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Abstract

As the amount of data created and consumed each day increases at an alarming rate,
distributed storage systems have turned towards erasure coding to keep up with demand.
Several well-known codes exist that decrease storage costs significantly, but introduce new
challenges that limit their use. Furthermore, there is no single technique that is widely
applied across different types of systems. One technique that may be an exception due to
its flexibility is network coding.

We set out to look at how network coding can be applied in three distinct scenarios
ranging from the mostly static data center environment to the highly dynamic fog com-
puting setting. We also looked at how aggregating multiple cloud storage services can
alleviate some of the issues related to single–cloud solutions and examined the problem
of updating data after it has been erasure coded. We used network flows to model repair
and reconstruction processes, followed by results from measurements and simulations to
validate theory. When looking at erasure coding for fog computing, we used real–world
traces to evaluate its feasibility. We assessed the effectiveness of our proposed solution on
updating erasure coded data using git and a publicly available repository.

We proposed techniques to reduce the burden of repairs by up to 35% on data center
networks and presented a system of checks for network coding that determines whether
a repair maintains the required level of reliability. We showed that aggregating multiple
cloud storage services and applying network coding improves retrieval performance by
between 34%–61% and alleviates some of the the reliability and privacy concerns related
to single–cloud solutions. We proposed a schema that adapts data distribution with the
goal of reducing retrieval time. For fog computing, we compared different erasure codes on
their ability to maintain the integrity of an edge cloud of mobile devices. We also touched
on predicting node availability and showed that mobile storage clouds are feasible with as
little as 25% redundancy. Finally, we proposed a mechanism to solve a challenge common
across most storage systems, updating erasure coded data after it has changed. Given
realistic update patterns, it requires 5 orders of magnitudes less storage compared to
state-of-the-art solutions.

Our hope is that the results presented in this dissertation advance the state of the art
by enabling erasure coding to be applied in more cases, more effectively.
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Összefoglaló

Modern világunk adattermelési és fogyasztási szokásai fokozatosan növekvő terhet rónak
az elosztott tároló rendszerekre. Ennek csökkentésére egy kézenfekvő megoldás a hi-
bajav́ıtó kódok használata. Több olyan eljárás ismert, amely lényegesen csökkenti a
tárolandó adat mennyiségét, de ezek gyakran újabb kih́ıvásokat teremtenek, ráadásul
nem létezik univerzálisan alkalmazott megoldás. Rugalmasságának köszönhetően kivételt
jelenthet a network coding.

Célul tűztük ki a network coding vizsgálatát három alkalmazási területen:
megvizsgáltuk jellemzőit a többnyire statikus adatközpontoktól a többfelhős rendsz-
ereken keresztül a dinamikus fog computing megközeĺıtésig. Továbbá, foglalkoztunk
a kódolt módon tárolt adatok frisśıtésével. A jav́ıtási és rekonstruálási folyamatokat
hálózati folyamokkal modelleztük, majd szimulációs és mérési eredményekkel validáltuk.
A fog computing kivitelezhetőségének vizsgálatára valós rendszerből kinyert adatokat
használtunk, akárcsak a kódolt adatok frisśıtésénél, ahol a gitre és egy nyilvánosan
elérhető kódbázisra támaszkodtunk.

Javasoltunk egy hibajav́ıtó technikát adatközponti használatra, amely akár 35%-al
csökkenti a hálózat terhelését azzal, hogy elkerüli a túlterhelt részeit. Továbbá bemu-
tattunk egy ellenőrző mechanizmust, amely meghatározza, hogy egy bizonyos jav́ıtás
megfelel–e a szükséges megb́ızhatósági kritériumoknak. Mérésekkel igazoltuk, hogy a
network coding használata egy több felhőből álló tárhelyszolgáltatás esetén csökkenti az
adatátviteli időt 34%–61%–al, valamint megb́ızhatóbb és biztonságosabb rendszerekhez
vezet egy hagyományos egy felhős megoldáshoz képest. Továbbá javasoltunk egy adapt́ıv
technikát a rendszer teljeśıtményének növelésére, amely módośıtja az adatok elosztását.
A fog computing terén hibajav́ıtó kódokat hasonĺıtottunk össze azon képességük szerint,
hogy milyen mértékben biztośıtják az adatok megb́ızható tárolását. Megḱıséreltük meg-
becsülni a rendszerben szereplő mobilkészülékek rendelkezésre állását és beláttuk, hogy
ezen rendszerek már 25%–os redundancia esetén is megvalóśıthatóak. Végül javasoltunk
egy eljárást a hibajav́ıtó kóddal ellátott adatok frisśıtésére. Valós mintákon végzett
mérések alapján megállaṕıtottuk, hogy 5 nagyságrenddel kevesebb tárhelyet ı́gényel az
elterjedt megoldáshoz képest.

Reményeink szerint az eredményeink seǵıteni fogják a korszerű rendszerek tervezését és
lehetővé teszik a hibajav́ıtó kódok hatékonyabb, szélesebb körben történő alkalmazását.
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Resumé

Da mængden af data oprettet og lageret hver dag stiger med en alarmerende hastighed, har
distribuerede lagringssystemer vendt sig imod fejlkorrigerende koder for at kunne effek-
tivisere og følge med udviklingen. Der findes flere kendte koder, der reducerer lageromkost-
ningerne betydeligt, men disse introducerer nye udfordringer der begrænser deres brug.
Desuden er der ingen kode der alene kan anvendes bredt, p̊a tværs af forskellige typer
systemer. Én kode der kan være undtagelsen, p̊a grund af sin fleksibilitet, er netværk-
skodning.

I dette projekt undersøgte vi hvordan netværkskodning kan anvendes i tre forskellige
scenarier lige fra det mest statiske data center miljøtil de meget dynamiske ”fog comput-
ing” miljøer. Vi undersøgte ogs̊a hvordan aggregering af flere data cloud lagringstjenester
kan afhjælpe nogle af problemerne i forbindelse med anvendelsen af én enkelt cloud løsning.
Vi undersøgte derudover problemet med opdatering af data, efter den er blevet kodet med
en fejlkorrigende kode.

Vi brugte netværkstrafik til at modellere reparations- og genopbygnings-processer,
efterfulgt af resultater fra må linger og simuleringer til validering af teori. N̊ar vi kiggede
p̊a fejlkorrigerende koder til anvendelse “fog computing”, brugte vi realistiske målinger
til at vurdere dens anvendelighed. Vi vurderede effektiviteten af vores foresl̊aede løsning
til opdatering af data kodet med en fejlkorrigende kode ved hjælp af git og et offentligt
tilgængeligt git repository. Vi har foresl̊aet teknikker der kan reducere belastningen af
netværket i forbindelse med reparationer med op til 35% i datacentre, og fremlagt ét sys-
tem til kontrol af netværkskodning, der afgør, om en reparation opretholder det krævede
niveau af p̊alidelighed. Vi viste at aggregering af flere cloud lagringstjenester, samt at an-
vende netværkskodning forbedrer systemets ydelsens i forbindelse med adgang til lageret
data med 34 % - 61 % og mindsker nogle af de p̊alidelighed og privatlivs problemer, der
er relateret til anvendelsen af én enkelt cloud løsning. Vi foreslog et skema, der tilpasser
datadistribution med det form̊al at reducere adgangstiden. Til “fog computing” sammen-
lignede vi forskellige fejlkorrigerende koder med deres evne til at opretholde integriteten
af en “edge cloud” af mobile enheder. Vi har ogs̊a kigget p̊a hvordan man kunne forudsige
tilgængeligheden af en enkelt mobile enhed og viste, at mobile clouds er mulige med s̊a
lidt som 25% redundans. Endelig foreslog vi en mekanisme til at løse en udfordring, der
er almindelig p̊a tværs af de fleste lagringssystemer, nemlig at opdaterer data kodet med
en fejlkorrigende kode, efter at den er ændret. Baseret p̊a realistiske opdaterings mønstre
kræver det 5 størrelsesordner mindre lagerplads i forhold til de nyeste løsninger.

Vores h̊ab er, at de resultater, der præsenteres i denne afhandling, fremmer den nyeste
teknologi ved at muliggøre brugen af fejlkorrigerende koder i flere tilfælde omr̊ader end
hvad der i dag er tilfældet.
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Köszönet
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Chapter 1
Introduction

1.1 Motivation

Our society creates and consumes more data than ever before. This trends looks to

accelerate as more and more IoT devices come online in the following years. Keeping

data safe from malicious entities, available and quickly accessible is a daunting task. To

achieve these goals, several copies can be created and distributed across several locations

that are unlikely to fail at the same time. However, a more cost–effective solution is to

use erasure coding to protect against partial losses. The idea is several decades old, yet

it’s adoption rate is somewhat limited in many scenarios by the challenges it poses.

I have identified three environments of interest, namely data centers, aggregated cloud

storage services and fog computing, then set out to look at the most pressing and inter-

esting challenges in each of them. Figure 1.1 sums up their most distinctive features.

Much of the research on erasure–coded storage has so far focused on data centers, a

mostly static scenario where the number of nodes does not change. Erasure codes are

employed in many existing systems, but tend to be applied only to a small part of the

data. This is the case even if a large proportion of data is rarely accessed archival storage

that is a prime candidate for erasure coding. The network traffic associated with repairing

data on failed storage nodes can overload network devices and cause the system to fail

in meeting its performance criteria. I wish to find a solution to reduce this burden by

taking advantage of information about the network’s topology and state. Since it is hard

to predict what network topology future systems will use, I seek a general solution.

Cloud storage services are popular solutions for both enterprises and end users. How-

ever, single–cloud solutions have some limitations that hinder their growth. The perceived

reliability of cloud providers is hurt by how even short, small–scale failures can lead to

several services becoming unavailable or slow. Many of these events, such as the Netflix

outage that took place during Christmas 2012, the difficulty in reaching the Healthcare.gov
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Figure 1.1: Overview of the main subjects of the dissertation

website at its launch, the Exchange Online availability issues in June 2014 or the AWS

outage in February 2017 have received widespread media coverage. Likewise, high–profile

hacking scandals, such as that involving iCloud in August 2014, have questioned the

security of single–cloud solutions. I propose creating an aggregated solution to address

some of these challenges. Like data centers, an aggregated cloud storage solution is a

mostly static scenario where the number of storage nodes rarely changes. However, since

data must cross the Internet, the speed with which it can be retrieved changes continu-

ously. Designing and adapting the data distribution to account for this is a key enabler

in improving performance. I also seek to take into account other important factors for

the consumers of these services and aim to increase data availability and security, while

reducing costs.

Most current online services are highly centralized, backed by reliable but expensive

data centers. However, a move towards decentralization can be observed for services that

involve transferring a lot of shared data to the end user. Several content distribution

and streaming services already cache data at the edge of the network. I envision fog

computing as the next step in this regard, a cloud of inherently unreliable mobile devices

that act as an integral part of the infrastructure of the service. Since storage nodes join

and leave the system continuously, erasure codes face the added challenge of providing

enough slack to account for the variation in the number of nodes. It is not clear which

codes are suitable in this regard or more importantly, which ones can reconstruct data on

leaving nodes most efficiently. Indeed, even whether such a system is feasible is an open

question.
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Finally, one of the main obstacles in making erasure coding a more pervasive technol-

ogy in distributed storage, regardless of scenario, is the difficulty in working with mutable

data. If an erasure-coded file changes slightly, current systems simply delete the old

file and store the new version. A method for storing and applying encoded differences

similarly to how today’s version control systems work would expand the scenarios where

erasure coding is used beyond archival data.

A particularly interesting technology due to its flexibility, efficiency and ability to work

with limited coordination between the elements of a system is network coding. One of

the goals of this work is to establish whether its most practical implementation, Random

Linear Network Coding (RLNC), has enough benefits in the aforementioned environments

to justify its use.

This dissertation sets out to answer the following questions:

• How can the burden of repairs on storage networks be reduced? Can awareness of

topology and conditions help in this regard?

• How can coefficients be checked efficiently for linear dependence for codes such as

RLNC?

• What are the benefits to using RLNC for distributed cloud storage in terms of

reliability, retrieval performance, security and privacy?

• Is it possible to adapt the distribution of data to increase retrieval performance? If

so, what is the network cost of the adaptation?

• Can a decentralized, P2P cloud of mobile devices that regularly leave and join be

used for storing data? If so, what erasure codes ensure data survival using the

least amount of storage and network bandwidth? How does this change if the cloud

contains high availability devices or if it is centrally controlled?

• Is it possible to update erasure–coded data? If so, how does a coded solution

compare to traditional systems on storage efficiency?

1.2 Related work

1.2.1 Erasure coding in distributed storage systems

In recent years, distributed storage systems (DSS) have seen a trend towards erasure

coding as a means to control the costs of storing and ensuring the resilience of large

volumes of data. Even though traditional distributed storage systems employ replica-

tion [Shvachko et al., 2010], erasure coding provides equivalent or better resilience while
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using a fraction of the raw storage capacity. Both new technologies and increasing storage

volume requirements suggest that erasure coding will continue to increase in importance

as a factor in data center design. Offloading of encode and decode operations to GPUs,

FPGAs and/or the use of modern software libraries such as ISA-L [Intel, 2017], jera-

sure [Plank and Greenan, 2014] and Kodo [Pedersen et al., 2011] promises to lower the

computation costs of these operations, potentially expanding the set of cost–effective use

cases for erasure coded storage. Additionally, the increased IOP density∗ and IO band-

width of next generation storage devices, such as NVMe (Non–Volatile Memory Express),

as compared with rotating media or earlier SSD devices, promises to lower the effective

IO costs associated with coded storage, further expanding the set of use cases.

Network interfaces have arguably seen a less dramatic increase in throughput than

either storage or compute. A large bulk of the research in the area of erasure coding

for distributed storage has focused on ameliorating the increased strain on the network

during repair of lost erasure–coded data by reducing the amount of data transferred,

commonly referred to as repair bandwidth. Unlike replicated storage where data can

be recovered by simply copying the lost pieces (packets) from surviving nodes, repairing

erasure coded pieces involves retrieving significantly more data. For example, Reed–

Solomon (RS) [Reed and Solomon, 1960] is widely employed due to its optimal storage

efficiency for a given level of reliability. More precisely, it is a Maximum Distance Sep-

arable (MDS) code. However, repairing lost pieces requires as many coded pieces as

are required to recover the original data. To address this, codes with more efficient re-

pair have emerged employing techniques such as functional repair [Dimakis et al., 2007],

interference alignment [Wu and Dimakis, 2009], piggybacking [Rashmi et al., 2013b] and

subpacketization [Guruswami and Wootters, 2015].

1.2.2 The trade–off between storage and repair efficiency

Dimakis et al. characterize in [Dimakis et al., 2007, Dimakis et al., 2010] the inherent

trade–off between storage efficiency and repair bandwidth. Their seminal work intro-

duced regenerating codes, a class of codes based on concepts from network coding that

achieve various points on the resulting trade–off curve. The two extremal points on the

curve are of particular interest. Minimum Storage Regenerating (MSR) codes need the

least amount of storage to ensure a given level of reliability and are therefore equivalent

with Maximum Distance Separable (MDS) codes in this regard. Conversely, Minimum

Bandwidth Regenerating (MBR) codes store more information in order to decrease the

amount of information transmitted during reconstruction to a minimum.

∗IOP density is calculated by dividing the number of input/output operations a storage device can
sustain by its useful storage capacity.
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In [Shah et al., 2010], Shah et al. introduced the concept of flexible regeneration,

where storage nodes contribute different amounts of data to repairs and introduced a

lower bound on the total repair bandwidth. We introduce a slightly simpler lower bound

for MSR codes in Chapter 2 that forms the basis of our theoretical results for mak-

ing functional repair network–aware. We have decided against the use of a cap on the

amount of data transferred from any single node, as argued for in [Shah et al., 2010],

as we felt it unduly excludes some repair strategies. The same research team has pro-

vided [Shah et al., 2012] a code for the MBR point that uses a form of exact repair

(i.e. lost pieces are replaced with identical copies) termed ’repair–by–transfer’. This

makes it interesting in severely bandwidth and computationally–limited systems. We

refer to this code as RBT–MBR and include it in our evaluation. The paper also es-

tablishes the non–achievability of most of the interior points on the curve for exact re-

pair. [Rashmi et al., 2015] proposed a scheme to create MSR codes which are also optimal

in terms of the number of I/O operations performed on each of the nodes participating

in the reconstruction. This is an important consideration in disk–based systems.

