

Aalborg Universitet

Network Coding Using Superregular Matrices For Robust Real-Time Streaming

Hansen, Jonas

DOI (link to publication from Publisher):
10.5278/vbn.phd.tech.00035

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Hansen, J. (2018). Network Coding Using Superregular Matrices For Robust Real-Time Streaming. Aalborg
Universitetsforlag. https://doi.org/10.5278/vbn.phd.tech.00035

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.5278/vbn.phd.tech.00035
https://vbn.aau.dk/en/publications/30b3365f-d295-44b4-addc-8dced8a1e8fa
https://doi.org/10.5278/vbn.phd.tech.00035

JO
N

A
S H

A
N

SEN
N

ETW
O

R
K

 C
O

D
IN

G
 U

SIN
G

 SU
PER

R
EG

U
LA

R
 M

ATR
IC

ES FO
R

 R
O

B
U

ST R
EA

L-TIM
E STR

EA
M

IN
G

NETWORK CODING USING
SUPERREGULAR MATRICES FOR
ROBUST REAL-TIME STREAMING

BY
JONAS HANSEN

DISSERTATION SUBMITTED 2017

Network Coding Using
Superregular Matrices For

Robust Real-Time Streaming

Ph.D. Dissertation
Jonas Hansen

Dissertation submitted December, 2017

Dissertation submitted: December, 2017

PhD supervisor: Prof. Jan Østergaard,
 Aalborg University

Industrial PhD Supervisor: B.Sc.EE John Hammer Madsen,
 Bang & Olufsen a/s

Industrial PhD Co-supervisor: B.Sc.EE Johnny Kudahl,
 Bang & Olufsen a/s

PhD committee: Associate Professor Jimmy Jessen Nielsen (chair.)
 Aalborg University

 Professor Lars K. Rasmussen
 KTH Royal Institute of Technology

 Professor Emina Soljanin
 Rutgers School of Engineering

PhD Series: Technical Faculty of IT and Design,
 Aalborg University

Department: Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-121-7

Published by:
Aalborg University Press
Langagervej 2
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Jonas Hansen, except where otherwise stated

Printed in Denmark by Rosendahls, 2018

This thesis has been typeset using

Thesis submitted: December, 2017
PhD Supervisor: Prof. Jan Østergaard,

Aalborg University
Industrial PhD Supervisor: B.Sc.EE John Hammer Madsen,

Bang & Olufsen a/s
Industrial PhD Co-supervisor: B.Sc.EE Johnny Kudahl,

Bang & Olufsen a/s
PhD Committee: Assoc. Prof. Jimmy Jessen Nielsen,

Aalborg University
Prof. Emina Soljanin,
Rutgers University
Prof. Lars Kildehøj Rasmussen,
KTH Royal Institute of Technology

PhD Series: Department of Electronic Systems, Aalborg
University

ISSN: xxxx-xxxx
ISBN: xxx-xx-xxxx-xxx-x

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

c© Copyright by author, except where otherwise stated

Printed in Denmark by Rosendahls, 2018

This thesis has been typeset using LATEX2ε.

Curriculum Vitae

Jonas Hansen

Jonas Hansen was an industrial Ph.D. student at Bang & Olufsen a/s, Struer,
Denmark and Aalborg University, Aalborg, Denmark working on network cod-
ing, code design and wireless distribution protocols for audio streaming. He
received his B.S. degree in electrical engineering from Aalborg University in
2012. In 2013 he was a visiting student at Massachusetts Institute of Tech-
nology’s Research Laboratory of Electronics, where he collaborated with the
Network Coding and Reliable Communications Group. He was a student in the
Elite Masters Programme in Wireless Communication at Aalborg University,
where he in 2014 graduated with cum laude. From 2006 to 2009 he was an ap-
prentice at Bang & Olufsen a/s where he designed and developed software and
hardware for both production and user opinion tests, and in 2009 he graduated
as an Electronics Technician. His research interests include network coding
for wireless communication and multimedia transmission with an emphasis on
low-latency traffic and applications.

iii

Curriculum Vitae

iv

Abstract

This thesis is about low delay wireless media streaming. Since streaming of
audio and video has become a part of our everyday lives, this work seeks to
improve the quality of wireless audio streaming. Moreover, the main topic of
this thesis is erasure correcting codes, that is, codes that are used to correct
the erasures of entire packets in wireless networks. These codes may be used
to make low delay wireless media streaming more robust, i.e., more tolerant
towards erasures caused by errors somewhere along the network path.

In order for erasure correcting codes to be beneficial for low delay stream-
ing, they should optimize the encoding delay, decoding delay, and loss prob-
ability. In this work we study codes with a lower triangular structure, which
minimizes the encoding delay, as opposed to dense codes, e.g., Reed-Solomon
codes, where the source must collect all input symbols before the encoding can
take place. The lower triangular structure has also proven favourable with re-
spect to decoding delay, since packets can be decoded on-the-fly. The symbol
loss probability is then investigated for these lower triangular codes. The result
of this investigation is two-fold. First, a framework for determining the symbol
loss probability for any static linear erasure correcting code is composed. Sec-
ond, in order for a systematic lower triangular code to have optimal decoding
capabilities, the redundancy part of the encoding matrix must be superregular.
Moreover, a code is said to have optimal decoding capabilities if and only if no
other code with the same structure of the encoding matrix is able to produce
a lower symbol loss probability over any erasure channel.

Using these erasure correcting codes on modern platforms, such as loud-
speakers, requires an efficient software implementation. To this end, this thesis
documents a high-performance software library for encoding and decoding lin-
ear erasure correcting codes. This software library has proven very valuable for
this research project, as it enabled large simulation campaigns and allowed for
implementation of a real-time multi-node wireless testbed.

Overall the work documented in this thesis contributes to:

1. The construction of superregular lower triangular Toeplitz matrices over
binary extension fields.

v

Abstract

2. Analysis and evaluation of the performance, in terms of symbol loss prob-
ability and delay, for both block and convolutional codes.

3. A flexible and extendable high performance software library for linear
erasure correcting block and convolutional codes.

The thesis is divided into two parts. The first part provides a detailed
theoretical background for the thesis while also providing an overview of the
state-of-the-art. The second part consists of five academic papers, which in
detail describe the research undertaken throughout this project.

vi

Resumé

Denne afhandling drejer sig om streaming af lyd og video med lav forsinkelse.
Da streaming af lyd og video er blevet en del af dagligdagen, forsøger dette
projekt at forbedre kvaliteten af trådløs streaming af især lyd. Hoved emnet
for denne afhandling er derfor fejl korrigerende koder, altså, koder der bruges til
at korrigere for de pakke tab der forekommer på trådløse netværk. Disse koder
kan bruges til at gøre streaming af lyd og video med lav forsinkelse mere robust,
og dermed mere tolerant i forhold til pakke tab forsaget af fejl i netværket.

For at fejl korrigerende koder kan være brugbare for streaming af lyd
og video med lav forsinkelse, skal de i nogen grad optimere indkodnings-
forsinkelsen, dekodningsforsinkelsen og tabs sandsynligheden. I dette projekt
har vi studeret koder med en lavere trekantet struktur, som minimere indkod-
ningsforsinkelsen, i modsætning til tætte koder, f.eks. Reed-Solomon koder,
hvor afsenderen skal samle alle input symbolerne før kodningen kan begynde.
Den lavere trekants struktur har også vist sig at være favorabel med hensyn til
dekodningsforsinkelsen, da pakkerne kan dekodes løbende. Derefter er symbol
tabs sandsynligheden blevet undersøgt for disse lavere trekantede koder. Der er
to resultater af denne undersøgelse. For det første er der udarbejdet en teoretisk
ramme som kan bruges til at bestemme symbol tabs sandsynlighed for enhver
statisk lineær fejl korrigerende kode. For det andet, for at en systematisk lavere
trekantet kode kan have optimale dekodnings betingelser, skal redundansdelen
af kodningsmatricen være superregulær. Ydermere, en kode siges at have op-
timale dekodnings betingelser hvis og kun hvis der ikke findes en anden kode
med samme kodnings matrice struktur der er i stand til at producere en lavere
symbol tabs sandsynlighed over enhver tabs kanal.

Brug af disse fejl korrigerende koder på moderne platforme, såsom højt-
talere, kræver en effektiv softwareimplementering. Til dette formål doku-
menterer denne afhandling et højtydende softwarebibliotek til kodning og
afkodning af lineære fejl korrigerende koder. Dette softwarebibliotek har vist
sig meget værdifuldt for dette forskningsprojekt, både fordi det har mulig-
gjort store simuleringskampagner, og da det tillod implementering af en realtids
multinode trådløs forsøgsopstilling.

Samlet set bidrager arbejdet i denne afhandling til:

vii

Resumé

1. Konstruktionen af superregulære lavere trekantede Toeplitz matricer over
et hvert endeligt legeme med karakteristik 2.

2. Analyse og evaluering af ydeevnen, hvad angår symboltab sandsynlighed
og forsinkelse, for både blok og foldnings koder.

3. Et fleksibelt og udvideligt højtydende softwarebibliotek til lineær fejl ko-
rrigerende blok og foldnings koder.

Afhandlingen er opdelt i to dele. Den første del giver detaljeret baggrund
stof for afhandlingen, samtidig med at der gives et overblik over state-of-the-
art. Anden del består af fem videnskabelige artikler, som i detaljer beskriver
den forskning der er gennemført i løbet af projektet.

viii

Contents

Curriculum Vitae iii

Abstract v

Resumé vii

Preface xiii

Acknowledgments xv

Abbreviations xvii

I Background 1

Introduction 3
1 Research objective . 3
2 Commercial Perspectives . 4
3 Thesis Structure . 5
4 Contributions . 6

Background and State-of-the-art 9
1 Audio Formats . 9
2 Low Delay Wireless Streaming of High Resolution Audio 9

2.1 Definition of Delay . 10
3 Erasure Correcting Codes . 11

3.1 Linear Codes . 13
3.2 Random Linear Codes 13

4 Block Codes . 13
4.1 Dense Codes . 14
4.2 Lower Triangular Codes 14

5 Convolutional Codes . 15
6 Superregular Matrices . 17

ix

Contents

6.1 Dense Superregular Matrices 17
6.2 Lower Triangular Superregular Matrices 18
6.3 Using Superregular Matrices 19

7 Network coding . 19
7.1 Intra-Session Network Coding 20

8 Embedded Platforms . 20

Conclusions 23

References 24

II Papers 31

A Network Coding on Embedded Platforms for Wireless Net-
works 33
1 Introduction . 35
2 Source Code . 36

2.1 Encode and Decode Example 38
2.2 Encode, Recode, and Decode Example 38

3 Coding Throughput of Block Codes on x86 39
3.1 Comparison to State-of-the-art 41

4 Coding Throughput of Block Codes on ARM 43
4.1 Using NEON . 44

5 Coding Throughput of Convolutional Codes on x86 45
5.1 Dynamic Array of Coefficients 45
5.2 Fixed Size Array of Coefficients 46
5.3 Segmented Array of Coefficients 46
5.4 Performance Evaluation 47

6 Using a Wi-Fi Network for Low Delay Streaming 49
6.1 Broadcast . 50
6.2 Unicast . 51
6.3 Pseudo Broadcast . 51
6.4 Packet Aggregation . 52
6.5 Retransmissions . 52

7 Experimental Wi-Fi Setup . 53
7.1 Experimental Procedure 53

8 Modelling Burst Losses . 55
8.1 The Gilbert-Elliott Model 55
8.2 The Extended Gilbert Model 55
8.3 Infinite Hyperbolic Extended Gilbert Model 57

9 Conclusions . 64
References . 66

x

Contents

B Superregular Lower Triangular Toeplitz
Matrices for Low Delay Wireless Streaming 69
1 Introduction . 71
2 Superregular Matrices . 74
3 Explicit Construction of Superregular and Jointly Superregular

Matrices . 79
4 Greedy algorithm . 81
5 Theoretical Symbol Loss Probability 81

5.1 Single Hop Network . 84
5.2 Recoding Network . 84

6 Theoretical Symbol Delay . 87
7 Simulation Results . 88

7.1 Random Linear Network Coding 89
7.2 Symbol Loss Probability 89
7.3 Symbol Delay . 92

8 Experimental Results . 93
8.1 Single Hop Network . 94
8.2 Recoding Network . 95
8.3 Coding Throughput . 95
8.4 Coding Operations . 97

9 Discussion . 98
10 Conclusions . 99
A Proof of Lemma B.3 . 99

References . 100

C On Superregular Matrices and Convolutional Codes with Fi-
nite Decoder Memory 103
1 Introduction . 105
2 Jointly Superregular Matrices 106
3 Convolutional codes . 107
4 Convolutional Codes With Finite Decoder Memory 110

4.1 Symbol Loss Probability 110
4.2 Comparison of Infinite and Finite Decoder Memory . . 111
4.3 Symbol Delay . 112

5 Conclusions . 113
References . 114

D When are Erasure Correcting Block Codes Better than Con-
volutional Codes in a Multi-hop Network? 117
1 Introduction . 119
2 Background . 121
3 Symbol Loss Probability and Delay 121
4 Simulation Method . 124

xi

Contents

5 Discussion . 124
5.1 Small Matrices and Low Delay 125
5.2 Field Size Bias . 125

6 Conclusions . 126
References . 128

E Sequential use of Block Codes and Convolutional Codes in a
Real-Time Multi-hop Network 131
1 Introduction . 133
2 Background . 134
3 Symbol Loss Probability and Delay 135

3.1 Finite Recoder and Decoder Memory 136
4 Simulation Method . 137
5 Discussion . 138

5.1 Small Matrices and Low Delay 139
6 Conclusions . 140

References . 140

xii

Preface

This PhD thesis presents a selection of papers which encompass the research
topics and directions that were investigated throughout my time as a PhD stu-
dent at Bang & Olufsen a/s as well as at the Department of Electronic Systems
at Aalborg University, from December 2014 through December 2017. This the-
sis is submitted to the Technical Doctoral School of IT and Design in partial
fulfilment of the requirements for the degree of Doctor of Philosophy. This
thesis includes 5 selected publications and was prepared under the supervision
of Professor Jan Østergaard, DSP Audio Specialist John Hammer Madsen, and
Wireless Technology Specialist Johnny Kudahl. This work was partly financed
by the Danish National Innovation Foundation, Grant No. 4135-00131B.

Paper A presents results on software implementations of network coding
and experiments with bursty wireless erasure channels. What inspired Paper B
was the finding that superregular matrices could only be constructed over very
large prime fields, given that for practical purposes the best family of fields is
binary extension fields, since they may fit easily into the memory of computer
systems. In Paper C superregular matrices are used to construct convolutional
codes with optimum distance profile.

The following comment from Reviewer 2 of Paper B, regarding rate 1/2 lower
triangular block codes, started the research efforts that led to Papers D and E.

“A rate 1/2 MDS convolutional with the same dimensions will re-
cover from more losses.”

These papers cover an experimental investigation of the symbol loss probability
for random based rate 1/2 codes given strict delay constraints. One of the find-
ings in those papers is that lower triangular block codes are generally superior
to both convolutional and dense codes when used in networks with recoding.

Jonas Hansen
Aalborg University, Monday 25th December, 2017

xiii

Preface

xiv

Acknowledgments

First and foremost I would like to thank my supervisors Professor Jan Øster-
gaard, John Hammer Madsen, and Johnny Kudahl. You helped me to make a
succes of this project, and guided me through the tough times. I am very glad
that we completed this journey together, and I am proud that you were by my
side along the way.

I feel very grateful for having had such inspiring colleagues over the three
years. Thank you Sven Shepstone, Neo Kaplanis, Martin Møller, Samuel
Moulin, Miklas Strøm Kristoffersen, Klaus Kristensen, Pablo Martinez-Nuevo,
and Kashmiri Stec. And a special thank you to Søren Bech, for believing in
the project idea I suggested almost four years ago.

Finally, to my family and friends, thank you for your continued support.
I look forward to be able to spend more time with all of you. In particular
thanks to my wife – you are the best.

The work included in this PhD thesis is dedicated to my wife and our kids.

“Research is formalized curiosity. It is poking and prying with a
purpose.”

— Zora Neale Hurston, Dust Tracks on a Road

xv

Acknowledgments

xvi

Abbreviations

ARQ Automatic repeat request
EGM Extended Gilbert model
FEC Forward erasure correction
MDS Maximum distance separable
ODP Optimum distance Profile
RLNC Random linear network coding
SIMD Single instruction multiple data
SNR Signal-to-noise ratio
WNIC Wireless network interface card

xvii

Abbreviations

xviii

Part I

Background

1

2

Introduction

1 Research objective

The scientific purpose of this project is the analysis, design, implementation,
and evaluation of distribution of lossless high-resolution audio with low delay
in a wireless one-to-many scenario in the presence of typical in-home wireless
network topologies and channel imperfections using off-the-shelf wireless de-
vices. We follow a top-down approach to describe the research documented in
this thesis. That is, we start with Why was this research undertaken? This
is followed by the statement: How do we achieve the desired result? Finally,
we consider, What has been done? These three elements are described in more
detail in the coming paragraphs, and are also depicted in Fig. 1.

We wish to distribute lossless high-resolution audio with low delay wirelessly
to a number of loudspeakers. However, there are several limitations that we
need to overcome, such as limited bandwidth, random packet erasures, stochas-
tic network delay, and limited computational power in the devices. That is,
we want to improve the sound quality, by: 1) improving the audio resolution,
2) having a lossless transmission, 3) playing back from a number of wireless
loudspeakers simultaneously. This constitutes the Why.

Erasure correcting codes allows for a trade-off between delay, bandwidth,
and loss probability. It follows easily that, for media streaming the delay should
be minimized, but not to the extent that the bandwidth requirements are too
high or that the losses are too frequent. Thus, the contributions with respect to
the How lies in an investigation of the relationship between these three metrics.

Some form of forward erasure correcting code is generally required in or-
der to reliably deliver high-resolution audio to a number of loudspeakers with
low delay. Without a forward erasure correcting code the loudspeakers and
the audio master have to rely entirely on either positive or negative acknowl-
edgements, in order to achieve lossless delivery of the audio content. This is,
however, generally not desired when the number of loudspeakers increases, since
the acknowledgements may reduce the available bandwidth. Furthermore, the
computational complexity of an erasure correcting code should not exceed the
capacity of modern embedded devices, for which the codes are intended to be

3

Why

How

What

Improve sound quality for wireless loudspeakers

Study the interaction between delay, bandwidth, and loss

Design low delay erasure correcting codes

Fig. 1: The motivation behind the research documented within this thesis.

used. For those reasons, this project revolves around erasure correcting codes
that perform well with respect to low delay media streaming. That is, the
What is about the design, analysis, and evaluation of erasure correcting codes.

2 Commercial Perspectives

Bang & Olufsen a/s may utilize the results of the research conducted through-
out this project to develop loudspeakers and television sets capable of stream-
ing lossless high-resolution audio to multiple receivers with low delay. One of
the commercial targets of this project is to completely remove wired signal-
connections to Bang & Olufsen a/s loudspeakers when connected to a Bang
& Olufsen a/s audio master or television set. This puts a large emphasize on
the need for erasure correcting codes in software which are capable of high
performance encoding and decoding of the audio data on embedded devices.
Furthermore, it also requires research into the areas of low delay erasure correct-
ing codes. That is, the codes should be with low delay in terms of end-to-end
symbol delay and with respect to encoding and decoding.

By using an off-the-shelf wireless technology such as Wi-Fi, in contrast to
the currently implemented proprietary wireless system, it is possible to reduce
both production and development costs. However, the use of off-the-shelf wire-
less technologies is generally not unproblematic. The reason for this is that a
general purpose wireless technology has not been developed for a very specific
use-case in mind, whereas, the current proprietary wireless system was designed
exactly for low delay audio streaming through a long and costly development
process. Thus, from a commercial perspective, it is highly desired to conduct
the necessary research required to enable streaming of high-resolution audio
over a general purpose wireless technology with low delay. This will include
research into erasure correcting codes and their interplay with the underlying
wireless technology.

4

3. Thesis Structure

3 Thesis Structure

The structure of this thesis is as follows. The following section covers the
contributions of the thesis. The remainder of Part I provides an extended
summary of the background for the thesis, description of state-of-the-art, and
conclusions. Part II contains the following five papers:

A) J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “Network Coding on
Embedded Platforms for Wireless Networks”. Technical report, Decem-
ber 2017.

B) J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “Superregular Lower
Triangular Toeplitz Matrices for Low Delay Wireless Streaming”. Pub-
lished in the IEEE Transactions on Communications Vol. 65, no. 9,
pp. 4027–4038, September 2017.

C) J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “On Superregular
Matrices and Convolutional Codes with Finite Decoder Memory”. Sub-
mitted to the IEEE 87th Vehicular Technology Conference, pp. 1–5, June
2018.

D) J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “When are Erasure
Correcting Block Codes Better than Convolutional Codes in a Multi-hop
Network?”. Published in in the proceedings of The 11th International
Conference on Signal Processing and Communication Systems, pp. 1–5,
December 2017.

E) J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “Sequential use of
Block Codes and Convolutional Codes in a Real-Time Multi-hop Net-
work”. Submitted to the IEEE 87th Vehicular Technology Conference,
pp. 1–5, June 2018.

In addition to these papers, the following paper was also composed during
the project, however, Paper B encompass all of its main contributions and
therefore it is not included in the thesis.

J. Hansen, J. Østergaard, J. Kudahl, J. Madsen. “On the Construction of
Jointly Superregular Lower Triangular Toeplitz Matrices”. Published in
in the proceedings of the IEEE International Symposium on Information
Theory, pp. 1–5, July 2016.

5

4 Contributions

The main contributions of this thesis are (paper in parentheses):

1. Explicit non-asymptotic constructions of superregular lower triangular
Toeplitz matrices over binary extension fields. (B)

2. Theoretical analysis, simulations, practical experiments of the symbol loss
probability and symbol delay for block codes using superregular lower
triangular Toeplitz matrices. (B)

3. Explicit constructions of convolutional codes with optimum distance pro-
file with any code rate and degree over binary extension fields. (C)

4. Theoretical analysis, and simulations of the symbol loss probability and
symbol delay for convolutional codes with optimum distance profile. (C)

5. A performance evaluation of random based network codes in low delay
streaming, and the upper bound on the maximum code length of the code
words produced by the intermediate recoder, with finite memory, using a
rate 1/2 convolutional network code, where both encoder and recoder use
the same constraint length in a network with source, recoder, and sink.
(D)

6. A performance evaluation of the sequential use of random based block
codes and convolutional network codes in low delay streaming, and the
upper bound on the maximum code length of the code words produced
by the intermediate recoder, with finite memory, using a rate 1/2 convo-
lutional network code with constraint length v2, where the encoder use a
block or convolutional code with constraint length v1 in a network with
source, recoder, and sink. (E)

7. A flexible and extendable high performance software library for linear
erasure correcting block and convolutional codes for both desktop com-
puters and embedded devices, and a performance analysis of said library.
(A)

8. Performance analysis of different software implementations of linear era-
sure correcting convolutional network codes. (A)

9. An investigation and discussion of some of the issues of using Wi-Fi for
low delay media streaming. (A)

Paper A covers three of the main contributions. The paper present a new
high performance software library for encoding, recoding and decoding of lin-
ear erasure correcting codes. The library is shown to be highly extendable
and configurable, which makes it very versatile. The library is evaluated with

6

4. Contributions

respect to throughput, for a set of different software implementations of lin-
ear erasure correcting codes. The set of software implementations covers both
block codes and convolutional codes. For the case of block codes we com-
pare the performance to that of a well known software library for linear block
codes. The result of this comparison is that our implementation can provide
up to 5.5x in throughput performance. Paper A then investigates several is-
sues that have been discovered with respect to using Wi-Fi as the means for
low delay media streaming. Finally, the paper discusses two channel models,
namely the Gilbert-Elliott model and the extended Gilbert model, and closes
with a presentation of a new channel model by extending the latter.

Paper B deals with the two first main contributions, by first presenting ex-
plicit non-asymptotic constructions of superregular lower triangular Toeplitz
matrices and then going through a theoretical analysis of the performance of
the block codes constructed from the superregular lower triangular Toeplitz
matrices. The paper also includes a thorough set of simulations of the perfor-
mance in a set of different scenarios. Some of these scenarios are based on a
set of erasure patterns, which we obtained from a practical implementation.

In Paper C we present a new method for constructing convolutional codes
of any rate with optimum distance profile. As part of this, the paper presents a
theoretical analysis and a set of simulations measuring the symbol loss probabil-
ity and symbol delay of the constructed convolutional codes. We also compare
the performance of these codes with the performance of random based convo-
lutional codes. Finally, an investigation of the effect of having finite decoder
memory as oppose to infinite decoder memory is included.

Papers D and E investigate the loss performance, when the sink has strict
delay requirements, for a number of erasure correcting network codes in a three
node network with source, recoder, and sink. One of the results of Paper D
is that, for low delay streaming with intermediate recoding, two concatenated
triangular block codes are generally superior to two concatenated convolutional
codes. Paper D also presents the upper bound on the maximum code length
for the code words produced by a recoder using a rate 1/2 convolutional net-
work code with constraint length v and memory factor m, when the encoder
uses a convolutional code with the same parameters. In Paper E, it is shown
that in some cases, the sequential use of triangular block codes and convolu-
tional codes yields the lowest number of losses when employing strict delay
constraints. Paper E presents the upper bound on the maximum code length
for the code words produced by a recoder using a rate 1/2 convolutional net-
work code with constraint length v2 and memory factor m, when the encoder
use any block or convolutional code with constraint length v1. Furthermore,
Paper E uses simulation results to discuss the optimal parameters for the set
of erasure correcting network codes given some channel and some maximum
allowable symbol delay.

7

8

Background and
State-of-the-art

In this chapter we introduce the main topics of this PhD thesis and provide
the reader with the background, state-of-the-art, and motivation for the work
carried out.

1 Audio Formats

The Compact Disc Standard defines the audio format as 2 channels with a bit
depth of 16 bits per sample and a sample rate of 44.1 kHz [1]; this format is
known as CD quality. Although there is not a strict definition of high resolution
audio, however, it may generally be defined as the formats capable of rendering
beyond CD quality [2]. That is, formats with more than 16 bits per sample
and/or a sample rate of more than 44.1 kHz would qualify as high resolution
audio. On the other hand, the Blu-ray Disc format1 allows for 6 channels of 24
bits per sample and a sample rate of 192 kHz or 8 channels of 24 bits per
sample and a sample rate of 96 kHz. This is comparable to the requirements of
HDMI (High-Definition Multimedia Interface) 2.02 which is 8 audio channels
with a bit depth of 24 bits per sample and a sample rate of 192 kHz. For HDMI
this amounts to a throughput of 36.864 Mb/s.

2 Low Delay Wireless Streaming of High Reso-
lution Audio

A plethora of wireless enabled loudspeakers are available on the market. Many
of these are based on some version of the Bluetooth specifications. However,
the latest version, Bluetooth 5, only support transmissions with a data rate

1Audio Visual Application Format Specifications for BD-ROM Version 2.4 (www.blu-
raydisc.com)

2See www.hdmi.org

9

of 2 Mb/s or optionally 3 Mb/s 3, which is more than an order of magnitude
less than the throughput of HDMI. For this reason we do not consider Blue-
tooth 5 (and former versions) a viable means of achieving wireless streaming
of high resolution audio with low delay.

An alternative wireless technology could be Wi-Fi, i.e., IEEE 802.11 and its
amendments. This wireless technology has become the de facto standard for
wireless internet for both domestic and corporate use. Amendment 802.11aa
addresses some of the issues with respect to low delay streaming of multimedia
to several receivers [3, 4]. One of the included mechanisms for increasing the
reliability of multicast is GCR Unsolicited Retry. This allows the source to
transmit packets to multiple receivers and then retransmit the packets several
times without using acknowledgements. This method does not guarantee that
every receiver has at least one successful packet reception, but it does ensure
that at least some retransmissions are not delayed by automatic repeat requests.
However, it does put a large amount of load on the shared medium, which may
be unnecessary.

Another mechanism for reliable multicast in 802.11aa is GCR Block Ack.
This allows the source to transmit a number of packets together as a single
block, after which all receivers must acknowledge the block. In perfect condi-
tions, the block may be then delivered with a low delay and high bandwidth.
However, if packet losses are uncorrelated between receivers, a complete re-
transmission may be required. Furthermore, the multicast originator must
initiate the Block Ack agreements with each receiver, which in turn may de-
lay the transmission when the number of multicast recipients is large. The
performance of these two mechanisms is highly dependent on the scenario [5].

2.1 Definition of Delay

According to [6, 7], in order to ensure an acceptable user experience, the timing
between a video and the corresponding sound should not exceed 25 ms. This
is not a strict latency limit for the audio distribution chain per se, but for
live events where buffering is not possible, this limit may become strict. This
means that in cases where the video part cannot be delayed, this limit restricts
the allowable latency of the audio distribution chain. Given that such strict
requirements exist, we have investigated the delay associated with forward
erasure correcting codes.

The term delay has a plethora of different definitions and meanings. In
this work, we have used two different definitions, in separate contexts. The
following two sections describe our definitions, and present a motivation for
both of them.

3See www.bluetooth.com

10

3. Erasure Correcting Codes

Packets as Delay

In Papers B and C we define delay as the number of packets transmitted from
the source, and possibly relays, after the source obtained symbol x, before
the x’th symbol is decoded at the sink. Put in other words, we count the
packets that are transmitted between the source obtains a specific symbol and
until the sink decode said symbol. For the symbol in question, the number
of packets is the experienced delay. The delay of undecodable symbols is set
to zero. Alternatively, we could have set the delay of undecodable symbols to
infinity, but since we are interested in the average delay, that would significantly
influence the average delay. This definition of delay encapsulates the fact that
packet transmissions represent a cost for the network. This cost may result in
more than just a reduction in the available bandwidth – it may also increase
the end-to-end latency. Furthermore, this also puts an emphasis on the rate of
erasure correcting codes, e.g., the use of rate 1/2 codes versus rate 1/3 codes.

Symbols as Delay

In Papers D and E we use another definition of delay, namely: We consider
the number of symbols obtained by the source between the source obtains a
specific symbol and the sink decodes said symbol. That is, when the sink
decodes the n’th symbol and the source has obtained the m’th symbol, then
the delay experienced by the n’th symbol is m − n, note that m ≥ n. This
definition of delay gives a one-to-one mapping between delay and the rate at
which symbols are obtained by the source, denoted the input symbol rate. For
many practical applications, such as audio streaming, the input symbol rate is
fixed. This allows the designer of an erasure correcting code to utilize the input
symbol rate and any latency constraints that may be set by the application to
optimize some performance criteria, such as the loss probability.

3 Erasure Correcting Codes

In the paper “A mathematical theory of communication” [8] Claude Elwood
Shannon presented an application of probability theory in order to study and
analyse communication systems. The paper was later renamed to “The math-
ematical theory of communication” [9], a subtle but significant change, which
was made after realizing the generality of the work.

The subject of this thesis revolves around erasure correcting codes, where
erasures occur on a packet level. That is, we do not consider erasures of individ-
ual bits, but only erasures of entire packets. This type of code is fundamentally
different from error correcting codes that correct errors (or erasure) on a bit
or symbol level [10]. Erasure correcting codes are used to compensate for the

11

Source data

k

...

3

2

1

Source symbols

n

...

3

2

1

Packets

n

...

2

Successes
Transmission

Erasures

k

...

