

[r]
1 β

[2r]
1 . . . β

[(n−1)r]
1

β2 β
[r]
2 β

[2r]
2 . . . β

[(n−1)r]
2

...
...

...
. . .

...
βn−k β

[r]
n−k β

[2r]
n−k . . . β

[(n−1)r]
n−k


is a parity check matrix of C over Fqrn .

5. A qr-polynomial G̃ generates C(x) if, and only if, Z(G̃) = T, which holds if,
and only if, G(x) = gcd(G̃(x), x[rn] − x) (on the right).

Proof. First, since G(x) divides x[rn] − x symbolically on the right, it also
divides it conventionally. Therefore, G(x) has simple roots because x[rn] − x
has simple roots, and item 1 follows.

Since the roots of G(x) are simple, item 2 follows directly from the previ-
ous lemma and Theorem E.1.

Next, if F ∈ (G), then G(x) divides F(x) on the right and therefore
T ⊆ Z(F). On the other hand, assume that F(β) = 0, for all β ∈ T.
By the Euclidean division, we have that F(x) = Q(x) ⊗ G(x) + R(x), with
deg(R(x)) < deg(G(x)), but then R(β) = 0, for all β ∈ T, and hence
R(x) = 0. We conclude that F ∈ (G) and item 3 follows. Item 4 follows
immediately from item 3.

Finally, assume that G̃ generates C(x). Since G divides G̃ and G̃ divides
G on the right, we have that Z(G̃) = T. Now assume that Z(G̃) = T and
define D(x) = gcd(G̃(x), x[rn] − x). We have that D(x) = A(x) ⊗ G̃(x) +
B(x) ⊗ (x[rn] − x), for some qr-polynomials A(x) and B(x). It follows that
T ⊆ Z(D), and since D(x) divides G̃(x), it holds that T = Z(D). Finally, since
D(x) divides x[rn] − x, every root of D(x) lies in Fqrn and is simple, which
implies that D(x) = G(x). Now assume that G(x) = gcd(G̃(x), x[rn] − x),
then G(x) = A(x)⊗ G̃(x) + B(x)⊗ (x[rn] − x), for some qr-polynomials A(x)
and B(x). Therefore, G ∈ (G̃), and since G(x) divides G̃(x), it holds that
(G) = (G̃), and item 5 follows.

On the other hand, we have the following equivalent conditions on inclu-
sions of qr-cyclic codes and qr-root spaces.

Corollary E.6. Let C1(x) = (G1) and C2(x) = (G2) be two qr-cyclic codes with
T1 = Z(G1) and T2 = Z(G2), where G1(x) and G2(x) are the minimal generators
of C1(x) and C2(x), respectively. Then C1(x) ⊆ C2(x) if, and only if, G2(x) divides
G1(x) on the right, and this holds if, and only if, T2 ⊆ T1.

Proof. The first equivalence is clear from Theorem E.1. Now, if G2(x) divides
G1(x) on the right, then it is obvious that T2 ⊆ T1.
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Finally, assume that T2 ⊆ T1, and perform the Euclidean division to obtain
G1(x) = Q(x)⊗ G2(x) + R(x), with deg(R(x)) < deg(G2(x)). We have that
R(β) = 0, for every β ∈ T2, and by the previous theorem, R ∈ (G2). However,
G2(x) is the minimal generator of C2(x), so it follows that R(x) = 0, that is,
G2(x) divides G1(x) on the right.

The previous corollary and Theorem E.2 imply that the map ρr is bijective:

Corollary E.7. The map ρr in Definition E.4 is bijective.

Proof. We first see that it is onto. Take T = Z(F) a qr-root space over Fqm in
Fqrn . By item 5 in Theorem E.2, it holds that Z(G) = T if G(x) is the minimal
generator of C(x) = (F). Therefore, T = ρr(C). On the other hand, ρr is one
to one by the previous corollary.

In the next section we will see that the family of qr-root spaces over Fqm

in Fqrn is a lattice with sums and additions of vector spaces, and therefore
Corollary E.6 together with the previous corollary mean that the map ρr is
an anti-isomorphism of lattices (an isomorphism with the orders reversed).

On the other hand, Theorem E.2 gives the following criterion to say whether
an Fqr -linear subspace T ⊆ Fqrn is a qr-root space, in terms of qr-cyclic codes:

Corollary E.8. Let T ⊆ Fqrn be Fqr -linear, take one of its bases β1, β2, . . . , βn−k

over Fqr , and define M(β) as in Theorem E.2. Consider C̃ ⊆ Fn
qrn , the Fqrn -linear

code withM(β) as parity check matrix. Then T is a qr-root space over Fqm if, and
only if,

dimFqm (C̃ ∩Fn
qm) = dimFqrn (C̃), (E.3)

which holds if, and only if, C̃ has a basis of vectors in Fn
qm .

Proof. Assume first that T = Z(F), for some qr-polynomial F(x) over Fqm ,
and define C(x) = (F). By items 4 and 5 in Theorem E.2, C = C̃ ∩ Fn

qm , and

by item 2 in the same theorem, dimFqm (C) = k = dimFqrn (C̃).

Assume now that dimFqm (C) = dimFqrn (C̃), where C = C̃ ∩ Fn
qm . Since C̃

is qr-cyclic, it follows that C is also qr-cyclic. By definition, T ⊆ Z(G), for the
minimal generator G(x) of C(x). Now, dimFqm (C) = k by hypothesis, and
hence dimFqr (Z(G)) = n− k by item 2 in Theorem E.2. Also by hypothesis,
dimFqr (T) = n− k, so it holds that T = Z(G).

Observe that condition (E.3) means that C̃ is Galois closed over Fqm .
See [14, 20] for more details on Galois closed vector spaces. The following
example shows how to use this result to see whether a given vector space is
a qr-root space.
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Example E.9. Assume that n = 2m and r = 1, and take a normal basis
α, α[1], . . ., α[n−1] ∈ Fqn over Fq. Consider the (Fq-linear) vector subspaces
T1, T2 ⊆ Fqn generated by α and α, α[m], respectively. Define also the codes
C̃1, C̃2 ⊆ Fn

qn with parity check matrices M(α) and M(α, α[m]), respectively,

and define Di = (C̃i ∩ Fn
qm)⊥, i = 1, 2. They satisfy Di = Tr(C̃⊥i ), i = 1, 2, by

Delsarte’s theorem [4, Theorem 2], where Tr denotes the trace of the extension
Fqm ⊆ Fqn , that is, Tr(x) = x + x[m].

We will see that T1 is not a q-root space over Fqm , whereas T2 is. Moreover,
we will see that D1 = D2, which has dimension 2 over Fqm and which shows
that condition (E.3) in the previous corollary is satisfied for T2 but not for T1.

Since dim(T1) = 1, if it were a q-root space, then there would exist b ∈ Fqm

with F(α) = 0, where F(x) = x[1] − bx by Corollary E.7. Since x[m] ⊗ F(x) =
F(x)⊗ x[m], it holds that F(α[m]) = 0. This would imply that α, α[m] ∈ T1 and
dim(T1) = 1, which is absurd.

On the other hand, we see that D1 ⊆ D2. Define the vectors α = (α, α[1], . . . ,
α[n−1]) ∈ Fn

qn , v0 = Tr(αα) = αα + α[m]α[m] and v1 = Tr(α[1]α) = α[1]α +

α[1+m]α[m], which belong to D1 and also to C̃⊥2 . Moreover, we see that they
are linearly independent over Fqn and, therefore, they constitute a basis of
C̃⊥2 . This means that D1 = D2 and dimFqm (D2) = dimFqn (C̃⊥2 ) = 2.

In conclusion, condition (E.3) is satisfied for T2 but not for T1. By the
previous corollary, it holds that T2 is a q-root space over Fqm , and we have
seen that T1 is not a q-root space over Fqm .

3.2 Cyclotomic spaces

Now we turn to a special subclass of qr-root spaces in Fqrn , namely the class
of qr-cyclotomic spaces. These spaces will play the same role as cyclotomic
sets in the classical theory of cyclic codes (see [11, Theorem 4.4.2] and [11,
Theorem 4.4.3]), that is, they generate the lattice of qr-root spaces, and are
key concepts to easily construct skew cyclic codes.

For this we need the concept of minimal qr-polynomial of an element β ∈
Fqrn over Fqm . The following lemma and definition constitute an extension
of [13, Theorem 3.68] and the discussion prior to it:

Lemma E.10. For any β in an extension field of Fqlcm(r,m) , there exists a unique
monic qr-polynomial F(x) ∈ Lqr Fqm [x] of minimal degree such that F(β) = 0.
Moreover, if L(β) = 0 for another qr-polynomial L(x) over Fqm , then F(x) divides
L(x) both conventionally and symbolically on the right.

Proof. If β ∈ Fqrt , t > 0, then the polynomial F̃(x) = x[rt] − x lies in Lqr Fqm [x]
and F̃(β) = 0. Therefore there exists an F(x) ∈ Lqr Fqm [x] monic and of
minimal degree such that F(β) = 0. Let L(x) ∈ Lqr Fqm [x] be such that
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L(β) = 0, and perform the Euclidean division to obtain L(x) = Q(x) ⊗
F(x) + R(x), with deg(R(x)) < deg(F(x)). Then R(β) = 0, and since F(x) is
of minimal degree, we have that R(x) = 0, and therefore F(x) divides L(x)
both conventionally and symbolically on the right. This also proves that F(x)
is unique and we are done.

Definition E.11. For β in an extension field of Fqlcm(r,m) , the qr-polynomial
F(x) in the previous lemma is called the minimal qr-polynomial of β over
Fqm .

Now we may define qr-cyclotomic spaces in Fqrn :

Definition E.12 (Cyclotomic spaces). Given β ∈ Fqrn , we define its qr-cyclotomic
space over Fqm as the Fqr -linear vector space Cqr (β) of roots of the minimal
qr-polynomial of β over Fqm .

Example E.13. Let the notation and assumptions be as in Example E.9. Since
the basis α[b], (α[b])[1], . . . , (α[b])[n−1] is also normal, in Example E.9 we have
proven that Cq(α[b]) = 〈α[b], α[b+m]〉.

In general, for r = 1 and n = sm, we have the following result:

Proposition E.14. If α, α[1], . . . , α[n−1] is a normal basis of Fqn over Fq, then it
holds that Cq(α[b]) = 〈α[b], α[b+m], . . . , α[b+(s−1)m]〉, for every integer b ≥ 0.

Proof. We may assume that b = 0 without loss of generality. First of all, for
every F(x) ∈ Lqr Fqm [x], we see that x[m] ⊗ F(x) = F(x) ⊗ x[m] and, there-
fore F(β) = 0 implies that F(β[m]) = 0, for any β ∈ Fqn . This means that
〈α, α[m], . . . , α[(s−1)m]〉 ⊆ Cq(α).

The reversed inclusion is proven using Corollary E.8 as in Example E.9.
To that end, we need to define the vectors vi = Tr(α[i]α) = ∑s−1

j=0 α[i+jm]α[jm] ∈
Fn

qm , for i = 0, 1, 2, . . . , s− 1, where α = (α, α[1], . . . , α[n−1]) ∈ Fn
qn . The vectors

v0, v1, . . . , vs−1 are linearly independent over Fqm , since so are the vectors α,
α[m], . . . , α[(s−1)m] and the following matrix is non-singular:

α α[m] α[2m] . . . α[(s−1)m]

α[1] α[1+m] α[1+2m] . . . α[1+(s−1)m]

...
...

...
. . .

...
α[s−1] α[s−1+m] α[s−1+2m] . . . α[s−1+(s−1)m]

 .

Next we see that every qr-root space is a sum of qr-cyclotomic spaces.
Since in the next section we will see that sums and intersections of qr-root
spaces are again qr-root spaces, this means that the subclass of qr-cyclotomic
spaces generates the lattice of qr-root spaces:
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Proposition E.15. Given a qr-root space T ⊆ Fqrn over Fqm , there exist β1, β2, . . . , βu
∈ T such that T = Cqr (β1) + Cqr (β2) + · · · + Cqr (βu). Moreover, if the qr-
cyclotomic spaces Cqr (βi) over Fqm are minimal and T is not a sum of a strict subset
of them, then the sum is direct.

Proof. Take L(x) ∈ Lqr Fqm [x] such that T = Z(L). For every β ∈ T, if F(x)
is its minimal qr-polynomial over Fqm , then by Lemma E.10, F(x) divides
L(x) and, therefore, Cqr (β) = Z(F) ⊆ Z(L) = T. This means that T =

∑β∈T Cqr (β). Since the sum is finite, the result follows.
Finally, assume that the Cqr (βi) are minimal and T is not a sum of a strict

subset of them. If there exists β ∈ Cqr (βi) ∩ (∑j 6=i Cqr (β j)) that is not zero,
then by minimality of Cqr (βi), we have that Cqr (β) = Cqr (βi), and therefore
Cqr (βi) ⊆ ∑j 6=i Cqr (β j). However, this means that T is the sum of the spaces
Cqr (β j), with j 6= i, which contradicts the assumptions.

4 The lattices of qr-cyclic codes and qr-root spaces

It is straightforward to see that sums and intersections of qr-cyclic codes are
again qr-cyclic. In this section we will see that the same holds for qr-root
spaces. By Corollary E.6, both lattices are anti-isomorphic. We will also
prove this directly by showing that intersections of qr-cyclic codes correspond
to sums of qr-root spaces and viceversa. We will also study the concept of
qr-cyclic complementary of a qr-cyclic code, rank equivalences and lattice
morphisms.

4.1 The lattice anti-isomorphism

Theorem E.3. Let C1(x) and C2(x) be two qr-cyclic codes with minimal generators
G1(x) and G2(x), respectively. Set T1 = Z(G1) and T2 = Z(G2). We have that

1. C1(x) ∩ C2(x) is the qr-cyclic code whose minimal generator is given by
M(x) = lcm(G1(x), G2(x)) (on the right), and Z(M) = T1 + T2.

2. C1(x) + C2(x) is the qr-cyclic code whose minimal generator is given by
D(x) = gcd(G1(x), G2(x)) (on the right), and Z(D) = T1 ∩ T2.

In particular, sums and intersections of qr-root spaces are again qr-root spaces, and
they form a lattice anti-isomorphic to the lattice of qr-cyclic codes by the map ρr in
Definition E.4. Moreover, the lattice of qr-root spaces is generated by the subclass of
qr-cyclotomic spaces.

Proof. Define M(x) as the minimal generator of C1(x) ∩ C2(x). We have that
G1(x) and G2(x) both divide M(x) on the right by Theorem E.1, item 1, since
M ∈ (G1) and M ∈ (G2). Now, if F ∈ C1(x) ∩ C2(x), then M(x) divides F(x)
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on the right for the same reason. In conclusion, M(x) is the least common
multiple on the right of G1(x) and G2(x).

On the other hand, define D(x) as the greatest common divisor of G1(x)
and G2(x) on the right. By the Euclidean algorithm, we may find a Bézout’s
identity on the right D(x) = Q1(x)⊗ G1(x) + Q2(x)⊗ G2(x). This implies
that (D) ⊆ C1(x) + C2(x). Moreover, by definition D(x) divides both G1(x)
and G2(x) on the right, and therefore C1(x) + C2(x) ⊆ (D), and hence they
are equal.

To see that D(x) is the minimal generator, take F ∈ (D), then F(x) =
Q(x) ⊗ D(x) + P(x) ⊗ (x[rn] − x). But since D(x) divides both G1(x) and
G2(x), and these divide x[rn] − x, then D(x) divides x[rn] − x and hence, it
divides F(x).

Finally, we see that T1 ∪ T2 ⊆ Z(M) by Theorem E.2, item 3, since M ∈
C1(x) ∩ C2(x). Therefore, T1 + T2 ⊆ Z(M). On the other hand, since D ∈
C1(x) + C2(x), we see that T1 ∩ T2 ⊆ Z(D) also by Theorem E.2, item 3. By
the same theorem, we have that

dim(T1 +T2)+dim(T1∩T2) = dim(T1)+dim(T2) = (n−dim(C1))+ (n−dim(C2))

= (n− dim(C1 ∩ C2)) + (n− dim(C1 + C2)) = dim(Z(M)) + dim(Z(D)).

Hence, Z(M) = T1 + T2 and Z(D) = T1 ∩ T2 and we are done.
The last statement of the theorem follows from Proposition E.15.

4.2 Skew cyclic complementaries and idempotent generators

The existence and/or uniqueness of complementaries is an important prop-
erty of lattices. In the theory of classical cyclic codes, every cyclic code has
a unique complementary cyclic code when the length and q are coprime [11,
Exercise 243]. In this case, every cyclic code also has an idempotent genera-
tor [11, Theorem 4.3.2], which describes very easily the complementary cyclic
code (see [11, Theorem 4.4.6]).

In this subsection we investigate the existence and uniqueness of qr-cyclic
complementaries and idempotent generators of qr-cyclic codes, and relate
both.

Observe that, by the fact that the map ρr in Definition E.2 is a lattice anti-
isomorphism, two qr-cyclic codes are complementary if, and only if, their
corresponding qr-root spaces are complementary.

Proposition E.16. Given qr-cyclic codes C1(x) and C2(x) with minimal generators
G1(x) and G2(x), we have that they are complementary, that is, Fn

qm = C1 ⊕ C2

if, and only if, G1(x) and G2(x) are coprime (on the right) and degqr (G1(x)) +
degqr (G2(x)) = n.
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Proof. By Theorem E.3, the condition C1(x) + C2(x) = Lqr Fqm [x]/(x[rn] − x)
is equivalent to D(x) = x, which means that G1(x) and G2(x) are coprime.
By Theorem E.1, if C1 and C2 are complementary, then

degqr (G1(x)) + degqr (G2(x)) = n− dim(C1) + n− dim(C2)

= n− (dim(C1) + dim(C2)− dim(C1 + C2)) = n− dim(C1 ∩ C2) = n.

Conversely, if D(x) = x and degqr (G1(x)) + degqr (G2(x)) = n, then C1 +

C2 = Fn
qm by Theorem E.3 and dim(C1 ∩ C2) = 0 by Theorem E.1 as before,

and the theorem follows.

In [9, Theorem 6], the existence of an idempotent generator is proven
when n is coprime with q and also with the order of the automorphism
α 7→ α[r]. We next prove the existence in other cases (see Example E.19 below),
and give other properties.

Theorem E.4. Let C(x) be a left ideal with minimal generator G(x) and check qr-
polynomial H(x). The following holds

1. An element E ∈ C(x) is idempotent (that is, E⊗ E = E) and generates C(x)
if, and only if, it is a unit on the right in this ideal.

2. Given a qr-polynomial F(x) and an idempotent generator E of C(x), it holds
that F ∈ C(x) if, and only if, F = F⊗ E. In particular, x− E(x) is a check
polynomial for C(x).

3. For any idempotent generator E of C(x), the qr-polynomial x− E is also idem-
potent and (x− E) is a complementary for C(x).

4. Assume that G and H are coprime on both sides. That is, we may obtain
Bézout identities on both sides

x = G⊗ G1 + H ⊗ H1 = G2 ⊗ G + H2 ⊗ H,

in the ring Lqr Fqm [x]/(x[rn] − x). Let E = x− H2 ⊗ H and E′ = x− H ⊗
H1. It holds that E = E′, and it is an idempotent generator for C(x).

Proof. Items 1 and 2 are proven as in the classical case (see [11, Section 4.3]).
For item 3, we have that (x − E) + (E) is the whole quotient ring. On the
other hand, take F ∈ (x − E) ∩ (E). By item 1, E and x − E are units on
the right in the ideals that they generate. Therefore, F = F ⊗ E and F =
F ⊗ (x − E) = F − F ⊗ E = F − F = 0. It follows that (x − E) ∩ (E) = {0},
and item 3 is proven.

We now prove item 4. We have that E = G2 ⊗ G, E′ = G ⊗ G1 and
G ⊗ H = H ⊗ G = 0 by Theorem E.1. Therefore E′ = E ⊗ E′ = E, and it
is idempotent. On the other hand, E ∈ (G) and G = G ⊗ E′ ∈ (E′), and
therefore C(x) = (G) = (E).
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From the previous theorem and proposition, we deduce the following for
a left ideal C(x) with minimal generator G(x) and check qr-polynomial H(x):

Corollary E.17. The qr-cyclic codes (G) and (H) are complementary if, and only
if, G(x) and H(x) are coprime. In that case, if E is the idempotent described in item
4 in the previous theorem, then (x− E) = (H).

Remark E.18. Recall from Theorem E.2, item 5, that in particular, the minimal
generator of a left ideal can be efficiently obtained from the idempotent generator.

Example E.19. Let q = 2, n = m = 3 and r = 1, consider the primitive
element α ∈ F23 such that α3 + α + 1 = 0, and the q-polynomials G(x) =
x[2] + α4x[1] + α6x and H(x) = x[1] + αx, as in [8, Example 2]. By Euclidean
division on both sides, we find that

x = x⊗ G(x) + (x[1] + αx)⊗ H(x) = G(x)⊗ x + H(x)⊗ (x[1] + αx).

Then E = E′ = G. In this case the idempotent generator coincides with the
minimal generator. Observe also that here the order of the automorphism
α 7→ α[1] is 3, and hence is not coprime with n. Therefore, Theorem E.4
covers other cases than [9, Theorem 6].

On the other hand, we see that the q-polynomial x − E = x[2] + α4x[1] +
α2x = (x[1] + αx)⊗ H(x) is an idempotent generator of (H), which is a com-
plementary for C(x), as stated in the previous corollary.

4.3 Rank equivalences and lattice automorphisms

To conclude the section, we study rank equivalences and automorphisms of
lattices of the family of qr-cyclic codes. A rank equivalence ϕ : Fn

qm −→ Fn
qm

is an Fqm -linear vector space isomorphism with wtR(ϕ(c)) = wtR(c) (see [14]
for more details on rank equivalences). For convenience, we define the rank
weight of F ∈ Lqr Fqm [x]/(x[rn] − x) as

wtR(F) = wtR(F0, F1, . . . , Fn−1) = wtR(γ
−1
r (F)), (E.4)

where γr is as in (E.2). Since the map ρr in Definition E.2 is a lattice anti-
isomorphism by Theorem E.3, every automorphism of the lattice of Fqm -linear
qr-cyclic codes induces an automorphism of the lattice of qr-root spaces over
Fqm . In particular, every ring automorphism of Lqr Fqm [x]/(x[rn] − x) induces
such a lattice automorphism.

We study the following class of ring automorphisms:

Definition E.20. For every a = 0, 1, 2, . . . , rn− 1, we define the morphism ϕa :
Lqr Fqm [x]/(x[rn] − x) −→ Lqr Fqm [x]/(x[rn] − x) by ϕa(F) = x[rn−a] ⊗ F⊗ x[a].
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We observe that this map is well-defined and corresponds to rising to the
power qrn−a in Fn

qm (and ϕ0 is the identity). That is, if F = F0x + F1x[r] + · · ·+
Fn−1x[(n−1)r], then

x[rn−a] ⊗ F⊗ x[a] = F[rn−a]
0 x + F[rn−a]

1 x[r] + · · ·+ F[rn−a]
n−1 x[(n−1)r].

We gather the main properties of the maps ϕa in the next proposition:

Proposition E.21. For every a, a′ = 0, 1, 2, . . . , rn− 1, the map ϕa satisfies:

1. ϕa is a ring isomorphism. Viewed as map ϕa : Fn
qm −→ Fn

qm , it is Fq-linear
and Fqm -semilinear.

2. ϕa = ϕa′ if, and only if, a and a′ are congruent modulo m.

3. ϕ0 = Id and ϕa ◦ ϕa′ = ϕa′ ◦ ϕa = ϕa+a′ . In particular, ϕa ◦ ϕn−a =
ϕn−a ◦ ϕa = Id.

4. For every qr-polynomial F(x), it holds that wtR(F) = wtR(ϕa(F)) (see (E.4)),
that is, ϕa is a rank equivalence.

5. ϕa maps left ideals to left ideals and, in general, maps qr-cyclic codes to qr-
cyclic codes.

6. ϕa maps idempotents to idempotents.

Proof. The first three items are straightforward calculations. The last two
items follow from these first three items.

Finally, if c = (c0, c1, . . . , cn−1) ∈ Fn
qm , then the dimension of the vector

space generated by c0, c1, . . . , cn−1 in Fqm is the same as the dimension (over
Fq) of the vector space generated by cq

0, cq
1, . . . , cq

n−1, since rising to the power
q is an Fq-linear automorphism of Fqm . Therefore, wtR(c0, c1, . . . , cn−1) =

wtR(c
q
0, cq

1, . . . , cq
n−1).

Since ϕa corresponds to rising to the power qrn−a, we see that it also
preserves rank weights, and item 4 follows.

Remark E.22. By item 6 in the previous proposition and Theorem E.2, item 5, we
may obtain the minimal generator of a qr-cyclic code equivalent to a given one if we
know the minimal generator or an idempotent of this latter code.

On the other hand, these are the only maps coming from ring automor-
phisms of Lqr Fqm [x]/(x[rn] − x) having the following reasonable properties:
they commute with the qr-shifting operators (E.1), are Fq-linear and leave the
field Fqm invariant (Fqm is a subring of Lqr Fqm [x]/(x[rn] − x) by considering
any α ∈ Fqm as the polynomial αx).
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Proposition E.23. For a = 0, 1, 2, . . . , rn− 1, if we view ϕa as a map ϕa : Fn
qm −→

Fn
qm , then it holds that

σr,n ◦ ϕa = ϕa ◦ σr,n,

where σr,n is as in (E.1). Moreover, if ϕ is an Fq-linear ring automorphism of
Lqr Fqm [x]/(x[rn] − x) satisfying this condition and leaving Fqm invariant, then
ϕ = ϕa for some a = 0, 1, 2, . . . , rn− 1.

Proof. The fact that a ring automorphism ϕ commutes with σr,n is equivalent
to the condition

ϕ(x[1] ⊗ F) = x[1] ⊗ ϕ(F), (E.5)

for all F ∈ Lqr Fqm [x]/(x[rn] − x), which is satisfied if ϕ = ϕa.
On the other hand, since ϕ(αx + βx) = ϕ(αx) + ϕ(βx) and ϕ(αx⊗ βx) =

ϕ(αx)⊗ ϕ(βx), for all α, β ∈ Fqm , we have that ϕ is an automorphism of the
field Fqm when restricted to constant polynomials αx.

Moreover, if α ∈ Fq, by Fq-linearity it holds that ϕ(αx) = αx⊗ ϕ(x) = αx.
Hence Fq is fixed by the automorphism induced by ϕ in Fqm . Therefore, there
exists an a = 0, 1, 2, . . . , m− 1 such that ϕ(αx) = α[nr−a]x, for all α ∈ Fqm . This
together with (E.5) means that ϕ = ϕa and we are done.

Finally, we see that the lattice automorphism induced by ϕa in the lattice
of qr-spaces over Fqm corresponds to the one induced by the field automor-
phism of Fqrn given by β 7→ β[a]. In particular, by item 2 in Proposition E.21,
two of these automorphisms of the lattice of qr-root spaces over Fqm , for a
and a′, respectively, are equal if, and only if, a and a′ are congruent modulo
m. In short:

Proposition E.24. For all a = 0, 1, 2, . . . , nr− 1 and all F ∈ Lqr Fqm [x]/(x[rn] −
x), it holds that Z(ϕa(F)) = Z(F)[a]. In particular, Z(F)[a] = Z(F)[a

′ ] if a and a′

are congruent modulo m.

5 Bounds on the minimum rank distance

In this section we will give lower bounds on the minimum rank distance
of qr-cyclic codes. The simplest bound on the minimum Hamming distance
of classical cyclic codes is the BCH bound, which has been adapted to a
bound on the minimum rank distance of qr-cyclic codes in [3, Proposition 1].
In this section, we will give two extensions of this bound analogous to the
Hartmann-Tzeng bound [10] in the form of [21, Theorem 2], and another one
analogous to the bound in [21, Theorem 11], also known as the shift bound.
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5.1 The rank-shift and rank-Hartmann-Tzeng bounds

We start by giving the definition of independent sequence of Fqr -linear vector
subspaces of Fqrn with respect to some Fqr -linear subspace S ⊆ Fqrn .

Definition E.25. Given Fqr -linear subspaces S, I0, I1, I2, . . . ⊆ Fqrn , we say that
the sequence I0, I1, I2, . . . is independent with respect to S if the following
hold:

1. I0 = {0}.

2. For i > 0, either

(a) Ii = Ij ⊕ 〈β〉, for some 0 ≤ j < i, Ij ⊆ S and β /∈ S, or

(b) Ii = I[br]
j , for some 0 ≤ j < i and some integer b ≥ 0.

We say that a subspace I ⊆ Fqrn is independent with respect to S if it is a
space in a sequence that is independent with respect to S.

The van Lint-Wilson or shift bound [21, Theorem 11] for the rank metric
becomes then as follows. Observe that it is a bound on the rank weight (see
(E.4)) of a given qr-polynomial in Lqr Fqm [x]/(x[rn] − x) in terms of its roots.

Theorem E.5 (Rank-shift bound). Let F ∈ Lqr Fqm [x]/(x[rn]− x) and S = Z(F)
= {β ∈ Fqrn | F(β) = 0}, as in Definition E.4. If I ⊆ Fqrn is an Fqr -linear subspace
independent with respect to S, then

wtR(F) ≥ dimFqr (I),

where wtR(F) is as in (E.4).

Proof. Define the vector F = (F0, F1, . . . , Fn−1) ∈ Fn
qm if F = F0x + F1x[r] +

· · ·+ Fn−1x[(n−1)r] (recall (E.2)). Now write F = ∑m−1
i=0 αiFi, where Fi ∈ Fn

q , for
i = 0, 1, . . . , m− 1 and α0, α1, . . . , αm−1 is a basis of Fqm over Fq. Define w =
wtR(F), and recall from Subsection 2.2 that w = dimFq(〈F0, F1, . . . , Fm−1〉Fq).

Let A be a w × n matrix over Fq whose rows generate the vector space
〈F0, F1, . . . , Fm−1〉Fq . Since A is full-rank, there exists a w× n matrix A′ over
Fq such that AA′T = I. On the other hand, by definition of A, there exist
xi ∈ Fw

q with Fi = xi A, for i = 0, 1, . . . , m− 1. It follows that

F(A′T A) =
m−1

∑
i=0

αixi A(A′T A) =
m−1

∑
i=0

αixi(AA′T)A =
m−1

∑
i=0

αixi A = F.

On the other hand, for an Fqr -linear subspace J ⊆ Fqrn , define the Fqrn -
linear subspace of Fw

qrn given by

V(J) = 〈{(β, β[r], β[2r], . . . , β[(n−1)r])AT | β ∈ J}〉Fqrn ⊆ Fw
qrn .
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We will prove that dimFqrn (V(I)) = dimFqr (I), and hence it will follow that
w ≥ dimFqr (I).

By definition, there exists a sequence I0, I1, I2, . . . ⊆ Fqrn of Fqr -linear sub-
spaces that is independent with respect to S and I = Ii, for some i. We will
prove by induction on i that dimFqrn (V(Ii)) = dimFqr (Ii).

For i = 0, we have that I0 = {0} and V(I0) = {0}, and the statement is
true.

Fix i > 0 and assume that it is true for all 0 ≤ j < i. The space Ii may be
obtained in two different ways, according to Definition E.25:

First, assume that Ii = Ij ⊕ 〈β〉, with 0 ≤ j < i, Ij ⊆ S and β /∈ S.
Therefore, dimFqr (Ii) = dimFqr (Ij) + 1. It follows that dimFqrn (V(Ii)) ≤
dimFqrn (V(Ij)) + 1. Assume that dimFqrn (V(Ii)) = dimFqrn (V(Ij)). This
means that

(β, β[r], β[2r], . . . , β[(n−1)r])AT ∈ V(Ij).

On the other hand, for every γ ∈ S, it holds that

0 = F(γ) = F(γ, γ[r], . . . , γ[(n−1)r])T = (FA′T)(A(γ, γ[r], . . . , γ[(n−1)r])T).

Since (β, β[r], β[2r], . . . , β[(n−1)r])AT is a linear combination (over Fqrn ) of vec-
tors in V(Ij), it follows that

0 = (FA′T)(A(β, β[r], . . . , β[(n−1)r])T) = F(β, β[r], . . . , β[(n−1)r])T = F(β),

which means that β ∈ S, a contradiction. Thus dimFqrn (V(Ii)) = dimFqrn (V(Ij))

+1 and the result holds in this case.
Now assume that Ii = I[br]

j , for some integer b ≥ 0 and 0 ≤ j < i. Since
rising to the power qr in Fqrn is an Fqr -linear vector space automorphism, we
have that dimFqr (Ii) = dimFqr (Ij). On the other hand, rising to the power qr

in Fw
qrn is an Fqrn -semilinear vector space automorphism, which also preserve

dimensions over Fqrn . Since V(Ii) = V(Ij)
[br], we have that dimFqrn (V(Ii)) =

dimFqrn (V(Ij)) and the result holds also in this case.

Future research on other possible generalizations of the rank-BCH bound
could be trying to obtain rank versions of the bounds in [6, 17], to cite some.
We next give a toy example to illustrate the previous bound:

Example E.26. Let r = 1, n = m = 2. Take a vector F = (F0, F1) ∈ F2
q2 . We

next see that the previous bound gives the exact value of wtR(F). Observe
that wtR(γF) = wtR(F), for all non-zero γ ∈ Fq2 , and hence we may assume

F = (1, α) for some α ∈ Fq2 . Let S = Z(F) ⊆ Fq2 , for F(x) = x[1] + αx, and
distinguish two cases:
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1. wtR(F) = 1, that is, α ∈ Fq: We have that S = {0} if α = 0, and S = 〈β〉,
for some non-zero β ∈ Fq2 if α 6= 0. We may start constructing an
independent sequence by I1 = 〈γ〉, for some γ ∈ Fq2 \ S. We see that
these (and I0 = {0}) are all subspaces independent with respect to S,
and hence we may only construct an independent space of dimension
1.

2. wtR(F) = 2, that is, α ∈ Fq2 \Fq: In this case, S = 〈β〉, for some β ∈ Fq2 .
Then β and βq are linearly independent over Fq since βq + αβ = 0 and
α /∈ Fq.

Define I1 = 〈βq〉, then I2 = Iq
1 = 〈β〉 and finally I3 = I2⊕〈βq〉 = 〈β, βq〉.

It holds that dim(I3) = 2, hence the previous bound is an equality:
2 = wtR(F) ≥ dim(I3) = 2.