One of the assumptions [Dimakis et al., 2007] makes is that both the amount of

stored information (α) and transmitted (β and γ respectively) information can have non–

negative, real values. In real systems erasure codes are only able to store and transmit

an integer number of bits and, most likely, are bound by other system requirements to

manage and store larger data portions. A probabilistic approach could be introduced to

model the storage and transmission of real number of bits. For example, α = 2.3 could be

seen as each node storing 2 with 0.7 probability and 3 with 0.3 probability. However, it

is unclear how such an approach would affect the aforementioned bounds. Furthermore,

increasing the granularity with which data is viewed in a system is generally not feasible

in practice due to a cubic increase in the complexity of encoding and decoding operations.

Therefore, we have chosen to introduce a more strict condition that these values must

instead be positive integers. Thus, the bounds that we introduce in Chapter 2 and 4 are

at least as constraining as those in the original work.

Beyond this practical consideration, our experimental results in Chapter 4 go a step

further by also restricting the number of nodes that are available to use during the recon-

struction, but without explicitly designing the system, as done in [Dimakis et al., 2007],

to compensate for it. This means that we do not consider the same guarantees of relia-

bility on each recovery, but can still provide reliability over an arbitrarily large number

of loss/regeneration operations. This additional constraint can be used to model storage

nodes that are unavailable temporarily due to network connectivity or are unable to re-

spond in due time due to uneven, dynamically changing loads in the system. This is also

a novel constraint absent in [Dimakis et al., 2007].
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1.2.3 Code locality and network awareness

Repair traffic is such an important issue that it limits the proportion of data in a

data center that can be erasure coded [Rashmi et al., 2013a]. One of the ways to

get around this is to use locally repairable codes that create redundancy local to the

rack. Thus, for most failures “cheap” bandwidth inside the rack can be used to re-

pair the lost data. Several commercial implementations use locally repairable codes,

such as Windows Azure Storage [Huang et al., 2012a] and Facebook [Weiyan Wang, 2014,

Sathiamoorthy et al., 2013a]. More recently, Hu et al. [Hu et al., 2016] introduced double

regenerating codes, specifically tailored to minimizing inter–rack traffic in a multi–rack

data center. They proposed a two–stage regeneration procedure that recombines data

stored inside racks before using it in the repair. They show gains of up to 45.5% com-

pared to a regenerating code at the MSR point on the assumption that intra–rack traffic is

free. These solutions greatly reduce the loads on the most congested parts of the storage

networks. As such, they are tailored to specific static scenarios.

Other more general solutions have been proposed that take network topology into

account when doing repairs. However, most do this when distributing the data initially,

thus limiting their ability to adapt to dynamic network conditions. In [Li et al., 2010] Li

et al. proposed a tree–based topology–aware repair scheme based on Prim’s algorithm

that does not have this limitation. The paper described a heuristic–based approach to

manage the large repair space and deal with the scenario when a second storage node is

lost during repair. Unfortunately, the practical applicability of this approach is slightly

diminished by the delay such a selection process introduces. Other research has focused on

looking at specific network topologies. In [Akhlaghi et al., 2010] Akhlaghi et al. grouped

nodes into two sets, a “cheap” and an “expensive” set, based on the cost of access.

They introduced generalized regenerating codes and showed that by downloading more

packets from “cheap” nodes, the weighted cost of repairing failed nodes can be reduced.

In [Gastón et al., 2013] Gastón et al. presented a similar model for a 2 rack system

employing regenerating codes. It considered the different cost of accessing inter–rack and

intra–rack data as well as the location of the newcomer node to define a threshold function

which minimizes the amount of stored data per node and the bandwidth needed to repair

a failed node.

Our work differs from the state of the art in three notable ways. Firstly, we have

proposed a general solution to make erasure codes network-aware that is not limited

to one particular network topology or code. Secondly, our solution allows for changing

network costs that reflect real-time changes in traffic, rather than static costs based on

topology. Thirdly, repairs can be initiated almost instantly when a node fails, allowing

for up-to-date traffic information to be used.
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1.2.4 Network coding

Most erasure codes perform repair by replacing lost pieces with exact copies. This is

termed as exact repair and has the advantage of deterministic operation. In contrast to

this, in functional repair lost pieces are replaced with functionally equivalent ones instead

of exact copies. The basic idea emerged from network coding [Ahlswede et al., 2000],

a highly effective technique to disseminate information through a network that allows

intermediary nodes to transmit functions of the data they received as opposed to simply

forwarding it based on a routing table. Ho et al. proposed [Ho et al., 2006] using functions

based on linear coefficients selected uniformly at random from the elements of a finite field

and called the technique Random Linear Network Coding (RLNC). It was quickly applied

to storage [Szymonacedaski et al., 2005, Deb et al., 2005]. The code’s construction makes

it well–suited for use in dynamic, heterogenous systems as it provides significant flexibility

in the selection of pieces and nodes to repair or reconstruct data. Furthermore, it can

be tailored to achieve many points on the trade–off curve, even dynamically after the

initial data distribution. However, it suffers from significant computational overhead and

crucially, due to the random selection of coefficients, requires a relatively large finite field

to retain data integrity with high probability.

An information flow graph is typically used to determine what lower bounds must

be met on the amount of data transferred during repairs to ensure that the maximum

flow has the required value. Since the coefficients used for RLNC to create the re-

paired packets are drawn uniformly randomly from a finite field, there is a small, but

non–zero probability that they introduce unwanted linear dependence not represented

on the information flow graph. A significant amount of work has been done to study

this probability [Khan and Chatzigeorgiou, 2016, Heide et al., 2011b]. Hu et al. pro-

posed [Hu et al., 2012a] a heuristic two–phase checking mechanism on the coefficient ma-

trices to deal with this problem. They noted that as long as a file is split into a small

number of fragments, the number of matrices for which the rank should be checked stays

manageable. We advocate a similar solution in Chapter 2. The novelty of our approach

lies in decomposing the problem into smaller steps, instead of doing conventional Gaussian

elimination. This allows for intermediary results to be reused. This reduces the number

of computations to manageable levels, even if the number of fragments is large, expanding

the number of scenarios where RLNC can be applied.

1.2.5 Cloud storage services

Beyond data centers, erasure codes can also benefit more dynamic storage systems. Cloud

storage is widely adopted as a cost-effective solution for both enterprise and end user data.
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A key limitation of single cloud solutions is that users are typically tied to a sin-

gle provider and thus dependent on the provider’s offered reliability. Providers outages

are relatively rare and tend to last anywhere between a couple of minutes to several

hours [MSPmentor, 2016]. However, their impact to business and the daily lives of private

users can be significant. Another key issue is privacy. Even when the data is encrypted,

it still lies on a single provider, which can make it particularly vulnerable to attacks or

even disclosure to governmental bodies of a foreign country. Aggregating several cloud

storage services into a single storage pool allows users to take advantage of the storage

space offered by each provider. Many products are on the market that simplify this aggre-

gation, [Otixo, 2017], [ZeroPC, 2017] and [odrive, 2017] to name a few. However, these

still store individual files on individual providers and thus do not increase reliability or

privacy.

A straightforward solution would be to replicate the data across several providers. We

study this approach briefly in terms of storage efficiency and to highlight the difficulties

in scheduling packets during data retrieval, also providing a comparison to our proposed

solution. Recently, a PhD thesis [Joshi, 2016] studied this problem. It dealt with dif-

ferent queuing models based on whether requests can be canceled and also touched on

how the problem differs if an MDS code is applied. A similar problem occurs when

scheduling jobs with small tasks on multiple machines. Replicating or cloning tasks

is also one of the approaches used to mitigate the effect of stragglers in this scenario.

[Ananthanarayanan et al., 2013] focuses on small tasks and argues that the short time

makes it hard to gather statistically significant amounts of measurements to apply con-

ventional predictive mitigation techniques. Furthermore, the time taken to build a pre-

dictive model may in itself be a large part of the execution time of the task. This problem

is similar for replicated cloud storage, since retrieving a file that is highly distributed

consists of several short communications with the provider(s) and delays on any one of

these may result in the delay of the whole process.

Distributing erasure coded data can ensure that all the data is accessible even if

a given number of clouds is unavailable for a fraction of the cost of replicated storage.

Cloud–RAID [Schnjakin and Meinel, 2013] and Saveme [Song et al., 2015] proposed using

RAID–like techniques to this effect. These two solutions have the benefit of low encoding

and decoding complexity, but do not provide the flexibility to accommodate for clouds

with different performance levels or changing redundancy levels on the fly. Ladóczki et.

al. [Ladoczki et al., 2015] showed that Network Function Virtualization can be used to

steer data effectively during content storage and retrieval when multiple network coded

storage nodes are involved.
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Despite the added decoding overhead, erasure coding can decrease retrieval time. The

authors of [Soljanin, 2010] compare an uncoded approach with network coding in several

types of communication environments modeled as random walks [Pearson, 1905]. By re-

ducing the uncoded approach to the coupon collector problem, it is shown that the final

10% of packets are responsible for most of the delay. The varying characteristics of cloud

providers is an added challenge and some approaches may be better than others. The

problems related to storing data on heterogenous storage devices has been studied previ-

ously with some scenarios of particular practical importance having seen more attention.

In [Van et al., 2012], the authors look at the unbalanced scenario where one “super node”

offers significantly more storage, reliability and availability then the others. They tailor

two MDS and a non–MDS code specifically for this scenario. Their major contributions

are the repair schemes that ensure a higher level of availability then those offered by

schemas that do not take into consideration the non–homogenous nature of the system.

Retrieval performance is not discussed.

Apart from the heterogeneous performance characteristics, an added challenge is deal-

ing with variations. Clouds may suffer partial or total outages and some degree of variance

is expected during normal operation. Furthermore, the users may move freely across the

globe, changing the network between them and the service. The idea of moving data

around to follow the users is not new. Follow–Me Cloud [Taleb and Ksentini, 2013b,

Taleb and Ksentini, 2013a] proposes a framework to migrate services between data cen-

ters with the goal of keeping it close to the mobile user. It deals with the technical

aspects of ensuring seamless transitions, whenever the mobile devices are issued with a

new IP address. While the resulting system model is somewhat closer to that of a mobile

storage cloud, it shares the same high–level goals we seek for aggregated cloud storage:

ensure the best quality of experience for users by continuously adapting the underly-

ing cloud services transparently in the background. Adapting the distribution of data

to match the requirements of data consumers is a problem that is not unique to stor-

age. Orca [Bal and Kaashoek, 1993] provides mechanisms through it’s run–time to share

objects between physically different machines. Objects with high read–write ratios are

replicated. Replicas can also be destroyed when the ratio changes. The paper shows that

the adaptation reduces the overall execution time of tasks that use shared objects.

We propose distributing network coded data across the cloud storage providers to

improve reliability, security and storage efficiency compared to the single cloud scenario.

We also present a comparison to simpler aggregated cloud solutions that employ replica-

tion. The novelty of our work lies in tailoring well-known ideas and mechanisms to this

scenario, then solving any problems specific to it. We rely on the flexibility, the rateless

nature and the MDS-like property of RLNC to improve on state-of-the-art solutions.
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1.2.6 Fog computing

With the spread of smart mobile devices and the network infrastructure to support them, a

shift towards networks with highly decentralized resources can be observed [Benet, 2014].

It is seen by some as one key characteristic of 5G [Hu et al., 2015]. Mobile devices

have considerable unused storage space, computational capabilities and network band-

width. Users have also become accustomed to backing up data to cloud storage providers,

making it accessible from anywhere around the globe. We envision the mobile storage

cloud [Fitzek and Katz, 2014] as a system that combines these two concepts and the key

enabler of fog computing [Bonomi et al., 2012, Bonomi et al., 2014].

A mobile cloud stores data reliably on individually unreliable user devices over a

peer–to–peer (P2P) network. It is resilient due to not having a single point of failure

and scalable, ensured by the new resources each joining user contributes. Data is closer

to where it is consumed and can “follow” users. It can be used on its own as a fully

decentralized P2P system or as a support for more traditional system. This second sce-

nario makes it possible for example to deploy mobile clouds in a hybrid storage system as

an edge caching solution. In this special scenario the availability of data is ensured by a

central storage system and the role of the mobile cloud changes somewhat to facilitating

fast and reliable data delivery. As such, it can also be seen as an enabling technology for

mobile cloud computing [Huang and others, 2011].

The mobile cloud faces a big challenge that is less marked in today’s mostly static,

centrally controlled storage solutions. It stores data on unreliable nodes, which join and

leave the network frequently. To address this, specialized erasure codes must be employed

to maintain data availability and mechanisms must be established to spread data to newly

joined nodes. Unlike conventional erasure codes, they must be able to change their rate

to adapt the level of storage redundancy to the number of nodes. A significant new

challenge is the lack of a central controlling entity to coordinate the regeneration of data

lost when nodes leave the system. Traditional erasure codes like Reed–Solomon, designed

for environments that are more or less centralized, may behave poorly. In this regard, the

inherently distributed nature of RLNC lends itself to improving data integrity in these

scenarios as it does not require coordination between the storage nodes.

However, even if efficient data regeneration techniques exist, an open question still

remains: can such a cloud sustain itself? More precisely, can online nodes fill new nodes

with data? To answer it, we must examine how the dynamics of the joining and leaving

processes relate to traffic and storage requirements. Thus, understanding user behavior

and predicting node availability is crucial in defining the circumstances in which mobile

storage clouds are feasible.
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There are many studies of availability in computer networks, several in the area of dis-

tributed systems. [Mickens and Noble, 2006] examines different types of predictors and

proposes a hybrid model for large distributed networks of PCs. It presents an evaluation

of the application of the proposed methods on traces from existing systems. There have

been some attempts to improve the accuracy of predictions by aggregating local ones. One

of these can be found in [Forlines et al., 2012], here the main objective is to find a tech-

nique for a group of forecasters to outperform individual forecasts by experts in a certain

field. Given a large enough number of forecasters and time to mark their performance,

they achieved significant improvements over the expert–only approach. An interesting,

although altogether different aggregation is described in [Van Horssen et al., 2002]. They

propose employing logistic regression to predict the occurrence of plants in a given area of

wetland based on field measurements, and then aggregate these results to give predictions

for larger unmeasured areas.

The key difference between previous research and our work is that in our case mobile

nodes are also involved in the peer–to–peer network as their capabilities allow them to

participate in distributed data storage solutions. This makes the approaches mentioned

in the previous paragraphs less efficient or in certain cases unfeasible, because the factors

influencing the availability of mobile devices differ from those of stationary devices. This

generally stems from three things: the behaviour of mobile users, the mobile nature of the

devices (which can result in great variations in their network connectivity) and battery

capacity. However, the aforementioned papers contain several concepts and ideas which

have been adapted, or could be adapted to the technique we propose in this dissertation.

1.2.7 Working with mutable data

This is a key issue that has not been thoroughly studied for network codes (or other erasure

codes) and where the state–of–the–art follows a costly approach. The difference between

the original and the modified data can be stored using less space in an unencoded form,

for example, using delta encoding. Several publications deal with applying differencing

and compression techniques simultaneously [Korn and Vo, 2002, Suel and Memon, 2002],

with [Hunt et al., 1996] providing an empirical study on several of them. Such techniques

are not limited to storage applications and have been previously used for example to enable

the caching of websites with dynamic content [Mogul et al., 1997, Naaman et al., 2004].

