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PREFACE 

The purpose of this Ph.D. project was to have a better understanding of human corneal 

stem cell biology. The thesis is based on three individual experimental studies, which 

will be referred to as I-III. A list of manuscripts derived thereof is listed below. 

Manuscript I:  

Liu L, Nielsen FM, Riis SE, Emmersen J, Fink T, Hjortdal JØ, Bath C, Zachar V. 

Maintaining RNA Integrity for Transcriptomic Profiling of Ex Vivo Cultured Limbal 

Epithelial Stem Cells after Fluorescence-Activated Cell Sorting (FACS). Biological 

procedures online. 2017 Dec;19(1):15. 

 

Manuscript II:  

Liu L, Emmersen J, Nielsen FM, Riis SE, Fink T, Pennesi CP,  Bath C, Hjortdal JØ, 

Zachar V. Pigmentation is associated with stemness hierarchy of progenitor cells 

within cultured limbal epithelial cells. Stem cells. 2018 May 20. 

 

Manuscript III:  

Liu L, Yu Y, Riis SE, Nielsen FM, Fink T, Jørgensen A, Grove A, Bath C, Hjortdal 

JØ, Christiansen OB, Zachar V. Human limbus harbors higher proportion of 

CD146+CD34- pericyte-like stromal cells than adjacent cornea and sclera. Current 

eye research. Submitted. 
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ABBREVIATIONS 

ABCB5: ATP-binding cassette sub-family B member 5 

CLET: Cultivated limbal epithelial transplantation 

CK3: Cytokeratin 3 

FACS: Fluorescence-activated cell sorting 

FMO: Fluorescence minus one; 

GO: Gene ontology 

KSFM: Keratinocyte serum-free medium 

LESCs: Limbal epithelial stem cells 

LSCD: Limbal stem cell deficiency 

mRNA: Messenger RNA 

P63: Transformation-related protein 63 

QC: Quality control 

RNA: Ribonucleic acid 

RNA-seq: RNA sequencing 

RIN: RNA integrity number 

RNase: Ribonuclease 

SCs: Stem cells 

TACs: Transit-amplifying cells





 

9 

ABSTRACT 

It is estimated that 39.4 million people globally are affected by corneal disease, of 

which limbal stem cell deficiency (LSCD) is perhaps the most severe and difficult to 

treat. Currently, the mainstay procedure to treat the LSCD is based on transplantation 

of ex vivo cultured limbal epithelial stem cells (LESCs). However, to establish the 

optimal therapy has been slow and difficult due to the lack of knowledge about the 

biology of LESCs and their local microenvironment in vitro. If the identification, 

isolation and ex vivo maintenance of LESCs could be improved, more promising 

patient outcomes could be achieved. 

The aim of this Ph.D. study was to improve the understanding of the biology of LESCs 

and their niche cells, with the aid of advanced biomedical technologies including, but 

not limited to, multicolor flow cytometry, fluorescence-activated cell sorting (FACS), 

and next generation RNA sequencing (RNA-seq).  

In study I, we have successfully developed a FACS-based pipeline, which support 

accurate isolation of limbal epithelial progenitor subpopulations along with ensuring 

the RNA yield and quality to be sufficient to enable deep transcriptomic profiling.  

In study II, a comparative transcriptome analysis of FACS-sorted human limbal 

epithelial cellular subpopulations was preformed, using sequencing materials 

obtained from study I. The results identified molecular networks regulating LESCs at 

an unprecedented level of detail, which, among others, include the association of 

pigmentation and LESCs differentiation hierarchy. 

In study III, we revealed for the first time, that a subpopulation of pericyte-like cells 

are more enriched in limbal niche than adjacent corneal and scleral stroma by 

performing a comparative phenotypic analysis of stromal cells isolated from human 

limbus, cornea and sclera using multi-color flow cytometry. 

In conclusion, these findings provide a better understanding of corneal stem cell 

biology, but also shed light on novel molecular tools that would be beneficial to 

improve the current procedure targeting LSCD. 
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DANSK RESUME 

Hornhinden er vores vindue til verden, og den er afgørende for en normal synsfunktion 

og beskyttelse af øjets øvrige strukturer. Det yderste cellelag er konstant udsat for 

påvirkninger fra det ydre miljø og slitage f.eks. når vi blinker, og er derfor afhængig 

af kontinuerlig fornyelse fra hornhindestamceller. Dysfunktion eller mangel på disse 

stamceller kan medføre en lang række sygdomme i hornhinden, hvor hornhinden 

bliver uklar, tør og irriteret, hvilket i værste fald kan forårsage blindhed. 

Laboratoriet for Stamcelleforskning har tidligere analyseret hornhindestamcellers 

gradvise udvikling til modne hornhindeceller og derudover er der udviklet et netværk 

over deres genekspression, som afslører reguleringen af disse stamceller. 

Formålet med dette Ph.d.-projekt var at optimere laboratorieprotokollerne for 

dyrkning af hornhindestamceller. Dette skulle gøres gennem en bedre forståelse af 

den bagvedlæggende cellebiologi ved hjælp af de nyeste teknikker såsom 

fluorescensaktiveret cellesortering og næste generations RNA-sekventering. Alt dette 

for i fremtiden at kunne sikre en optimal stemcellebehandling mod uklar hornhinde 

og den deraf følgende blindhed.  

Resultaterne fra dette Ph.d. studie viste at høj grad af intracellulær pigmentering er 

associeret med et meget primitivt stamcelle stadie i cellekultur; og at der findes en 

gruppe af pericytter i stamcellenichen, der kunne bidrage positivt til 

hornhindestamcellerne i den primitive fase.  

På internationalt niveau vil dette projekt bidrage med vigtig ny viden inden for 

stamcellebiologi.   
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CHAPTER 1. INTRODUCTION 

As the window to the outer world, a transparent cornea has never been more 

important in individual’s life - roughly 80% of nowadays’ information are obtained 

through a functional visual system. Therefore, impaired version is not only 

universally feared by individuals, but also brings a considerable and increasing 

economic burden worldwide (1). 

Globally, the number of blind people of all ages is estimated to be 39.4 million, of 

whom 1.6 million are corneal blindness (2). The epidemiology of corneal blindness 

is highly diverse worldwide, but mainly results from corneal scarring following 

infection or trauma (3). The only curative treatment available is a cornea graft or 

transplant, however, these treatments are hampered due to lack of essential facilities 

and qualified experts, but also scarcity of donor materials, due to the fact that 90% 

of the global cases of ocular trauma and corneal ulceration leading to corneal 

blindness occur in developing countries (3).   

Consequently, initiatives have been launched to prevent sight loss, such as Universal 

Eye Health: A global action plan 2014 – 2019 (VISION 2020: The Right to Sight), 

which focus the use of resources towards the most cost-effective interventions to 

reduce avoidable visual impairment as a global public health problem (4). 

Furthermore, fast-growing knowledge in the field of corneal regenerative medicine 

and bioengineering have brought new hope to restore vision in an effective but less-

costive way, where stem cell-based therapy seems to hold great promise.  