As a consequence of the previous theorem, we may give the following
bound, analogous to the Hartmann-Tzeng bound as it appears in [21, Theo-
rem 2]:

Corollary E.27 (Rank-HT bound). Take integers c > 0, δ > 0 and s ≥ 0, with
δ + s ≤ min{m, n} and d = gcd(c, n) < δ, and let α ∈ Fqrn be such that A =

{α[(i+jc)r] | 0 ≤ i ≤ δ− 2, 0 ≤ j ≤ s} is a linearly independent (over Fqr ) set of
vectors, not necessarily pairwise distinct.

If F ∈ Lqr Fqm [x]/(x[rn] − x) satisfies that A ⊆ T = Z(F), then wtR(F) ≥
δ + s (recall (E.4)). In particular, if C = ρ−1

r (T), with ρr as in Definition E.4, then

dR(C) ≥ δ + s.

Proof. First, since δ + s ≤ n, we have that ds < δs ≤ n, and n/d is the order
of c modulo n. Hence, the elements jcr, for j = 0, 1, 2, . . . , s, are all distinct
modulo rn.

On the other hand, we may assume that A is maximal with the given
structure. That is, there exists 0 ≤ i ≤ δ− 2 with α[(i+(s+1)c)r] /∈ T and there
exists 0 ≤ j ≤ s such that α[(δ−1+jc)r] /∈ T. From the proof, we will see that we
may assume for simplicity that j = 0, and by repeatedly raising to the power
qr, we will also see that we may assume that i = δ− 2.

We will now define a suitable sequence I0, I1, I2, . . . ⊆ Fqrn of Fqr -linear
spaces independent with respect to S = T, and with dimFqr (Ii) ≥ δ + s for

some i ≥ 0. We start by I0 = {0}, and I2i+1 = I2i ⊕ 〈α[(δ−2+(s+1)c)r]〉 and
I2i+2 = I[(n−c)r]

2i+1 , for i = 0, 1, 2, . . . , s.
We see by induction that J1 = I2s+2 is generated by the set

{α[(δ−2+jc)r] | 0 ≤ j ≤ s}.

Next, define J2i+1 = J2i ⊕ 〈α[(δ−1)r]〉 and J2i = J[(n−1)r]
2i−1 , for i = 1, 2, . . . , δ− 1.
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Finally, again by induction we see that J2δ−1 is generated by the set

{α[ir] | 0 ≤ i ≤ δ− 1} ∪ {α[jcr] | 1 ≤ j ≤ s}, (E.6)

whose elements are all distinct by the first two paragraphs in the proof: First,
these two sets are disjoint. If α[jcr] = α[ir], for some 1 ≤ i ≤ δ− 1 and 1 ≤
j ≤ s, then by considering jc, jc + 1, . . . , jc + δ− 2, we see that α[(δ−1)r] ∈ T,
a contradiction. Now, if two elements in the set on the left are equal, then
we see again that α[(δ−1)r] ∈ T. Finally, if two elements in the set on the
right are equal, we may now see that α[(δ−2+(s+1)c)r] ∈ T, which is again a
contradiction.

Since there are δ + s elements in the set (E.6) and they are linearly inde-
pendent by hypothesis, the result follows from the previous theorem.

By taking s = 0 and c = 1, we see that the rank version of the BCH bound
obtained in [3, Proposition 1] is a corollary of the previous bound:

Corollary E.28 (Rank-BCH bound [3, Proposition 1]). Take an integer δ > 0,
with δ ≤ min{m, n}, and let α ∈ Fqrn be such that α, α[r], α[2r], . . . , α[(δ−2)r] are
linearly independent over Fqr .

If F ∈ Lqr Fqm [x]/(x[rn] − x) satisfies that T = Z(F) contains the previous
elements, then wtR(F) ≥ δ (recall (E.4)). In particular, if C = ρ−1

r (T), with ρr as
in Definition E.4, then

dR(C) ≥ δ.

Thanks to the lattice study of the previous two sections and, in particular,
thanks to Proposition E.14, we can see that it is not difficult to find examples
where the rank-HT bound beats the rank-BCH bound, as in the classical case:

Example E.29. Consider r = 1, n = 2m and m = 31, and take a normal basis
α, α[1], . . . , α[61] of Fq62 over Fq. Take c = 5, δ = 4 and s = 3, and the q-root
space

T = (Cq(α)⊕ Cq(α
[1])⊕ Cq(α

[2]))⊕ (Cq(α
[5])⊕ Cq(α

[6])⊕ Cq(α
[7]))

⊕(Cq(α
[10])⊕ Cq(α

[11])⊕ Cq(α
[12]))⊕ (Cq(α

[15])⊕ Cq(α
[16])⊕ Cq(α

[17])).

By Proposition E.14, we have that Cq(α[i]) has {α[i], α[31+i]} as a basis, and
hence has dimension 2. Therefore, the code C = ρ−1

r (T) has dimension
62 − 24 = 38. The rank-BCH bound states that dR(C) ≥ 4, whereas the
rank-HT bound improves it giving dR(C) ≥ 7.
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5.2 Rank-BCH codes from normal bases are generalized Gabidulin
codes

As a consequence of the bound in Corollary E.28, a family of qr-cyclic codes
with a designed minimum rank distance is defined in [3, Section 3], in anal-
ogy with classical BCH codes. By means of difference equations and Casora-
tian determinants, rank-BCH codes are defined in [3] as qr-cyclic codes with
prescribed minimum rank distance and generator polynomial of minimal de-
gree.

We will give an alternative description in terms of qr-cyclotomic spaces,
which will allow us to prove that, when m = n and r and n are coprime,
rank-BCH codes from normal bases are generalized Gabidulin codes, as in
Subsection 2.2, which are MRD.

Definition E.30. Given 1 ≤ δ ≤ m, we say that the qr-cyclic code C(x) over
Fqm is a rank-BCH code of designed minimum rank distance δ if the corre-
sponding qr-root space T over Fqm (see Definition E.4) is

T = Cqr (α) + Cqr (α[r]) + Cqr (α[2r]) + · · ·+ Cqr (α[(δ−2)r]),

where α ∈ Fqrn and α, α[r], α[2r], . . . , α[(δ−2)r] are linearly independent over Fqr .

The following result follows immediately from Corollary E.28:

Proposition E.31. The rank-BCH code C(x) in the previous definition satisfies that

dR(C) ≥ δ.

If m = n and r and n are coprime, the Gabidulin codes Gabk,r(β) defined
using a normal basis (see Subsection 2.2) are rank-BCH codes also using
normal bases, and viceversa, and all of them are MRD codes. Hence the
family of rank-BCH codes include MRD codes. We will use [12, Lemma 2],
which is the following:

Lemma E.32 ( [12, Lemma 2]). If r and n are coprime and α0, α1, . . . , αn−1 ∈ Fqn

are linearly independent over Fq, then they are also linearly independent over Fqr ,
considered as elements in Fqrn .

Theorem E.6. Assume m = n and r and n are coprime. Take a normal basis
α, α[1], . . . , α[n−1] ∈ Fqn = Fqm and 1 ≤ δ ≤ n. Then the corresponding rank-
BCH code C(x), as in Definition E.30, is the generalized Gabidulin code Gabk,r(α)

(see Subsection 2.2), where α = (α, α[r], . . . , α[(n−1)r]) and k = n− δ + 1.

Proof. Since m = n, we have that α ∈ Fqm , and hence Cqr (α[i]) = 〈α[i]〉Fqr ,
for all i = 0, 1, 2, . . . , n− 1. Therefore, the qr-root space T corresponding to
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C(x) is T = 〈α, α[r], . . . , α[(δ−2)r]〉Fqr , whose dimension over Fqr is δ− 1 by the
previous lemma.

Hence, by item 4 in Theorem E.2, the matrix M(α, α[r], . . . , α[(δ−2)r]) is a
parity check matrix of C over Fqm . However, this is also the parity check
matrix of the above mentioned Gabidulin code of dimension k, Hk,r(α), if
k = n− δ + 1 (see Subsection 2.2). Therefore both are equal and the theorem
follows.

6 General Fq-linear skew cyclic codes: Connecting
Hamming-metric cyclic codes and rank-metric skew
cyclic codes

To conclude, we will give some first steps in the general study of Fq-linear
qr-cyclic codes in Fn

qm .
Its main interest for our purposes is that they include both the family of

skew cyclic codes in the rank metric, which are the main topic of this paper,
and the classical family of cyclic codes in the Hamming metric, as we will
prove in the first subsection.

Moreover, as we will see in the second subsection, some Fqm -linear qr-
cyclic codes in the rank metric with m = n actually are obtained from cyclic
codes in the Hamming metric via Fq-linear qr-cyclic codes, which will allow
us to compare their parameters and give a negative criterion of MRD skew
cyclic codes in terms of MDS cyclic codes.

6.1 Hamming-metric cyclic codes are rank-metric skew cyclic
codes

Assume in this subsection that m = n, fix a basis α0, α1, . . . , αn−1 of Fqn over
Fq and define the map E : Fn

q −→ Fn
qn by

E(c0, c1, . . . , cn−1) = (c0α0, c1α1, . . . , cn−1αn−1). (E.7)

This map is one to one, Fq-linear and wtH(c) = wtR(E(c)), where wtH(c)
denotes the Hamming weight of the vector c. Therefore, the codes C ⊆ Fn

q
and E(C) ⊆ Fn

qn behave equally, where we consider the Hamming metric for
C and the rank metric for E(C).

Assume also in this subsection that n and r are coprime and α0, α1, . . . , αn−1
satisfies that αi = α[ir], for i = 0, 1, 2, . . . , n − 1, where α, α[1], . . . , α[n−1] is a
normal basis. In this case, classical cyclic codes correspond to qr-cyclic codes.

Theorem E.7. With the assumptions as in the previous paragraph, an arbitrary
(linear or non-linear) code C ⊆ Fn

q is cyclic if, and only if, the code E(C) ⊆ Fn
qn is

qr-cyclic.
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Moreover, C is Fq-linear if, and only if, so is E(C), and the Hamming-metric
behaviour of C is the same as the rank-metric behaviour of E(C), since wtH(c) =
wtR(E(c)), for all c ∈ Fn

q .

Proof. Let c = (c0, c1, . . . , cn−1) ∈ C and E(c) = (d0, d1, . . . , dn−1) ∈ E(C).
Then

E(cn−1, c0, c1, . . . , cn−2) = (cn−1α, c0α[r], . . . , cn−2α[(n−1)r])

= ((cn−1α[(n−1)r])qr
, (c0α)qr

, . . . , (cn−2α[(n−2)r])qr
) = (dqr

n−1, dqr

0 , . . . , dqr

n−2),

and the result follows, since the linearity claim is trivial from the linearity of
E.

6.2 MRD skew cyclic codes and MDS cyclic codes

We will now relate MRD Fqn -linear qr-cyclic codes in Fn
qn with classical MDS

Fq-linear cyclic codes in Fn
q . We first need some properties of Fq-linear qr-

cyclic codes. The following lemma is proven in the same way as Lemma
E.2:

Lemma E.33. A code C ⊆ Fn
qm is Fq-linear and qr-cyclic if, and only if, C(x)

satisfies that G − H ∈ C(x) and F ⊗ G ∈ C(x), for all F(x) ∈ Lqr Fq[x] and all
G, H ∈ C(x).

Definition E.34. A subset C(x) ⊆ Lqr Fqm [x]/(x[rn] − x) satisfying the condi-
tions in the previous lemma is called an Fq-left ideal.

By Theorem E.7 and Lemma E.33, classical cyclic codes for the Hamming
metric can be seen as Fq-left ideals in Lqr Fqn [x]/(x[rn] − x) for the rank met-
ric, provided that n and r are coprime.

We observe that Fq-left ideals are finitely generated. That is, every Fq-left
ideal is of the form C(x) = (G1, G2, . . . , Gt)Fq , where we define

(G1, G2, . . . , Gt)Fq =

{
t

∑
i=1

Qi ⊗ Gi | Qi(x) ∈ Lqr Fq[x]

}
.

However, not all Fq-left ideals are principal, that is, of the form (G)Fq , for
some G(x) ∈ Lqr Fqm [x]. The following proposition relates the dimension of
an Fq-left ideal and its number of generators. We also describe generators of
the vector space C over Fq as in Theorem E.1:

Proposition E.35. Let C(x) be an Fq-left ideal with C(x) = (G1, G2, . . . , Gt)Fq . It
holds that:
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1. C(x) is generated by x[j]⊗Gi as an Fq-linear vector space, for j = 0, 1, . . . , n−
1 and i = 1, 2, . . . , t. In particular, a basis of C over Fq may be obtained from
the set of vectors

(G[jr]
i,n−j, G[jr]

i,n−j+1, . . . , G[jr]
i,n−j−1),

for the previous i and j, where Gi(x) = Gi,0x + Gi,1x[r] + · · ·+ Gi,n−1x[n−1].

2. The dimension of C (over Fq) satisfies dim(C(x)) ≤ tn.

3. There exist F1, F2, . . . , Fmn ∈ C(x) such that C(x) = (F1, F2, . . . , Fmn)Fq .

Proof. The first item follows from the fact that x[j] ⊗ Gj corresponds to the

vector (G[jr]
i,n−j, G[jr]

i,n−j+1, . . . , G[jr]
i,n−j−1). The second item follows from this first

item, and the third item follows from the fact that dim(C) ≤ mn.

Now we see that classical cyclic codes actually correspond to principal
Fq-left ideals. For that purpose, let the assumptions be as in Theorem E.7
and define the operators L, E : Fq[x]/(xn − 1) −→ Lqr Fqn [x]/(x[rn] − x) as

L( f0 + f1x + · · ·+ fn−1xn−1) = f0x + f1x[r] + · · ·+ fn−1x[(n−1)r], and

E(g0 + g1x + · · ·+ gn−1xn−1) = g0αx + g1α[r]x[r] + · · ·+ gn−1α[(n−1)r]x[(n−1)r],

where fi, gi ∈ Fq, for i = 0, 1, . . . , n− 1.

Proposition E.36. With the assumptions as in Theorem E.7, for all f (x), g(x) ∈
Fq[x] /(xn − 1), it holds that

L( f (x))⊗ E(g(x)) = E( f (x)g(x)). (E.8)

In particular, if [g(x)] denotes the ideal in Fq[x]/(xn − 1) generated by g(x), then

E([g(x)]) = (E(g(x)))Fq . (E.9)

This means that, if C ⊆ Fn
q is cyclic, then E(C)(x) is a principal Fq-left ideal

generated by E(g(x)) if g(x) generates the ideal in Fq[x]/(xn − 1) corresponding
to C.

Proof. If f (x) = f0 + f1x + · · · + fn−1xn−1 and g(x) = g0 + g1x + · · · +
gn−1xn−1, then

L( f (x))⊗ E(g(x)) =
n−1

∑
i=0

(
n−1

∑
j=0

fi−jgj(α
[jr])[(i−j)r]

)
x[ir]

=
n−1

∑
i=0

(
n−1

∑
j=0

fi−jgj

)
α[ir]x[ir] = E( f (x)g(x)),

and Equation (E.8) follows. The second part (E.9) follows immediately from
(E.8).
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On the other hand, if C(x) = (G1, G2, . . . , Gt)Fq , then the Fqm -linear code
generated by C(x) is

C(x)Fqm = (G1, G2, . . . , Gt) = (D),

where D is the greatest common divisor of G1, G2, . . . , Gt in the quotient ring
Lqr Fqm [x]/(x[rn] − x). Therefore, dR(C(x)) ≥ dR((D)), and the qr-root space
T = Z(D) = Z(G1)∩ Z(G2)∩ . . .∩ Z(Gt) may be used to give bounds on the
minimum rank distance of C(x), using for example the bounds in Section 5.

Now we come to the main result in this subsection, where we see that the
Fqn -linear code generated by a classical cyclic code is again principal, with
the same minimal generator and corresponding dimension, but its minimum
rank distance is lower than the minimum Hamming distance of the original
cyclic code. In particular, this gives a negative criterion for MRD skew cyclic
codes in terms of MDS cyclic codes.

Theorem E.8. With the assumptions as in Theorem E.7, if g(x) ∈ Fq[x]/(xn − 1)
is the minimal generator of the Fq-linear cyclic code C ⊆ Fn

q and Ĉ = 〈E(C)〉Fqn ,

then Ĉ is the Fqn -linear qr-cyclic code corresponding to

Ĉ(x) = (E(g(x))).

Moreover, E(g(x)) is the minimal generator of Ĉ(x), and:

1. dR(Ĉ) ≤ dH(C), dimFqn (Ĉ) = dimFq(C).

2. If Ĉ is MRD, then C is MDS.

Proof. It is well-known that the shifted vectors in Fn
q ,

(g0, g1, . . . , gn−k, 0, . . . , 0), (0, g0, g1, . . . , gn−k, 0, . . . , 0), . . . ,

(0, . . . , 0, g0, g1, . . . , gn−k)

constitute a basis of C, where g(x) = g0 + g1x + · · ·+ gn−kxn−k and gn−k 6= 0.
By Proposition E.35 and Proposition E.36, the qr-shifted vectors in Fn

qn ,

(g0α, g1α[r], . . . , gn−kα[(n−k)r], 0, . . . , 0),

(0, g0α[r], g1α[2r], . . . , gn−kα[(n−k+1)r], 0, . . . , 0), . . .

(0, . . . , 0, g0α[(n−k−1)r], g1α[(n−k)r], . . . , gn−kα[(n−1)r])

generate Ĉ as an Fqn -linear vector space. Since gn−k 6= 0, it follows that
these vectors are linearly independent over Fqn . Hence the result follows
from Theorem E.1 and the fact that dH(C) = dR(E(C)) ≥ dR(〈E(C)〉Fqn ) =

dR(Ĉ).
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Example E.37. Consider the repetition cyclic code C ⊆ Fn
q generated by

(1, 1, . . . , 1) and assume r = 1. Then E(C) is the Fq-linear code generated
by (α, α[1], . . . , α[n−1]), and hence the Fqn -linear code generated by E(C) is Ĉ,
also generated by the same vector.

It holds that dimFq(C) = 1, dH(C) = n and C is MDS. On the other hand,
dimFqn (Ĉ) = 1, dR(Ĉ) = n and Ĉ is MRD.

Example E.38. Assume that r = 1 and n is even, and consider the cyclic code
C ⊆ Fn

q generated by (1, 0, 1, 0, . . . , 0) and (0, 1, 0, 1, . . . , 1). Then Ĉ is the
Fqn -linear code generated by (α, 0, α[2], 0, . . . , 0) and (0, α[1], 0, α[3], . . . , α[n−1]).

It holds that dimFq(C) = 2, dH(C) = n/2. On the other hand, dimFqn (Ĉ)

= 2, dR(Ĉ) = n/2. Hence both have the same parameters and none reach the
Singleton bounds for the corresponding metrics. Moreover, the minimal gen-
erator of C is g(x) = 1+ x2 + x4 + · · ·+ xn−2, whereas the minimal generator
of Ĉ is E(g(x)) = αx + α[2]x[2] + α[4]x[4] + · · ·+ α[n−2]x[n−2].
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1. Introduction

Abstract

Error-correcting pairs were introduced as a general method of decoding linear codes
with respect to the Hamming metric using coordinatewise products of vectors, and
are used for many well-known families of codes. In this paper, we define new types of
vector products, extending the coordinatewise product, some of which preserve sym-
bolic products of linearized polynomials after evaluation and some of which coincide
with usual products of matrices. Then we define rank error-correcting pairs for codes
that are linear over the extension field and for codes that are linear over the base field,
and relate both types. Bounds on the minimum rank distance of codes and MRD
conditions are given. Finally we show that some well-known families of rank-metric
codes admit rank error-correcting pairs, and show that the given algorithm general-
izes the classical algorithm using error-correcting pairs for the Hamming metric.

Keywords: Decoding, error-correcting pairs, linearized polynomials, rank
metric, vector products.

MSC: 15B33, 94B35, 94B65.

1 Introduction

Error-correcting pairs were introduced independently by Pellikaan in [19,
20] and by Kötter in [13]. These are pairs of linear codes satisfying some
conditions with respect to the coordinatewise product and a given linear
code, for which they define an error-correcting algorithm with respect to the
Hamming metric in polynomial time.

Linear codes with an error-correcting pair include many well-known fam-
ilies, such as (generalized) Reed-Solomon codes, many cyclic codes (such as
BCH codes), Goppa codes and algebraic geometry codes (see [6, 20, 21]).

Error-correcting codes with respect to the rank metric [8] have recently
gained considerable attention due to their applications in network coding
[25]. In the rank metric, maximum rank distance (MRD) Gabidulin codes,
as defined in [8, 14], have been widely used, and decoding algorithms using
linearized polynomials are given in [8, 14, 16]. A related construction, the
so-called q-cyclic or skew cyclic codes, were introduced by Gabidulin in [8]
for square matrices and generalized independently by himself in [9] and by
Ulmer et al. in [1].

However, more general methods of decoding with respect to the rank met-
ric are lacking, specially for codes that are linear over the base field instead
of the extension field.

The contributions of this paper are organized as follows. In Section 3, we
introduce some families of vector products that coincide with usual products
of matrices for some sizes. One of these products preserves symbolic prod-
ucts of linearized polynomials after evaluation and is the unique product
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with this property for some particular sizes. In Section 4, we introduce the
concept of rank error-correcting pair and give efficient decoding algorithms
based on them. Subsection 4.1 treats linear codes over the extension field,
and Subsection 4.2 treats linear codes over the base field. In Section 5, we
prove that the latter type of rank error-correcting pairs generalize the former
type. In Section 6, we derive bounds on the minimum rank distance and
give MRD conditions based on rank error-correcting pairs. Finally, in Section
7, we study some families of codes that admit rank error-correcting pairs,
showing that the given algorithm generalizes the classical algorithm using
error-correcting pairs for the Hamming metric.

2 Preliminaries

2.1 Notation

Fix a prime power q and positive integers m and n, and fix from now on a
basis α1, α2, . . . , αm of Fqm as a vector space over Fq. Fn

qm denotes the Fqm -
linear vector space of row vectors over Fqm with n components, and Fm×n

q
denotes the Fq-linear vector space of m× n matrices over Fq.

We will also use the following notation. Given a subset A ⊆ Fn
qm , we

denote by 〈A〉Fq and 〈A〉Fqm the Fq-linear and Fqm -linear vector spaces gen-
erated by A, respectively. For an Fqm -linear (respectively Fq-linear) code
C ⊆ Fn

qm (respectively C ⊆ Fn
q ), we denote its dimension over Fqm (respec-

tively over Fq) by dim(C). If C ⊆ Fn
qm or C ⊆ Fm×n

q is Fq-linear, we denote its
dimension over Fq by dimFq(C).

2.2 Rank-metric codes

In the literature, it is usual to consider two types of rank-metric codes: Fqm -
linear codes in Fn

qm , and Fq-linear codes in Fm×n
q .

We will use the following classical matrix representation of vectors in Fn
qm

to connect both types of codes. Let c ∈ Fn
qm , there exist unique ci ∈ Fn

q ,
for i = 1, 2, . . . , m, such that c = ∑m

i=1 αici. Let ci = (ci,1, ci,2, . . . , ci,n) or,
equivalently, c = (c1, c2, . . . , cn) and cj = ∑m

i=1 αici,j. Then we define the
m× n matrix, with coefficients in Fq,

M(c) = (ci,j)1≤i≤m,1≤j≤n. (F.1)

The map M : Fn
qm −→ Fm×n

q is an Fq-linear vector space isomorphism. Unless
it is necessary, we will not write subscripts for M regarding the values m, n,
or the basis α1, α2, . . . , αm (which of course change the map M).

By definition [8], the rank weight of c is wtR(c) = Rk(M(c)), the rank of
the matrix M(c), for every c ∈ Fn

qm . We also define the rank support of c as

232



2. Preliminaries

the row space of the matrix M(c), that is, RSupp(c) = Row(M(c)) ⊆ Fn
q . We

may identify any non-linear or Fq-linear code C ⊆ Fn
qm with M(C) ⊆ Fm×n

q
and write dR(C) = dR(M(C)) for their minimum rank distance [8].

2.3 Hamming-metric codes as rank-metric codes

We briefly discuss how to see Hamming-metric codes as rank-metric codes.
We define the map D : Fn

q −→ Fn×n
q as follows. For every vector c ∈ Fn

q ,
define the matrix

D(c) = diag(c) = (ciδi,j)1≤i≤n,1≤j≤n, (F.2)

that is, the diagonal n × n matrix with coefficients in Fq whose diagonal
vector is c. The map D is Fq-linear and one to one. Moreover, the Hamming
weight of a vector c ∈ Fn

q is wtH(c) = Rk(D(c)).
This gives a way to represent error-correcting codes C ⊆ Fn

q in the Ham-
ming metric as error-correcting codes D(C) ⊆ Fn×n

q in the rank metric, where
the Hamming weight distribution of C corresponds bijectively to the rank
weight distribution of D(C). In particular, the minimum Hamming distance
of C satisfies dH(C) = dR(D(C)).

On the other hand, let φ : C1 −→ C2 be an Fq-linear Hamming-metric
equivalence between Fq-linear codes C1, C2 ⊆ Fn

q . It is well-known that φ is
a monomial map, that is, there exist a1, a2, . . . , an ∈ F∗q and a permutation
σ with φ(c) = (a1cσ(1), a2cσ(2), . . . , ancσ(n)), for all c ∈ C1. We may trivially
extend this map to a rank-metric equivalence φ′ : D(C1) −→ D(C2) by the
same formula. Hence Hamming-metric equivalent codes correspond to rank-
metric equivalent codes.

2.4 Error-correcting pairs for the Hamming metric

We conclude by defining error-correcting pairs (ECPs) for the Hamming met-
ric, introduced independently by Pellikaan in [19, 20] and by Kötter in [13].
Define the coordinatewise product ∗ of vectors in Fn

q by

a ∗ b = (a1b1, a2b2, . . . , anbn),

for all a, b ∈ Fn
q . For two linear subspaces A,B ⊆ Fn

q , we define the linear
subspace A ∗ B = 〈{a ∗ b | a ∈ A, b ∈ B}〉 ⊆ Fn

q .

Definition F.1. Let A,B, C ⊆ Fn
q be linear codes and t a positive integer. The

pair (A,B) is called a t-error-correcting pair (t-ECP) for C if the following
properties hold:

1. A ∗ B ⊆ C⊥.
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2. dim(A) > t.

3. dH(B⊥) > t.

4. dH(A) + dH(C) > n.

In [19, 20] it is shown that, if C has a t-ECP, then it has a decoding algo-
rithm with complexity O(n3) that can correct up to t errors in the Hamming
metric (and therefore, dH(C) ≥ 2t + 1). This algorithm is analogous to the
ones that we will describe in Subsections 4.1 and 4.2. Actually, as we will
see in Subsection 7.1, the algorithm presented in Subsection 4.2 extends the
classical algorithm for Hamming-metric codes.

3 Vector products for the rank metric

In this section, we define and give the basic properties of a family of products
of vectors in Fn

qm , which will play the same role as the coordinatewise product
∗ for vectors in Fn

q .

Definition F.2. We first define the product ? : Fm
qm × Fn

qm −→ Fn
qm in the

following way. For every c ∈ Fm
qm and every d ∈ Fn

qm , we define

c ? d =
m

∑
i=1

cidi,

where d = ∑m
i=1 αidi and di ∈ Fn

q , for all i = 1, 2, . . . , m, and c = (c1, c2, . . . , cm).
Note that the second argument of ? and its codomain are the same, whereas
its first argument is different if m 6= n.

On the other hand, given a map ϕ : Fn
qm −→ Fm

qm , we define the product
?ϕ : Fn

qm ×Fn
qm −→ Fn

qm in the following way. For every c, d ∈ Fn
qm , we define

c ?ϕ d = ϕ(c) ? d =
m

∑
i=1

ϕ(c)idi,

where d = ∑m
i=1 αidi and di ∈ Fn

q , for all i = 1, 2, . . . , m, and ϕ(c) =
(ϕ(c)1, ϕ(c)2, . . . , ϕ(c)m).

Remark F.3. The following basic properties of the previous products hold:

1. The product ? depends on the choice of the basis α1, α2, . . . , αm of Fqm over Fn
q ,

whereas the coordinatewise product ∗ does not.

2. The product ? is Fqm -linear in the first component and Fq-linear in the second
component.
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3. If ϕ is Fq-linear, then the product ?ϕ is Fq-bilinear.

4. On the other hand, if ϕ is Fqm -linear, then the product ?ϕ is Fqm -linear in the
first component and Fq-linear in the second component.

It is of interest to see if two maps give the same product:

Lemma F.4. Given maps ϕ, ψ : Fn
qm −→ Fm

qm , it holds that ?ϕ = ?ψ if, and only if,
ϕ = ψ.

Proof. Fix i and take d ∈ Fn
qm such that di = e1, the first vector in the canon-

ical basis of Fn
q and dj = 0, for j 6= i. Since c ?ϕ d = c ?ψ d, it follows that

ϕ(c)i = ψ(c)i. This is valid for an arbitrary i, hence ϕ(c) = ψ(c), for any
c ∈ Fn

qm , which implies that ϕ = ψ. The reverse implication is trivial.

One of the most important properties of the coordinatewise product ∗
is that it preserves multiplications of polynomials after evaluation. We will
define below a natural product that will preserve symbolic multiplications of
linearized polynomials after evaluation.

Definition F.5 (q-linearized polynomials). A q-linearized polynomial over Fqm

is a polynomial of the form

F = a0x + a1x[1] + · · ·+ adx[d],

where a0, a1, . . . , ad ∈ Fqm and [i] = qi, for all i ≥ 0. We denote by LqFqm [x]
the set of q-linearized polynomials over Fqm .

These polynomials induce Fq-linear maps in any extension field of Fqm .

Definition F.6 (Evaluation map). For a vector b = (b1, b2, . . . , bn) ∈ Fn
qm , we

will define the evaluation map

evb : LqFqm [x] −→ Fn
qm

by evb(F) = (F(b1), F(b2), . . . , F(bn)), for all F ∈ LqFqm [x].

We start by the following interpolation lemma.

Lemma F.7. If n ≤ m, and c ∈ Fn
qm , there exists a unique q-linearized polynomial

F ∈ LqFqm [x] of degree strictly less than qn = [n] such that F(αi) = ci, for all
i = 1, 2, . . . , n.

Proof. Consider the evaluation map evα : LqFqm [x] −→ Fn
qm for the vector

α = (α1, α2, . . . , αn).
Since it is Fqm -linear and the Fqm -linear space of q-linearized polynomials

of degree less than [n] has dimension n, it is enough to prove that, if F(αi) =
0, for i = 1, 2, . . . , n, then F = 0.

By the linearity of F, we have that F(∑i λiαi) = ∑i λiF(αi) = 0, for every
λ1, λ2, . . . , λn ∈ Fq. Therefore, F has qn different roots and degree strictly less
than qn, hence F = 0, and we are done.
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Now we may define the desired products:

Definition F.8. If n ≤ m, we denote by Fc the q-linearized polynomial of
degree less than [n] corresponding to c ∈ Fn

qm .
For c ∈ Fn

qm and n ≤ m, we define the vector ϕn(c) ∈ Fm
qm as ϕn(c)i =

Fc(αi), for i = 1, 2, . . . , m. If n ≥ m, we define ϕn(c) = (c1, c2, . . . , cm).
Finally, we will define the product ? = ?ϕn : Fn

qm × Fn
qm −→ Fn

qm (see
Definition F.2).

Note that if m = n, both definitions of ϕn lead to ϕn(c) = c. Also note
that ϕn depends on the basis α1, α2, . . . , αm for n < m, while it does not for
n ≥ m.

When m = n, the product ? in the previous definition coincides with
the product ? in Definition F.2, whereas if m 6= n, then there is no confu-
sion between these products, since the first argument is different. Hence the
meaning of ? is clear from the context.

In the following remark we show how to perform interpolation using
symbolic multiplications of linearized polynomials. Recall that the symbolic
multiplication of two linearized polynomials F, G ∈ LqFqm [x] is defined as
their composition F ◦ G, which lies in LqFqm [x].

Remark F.9. Interpolation as presented in Lemma F.7 can be performed as follows.
First, we see that the map c ∈ Fn

qm 7→ Fc is Fqm -linear. Therefore,

Fc =
n

∑
i=1

ciFei ,

where c = (c1, c2, . . . , cn) and ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th vector in the
canonical basis of Fn

qm over Fqm , for i = 1, 2, . . . , n. On the other hand, it holds that

Fei =
Gi

Gi(αi)
, where Gi = ∏

β∈〈αj |j 6=i〉
(x− β),

for i = 1, 2, . . . , n. The polynomial Gi/Gi(αi) in this expression is well-defined
since αi does not belong to the Fq-linear vector space generated by the elements αj,
for j 6= i, and the expression in the numerator is a q-linearized polynomial by [15,
Theorem 3.52] and has degree less than qn. However, the complexity of constructing
Gi in this way is of O(qn−1) conventional multiplications. The following expression
shows how to compute Gi with O(n− 1) symbolic multiplications:

Gi = Li,n ◦ Li,n−1 ◦ · · · ◦ L̂i,i ◦ · · · ◦ Li,2 ◦ Li,1,

where Li,1 = x[1] − (α
[1]
1 /α1)x and, for j = 2, 3, . . . , n,

Li,j = x[1] − (L̃i,j(αj)
[1]/L̃i,j(αj))x
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3. Vector products for the rank metric

and L̃i,j = Li,j−1 ◦ · · · ◦ L̂i,i ◦ · · · ◦ Li,2 ◦ Li,1. The notation L̂i,i means that the
polynomial Li,i is omitted.

Next we see the linearity properties of the maps ϕn and hence of the
product ?.

Lemma F.10. For any values of m and n, the map ϕn : Fn
qm −→ Fm

qm is Fqm -linear.

Proof. For n ≥ m, it is clear. For n ≤ m, it is enough to note that Fγc+δd =
γFc + δFd as in the remark above, for all γ, δ ∈ Fqm and all c, d ∈ Fn

qm .

The interesting property of the product ? is that it preserves symbolic
multiplications of linearized polynomials, as we will see now, and in the case
n ≤ m, it is the unique product with this property.

From now on, we denote αn = (α1, α2, . . . , αn) if n ≤ m, and we complete
the vector with other elements if n > m, αn = (α1, α2, . . . , αm, γ1, γ2, . . . , γn).
We will also denote α = (α1, α2, . . . , αm). Observe that ϕn(αn) = α in all cases,
and moreover, ϕn(α

[j]
n ) = α[j], if j < n.