This class of algorithms belongs to a mature field of information theory with several

applications in computer science. However, when applied on its own, it lacks the benefits

offered by erasure codes and does not allow for a seamless update of the file, without first

decoding the original file to later apply the history of changes.
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The amount of research available on updating erasure–coded data has been

very limited until recently. State–of—the–art solutions followed a costly ap-

proach [Esmaili et al., 2013], namely, to update encoded fragments entirely regardless

of the nature or size of the change. Beyond a strain on the network, this process also

requires a large use of space, especially if several versions of the file need to be maintained.

The reason for this issue comes from the fact that each encoded fragment is created by the

combination of all fragments from the original file. Thus, even small changes in various

fragments can be compounded to large changes in the encoded fragments. Our proposed

solution solves this for changes of bursty nature, limiting their effect on the rest of the

file. It works with any linear block code. [Esmaili et al., 2013] deals with both repair

and update of data and limits discussion to a particular 2 dimensional product code and

size–preserving block updates. Recently, following the initial submission of our work,

the field has seen interest from two, independent research groups. [Rouayheb et al., 2015]

presented synchronization protocols to update concurrent modifications performed by dif-

ferent clients of the distributed storage system, focusing on the case where each encoded

block has the same number of deletions. Data recoverability is maintained by changing

the structure of the code during each update. [Wang et al., 2016] examined adding and

deleting individual symbols and information–theoretically optimal compression. Both are

solid theoretical contributions, but it is not clear how widely they can be applied in actual

systems. Our work differentiates itself by also including practically–minded algorithms

and measurements on an actual working system.

1.2.8 Software environment

Developing software for erasure coding can be deceptively simple. A library that supports

basic linear operations over a finite field suffices. However, a key consideration is speed

and efficiency. Fortunately, there are several fast open–source solutions available. Perhaps

the best known library is ISA–L [Intel, 2017], developed by Intel specifically for use in

storage. It takes advantage of the extended instruction sets of newer generation x86

processors. Kodo [Pedersen et al., 2011] is a general–purpose library with support for

RLNC, Reed–Solomon and Fulcrum codes among others. It too is hardware optimized

on x86 and also supports ARM–based systems. Jerasure [Plank and Greenan, 2014] is a

storage–focused solution, while OpenFEC [Mathieu Cunche, 2017] is designed for LDPC.
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1.3 Grouping of contributions into theses

I have condensed and formulated the results of our work as four separate theses. These

follow the main areas of interest and the structure of the dissertation closely. The accom-

panying Thesis Booklet contains a more detailed presentation.

Thesis I: Erasure coding in data centers

I have proposed a framework to find the lowest cost feasible repairs in a network with

heterogeneous, dynamic transfer costs. I have defined a set of bounds on the effectiveness

of functional repair for scenarios where different nodes transmit different amounts of data

to the failed node. Finally, I have introduced a mechanism to check the feasibility of repairs

for codes that select coding coefficients at random. To reduce their computational cost, I

have proposed decomposing them into smaller steps and reusing partial results.

This thesis is covered in Chapter 2 and by publications [1][4]. It also has two related

patents [18][19].

Subthesis I.1: Network–aware repair

I have proposed a repair mechanism that minimizes transfer costs and, breaking with

conventional systems, takes into consideration that costs may be heterogeneous and may

change over time. Since the possible space of repairs can be large, I have examined where

the feasible repairs are for three distinct erasure codes, only considering repairs that may

be optimal given an arbitrarily selected cost function. I have shown using simulations that

all three codes benefit significantly from being network-aware.

Subthesis I.2: Bounds on the effectiveness of functional repair

I have described the condition for maintaining data availability using functional repair for

heterogenous βi. I have shown that it is sufficient for all network codes and also necessary

if (N − L)α = k.

Subthesis I.3: Checking the feasibility of repairs

I have proposed a technique to check the rank of a large number of matrices (M) by

decomposing the checks into smaller steps, then reusing previously memoized results. I

have shown that finding good decompositions is a difficult problem as individual steps

are instances of set cover, an NP-hard problem. I have characterized the computational

costs associated with the checks and proposed two decomposition schemes to find and two

schemes to apply decompositions.
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Thesis II: Distributed cloud storage using random linear network

coding

I have created a model for storing data in a distributed fashion on multiple cloud providers

using random linear network coding. I have provided theoretical results on the system’s

reliability, performance and security. I have examined performance using measurements

on commercially available systems and proposed using a sparse code to adapt the data dis-

tribution to maximize performance. I have provided an algorithm to adapt the distribution

of data in case a storage node becomes unavailable or a new one joins the system.

This thesis is covered in Chapter 3 and by publications [3][8][9][10].

Subthesis II.1: Finding the optimal data distribution

I have described and characterized a system that distributes data over cloud storage ser-

vices that employs random linear network coding. I have characterized the reliability,

performance and security of such systems and formulated the optimal data distribution as

an integer programming problem.

Subthesis II.2: Characterizing retrieval performance

I have examined retrieval performance, comparing a network coded approach to replication

based on several aspects. I have shown that although erasure codes require additional

decoding time to retrieve a file, it is small compared to the benefit of not having to deal

with stragglers.

Subthesis II.3: Adapting the data distribution to the current performance of

the storage clouds

I have proposed four algorithms to dynamically adapt the data distribution to the current

transfer rates offered by the clouds. I have formulated the benefits of using a sparse code

to enhance data retrieval performance and have shown with measurements that it provides

significant adaptation bandwidth saving whilst maintaining retrieval performance close to

that of a dense code. Finally, I have described a simple algorithm to change the data

distribution when a cloud joins or leaves the system.
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Thesis III: Erasure coding for mobile storage clouds

I have examined the high-churn environment of mobile storage clouds and proposed re-

construction strategies to maintain reliable data storage. I have looked at how network

coding can maintain cloud integrity in an uncoordinated system using both simulations

with three different node failure patterns and an analysis of the information flow graph. I

have defined the criteria for a self-sustaining mobile cloud and used a trace from a mobile

P2P system to assess the practical feasibility of mobile storage clouds. I have proposed a

two-phase scheme to predict node availability and performed statistical analysis on user

behavior in a mobile P2P system.

This thesis is covered in Chapter 4 and by publications [2][5][6][11][12][13].

Subthesis III.1: Maintaining cloud integrity in high–churn environments

I have evaluated the effectiveness of different erasure codes for high churn decentralized dis-

tributed storage systems. I have proposed three repair strategies for RLNC and compared

their effectiveness to traditional coding techniques subject to storage and network con-

straints. I have introduced three node failure patterns, one based on real-world traces, and

shown that RLNC is more effective in maintaining cloud integrity even if Reed-Solomon

and replicated solutions have the benefit of using a central controller.

Subthesis III.2: Bounds on the effectiveness of recoding

I have shown that the reason for RLNC’s effectiveness lies in its recoding ability by ex-

amining information flow graphs and establishing constraints on the parameters of the

system.

Subthesis III.3: Assessing the feasibility of a mobile storage cloud

I have established the requirements for a self-sustaining mobile cloud and analyzed traces

from a popular mobile P2P application to validate that such a system is practically feasible.

I have looked at the effects of the variations of node numbers on data availability if high-

availability storage nodes are present in the system.

Subthesis III.4: Predicting node availability using a two–phase model

I have proposed a method of using device-local knowledge to predict the availability of

a single node using a binary classifier and created a model for aggregating the individual

predictions. The resulting formula can be used to calculate the required level of redundancy

needed in a distributed storage system to be able to recover the stored data with a given

degree of confidence.
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Thesis IV: Updating erasure coded data

I have proposed a novel method to update fragments encoded with a linear block code. First,

I proposed a general method and showed how it can handle changes, deletions and addi-

tions to the data. I have characterized its overhead compared to a non-encoded approach

for bursty changes. Second, I provided detailed algorithmic descriptions for the individual

steps and proposed a method to remap data in order to signal deletions. Finally, I showed

using measurements on a Git repository, that the proposed approach requires several or-

ders of magnitude less storage then a naive solution and is comparable to a non-encoded

approach.

This thesis is covered in Chapter 5 and by publications [3][7]. It also has a related

patent [20].

Subthesis IV.1: Representing and applying modifications in an encoded form

I have presented a general overview of how changes can be applied to a file that is stored

in an erasure coded distributed storage system. I have examined three types of changes:

modifying and deleting individual parts and adding new elements to existing data. I have

described the expected storage overhead of representing changes in an encoded form com-

pared to a non-encoded form.

Subthesis IV.2: Detailed algorithmic description

I have described the algorithms required for the three supported operations in great detail.

The thorough presentation focuses on showing further aspects that must be taken into

consideration to ensure that the proposed method can be applied with efficiency close to that

of theoretical results. I have proposed a low-overhead method to remap symbols, necessary

for signaling deletions. Finally, I have shown using measurements in a version control

system that the size of the coded changes is comparable to the non-encoded approach.
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1.4 Structure and source of the material presented

in the dissertation

The dissertation presents an overview of the work done during my PhD, and is not in-

tended to be a separate scientific publication. It contains material that I have previously

written and published. I have improved the quality of the language and some of the

figures, made the notation consistent across the document, tried to put the findings from

different chapters into context by reflecting on the differences and similarities among

them. Through these changes, I aimed to present the reader with a dissertation that can

be read as stand-alone document while diverging as little as possible from peer-reviewed

results. Chapter 5 is perhaps an exception to the latter intention, as I have increased its

theoretical scope significantly and thus contains unpublished material.

The following chapters are organized as follows:

• Chapter 1 introduces the topic of the dissertation and presents related work. It

contains edited material published in [1][3][4][5][8][10][13].

• Chapter 2 is a detailed description of Thesis I. It presents a network–aware frame-

work for doing repairs and introduces bounds on the repair efficiency of functional

repair. It also includes a description of a mechanism to check the feasibility of

repairs for RLNC. It contains edited material published in [1][4].

• Chapter 3 is a detailed description of Thesis II. It proposes an aggregated cloud

storage system and evaluates its characteristics. It presents measurement data and

a method to adapt the data distribution based on the performance of the cloud

services. It contains edited material published in [3][8][9][10].

• Chapter 4 is a detailed description of Thesis III. It examines the feasibility of mo-

bile storage clouds, presenting different methods to maintain data integrity. It

also includes an analysis on user behavior in a mobile P2P network and a two–

phase method to predict node availability. It contains edited material published in

[2][5][6][11][12][13].

• Chapter 5 is a detailed description of Thesis IV. It presents a method to seamlessly

update erasure coded data and includes a detailed algorithmic description of the

steps required to handle modification, deletions and insertions in files. It contains

edited material published in [3][7].

• Chapter 6 summarizes the contributions of this work and presents some of the areas

where it may be applied in the future.



Chapter 2
Cost-effective erasure coding for data

centers

2.1 Introduction

A significant amount of research on using erasure coding for distributed data center storage

has focused on reducing the amount of data that needs to be transferred to replace

failed nodes. This continues to be an active topic as the introduction of faster storage

devices looks to put an even greater strain on the network. However, with a few notable

exceptions, most published work assumes a flat, static network topology between the

nodes of the system. Neither assumption is true for most current data centers.

Network topology and changing traffic conditions play a crucial role in repair perfor-

mance. To reflect these attributes, costs can be assigned to the transfer of packets between

nodes. For example, costs could reflect transfer time or the proportion of available band-

width used on the most congested link. Under these conditions, a solution that aims to
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Figure 2.1: An example of the network-aware repair space of an erasure code
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minimize the number of transferred packets would give a suboptimal solution from the

perspective of a network–aware cost function. Figure 2.1 shows an example of such a case.

The horizontal axis shows the number of packets transferred by each repair. Tradi-

tionally, this metric has been considered as the de facto network cost of a repair and is

sometimes denoted with γ [Dimakis et al., 2010] and referred to as repair bandwidth. The

vertical axis shows the number of transferred packets weighted with a linear cost function

that reflects the current state of the network. Blue semicircles denote feasible repairs, grey

semicircles unfeasible ones. We define a repair as feasible if the resulting system maintains

its ability to reconstruct the data from any subset of nodes of a predefined size. Thus,

unfeasible repairs do not necessarily result in immediate data loss, but rather decrease the

reliability of the system over the course of several rounds of failures and repairs. A red

triangle denotes the repair with the lowest weighted cost. A naive approach that is not

network–aware would select one of the feasible repairs on the x = 4 column, a suboptimal

choice for this particular cost function. This invokes two questions that this chapter seeks

to answer: how much do different types of codes benefit from being network–aware and

where can the lowest cost feasible repairs be found in the repair space independent of the

cost function used. An answer to the latter would provide a solution to reduce the size of

the space that should be considered.

Guaranteeing data recoverability is a crucial aspect of data center design. Thus, codes

employing randomly drawn coefficients, such as RLNC, must be used with caution to avoid

data loss due to linearly dependent coefficients. We present a solution to this problem in

the second part of this chapter.

2.1.1 Structure and overview of the contributions of this chapter

Our first contribution is the introduction of lower bounds on the repair traffic of erasure

codes using functional repair. We look at scenarios where different storage nodes con-

tribute different amounts of data to the repair effort. This serves as a base for some of

our more practically–minded results on network–aware repairs.

Our second contribution is to make the repair of erasure–coded data network–aware

by introducing a general framework that computes the feasibility of different possible

repairs in advance. When a storage node fails, a repair is selected based on some cost

function that reflects the current state of network connectivity among the storage nodes.

By performing the potentially computationally–intensive feasibility checks in advance,

the system is able to react to a node loss quickly and can base the repair selection on

up–to–date network traffic data. This chapter investigates the gains for different types of

erasure codes. The practical applicability of the proposed framework is also considered by

presenting techniques to reduce the number of repairs to consider independent of the cost
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function in use. This aspect is especially important for RLNC, where the set of feasible

repairs of potentially lowest cost is of exponential size when using a naive approach.

Our third contribution is a technique to make checking the feasibility of a large number

of repairs less computationally demanding. We present two methods to decompose the

problem into smaller parts and formulate some of the general properties of decompositions.

We also propose a technique to apply a decomposition as a schema for the actual checks

as part of our proposed framework. We characterize the effectiveness of our solutions

using both analytic and simulation–based tools.

This chapter is organized as follows. Section 2.2 establishes lower bounds on the

repair efficiency of functional repair and introduces a large part of the model in use

throughout this chapter. Section 2.3 includes an algorithmic definition of our proposed

network–aware repair framework and provides methods on determining the set of feasible

repairs that are potentially optimal for three distinct erasure codes. We show using

experiments the degree to which each code benefits from being network aware. Section

2.4 looks at the cost of performing the feasibility checks and describes two algorithms to

find good decompositions, providing experimental evidence to show their benefits. Section

2.5 summarizes our findings.

2.2 Theoretical bounds on the effectiveness of func-

tional repair

2.2.1 System model

A file to be stored in the DSS is broken up into k pieces of identical size. Then, it is

encoded using an erasure code to produce n coded pieces (packets). These are then dis-

tributed to the N nodes: ΩN =
(
node1 node2 · · · nodeN

)
, with each storing exactly

α. When nodef fails, all packets it stored are considered lost and must be repaired onto a

replacement node. We designate the replacement node with the same name and consider

repairs, where the surviving nodes can transfer different numbers βi of packets to nodef :

ξ =
(
β1 β2 · · · βN

)
. We call all possible repairs of a code where nodef was lost its

repair space: Ξf = {ξ | 0 ≤ ξ[i] ≤ α and ξ[f ] = 0} and use the term generation to

denote a round of loss and repair. We require the system to maintain its properties over

an arbitrarily large number of generations. We only consider single node losses as they

are most common in systems with well–separated failure domains [Rashmi et al., 2013a].

Performing concurrent repairs allows for techniques that can further reduce network us-

age [Silberstein et al., 2014], but these are outside the scope of our work. However, we

expect our proposed framework to be also useful in reducing network costs in the case
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of multiple concurrent failures. The effectiveness of RLNC and some other erasure codes

is better if the storage nodes are able to perform some basic operations, mainly addi-

tions and multiplications, on the data during repairs. The models and evaluation in this

thesis study this case. We consider storage systems and codes with parameters that are

N, n, k, α ∈ N+, βi ∈ N.