As other parts of human body, corneal epithelium relies on tissue specific stem cells 

to renew and to keep transparent throughout an individual’s lifetime (5).  Despite 

still lacking a unique cell marker, stem cells (SCs) of human cornea are believed to 

reside in a specific location between transparent cornea and opaque conjunctiva, 

termed as limbus, which is also believed to be the niche of limbal epithelial stem 

cells (LESCs). Any disturbance to this microenvironment would eventually result in 

a disease modality known as limbal stem cell deficiency (LSCD) (6,7). This 

condition is often difficult to treat, the most promising treatment option remains 

cultivated limbal epithelial transplantation (CLET) based on ex vivo expanded 

LESCs (8). However, this procedure has a reported long-term success rate only of 

about 75% (9). 

Despite remarkable progress during the last decade in corneal regeneration, there is 

still considerable room left to improve the outcome of current therapy, which 

requires a deeper understanding of LESCs and its niche. 
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1.1. CORNEAL STRUCTURE AND TRANSPARENCY 

As the outermost central region of the ocular surface, the transparent avascular cornea 

acts as the primary infectious and structural barrier. Together with the associated tear 

film, cornea provides two-thirds of the eye’s refractive power (10,11). The human 

cornea consists of five distinct layers: three cellular layers (epithelium, stroma, and 

endothelium) and two interface layers (Bowman membrane and Descemet membrane) 

(Figure 1-1). 

 

 

Figure 1-1: Structure of the cornea. 

Corneal epithelium is composed of 4 to 6 stratified, non-keratinized, squamous cell 

layers (40 µm to 50 µm thick) (11). The first 2-3 layers of superficial cells, together 

with the underlying 2-3 layers of wing cells act as the main protective barrier. The 

deepest single cellular layer of corneal epithelium is the basal layer. The average 

lifespan of corneal epithelial cells is 7 to 10 days (12), and the whole epithelium is 

renewed in 9 to 12 months (13). Except for SCs and their daughter transient 

amplifying cells (TACs), basal cells are the only corneal epithelial cells that are able 

to undergo mitosis. Therefore, the basal layer plays an important role in renewing 

wing and superficial cells by mitotic cell divisions (14).  

The limbus epithelium is a narrow ring of tissue at the transitional zone between the 

corneal epithelium and conjunctiva, which contains 10 to 12 cell layers and measures 

about 80 µm in thickness (15). As an important source of new corneal epithelium, 

LESCs are believed to reside in deep limbal basal epithelium, and migrate to the 

central cornea, while differentiating into TACs and basal cells (16). The detail process 

and relating theory will be discussed later in this chapter. 

The acellular Bowman membrane separates corneal epithelium and corneal stroma. 

As the bulk of the structural framework of the cornea, the dense keratocyte-containing 

and collagen-rich corneal stroma comprises roughly 80% to 85% of total corneal 

thickness. In the corneal stroma, type I and type IV collagen fibers are arranged in 

bundles referred to as lamellae, which contribute to the transparency and mechanical 

strength of cornea (17). Furthermore, the main function of the sparsely located 

keratocytes are producing crystalline proteins, which is another key element to 
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maintain corneal transparency (18). The keratocytes closely interact with LESCs, 

which strongly indicates that this local environment may act as LESCs niche (16).  

Furthermore, it has been reported that a small population of cells in the corneal stroma 

displays properties of mesenchymal stem cells (MSCs) (19), which hold potential  in 

corneal SC based therapy, and will be further discussed later in this chapter. 

The posterior single cellular layer under Descemet’s membrane is the corneal 

endothelium. The main function of corneal endothelial cells is to govern fluid and 

solute transport across the posterior surface of the cornea thus maintains the cornea in 

the slightly dehydrated state that is required for clarity. Dysfunction of corneal 

endothelium, due to irreversible density drop, will result in stromal edema, corneal 

clouding and eventual blindness (20). However, the corneal endothelium are usually 

quiescent and have so far not been considered to regenerate (21). Intensive research 

is still needed to fully understand the biology of corneal endothelial cells, and to find 

a proper way to transplant these cells to patients (22) . 

 

1.2. STEM CELLS OF THE HUMAN CORNEA 

1.2.1. LIMBAL EPITHELIAL STEM CELLS  

Human tissues rely on SCs to replenish themselves throughout life, and corneal 

epithelium is no exception to this as corneal cells are lost continuously each time we 

blink. Epithelial stem cells of the cornea are widely known as LESCs, since they are 

believed to be located in the transition zone between corneal and conjunctival 

epithelium, also referred as limbus (16,23). 

The earliest publications indicating differences between cells from central cornea and 

limbus can be traced back to the 1940s. In these studies a higher degree of mitoses 

was observed in the basal layer of peripheral cornea (24), moreover, centripetal 

migration of limbal pigment in response to corneal epithelial wounds provided even 

stronger evidence, suggesting the limbus as a source of new cells (25).  

To replenish corneal epithelial cell loss, LESCs in the limbal basal layer undergo 

asymmetric division, which results in a stem-like daughter cell, which remains within 

the limbus, and a TAC detached from the basal membrane and which migrates 

centripetally towards the central cornea. TACs undergo multiple rounds of replication 

and gradually loses their “stemness”, and progress to post-mitotic cells called wing 

cells. These cells continue to migrate anteriorly until they reach the ocular surface, 

and terminally differentiate into superficial squamous cells, or terminal differentiated 

cells. Both the post-mitotic cells and terminal differentiated cells are incapable of 

undergoing cell division. The above described process is also known as the X,Y,Z 

hypothesis (26), which is the predominant theory for corneal epithelium maintenance. 
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According to this theory, the cell loss from the ocular surface (Z) is equal to the sum 

of proliferating basal cells (X) and the centripetal migration of peripheral cells (Y). 

This theory has afterwards been further supported by mathematical models (27), as 

well as clinical data showing replacement of donor epithelium by recipient cells after 

keratoplasty (28). This theory was further strengthened by recent lineage tracing study 

of corneal epithelial progenitors, which showed that both corneal epithelial 

homeostasis and wound healing are mainly maintained by the activated SCs 

originating form limbus, but not from the corneal basal epithelial layer (29). 

LESC phenotypical properties 

LESCs share common features with other adult somatic SCs, including a small size, 

a high nuclear-cytoplasmic ration (NC ratio), a slow cell cycle, and a high proliferative 

potential (30). However, to date, a unique biomarker is still absent to detect LESCs 

either in- or ex-situ. 

Nevertheless, many putative positive LESC markers have been reported in recent 

years (31–34), including certain structural proteins (vimentin, cytokeratin 14, 15 and 

19), cell adhension molecules (integrin α6, β1, β4, P-cadherin and N-cadherin), certain 

enzymes (α-enolase, aldehyde dehydrogenase and cytochrome oxidase), growth factor 

receptors (KGF-R and NGF-R), and transcription factors (notch-1,Bmi-1, 

C/EBPδ,WNT7A and PAX6) (32,47–51). On the other hand, LESCs could also be 

phenotypically excluded by differentiated corneal epithelium markers cytokeratin 3 

(CK3) and cytokeratin 12 (CK12), which have been reported negative in limbal crypts 

in vivo (34,35). Similar LESCs-excluding markers include also α9 integrin, CD45, 

CD31, RHAMM/HMMR, connexins 43 and 50 (46).   