3

2

1
Decoded data

Encoding

×

× Decoding

Fig. 1: Illustration of the encoding, transmission and decoding process.

packet erasures that occurs when an bit error correcting code is unable to re-
cover from too many errors in a packet [11]. A common design of wireless
communications systems [12, 13] is to use a bit error correcting code on the
physical layer of the OSI model [14] and then use some form of checksum to
verify the content of an entire packet on the data link layer [14]. Further-
more, a checksum may also employed on the transport layer [14]; this is the
case for the two most commonly used transport protocols TCP [15, 16] and
UDP [17] (optional with IPv4 [18, 19] and mandatory with IPv6 [20, 21]).

Fig. 1 shows the route from source data to the decoded data. The source
data is segmented into k symbols, these symbols are then encoded into n pack-
ets. The packets are transmitted over an erasure channel to the receiver. The
receiver then decodes the successfully received packets, and if enough packets
has been received, recover all the data. In the event that the receiver does not
receive enough packets, then some of the symbols may be recovered, depending
the code and its structure. Since this is in fact a quite general representation
of erasure correcting codes in communications systems, Fig. 1 has a cunning
resemblance to that of Fig. 1 in [8], even though the present figure resolves
around packet erasures and the figure in [8] is of a more general nature.

One of the advantages of erasure correcting codes is that enables a trade-off
between loss probability, delay, and bandwidth [22]. By adding more redun-
dancy, the available bandwidth is reduced but this may also reduce the loss
probability, possibly without significantly affecting the delay. On the other
hand, if reliable communication is of the utmost importance, then we may re-
duce the bandwidth and increase the delay, to ensure that the loss probability
is minimized.

12

4. Block Codes

3.1 Linear Codes

In this work we only consider linear erasure correcting codes [23]. Moreover,
linear means that the encoding (and decoding) step in Fig. 1 is a linear trans-
formation. Furthermore, our codes operate over the finite field GF(2p), binary
extension fields.

A code is termed systematic if the output of the encoder includes all the
input symbols uncoded. Systematic codes are widely used [24–27], in part
because it simplifies the encoding process and minimizes the encoding latency.
Furthermore, it also simplifies the decoding process, since systematic packets
require no decoding and can be forwarded immediately.

3.2 Random Linear Codes

In [28] T. Ho et al. introduced the use of random coding coefficients. One
immediate benefit of using random coding coefficients is that it removes the
need for designing encoding matrices with special properties. Instead, it is
only the structure of the encoding matrix that needs to be designed [29–33].
Another benefit of random based codes is that optimal decoding capabilities
can be shown through asymptotic analysis, when the size of the finite field and
the dimensions of the code are sufficiently large [34]. Even for small code sizes
and the finite fields GF(2p) with p > 1 random based dense block codes show
near optimal decoding capabilities [35], on average.

4 Block Codes

When data is encoded and decoded in consecutive groups, it is termed a block
code [36]. We define the input and output to and from the encoding process
in terms of blocks, which may be described by matrices. We now illustrate
the encoding procedure for block codes. The matrix S contains the k source
symbols, and the matrix C contains the n packets. The j’th packet is generated
using the j’th row of the encoding matrix A, like so:

Cj =
k∑
i=1

aj,iSi,

where Si is the i’th row of the source data matrix, and Cj is the j’th row of the
coded data matrix. That is, C may be constructed as the product of A and S:

C = AS.

Decoding is carried out by means of Gaussian elimination on the rows of A
that correspond to the received packets. Decoding requires k(1 + ε) packets,
where a code is considered optimal if and only if ε = 0. For codes where ε→ 0

13

1

1

1

1

a1,1

a2,2a2,1

a3,3a3,2a3,1

a4,4a4,3a4,2a4,1

I

A

(a)

1

a1,1

1

a2,2a2,1

1

a3,3a3,2a3,1

1

a4,4a4,3a4,2a4,1

(b)

Fig. 2: (a) Shows a tall matrix consisting of two lower triangular matrices. (b) shows the
rows of (a) rearranged.

is may be considered a near optimal code, this is the case for some random
based codes [35].

4.1 Dense Codes

A linear block code is called maximum distance separable (MDS) if it attains
the Singleton bound [37], and for linear erasure correcting block codes this
mean that ε = 0. That is, decoding any k packets of the n generated by the
encoder allows for the decoding of all k symbols. Dense codes are generally
not suited for low delay communications, given that the entire set of input
symbols must be present before encoding of any packet can take place. Thus,
the encoder must wait for all symbols to be obtained, before it can encode and
transmit any packets.

4.2 Lower Triangular Codes

Triangular codes are essentially block codes where every entry above the “diag-
onal” in the encoding matrix are zero; note that the definition of diagonal is in
this context somewhat vague. We now show an example of an encoding matrix
for a rate 1/2 systematic block code with lower triangular structure. Fig. 2
shows two perturbations of an encoding matrix. Fig. 2a shows a tall matrix,
which consist of two lower triangular matrices, i.e., I and A, where I is the
identity matrix. When the encoding matrix is on this form it is easy to identify
the two individual lower triangular matrices. In Fig. 2b the two matrices I

14

5. Convolutional Codes

Sj

Z−1

· · ·

Z−1

Z−1

aj,v+1

aj,v

aj,2

aj,1

+

+

· · ·

+

C2j

C2j−1

Fig. 3: Illustration of the encoding process for a systematic convolutional code with rate 1/2
and memory v.

and A have been merged. This form also show the order in which the packets
are in, when transmitted over an erasure channel.

Lower triangular codes inherit a low delay property from the lower trian-
gular structure of the individual lower triangular matrices, which the encoding
matrix consist of. That is, the encoding delay is minimized, since the source can
code and transmit packets immediately after obtaining a new source symbol.
This structure also allows the sink to decode the received packets and extract
the symbols on-the-fly, if enough packets have been received, and thereby re-
ducing the decoding delay. The, potentially, large number of coefficients set to
zero also increases the coding throughput [38].

5 Convolutional Codes

When the erasure correcting code is not segmented in blocks but used contin-
uously, it is termed a convolutional codes [39]. Fig. 3 shows the encoding of
two packets, when the source obtains the symbols Sj . That is, the figure shows
encoding of packets using a systematic convolutional code, with rate 1/2 and
memory v, since the diagram in the figure contains v delay elements. Fig. 4
shows an example of a continuous encoding matrix for a systematic convolu-
tional code with rate 1/2 and memory v = 3. The receiver may decode using
Gaussian elimination, as previously stated about linear codes in general.

15

For random based convolutional codes there is little to no correlation be-
tween the matrix elements, aj,i,∀j, i. On the other hand, for static codes we
may define aj,i = au,i,∀j, u, i. Using this definition we can truncate the con-
tinuous encoding matrix in Fig. 4; this is shown in Fig. 5a. By rearranging the
rows we obtain the matrix in Fig. 5b, and we observe that the bottom part of
the matrix is a lower triangular Toeplitz matrix. Since the matrix is Toeplitz
me can simplify the matrix elements using aj,i = bi,∀j, resulting in the matrix
in Fig. 5c.

Now, let C be an (n, k, δ) systematic convolutional code with basic minimal
generator matrix G. We then define δ, the degree of C, as the sum of the row
degrees of G [40]. We show in Paper C how the matrix in Fig. 5c may be used
to form G.

1

a1,4a1,3a1,2a1,1

1

a2,4a2,3a2,2a2,1

1

a3,4a3,3a3,2a3,1

1

a4,4a4,3a4,2a4,1

1

a5,4a5,3a5,2a5,1

· · ·

· · ·
Fig. 4: Continuous encoding matrix for a rate 1/2 systematic convolutional code with mem-
ory v = 3.

16

6. Superregular Matrices

1

a1,4

1

a2,4a2,3

1

a3,4a3,3a3,2

1

a4,4a4,3a4,2a4,1

(a)

1

1

1

1

a1,4

a2,4a2,3

a3,4a3,3a3,2

a4,4a4,3a4,2a4,1

(b)

1

1

1

1

b4

b4b3

b4b3b2

b4b3b2b1

(c)

Fig. 5: Variations of the truncated continuous encoding matrix, in Fig. 4.

6 Superregular Matrices

Superregular matrices are a class of matrices which have been studied exten-
sively [40–48]. The overall definition of superregularity is as follows; a matrix
is superregular if and only if every proper submatrix is non-singular. The def-
inition of a proper submatrix depends on the structure of the matrix. The
following sections covers dense matrices and matrices with a lower triangular
structure.

Superregular matrices are especially interesting for communication systems
since their structure enable forward erasure correcting codes to have optimal
decoding performance [49]. In [38, Definition 1] the authors defined optimal
decoding capability. The definition fundamentally states that a code has op-
timal decoding capability if and only if there does not exist a code with the
same structure of the encoding matrix that can recover more symbols over any
erasure channel.

6.1 Dense Superregular Matrices

The authors of [49] defined a dense matrix to be superregular if and only
if every square submatrix is non-singular. A dense superregular matrix can
be constructed using a tall Vandermonde matrix [50, 51]. Let n,m, p ∈ N
and let n + m < 2p, then a GF(2p)m×n superregular dense matrix may be
constructed using the following matrices A ∈ GF(2p)n+m×n, B ∈ GF(2p)n×n

17

and C,D ∈ GF(2p)m×n

A =

1 α1 α2

1 . . . αn−11

1 α2 α2
2 . . . αn−12

1 α3 α2
3 . . . αn−13

...
...

...
. . .

...
1 αn+m α2

n+m . . . αn−1n+m

 =

[
B

C

]
,

AB−1 =

[
I

D

]
.

It follows that I is the n×n identity matrix and that D is a m×n superregular
matrix if αi 6= αj , i 6= j and αi 6= 0, i ∈ {1, . . . , n+m}.

Dense superregular matrices are appealing for erasure correcting codes,
since they may be used to form systematic block codes that are MDS [49].
That is, the matrix AB−1 may be used to form such a code, since the upper
matrix is the identity matrix and the lower part is a dense superregular matrix.

6.2 Lower Triangular Superregular Matrices

The authors of [40] defined a lower triangular matrix to be superregular
if and only if every proper submatrix is non-singular. The following def-
inition of a proper submatrix follows from [38, 40]. Let A be a k × k

lower triangular matrix. Let A′ = Aj1,...,jrh1,...,hr
be an r × r submatrix of A,

where A′ is constructed using the rows and columns of A with indices j1, . . . , jr
and h1, . . . , hr, respectively. Then, A′ is a proper submatrix of A if and only
if 1 ≤ j1 < j2 < . . . < jr ≤ k, 1 ≤ h1 < h2 < . . . < hr ≤ k and jt ≥ ht,∀t.

In [40], the authors presented a few superregular lower triangular Toeplitz
matrices. However, no insights were given as to how they were constructed.
In [52], a construction for superregular (totally positive) matrices was provided
for real and complex fields. This construction can easily be extended to very
large prime fields, although these are impractical. In [43, Example 6] the au-
thors presented a similar method to construct superregular lower triangular
Toeplitz matrices of any size over a sufficiently large prime field. The method
is as follows. Let k ∈ N, and X be a (k+1)×(k+1) matrices with the following
structure:

X =

1 0

1 1 0
.
0 1 1

 .
Then Xk is a superregular matrix over a sufficiently large prime field. Unfor-
tunately, no bounds on the field size was provided.

18

7. Network coding

There are two major of drawbacks of this method. First, the use of large
prime fields is not feasible in practical implementations. Second, this method
constructs a unique matrix of size k × k. That is, the method cannot produce
two or more different matrices with same k. Also note the fact that CPUs use
a binary representation of integers, and that binary extension field arithmetic
does not require modulo operations. For this reason, it is generally considered
straight forward to implement GF(2p) arithmetic in software [53], whereas large
prime fields are significantly more complex to implement and use in practical
applications.

6.3 Using Superregular Matrices

Superregular matrices have been used to form both block codes [49] and convo-
lutional codes [40, 42, 44–46, 48]. In [40] the authors introduced a new class of
MDS convolutional codes whose column distances attain the generalized Single-
ton bound at the earliest possible instant, these codes are termed strongly-MDS
convolutional codes. In [44] R. Hutchinson et al. show how superregular matri-
ces may be used to construct MDP convolutional codes, and present an upper
bound on the minimum field size in order for a superregular matrix of a given
size to exist over that field. The authors of [42] introduce the metric denoted
column sum rank, which parallels the column Hamming distance when using a
network with link failures. Furthermore, the authors also show a class of super-
regular matrices that preserve the superregular property after multiplication
with non-singular block diagonal matrices. P. Almeida et al. showed in [45]
new class of matrices that are superregular over a sufficiently large finite field.
These matrices are used to construct MDP convolutional codes. In [46] the
authors introduce a natural bound on the distance of a 2D convolutional code
of rate k/n and degree δ, which generalizes the Singleton bound for block codes
and the generalized Singleton bound for 1D convolutional codes. In [48] the
authors presented constructions of convolutional codes that attain the maxi-
mum possible distance for some fixed parameters of the code, namely: the rate
and the Forney indices.

7 Network coding

Network coding is the concept of combining packets in the network, and not
only at the end nodes. The concept of network coding was introduced by
the authors of [54]. In general, this is a method that enables either a higher
throughput [55] or resilience against packet loss [56], known as inter-session and
intra-session network coding respectively. Using inter-session network coding,
packets are only combined with packets from other flows in order to increase
throughput [57, 58]. The concept of inter-session network coding is not cov-

19

A R B

Fig. 6: A multi-hop network with three nodes. A transmit packets to R, which then recodes
the received packets and transmit the recoded packets to B.

ered in this thesis. With intra-session network coding, packets are only coded
together with packets from the same flow in order to increase reliability, by
adding redundancy.

7.1 Intra-Session Network Coding

Fig. 6 shows a network where an intermediate node, R, performs recoding.
This technique allows for two different code rates on the two links. That is, the
redundancy may be added to exactly the links where it is needed. Alternatively,
the redundancy would have to be carried on all links, even if some of these links
are error free.

A lot of research efforts have been put into the area of intra-session net-
work coding [59–61]. In [59] the authors presented an opportunistic routing
scheme using intra-session network coding for wireless mesh networks, where
the inherent broadcast nature of wireless networks are exploited. In [60] T. Ho
et al. considered the problem of multiple multicast sessions with intra-session
network coding within dynamic networks. This work leads to the establish-
ment of a capacity region of input rates that can be stably supported at the
network-layer. The authors of [61] presented adaptive rate control algorithms
for the networks with or without given coding subgraphs.

8 Embedded Platforms

Embedded platforms have historicity been limited in some form, either in com-
putational power, memory or simply power (e.g., battery powered) or a com-
bination of these limitations. While embedded platforms still have limitations,
compared to desktop computers, they may contain the computational power to
encode and decode complex erasure correcting codes [27]. From an engineering
perspective, it is of the utmost importance to optimise the software (with re-
spect to both energy and/or throughput) which these platforms execute, given
that these limitations exist. Furthermore, the erasure correcting codes may also
be designed to improve energy efficiency [38], by reducing the computational
resources required.

20

8. Embedded Platforms

Power Consumption in Receiving and Idle State

In [62] it was found that for some wireless network interface cards (WNIC), the
power consumption in receiving state can be an order of magnitude larger than
when in idle state, but still connected. Thus, there can be a large incitement to
use power only for receiving innovative packets, i.e., packets that are linearly
independent of previously received packets. This may not possible if the code
words are generated using random coefficients. However, by using a static code
low-power embedded devices are able to calculate in advance whether the next
packet is innovative or not. If the next packet is not innovative the device
should not receive it. This method allows low-power devices to save power, by
not activating the receiver circuit to receive non-innovative packets.

21

22

Conclusions

The work documented in this thesis covers the following three research areas:

1. An information theoretical result regarding the construction of (jointly)
superregular matrices and a theoretical analysis of the performance of
linear erasure correcting codes.

2. An extensive set of simulations of different networks with and without
recoding at intermediate nodes. These simulations have led to several
findings regarding the performance of erasure correcting codes and the
applicability of different codes to different scenarios.

3. A comprehensive set of practical tests, conducted on a robust experimen-
tal Wi-Fi testbed.

Finally, these three areas have been related to each other in order to discuss
the nexus between theory and practice.

Paper A showed several new results on software implementations of linear
erasure correcting codes. The paper also presented an experimental Wi-Fi
testbed that enabled repeatable and consistent tests. The testbed seeks to
eliminate external noise sources by using wires instead of antennas for the Wi-
Fi connections. Furthermore, said paper also presented new results on the
Extended Gilbert Model; this channel model was then extended to allow for
bursts of arbitrary length and to reduce the parameter complexity.

Several results on the construction and performance of linear erasure cor-
recting codes have been presented in this thesis. A set of explicit constructions
of linear erasure correcting block codes is covered in Paper B. These block
codes are based on superregular lower triangular Toeplitz matrices, which the
paper also provided explicit constructions for. Moreover, an algorithm for con-
structing a k×k superregular lower triangular Toeplitz matrix over any binary
extension field is also presented in said paper. These explicit constructions and
algorithm for constructing superregular lower triangular Toeplitz matrix matri-
ces outperform the state-of-the-art with respect to the required size of the finite
field. Furthermore, these methods allow for the construction of said matrices
over small binary extension fields, as opposed to very large prime fields. This

23

is then followed up by Paper C which provides explicit constructions of linear
erasure correcting convolutional codes with optimum distance profile over any
binary extension field.

For a network with recoding, Paper D compared the symbol loss perfor-
mance, given strict delay constraints for three selected code structures. The
code structures are two block codes, namely dense and lower triangular codes,
and the third structure is convolutional codes. It was shown that using a lower
triangular structure for both encoding and decoding is, in general, superior
to the other two structures, regardless of the delay constraints and the era-
sure probability of the channel. In Paper E we extended this work to include
a mixture of block and convolutional codes. That is, we allowed for the re-
coder to use a convolutional network code when the encoder used a block code.
Generally, the use of a lower triangular code for encoding and a convolutional
code for recoding proved to be superior to the remaining schemes, regardless
of the delay constraints and the erasure probability of the channel. However,
this may not be attractive from a practical perspective, given that the algo-
rithmic complexity is significantly higher when combining the coding schemes.
Furthermore, as it was shown in Paper A the coding throughput of software
implementations of block codes may be considerably higher than the through-
put for convolutional codes, which partly comes from the lower algorithmic
complexity of block codes.

Although the concept of low delay erasure correcting codes have been sub-
ject to research for a considerable number of decades, we strongly believe that
much can be learnt within this field of research. For example, the authors
of Paper C have been unable to extend the analysis of the exact symbol loss
and delay of convolutional codes with finite decoder memory to the asymptotic
case. Such a result would enable the calculation of the average symbol delay
and loss probability for convolutional codes with finite decoder memory.

24

References

[1] IEC 60908:1999, “Audio recording — Compact disc digital audio system,”
February 1999.

[2] J. D. Reiss, “A meta-analysis of high resolution audio perceptual evalua-
tion,” Journal of the Audio Engineering Society, vol. 64, no. 6, pp. 364–379,
June 2016.

[3] K. Kosek-Szott, M. Natkaniec, S. Szott, A. Krasilov, A. Lyakhov, A. Sa-
fonov, and I. Tinnirello, “What’s new for QoS in IEEE 802.11?” IEEE
Network, vol. 27, no. 6, pp. 95–104, November 2013.

[4] E. Charfi, L. Chaari, and L. Kamoun, “PHY/MAC Enhancements and
QoS Mechanisms for Very High Throughput WLANs: A Survey,” IEEE
Communications Surveys Tutorials, vol. 15, no. 4, pp. 1714–1735, April
2013.

[5] A. Banchs, A. de la Oliva, L. Eznarriaga, D. R. Kowalski, and P. Serrano,
“Performance Analysis and Algorithm Selection for Reliable Multicast in
IEEE 802.11aa Wireless LAN,” IEEE Transactions on Vehicular Technol-
ogy, vol. 63, no. 8, pp. 3875–3891, October 2014.

[6] ITU-R BT.1359-1, “Relative Timing of Sound and Vision for Broadcast-
ing,” 1998.

[7] C. Howson, E. Gautier, P. Gilberton, A. Laurent, and Y. Legallais, “Second
screen TV synchronization,” IEEE International Conference on Consumer
Electronics, pp. 361–365, September 2011.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[9] C. Shannon and W. Weaver, The Mathematical Theory of Communication,
ser. Illini books. University of Illinois Press, 1963.

[10] R. E. Blahut, Theory and practice of error control codes. Addison-Wesley
Publishing Company, 1983, vol. 126.

25

References

[11] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication
Protocols,” ACM SIGCOMM Computer Communication Review, vol. 27,
no. 2, pp. 24–36, April 1997.

[12] E. Perahia and R. Stacey, Next Generation Wireless LANs: 802.11n and
802.11ac, 2nd ed. Cambridge University Press, 2013.

[13] L. Lampe, M. Jain, and R. Schober, “Improved decoding for bluetooth
systems,” IEEE Transactions on Communications, vol. 53, no. 1, pp. 1–4,
January 2005.

[14] ISO/IEC 7498-1:1994, “Information technology — Open Systems Inter-
connection — Basic Reference Model: The Basic Model,” November 1994.

[15] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of Internet Transmission
Control Program,” RFC 675 (Historic), RFC Editor, pp. 1–70, December
1974.

[16] A. Zimmermann, W. Eddy, and L. Eggert, “Moving Outdated TCP Exten-
sions and TCP-Related Documents to Historic or Informational Status,”
RFC 7805 (Informational), RFC Editor, pp. 1–8, April 2016.

[17] J. Postel, “User Datagram Protocol,” RFC 768 (Internet Standard), RFC
Editor, pp. 1–3, August 1980.

[18] J. Postel, “DoD standard Internet Protocol,” RFC 760, RFC Editor, pp.
1–46, January 1980.

[19] J. Touch, “Updated Specification of the IPv4 ID Field,” RFC 6864 (Pro-
posed Standard), RFC Editor, pp. 1–19, February 2013.

[20] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifica-
tion,” RFC 1883 (Proposed Standard), RFC Editor, pp. 1–37, December
1995.

[21] F. Gont, V. Manral, and R. Bonica, “Implications of Oversized IPv6
Header Chains,” RFC 7112 (Proposed Standard), RFC Editor, pp. 1–8,
January 2014.

[22] M. Muntner and J. Wolf, “Predicted performance of error-control tech-
niques over real channels,” IEEE Transactions on Information Theory,
vol. 14, no. 5, pp. 640–650, September 1968.

[23] V. Pless, Introduction to the Theory of Error-correcting Codes, ser. A
Wiley-Interscience publication. Wiley-Interscience, 1989.

[24] D. E. Lucani, M. Médard, and M. Stojanovic, “Systematic network coding
for time-division duplexing,” IEEE International Symposium on Informa-
tion Theory, pp. 2403–2407, June 2010.

26

References

[25] C. Heegard, J. Little, and K. Saints, “Systematic encoding via grobner
bases for a class of algebraic-geometric goppa codes,” IEEE Transactions
on Information Theory, vol. 41, no. 6, pp. 1752–1761, November 1995.

[26] J. Macwilliams, “Permutation decoding of systematic codes,” The Bell
System Technical Journal, vol. 43, no. 1, pp. 485–505, January 1964.

[27] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen, “Network coding
for mobile devices — systematic binary random rateless codes,” IEEE
International Conference on Communications Workshops, pp. 1–6, June
2009.

[28] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[29] S. Feizi, D. E. Lucani, C. W. Sørensen, A. Makhdoumi, and M. Médard,
“Tunable sparse network coding for multicast networks,” International
Symposium on Network Coding, pp. 1–6, June 2014.

[30] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Médard, “A perpetual
code for network coding,” IEEE 79th Vehicular Technology Conference,
pp. 1–6, May 2014.

[31] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Coping
with the upcoming heterogeneity in 5G communications and storage us-
ing Fulcrum network codes,” 11th International Symposium on Wireless
Communications Systems, pp. 997–1001, August 2014.

[32] S. Wunderlich, F. Gabriel, S. Pandi, F. H. P. Fitzek, and M. Reisslein,
“Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC
Approach,” IEEE Access, vol. 5, pp. 20 183–20 197, 2017.

[33] P. Garrido, D. Gómez, J. Lanza, and R. Agüero, “Exploiting sparse coding:
A sliding window enhancement of a random linear network coding scheme,”
IEEE International Conference on Communications, pp. 1–6, May 2016.

[34] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430, Oc-
tober 2006.

[35] J. Heide, M. Pedersen, F. Fitzek, and M. Médard, “On Code Parameters
and Coding Vector Representation for Practical RLNC,” IEEE Interna-
tional Conference on Communications, pp. 1–5, June 2011.

[36] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

27

References

[37] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes,
ser. North-Holland mathematical library. North-Holland Publishing Com-
pany, December 1977.

[38] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “Superregular
lower triangular toeplitz matrices for low delay wireless streaming,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4027–4038, Septem-
ber 2017.

[39] P. Elias, “Coding for noisy channels,” IRE Convention Records Part 4, pp.
37–46, 1955.

[40] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS
convolutional codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 584–598, February 2006.

[41] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with maxi-
mum column sum rank for network streaming,” IEEE International Sym-
posium on Information Theory, pp. 2271–2275, June 2015.

[42] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with max-
imum column sum rank for network streaming,” IEEE Transactions on
Information Theory, vol. 62, no. 6, pp. 3039–3052, June 2016.

[43] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal, “Strongly MDS
convolutional codes, a new class of codes with maximal decoding capa-
bility,” IEEE International Symposium on Information Theory, January
2002.

[44] R. Hutchinson, R. Smarandache, and J. Trumpf, “On Superregular Matri-
ces and MDP Convolutional Codes,” Linear Algebra and its Applications,
vol. 428, no. 11-12, pp. 2585–2596, 2008.

[45] P. Almeida, D. Napp, and R. Pinto, “A new class of superregular matrices
and MDP convolutional codes,” Linear Algebra and its Applications, vol.
439, no. 7, pp. 2145–2157, 2013.

[46] J. J. Climent, D. Napp, C. Perea, and R. Pinto, “Maximum Distance
Separable 2D Convolutional Codes,” IEEE Transactions on Information
Theory, vol. 62, no. 2, pp. 669–680, February 2016.

[47] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “On the Construc-
tion of Jointly Superregular Lower Triangular Toeplitz Matrices,” IEEE
International Symposium on Information Theory, pp. 1–5, July 2016.

[48] P. Almeida, D. Napp, and R. Pinto, “Superregular matrices and appli-
cations to convolutional codes,” Linear Algebra and its Applications, vol.
499, pp. 1–25, June 2016.

28

References

[49] R. Roth and A. Lempel, “On MDS codes via Cauchy matrices,” IEEE
Transactions on Information Theory, vol. 35, no. 6, pp. 1314–1319, Novem-
ber 1989.

[50] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on Van-
dermonde matrices,” IEEE Communications Letters, vol. 8, no. 9, pp.
570–572, September 2004.

[51] J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-Solomon Forward
Error Correction (FEC) Schemes,” RFC 5510 (Proposed Standard), RFC
Editor, pp. 1–28, April 2009.

[52] M. Aissen, I. Schoenberg, and A. Whitney, “On the generating functions
of totally positive sequences I,” Journal d’Analyse Mathématique, vol. 2,
no. 1, pp. 93–103, 1952.

[53] A. Paramanathan, P. Pahlevani, S. Thorsteinsson, M. Hundebøll, D. E.
Lucani, and F. H. P. Fitzek, “Sharing the Pi: Testbed Description and
Performance Evaluation of Network Coding on the Raspberry Pi,” IEEE
79th Vehicular Technology Conference, 2014.

[54] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, July 2000.

[55] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the Air: Practical wireless network coding,” IEEE/ACM Trans-
actions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[56] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” ACM SIGCOMM Com-
puter Communication Review, vol. 37, no. 4, pp. 169–180, August 2007.

[57] J. Krigslund, J. Hansen, M. Hundebøll, D. Lucani, and F. Fitzek, “CORE:
COPE with MORE in Wireless Meshed Networks,” IEEE 77th Vehicular
Technology Conference, June 2013.

[58] H. Seferoglu, A. Markopoulou, and K. Ramakrishnan, “I2NC: Intra- and
Inter-session Network Coding for Unicast Flows in Wireless Networks,”
IEEE International Conference on Computer Communications (INFO-
COM), pp. 1035–1043, April 2011.

[59] B. Radunovic, C. Gkantsidis, P. Key, and P. Rodriguez, “Toward prac-
tical opportunistic routing with intra-session network coding for mesh
networks,” IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp.
420–433, April 2010.

29

References

[60] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with
intra-session network coding,” IEEE Transactions on Information Theory,
vol. 55, no. 2, pp. 797–815, February 2009.

[61] L. Chen, T. Ho, S. H. Low, M. Chiang, and J. C. Doyle, “Optimization
based rate control for multicast with network coding,” in IEEE 26th In-
ternational Conference on Computer Communications (INFOCOM), May
2007, pp. 1163–1171.

[62] S. Chiaravalloti, F. Idzikowski, Ł. Budzisz, and A. Wolisz, “Power Con-
sumption of WLAN Network Elements,” Technische Universität Berlin,
Technical Report TKN-11-002, 2011.

30

Part II

Papers

31

32

Paper A

Network Coding on Embedded Platforms for Wireless
Networks

Jonas Hansen, Jan Østergaard, Johnny Kudahl, and John H.
Madsen

Technical report.

Paper A.

c© 2017 the authors

34

1. Introduction

Abstract

In this paper we introduce a network coding software library and demonstrate the
performance of said library on both x86 and ARM architectures. This library is
capable of encoding, recoding, and decoding both linear block and convolutional
erasure correcting codes. For the case of dense block codes, we compare the
performance with a well known network coding software for linear block codes.
We compare the performance of three different implementations of convolutional
codes. We document benefits and drawbacks, with respect to real-time streaming,
of three casting methods for Wi-Fi networks. We show an experimental Wi-Fi
setup, which is used to model bursty erasure patterns. We introduce a new
channel model for the erasure channel.

1 Introduction

There are several unanswered research questions with respect to the implemen-
tation of erasure correcting codes in software. There is a plethora of different
ways to implement erasure correcting codes, and a subset of these possible
methods must be more efficient than others. In order to evaluate which im-
plementation of block codes and convolutional codes performs best, we have
implemented and measured the throughput performance of a set of implemen-
tations.

One of the key motivations for this measurement campaign is that the com-
putational complexity of the erasure correcting codes should not exceed the
capacity of modern embedded devices. Based on this we have implemented a
high performance software library for erasure correcting codes on an ARM plat-
form. Additionally, the software library can also run on Intel x86 processors,
which we demonstrate firstly.

The throughput required for encoding and decoding multi channel high
resolution audio, e.g, 8 audio channels with a bit depth of 24 bits per sample and
a sample rate of 192 kHz (which is the minimum requirement for HDMI 2.01),
is2

8 · 24 · 192000 = 36.864 Mb/s = 4.608 MB/s.

That is, our software library should be able to encode and decode the data
with a rate of 4.608 MB/s. This is of course an upper limit on the required
throughput since in practise it will not be the same node doing both encoding
and decoding, except for any intermediate nodes performing recoding.

In order to properly evaluate the performance of erasure correcting codes an
accurate channel model is needed. To this end, we have built a Wi-Fi testbed

1See www.hdmi.org
2The units of the left most side of the equation have been left out for the sake of brevity.