We define a repair as feasible if the resulting system state maintains data recoverability

after sustaining subsequent concurrent node losses. Each code, based on its parameters,

therefore has a maximum number of L nodes it can lose concurrently while maintaining

data recoverability. For codes employing exact repair like Reed–Solomon and RBT–MBR,

the set of feasible repairs Ξ̃f as well as L is defined by the structure of the code. For

regenerating codes employing functional repair, the set of feasible repairs is constrained

by both the information flow graph [Ahlswede et al., 2000] and the coefficient selection

method. On the information flow graph, a flow to a data collector with a value of at

least k must be maintained with any L vertices from the final level of topological sorting

removed from the graph∗. In this sense, on an information flow graph with edges of

capacity 1, i edge–disjoint paths must necessarily correspond to i linearly independent

packets retrieved by the data collector.

2.2.2 Establishing bounds

The authors of the seminal paper [Dimakis et al., 2010] introduced lower bounds on repair

traffic, given a level of storage efficiency and characterized the trade–off between these two

metrics. They also showed that codes that achieve this bound exist. [Shah et al., 2010]

extended this work by looking at heterogeneous repair scenarios, where surviving nodes

are able to transfer different amounts of data to the repair node. The updated bounds

included a cap on the amount of data transferred by any one node with the goal of reducing

the total generated repair traffic.

Unfortunately, the introduction of the cap restricts the flexibility of the search for

the most cost–effective repair strategy. Once transfer costs are weighted, some valid

repairs may be disregarded. We have derived a significantly different formula for this

heterogeneous case that does not place a cap on the transferred data. Based on this, we

established the set of feasible repairs that have the potential to be optimal in Section

2.3.5.

To establish lower bounds on the effectiveness of codes employing functional repair in

terms of limiting the amount of transferred data, we resort to analyzing the information

∗For codes using random coefficients such as RLNC, further checks are necessary to ensure that the
selection of coefficients does not introduce linear dependence not portrayed on the information flow graph.
We deal with this aspect in Section 2.4.
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flow graph (IFG). The results of this section can be applied for any code using functional

repair and are not limited to RLNC. RLNC has been shown to be able to store and recover

as many individual encoded pieces as the max–flow of the IFG as long as some constraints

are met [Jaggi et al., 2006]. We use the system of checks described in Section 2.4 to select

capacity–achieving coding coefficients and meet these constraints.

Ω
(g)
N \node

(g)
f is the set of surviving storage nodes in generation g of loss and repair, and

let [S(g)]l denote the set of its l–subsets, i.e. [S(g)]l := {X
∣∣X ⊂ (Ω

(g)
N \ node

(g)
f ), |X| = l}.

Theorem 2.1. Consider a DSS that uses a capacity–achieving erasure code that initially

has the property of being able to recover the data from any (N−L) nodes, where (N−L)α =

k. It maintains this property through an arbitrarily large number of single node failure and

repair generations for any failure pattern if and only if the condition in Equation (2.1) is

met.

∀g ≥ 1, ∀s ∈ [S(g)]L :
∑

node
(g)
i ∈s

β
(g)
i ≥ α (2.1)

Less formally, during a repair in generation g, any L sized selection of nodes must

transfer at least α packets for the system to be able to sustain the loss of L nodes following

the repair. This constraint is sufficient to ensure that the number of edge–disjoint paths

on the IFG between the data source and a data collector does not decrease to below k if

L nodes are subsequently lost in the following generation. It is also necessary for MSR

codes, where (N − L)α = k.

Corollary 2.2. Theorem 2.1 also applies if (N − L)α > k with the change that the

condition in Equation (2.1) is only sufficient, not necessary.

To prove Theorem 2.1 and Corollary 2.2 we look at the set of information flow graphs

defined in the following way and illustrated with an example on Figure 2.2. Let every

state of a storage node in a generation be represented by an in and an out graph node,

connected with an edge of capacity α to reflect that each node stores α packets. The

in graph node of a surviving storage node is connected to the respective out node from

the previous generation with an edge of value α. The in nodes of replacement storage

nodes are connected to the N−1 out nodes of the previous generation of surviving nodes.

Since such IFGs are directed acyclic graphs with edges only running between subsequent

generations portraying surviving and repaired packets, each generation corresponds to a

level in a topological sorting. The initial data distribution and the final data recovery

are the first and respectively last levels of the IFG and we denote the data source and

collector with s and t. The data source has edges of capacity α going to the the initial
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N in nodes. Likewise, the data collector is connected to N −L surviving out nodes from

the final generation.

data recoverability⇒ mincut(s, t) ≥ k (2.2)

The minimum cut that separates s and t must have a value of at least k to facilitate

data recovery. If this condition is met, linear network codes exist that achieve data

recoverability [Dimakis et al., 2010]. In the case of RLNC, the probability that a data

collector can recover the data tends towards 1 as the field size increases [Ho et al., 2006].

We are ready to start the formal proof of Theorem 2.1.

Proof. Theorem 2.1 states that a flow of at least k on the IFG corresponding to an MSR

code is maintained after an arbitrarily large number of single node failures and repairs

followed by the concurrent loss of L nodes for any permutation of node failures if and only

if in each generation every L sized subset of survivor nodes transmits at least α pieces to

the replacement node. Formally:

mincut(s,t) ≥ k ⇐⇒ ∀g ≥ 1, ∀s ∈ [S(g)]L :
∑

node
(g)
i ∈s

β
(g)
i ≥ α, (2.3)

where node
(g)
i is the i-th out node in generation g and β

(g)
i is the capacity of the repair

edge with which it is connected to the in node that failed in generation g.

We split the proof into two parts. First, we use an example to show that the condition

formulated in the theorem is necessary to ensuring data recoverability. Second, we show

that it is also sufficient by extending the analysis of min-cuts to a larger family of graphs.

The second part also proves Corollary 2.2.

Let us look at the graph on Figure 2.2 that illustrates the loss of L nodes right after

generation g = 1. The node that failed in the first generation is not among them. The

grey bubble denotes a cut of value α(N − L− 1) +
∑N

i=N−L+1 β
(1)
i that separates s from

t. By substituting the value of the cut and k = α(N − L) into the right side of (2.2), we

get:

α(N − L− 1) +
N∑

i=N−L+1

β
(1)
i ≥ k

α(N − L− 1) +
N∑

i=N−L+1

β
(1)
i ≥ α(N − L)

N∑
i=N−L+1

β
(1)
i ≥ α

(2.4)
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Figure 2.2: Information flow graph after a single generation of node failure and repair,
followed by the loss of L storage nodes. Nodes with black circles around them represent
groups of nodes that have edges from and to the same nodes or groups of nodes. The
multiplicity of the group in the middle and bottom rows is N −L− 1 and L respectively.
Nodes and groups of nodes that have failed have a red circle around them. Black edges
denote data stored on surviving nodes, blue edges denote repairs and the grey bubble
denotes a cut. Capacities are shown above the edges.

If the L intersected repair edges have a capacity lower than α, the cut will have a

value that is less than k. This is the only point in the proof where Theorem 2.1 and

Corollary 2.2 diverge, as the same argument cannot be made if k < α(N − L). In fact,

it is easy to find examples where this cut has a lower value for non-MSR codes while

data recoverability is maintained. Thus, the condition formulated in the theorem is not

necessary for all non-MSR codes.

In the second part we show that it is sufficient to ensure data recoverability after

an arbitrarily large number of generations for both MSR and non-MSR codes (given a

viable set of coding coefficients). We base this part on a slightly extended model of an

IFG presented in [Dimakis et al., 2010], in particular on the proof of Lemma 2. Let us

consider a larger family of graphs defined in the following way: as before, the initial N

nodes are connected to s using edges of α capacity. However, unlike in the first part,

a storage node is represented by a single pair of in and out graph nodes throughout its

existence†. Replacement nodes connect to any N − 1 of the existing nodes using edges of

capacity 0 ≤ β
(g)
i ≤ α. The data collector t may connect to any combination of N − L

initial and replacement out nodes with edges of value α.

†This generalization to the model can be avoided, but makes the proof much simpler by revealing the
most constraining cuts.
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Figure 2.3: An example of an extended IFG and the most restrictive type of cut. Black
edges have capacity α. Blue edges have differing capacities between 0 and α.

Figure 2.3 shows an illustration of such a graph. Let us look at all possible cuts that

separate the nodes into sets A and B such that s ∈ A and t ∈ B in order to establish

the value of the mincut of such graphs. We order the nodes t connects to based on their

position in the topological sorting of the graph, where nodeini and nodeouti represent the

i-th in and out nodes in the sorting order. Let us examine how much different types of

nodes contribute to the flow.

Each initial out node t connects to contributes α to the flow regardless of whether

nodeini , node
out
i are elements of A or B, as s and t are connected by a chain of edges of

capacity α.

Every replacement out node t connects to contributes potentially less, depending on

where it is in the topological ordering of the IFG among the nodes t connects to. Cuts for

which nodeini ∈ A place a restriction on the flow of at most α. Cuts for which nodeini ∈ B
contribute with min(α,

∑N−i
j=1 β

(g)
j ). For example, if nodein1 ∈ B, the cut crosses N − 1

repair edges. If nodein2 ∈ B, the cut might cross one less, if there is a repair edge going

between nodeout1 and nodein2 , as this does not intersect the cut. If the last replacement

node, nodeinN−L ∈ B, the cut might cross anywhere between N − 1 and N − (N − L) = L
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repair edges, depending on how many replacement in nodes are elements of B. Figure

2.3 portrays the latter, most restrictive case in terms of max flow, as t only connects

to replacement nodes and every replacement node in term connects to the most recent

N − 1 out nodes. The last replacement node nodeN−L has the smallest contribution as it

enables a flow of min(α,
∑L

j=1 β
(g)
j ). Thus, if

∑L
j=1 β

(g)
j ≥ α, as stated in the premise of

the theorem, all nodes t connects to supply a flow of α for a total of (N − L)α. We have

shown that mincut(s, t) ≥ k for a more general family of IFGs.

We have proved that as long as α packets are transferred from any L–sized set of sur-

viving nodes during a repair, data integrity is maintained. The condition is also necessary

for MSR codes. As a consequence, a significant reduction in overall network traffic (γ)

can be achieved compared to more traditional erasure codes, such as Reed-Solomon. This

result also serves as the base for network-aware functional repair.

2.3 Network–aware repair

2.3.1 Representing the cost of network transfers

We define the cost functions using matrix C, where ci,j denotes the cost to transfer a

single packet from nodei to nodej and C[j] is column j that contains the costs associated

with transfers to nodej. We introduce two restrictions on C. First, the diagonal elements

must be ci,i = 0. Second, all other elements i 6= j, ci,j ≥ 0.

C =


0 c1,2 · · · c1,N

c2,1 0 · · · c2,N

...
...

. . .
...

cN,1 cN,2 · · · 0

 (2.5)

We use this general way of modeling costs to make it applicable to different network

topologies and traffic patterns. It can be based on any number of measured parameters

such as available bandwidth, latencies, number of dropped packets, queuing delays. It can

be used, but is not limited, to minimize the total time required for repairing lost data.

We make the assumption that the cost of transferring a single packet from nodei to nodej

is not dependent on the total number of packets sent between them in the period in which

the cost is regarded as accurate. This assumption is valid if the examined period is short

or the repair traffic is a negligible fraction of the traffic flowing on the same links.

We evaluate the network–aware cost–weighted repair space of the code as shown on

Figure 2.1, where the weighted cost for repairing data on nodef using repair ξi is cost(ξi) =

ξiC[f ], where C[f ] is used to denote column f .
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2.3.2 A network–aware repair framework

Our proposed framework, defined as Algorithm 2.1, selects the lowest cost repair and is

independent of erasure code and network topology. Whenever there is a change in the

layout of the data (the initial distribution and any subsequent repairs), the set of feasible

repairs Ξ̃f is computed for each possible subsequent node failure. The implementation

of the is feasible() function from Algorithm 2.2 is determined by the erasure code in

question and the definition of feasibility. When a node fails, the cost for each feasible

repair is calculated based on a cost function reflecting up–to–date network conditions.

Algorithm 2.1 Network–aware repair framework

1: E Initial data distribution E
2: precompute feasibility
3: min cost :=∞
4: repeat
5: Enodef fails E
6: for ξj ∈ Ξ̃f do
7: if cost(ξi) = ξiC[f ] < min cost then
8: min cost := cost(ξi)
9: ξ sel := ξi

10: end if
11: end for
12: execute ξ sel
13: precompute feasibility
14: until false

The practical applicability of our proposed framework is determined by the complexity

of the is feasible() function, the size of Ξf and Ξ̃f . The former depends on how feasibility

is defined. In our interpretation from Section 2.1, the set of feasible repairs can be easily

determined for codes employing exact repair. For codes that use functional repair and

randomly selected coefficients, computational complexity is determined by the values

Algorithm 2.2 Precompute feasibility

1: procedure precompute feasibility
2: Ξ̃i := ∅
3: for nodei ∈ ΩN do
4: for ξj ∈ Ξi do
5: if is feasible(ξj) then
6: Ξ̃i := Ξ̃i ∪ ξj
7: end if
8: end for
9: end for

10: end procedure
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of parameters N, n, k, α as the rank of a potentially large number of matrices must be

checked.

In the following subsections we define specific cost functions for three erasure codes

in order to reduce the number of repairs to consider and to be able to characterize the

repair space of each code in terms of where the lowest cost feasible repairs are. The codes

were chosen to cover both exact and functional repair and both MSR and MBR points on

the storage–repair bandwidth trade–off curve. Let us look at finding the minimum cost

feasible repair ξmin and its associated cost: κ = cost(ξmin) =
∑N

i=1,i 6=f βici,f after losing

the data stored on nodef .

2.3.3 Locating potentially lowest cost repairs for Reed–Solomon

Here we examine decoding–based repair for Reed–Solomon (RS) as this can be applied to

any linear MDS code.

Definition 2.3 (Decoding–based repair). Decoding–based repair is a form of exact repair,

it involves the retrieval of at least k packets and performing the decoding operation to

recover the original data. Following this, the same coefficients as used in the encoding

operation are used to recreate the lost packets.

We restrict our evaluation to the α = 1 case to be in line with how RS is generally

used in data centers. Let c(1), c(2), · · · , c(N−1) : c(i) ∈ set(C[f ]) \ cf,f be a permutation of

costs in ascending order and β(1), β(2), · · · β(N−1) the corresponding number of transferred

packets. Thus, the cost of the minimal cost repair is shown on Equation (2.6) and the

number of feasible repairs to consider given no knowledge of C is
∣∣∣Ξ̃f

∣∣∣ =
(
n
k

)
.

κRS =
k∑
i=1

c(i) (2.6)

2.3.4 Locating potentially lowest cost repairs for RBT–MBR

There are two distinct repair strategies to consider in the case of RBT–MBR. Ideally,

each surviving node will transfer a single encoded packet (βi = 1, i 6= f) as defined in the

code construction. The authors of [Shah et al., 2012] coined it repair–by–transfer.

Definition 2.4 (Repair by transfer). A form of exact repair that involves replacing lost

packets with identical copies stored on other nodes. No computations are performed on

either the parent or the repaired node.

Alternatively, if at least k distinct packets are transferred, the decoding of the embed-

ded MDS code can take place and any missing code words can be re–encoded. Whilst this
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second decoding–based repair strategy involves additional bandwidth and computation,

it can result in lower transfer costs for some C. Let c(i) and β(i) be defined the same

way as in the previous subsection. The cost of the optimal repair κRBT-MBR is specified

in Equation (2.7) based on the two repair strategies.

κRBT-MBR = min

(
N−1∑
i=1

c(i) ,

N−L∑
i=1

(α− i+ 1)c(i)

)
(2.7)

The first term is the cost of transferring a single packet from each surviving node. The

second term expresses retrieving as many packets from the lower cost nodes as possible

without getting duplicates.
∑N−L

i=1 (α − i + 1) = k because the embedded code is MDS

and the way RBT–MBR is constructed [Shah et al., 2012]. With no knowledge of C, the

number of repairs that are potentially lowest cost is reduced to
∣∣∣Ξ̃f

∣∣∣ = 1+(N −L)!
(
N−1
N−L

)
.