Beside the above-mentioned biomarkers, ATP-binding-cassette subfamily G member 

2 (ABCG2) (36) and transcription factor p63 (p63) (32) have been widely used to 

detect LESCs. Tumor protein p63 is a member of the p53 family of transcription 

factors and is involved in epithelial development and proliferation (37). Furthermore, 

Yang et al. have shown that p63 knockout mice have major defects in their epithelial 

development (38). Additionally, Rama et al. have pointed out, that the percentage of 

∆Np63α (a predominant p63 protein isoform) expression in limbal graft could be used 

as a quality control measure for CLET: cultures containing more than 3% ∆Np63α-

positive cells have a success rate of nearly 80% in subsequent transplantation (8). 

However, recent evidence has indicated, that ∆Np63α is also expressed in the central 

corneal basal layer, thus it is not a unique marker for LESCs (39–41). Moreover, like 

other intracellular markers, its usage to purify LESCs has been limited due to the fact 

that cells need to be fixed and permeabilized to expose nuclear p63 antigen.  

As a member of the ATP-binding cassette (ABC) family, ABCG2 is another widely 

accepted putative LESC surface marker (36). Watanabe et al. found ABCG2 was 

almost exclusively expressed in basal limbal epithelium (36). Later, ABCG2 was 
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found high correlation with the long-standing LESC marker ∆Np63α (31). More 

recently, a novel ABC transporter, ATP-binding cassette member B5 (ABCB5) was 

proposed as a new LESC marker (33). Besides ABCB5’s high co-expression with 

∆Np63α in limbal basal progenitor cells, both murine and human studies showed, that 

ABCB5 expressing cells were capable of fully restoring the corneal epithelium in vitro 

(42). However, as universal SC markers, both ABCG2 and ABCB5 are widely 

expressed in other adult SCs as well as in embryonic SCs (43). Therefore, positive 

selection based on these cell surface markers may not be sufficient for LESCs 

isolation and purification. To date, combining a panel of SC markers (e.g. p63, 

ABCG2) remains the most widely accepted strategy to phenotypically identify LESCs 

both in and ex vivo.  

1.2.2. LIMBAL EPITHELIAL STEM CELL NICHE 

A SC  niche is a specific anatomic location that provides a microenvironment, in 

which SCs are present in an undifferentiated and self-renewable state. Within the 

niche, SCs interact with their surroundings to maintain stemness or promote 

differentiation. The concept of SC niche was first proposed by Schofield R in studies 

of the hematopoietic SCs (44); however, the most compelling evidence of the niche 

existence came from studies of Drosophila (fruit flies) (45). Studies of SC niche in 

less complex animals have led to pivotal insights into understanding the more 

complex mammalian SC niche architecture. Despite distinct variations among species, 

it appears that the fundamental anatomical components and molecular pathways of 

the niche environment are highly conserved, which include stromal support cells, 

extracellular matrix (ECM), blood vessels and neural inputs (46). 

Like other human SC niches commonly occur at tissue intersections or transition 

zones (e.g., esophago-gastric, endo-ectocervical), it is widely believed that LESC 

niche locates in the transaction zone between cornea and conjunctiva, also referred as 

limbus. Several hypothetical niches have been proposed for the peripheral cornea over 

the past decade, including palisades of Vogt (5), limbal epithelial crypts (47), limbal 

crypts and focal stromal projections (48). The limbal palisades of Vogt is visible at 

the slit lamp as radial lines in the limbal regions with different degrees of pigmentation 

due to the presence of melanocytes (5,49). Like their function in human skin bulge 

area, melanocytes in the limbal palisades of Vogt may produce melanin pigments to 

protect LESCs from ultraviolet irradiation damage (50). Anatomically, the limbal 

palisades of Vogt is surrounded by a vascular network, which allows the infiltration 

of suppressor T-lymphocytes and antigen-presenting Langerhan’s cells (51). 

Moreover, this highly vascularized structure also provides the residing SCs with 

necessary nutrient and oxygen.  

In order to better identify the LESC niche, many efforts have been made in recent 

years to characterize the ultrastructure of the limbal palisades of Vogt. In 2005, Dua 

et al. first described limbal epithelial crypts, which located at the interpalisade 

http://europepmc.org/search;jsessionid=A0A4A7070954CB373B83FF1FD7FE7A53?query=AUTH:%22Schofield+R%22&page=1
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epithelial rete ridges of the limbal palisades of Vogt (47). Using three-dimensional 

image technology, they found limbal epithelial crypts extend deep into the limbal 

stroma (47). This feature suggested that LESCs might closely interact with underlying 

limbal stroma cells in the limbal palisades of Vogt, where Bowman’s layer is absent. 

In 2007, Shortt et al. revealed further detailed ultrastructure of LESC niche using in 

vivo confocal microscopy, and proposed two additional LESC niches: limbal crypts 

and focal stromal projections (48). Limbal crypts are projections of limbal epithelium 

from the peripheral cornea into the limbal stroma; focal stromal projections are finger-

like projections of limbal stroma with central blood vessels extending upward into the 

epithelium (48). These two structures are thrown into folds, which maximize nutrient 

absorption, but minimize the effect of physical damage. Moreover, some of the 

putative LESC markers, including p63 and ABCG2 are highly expressed in the limbal 

basal cells lining these papillary structures (52). More recently, using optical 

coherence tomography, Lathrop et al. revealed a combination of the structures 

described in the literature including the variety of palisade and interpalisade patterns 

with their intra- and inter-individual variability, along with structures that may 

correspond to limbal epithelial crypts, limbal crypts and focal stromal projections. 

Deep understanding of three-dimensional structure of LESC niche in vivo has greatly 

fostered recreating the bioengineered LESC niche. Consequently, in 2016, Hannah et 

al. reported to successfully having recreated the limbal crypts in vitro (53), which 

would bring great benefits to improve the outcome of limbal culture. 

Interactions with their niche environment are essential for maintaining and activating 

LESCs in vitro (54–56). However, until today, little is known about the crosstalk 

between LESCs and their niche components. Several studies have proposed different 

signaling pathways, which might play important roles in the niche control, such as 

SDF-1/CXCR4 signaling (66), TGFβ/BMP signaling (67) and Wnt/β-catenin 

signaling (68). Recent studies have further pointed out, that the above signaling 

pathways may integrate to function, like BMP/Wnt signaling (68). Some key 

components involved in these pathways have also been identified, such as Frizzeled 

receptor 7 (69), PAX6 (70), and microRNA-103/107 (71). It has been shown that 

LESCs co-cultured with limbal stromal niche cells yield colonies with an average 

diameter five times as large as the colonies obtained when using murine 3T3 feeder 

layers, indicating enhanced LESCs proliferation in the presence of their niche cells 

(54). More recently, a study showed that LESCs and niche cells interact with each 

other in cell culture, migrate in spiraling patterns and self-organize to form niche-like 

compartments that resemble the limbal crypts (57). These new insights will help better 

mimicing LESC niche in vitro in order to support the maintenance of LESC stemness 

and to improve their therapeutic use in the future. 

1.2.3. LIMBAL STROMAL CELLS  

Although the majority of the efforts to characterize SCs in cornea have been focused 

on LESCs, recent investigations have sought to characterize corneal stroma, as it has 
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been proposed that this fiber-rich intermediate layer may also contain an adult SC 

population (58). These cells can be selected by FACS based on SC marker ABCG2 

(58).  During expansion in vitro, these cells express several typical markers of MSCs, 

such as CD166, CD90, CD73, CD105 as well as CD34 (59). Moreover, they have 

shown a capacity for fat, bone and cartilage differentiation (60,61), as well as corneal 

epithelial cell differentiation. Recently, limbal stromal SCs has also been proven to 

have the differentiation ability into corneal-like cells (62,63). These results indicate 

that SCs from limbal stroma may play an important role in both corneal 

bioengineering and cell-based therapeutic applications in future. 