35

Paper A.

capable of changing the actual Wi-Fi channel. The changes to the channel can
both be in terms of SNR and fading, or a combination of the two. The erasure
pattern of the Wi-Fi channel can then be recorded and modelled, this then
enables the simulation of Wi-Fi channels with realistic erasure patterns.

Modelling these erasure patterns is non-trivial. Several channel models
has been proposed, among them are the Gilbert-Elliott model [1, 2] and the
extended Gilbert model [3]. The benefits and drawbacks of these models are
discussed in Section 8. In order to accommodate the shortcomings of these
models we propose an extension of the latter.

2 Source Code

In this section we present a software library is written in C++, and more
specifically C++17 [4]. This software library is capable of encoding, recoding
and decoding erasure correcting codes, either as block codes or as convolutional
codes. The encoders, recoders, and decoders are collectively denoted coders.
The software implementation of the coders uses the parametrized inheritance
or mixin design method [5, 6]. This design method seeks to make the software
modular, testable, and allow for easy code reuse.

Listing A.1 shows three examples of coders. The coders are named using
type aliases to increase the readability of the source codes. The coders consist
of at least four layers, namely: interface, algorithm, data storage, and a finite
field. The interface defines which functions (operations) a coder supports. The
one or more algorithm layers implement the data processing methods, e.g.,
encoding, decoding, or both. The storage layer defines how and where data is
stored in memory. There are three types of data storage layers:

• Shallow: the coder does not provide any memory, but will use memory
provided by the user.

• Deep: the coder allocates and deallocates memory upon construction
and destruction, respectively.

• Managed: the coder implements the concept of a free list consisting of
previously allocated (and released) memory.

An example of the code reuse capability of the mixin design is that both the
deep and managed memory layers are implemented using the shallow memory
layer. That is, for the deep memory layer the constructor allocates and sets the
memory of the shallow memory layer, and the destructor frees the memory. The
managed memory layer uses a similar method, but using an implementation
that resembles a free list with support for different sizes. The finite field layer
implements finite field arithmetic, which is used when processing the data.

36

2. Source Code

Listing A.1: C++ example code for encoder, decoder, recoder types with managed memory.

using encoder =
encoder_inter face< // The pub l i c funct ions of the encoder
random_encoder< // Encode using random coe f f c i e n t s
managed_storage< // Memory manager
gf2<8>>>>; // Fie ld : GF(2^8)

using decoder =
decoder_inter face< // The pub l i c funct ions of the decoder
b id i r e c t i ona l_decode r < // Perform Gaussian e l iminat ion with both

// forward and backward su b s t i t u t i on
managed_storage< // Memory manager
gf2<8>>>>; // Fie ld : GF(2^8)

using r ecoder =
encoder_inter face<
random_encoder< // Encode using random coe f f c i e n t s
decoder >>; // The decoder funct ions

Listing A.2: C++ example code for the encoder_interface class.

template <class super>
class encoder_inte r face : public super
{
public :

encoder_inte r face (const uint32_t k , const uint32_t symbol_size)
: super (k , symbol_size) {}

template <class a l l o c a t o r >
uint32_t encode (std : : vector<std : : byte , a l l o c a t o r >& payload)
{

a s s e r t (payload . s i z e () >= super : : payload_size ()) ;
return super : : encode (payload) ;

}

/∗ The remaing pub l i c funct ion are not inc luded here ∗/
} ;

Note that the algorithm layer of the encoder in Listing A.1 uses random
coefficients, and that this does not require any state information. In fact, this
encoder will encode any symbol it knows with a random coefficient, and the
set of known symbols may be subject to change between the encoding of two
packets. That is, this encoder does not put any restrictions on the placement
and number of non-zero coding coefficients in the coding matrix. If a Reed-
Solomon code [7] is desired instead of random coefficients, then this can be
changed by simply using the rs_encoder instead of the random_encoder. This
is one of the benefits of using the mixin design.

Listing A.2 shows part of the implementation of the encoder_interface class.
The class inherit from the class super, which is provided as a template param-
eter. The constructor only calls the constructor of super. The class defines the
encode function, which only check the size of the provided payload and then

37

Paper A.

Listing A.3: C++ example code for triangular encoding and decoding.

encoder e (k , symbol_size) ;
decoder d(k , symbol_size) ;
std : : vector<std : : byte∗> data = /∗ F i l l with po in ters to data ∗/ ;
s td : : vector<std : : byte> payload (e . payload_size ()) ;
while (not d . fu l l_rank ())
{

i f (auto r = e . rank () ; r != k)
{

e . set_symbol (r , data [r]) ;
}

e . encode (payload) ;
/∗ Packet l o s s can be emulated by randomly c a l l i n g : continue ∗/
d . decode (payload) ;

}

forwards the call to super::encode. The coder is at instantiation required to
know the number of symbols, k, in a block. Finally, the memory needed to
store the symbol data is required to be known at instantiation of the coders,
this is denoted the symbol size.

2.1 Encode and Decode Example

Listing A.3 present how to perform triangular encoding and decoding using the
software library. The coders used in this example are defined in Listing A.1.
The triangular structure is obtained by gradually providing symbols to the en-
coder. That is, until the encoder has all symbols, a symbol is added before
encoding the next packet. The coding matrix does then get a triangular struc-
ture for the first k packets, the following packets are then dense. The coding
coefficients are chosen at random over the finite field GF(28) [8]. The decoder
performs Gaussian elimination on the received packets.

2.2 Encode, Recode, and Decode Example

Listing A.4 extends Listing A.3 by introducing a recoder between the encoder
and decoder. In this example the encoder also produce a triangular coding
structure. The recoder acts both as a decoder and a encoder, as it is made
clear from its definition, in Listing A.1. By decoding the received packets the
recoder ensures that all the stored packets are linear independent. By the
same token, these linear independent packets are then encoded (recoded) and
transmitted to the decoder.

38

3. Coding Throughput of Block Codes on x86

Listing A.4: C++ example code for triangular encoding, recoding, and decoding.

encoder e (k , symbol_size) ;
decoder d(k , symbol_size) ;
r ecoder r (k , symbol_size) ;
std : : vector<std : : byte∗> data = /∗ F i l l with po in ters to data ∗/ ;
s td : : vector<std : : byte> payload (e . payload_size ()) ;
while (not d . fu l l_rank ())
{

i f (auto r = e . rank () ; r != k)
{

e . set_symbol (r , data [r]) ;
}

e . encode (payload) ;
/∗ Packet l o s s can be emulated by randomly c a l l i n g : continue ∗/
r . decode (payload) ;

r . encode (payload) ;
/∗ Packet l o s s can be emulated by randomly c a l l i n g : continue ∗/
d . decode (payload) ;

}

3 Coding Throughput of Block Codes on x86

In this section we evaluate the throughput performance of the software library
when using an Intel CPU. The details for the test node used for these per-
formance evaluations are listed in Table A.1. Fig. A.1a and A.1b show the
throughput with and without recoding, respectively. The encoding is triangu-
lar as shown in Listings A.3 and A.4. Table A.2 lists the four implementations
of finite field arithmetic the software library supports. For multiplication and
inversion both online and lookup table based arithmetic is supported. There
are two implementations where both multiplications and inversions are based
on lookup tables, however, for one of them multiplication is vectorized. Mod-
ern CPUs support vector arithmetic, that is, a single instruction can operate
on N ∈ {128, 256, 512} bytes simultaneously. These instructions are termed
single instruction multiple data (SIMD) instructions, and the value of N de-
pend on the architecture of the CPU. For the Vectorized implementation mul-
tiplication is carried out using AVX2 instructions in the CPU, N is 256 for
AVX2.

From the figures it is clear that the primary element to ensure high per-
formance is vectorization of finite field multiplication. For the case of the
Vectorized implementation, comparing the performance with and without re-
coding shows the intuitive result that adding recoding halve the throughput.
The gain in throughput of implementing inversion as a lookup table is not sig-
nificant as for k > 2. Implementing multiplication via a lookup table provides
about 10 % better performance than using an online implementation. For all
tested values of k the throughput of all four implementations is well above the

39

Paper A.

Table A.1: Details of the x86 node used in the experiments.

Type Name
CPU Intel Core i3-4170
OS Ubuntu Linux 15.10
Kernel Linux 4.4.11

Table A.2: Description of the supported finite field implementations.

Name Multiplication Inversion Addition
Full online Online Online Vectorized
Online product Online Lookup table Vectorized
Lookup table Lookup table Lookup table Vectorized
Vectorized Vectorized Lookup table Vectorized

required 4.608 MB/s. In fact, for k = 2 and no recoding, the throughput is more
than three orders of magnitude higher for the vectorized implementation.

2 4 8 16 32
0

1,000

2,000

3,000

3,344

2,184

1,260

666
347

895

548
306

160 83

830

508
279

143 76

825
507

280
140 76

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

2,000

4,000

6,000

6,276

4,348

2,511

1,344

701
1,042

633
351 184 94

950
579

314 162 84

942
577

317 162 85

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Vectorized Lookup table Online product Full online

(b)

Fig. A.1: Coding throughput, on x86, when performing encoding, (for (a) also recoding),
and decoding.

40

3. Coding Throughput of Block Codes on x86

Listing A.5: C++ example code for dense encoding, recoding, and decoding.

t i c () ; // Star t timing measurements
encoder e (k , symbol_size) ;
decoder d(k , symbol_size) ;
r ecoder r (k , symbol_size) ; // Recoding p r o f i l e only
std : : vector<std : : byte> data_in (k ∗ symbol_size) ;
std : : vector<std : : byte> payload (e . payload_size ()) ;
e . se t_generat ion (data_in) ;
while (not d . fu l l_rank ())
{

e . encode (payload) ;
r . decode (payload) ; // Recoding p r o f i l e only
r . encode (payload) ; // Recoding p r o f i l e only
d . decode (payload) ;

}
toc () ; // Stop timing measurements

3.1 Comparison to State-of-the-art

We now evaluate the performance of the software library when using dense
codes and deep memory. The achieved performance is then compared to that of
the Kodo version 20.0.0 [9]. Kodo is a software library that implements network
coding for block codes. Listing A.5 shows how we measure the performance of
our library, and Listing A.6 shows the same when using Kodo. The two listings
both contain three lines marked with Recoding profile only, these lines are not
present when measuring the performance without recoding. The key metric in
this measurement process is the time spent between tic and toc, the throughput
is calculated from these measurements. In order to produce reliable results, the
code between tic and toc is repeated 105 times.

Fig. A.2a and A.2b show the measured throughput for both software li-
braries with and without recoding, respectively. From the figures it is, again,
clear that using recoding cuts the throughput in half. It is also clear that our
software library is significantly faster than Kodo for k < 8, in fact for k = 2

and no recoding there is a gain of more than 5.5x. There is still a large gain of
our software library for k ≥ 8, on average this gain is 2.45x.

41

Paper A.

Listing A.6: C++ example code for network coding using Kodo.

kodo : : r l n c : : fu l l_vector_encoder< f i f i : : binary8 >: : f a c t o ry
encoder_factory (k , symbol_size) ;

kodo : : r l n c : : fu l l_vector_decoder< f i f i : : binary8 >: : f a c t o ry
decoder_factory (k , symbol_size) ;

t i c () ; // Star t timing measurements
auto encoder = encoder_factory . bu i ld () ;
auto decoder = decoder_factory . bu i ld () ;
auto r ecoder = decoder_factory . bu i ld () ; // Recoding p r o f i l e only
kodo : : se t_systemat ic_of f (encoder) ;
std : : vector<uint8_t> data_in (k ∗ symbol_size) ;
std : : vector<uint8_t> payload (encoder−>payload_size ()) ;
auto data = sak : : s t o rage (data_in) ;
encoder−>set_symbols (data) ;
while (not decoder−>is_complete ())
{

encoder−>encode (payload . data ()) ;
recoder−>decode (payload . data ()) ; // Recoding p r o f i l e only
recoder−>recode (payload . data ()) ; // Recoding p r o f i l e only
decoder−>decode (payload . data ()) ;

}
toc () ; // Stop timing measurements

2 4 8 16 32
0

1,000

2,000

2,909

2,057

1,160

658

325
584 619

480
266

140

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

2,000

4,000

5,421

4,038

2,347

1,272

666
969

1,111
917

525
268

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Vectorized Kodo

(b)

Fig. A.2: Coding throughput, on x86 with deep memory, when performing encoding, (for
(a) also recoding), and decoding.

42

4. Coding Throughput of Block Codes on ARM

2 4 8 16 32
0

5

10

15

20

16.2

9.8

5.4

2.9
1.5

11.4

6.9

3.8

2.0
1.0

11.4

6.9

3.8

2.0
1.0

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

10

20

30

32.2

19.6

10.9

5.7
2.9

17.9

10.8

6.0
3.2

1.6

17.9

10.8

6.0
3.2

1.6

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Lookup table Online product Full online

(b)

Fig. A.3: Coding throughput, on ARM, when performing encoding, (for (a) also recoding),
and decoding.

4 Coding Throughput of Block Codes on ARM

The ARM processors have become synonymous with modern embedded plat-
forms, and the ARM processors are frequently used in cellular phones, tablets,
and set-top-boxes. For that reason, we have designed our software library to
utilize the SIMD instructions that ARM processors support. For our experi-
ments we used a Raspberry Pi 2, which is equipped with an quad-core ARMv7
processor running at 900 MHz. The encoding is triangular as shown in the
previous section, in Listings A.3 and A.4.

First we consider the throughput performance when SIMD instructions are
not enabled. That is, the Vectorized implementation is not available and ad-
dition operations over the finite field are not vectorized. Fig. A.3a and A.3b
show the throughput performance. For the case without recoding it is clear

43

Paper A.

2 4 8 16 32
0

20

40

51.9

32.6

18.1

9.7
5.2

32.9

20.4

11.4

6.0
3.2

17.7

10.7
6.0

3.1 1.6

17.6

10.8
6.0

3.1 1.6

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

50

100
101.2

64.1

36.9

19.7
10.3

47.7

29.6

16.7
8.9

4.6

21.1
12.9

7.2 3.8 1.9

21.1
12.9

7.2 3.8 1.9

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Vectorized Lookup table Online product Full online

(b)

Fig. A.4: Coding throughput, on ARM using NEON, when performing encoding, (for (a)
also recoding), and decoding.

that the use of a lookup table based implementation of multiplication is the
key enabler when maximizing the performance. For the case with recoding,
the trend is somewhat similar, however, to a minor extend. With recoding
our Lookup table implementation is capable of coding in real-time, when k ≤ 8.
Without recoding the same implementation can handle real-time encoding and
decoding when k ≤ 16.

4.1 Using NEON

On the ARM platform the SIMD instruction set is denoted NEON. NEON in-
structions was introduced to the ARMv7, thus they are available in our Rasp-
berry Pi 2. The NEON instructions are capable of operating on at most 128
bytes simultaneously. Fig. A.4a and A.4b show the throughput performance,
when NEON instructions are enabled. From the figures it is clear that the
primary element to ensure high performance is vectorization of finite field mul-

44

5. Coding Throughput of Convolutional Codes on x86

tiplication, just like on the x86 platform. It is, however, also clear that vec-
torization of addition operations provide a significant gain, by comparing the
performance to when NEON is not enabled. It is clear that the gains of using a
lookup table for inversion does not provide any measurable gain. When using
the vectorized implementation our software library is capable of maintaining a
throughput high enough to perform encoding, recoding, and decoding of high
resolution audio in real-time when k ≤ 32.

5 Coding Throughput of Convolutional Codes
on x86

In this section we discuss three different methods for storing the coding coeffi-
cients for convolutional codes. Software implementation of coders using block
codes may allocate (or reclaim from a memory manager) all the needed mem-
ory at instantiation. This is due to the fact that the number of coefficients is
known exactly at instantiation. This is not the case for convolutional recoders
and decoder, and thereby also encoders. In Papers D and E the maximum
number of non-zero coefficients from a convolutional encoder and recoder is
derived. However, the maximum number of non-zero coefficients in a coding
vector during decoding cannot be exactly known at instantiation. There are
essentially two ways to overcome this issue. First, use a dynamic array to store
the coefficients, and then resize (allocating a new larger segment and copying
all the coefficients) when the capacity is depleted. Second, use a fixed size array
with a size large enough to hold the largest expected number of non-zero coef-
ficients. The former may suffer from too many reallocations, whereas the latter
may throw an exception if the number of non-zero coefficients is too large.

5.1 Dynamic Array of Coefficients

For block codes, which has a fixed number of coefficients, a single continues
array of coefficients may be used. That is, for block codes a simple array may be
used to store the coefficients and the columns they refer to are then the indexes
of the array. Since the termination point of a convolutional code is not generally
known, it is not possible to use a single array for the coefficients. Thus two
arrays are used, one for the non-zero coefficients and one for the column indexes
the coefficients refer to. The implementation using dynamic arrays use two
instantiations of the template class std::vector (part of the C++ standard
library) to store the coefficients and columns. This class provide the needed
resizing methods. Specifically, the columns use std::vector<std::uint32_t>
and the coefficients use std::vector<std::uint8_t> when the field is GF(28).

When performing vector addition, e.g., v1+v2 = v3, then for each of the non-
zero coefficients in v1 and v2 the corresponding column index is searched for in

45

Paper A.

c0 c1 c2 . . . cn

C0 C1 C2 . . . Cn

Array of coefficients

Array of column indexes

Fig. A.5: Mapping between columns and coefficients, when using a fixed size array of
coefficients.

the other vector. If the column is found then the addition of the two coefficients
is executed, and the result is stored in v3. If the column is not found, then
the coefficient is directly stored in v3. Columns that are represented in both v1
and v2 are only handled once. This may be a time consuming search, even if
the columns are sorted. On the other hand, when performing multiplication of
a vector with a scalar then no search is needed. In that case the multiplication
is sequentially performed for each non-zero coefficient.

5.2 Fixed Size Array of Coefficients

To avoid the overhead of resizing and moving the coefficients when using a
dynamic array, a fixed size array can be used. Fig. A.5 shows the mapping
from a column to a coefficient. This method allows for at most n + 1 non-
zero coefficients, where n is a design parameter. This method follow the same
pattern for vector addition and vector/scalar multiplication arithmetic as the
method using a dynamic array.

5.3 Segmented Array of Coefficients

As mentioned earlier, modern CPUs support vectorized arithmetic through
SIMD instructions. In order to utilize this ability a segmented array of coef-
ficients has been implemented. It is segmented in the sense that the array of
columns only store the column index of the first coefficient in a block of N ,
where N is the capacity of the SIMD instructions. Fig. A.6 shows the mapping
from a column to a coefficient. To simplify the required bookkeeping all the
column indexes are a on the form Cj = iN , where j ∈ {0, 1, . . . , n} and i ∈ N0.
When the column indexes are on this form, they are always “aligned” with
the column indexes of another other vector. With respect to vector addition
this method can reduce the amount of searches significantly. This is because

46

5. Coding Throughput of Convolutional Codes on x86

c0 c1 . . . cN cN+1 . . . c2N c2N+1 . . . cnN cnN+1 . . . cn′

C0 C1 C2 . . . Cn

Array of coefficients

Array of column indexes

Fig. A.6: Mapping between columns and coefficients, when using a segmented array of
coefficients.

the columns are grouped together in the segments, and thus fewer columns
are searched for. For each segment SIMD operations are used to decrease the
computation time.

5.4 Performance Evaluation

We now evaluate the performance of the three types of storing the coding co-
efficients. The evaluation is carried out on an Intel x86 platform, since we
are evaluating the difference between the implementations we are only inter-
ested in the relative throughput differences. We use two forms of evaluation,
namely coding throughput and coefficient throughput. The two cases are eval-
uated for k ∈ {2, 4, 8, 16, 32} by encoding, recoding, and decoding, of symbols
consisting of 1600 and 32 bytes, respectively.

The coding throughput show case the throughput the software implemen-
tation is capable of when used for coding a realistic symbol size for network
applications. Figures A.7a and A.7b show the coding throughput with and
without recoding, respectively. It is interesting to see that the type of coeffi-
cient storage that performs best depends on k. Furthermore, at no time is the
use of a dynamic array the best performing solution.

Due to the increased bookkeeping the throughput of the convolutional codes
do not reach the same level as the throughput of our implementation of block
codes. However, for all tested values of k the throughput of all four implemen-
tations is well above the required 4.608 MB/s, as expected.

The coefficient throughput is of interest in order to remove the dependency
on coding of the data. Figures A.8a and A.8b show the coefficient throughput
with and without recoding, respectively. The performance results of the coeffi-
cient throughput show similar trends as the coding throughput, but the differ-
ences have been magnified, due to the minimalistic symbol size. The biggest
difference between coding and coefficient throughput is for k = 2, where there

47

Paper A.

2 4 8 16 32
0

500

1,000

1,500

1,073

706

396

198
92

1,751

900

369

132
47

918

520

277
124

59

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

1,000

2,000

3,000

2,282

1,509

858

444
207

3,321

1,823

824

311
125

1,611

1,027

578
304

135

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Segmented Fixed Size Dynamic

(b)

Fig. A.7: Coding throughput, on x86, when performing encoding, (for (a) also recoding),
and decoding.

is a slight change in ranking when recoding is included.

48

6. Using a Wi-Fi Network for Low Delay Streaming

2 4 8 16 32
0

20

40

60

34.2

25.8

17.0

9.0
3.9

71.3

37.2

12.9

4.1
1.2

37.6

22.4

11.9
5.2

1.8

k

T
hr

ou
gh

pu
t

/
M

B
/
s

(a)

2 4 8 16 32
0

50

100

150

74.6

58.0

37.6

19.9
9.3

159.7

88.4

34.5

10.5
3.0

71.5

44.0

25.4
11.7

4.1

k

T
hr

ou
gh

pu
t

/
M

B
/
s

Segmented Fixed Size Dynamic

(b)

Fig. A.8: Coefficient throughput, on x86, when performing encoding, (for (a) also recoding),
and decoding.

6 Using a Wi-Fi Network for Low Delay Stream-
ing

There are several possible issues when distributing data on an Wi-Fi network.
Some of these potential issues will be covered throughout this section. The
Figures A.9, A.10, and A.11 show three different casting methods on the same
network. On the figures the dotted links are unreliable. That is, there will not
be sent any acknowledgements for the packets transmitted on those links. On
the other hand, the solid links use both acknowledgements and a number of
retransmissions, if required. Furthermore, those links also employ some form
of rate adaptation, to increase the probability of successful reception. Both the
number of retransmissions and rate adaptation algorithms are implementation
specific, and will not be covered further. Finally, the three figures include three
types of nodes: source, AP, and sink. The AP is the access point that provides

49

Paper A.

Source

AP

Sink

Sink

Sink

Fig. A.9: Unicast from source to AP and broadcast from AP to the three sinks. Dotted
links are unreliable.

the wireless network.

6.1 Broadcast

Conceptually, using broadcast is compelling, since it allows the source to trans-
mit to several sinks simultaneously. Figure A.9 illustrates how packets are
broadcasted on Wi-Fi networks operating in infrastructure mode. However,
there are multiple issues associated with broadcasting.

• Broadcast and multicast packets cannot be acknowledge on the physical
layer by any of the potential receivers [10]. That is, using broadcast or
multicast is unreliable in the sense that the source is unaware of any
erasures. Furthermore, without the acknowledgement mechanism these
packets are also not retransmitted in case of erasures.

• As it is illustrated in Fig. A.9, it is the AP that broadcasts packets,
whereas the source uses unicast to the AP, i.e., the packets to be broad-
casted are transmitted at least twice on the network.

• In [11, Section 10.2.1.1] the following is stated:

“If any STA in its BSS is in PS mode, the AP shall buffer all
group addressed BUs and deliver them to all STAs immediately
following the next Beacon frame containing a DTIM transmis-
sion.”

That is, if any node (STA) in the network (BSS) is in power save (PS)
mode, then the access point (AP) shall transmit all broadcast and multi-
cast packets (BUs) after a special broadcast beacon frame. For the setup
described in Section 7, the beacon interval is ∼100 ms, and as a conse-
quence, low-latency streaming is impossible via broadcast or multicast if
one of the nodes in the network is in power save mode.

• The data rate used when transmitting broadcast or multicast packets
is implementation defined [12]. That is, the manufacturer of a wireless
network interface cards (WNIC) is allowed to pick any of the valid bit
rates, to be used for broadcast or multicast transmissions. Another effect

50

6. Using a Wi-Fi Network for Low Delay Streaming

Source

AP

Sink

Sink

Sink

Fig. A.10: Unicast from source to AP and from AP to the three sinks.

of this is that the broadcast and multicast packets does not get any of
the potential benefits from rate adaptation.

6.2 Unicast

Given that broadcast is not a valid option for low delay streaming, as elucidated
in the previous section, the alternative could be unicast. While unicast does
use an acknowledgement mechanism to retransmit erased packets and adapt
the bit rate, it does not scale well for large networks. The problem with scaling
is that source has to transmit the entire stream to each sink. The issue of
bandwidth consumption is illustrated in Fig. A.10, where both the source and
the AP transmit the stream three times, each.

6.3 Pseudo Broadcast

The optimal casting-strategy should only transmit the stream once, however,
for Wi-Fi networks operating in infrastructure mode all nodes have to commu-
nicate through the AP. Thus, it is acceptable to have the source node transmit
to the AP and then have the AP distribute reliably it to all the sinks. One
way of achieving this is by using pseudo broadcast. As shown in Fig. A.11,
with pseudo broadcast the source unicast the stream to the AP and that the
AP then unicast to only one of the sinks. The remaining sinks then receive
the stream by overhearing the unicast stream, even though it is not addressed
to them. Any missing packets may be retransmitted, when one or more sinks
signals a negative acknowledgement, on the application layer.

There are both benefits and drawbacks of pseudo broadcast. The primary
benefit is that it may significantly reduce the bandwidth requirements, com-
pared to pure unicast. This also enables pseudo broadcast to be highly scalable
in number of receivers. Furthermore, by utilizing a forward erasure correcting
code retransmissions may be replaced by coded packets which can then be of
benefit for more than one sink. Finally, since the stream is transmitted using
unicast any retransmission, either between the source and the AP or between
the AP and the sink, may also be overheard by the sinks.

The drawbacks are mainly focused around support. That is, for pseudo
broadcast to work, overhearing must be enabled and supported by the hard-

51

Paper A.

Source

AP

Sink

Sink

Sink

Fig. A.11: Unicast from source to AP and unicast from AP to one of the sinks. Dotted
links are unreliable.

ware, the firmware, and the software. To the best of the authors knowledge
there are no manufacturers of WNICs that officially support overhearing, and
thereby also pseudo broadcast. There are though, WNICs that do support
it unofficially. Furthermore, Wi-Fi encryption may be troublesome, this issue
may be mitigated by using encryption at a higher layer.

6.4 Packet Aggregation

In 802.11n and 802.11ac packet aggregation was introduced and extended, re-
spectively. Packet aggregation is somewhat troublesome for erasure correcting
codes, since the systematic and coded packets may get aggregated together.
This issue is two-fold. First, if a Wi-Fi block is discarded then both the sys-
tematic and coded packets are discarded together. Thus, the coded packets
serve no purpose, since the systematic and coded packets are collectively either
received or discarded. Second, the low delay property of codes with a triangu-
lar or convolutional structure is not utilizes since the packets are not sent and
received continuously, but in Wi-Fi blocks.

On a more practical level packet aggregation makes it impossible to receive
packets using the de facto packet capture library libpcap and a transport pro-
tocol filter. That is, if the filter is set to e.g., udp, then aggregated packets
are not delivered by libpcap even though their transport protocol match the
filter. If the filter is left empty, then libpcap delivers the aggregated packets.
However, they are then deliver in aggregated form. Thus, some mechanism to
extract the individual packets from the aggregated packets must be used.

6.5 Retransmissions

For unicast transmissions, if a packet is not acknowledge by the receiver the
transmitter will retransmit the packet after some delay. The size of the delay
depends on the success rate of previous transmissions. For a single packet
the maximum number of retransmissions is 7, using the nodes described in
Table A.3. This may be an too excessive amount of retransmissions, where in
some cases it would be more advantageous to not retransmit the exact same
packet, but instead transmit a new coded packet.

52

7. Experimental Wi-Fi Setup

Source Att Emulator

Att

Coupler Sink

Controller

Fig. A.12: Experimental setup.

7 Experimental Wi-Fi Setup

In this section we present an experimental Wi-Fi testbed with two nodes. To
ensure that the experiments are repeatable and consistent, and to eliminate
external noise sources, the nodes are connected with wires as opposed to using
antennas. The two nodes are described in Table A.3. The nodes are connected
using a IEEE 802.11g network in IBSS mode, via the wired connections. The
setup is shown in Fig. A.12, where it can be seen that the two nodes (source
and sink) communicate directly. The source can transmit high-speed data to
the sink (black flow), however, the link from the sink to the source (grey flow) is
only able to carry beacons and other management frames. That is, the source
broadcasts packets using the highest data rate (54 Mb/s) and the sink uses the
lowest data rate (6 Mb/s). The use of broadcasting ensures maximum capacity
and disables any retransmissions, since broadcast packets are never retrans-
mitted. The Atts are attenuators and the Coupler is a clockwise directional
coupler. Finally, the channel emulator is a EB Propsim C2.

7.1 Experimental Procedure

The source is setup to transmit a numbered packet of 1485 bytes to the sink once
every millisecond. This procedure is run for 3 hours, and then after 10.8× 106

packets the sink reports which packets were received. This packet size was
chosen since for a realistic application it would minimizes the protocol over-

Table A.3: Description of the nodes used in the experimental setup.

Type Name
CPU Intel Core i3-4170
OS Ubuntu Linux 15.10
Kernel Linux 4.4.11
WNIC Compex WLE600VX
WNIC driver ath10k
WNIC firmware 10.1.467 api 2

53

Paper A.

Table A.4: Description of the nodes used in the experimental setup.

Name Time [µs]
DIFS 28
OFDM Header 20
Packet header 20
Data 240
SIFS 10
ACK 34
Backoff 70

head. The packet transmission frequency was chosen in order to utilise about
half of the available application bandwidth, in order to avoid congestion. The
available application bandwidth is calculated as the amount of data, in bits,
divided by total time between two data transmissions. Table A.4 lists the
length of each period which a packet transmission consists of [10–13], and the
time between them. The random backoff time is calculated as the mean of
the minimum random backoff period distribution. In case of erasures or other
kinds of disturbance, the backoff period distribution is changed to allow for
a larger random backoff, this effect is not included. The sum of the timings
in Table A.4 is 422 µs, thus the maximum available application bandwidth
is 1485·8b

422 µs = 28.2 Mb/s, when transmitting the data with 54 Mb/s.
The channel emulator is used attenuate the signal, and thereby change

the signal–to–noise ratio (SNR). The above described test was run for several
different levels of SNR. Due to the non-linearity of packet loss as a function of
SNR the average packet loss in the experiments are mainly clustered around
the extremums, this effect will be elucidated in the following section.

54

8. Modelling Burst Losses

G B

Q q

P

p

Fig. A.13: The Gilbert-Elliott model, an two state Markov model.

8 Modelling Burst Losses

When the channel is memoryless, i.i.d. erasures can be modelled using a
Bernoulli distribution. When the channel does have memory, it enables a
plethora of different channel models. In this section we first cover two widely
used channel models, namely the Gilbert-Elliott model [1, 2] and the extended
Gilbert model [3]. Finally, we present a new channel model, which is based on
the extended Gilbert model.