2.3.5 Locating potentially lowest cost repairs for RLNC

Let us use Theorem 2.1 to derive the formula for κRLNC-MSR. Let β(1), β(2), · · · , β(N−1) be

a permutation of the number of packets transferred from remaining nodes of ascending

order and c(1), c(2), · · · , c(N−1) the respective costs from set(C[f ]) \ cf,f . Taking Equation

(2.1) into consideration, we can define a more specific cost function for the optimal repair

in Equation (2.8), by only considering repairs
∑N−1

i=1 βi ≤ k.

κRLNC-MSR =
L∑
i=1

c(i)β(i) +
N−1∑
i=L+1

c(i)β(L) =

=
L−1∑
i=1

c(i)β(i) + β(L)

N−1∑
i=L

c(i)

(2.8)

The first term expresses the cost for the L lowest values of β(i), the second term the

cost for the rest of the nodes. Each of these must transfer at least β(L) to satisfy Equation

(2.1). κRLNC-MSR is minimized if the c(i) are in descending order, i.e. transferring more

from cheaper nodes and less from expensive ones. The free variables are thus reduced

to β(1), β(2), · · · , β(L). Given that Equation (2.1) should be satisfied with equality for

ξmin, this leads to a significant reduction in the number of potential repairs to consider,

as shown in Equation (2.9). Furthermore, it determines the positions of the lowest cost

feasible repairs in Ξf and once C is known, the optimal repair can quickly be selected.

∣∣∣Ξ̃f

∣∣∣ =

∣∣∣∣∣
{
ξ :

L∑
i=1

β(i) = α

}∣∣∣∣∣ (2.9)
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This is an integer partitioning problem on α that is constrained by limiting solutions to

those with L additive parts. The number of non–constrained partitions is given by a

recurrence formula based on Euler’s pentagonal number theorem [Bell, 2005]. The first

elements can also be found in the OEIS‡ as sequence A000041 [Sloane, 1991]. The number

of solutions with L parts is equal to the number of partitions in which the largest part is

of size L [Alder, 1969]. A similar recurrence formula exists for this constrained version of

the problem [Stanley, 2011].

As the bound in Equation (2.1) is sufficient to ensure data survival for all parameters,

we may apply the previous results for non–MSR codes as well. However, it is possible to

define tighter bounds for these codes [Shah et al., 2010]:

N−1∑
i=1

β(i) ≥ γ(βmax), (2.10)

where γ(βmax) = max(α− βmax, k mod α) + bk/αc.
The authors of [Shah et al., 2010] introduce a cap on the amount of packets any single

node transfers, 1 ≤ βmax ≤ α. They argue against full flexibility (βmax = α), as it involves

transferring at least k packets. However, for some C, transferring k packets is actually the

lowest cost repair strategy. An example can be seen on Figure 2.4d. Based on Equation

(2.10), we define the costs of optimal repairs for a given βmax as

κRLNC(βmax) =

bγ(βmax)/βmaxc∑
i=1

c(i)βmax+

c(bγ(βmax)/βmaxc+1)(γ(βmax) mod βmax).

(2.11)

A simple way to enumerate as many feasible repairs as possible using these bounds is

to look at all values of βmax. The number of feasible repairs of potentially optimal cost is

given by ∣∣∣Ξ̃f

∣∣∣ ≥ α∑
βmax=1

∣∣∣∣∣
{
ξ :

N−1∑
i=1

β(i) = γ(βmax)

}∣∣∣∣∣ , (2.12)

providing a similar set of constrained integer partitioning problems as for the MSR point.

In this case the constraints is that the largest part of a partition must be at most βmax.

Due to the equivalence described in [Alder, 1969], it is the same problem as for the MSR

point, for multiple βmax.

‡The On–Line Encyclopedia of Integer Sequences: https://oeis.org/
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2.3.5.1 Case study for RLNC

Let us look at two sets of parameters at the MSR point for which RLNC behaves differently

depending on C. We have selected these particular sets because of their low number of

potentially minimum cost repairs. This keeps the illustration of the previously presented

theoretical results brief. We assume with no loss in generality that the last node, nodeN

failed and ci = ci,N are in descending order. Figure 2.4 shows zoomed–in views of the

part of Ξf containing ξmin.
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(a) RLNC(12, 6, 4)
c1 < c2 + c3
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(b) RLNC(12, 6, 4)
c1 > c2 + c3
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(c) RLNC(12, 4, 6)
c1 + c2 < 2(c3 + c4 + c5)
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(d) RLNC(12, 4, 6)
c1 + c2 > 2(c3 + c4 + c5)

Figure 2.4: Case study for RLNC(k, α,N)

First, we look at k = 12, α = 6, N = 4 and require that L = 2 failures be supported.

Considering Equation (2.8) and assuming repairs do not introduce linear dependence,

only 4 of them need to be compared to find ξmin.
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ξ1 =
(

3 3 3 0
)

, ξ2 =
(

2 4 4 0
)

,

ξ3 =
(

1 5 5 0
)

, ξ4 =
(

0 6 6 0
)

For c1 = c2 + c3 all four repairs have the same cost. For c1 < c2 + c3, ξ1, the most

balanced repair with the least amount of packets transferred, has the lowest cost as shown

on Figure 2.4a. On the other hand, for c1 > c2 + c3, cost(ξ1) > cost(ξ2) > cost(ξ3) >

cost(ξ4), i.e. the repair transferring the most amount of packets has the lowest cost as

shown on Figure 2.4b. Thus, in these cases a traditional mechanism that only tries to

minimize the amount of transferred data will sub–optimally pick ξ1, giving an error of

cost(ξ1) − cost(ξ4) = c1 − c2 − c3. More importantly, ξ2 and ξ3 will not be the lowest

cost repairs regardless of C, thus the number of relevant repairs whose feasibility must be

checked is further reduced to just those transferring 9 and 12 packets, ξ1 and ξ4 in this

case.

Second, we look at k = 12, α = 4, N = 6 and require that L = 3 node failures be

supported. In this case the lowest cost feasible repairs are

ξ1 =
(

1 1 2 2 2 0
)

, ξ2 =
(

0 2 2 2 2 0
)

,

ξ3 =
(

0 1 3 3 3 0
)

, ξ4 =
(

0 0 4 4 4 0
)

.

The cut–off point between ξ1 and ξ4 is c1 + c2 = 2(c3 + c4 + c5). Due to the limited

number of ways the number 4 can be reduced to additive components, there are no minimal

cost feasible repairs with a total of 9 or 11 transferred linear combinations. Thus, there

might not be a clear decreasing or increasing order of costs like in the previous example

as shown on Figure 2.4c and 2.4d. Therefore, more repairs must be checked.

2.3.6 Evaluation method for network awareness

In this section we evaluate how much each erasure code benefits from being network aware

and perform a thorough analysis on the number of computations required to perform the

feasibility checks. We compare our proposed framework that guarantees finding the least

cost repairs to a naive approach that selects one of the repairs with the lowest traffic but

has no knowledge of transfer costs. We perform our analysis using sets of code parameters

(N,α, k) that meet the following constraints: 2 ≤ N ≤ 20, 1 ≤ α ≤ 10, 5 ≤ k ≤ 32. We

also required that each code must be able to sustain L ≥ 2 node losses while maintaining

data recoverability following each repair. We have selected such a wide range of values to

cover as many of the parameter sets that are interesting as possible. We have strived to

take into consideration practical aspects as well. For example, we have chosen to have an

upper bound on k as it is the main factor that determines the decoding overhead during

read operations for non–systematic codes such as RLNC and RBT–MBR. We also require
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that codes have a storage efficiency of Nα/k ≤ 2.5. We decided to use 2.5 as a cut–off

point to include more cases for RBT–MBR, despite being a relatively high value for a

practical system. For Reed–Solomon codes, we only consider α = 1 as this maximizes

its ability to lose nodes. Recently, Guruswami et al. [Guruswami and Wootters, 2015]

proposed subpacketization for RS raising the possibility that repair may benefit from

other values of α (or non–integer values of βi). However, we are unaware of any practical

implementation or the exact implications of this construction and have therefore decided

to consider RS as used in current systems. For RLNC and RBT–MBR, we restrict our

evaluation to sets which have a repair space size for a given failed node of at most 216

and 224 respectively. While one of the key benefits of our proposed approach is that it

can handle cases where the repair space is very large by only considering a small fraction

of repairs, we would have been unable to compare our solution to the baseline approach

without this constraint. Nevertheless, most practically interesting cases for N , k and α

are included. 50 sets of parameters meet these constraints for RS, 8 for RBT–MBR and

214 for RLNC.

Each run for each code, costs and set of code parameters consisted of 100 iterations

of node loss and recovery. Operations were performed over GF(28). Two types of cost

matrices C were considered. First, I: one that is based on a static network topology where

nodes are grouped evenly in 2 racks. Costs have two types: inter–rack(10x) and intra–

rack (1x). We used this model to evaluate the benefits of network awareness assuming a

simple, static topology such as that defined in [Gastón et al., 2013]. Second, we used a

cost matrix that also portrays current network traffic conditions. The same C is multiplied

entrywise in each round with a different matrix containing values drawn randomly from

the following uniform distributions: II: U(0.75, 1.25), III: U(0.5, 1.5), IV: U(0.25, 1.75),

V: U(0, 2). This allows us to portray the relationship between the variance in network

activity and the potential benefit for an erasure code to be network–aware.

2.3.7 Experiments

Figure 2.5 shows how much each erasure code benefits from knowledge of network costs.

Because of the different parameter sets, the codes should not be compared against each

other directly. However, a general trend can be observed: the larger the variance in

the costs, the larger the gain is compared to the naive approach. Thus, a distributed

storage system with more dynamic traffic patterns will potentially see a larger benefit

from performing network–aware repairs. For Reed–Solomon and RBT–MBR which use

exact repair, most cost types show gains across all parameter sets. In the case of RLNC,

there is a significant gain overall, but there are sets of parameters which show no gain.

RBT–MBR does not benefit at all from being network–aware in a balanced static 2 rack
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Figure 2.5: Gains of network awareness

scenario regardless of the actual values of the cost. This can be explained by the fact that

decoding–based repairs must always access a certain amount of data from outside the

rack in a balanced scenario. If the difference between the costs of going to the different

inter–rack nodes and intra–rack nodes respectively is the same, a decoding–based repair

will entail a cost that is greater than that of performing the baseline approach of repairing

by simply transferring data. However, if there is variance between the cost of accessing

nodes in the same cost category, we see that repair by transfer is not always optimal and

our proposed approach leads to gains.

2.4 An efficient method to check the feasibility of

repairs

RLNC encodes and repairs data using randomly selected coefficients. Thus, it is possible

that repairs that otherwise conform to the requirements of Equation (2.1) are not feasible

due to an unfortunate selection of coefficients. This happens if some of the resulting

coefficient matrices become singular after the proposed repair. This lowers the fault

tolerance of the system. To avoid this, we propose checking that all coefficient matrices

that may be used during data retrieval have full rank before the actual repair takes place.

To avoid delaying the repair, the system must perform the checks in advance for all

possible single-node loss scenarios. Furthermore, all repairs that have the potential to be

of minimum cost must be checked, as described in Section 2.3.2. If checks fail for a repair,

a new set of coefficients should be generated and the checks repeated.

We denote the set of matrices that need to be checked with M and wish to define

a mechanism that performs these checks in a computationally–efficient manner. The

matrices contain the coefficients associated with data stored on N − L− 1 surviving and
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one repaired node, α rows from each. Matrices that do not contain repaired rows need

not be checked as they have been checked before the repair. Similarly, if the same node

fails in successive generations, the checks can be skipped, since no new coefficients are

introduced into the system.

Table 2.1: Table of Notation

N , the number of nodes

L , the number of unavailable nodes the system must support while

maintaining data availability

α , the number of encoded symbols stored on a node, corresponding to

rows in a coefficient matrix

r , the number of repairs to check for a possible node failure

M , the set of matrices that need to be checked

D , the set of matrices that form a decomposition

Ψ , a mapping that defines how each matrix in D is broken down into

two smaller matrices

Si , the set of matrices of size iα× k in upper triangular form (UTF)

Ssel
i , the set of matrices of size iα× k selected in decomposition D

si , an arbitrarily selected matrix from Si or Ssel
i

s
(k)
i , the k–th matrix from Si or Ssel

i given some arbitrarily defined order

lz(i) , the number of leading zeros in si ∈ Si
d(a, b) , the number of divisions needed to get si = sa⊕ sb into UTF if both

sa and sb are in UTF

m(a, b) , the number of multiplications (same as the number of additions)

needed to get si = sa ⊕ sb into UTF if both sa and sb are in UTF

dGauss(k) , the number of divisions needed to get sk into UTF using Gaussian

elimination

mGauss(k) , the number of multiplications/ additions needed to get sk into UTF

using Gaussian elimination

We use an index set to denote which nodes a matrix contains rows from: si =

{index1, index2, · · · , indexi} and |si| = i. For example s3 = {3, 4, 5} contains rows from

node3, node4 and node5. While this representation is easier to follow, an alternative rep-

resentation using bitmaps should be considered when implementing the algorithms that

find good decompositions. Every coefficient matrix of size iα× k can be represented with

a bitmap (row vector with 0 and 1 elements) s′i of size N based on which nodes its rows

originate from. s′i[j] = 1 if it contains rows of coefficients from node j and s′i[j] = 0
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otherwise. For example, s′3 = (0 0 0 1 1 1) contains data from node3, node4 and node5.

Thus, bitwise operations with low CPU cycle cost can be used instead of set operations.

Furthermore, bitmaps fit into a single 32bit or 64bit variable as typically N << 64.

2.4.1 Decomposing matrix rank checks into reusable parts

To perform the rank checks efficiently, we propose decomposing the Gaussian elimination

performed for the coefficient matrices in M into smaller steps that can be shared between

different checks and across subsequent failure and recovery generations. Once a set of

steps and order is identified, it can be used as a schema as long as N , L and α do not

change.

M:
{1,2,3} {1,3,4}

{1,2}

{1} {2} {3} {4}

{1,4}

{1,2,4}

Figure 2.6: An example of a valid decomposition for α = 2, k = 6, N = 4.

Definition 2.5 (Decomposition). A decomposition(D,Ψ) is a set of matrices D =

{s(1)
1 , s

(2)
1 , . . . , s

(k1)
1 , . . . , s

(kj)
j }, where si is composed of rows from i nodes, j ≤ N − L,

kj ≤
(
N
j

)
, M ⊂ D and a mapping Ψ to match each matrix in D except those containing

rows from a single node to a pair of matrices from D.

A decomposition can also be thought of as a directed acyclic graph that defines the

dependencies between matrices as shown on Figure 2.6. The matrices in D are the vertices

and a root element is added that connects to all nodes representing matrices in M ⊂ D.

Edges go between nodes according to Ψ to denote which pair of matrices should be

transformed to upper triangular form before tackling a given matrix. The checks are then

a traversal of the graph, and each visited vertex (matrix) is memoized in upper triangular
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s3={1,2,3}=s2={1,2} s1={3}

node1

node2

node3

Figure 2.7: An example of merging s2 and s1, α = 2.

form to reduce the number of operations in subsequent visits. The fewer matrices that

need to be visited and the lower the cost of each visit, the fewer overall computations are

necessary. Memory requirements only depend on the number of matrices.