Eventhough it has been proved that limbal stromal niche cells can better support the 

expansion of LESCs in vitro than murine 3T3 feeder layer (54),  the crosstalk between 

LESCs and their niche cells is still being explored. Higa et al. described that LESCs 

and limbal niche cells may directly interact in vivo by penetrating the epithelial basal 

membrane (64). Such interaction has also been observed by Dziasko et al. in a three 

dimensional reconstructed LESC niche (65). Interestingly, their ability to support 

LESCs was enhanced further by expansion of the limbal niche cells in culture 

conditions that maintained their SC-like phenotype (66). In the interaction of LESCs 

and limbal stromal SCs, the SDF-1 /CXCR4 signaling pathway was found to play an 

important role (55). In addition, it is interesting to note, that in vitro, stromal cells 

from limbus supported the expansion of LESCs to a higher degree than those from 

sclera (67), which indicates that stromal cells from different part of ocular surface may 

possess different phenotypical or functional characters.   

 

1.3. LIMBAL STEM CELL DIFICIENCY (LSCD) 

Once the microenvironment of the LESC niche gets disturbed, either intrinsically or 

extrinsically, it can result in a corneal epithelial stem-cell disorder known as limbal 

stem-cell deficiency (LSCD) (68). LSCD can be caused by hereditary (e.g. aniridia), 

acquired (e.g. thermal and chemical injuries, Stevens - Johnson syndrome, and contact 

lens wear), and iatrogenic factors (e.g. surgery) (69). Absence of LESCs and their 

barrier function will eventually lead to partial or full corneal blindness, which is 

characterized by conjunctivalization, neovascularization and inflammation (6).  

Pathology and cytology show a corneal surface covered by conjunctival epithelium 

containing goblet cells (70). Clinically, patients with LSCD present with pain, 

decreased vision, and photophobia (71). On slit-lamp examination, there is absence of 

the palisades of Vogt or other proposed LESC niche structure (47,72,73).  

Today, treatment of LSCD depends on the extent of damage of the limbus (partial vs 

total) and on the involvement of number of eyes (unilateral vs bilateral). For partial 

LSCD, mechanical removal of invading conjunctival epithelium from the corneal 

surface (conjunctival epitheliectomy) can be enough to restore corneal transparency 
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as the healthy limbus will promote stem cells to cover the defect and maintain cornea 

homogenies afterwards (74). On the other hand, treatment of total LSCD often 

requires LESC transplantation, since they will act an indispensable barrier to the 

afterwards irreversible conjunctival invasion (7).  

The concept of cultured epithelial stem-cell therapy was first described in the 1970s 

(75). However, it was not until 1997, that  Pellegrini et al. showed that autologous ex 

vivo cultured LESCs, which afterwards is referred to as “cultivated limbal epithelial 

transplantation” (CLET), could be used to restore corneal epithelium (76). In this 

procedure, epithelial progenitor cells are obtained by a small limbal biopsy, and 

expanded ex vivo; amniotic membrane or a fibrin-based substrate is often used as the 

carrier for cell culture and transplantation. Despite many efforts have been made 

afterwards to improve the outcome of CLET (77–81), its long-term success rate 

remains lower than 80% (8) (82). This may partly be due to the fact, that the cell 

culture processes have not yet been standardized and therefore, vary greatly between 

research groups.  

Although CLET is widely applied in recent years, it cannot be applied to patients with 

bilateral LSCD, since these patients do not possess their own LESCs. However, 

transplantation of limbal allograft requires long-term systemic immunosuppression, 

and the reported outcomes are not optimal (83,84). Therefore, alternative tissues or 

cells have been tested as possible epithelial cell sources for treating bilateral LSCD, 

including MSCs, embryonic SCs, oral mucosa epithelium, hair follicles, and dental 

pulp (85). Among the alternative SC resources , only oral mucosal epithelium based 

transplantation has been evaluated clinically for safety and efficiency (86).  

Currently, to enhance clinical outcome of LSCD, investigations are mainly focusing 

on optimizing the cell culture conditions; developing novel substrates to better support 

stem cell proliferation, maintenance and differentiation; and evaluating the 

therapeutic potential of different kinds of autologous SCs. However, lack of 

knowledge about the biology of LESCs and their local microenvironment remains the 

greatest barrier to success. If LESCs can be better identified, isolated, and maintained 

ex vivo, more promising patient outcomes can be achieved in the future. 
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CHAPTER 2. OVERVIEW OF PH.D. 

WORK 

2.1. OBJECTIVES  

The aim of this dissertation was to obtain a better understanding of the biology of 

human corneal stem cells. In order to achieve this aim, this dissertation had following 

major objectives:  

1. To develop a protocol for high output and high quality isolation of RNA from FACS 

sorted LESCs to enable subsequent transcriptomic profiling by next generation RNA-

seq. 

2. To gain new insight into gene regulatory network on LESCs maintenance and 

differentiation within limbal cultures by performing a detailed transcriptomic analysis 

of FACS sorted LESCs. 

3. To further characterize ocular surface stromal cells by phenotypic profiling using 

multi-color flow cytometry. 

 

To address the above aims, three studies were conducted as described below and 

outlined in Figure 2-1: 

I. Maintaining RNA integrity for transcriptomic profiling from intracellular sorted 

LESCs subpopulations. 

II. Comparative transcriptome analysis of FACS-sorted LESCs subpopulations. 

III. Comparative phenotypic analysis of stromal cells isolated from human limbus, 

cornea and sclera. 
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Figure 2-1: Outline of study design. Histology of the cornea, with a focus on limbal 

epithelium and stroma, is depicted in this simplified drawing. Different cell 

populations dissected from donated corneoscleral tissue for downstream experiments 

conducted in study I, II, and III, respectively.  

 

2.2. EXPERIMENTAL METHODOLOGY 

Key experimental methodologies applied in each study is summarized in Table 2-1. 

Detailed description of all materials and methods used in this dissertation is given in 

the individual manuscripts. In this section, choice of materials and methods will be 

elucidated more in depth, explained or discussed wherever found relevant. 

 Study I Study II Study III 

Primary cell culture • • • 

Immunofluorescence 

staining 

• • • 

Flow cytometry • • • 
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Fluorescence-

activated cell sorting 

• •  

Massive parallel 

sequencing 

• •  

Bioinformatics  •  

 

Table 2-1. An overview of methodologies applied in the studies I-III 

2.2.1. HUMAN DONOR MATERIALS 

Donor materials for primary cultures of corneal epithelial and stromal cells were 

obtained from the Department of Ophthalmology, Aarhus University Hospital 

(Aarhus, Denmark). After post-mortem eye donation, the central 16 mm of the 

donated eye globes were excised and stored in organ culture medium. Central cornea 

button was routinely removed for keratoplasty; residual human corneoscleral tissue, 

otherwise meant for destruction, were anonymized, stored in organ culture medium, 

and shipped to the Laboratory for Stem Cell Research, Aalborg University (Aalborg, 

Denmark) every second week and stored at 4 °C until further processing. The storage 

medium was based on MEM with HEPES and GlutaMAX (Gibco, Life Technologies, 

Naerum, Denmark) added 100 μg/ml biklin (Bristol-Meyers Squibb, Lyngby, 

Denmark), 2 mg/ml piperacillin (Laboratorio Farmaceutico, Sanremo, Italy), 2.5 

μg/ml fungizone (Bristol-Myers Squibb) 8% fetal bovine serum (PAA 

Pharmacosmos, Holbaek, Denmark), and 8% Dextran 500 (Pharmacosmos, Holbaek, 

Denmark). 