Proposition F.11. The following properties hold:

1. α[j] ? c = c[j], for all c ∈ Fn
qm and all j. In particular,

evb(F ◦ G) = evα(F) ? evb(G),

for all b ∈ Fn
qm and all F, G ∈ LqFqm [x].

2. α
[j]
n ? c = c[j], for all c ∈ Fn

qm and all j < n. In particular,

evb(F ◦ G) = evαn(F) ? evb(G),

for all b ∈ Fn
qm and all F, G ∈ LqFqm [x], where F has degree strictly less than

[n].

3. If n ≤ m, then ? is associative, that is, a ? (b ? c) = (a ? b) ? c, for all
a, b, c ∈ Fn

qm .

Moreover, if n ≤ m, and if � is another product that satisfies item 2 for b = αn
(or item 1 for b = α), then � = ?. In particular, by Lemma F.4, if ?ϕ satisfies this
property, then ϕ = ϕn.

Proof. 1. The first part follows from the following chain of equalities:

α[j] ? c =
m

∑
i=1

α
[j]
i ci =

(
m

∑
i=1

αici

)[j]

= c[j],
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where c = ∑m
i=1 αici and ci ∈ Fn

q , for all i = 1, 2, . . . , m. The second part
follows from the first part, since α[j] = evα(x[j]) and therefore,

evα(x[j]) ? evb(G) = evb(G)[j] = evb(G[j]) = evb(x[j] ◦ G).

Hence the item follows since ? is Fqm -linear in the first component, by
Remark F.3 and Lemma F.10.

2. It follows from item 1, since ϕn(α
[j]
n ) = α[j], if j < n.

3. It follows from item 2, since evαn is surjective (by Lemma F.7) and sym-
bolic multiplication of linearized polynomials is associative.

If n ≤ m, the last part of the proposition follows from the fact that evαn

(or evα) is surjective, which follows from Lemma F.7.

We will now give a matrix representation of the products ?ϕ, and show
that the product ? actually extends the product ∗. For that purpose, we define
the “extension” map E : Fn

q −→ Fn
qn by E = M−1 ◦ D (recall Subsection 2.2

and Subsection 2.3), which is Fq-linear and one to one. In other words,

E(c) = (α1c1, α2c2, . . . , αncn), (F.3)

for all c = (c1, c2, . . . , cn) ∈ Fn
q , which satisfies that wtR(E(c)) = wtH(c). We

gather in the next proposition the relations between the products ?ϕ and ∗,
and the maps M, D and E. The proof is straightforward.

Proposition F.12. For all values of m and n, all maps ϕ : Fn
qm −→ Fm

qm and all
vectors c′ ∈ Fm

qm and c, d ∈ Fn
qm , we have that

M(c′ ? d) = M(c′)M(d) and M(c ?ϕ d) = M(ϕ(c))M(d).

On the other hand, if m = n and a, b ∈ Fn
q , then

D(a ∗ b) = D(a)D(b) and E(a ∗ b) = E(a) ? E(b).

Hence, the product ? : Fm
qm × Fn

qm −→ Fn
qm is just the usual product of

m×m matrices with m× n matrices over Fq, whereas the products ?ϕ are also
products of matrices after expanding the m× n matrix in the first argument
to an m×m matrix over Fq.

4 Rank error-correcting pairs

We will define in this section error-correcting pairs (ECPs) for the rank met-
ric, using the products ? and ?ϕ (recall Definition F.2 and Definition F.8).
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4. Rank error-correcting pairs

However, which inner product to use for defining orthogonality and duality
in Fn

qm , or in Fm×n
q , is not clear. First of all, we will always use the standard

(Fq-bilinear) inner product · in Fn
q . On the other hand, we will first present

ECPs in Fn
qm that use the (Fqm -bilinear) “extension” inner product,

c · d = c1d1 + c2d2 + · · ·+ cndn ∈ Fqm , (F.4)

for all c = (c1, c2, . . . , cn), d = (d1, d2, . . . , dn) ∈ Fn
qm , and afterwards we will

use the (Fq-bilinear) “base” (or “trace”) inner product in Fm×n
q ,

〈C, D〉 = c1 · d1 + c2 · d2 + · · ·+ cm · dm = Tr(CDT) = ∑
i,j

ci,jdi,j ∈ Fq, (F.5)

for C, D ∈ Fm×n
q ,where ci, di ∈ Fn

q , for i = 1, 2, . . . , m, are the rows of C and
D, respectively, and ci,j, di,j ∈ Fq are the entries of C and D, respectively. Tr
denotes the usual trace of a square matrix.

Whereas the product · is the standard Fqm -bilinear product in Fn
qm , the

product 〈, 〉 corresponds to the standard Fq-bilinear product in Fmn
q
∼= Fm×n

q .
A duality theory for the product 〈, 〉 and Fq-linear rank-metric codes is de-
veloped originally in [4] and further in [22], where it is also shown that duals
of Fqm -linear codes with respect to the “extension” inner product are equiva-
lent to duals with respect to the “base” inner product (see [22, Theorem 21]).
We will come back to this in Section 5, where we will relate both kinds of
error-correcting pairs.

Now we will give some relations between the product ? and the previous
inner products that we will use later. If c, d ∈ Fn

qm , d = ∑m
i=1 αidi and di ∈ Fn

q ,
for all i = 1, 2, . . . , m, then we define

c(d) = (c · d1, c · d2, . . . , c · dm) ∈ Fm
qm . (F.6)

Lemma F.13. Given c, d ∈ Fn
qm and a, b ∈ Fm

qm , and given C, D ∈ Fm×n
q and

A, B ∈ Fm×m
q , the following properties hold:

1. M(c(d)) = M(c)M(d)T .

2. 〈B, AT〉 = 〈BT , A〉.

3. (b ? c) · d = b · d(c).

4. 〈BC, D〉 = 〈B, DCT〉 = 〈BT , CDT〉 = 〈BT D, C〉.

5. c(d) = 0 if, and only if, d(c) = 0 if, and only if, RSupp(c) ⊆ RSupp(d)⊥.

6. CDT = 0 if, and only if, DCT = 0 if, and only if, Row(C) ⊆ Row(D)⊥.
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Proof. They are straightforward computations. For item 1, observe that

c(d) = (c · d1, c · d2, . . . , c · dm) =
m

∑
i=1

αi(ci · d1, ci · d2, . . . , ci · dm).

Hence

M(c(d))i,k = ci · dk =
n

∑
j=1

ci,jdk,j =
n

∑
j=1

M(c)i,j M(d)T
j,k.

Therefore, M(c(d)) = M(c)M(d)T .
For item 3,

(b ? c) · d =

(
m

∑
i=1

bici

)
· d =

m

∑
i=1

bi(ci · d) = b · d(c).

The first equivalence in item 5 follows from item 1. Now, the second equiva-
lence follows from the following chain of equivalences:

c(d) = 0⇐⇒ ck · di = 0, ∀i, k⇐⇒ RSupp(c) ⊆ RSupp(d)⊥.

4.1 Using the extension inner product

Denote by D⊥ the dual of an Fqm -linear code D ⊆ Fn
qm with respect to the

extension product ·. Fix Fqm -linear codes A, C ⊆ Fn
qm and B ⊆ Fm

qm such that

B ?A ⊆ C⊥, where B ?A is defined as

B ?A = 〈{b ? a | a ∈ A, b ∈ B}〉Fqm . (F.7)

In many cases, B = ϕ(B′), where ϕ : Fn
qm −→ Fm

qm and B′ ⊆ Fn
qm are both

Fqm -linear. In that case, we denote B′ ?ϕ A = ϕ(B′) ?A.
Observe that, since B is Fqm -linear and ? is Fqm -linear in the first compo-

nent, it holds that 〈{b ? a | a ∈ A, b ∈ B}〉Fqm = 〈{b ? a | a ∈ A, b ∈ B}〉Fq .
We next compute generators of this space:

Proposition F.14. If a1, a2, . . . , ar generate A and b1, b2, . . . , bs generate B, as
Fqm -linear vector spaces, then the vectors

bi ? (αlaj),

for 1 ≤ i ≤ s, 1 ≤ j ≤ r and 1 ≤ l ≤ m, generate B ?A as an Fqm -linear space.

In the case B = ϕ(B′) and b′1, b′2, . . . , b′s generate B′ as an Fqm -linear
space, then the elements b′i ?ϕ (αlaj) generate B′ ?ϕ A as an Fqm -linear space.

Regarding the dimension of B ?A (or B ?ϕA), that is, how many of the el-
ements bi ? (αlaj) are linearly independent, the next example shows that any
number may be possible in the case n ≤ m, where the previous proposition
says that an upper bound in the general case is min{dim(A)dim(B)m, n}:
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4. Rank error-correcting pairs

Example F.15. Assume that n ≤ m, fix 1 ≤ t ≤ n, and define a = (α1, α2, . . . , αn) ∈
Fn

qm and b = a + a[1] + · · · + a[t−1] ∈ Fn
qm . Let γ ∈ Fqm be such that

γ, γ[1], . . . , γ[t−1] are pairwise distinct, and write γi = γ[i], for i = 0, 1, . . . , t−
1. Let A and B be the Fqm -linear vector spaces generated by a and b, respec-
tively. By Proposition F.11, item 2, we have that

b ? (γja) =
t−1

∑
i=0

a[i] ? (γja) = γ
j
0a + γ

j
1a[1] + · · ·+ γ

j
t−1a[t−1] ∈ B ?A,

for j = 0, 1, 2, . . . , t− 1, and these elements are linearly independent over Fqm ,

since the coefficients γ
j
i of the vectors a[i] form a Vandermonde matrix. Fur-

thermore, B ?A is contained in the subspace generated by a, a[1], . . . , a[t−1],
hence they are equal. Therefore, dim(A) = dim(B) = 1, whereas dim(B ?
A) = t.

Let d ∈ Fn
qm and define

K(d) = {a ∈ A | (b ? a) · d = 0, ∀b ∈ B}.

Then K(d) is Fq-linear and the condition defining it may be verified just on a
basis of B as Fqm -linear vector space. Observe that (precomputing the values
ϕ(b′), where the vectors b′ are in a basis of B′, in the case B = ϕ(B′)), we
can efficiently verify whether a ∈ K(d). On the other hand, if L ⊆ Fn

q is a
linear subspace, define

A(L) = {a ∈ A | RSupp(a) ⊆ L⊥},

as in [11, 12]. We briefly connect this definition with the so-called rank-
shortened codes in [18, Definition 6], where AL⊥ = A ∩ V⊥L and VL = L ⊗
Fqm is defined as the Fqm -linear vector space in Fn

qm generated by L:

Lemma F.16. It holds that A(L) = AL⊥ . In particular, it is an Fqm -linear space.

Proof. Fix a basis v1, v2, . . . , vw of L, and take a = ∑m
i=1 αiai ∈ A, where

ai ∈ Fn
q , for i = 1, 2, . . . , m. The result follows from the following chain of

equivalent conditions

RSupp(a) ∈ L⊥ ⇐⇒ ai ∈ L⊥, ∀i⇐⇒

ai · vj = 0, ∀i, j⇐⇒ a · vj = 0, ∀j⇐⇒ a ∈ V⊥L .

The following properties are the basic tools for the decoding algorithm of
error correcting pairs:

Proposition F.17. Let r = c + e, where c ∈ C and wtR(e) ≤ t. Define also
L = RSupp(e) ⊆ Fn

q . The following properties hold:
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1. K(r) = K(e).

2. A(L) ⊆ K(e).

3. If t < dR(B⊥), then A(L) = K(e). In this case, K(e) is Fqm -linear.

Proof. 1. It follows from B ?A ⊆ C⊥.

2. Let a ∈ A(L). It follows from the definitions (recall (F.6)) or Lemma
F.13 that e(a) = 0. Hence, by that lemma, (b ? a) · e = b · e(a) = 0, for
all b ∈ B. Thus a ∈ K(e).

3. By the previous item, we only need to prove that K(e) ⊆ A(L).
Let a ∈ K(e). It follows from Lemma F.13 that e(a) ∈ B⊥. More-
over, since M(e(a)) = M(e)M(a)T by the same lemma, it holds that
wtR(e(a)) ≤ wtR(e) ≤ t.

Let a = ∑m
i=1 αiai, with ai ∈ Fn

q , for i = 1, 2, . . . , m. Since t < dR(B⊥), it
follows that e(a) = 0 or, in other words, ai · e = 0, which implies that
ai ∈ L⊥, for all i = 1, 2, . . . , m, and therefore, RSupp(a) ⊆ L⊥.

We now come to the definition of t-rank error-correcting pairs of type I,
where we use the extension inner product ·.

Definition F.18. Given the Fqm -linear codes A, C ⊆ Fn
qm and B ⊆ Fm

qm , the
pair (A,B) is called a t-rank error-correcting pair (t-RECP) of type I for C if
the following properties hold:

1. B ?A ⊆ C⊥.

2. dim(A) > t.

3. dR(B⊥) > t.

4. dR(A) + dR(C) > n.

If B = ϕ(B′), where ϕ and B′ ⊆ Fn
qm are Fqm -linear, we say that (A,B′) is

a t-RECP of type I for ϕ and C, and if ϕ = ϕn, we will call it simply a t-RECP
of type I for C.

In order to describe a decoding algorithm for C using (A,B), we will
need [18, Proposition 17], slightly modified (the proof is the same), which
basically states that error correction is equivalent to erasure correction if the
rank support of the error is known:
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4. Rank error-correcting pairs

Lemma F.19 ( [18]). Assume that c ∈ C and r = c + e, where RSupp(e) ⊆ L and
dim(L) < dR(C). Then, c is the only vector in C such that RSupp(r− c) ⊆ L.

Moreover, if G is a generator matrix of L⊥, then c is the unique solution in C
of the system of equations rGT = xGT , where x is the unknown vector. And if H
is a parity check matrix for C over Fqm , then e is the unique solution to the system
rHT = xHT with RSupp(x) ⊆ L.

Now we present, in the proof of the following theorem, a decoding algo-
rithm for C using (A,B).

Theorem F.1. If (A,B) is a t-RECP of type I for C, then C verifies that dR(C) ≥
2t+ 1 and admits a decoding algorithm able to correct errors e ∈ Fn

qm with wtR(e) ≤
t of complexity O(n3) over the field Fqm .

Proof. We will explicitly describe the decoding algorithm. As a consequence,
we will derive that dR(C) ≥ 2t + 1. Assume that the received codeword is
r = c + e, with c ∈ C, RSupp(e) = L and dim(L) ≤ t.

Compute the space K(r), which is equal to K(e) by the first condition of
t-RECP and Proposition F.17, item 1. Observe that K(r) can be described by
a system of O(n) linear equations by Proposition F.14.

By the third condition of t-RECP and Proposition F.17, we have that
A(L) = K(e) = K(r). Therefore, we have computed the space A(L).

By the second condition of t-RECP and Lemma F.16, we have that A(L) =
A ∩ V⊥L 6= 0, where VL = L ⊗ Fqm , and therefore we may take a nonzero
a ∈ A(L). Define L′ = RSupp(a)⊥. Since a ∈ A(L), we have that L ⊆ L′.

Now, by the fourth condition of t-RECP, we have that

dim(L′) = n−wtR(a) ≤ n− dR(A) < dR(C).

Hence, by Lemma F.19, we may compute e or c by solving a system of linear
equations using a generator matrix G of L′⊥, or a parity check matrix H of
C, respectively. This has complexity O(n3) over Fqm .

Finally, assume that dR(C) ≤ 2t and take two different vectors c, c′ ∈ C
and e, e′ ∈ Fn

qm such that r = c + e = c′ + e′ and wtR(e), wtR(e′) ≤ t. The
previous algorithm gives as output both vectors e and e′, but the output is
unique, hence e = e′. This implies that c = c′, contradicting the hypothesis.
Therefore, dR(C) ≥ 2t + 1.

If m = n, then the order of complexity over Fq increases, although it still
is polynomial in n. On the other hand, if m is considerably smaller than n,
then the complexity is O(n3) also over Fq.

Gabidulin codes [8] have decoding algorithms of cubic complexity (see for
instance [8]), and an algorithm of quadratic complexity was obtained in [16].
As we will see in Section 7, the previous decoding algorithm may be applied
to a wider variety of rank-metric codes.
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Remark F.20. Observe that, from the proof of the previous theorem, if the pair
(A,B) satisfies the first three properties in Definition F.18, then we may use it to
find a subspace L′ ⊆ Fn

q that contains the rank support of the error vector.
Therefore, we say in this case that (A,B) is a t-rank error-locating pair of type I

for C.

4.2 Using the base inner product

Now we turn to the case where we use the base inner product 〈, 〉. We will
denote by D∗ the dual of an Fq-linear code D ⊆ Fm×n

q with respect to 〈, 〉.
We will use the same notation as in the previous subsection, although

now A, C ⊆ Fm×n
q and B ⊆ Fm×m

q are Fq-linear, and BA ⊆ C∗, where

BA = 〈{BA | A ∈ A, B ∈ B}〉Fq . (F.8)

Observe that M(B′ ?A′) = M(B′)M(A′), if A′,B′ ⊆ Fn
qm are Fq-linear vector

spaces, by Proposition F.12. Generators of the space (F.8) are now simpler to
compute:

Proposition F.21. If A1, A2, . . . , Ar generate A and B1, B2, . . . , Bs generate B, as
Fq-linear vector spaces, then the matrices

Bi Aj,

for 1 ≤ i ≤ s and 1 ≤ j ≤ r, generate BA as an Fq-linear vector space.

Let D ∈ Fm×n
q and define

K(D) = {A ∈ A | 〈BA, D〉 = 0, ∀B ∈ B}.

Then K(D) is again Fq-linear and the condition may be verified just on a
basis of B as Fq-linear vector space. On the other hand, if L ⊆ Fn

q is a linear
subspace, we define in the same way

A(L) = {A ∈ A | Row(A) ⊆ L⊥},

which is Fq-linear (recall that we use the classical product · in Fn
q ), since we

still have that M−1(A(L)) = M−1(A) ∩ V⊥L , VL = L⊗Fqm .
The following properties still hold:

Proposition F.22. Let R = C + E, where C ∈ C and Rk(E) ≤ t. Define also
L = Row(E) ⊆ Fn

q . Then

1. K(R) = K(E).

2. A(L) ⊆ K(E).
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3. If t < dR(B∗), then A(L) = K(E).

Proof. 1. It also follows from BA ⊆ C∗.

2. Take A ∈ A(L). Hence by definition or Lemma F.13, it holds that
EAT = 0, since Row(E) = L and Row(A) ⊆ L⊥. Therefore, for every
B ∈ B, we have that

〈BA, E〉 = 〈B, EAT〉 = 0,

by Lemma F.13. Then item 2 follows.

3. By the previous item, we only need to prove that K(E) ⊆ A(L).
Let A ∈ K(E). It follows from Lemma F.13 that EAT ∈ B∗. Moreover,
it holds that Rk(EAT) ≤ Rk(E) ≤ t. Since t < dR(B∗), it follows that
EAT = 0, which implies that Row(A) ∈ L⊥.

We now define t-rank error-correcting pairs of type II, where we use the
base product 〈, 〉, in contrast with the t-RECP of last subsection.

Definition F.23. Given the Fq-linear codes A, C ⊆ Fm×n
q and B ⊆ Fm×m

q , the
pair (A,B) is called a t-rank error-correcting pair (t-RECP) of type II for C if
the following properties hold:

1. BA ⊆ C∗.

2. dimFq(A) > mt.

3. dR(B∗) > t.

4. dR(A) + dR(C) > n.

The same decoding algorithm, with the corresponding modifications, works
in this case with polynomial complexity:

Theorem F.2. If (A,B) is a t-RECP of type II for C, then C satisfies that dR(C) ≥
2t + 1 and admits a decoding algorithm able to correct errors E ∈ Fm×n

q with
Rk(E) ≤ t with polynomial complexity in (m, n) over the field Fq.

Proof. The proof is the same as in Theorem F.1, with the corresponding mod-
ifications. Note that in this case, if L = Row(E) and VL = L ⊗ Fqm , then
dimFq(VL) = m dim(L) ≤ mt. On the other hand, M−1(A(L)) = M−1(A) ∩
VL, as in the previous subsection. Hence the condition dimFq(A) > mt en-
sures that A(L) 6= 0.

Remark F.24. As in Remark F.20, if the pair (A,B) satisfies the first three properties
in Definition F.23, then we may use it to find a subspace L′ ⊆ Fn

q that contains the
rank support of the error vector. We say in this case that (A,B) is a t-rank error-
locating pair of type II for C.
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5 The connection between the two types of RECPs

So far we have three types of error-correcting pairs: classical ECPs for linear
codes in Fn

q that correct errors in the Hamming metric, ECPs for Fqm -linear
codes in Fn

qm (RECPs of type I), and ECPs for general Fq-linear codes in Fn
qm or

Fm×n
q (RECPs of type II), where the two latter types correct errors in the rank

metric. In this section we will see that RECPs of type II generalize RECPs
of type I. In Section 7 we will see that, in some way, RECPs of type II also
generalize ECPs for the Hamming metric.

We will need the following:

Definition F.25. Given the basis α1, α2, . . . , αm of Fqm over Fq, we say that it
is orthogonal (or dual) to another basis α′1, α′2, . . . , α′m if

Tr(αiα
′
j) = δi,j,

for all i, j = 1, 2, . . . , m. Here, Tr denotes the trace of the extension Fq ⊆ Fqm .

It is well-known that, for a given basis α1, α2, . . . , αm, there exists a unique
orthogonal basis (see for instance the discussion after [15, Definition 2.50]).
We will denote it as in the previous definition: α′1, α′2, . . . , α′m. In particular,
the dual basis of α′1, α′2, . . . , α′m is α1, α2, . . . , αm.

Now denote by Mα, Mα′ : Fn
qm −→ Fm×n

q the matrix representation maps
(recall (F.1)) associated to the previous bases, respectively. The following
lemma is [22, Theorem 21]:

Lemma F.26 ( [22]). Given an Fqm -linear code C ⊆ Fn
qm , it holds that

Mα′(C⊥) = Mα(C)∗.

On the other hand, we have the following:

Lemma F.27. For every Fqm -linear code D ⊆ Fn
qm , it holds that

dR(D⊥) = dR(Mα(D)∗) = dR(Mα′(D)∗).

Proof. It follows from the fact that dR(D⊥) = dR(Mα′(D⊥)) = dR(Mα(D)∗),
and analogously interchanging the roles of α and α′.

Therefore, we may now prove that RECPs of type II generalize RECPs of
type I:

Theorem F.3. Take Fqm -linear codes A, C ⊆ Fn
qm and B ⊆ Fm

qm . If (A,B) is a
t-RECP of type I for C (in the basis α), then (Mα(A), Mα(B)) is a t-RECP of type
II for Mα′(C).

246



6. MRD codes and bounds on the minimum rank distance

Proof. Using Lemma F.26 and Proposition F.12, we obtain that

Mα(B)Mα(A) = Mα(B ?A) ⊆ Mα(C⊥) = Mα′(C)∗,

and the first condition is satisfied.
The second condition follows from the fact that dimFq(A) = m dimFqm (A),

and Mα is an Fq-linear vector space isomorphism.
Finally, the third condition follows from Lemma F.27 and the fourth con-

dition remains unchanged. Hence the result follows.

Observe that in the same way, t-rank error-locating pairs of type II gener-
alize t-rank error-locating pairs of type I.

6 MRD codes and bounds on the minimum rank
distance

In this section we will give bounds on the minimum rank distance of codes
that follow from the properties of rank error-correcting pairs, in a similar way
to the bounds in [21]. We will also see that, in some cases, MRD conditions
on two of the codes imply that the third is also MRD.

We will fix Fq-linear codes A, C ⊆ Fm×n
q and B ⊆ Fm×m

q . Due to Lemmas
F.26 and F.27, and Proposition F.12, the results in this section may be directly
translated into results where we consider the “extension” inner product · and
Fqm -linear codes in Fn

qm .
We will make use of the following consequence of the Singleton bound:

Lemma F.28. For every Fq-linear code D ⊆ Fm×n
q it holds that

dR(D) + dR(D∗) ≤ n + 2.

Proof. The Singleton bound implies that

dimFq(D)/m ≤ n− dR(D) + 1, and dimFq(D∗)/m ≤ n− dR(D∗) + 1.

Adding both inequalities up and using that dimFq(D) + dimFq(D∗) = mn,
the result follows.

Proposition F.29. Assume that BA ⊆ C∗. If dR(A∗) > a > 0 and dR(B∗) > b >
0, then dR(C) ≥ a + b.

Proof. Take C ∈ C and A ∈ A, and define L = Row(C) ⊆ Fn
q . By Lemma

F.13, we have that
0 = 〈BA, C〉 = 〈BT , ACT〉,

for all B ∈ B and all A ∈ A, which means that the Fq-linear space A(C) =
{ACT | A ∈ A} ⊆ (BT)∗, and hence dR(A(C)) > b.
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Let G be a t× n generator matrix over Fq of L (where t = Rk(C)). Taking
a subset of rows of C that generate L, we see that A(C) is Fq-linearly iso-
morphic and rank-metric equivalent to A1 = {AGT | A ∈ A} ⊆ Fm×t

q . Take
D ∈ A∗1 . For every A ∈ A, it holds that

〈A, DG〉 = 〈AGT , D〉 = 0,

by Lemma F.13. Therefore, DG ∈ A∗. Moreover, Rk(D) = Rk(DG) since G
is full rank, and hence Rk(D) > a. Therefore, dR(A∗1) > a. Together with
dR(A1) > b and the previous lemma, we obtain that

a + 1 + b + 1 ≤ dR(A1) + dR(A∗1) ≤ t + 2,

that is, t ≥ a + b, and the result follows.

We obtain the following corollary on MRD codes:

Corollary F.30. Assume that n ≤ m (otherwise, take transposed matrices), dR(A) =
n− t, dimFq(A) = m(t + 1), dR(B) = m− t + 1 and dimFq(B) = mt. Then, for
all D ⊆ (BA)∗, it holds that dR(D) ≥ 2t + 1 and (A,B) is a t-RECP of type II for
D.

Proof. A and B are MRD codes, since their minimum rank distance attains
the Singleton bound. By [4, Theorem 5.5] (see also [22, Corollary 41]), A∗ and
B∗ are also MRD, which implies that

dR(A∗) > t + 1, and dR(B∗) > t.

By the previous proposition, it holds that dR(D) ≥ 2t + 1. We see that the
properties of RECPs of type II are satisfied, and the result follows.

Now we obtain bounds on dR(A) from bounds on dR(B∗) and dR(C∗):

Proposition F.31. Assume that BA ⊆ C∗. If dR(B∗) > b > 0 and dR(C∗) > c >
0, then dR(A) ≥ b + c.

Proof. The proof is analogous to the proof of Proposition F.29. In this case,
we fix A ∈ A, with L = Row(A), t = Rk(A), and consider A(C) = {ACT |
C ∈ C}. The rest of the proof follows the same lines, interchanging the roles
of A and C, and using the fact that 〈BA, C〉 = 〈BTC, A〉, from Lemma F.13,
and dR(B∗) = dR((BT)∗).

Again, we may give the following corollary on MRD codes:

Corollary F.32. Assume that BA ⊆ C∗ and n ≤ m. If dR(C) = 2t+ 1, dimFq(C) =
m(n − 2t) and (A,B) is a t-RECP of type II for C, then dR(A) ≥ n − t and
mt < dimFq(A) ≤ m(t + 1). If dimFq(A) is a multiple of m (in particular, if
M−1(A) is Fqm -linear), then A is MRD.
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Proof. By the properties of RECPs of type II, we have that dR(B∗) > t, and
since C is MRD, then C∗ is also MRD and we have that dR(C∗) = n− 2t + 1.
Therefore, dR(A) ≥ n − t by the previous proposition. By the properties
of RECPs of type II, dimFq(A) > mt, and we are done. The last statement
follows from the Singleton bound for A.

We now turn to a bound analogous to [21, Proposition 3.1]. The BCH
bound on the minimum Hamming distance of cyclic codes is generalized
by the Hartmann-Tzeng bounds [10] and further generalized by the Roos
bound [23, 24]. The next proposition is the rank-metric equivalent of the
Roos bound [23, 24] for the Hamming metric, as mentioned in [7, Proposition
5].

Proposition F.33. Assume the following properties for a, b > 0:

(1) BA ⊆ C∗, (2) dimFq(A) > ma, (3) dR(B∗) > b,

(4) dR(A) + a + b > n, and (5) dR(A∗) > 1.

Then it holds that dR(C) > a + b.

Proof. Take C ∈ C and let L = Row(C) ⊆ Fn
q and t = Rk(C). Conditions (1),

(3) and (5) imply that t > b by Proposition F.29.
Assume that b < t ≤ a + b. Take linear subspaces L−,L+,U ⊆ Fn

q such
that L− ⊆ L ⊆ L+, L+ = U ⊕ L−, b = dim(L−) and a + b = dim(L+).
Since m dim(U ) = ma < dimFq(A) by condition (2), we have that A(U ) 6= 0,
and therefore there exists a non-zero A ∈ A with Row(A) ⊆ U⊥.

It holds that every row in C is in L+. Since the rows in A are in U⊥, it
holds that ACT = ANT , where N is obtained from C by substituting every
row by its projection from U ⊕ L− to L−.

Therefore Rk(ACT) ≤ Rk(N) ≤ dim(L−) = b, but ACT ∈ (BT)∗ by
condition (1) and Lemma F.13, and hence ACT = 0 by condition (3). This
means that Row(A) ⊆ L⊥− ∩ U⊥ = L⊥+. Thus, Rk(A) ≤ n− a− b < dR(A),
which is absurd by condition (4), since A 6= 0. We conclude that t > a + b
and we are done.

Taking a = b = t for some t > 0, where a and b are as in the previous
proof, we obtain the following particular case:

Corollary F.34. For all Fq-linear codes D ⊆ (BA)∗ such that dimFq(A) > mt,
dR(B∗) > t, dR(A) > n− 2t and dR(A∗) > 1, it holds that dR(D) ≥ 2t + 1 and
(A,B) is a t-RECP of type II for D.

Observe that the previous result states that, if some conditions on A and
B hold, then they form a t-RECP of type II for all Fq-linear codes contained
in (BA)∗. That is, we have found a t-rank error-correcting algorithm for all
Fq-linear subcodes of (BA)∗.
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7 Some codes with a t-RECP

In this section, we study families of codes that admit a t-RECP of some type.

7.1 Hamming-metric codes with ECPs

Take Fq-linear codes A,B, C ⊆ Fn
q such that (A,B) is a t-ECP for C in the

Hamming metric. We will see that the algorithm presented in Theorem F.2
is actually an extension of the decoding algorithm in the Hamming metric
using t-ECPs [19, 20]. We observe the following (recall the definition of D in
(F.2)):

Remark F.35. For all a, b ∈ Fn
q , it holds that

a · b = 〈D(a), D(b)〉.

Moreover, it holds that
D(B)D(A) ⊆ D(C)∗.

Therefore, from the previous remark and the properties of D, the Fq-linear
codes D(A), D(B), D(C) ⊆ Fn×n

q satisfy the following conditions:

1. D(B)D(A) ⊆ D(C)∗.

2. dimFq(D(A)) > t.

3. dR(D(B)∗) = 1.

4. dR(D(A)) + dR(D(C)) > n.

That is, (D(A), D(B)) satisfy the same conditions as t-RECPs of type II for
D(C), except that conditions 2 and 3 are weakened. However, the previous
conditions are enough to correct any error D(e) ∈ Fn×n

q , where e ∈ Fn
q and

wtH(e) ≤ t,
Assume the received vector is R = D(c)+ D(e), with c ∈ C and wtH(e) ≤

t. Correcting the diagonal of R = D(c) + D(e) for the Hamming metric is
the same as correcting the matrix R = D(c) + D(e) itself for the rank metric.
We will next show that the algorithm in Theorem F.2 is exactly the same as
the algorithm for ECPs in the Hamming metric.

Define I ⊆ {1, 2, . . . , n} as the Hamming support of e = (e1, e2, . . . , en) ∈
Fn

q , that is, I = HSupp(e) = {i ∈ {1, 2, . . . , n} | ei 6= 0}, and define

KH(e) = {a ∈ A | (b ∗ a) · e = 0, ∀b ∈ B}, and

A(I) = {a ∈ A | HSupp(a) ⊆ Ic},
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where Ic denotes the complementary of I. It holds that Row(D(e)) = LI ⊆
Fn

q , the space generated by the vectors ei in the canonical basis, for i ∈ I.
Therefore, by Remark F.35, the properties of D, Proposition F.12 and the fact
that L⊥I = LIc , it holds that

K(R) = K(D(e)) = D(KH(e)) and (D(A))(LI) = D(A(I)).

Moreover, since A(I) = KH(e) by the properties of ECPs in the Hamming
metric, we also have that

K(R) = D(KH(e)) = D(A(I)) = (D(A))(LI).

Hence, computingK(R) implies computing (D(A))(LI). Finally, sinceA(I) 6=
0 by the properties of ECPs, we have that (D(A))(LI) 6= 0. The rest of the
algorithm goes in the same way as in Theorem F.2. That is, the decoding
algorithm in Theorem F.2 actually extends the decoding algorithm given by
ECPs in the Hamming metric.

7.2 Gabidulin codes

Gabidulin codes, introduced in [8], are a well-known family of MRD Fqm -
linear codes in Fn

qm , when n ≤ m. In [14], a generalization of these codes is
given, also formed by MRD codes.

Fix n ≤ m. They can be defined as follows. For each b = (b1, b2, . . . , bn) ∈
Fn

qm , where b1, b2, . . . , bn are linearly independent over Fq, each k = 1, 2, . . . , n
and each integer r such that r and m are coprime, we define the (generalized)
Gabidulin code of dimension k in Fn

qm as

Gabk,m,n(r, b) = {(F(b1), F(b2), . . . , F(bn)) | F ∈ Lq,r,kFqm [x]},

where Lq,r,kFqm [x] denotes the Fqm -linear vector space of q-linearized poly-
nomials of the form

F(x) = a0x + a1x[r] + a2x[2r] + a3x[3r] + · · ·+ ak−1x[(k−1)r],

for some a0, a1, . . . , ak−1 ∈ Fqm . Observe that classical Gabidulin codes as
defined in [8] are obtained by setting r = 1. Also observe that, for any
invertible matrix P ∈ Fn×n

q , it holds that

Gabk,m,n(r, b)P = Gabk,m,n(r, bP),

and hence Fqm -linearly rank-metric equivalent codes to Gabidulin codes are
again Gabidulin codes.