We group matrices of identical size to simplify the notation and use Si to denote the

set of matrices of size iα× k that includes all possible combinations of selecting all rows

from i nodes. Ssel
i = {si|si ∈ Si ∩D} is the set of matrices that are selected to be part

of D from Si. This grouping determines the levels of the topological sorting of D. In

order to traverse the graph, we define the merge operation sa ⊕ sb = si, where a + b = i

and sa ∩ sb = ∅ as follows. First, the rows of sb are appended to the end of sa. Second,

the rows of sa are used to create leading zeros in the appended rows to get the resulting

si matrix into Upper Triangular Form(UTF). An overview is shown on Figure 2.7 with

0 elements shown as white boxes, non–zero elements shown with solid red and elements

that are going to be transformed to 0s in the second step shown with a wavy red fill. The

mapping Ψ associates with each matrix si ∈ Ssel
i , i > 1 a pair of matrices sa and sb.

A valid decomposition D is one that can be used to recreate all matrices in M in

upper triangular form using merging. Furthermore, it must also provide a means to build

all matrices in D except for matrices containing rows from a single node. For example,

D = {{1}; {2}; {3}; {4}; {1, 2}; {1, 4}; M}, shown on Figure 2.6, is a valid decomposition

for M = {{1, 2, 3}, {{1, 2, 4}, {1, 3, 4}}, but D′ = {{1}; {3}; {4}; {1, 2}; {2, 3}; M} (not

pictured) is not, as neither {1, 2}, {2, 3} ∈ D′ nor {1, 3, 4} ∈ M can be built from

merging elements of D′. This example highlights that for a decomposition to be valid,

it must contain all matrices that contain rows from a single node as well as intermediate

matrices.

We now turn our attention to studying the checks required to ensure the feasibility

of repairs for RLNC. Since a naive approach involving Gaussian elimination that checks

the rank of individual matrices one by one is computationally expensive, we propose

decomposing the process into reusable steps.
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2.4.2 Characterizing the costs associated with the checks

We would like to use decompositions that result in a small number of computations and

matrices to memoize. Unfortunately, the number of valid decompositions is large and with

increasing N , we quickly reach a combinatorial explosion. This section focuses on deriving

the computational and storage costs associated with a decomposition and motivates the

choice of algorithms for selecting effective decompositions.

2.4.2.1 The cost of reaching upper triangular form using basic

Gaussian elimination

First, let us look at the cost of reaching a UTF in a k×k matrix using Gaussian elimination.

This will act as a baseline for evaluating our proposed solution. We examine divisions and

pairs of multiplications and additions, with an example shown on Figure 2.8 for k = 6.

For α = 2, this example corresponds to checking the coefficients associated with data

stored on 3 nodes. Several simplifications can made to the general Gaussian elimination

algorithm to save on computational cost: the back substitution step can be skipped and it

is not necessary to reduce pivot elements to 1 (reduced row echelon form). Furthermore,

all operations can be performed solely on the coefficient matrices.

The number of divisions is given by

dGauss(k) =
k−1∑
j=1

j =
k(k − 1)

2
, (2.13)

while the number of multiplications, which is the same as the number of additions is given

by

mGauss(k) =
k−1∑
j=1

(k − j)(k − j + 1) =
k(k2 − 1)

3
. (2.14)

(a) Divisions (b) Multiplications and additions

Figure 2.8: Required operations for reducing a matrix (k = 6) to upper triangular form
using Gaussian elimination.
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2.4.2.2 The cost of merging sa ⊕ sb = si

Second, the computational cost of getting the result of merging UTF matrices of size a×k
and b× k into a UTF, where a+ b = i and i ≥ 2. This includes the practically important

case where a = b = i/2.

The number of 0 elements in an UTF matrix of size iα×k (where iα ≤ k) gives a good

indication on the number of operations that can be skipped when performing a merge:

lz(si) = lz(Si) = lz(i) =
iα−1∑
j=0

j =
(iα− 1)iα

2
. (2.15)

The number of divisions is the number of elements that remain to be reduced to 0. The

expression can be slightly simplified as shown in Equation (2.16).

d(a, b) = lz(i)− lz(a)− lz(b)

=
bα∑
j=1

aα = abα2
(2.16)

Figure 2.9a shows an example for a = 2, b = 1, α = 2, k = 6. The arrows start from the

elements that need to be divided to create a leading 0 at the location they point to. The

number of multiplications is the same as the number of additions required for eliminating

(a) Divisions (b) Multiplications and additions

Figure 2.9: Required operations for reducing a matrix (k = 6) to upper triangular form
using merging a = 2, b = 1, α = 2.
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elements:

m(a, b) =
bα∑
j=1

aα+j−2∑
l=j−1

(k − l)

=
bα∑
j=1

aα+j−2∑
l=j−1

k −
bα∑
j=1

aα+j−2∑
l=j−1

l

=
bα∑
j=1

k(aα + j − 2− j + 1 + 1)

− 1

2

bα∑
j=1

[(aα + j − 2)(aα + j − 1)− (j − 2)(j − 1)]

= abα2k − 1

2

bα∑
j=1

(a2α2 + 2aαj − 3aα)

= abα2k − bα

2
(a2α2 − 3aα)− 2aα

2

bα∑
j=1

j

= abα2k − α2

2
(a2bα− 2ab+ ab2α)

= abα2[k − 1

2
(aα− 2 + bα)]

= abα2(k − (a+ b)α

2
+ 1).

(2.17)

Figure 2.9b shows an example for a = 2, b = 1, α = 2, k = 6. The arrows start from

the elements that are multiplied with a constant and then added to the location they

point to. By comparing Figures 2.8 and 2.9 we can observe that intuitively, not having

to eliminate the same elements multiple times (white boxes) is the key idea behind the

effectiveness of our proposed technique compared to basic Gauss elimination.

2.4.2.3 The computational cost of decompositions

Having looked at the cost of individual merges, we now turn to the total computational

cost of a decomposition that checks a single repair for each node failure: the number of

divisions is given by:

DIV S(D) =
N−L∑
i=2

∑
si∈Ssel

i

d(a, b) +
∑
s1∈S1

lz(1)

=
N−L∑
i=2

∑
si∈Ssel

i

d(a, b) +N
α2 − α

2
,

(2.18)
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and the number of multiplications/additions is given by

MA(D) =
N−L∑
i=2

∑
si∈Ssel

i

m(a, b) +
∑
s1∈S1

α∑
j=1

(k − j + 1). (2.19)

The second term in both equations is the cost of transforming matrices s1 ∈ S1,

including the r sets of repaired rows for each of the possible node failures into upper

triangular form. If matrices from previous generations are stored, then the summation

can simply skip these. If a decomposition avoids memoizing matrices containing repaired

rows, as per our goal, the value of r only influences the number of computations by

determining the size of S1 and SN−L, which are given by

|S1| = N(r + 1)

|SN−L| = N

(
N − 1

N − L− 1

)
r.

(2.20)

This is why compared to Gaussian elimination the cost does not scale linearly with r,

increasing rather more gently.

The number of reusable matrices depends non–trivially on the decomposition. We

leave investigating this aspect as future work and present experimental results in Section

2.4.5.

2.4.2.4 The memory requirements of decompositions

Our proposed approach requires memory to store memoized matrices. The number of

matrix elements that need to be stored for decomposition D is given by

MEMOnaive(D) =
N−L∑
i=1

|Ssel
i |iαk. (2.21)

A simple improvement can be achieved by only storing non–zero elements:

MEMOreduced(D) =
N−L∑
i=1

|Ssel
i |(iαk − lz(i)). (2.22)
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2.4.3 Finding efficient decompositions

2.4.3.1 Observations on the relationships between costs

Based on the Equations (2.16) and (2.17), we can make some observations that will help

in determining good decomposition strategies. Let a, b, a′, b′, c, d ∈ N+, sb ∈ Sb, sc ∈ Sc,
sd ∈ Sd and a+ b = a′ + b′ = i and c+ d = b.

1. m(a, b) = m(b, a) and d(a, b) = d(b, a) (because a and b are interchangeable in

Equations (2.16), (2.17))

2. d(a, b) > d(a′, b′)⇔ |a− b| < |a′ − b′| (consequence of Equation (2.16) and because

more imbalanced sets have a larger number of already reduced elements; the larger

the matrix, the more reduced elements it has)

3. m(a, b) > m(a′, b′) ⇔ |a − b| < |a′ − b′| (consequence of Equation (2.17) in which

the part in brackets is the same for a, b and a′, b′)

4. m(a, b) > m(a′, b′)⇔ d(a, b) > d(a′, b′) (same argument as previous observation)

5. lz(sb) ≥ lz(sc) + lz(sd) (consequence of Equation (2.15) and i2 > a2 + b2)

6. d(a, b) ≤ d(a, c) + d(a + c, d) (consequence of previous observation and Equation

(2.16))

Observation 4) is important because a decomposition that minimizes the number of

divisions will also minimize the number of multiplications and additions. Observation 2)

and 3) have the consequence that a decomposition that decreases i by one (i.e. selecting

a = 1, b = i−1 or b = 1, a = i−1) has the lowest computational cost in that decomposition

step. We refer to this method as decrease and conquer. Conversely, a =
⌊
i
2

⌋
or b =

⌊
i
2

⌋
has

the highest number of computations for any given i. On the other hand, it also reduces

the size of the matrix by the greatest degree. Thus matrices between Sbi/2c and Si can be

skipped and less space is needed. We refer to this approach as divide and conquer and

propose the following method to deal with odd levels: if i is even, divide the problem into

a = b = i
2
. If i is odd, fall back to the previous approach and decrease the problem to

a = a − 1, b = 1. An alternative divide and conquer decomposition would be to select

a =
⌈
i
2

⌉
and b =

⌊
i
2

⌋
, then do a second decomposition if a 6= b to cover Sb using Sa and

S1.

There is therefore a trade–off between minimizing the number of levels (and reducing

memory requirements in the process) in a decomposition and the cost of moving between

levels using merging. However, it is not immediately apparent how the number of matrices

in each level (|Ssel
i |) changes for different points on the trade–off curve. This metric also
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plays a key role in determining the number of computations. In the following subsections,

we propose two heuristic–based algorithms to find decompositions for both the decrease

and conquer and divide and conquer methods.

2.4.3.2 The first step of a decomposition

As described in Section 2.4, matrices containing rows from N−L−1 existing nodes and one

hypothetically repaired node must be checked. If we consider that r hypothetical repairs

are checked for each possible node failure, |M | = (L + 1)r
(

N
N−L−1

)
. Instead of starting

from these matrices, the first step of a decomposition should be treated differently to

ensure that no repaired rows are present in any matrix in SN−L−1. This is because it is

not known which node will fail at the time of the checks and hypothetical repaired rows

severely limit the reusability of matrices.

To account for this, we propose a simple schema to determine the first step of the

decomposition. The matrices in SN−L can be built in the following way: by selecting

Ssel
N−L−1 = SN−L−1 (i.e. taking all possible matrices that contain N − L− 1 non–repaired

rows) and adding every possible repaired row to each of them, we arrive at SN−L. This

allows the decomposition to start from M = SN−L−1 instead of SN−L and only include

coefficients from existing rows to maximize matrix reuse. We will show in Section 2.4.3.3

that this first step is optimal in selecting the minimal number of matrices from SN−L−1.

2.4.3.3 Greedy algorithm for decrease and conquer

We wish to select Si−1 in such a way that all elements of Ssel
i can be generated by adding

an element of S1 to an element of Si−1. Let G = (V,E) be an undirected bipartite graph

with vertices divided into sets V = X ∪Y , where X = {si|si ∈ Ssel
i } and Y = {si−1|si−1 ∈

Sall combos
i−1 }. There is an edge between a vertex vx ∈ X and vy ∈ Y if and only if for the

corresponding si and si−1, si−1 ⊂ si. We wish to cover all vertices vx ∈ X using as few

vertices vy ∈ Y as possible. At each step in the algorithm, the vertex vy with the highest

degree is selected and removed from the graph. All vertices vx it is connected to are also

removed along with any edges containing vx. The algorithm terminates when there are

no more vertices in X.

This greedy algorithm is well known and is analogous to the approach of selecting

a covering set in such a way that at every choice, the set that covers the most un-

covered elements is selected. This is a H(n)–approximation algorithm and it has been

proved [Dinur and Steurer, 2014] that no polynomial–time algorithm with a better ap-

proximation factor exists for this NP–hard problem. Fortunately, n = max |si| = i, as

all matrices from the set used for the cover have exactly i elements. Thus, even though
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Algorithm 2.3 Greedy algorithm for decrease and conquer

1: build G(i, 1)
2: while X 6= ∅ do
3: find vy, where deg(vy) ≥ deg(vj),∀vj ∈ G
4: Ssel

i−1 = Ssel
i−1 ∪ vy

5: Y = Y \ vy
6: for all vx, where (vx, vy) ∈ E(G) do
7: X = X \ vx
8: E(G) = E(G) \ (vx, v∗) . all edges involving vx
9: end for

10: end while
11: return Ssel

i−1

|Si| =
(
k
i

)
increases computational costs quickly, the approximation factor increases slowly(

log i
log(i−1)

)
with i and remains acceptable even for large values of i.

We could apply this algorithm for the first step of finding a decomposition and it

would select a covering set that is the combination of N − L− 1 out of N rows.

Proposition 2.6. If r repairs are checked for each possible node failure, then |SN−L| =

|SN−L−1|(L + 1)r, which is the same as our previously proposed first step and is in fact

the best we can hope to achieve.

Proof. Let G be a graph with vertices coming from matrices in SN−L and edges between

pairs of matrices that differ by α rows as shown on Figure 2.10. It is relatively easy to

show that the clique number of G will be ω(G) = (L + 1)r and that each clique can be

defined using a submatrix of the rows that are common in each of the matrices in the

clique. Thus, the best covering set will be the set of submatrices that define each clique

as this covers all matrices using the least amount of smaller matrices.

{1,2'}

{1,3''}

{1,2''}

{1,3'}

{2'',3}

{1'',3}

{2',3}

{1',3}

{2,3''}

{1'',2}

{1',2}

{2,3'}

{1} {3}

{2}

Figure 2.10: The shared rows of matrices in M that should be checked for N = 3, L = 1,
r = 2. Single and double apostrophes denote rows with coefficients from potential repairs.
For example, 2′ and 2′′ are rows resulting from the two different potential repairs of node2.
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We have decided to follow the technique proposed in Subsection 2.4.3.2 instead of this

algorithm for the first step of a decomposition to ensure that if multiple minimum cost

set covers exist (this is the case for r = 1), the one that maximizes matrix reuse through

memoization is selected.

2.4.3.4 Greedy algorithm for divide and conquer

We propose extending the previous algorithm to deal with the more general case when a

matrix of size i × k is decomposed into two submatrices of size a × k and b × k, where

a+ b = i. Figure 2.11 shows an example for a state of the algorithm. We keep the graph

G to have a pairing that denotes which submatrices cover which matrices. The set X

remains the matrices that need to be covered and Y contains all possible submatrices of

size a × k and b × k that can be built from elements of S1. There is an edge between a

vertex vx ∈ X and vy ∈ Y if and only if v′y /∈ Y , where v′y := vx \ vy. In other words, v′y is

the relative complement of vy with respect to vx, the rows of vx left uncovered by vy. We

refer to it as its pair.

Unless a = 1 or b = 1, G has no edges in the beginning because ∀vy ∈ Y → v′y ∈ Y .

Put differently, in the beginning no single element in Y can cover an element in X. In

the special case of a = 1 or b = 1, G is initialized as described in the previous subsection.