When l, l ∈ N consecutive packets are lost it is termed a burst loss, of
length l. The probability of the channel experiencing a burst loss of l packets
is fL(l;P). Where P is the state transition matrix of the channel model. That
is, fL(l;P) is a probability mass function termed the burst length distribution.

8.1 The Gilbert-Elliott Model

The Gilbert-Elliott model [1, 2] is a two state Markov model, with a state
diagram shown in Fig A.13. The two states are denoted the good state (G)
and bad state (B), respectively. The probability of successful transmission is
in the good state k and h in the bad state. One of the benefits of this simple
model is that it can simulate burst losses of any length. However, there is little
control to ensure a specific burst length distribution.

8.2 The Extended Gilbert Model

The model proposed in [3] is based on an N-state Markov model, and we refer
to this model as the the extended Gilbert model. The state diagram for the
extended Gilbert model is shown in Fig. A.14 and the state transition matrix
is shown in (A.1). The extended Gilbert model provide a high level of control
over the burst length distribution. That is, the burst length distribution can
be designed directly through P . One drawback of this model is that it cannot
simulate burst length above N−1, i.e., fL(l′;P) = 0 where l′ ∈ {N,N+1, . . . }.

55

Paper A.

0 1 2 j N-1
p0 p1 p2 pj−1 pj pN−2

.

1 − p0

1 − p1

1 − p2

1 − pj

1

Fig. A.14: The extended Gilbert model, an N-state Markov model.

P =

1− p0 p0 0 · · · 0

1− p1 0 p1 · · · 0
...

. . .
1− pN−2 0 0 · · · pN−2

1 0 0 · · · 0

 (A.1)

Let π be a row vector that is defined by π = πP , that is π is the stationary
distribution of P , where P is given in (A.1). The authors of [3] derive a set of N
equations which may be used to determine π. Moreover, they show that the
average erasure probability is 1−π0, given P . The authors did not present any
result on the average burst length, to this end we derive this in the following
two lemmas.

Lemma A.1. The burst length distribution is a probability mass function,
given by

fL(l;P) = Pr(L = l;P) =
πl(1− pl)

N−1∑
j=1

πj(1− pj)
, (A.2)

where L ∈ {1, . . . , N − 1}.

Proof. πl(1− pl) is the probability of a burst of length l occurring [3], includ-
ing l = 0. Thus, normalizing for the range L ∈ {1, . . . , N − 1}, yields the
probability mass function.

Lemma A.2. Let fL(l;P) be the probability mass function of the burst lengths
given in (A.2), then the average burst length µl(P) is

µl(P) =
N−1∑
j=1

fL(j;P)j.

Proof. Each value of j is multiplied with fL(j;P) and µl(P) is the sum of all
these products.

56

8. Modelling Burst Losses

List of Obtained Models

Table A.6 on page 65 lists 1 − π0, µl(P), and the parameters (pj) for a set
of extended Gilbert models. These models were obtained using the method
described in section 7.1. The models in Table A.6 are those with 1− π0 ≤ 0.5

used in [14].

8.3 Infinite Hyperbolic Extended Gilbert Model

Consider the Markov chain in Fig. A.14 and let N → ∞, this construction
removes the strict maximum burst length of N − 1 consecutive packets. We
then propose to have P defined with an infinite hyperbolic tail. That is, let
the transition probabilities be defined by

pj =
x

(1 + j)
y , (A.3)

where j ∈ N0, 0 < x ≤ 1, and 0 < y. The parameters x and y are denoted
the offset and slope parameters, respectively. We define π as the stationary
distribution of P .

Lemma A.3. The stationary distribution must satisfy the following

1 =
∞∑
j=0

(πj) . (A.4)

π0 =

∞∑
j=0

πj (1− pj) , (A.5)

πj+1 = pjπj . (A.6)

Proof. It is easy to see that (A.4) holds, since π is a distribution all its elements
must sum to 1. We have that π = πP , where

P =

1− p0 p0 0 0 · · ·
1− p1 0 p1 0 · · ·
1− p2 0 0 p2

...
...

...
. . .

 .

57

Paper A.

That is,

[
π0 π1 π2 . . .

]
=
[
π0 π1 π2 . . .

]

1− p0 p0 0 0 · · ·
1− p1 0 p1 0 · · ·
1− p2 0 0 p2

...
...

...
. . .

=
[
π0(1− p0) + π1(1− p1) + . . . p0π0 p1π1 . . .

]
=

[∞∑
j=0

(πj (1− pj)) p0π0 p1π1 . . .

]
. (A.7)

The two remaining requirements (A.5) and (A.6) are obtained from (A.7).

Using a method similar to Lemma A.2, we may calculate the average burst
length. That is, by calculating the mean of the burst length distribution, i.e.,

fL(l;P) = Pr(L = l;P) =
πl(1− pl)
∞∑
j=1

πj(1− pj)
, (A.8)

µl(P) =
∞∑
j=1

fL(j;P)j. (A.9)

Given any x and y then average erasure probability, 1−π0, and average burst
length, µl, can be calculated. From (A.4) and (A.6) it is easily seen that π0

can be calculated as

π0 =

1 +

∞∑
j=1

(
j−1∏
i=0

x

(1 + i)
y

)−1 =

1 +

∞∑
j=1

(
xj(j!)−y

)−1 .
The following Lemma A.4 provide µl as a function of π0 and x.

Lemma A.4. Let pj , j ∈ N0 be defined as in (A.3) and let π be defined as
described in Lemma A.3, then average burst length µl(P) is

µl(P) =
1− π0

π0x
.

Proof. Combining (A.8) and (A.9) we get

µl(P) =

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

∞∑
i=1

πi −
∞∑
i=1

πipi

58

8. Modelling Burst Losses

It follows from (A.4) that
∑∞
i=1 πi = 1− π0, and similarly for

∑∞
i=2 πi. Then

using (A.6), we may further reduce the denominator:

µl(P) =

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

1− π0 −
∞∑
i=1

πipi

=

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

1− π0 −
∞∑
i=2

πi

=

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

1− π0 − (1− π0 − π1)
=

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

π1

=

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

π0p0
=

∞∑
j=1

jπj −
∞∑
j=1

jπjpj

π0x

We, again, use (A.6) to simplify the numerator:

µl(P) =

∞∑
j=1

jπj −
∞∑
j=1

jπj+1

π0x
=

∞∑
j=1

jπj −
∞∑
j=2

(j − 1)πj

π0x

Notice that because of (A.4) there exist the following relation: ∞∑
j=0

jπj

− 1 =

∞∑
j=0

(j − 1)πj =

 ∞∑
j=2

(j − 1)πj

− π0 ⇒

∞∑
j=2

(j − 1)πj =

 ∞∑
j=0

jπj

− 1 + π0 =

 ∞∑
j=1

jπj

− 1 + π0

We now use this relation to further reduce the numerator.

µl(P) =

∞∑
j=1

jπj −

 ∞∑
j=1

jπj

− 1 + π0

π0x

=
1− π0

π0x

Given some average erasure probability, 1 − π0, there is a limit to the
possible values of µl(P). The upper bound of µl(P) is the maximum of the
average burst length µU (P), and this upper bound is derived in the following
lemma.

59

Paper A.

Lemma A.5. Let pj , j ∈ N0 be defined as in (A.3), then the upper bound of
the average burst length µU (P) is

µU (P) =
1

1− x.

Proof. The average burst length is at its maximum when the magnitude of the
slope of P is minimized. Thus, we first consider the values of pj when y goes
towards zero

pj = lim
y→0

x

(1 + j)
y → x.

Next we derive the stationary distribution. Since we have that pj → x, we
substitute this into (A.5) and get

π0 =
∞∑
j=0

(πj (1− pj)) =
∞∑
j=0

(πj (1− x))

= (1− x)

∞∑
j=0

(πj) . (A.10)

To obtain π0 we then substitute (A.4) into (A.10)

π0 = 1− x. (A.11)

Note that the average erasure probability is 1−π0 = x. Finally, we insert (A.11)
into the result from Lemma A.4 and get

µU (P) =
1− (1− x)

(1− x)x
=

1

1− x.

Following the proof of the upper bound of µl(P) are two lemmas stating
the lower bound of µl(P).

Lemma A.6. Let pj , j ∈ N0 be defined as in (A.3) and let 1 − π0 ≤ 1/2

be the average erasure probability, then the lower bound of the average burst
length µL(P) is

µL(P) = 1.

Proof. The average burst length is at its minimum when the magnitude of
the slope of P is maximized. Thus, we consider the values of pj when y goes
towards infinity

pj = lim
y→∞

x

(1 + j)
y →

{
x j = 0

0 j 6= 0
. (A.12)

60

8. Modelling Burst Losses

Note that (A.6) and (A.12) yield that πj = 0 when j > 1. From (A.4), (A.5),
and (A.12) we get the following expression for the stationary distribution

1 =
∞∑
j=0

(πj) =
1∑
j=0

(πj)

= π0 + π1, (A.13)

π0 =
∞∑
j=0

(πj (1− pj)) =
1∑
j=0

(πj (1− pj))

= π0 (1− p0) + π1 (1− p1) = π0 (1− x) + π1 (1− 0)

= π0 (1− x) + π1. (A.14)

Using (A.13) and (A.14) we get the stationary distribution

πj =

1

1+x j = 0
x

1+x j = 1

0 j > 1

. (A.15)

From (A.15) we get the bound on 1− π0 for x = 1, that is

1− π0

∣∣∣∣
x=1

= 1− 1

1 + x
= 1− 1

1 + 1
=

1

2
.

Finally, we insert (A.15) into the result from Lemma A.4 and get

µL(P) =
1− 1

1+x
1

1+xx
= 1

Lemma A.7. Let pj , j ∈ N0 be defined as in (A.3) and let 1 − π0 ≥ 1/2

be the average erasure probability, then the lower bound of the average burst
length µL(P) is

µL(P) =
1

π0
− 1.

Proof. Let x = 1, then

pj =
1

(1 + j)
y .

We insert x = 1 into the result from Lemma A.4 and get

µL(P) =
1− π0

π0
=

1

π0
− 1;

61

Paper A.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.2

1.4

1.6

1 − π0

µ
l
(P

)
µU (P)

Feasible region
Obtained models

Fig. A.15: The average burst length µl(P) as a function of 1− π0.

Combining Lemma A.6 and A.7 then gives us

µL(P) =

{
1 1− π0 ≤ 1/2
1
π0
− 1 1− π0 ≥ 1/2

= max

(
1,

1

π0
− 1

)
.

Table A.5 lists the parameters of the proposed model for the observed chan-
nel characteristics, similar to those shown in Table A.6. The feasible region for
µl(P) as a function of 1− π0 is defined as the region where

max

(
1,

1

π0
− 1

)
= µL(P) < µl(P) < µU (P) =

1

π0
.

Fig. A.15 shows µU (P), the feasible region, along with the models from Ta-
ble A.5 on the next page (and Table A.6 on page 65). From the figure it is
clear that all of the obtained models are within the feasible region of the infi-
nite hyperbolic extended Gilbert model. Finally, Fig. A.16 shows the same as
Fig. A.15, but for 0 ≤ 1− π0 ≤ 0.85.

62

8. Modelling Burst Losses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2

4

6

1 − π0

µ
l
(P

)
µU (P)

µL(P)

Feasible region
Obtained models

Fig. A.16: The average burst length µl(P) as a function of 1− π0.

Table A.5: List of parameters for the proposed model.

1− π0 µl(P) x y

0.020720 1.011019 0.020928 0.936243
0.025474 1.014671 0.025762 0.827296
0.031630 1.018042 0.032084 0.848790
0.031894 1.024648 0.032152 0.413147
0.038567 1.022981 0.039213 0.794633
0.041482 1.028690 0.042070 0.584435
0.053230 1.030480 0.054560 0.870404
0.056105 1.038282 0.057248 0.622648
0.065219 1.037489 0.067248 0.880180
0.072607 1.048741 0.074653 0.667407
0.086031 1.056043 0.089134 0.727960
0.087043 1.052686 0.090570 0.834406
0.103074 1.061083 0.108304 0.885944
0.104071 1.065411 0.109028 0.803064
0.124968 1.077267 0.132572 0.854740
0.126418 1.079169 0.134096 0.838456
0.148301 1.094038 0.159157 0.850908
0.154798 1.102705 0.166091 0.795535
0.178878 1.121662 0.194217 0.794681
0.181397 1.128626 0.196339 0.739346
0.213570 1.163882 0.233330 0.675861
0.231444 1.189946 0.253071 0.609436
0.258103 1.232916 0.282173 0.520572
0.272838 1.261601 0.297407 0.462029
0.288465 1.293943 0.313315 0.406123
0.310958 1.331163 0.339020 0.385259

63

Paper A.

9 Conclusions

We showed an implementation of a software library for performing network
coding. This library is highly flexible and extendable, partly due to the use
of the mixin design. For the encoder the flexibility partly lies in the fact
that it requires little to no effort to change the behaviour of the coder, e.g.,
changing from random coefficients to Reed-Solomon codes. For all types of
coders it requires little to no effort to change the memory type, e.g., from deep
to managed or vice versa.

The software library is capable of encoding and decoding multi channel high
resolution audio in real-time. Our x86 implementation is orders of magnitude
faster than then the 4.608 MB/s requirement, for both block and convolutional
codes. We showed three types of implementations of coefficient and column
storage for convolutional codes. From our results it is clear that the choice of
implementations should depend open the application at hand, e.g., for k < 8

the fixed size implementation performed the best and for k ≥ 8 the segmented
implementation performed the best. On an ARM platform the software library
is also capable of real-time encoding and decoding of block codes, even without
SIMD instructions for k ≤ 16. We showed that our library is, in some cases,
significantly faster than the Kodo version 20.0.0 software library.

We presented a discussion on some of the possible issues of using Wi-Fi,
and to some extend how to overcome these issues. We also presented a flexible
testbed which has been used to evaluate the performance of erasure correcting
codes. The testbed was also used to obtain a set of realistic erasure patterns.
We introduced a new channel model, which fits the obtained patterns. These
erasure patterns were then modelled using the new channel model and a well
known channel model.

64

9. Conclusions

Table A.6: List of parameters for the extended Gilbert model.

1
−

π
0

µ
l
(P

)
p
0

p
1

.
.
.

0.
02

07
20

1.
01

10
19

0.
02

09
28

0.
01

10
19

0.
02

54
74

1.
01

46
71

0.
02

57
62

0.
01

46
05

0.
00

45
45

0.
03

16
30

1.
01

80
42

0.
03

20
84

0.
01

80
24

0.
00

09
92

0.
03

18
94

1.
02

46
48

0.
03

21
52

0.
02

45
68

0.
00

32
69

0.
03

85
67

1.
02

29
81

0.
03

92
13

0.
02

28
70

0.
00

45
10

0.
07

14
29

0.
04

14
82

1.
02

86
90

0.
04

20
70

0.
02

85
73

0.
00

38
57

0.
06

25
00

0.
05

32
30

1.
03

04
80

0.
05

45
60

0.
03

03
24

0.
00

49
65

0.
03

57
14

0.
05

61
05

1.
03

82
82

0.
05

72
49

0.
03

80
40

0.
00

63
51

0.
06

52
19

1.
03

74
89

0.
06

72
48

0.
03

72
64

0.
00

60
48

0.
07

26
07

1.
04

87
41

0.
07

46
53

0.
04

82
23

0.
00

97
35

0.
10

25
64

0.
08

60
31

1.
05

60
43

0.
08

91
34

0.
05

53
03

0.
01

22
70

0.
09

04
52

0.
08

70
43

1.
05

26
86

0.
09

05
70

0.
05

20
17

0.
01

23
35

0.
04

18
85

0.
10

30
74

1.
06

10
83

0.
10

83
04

0.
05

99
82

0.
01

74
96

0.
04

63
22

0.
05

88
24

0.
10

40
71

1.
06

54
11

0.
10

90
28

0.
06

39
81

0.
02

00
90

0.
11

06
19

0.
02

00
00

0.
12

49
68

1.
07

72
67

0.
13

25
72

0.
07

50
91

0.
02

72
33

0.
06

32
32

0.
01

85
19

0.
12

64
18

1.
07

91
69

0.
13

40
96

0.
07

62
95

0.
03

30
07

0.
13

74
76

0.
02

73
97

0.
14

83
01

1.
09

40
38

0.
15

91
57

0.
08

96
53

0.
04

45
26

0.
09

29
16

0.
06

07
73

0.
15

47
98

1.
10

27
05

0.
16

60
91

0.
09

64
11

0.
05

54
56

0.
16

80
24

0.
04

40
53

0.
15

00
00

0.
66

66
67

0.
17

88
78

1.
12

16
62

0.
19

42
17

0.
11

23
91

0.
07

22
36

0.
13

00
15

0.
08

41
58

0.
09

80
39

0.
18

13
97

1.
12

86
26

0.
19

63
39

0.
11

68
93

0.
08

24
57

0.
20

35
14

0.
06

07
93

0.
11

59
42

0.
21

35
70

1.
16

38
82

0.
23

33
30

0.
14

50
00

0.
10

93
79

0.
16

91
32

0.
10

27
09

0.
20

32
97

0.
13

51
35

0.
23

14
44

1.
18

99
46

0.
25

30
72

0.
16

17
07

0.
13

49
68

0.
25

56
60

0.
11

74
81

0.
21

78
65

0.
20

00
00

0.
10

00
00

0.
50

00
00

1.
00

00
00

1.
0

0.
25

81
03

1.
23

29
16

0.
28

21
73

0.
19

35
09

0.
15

85
49

0.
23

40
20

0.
15

87
51

0.
28

52
15

0.
23

26
53

0.
08

77
19

0.
27

28
38

1.
26

16
01

0.
29

74
08

0.
20

84
89

0.
18

66
94

0.
29

04
57

0.
18

82
53

0.
26

91
61

0.
25

11
21

0.
21

42
86

0.
12

50
00

0.
66

66
67

0.
28

84
65

1.
29

39
43

0.
31

33
15

0.
22

82
17

0.
20

56
63

0.
31

43
17

0.
19

89
86

0.
28

01
36

0.
28

93
94

0.
14

65
97

0.
10

71
43

0.
33

33
33

1.
0

0.
31

09
58

1.
33

11
63

0.
33

90
19

0.
25

36
99

0.
22

05
07

0.
29

17
21

0.
21

89
59

0.
33

44
43

0.
30

24
88

0.
15

78
95

0.
20

83
33

0.
20

00
00

0.
5

65

References

References

[1] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System Tech-
nical Journal, vol. 39, no. 5, pp. 1253–1265, September 1960.

[2] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, Septem-
ber 1963.

[3] V. K. Varma, “Testing speech coders for usage in wireless communications
systems,” IEEE Workshop on Speech Coding for Telecommunications, pp.
93–94, 1993.

[4] ISO/IEC 14882:2017, “Programming Language — C++,” December 2017.

[5] D. A. Moon, “Object-oriented programming with flavors,” ACM Confer-
ence on Object-oriented Programming Systems, Languages and Applica-
tions, pp. 1–8, October 1986.

[6] M. VanHilst and D. Notkin, “Using C++ templates to implement role-
based designs,” Object Technologies for Advanced Software: Second JSSST
International Symposium, pp. 22–37, March 1996.

[7] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2,
pp. 300–304, 1960.

[8] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[9] M. V. Pedersen, J. Heide, and F. H. P. Fitzek, Kodo: An Open and Re-
search Oriented Network Coding Library. Springer Berlin Heidelberg,
2011, pp. 145–152.

[10] E. Perahia and R. Stacey, Next Generation Wireless LANs: 802.11n and
802.11ac, 2nd ed. Cambridge University Press, 2013.

[11] ISO/IEC/IEEE 8802-11:2012(E) (Revison of ISO/IEC/IEEE 8802-11-
2005 and Amendments), “Information technology — Telecommunications
and information exchange between systems Local and metropolitan area
networks — Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” pp. 1–2798,
November 2012.

66

References

[12] ISO/IEC 8802-11:2005/Amd.4:2006(E) IEEE Std 802.11g-2003 (Amend-
ment to IEEE Std 802.11-1999), “Information technology — Local and
metropolitan area networks — Part 11: Wireless LAN Medium Access
Control (Mac) and Physical Layer (PHY) Specifications-Amendment 4:
Further Higher Data Rate Extension in the 2.4 GHz Band,” pp. 1–83,
August 2006.

[13] J. Jun, P. Peddabachagari, and M. Sichitiu, “Theoretical maximum
throughput of IEEE 802.11 and its applications,” IEEE International Sym-
posium on Network Computing and Applications, pp. 249–256, April 2003.

[14] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “Superregular
lower triangular toeplitz matrices for low delay wireless streaming,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4027–4038, Septem-
ber 2017.

67

References

68

Paper B

Superregular Lower Triangular Toeplitz
Matrices for Low Delay Wireless Streaming

Jonas Hansen, Jan Østergaard, Johnny Kudahl, and John H.
Madsen

The paper has been published in the
IEEE Transactions on Communications, Vol. 65, no. 9, pp. 4027–4038, 2017.

Paper B.

c© 2017 IEEE
The layout has been revised.

70

1. Introduction

Abstract

A matrix is termed superregular if all of its possible submatrices are non-
singular. Superregular lower triangular Toeplitz matrices are useful for MDS
convolutional codes and (sequential) network codes. In this work we present
explicit matrix constructions for superregular lower triangular Toeplitz matri-
ces in GF(2p)k×k, k ≤ 5. For k > 5 we provide a greedy algorithm which (over
sufficiently large fields) is guaranteed to find a superregular lower triangular
Toeplitz matrix. We introduce (product preserving) joint superregularity, and
extend our explicit matrix constructions to these cases. We provide methods for
deriving the exact symbol loss probability and delay for any deterministic block
code. We derive the exact symbol loss probability and delay for codes using a su-
perregular lower triangular matrix and for codes using two (product preserving)
jointly superregular lower triangular matrices. We then compare these results
with those obtained from both simulations and our practical implementation,
and for each case we also compare with random based codes. Furthermore, our
experiments show a gain in coding throughput above 40 % for superregular lower
triangular Toeplitz matrices over random matrices.

1 Introduction

The demand for low latency streaming of video and audio is ever increasing [1].
The combination of high resolution video and audio streaming to multiple re-
ceivers with low latency is a challenge even for modern wireless networks [2].
To this end, a first step may be to use some form of forward erasure cor-
rection (FEC) code. One benefit of a FEC code is that it allows a trade-off
between bandwidth, latency and loss probability [3]. By the same token, care-
fully designing the FEC code together with a transport protocol to fit the
application and network in question can significantly improve the user expe-
rience [4]. For streaming applications with strict play-out timing constraints
such as music streaming, a FEC code can even help in reducing the play-out
buffer size at the decoder [5]. However, the joint design of a FEC code and
transport protocols is non-trivial. Thus, a lot of research efforts have gone into
this area. In [6], the authors propose a combination of Hybrid ARQ and FEC
in a transmission protocol based on acknowledgments for reliability. However,
the use of acknowledgments in a one-to-many streaming scenario is not desir-
able. Nevertheless, the method of using both ARQ and FEC still has a lot of
potential.

Erasure correcting codes in general can be used in a continuous man-
ner (convolutional codes [7]) or as sequential block codes [8]. For both types
decoding may be performed when a packet is received from the network. This
may, depending on the code design, help to keep the latency as low as possible.

71

Paper B.

Encoding is performed at the source and if the code is convolutional or a block
code with triangular structure then encoding may also be performed continu-
ously. This is contrary to encoding with a dense block code, where encoding
cannot be performed until the entire dataset has been collected.

If additional encoding is performed within the network (and not only at the
source) it is usually referred to as network coding [9]. Network coding may
increase both reliability by reducing the end-to-end loss probability and the ro-
bustness of transport protocols [10, 11]. In addition, network coding can offer
increased throughput and has been successfully studied and applied in various
communication scenarios. In [12] a middle node combines two or more flows
using XOR and broadcasts the result. This method can significantly increase
the network efficiency, if the erasure probability does not exceed ∼0.1 (with 2
receivers), in which case the algorithm reverts to forwarding. In [13] the au-
thors propose a routing algorithm where neighboring nodes assist (through
overhearing and recoding) the transmission between other nodes.

Some codes use random numbers as the coding coefficients. This class of
codes is usually termed random linear codes [14]. Random based network
codes inherit some simplicity in terms of design with respect to coordination
between nodes when used in routing [15]. However, there exist random based
network codes where some coordination is required [16]. For random based
codes, optimal decoding capabilities can often be proven at least asymptotically,
when the field size and code dimension are sufficiently large [17]. For small code
dimensions and non-binary fields, random based codes show, on average, near
optimal decoding capabilities [18].

With respect to streaming, small coding dimensions are in fact advanta-
geous. There are two main reasons why small coding matrices are interesting
from a practical perspective. First, the receiver may use a general decoding
algorithm such as Gaussian elimination. Even though this algorithm has cubic
complexity, it is possible to use it on embedded platforms when the coding
dimensions are small. Second, the small dimension allows for the construction
of coding matrices that are guaranteed to be optimal in the non-asymptotic
regime [19]. We strongly encourage the use of binary extension fields on em-
bedded platforms, because of the digital architecture and the reduced compu-
tational capabilities. For this reason, it is generally unproblematic to imple-
ment GF(2p) arithmetic on these platforms [20]. The field GF(28) is especially
attractive, since each element of the field fits into a single byte.

It was shown in [21] that any dense superregular matrix can be used to con-
struct a systematic maximum distance separable (MDS) block code. A lower
triangular matrix is considered superregular, if and only if all of its proper sub-
matrices are non-singular [22]. The authors of [22] showed that an MDS con-
volutional code can be constructed from superregular lower triangular Toeplitz
matrices. It is therefore of great interest to be able to construct superregu-
lar lower triangular Toeplitz matrices in small dimensions and with small field

72

1. Introduction

sizes. In [22], the authors presented a few such matrices. However, no insights
as to how they were obtained were included. In [23], an explicit construction
for superregular (totally positive) matrices was provided for real and complex
fields. This construction can easily be extended to very large prime fields, al-
though these are impractical. In [24], a new class of lower block triangular
matrices that are superregular over a sufficiently large field was presented.

Concatenating the identity matrix with m matrices results in a generator
matrix that produces a block code with rate 1/(m+1). Video and audio streaming
applications may benefit from codes with a rate lower than 1/2, especially if the
underlying channel suffers from a high erasure rate, or in a one-to-many scenario
such as streaming to multiple surround sound speakers. Unfortunately, even if
all m matrices are superregular, the resulting code is not guaranteed to have
optimal decoding capabilities. To this end, we introduce the notion of jointly
superregular matrices. The use of two jointly superregular matrices maximizes
the decoding capabilities, see Definition B.2.

In this paper, we provide explicit constructions for all superregular lower
triangular Toeplitz matrices over GF(2p)k×k for the case of k ≤ 5. For gen-
eral dimensions, we propose a greedy approach to design superregular lower
triangular Toeplitz matrices. We also provide explicit constructions for jointly
superregular lower triangular Toeplitz matrices for k = {2, 3}. We then de-
rive the exact symbol loss probability when using (jointly) superregular lower
triangular Toeplitz matrices. We show how this symbol loss probability com-
pares to those obtainable in both simulated environments and when using a
real Wi-Fi channel. We also compare these symbol loss probabilities with the
performance of random linear network coding (RLNC). From this, it is clear
that RLNC in several cases achieves, on average, a symbol loss probability that
is only slightly larger. Finally, we show that the coding throughput can be
significantly increased by using superregular lower triangular Toeplitz matrices
compared to RLNC.

Fig. B.1a and B.1c on page 75 show two tall matrices that can be used to
construct systematic codes with rate 1/2 and 1/3, respectively. On this form
it is easy to identify the individual lower triangular matrices which the tall
matrices consist of, e.g., I4 and A′4 in Fig. B.1a. Moreover, when used in
a real implementation, coding is performed as shown in Fig. B.1b and B.1d.
That is, the rows are simply reordered to exploit the low latency property.
Let n, k, l ∈ N and let A be an n× k coding matrix, where A can be in any of
the forms shown in Fig. B.1. Naturally this yields a code with rate k/n. The
message to be encoded using A must be stored in S, a k × l matrix, known
as the source data matrix. The result of the encoding process is C, an n × l
matrix, i.e., the coded data matrix. Therefore C = AS, which shows how the k
rows (of length l) of the source data matrix are encoded into the n rows (of
length l) of the coded data matrix.

The lower triangular structure is suitable for streaming applications for two

73

Paper B.

reasons. First, the encoder can transmit the coded packets (a single packet for
rate 1/2 codes) immediately after transmitting each systematic packet, as shown
in Fig. B.1b and B.1d. That is, the encoding delay is minimized. Second,
the decoder can perform real-time decoding of the incoming packets, which
then minimizes the decoding delay. Combining these two features with the
optimal decoding capabilities results in a family of block codes that are both
advantageous and practical for real-time streaming of audio/video content.

Network recoding is drawing attention from several different areas, e.g. ad-
hoc and peer-to-peer networks, such as machine-to-machine communication or
Internet of Things. The concept of recoding is essentially matrix multiplication.
That is, one matrix is used when encoding and another when recoding. In
certain cases the resulting code is then their product. We therefore introduce
the notion of product preserving jointly superregular matrices. We provide
a few explicit constructions for product preserving jointly superregular lower
triangular Toeplitz matrices in small dimensions and over any field GF(2p).
We then derive the exact symbol loss probability for a few selected cases. The
exact symbol loss probability is then compared to the achievable symbol loss
probability when simulating i.i.d. erasures.

2 Superregular Matrices

In [21], the authors defined a dense matrix to be superregular if and only if
every square submatrix is non-singular. A lower triangular matrix is defined
in [22, Definition 3.3] to be superregular if and only if every proper subma-
trix is non-singular. The definition of a proper submatrix follows. Let A be
a k×k lower triangular matrix. Let A′ = Aj1,...,jrh1,...,hr

be an r× r submatrix of A,
where A′ is constructed using the rows and columns of A with indices j1, . . . , jr
and h1, . . . , hr, respectively [22, Definition 3.2]. Then, A′ is a proper subma-
trix of A if and only if 1 ≤ j1 < j2 < . . . < jr ≤ k, 1 ≤ h1 < h2 < . . . < hr ≤ k
and jt ≥ ht,∀t. This notion of superregularity maximizes the decoding capa-
bility [25], when a block code with rate 1/2 is generated using a matrix that
is constructed as the concatenation of the identity matrix and a superregular
lower triangular matrix.1 A code with a rate higher than 1/2 is obtained by
puncturing. We formally define optimal decoding capabilities for block codes
in the following definition.

1In [26] the authors use a slightly different notion of superregularity.

74

2. Superregular Matrices

1

1

1

1

1

1ωi1

1ωi1ωi2

1ωi1ωi2ωi3

I4

A′
4

(a)

1

1

1

1ωi1

1

1ωi1ωi2

1

1ωi1ωi2ωi3

(b)

1

1

1

1

1

1ωia1

1ωia1ωia2

1ωia1ωia2ωia3

1

1ωib1

1ωib1ωib2

1ωib1ωib2ωib3

I4

A4

B4

(c)

1

1

1

1

1ωia1

1ωib1

1

1ωia1ωia2

1ωib1ωib2

1

1ωia1ωia2ωia3

1ωib1ωib2ωib3

(d)

Fig. B.1: The matrix structure used in this paper. (a) and (b) are matrices for rate 1/2
codes. (c) and (d) are matrices for rate 1/3 codes. (a) and (c) are used in the lemmas,
whereas, (b) and (d) are used on an erasure channel.

75

Paper B.