The following lemma follows from Proposition F.11:
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Lemma F.36. For every positive integers k, l with k + l − 1 ≤ n, it holds that

Gabk,m,m(r, α) ? Gabl,m,n(r, b) = Gabk+l−1,m,n(r, b).

In the case r = 1, it holds that

Gabk,m,n(1, αn) ? Gabl,m,n(1, b) = Gabk+l−1,m,n(1, b).

On the other hand, for r = 1 and the maps ϕn, the following lemma
follows from the definitions:

Lemma F.37. It holds that

ϕn(Gabk,m,n(1, αn)) = Gabk,m,m(1, α).

With these two lemmas, we can prove that Gabidulin codes have t-RECP
of type I. Recall from [14] that

Gabk,m,n(r, b)⊥ = Gabn−k,m,n(r, b′),

for some b′ ∈ Fn
qm that can be computed from b.

Theorem F.4. If t > 0, A = Gabt+1,m,n(r, b), B = Gabt,m,m(r, α) and C =
Gab2t,m,n(r, b)⊥, then (A,B) is a t-RECP of type I for C. In the case r = 1, we
may take B = Gabt,m,n(r, αn).

Proof. The first condition follows from Lemma F.36. On the other hand,
dimFqm (A) = t + 1, so the second condition follows. The third condition is
trivial, and for the case r = 1 and B = Gabt,m,n(1, αn) it follows from Lemma
F.37. Finally, the fourth condition follows from the following computation:

dR(A) + dR(C) = n− t + 2t + 1 = n + t + 1,

and the theorem follows.

We see that dR(A) = n − t > n − 2t. Hence, the pair (Mα(A), Mα(B)),
with notation as in Section 5, can be used by Corollary F.34 to efficiently cor-
rect any error of rank at most t for every Fq-linear subcode of a (generalized)
Gabidulin code. Such efficient decoding algorithms seem not to have been
obtained yet.

Corollary F.38. Let t,A,B and C be as in the previous theorem. Then, for every
Fq-linear subcode D ⊆ C, the pair (Mα(A), Mα(B)) is a t-RECP of type II for
Mα′(D).

Proof. It follows from the previous theorem, Theorem F.3 and Corollary F.34.

On the other hand, decoding algorithms for generalized Gabidulin codes
with r 6= 1 seem to have been obtained only in [14], also of cubic complexity.
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7.3 Skew cyclic codes

Skew cyclic codes (or qr-cyclic codes) play the same role as cyclic codes in
the theory of error-correcting codes for the rank metric. They were originally
introduced in [8] for r = 1 and m = n, and further generalized in [9] for r = 1
and any m and n, and for any r in the work by Ulmer et al. [1, 2]. In this
subsection we will only treat the case r = 1.

Assume that n = sm is a multiple of m. We will see in this subsection that,
in that case, some Fqm -linear q-cyclic codes have rank error-locating pairs of
type I, in analogy to the ideas in [6]. We say that an Fqm -linear code C ⊆ Fn

qm

is q-cyclic if the q-shifted vector

(cq
n−1, cq

0, cq
1, . . . , cq

n−2)

lies in C, for every c = (c0, c1, . . . , cn−1) ∈ C. As in [17], we say that an Fq-
linear subspace T ⊆ Fqn is a q-root space (over Fqm ) if it is the root space in
Fqn of a q-linearized polynomial in LqFqm [x].

By [17, Theorem 3], Fqm -linear q-cyclic codes are codes in Fn
qm with a parity

check matrix over Fqn of the form

M(β1, β2, . . . , βn−k) =


β1 β

[1]
1 β

[2]
1 . . . β

[n−1]
1

β2 β
[1]
2 β

[2]
2 . . . β

[n−1]
2

...
...

...
. . .

...
βn−k β

[1]
n−k β

[2]
n−k . . . β

[n−1]
n−k

 ,

where β1, β2, . . . , βn−k is a basis of T over Fq, for some q-root space T . More-
over by [17, Corollary 2], Fqm -linear q-cyclic codes are in bijection with q-root
spaces over Fqm .

The next bound, which is given in [17, Corollary 4], is an extension of the
rank-metric version of the BCH bound (by setting w = 0 and c = 1) found
in [2, Proposition 1]:

Lemma F.39 (Rank-HT bound [17]). Let c > 0, δ > 0 and w ≥ 0 be integers
with δ + w ≤ min{m, n} and d = gcd(c, n) < δ, and α ∈ Fqn be such that the set
A = {α[i+jc] | 0 ≤ i ≤ δ− 2, 0 ≤ j ≤ w} is a linearly independent set of vectors.

If C is the Fqm -linear q-cyclic code corresponding to the q-root space T and
A ⊆ T , then dR(C) ≥ δ + w.

To use it, we need to deal with normal bases. First, it is well-known
[15] that the orthogonal (or dual) basis of a normal basis α, α[1], . . . , α[n−1] ∈
Fqn over Fq is again a normal basis β, β[1], . . . , β[n−1] ∈ Fqn . Define α =

(α, α[1], . . . , α[n−1]) and β = (β, β[1], . . . , β[n−1]). Then it holds that

α[i] · β[j] = Tr(α[i]β[j]) = δi,j
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by definition. On the other hand, for a subset I ⊆ {1, 2, . . . , n}, define the
matrix

Mα(I) =M(α[i] | i ∈ I),

and similarly for β.
Define the Fqm -linear codes A,B ⊆ Fn

qm as the subfield subcodes of the
codes in Fn

qn with generator matrices Mα(I) and Mα(J), for some subsets
I, J ⊆ {1, 2, . . . , n}, respectively.

In order to obtain q-cyclic codes, we will assume that the space generated
by {α[i] | i ∈ I} is a q-root space, and similarly for J. Due to the cyclotomic
space description of q-root spaces in [17, Proposition 2], this holds if the
following condition holds: if i ∈ I, then i + m ∈ I (modulo n), and similarly
for J.

Define the Fqm -linear q-cyclic code C ⊆ Fn
qm with parity check matrix

Mα(I + J). Observe that I + J also gives a q-root space by the previous
paragraph. We have the following lemmas:

Lemma F.40. A and B are the q-cyclic codes with parity check matrices Mβ(Ic)
andMβ(Jc) over Fqn , respectively.

Proof. We prove it for A. Define Ã as the Fqn -linear code in Fn
qn with genera-

tor matrixMα(I). It is enough to prove thatMβ(Ic) is a parity check matrix
for Ã.

However, since α[i] · β[j] = 0, for every i ∈ I and j /∈ I, it holds that
Mα(I)Mβ(Ic)T = 0. On the other hand, these two matrices are full rank and
the number of rows in Mα(I) together with the number of rows in Mβ(Ic)
is #I + #(Ic) = n, and the result follows.

Lemma F.41. It holds that B ?A ⊆ C⊥.

Proof. By Proposition F.11, item 2, we see that B ?A is contained in the Fqn -
linear code with generator matrix Mα(I + J). Denote such code by D, that
is, B ?A ⊆ D and D ⊆ Fn

qn .

By definition, C = D⊥ ∩ Fn
qm , and by [17, Corollary 3], D is Galois closed

over Fqm , which means that D⊥ ∩ Fn
qm = (D ∩ Fn

qm)⊥ by [18, Proposition 2]
and Delsarte’s theorem [5, Theorem 2]. Hence

B ?A ⊆ D ∩Fn
qm = (D⊥ ∩Fn

qm)⊥ = C⊥.

We may now prove that (A,B) is a t-rank error-locating pair of type I (see
Remark F.20) for C, and with some stronger hypotheses, it is also a t-rank
error-correcting pair for C.
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Theorem F.5. Fix a positive integer t and assume that #I > t and J contains δ− 1
consecutive elements, for some δ > t. Then (A,B) is a t-rank error-locating pair for
C. If moreover, dR(A) + dR(C) > n, then (A,B) is a t-rank error-correcting pair
of type I for C.

Proof. From the previous lemma, we have that B ? A ⊆ C⊥. On the other
hand, A satisfies that dim(A) = #I > t, and B satisfies that dR(B⊥) ≥ δ > t
by Lemma F.39. Then (A,B) is a t-rank error-locating pair of type I for C.

Observe that we may obtain the bound dR(C) ≥ δ + w by Proposition F.29
assuming that I contains the elements ic, for 0 ≤ i ≤ w. This means that,
for q-cyclic codes constructed with a normal basis, the rank-HT bound found
in [17, Corollary 4] is implied by Proposition F.29, as in the classical case.
Further cases are left open.

Acknowledgement

Rank error-correcting pairs of type II have been obtained in the case m = n
independently by Alain Couvreur [3]. The authors wish to thank him for this
communication and for useful discussions and comments.

The authors wish to thank the anonymous reviewers for their helpful
comments and also gratefully acknowledge the support from The Danish
Council for Independent Research (Grant No. DFF-4002-00367). This paper
was started during the visit of the second author to Aalborg University, Den-
mark, which was supported by the previous grant.

References

[1] D. Boucher, W. Geiselmann, and F. Ulmer, “Skew-cyclic codes,” Applica-
ble Algebra in Engineering, Communication and Computing, vol. 18, no. 4,
pp. 379–389, 2007.

[2] L. Chaussade, P. Loidreau, and F. Ulmer, “Skew codes of prescribed
distance or rank,” Designs, Codes and Cryptography, vol. 50, no. 3, pp.
267–284, 2009.

[3] A. Couvreur, “Personal communication,” 2015.

[4] P. Delsarte, “Bilinear forms over a finite field, with applications to coding
theory,” Journal of Combinatorial Theory, Series A, vol. 25, no. 3, pp. 226 –
241, 1978.

[5] ——, “On subfield subcodes of modified reed-solomon codes (cor-
resp.),” IEEE Transactions Information Theory, vol. 21, no. 5, pp. 575–576,
Sep. 2006.

255



References

[6] I. Duursma and R. Kötter, “Error-locating pairs for cyclic codes,” IEEE
Transactions on Information Theory, vol. 40, no. 4, pp. 1108–1121, 1994.

[7] I. Duursma and R. Pellikaan, “A symmetric Roos bound for linear
codes,” Journal of Combinatorial Theory, Series A, vol. 113, no. 8, pp. 1677–
1688, 2006.

[8] E. Gabidulin, “Theory of codes with maximum rank distance,” Problems
Information Transmission, vol. 21, 1985.

[9] ——, “Rank q-cyclic and pseudo-q-cyclic codes,” in IEEE International
Symposium on Information Theory, 2009. ISIT 2009, 2009, pp. 2799–2802.

[10] C. Hartmann and K. Tzeng, “Generalizations of the BCH bound,” Infor-
mation and Control, vol. 20, no. 5, pp. 489 – 498, 1972.

[11] R. Jurrius and R. Pellikaan, “The extended and generalized rank weight
enumerator,” 2014, aCA 2014, Applications of Computer Algebra, 9 July
2014, Fordham University, New York, Computer Algebra in Coding The-
ory and Cryptography.

[12] R. Jurrius and R. Pellikaan, “On defining generalized rank weights,”
Advances in Mathematics of Communications, vol. 11, no. 1, pp. 225–235,
2017.

[13] R. Kötter, “A unified description of an error locating procedure for linear
codes,” Proceedings of Algebraic and Combinatorial Coding Theory, pp. 113
– 117, 1992, voneshta Voda.

[14] A. Kshevetskiy and E. Gabidulin, “The new construction of rank codes,”
in IEEE International Symposium on Information Theory, 2005. ISIT 2005,
2005, pp. 2105–2108.

[15] R. Lidl and H. Niederreiter, Finite Fields. Amsterdam: Encyclopedia of
Mathematics and its Applications. Addison-Wesley, 1983, vol. 20.

[16] P. Loidreau, “A Welch–Berlekamp like algorithm for decoding
Gabidulin codes,” in Coding and Cryptography, ser. Lecture Notes in Com-
puter Science, y. Ytrehus, Ed. Springer Berlin Heidelberg, 2006, vol.
3969, pp. 36–45.

[17] U. Martínez-Peñas, “On the roots and minimum rank distance of skew
cyclic codes,” Designs, Codes and Cryptography, vol. 83, no. 3, pp. 639–660,
2017.

[18] U. Martínez-Peñas, “On the similarities between generalized rank and
Hamming weights and their applications to network coding,” IEEE
Trans. Inform. Theory, vol. 62, no. 7, pp. 4081–4095, 2016.

256



References

[19] R. Pellikaan, “On decoding linear codes by error correcting pairs,”
Preprint. Eindhoven University of Technology, 1988.

[20] ——, “On decoding by error location and dependent sets of error posi-
tions,” Discrete Mathematics, vol. 106, pp. 369–381, 1992.

[21] ——, “On the existence of error-correcting pairs,” Journal of Statistical
Planning and Inference, vol. 51, no. 2, pp. 229 – 242, 1996, shanghai Con-
ference Issue on Designs, Codes, and Finite Geometries, Part I.

[22] ——, “Rank-metric codes and their duality theory,” Designs, Codes and
Cryptography, vol. 80, no. 1, pp. 197–216, 2016.

[23] C. Roos, “A generalization of the BCH bound for cyclic codes, includ-
ing the Hartmann-Tzeng bound,” Journal Combinatorial Theory (Series A),
vol. 33, pp. 229–232, 1982.

[24] ——, “A new lower bound for the minimum distance of a cyclic code,”
IEEE Transactions Information Theory, vol. IT-29, pp. 330–332, 1982.

[25] D. Silva and F. Kschischang, “On metrics for error correction in network
coding,” IEEE Transactions Information Theory, vol. 55, no. 12, pp. 5479–
5490, 2009.

257



References

258



Paper G

Rank equivalent and rank degenerate skew cyclic
codes

Umberto Martínez-Peñas1

The paper has been published in
Advances in Mathematics of Communications Vol. 11, No. 2, pp. 267–282, 2017,

and presented at the
Workshop on Mathematics in Communications, Santander, Spain, July 2016.

1Department of Mathematical Sciences, Aalborg University, Aalborg 9220, Denmark



c© 201X IEEE
The layout has been revised.



1. Introduction

Abstract

Two skew cyclic codes can be equivalent for the Hamming metric only if they have the
same length, and only the zero code is degenerate. The situation is completely differ-
ent for the rank metric. We study rank
equivalences between skew cyclic codes of different lengths and, with the aim of find-
ing the skew cyclic code of smallest length that is rank equivalent to a given one, we
define different types of length for a given skew cyclic code, relate them and compute
them in most cases. We give different characterizations of rank degenerate skew cyclic
codes using conventional polynomials and linearized polynomials. Some known re-
sults on the rank weight hierarchy of cyclic codes for some lengths are obtained as
particular cases and extended to all lengths and to all skew cyclic codes. Finally, we
prove that the smallest length of a linear code that is rank equivalent to a given skew
cyclic code can be attained by a pseudo-skew cyclic code.

Keywords: Cyclic codes, finite rings, linearized polynomial rings, rank
degenerate, rank distance, rank equivalence, skew cyclic codes.

MSC: 15B33, 94B15, 94B65.

1 Introduction

Codes in the rank metric have numerous applications such as network coding
[8, 11, 14]. Among these codes, cyclic codes and skew cyclic codes have been
considered in [1, 2, 4–6, 10], since they have simple algebraic descriptions and
fast encoding and decoding algorithms.

In the network coding model of [8, 11, 14], the length of a rank-metric
code corresponds to the number of outgoing links from the source. Whereas
it is obvious how to increase the length of a code and preserve at the same
time its rank-metric properties, just by appending zeroes, it is not obvious
whether a rank-metric code can be shortened (which would mean that it is
degenerate) nor how. On the other hand, skew cyclic codes of smaller length
have faster encoding and decoding algorithms.

In contrast with the Hamming-metric case, skew cyclic codes may be rank
equivalent and have different lengths. The aim of this paper is to study rank
equivalences between skew cyclic codes and in which way they can be rank
degenerate.

Both problems have direct consequences on the generalized rank weights
[8] of skew cyclic codes, which measure the information leakage by wiretap-
ping links in the network, following the model of [8, 11, 14]. In particular,
from our study we will obtain as particular cases the main results in [4],
which we also extend to all parameters and all skew cyclic codes.

After some preliminaries in Section 2, the results in this paper are as fol-
lows: in Section 3, we define different types of length for skew cyclic codes,
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regarding the rank metric, and establish some inequalities between them. In
Section 4, we use the polynomial description of the Galois closure of skew
cyclic codes to compute most of the lengths defined in the previous section.
In Section 5, we treat cyclic codes and relate their polynomial description to
that of their Galois closures (by means of generator and check polynomials,
idempotent generators and root sets), giving at the end several characteri-
zations of rank degenerate cyclic codes and obtaining the results in [4] as
particular cases. In Section 6, we proceed as in the previous section, but for
general skew cyclic codes, using their linearized-polynomial description. Fi-
nally in Section 7, we see that, although the linear code of minimum length
that is rank equivalent to a given skew cyclic code need not be skew cyclic, it
may be chosen as pseudo-skew cyclic in many cases.

2 Definitions and preliminaries

Fix a prime power q and positive integers m and n, and let Fqs denote the
finite field with qs elements for a positive integer s. A code C ⊆ Fn

qm will be
called linear if it is Fqm -linear. In general, linearity will mean Fqm -linearity.
The number n is called the length of the code C.

We will denote the coordinate indices in Fn
qm from 0 to n− 1, and consider

them as integers modulo n. Given a vector c ∈ Fn
qm , we define its rank

weight [5] as the dimension of the Fq-linear vector space generated by its
components. We denote it by wtR(c).

Define the shifting operator sn : Fn
qm −→ Fn

qm as

sn(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2),

for every c = (c0, c1, . . . , cn−1) ∈ Fn
qm . For any integer r ≥ 0, define also the

r-th Frobenius and qr-shifting operators as θr, σr,n : Fn
qm −→ Fn

qm , respectively,
where θr acts by raising every component of a vector to the power qr and
σr,n = θr ◦ sn.

Definition G.1. A code C ⊆ Fn
qm is cyclic if sn(C) ⊆ C, is qr-cyclic (or skew

cyclic of order r) if σr,n(C) ⊆ C, and is Galois closed (over Fq) if θ1(C) ⊆ C.

Observe that cyclic codes are q0-cyclic (or qm-cyclic), that is, they are also
skew cyclic. Skew cyclic codes were introduced in [5] for r = 1 and n = m,
and then independently in [6] for r = 1 and in [1] for general parameters.

Denote [i] = qi, for any integer i ≥ 0. Following [15], for a given linear
code C ⊆ Fn

qm , we define its Galois closure as C∗ = ∑m−1
i=0 C[i], which is the

smallest linear Galois closed space containing C, and we also define C0 =⋂m−1
i=0 C[i], which is the biggest linear Galois closed space contained in C.

Recall from [15, Lemma 2] that (C⊥)∗ = (C0)⊥ and (C⊥)0 = (C∗)⊥.
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On the other hand, if V ⊆ Fn
qm and V′ ⊆ Fn′

qm are linear Galois closed
spaces, we say that a map φ : V −→ V′ is a rank equivalence if it is a vector
space isomorphism and wtR(φ(c)) = wtR(c), for all c ∈ V. We say that two
codes C and C′ are rank equivalent if there exists a rank equivalence between
linear Galois closed spaces V and V′ that contain C and C′, respectively. This
definition of rank equivalent linear codes was introduced in [11, Definition
8].

By [11, Theorem 5], rank equivalent codes not only perform exactly in the
same way regarding rank error and erasure correction, but also information
leakage on networks (see [11, Remark 2]). Moreover, rank equivalences can
be easily described, as the following lemma states, which is a particular case
of [11, Theorem 5]:

Lemma G.2 ( [11]). A vector space isomorphism φ : V −→ V′ between linear
Galois closed spaces is a rank equivalence if, and only if, there exist β ∈ F∗qm and an
n× n′ matrix A over Fq that maps bijectively V to V′ and such that

φ(c) = βcA,

for all c ∈ V.

As in [11, Definition 9], we say that a linear code C ⊆ Fn
qm is rank degen-

erate if it is rank equivalent to a linear code with smaller length.

3 Lengths and Galois closures

Following the model in [8, 11, 14], given a linear code C ⊆ Fn
qm , the length

n represents the number of outgoing links of a network where C is imple-
mented, whereas m represents the packet length. If C is rank equivalent to
a code with length n′ 6= n, then it may be implemented as a linear code in a
network with n′ outgoing links and with exactly the same performance [11].
However we may want to implement C as a skew cyclic code, and hence we
need it to be rank equivalent to a skew cyclic code of length n′.

On the other hand, we may always increase their lengths preserving their
rank-metric properties just by appending zeroes. This motivates the follow-
ing definitions:

Definition G.3. Given a linear code C ⊆ Fn
qm , an element a ∈ F∗q = Fq \ {0}

and an integer r ≥ 0, we define the following numbers:

1. The rank length, lR(C), as the minimum n′ such that C is rank equiva-
lent to a linear code of length n′.

2. The r-th skew length, lSk,r(C), as the minimum n′ such that C is rank
equivalent to a linear skew cyclic code of order r and length n′, if such
a code exists. We define lSk,r(C) = ∞ otherwise.
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3. The (a, r)-shift length, lSh,a,r(C), as the minimum n′ such that C is rank
equivalent to a linear code of length n′ by a rank equivalence φ such
that a(σr,n′ ◦ φ) = φ ◦ σr,n, if such a code exists. We define lSh,a,r(C) = ∞
otherwise.

4. The period length, lP(C), as the minimum integer 1 ≤ p ≤ n that gener-
ates the ideal modulo n defined as {p′ | ci+p′ = ci, ∀i, ∀(c0, c1, . . . , cn−1) ∈
C}, which necessarily divides n.

We also say that an integer 1 ≤ p ≤ n is an a-period of C if ci+p = aci, for all
i = 0, 1, 2 . . . , n− 1 and all (c0, c1, . . . , cn−1) ∈ C.

Remark G.4. In the definition of lSh,a,r(C), the rank equivalence φ that commutes
with the qr-shifting operators is supposed to be defined between linear Galois closed
spaces that are cyclic, in order to make sense (see Lemma G.6 below).

Remark G.5. Assume that V and V′ are linear cyclic Galois closed spaces. If a rank
equivalence φ : V −→ V′ satisfies that a(σr,n′ ◦ φ) = φ ◦ σr,n, for some r ≥ 0 and
a ∈ F∗q , then

φ(σs,n(c)) = β(σs,n(c))A = β1−[s−r](βσr,n(c)A)[s−r] = β1−[s−r](φ(σr,n(c)))[s−r]

= β1−[s−r](aσr,n′(φ(c)))
[s−r] = (β1−[s−r]a)σs,n′(φ(c)),

for all c ∈ V, where A and β are as in Lemma G.2.
Hence, φ sends qs-cyclic codes to qs-cyclic codes, for any s ≥ 0.

We have the following on the skew cyclic structure of linear Galois closed
spaces:

Lemma G.6. If V ⊆ Fn
qm is linear and Galois closed, then it is skew cyclic of some

order if, and only if, it is skew cyclic of all orders. Given a linear code C ⊆ Fn
qm , if it

is skew cyclic of some order, then C∗ and C0 are skew cyclic (of all orders).

Proof. Since θ1(V) ⊆ V, it holds that θr(V) = V, for all r ≥ 0. Hence, if we fix
two integers r, s ≥ 0, we have that σr,n(V) ⊆ V if, and only if, σs,n(V) ⊆ V,
and the first statement follows.

For the second statement, assume that C is qr-cyclic. It holds that

σr,n(C∗) =
m−1

∑
i=0

σr,n(C[i]) =
m−1

∑
i=0

σr,n(C)[i] ⊆
m−1

∑
i=0

C[i] = C∗,

and similarly for C0, and we are done.
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By [11, Proposition 3], it follows that lR(C) is equal to the k-th generalized
rank weight of C [8, Definition 2], for k = dim(C), which is the dimension of
C∗:

lR(C) = dR,k(C) = dim(C∗). (G.1)

We may establish now the following relations between the different types of
lengths:

Proposition G.7. For any integers r, s ≥ 0, a linear qs-cyclic code C ⊆ Fn
qm and

an element a ∈ F∗q , it holds that

1. lR(C) ≤ lSk,s(C) ≤ lSh,a,r(C).

2. lSh,1,r(C) ≤ lP(C).

3. lR(C) = lR(C∗), lSh,a,r(C) = lSh,a,r(C∗) and lP(C) = lP(C∗).

4. lSk,r(C) ≥ lSk,r(C∗) = lR(C).

Proof. In item 1, the first inequality is trivial and the second one follows from
Remark G.5.

To prove item 2, we see that puncturing in the first lP(C) coordinates gives
a rank equivalence from C∗ to a linear Galois closed subspace of F

lP(C)
qm that

commutes with σr,n, and the inequality follows.
We now prove item 3. First, lR(C) = dim(C∗) = dim(C∗∗) = lR(C∗) by

(G.1). Now, if φ is a rank equivalence between C and a skew cyclic code C′

such that a(σr,n′ ◦ φ) = φ ◦ σr,n, then φ preserves Galois closures, and hence
C∗ is rank equivalent to C′∗ by φ. It follows that lSh,a,r(C) ≥ lSh,a,r(C∗),
being the reversed inequality obvious. On the other hand, it follows from the
definitions that lP(C) = lP(C∗).

Finally, item 4 is proven in the same way as the fact that lSh,a,r(C) ≥
lSh,a,r(C∗). The fact that lSk,r(C∗) = lR(C∗) follows from the definitions.

Corollary G.8. For any linear skew cyclic code C ⊆ Fn
qm and any i = R, (Sk, r),

(Sh, a, r), P, we have the following Singleton-type bounds:

dR(C) ≤ li(C)− k + 1,

where dR denotes the minimum rank distance.

Proof. The case i = R follows from the classical Singleton bound [5] and the
fact that there exists a linear code of length lR(C) that is rank equivalent to C.
The rest of the bounds follow from this case and the previous proposition.
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4 Using the conventional-polynomial representa-
tion of Galois closures

It is well-known [7, Chapter 4] that a linear cyclic code C ⊆ Fn
qm can be repre-

sented as an ideal C(x) in the quotient ring Fqm [x]/(xn− 1), and it has unique
polynomials g(x), h(x) ∈ Fqm [x], called generator and check polynomials, re-
spectively, such that g(x) is monic and of minimal degree among those with
residue class in C(x), and g(x)h(x) = xn − 1. Moreover, g(x) generates C(x).

There are two more descriptions of linear cyclic codes. If g(x) and h(x)
are coprime (which holds if q and n are coprime), then there exists a unique
idempotent polynomial e(x) ∈ C(x) (that is, e(x)2 = e(x) in Fqm [x]/(xn − 1))
that generates C(x) [7, Theorem 4.3.2].

On the other hand, for a given polynomial f (x) ∈ Fqm [x], let Z( f (x))
denote the set of its roots in its splitting field. If q and n are coprime, then
we may associate C with the root set Z(g(x)). This gives a bijective corre-
spondence between linear cyclic codes in Fn

qm and root sets of divisors of
xn − 1 [7, Section 4.4].

In this section we will focus on this conventional-polynomial representa-
tion of linear cyclic codes (in contrast with the linearized-polynomial repre-
sentation in the following sections), which may be used for the Galois closure
of any linear skew cyclic code by Lemma G.6.

Observe that the r-th Frobenius map θr induces a ring automorphism
θr : Fqm [x] −→ Fqm [x] given by

θr( f0 + f1x + · · ·+ fdxd) = f [r]0 + f [r]1 x + · · ·+ f [r]d xd, (G.2)

for all f0 + f1x + · · ·+ fdxd ∈ Fqm [x]. Since θr(xn − 1) = xn − 1, it induces a
ring automorphism of the quotient ring Fqm [x]/(xn − 1).

Recall from [7, Exercise 243] that, again if g(x) and h(x) are coprime, then
there exists a unique linear cyclic code Cc such that C⊕ Cc = Fn

qm , called the
cyclic complementary code of C. Its generator and check polynomials are
h(x) and g(x), respectively, its idempotent generator is 1− e(x) and its root
set is Z(h(x)) = Z(xn − 1) \ Z(g(x)).

We have the following expected characterizations:

Lemma G.9. Given a linear cyclic code C ⊆ Fn
qm as in the beginning of this section,

the following are equivalent:

1. C is Galois closed.

2. g(x) ∈ Fq[x].

3. h(x) ∈ Fq[x].

4. (If g(x) and h(x) are coprime) e(x) ∈ Fq[x].
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5. (If q and n are coprime) Z(g(x))q = Z(g(x)).

6. (If g(x) and h(x) are coprime) Cc is Galois closed.

Proof. It is enough to note the following:

1. θ1(C) has θ1(g(x)) as generator polynomial, since it generates θ1(C)(x)
and θ1 preserves monic polynomials and degrees. Hence the equiva-
lence between items 1 and 2 follows.

2. θ1(C) has θ1(h(x)) as check polynomial, by the fact that xn − 1 =
θ1(xn − 1) = θ1(g(x))θ1(h(x)) and the previous item in this proof.
Hence the equivalence between items 1 and 3 follows.

3. If g(x) and h(x) are coprime, then θ1(C) has θ1(e(x)) as idempotent
generator, since θ1(e(x)) is again idempotent, generates θ1(C)(x) and
the idempotent generator is unique [7, Theorem 4.3.2]. Hence the equiv-
alence between items 1 and 4 follows.

4. If q and n are coprime, then θ1(C) corresponds to the root set Z(g(x))q,
since Z(θ1(g(x))) = Z(g(x))q. Hence the equivalence between items 1
and 5 follows.

Finally, the equivalence between items 1 and 6 follows from the fact that h(x)
and g(x) are the generator and check polynomials of Cc, respectively.

We now characterize rank equivalences that commute with the qr-shifting
operators in terms of generator matrices. For a matrix X over Fqm with n
columns, we define σr,n(X) as the matrix such that its i-th row is the qr-shifted
i-th row of X.

Recall from [15, Lemma 1] that linear Galois closed spaces are those with
a basis of vectors in Fn

q , that is, a generator matrix with coefficients in Fq.

Proposition G.10. For linear cyclic Galois closed spaces V ⊆ Fn
qm and V′ ⊆ Fn′

qm ,
and a rank equivalence φ : V −→ V′, where we define β and A as in Lemma G.2,
the following are equivalent for a given a ∈ F∗q and r ≥ 0:

1. a(σr,n′ ◦ φ) = φ ◦ σr,n.

2. If G is a generator matrix of V, then σr,n(G)A = aβ[r]−1θr(G)sn′(A).

In particular, choosing G with coefficients in Fq, the second item reads sn(G)A =

aβ[r]−1Gsn′(A). Therefore, if any of the previous items hold, then β[r]−1 = b ∈ F∗q .

On the other hand, the check polynomials of V and V′ can be easily used
to see whether there exists such a rank equivalence between them, which is
the first main result of this section:
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Theorem G.1. Let V ⊆ Fn
qm and V′ ⊆ Fn′

qm be linear cyclic Galois closed spaces
with the same dimension k and check polynomials h(x) and h′(x), respectively.
Given a ∈ F∗q , an integer r ≥ 0 and β ∈ F∗qm such that β[r] = bβ, for some
b ∈ F∗q , the following are equivalent:

1. There exists a rank equivalence φ : V −→ V′ such that a(σr,n′ ◦ φ) = φ ◦ σr,n
and β is as in Lemma G.2.

2. (ab)kh′(x) = h(abx).

Proof. We first prove that item 1 implies item 2. Let h(x) = h0 + h1x + · · ·+
hkxk. Assume that there exists a rank equivalence φ : V −→ V′ satisfying
item 1. Let g(x) = g0 + g1x + · · ·+ gn−kxn−k be the generator polynomial of
V, and let g = (g0, g1, . . . , gn−k, 0, . . . , 0) ∈ Fn

q . Define f (x) = f0 + f1x + · · ·+
fn−1xn−1 ∈ Fqm [x] such that f = ( f0, f1, . . . , fn−1) = φ(g). By Lemma G.2, we
have that f (x) = β f̃ (x), for some f̃ (x) ∈ Fq[x].

It holds that aiσi
r,n′(f) = φ(σi

r,n(g)), for i = 0, 1, 2, . . . , k. In polynomial
representation, we have that σi

r,n(g) corresponds to xig(x), and xkg(x) =

∑k−1
i=0 −hixig(x). On the other hand, σi

r,n′(f) corresponds to xiθi
r( f (x)) =

xiβ[ir] f̃ (x) = xibiβ f̃ (x). Hence xkakbk f̃ (x) = ∑k−1
i=0 −hiaibixi f̃ (x). In other

words, h(abx) f̃ (x) = 0.
On the other hand, the vectors σi

r,n′(f) = a−iφ(σi
r,n(g)), i = 0, 1, . . . , k− 1,

constitute a basis of V′, which implies that f̃ (x), x f̃ (x), . . . , xk−1 f̃ (x) consti-
tute a basis of V′(x). Hence, f̃ (x) generates the ideal V′(x). Since h(abx) f̃ (x) =
0, we conclude by degrees that h(abx) = (ab)kh′(x), and we are done.

Now we prove that item 2 implies item 1. Let g′ = (g′0, g′1, . . . , g′n′−k, 0, . . . ,
0) ∈ Fn′

qm by such that g′(x) = g′0 + g′1x + · · · + g′n′−kxn′−k is the generator
polynomial of V′. We just need to define φ by the formula

φ(σi
r,n(g)) = aiσi

r,n′(βg′) = (aibi)βσi
r,n′(g

′), (G.3)

for i = 0, 1, 2, . . . , k− 1, which defines a rank equivalence between V and V′

by Lemma G.2, and see that this formula also holds for i = k. If that happens,
then the equality a(σr,n′ ◦ φ) = φ ◦ σr,n holds on a basis of V and then it holds
on all V.

To see that Equation (G.3) also holds for i = k, we may argue as in the
converse implication by using again that (ab)kh′(x) = h(abx).

On the other hand, given a polynomial f (x) ∈ Fqm [x], we define its order
as the minimum positive integer e such that f (x) divides xe − 1 (in Fqm [x]),
and denote it by ord( f (x)). In general, for a ∈ Fq, we define the a-order
of f (x) as the minimum positive integer e such that f (x) divides xe − ae (in
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Fqm [x]), if one such e exists, and denote it by orda( f (x)). If no such e exists,
we define orda( f (x)) = ∞.

We may now prove the second main result of this section:

Theorem G.2. For an integer s ≥ 0 and a linear qs-cyclic code C ⊆ Fn
qm , where

h0(x) is the check polynomial of C∗, it holds that

1. lR(C) = deg(h0(x)).