As a rich source of human material, the obtained corneoscleral tissue was handled 

according to Danish healthcare law and after guidance from the local ethical 

committee and the Danish Health and Medicines Agency in subsequent studies. 

2.2.2. CHOICE OF CULTURE SYSTEMS 

LESC culture 

The dissociation culture system used for the isolation of LESCs in this study was 

initially developed by Bath et al. (87), but was further optimized in this Ph.D. study  

to achieve a better cell culture outcome.  

The majority of previous established LESCs isolation protocols, regardless of cell-

suspension or explant culture, were based on dispase digestion, as reviewed in Table 

2-2. Dispase cleaves fibronectin and collagen IV to release epithelial cells from cornea 
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basal membrane (88). However, digestion with collagenase was recently shown to 

better maintain the niche cells in LESCs cultures by dissolution of the basement 

membrane components (54). In the initial stage of this project, different enzymatic 

digestion methods were compared. Both collagenase and dispase digestion allow 

satisfactory cell culture outcome, but when using collagenase digestion in our 

laboratory we observed irreversible contamination of fibroblasts in LESCs culture 

(Figure 2-2a). Therefore, dispase II was chosen to digest limbal tissue to make sure 

that stromal fibroblasts did not influence subsequent investigations of LESCs.  

Afterwards the digested tissue was incubated with TrypLE (Invitrogen) to recover the 

epithelial cells (89,90). Cell-suspension technique was applied in study I and II, as it 

has been shown superior to explant culture technique in terms of SCs content (91). 

Enzyme Work 

dilution 

(units/mL) 

Temperature 

(℃) 

Digestion 

time 

(hours) 

Additional 

digestion with 

Trypsin/EDTA 

Reference 

Dispase  

 

1.2 37 1 No (92) 

1.2 37 2 Yes (91) 

2.4 37 1-2 Yes (33,73) 

5 4 16 Yes (54,93,94) 

25 4 18 No (95) 

Collagenase 200 37 18 Yes (54,94) 

Table 2-2: A review of enzyme digestion parameters applied in LESCs cell-suspension 

culture studies. 
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Figure 2-2: Optimization of limbal epithelial stem cell culture protocol. (a) 

Comparison of cell culture outcome after enzyme digestion by collagenase or dispase. 

Cells were cultured in complete K-SFM at 20% O2, 37℃ for 3 days. Yellow arrow 

points to a fibroblast-shaped cell. (b) Comparison of cell culture outcome in different 

culture media. Cells were cultured in complete K-SFM or Epilife at 20% O2, 37℃for 

3 days (upper panel) and 10 days (lower panel). (c) Comparison of cell culture 

outcome in different culture surface. Cells were cultured in complete K-SFM at 20% 

O2, 37℃ for 2 days on normal polystyrene surface (left panel) or CellBind surface 

(right panel). Scale bar depicts 500µm. 

Even though feeder cells like NIH/3T3 are unquestionably supporting growth and 

morphology of LESCs cultured in vitro (96), a feeder-free and serum-free culture 

system was preferred in study I and II to avoid unwanted contamination for 

downstream analyses. Epilife basal medium supplied with Human Corneal Growth 

Supplement (both from Life Technologies, Naerum, Denmark) was previously shown 

to support the growth of human corneal epithelial equivalents, and also to minimize 

the risk of contamination during culture (39,96). However, a more recent study have 

indicated that cells cultured in Keratinocyte Serum-free Medium (KSFM) supplied 

with human recombinant Epidermal Growth Factor 1-53 and Bovine Pituitary Extract 

(all from Life Technologies) included a higher percentage of limbal stem/progenitor 

cells, compared to the ones cultured in Epilife (97). In our study, LESCs grew 

generally faster in KSFM than in Epilife, while displayed no obvious difference in 

cell morphology (Figure 2-2b). 

One disadvantage of a serum free culture system is a decreased cell attachment, since 

it often lacks calcium and other attachment factors found in serum (98). Corning 

CellBIND surface (Sigma–Aldrich, Copenhagen, Denmark) is proven to improve cell 

attachment by incorporating significantly more oxygen into the cell culture surface, 
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making it easier to maintain successful primary cell culture under difficult conditions, 

such as serum-free medium (99). In study I and II, after enzymatic and mechanical 

isolation from corneoscleral rings, more epithelial cells were attached to corning 

CellBIND surface than normal polystyrene cell culture flasks, resulting in higher cell 

yields for subsequent analysis (Figure 2-2c). 

Ocular surface stromal cell culture 

In study III, to compare the phenotypes of the stromal cells from limbus, cornea and 

sclera, it was necessary to optimize the protocol even further to distinctively isolate 

each population. To the best of our knowledge, no attempts have ever been made to 

isolate stromal cells from distinctive parts of an individual’s ocular surface, therefore, 

several parameters were for this purpose optimized based on previous reports 

(61,100–103). In order to accurately separate the limbus from the adjacent cornea and 

sclera, tissue dissection was performed in aid of a stereo dissection microscope (Nikon 

SMZ-2B, Nikon, Tokyo, Japan), as shown in Figure 2-3a. During optimization, we 

found that a combination of dispase II and collagenase IV digestion allowed for 

satisfactory isolation of stromal cells from distinctive part of single-donor’s ocular 

surface. According to the enzyme manufacturer (Life Technologies), comparing with 

other collagenase preparations, collagenase type IV is designed to be especially low 

in tryptic activity to limit the damage to membrane proteins and receptors. In order to 

achieve a better tissue digestion, collagenase type IV is often applied together with 

dispase, as described by Nayar S et al. (104). This combination thus possesses normal 

to above normal collagenase activity, but also the advantage of better preservation of 

the surface antigens, reducing the loss of cell surface markers necessary for the 

subsequent flow cytometric analysis (104). 
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Figure 2-3: Optimization of ocular surface stromal cell culturing protocol. (a) Left 

panel: observation of ocular surface tissue under a stereo dissection microscope. Blue 

dashed line separates cornea from limbus; red dashed line separates limbus from 

sclera. Right panel: cornea, limbus and sclera tissue obtained for subsequent cell 

culture after mechanical dissection. (b) Comparison of cell culture outcome obtained 

from cell-suspension culture technique (left panel), or explant culture technique (right 

panel). Cells (or explant) were cultured in DMEM at 20% O2, 37℃ for 5 days. Scale 

bar = 500µm. 

After enzymatic digestion, processed ocular surface tissue was used to test the cell-

suspension technique and explant technique. Our finding revealed that both culture 

systems gave a satisfactory cell culture outcome. However, the explant culture was 

shown superior in terms of cell attachment and proliferation (Figure 2-3b). One 

possible explanation could be both extracellular matrix and cellular components are 

active during the process of primary explant culture, which can exert several 

advantages for cell attachment and growing, as discussed by Hendijani F in his 

recently published review (105). 
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2.2.3. IMMUNOFLUORESCENCE STAINING 

Combined surface and intracellular staining to detect LESCs 

To phenotype ex vivo expanded LESCs, antibody-based epitope recognition of 

ABCB5, p63 and CK3 was applied. In study I and II, direct fluorochrome-conjugated 

antibodies were regarded as first choice whenever available, since they can greatly 

simplify the staining procedure, thus avoid unnecessary extrinsic ribonuclease 

(RNase) contamination or prolonged time resulting from secondary antibody staining. 