Definition B.1 (Optimal decoding capability). A code is said to have op-
timal decoding capabilities if and only if there does not exist a code (with the
same matrix structure) that can recover a higher number of symbols when trans-
mitted over any erasure channel. 4

For optimal decoding capabilities it is a sufficient (but not always necessary)
condition that all possible submatrices, the sink can receive, that can be non-
singular are non-singular.

Example B.1. Consider the network in Fig. B.2, where the source encodes
using the following two matrices:1 0 0

a 1 0

b a 1

 ,
1 0 0

h 1 0

i h 1

 ,
and the recoder use: 1 0 0

o 1 0

q o 1

 ,
1 0 0

v 1 0

x v 1

for recoding, after partial decoding. The matrices are over GF(2p)

and abhioqvx 6= 0. If the recoder receives [b a 1] as the first packet it will
output two identical packets [1 a/b 1/b], this will obviously contain three 2× 2

singular submatrices. However, they cannot be made non-singular by changing
the code parameters. That is, they are not problematic for achieving optimal
decoding capabilities. Let the recoder then receive [i h 1] the output will then
be
[
o 1 ao+b+ho+i

ai+bh

]
and

[
v 1 av+b+hv+i

ai+bh

]
. If a = hv+b+i

v , then av+b+hv+i
ai+bh = 0,

i.e., there is a singular 1×1 submatrix. If this is the only singular submatrix that
could have been non-singular, then the code does indeed recover the maximum
possible amount of symbols (no symbol is decodable with this recoder output).
That is, the code is optimal, yet not all submatrices that can be non-singular
are so.

A rate 1/3 code can be made from; the identity and two jointly superregular
matrices, both individually superregular. The property joint superregularity is
described in detail in the coming definition. It fundamentally states that any
square submatrix, of all possible square matrices formed by the rows of the two

A R B

Fig. B.2: A multi-hop network with three nodes: a source (A), a relay (R), and a sink (B).
R recodes the packets received from A and forwards them to B.

76

2. Superregular Matrices

matrices, that can be non-singular must also be so. Following the definition
is an example, Ex. 2, which considers two superregular matrices that are not
jointly superregular.

Definition B.2 (Joint superregularity). Two superregular k × k matrices
are said to be jointly superregular if and only if all of the proper submatrices of
any k×k matrix, formed by taking l ∈ {1, . . . , k−1} and k−l rows from the two
matrices, respectively, are non-singular. In the context of jointly superregular
matrices, a proper submatrix is any square matrix that is not trivially rank
deficient. An m × m matrix, when sorted by increasing row support size2, is
said to be trivially rank deficient if the support of row i, 1 ≤ i ≤ m, is less
than i. A proper submatrix need not be triangular. 4

Example B.2. Consider the following two matrices over GF(28):

A3 =

1 0 0

1 1 0

2 1 1

 , B3 =

1 0 0

4 1 0

8 4 1

 .
The submatrix constructed from rows 1 and 3 from A3 and row 3 from B3:1 0 0

2 1 1

8 4 1

 .
The matrices are not jointly superregular, since the lower-left 2 × 2 submatrix
is singular:

det

([
2 1

8 4

])
= 0.

Definition B.3 (Product preserving joint superregularity). Two
jointly superregular matrices are product preserving if and only if their product
is a superregular matrix. 4

Consider the network presented in Fig. B.2. The matrices Ak and Bk are
used for encoding and recoding, respectively. The recoder forwards systematic
packets immediately, and recodes every time a coded packet is received. In
this setup the product preserving property is a necessary but not sufficient
condition for the resulting code to have optimal decoding capabilities. This
can easily be realized by considering the case where there are no erasures on
the link between A and R. The resulting coding matrix is then AkBk = BkAk,
which only has optimal decoding capabilities if it is superregular.

Let Ωfp denote the set of roots of a primitive polynomial fp, which
generates GF(2p). Let Ik , {i1, . . . , ik : ij ∈ GF(2p), ij 6= 2p − 1,∀j}.

2The size of the support of a vector is equal to the number of its non-zero elements.

77

Paper B.

Let ψω (i1, . . . , ik−1) be a k × k lower triangular Toeplitz matrix with the
first column given by

[
1, ωi1 , . . . , ωik−1

]T . Let ω ∈ Ωfp and let Aωk denote
the set of all k × k superregular lower triangular Toeplitz matrices given
by ψω (i1, . . . , ik−1), where (i1, . . . , ik−1) ∈ Ik−1. Let Ak = ψω (i1, . . . , ik−1)

and let Ak+1 = φω, ik (Ak) = ψω (i1, . . . , ik) denote the k + 1 × k + 1 matrix
obtained by extending Ak.

Let Bωk be the set of all pairs of jointly superregular lower triangular
Toeplitz matrices that satisfy Definition B.2. To increase readability, we
add an index to the parameters of the matrices, (Ak, Bk) ∈ Bωk . That is,
Ak=ψω

(
ia1 , . . . , iak−1

)
and Bk=ψω

(
ib1 , . . . , ibk−1

)
are two jointly superregular

lower triangular Toeplitz matrices, where (ia1 , . . . , iak−1
, ib1 , . . . , ibk−1

) ∈I2k−2.
Let (Ak, Bk) = φω, ia, ib(Ak−1, Bk−1) = (φω, ia(Ak−1), φω, ib(Bk−1)) be the pair
of k × k matrices obtained by extending Ak−1 and Bk−1 using the straightfor-
ward generalization of the φ-operator for a single matrix.

The authors of [26] showed a construction of matrices that preserve super-
regularity after multiplication with block diagonal matrices. Our definition of
superregularity does not guarantee that the product of two superregular ma-
trices is superregular. Note that the multiplication (from the right) in [26] is
different as the matrices have entries in different fields.

Lemma B.1. Given Ak ∈ Aωk , then ∃A′k ∈ Aωk such that their prod-
uct AkA′k /∈ Aωk . 4

Proof. The proof follows easily from [22, Corollary 3.6]. For any Ak ∈ Aωk
then A−1k ∈ Aωk and it follows that AkA−1k = Ik /∈ Aωk .

Lemma B.2. Given Ak ∈ Aωk , then ∃Bk, Ck /∈ Aωk such that their prod-
uct Ak = BkCk, for k > 1. 4

Proof. Let Ak = P−1LU ∈ Aωk , where P−1LU is the LU factorization of Ak
with partial pivoting and P is a row perturbation matrix. Such a factorization
exists for any non-singular matrix, and P−1 6= Ik except for the caseA2 =ψω(0).
Let Bk = P−1L and Ck = U , then it follows that neither Bk nor Ck are
lower triangular and therefore Bk, Ck /∈ Aωk . For the case A2 = ψω(0) ∈ Aω2 .
Let B2 =

[
1 1

0 1

]
and C2 =

[
0 1

1 1

]
then A2 = B2C2 and B2, C2 /∈ Aω2 .

Let Cωk denote the set of all pairs of k× k product preserving jointly super-
regular lower triangular Toeplitz matrices, according to Definition B.3:

Cωk , {(Ak, Bk) ∈ Bωk : AkBk = BkAk ∈ Aωk }, ω ∈ Ωfp .

78

3. Explicit Construction of Superregular and Jointly Superregular Matrices

3 Explicit Construction of Superregular and
Jointly Superregular Matrices

We begin by showing our explicit construction of superregular lower triangular
Toeplitz matrices of size k × k, where k ≤ 5. All field operations are taken
modulo 2p − 1, with respect to the elements of Ik. The proof of the following
lemma, which states necessary and sufficient conditions for superregularity, is
in the Appendix.

Lemma B.3. Let ω ∈ Ωfp and Ak = ψω(i1, . . . , ik−1).

i) Then A2 ∈ Aω2 .

ii) Then A3 ∈ Aω3 if and only if (i1, i2) ∈ I2 and 2i1 6= i2.

iii) Let A3 ∈ Aω3 and A4 = φω, i3 (A3). Then A4 ∈ Aω4 if and only
if, (i1, . . . , i3) ∈ I3 and satisfy:

3i1 6= i3, i1 + i2 6= i3, 2i2 6= i1 + i3. (B.1)

iv) Let A4 ∈ Aω4 and A5 = φω, i4 (A4). Then A5 ∈ Aω5 if and only
if, (i1, . . . , i4) ∈ I4 and satisfy:

i4 6= 2i1 + i2, i4 6= i1 + i3,

i4 6= 2i2, 2i3 6= i2 + i4, i2 + i3 6= i1 + i4.
(B.2)

and ω and (i1, . . . , i4) jointly satisfy:

0 6=ω2i2+i1 ⊕ ωi2+i3 ⊕ ω2i1+i3 ⊕ ωi1+i4 ,
0 6=ω2i1+i4 ⊕ ωi2+i4 ⊕ ω3i2 ⊕ ω2i3 ,

0 6=ω2i1+i2 ⊕ ωi1+i3 ⊕ ω2i2 ⊕ ωi4 ,
0 6=ω2i1+i2 ⊕ ω4i1 ⊕ ω2i2 ⊕ ωi4 .

(B.3)

4

Remark B.1. Let ω ∈ Ωfp . If ψω (i1, . . . , ik−1) ∈ Aωk then
ψω′ (i1, . . . , ik−1) ∈ Aωk ,∀ω′ ∈ Ωfp .

Lemma B.4 and B.5 provide necessary and sufficient conditions for con-
structing jointly superregular lower triangular Toeplitz matrices for k = 2

and k = 3, respectively. Lemma B.4 also states a necessary condition for con-
structing jointly superregular lower triangular Toeplitz matrices for any k > 1.

Lemma B.4. Let ω ∈ Ωfp . For k = 2, (A2, B2) ∈ Bω2 if and only
if, (ia1 , ib1) ∈ I2 and ia1 6= ib1 . For any k > 1, (Ak, Bk) /∈ Bωk ,
if ∃j ∈ {1, . . . , k − 1} such that iaj = ibj . 4

79

Paper B.

Proof. Given that det

([
Ak

j
1,j

Bk
j
1,j

])
= ωiaj−1 ⊕ ωibj−1 , ∀1 < j ≤ k, is only zero

when iaj−1
= ibj−1

.

Lemma B.5. Let ω ∈ Ωfp , and let (A2, B2) ∈ Bω2 .
Let (A3, B3) = φω, ia2

, ib2
(A2, B2). Then (A3, B3) ∈ Bω3 if and only

if, (ia1 , ia2 , ib1 , ib2) ∈ I4 and satisfy:

ia1 + ib1 6= ia2 , ia1 + ib1 6= ib2 , ia1 + ib2 6= ia2 + ib1

and ω and (ia1 , ia2 , ib1 , ib2) jointly satisfy:

0 6=ωia2 ⊕ ωib2 ⊕ ωia1
+ib1 ⊕ ω2ia1 ,

0 6=ωia2 ⊕ ωib2 ⊕ ωia1
+ib1 ⊕ ω2ib1 .

4
The proof of Lemma B.5 has been left out given its similarity to the proof of
Lemma B.3.

Lemma B.6. Let Ak ∈ Aωk , where k > 1, then (Ak, A
−1
k) /∈ Bωk .

Proof. Given that Ak
2
1 =

(
A−1k

)2
1
⇒ ia1 = ib1 then the requirement of

Lemma B.4 is not satisfied.

For k = 2, any pair of jointly superregular lower triangular Toeplitz matrices
are also product preserving. Lemma B.7 lists necessary and sufficient conditions
for product preserving jointly superregular lower triangular Toeplitz matrices
for the case of k = {3, 4}. The proof of said lemma has been left out because
of its similarity to the proof of Lemma B.3.

Lemma B.7. Let ω ∈ Ωfp .

i) Let (A3, B3) ∈ Bω3 . Then (A3, B3) ∈ Cω3 if and only if, ω

and (ia1 , ia2 , ib1 , ib2) jointly satisfy:

0 6=ωia2 ⊕ ωib2 ⊕ ωia1+ib1 , 0 6= ωia2 ⊕ ωib2 ⊕ ωia1+ib1 ⊕ ω2ia1 ⊕ ω2ib1 .

ii) Let (A4, B4) ∈ Bω4 . Then (A4, B4) ∈ Cω4 if and only if, ω

and (ia1 , . . . , ia3 , ib1 , . . . , ib3) jointly satisfy:

0 6=ωib1+ia3 ⊕ ωib3+ia1 ⊕ ωia1+ia3 ⊕ ωib2+2ia1

⊕ ω2ib1+ia2 ⊕ ω2ib2 ⊕ ω2ib1+2ia1 ⊕ ω2ia2

⊕ ωib1+ib3 ⊕ ωib1+ib2+ia1 ⊕ ωib1+ia1
+ia2 ,

0 6=ωia3 ⊕ ωib3 ⊕ ωib1+ia2 ⊕ ωib2+ia1 ⊕ ωib1+2ia1

⊕ ω2ib1+ia1 ⊕ ω3ib1 ⊕ ω3ia1 ,

0 6=ωia3 ⊕ ωib3 ⊕ ωib1+ia2 ⊕ ωib2+ia1 .

4

80

4. Greedy algorithm

4 Greedy algorithm

In this section we provide a greedy algorithm for constructing an m×m super-
regular lower triangular Toeplitz matrix. The algorithm is listed in Algorithm 1
on the following page. The search starts at k = 1 with Ak = 1 and iterates over
all possible values of ik, except the last element. At each step, the matrix Ak is
extended using the φ-operator and ik. If the newly extended matrix is found to
be superregular, the algorithm increments k and continues to extend the new
matrix. The last element, 2p−1, is excluded since ω0 = ω2p−1, where ω ∈ Ωfp .
The search continues until the matrix is extended into an m×m superregular
matrix. Backtracking is required if the algorithm reaches ik = 2p − 2, k < m

and the extended matrix is not superregular. In such a case k is decremented
and the search continues with the next ik. No matrix is found if the field
size is not sufficiently large. However, if the field size is sufficiently large then
the algorithm is guaranteed to find an m × m superregular lower triangular
Toeplitz matrix. Our implementation requires less than 230 ms to find a 9× 9

superregular lower triangular Toeplitz matrix over GF(28), when running on an
Intel I5-2415M 2.3 GHz. Our experiments show that backtracking is required
to produce a matrix of size 10× 10 over the field GF(28).

Ak(Ak) ,
{
Ak

j1,...,js
l1,...,ls

∈ [GF(2p)]
s×s

: s = 2, . . . , k − 1, 1 ≤ j1 < . . . < js = k,

1 = l1 < . . . < ls ≤ k, jt ≥ lt,∀t
}

(B.4)

5 Theoretical Symbol Loss Probability

Any erasure correcting or network code should be able to recover as many
source symbols as possible, i.e., the performance metric is not the rank but
the number of decoded source symbols. That is, we consider the probability of
losing a source symbol, averaged over all symbols, to be a proper performance
metric of a given network code. The reasoning behind this performance metric
is that it is only the recovered symbols that are usable, regardless of the rank.

Let C be an n×k coding matrix over some field GF(q). The rows of C are the
coding vectors for the packets that will be transmitted on the network. A packet
transmission may succeed or result in an erasure, and these two outcomes are
modeled by 1 and 0, respectively. Let r be the number of links in the logical
network. Then the set Vn,r , {v1, . . . , v2nr ∈ {0, 1}n×r} contains all possible
combinations of success and erasure for all independent packet receptions. For
example, in a single hop network as shown in Fig. B.3a r = 1, and in a multi
hop network as shown in Fig. B.3b then r = 3. Let W ∈ Vn,r be the indicator
matrix which contains a zero at element (i, j) if the (i, j)’th packet is erased
and a 1 otherwise. We now introduce T (x,C,W) ∈ {0, 1}, which denotes the

81

Paper B.

Algorithm 1 Greedy search with backtracking for an m × m superregular
lower triangular Toeplitz matrix.
Input: m ≥ 2, ω ∈ Ωfp , A1 = 1, il = 0∀l, k = 1

1: while k < m do
2: while ik < 2p − 1 do
3: Ak+1 := φω, ik (Ak)

4: Define Ak+1 using (B.4) and Ak+1

5: if @A′ ∈ Ak+1 such that det(A′) = 0 then
6: k := k + 1

7: go to 1
8: end if
9: ik := ik + 1

10: end while
11: if k = 2 then
12: return Insufficient field size
13: else
14: ik := 0, ik−1 := ik−1 + 1, k := k − 1

15: go to 2
16: end if
17: end while
18: return Ak

sink’s ability to decode the x’th symbol given C and W , where x ∈ {1, . . . , k}.
That is, T (x,C,W) determines whether or not it is possible for the sink to
decode the x’th symbol, when receiving the packets from C, where successful
reception is specified by the elements of W .

Lemma B.8. Let e ∈ [0, 1]r be the erasure probability of the r logical links,
assuming i.i.d. erasures, and let W ∈ Vn,r be the indicator matrix. Then the
probability of W occurring is

P (W |e) =
n∏
i=1

r∏
j=1

(1− ej)1 [Wi,j = 1] + ej1 [Wi,j = 0] .

4

Proof. It follows easily from the i.i.d. assumption that the probability of W
occurring is the product of the probabilities of erasure and successful reception
on all links.

Lemma B.9. Let C ∈ GF(q)n×k and e ∈ [0, 1]r. Then the average (across all

82

5. Theoretical Symbol Loss Probability

A B
e

(a)

A R Be1 e2

e3

(b)

Fig. B.3: (a) single hop network with two nodes. (b) recoding network with three nodes,
multiple paths and hops. Source (A), Relay (R), and Sink (B).

symbols) probability of a symbol not being decodable is given by

PL(C|e) = 1− 1

k

k∑
x=1

 ∑
W∈Vn,r

T (x,C,W)P (W |e)

︸ ︷︷ ︸

p1︸ ︷︷ ︸
p2

. (B.5)

4

Proof. First p1 sums all the probabilities for combinations ofW where the x’th
symbol is decodable. The result of p1 is the probability that the x’th symbol
is decodable. Then p2 sums for all symbols and the result is normalized. This
gives the average probability that a symbol is decodable. Finally, the proba-
bility of decoding a symbol is subtracted from one, to provide the probability
that a symbol is not decodable.

The exact symbol loss probability for any static code, where erasures are
assumed to be i.i.d., is then given by PL(C|e). Since (B.5) is valid for any static
code it is naturally applicable to the three types of codes based on superregular
lower triangular Toeplitz matrices. However, it is not applicable to random
based codes. T (x,C,W) can be evaluated by trying all combinations, but for
a large nr this may become non-trivial.

The following six superregular matrices over GF(28) are used throughout
the rest of the paper. When k is smaller than the matrix dimension, e.g., for a
superregular 10×10 matrix such as (B.6) and k < 10, then the upper-left k×k
submatrices is used. The matrices (B.8) and (B.9) are jointly superregular,

83

Paper B.

and (B.10) and (B.11) are also product preserving.

A10 = ψω (1, 0, 0, 3, 5, 10, 36, 86, 83) (B.6)
A′10 = ψω (125, 35, 109, 219, 83, 177, 191, 39, 23) (B.7)
A7 = ψω (6, 0, 0, 4, 136, 133) (B.8)
A′7 = ψω (7, 2, 3, 11, 77, 157) (B.9)
A6 = ψω (0, 2, 5, 0, 15) (B.10)
A′6 = ψω (1, 0, 4, 9, 30) (B.11)

5.1 Single Hop Network

We now consider a single hop network with two nodes: source A and sink B. The
topology is shown in Fig. B.3a. Given that the source transmits data with a rate
of 1/2 and that there is only a single sink, then r = 1 and n = 2k. Table B.1 lists
the polynomial coefficients for the closed-form expressions of (B.5) evaluated
for 1 ≤ k ≤ 10 using superregular lower triangular Toeplitz matrices, such
as (B.6). The polynomials are of degree n and the coefficients for the first and
zero orders are equal to zero. The degree is n since the n rows results in n

packets transmitted over the link. The theoretical symbol loss probability is
shown with solid lines in Fig. B.4a.

For codes with rate 1/3, then n = 3k. Table B.2 lists the polynomial co-
efficients for the closed-form expressions of (B.5) evaluated for 1 ≤ k ≤ 7

using (B.8) and (B.9). The polynomials are of degree n and the coefficients for
the second, first and zero orders are zero. The theoretical symbol loss prob-
ability is shown with solid lines in Fig. B.4b. Both sets of theoretical symbol
loss probabilities are compared to simulations and experimental results in the
appropriate sections.

5.2 Recoding Network

The second network consists of three nodes, in order to allow for recoding to
take place at an intermediate node. The source use (B.10) for encoding and
the relay use (B.11) for recoding. Note that our relay only performs recoding
if the packet received from the source increases the rank. That is, the relay
recodes at most k packets. The topology is shown in Fig. B.3b. Erasures
are i.i.d. on the three links. We have considered two sets of erasure probabilities
in order to examine the theoretical symbol loss probability of the network.
The Sections 5.2 and 5.2, we present the exact symbol loss probability given
some e, for the case of k = {1, 2}, in these cases (B.10) and (B.11) have
optimal decoding capabilities. For k ≥ 3 the product preserving property is not
sufficient for optimality for the network shown in Fig. B.3b. Thus, the matrices
in (B.10) and (B.11) do not achieve optimal decoding capabilities in these cases.

84

5. Theoretical Symbol Loss Probability

Table B.1: Polynomial coefficients for the closed-form expression of (B.5) for k ≤ 10, n = 2k,
and r = 1 using superregular lower triangular Toeplitz matrices.

k PL(C|e) coefficients
1 1

2 −1, 3
2
,
1

2

3 2,−5, 8
3
, 1,

1

3

4 −5, 35
2
,−39

2
, 5, 2,

3

4
,
1

4

5 14,−63, 104,−70, 48
5
, 4,

8

5
,
3

5
,
1

5

6 −42, 231,−1505

3
, 525,−730

3
,
56

3
, 8,

10

3
,
4

3
,
1

2
,
1

6

7 132,−858, 2304,−3234, 2430,−837, 256
7
, 16,

48

7
,
20

7
,
8

7
,
3

7
,
1

7

8 −429, 6435
2

,−20559

2
, 18018,−18459, 42735

4
,

−11515

4
, 72, 32, 14, 6,

5

2
, 1,

3

8
,
1

8

9 1430,−12155, 134992
3

,−94380, 365288
3

,−292292

3
,

45472,−29854

3
,
1280

9
, 64,

256

9
,
112

9
,
16

3
,
20

9
,
8

9
,
1

3
,
1

9

10 −4862, 46189,−194337, 474045,−3677388

5
, 746460,−2436588

5
,

947232

5
,−173286

5
,
1408

5
, 128,

288

5
,
128

5
,
56

5
,
24

5
, 2,

4

5
,
3

10
,
1

10

All the polynomials are of degree 5k, since the 3k rows result in 2k packets
being transmitted from the source to both the relay and the sink. The relay
may then also transmit k packets to the sink, and since erasures are i.i.d., the
degree is the sum of transmitted packets, where the source’s packets are counted
twice as they are transmitted on two logical links. The theoretical symbol loss
probabilities are compared to that obtained by simulations in Section 7.

85

Paper B.

Table B.2: Closed-form expression of (B.5) for k ≤ 7, n = 3k, and r = 1 using two jointly
superregular lower triangular Toeplitz matrices.

k PL(C|e) coefficients
1 1

2 −2, 5
2
, 0,

1

2

3 7,−16, 28
3
,−4

3
,
5

3
, 0,

1

3

4 −30, 99,−110, 93
2
,−12, 7,−1, 5

4
, 0,

1

4

5 143,−616, 1001,−752, 1397
5

,−88, 186
5
,−48

5
,
28

5
,−4

5
, 1, 0,

1

5

6 −728, 7735
2

,−24752

3
,
53755

6
,−15820

3
,
3731

2
,−1880

3
,
1397

6
,

−220

3
, 31,−8, 14

3
,−2

3
,
5

6
, 0,

1

6

7 3876,−24480, 64600,−91824, 75990,−38080, 92515
7

,−4520,

1599,−3760

7
,
1397

7
,−440

7
,
186

7
,−48

7
, 4,−4

7
,
5

7
, 0,

1

7

Equal Erasure Probability

In order to investigate the simplest scenario, the three erasure probabilities are
equal, i.e., e1 = e2 = e3 = e. Let n = 3k, r = 3 and the encoding and recoding
matrices be product preserving jointly superregular lower triangular Toeplitz.
Let k = 1, then

PL(C|e) = −e5 + e4 + e3.

Let k = 2, then

PL(C|e) = −4e10 +
23

2
e9 − 7e8 − 5e7 + 3e6 +

3

2
e5 +

1

2
e4 +

1

2
e3.

The theoretical symbol loss probabilities are shown with solid lines in Fig. B.5a.

Unequal Erasure Probability

In order to investigate a scenario where recoding is favorable, the erasure prob-
abilities of the links to and from R are decreased, that is 2e1 = 3e2 = e3 = e.
Let n = 3k, r = 3 and the encoding and recoding matrices be product preserv-

86

6. Theoretical Symbol Delay

ing jointly superregular lower triangular Toeplitz. For k = 1, then

PL(C|e) = − 1

12
e5 +

1

4
e4 +

1

3
e3,

and for k = 2, then

PL(C|e) = − 1

36
e10 +

17

96
e9 − 1

4
e8 − 65

288
e7 +

3

16
e6 +

5

12
e5 +

1

8
e4 +

1

6
e3.

The theoretical symbol loss probability is shown with solid lines in Fig. B.5b.

6 Theoretical Symbol Delay

We introduce TDB
(x,C,W) ∈ {0, . . . , nk (k − x + 1)}, which denotes the num-

ber of packets transmitted from the encoder, and possibly recoders, that
are needed before the x’th symbol is decoded at the sink given C and W ,
where x ∈ {1, . . . , k}. We further define TDB

(x,C,W) = 0 if the x’th symbol
is not decodable given C and W . We use this definition of symbol delay since
it makes it clear that the rate of a code will also have an effect on the delay,
and the fact that transmission of redundant packets is not free in terms of
bandwidth.

Lemma B.10. Let C ∈ GF(q)n×k and e ∈ [0, 1]r. Then the average (across
all decodable symbols) symbol delay is then

SD(C|e) =

∑k
x=1

(∑
W∈Vn,r

TDB
(x,C,W)P (W |e)

)
∑k
x=1

(∑
W∈Vn,r

TLB
(x,C,W)P (W |e)

) . (B.12)

Proof. The numerator sums the amount of delay all received symbols endure,
weighted by the probability of those delays occurring. The denominator sums
the number of decodable symbols weighted by the probability of those symbols
being decodable.

Similar to the PL(C|e) for the symbol loss probability, SD(C|e) yields the
exact symbol delay for any static coding matrix, where erasures are assumed
to be i.i.d. Thus, it is also applicable to the three types of codes based on
superregular lower triangular Toeplitz matrices, but again it is not applicable
to random based codes.

Eq. (B.12) can be evaluated in closed-form for the single hop network (r=1).
Table B.3 lists the closed-form expressions of (B.12) evaluated for 1 ≤ k ≤ 4

using a superregular lower triangular Toeplitz matrix, i.e., n = 2k. When
using two jointly superregular lower triangular Toeplitz matrices (n = 3k) the
closed-form expressions of (B.12) for k = 1 is

SD(C|e) =
3e2 + 2e+ 1

e2 + e+ 1
,

87

Paper B.

Table B.3: Closed-form expression of (B.12) for k ≤ 4, n = 2k, and r = 1 using a superreg-
ular lower triangular Toeplitz matrix.

k SD(C|e)

1
2e+ 1

e+ 1

2 2
3e3 − 2e2 − 2e− 1

2e3 − e2 − 2e− 2

3
24e5 − 40e4 + 4e3 + 8e2 + 6e+ 3

6e5 − 9e4 − e3 + 2e2 + 3e+ 3

4 2
50e7 − 133e6 + 92e5 + 7e4 − 7e3 − 6e2 − 4e− 2

20e7 − 50e6 + 28e5 + 8e4 − 3e2 − 4e− 4

for k = 2 is

SD(C|e) =
18e5 − 8e4 − 5e3 − 6e2 − 4e− 2

4e5 − e4 − e3 − 2e2 − 2e− 2
,

and for k = 3 is

SD(C|e) =
126e8 − 183e7 + 23e6 − 2e5 + 16e4 + 10e3 + 9e2 + 6e+ 3

21e8 − 27e7 + e6 − 3e5 + 2e4 + 2e3 + 3e2 + 3e+ 3
.

7 Simulation Results

This section covers the setup of the simulations and presents the results. In
order for the theoretical and simulated results to be comparable, all erasures
are i.i.d. and no retransmissions are made. We compare our simulation results
with the theoretical analysis of the symbol loss probability and the symbol delay
for both the single hop and recoding networks. A Monte Carlo simulation of the
two networks is conducted for different values of k. For each k the simulation
is run with the erasure probabilities e ∈ {0.05, 0.10, . . . , 0.95}. Each (k, e)-
pair is simulated with 10 × 106 repetitions. The region of interest is defined
as 0 ≤ e ≤ 1− r, where r is the rate of the code.

88

7. Simulation Results

Table B.4: The largest absolute differences (percentage points) using the single hop network.
Gray indicate RLNC.

Rate Type Theoretical Superregular

1/2

Simulation
0.029, k = 6, e = 0.60

0.102, k = 1, e = 0.70 0.098, k = 1, e = 0.50

Experiments
1.467, k = 6, e = 0.31

1.412, k = 6, e = 0.31 0.055, k = 6, e = 0.31

1/3

Simulation
0.023, k = 3, e = 0.75

0.117, k = 1, e = 0.70 0.116, k = 1, e = 0.65

Experiments
0.511, k = 4, e = 0.31

0.490, k = 4, e = 0.31 0.021, k = 4, e = 0.31

7.1 Random Linear Network Coding

We focus on the field GF(28), since its elements fit perfectly into a single byte.
Thus, a field of this size eases the implementation of Galois field arithmetic
and facilitates a high efficiency. Specifically, we use the primitive polynomial

fp(ω) = ω8 + ω4 + ω3 + ω2 + 1,

where

ω ∈ Ωfp = {2, 4, 16, 29, 76, 95, 133, 157}.

In this section, we compare the performance of the superregular lower tri-
angular Toeplitz matrices with the performance of lower triangular RLNC. A
lower triangular RLNC code is generated by choosing the coding coefficients at
random, using an uniform distribution on all elements of the field [14]. That is,
using the field GF(28) a coding coefficient is set to zero with probability 2−8.
Another approach could be to exclude the zero element of the field when gen-
erating coding coefficients. This would produce slightly different results, and
the effect is not covered in this paper.

7.2 Symbol Loss Probability

For the single hop network the simulation is conducted with k ∈ {1, . . . , 10}
for codes with rate 1/2 and with k ∈ {1, . . . , 7} for codes with rate 1/3. In
Fig. B.4a, the simulated results when using a superregular lower triangular
Toeplitz matrix and RLNC is shown with ◦ and + respectively. Fig. B.4b
shows the symbol loss probability for the case of rate 1/3 codes. The largest
absolute differences between the theoretical and simulation results (for both
superregular matrices and RLNC) are listed in Table B.4. In all cases the
superregular matrices are favorable over RLNC.