2. lSh,1,0(C) = lP(C) = ord(h0(x)) ≤ n.

3. More generally, if a ∈ F∗q , then e = lSh,a,0(C) = orda(h0(x)) and e is an
ae-period of C.

4. More generally, if a ∈ F∗q and r ≥ 0, then

lSh,a,r(C) = min{ordab(h0(x)) | b ∈ F∗q , β ∈ F∗qm , β[r] = bβ}.

In particular, lR(C) = lSk,s(C) = lSh,1,r(C) = lP(C) if, and only if, deg(h0(x)) =
ord(h0(x)), which holds if, and only if, h0(x) = xe − 1, for some positive integer e.

Proof. First of all, we have seen that lR(C) = dim(C∗), and this dimension is
deg(h0(x)). Hence item 1 follows.

Now, the equality lSh,1,0(C) = ord(h0(x)) in item 2 follows from item 3
by choosing a = 1, and it is straightforward to see that ord(h0(x)) is equal to
lP(C).

Item 3 follows now from item 4, since β[0] = β, for all β ∈ Fqm . Moreover,
since xe f (x) = ae f (x), for all f (x) ∈ C(x), we see that e is an ae-period of C.

Next we prove item 4. Assume that there exists a rank equivalence φ :
C∗ −→ V′, where V′ is a linear cyclic Galois closed space of length e and
a(σr,n′ ◦ φ) = φ ◦ σr,n. By the previous theorem, the check polynomial of V′

is (ab)−kh0(abx), k = dim(C∗), with notation as in the previous theorem.
Hence, we see that h0(x) divides xe − (ab)e, since h0(abx) divides xe − 1.

Conversely, if h0(x) divides xe − (ab)e, we may define the linear cyclic
Galois closed space V′ ⊆ Fe

qm with check polynomial h′(x) = (ab)−kh0(abx),
which divides xe − 1. Then there exists a rank equivalence φ : C∗ −→ V′ as
before by the previous theorem.

Therefore, choosing the elements b and β that minimize the number e, we
see that lSh,a,r(C) = ordab(h0(x)), and item 4 follows.

Finally, by Proposition G.7, we conclude that lR(C) = lSk,s(C) = lSh,1,r(C) =
lP(C) if, and only if, deg(h0(x)) = ord(h0(x)). It is straightforward to see that
this is equivalent to h0(x) = xe − 1, e = ord(h0(x)).

In the next sections we will give results on C in terms of its structure, and
relate it to the structure of C∗ and C0.
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5 Cyclic codes, conventional polynomials and root
sets

Given a polynomial f (x) ∈ Fqm [x], we define the following polynomials,
where divisibility is considered in Fqm [x]:

f ∗(x) = gcd( f (x), θ1( f (x)), . . . , θm−1( f (x))), (G.4)

f 0(x) = lcm( f (x), θ1( f (x)), . . . , θm−1( f (x))), (G.5)

f⊥(x) = xdeg( f (x)) f (x−1)/ f (0), (G.6)

assuming f (0) 6= 0 in the last equation. We have the following:

Lemma G.11. For any polynomial f (x) ∈ Fqm [x], it holds that f ∗(x), f 0(x) ∈
Fq[x].

Proof. Since θ1 leaves the set { f (x), θ1( f (x)), . . . , θm−1( f (x))} invariant and is
a ring automorphism, it holds that θ1( f ∗(x)) = f ∗(x) and θ1( f 0(x)) = f 0(x),
which mean that both lie in Fq[x].

Now fix a linear cyclic code C ⊆ Fn
qm , whose generator and check polyno-

mials are g(x) and h(x), respectively. It is well-known that h⊥(x) and g⊥(x)
are the generator and check polynomials of C⊥, respectively [7, Theorem
4.2.7]. The following proposition explains the previous notation:

Proposition G.12. The generator and check polynomials of C∗ are g∗(x) and h0(x),
respectively, and the generator and check polynomials of C0 are g0(x) and h∗(x),
respectively. In particular,

(g∗)⊥(x) = (g⊥)∗(x), (g0)⊥(x) = (g⊥)0(x),

(h∗)⊥(x) = (h⊥)∗(x), and (h0)⊥(x) = (h⊥)0(x).

Proof. Taking ideals, it holds that C(x) = ∑m−1
i=0 C[i](x), and C[i] has θi(g(x))

as generator polynomial. It is well-known that the generator polynomial of
the sum of cyclic codes is the greatest common divisor of their generator
polynomials [7, Theorem 4.3.7].

Hence the polynomial g∗(x) is the generator polynomial of C∗. Similarly
g0(x) is the generator polynomial of C0, using now that the generator poly-
nomial of the intersection of cyclic codes is the least common multiple of their
generator polynomials [7, Theorem 4.3.7].

On the other hand, we have that θi(g(x))θi(h(x)) = θi(xn − 1) = xn − 1,
for i = 0, 1, 2, . . . , m− 1. Hence the greatest common divisor of the polyno-
mials θi(g(x)) and the least common multiple of the polynomials θi(h(x))

270



5. Cyclic codes, conventional polynomials and root sets

satisfy the same. That is, g∗(x)h0(x) = xn − 1, and h0(x) is the check polyno-
mial of C∗. Similarly for C0.

Finally, since g⊥(x) is the check polynomial of C⊥, it follows that (g⊥)∗(x)
is the check polynomial of (C⊥)0. On the other hand, since g∗(x) is the
generator polynomial of C∗, it holds that (g∗)⊥(x) is the check polynomial
of (C∗)⊥. Since (C⊥)0 = (C∗)⊥, it follows that (g∗)⊥(x) = (g⊥)∗(x). The
remaining equalities are proven in the same way.

On the other hand, we have the following relations of idempotent gener-
ators and cyclic complementaries.

Proposition G.13. Assume that g(x) and h(x) are coprime and e(x) is the idempo-
tent generator of C. Then C∗ and C0 have 1−∏m−1

i=0 (1− θi(e(x))) and ∏m−1
i=0 θi(e(x))

as idempotent generators, respectively. Moreover it holds that

(Cc)∗ = (C0)c and (Cc)0 = (C∗)c.

Proof. First, the idempotent generator of the intersection of cyclic codes is the
product of their idempotent generators [7, Theorem 4.3.7], hence ∏m−1

i=0 θi(e(x))
is the idempotent generator of C0.

On the other hand, Cc has h(x) as generator polynomial, thus (Cc)∗ has
h∗(x) as generator polynomial by the previous proposition. Moreover, C0

has h∗(x) as check polynomial, also by the previous proposition. Therefore
(Cc)∗ = (C0)c. Similarly we may prove that (Cc)0 = (C∗)c.

Finally, It holds that ∏m−1
i=0 (1− θi(e(x))) is the idempotent generator of

(Cc)0 by the first part of this proof. Using that (Cc)0 = (C∗)c, we see that
1−∏m−1

i=0 (1− θi(e(x))) is the idempotent generator of C∗.

We will now relate C, C∗ and C0 by means of the defining root set of C.
We will relate lR(C⊥) with the parameter ηq(C) introduced in [4], which will
allow us to easily derive the main results in that paper.

If q and n are coprime, let m′ ≥ m be such that Fqm′ is the splitting field
of g(x). Let α1, α2, . . . , αn−k ∈ Fqm′ be the simple roots of g(x), and assume
that they are ordered in the following way: there exist 1 = m0 < m1 < m2 <
. . . < mt = n− k + 1 such that αmi , αmi+1, . . . , αmi+1−1 are roots of the minimal
polynomial µi(x) ∈ Fq[x] of αmi over Fq, for i = 0, 1, . . . , t− 1.

Definition G.14 ( [4, Definition 3, Definition 4]). With notation as in the pre-
vious paragraph, we define

µq(g(x)) =
t−1

∏
i=0

µr(x) ∈ Fq[x] and ηq(C) = deg(µq(g(x))).

We have the following relations, which in particular compute the root sets
corresponding to C∗ and C0:
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Proposition G.15. If q and n are coprime, then

1. µq(g(x)) = g0(x).

2. Z(g0(x)) =
⋃m−1

i=0 Z(g(x))[i] and Z(g∗(x)) =
⋂m−1

i=0 Z(g(x))[i].

3. ηq(C) = deg(g0(x)) = dim((C⊥)∗) and deg(g∗(x)) = dim((C⊥)0).

Analogous identities hold replacing g(x), g∗(x) and g0(x) by h(x), h∗(x) and
h0(x), respectively.

Proof. First, g(x) divides µq(g(x)) in Fqm′ [x] by looking at their roots. By the
same argument as in Lemma G.9, we see that g(x) divides µq(g(x)) in Fqm [x].

Fix a positive integer r. Since θr is a ring isomorphism, we see that
θr(g(x)) also divides θr(µq(g(x))) = µq(g(x)) in Fqm [x]. Hence µq(g(x))
is divisible by the least common multiple of the polynomials θr(g(x)), r =
0, 1, 2, . . . , m− 1.

Finally, since the Galois group of the extension Fq ⊆ Fqm′ is constituted
by the maps θr, we see that the previous least common multiple vanishes at
the roots of the polynomials µi(x), for i = 0, 1, . . . , t− 1. Hence it holds that
µq(g(x)) = lcm(g(x), θ1(g(x)), . . . , θm−1(g(x))) = g0(x) and item 1 follows.

By the same discussion, since Z(θi(g(x))) = Z(g(x))[i], we have that
Z(g0(x)) =

⋃m−1
i=0 Z(g(x))[i]. On the other hand, denoting Z = Z(xn − 1)

and using that g∗(x)h0(x) = g(x)h(x) = xn − 1, we have that Z(g∗(x)) is
equal to:

Z \ Z(h0(x)) = Z \
(

m−1⋃
i=0

Z(h(x))[i]
)

=
m−1⋂
i=0

(Z \ Z(h(x)))[i] =
m−1⋂
i=0

Z(g(x))[i],

and item 2 follows. Item 3 follows from item 1 and Proposition G.12.

Remark G.16. Hence C⊥ is rank degenerate if, and only if, ηq(C) < n, which
by the duality theorem for generalized rank weights [3, Theorem] is equivalent to
dR(C) = 1 (see [3] for more details). Hence [4, Proposition 2] and [4, Proposition 3]
follow. We have actually proven that

ηq(C) = lR(C⊥), (G.7)

which combined with the same duality theorem also implies [4, Proposition 5]. More-
over, together with Corollary G.8 we obtain [4, Proposition 6].

We may now state the main result of this section, which computes lengths
of cyclic codes in terms of their intrinsic structure:
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Theorem G.3. It holds that

lR(C) = n− deg(gcd(g(x), θ1(g(x)), . . . , θm−1(g(x))))

= deg(lcm(h(x), θ1(h(x)), . . . , θm−1(h(x)))),

and if q and n are coprime, then

lR(C) = ηq(C⊥) = n− #

(
m−1⋂
i=0

Z(g(x))[i]
)

= #

(
m−1⋃
i=0

Z(h(x))[i]
)

.

On the other hand, for a ∈ F∗q , it holds that

lSh,a,0(C) = orda(h0(x)) = orda(h(x)) = orda(µq(h(x)))

= min{e | αe = ae, ∀α ∈ Z(h(x))}.

Proof. The first two equalities follow from Theorem G.2, item 1, and Proposi-
tion G.12. If q and n are coprime, then the next three equalities follow from
the same results as before together with Proposition G.15 and Equation (G.7).
Finally, the last four equalities follow from the same results as before together
with Theorem G.2, items 2 and 3.

The following characterizations of rank degenerate cyclic codes follow:

Corollary G.17. The following conditions are equivalent:

1. C is rank degenerate. That is, lR(C) < n.

2. gcd(g(x), θ1(g(x)), . . . , θm−1(g(x))) 6= 1.

3. lcm(h(x), θ1(h(x)), . . . , θm−1(h(x))) 6= xn − 1.

4. (If g(x) and h(x) are coprime) ∏m−1
i=0 (1− θi(e(x)))) = 0 in Fqm [x]/(xn− 1),

where e(x) is the idempotent generator of C.

5. (If q and n are coprime) ηq(C⊥) < n.

6. (If q and n are coprime)
⋂m−1

i=0 Z(g(x))[i] 6= ∅.

7. (If q and n are coprime)
⋃m−1

i=0 Z(h(x))[i] ( Z(xn − 1).
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6 Skew cyclic codes, linearized polynomials and
root spaces

In this section we will fix a positive integer r and assume that m divides
rn, and will use the linearized-polynomial description of skew cyclic codes
given in [1, 5, 6, 10] to give similar characterizations of lengths and rank
degenerateness as in the previous section for general skew cyclic codes. By
the discussion after [10, Subsection 2.5], assuming that m divides rn does not
leave any skew cyclic code out of study regarding the lengths li(C).

Denote by Lqr Fqm [x] the ring of qr-linearized polynomials over Fqm (see
[5, 12, 13] or [9, Chapter 3]), that is, polynomials of the form

F(x) = F0x + F1x[r] + F2x[2r] + · · ·+ Fdx[dr],

where F0, F1, F2, . . . , Fd ∈ Fqm [x], and where we consider composition of maps
⊗ as product. We also define the qr-degree of F(x) as degqr (F(x)) = d if
Fd 6= 0.

Recall that qr-linearized polynomials over Fqm define Fqr -linear maps be-
tween field extensions of Fqr and their compositions as such define again
qr-linearized polynomials over Fqm . This ring constitutes an Euclidean do-
main on the right and on the left [5, 12, 13], but we will always consider
divisibility on the right. We will also use the term “conventional” to refer to
the usual product and divisibility of polynomials.

Since m divides rn, x[rn] − x commutes with every other qr-linearized
polynomial over Fqm and the left ideal (x[rn] − x) is two-sided. Thus, we
may consider the ring Lqr Fqm [x]/(x[rn] − x), which is isomorphic to Fn

qm as a
vector space.

Linear qr-cyclic codes correspond to left ideals in Lqr Fqm [x]/(x[rn] − x)
[1, 5, 6]. Fix one C ⊆ Fn

qm . It has unique generator polynomial G(x) and check
polynomial H(x) with the same properties as in the usual case [1, 6, 10]: G(x)
is of minimal degree and monic, and x[rn]− x = G(x)⊗H(x) = H(x)⊗G(x).

For a given F(x) ∈ Lqr Fqm [x], we will also write F = F(x)+ (x[rn]− x), the
residue class of F(x) modulo x[rn]− x. Recall that, since qr-linearized polyno-
mials induce Fqr -linear maps, their root sets are Fqr -linear vector spaces. We
may denote by Z(F) the Fqr -linear space of zeroes in Fqrn of F(x) ∈ Lqr Fqm [x].
This definition is consistent, since two qr-polynomials F1(x) and F2(x) have
the same roots in Fqr if F1(x)− F2(x) ∈ (x[rn] − x).

On the other hand, the s-th Frobenius map θs defines also a ring automor-
phism θs : Lqr Fqm [x] −→ Lqr Fqm [x] using the same formula as in the conven-
tional case (G.2) and induces a ring automorphism of Lqr Fqm [x]/(x[rn] − x),
since θr(x[rn] − x) = x[rn] − x.

In this section we will consider the qr-cyclic structure of linear Galois
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closed spaces. However, describing generator and check polynomials of C⊥,
C∗ and C0 is not as straightforward as in the conventional case. Given a
qr-polynomial F(x) = F0x + F1x[r] + · · · + Fdx[rd] ∈ Lqr Fqm [x] that divides
x[rn] − x, with Fd 6= 0, we define:

F⊥(x) =

(
Fd

F[dr]
0

)
x +

 F[r]
d−1

F[dr]
0

 x[r] + · · ·+
(

F[dr]
0

F[dr]
0

)
x[dr], (G.8)

F>(x) =
(

Fd
F0

)[(n−d)r]
x +

(
Fd−1

F0

)[(n−d+1)r]
x[r] + · · ·+

(
F0

F0

)[nr]
x[dr], (G.9)

F∗(x) = gcd(F(x), θ1(F(x)), . . . , θm−1(F(x))), (G.10)

F0(x) = lcm(F(x), θ1(F(x)), . . . , θm−1(F(x))), (G.11)

F∗(x) = gcd(F(x)⊥, θ1(F(x))⊥, . . . , θm−1(F(x))⊥)>, (G.12)

F0(x) = lcm(F(x)⊥, θ1(F(x))⊥, . . . , θm−1(F(x))⊥)>. (G.13)

As in the previous section, we have the following:

Lemma G.18. For any qr-polynomial F(x) ∈ Lqr Fqm [x], it holds that F∗(x),
F0(x), F∗(x), F0(x) ∈ Lqr Fq[x].

Proof. Since θ1 leaves the set {F(x), θ1(F(x)), . . . , θm−1(F(x))} invariant and is
a ring automorphism, it holds that θ1(F∗(x)) = F∗(x) and θ1(F0(x)) = F0(x).
Observing that θ1(F⊥(x)) = θ1(F(x))⊥ and θ1(F>(x)) = θ1(F(x))>, we see
that θ1(F∗(x)) = F∗(x) and θ1(F0(x)) = F0(x). Hence the result follows.

Before going on, we will establish a result analogous to Proposition G.9.
In the linearized case, if G(x) and H(x) are coprime on both sides, then there
exist an idempotent generator E(x) of C by [10, Theorem 4], and the linear
skew cyclic code with generator and check polynomials H(x) and G(x), re-
spectively, is a complementary space of C by [10, Corollary 4]. We denote it
by Cc. It also has an idempotent generator given by x− E(x) [10, Corollary
4].

Proposition G.19. The following are equivalent:

1. C is Galois closed.

2. G(x) ∈ Lqr Fq[x].

3. H(x) ∈ Lqr Fq[x].

4. Z(G) ⊆ Fqrn is an (Fqr -linear) Galois closed space over Fq. That is, Z(G)q =
Z(G) (also called q-modulus in [9, Chapter 3]).
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5. (If G(x) and H(x) are coprime on both sides) E(x) ∈ Fq[x].

6. (If G(x) and H(x) are coprime on both sides) Cc is Galois closed.

Proof. Analogous to that of Proposition G.9.

It is proven in [2, 5, 6] that H⊥(x) is the generator polynomial of C⊥. We
now find its check polynomial:

Lemma G.20. The check polynomial of C⊥ is G>(x).

Proof. Let G̃(x) = G̃0x + G̃1x[r] + · · ·+ G̃n−kx[(n−k)r] be the check polynomial
of C⊥. It is shown in [2] that C⊥ has a parity check matrix of the form

G0 G1 . . . Gn−k 0 . . . 0
0 G[r]

0 . . . G[r]
n−k−1 G[r]

n−k . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . G[(k−1)r]
0 G[(k−1)r]

1 . . . G[(k−1)r]
n−k

 .

By [10, Theorem 1, items 4 and 6], there is a unique parity check matrix
of that form and hence it holds that G̃[(n−k+i)r]

i = Gn−k−i/G0. Raising this

equality to the power [(k + i)r] we obtain G̃i = G̃[nr]
i = (Gn−k−i/G0)

[(k+i)r],
for i = 0, 1, 2, . . . , n− k, since m divides rn, and we are done.

On the other hand, we have the following:

Lemma G.21. For a qr-polynomial F(x) = F0x+ F1x[r]+ · · ·+ Fdx[rd] ∈ Lqr Fqm [x]
that divides x[rn] − x, with Fd 6= 0, it holds that

F⊥>(x) = F>⊥(x) = F(x)/Fd,

(F∗)⊥(x) = (F⊥)∗(x) and (F0)
⊥(x) = (F⊥)0(x),

and analogously replacing ⊥ by > in the last two equalities.

Proof. The first two equalities are straightforward computations. For the last
two equalities, it is enough to observe again that θi(F⊥(x)) = θi(F(x))⊥ and
use the previous two equalities. Analogously replacing ⊥ by >.

We will need the following result, which is [10, Theorem 3]:

Lemma G.22 ( [10, Theorem 3]). Assume that C1, C2 ⊆ Fn
qm are linear qr-cyclic

codes with generator polynomials G1(x) and G2(x), respectively. Then

1. C1 ∩ C2 is the qr-cyclic code with generator polynomial given by M(x) =
lcm(G1(x), G2(x)) and Z(M) = Z(G1) + Z(G2).
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2. C1 + C2 is the qr-cyclic code with generator polynomial given by D(x) =
gcd(G1(x), G2(x)) and Z(D) = Z(G1) ∩ Z(G2).

Finally, we may compute the generator and check polynomials of C∗ and
C0, seen as qr-cyclic codes:

Proposition G.23. The generator and check polynomials of C∗ are G∗(x) and H0(x),
respectively, and the generator and check poylnomials of C0 are G0(x) and H∗(x),
respectively.

Proof. By the previous lemma, if C1, C2 ⊆ Fn
qm are qr-cyclic codes with genera-

tor polynomials G1(x), G2(x), respectively, and check polynomials H1(x), H2(x),
respectively, it holds that C1 + C2 and (C1 + C2)

⊥ = C⊥1 ∩ C⊥2 have genera-
tor polynomials gcd(G1(x), G2(x)) and lcm(H⊥1 (x), H⊥2 (x)) (on the right),
respectively. By the previous lemma and Lemma G.20, the check polynomial
of C1 + C2 is then lcm(H⊥1 (x), H⊥2 (x))>.

We obtain the result for C∗ by applying this iteratedly to C, θ1(C), θ2(C),
. . ., θm−1(C), observing that the generator and check polynomials of θi(C)
are θi(G(x)) and θi(H(x)), respectively, for i = 0, 1, 2, . . . , m− 1. Similarly for
C0.

We know from Lemma G.6 that C∗ and C0 are skew cyclic of all orders.
In the previous sections we used their cyclic (or q0-cyclic) nature and their
conventional generator and check polynomials. We may relate them with the
generator and check polynomials obtained in the previous proposition.

For that purpose, we define the operator L : Fqm [x] −→ Lqr Fqm [x] by

L( f0 + f1x + · · ·+ fdxd) = f0x + f1x[r] + · · ·+ fdx[rd]. (G.14)

Proposition G.24. Let the notation be as in the previous proposition, and let g∗(x),
g0(x) be the generator (conventional) polynomials of C∗ and C0, respectively, and
let h0(x) and h∗(x) be their check (conventional) polynomials, respectively. Then

G∗(x) = L(g∗(x)), H0(x) = L(h0(x)),

G0(x) = L(g0(x)), and H∗(x) = L(h∗(x)).

Proof. It follows from the uniqueness of the generator and parity check ma-
trices for cyclic and qr-cyclic codes given by their generator and check poly-
nomials. See [7, Theorem 4.2.1 and Theorem 4.2.7] for the cyclic case, and [2]
and [10, Theorem 1] for the qr-cyclic case.

On the other hand, we have the following relations between the root
spaces of the generator and check polynomials of C, C∗ and C0, as in Propo-
sition G.15.
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Proposition G.25. It holds that

1. Z(G∗) =
⋂m−1

i=0 Z(G)[i] and Z(G0) = ∑m−1
i=0 Z(G)[i].

2. dimFqr (Z(H∗)) = dimFqr (
⋂m−1

i=0 Z(H⊥)[i]).

3. dimFqr (Z(H0)) = dimFqr (∑
m−1
i=0 Z(H⊥)[i]).

Proof. The first item follows from Lemma G.22 and the fact that Z(θi(G)) =
Z(G)[i], for i = 0, 1, 2, . . . , m− 1.

On the other hand, since H∗(x) divides x[rn] − x on the right, it also di-
vides it conventionally, and hence it has simple roots. Hence it holds that
dimFqr (Z(H∗)) = degqr (H∗(x)) and similarly for (H∗)⊥(x). Thus

dimFqr (Z(H∗)) = degqr (H∗(x)) = degqr ((H∗)⊥(x)) = dimFqr (Z((H∗)⊥)).

Again by Lemma G.22 and Lemma G.21, we have that

Z((H∗)⊥) =
m−1⋂
i=0

Z(H⊥)[i],

using again the fact that Z(θi(H⊥)) = Z(H⊥)[i], for i = 0, 1, 2, . . . , m − 1.
Therefore item 2 follows. Item 3 is proven in a similar way.

We may now state a similar result to Theorem G.3:

Theorem G.4. It holds that

lR(C) = n− degqr (gcd(G(x), θ1(G(x)), . . . , θm−1(G(x))))

= degqr (lcm(H⊥(x), θ1(H⊥(x)), . . . , θm−1(H⊥(x))))

= n− dimFqr

(
m−1⋂
i=0

Z(G)[i]
)

= dimFqr

(
m−1

∑
i=0

Z(H⊥)[i]
)

.

Proof. The first two equalities follow from Theorem G.2, item 1, and Propo-
sition G.24. The next two equalities follow from the previous proposition and
the fact that dimFqr (Z(G∗)) = degqr (G∗(x)) and dimFqr (Z(H0)) = degqr (H0(x)),
since they have simple roots.

We obtain the following characterizations of rank degenerate skew cyclic
codes:

Corollary G.26. The following conditions are equivalent:

1. C is rank degenerate. That is, lR(C) < n.
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2. gcd(G(x), θ1(G(x)), . . . , θm−1(G(x))) 6= x.

3. lcm(H⊥(x), θ1(H⊥(x)), . . . , θm−1(H⊥(x))) 6= x[rn] − x.

4.
⋂m−1

i=0 Z(G)[i] 6= {0}.

5. ∑m−1
i=0 Z(H⊥)[i] 6= Fqrn .

7 Attaining the rank length by pseudo-skew cyclic
codes

So far we have tried to find the linear skew cyclic code of smallest length
that is rank equivalent to a given one C. We have given upper bounds on
that length and seen that a general lower bound is lR(C), although it is not
clear that this length can be attained by a linear skew cyclic code that is rank
equivalent to C.

In this section, we will see that the length lR(C) can in many cases be
attained by some linear pseudo-skew cyclic code. As skew cyclic codes,
pseudo-skew cyclic codes were introduced in [5] for r = 1 and n = m, and
then independently in [6] for r = 1 and in [2] for general parameters.

Definition G.27. Let f (x) ∈ Fqm [x] be of degree n. For a linear code C ⊆ Fn
qm ,

we define C f (x)(x) as the image of C in Fqm [x]/( f (x)) by the linear vector
space isomorphism Fn

qm −→ Fqm [x]/( f (x)) given by

(c0, c1, . . . , cn−1) 7→ c0 + c1x + · · ·+ cn−1xn−1.

Then we say that C is pseudo-cyclic if C f (x)(x) is an ideal in Fqm [x]/( f (x)),
for some f (x) ∈ Fqm [x] of degree n.

Fix now a linear cyclic code C ⊆ Fn
qm , and let the notation be as in Section

5.

Theorem G.5. The map φ : Fqm [x]/(h0(x)) −→ (g∗(x))/(xn − 1) given by

φ( f (x)) = f (x)g∗(x)

is well-defined, maps ideals to ideals and constitutes a rank equivalence when seeing
its domain and codomain as linear Galois closed spaces.

Proof. First of all, it is well-defined since h0(x)g∗(x) = xn− 1. It is linear since
it preserves additions and φ(p(x) f (x)) = p(x)φ( f (x)), for all p(x), f (x) ∈
Fqm [x]. For the same reason it maps ideals to ideals.

On the other hand, if f (x)g∗(x) = 0 in the quotient (g∗(x))/(xn− 1), then
f (x)g∗(x) = p(x)(xn − 1) for some polynomial p(x) ∈ Fqm [x], which implies
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that f (x) = p(x)h0(x). Therefore, φ is one to one. Since it is obviously onto,
we conclude that it is a vector space isomorphism.

Finally, since g∗(x) ∈ Fq[x], we see that φ maps polynomials of degree
less that k with coefficients in Fq to polynomials with coefficients in Fq, and
hence it is a rank equivalence by Lemma G.2.

Corollary G.28. The length lR(C) is attained by a linear pseudo-cyclic code that is
an ideal in the quotient ring Fqm [x]/(h0(x)).

We now treat the skew cyclic case. We consider the the center of Lqr Fqm [x],
denoted by C(Lqr Fqm [x]) and defined as the set of qr-polynomials over Fqm

that commute with every other qr-polynomial over Fqm . It is well-known that

C(Lqr Fqm [x]) = Lql Fqd [x],

where l = lcm(m, r) and d = gcd(m, r).

Definition G.29. Let F(x) ∈ C(Lqr Fqm [x]) such that degqr (F(x)) = n. For a
linear code C ⊆ Fn

qm , we define CF(x)(x) as the image of C in Lqr Fqm [x]/(F(x))
by the linear vector space isomorphism Fn

qm −→ Lqr Fqm [x]/(F(x)) given by

(c0, c1, . . . , cn−1) 7→ c0x + c1x[r] + · · ·+ cn−1x[(n−1)r].

Then we say that C is pseudo-skew cyclic (of order r) if CF(x)(x) is a left ideal
in Lqr Fqm [x]/(F(x)), for some F(x) ∈ C(Lqr Fqm [x]) such that degqr (F(x)) =
n.

Fix now a linear qr-cyclic code C ⊆ Fn
qm , and let the notation be as in

Section 6. We have the following result, whose proof is analogous to that of
Theorem G.5.

Theorem G.6. Assume that H0(x) is central. Then the map φ : Lqr Fqm [x]/(H0(x))
−→ (G∗(x))/(x[rn] − x) given by

φ(F(x)) = F(x)⊗ G∗(x)

is well-defined, maps left ideals to left ideals and constitutes a rank equivalence when
seeing its domain and codomain as linear Galois closed spaces.

Corollary G.30. If H0(x) is central, then the length lR(C) is attained by a linear
pseudo-skew cyclic code that is a left ideal in the quotient ring Lqr Fqm [x]/(H0(x)).
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1. Introduction

Abstract

Asymptotically good sequences of linear ramp secret sharing schemes have been in-
tensively studied by Cramer et al. in terms of sequences of pairs of nested algebraic
geometric codes [4–8, 10]. In those works the focus is on full privacy and full recon-
struction. In this paper we analyze additional parameters describing the asymptotic
behavior of partial information leakage and possibly also partial reconstruction giv-
ing a more complete picture of the access structure for sequences of linear ramp secret
sharing schemes. Our study involves a detailed treatment of the (relative) generalized
Hamming weights of the considered codes.

Keywords: Algebraic geometric codes, generalized Hamming weights,
relative generalized Hamming weights, secret sharing.

1 Introduction

A secret sharing scheme [2, 3, 23, 29] is a cryptographic method to encode
a secret s into multiple shares c1, . . . , cn so that only from specified subsets
of the shares one can recover s. Often it is assumed that n participants each
receive a share, no two different participants receiving the same. The secret
and the share vector c = (c1, . . . , cn) corresponding to it are assumed to
be taken at random with some given distributions (usually uniform), and
the recovery capability of a set of shares is measured from an information-
theoretical point of view [29]. The term ramp secret sharing scheme [3, 7, 29]
is used for those schemes where some sets of shares partially determine the
secret, but not completely. This allows the shares to be of smaller size than
the secret.

In this paper, we concentrate on linear ramp secret sharing schemes with
uniform distribution on the secret and uniform distribution on the share vec-
tor conditioned to the secret, which is widely considered in the literature
(see, for instance, [6, 7, 12, 17]). Here, the secret is a vector s ∈ F`

q (for some
finite field Fq), and we assume that the shares are elements c1, . . . , cn ∈ Fq.
The term linear means that a linear combination of share vectors is a share
vector of the corresponding linear combination of secrets. In [7, Sec. 4.2] it
was shown that such schemes are equivalent to the following construction
based on two nested linear codes C2 ( C1 ⊂ Fn

q with dim C1 − dim C2 = `.
Writing k2 = dim C2 and k1 = dim C1 (and consequently ` = k1 − k2) let
{b1, . . . , bk2} be a basis for C2 and extend it to a basis {b1, . . . , bk1} for C1.
A secret s = (s1, . . . , s`) is encoded by first choosing at random coefficients
a1, . . . , ak2 ∈ Fq and then letting the share vector be

c = a1b1 + · · ·+ ak2 bk2 + s1bk2+1 + · · ·+ s`bk1 . (H.1)

Define a q-bit of information to be log2(q) bits of information. Then, for the
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schemes that we consider, the mutual information between the secret and a
set of shares is an integer between 0 and ` if measured in q-bits [17, Proof
of Th. 4]. Therefore, for each m = 1, . . . , `, we may define the following
threshold values [12, Def. 2]:

• The m-th privacy threshold of the scheme is the maximum integer tm
such that from no set of tm shares one can recover m q-bits of informa-
tion about the secret. That is, tm = max{#J | J ⊆ {1, . . . , n}, I(J) < m},
where I(J) = I

(
s1, . . . , s` ; (ci | i ∈ J)

)
. Here, ci is the i-th component of

c in (H.1), and I(; ) is the mutual information taking logarithms in base
q.

• The m-th reconstruction threshold of the scheme is the minimum inte-
ger rm such that from any set of rm shares one can obtain m q-bits of
information about s. That is, rm = min{#J | J ⊆ {1, . . . , n}, I(J) ≥ m}.

The numbers t = t1 and r = r` have been intensively studied in the literature,
e.g. [3, 7, 29], where they are called privacy and reconstruction threshold, re-
spectively. Clearly t is the greatest number such that no set of t shares holds
any information on the secret and r is the smallest number such that from any
set of r shares one can reconstruct the information in full. In a series of papers
the asymptotic behavior of such parameters has been investigated [4–8, 10] in
terms of corresponding infinite sequences of nested code pairs of increasing
length. Observe here that the above problem cannot be investigated when
we consider secret sharing schemes constructed from univariate polynomials
over a finite field [21, 23, 30, 32]. Because in the asymptotic problem con-
sidered in [4–8, 10] the number of participants grows beyond the share size,
while the construction with univariate polynomials requires the number of
participants to be at most the share size.

In the present paper we take a particular interest in sequences of nested
code pairs (C2(i) ( C1(i) ⊂ F

ni
q )∞

i=1 with ni and with `i = dim C1(i) −
dim C2(i) satisfying

lim
i→∞

ni = ∞, and lim inf
i→∞

(`i/ni) = L (H.2)

for some fixed 0 < L < 1, see [4–8, 10]. The reason for us to require (H.2) is to
obtain a constant information rate. For instance if the schemes are to be used
in connection with distributed storage as mentioned in [29] then a memory of
size 1/L times the information size is enough. As in the above listed papers
the focus in on full privacy and full reconstruction, what is studied there is

lim inf
i→∞

t
ni

= Ω(1) and lim sup
i→∞

r
ni

= Ω(2). (H.3)

Here, t and r are the privacy and reconstruction thresholds for the schemes
based on C2(i) ( C1(i) ⊂ F

ni
q , and thereby are functions in i. For any chosen
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value of L and corresponding feasible Ω(1) it is desirable to have the threshold
gap Ω(2) −Ω(1) as small as possible. One way of achieving this [4–8, 10] is to
base the secret sharing schemes on sequences of nested code pairs related to
an optimal tower of function fields and to require limi→∞(dim C1(i)/ni) = R1
and limi→∞(dim C2(i)/ni) = R2 for some fixed rates R1 > R2. Using the
Goppa bound [15] one then obtains good parameters L = R1 − R2, Ω(2) and
Ω(1). For future reference we formalize the concept of asymptotic goodness
in a definition, where for completeness we also include the case L = 0, al-
though we do not study this case in the present paper.