After validation and titration, chosen antibodies were further tested for cross-

reactivity and fluorescence spillover. Antibody staining was tested using two types of 

negative controls to ensure specificity: firstly, appropriate negative controls using 

isotype-matched conjugated antibodies were performed; secondly, negative controls 

omitting two intracellular antibodies, also referred as Fluorescence Minus One (FMO) 

control were performed for cell surface epitopes.  

In immunofluorescence, the choice of fixative and the following permeablization 

reagent have great influence on the outcome, since they can affect epitope detection 

(106), but also affect subsequent analysis of extracted biomolecules, like mRNA 

(107,108). Cross-linking fixatives including formaldehyde were reported to hamper 

RNA-based analyses (109), therefore, a more RNA friendly alcohol-based fixative 

70% ethanol was used (110–112) in study I and II to preserve high quality RNA for 

downstream RNA-seq. 

The major source of failure in any attempt to produce high quality RNA is RNase 

contamination. RNases are very stable and effective enzymes, erroneous introduction 

of RNase either from instrumentation, immunostaining, FACS, end user, or 

endogenously from the sample itself will lead to unavoidable RNA degradation. 

Therefore, precautions was needed to avoid contamination during intracellular 

antibody staining, as well as subsequent FACS (discussed below). RNase inhibitor 

has been proven to effectively prevent the enzymatic degradation of mRNA and total 

RNA for molecular biological studies (113). In study I and II, RNasin® Plus RNase 

Inhibitor (Promega, Roskilde, Denmark), which is widely used in transcriptomic 

studies for purpose of maintaining high quality RNA (114,115), was applied to each 

step after cells were permeablized, as well as during FACS sorting. 

Multi-surface antigen staining to phenotype ocular surface stromal cells 

The multi-surface antigen staining protocol used in study III was obtained from our 

previous report (114). All antibodies were titrated, and then tested for cross-reactivity 

and fluorescence spillover, as previously described, before application in this 

scenario.  
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2.2.4. FLOW CYTOMETRY 

Flow cytometric analysis 

Flow cytometric analysis took place immediately after immunofluorescence staining. 

After raw data was obtained on a MoFlo® Astrios™ sorter (Beckman Coulter, Brea, 

CA), subsequent analysis and sorting were performed in Summit Software v4.3 

(Beckman Coulter). A typical workflow of flow cytometric analysis is illustrated in 

Figure 2-4. To exclude debris and dead cells after processing, primary gates based on 

forward and side scatter were set to select the overall population of interest. Gates for 

detecting positive staining were set against isotype controls for intracellular antigens, 

and FMO for surface antigen. Sorting gates were initially set so that approximately 

2.5% of the events in the negative control were above the threshold. For multi-color 

flow cytometric analysis, compensation values were calculated for applied 

fluorochromes using the BD CompBeads Set (BD Biosciences, Brøndby, Denmark) 

according to the manufacturer's protocol, and using unstained and singly stained cells 

as compensation controls. 

 

Figure 2-4: A workflow of flow cytometric analysis in Kaluza 1.3 software. FSC-

Height vs. SSC-Height (upper left panel) and subsequent FSC-Height vs. FSC-width 

(upper right panel) were used to exclude debris and dead cells from the analysis. Gate 

strategy (lower panel) was set with reference to isotype or FMO controls, and 
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discrimination limit for positive events was set at a fluorescence intensity above which 

2.5% of controls stained positive.     

Fluorescence-activated cell sorting (FACS) 

One of the biggest obstacles in study I was to maintain a RNA-friendly environment 

during FACS. To maintain RNA integrity, following precautions were taken during 

sorting.  

Before launching, the flow cytometer was thoroughly decontaminated from outer 

sorting chamber to inner streaming system including sample line, sheath line, as well 

as waste tank following manufacture’s instruction. Once decontamination was 

complete, a test sort using RNase-free water, followed by RNase-detecting reagent 

RNaseAlert (Life Technologies) was performed to ensure the instrument and sheath 

fluid was completely RNase-free following manufacture’s instruction.  

To perform an optimal sorting, appropriate concentration, single-cell suspension and 

proper pH maintenance are key parameters during sample preparation. An obvious 

advantage of a high-speed sorter, like MoFlo Astrios (Beckman Coulter, Brea, CA) 

used in this study, is the opportunity for a sample concentration up to 2x107 /mL, and 

a sorting speed up to 20,000 events per second, which would dramatically shorten the 

sorting time, thus avoiding potential time-lead RNA degradation during sorting. 

However, a dense cell concentration often results in formation of aggregates, which 

will eventually lead to nozzle blockage. In study I, single cell suspension was 

maintained by the proteolytic and collagenolytic enzyme-based Accumax solution 

(Sigma-Aldrich, Brøndby, Denmark) to dissociate clumped cells. An additional 

filtration through the 70 µm Pre-Separation Filters (Miltenyi Biotec, Bergisch 

Gladbach, Germany) was used to remove cell aggregates or large particles prior to 

FACS.  

RNA degradation can be directly caused by high pressure within the instrument during 

sorting (115). To minimize harmful shear force, large nozzle size (100 µm) and low 

running pressure (20 Psi) was used when sorting. On the other hand, high pressure 

also compromise phosphate and carbonate solution’s buffer capacity (116), and 

eventually lead to RNA degradation due to pH variation (117). In study I, the buffering 

capacity was boosted by adding a non-phosphate system HEPES (Life Technologies) 

at a final concentration of 25mM (118) during staining, sorting as well as sample 

collection to maintain a neutral pH environment optimal to maintain RNA integrity. 

After enough events was collected for FACS gating, sort mode was set as “purify” to 

ensure accurately separation of LESCs subpopulations. Polypropylene round-bottom 

FACS tubes was chosen to collect the sorted samples to minimize cell loss from 

binding to the tube (119). It is advantageous to sort directly into extraction reagent 

such as Trizol LS (Invitrogen) or RLT buffer (Qiagen) in order to minimize 
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downstream handling and inadvertent gene expression changes (120). However, these 

buffers’ capacity to maintain RNA integrity is highly concentration-dependent (121), 

and often compromised by unavoidable dilution by sheath fluid during long-time 

sorting (121).  Therefore, in study I, cells were directly sorted into a PBS based 

collection buffer, and pelleted for flash-freezing after sorting.  

2.2.5. RNA SEQUENCING AND BIOINFORMATICS 

For study I and II, RNA extraction and subsequent RNA-seq was performed by AROS 

Applied Biotechnology (Arhus, Denmark). A workflow is shown in Figure 2-6, 

methods in detail is presented in Manuscript I and II, respectively. Obtained raw 

sequencing data were submitted to Gene Expression Omnibus (GEO, http://www. 

ncbi. nlm. nih. gov/geo/) under accession number PRJNA387095. 

 

Figure 2-5: Workflow of total RNA sequencing and bioinformatics 

In comparison with traditional transcriptomic analysis based on microarrays, high-

throughput RNA-seq requires a lower amount of input matrtials, but provides 

significantly higher sensitivity to detect novel genes and differential expression (122). 