Simulations of the recoding network use codes with k ∈ {1, . . . , 6}. In
Fig. B.5a (equal erasure probability) and B.5b (unequal erasure probability)

89

Paper B.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

e

P
L
(C

|e
)

Theoretical, k = 3

Theoretical, k = 6

Theoretical, k = 10

Simulated
Simulated, RLNC
Experimental
Experimental, RLNC

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.005

0.01

e

P
L
(C

|e
)

Theoretical, k = 2

Theoretical, k = 4

Theoretical, k = 7

Simulated
Simulated, RLNC
Experimental
Experimental, RLNC

(b)

Fig. B.4: Symbol loss probability for the single hop network when using: (a) superregular
lower triangular Toeplitz matrices (n = 2k), (b) two jointly superregular lower triangular
Toeplitz matrices (n = 3k).

the simulated results when using product preserving jointly superregular lower
triangular Toeplitz matrices and RLNC are shown with ◦ and + respectively.
For the case of unequal erasure probability, the product preserving jointly su-
perregular lower triangular matrices are favorable for all the tested values of k
and e. The largest absolute differences between the theoretical and simulation
results (for both product preserving jointly superregular matrices and RLNC)
are listed in Table B.5. For each of the absolute differences the superregular
matrices are the favorable coding matrices.

90

7. Simulation Results

Table B.5: The largest absolute differences (percentage points) using the recoding network.
Gray indicate RLNC.

e Theoretical Superregular

Equal
0.015, k = 6, e = 0.65

0.125, k = 1, e = 0.55 0.128, k = 1, e = 0.55

Unequal
0.013, k = 2, e = 0.80

0.738, k = 6, e = 0.90 0.733, k = 6, e = 0.90

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.005

0.01

0.015

e

P
L
(C

|e
)

Theoretical, k = 1

Theoretical, k = 2

Theoretical, k = 4

Theoretical, k = 6

Simulated
Simulated, RLNC

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.002

0.004

0.006

e

P
L
(C

|e
)

Theoretical, k = 1

Theoretical, k = 2

Theoretical, k = 4

Theoretical, k = 6

Simulated
Simulated, RLNC

(b)

Fig. B.5: Symbol loss probability for the recoding network when using product preserv-
ing jointly superregular lower triangular Toeplitz matrices and RLNC. (a) equal erasure
probability, (b) unequal erasure probability.

91

Paper B.

7.3 Symbol Delay

For the single hop network the symbol delay simulations are conducted
with k ∈ {1, . . . , 10} for codes with rate 1/2 and with k ∈ {1, . . . , 7} for codes
with rate 1/3. Fig. B.7 compares our simulation results with the theoretical anal-
ysis of the symbol delay. Fig. B.7a compares the rate 1/2 codes and Fig. B.7b
compares the rate 1/3 codes. From the figures it is evident that the theoret-
ical and simulated symbol delay coincide. The codes based on superregular
matrices outperform RLNC in all tested scenarios where k > 1.

There exists a trade-off between symbol loss probability and delay. For ex-
ample, with a systematic code the symbol delay can be minimized by adjusting
the code parameters such that the symbol loss probability is increased. Thus,
a code must be designed such that the symbol loss probability and delay match
the specifications of the application in question. Fig. B.6 shows the results (in
terms of symbol loss probability and delay) of simulating the single hop network
with two different codes, namely RLNC and a code based on a superregular
lower triangular matrix for k = 1. Both codes operate over GF(2). It can be
observed that RLNC provides a slightly lower symbol delay, while the symbol
loss probability is significantly higher.

1

1.1

1.2

1.3

D
el

ay

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

e

L
os

s
pr

ob
ab

il
it
y

RLNC loss
Superr. loss
RLNC delay
Superr. delay

Fig. B.6: Simulated symbol loss probability and delay for the single hop network when
using (B.6) and RLNC over GF(2) for k = 1.

92

8. Experimental Results

0 0.05 0.1 0.15 0.2 0.25 0.3
1

1.2

1.4

1.6

e

S
D
(C

|e
)

Theoretical, k = 3

Theoretical, k = 6

Theoretical, k = 10

Simulated
Simulated, RLNC
Experimental
Experimental, RLNC

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
1

1.2

1.4

e

S
D
(C

|e
)

Theoretical, k = 2

Theoretical, k = 4

Theoretical, k = 7

Simulated
Simulated, RLNC
Experimental
Experimental, RLNC

(b)

Fig. B.7: Symbol delay for the single hop network when using: (a) superregular lower
triangular Toeplitz matrices (n = 2k), (b) two jointly superregular lower triangular Toeplitz
matrices (n = 3k).

8 Experimental Results

In our experiments we use the same definition of RLNC as the one used in the
simulations, which is stated in Section 7.1. In order to produce comparable
results between both different values of k and the two coding methods, super-
regular matrices and RLNC, a number of channel models have been obtained.
The models are based on the N-state Markov model proposed by [27], and we
refer to this as the extended Gilbert model (EGM). The channel models are
obtained using a testbed consisting of two nodes (one transmitting and one
receiving) described in Table B.6. The nodes are connected using wires, in-
stead of using the normal antennas. This design seeks to eliminate external
noise sources and to ensure that the testbed produces consistent and repro-
ducible results. The nodes communicate using IEEE 802.11g in IBSS mode,

93

Paper B.

despite the wired connections. The transmitting node broadcasts packets us-
ing the highest data rate (54 Mbit/s). This ensures maximum capacity and
disables any retransmissions, since broadcast packets are never retransmitted.
Both the experiments and simulations could have included things like MAC-
layer retransmissions, link-layer coding or even packet aggregation. However,
these optional Wi-Fi enhancements were considered application specific and
not concise, e.g., how many retransmissions should be used? Which type
of code? and how many packets to aggregate? The erasures of the wire-
less channel are introduced by attenuating the signal, and thus decreasing the
signal–to–noise ratio (SNR). The obtained channel models produce average
erasure probabilities between 0.0207 and 0.9910, with a corresponding average
burst length of 1.0110 and 110.6940 packets.

8.1 Single Hop Network

Simulations of the single hop network are conducted where the quality of the
link between the nodes is based on the obtained EGM channel models. In
Fig. B.4a the experimental symbol loss probability (for rate 1/2 codes) when
using a superregular lower triangular Toeplitz matrix and RLNC are shown
with − and ×, respectively. Observing Fig. B.4a it becomes apparent that the
experimental results follow a trend similar to that of the theoretical and simu-
lated results. Fig. B.4b shows the symbol loss probability for codes with a rate
of 1/3. The largest absolute differences between the theoretical and experimen-
tal results (for both superregular matrices and RLNC) are listed in Table B.4.
The difference between the two methods is almost negligible, although the su-
perregular matrices produce a slightly lower symbol loss probability.

Table B.6: Details of the wireless nodes used in the experiments.

Type Name
CPU Intel Core i3-4170
OS Ubuntu Linux 15.10
Kernel Linux 4.4.11
WNIC Compex WLE600VX
WNIC driver ath10k
WNIC firmware 10.1.467 api 2

94

8. Experimental Results

8.2 Recoding Network

Our experiments with recoding at an intermediate node use the logical recoding
network shown in Fig. B.3b. In Fig. B.8 the result of three sets of experiments
are shown. All of the experiments are with k = 4. In the experiments, the
erasures on the links are modeled using the obtained EGM channel models.
For all three experiments, the erasure rate on the link between A and R is
fixed to e1 = 0.29 with an average burst length of 1.2941 packets. The direct
link, between A and B, is set to simulate three different EGM channel models.
The three models have the following erasure rates: 0.23, 0.81, and 0.91, with
corresponding average burst lengths of: 1.1899, 5.3234, and 14.4615. For the
last link all obtained EGM channel models are used. It is clear that the use of
a more advanced channel model shows different results, compared to a channel
with i.i.d. losses. Regardless of the channel model the use of product preserving
jointly superregular lower triangular Toeplitz matrices yields a lower symbol
loss probability compared to RLNC.

8.3 Coding Throughput

In [19] we showed that the combined encoding and decoding throughput is
significantly increased by using superregular lower triangular Toeplitz matrices
with several ones in the first column of the matrix. This gain is also valid
for (product preserving jointly) superregular lower triangular Toeplitz matrices
when compared to RLNC. Fig. B.9 shows the combined gain in encoding and
decoding throughput when using the matrices in (B.6) and (B.7) over lower
triangular RLNC. Additionally, Fig. B.9 also shows the gain when recoding is
performed using the matrices in (B.10) for encoding and (B.11) for recoding
over lower triangular RLNC with recoding.

The test procedure without recoding is as follows. A vector with 1500 ele-
ments is encoded using a single row of a superregular lower triangular Toeplitz
or random matrix. The coded vector is fed into the decoder, which then per-
forms Gaussian elimination. These two steps are performed until the decoder
is able to decode all k symbols. To ensure reliable results, the experiment is
repeated 200× 106 times, for each k. When all repetitions are completed, the
mean throughput is calculated. The throughput gain is calculated as the ratio
between the throughput when using a superregular matrix and the throughput
when using a random matrix. When recoding is included, the encoder feeds
the coded vector to a recoder which performs decoding (Gaussian elimination)
and recoding before feeding the new coded vector to the decoder, which also
performs Gaussian elimination. The experiment was carried out using a PC
described in Table B.6.

The gain without recoding is, as expected, identical for the two superregular
lower triangular Toeplitz matrices for k = 1 and k = 2. For these values of k

95

Paper B.

0 0.05 0.1 0.15 0.2 0.25 0.3
10−3

10−2

10−1

e1 = 0.29, e3 = 0.23

e1 = 0.29, e3 = 0.93

e1 = 0.29, e3 = 0.81

e2

P
L
(C

|e
) iid, Superregular

iid, RLNC
EGM, Superregular
EGM, RLNC

Fig. B.8: Simulated symbol loss probability when using product preserving jointly super-
regular lower triangular Toeplitz matrices and RLNC with k = 4 in the recoding network,
where the erasures are i.i.d. and based on the EGM channel models.

1 2 3 4 5 6 7 8 9 10
10

20

30

40

k

T
hr

ou
gh

pu
t

ga
in

[%
]

No recoding, (B.6)
No recoding, (B.7)
With recoding, (B.10) and (B.11)

Fig. B.9: Gain in coding throughput of (product preserving jointly) superregular lower
triangular Toeplitz matrices over lower triangular RLNC.

the two matrices require the same number of multiplications during encoding
and decoding. For k > 2 the gain using (B.6) is larger than using (B.7), as there
are fewer multiplications during encoding and decoding. Eq. (B.6) has ones in
at least one and in at most three diagonals (depending on k), whereas (B.7)
only has ones in the main diagonal. For k = 5 the gains are 42.3 % and 25.8 %
using (B.6) and (B.7), respectively.

The gain when recoding is performed is negligible for k = 1, but for k > 1

the gain is considerable. This is again due to a reduced number of multiplica-
tions. Eq. (B.10) has ones on the first two diagonals, and again on the fifth
diagonal, whereas, (B.11) has ones on the first and third diagonals. For k = 4

the gain is 44.4 % over a random based code.

96

8. Experimental Results

Table B.7: Number of operations for encoding and decoding. For k = 5 and a 5 × 1500
source data matrix

State Operation RLNC Eq. (B.6) Eq. (B.7)

Encoding
Addition 15058.3 15000 15000
Multiplication 22469.5 7500 15000

Decoding
forward

Subtraction 15049.5 15050 15050
Multiplication 22486.1 15050 21070
Inversion 14.9 10 14

Decoding
backward

Subtraction 58.6 0 0
Multiplication 116.6 0 0
Inversion 0.1 0 0

8.4 Coding Operations

As stated earlier, the gain in throughput comes mainly from fewer multipli-
cations and partly from fewer inversions during encoding and decoding. Ta-
ble B.7 lists the number of operations needed when encoding and decoding
using (B.6), (B.7) and RLNC, for k = 5 and a 5×1500 source data matrix. For
RLNC, the number of operations is calculated by counting and averaging the
number of operations used in the simulations described in the previous section.
Furthermore, for RLNC both forward and backward substitution are required
when decoding, due to the possibility of linear dependency of the rows. It is,
however, clear from Table B.7 that the computational effort lies in the forward
substitution part of the decoding process.

Encoding

The number of additions during encoding for the three methods are com-
parable. However, the three methods require significantly different num-
bers of multiplications. For RLNC all matrix elements are larger than
one, with probability 253/254, thus the number of multiplications is approxi-
mately 15 · 1500 = 22500. The probability that elements are either one or
zero slightly reduces the number of operations. On the other hand, the num-
ber of operations is increased by the probability of linear dependency, and the
subsequent cost of encoding additional rows.

Both superregular lower triangular Toeplitz matrices each have 15 non-
zero matrix elements. The matrix defined in (B.7) only has ones on the
diagonal, so (15 − 5) · 1500 = 15000 multiplications have to be performed.
Using the other superregular matrix, which in total has 10 ones, requires
just (15− 10) · 1500 = 7500 multiplications.

97

Paper B.

Decoding

When decoding, Gaussian elimination must be performed on both the coded
data and the coding matrix. This is equivalent to concatenating the two ma-
trices and putting the coding matrix part in reduced row echelon form. That
is, during decoding, each row has 5 + 1500 = 1505 elements. This decoding
procedure is preferred over multiplying by the inverse of the coding matrix for
two reasons. First of all, in a practical implementation, Gaussian elimination
is used when a packet is received from the network to reduce the latency, as
opposed to waiting for a full rank matrix and then inverting and decoding.
Secondly, this procedure eliminates the potential need for using the pseudo
inverse, when the number of received code words is larger than k.

The number of subtractions for the three methods are, like the number of
additions during encoding, quite similar. However, the number of multipli-
cations are very different. For RLNC the number of multiplications during
encoding and decoding are nearly the same, simply because the matrix ele-
ments have a high probability of being larger than one. By the same token,
the number of inversions is nearly equal to the number of elements. Backward
substitution requires little to no effort, compared to forward substitution.

The number of ones in the two superregular lower triangular Toeplitz matri-
ces also has an effect on the decoding process. Eq. (B.6) needs 10·1505 = 15050

multiplications, which also corresponds to the number of inversions, 10,
whereas (B.7) needs 14 · 1505 = 21070 multiplications, which then corresponds
to the number of inversions, 14.

9 Discussion

It is clear that the theoretical and simulated (with i.i.d. erasures) symbol
loss probabilities and symbol delays coincide, when using (product preserving
jointly) superregular lower triangular Toeplitz matrices. It is also clear from
the simulations with i.i.d. erasures that the difference in symbol loss probabili-
ties and symbol delays between (product preserving jointly) superregular lower
triangular Toeplitz matrices and RLNC are, for the most part, negligible. As
expected, erasures are not i.i.d. on a real channel, so the simulated (with i.i.d.
erasures) and theoretical symbol loss probabilities and symbol delays do not
coincide with the simulated (with EGM channel models) symbol loss proba-
bilities and symbol delays. However, they do follow similar trends. Finally,
simulated (with EGM channel models) symbol loss probabilities and symbol
delays for superregular lower triangular Toeplitz codes are comparable to those
of RLNC, but it is also visible that there is a small gain by using (product
preserving jointly) superregular lower triangular Toeplitz matrices over RLNC.

98

10. Conclusions

10 Conclusions

In this paper we have presented both explicit matrix constructions and a greedy
search algorithm for superregular lower triangular Toeplitz matrices. We have
defined two matrix attributes for lower triangular matrices, namely joint su-
perregularity and product preserving joint superregularity, and we extended our
explicit matrix constructions to include these two cases. We motivated the use
of (product preserving) jointly superregular matrices, in general, with use-cases
such as intermediate recoding and codes with a rate greater than or equal to 1/3.
In both cases, optimal decoding capabilities are of great interest. Furthermore,
we also showed several general attributes of (jointly) superregular matrices

We provided a general method for deriving the exact symbol loss probability
when encoding (and recoding) with (product preserving) jointly superregular
lower triangular Toeplitz matrices using an erasure channel with i.i.d. erasures.
We also provided the exact symbol loss probability for a large number of dif-
ferent scenarios, code rates, and values of k.

We then extended our theoretical analysis to the exact symbol delay for any
static code using an erasure channel with i.i.d. erasures. Moreover, we used the
single hop network to exemplify the exact symbol delay for two different code
rates and different values of k.

In all simulated scenarios, (product preserving jointly) superregular lower
triangular Toeplitz coding matrices were found to be favorable compared to
RLNC for all the tested values of k (except for the symbol delay when k = 1)
within the region of interest. That is, all three types of block codes using
superregular matrices produced a lower average symbol loss probability than
RLNC, with or without recoding and regardless of the rate.

We also showed that the encoding and decoding performance is greatly im-
proved by using superregular lower triangular Toeplitz matrices with several
ones. The coding throughput is increased by 42.3 % without recoding (k = 5)
and by 44.4 % with recoding (k = 4), simply by reducing the number of mul-
tiplications and to some degree the number of inversions.

A Proof of Lemma B.3

i) Since ωi1 6= 0 then A2 is always superregular.

ii) The determinants of the proper submatrices of A3 are: ωi1 and ω2i1⊕ωi2 ,
where ωi1 6= 0. Since ω is primitive, ωi 6= ωj , if (i, j) ∈ I2, i 6= j.
Thus, ω2i1 ⊕ ωi2 6= 0⇔ 2i1 6= i2 (modulo 2p − 1).

iii) We only need to check the determinants of the proper submatrices that in-
clude the new element ωi3 . Since ω is primitive, it is easy to obtain (B.1).

99

References

iv) It is easy to obtain the determinant expressions of the proper sub-
matrices that include the new element ωi4 . These expressions con-
tain terms in the form ωi ⊕ ωi. Since arithmetic operations are
wrt. GF(2p), ωi ⊕ ωi = 0,∀ω,∀i, and we obtain (B.2) and (B.3). �

References

[1] S. A. Hosseini, Z. Lu, G. de Veciana, and S. S. Panwar, “SVC-Based Multi-
User Streamloading for Wireless Networks,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 8, pp. 2185–2197, August 2016.

[2] S. Hahm, P. Kang, H. Bang, and H. Yeon, “Dynamic media buffer control
scheme for seamless streaming in wireless local area networks,” IEEE Wire-
less Communications and Networking Conference Workshops, pp. 109–114,
2016.

[3] M. Muntner and J. Wolf, “Predicted performance of error-control tech-
niques over real channels,” IEEE Transactions on Information Theory,
vol. 14, no. 5, pp. 640–650, September 1968.

[4] X. Chen, N. Ren, X. Zhang, X. Wang, and J. Zhao, “SonicStream: A
network coding based live P2P media streaming system with rich user
experiences,” Journal of Communications and Networks, vol. 10, no. 4,
pp. 430–436, December 2008.

[5] J. H. Sørensen, P. Popovski, and J. Østergaard, “Delay Minimization
in Real-Time Communications With Joint Buffering and Coding,” IEEE
Communications Letters, vol. 21, no. 1, pp. 52–55, January 2017.

[6] A. Majumda, D. G. Sachs, I. V. Kozintsev, K. Ramchandran, and M. M.
Yeung, “Multicast and unicast real-time video streaming over wireless
LANs,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, no. 6, pp. 524–534, 2002.

[7] P. Elias, “Coding for noisy channels,” IRE Convention Records Part 4, pp.
37–46, 1955.

[8] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[9] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, July 2000.

100

References

[10] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, “Network Coding Meets TCP: Theory and Implementa-
tion,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512, 2011.

[11] J. Hansen, J. Krigslund, D. E. Lucani, and F. H. P. Fitzek, “Sub-Transport
Layer Coding: A Simple Network Coding Shim for IP Traffic,” IEEE 80th
Vehicular Technology Conference, pp. 1–5, 2014.

[12] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the Air: Practical wireless network coding,” IEEE/ACM Trans-
actions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[13] P. Pahlevani, D. Lucani, M. Pedersen, and F. Fitzek, “PlayNCool: Oppor-
tunistic network coding for local optimization of routing in wireless mesh
networks,” IEEE Globecom Workshops, pp. 812–817, December 2013.

[14] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[15] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” ACM SIGCOMM Com-
puter Communication Review, vol. 37, no. 4, pp. 169–180, August 2007.

[16] J. Krigslund, J. Hansen, M. Hundebøll, D. Lucani, and F. Fitzek, “CORE:
COPE with MORE in Wireless Meshed Networks,” IEEE 77th Vehicular
Technology Conference, June 2013.

[17] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430, Oc-
tober 2006.

[18] J. Heide, M. Pedersen, F. Fitzek, and M. Médard, “On Code Parameters
and Coding Vector Representation for Practical RLNC,” IEEE Interna-
tional Conference on Communications, pp. 1–5, June 2011.

[19] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “On the Construc-
tion of Jointly Superregular Lower Triangular Toeplitz Matrices,” IEEE
International Symposium on Information Theory, pp. 1–5, July 2016.

[20] A. Paramanathan, P. Pahlevani, S. Thorsteinsson, M. Hundebøll, D. E.
Lucani, and F. H. P. Fitzek, “Sharing the Pi: Testbed Description and
Performance Evaluation of Network Coding on the Raspberry Pi,” IEEE
79th Vehicular Technology Conference, 2014.

101

References

[21] R. Roth and A. Lempel, “On MDS codes via Cauchy matrices,” IEEE
Transactions on Information Theory, vol. 35, no. 6, pp. 1314–1319, Novem-
ber 1989.

[22] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS
convolutional codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 584–598, February 2006.

[23] M. Aissen, I. Schoenberg, and A. Whitney, “On the generating functions
of totally positive sequences I,” Journal d’Analyse Mathématique, vol. 2,
no. 1, pp. 93–103, 1952.

[24] P. Almeida, D. Napp, and R. Pinto, “A new class of superregular matrices
and MDP convolutional codes,” Linear Algebra and its Applications, vol.
439, no. 7, pp. 2145–2157, 2013.

[25] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal, “Strongly MDS
convolutional codes, a new class of codes with maximal decoding capa-
bility,” IEEE International Symposium on Information Theory, January
2002.

[26] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with maxi-
mum column sum rank for network streaming,” IEEE International Sym-
posium on Information Theory, pp. 2271–2275, June 2015.

[27] V. K. Varma, “Testing speech coders for usage in wireless communications
systems,” IEEE Workshop on Speech Coding for Telecommunications, pp.
93–94, 1993.

102

Paper C

On Superregular Matrices and Convolutional Codes with
Finite Decoder Memory

Jonas Hansen, Jan Østergaard, Johnny Kudahl, and John H.
Madsen

The paper has been submitted to the
IEEE 87th Vehicular Technology Conference, 2018.

Paper C.

c© 2017 the authors
Copyright will be transferred to IEEE upon acceptance

104

1. Introduction

Abstract

In this paper, we present explicit code constructions for a family of (n, k, δ)

convolutional codes with optimum distance profiles. The family of convolu-
tional codes is obtained from sets of jointly superregular matrices. For the case
of finite decoder memory, we evaluate the performance of the constructed codes
in terms of both symbol loss probability and symbol delay. We then present a
combinatorial method to calculate the exact symbol loss probability and sym-
bol delay for each symbol individually. We compare the symbol loss probability
for two specific systematic convolutional codes for the cases where the sink has
infinite or finite memory. Finally, we compare the performance of our convo-
lutional codes with optimum distance profile and random based convolutional
codes.

1 Introduction

It was shown in [1] that any dense superregular matrix can be used to construct
a systematic maximum distance separable (MDS) block code. A lower triangu-
lar matrix is considered superregular, if and only if all of its proper submatrices
are non-singular [2]. The authors of [2] showed that an MDS convolutional code
can be constructed from superregular lower triangular Toeplitz matrices. In [3],
a new class of lower block triangular matrices that are superregular over a suf-
ficiently large field was presented. An upper bound on the minimum finite field
size such that a superregular matrix of a given size can exist over that field
was shown in [4]. In [5], the authors presented constructions of convolutional
codes that attain the maximum possible distance for some fixed parameters of
the code, that is, the rate and the Forney indices. One of the benefits of con-
volutional codes [6] is their remarkable ability to recover from burst losses [7],
however, this ability of course depends on the parameters of the code. Hence,
convolutional codes are appropriate for streaming, given the bursty nature of
modern wireless networks.

In this work we provide explicit code constructions for (n, k, δ) convolutional
codes with memory v and optimum distance profile (ODP) [8]. Specifically, we
show that these codes can be constructed from sets of jointly superregular
matrices. We show that a set of jointly superregular matrices can be obtained
using an algorithm similar to the one showed in [9]. Finally, we present a
method to calculate the symbol loss probability and symbol delay, and use this
to show the effect of using finite decoder memory.

105

Paper C.

2 Jointly Superregular Matrices

Let Ωfp denote the set of roots of a primitive polynomial fp, which gener-
ates F2p . Let Ik , {i1, . . . , ik : ij ∈ F2p , ij 6= 2p − 1, ∀j}. Let Ψ(i1, . . . , ik)

be a k × k lower triangular Toeplitz matrix with the first column given
by [i1, . . . , ik]

T . Let ψω(i1, . . . , ik−1) = Ψ(1, ωi1 , . . . , ωik−1) be a k × k lower
triangular Toeplitz matrix with ones on the main diagonal and all non-zero
elements below the diagonal. Let ω ∈ Ωfp and let Aωk denote the set of all k×k
superregular lower triangular Toeplitz matrices given by ψω(i1, . . . , ik−1),
where (i1, . . . , ik−1) ∈ Ik−1.

In [1], the authors defined a matrix to be superregular if and only if ev-
ery square submatrix is non-singular. A lower triangular matrix is defined
in [2, Definition 3.3] to be superregular if and only if every proper submatrix
is non-singular. The definition of a proper submatrix is as follows. Let A be
a k×k lower triangular matrix. Let A′ = Aj1,...,jrh1,...,hr

be an r× r submatrix of A,
where A′ is constructed using the rows and columns of A with indices j1, . . . , jr
and h1, . . . , hr, respectively [2, Definition 3.2]. Then, A′ is a proper submatrix
of A if and only if 1 ≤ j1 < j2 < . . . < jr ≤ k, 1 ≤ h1 < h2 < . . . < hr ≤ k

and jt ≥ ht,∀t.1
The definition of joint superregularity for the case of two lower triangular

Toeplitz matrices was given in [9]. In Definition C.1 we extend this definition
to multiple matrices.

Definition C.1 (Joint superregularity).
A set of M , where M ∈ {2, 3, . . . }, superregular lower triangular Toeplitz k×k
matrices are jointly superregular if and only if all of the proper submatrices
of the concatenated Mk × k matrix are non-singular. In this context a proper
submatrix is any square matrix that is not trivially rank deficient. An t × t
matrix, when sorted by increasing row support size2, is said to be trivially rank
deficient if the support of row i, 1 ≤ i ≤ t, is less than i. 4

A greedy algorithm for obtaining M jointly superregular lower triangular
Toeplitz matrices with dimensions k× k can be constructed based on [9, Algo-
rithm 1]. That is, at each instance in the algorithm where all of the M matrices
are superregular, they are tested for joint superregularity using Def. C.1. If this
is the case and the matrices have dimensions k × k the search stops. If the di-
mensions are not k × k then both matrix dimensions are increased by one and
the search continues. If the matrices are not jointly superregular the algo-
rithm continues to search for superregular matrices of the same dimensions.
Let Bωk,M denote the set of all sets of M different k × k jointly superregular
lower triangular Toeplitz matrices according to Definition C.1.

1In [10] the authors use a slightly different notion of superregularity.
2The size of the support of a vector is equal to the number of its non-zero elements.

106

3. Convolutional codes

3 Convolutional codes

Let C ⊆ F[D]n2p be an (n, k, δ) convolutional code with a basic minimal gener-
ator matrix

G =
v∑
j=0

GjD
j ∈ F[D]k×n2p , Gj ∈ Fk×n2p , Gv 6= 0,

where v is the memory of the code. We define the degree of C, δ, as the sum of
the row degrees of G [2]. Denoted by Gcj , j ∈ N0 the truncated sliding generator
matrix

Gcj =

G0 G1 · · · Gj

G0 · · · Gj−1
. . .

...
G0

 ,
where Gj = 0 whenever j > v. The reader is referred to [8] for further details.
In [2, Proposition 2.2] an upper bound on the column distance is given, that
is, for every j ∈ N0 then

dcj ≤ (n− k)(j + 1) + 1, (C.1)

where dcj is the jth column distance. In [8] the authors define the distance
profile of the code C to be dp = (dc0, d

c
1, . . . , d

c
v). A convolutional code is said

to have ODP [8] if and only if the v+ 1 elements of dp attain the bound given
in (C.1). From [2, Corollary 2.3] we have that, if dcj for some j ∈ N0 attains
the bound in (C.1) then dci for i ≤ j also attain the bound in (C.1). Thus,
a convolutional code has ODP if and only if dcv attains the bound in (C.1).
Finally, if a convolutional code has ODP, it is said to be an ODP convolutional
code.

Lemma C.1. Let Ψ(i
(l′)
0 , . . . , i

(l′)
v) ∈ F(v+1)×(v+1)

2p , l′ = 1, . . . , l, be a set of l
lower triangular Toeplitz matrices, where i(l

′)
v 6= 0. Moreover, let nk = l. Then,

an (n, k, δ) convolutional code with memory v, δ = vk, and basic minimal
generator matrix G can be constructed as

G =

∑v
j=0 i

(1)
j Dj , . . . ,

∑v
j=0 i

(n)
j Dj

...
. . .

...∑v
j=0 i

(l−n+1)
j Dj , . . . ,

∑v
j=0 i

(l)
j D

j

 . (C.2)

4

Fig. C.1 shows how to construct Gcv, for a (2, 1, 3) convolutional code
with v = 3, from two 4 × 4 lower triangular Toeplitz matrices. It is trivial

107

Paper C.

1

1ωia1

1ωia1ωia2

1ωia1ωia2ωia3

ψω(ia1
, ia2

, ia3
) =

(a)

1

1ωib1

1ωib1ωi2

1ωib1ωib2ωib3

ψω(ib1 , ib2 , ib3) =

(b)

1 1

1

ωia1

1

ωib1

1

ωia1

ωia2

1

ωib1

ωib2

1

ωia1

ωia2

ωia3

1

ωib1

ωib2

ωib3

Gc
v =

(c)

Fig. C.1: A (2, 1, 3) convolutional code with v = 3 constructed from the two matrices in (a)
and (b) has Gc

v as shown in (c).

to construct G from Gcv, thus the actual proof is omitted due to space consid-
erations.

Lemma C.2. If the l matrices of Lemma C.1 are jointly superregular, then the
(n, k, δ) convolutional code with memory v and basic minimal generator matrix
G in (C.2) is an ODP convolutional code. 4

Proof. In [2, Theorem 2.4] the authors state that the following are equivalent:

i) dcj = (n− k)(j + 1) + 1;

ii) every (j + 1)k × (j + 1)k full-size minor of Gcj formed from the columns
with indices 1 ≤ t1 < · · · < t(j+1)k, where tsk+1 > sn for s = 1, . . . , j, is
nonzero.

If i) is true for all j ∈ {0, . . . , v} then the code is an ODP convolutional code,
and ii) is for j ∈ {0, . . . , v} guaranteed by the definition of joint superregu-
larity (see Definition C.1). This can be realised by concatenating (as shown
in Fig. C.1) the nk jointly superregular lower triangular Toeplitz matrices and
the resulting matrix is then identical to Gcv.

108

3. Convolutional codes

We now provide two examples of sets of jointly superregular lower triangular
Toeplitz matrices which we obtained using the previously described method.
We then use Lemma C.1 to construct (n, k, δ) ODP convolutional codes.