Definition H.1. Let 0 < R2 ≤ R1 < 1 and consider a sequence of nested
codes (C2(i) ( C1(i) ⊂ F

ni
q )∞

i=1 with ni → ∞, dim C2(i)/ni → R2 and
dim C1(i)/ni → R1 for i → ∞. The corresponding sequence of linear ramp
secret sharing schemes is said to be asymptotically good if the parameters
from (H.3) satisfy 0 < Ω(1) and Ω(2) < 1.

The purpose of the present paper is to provide additional information on
the access structure of sequences of linear ramp secret sharing schemes by
studying partial information leakage and partial reconstruction parameters.
More precisely, given a sequence of linear ramp secret sharing schemes and
any fixed numbers 0 ≤ ε1, ε2 ≤ 1 we study the asymptotic parameters

Λ(1)(ε1) = sup
{

lim inf
i→∞

tm1(i)

ni
| (m1(i))∞

i=1 satisfies

1 ≤ m1(i) ≤ `i, lim
i→∞

(m1(i)/ni) = ε1L
}

,

Λ(2)(ε2) = inf
{

lim sup
i→∞

r`i−m2(i)+1

ni
| (m2(i))∞

i=1 satisfies

1 ≤ m2(i) ≤ `i, lim
i→∞

(m2(i)/ni) = ε2L
}

.

Such parameters tell us that asymptotically no fraction less than Λ(1)(ε1) of
the shares holds more information on the secret than a fraction ε1. Similarly,
from any fraction greater than Λ(2)(ε2) of the shares one can gain information
on the secret corresponding to a fraction 1− ε2 or more. Of particular interest
is Λ(1)(0) which ensures almost full privacy. It is a surprising fact that for
secret sharing schemes based on algebraic geometric codes this number can
be significantly larger than Ω(1), meaning that such schemes are more secure
than anticipated (see Section 3 and Theorem H.12). The situation is similar
with regards to reconstruction. In another direction, for fixed values of L and
corresponding feasible Λ(1)(ε1) we determine for the general class of ramp
secret sharing schemes the smallest value Λ(2)(ε2) such that a sequence of
codes with these parameters exists. This bound – which can be seen as an
asymptotic Singleton bound for linear ramp secret sharing schemes – is then
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by a non-constructive proof shown to be achievable, but unfortunately, we
obtain no information regarding Ω(1) and Ω(2) for those sequences.

Sequences of linear ramp secret sharing schemes based on algebraic ge-
ometric codes defined from optimal towers of function fields are interesting
for the following three reasons. Firstly, for such sequences the parameters L,
Ω(1) and Ω(2) are simultaneously good. Also Λ(1)(ε1) and Λ(2)(ε2) are good,
although they do not always reach the Singleton bound. Secondly, such se-
quences are constructible if q is a perfect square and are semi-constructible if
not. Finally, as demonstrated in [4–8, 10] examples of such sequences are im-
portant in connection with secure multiparty computation due to nice prop-
erties on the componentwise product of share vectors.

Our analysis of the asymptotic secret sharing parameters is based on the
material in [12, 17] which translates information-theoretical properties of a
ramp secret sharing scheme based on nested linear codes C2 ( C1 ⊂ Fn

q into
coding-theoretical properties of the nested codes. In particular, bounding
generalized Hamming weights [28] of C1 and C⊥2 and relative generalized
Hamming weights [18] of the pairs C2  C1 and C⊥1  C⊥2 implies bounds on
the privacy and reconstruction numbers ti and ri.

We describe the relations between our study and the previous similar re-
searches [21, 30, 32]. In [30], Yamamoto treated the case where real-valued
coding and leakage rates are treated in asymptotic setting with two or three
shares. Our study lets the number of shares grow to the infinity, and the
asymptotic problem studied in this paper is therefore different from [30]
where the number of shares is limited to two or three. [21] considered the
ramp (non-perfect) secret sharing with general access structures. They clar-
ified lower bounds on the share sizes, but did not provide an explicit con-
struction except simple extension of Shamir’s scheme. [32] treated the case
where tm + 1 = rm, m = 1, . . . , ` of the proposed scheme, and proposed an
optimal scheme that minimizes the ratio of share sizes to secret size. The un-
derlying assumption in [32] was that both share sizes and secret size can be
made arbitrarily large to decrease the above mentioned ratio, because their
proposed construction [32, Section 5] used their previous research [31] that
used a univariate polynomial construction over finite fields, in which the
number of shares cannot be larger than the size of the finite field used in
construction. On the other hand, in this study we always considered a fixed
size q of shares, in the same way as [4–8, 10], and therefore our study cannot
be directly compared with [32].

The paper is organized as follows. In Section 2 we give the Singleton
bound for linear ramp secret sharing schemes. Using the material from 1 we
then show that for arbitrary L, sequences of schemes exist such that for arbi-
trary ε1, ε2 one gets arbitrarily close to the Singleton bound for Λ(1)(ε1) and
Λ(2)(ε2). In Section 3 we then discuss how to obtain sequences of ramp secret
sharing schemes with good values of L, Ω(1) and Ω(2) from optimal towers
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of function fields. As a preparation step to treat later in the paper Λ(1)(ε1)
and Λ(2)(ε2) for these sequences of schemes we next study relative general-
ized Hamming weights of algebraic geometric codes in Section 4 and derive
asymptotic consequences in Section 5. Then finally in Section 6 we collect our
findings into information on Ω(1), Ω(2), Λ(1)(ε1) and Λ(2)(ε2) for sequences
of ramp secret sharing schemes based on algebraic geometric codes coming
from optimal towers of function fields. Due to lack of space, the authors must
assume readers’ familiarity with algebraic geometry codes. because a short
readable review on algebraic geometry codes seems impossible. Readers are
referred to [15] and [25] for background knowledge. on algebraic geometry
codes.

2 The Singleton bound

The code parameters governing the privacy and reconstruction numbers tm
and rm of linear ramp secret sharing schemes are the relative generalized
Hamming weights [18] which we now define together with the generalized
Hamming weights [28].

Definition H.2. Consider C2 ( C1 ⊂ Fn
q and let ` = k1 − k2 where k1 =

dim C1 and k2 = dim C2. For m = 1, . . . , ` the m-th relative generalized
Hamming weight (RGHW) is:

Mm(C1, C2) = min{#Supp(D) | D ⊂ C1 is a linear space

with dim(D) = m and D ∩ C2 = {0}},

where Supp(D) = {i ∈ {1, 2, . . . , n} | ∃d ∈ D, di 6= 0}. For m = 1, 2, . . . , k1,
the m-th generalized Hamming weight (GHW) of C1 is defined as dm(C1) =
Mm(C1, {0}).

Clearly, the RGHWs can be lower bounded by the GHWs of the same in-
dex, and as the latter are often easier to estimate we shall also take an interest
in them. The following theorem, which is [12, Th. 3], gives a characterization
of the threshold numbers tm and rm in terms of the RGHWs of the pairs
C2  C1 and C⊥1  C⊥2 , where C⊥ denotes the dual of the linear code C.

Theorem H.1. Consider a linear ramp secret sharing scheme based on codes C2 (
C1 ⊂ Fn

q . Then for m = 1, 2, . . . , `,

tm = Mm(C⊥2 , C⊥1 )− 1, and

rm = n−M`−m+1(C1, C2) + 1.

Observe, that as a consequence we obtain tm ≥ d(C⊥2 ) − 1 and rm ≤
n− d`−m+1(C1) + 1. Given a sequence of linear ramp secret sharing schemes
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satisfying (H.2), numbers 0 ≤ ε1, ε2 ≤ 1 and any two sequences (m1(i))∞
i=1

and (m2(i))∞
i=1 with limi→∞(m1(i)/ni) → ε1L and limi→∞(m2(i)/ni) → ε2L

we then obtain

Ω(1) = lim inf
i→∞

M1(C⊥2 , C⊥1 )

ni
≥ lim inf

i→∞

d(C⊥2 )

ni
(H.4)

Ω(2) = 1− lim inf
i→∞

M1(C1, C2)

ni

≤ 1− lim inf
i→∞

d(C1)

ni
(H.5)

Λ(1)(ε1) ≥ lim inf
i→∞

Mm1(i)(C
⊥
2 , C⊥1 )

ni
(H.6)

≥ lim inf
i→∞

dm1(i)(C
⊥
2 )

ni
(H.7)

Λ(2)(ε2) ≤ 1− lim inf
i→∞

Mm2(i)(C1, C2)

ni
(H.8)

≤ 1− lim inf
i→∞

dm2(i)(C1)

ni
(H.9)

To study the optimality of linear ramp secret sharing schemes we recall the
Singleton bound [18, Section IV] for a linear code pair C2  C1 ⊂ Fn

q and its
dual pair C⊥1  C⊥2 ⊂ Fn

q : for each m = 1, 2, . . . , `,

Mm(C1, C2) ≤ n− k1 + m, and Mm(C⊥2 , C⊥1 ) ≤ k2 + m. (H.10)

From these bounds and Theorem H.1, it follows that rm ≥ k2 + m and tm ≤
k2 + m− 1, and as a consequence

Ω(2) −Ω(1) ≥ L (H.11)

and
Λ(2)(ε2)−Λ(1)(ε1) ≥ L(1− ε1 − ε2). (H.12)

There exist choices of Ω(1) < Ω(2) such that (H.11) is not nearly tight, mean-
ing that L cannot be close to Ω(2) −Ω(1) [4, Th. 3.26, Th. 4.6]. It is therefore
surprising that for any fixed value of Λ(1)(0) < Λ(2)(0) there exist sequences
of linear ramp secret sharing schemes with L arbitrarily close to Λ(2)(0) −
Λ(1)(0). Even more, by the strict monotonicity of RGHWs [18, Pro. 2], for
such schemes L(1− ε1 − ε2) becomes arbitrarily close to Λ(2)(ε2)−Λ(1)(ε1)
for all 0 ≤ ε1, ε2 ≤ 1. Our proof is non-constructive, as might be expected,
and it unfortunately does not reveal any non-trivial information on the cor-
responding values of Ω(1) and Ω(2). We leave it for further research to de-
termine simultaneous information on these parameters, and in particular to
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decide if the sequences fulfill the requirements in Definition H.1 for being
asymptotically good. In 1 we prove the following result:

Theorem H.2. For 0 ≤ R2 < R1 ≤ 1, 0 ≤ δ ≤ 1, 0 ≤ δ⊥ ≤ 1, 0 < τ ≤
min{δ, R1 − R2} and 0 < τ⊥ ≤ min{δ⊥, R1 − R2}, if

R1 + δ < 1 + τ and (1− R2) + δ⊥ < 1 + τ⊥, (H.13)

then for any prime power q there exists an infinite sequence of nested linear code
pairs C2(i) ( C1(i) ⊂ F

ni
q , where ni → ∞ for i→ ∞, and where

lim
i→∞

dim(C1(i))
ni

= R1,

lim
i→∞

dim(C2(i))
ni

= R2,

lim inf
i→∞

Mdniτe(C1(i), C2(i))
ni

≥ δ, and

lim inf
i→∞

Mdniτ
⊥e(C2(i)⊥, C1(i)⊥)

ni
≥ δ⊥.

As a corollary we see that the difference in (H.12) can become arbitrarily
close to zero.

Corollary H.3. For any 0 < R2 < R1 < 1 there exists a sequence of linear ramp
secret sharing schemes satisfying (H.2) with L = R1 − R2 and having simultaneous
Λ(1)(ε1) arbitrarily close to R2 + ε1L and Λ(2) arbitrarily close to R1 − ε2L for all
0 ≤ ε1, ε2 ≤ 1.

Proof. As noted prior to Theorem H.2 by the strict monotonicity of the RGHWs
it is enough to prove L = R1 − R2 and that Λ(1)(0) can be arbitrarily close
to R2 simultaneously with Λ(2)(0) being arbitrarily close to R1. We start by
proving a result which at a first glance seems weaker – but from which the
above will follow. Let 0 < ε ≤ min{R1/L, (1− R2)/L} and choose arbitrarily
small µ > 0. In Theorem H.2 choose τ = τ⊥ = εL, δ = 1 − R1 + εL − µ
and δ⊥ = R2 + εL − µ. By inspection all the conditions of the theorem are
satisfied and therefore by (H.6) and (H.8) for any ε in the considered interval
there exists a sequence of linear ramp secret sharing schemes satisfying (H.2)
such that Λ(1)(ε) is arbitrarily close to R2 + εL simultaneously with Λ(2)(ε)
being arbitrarily close to R1 − εL. The theorem finally follows by considering
a sequence of numbers (ε(i))∞

i=1 between 0 and min{R1/L, (1− R2)/L} and
with limi→∞ ε(i) = 0. For each ε(i) we have a sequence S(i) of secret sharing
schemes as described above. Now build a new sequence of schemes in which
the i-th scheme is the i-th scheme from the sequence S(i). The resulting
scheme satisfies the requirement mentioned at the beginning of the proof.

291



Paper H.

3 Asymptotically good sequences of schemes from
algebraic geometric codes

In the remaining part of the paper we concentrate on ramp secret sharing
schemes defined from pairs of nested algebraic geometric codes. In the
present section we collect known information to describe what is possible
concerning the parameters L, Ω(1) and Ω(2). In subsequent sections we then
derive information on Λ(1)(ε1) and Λ(2)(ε2).

Let F be an algebraic function field over Fq of transcendence degree one.
In the rest of the paper we consider divisors D = P1 + · · ·+ Pn and G with
disjoint supports, where the places Pi are rational and pairwise distinct. For
any divisor E, we define the Riemann-Roch space L(E) of functions f ∈ F
such that the divisor ( f ) + E is effective (see also [15, Def. 2.36]). We denote
by CL(D, G) the evaluation code of length n obtained by evaluating functions
f ∈ L(G) in the places Pi. An algebraic geometric code is a code of the
form CL(D, G) or CL(D, G)⊥. We call the first primary algebraic geometric
codes and the latter dual. The well-known Goppa bound [15, Th. 2.65] gives
information on the relation between dimension and minimum distance for
primary or dual codes.

Theorem H.3. Let C be an algebraic geometric code of dimension k defined from a
function field of genus g. Then the minimum distance satisfies d(C) ≥ n− k+ 1− g.

Given a function field F , we shall write N(F ) for its number of rational
places and g(F ) for its genus. For asymptotic purposes, we will make use of
Ihara’s constant [16]

A(q) = lim sup
g(F )→∞

N(F )
g(F ) ,

where the limit is taken over all function fields over Fq of genus g(F ) > 0.
The Drinfeld-Vlăduţ bound [27] states that

A(q) ≤ √q− 1. (H.14)

As is well-known A(q) is always strictly positive and equality in (H.14) holds
if q is a perfect square [16]. See [1] for the status on what is known about A(q)
for q being a non-square. For convenience, we give the following definition:

Definition H.4. A tower of function fields (Fi)
∞
i=1 over Fq is optimal if N(Fi)→

∞ and N(Fi)/g(Fi)→ A(q) for i → ∞. On the other hand, (Ci)
∞
i=1 is an op-

timal sequence of one-point algebraic geometric codes defined from Fi if
ni/N(Fi)→ 1 for i→ ∞, where ni is the length of Ci.

The above together with (H.4) and (H.5) immediately combine into the
following result concerning the existence of asymptotically good sequences
of ramp secret sharing schemes.
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Theorem H.4. Let (C2(i) ( C1(i) ⊂ F
ni
q )∞

i=1 be a sequence of nested algebraic
geometric codes defined from an optimal tower of function fields and satisfying ni =
N(Fi) − 1, dim C1(i)/ni → R1 and dim C2(i)/ni → R2 for some 0 < R2 ≤
R1 < 1. Then the corresponding sequence of linear ramp secret sharing schemes (see
Section 1) satisfies Ω(1) ≥ R2 − 1

A(q) and Ω(2) ≤ R1 +
1

A(q) .

In particular we obtain asymptotically good ramp secret sharing schemes
(Definition H.1) if 1

A(q) < R2 ≤ R1 < 1− 1
A(q) . If moreover R2 < R1 then also

the crucial requirement (H.2) is satisfied. Observe that due to the assumption
ni = N(Fi)− 1 we may choose the codes in Theorem H.4 as one-point codes,
meaning that without loss of generality we may consider codes of the form
C2(i) = CL(D, µ2(i)Q) and C1(i) = CL(D, µ1(i)Q), where D is the sum of
ni distinct rational places in Fi and Q is another rational place in the same
function field.

4 RGHWs and GHWs of algebraic geometric codes

In this section, we give non-asymptotic analysis that are necessary in Sec-
tions 5 and 6 to treat the parameters Λ(1)(ε1) and Λ(2)(ε2) of the sequences
of algebraic geometric schemes discussed in the previous section. The next
theorem combines [15, Th. 2.65], [26, Th. 4.3, Cor. 4.2] and [28, Th. 1]. The
first part which is a generalization of Theorem H.3 is known as the Goppa
bound for GHWs.

Theorem H.5. Let C be an algebraic geometric code of dimension k defined from a
function field of genus g. Then dm(C) ≥ n − k + m − g, for 1 ≤ m ≤ g, and
dm(C) = n− k + m, for g + 1 ≤ m ≤ k.

For algebraic geometric codes C2  C1, the above theorem exactly gives
dm(C1) and Mm(C1, C2) when g < m. In Proposition H.6 and Proposition H.7
below, we will improve it in the case m ≤ g for one-point codes. From now
on we will concentrate on one-point algebraic geometric codes. That is, codes
CL(D, G) or CL(D, G)⊥, where G = µQ, Q is a rational place and µ ≥ −1.
Writing νQ for the valuation at Q, the Weierstrass semigroup corresponding
to Q is

H(Q) = −νQ

 ∞⋃
µ=0
L(µQ)

 = {µ ∈N0 | L(µQ) 6= L((µ− 1)Q)}.

As is well-known, the number of missing positive numbers in H(Q) equals
the genus g of the function field. The conductor c is by definition the smallest
element in H(Q) such that all integers greater than or equal to that number
belong to the set. The following lemma is well-known [15, Th. 2.65]:
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Lemma H.5. For µ ≥ −1, k = dim CL(D, µQ) satisfies:

• k ≥ µ + 1− g if µ ≤ 2g− 2,

• k = µ + 1− g if 2g− 2 < µ < n, and

• k ≤ µ + 1− g if n ≤ µ.

If µ = n + 2g− 1, then CL(D, µQ) = Fn
q .

From [12, Th. 19, 20] we have the following result.

Theorem H.6. Let C1 = CL(D, µ1Q) and C2 = CL(D, µ2Q), with −1 ≤ µ2 <
µ1. Write k1 = dim C1, k2 = dim C2 and ` = k1 − k2. If 1 ≤ m ≤ `, then

1. Mm(C1, C2) ≥ n − µ1 + min{#{α ∈ ∪m−1
s=1 (is + H(Q)) | α /∈ H(Q)} |

−(µ1 − µ2) + 1 ≤ i1 < . . . < im−1 ≤ −1}.

2. Mm(C⊥2 , C⊥1 ) ≥ min{#{α ∈ ∪m
s=1(is + (µ1 − H(Q))) | α ∈ H(Q)} |

−(µ1 − µ2) + 1 ≤ i1 < . . . < im ≤ 0}.

Choosing C2 = {0} in item 1, we obtain a bound on the GHWs of C1. Sim-
ilarly, choosing C1 = Fn

q in item 2, we get a bound on the GHWs of C⊥2 .

Proposition H.6. For 0 ≤ γ ≤ c, let hγ = # (H(Q) ∩ (0, γ]) and let µ ≥ −1 and
k = dim CL(D, µQ). If µ < n and 1 ≤ m ≤ min{k, g}, then

dm(CL(D, µQ)) ≥ n− k + 2m− c + hc−m ≥ n− k + 2m− c.

Proof. We will apply item 1 in Theorem H.6 for µ1 = µ and µ2 = −1. Con-
sider numbers −µ ≤ i1 < · · · < im−1 ≤ −1. We have [c−m + 1, c] \ H(Q) ⊂
[max{0, c + i1}, c] \ H(Q) ⊂ {α ∈ ∪m−1

s=1 (is + H(Q)) | α /∈ H(Q)} ∩ [0, ∞),
where the first inclusion comes from i1 ≤ −m + 1. Now the number of el-
ements in [c− m + 1, c] ∩ H(Q) is at most (c− g)− hc−m, and we have that
#
(
{α ∈ ∪m−1

s=1 (is + H(Q)) | α /∈ H(Q)} ∩ [0, ∞)
)
≥ m − (c − g) + hc−m. On

the other hand, we have that {i1, . . . , im−1} ⊂ {α ∈ ∪m−1
s=1 (is + H(Q)) | α /∈

H(Q)} ∩ (−∞, 0). Thus, from Theorem H.6, we obtain dm(CL(D, µQ)) ≥
(n− µ) + (m− 1) + (m− c + g + hc−m). Since k ≥ µ− g + 1 by Lemma H.5,
the result follows.

Proposition H.7. For γ ≥ 1, let h′γ = #([γ, ∞) \ H(Q)) and let µ > 2g− 2 and
k = dim CL(D, µQ)⊥. If 1 ≤ m ≤ min{k, g}, then

dm(CL(D, µQ)⊥) ≥ n− k + 2m− c + h′µ−c+m ≥ n− k + 2m− c.
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Proof. We will apply item 2 in Theorem H.6 for µ1 = n+ 2g− 1 and µ2 = µ to
prove that Mm(C⊥2 , C⊥1 ) ≥ k2 + 2m− c + h′µ2−c+m, where k2 = dim C2. Con-
sider numbers −(µ1− µ2) + 1 ≤ i1 < · · · < im ≤ 0. First, (im + µ1− H(Q))∩
[0, µ2] contains the set [0, µ1− c− (µ1− µ2) + m] = [0, µ2− c + m], since im ≥
−(µ1− µ2) + m and µ1− c− (µ1− µ2) + m ≤ µ2. Here, we used the assump-
tion m ≤ g and the fact that g ≤ c. Thus, # ((im + µ1 − H(Q)) ∩ H(Q) ∩ [0, µ2])
is greater than or equal to (µ2 − c + m + 1) − (g − h′µ2−c+m). On the other
hand, {µ1 + i1, . . . , µ1 + im} is contained in {α ∈ ∪m

s=1(is + (µ1 − H(Q))) |
α ∈ H(Q)}, which are m elements in the range (µ2, µ1]. Thus, from the previ-
ous theorem we obtain Mm(C⊥2 , C⊥1 ) ≥ (µ2 − c + m + 1− g + hµ2−c+m) + m.
Since k2 ≤ µ2 − g + 1 and C1 = Fn

q by Lemma H.5, the result follows.

5 Asymptotic analysis for algebraic geometric codes

As a preparation step to treat the parameters Λ(1)(ε1) and Λ(2)(ε2) of se-
quences of schemes based on algebraic geometric codes, in this section we
derive asymptotic consequences of the non-asymptotic results derived in the
previous section. We start our investigations by commenting on [26, Th.
5.9], which if true would imply that the codes in Theorem H.4 would attain
the Singleton bound (H.12) in all cases 1

q < R2 < R1 < 1 − 1
q and for all

0 ≤ ε1, ε2 ≤ 1. Below we reformulate [26, Th. 5.9] with the needed modifi-
cation which ensures that the Singleton bound is reached when 1/A(q) < ρ,
in contrast to 0 ≤ ρ, as it appears in [26]. We also adapt the formulation
to better fit our purposes of constructing asymptotically good sequences of
secret sharing schemes. We include the proof from [26] to explain why this
modification is needed.

Theorem H.7. Let (Fi)
∞
i=1 be an optimal tower of function fields over Fq. Con-

sider R, ρ with 0 ≤ ρ ≤ R ≤ 1. Let (Ci)
∞
i=1 be an optimal sequence of one-

point algebraic geometric codes defined from (Fi)
∞
i=1 such that dim Ci/ni → R.

For all sequences of positive integers (mi)
∞
i=1 with mi/ni → ρ, it holds that δ =

lim infi→∞ dmi (Ci)/ni ≥ 1− R + ρ− 1
A(q) and, if 1/A(q) < ρ, then δ = 1− R +

ρ.

Proof. The first bound on δ is an easy consequence of the Goppa bound (the
first part of Theorem H.5). Now assume 1/A(q) < ρ. By assumption, for
i large enough we have mi > g(Fi), which by the last part of Theorem H.5
implies that dmi (Ci) = ni − dim Ci + mi. Dividing by ni and taking the limit,
we obtain the result.

The theorem states that the Singleton bound (H.10) can be asymptotically
reached when 1/A(q) < ρ, which implies 1/(

√
q− 1) < ρ by (H.14). How-

ever, this leaves the cases 1/A(q) ≥ ρ undecided. In the following, we shall
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concentrate on finding asymptotic results for the cases 1/A(q) ≥ ρ. We will
need [26, Cor. 3.6] and Wei’s duality theorem [28, Th. 3], which we now recall
in this order:

Lemma H.8. For every linear code C ⊂ Fn
q we have that

dm(C) ≥ d1(C)
qm − 1

qm − qm−1 , m = 1, . . . , dim C.

Lemma H.9. Let C ⊂ Fn
q be a linear code, dim C = k. Write dr = dr(C), d⊥s =

ds(C⊥) for 1 ≤ r ≤ k, 1 ≤ s ≤ n− k. Then,

{1, . . . , n} = {d1, . . . , dk} ∪ {n + 1− d⊥n−k, . . . , n + 1− d⊥1 }.

Our first result is a strict improvement to Theorem H.7.

Theorem H.8. Let (Fi)
∞
i=1 be an optimal tower of function fields over Fq. Consider

R, ρ with 1/A(q) ≤ R ≤ 1 and q
q−1

1
A(q) −

1
q−1 R ≤ ρ ≤ R. Let (Ci)

∞
i=1 be an

optimal sequence of one-point algebraic geometric codes defined from (Fi)
∞
i=1 such

that dim Ci/ni → R. There exists a sequence of positive integers (mi)
∞
i=1 such that

mi/ni → ρ and dmi (Ci)/ni → δ = 1− R + ρ.

Proof. In this proof we use the notation ki = dim Ci. Let f : N → N be a
function such that f (i) → ∞ and f (i)/ni → 0, as i → ∞. Now fix i. The
Goppa bound (Theorem H.5) together with Lemma H.8 tell us that

d f (i)(C
⊥
i ) ≥ q f (i) − 1

q f (i) − q f (i)−1
(ki − g(Fi)).

Write h(i) for the right-hand side, that is, d f (i)(C⊥i ) ≥ dh(i)e. Observe that
h(i) > 0, since asymptotically ki > g(Fi). If we write d⊥s = ds(C⊥i ) for
1 ≤ s ≤ ni − ki, we have that ni + 1 − dh(i)e ≥ ni + 1 − d⊥f (i). From this
inequality and the monotonicity of GHWs, it follows that the sets

{ni + 1− dh(i)e, ni + 2− dh(i)e, . . . , ni} and

{ni + 1− d⊥ni−ki
, ni + 1− d⊥ni−ki−1, . . . , ni + 1− d⊥f (i)+1}

are disjoint. Therefore, from Lemma H.9 it follows that

dki−dh(i)e+ f (i)(Ci) ≥ ni + 1− dh(i)e. (H.15)

Now take a sequence of positive integers (mi)
∞
i=1 such that

ki − dh(i)e+ f (i) ≤ mi ≤ ki (H.16)
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(observe that the left-hand side is smaller than ki for large i). From (H.15),
(H.16) and the monotonicity of GHWs we get

dmi (Ci) ≥ dki−dh(i)e+ f (i)(Ci) + mi − ki + dh(i)e − f (i)

≥ ni − ki + mi − f (i) + 1.
(H.17)

Dividing by ni and letting i→ ∞, (H.16) and (H.17) become

q
q− 1

1
A(q)

− 1
q− 1

R ≤ ρ ≤ R,

δ = lim
i→∞

dmi (Ci)

ni
= 1− R + ρ.

We have the following result for lower values of ρ.

Theorem H.9. Let (Fi)
∞
i=1 be an optimal tower of function fields over Fq. Consider

R, ρ with 0 ≤ ρ ≤ R ≤ 1. Let (Ci)
∞
i=1 be an optimal sequence of one-point algebraic

geometric codes defined from (Fi)
∞
i=1 such that dim Ci/ni → R. For all sequences of

positive integers (mi)
∞
i=1 with mi/ni → ρ, the number δ = lim infi→∞ dmi (Ci)/ni

satisfies

δ ≥ q
q− 1

(
1− R− 1

A(q)

)
+ ρ.

Proof. Let 0 < ε < 1 be an arbitrary fixed number. From the Goppa bound
(Theorem H.5) and Lemma H.8 we obtain that

ddεmie(Ci)

ni
≥ qεmi − 1

qεmi − qεmi−1

(
1− dim Ci

ni
− gi

ni

)
.

Using again the monotonicity of GHWs we obtain that

dmi (Ci)

ni
≥ qεmi − 1

qεmi − qεmi−1

(
1− dim Ci

ni
− gi

ni

)
+

mi(1− ε)

ni
.

Now, letting i→ ∞ first and then ε→ 0, we obtain

δ = lim inf
i→∞

dmi (Ci)

ni
≥ q

q− 1

(
1− R− 1

A(q)

)
+ ρ.

In the following, we concentrate on Garcia and Stichtenoth’s second tower [11]
of function fields (Fi)

∞
i=1 over Fq where q is an arbitrary perfect square.

From [22] we have a complete description of the corresponding Weierstrass
semigroups and [24] gives an efficient method for constructing the corre-
sponding optimal sequences of one-point algebraic geometric codes. We will
apply the two new bounds on GHWs given in Proposition H.6 and Proposi-
tion H.7 to this tower. In the rest of this section, q is always a perfect square
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and by (Fi)
∞
i=1 we mean Garcia and Stichtenoth’s second tower [11]. We will

need the following properties of each Fi ( [11, 22]): its number of rational
places satisfies N(Fi) > q

i−1
2 (q−√q), its genus is given by

g(Fi) =

{
(q

i
4 − 1)2 if i is even,

(q
i+1

4 − 1)(q
i−1

4 − 1) if i is odd,

and it has a rational place Qi such that the conductor of H(Qi) is given by

ci =

{
qi/2 − qi/4 if i is even,
qi/2 − q(i+1)/4 if i is odd.

In the rest of the section, (Ci)
∞
i=1 is an optimal sequence of one-point al-

gebraic geometric codes defined from (Fi)
∞
i=1, and where Ci is of the form

CL(Di, µiQi) or CL(Di, µiQi)
⊥. Recall from [24] that we may assume without

loss of generality that Di is chosen in such a way that Ci can be constructed
using O(ni

3 log3
q(ni)) operations in Fq.

Theorem H.10. Let (Fi)
∞
i=1 be Garcia-Stichtenoth’s second tower of function fields

over Fq, where q is a perfect square. Let (Ci)
∞
i=1 be a corresponding optimal sequence

of one-point algebraic geometric codes as described above. Consider R, ρ with 0 ≤
R ≤ 1− 1√

q−1 and 0 ≤ ρ ≤ min{R, 1√
q−1}, and assume that dim Ci/ni → R.

For all sequences of positive integers (mi)
∞
i=1 with mi/ni → ρ, it holds that δ =

lim infi→∞ dmi (Ci)/ni satisfies

δ ≥ 1− R + 2ρ− 1
√

q− 1
.

Proof. We may assume that Ci is of the form CL(Di, µiQi) or CL(Di, µiQi)
⊥,

with 2g(Fi) − 2 < µi < ni and (µi − g(Fi))/ni → R. As limi→∞ ci/ni =
limi→∞ g(Fi)/ni = 1/(

√
q − 1), the result follows from Proposition H.6 or

Proposition H.7.

6 The parameters Λ(1)(ε1) and Λ(2)(ε2) for algebraic
geometric code based schemes

In Section 3 we estimated Ω(1) and Ω(2) for asymptotically good sequences
of schemes based on algebraic geometric codes coming from optimal towers
of function fields, the sequences being called asymptotically good if Ω(1) > 0
and Ω(2) < 1. Employing the analysis in Section 5 together with (H.7)
and (H.9) we are now able to give a more complete picture of the infor-
mation leakage and reconstruction by providing also estimates on Λ(1)(ε1)
and Λ(2)(ε2). We emphasize that the below theorems apply also in the cases
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where one or both of the conditions Ω(1) > 0 and Ω(2) < 1 fails to hold.
Throughout the section recall that by definition the numbers ε1 and ε2 al-
ways satisfy 0 ≤ ε1, ε2 ≤ 1.

Theorem H.11. For the sequence of linear ramp secret sharing schemes described
in Theorem H.4 we have the following estimates: If 1/A(q) ≤ 1− R2 and ε1 ≥( q

q−1
1

A(q) −
1

q−1 (1− R2)
)
/L then Λ(1)(ε1) ≥ R2 + ε1L. If 1/A(q) ≤ R1 and

ε2 ≥
( q

q−1
1

A(q) −
1

q−1 R1
)
/L then Λ(2)(ε2) ≤ R1 − ε2L.

Proof. Apply Theorem H.8 with ρ = ε1L and ρ = ε2L, respectively, in combi-
nation with (H.7) and (H.9), respectively.

Theorem H.12. For the sequence of linear ramp secret sharing schemes described in
Theorem H.4 we have the following estimates: Λ(1)(ε1) ≥ q

q−1 (R2 − 1
A(q) ) + ε1L

and Λ(2)(ε2) ≤ q
q−1 (R1 +

1
A(q) )−

1
q−1 − ε2L.

Proof. Apply Theorem H.9 in combination with (H.7) and (H.9).

Observe that from Theorem H.12 we get an estimate on Λ(1)(0) wich is
q/(q − 1) times as large as the estimate on Ω(1) in Section 3. Hence, the
studied sequences of secret sharing schemes are more secure than previously
anticipated. A similar remark holds regarding reconstruction.