Figure 2.11: Example for a state change of the divide and conquer algorithm showing
both graphs and the sets of already selected matrices. Some elements of Y and Ỹ have
been omitted (. . . ) due to space constraints. The next step (result shown on the right)
selects and adds {3,4} to Ssel

2 as it is tied with {1,2,3} in covering the most matrices in G
and partially covers more matrices in G̃. The algorithm then removes {3,4}, {1,2,3,4,6}
and {2,3,4,5,6} from G and G̃ along with all of their edges. It then adds an edge between
{1,2,3,4,5} and {1,2,5} (not shown) inG to reflect that {1,2,5} now fully covers {1,2,3,4,5}.
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Algorithm 2.4 Greedy algorithm for divide and conquer

1: Build G(a, b), G̃(a, b)
2: while X 6= ∅ do
3: MAX = {vy|vy ∈ G, deg(vy) ≥ deg(vj),∀vj ∈ G}
4: find ṽy ∈MAX, where deg(ṽy) ≥ deg(ṽj),∀vj ∈ G̃
5: if |vy| = a then
6: Ssel

a = Ssel
a ∪ vy

7: else
8: Ssel

b = Ssel
b ∪ vy

9: end if
10: Y = Y \ vy
11: Ỹ = Ỹ \ ṽy
12: E(G) = E(G) \ (v∗, vy) . all edges involving vy
13: E(G̃) = E(G̃) \ (ṽ∗, ṽy) . all edges involving ṽy
14: for all vx covered by vy do
15: X = X \ vx
16: X̃ = X̃ \ ṽx
17: E(G) = E(G) \ (vx, v∗) . all edges involving vx
18: E(G̃) = E(G̃) \ (ṽx, ṽ∗) . all edges involving ṽx
19: end for
20: for all ṽx partially covered by ṽy do
21: E(G̃) = E(G̃) ∪ (ṽy

′, ṽx), where ṽy ∪ ṽy ′ = vx
22: end for
23: end while
24: return Ssel

a , S
sel
b

We introduce a second graph G̃ (X̃ = X, Ỹ = Y ), to have a pairing that denotes

which submatrices cover which matrices partially. vy ∈ Ỹ partially covers vx ∈ X̃ if its

pair v′y ∈ Ỹ . These are submatrices, whose pairs have not yet been selected and thus can

only provide partial cover for vx. G̃ must be initialized to have all partially covering edges,

thus in the initial state of the algorithm E(G̃) = {(vx, vy) | vx \ vy ∈ Ỹ , vx ∈ X̃, vy ∈ Ỹ }.
In the special case where a = 1 or b = 1, G̃ will have no edges and may be disregarded as

the algorithm falls back to the previously described decrease and conquer algorithm.

Algorithm 2.4 selects submatrices from Y until all matrices in X have been covered.

It selects the submatrix vy that has the highest degree in G, i.e. covers most matrices.

Tie–breaks are common and are handled by selecting the submatrix that has the largest

degree in G̃, i.e. partially covers most matrices. When a submatrix is selected, it is

removed from both G and G̃. Furthermore, all matrices it covers are removed from both

G and G̃ along with any edges they are part of. Any matrix ṽx it partially covered is

updated in G: an edge is added between vx and v′y to reflect that v′y can cover vx following

the selection.
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Proposition 2.7. For every partially covered vx by the selected vy, there will always be

exactly one v′y that will cover vx.

Proof. If we supposed that no v′y exists, then it must have been previously selected.

However, in this case vx would have already been fully covered by vy. We have reached

a contradiction. Furthermore, it is unique, because no two permutations of the same

elements exist in Y .

2.4.4 Performing invertability checks given a decomposition

A decomposition is only dependent on N,L, α, parameters that typically do not change

during the lifetime of a system. Therefore, several decompositions can be computed in

advance to cover the likely parameter set values before the system comes online. Thus,

even if finding a good valid decomposition is computationally expensive, it does not neg-

atively influence the general repair performance of the system. This subsection examines

how a decomposition can be applied.

2.4.4.1 The benefits of performing checks in a top–down manner

Given a valid decomposition D, either a bottom–up or a top–down approach can be used

to do the checks. Bottom–up checks start with matrices from Ssel
1 and then reduce each

matrix sj ∈ Ssel
j level–by–level to an upper triangular form and memoize it after merging

two smaller matrices based on Ψ. This approach has the benefit of avoiding recursive

calls, but will only provide relevant information on the rank of a matrix sm ∈ M after

all smaller matrices sj ∈ Sj, j < m have been reduced to an upper triangular form.

Conversely, a top–down approach starts with matrices sm ∈ M and attempts to merge

sm = sa⊕ sb, where the choice of sa and sb is defined by Ψ. If either sa and/or sb are not

yet in UTF, the algorithm is called recursively on sa and/or sb and so on. Once a matrix

is reduced into UTF, it is memoized so it can be reused for other matrices from M. Thus,

the invertability of some sm will be known earlier than using a bottom–up approach. This

can be used to provide probabilistic statements on the overall result of the checks before

all matrices are checked.

This is most important in situations where the checks are time constrained. Either

there are not enough free computational resources in the system and the checks must be

postponed or two node failures occur in quick succession and a repair must be started

before the checks for the second failure have time to complete. We might still be able to

make a more informed decision on what repair to select based on the matrices that have

been computed so far. We can increase the amount of useful information at any given

point in time by using a top–down approach and ordering the matrices in M in a certain
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way. One possible ordering is to take one repair for each node failure first. Once one

feasible repair is found for every failure, we can check one more repair for each failure

and so on. This minimizes the time until we have at least one feasible repair for every

possible failure scenario. Alternatively, if it is acceptable for the system to temporarily go

below the predetermined L number of concurrent node failures it must sustain, we may

order the matrices differently. In this case, we may also start by looking at a single repair

for each node failure first. However, instead of completing all checks for that repair, we

would do one check at a time, moving on to check matrices associated with another node

failure. With each pass, the degree of confidence with which we can state that a repair is

feasible for any L node losses increases. If a check fails, we can generate new coefficients

and redo the checks that have already been performed for the failed check. We leave the

formal problem definition and evaluation for the problem of ordering matrices in M as

future work.

2.4.4.2 Memoizing matrices across generations

A further reduction in computations can be achieved if matrices from a decomposition are

stored and reused across multiple generations. Any matrix that contains rows from the

recently lost node should be discarded, but all others can be reused in the subsequent gen-

eration. The proposal to start a decomposition from M = SN−L−1 described in subsection

2.4.3.2 also encourages matrix reuse across generations as it ensures that only matrices

containing rows from actual nodes (as opposed to rows from hypothetical repairs) are

memoized. We leave the characterization of the choice of decomposition on the expected

number of matrices that can be reused as future work and present simulation–based re-

sults to show the effectiveness of this enhancement. We also note that the checks for the

initial data distribution are more expensive as they cannot reuse matrices from previous

generations and no matrices can be skipped as there were no previous failures.

2.4.5 Experiments

To test the effectiveness of the proposed decomposition techniques, we have implemented

both divide and conquer and decrease and conquer algorithms in Python. We removed

the constraint on the size of the repair space to include a total of 629 RLNC codes. We

can apply the decrease and conquer approach to all of these. The divide and conquer

approach falls back to decrease and conquer in all but 348 cases. The figures have had

the 281 duplicate cases removed for clarity.
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2.4.5.1 The benefits of performing decompositions

Figure 2.12 shows the benefits of using our proposed technique for r = 1. By decomposing

the rank checks and reusing intermediary results, a reduction of up to 87% is achieved in

the number of multiplication/addition operations compared to doing Gaussian elimina-

tions on the matrices in M. The gains grow in significance with the number of operations

for both types of decomposition, making checks feasible for a wider range of parameters.

Divisions show a similar trend, though in a few cases we actually see an increase in the

number of computations and results show more variance.
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Figure 2.12: Reduction in the number of operations compared to Gaussian elimination
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Looking at different values for r on Figure 2.13, we can see how the difference between

the computational cost difference increases as r grows. This is as expected based on

Equation (2.20). All other figures show simulations for r = 1.
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Figure 2.13: Checking the feasibility of multiple repair strategies for each node failure

2.4.5.2 Comparing divide and conquer to decrease and conquer

Section 2.4.3 briefly described the trade–off between the number of memoized matrices

and the number of operations. Figure 2.14 illustrates a direct comparison between the

two proposed methods on this aspect. Divide and conquer requires up to 37% less storage

than decrease and conquer. The downside is an increase of up to 33% in the number
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Figure 2.14: Comparing divide and conquer to decrease and conquer on storage and
computation costs
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of multiplications/additions. The memoized matrices for the examined codes typically

require around 200kB – 300kB of storage, with a maximum of 6.2MB. This is negligible

compared to the data associated with the coefficients. Thus, most practical systems

should employ decrease and conquer to reduce the amount of computations as much as

possible. Division operations show a similar trend and have been left out for brevity.

2.4.5.3 Memoizing across generations

Finally, we look at the benefit of reusing matrices across generations of node failure and

recovery. We expected to show further large gains in computation cost by extending

our solution with this simple technique because most matrices remain valid through at

least two subsequent generations. However, results on Figure 2.15 only show relatively

modest gains of between 5%-15%. This can be explained by looking more closely into

which matrices can be reused. While around N−1
N

of the smallest matrices contain rows

that are present in two subsequent generations, the ratio is smaller for larger matrices.

Furthermore, most of the computations can be associated with the larger matrices. Nev-

ertheless, the modest additional storage cost makes reusing matrices across generations a

good choice to further reduce computational costs.
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Figure 2.15: Benefits of reusing matrices across generations
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2.5 Conclusions

Increasing the proportion of erasure coded data in complex data center applications is a

daunting task both in terms of system design and theoretical models. While the economics

of large–scale data storage put pressure on service operators to adopt erasure coding

in order to decrease the $/GB cost while maintaining a high level of reliability, many

obstacles remain. The goal of this chapter has been to help solve some of these practical

and theoretical challenges.

First, we looked at what are the theoretical limits of repair efficiency for MSR codes.

We presented a simple formula that can be easily used to find the potentially minimal

cost feasible repairs for network codes.

Second, we answered a key question concerning the design of erasure coding for data

centers: knowledge of network conditions benefits a wide range of erasure codes. We

have proposed a framework that checks the feasibility of repairs in advance and provided

analytic results on reducing the space of relevant feasible repairs. We hope to make further

advances in this area for specific network topologies by looking at specific types of cost

matrices.

Third, we have presented a set of techniques to increase the practical value of our

work for erasure codes employing randomly selected coefficients, such as RLNC. Our

proposed decomposition of matrix rank checks shows significant reductions in the number

of computations needed and has negligible storage costs. We presented two algorithms

to perform the decomposition and found that in practice a decrease and conquer type

solution works better. We wish to continue this work by formalizing the problem of

ordering the matrices that are to be checked in such a way that useful information on

their rank is gained as soon as possible.



Chapter 3
Distributed cloud storage using RLNC

3.1 Introduction

Cloud storage is widely adopted as it offers a cost–effective solution to storing enterprise

data, with the advantages of increased reliability as well as arguably decreased techni-

cal complexity and business agility compared to on–site, personalized storage solutions.

Its adoption among end users is growing as well [Gartner, 2012] thanks in part to the

free storage space offered by major IT players, e.g., Amazon, Google, Microsoft, Apple,

and specialized cloud storage companies, e.g., Dropbox, Box, SugarSync, as well as the

additional free storage offered with new smart mobile devices.

We have looked at applying network coding to store data safely and efficiently in

data centers in the previous chapter. We argued that it is flexible in the sense that it

can be used to achieve different points on the storage efficiency–repair efficiency curve.

Applying it over an aggregated cloud storage systems reveals additional benefits to its

flexibility that are due to the more dynamic nature of this scenario. First, its MDS–

like properties should help mitigate the effect stragglers have on retrieval performance.

Second, its ability to create new coded packets as a combination of existing ones through

recoding can be used for more than just repair, and could serve as a highly tunable

mechanism to adapt the distribution of data. Third, its rateless nature makes it easy

to create new data to account for a reduction in the number of clouds in the system.

We have chosen to study RLNC over other codes used for storage [Huang et al., 2012b,

Sathiamoorthy et al., 2013b, Lei et al., 2013, Le and Markopoulou, 2012] to highlight the

practical benefits of these three characteristics.
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3.1.1 Structure and overview of the contributions of this chapter

Our first contribution is an in–depth analysis of the benefits of using network coding

to aggregate multiple cloud providers, compared to the single cloud approach. We show

through theoretical results that spreading the content over multiple clouds provides higher

reliability and availability and also requires a malicious attacker to break into multiple

clouds to access a user’s content. We formalize the different requirements users might

have and define the optimal data distribution strategy for MDS codes as an Integer

Programming(IP) problem.

Our second contribution is a more detailed look at retrieval performance. We show

through measurements using four cloud providers (Box, Dropbox, Google Drive and

OneDrive) that download speed can be significantly improved when using multiple clouds

judiciously. We also included a detailed comparison to widely–used replication–based

codes. We propose a simple scheduling algorithm for replication and discuss why an

RLNC–based approach leads to better and more consistent performance.

As our third contribution, we address the problem of dynamically adapting the data

distribution in the face of changing provider performance characteristics to maintain op-

timal download times. Central to the solution is the efficient exchange and delivery of

additional data without incurring in high coding/decoding/transmission overheads. We

address these questions by proposing a robust and efficient solution with an implemen-

tation that employs five cloud storage providers, namely the previously mentioned four

and SugarSync. At the core of our scheme lies the idea of maintaining high reliability of

critical data storage using a dense∗ code, while using an efficient sparse recoding mecha-

nism for providing different clouds with performance enhancing storage. The former type

corresponds to the minimal storage needed to guarantee reliability of the data, which will

only require a reconfiguration if a cloud joins, leaves, or is in outage. The latter is meant

to handle the dynamics in download speed of the various cloud providers and, thus, re-

quires changes in a shorter time–scale. To strike a good balance between network use for

download of data and network use for adaptation to changing conditions, we propose a

sparse code. This results not only in low network use for the latter, close to optimal per-

formance in the former, but also a reduced encoding and recoding computational effort.

We define this problem formally and refer to it as the recoding bandwidth problem. We

also devised and implemented a dense recoding mechanism and two simple replication–

based approaches to use as comparison to our sparse solution. Sparse recoding shows

performance very close to the dense approach while using up to 9x less adaptation traffic.

∗A coded packet is said to be dense when it is generated from a linear combination of original or
other coded packets using a large number of non–zero coefficients. Conversely, a sparse packet is a linear
combination of only a few non–zero coefficients.
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We briefly touch on handling changes in the number of clouds and show measurement

results on the overall robustness of the system.

This chapter is organized as follows, Section 3.2 describes the structure of the system

as well as the theoretical results on the main characteristics of multi–cloud network coded

storage systems. Section 3.3 focuses on characterizing the retrieval performance of the

system. Section 3.4 introduces the recoding bandwidth problem and proposes four possible

solutions to solve it. It also looks at how to adapt to a change in the number of clouds.

Finally, Section 3.5 presents the conclusions.

3.2 Optimizing the data distribution scheme

We present a system that employs commercially available clouds to store files reliably using

RLNC. An example is given on Figure 3.1 for four clouds. Given the similar challenges, our

solutions can be adapted for use with other types of storage nodes as well. It is comprised

of a client application that uploads and downloads data to the storage nodes and handles

all computations related to encoding and decoding. The storage nodes have no other

Figure 3.1: Main idea of distributed clouds with network coding. For example, N = 4
clouds available with different download data rates(Ri), x ∈ R+. The system allocates
different amounts of data to decrease retrieval time. It stores a minimum of 34% of the
original data on each cloud to ensure data availability if at most one cloud is not reachable.
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functionality besides storing the data, which makes employing recoding techniques that

involve creating new linear combinations on the nodes impossible. This is a limitation

of several commercial clouds. Thus, any changes to the data must be directed by either

the client application or a long–running service. We have built a model without this

limitation and explored other types of recoding separately in the following chapter.

A total of n encoded packets are distributed by the client a priori to the clouds,

with ci storing αi. At least k must be retrieved to recover the file. Let us derive the

performance measures of our approach. We consider a set of N cloud providers C, where

C = {c1, c2, ..., cN} and ci represents the i–th cloud provider. We consider that a single

user uses this set of clouds to upload and download a file of size F using network coding.

The download rate from the i–th cloud is Ri.