Example C.1. A (2, 1, 5) ODP convolutional code over F28 may be constructed
using the two jointly superregular lower triangular Toeplitz matrices

A
(1)
6 = ψω(0, 2, 5, 0, 15),

A
(2)
6 = ψω(1, 0, 4, 9, 30),

that is (A
(1)
6 , A

(2)
6) ∈ Bω6,2. The basic minimal generator matrix is then

G = [1 +D + ω2D2 + ω5D3 +D4 + ω15D5,

1 + ωD +D2 + ω4D3 + ω9D4 + ω30D5].

The column distances are: dcj = j + 2 for 0 ≤ j ≤ 5.

Example C.2. A (3, 2, 8) ODP convolutional code over F28 may be constructed
using the six jointly superregular lower triangular Toeplitz matrices

B
(1)
5 = ψω(50, 12, 147, 114),

B
(2)
5 = ψω(181, 79, 29, 67),

B
(3)
5 = ψω(112, 235, 226, 191),

B
(4)
5 = ψω(103, 155, 45, 0),

B
(5)
5 = ψω(67, 0, 160, 88),

B
(6)
5 = ψω(55, 177, 183, 161),

that is (B
(1)
5 , . . . , B

(6)
5) ∈ Bω5,6. The basic minimal generator matrix is then

G = [1 + ω50D + ω12D2 + ω147D3 + ω114D4,

1 + ω181D + ω79D2 + ω29D3 + ω67D4,

1 + ω112D + ω235D2 + ω226D3 + ω191D4;

1 + ω103D + ω155D2 + ω45D3 +D4,

1 + ω67D +D2 + ω160D3 + ω88D4,

1 + ω55D + ω177D2 + ω183D3 + ω161D4].

The column distances are: dcj = j + 2 for 0 ≤ j ≤ 4.

109

Paper C.

4 Convolutional Codes With Finite Decoder
Memory

In this section we will investigate the impact of finite decoder memory on the
behaviour of convolutional codes in terms of symbol loss probability and symbol
delay. The analysis is inspired by the method for calculating the exact symbol
loss probability for deterministic block codes presented in [9].

4.1 Symbol Loss Probability

Let C be an (n, k, δ) convolutional code with generator matrix G and mem-
ory v. The input to the encoding process is termed symbols and the output is
termed packets. The transmission of a packet may succeed or result in an era-
sure. These two outcomes are modelled by 1 and 0, respectively. Let r be the
number of links in the logical network. Let h be the number of packet trans-
missions, then the set Vh,r ,

{
v1, . . . , v2hr ∈ {0, 1}h×r

}
contains all possible

combinations of success and erasure for all the independent packet receptions.
In a single hop network with one source and one sink then r = 1. Let W ∈ Vh,r
be the indicator matrix which contains a zero at element (i, j) if the (i, j)’th
packet is erased, and a 1 otherwise.

Lemma C.3. Let ε ∈ [0, 1]r be the erasure probability of the r links in the
network assuming all erasures are i.i.d., and let W ∈ Vh,r be the indicator
matrix. Then the probability of W occurring is

P (W |ε) =

h∏
i=1

r∏
j=1

(1− εj)1 [Wi,j = 1] + εj1 [Wi,j = 0] .

Proof. Due to the independence assumption it follows easily that the probabil-
ity of W occurring is the product of the probabilities of erasures and successful
reception on the individual links.

Let C be an (n, k, δ) convolutional code with memory v and letmd = c·(v+1)

denote the memory of the decoder, where c ∈ N. We now intro-
duce TLC

(x, C,W, c) ∈ {0, 1}, which denotes the sink’s ability to decode the x’th
symbol given C, W , and md, where x ∈ N0. That is, TLC

(x, C,W, c) determine
whether or not it is possible for the sink to decode the x’th symbol, when receiv-
ing the packets from C, where successful reception is specified by the elements
of W . It is trivial to evaluate TLC

(x, C,W, c) by trying all combinations.

Lemma C.4. Let C be an (n, k, δ) convolutional code and ε ∈ [0, 1]r be
the erasure probability of the r links in the network, assuming all erasures
are i.i.d. Assuming the sink has successfully decoded the symbols with in-
dexes {−v−1, . . . ,−1}, where v is the memory of the code, then the probability
that the x’th symbol is not decodable is

110

4. Convolutional Codes With Finite Decoder Memory

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

e

P
L
(C

|e
,
δ
+

1
,
2
)

δ = 1

δ = 2

δ = 4

δ = 1

δ = 2

δ = 4

Fig. C.2: Evaluation of (C.3) using (2, 1, δ) convolutional codes. The dashed lines are ODP
convolutional codes and the solid lines are random based codes.

PL(C|ε, x, c) = 1−
∑

W∈Vn
k

(x+md),r

TLC
(x, C,W, c)P (W |ε). (C.3)

Proof. For all elements of Vn
k (x+md),r the probabilities of W occurring where

the x’th symbol is decodable are summed. The result of this summation is the
probability that the x’th symbol is decodable.

Fig. C.2 shows (C.3) evaluated at x = δ+1 using (2, 1, δ) convolutional codes
with memory v = δ, and c = 2 in a single hop network. The figure includes
three ODP convolutional codes where δ = 1, 2, 4, and three random based
convolutional codes with the same value of δ. The ODP convolutional codes
are constructed according to Lemma C.1 using the upper-left (δ + 1)× (δ + 1)

submatrix of the two matrices in Ex. C.1. The random based codes also use
the field F28 , from which the coding coefficients are chosen at random [11]. The
figure shows that ODP convolutional codes provide a symbol loss probability
that is slightly lower than that of the random based codes. This is in fact the
case over the entire range 0 ≤ ε ≤ 1/2.

The dependency on the decoding probability of previous symbols is implic-
itly captured by TLC

(x, C,W, c). The average symbol loss probability across a
countable infinite number of symbols can be calculated using (C.3) as

lim
N→∞

1

N + 1

N∑
x=0

PL(C|ε, x, c). (C.4)

4.2 Comparison of Infinite and Finite Decoder Memory

In the following we will compare the symbol loss probability of convolutional
codes when the decoder has infinite or finite memory. Due to the considerable
computational complexity of (C.4) we use Lemma C.4 instead.

111

Paper C.

Let C be a (2, 1, 1) systematic convolutional code with G = [1, 1 + D] and
let r = 1, then the authors of [12] derive a result equivalent to

lim
x→∞
c→∞

PL(C|ε, x, c) =
ε3

(1− ε+ ε2)2
. (C.5)

When evaluated at ε = 1/2 and ε = 1/4 then (C.5) is 2
9 ≈ 0.222222

and 4
169 ≈ 0.023669, respectively. It is of interest how this compares to the

erasure probability when using finite decoder memory. Table C.1 lists values
of (C.3) for different values of c and x. From the table it is easily seen that the
erasure probability converges towards that of (C.5), for increasing c and x. In
fact, for ε = 1/2, c = 5, and x = 8 then PL(C|ε, x, c) = 0.222222. By the same
token, even for ε = 1/2, c = 2, and x = 8 the gain of using infinite memory is
less than 0.775 % = 1− 2/9

0.223957 .
For the sake of completeness we have also compared the convergence for

another convolutional code, namely a (2, 1, 2) systematic convolutional code
with G = [1, 1 + D + D2]. For this convolutional code we observed a similar
convergence for the symbol loss probability.

4.3 Symbol Delay

We now introduce TDC
(x, C,W, c) ∈ {0, . . . , nkmd}, which denotes the number

of packets transmitted from the encoder before the x’th symbol is decoded
at the sink given C and W . We further define TDC

(x, C,W, c) = 0 if the x’th
symbol is not decodable given C andW . We define symbol delay as the number
of packets the source has transmitted, after receiving a symbol, before that
symbol is decoded by the sink. It is trivial to evaluate TDC

(x, C,W, c) by
trying all combinations.

Lemma C.5. Let C be an (n, k, δ) convolutional code and ε ∈ [0, 1]r. Assuming
the sink has successfully decoded the symbols with indexes {−v − 1, . . . ,−1},
where v is the memory of the code, then the expected symbol delay (in terms of
packets transmitted) for the x’th symbol is

SD(C|ε, x, c) =

∑
W∈Vn

k
(x+md),r

TDC
(x, C,W, c)P (W |ε)∑

W∈Vn
k

(x+md),r
TLC

(x, C,W, c)P (W |ε) . (C.6)

Proof. The numerator sums the amount of delay the x’th symbol endures,
weighted by the probability of those delays occurring. The denominator sums
the number of times the x’th symbol is decodable weighted by the probability
of said symbol being decodable. Thus, the accumulated delay is divided by the
total number of times the x’th symbol is decodable.

Fig. C.3 shows the evaluation of (C.6) with the same parameters and codes
as in Fig. C.2. The figure shows that ODP convolutional codes always provide

112

5. Conclusions

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

2

3

4

5

e

S
D
(C

|e
,
δ
+

1
,
2
)

δ = 1

δ = 2

δ = 4

δ = 1

δ = 2

δ = 4

Fig. C.3: Evaluation of (C.6) using (2, 1, δ) convolutional codes. The dashed lines are ODP
convolutional codes and the solid lines are random based codes.

Table C.1: Evaluation of (C.3) for ε = 1/2, ε = 1/4 and different c and x.

ε = 1/2 ε = 1/4

c x = 0 x = 2 x = 4 x = 0 x = 2 x = 4

1 0.18750 0.24609 0.24976 0.02734 0.03343 0.03365
2 0.16797 0.22046 0.22374 0.01952 0.02386 0.02401
3 0.16675 0.21886 0.22211 0.01924 0.02352 0.02368
4 0.16667 0.21876 0.22201 0.01923 0.02351 0.02366
5 0.16667 0.21875 0.22201 0.01923 0.02351 0.02366

the lowest symbol delay. Note that the difference in symbol delay between the
ODP convolutional codes and the random based codes is mostly negligible.

There exists a trade-off between symbol loss probability and delay. Consider
a rate 1/1 systematic code. Such a code provides a constant delay of 1, regardless
of the erasure rate of the channel, however, the symbol loss probability is equal
to the erasure rate of the channel. Codes with a lower rate may produce a
larger symbol delay but also a lower loss probability. Alternatively, consider
a rate 1/2 duplication code, this code provides a symbol delay of 2ε+1

ε+1 and a
symbol loss probability of ε2. That is, this code has a larger symbol delay since
more symbols may be received later than using the previous code, and thus it
also has a lower symbol loss probability.

5 Conclusions

In this paper we presented explicit constructions for any (n, k, δ) ODP convo-
lutional code, based on jointly superregular lower triangular Toeplitz matrices.
For convolutional codes with finite decoder memory we provided a method to
calculate the exact symbol loss probability and delay for each symbol individ-
ually. This method is general in the sense that it is applicable to any (n, k, δ)

113

References

convolutional code. For two specific systematic convolutional codes we com-
pared the symbol loss probability for the two scenarios where the sink has either
finite or infinite memory. These comparisons showed that for c ≥ 2 the symbol
loss probability is not significantly affected by the use of a finite amount of
decoder memory.

We showed that ODP convolutional codes produce a lower symbol loss prob-
ability than random based codes, regardless of the erasure probability of the
channel. Furthermore, we showed that ODP convolutional codes consistently
provide a lower symbol loss probability and delay over random based convolu-
tional codes. Both of these two benefits are rooted in the fact that these static
codes have predictable performance, given that they are not based on random
coefficients.

References

[1] R. Roth and A. Lempel, “On MDS codes via Cauchy matrices,” IEEE
Transactions on Information Theory, vol. 35, no. 6, pp. 1314–1319, Novem-
ber 1989.

[2] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS
convolutional codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 584–598, February 2006.

[3] P. Almeida, D. Napp, and R. Pinto, “A new class of superregular matrices
and MDP convolutional codes,” Linear Algebra and its Applications, vol.
439, no. 7, pp. 2145–2157, 2013.

[4] R. Hutchinson, R. Smarandache, and J. Trumpf, “On Superregular Matri-
ces and MDP Convolutional Codes,” Linear Algebra and its Applications,
vol. 428, no. 11-12, pp. 2585–2596, 2008.

[5] P. Almeida, D. Napp, and R. Pinto, “Superregular matrices and appli-
cations to convolutional codes,” Linear Algebra and its Applications, vol.
499, pp. 1–25, June 2016.

[6] P. Elias, “Coding for noisy channels,” IRE Convention Records Part 4, pp.
37–46, 1955.

[7] M. Arai, A. Yamamoto, A. Yamaguchi, S. Fukumoto, and K. Iwasaki,
“Analysis of using convolutional codes to recover packet losses over burst
erasure channels,” IEEE Pacific Rim International Symposium on Depend-
able Computing, pp. 258–265, 2001.

[8] R. Johannesson and K. Zigangirov, Fundamentals of Convolutional Cod-
ing, 2nd ed. Wiley, 2015.

114

References

[9] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “Superregular
lower triangular toeplitz matrices for low delay wireless streaming,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4027–4038, Septem-
ber 2017.

[10] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with maxi-
mum column sum rank for network streaming,” IEEE International Sym-
posium on Information Theory, pp. 2271–2275, June 2015.

[11] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[12] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf, “Exact probability of erasure
and a decoding algorithm for convolutional codes on the binary erasure
channel,” IEEE Global Telecommunications Conference, vol. 3, pp. 1741–
1745, December 2003.

115

References

116

Paper D

When are Erasure Correcting Block Codes Better than
Convolutional Codes in a Multi-hop Network?

Jonas Hansen, Jan Østergaard, Johnny Kudahl, and John H.
Madsen

The paper has been published in the proceedings of the
11th International Conference on Signal Processing and Communication

Systems, 2017.

Paper D.

c© 2017 IEEE
The layout has been revised.

118

1. Introduction

Abstract

In this paper we investigate the effect of imposing a maximum allowed delay on
the symbol loss probability for a set of rate 1/2 erasure correcting codes. Given
some maximum allowable delay, we define the effective symbol loss probability
to be the probability that a symbol is received too late or not at all. Consider
a network with three nodes; source, relay, and sink. The source encodes data
using an erasure correcting code, the relay decodes, recodes, and finally the sink
decodes using Gaussian elimination. We compare the effective symbol loss prob-
ability of systematic triangular block codes, dense block codes, and systematic
convolutional codes. For a wide range of packet loss probabilities and allowable
symbol delays, our results show that the systematic triangular block codes are
superior. Our results also show that the field size does not affect the gain in
effective symbol loss probability.

1 Introduction

The amount of real-time streaming of audio and video is ever increasing [1].
Low delay streaming of high resolution audio and video to several receivers is
problematic even for modern wireless networks [2]. A way to overcome this
may be to use some type of forward erasure correction (FEC). One immediate
advantage of FEC codes, in general, is that they enable a trade-off between bit
rate, delay and loss probability [3]. Furthermore, for streaming applications
with strict play-out timing constraints such as music streaming, an FEC code
can even help in reducing the play-out buffer size at the decoder [4].

Erasure correcting codes can be used to simplify coordination when used
with routing [5], and this can be utilized to increase the throughput of various
transport protocols [6]. In [7] the authors proposed a network coding scheme
that significantly increased throughput and reduced latency for reliable trans-
port protocols such as TCP. However, designing FEC codes for arbitrary cases
(e.g., networks, loads, and protocols) is non-trivial. The authors of [8] proposed
that the coding coefficients are chosen at random over some finite field. Using
random coding coefficients has also proved efficient for networks with recod-
ing. Networks where coding is not only performed at the end nodes but also
at intermediate nodes in the network is termed network coding [9]. Network
coding can be performed on a set of source symbols. If this set has a finite and
fixed size it is termed a block code [10]. One of the benefits of a finite size is
that they can be studied using an exhaustive search, e.g., where all possible
erasure patterns are compared. The coding matrices used to construct block
codes can have different structures. In [11] the authors presented codes based
on coding matrices with a lower triangular Toeplitz structure. This reduces
the amount of non-zero coding coefficients, and was shown to increase coding

119

Paper D.

throughput substantially. Furthermore, codes based on triangular matrices in-
herit a low delay property, since encoding can be performed immediately as
new symbols are received by the source. The triangular structure trades-off
symbol loss probability for a lower symbol delay and allows for unequal era-
sure protection of the symbols. That is, the first symbol in a triangular block
code has the smallest symbol loss probability, the second symbol has slightly
larger (depending on the block size) symbol loss probability, and so forth.

In [12] the authors proposed a family of codes based on dense coding ma-
trices. This family of dense codes have the benefit of being maximum distance
separable (MDS), which the triangular codes do not. However, dense codes
do not possess the low delay property since the entire input vector needs to
be available when encoding. Additionally, these dense codes (over sufficiently
large fields) also exercise the all-or-nothing principle, i.e., either all symbols are
fully decoded or no symbols are decoded at all.

If coding is not confined to a block of symbols but used in a continuous
manner, then it is termed a convolutional code [13]. At the encoder, convolu-
tional codes possess the same low delay property that triangular block codes
do. Convolutional codes are, however, not as easy to study as block codes, since
they may consist of a countable infinite number of symbols. For convolutional
codes we show that the continuous nature of the code words combined with
recoding may introduce code words with data dependencies that are consid-
erably longer than the code words the encoder emits. Moreover, this longer
dependency may then increase the delay.

A lot of research efforts have been put into analysing the loss and delay
performance for different kind of codes. In [14] the authors compared the
performance of short block length low-density parity-check (LDPC) codes and
convolutional codes. The average delay performance of block coding schemes
when the arrival stream is stochastic is analysed in [15]. Finally, the authors
of [16] developed a queueing model for discrete memoryless channels with block
coding and feedback. In this paper we consider forward erasure correcting
codes. That is, codes that do not require feedback, therefore we have not
investigated methods such as instantly decodable network coding [17].

In this paper we evaluate and compare the probability of receiving symbols
within some time limit for three families of codes. First we provide some
background on how we perform the coding and define the performance metrics
used. In Section 4 we cover the simulations method which is the basis for the
result discussed in Section 5.

R BA

Fig. D.1: Alice is sending packets to Bob, via the Relay.

120

2. Background

2 Background

We now demonstrate how encoding is carried out for block codes. Let n, k, l ∈ N
and let A be an n × k coding matrix, this yields a code with rate k/n. The
messages to be encoded using A are stored in S, a k × l matrix, known as the
source data matrix. The result of the encoding process is C, an n × l matrix,
the coded data matrix. Therefore C = AS, which shows how the k rows (of
length l) of the source data matrix are encoded into the n rows (of length l)
of the coded data matrix. We define each row of the source data matrix as a
symbol and each row of the coded data matrix as a packet. The vector used to
encode a packet is defined as the packet’s coding vector. The number of non-
zero coefficients in a coding vector is defined as the code length. A packet is
said to be systematic if it has a code length of one. For convolutional codes, two
coding vectors are said to be overlapping if the intersection of their support1

is not the empty set. That is, let c1 and c2 be two coding vectors, then they
are overlapping if and only if

supp(c1) ∩ supp(c2) 6= ∅,

where supp(c) is the support of a coding vector c.
We consider the network shown in Fig. D.1. The network consists of three

nodes; source (A), relay (R), and sink (B). The erasures on the two links are
assumed to be i.i.d. The source receives (or generates) symbols at some fixed
rate and it outputs two packets for each symbol, thus it is a rate 1/2 code. One
benefit of this network is that it is sufficiently simple to be used as a building
block for larger and more complex networks.

The relay and the sink each maintain a matrix with the received packets
(and their coding vectors). When a packet is received it is augmented (includ-
ing the coding vector) to this decoding matrix, which thereby increases the
dimensions of the matrix. Gaussian elimination is then performed, in order to
evaluate if the newly added packet is linearly independent of the other packets
in the decoding matrix. That is, the node attempt to decode the packets by us-
ing Gaussian elimination on the coding vectors. This paper considers network
codes where the relaying node performs decoding.

3 Symbol Loss Probability and Delay

The set of erasure correcting codes we have investigated is; dense block codes,
triangular block codes, and convolutional codes. The triangular block codes
and the convolutional codes are systematic, whereas the dense codes are not.
The encoding, recoding, and decoding procedure is as follows. The source

1The support of a vector is the indices of non-zero elements in the vector.

121

Paper D.

encodes packets (when possible) and forwards them to the relay. When the
relay receives a packet it will decode it, and if the packet is linearly independent
of the other packets in the decoding matrix, the relay recodes and transmits
two packets. The two recoded packets are forwarded to the sink, which then
decodes all the received packets using Gaussian elimination. When using a
dense code, the source does not transmit any packets before all the symbols of
a block are received.

Definition D.1 (Symbol Delay). When the sink decodes symbol j and the
source contains i symbols, then the delay experienced by symbol j is i− j. The
delay experienced by undecodable symbols is not defined. 4

Definition D.2 (Effective Symbol Loss). Let d be the maximum allowable
symbol delay. That is, any symbol that experiences a delay larger than d is
considered lost. Finally, the probability of a symbol being lost, either due to a
large delay or erasures, is termed the effective symbol loss. 4

In Section 5 the symbol loss probability and symbol delay, will be used
to determine which code type (and which parameters) yields the lowest effec-
tive symbol loss probability given some maximum allowed delay. From Defini-
tion D.1 it is clear that systematic packets experience a delay of 0 (if received
by the sink), since they are transmitted immediately when received by the
source. Thus, the channel latency is not taken into account. Furthermore, it is
assumed that the channel is not saturated.

Let C be an erasure correcting code with rate 1/2 and constraint
length v ∈ N. The constraint length is the maximum code length, i.e., the
maximum number of non-zero coefficients in a coding vector. In this work we
consider two code types, namely block codes and convolutional codes. Thus,
the code C is either a (2v, v) block code or a (2, 1, v − 1) convolutional code.
For convolutional codes we define the degree (third parameter) of C as the sum
of the row degrees of the basic minimal generator matrix [18]. Furthermore,
we define m ∈ N as the memory factor that together with v determines the
amount of packets the relay and sink may have in memory. That is, the relay
and sink may store, at most, mv packets at any time. Note that only m = 1 is
applicable to block codes, and we shall therefore only consider different values
of m for convolutional codes. Moreover, the coding vectors of the mv packets
are required to uphold the following

min(supp(ci))−min(supp(cj)) < mv, 1 ≤ j < i ≤ mv, (D.1)

where ci and cj are the ith and jth rows (coding vectors) of the decoding
matrix. If this is not the case then the jth packet is removed from the
decoding matrix. The condition on i and j come from the decoding pro-
cess, which ensures that any two coding vectors do not have identical sup-

122

3. Symbol Loss Probability and Delay

port: supp(ci) 6= supp(cj), i 6= j and that the coding vectors are ordered:

min(supp(ci)) > min(supp(cj)), 1 ≤ j < i ≤ mv.

For dense codes, the code length is the same for all coded symbols, from both
the encoder and the relay, namely v. For the triangular codes, the code length
is also the same from both the encoder and the relay. However, since the code is
triangular v defines the maximum code length. That is, for triangular codes, v
is the code length of the last packet in a block. Finally, for convolutional codes v
is the code length for all non-systematic packets, except the first v − 1. The
relay on the other hand, is not limited to a code length of v. This is due to the
continuous nature of the convolutional code.

Lemma D.1. Let C be a (2, 1, v − 1) convolutional code, where v is the maxi-
mum code length from the encoder and let m be the memory factor of the relay.
Then the maximum code length from the relay, vr, is:

vr = min(v2, (m+ 1)v − 1))

=

{
v2, m ≥ v,
(m+ 1)v − 1, m < v.

Proof. For m ≥ v it is obvious that combining v non-overlapping coding vec-
tors, each with a maximum code length of v, results in a maximum code length
of v2. For m < v it follows from (D.1) that the first v − 1 coding vectors can
have a code length of at most mv−2 + v, and that the last (vth) coding vector
can contribute at most 1. Thus, the sum is: mv + v − 1 = (m+ 1)v − 1.

Definition D.3 (Symbol Delay Distribution). A symbol delay distribu-
tion is a probability mass function, which states that the probability that a decod-
able symbol will experience a delay of d is fD(d; e, C,m) = Pr(D = d | e, C,m)

given some erasure probability e, code C, and memory factor m, where D ∈ N0.
4

Let e ∈ [0, 1] be the erasure probability, C ∈ GF(q)n×k, and m ∈ N. Then
the probability that a symbol experiences a delay less than or equal to d is
given by the cumulative distribution function of the delay, i.e.

Pr(D ≤ d | e, C,m) =
d∑
i=0

fD(i; e, C,m).

Lemma D.2. Let e ∈ [0, 1] be the erasure probability, and C ∈ GF(q)n×k, and
m ∈ N. Then, given a symbol loss probability PL(e, C,m) and a maximum
allowable delay d, then the effective symbol loss probability is given by:

PE(d; e, C,m) = 1−Pr(D ≤ d | e, C,m) · (1− PL(e, C,m)). (D.2)

123

Paper D.

Proof. 1 − PL(e, C,m) is the probability of successful reception of a symbol.
This probability is multiplied with the probability that a symbol experiences
an allowable delay, which yield the probability that a symbol is both received
and experiences an allowable delay.

4 Simulation Method

A delay distribution was obtained through simulations of each set of values
of v and e (and m for convolutional codes). In order to ensure that the sim-
ulations use the exact same amount of symbols for all three code types, we
used

⌈
106

v

⌉
v symbols in each simulation. The simulations used the erasure

probabilities e ∈ {0.05, 0.10, . . . , 0.45}, and the erasure pattern was identical for
all three code types. Each of the code types were simulated with different con-
straint lengths v ∈ {1, . . . , 64}. For the convolutional codes the relay and sink
are restricted to having, at most,mv symbols in memory, wherem ∈ {1, . . . , 4}.
The coding coefficients were chosen at random from the finite field GF(28),
without using the element 0.

The result of these simulations is an empirical delay distribution for each
set of simulation parameters, code type, and set of code parameters. Then
for each pair of e and d ∈ {0, . . . , 15}, the effective symbol loss probability is
calculated for all delay distributions using (D.2). Finally, the code type and
corresponding parameters yielding the lowest effective symbol loss probability
is found for each pair of e and d.

Let the best code be the code that yields the lowest effective symbol loss
probability. Let p1 be the effective symbol loss probability of the best code,
and p2 be the effective symbol loss probability for the second best code. Then
the gain in effective symbol loss probability is defined as:

gl ,
1− p1
1− p2

− 1.

5 Discussion

Fig. D.2 shows part of a delay distribution for the three code types under some
specified code parameters and channel conditions. From the figure it becomes
evident that the delay distribution for dense codes can be approximated with
a uniform distribution. In fact, our experiments show that this is generally the
case when e < .35. On the other hand, the delay distributions for triangular
and convolutional codes share a similar structure. Their structure is primarily
a peak in d = 0 and a low tail. For the case v = 1 all three code types performs
identically.

124

5. Discussion

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

d

P
ro

ba
bi

li
ty

[-
]

Triangular, v = 16, e = .25

Dense, v = 16, e = .25

Conv., v = 16, e = .25, m = 2

Triangular, v = 4, e = .10

Dense, v = 4, e = .10

Conv., v = 4, e = .10, m = 1

Fig. D.2: Examples of delay distributions. The full support of the distributions is not shown
for v = 16.

The gain in effective symbol loss of the best code type over the second best
code type is shown in Table D.2a on page 127. The code parameters yielding
the lowest effective symbol loss is shown in Table D.2b. In all scenarios where
either a convolutional code or dense code was the best performing code, a tri-
angular code performed almost equally as well. That is, the gain in terms of
effective symbol loss probability of using a convolutional code or dense code
is at most 0.28 % and 0.96 %, respectively. However, a triangular code out-
performed the convolutional or dense codes with 5.38 % (d = 11, e = 0.30)
and 11.19 % (d = 15, e = 0.40), respectively.

5.1 Small Matrices and Low Delay

In [11] we proposed the use of lower triangular coding matrices with static
coding coefficients over small dimensions, e.g., 10 × 10, for low delay stream-
ing. The benefits of these matrices are multifold: 1) lower complexity for both
encoding and decoding, e.g., decoding using Gaussian elimination has cubic
algorithmic complexity, 2) increased coding throughput performance, by care-
fully choosing the coding coefficients, 3) predictable performance given that the
coding coefficients are constant. Table D.1a on the following page shows the
gain in effective symbol loss when v ∈ {1, . . . , 10}, and the code parameters are
shown in Table D.1b. From the table it is clear that the structure is preserved,
compared to Table D.2a, despite the shorter constraint length.

5.2 Field Size Bias

For completeness a set of simulations using the finite field GF(232) was also
conducted. The coding coefficients were again chosen at random from the finite
field without using the element 0. This set of simulations is used to eliminate
any bias in the results, depending on the field size. The simulations were run

125

Paper D.

Table D.1: Gain, in percent, of the best code type over the second best code type, using
GF(28) and v ∈ {1, . . . , 10}. The colour/font of the cell indicates the code type. Red/bold:
triangular code, green/italic: dense code, blue/normal: convolutional code, and white: v = 1.

(a)

e
d 0 1 2 3 4 5 6 7

0.05 0 0.09 0.01 0.05 0.06 0.05 0.05 0.04
0.10 0 0.33 0.13 0.15 0.24 0.27 0.26 0.23
0.15 0 0.56 0.56 0.06 0.43 0.63 0.68 0.65
0.20 0 0.45 0.93 0.77 0.08 0.68 1.12 1.27
0.25 0 0.28 1.07 1.25 0.94 0.66 0.29 0.97
0.30 0 0.89 0.27 1.14 1.21 1.05 0.67 0.20
0.35 0 0.89 0.96 0.29 1.06 1.29 1.11 0.75
0.40 0 0.46 0.77 0.70 0.05 0.83 1.03 1.16
0.45 0 0 0 0 0 0 0 0

(b)

e
d 0 1 2 3 4 5 6 7

0.05 1 10 3,1 5,4 10,4 10,1 10,1 8,1
0.10 1 10 10 4,1 8,3 8,3 7,1 10,1
0.15 1 10 10 4,1 5,1 10,2 10,2 10,2
0.20 1 10 10 10 4,4 5,4 5,4 6,2
0.25 1 2 10 10 10 10 4,2 4,2
0.30 1 2 9 10 10 10 10 10
0.35 1 2 3 10 10 10 10 10
0.40 1 2 3 4 5 10 10 10
0.45 1 1 1 1 1 1 1 1

with the same number of symbols and erasure pattern as the other simulations.
Table D.2c on the next page shows the gain in effective symbol loss for this set
of simulations. From the table it is clear that the result does not significantly
depend on the field size, given that the values in Table D.2a and D.2c are nearly
identical.

6 Conclusions

Triangular block codes outperform both dense block codes and convolutional
codes in most scenarios. Furthermore, in the few cases that triangular block
codes do not have the best performance they are second best with a negligible
margin. This result does not depend on the size of the used field, since there
is little to no difference between using the fields GF(28) and GF(232)

For applications that require a low complexity, e.g., on embedded platforms,
limiting the code structure to only matrices of small dimensions does not sig-
nificantly change the ranking between the code types, for different values of e
and d. The method described in this paper to obtain delay distributions can
easily be extended to other code types, code structures, and parameters.

126

6. Conclusions

Table D.2: (a) and (c) show the gain, in percent, of the best code type over the second best
code type, using GF(28) and GF(232), respecively. (b) shows the parameters of (a). The
parameter is the constraint length v, and for the convolutional codem is the second parameter
Red/bold: triangular, green/italic: dense, blue/normal: convolutional, and white: v = 1.

(a)

e
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0.
05

0
0.

13
0.

04
0.

00
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

10
0

0.
48

0.
34

0.
09

0.
00

0.
03

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
15

0
0.

83
1.

07
0.

57
0.

25
0.