Theorem H.13. Let q be a perfect square. For the sequence of linear ramp secret
sharing schemes described in Theorem H.4 we have the following estimates: If R2 ≥
1/(
√

q − 1) and ε1 ≤ 1√
q−1

1
L then Λ(1)(ε1) ≥ R2 + 2ε1L − 1√

q−1 . If R1 ≤
1− 1√

q−1 and ε2 ≤ 1√
q−1

1
L then Λ(2)(ε2) ≤ R1 − 2ε2L + 1√

q−1 . The i-th scheme

in the sequence can be constructed using O(n3
i log(ni)

3) operations in Fq.

Proof. Apply Theorem H.10 in combination with (H.7) and (H.9).

We finally remark that when q is a perfect square, then similarly to Theo-
rem H.13, one can assume in Theorem H.11 and Theorem H.12 that the i-th
scheme in the sequence can be constructed using O(n3

i log(ni)
3) operations

in Fq.
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1 Proof of Theorem H.2

In this appendix we give a proof of Theorem H.2. The theorem is an improve-
ment of [20, Th. 9], the improvement stating that the RGHWs of primary and
dual nested linear code pairs can get simultaneously asymptotically as close
to the Singleton bound (H.10) as wanted. We use the notation and results
in [13, 18–20]. In particular, we use the concept of relative dimension length
profile (RDLP) as appears in [18, Sec. III]. For 1 ≤ d ≤ n, and linear codes
C2 ( C1 ⊂ Fn

q define

Kd(C1, C2) = max{dim(C1 ∩VI)− dim(C2 ∩VI) |
I ⊂ {1, . . . , n}, #I = d},
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where VI = {x ∈ Fn
q | xi = 0 if i /∈ I}. The sequence (Kd(C1, C2))

n
d=1 is then

the RDLP of the pair C2  C1 and is known to be non-decreasing [18, Prop.
1]. Our interest in the RDLP comes from the following result corresponding
to the first part of [18, Th. 3]:

Mm(C1, C2) = min{d | Kd(C1, C2) ≥ m}. (18)

As in [13, 19], we define for integers a, u, v, w the numbers:

N1(w, u) =
∏u−1

i=0 (q
w − qi)

∏u−1
i=0 (q

u − qi)
, N2(w, u, v) =

∏v−1
i=0 (q

w − qu+i)

∏v−1
i=0 (q

v − qi)
,

and N3(w, u, v, a) = N1(u, a)N2(w − a, u − a, v − a). The meaning of N1 is
[13], [19, Lem. 5 and 6]:

Lemma .10. Let W be an Fq-linear vector space and let u, v, w = dim W be non-
negative integers. If u ≤ w, then N1(w, u) is the number of subspaces U ⊂ W of
dimension u. Furthermore, if U is fixed and u ≤ v ≤ w, then N1(w− u, v− u) is
the number of Fq-linear vector spaces V such that U ⊂ V ⊂W and dim V = v.

From [19, Lem. 9] we have:

Lemma .11. Consider fixed integers 1 ≤ k2 < k1 < n and a fixed set I ⊂
{1, . . . , n} with #I = d. Let s be an integer with s ≤ min{d, k1 − k2}. The
number of linear code pairs C2  C1 ⊂ Fn

q such that dim C1 = k1, dim C2 = k2,
and dim(C1 ∩VI)− dim(C2 ∩VI) = s, equals

N4(n, k1, k2, d, s) =
min{d−s,k1−s,k2}

∑
a=0

(
N1(d, a)

N2(n− a, d− a, k2 − a)N3(n− k2, d− a, k1 − k2, s)
)

.

We next extend [19, Cor. 3].

Theorem .14. Consider fixed integers 1 ≤ k2 < k1 < n, 1 ≤ d ≤ n, 1 ≤ d⊥ ≤ n,
1 ≤ s ≤ min{d, k1 − k2}, and 1 ≤ s⊥ ≤ min{d⊥, k1 − k2}. There exists a
nested linear code pair C2 ( C1 ⊂ Fn

q such that dim C1 = k1, dim C2 = k2,
Ms(C1, C2) > d and Ms⊥(C

⊥
2 , C⊥1 ) > d⊥, if

N1(n, k2)N1(n− k2, k1 − k2) >

(
n
d

) k1−k2

∑
σ=s

N4(n, k1, k2, d, σ)

+

(
n

d⊥

) k1−k2

∑
σ⊥=s⊥

N4(n, n− k2, n− k1, d⊥, σ⊥).
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Proof. By Lemma .10, the term N1(n, k2)N1(n− k2, k1− k2) is the total number
of pairs C2 ( C1 ⊂ Fn

q such that dim C1 = k1 and dim C2 = k2. On the other
hand, by Lemma .11, the number of pairs C2 ( C1 ⊂ Fn

q such that dim C1 =

k1, dim C2 = k2 and Kd(C1, C2) ≥ s is at most (n
d)∑k1−k2

σ=s N4(n, k1, k2, d, σ).
Similarly, the number of pairs C2 ( C1 ⊂ Fn

q such that dim C1 = k1, dim C2 =

k2 and Kd⊥(C
⊥
2 , C⊥1 ) ≥ s⊥ is at most ( n

d⊥)∑k1−k2
σ⊥=s⊥ N4(n, n− k2, n− k1, d⊥, σ⊥).

The inequality therefore ensures the existence of a code pair C2 ( C1 ⊂ Fn
q

with dim C1 = k1, dim C2 = k2, Kd(C1, C2) < s and Kd⊥(C
⊥
2 , C⊥1 ) < s⊥. But

the RDLP is non-decreasing and Kn(C1, C2) = Kn(C⊥2 , C⊥1 ) = k1 − k2 which
is larger than or equal to s and s′. Therefore there exists a smallest index j
such that Kj(C1, C2) ≥ s and a smallest index j⊥ such that Kj⊥(C

⊥
2 , C⊥1 ) ≥ s⊥

and j > d as well as j⊥ > d⊥ hold. The theorem now follows from (18).

To apply Theorem .14 in an asymptotic setting we will need a couple of
lemmas.

Lemma .12. Define π(q) = ∏∞
i=1(1− q−i). Then

π(q)qu(w−u) ≤ N1(w, u) ≤ π(q)−1qu(w−u), (19)

N2(w, u, v) ≤ π(q)−1qv(w−v),

N3(w, u, v, a) ≤ π(q)−2qa(u−a)q(v−a)(w−v). (20)

Proof. The inequality (19) is [14, Cor. 2] and the last two inequalities cor-
respond to [20, Lem. 3] except that π(q)−2 in (20) by a mistake was there
written π(q)−1 and similarly qa(u−a) was written qu(u−a).

The next lemma corresponds to [9, Ex. 11.1.3].

Lemma .13. Let Hq(x) = −x logq(x)− (1− x) logq(1− x), then

1
n + 1

qnHq(m/n) ≤
(

n
m

)
≤ qnHq(m/n).

With the above machinery we can now give the promised proof.

Proof of Theorem H.2. Let R1, R2, δ, δ⊥, τ and τ⊥ be as in the theorem
(in particular assume (H.13) to hold). Let (ni)

∞
i=1 be a strictly increasing

sequence of positive integers and define k1(i) = bniR1c, k2(i) = dniR2e,
s(i) = dniτe, s⊥(i) = dniτ

⊥e, d(i) = bniδc and d⊥(i) = bniδ
⊥c. Using

Theorem .14, we will show that for i large enough there exist nested linear
codes C2(i) ( C1(i) ⊂ F

ni
q of dimensions k2(i) and k1(i), respectively, with

Ms(i) ≥ d(i), and Ms⊥(i) ≥ d⊥(i). (21)
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Observe that (H.13) implies that

k1(i) + d(i)− ni − s(i) < 0, (22)

(ni − k2(i)) + d⊥(i)− ni − s⊥(i) < 0, (23)

which we will need later in the proof. For brevity, we will write k1, k2, d, d⊥,
s, s⊥, and n rather than k1(i), k2(i), d(i), d⊥(i), s(i), s⊥(i), and ni. Applying
Lemma .12, Lemma .13, and Theorem .14 we see that a sufficient condition
for the existence of a linear code pair satisfying (21) is

π(q)2qk2(n−k2)q(k1−k2)(n−k1)

> qnHq(d/n)
k1−k2

∑
σ=s

min{d−σ,k1−σ,k2}

∑
a=0

[
π(q)−1qa(d−a)

π(q)−1q(k2−a)(n−a−k2+a)π(q)−2qσ(d−a−σ)q(k1−k2−σ)(n−k2−k1+k2)

]

+qnHq(d⊥/n)
k1−k2

∑
σ⊥=s⊥

min{d⊥−σ⊥ ,n−k2−σ⊥ ,n−k1}

∑
a=0

[
π(q)−1qa(d⊥−a)

π(q)−1q(n−k1−a)(n−a−n+k1+a)π(q)−2qσ⊥(d⊥−a−σ⊥)q(k1−k2−σ⊥)k2

]
.

But then another sufficient condition (named Condition A) for the existence
of a nested code pair satisfying (21) is

qk2(n−k2)+(k1−k2)(n−k1) >

f (q, n)max
{

qa(d−a)+(k2−a)(n−k2)+σ(d−a−σ)+(k1−k2−σ)(n−k1)
∣∣

s ≤ σ ≤ k1 − k2, 0 ≤ a ≤ min{d− σ, k1 − σ, k2}
}
+

f⊥(q, n)max
{

qa(d⊥−a)+(n−k1−a)k1+σ⊥(d⊥−a−σ⊥)+(k1−k2−σ⊥)k2
∣∣

s⊥ ≤ σ⊥ ≤ k1 − k2, and

0 ≤ a ≤ min{d⊥ − σ⊥, n− k2 − σ⊥, n− k1}
}

,

where f (q, n) = π(q)−6qnHq(d/n)n2, and where f⊥(q, n) = π(q)−6qnHq(d⊥/n)n2.
Consider now the expression σ(k1 + d− n− σ− a), which contains the terms
in the first exponent on the right-hand side of Condition A related to σ. As a
function in σ, this is a downward parabola intersecting the first axis in σ = 0.
For s ≤ σ, it follows from (22) and 0 ≤ a that k1 + d− n− σ− a < 0. Hence,
the maximal value of σ(k1 + d− n− σ− a) for s ≤ σ is attained when σ = s,
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and we therefore substitute σ with s in Condition A. In a similar fashion, we
see from (23) that σ⊥ can be replaced with s⊥. After these substitutions, the
terms related to a in the first exponent on the right-hand side of Condition
A become −a2 + a(k2 + d − n − s), which is equal to 0 for a = 0 and neg-
ative for a > 0, as a consequence of (22). Similarly, the terms related to a
in the last exponent on the right-hand side become −a2 + a(d⊥ − k1 − s⊥)
which again is equal to 0 for a = 0 and negative for a > 0 as a consequence
of (23). Hence, we can substitute a with 0 in Condition A. After the above
substitutions, Condition A simplifies to

qk2(n−k2)+(k1−k2)(n−k1) > f (q, n)qk2(n−k2)+s(d−s)+(k1−k2−s)(n−k1)

+ f⊥(q, n)q(n−k1)k1+s⊥(d⊥−s⊥)+(k1−k2−s⊥)k2 .

In this formula, we now replace the two expressions on the right-hand side
with the largest one multiplied by 2. We then take the logarithm over q
and finally divide by n2. Assume that the first term on the right-hand side
of Condition A is greater than or equal to the last term. After simplifying
equal terms on both sides and using the definition of k1, d and s, we see that
Condition A holds if

0 > g(i) + τ(δ− τ)− τ(1− R1), (24)

where g(i) = logq(2 f (q, ni))/n2
i , which goes to 0 as i goes to infinity. Sim-

ilarly, if the last term on the right-hand side is greater than or equal to the
first term, we see that Condition A holds if

0 > g⊥(i) + τ⊥(δ⊥ − τ⊥)− τ⊥R2, (25)

where g⊥(i) = logq(2 f⊥(q, ni))/n2
i , which again goes to 0 as i goes to infinity.

Finally, for i large enough, (24) follows from the first part of (H.13), since
τ > 0, and (25) follows from the last part of (H.13), since τ⊥ > 0. Therefore,
Condition A holds for i large enough and we are done.
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1. Introduction

Abstract

We upper bound the number of common zeros over a finite grid of multivariate poly-
nomials and an arbitrary finite collection of their consecutive Hasse derivatives (in
a coordinate-wise sense). To that end, we make use of the tool from Gröbner basis
theory known as footprint. Then we establish and prove extensions to this context of
a family of well-known results in algebra and combinatorics. These include Alon’s
combinatorial Nullstellensatz [1], existence and uniqueness of Hermite interpolat-
ing polynomials over a grid, estimations on the parameters of evaluation codes with
consecutive derivatives [19], and bounds on the number of zeros of a polynomial by
DeMillo and Lipton [7], Schwartz [24], Zippel [25, 26], and Alon and Füredi [2].

Keywords: Footprint bound, Gröbner basis, Hasse derivative, Hermite
interpolation, multiplicity, Nullstellensatz, Schwartz-Zippel bound.

MSC: 11T06, 12D10, 13P10.

1 Introduction

Estimating the number of zeros of a polynomial over a field F has been a
central problem in algebra, where one of the main inconveniences is count-
ing repeated zeros, that is, multiplicities. In the univariate case, this is easily
solved by defining the multiplicity of a zero as the minimum positive integer
r such that the first r consecutive derivatives of the given polynomial vanish
at that zero. In addition, Hasse derivatives [13] are used instead of classi-
cal derivatives in order to give meaningful information over fields of positive
characteristic. In this way, the number of zeros of a polynomial, counted with
multiplicities, is upper bounded by its degree. Formally:

∑
a∈F

m(F(x), a) ≤ deg(F(x)). (I.1)

If V≥r(F(x)) denotes the set of zeros of F(x) of multiplicity at least r, then a
weaker, but still sharp, bound is the following:

#V≥r(F(x)) · r ≤ deg(F(x)). (I.2)

In the multivariate case, the standard approach is to consider the first
r consecutive Hasse derivatives as those whose multiindices have order less
than r, where the order of a multiindex (i1, i2, . . . , im) is defined as ∑m

j=1 ij. We
will use the terms standard multiplicities to refer to this type of multiplicities.
In this work, we consider arbitrary finite families J of multiindices that are
consecutive in a coordinate-wise sense: if (i1, i2, . . . , im) belongs to J and
k j ≤ ij, for j = 1, 2, . . . , m, then (k1, k2, . . . , km) also belongs to J . Obviously,
the (finite) family J of multiindices of order less than a given positive integer
r satisfies this property, hence is a particular case.

309



Paper I.

Our main contribution is an upper bound on the number of common
zeros over a grid of a family of polynomials and their (Hasse) derivatives
corresponding to a finite set J of consecutive multiindices. This upper bound
makes use of the technique from Gröbner basis theory known as footprint
[10, 15], and can be seen as an extension of the classical footprint bound [6,
Section 5.3] in the sense of (I.2). A first extension for standard multiplicities
has been given as Lemma 2.4 in the expanded version of [23].

We will then show that this bound is sharp for ideals of polynomials,
characterize those which satisfy equality, and give as applications extensions
of known results in algebra and combinatorics: Alon’s combinatorial Null-
stellensatz [1, 3, 5, 20, 22], existence and uniqueness of Hermite interpolating
polynomials [9, 18, 21], estimations on the parameters of evaluation codes
with consecutive derivatives [11, 18, 19], and the bounds by DeMillo and
Lipton [7], Schwartz [24], Zippel [25, 26], and Alon and Füredi [2].

The bound given by Schwartz in [24, Lemma 1] can also be derived by
those given by DeMillo and Lipton [7], and Zippel [25, Theorem 1], [26,
Proposition 3] (see Proposition I.48 below), and is referred to as the Schwartz-
Zippel bound in many works in the literature [8, 11, 18, 19]. Interestingly,
an extension of such bound for standard multiplicities in the sense of (I.1)
has been recently given in [8, Lemma 8], but as Counterexample 7.4 in [4]
shows, no straightforward extension of the footprint bound in the sense of
(I.1) seems possible (recall that we will give a bound in the sense of (I.2)). To
conclude this work, we give an extension of the Schwartz-Zippel bound to
derivatives with weighted order less than a given positive integer, which we
will call weighted multiplicities. This bound is inspired by [8, Lemma 8], and
we will discuss its connection with our extension of the footprint bound.

The results are organized as follows: We start with some preliminaries
in Section 2. We then give the main bound in Section 3, together with some
particular cases, an interpretation of the bound, and sharpness and equality
conditions. In Section 4, we give a list of applications. Finally, in Section
5 we give an extension of the Schwartz-Zippel bound in the sense of (I.1)
to weighted multiplicities, and discuss the connections with the bound in
Section 3.

Notation

Throughout this paper, F denotes an arbitrary field. We denote by F[x] =
F[x1, x2, . . . , xm] the ring of polynomials in the m variables x1, x2, . . . , xm with
coefficients in F. A multiindex is a vector i = (i1, i2, . . . , im) ∈ Nm, where
N = {0, 1, 2, 3, . . .}, and as usual we use the notation xi = xi1

1 xi2
2 · · · x

im
m . We

also denote N+ = {1, 2, 3, . . .}.
In this work, � denotes the coordinate-wise partial ordering in Nm, that

is, (i1, i2, . . . , im) � (j1, j2, . . . , jm) if ik ≤ jk, for all k = 1, 2, . . . , m. We will
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use �m to denote a given monomial ordering in the set of monomials of F[x]
(see [6, Section 2.2]), and we denote by LM�m(F(x)) the leading monomial
of F(x) ∈ F[x] with respect to �m, or just LM(F(x)) if there is no confusion
about �m. Finally, the notation 〈A〉 means ideal generated by A in a ring,
and 〈A〉F means vector space over F generated by A.

2 Consecutive derivatives

In this work, we consider Hasse derivatives, introduced first in [13]. They co-
incide with usual derivatives except for multiplication with a non-zero con-
stant factor when the corresponding multiindex contains no multiples of the
characteristic of the field, and they have the advantage of not being identi-
cally zero otherwise.

Definition I.1 (Hasse derivative [13]). Let F(x) ∈ F[x] be a polynomial. Given
another family of independent variables z = (z1, z2, . . . , zm), the polynomial
F(x + z) can be written uniquely as

F(x + z) = ∑
i∈Nm

F(i)(x)zi,

for some polynomials F(i)(x) ∈ F[x], for i ∈ Nm. For a given multiindex i ∈
Nm, we define the i-th Hasse derivative of F(x) as the polynomial F(i)(x) ∈
F[x].

We next formalize the concept of zero of a polynomial of at least a given
multiplicity as that of common zero of the given polynomial and a given
finite family of its derivatives:

Definition I.2. Let F(x) ∈ F[x] be a polynomial, let a ∈ Fm be an affine point,
and let J ⊆Nm be a finite set. We say that a is a zero of F(x) of multiplicity
at least J if F(i)(a) = 0, for all i ∈ J .

The concept of consecutive derivatives, in a coordinate-wise sense, can be
formalized by the concept of decreasing sets of multiindices (recall that � de-
notes the coordinate-wise ordering in Nm):

Definition I.3 (Decreasing sets). We say that the set J ⊆ Nm is decreasing
if whenever i ∈ J and j ∈Nm are such that j � i, it holds that j ∈ J .

Observe that the finite set J = {(i1, i2, . . . , im) ∈ Nm : ∑m
j=1 ij < r}, for

a positive integer r, is decreasing. Moreover, if m = 1, then these are all
possible decreasing finite sets. The concept of weighted orders and weighted
multiplicities shows that this is not the case when m > 1:
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Definition I.4 (Weighted multiplicities). Fix a vector of positive weights w =
(w1, w2, . . . , wm) ∈ Nm

+. Given a multiindex i = (i1, i2, . . . , im) ∈ Nm, we de-
fine its weighted order as

| i |w= i1w1 + i2w2 + · · ·+ imwm. (I.3)

Let F(x) ∈ F[x] be a polynomial and let a ∈ Fm be an affine point. We say
that a is a zero of F(x) of weighted multiplicity r ∈N, and we write

mw(F(x), a) = r,

if F(i)(a) = 0, for all i ∈Nm with | i |w< r, and F(j)(a) 6= 0, for some j ∈Nm

with | j |w= r.

We also introduce the definition of weighted degree, which will be con-
venient for different results in the following sections:

Definition I.5 (Weighted degrees). Let F(x) ∈ F[x] be a polynomial and let
w ∈ Nm

+ be a vector of positive weights. We define the weighted degree of
F(x) as

degw(F(x)) = max{| i |w: Fi 6= 0},
where F(x) = ∑i∈Nm Fixi and Fi ∈ F, for all i ∈Nm.

Other interesting sets of consecutive derivatives that we will consider
throughout the paper are those given by bounding each index separately,
that is, sets of the form J =

{
(i1, i2, . . . , im) ∈Nm : ij < rj, j = 1, 2, . . . , m

}
,

for a given (r1, r2, . . . , rm) ∈ Nm
+, where � denotes the coordinate-wise par-

tial ordering.

3 The footprint bound for consecutive derivatives

In this section, we will give an extension of the footprint bound [6, Section
5.3] to upper bound the number of common zeros over a finite grid of a
family of polynomials and a given set of their consecutive derivatives, as in
Definition I.2. We give some particular cases and an interpretation of the
bound. We conclude by studying its sharpness.

Throughout the section, fix a decreasing finite set J ⊆ Nm, an ideal
I ⊆ F[x] and finite subsets S1, S2, . . . , Sm ⊆ F. Write S = S1 × S2 × · · · × Sm,
and denote by Gj(xj) ∈ F[xj] the defining polynomial of Sj, that is, Gj(xj) =

∏s∈Sj
(xj − s), for j = 1, 2, . . . , m. The three objects involved in our bound are

the following:

Definition I.6. We define the ideal

IJ = I +

〈{
m

∏
j=1

Gj(xj)
rj : (r1, r2, . . . , rm) /∈ J

}〉
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3. The footprint bound for consecutive derivatives

and the set of zeros of multiplicity at least J of the ideal I in the grid S =
S1 × S2 × · · · × Sm as

VJ (I) =
{

a ∈ S : F(i)(a) = 0, ∀F(x) ∈ I, ∀i ∈ J
}

.

Finally, given a monomial ordering �m, we define the footprint of an ideal
J ⊆ F[x] as

∆�m(J) =
{

xi : xi /∈ 〈LM(J)〉
}

,

where LM(J) = {LM(F(x)) : F(x) ∈ J} with respect to the monomial order-
ing �m. We write ∆(J) if there is no confusion about the monomial ordering.

3.1 The general bound

Theorem I.1. For any monomial ordering, it holds that

#VJ (I) · #J ≤ #∆ (IJ ) . (I.4)

The rest of the subsection is devoted to the proof of this result. The first
auxiliary tool is the Leibniz formula, which follows by a straightforward com-
putation (see also [14, pages 144–155]):

Lemma I.7 (Leibniz formula). Let F1(x), F2(x), . . . , Fs(x) ∈ F[x] and let i ∈
Nm. It holds that(

s

∏
j=1

Fj(x)

)(i)

= ∑
i1+i2+···+is=i

(
s

∏
j=1

F
(ij)

j (x)

)
.

The second auxiliary tool is the existence of Hermite interpolating poly-
nomials with Hasse derivatives. For our purposes, a separated-variables exten-
sion of univariate Hermite interpolation over grids is enough. This extension
is straightforward and seems to be known in the literature (see [21, Section
3.1]), but we give a short proof in the Appendix for convenience of the reader.

Definition I.8. We define the evaluation map on a finite set T ⊆ Fm with
derivatives corresponding to multiindices in J as

Ev :F[x] −→ F#T·#J

F(x) 7→
((

F(i)(a)
)

i∈J

)
a∈T

.
(I.5)

Lemma I.9 (Hermite interpolation). The evaluation map Ev : F[x] −→ F#T·#J

defined in (I.5) is surjective, for all finite sets T ⊆ Fm and J ⊆Nm.

Proof. See the Appendix.
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With these tools, we may now prove Theorem I.1:

Proof of Theorem I.1. Fix multiindices r = (r1, r2, . . . , rm) /∈ J and i = (i1, i2,
. . . , im) ∈ J , and define G(x) = ∏m

j=1 Gj(xj)
rj . By Lemma I.7, it holds that

G(i)(x) =
m

∏
j=1

(
Gj(xj)

rj
)(ij) . (I.6)

Furthermore, if r > i and F(x) ∈ F[x], then there exists H(x) ∈ F[x] such
that

(F(x)r)(i) = ∑
i1+i2+···+ir=i

(
r

∏
j=1

F(ij)(x)

)
= H(x)F(x)r−i, (I.7)

again by Lemma I.7, since at least r− i > 0 indices ij must be equal to 0, for
each (i1, i2, . . . , im) ∈Nm such that ∑m

j=1 ij = i. Finally, since J is decreasing,
it holds that r− i has at least one positive coordinate. Hence, combining (I.6)
and (I.7), we see that G(i)(a) = 0, for all a ∈ VJ (I) ⊆ S. This implies that

Ev(F(x)) = 0, ∀F(x) ∈ IJ ,

by the definition of the ideal IJ and the set VJ (I), and where we consider
T = VJ (I) in the definition of Ev (Definition I.8).

Therefore, the evaluation map Ev can be extended to the quotient ring

Ev : F[x]/IJ −→ F#VJ (I)·#J ,

which is again surjective, since the original evaluation map is surjective by
Lemma I.9. Since the domain and codomain of this map are F-linear vector
spaces and the map itself is also F-linear, we conclude that

#VJ (I) · #J = dimF

(
F#VJ (I)·#J

)
≤ dimF (F[x]/IJ ) .

Finally, Proposition 4 in [6, Section 5.3] says that the monomials in ∆(J) con-
stitute a basis of F[x]/J, for an ideal J ⊆ F[x]. This fact implies that

dimF (F[x]/IJ ) = #∆ (IJ ) ,

and the result follows.

3.2 Some particular cases

In this subsection, we derive some particular cases of Theorem I.1. We start
with the classical form of the footprint bound (see Proposition 8 in [6, Section
5.3], and [10, 15]):
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3. The footprint bound for consecutive derivatives

Corollary I.10 ( [6, 10, 15]). Setting J = {0}, we obtain that

#V(I) ≤ #∆ (I + 〈G1(x1), G2(x2), . . . , Gm(xm)〉) ,

where V(I) denotes the set of zeros of the ideal I in S.

The case of zeros of standard multiplicity at least a given positive integer
was first obtained as Lemma 2.4 in the extended version of [23], and reads as
follows:

Corollary I.11 ( [23]). Given an integer r ∈N+, and setting J = {(i1, i2, . . . , im)
∈Nm : ∑m

j=1 ij < r}, we obtain that

#V≥r(I) ·
(

m + r− 1
m

)
≤ #∆

(
I +

〈{
m

∏
j=1

Gj(xj)
rj :

m

∑
j=1

rj = r

}〉)
,

where V≥r(I) denotes the set of zeros of multiplicity at least r of the ideal I in S.

Another particular case is obtained when upper bounding each coordi-
nate of the multiindices separately:

Corollary I.12. Given a multiindex (r1, r2, . . . , rm) ∈ Nm
+, and setting J = {(i1,

i2, . . . , im) ∈Nm : ij < rj, j = 1, 2, . . . , m}, we obtain that

#VJ (I) ·
m

∏
j=1

rj ≤ #∆ (I + 〈G1(x1)
r1 , G2(x2)

r2 , . . . , Gm(xm)
rm〉) .

Finally, we obtain a footprint bound for weighted multiplicities:

Corollary I.13. Given an integer r ∈ N+, a vector of positive weights w =
(w1, w2, . . . , wm) ∈ N+, and setting J = {i ∈ Nm :| i |w< r}, we obtain
that

#V≥r,w(I) · B(w; r) ≤ #∆

(
I +

〈{
m

∏
j=1

Gj(xj)
rj :

m

∑
j=1

rjwj ≥ r

}〉)
,

where V≥r,w(I) denotes the set of zeros of weighted multiplicity at least r of the ideal
I in S, and where B(w; r) = # {i ∈Nm :| i |w< r}.

To conclude, we give a more explicit form of the bound in the previous
corollary by estimating the number B(w; r):

Corollary I.14. Given an integer r ∈ N+ and a vector of positive weights w =
(w1, w2, . . . , wm) ∈N+, it holds that(

m + r− 1
m

)
≤ w1w2 · · ·wmB(w; r). (I.8)
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In particular, we deduce from the previous corollary that

#V≥r,w(I) ·
(

m + r− 1
m

)

≤ w1w2 · · ·wm · #∆

(
I +

〈{
m

∏
j=1

Gj(xj)
rj :

m

∑
j=1

rjwj ≥ r

}〉)
.

Proof. Define the map Tj : Nm −→Nm by

Tj(i) = (i1w1 + j1, i2w2 + j2, . . . , imwm + jm),

for all i = (i1, i2, . . . , im), j = (j1, j2, . . . , jm) ∈ Nm. Now define J (w; r) =
{i ∈Nm :| i |w< r}. By the Euclidean division, we see that

J ((1, 1, . . . , 1); r) ⊆
⋃

j∈∏m
k=1[0,wk)

Tj (J (w; r)) .

By counting elements on both sides of the inclusion, the result follows.

3.3 Interpreation of the bound and illustration of the set ∆(IJ )

In this subsection, we give a graphical description of the footprint ∆(IJ )
which will allow us to provide an interpretation of the bound (I.4).

First, we observe that by adding the polynomials ∏m
i=1 Gi(xi)

ri , for (r1, r2,
. . . , rm) /∈ J , we are bounding the set of points ∆(IJ ) by a certain subset
JS ⊆Nm, which we now define:

Definition I.15. We define the set

JS =
{

i ∈Nm : i � (r1#S1, r2#S2, . . . , rm#Sm), ∀(r1, r2, . . . , rm) /∈ J
}

.

For clarity, we now give a description of this set by a positive defining
condition that follows from the properties of the Euclidean division and the
fact that J is decreasing.

Lemma I.16. It holds that

JS = { (p1#S1 + t1, p2#S2 + t2, . . . , pm#Sm + tm) ∈Nm :

(p1, p2, . . . , pm) ∈ J , 0 ≤ tj < #Sj, ∀j = 1, 2, . . . , m}.

We may then state the fact that the footprint is bounded by this set as
follows:

Lemma I.17. It holds that

∆(IJ ) ⊆ {xi : i ∈ JS}.
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3. The footprint bound for consecutive derivatives

Moreover, the set JS can be easily seen as the union of #J m-dimensional
rectangles in Nm whose sides have lengths #S1, #S2, . . ., #Sm, respectively. In
particular, we obtain the following:

Lemma I.18. It holds that
#JS = #S · #J . (I.9)

The footprint bound (I.4) can then be interpreted as follows: Consider the
set JS ⊆ Nm. For each xi ∈ LM(IJ ), remove from JS all points j such that
i � j. The remaining points correspond to the multiindices in ∆(IJ ), and
thus there are #∆(IJ ) of them.

In particular, if F1(x), F2(x), . . . , Ft(x) ∈ I, then we may only remove the
points corresponding to LM(Fi(x)), for i = 1, 2, . . . , t, and we obtain an upper
bound on #∆(IJ ).

Example I.19. Let us assume now that m = 2, #S1 = #S2 = 2, and J =
{(0, 1), (1, 1), (2, 1), (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)}.

In Figure I.1, top image, we represent by black dots the monomials whose
multiindices belong to JS. Blank dots correspond to multiindices that do not
belong to JS. Among all dots, medium-sized and large dots correspond to
multiindices that belong to J when each coordinate is multiplied by 2, and
the largest blank dots correspond to minimal multiindices that do not belong
to JS.

In Figure I.1, bottom image, we represent in the same way the set ∆(IJ ),
whenever 〈LM(IJ )〉 is generated by x2

1x3
2, x8

1x2, and the leading monomials
of G1(x1)

r1 G2(x2)
r2 , for minimal (r1, r2) /∈ J , which in this case are x4

2, x6
1x2

2
and x12

1 .
In conclusion, the bound (I.4) says that the number of zeros in S of I of

multiplicity at least J is at most 3.

As a consequence of this interpretation, we may deduce the following
useful fact:

Lemma I.20. Assume that the finite set J ⊆Nm is decreasing and xi = LM(F(x))
with respect to some monomial ordering, for some polynomial F(x) ∈ F[x]. If
i ∈ JS, then it holds that

#∆(〈F(x)〉J ) < #S · #J . (I.10)

We conclude with a simple description of JS in the cases of multiindices
bounded by weighted orders and multiindices bounded on each coordinate
separately, which follow by straightforward calculations:

Remark I.21. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a

positive integer r ∈N+, and J = {r ∈Nm :| r |w< r}, it holds that

JS =

{
(i1, i2, . . . , im) ∈Nm :

m

∑
j=1

⌊
ij

#Sj

⌋
wj < r

}
.
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Fig. I.1: Illustration of the sets JS and ∆(IJ ) in Nm.

On the other hand, given (r1, r2, . . . , rm) ∈Nm
+ and J = {(i1, i2, . . . , im) ∈Nm :

ij < rj, j = 1, 2, . . . , m}, it holds that

JS =
{
(i1, i2, . . . , im) ∈Nm : ij < rj#Sj, j = 1, 2, . . . , m

}
.

3.4 Sharpness and equality conditions

To conclude the section, we study the sharpness of the bound (I.4). We will
give sufficient and necessary conditions on the ideal I for (I.4) to be an equal-
ity, and we will see that (I.4) is the sharpest bound that can be obtained as a
strictly increasing function of the size of the footprint ∆(IJ ).

We start by defining the ideal associated to a set of points and a set of
multiindices.

Definition I.22. Given V ⊆ Fm, we define

I(V ;J ) =
{

F(x) ∈ F[x] : F(i)(a) = 0, ∀a ∈ V , ∀i ∈ J
}

.
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3. The footprint bound for consecutive derivatives

In the next proposition we show that this set is indeed an ideal and gather
other properties similar to those of ideals and algebraic sets in algebraic ge-
ometry.

Proposition I.23. Given a set of points V ⊆ Fm, the set I(V ;J ) in the previous
definition is an ideal in F[x]. Moreover, the following properties hold:

1. I ⊆ I(VJ (I);J ).

2. V ⊆ VJ (I(V ;J )).

3. I = I(VJ (I);J ) if, and only if, I = I(W ;J ) for some setW ⊆ Fm.

4. V = VJ (I(V ;J )) if, and only if, V = VJ (K), for some ideal K ⊆ F[x].

Proof. The fact that I(V ;J ) is an ideal follows from the Leibniz formula
(Lemma I.7) and the fact that J is decreasing. The properties in items 1, 2, 3,
and 4 follow as in classical algebraic geometry and are left to the reader.