It is widely accepted that at least 30 million paired-end reads are needed to evaluate 

similarity between transcriptional profiles (123). Therefore, in study I and II, a depth 

of 100 million paired-end reads was applied for sequencing to ensure accurately detect 

differential gene expression among sorted LESCs subpopulations.   
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A systematic quality control (QC) of RNA quality, raw sequencing data, as well as 

reads alignment was performed to ensure a meaningful bioinformatic analysis 

afterwards, as shown in Figure 2-7.  

Figure 2-7: Quality control of RNA sequences. GC-content: guanine-cytosine 

content; A Phred (quality) score is a measure of the quality of the identification of the 

nucleobases generated by sequencing (124,125). 

Data analysis, or bioinformatics, remains one of the biggest challenges in a successful 

RNA-seq experiment (122). In study II, bioinformatics was focus on differential gene 

expression among sorted LESCs subpopulations, as well as subsequent gene ontology 

(GO) network analysis to reveal to what extent selective markers (p63, ABCB5 and 

CK3) were associated with gene activation characteristic of limbal stem or precursor 

cells.  
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CHAPTER 3. SUMMARY OF RESULTS 

Detailed results from the study I-III are presented in manuscript I-III, respectively (see 

appendices). An overview of the main findings is presented below. 

Study I: 

Objective:  

To develop a reliable FACS-based procedure supporting accurate isolation of LESCs 

subpopulations along with a RNA yield and a RNA quality sufficient to enable deep 

transcriptomic profiling. 

Results & Conclusions:  

1. Ethanol fixation together with optimized downstream procedures provided for a 

pipeline that preserved good discrimination between the individual LESC 

immunophenotypes, but also yielded high quality total RNA in amounts to readily 

support the RNA-seq procedure: the average RNA integrity number was 7.7 ± 0.4, 

and the average yield was 4.6 ± 1.7 pg of RNA per cell. 

2. Optimized pipeline would allow transcriptomic analysis of FACS-sorted/purified 

cells in the absence of a specific surface molecular marker. 

 

Study II: 

Objective:  

To perform a comparative transcriptome analysis of four phenotypic subpopulations 

of cultured limbal epithelial cells, based on co-expression of reputed stem/progenitor 

markers ABCB5 and p63, along with corneal differentiation marker CK3, with the aid 

of FACS and RNA-seq. 

Results & Conclusions: 

1. Transcriptomic analysis showed pigmentation was among the leading biological 

processes in less-differentiated LESCs.  

2. P63 identified a highly pigmented, stem/progenitor-like population, whereas 

ABCB5 was associated with a non-pigmented, late-stage differentiation cell 

population in LESCs culture.  
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3. Pigment epithelium-derived factor (PEDF), of which transcription is directly 

regulated by p63, might be a key factor regulating LESCs self-renewal.   

 

Study III 

Objective:  

To perform a comparative phenotypic analysis of stromal cells isolated from human 

limbus, cornea and sclera. 

Results & Conclusions: 

1. Heterogeneity in MSCs populations was observed in human ocular surface stroma. 

2. A significant higher proportion of pericyte-like cells featured by CD146+CD34- 

expression was observed in cultured stromal cells from limbus than those from cornea 

or sclera. 
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CHAPTER 4. DISSCUSSION 

The advancement of biological technologies in recent years has greatly facilitated SC 

research, among which, bioinformatics in combination with transcriptomic analysis 

or RNA-seq has been proven to be a powerful and effective tool to better understand 

SC biology (126). However, its usefulness in corneal SC research is greatly limited, 

partly due to the absence of an unequivocal surface marker to allow for FACS 

enrichment. By successfully overcoming the difficulty of maintaining RNA integrity 

during intracellular sorting (127), we have provided a novel insight into the diversity 

of corneal SC development hierarchy (128). Meanwhile, a comprehensive multicolor 

flow-cytometric analysis revealed a heterogeneity of MSCs populations in human 

ocular surface stroma, as described in study III, which will foster a better 

understanding of their role in cornea maintenance as well as in future SC-based 

therapies.  

Diversity of the stem/progenitor cell populations in human corneal 

epithelial cell culture 

Percentage of SCs (characterized by holoclonal activity and high p63 expression) in 

an ex vivo cultured limbal graft has been recognized as a key prognosis indicator for 

CLET (8). However, the SCs percentage alone is still insufficient to guarantee 100% 

successful outcomes in patients with LSCD (129).  

A possibly overlooked factor in graft failure is the distribution of epigenetic states in 

limbal culture. The diversity of stem/progenitor cell population, featuring a variety 

of different epigenetic states with different propensities for proliferation and 

differentiation, is recently recognized to be the key to maximize tissue performance 

(130,131).  

Many tissues possess two different populations of SCs: a quiescent population and a 

primed population (132). Recent lineage tracing assays involving epithelial tissues 

revealed that adult SCs are not homogeneous, even under normal physiological 

conditions (133–135). A lineage tracing study revealed that such diversity also exists 

in the corneal SC pool (136). Under normal homeostasis, quiescent SCs are slow 

proliferating and responsible for self-renewal maintenance; under stress, a fraction of 

quiescent SCs is stimulated to become a primed population and gives rise to TACs, 

which proliferate actively and migrate centripetally to restore and regenerate the 

corneal epithelium (137).  

Moreover, the role of TACs as an important component for tissue development and 

regeneration as well as their feedback regulation on SCs in the niche has received 

increased attention. In human hair follicle, TACs generated by primed SCs can 

express Sonic Hedgehog (SHH), which promotes quiescent-SC to start proliferation 
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(138). The knowledge about TAC-SC-crosstalk in limbal niche as well as in limbal 

graft could be essential to improve the unsatisfactory outcome of CLET, due to the 

majority of SCs in a limbal graft tend to remain almost quiescent, and take too long 

to proliferate (129,137).    

However, it has been challenging to identify markers that distinguish TACs from 

SCs. Expression of C/EBPδ and Bmi1, which are responsible for mitotic quiescence 

(139) are believed to be associated with quiescent SCs; whereas expression of p63, 

which features proliferative potential (32), is not restricted to SCs, but also shared by 

TACs at early differentiation stage (140). Therefore, high p63 expression alone is not 

sufficient to distinguish high proliferative SCs from TACs. 

Our study demonstrates for the first time that ABCB5 could be used to identify TACs 

with more limited proliferative potential, which is in stark contrast to previously 

published studies concluding that ABCB5 identifies SCs in both in and ex vivo 

(33,42). Despite the clinical success in these studies, the contribution of implanted 

ABCB5+ cells in mice with induced LSCD remains unclear (141), moreover, corneal 

abnormalities arising from ABCB5 deficiency could be ascribed to the anti-apoptotic 

role of ABCB5 protein (142), or absence of TACs, which has been demonstrated to 

be the key to develop a stratified epithelium (143). 

Pigmentation identifies stem/progenitor cells with high proliferative 

potential 

Interestingly, the bioinformatic analysis in study II revealed that apart from 

p63+ABCB5- phenotype to identify SCs with highest proliferative potential, these 

cells are also characterized by highest degree of pigmentation. This conclusion is in 

accordance with previous observation by transmission electron microscopy, showing 

that pigmentation distinguish early progenitor cells from TACs at late differentiation 

stage (30). In the above-mentioned study, Schlötzer-Schrehardt U and Kruse FE 

described two different cell types in the basal layer of limbal epithelium: primitive 

appearing putative SCs or early TACs containing melanin granules; and another group 

of similar cells without pigment granules, but with two centrioles associated with the 

process of mitosis, which are believed to be late TACs (30).   