08
0.

02
0.

07
0.

10
0.

11
0.

12
0.

13
0.

13
0.

13
0.

13
0.

13
0.

20
0

0.
74

1.
78

1.
97

1.
32

0.
85

0.
50

0.
25

0.
08

0.
03

0.
11

0.
17

0.
21

0.
24

0.
26

0.
28

0.
25

0
0.

28
2.

00
2.

95
3.

20
3.

34
2.

68
2.

19
1.

75
1.

34
1.

01
0.

72
0.

50
0.

31
0.

14
0.

01
0.

30
0

0.
89

0.
41

2.
66

3.
92

4.
76

5.
20

5.
39

5.
59

5.
65

5.
53

5.
38

5.
06

4.
80

4.
35

3.
95

0.
35

0
0.

89
0.

96
0.

29
2.

03
4.

07
5.

49
6.

56
7.

27
7.

91
8.

26
8.

48
8.

74
8.

75
8.

81
8.

93
0.

40
0

0.
46

0.
77

0.
70

0.
05

0.
92

1.
68

2.
97

4.
29

5.
62

6.
94

8.
10

8.
98

9.
93

10
.4

6
11

.1
9

0.
45

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
46

1.
11

(b)

e
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

.0
5

1
60

60
60

12
,2

48
,1

27
,2

8,
1

8,
1

8,
1

8,
1

8,
1

8,
1

8,
1

8,
1

8,
1

.1
0

1
60

60
62

62
21

,4
14

,3
46

,4
50

,2
50

,2
11

,1
11

,1
11

,1
11

,1
11

,1
11

,1
.1

5
1

62
62

62
62

62
23

,1
23

,1
60

,1
41

,4
54

,1
54

,1
44

,4
44

,4
44

,4
44

,4
.2

0
1

63
63

63
63

63
63

63
63

19
,4

19
,4

19
,4

22
,4

37
,4

19
,1

19
,1

.2
5

1
2

60
60

63
64

64
64

64
64

64
64

64
64

64
64

.3
0

1
2

16
64

64
64

64
64

64
64

64
64

64
64

64
64

.3
5

1
2

3
10

61
61

61
62

62
62

62
62

64
64

64
64

.4
0

1
2

3
4

5
11

16
23

31
60

60
60

64
64

64
64

.4
5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

27
27

(c)

e
d

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0.
05

0
0.

13
0.

04
0.

00
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

10
0

0.
48

0.
34

0.
09

0.
00

0.
03

0.
04

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

0.
15

0
0.

83
1.

07
0.

56
0.

25
0.

08
0.

02
0.

07
0.

10
0.

11
0.

12
0.

13
0.

13
0.

13
0.

13
0.

13
0.

20
0

0.
73

1.
76

1.
95

1.
31

0.
83

0.
48

0.
24

0.
07

0.
04

0.
12

0.
18

0.
22

0.
24

0.
27

0.
28

0.
25

0
0.

28
1.

98
2.

92
3.

16
3.

29
2.

65
2.

16
1.

73
1.

32
0.

99
0.

70
0.

47
0.

28
0.

12
0.

01
0.

30
0

0.
91

0.
38

2.
63

3.
87

4.
70

5.
12

5.
31

5.
51

5.
56

5.
45

5.
32

5.
02

4.
77

4.
31

3.
92

0.
35

0
0.

93
0.

99
0.

28
1.

99
4.

01
5.

43
6.

49
7.

21
7.

83
8.

18
8.

39
8.

66
8.

64
8.

68
8.

80
0.

40
0

0.
50

0.
82

0.
76

0.
10

0.
90

1.
63

2.
94

4.
24

5.
58

6.
88

8.
00

8.
91

9.
84

10
.3

7
11

.1
0

0.
45

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
50

1.
16

127

References

References

[1] S. A. Hosseini, Z. Lu, G. de Veciana, and S. S. Panwar, “SVC-Based Multi-
User Streamloading for Wireless Networks,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 8, pp. 2185–2197, August 2016.

[2] S. Hahm, P. Kang, H. Bang, and H. Yeon, “Dynamic media buffer control
scheme for seamless streaming in wireless local area networks,” IEEE Wire-
less Communications and Networking Conference Workshops, pp. 109–114,
2016.

[3] M. Muntner and J. Wolf, “Predicted performance of error-control tech-
niques over real channels,” IEEE Transactions on Information Theory,
vol. 14, no. 5, pp. 640–650, September 1968.

[4] J. H. Sørensen, P. Popovski, and J. Østergaard, “Delay minimization in
real-time communications with joint buffering and coding,” IEEE Com-
munications Letters, vol. 21, no. 1, pp. 52–55, January 2017.

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” ACM SIGCOMM Com-
puter Communication Review, vol. 37, no. 4, pp. 169–180, August 2007.

[6] J. Krigslund, J. Hansen, D. E. Lucani, F. H. P. Fitzek, and M. Médard,
“Network coded software defined networking: Design and implementation,”
21th European Wireless Conference, pp. 1–6, May 2015.

[7] J. Hansen, J. Krigslund, D. E. Lucani, and F. H. P. Fitzek, “Sub-Transport
Layer Coding: A Simple Network Coding Shim for IP Traffic,” IEEE 80th
Vehicular Technology Conference, pp. 1–5, 2014.

[8] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[9] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, July 2000.

[10] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[11] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “Superregular
lower triangular toeplitz matrices for low delay wireless streaming,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4027–4038, Septem-
ber 2017.

128

References

[12] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2,
pp. 300–304, 1960.

[13] P. Elias, “Coding for noisy channels,” IRE Convention Records Part 4, pp.
37–46, 1955.

[14] C. Rachinger, J. B. Huber, and R. R. Müller, “Comparison of Convolu-
tional and Block Codes for Low Structural Delay,” IEEE Transactions on
Communications, vol. 63, no. 12, pp. 4629–4638, December 2015.

[15] R. N. Swamy and T. Javidi, “Delay analysis of block coding over a noisy
channel with limited feedback,” 42nd Asilomar Conference on Signals,
Systems and Computers, pp. 1431–1435, October 2008.

[16] R. Lübben and M. Fidler, “On the delay performance of block codes for
discrete memoryless channels with feedback,” IEEE 35th Sarnoff Sympo-
sium, pp. 1–6, May 2012.

[17] S. Sorour and S. Valaee, “On minimizing broadcast completion delay for
instantly decodable network coding,” IEEE International Conference on
Communications, pp. 1–5, May 2010.

[18] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS
convolutional codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 584–598, February 2006.

129

References

130

Paper E

Sequential use of Block Codes and Convolutional Codes
in a Real-Time Multi-hop Network

Jonas Hansen, Jan Østergaard, Johnny Kudahl, and John H.
Madsen

The paper has been submitted to the
IEEE 87th Vehicular Technology Conference, 2018.

Paper E.

c© 2017 the authors
Copyright will be transferred to IEEE upon acceptance

132

1. Introduction

Abstract

Real-time streaming of audio and video have tight constraints on the delay al-
lowed at each step in the distribution chain. In this paper, we focus on the
transport layer. That is, we investigate the effect of imposing a maximum
allowable delay on the symbol loss probability for a set of rate 1/2 erasure cor-
recting codes. We define the effective symbol loss probability to be the probability
that a symbol is received too late or not at all, given some maximum allowable
delay. We consider networks where the source and sink communicate via a re-
laying node, and that this intermediate node performs recoding. The erasure
correcting code used between the source and relay need not be the same as the
erasure correcting code used between the relay and sink. Moreover, on the first
link, we use both a block code and on the second link we use a convolutional
code. In order to do a fair comparison, we also include the case where both
links use the same code type. Our results show that in order to minimize the
effective symbol loss, the first link should use a triangular block code. Whereas,
the second link should use a convolutional or triangular code, with little to no
gain of using the former over the latter.

1 Introduction

Streaming of audio and video has become an integrated part of the lives of
many. Streaming high resolution audio or video over a wireless network to
multiple receivers in non-trivial, especially if there are strict delay constraints,
e.g, for live streaming [1]. To this end, a number of transport strategies [2–4],
coding schemes [5–7], and source coding methods [8–10] have been researched.

Forward erasure correcting codes may be used sequentially in separate
groups [11] or in a continuous manner. The former is termed block codes,
and the latter is termed convolutional codes [12]. For block codes, we focus on
two distinct forms, namely dense codes and triangular codes. Dense codes are
so termed since their encoding matrix is fully dense. Triangular codes are con-
structed using lower triangular encoding matrices. Dense codes try to minimize
the overall symbol loss. Whereas, triangular codes utilize a trade-off between
loss and delay. On the other hand, convolutional codes seek to ensure a low
encoding delay while also minimizing the symbol loss probability, at the cost
of a larger complexity.

It is termed network coding [13] when coding is not only performed at the
end nodes but also at intermediate nodes in the network. In this paper, we
focus on the use of network codes when minimizing the symbol loss given strict
delay constraints. The authors of [14] proposed that the coding coefficients are
chosen at random over some finite field, and in this paper, we focus on the
field GF(28). Using random coding coefficients has been shown to be efficient

133

Paper E.

R BA
C1 C2

Fig. E.1: Alice is sending packets to Bob, via the Relay.

for networks with recoding [15]. We do not restrict the source and relay to use
the same code type nor constraint length. The work presented in this paper
extends the result presented in [16] by the authors of the present paper, where
the source and relay would use the same code and constraint length.

2 Background

We consider the network shown in Fig. E.1. The network consists of three
nodes; source (A), relay (R), and sink (B). The erasures on the two links
are assumed to be independent and Bernoulli distributed. Rate 1/2 erasure
correcting codes are employed on the two links, namely C1 and C2, respectively.
The codes C1 and C2 have the constraint lengths v1 and v2, respectively. The
code Cj , j ∈ {1, 2} is either a (2vj , vj) block codes or a (2, 1, vj−1) convolutional
codes. For convolutional codes, we define the degree (third parameter) of Cj as
the sum of the row degrees of the basic minimal generator matrix [17]. The code
types that have been investigated are listed in Table E.1. For the code types
TT and DD the constraint lengths of C1 and C2 are the same, that is v1 = v2.

For block codes, the encoding process is as follows. Let n, k, h ∈ N and let A
be an n × k encoding matrix, naturally, this constructs a code with rate k/n.
The source data matrix S is a k × h matrix which contains the data that is to
be encoded. The coded data matrix C is an n × h matrix that is the result
of the encoding process. That is, C = AS, which shows how the k rows (of
length h) of the source data matrix are encoded into the n rows (of length h)
of the coded data matrix. We define each row of the source data matrix as a
symbol and each row of the coded data matrix as a packet. Each row of the
encoding matrix is denoted the coding vector of the corresponding packet of
the coded data matrix. The code length of a coding vector is the size of the
support1 of the coding vector. If a coding vector has a code length of one, then
the corresponding packet is defined as systematic. Two coding vectors are said
to be overlapping if the intersection of their support is not the empty set. That
is, let c1 and c2 be two coding vectors, then they are overlapping if and only if

supp(c1) ∩ supp(c2) 6= ∅,

where supp(c) is the support of a coding vector c.
1The support of a vector is the indices of the non-zero elements of the vector.

134

3. Symbol Loss Probability and Delay

Table E.1: Alias’ for the examined code types.

Alias Code type of C1 Code type of C2
CC Systematic convolutional Convolutional
TC Systematic triangular block Convolutional
TT Systematic triangular block Triangular block
DD Dense block Dense block
DC Dense block Convolutional

The relay and sink each holds a matrix, where all the received packets and
corresponding coding vectors are stored. This matrix is denoted the decoding
matrix. Every time a packet is received it is, together with the coding vector,
augmented to the decoding matrix, thereby increasing the dimensions of said
matrix. The node then performs Gaussian elimination on the entire coding
matrix, in order to determine if the newly received packet is linearly indepen-
dent of the other packets in the decoding matrix. That is, the node attempt to
decode the packets by using Gaussian elimination on the coding vectors. This
paper considers network codes where the relaying node performs decoding.

3 Symbol Loss Probability and Delay

The source generate (or otherwise receive) symbols at a fixed rate. Whenever a
new symbol is available the source will encode two packets and transmit them
to the relay. The relay will then, when receiving a packet, perform Gaussian
elimination, to establish if the newly received packet is linearly independent of
the ones in storage. If the packet is linearly independent, the relay will recode
two packets and transmit them to the sink. The sink decodes all the received
packets, using Gaussian elimination. When using a dense code, the source does
not transmit any packets before all the symbols of a block are received.

Definition E.1 (Symbol Delay). When the sink decodes symbol j and the
source contains i symbols, then the delay experienced by symbol j is i− j. The
delay experienced by undecodable symbols is not defined. 4

This definition of symbol delay does not take the channel latency into ac-
count. Furthermore, it is assumed that the channel is not saturated.

Definition E.2 (Maximum Allowable Symbol Delay). Let d be the max-
imum allowable symbol delay, then any symbol that experiences a delay larger
than the maximum allowable symbol delay is considered lost. 4

Definition E.3 (Symbol Loss Probability). Let PL(d; e, C1, C2,m) be the
probability that a symbol is lost due to erasures. This probability is termed
the symbol loss probability. 4

135

Paper E.

Definition E.4 (Effective Symbol Loss Probability).
Let PE(d; e, C1, C2,m) be the probability that a symbol is lost either due
to a large delay or erasures. This probability is termed the effective symbol loss
probability. 4

In Section 4 the symbol loss probability and symbol delay, will be used
to determine which code type (and which parameters) yields the lowest effec-
tive symbol loss probability given some maximum allowed delay and erasure
probability of the channel.

3.1 Finite Recoder and Decoder Memory

We define m ∈ N as the memory factor that together with vj determines the
number of packets the relay and sink may have in memory. That is, the relay
may store at most mv2 packets at any time. Note that only m = 1 is applicable
to block codes, and we shall therefore only consider different values of m for
convolutional codes. The coding vectors of the at mostmv2 packets, in memory
at the relay, are required to uphold the following

min(supp(ci))−min(supp(cj)) < mv2, 1 ≤ j < i ≤ mv2, (E.1)

where ci and cj are the ith and jth rows (coding vectors) of the decoding
matrix. If this is not the case then the jth packet is removed from the
decoding matrix. The condition on i and j come from the decoding pro-
cess, which ensures that any two coding vectors do not have identical sup-
port: supp(ci) 6= supp(cj), i 6= j and that the coding vectors are ordered:

min(supp(ci)) > min(supp(cj)), 1 ≤ j < i ≤ mv2. (E.2)

The sink has memory restrictions similar to those in (E.1) and (E.2), however
the maximum number of packets in memory is mmax(v1, v2) instead of mv2.
That is, the sink is allowed to hold at least the same number of packets as the
relay, and potentially more. The reason for this is that the sink must be able to
cope with the maximum code length, in order to properly decode the received
packets.

The maximum code length from the source is l1 = v1 and if C2 is a block
code then the maximum code length from the relay is l2 = v2. However, if C2 is
a convolutional code then the relay is not limited to a code length of v2. This
is due to the continuous nature of convolutional codes.

Lemma E.1. Let C1 be a rate 1/2 code with constraint length v1, let C2 be
a (2, 1, v2− 1) convolutional code, and let m be the memory factor of the relay,
then the maximum code length l2 (from the relay) is

l2 = min(v1v2,mv2 + v1 − 1)

136

4. Simulation Method

Proof. It is obvious that combining v2 non-overlapping coding vectors, each
with a maximum code length of v1, results in a maximum code length of v1v2.
However, if the v2 coding vectors are overlapping, then from (E.1) we see that
they span across at most

mv2 ≥ 1 + max
1≤j<i≤mv2

(min(supp(ci))−min(supp(cj)))

symbols. The last packet may then include contributions from another v1 − 1

symbols, thus the maximum code length is the sum, i.e., mv2 + v1 − 1.

Definition E.5 (Symbol Delay Distribution). A symbol delay dis-
tribution is a probability mass function, which states that the prob-
ability that a decodable symbol will experience a delay of d is
fD(d; e, C1, C2,m) = Pr(D = d | e, C1, C2,m) given some erasure proba-
bility e, codes C1 and C2, and memory factor m, where D ∈ N0. 4

Let e ∈ [0, 1] be the erasure probability, let C1 and C2 be erasure correcting
codes, and m ∈ N. Then the probability that a symbol experiences a delay less
than or equal to d is given by the cumulative distribution function of the delay,
i.e.

Pr(D ≤ d | e, C1, C2,m) =
d∑
i=0

fD(i; e, C1, C2,m).

Lemma E.2. Let e ∈ [0, 1] be the erasure probability, let C1 and C2 be era-
sure correcting codes, and m ∈ N. Then, given a symbol loss probability
PL(e, C1, C2,m) and a maximum allowable delay d, then the effective symbol
loss probability is given by:

PE(d; e, C1, C2,m) = 1−Pr(D ≤ d | e, C1, C2,m) · (1− PL(e, C1, C2,m)). (E.3)

Proof. 1−PL(e, C1, C2,m) is the probability of successful reception of a symbol.
This probability is multiplied with the probability that a symbol experiences
an allowable delay, which yield the probability that a symbol is both received
and experiences an allowable delay.

4 Simulation Method

Through simulations, we have obtained a set of empirical delay distributions
parametrized by the tuple of v1, v2, and e (and m for convolutional codes).
Where the constraint lengths took on the values v1, v2 ∈ {1, . . . , 64}, erasure
probabilities were e ∈ {0.05, 0.10, . . . , 0.45}, and for the convolutional codes
the memory factor was m ∈ {1, . . . , 4}. In order to ensure that the simulations

137

Paper E.

0 2 4 6 8 10 12 14
0

0.02

0.04

d

P
E
(d

;e
,C

1
,C

2
,m

) TC, e = 0.15

TT, e = 0.15

DC, e = 0.15

DD, e = 0.15

CC, e = 0.15

Fig. E.2: The effective symbol loss for all code types for e = 0.15.

use the same number of symbols for all three code types, we used
⌈
106

v1

⌉
v1 sym-

bols in each simulation. Note that ideally we should have used lcm(2, 3, . . . , 64)

symbols (where lcm refers to the least common multiple) to ensure that all sim-
ulations used the exact same number of symbols, however, this is not feasible2.
The erasure pattern was identical for all code types. The coding coefficients
were chosen at random from the finite field GF(28), without using the zero
element.

These delay distributions are then used to determine the effective symbol
loss probability for each pair of e and d ∈ {0, . . . , 15}. The effective symbol
loss probability is calculated for all delay distributions using (E.3). Then for
each code type, the set of parameters yielding the lowest effective symbol loss
probability is found for each pair of e and d.

5 Discussion

Fig. E.2 show PE(d; e, C1, C2,m) for all of the code types for e = 0.15

and d ∈ {0, . . . , 15}. From the figure it is clear that all code types, except
DD, tend towards a similar limit, as d increases. For d > 7 the CC code yields
the lowest effective symbol loss, and for d ≤ 7 it is the TC code.

The case of e = 0.25 and e = 0.35 is shown in Fig. E.3. From this figure we
see that at the single point where e = 0.35 and d = 1 the DD code is the best
performing code. At all other points on the figure the TC code out performs
the other codes. Moreover, the TC code is significantly better than the DD
code as d increases. The same goes for the CC code when e = 0.35.

From a practical perspective, it may prove advantageous to use block codes
to increase coding throughput, as shown in Paper A, and to simplify the imple-
mentation, by reusing the software implementation on both links. In this case,

2lcm(2, 3, . . . , 64) = 1182266884102822267511361600 ≈ 1.1823× 1027 ≈ 1.9101× 289

138

5. Discussion

0 2 4 6 8 10 12 14
0

0.1

0.2

d

P
E
(d

;e
,C

1
,C

2
,m

)
TC, e = 0.35

TT, e = 0.35

DC, e = 0.35

DD, e = 0.35

CC, e = 0.35

TC, e = 0.25

TT, e = 0.25

DC, e = 0.25

DD, e = 0.25

CC, e = 0.25

Fig. E.3: The effective symbol loss for all code types for e = 0.25 and e = 0.35.

Table E.2: Parameters for alle the code type, corrosponding to Figures E.2 and E.3.
For TC, DC, and CC the parameters are: v1, v2,m. For TT and DD the parameter is v1.

e
d Code 0 1 2 3 4 5 6 7

0.15

TC 1,1,1 2,60,1 3,64,3 13,64,4 5,64,3 22,64,2 22,64,2 22,64,2
DC 1,1,1 2,2,1 2,2,2 3,3,3 3,3,3 47,3,3 33,4,2 33,4,2
CC 1,1,1 2,1,1 3,2,1 4,3,1 5,4,1 6,5,1 35,15,3 30,42,4
TT 1 61 62 62 62 62 62 62
DD 1 2 3 4 5 6 7 8

0.25

TC 1,1,1 2,60,1 3,60,1 4,64,1 5,63,1 44,63,4 44,64,3 12,64,4
DC 1,1,1 2,2,1 2,2,3 2,2,3 3,3,3 4,3,4 4,4,2 8,4,4
CC 1,1,1 2,1,1 2,1,3 3,2,3 3,2,3 3,2,3 4,3,3 4,3,3
TT 1 7 60 63 63 64 64 64
DD 1 2 3 4 5 6 7 8

0.35

TC 1,1,1 2,5,1 2,6,2 2,7,4 3,59,1 4,62,1 5,64,1 5,64,1
DC 1,1,1 1,1,1 2,2,2 2,2,2 2,2,4 2,2,4 3,3,3 3,3,3
CC 1,1,1 1,1,1 2,1,2 2,1,2 2,1,4 2,1,4 2,1,4 3,1,3
TT 1 2 5 10 61 61 61 61
DD 1 2 3 4 5 6 7 8

then the TT code is the one that overall yields the lowest effective symbol loss,
quite significantly in some cases.

Table E.2 lists the parameters for each code type, which yielded the low-
est effective symbol loss. For all codes the optimal constraint length is 1

when d = 0. As d increases the parameters that yield the lowest effective
symbol loss for the TT code is maximized. That is the optimal parameter
for the TT code reaches (or gets very close to) the limits of our experiments.
On the other hand, for the DD code, the optimal parameter is, quite natu-
rally, v1 = v2 = d+ 1, for e < 0.45. For the codes DC and CC, the constraint
lengths are generally not more than 4 for moderate losses, i.e., e > 0.15.

5.1 Small Matrices and Low Delay

In [18] the authors of the present paper proposed the use of lower triangular
Toeplitz coding matrices with static coding coefficients over small dimensions,
e.g., 10×10, for low delay streaming. There are several benefits of these coding
matrices. First, it allows for an increased coding throughput performance, by

139

References

0 1 2 3 4 5 6 7
0

0.1

0.2

d

P
E
(d

;e
,C

1
,C

2
,m

)
TC, e = 0.35

TT, e = 0.35

DC, e = 0.35

DD, e = 0.35

CC, e = 0.35

TC, e = 0.25

TT, e = 0.25

DC, e = 0.25

DD, e = 0.25

CC, e = 0.25

Fig. E.4: The effective symbol loss for all code types for e = 0.25 and e = 0.35, when v ≤ 10.

carefully choosing the coding coefficients. Second, static coefficients provide
predictable performance given that the coding coefficients are constant. In
this scenario we showed in [16] that the TT code was superior for most sets
of d and e. However, by introducing the codes TC and DC we can see from
Fig. E.4 that these two codes are able to reduce the symbol loss probability
even further, as d increases. It is also clear that the TC code is generally the
code that produces the lowest symbol loss probability.

6 Conclusions

The findings in this paper are in line with those of [16]. That is, the TT code
is the one that overall yields the lowest effective symbol loss when both C1
and C2 use the same structure (block or convolutional). But when we allow
for block codes and convolutional codes to be used sequentially then the TC
code is generally the code that produces the lowest symbol loss probability.
We showed that the ranking of the codes does not significantly depend on
the constraint length. This allows for the use of coding matrices of smaller
dimensions, e.g., 10× 10. The method described in this paper to obtain delay
distributions and thereby also the effective symbol loss can easily be extended
to other code types, code structures, and parameters.

References

[1] S. Hahm, P. Kang, H. Bang, and H. Yeon, “Dynamic media buffer control
scheme for seamless streaming in wireless local area networks,” IEEE Wire-
less Communications and Networking Conference Workshops, pp. 109–114,
2016.

140

References

[2] J. Hansen, J. Krigslund, D. E. Lucani, and F. H. P. Fitzek, “Sub-Transport
Layer Coding: A Simple Network Coding Shim for IP Traffic,” IEEE 80th
Vehicular Technology Conference, pp. 1–5, 2014.

[3] H. Schulzrinne, A. Rao, R. Lanphier, M. Westerlund, and M. Stiemer-
ling, “Real-Time Streaming Protocol Version 2.0,” RFC 7826 (Proposed
Standard), RFC Editor, pp. 1–318, December 2016.

[4] M. Tuexen, I. Ruengeler, and R. Stewart, “SACK-IMMEDIATELY Exten-
sion for the Stream Control Transmission Protocol,” RFC 7053 (Proposed
Standard), RFC Editor, pp. 1–8, November 2013.

[5] M. Wang and B. Li, “Network Coding in Live Peer-to-Peer Streaming,”
IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1554–1567, December
2007.

[6] H. Seferoglu and A. Markopoulou, “Opportunistic network coding for video
streaming over wireless,” Packet Video 2007, pp. 191–200, November 2007.

[7] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content
distribution,” IEEE Computer and Communications Societies, vol. 4, pp.
2235–2245, March 2005.

[8] P. Patil, A. Badr, A. Khisti, and W. T. Tan, “Delay-optimal streaming
codes under source-channel rate mismatch,” Asilomar Conference on Sig-
nals, Systems and Computers, pp. 2094–2099, November 2013.

[9] C. E. Luna, Y. Eisenberg, R. Berry, T. N. Pappas, and A. K. Katsaggelos,
“Joint source coding and data rate adaptation for energy efficient wireless
video streaming,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 10, pp. 1710–1720, December 2003.

[10] K.-W. Lee, R. Puri, T. eun Kim, K. Ramchandran, and V. Bharghavan,
“An integrated source coding and congestion control framework for video
streaming in the Internet,” IEEE International Conference on Computer
Communications (INFOCOM), vol. 2, pp. 747–756, 2000.

[11] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[12] P. Elias, “Coding for noisy channels,” IRE Convention Records Part 4, pp.
37–46, 1955.

[13] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–
1216, July 2000.

141

References

[14] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” IEEE International
Symposium on Information Theory, June 2003.

[15] J. Hansen, J. Krigslund, D. E. Lucani, and F. H. P. Fitzek, “Bridging
inter-flow and intra-flow network coding for video applications: Testbed
description and performance evaluation,” IEEE International Workshop
on Computer Aided Modeling and Design of Communication Links and
Networks, pp. 7–12, September 2013.

[16] J. Hansen, J. Østergaard, J. Kudahl, and J. Madsen, “When are Erasure
Correcting Block Codes Better than Convolutional Codes in a Multi-hop
Network?” 11th International Conference on Signal Processing and Com-
munication Systems, December 2017.

[17] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS
convolutional codes,” IEEE Transactions on Information Theory, vol. 52,
no. 2, pp. 584–598, February 2006.

[18] J. Hansen, J. Østergaard, J. Kudahl, and J. H. Madsen, “Superregular
lower triangular toeplitz matrices for low delay wireless streaming,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4027–4038, Septem-
ber 2017.

142

JO
N

A
S H

A
N

SEN
N

ETW
O

R
K

 C
O

D
IN

G
 U

SIN
G

 SU
PER

R
EG

U
LA

R
 M

ATR
IC

ES FO
R

 R
O

B
U

ST R
EA

L-TIM
E STR

EA
M

IN
G

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-121-7

	Front page
	Curriculum Vitae
	Abstract
	Resumé
	Contents
	Preface
	Acknowledgments
	Abbreviations
	I Background
	Introduction
	1 Research objective
	2 Commercial Perspectives
	3 Thesis Structure
	4 Contributions

	Background and State-of-the-art
	1 Audio Formats
	2 Low Delay Wireless Streaming of High Resolution Audio
	2.1 Definition of Delay

	3 Erasure Correcting Codes
	3.1 Linear Codes
	3.2 Random Linear Codes

	4 Block Codes
	4.1 Dense Codes
	4.2 Lower Triangular Codes

	5 Convolutional Codes
	6 Superregular Matrices
	6.1 Dense Superregular Matrices
	6.2 Lower Triangular Superregular Matrices
	6.3 Using Superregular Matrices

	7 Network coding
	7.1 Intra-Session Network Coding

	8 Embedded Platforms

	Conclusions
	References

	II Papers
	A Network Coding on Embedded Platforms for Wireless Networks
	1 Introduction
	2 Source Code
	2.1 Encode and Decode Example
	2.2 Encode, Recode, and Decode Example

	3 Coding Throughput of Block Codes on x86
	3.1 Comparison to State-of-the-art

	4 Coding Throughput of Block Codes on ARM
	4.1 Using NEON

	5 Coding Throughput of Convolutional Codes on x86
	5.1 Dynamic Array of Coefficients
	5.2 Fixed Size Array of Coefficients
	5.3 Segmented Array of Coefficients
	5.4 Performance Evaluation

	6 Using a Wi-Fi Network for Low Delay Streaming
	6.1 Broadcast
	6.2 Unicast
	6.3 Pseudo Broadcast
	6.4 Packet Aggregation
	6.5 Retransmissions

	7 Experimental Wi-Fi Setup
	7.1 Experimental Procedure

	8 Modelling Burst Losses
	8.1 The Gilbert-Elliott Model
	8.2 The Extended Gilbert Model
	8.3 Infinite Hyperbolic Extended Gilbert Model

	9 Conclusions
	References

	B Superregular Lower Triangular Toeplitz Matrices for Low Delay Wireless Streaming
	1 Introduction
	2 Superregular Matrices
	3 Explicit Construction of Superregular and Jointly Superregular Matrices
	4 Greedy algorithm
	5 Theoretical Symbol Loss Probability
	5.1 Single Hop Network
	5.2 Recoding Network

	6 Theoretical Symbol Delay
	7 Simulation Results
	7.1 Random Linear Network Coding
	7.2 Symbol Loss Probability
	7.3 Symbol Delay

	8 Experimental Results
	8.1 Single Hop Network
	8.2 Recoding Network
	8.3 Coding Throughput
	8.4 Coding Operations

	9 Discussion
	10 Conclusions
	A Proof of Lemma B.3
	References

	C On Superregular Matrices and Convolutional Codes with Finite Decoder Memory
	1 Introduction
	2 Jointly Superregular Matrices
	3 Convolutional codes
	4 Convolutional Codes With Finite Decoder Memory
	4.1 Symbol Loss Probability
	4.2 Comparison of Infinite and Finite Decoder Memory
	4.3 Symbol Delay

	5 Conclusions
	References

	D When are Erasure Correcting Block Codes Better than Convolutional Codes in a Multi-hop Network?
	1 Introduction
	2 Background
	3 Symbol Loss Probability and Delay
	4 Simulation Method
	5 Discussion
	5.1 Small Matrices and Low Delay
	5.2 Field Size Bias

	6 Conclusions
	References

	E Sequential use of Block Codes and Convolutional Codes in a Real-Time Multi-hop Network
	1 Introduction
	2 Background
	3 Symbol Loss Probability and Delay
	3.1 Finite Recoder and Decoder Memory

	4 Simulation Method
	5 Discussion
	5.1 Small Matrices and Low Delay

	6 Conclusions
	References

	Blank Page
	Blank Page
	Blank Page