The following is the main result of the subsection:

Theorem I.2. Fixing a monomial ordering, the bound (I.4) is an equality if, and
only if,

IJ = I (VJ (I);J ) . (I.11)

In particular, for any choice of decreasing finite set J ⊆Nm and a finite set of points
V ⊆ Fm, there exists an ideal, I = I(V ;J ), satisfying equality in (I.4).

Proof. With notation as in the proof of Theorem I.1, the evaluation map Ev :
F[x] −→ F#VJ (I)·#J from Definition I.8 is F-linear and surjective by Lemma
I.9. By definition, its kernel is

Ker(Ev) = I(VJ (I);J ).

On the other hand, we saw in the proof of Theorem I.1 that IJ ⊆ Ker(Ev).
This means that the evaluation map

Ev : F[x]/IJ −→ F#VJ (I)·#J

is an isomorphism if, and only if, IJ = I(VJ (I);J ).
Finally, the fact that this evaluation map is an isomorphism is equivalent

to (I.4) being an equality, by the proof of Theorem I.1. Together with Propo-
sition I.23 and the fact that I = IJ if I = I(V ;J ) by the proof of Theorem I.1,
the theorem follows.

Thanks to this result, we may establish that the bound (I.4) is the sharpest
bound that is a strictly increasing function of the size of the footprint ∆(IJ ),
in the following sense: If equality holds for such a bound, then it holds in
(I.4).
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Corollary I.24. Let f : N −→ R be a strictly increasing function, and assume that

#VJ (I) ≤ f (#∆(IJ )), (I.12)

for all ideals I ⊆ F[x]. If equality holds in (I.12) for a given ideal I ⊆ F[x], then
equality holds in (I.4) for such ideal.

Proof. First we have that IJ ⊆ I(VJ (I);J ) as we saw in the proof of the
previous theorem. Hence the reverse inclusion holds for their footprints and
thus

f (#∆ (I (VJ (I);J ))) ≤ f (#∆(IJ )). (I.13)

Now, since VJ (I) = VJ (I(VJ (I);J )) by Proposition I.23, and equality holds
in (I.12) for I, we have that

f (#∆(IJ )) = #VJ (I) = #VJ (I(VJ (I);J )) ≤ f (#∆(I(VJ (I);J ))). (I.14)

Combining (I.13) and (I.14), and using that f is strictly increasing, we con-
clude that

#∆(I(VJ (I);J ))) = #∆(IJ ),

which implies that equality holds in (I.4) for I by Theorem I.2, and we are
done.

4 Applications of the footprint bound for consec-
utive derivatives

In this section, we present a brief collection of applications of Theorem I.1,
which are extensions to consecutive derivatives of well-known important re-
sults from the literature. Throughout the section, we will fix again finite sets
S1, S2, . . . , Sm ⊆ F and S = S1 × S2 × · · · × Sm.

4.1 Alon’s combinatorial Nullstellensatz

The combinatorial Nullstellensatz is a non-vanishing theorem by Alon [1,
Theorem 1.2] with many applications in combinatorics. It has been extended
to non-vanishing theorems for standard multiplicities in [3, Corollary 3.2]
and for multisets (sets with multiplicities) in [20, Theorem 6].

In this subsection, we establish and prove a combinatorial Nullstellen-
satz for consecutive derivatives and derive the well-known particular cases
as corollaries. The formulation in [1, Theorem 1.1] is equivalent in essence.
We will extend that result in the next subsection in terms of Gröbner bases.
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Theorem I.3. Let J ⊆Nm be a decreasing finite set, let F(x) ∈ F[x] be a non-zero
polynomial, and let xi = LM(F(x)) for some monomial ordering. If i ∈ JS, then
there exist s ∈ S and j ∈ J such that

F(j)(s) 6= 0.

Proof. By Lemma I.20, the assumptions imply that

#∆(〈F(x)〉J ) < #S · #J .

On the other hand, Theorem I.1 implies that

#VJ (F(x)) · #J ≤ #∆(〈F(x)〉J ).

Therefore not all points in S are zeros of F(x) of multiplicity at least J , and
the result follows.

We now derive the original theorem [1, Theorem 1.2]. This constitutes an
alternative proof. See also [22] for another recent short proof.

Corollary I.25 ( [1]). Let F(x) ∈ F[x]. Assume that the coefficient of xi in F(x) is
not zero and deg(F(x)) =| i |. If #Sj > ij for all j = 1, 2, . . . , m, then there exist
s1 ∈ S1, s2 ∈ S2, . . ., sm ∈ Sm, such that

F(s1, s2, . . . , sm) 6= 0.

Proof. First, there exists a graded monomial ordering such that xi = LM(F(x))
since deg(F(x)) =| i |. Now, the assumption implies that

i � (r1#S1, r2#S2, . . . , rm#Sm),

for all r = (r1, r2, . . . , rm) such that rj = 1 for some j, and the rest are zero.
These are in fact all minimal multiindices not in J = {0}. Thus the result
follows from the previous theorem.

The next consequence is a combinatorial Nullstellensatz for weighted
multiplicities, where the particular case w1 = w2 = . . . = wm = 1 coin-
cides with [3, Corollary 3.2] (recall the definition of weighted degree from
Definition I.5):

Corollary I.26. Let F(x) ∈ F[x], let w = (w1, w2, . . . , wm) ∈ Nm
+ and let r ∈

N+. Assume that the coefficient of xi in F(x) is not zero and degw(F(x)) =| i |w.
Assume also that, for all r = (r1, r2, . . . , rm) with | r |w≥ r, there exists a j such

that rj#Sj > ij. Then there exist s1 ∈ S1, s2 ∈ S2, . . ., sm ∈ Sm, and some j ∈ Nm

with | j |w< r, such that

F(j)(s1, s2, . . . , sm) 6= 0.
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Proof. It follows from Theorem I.3 as the previous corollary.

We conclude with a combinatorial Nullstellensatz for multiindices bounded
on each coordinate separately:

Corollary I.27. Let F(x) ∈ F[x], let (r1, r2, . . . , rm) ∈ Nm
+, and assume that xi =

LM(F(x)), i = (i1, i2, . . . , im), for some monomial ordering and ij < rj#Sj, for
all j = 1, 2, . . . , m. There exist s1 ∈ S1, s2 ∈ S2, . . ., sm ∈ Sm, and some j =
(j1, j2, . . . , jm) ∈Nm with jk < rk, for all k = 1, 2, . . . , m, such that

F(j)(s1, s2, . . . , sm) 6= 0.

4.2 Gröbner bases of ideals of zeros in a grid

An equivalent but more refined consequence is obtaining a Gröbner basis for
ideals I(S;J ) associated to the whole grid S and to a consecutive finite set
of derivatives (recall Definition I.22). This result is also usually referred to as
combinatorial Nullstellensatz in many works in the literature (see [1, Theo-
rem 1.1], [3, Theorem 3.1] and [20, Theorem 1]). We briefly recall the notion
of Gröbner basis. We will also make repeated use of the Euclidean division
on the multivariate polynomial ring and its properties. See [6, Chapter 2] for
more details.

Definition I.28 (Gröbner bases). Given a monomial ordering�m and an ideal
I ⊆ F[x], we say that a finite family of polynomials F ⊆ I is a Gröbner basis
of I with respect to �m if

〈LM�m(I)〉 = 〈LM�m(F )〉 .

Moreover, we say that F is reduced if, for any two distinct F(x), G(x) ∈ F , it
holds that LM�m(F(x)) does not divide any monomial in G(x).

Recall that a Gröbner basis of an ideal generates it as an ideal. To obtain
reduced Gröbner bases, we need a way to minimally generate decreasing
finite sets in Nm, which is given by the following object:

Definition I.29. For any decreasing finite set J ⊆Nm, we define

BJ = {i /∈ J : j /∈ J and j � i =⇒ i = j}.

The main result of this subsection is the following:

Theorem I.4. For any decreasing finite set J ⊆Nm, the family

F =

{
m

∏
j=1

Gj(xj)
rj : (r1, r2, . . . , rm) ∈ BJ

}
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is a reduced Gröbner basis of the ideal I(S;J ) with respect to any monomial ordering.
In particular, for any F(x) ∈ I(S;J ), there exist polynomials Hr(x) ∈ F[x] such
that

deg(Hr(x)) +
m

∑
j=1

rj deg(Gj(xj)) ≤ deg(F(x)),

for r = (r1, r2, . . . , rm) ∈ BJ , and

F(x) = ∑
r∈BJ

(
Hr(x)

m

∏
j=1

Gj(xj)
rj

)
.

Proof. It suffices to prove that, if F(x) ∈ I(S;J ) and we divide it by the family
F (in an arbitrary order), then the remainder must be the zero polynomial.

Performing such division, we obtain F(x) = G(x) + R(x), where R(x) is
the remainder of the division and G(x) ∈ I(S;J ). Assume that R(x) 6= 0 and
let xi be the leading monomial of R(x) with respect to the chosen monomial
ordering. Since no leading monomial of the polynomials in F divides xi, we
conclude that

i � (r1#S1, r2#S2, . . . , rm#Sm),

for all minimal r = (r1, r2, . . . , rm) /∈ J , that is, for all r ∈ BJ . Thus by Theo-
rem I.3, we conclude that not all points in S are zeros of R(x) of multiplicity
at least J , which is absurd since R(x) = F(x)− G(x) ∈ I(S;J ), and we are
done.

The fact that F is reduced follows from observing that the multiindices
r ∈ BJ are minimal among those not in J . The last part of the theorem
follows by performing the Euclidean division.

The following particular case is [1, Theorem 1.1]:

Corollary I.30 ( [1]). If F(x) ∈ F[x] vanishes at all points in S, then there exist
polynomials Hj(x) ∈ F[x] such that deg(Hj(x)) + deg(Gj(xj)) ≤ deg(F(x)), for
j = 1, 2, . . . , m, and

F(x) =
m

∑
j=1

Hj(x)Gj(xj).

To study the case of weighted multiplicities, we observe the following:

Remark I.31. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a

positive integer r ∈ N+, and the set J = {i ∈ Nm :| i |w< r}, it holds that
BJ = Bw, where

Bw =

{
(i1, i2, . . . , im) ∈Nm : r ≤

m

∑
j=1

ijwj < r + min
{

wj : ij 6= 0
}}

.
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We then obtain the next consequence, where the particular case w1 =
w2 = . . . = wm = 1 coincides with [3, Theorem 3.1].

Corollary I.32. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+

and a positive integer r ∈ N+, if F(x) ∈ F[x] vanishes at all points in S with
weighted multiplicity at least r, then there exist polynomials Hr(x) ∈ F[x] such that
deg(Hr(x)) + ∑m

j=1 rj deg(Gj(xj)) ≤ deg(F(x)), for all r = (r1, r2, . . . , rm) ∈
Bw, and

F(x) = ∑
r∈Bw

(
Hr(x)

m

∏
j=1

Gj(xj)
rj

)
.

We conclude with the case of multiindices bounded on each coordinate
separately:

Corollary I.33. Given a vector (r1, r2, . . . , rm) ∈ Nm
+, if F(x) ∈ F[x] is such that

F(j)(s) = 0, for all s ∈ S and all j = (j1, j2, . . . , jm) ∈ Nm satisfying jk <
rk, for all k = 1, 2, . . . , m, then there exist polynomials Hj(x) ∈ F[x] such that
deg(Hj(x)) + rj deg(Gj(xj)) ≤ deg(F(x)), for all j = 1, 2, . . . , m, and

F(x) =
m

∑
j=1

Hj(x)Gj(xj)
rj .

Proof. It follows from Theorem I.4 observing that, if J = {(j1, j2, . . . , jm) ∈Nm :
jk < rk, k = 1, 2, . . . , m}, then

BJ =
{

rjej ∈Nm : j = 1, 2, . . . , m
}

,

where e1, e2, . . . , em ∈Nm are the vectors in the canonical basis.

4.3 Hermite interpolation over grids with consecutive deriva-
tives

In the appendix we show that the evaluation map (Definition I.8) is surjec-
tive. This has been used to prove Theorem I.1. In this subsection, we see that
the combinatorial Nullstellensatz (Theorem I.3) implies that the evaluation
map over the whole grid S, with consecutive derivatives, is an isomorphism
when taking an appropriate domain. More concretely, we show the existence
and uniqueness of Hermite interpolating polynomials over S with derivatives
in J when choosing monomials in JS. Finding appropriate sets of points,
derivatives and polynomials to guarantee existence and uniqueness of Her-
mite interpolating polynomials has been extensively studied [9, 18, 21]. The
next result is new to the best of our knowledge:
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4. Applications of the footprint bound for consecutive derivatives

Theorem I.5. Given a decreasing finite set J ⊆ Nm, the evaluation map in Defi-
nition I.8 for the finite set S = S1 × S2 × · · · × Sm, defined as

Ev : 〈JS〉F −→ F#S·#J ,

is a vector space isomorphism. In other words, for all bj,a ∈ F, where j ∈ J and
a ∈ S, there exists a unique polynomial of the form

F(x) = ∑
i∈JS

Fixi ∈ F[x],

where Fi ∈ F for all i ∈ JS, such that F(j)(a) = bj,a, for all j ∈ J and all a ∈ S.

Proof. The map is one to one by Theorem I.3, and both vector spaces have
the same dimension over F by Lemma I.18, hence the map is a vector space
isomorphism.

Remark I.34. Observe that we may similarly prove that the following two maps are
vector space isomorphisms:

〈JS〉F
ρ−→ F[x]/I(S;J )

Ev−→ F#S·#J ,

where ρ is the projection to the quotient ring. We may then extend the notion of
reduction of a polynomial as follows (see [5, Section 3.1] and [9, Section 6.3], for
instance): Given F(x) ∈ F[x], we define its reduction over the set S with derivatives
in J as

G(x) = ρ−1 (F(x) + I(S;J )) .

As an immediate consequence, we obtain the following result on Hermite
interpolation with weighted multiplicities:

Corollary I.35. For every vector of positive weights w = (w1, w2, . . . , wm) ∈Nm
+,

every positive integer r ∈ N+, and elements bj,a ∈ F, for j ∈ Nm with | j |w< r
and for a ∈ S, there exists a unique polynomial of the form

F(x) = ∑
i∈Nm

Fixi,

where Fi ∈ F for all i = (i1, i2, . . . , im) ∈Nm, and Fi = 0 whenever

m

∑
j=1

⌊
ij

#Sj

⌋
wj ≥ r,

such that F(j)(a) = bj,a, for all j ∈Nm with | j |w< r and all a ∈ S.

We conclude with the case of multiindices bounded on each coordinate
separately:

325



Paper I.

Corollary I.36. Given (r1, r2, . . . , rm) ∈ Nm
+ and given elements bj,a ∈ F, for

j = (j1, j2, . . . , jm) ∈ Nm with jk < rk, for all k = 1, 2, . . . , m, and for a ∈ S, there
exists a unique polynomial of the form

F(x) =
r1#S1−1

∑
i1=0

r2#S2−1

∑
i2=0

· · ·
rm#Sm−1

∑
im=0

Fixi,

such that F(j)(a) = bj,a, for all j = (j1, j2, . . . , jm) ∈ Nm with jk < rk, for all
k = 1, 2, . . . , m, and all a ∈ S.

4.4 Evaluation codes with consecutive derivatives

In this subsection, we extend the notion of evaluation code from the theory of
error-correcting codes (see [11, Section 2] and [16, Section 4.1], for instance)
to evaluation codes with consecutive derivatives. By doing so, we generalize
multiplicity codes [19], which have been shown to achieve good parameters in
decoding, local decoding and list decoding [18, 19]. We compute the dimen-
sions of the new codes and give a lower bound on their minimum Hamming
distance.

Definition I.37. Given a decreasing finite set J ⊆ Nm and a set of monomi-
alsM⊆ JS, we define the F-linear code (that is, the F-linear vector space)

C(S,M,J ) = Ev (〈M〉F) ⊆ F#S·#J ,

where Ev is the evaluation map from Definition I.8.

As in [19], we will consider these codes over the alphabet F#J , that is,
each evaluation

(
F(i) (a)

)
i∈J
∈ F#J , for a ∈ S, constitutes one symbol of the

alphabet. Thus each codeword has length #S over this alphabet. This leads to
the following definition of minimum Hamming distance of an F-linear code:

Definition I.38. Given an F-linear code C ⊆
(
F#J )#S, we define its minimum

Hamming distance as

dH(C) = min {wtH(c) : c ∈ C, c 6= 0} ,

where, for any c ∈
(
F#J )#S, wtH(c) denotes the number of its non-zero

components over the alphabet F#J .

As a consequence of Theorem I.5, we may exactly compute the dimensions
of the codes in Definition I.37 and give a lower bound on their minimum
Hamming distance:
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4. Applications of the footprint bound for consecutive derivatives

Corollary I.39. The code in Definition I.37 satisfies that

dimF(C(S,M,J )) = #M, and

dH(C(S,M,J )) ≥
⌈

min
{

#∆(〈F(x)〉J ) : F(x) ∈ 〈M〉F
}

#J

⌉
.

Remark I.40. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a

positive integer r ∈N+, and a set of monomials

M⊆
{

xi1
1 xi2

2 · · · x
im
m :

m

∑
j=1

⌊
ij

#Sj

⌋
wj < r

}
,

we may define, as a particular case of the codes in Definition I.37, the corresponding
weighted multiplicity code as the F-linear code

C(S,M, w, r) = Ev (〈M〉F) ⊆
(

FB(w;r)
)#S

.

Observe that weighted multiplicity codes contain as particular cases classical Reed-
Muller codes (see [17, Section 13.2]), by choosing w = (r, r, . . . , r) for a given
r ∈ N+, and classical multiplicity codes [19] by choosing w = (1, 1, . . . , 1) and
an arbitrary r ∈ N+. Therefore, choices of w ∈ Nm such that 1 ≤ wi ≤ r,
for i = 1, 2, . . . , m, give codes with the same length but intermediate alphabet sizes
between those of Reed-Muller and multiplicity codes. This has the extra flexibility
(see [19, Section 1.2]) of choosing alphabets of sizes #

(
FB(w;r)

)
(whenever F is

finite), where

1 ≤ B(w; r) ≤
(

m + r− 1
m

)
.

4.5 Bounds by DeMillo, Lipton, Zippel, Alon and Füredi

In this subsection, we obtain a weaker but more concise version of the bound
(I.4) for a single polynomial, which has as particular cases the bounds by
DeMillo and Lipton [7], Zippel [25, Theorem 1], [26, Proposition 3], and Alon
and Füredi [2, Theorem 5]. We observe that Counterexample 7.4 in [4] shows
that a straightforward extension of these bounds to standard multiplicities as
in (I.1) is not possible, in contrast with the Schwartz bound [24, Lemma 1],
which has been already extended in [8, Lemma 8].

Theorem I.6. For any decreasing finite set J ⊆ Nm and any polynomial F(x) ∈
F[x], if xi = LM(F(x)) ∈ JS, for some monomial ordering, then it holds that

# (S \ VJ (F(x))) #J ≥ # {j ∈ JS : j � i} . (I.15)
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Proof. First, from the bound (I.4) and Lemma I.18, we obtain that

# (S \ VJ (F(x))) #J ≥ #S#J − #∆(〈F(x)〉J ) = #
(
JS \ ∆(〈F(x)〉J )

)
, (I.16)

where we consider ∆(〈F(x)〉J ) ⊆ Nm by abuse of notation. As explained in
Subsection 3.3, we may lower bound #

(
JS \ ∆(〈F(x)〉J )

)
by the number of

multiindices j ∈ JS satisfying j � i, and we are done.

The following consequence summarizes the results by DeMillo and Lipton
[7], and Zippel [25, Theorem 1], [26, Proposition 3]:

Corollary I.41 ( [7, 25, 26]). Let F(x) ∈ F[x] be such that its degree in the j-th
variable is dj ∈ N, for j = 1, 2, . . . , m. If dj < #Sj, for j = 1, 2, . . . , m, then the
number of non-zeros in S of F(x) is at least

m

∏
j=1

(
#Sj − dj

)
.

Proof. The result is the particular case J = {0} of the previous theorem
using any monomial ordering and the facts that JS = S and ij ≤ dj, for
j = 1, 2, . . . , m.

The following is a similar bound due to Alon and Füredi [2, Theorem 5]:

Corollary I.42 ( [2]). Let F(x) ∈ F[x]. If not all points in S are zeros of F(x), then
the number of its non-zeros in S is at least

min

{
m

∏
j=1

yj : 1 ≤ yj ≤ #Sj,
m

∑
j=1

yj ≥
m

∑
j=1

#Sj − deg(F(x))

}
.

Proof. The result follows from Theorem I.6 as in the previous corollary, taking
any monomial ordering and considering yj = #Sj − ij, for j = 1, 2, . . . , m.

We omit the case of weighted multiplicities. In the next section, we will
give an extension of the Schwartz bound [24, Lemma 1] to weighted multi-
plicities in the sense of (I.1), which is stronger than the bound in Corollary
I.13 in some cases.

We conclude with the case of multiindices bounded on each coordinate
separately:

Corollary I.43. Let F(x) ∈ F[x] with xi = LM(F(x)), i = (i1, i2, . . . , im), for
some monomial ordering. If ij < rj#Sj, for j = 1, 2, . . . , m, then the number N of
elements s ∈ S such that F(j)(s) 6= 0, for some j = (j1, j2, . . . , jm) ∈ Nm with
jk < rk, for all k = 1, 2, . . . , m, satisfies

N ·
m

∏
j=1

rj ≥
m

∏
j=1

(
rj#Sj − ij

)
.
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5. The Schwartz-Zippel bound for weighted multiplicities

4.6 The Schwartz-Zippel bound on the whole grid

In the next section, we will give an extension of the Schwartz bound [24,
Lemma 1] for weighted multiplicities that can be proven as the extensions to
standard multiplicities given in [8, Lemma 8] and [11, Theorem 5]. In this
subsection, we observe that the case where all points in S are zeros of a given
weighted multiplicity follows from Corollary I.26:

Corollary I.44. Let F(x) ∈ F[x], let w = (w1, w2, . . . , wm) ∈ Nm
+, let r ∈ N+,

and assume that s = #S1 = #S2 = . . . = #Sm. If all points in S = S1 × S2 × · · · ×
Sm are zeros of F(x) of weighted multiplicity at least r, then

r#S ≤ degw(F(x))sm−1.

Proof. Assume that the bound does not hold, take xi such that | i |w=
degw(F(x)) and whose coefficient in F(x) is not zero, and take a vector
r = (r1, r2, . . . , rm) ∈Nm with | r |w≥ r. Then

sw1r1 + sw2r2 + · · ·+ swmrm ≥ sr > degw(F(x)) =| i |w,

hence there exists a j such that rj#Sj > ij. By Corollary I.26, some element in
S is not a zero of F(x) of weighted multiplicity at least r, which contradicts
the assumptions and we are done.

5 The Schwartz-Zippel bound for weighted multi-
plicities

As we will see in Proposition I.48, the Schwartz bound [24, Lemma 1] can
be derived by those given by DeMillo and Lipton [7], and Zippel [25, Theo-
rem 1], [26, Proposition 3], and is usually referred to as the Schwartz-Zippel
bound. This bound has been recently extended to standard multiplicities
in [8, Lemma 8], and further in [11, Theorem 5]. In this section, we observe
that it may be easily extended to weighted multiplicities (see Definition I.4),
due to the additivity of weighted order functions. We show the sharpness of
this bound and compare it with the bound (I.4) with some examples, when-
ever it makes sense to compare both bounds.

5.1 The bound

Theorem I.7. Let w = (w1, w2, . . . , wm) ∈ Nm
+ be a vector of positive weights,

let F(x) ∈ F[x] and let xi = LM(F(x)), i = (i1, i2, . . . , im), with respect to the
lexicographic ordering. It holds that

∑
a∈S

mw(F(x), a) ≤ #S
m

∑
j=1

ijwj

#Sj
. (I.17)
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When w1 = w2 = . . . = wm = 1, observe that [11, Theorem 5] is recovered
from this theorem, and [8, Lemma 8] is recovered from the next corollary.
Observe also that this corollary is stronger than Corollary I.44.

Corollary I.45. Let F(x) ∈ F[x] and w ∈ Nm
+. If s = #S1 = #S2 = . . . = #Sm,

then
∑
a∈S

mw(F(x), a) ≤ degw(F(x))sm−1.

To prove Theorem I.7, we need an auxiliary lemma, whose proof can be
directly translated from those of [8, Lemma 5] and [8, Corollary 7]:

Lemma I.46. If F(x) ∈ F[x] and a = (a1, a2, . . . , am) ∈ Fm, then

1. mw

(
F(i)(x), a

)
≥ mw(F(x), a)− | i |w, for all i ∈Nm, and

2. mw (F(x), a) ≤ mwm(F(a1, a2, . . . , am−1, xm), am).

We may now prove Theorem I.7. We follow closely the steps given in the
proof of [8, Lemma 8].

Proof of Theorem I.7. We will prove the result by induction on m, where the
case m = 1 follows from (I.1). Fix then m > 1. We may assume without
loss of generality that x1 ≺m x2 ≺m . . . ≺m xm, where �m is the lexico-
graphic ordering. Write x′ = (x1, x2, . . . , xm−1). There are unique polynomi-
als Fj(x′) ∈ F[x′], for j = 1, 2, . . . , t, such that

F(x) =
t

∑
j=0

Fj(x′)xj
m,

where LM(F(x)) = LM(Ft(x′))xt
m. Let a = (a1, a2, . . . , am) ∈ S and write

a′ = (a1, a2, . . . , am−1) and w′ = (w1, w2, . . . , wm−1). Take k ∈ Nm−1 such
that | k |w′= mw′(Ft(x′), a′) and F(k)

t (a′) 6= 0. By the previous lemma, we see
that

mw(F(x), a) ≤| (k, 0) |w +mw

(
F(k,0)(x), a

)
≤ mw′(Ft(x′), a′) + mwm

(
F(k,0)(a′, xm), am

)
.

Summing these inequalities over all am ∈ Sm and applying the case m = 1,
we obtain that

∑
am∈Sm

mw(F(x), a) ≤ mw′(Ft(x′), a′)#Sm + wmt.
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5. The Schwartz-Zippel bound for weighted multiplicities

Using this last inequality, summing over ai ∈ Si, for i = 1, 2, . . . , m− 1, and
applying the case of m− 1 variables, it follows that

∑
a∈S

mw(F(x), a) ≤ ∑
a1∈S1

· · · ∑
am−1∈Sm−1

mw′(Ft(x′), a′)#Sm + wmt
#S

#Sm

≤
m−1

∑
j=1

wjij
#S
#Sj

+ wmt
#S

#Sm
,

and the result follows.

5.2 Sharpness of the bound

In this subsection, we prove the sharpness of the bound (I.17), whose proof
can be translated word by word from that of [12, Proposition 7]. Therefore,
we only present a sketch of the proof:

Proposition I.47. For all finite sets S1, S2, . . . , Sm ⊆ F, S = S1 × S2 × · · · ×
Sm, all vectors of positive weights w = (w1, w2, . . . , wm) ∈ Nm

+ and all i =
(i1, i2, . . . , im) ∈ Nm, there exists a polynomial F(x) ∈ F[x] such that xi =
LM(F(x)) with respect to the lexicographic ordering, and such that

∑
a∈S

mw(F(x), a) = #S
m

∑
j=1

ijwj

#Sj
.

Sketch of proof. Denote sj = #Sj and Sj =
{

a(j)
1 , a(j)

2 , . . . , a(j)
sj

}
, and choose

r(j)
k ∈ N such that ij = r(j)

1 + r(j)
2 + · · · + r(j)

sj , for k = 1, 2, . . . , sj and j =
1, 2, . . . , m. Now define

F(x) =
m

∏
j=1

sj

∏
k=1

(
xj − a(j)

k

)r(j)
k .

Now, fixing integers 1 ≤ k j ≤ sj, for j = 1, 2, . . . , m, translating the point(
a(1)k1

, a(2)k2
, . . . , a(m)

km

)
to the origin 0, and using the Gröbner basis from Corol-

lary I.32, we see that

mw

(
F (x) ,

(
a(1)k1

, a(2)k2
, . . . , a(m)

km

))
= r(1)k1

w1 + r(2)k2
w2 + · · ·+ r(m)

km
wm,

for all k j = 1, 2, . . . , sj and all j = 1, 2, . . . , m. The result then follows by
summing these multiplicities.
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5.3 Comparison with the footprint bound

In this subsection, we will compare the bounds (I.4) and (I.17) whenever it
makes sense to do so. To that end, we will write them as follows: fix a vector
of positive weights w = (w1, w2, . . . , wm) ∈ Nm

+, a positive integer r ∈ N+,
and a polynomial F(x) ∈ F[x] such that xi = LM(F(x)), i = (i1, i2, . . . , im),
with respect to the lexicographic ordering. We first consider the footprint
bound as in Corollary I.13:

#V≥r,w(F(x)) · B(w; r) ≤ #∆

(〈
{F(x)}

⋃{
m

∏
j=1

Gj(xj)
rj :

m

∑
j=1

rjwj ≥ r

}〉)
.

(I.18)
And next we consider the bound (I.17) as follows:

#V≥r,w(F(x)) · r ≤ #S
m

∑
j=1

ijwj

#Sj
. (I.19)

First we observe that the bound (I.18) also holds for any other monomial
ordering, and not only the lexicographic one, as is the case with (I.19). Second
we observe that (I.19) gives no information whereas (I.18) does, whenever

m

∑
j=1

⌊
ij

#Sj

⌋
wj < r ≤

m

∑
j=1

ijwj

#Sj
, (I.20)

by the discussion in Subsection 3.3.
Next, we observe that when we do not count multiplicities, that is, w1 =

w2 = . . . = wm = r = 1, the footprint bound implies the Schwartz bound via
Theorem I.6:

Proposition I.48. If w1 = w2 = . . . = wm = r = 1, that is, J = {0}, it holds
that B(w; r) = 1 and

#∆ (〈F(x), G1(x1), G2(x2), . . . , Gm(xm)〉) ≤ #S−
m

∏
j=1

(
#Sj − ij

)
≤ #S

m

∑
j=1

ij

#Sj
.

In particular, (I.18) implies (I.19) in this case.

Moreover, when m = 1 and we count multiplicities, all bounds coincide,
giving (I.2). In the following example we show that this is not the case in
general. As we will see, each bound, (I.18) and (I.19), can be tighter than the
other one in different cases, hence complementing each other:

Example I.49. Consider m = 2, w1 = 2, w2 = 3, r = 5 and #S1 = #S2 = 4.
Thus we have that

J = {(0, 0), (1, 0), (0, 1), (2, 0)}, and
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A. Proof of Lemma I.9

JS = ([0, 11]× [0, 3]) ∪ ([0, 3]× [0, 7]) .

Consider all pairs (i1, i2) ∈ JS and polynomials F(x1, x2) such that LM(F(x1,
x2)) = xi1

1 xi2
2 , with respect to the lexicographic ordering. In Figure I.2, we

show the upper bounds on the number of zeros of F(x1, x2) of weighted
multiplicity at least 5 given by (I.18) and (I.19), respectively. As is clear from
the figure, in some regions of the set JS, the first bound is tighter than the
second (bold numbers in the first table) and vice versa (bold numbers in the
second table). Furthermore the first bound gives non-trivial information in
the region given by (I.20), where the second does not (depicted by dashes).

x7
1 15 15 15 15

x6
1 14 14 15 15

x5
1 13 13 14 15

x4
1 12 13 14 15

x3
1 9 10 11 12 14 14 14 14 15 15 15 15

x2
1 6 7 9 10 12 12 13 13 14 14 15 15

x1 3 4 6 8 10 10 11 12 13 13 14 15
1 0 2 4 6 8 9 10 11 12 13 14 15

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x7

2 x8
2 x9

2 x10
2 x11

2

x7
1 – – – –

x6
1 14 – – –

x5
1 12 13 15 –

x4
1 9 11 12 14

x3
1 7 8 10 12 13 15 – – – – – –

x2
1 4 6 8 9 11 12 14 – – – – –

x1 2 4 5 7 8 10 12 13 15 – – –
1 0 1 3 4 6 8 9 11 12 14 – –

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x7

2 x8
2 x9

2 x10
2 x11

2

Fig. I.2: Upper bounds on the number of zeros of weighted multiplicity at least r = 5 when
w1 = 2, w2 = 3 and #S1 = #S2 = 4, from Example I.49.

A Proof of Lemma I.9

In this appendix, we give the proof of Lemma I.9. We first treat the univariate
case (m = 1) in the classical form. The proof for Hasse derivatives can be
directly translated from the result for classical derivatives:

Lemma I.50. Let a1, a2, . . . , an ∈ F be pair-wise distinct and let M ∈ N+. There
exist polynomials Fi,j(x) ∈ F[x] such that

F(k)
i,j (al) = δi,kδj,l ,

333



References

for all i, k = 0, 1, 2, . . . , M and all j, l = 1, 2, . . . , n, where δ denotes the Kronecker
delta.

Now, since J is finite, we may fix an integer M such that J ⊆ [0, M]m.
Similarly, we may find a finite set S ⊆ F such that T ⊆ Sm. Denote then
s = #S and S = {a1, a2, . . . , as}, and let Fi,j,k(xk) ∈ F[xk] be polynomials as in
the previous lemma in each variable xk, for i = 0, 1, 2, . . . , M, j = 1, 2, . . . , s
and k = 1, 2, . . . , m. Define now

Fi,j(x) = Fi1,j1,1(x1)Fi2,j2,2(x2) · · · Fim ,jm ,m(xm) ∈ F[x],

for i = (i1, i2, . . . , im) ∈ [0, M]m and j = (j1, j2, . . . , jm) ∈ [1, s]m. By the
previous lemma and Lemma I.7, we see that

F(k)
i,j
(
al1 , al2 , . . . , alm

)
=
(
δi1,k1 δi2,k2 · · · δim ,km

) (
δj1,l1 δj2,l2 · · · δjm ,lm

)
= δi,kδj,l,

for all i, k ∈ [0, M]m and all j, l ∈ [1, s]m. Finally, given values bi,j ∈ F, for
i ∈ J and j ∈ T, define

F(x) = ∑
i∈J

∑
j∈T

bi,jFi,j(x) ∈ F[x].

We see that Ev(F(x)) = ((bi,j)i∈J )j∈T , and we are done.
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