It is widely believed that SCs in the limbal niche receive melanin from surrounding 

melanocytes to protect them from UV irradiation. However, recent studies showed 

that melanocytes interact closely with SCs, and might be involved in their self-renewal 

regulation within limbal niche (49,144–146). Indeed, the concept of limbal stem cells 

was firstly inspired by the observation of limbal melanocytes migrate into the corneal 

epithelium during wound healing (147). The movement of pigmentation during 

corneal wound healing is possibly due to melanocytes interacting with a constant 

number of surrounding SCs to form the “melanin unit” (49). The presence of the 

“melanin unit” in the limbal niche was recently confirmed by serial block-face 
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scanning electron microscopy (144). These findings partly explained why 

pigmentation is associated with stemness, as the gene ontology analysis revealed in 

study II. However, following questions remain unanswered: 1) what is the key 

molecular involved in pigmentation-SC regulation? 2) why could pigmented 

progenitors be exclusively detected by p63, but not ABCB5 expression? 

To answer the above questions, we propose that pigment epithelium-derived factor 

(PEDF) might play a key role in the pigmentation-p63-stemness association. 

Abundant evidence have demonstrated PEDF’s role in SCs self-renewal regulation 

from different human tissues (148–151). However, its role in LESCs regulation has 

not been recognized until 2013 (152). In their study, Ho et al. showed that synthetic 

PEDF could enhance the proliferation potential of LESCs in vitro, by evidence of 

ΔNp63α, Bmi-1, and ABCG2 expression; in addition, they also proposed that this 

effect might be mediated by phosphorylations of p38 MAPK and STAT3 (152). 

However, there is still no evidence showing the presence of intrinsic PEDF in LESC 

culture. Nevertheless, PEDF was previously reported to be a direct target gene of p63 

(153), and could be detected in early stage melanosome (154). Thus, there is a 

possibility that high p63-expressing LESCs may be able to produce endogenous 

PEDF, which might located in their intracellular pigment granules.  

Pericytes as an indispensable component in limbal stroma 

Recent years have witnessed an increasing interest in the study of stromal cells in 

human cornea. This is partly due to their exhibition of stem cell phenotype and 

potential for epithelial transdifferentiation, which might be a resource for cell-based 

therapeutics (19,58,59,61,101,155–157). Unlike the self-renewing epithelium, 

homeostasis of the corneal stroma dose not rely on the presence of an active 

population of SCs, thus the role of these SC-like stromal cells as well as their cross 

talk with LESCs in the limbal niche remains elusive. Therefore, it is worthwhile to 

explore how stromal cells from limbus are different from their counterparts from 

adjacent cornea and sclera.  

Results from study III revealed that a significant higher proportion of pericytes are 

present in limbal stroma, by evidence of their CD146+ CD34-marker profile (158). 

Pericytes are an integral cellular component of vascular structures, which play a 

critical role in vascular development (159). Recently, many newly discovered 

functions of pericytes, which could functionally distinguish them from other stromal 

cells, have been reported, including neutrophil recruitment (160), maintenance of the 

integrity of the blood-brain-barrier (161), multiple-lineage differentiation (162), and 

functioning as therapeutic agents (163). In 2013, Corselli M et al. reported for the 

first time that FACS purified pericytes are capable of supporting the self-renewal and 

proliferation of transplantable human cord blood hematopoietic SCs in vitro, through 

cell-to-cell contact and at least partly via paracrine effects (164). Afterwards, the 

interest in pericytes as a niche component for adult SCs has been significantly 
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growing (165–167). However, to our best knowledge, the role of pericytes in limbal 

niche has still not been identified, which is undoubtedly needed be further 

investigated in future to have a better understanding of corneal SC biology. 

Limitations 

Ideally, gene expression experiment in study II should have been performed on 

freshly isolated limbal epithelial cells, since it is well known that LESCs change 

phenotype after culture. However, the number of cells available represents an 

insurmountable technical problem. Even after processing approx. 15 corneal rings, 

which represents on average 3 months  ́supply from the Danish Cornea Bank, and 

seeding into T25, the cell yield is barely appreciable. This is due to the fact that the 

limbal crypt cell numbers are in the order of few thousands (168). Our optimized 

pipeline (127), in order to produce sufficient quality RNA for the least represented 

phenotype (p63+ABCB5+), relies on the use of the total of 75 x 106 cells (this 

includes controls for setting the gates and sorting parameters, and the sorted cells). 

The minimal number of cells for reliable RNA isolation was stipulated by a 

company specialized in deep RNA-seq. Thus, until a quantum leap occurs in the 

fields of cell sorting and deep RNA-seq, the in vitro culture remains the approach of 

choice. 

Another concern raised is the choice of antibodies. Conjugated polyclonal antibodies 

are chosen in study I and II, since an extra step to label the unconjugated 

monoclonal antibody would severely prolong the experiment and lead to 

unnecessary RNA degradation. Instead of commonly used ΔNp63α antibody, which 

is believed to better identify LESCs (169), we have chosen an antibody (#167531-

FITC, US Biological, Salem, MA) that recognizes variant ΔN-p63 isoforms 

proteins, which is indeed in accordance with Pellegrini et al. in their milestone paper 

that demonstrated p63 identifies keratinocyte stem cells (32). 

At last, when performing bioinformatic analysis, the complex gene ontology 

network in large scale was manually trimmed to highlight the association between 

“pigmentation” and “stemness”. Therefore, the raw data, which has been deposited 

in The Gene Expression Omnibus (GEO, http://www. ncbi. nlm. nih. gov/geo/) 

under the accession number PRJNA387095( ID 387095), is still worth further 

investigation to get a better insight of LESC cell biology regulation.   
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CHAPTER 5. CONCLUSIONS 

In conclusion, the studies described in this dissertation have provided new insight into 

the corneal SC biology. The results presented throughout study I and II have opened 

up a new area of LESCs research: it is time to revise the role of pigmentation in LESCs 

self-renewal regulation, especially its association with p63-expression, which could 

be mediated by PEDF. Moreover, comparing with other proposed molecular markers, 

identification of early limbal progenitors by pigmentation is undoubtfully more 

convenient and straightforward. In addition, these results also implied ABCB5 as a 

marker to identify TACs, which would allow a better understanding of their role in 

corneal SCs differentiation dynamics as well as in SC-based therapies for sight-

threatening corneal diseases, such as LSCD or corneal scaring. In Study III, a diversity 

of MSCs population is observed in human ocular surface stroma. A deeper 

understanding of MSCs diversity in corneal stroma might bring benefits to better 

mimicing LESC niche in vitro in order to support the maintenance of LESC stemness 

and to improve their therapeutic use in the future.  

Together, these findings may serve as an inspiration for the research of corneal SCs 

of the future. If the diversity of SCs in corneal epithelium as well as in corneal stroma 

can be better identified, more promising culture outcomes can be achieved. The way 

forward is thus to develop strategies to identify the role of pigmentation as well as 

pericytes in LESCs ex vivo maintenance.  
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