3.2.1 Reliability

If we consider that a cloud provider ci, has a probability pi of being unavailable (e.g.,

service is down, data is lost), then the probability of all data being unavailable to the user

given that it has used L redundant clouds is

P (L,N, {pi}) = 1−
∑

a1+...+aN≥N−L

N∏
i=1

(1− pi)aip1−ai
i , (3.1)

where ai ∈ {0, 1} indicates that cloud i is down or not for ai = 0 and ai = 1, respectively

and 00 = 1. For the case of pi = p, ∀i = 1, ..., N , this simplifies to

P(L,N, p) = 1−
L∑
t=0

(
N

t

)
(1− p)N−tpt. (3.2)

3.2.2 Download Speed

In order to maximize the download speed from the clouds, we need to consider that the

amount of data stored need not be the same as provided by the reliability criteria. The

latter is an indication of the minimum amount of data that can be stored, but it does not

consider the benefits of downloading more data from faster clouds. We consider that each

cloud ci provides a download rate of Ri and that F is large enough so that the download

time is much larger than the individual round trip times from each server. Our goal is

then to request a fraction ri from cloud ci such that all clouds complete the delivery of

the data simultaneously. Thus, the fraction of the file requested from cloud ci is

ri =
Ri∑N
i=1 Ri

. (3.3)
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If we consider there is asymmetric round trip delays until the packets are received, where

Di represents the round trip delay from cloud ci, then

ri =
Ri∑N
i=1Ri

(
1 +

∑
cj∈C Rj(Dj −Di)

F

)
. (3.4)

If both reliability and download speed are important factors in the design, then the

fraction of the data stored, Pi, stored in cloud ci needs to be

Pi = max

(
1

N − L
, ri

)
. (3.5)

3.2.3 Privacy and Security

We can consider different conditions for data privacy. The most stringent is to force

attackers to break into at least N − L clouds to obtain the data assuming that the link

to the user is encrypted during download/upload. This condition is of course fulfilled if

we only store enough for guaranteeing reliability. If we store additional data for boosting

download speed performance, then we need to set a different condition. A simple way of

thinking about it is that any combination of the fractions of data of a subset of N −L−1

clouds cannot amount to 1, i.e., enough degrees of freedom to decode.

Of course, Pi < 1/(N − L − 1),∀i is a sufficient, but not necessary condition

to preserve privacy. A necessary condition for preserving privacy is stated in the

following. Let us define Cm as the set of distinct subsets of C missing exactly

m cloud elements each. For example, C1 = {C \ c1, C \ c2, ..., C \ cN}, and C2 =

{C \ {c1, c2}, C \ {c1, c3}, ..., C \ {cN−1, cN}}
Then, as long as

max
C∈CL+1

∑
ci∈C

Pi < 1, (3.6)

the condition for security is preserved. This provides an interesting result, namely, that

there is room for providing higher download speeds without compromising security albeit

with some additional storage cost. From a practical perspective, a simple approach to

test the condition is to sort Pi’s in increasing order. Then, we can add the N − L − 1

greatest values. If the result is lower than 1, then privacy is preserved. Otherwise, it is

compromised.
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3.2.4 Storage Costs

For the case in which reliability is the only concern, the overall storage size H, that is

needed for the distributed approach when a file of size F bytes is used equals

H(N,L, F, P ) =
N

N − L
· F = F + F

L

N − L
, (3.7)

where we assume that each cloud will contain a fraction P = 1/(N−L) of the data. Clearly

if N >> L, the storage cost becomes negligible. This is an important distinction from

replication–based solutions, where the storage cost associated with increasing redundancy

grows linearly with L, the number of cloud outages the system can sustain. If more factors

are important, then

H(N,L, F, {Pi}) = F

N∑
i=1

Pi. (3.8)

3.2.5 Overall costs

Let us consider that we have a storage cost of H = N
N−L ·F and a cost of having the data

unavailable Uc and both can be expressed as a monetary cost. The optimal choice for L

will be given by the problem

min
L

(H(N,L, F, P ) + Uc · P (L,N, {pi})). (3.9)
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Figure 3.2: Cost of aggregated cloud storage for F = 16 and unitary storage cost

Figure 3.2a and Figure 3.2b show that the overall cost can be maintained low by using

a higher number of cloud providers, even if the number of redundant ones is high. For

example, N = 10 provides not only a low overall cost but also allows for a configuration

that is stable for a wider regime of Uc.
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3.2.6 Data distribution scheme as an integer programming

problem

Based on the previous constraints, let us formally introduce an integer programming

problem that aims to minimize storage cost while meeting reliability requirements and

ensuring maximal retrieval performance.

Consider an initial state of the system, where the data distribution is symmetric

α1 = α2 = . . . αN = dk/(N − L)e. If the download rates (Ri) differ significantly from

each other, then the performance of the system is suboptimal. More precisely, if for any

i Equation (3.5) is not satisfied, then ci is not used to the entirety of its capacity from a

performance point of view. Therefore, if it is possible to ascertain the values of Ri for all

i, the values of ri can be calculated using equation (3.3) and the initial distribution can be

modified to satisfy Equation (3.5). This adaptation maximizes the retrieval performance

of the system.

Let κi be the cost of storing one packet on cloud ci. We formulate the optimal data

distribution problem as an IP optimization problem, using the previous equations in such

a way that storage cost is minimized subject to availability and retrieval performance

constraints, as given by

min
N∑
i=1

αi · κi such that

αi ≥ max

(
Ri∑N
i=1Ri

,
k

(N − L)

)
αi, N, L ≥ 0,

αi, N, L ∈ N

(3.10)

In practice N and L are usually given values, and the values of Ri can be measured.

The problem could be further specified by using a more complex model for costs or by

introducing constraints to reinforce a given level of security.

In the measurements from Section 3.3, we use αi ≥ k/(N − L) to ensure reliability

rather than the formula used to define the IP problem. Data is stored symmetrically

and the motivation for an adaptive solution is given. We then use the results from this

section as the basis for performing the adaptation of the data distribution in Section 3.4,

providing a practical method to solving the IP problem.
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3.3 Characterizing retrieval performance

Data retrieval performance is a crucial factor in determining the perceived quality of

experience. While analytic results suggest that aggregating multiple services reduces

retrieval time, it is hard to quantify by how much. On another note, MDS–like codes

such as RLNC greatly simplify packet scheduling compared to a replication–based code.

We seek to answer how much this affects average retrieval performance and whether

it influences the robustness of the system. We dedicate this section to understanding

the key factors that influence retrieval performance, comparing a traditional replicated

and an RLNC–based erasure coded system. We analyze the real–world performance

characteristics of four leading cloud storage providers through measurements carried out

over the span of several months.

3.3.1 Testbed Setup

To evaluate and showcase the previously presented analytic results, we have created an

implementation to conduct measurements in a real–world environment. This subsection

discusses the implementation details as well as the technical specifications of our testbed.

The implementation was done in C++ using KODO [Pedersen et al., 2011], a fully fledged

network coding software library and the Qt framework. It was compiled with GCC 4.6.2

set to O2 level optimization. We chose four cloud storage services based on their market

penetration: Box, Dropbox, Google Drive and Skydrive. All provide free storage space

and have publicly available, well documented REST–based APIs.

Measurements were carried out at the Budapest University of Technology and Eco-

nomics using a high–speed fiber optic connection to the Internet. This academic network

setting represents an ideal scenario where the most important factor influencing retrieval

performance is the bandwidth and response time of the cloud providers. Several provi-

sional measurements were conducted using servers located in different cities in Europe

(Amsterdam, Rome, Madrid, Paris, London, Oslo) to assess available network bandwidth

and typical latencies. This was necessary because the location of the servers used by

some of the cloud services has not been disclosed. Ping times were under 55ms and avail-

able download bandwidth over 94Mbps in all cases. A machine equipped with an AMD

Athlon II X3 450 CPU at 3.2GHz, 4GB of RAM and a clean installation of Windows 7

was used. Some of the measurements were repeated on an identical machine in Berlin,

using an ADSL connection. Results were mostly identical, apart from a small number of

cases where the available bandwidth limited retrieval performance and have therefore not

been included for brevity.
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Figure 3.3: The user interface of the measurement application

We have created a demo application with a simple user interface as shown in Figure 3.3.

Measurements can be performed and results compared with any combination of the four

clouds, number of maximum parallel downloads and type of erasure coding (RLNC or

replication–based). It measures retrieval time as well as the decoding overhead, the delay

of the first packet and the necessary packets used to download the data. It shows the

number of requested and processed packets for each provider and counts the number of

packets that contain redundant data.

3.3.2 Measurement Campaign and Metric

We distributed and retrieved a 16MB file containing random data. A simple replication–

based approach was used as a baseline to compare our proposed solution that employed

RLNC. A subset of packets covering the entire data was distributed to all providers in

both cases. For the RLNC approach, we used a generation size of k = 32 and operated

over GF(28), resulting in packets of size 512k (and a few extra bytes overhead for the

coding coefficients). Decoding was done once enough packets were downloaded. For the

replicated approach, we used the same packet size of 512k. Each provider was artificially

limited in the number of parallel downloads from it. This constraint was achieved by

using a sliding window technique. Initially, a set number of packets was requested from

each provider with a new request to that provider being issued once one was served.

We employed several metrics, the two more important ones are presented here: the

time taken to retrieve a 16MB file and the number of useful packets received from each

provider. The first one is the variable we chose to optimize for, whilst the second provides

insight into the processes taking place. Our goal is two–fold, show that distributing

data to several cloud storage providers shortens retrieval time and that employing RLNC
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provides consistent results in a changing environment. Each measurement was repeated

one hundred times.

3.3.3 Packet scheduling

The distribution of data constrains how it can be retrieved, and what type of scheduling

techniques can be applied. We describe how scheduling packets differs for RLNC and

replication and how stragglers affect performance.

Definition 3.1 (Straggler). A straggler is a requested packet that takes significantly

longer to download then expected.

3.3.3.1 RLNC

MDS codes and codes that have MDS–like properties, such as RLNC, do not require

complex scheduling to achieve good retrieval performance. As long as a cloud provider

has packets to serve, it can be used to its maximum capacity regardless of which packets

are stored on it.

Because every packet has the same usefulness, optimal retrieval times can be reached

by ensuring that cloud providers store enough packets. If a packet takes longer to down-

load then normal, other packets will naturally take its place. Thus, a low number of

stragglers do not affect performance significantly.

3.3.3.2 Replication

Replication–based schemes are more constrained by the data distribution in what packets

can be retrieved from which storage cloud. Furthermore, stragglers are harder to deal

with, making packet scheduling a significantly more complex problem. As a general rule,

care must be taken to not download the same packet from different providers. However,

if a packet takes significantly longer to download than is expected, then perhaps this

rule should no longer be applied and the packet should be downloaded from a differ-

ent provider in order to keep overall download time as low as possible. Unfortunately,

requesting redundant packets to deal with these stragglers may even increase download

time. Redundant requests use valuable bandwidth and space in the request queue of a

provider. It is also not obvious which provider should be used to make the redundant

request.

Generally, download scheduling algorithms for replicated content can be devised which

perform well in more or less static environments. However, it is more difficult to create

one solution which adapts well to changing conditions. We have used a simple algorithm

that tries to deal with short–term changes in cloud performance by making the clouds
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race against each other. The clouds start at different points in the original file. Let us

order the clouds in decreasing order based on their performance: c1, c2, . . . , cN , where ci

precedes cj if and only if Ri ≥ Rj. Let us create pairs from the fastest and slowest clouds

in the list, removing them in the process. If there is an odd number of clouds, the last

cloud will not be paired and will receive half the work of the other pairs. Each pair will be

tasked with supplying a 2k
N

sized segment of the file. The last cloud or pair of clouds may

need to provide slightly more packets to cover the whole file. In each pair, the faster cloud

requests packets in ascending order, while the slower cloud does the same in descending

order. Thus, if a cloud’s rate becomes lower than long–term measurements suggest, its

pair will try to compensate. Furthermore, it ensures that scheduling is optimal if each

pair of clouds takes the same amount of time to download its part of the file. An example

for 4 clouds is shown on Figure 3.4.

Figure 3.4: An illustration of scheduling for 4 replicated clouds.

This simple algorithm only works with a replication factor of at least 2 and if the data

is distributed in the same way the scheduling necessitates. Thus, it only works well if the

long–term rates the clouds provide are known and more or less static. Finally, it does not

deal with stragglers as it is not clear what is the best approach, nor whether new requests

lower retrieval time or actually introduce an extra delay into the system.

3.3.4 The benefits of aggregated cloud storage

We begin with the measurements of the download times for the individual clouds. We

do not wish to disclose which provider is which, so we shall refer to them as Cloud A,

Cloud B, Cloud C and Cloud D. Unless otherwise noted, figures show results for RLNC.

An improvement proportional to 1/l can be observed in Figure 3.5 as the number

of parallel downloads increases. This is to be expected, assuming that the providers do

not artificially throttle the requests. The curve flattens around six, so there is next to

no incentive to use more than six parallel downloads per provider. Another important

observation is that Cloud A is significantly faster then the other three regardless of the

limitation on the number of parallel downloads. This observation shows that not all clouds

have the same characteristics, contributing to the later gains of network coding which we

see throughout this chapter.

We continue by showing the benefit of increasing the number of clouds in a distributed

storage system in terms of retrieval time. An important aspect is that the limitation on
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Figure 3.5: Download time for individual cloud providers

the number of parallel downloads is per provider, so using several of them means that

the actual number of parallel connections in the system is multiplied by the number of

providers. This is one of the reasons why employing more providers gives a clear advantage

over using just one.

Figure 3.6 shows the measured gains when using more than one cloud service to

retrieve files. While Cloud A is significantly faster than the other three, the limitations on

available storage space would still mean in practice that a multi–cloud approach is needed
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Figure 3.6: Download time when using multiple cloud providers
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to achieve a certain download time given an amount of storage space and a required level

of reliability. Subsection 3.2.2 gives a closed formula for calculating the optimal fraction of

data to be distributed to each cloud under such heterogeneous conditions. This basically

means that the faster clouds need to be able to provide proportionally more storage

space. Figure 3.7 illustrates this by showing the time in milliseconds (ms) when each

encoded packet was received and processed. In this example, six parallel requests per

provider were allowed and decoding finished at 5660ms. Cloud A has a significantly

shorter round–trip time when retrieving the data compared to the other providers and

manages to download significantly more useful packets than the other providers. If less

packets had been stored on Cloud A, decoding would have been delayed. Also interesting

is the differing characteristics of the individual clouds. Even though Cloud B and Cloud C

generally manage to download the same amount of packets, the arrival patterns shows

great differences, perhaps due to the method used to process the requests by the providers.
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Figure 3.7: Packet processing time

3.3.5 Number of redundant packets

Figure 3.7 also illustrates the disadvantage of using a higher number of parallel downloads.

At the time of decoding, there are l− 1 packets in the download window for the provider

that received the last useful packet and l for all others. These extra packets arrive after

decoding is complete and therefore must be discarded. Generally, if we consider a set of

N clouds with l parallel downloads per provider, the number of redundant packets is:

nred ≤ Nl − 1. (3.11)
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Figure 3.8: Number of redundant packets

As shown in Figure 3.8, this upper bound is in fact achieved in practice in every case.

This worst–case scenario happened because there was no limitation placed on the stored

data, each cloud contained packets with data covering the entire file. If such a limitation

was in place, the number of redundant packets could have been less, because once all the

packets from a provider had been requested, the size of the download window for that

provider would have decreased.

To minimize the number of redundant packets necessitates either a smarter scheduling

algorithm, which tries to predict how many packets will be received from each provider

beforehand and makes the requests accordingly or a reduction in the number of parallel

downloads. Considering the download times presented in Figure 3.6, a strong case can

be made for using no more than two or three parallel downloads, as using more has

a negligible effect on download speed whilst having a great effect on the increase of

redundantly downloaded packets.

3.3.6 Comparing RLNC to replication

We examined the number of packets received from each provider as we think this should

be a primary factor when determining the distribution of packets among the clouds.

Providers that are able to supply packets faster should get a bigger cut to minimize the

required download time, as discussed in Subsection 3.2.2. We have found that there is a

significant variance in the distribution of the number of useful packets retrieved from each

provider as shown in Figure 3.9. It shows results for 100 measurements using six parallel
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downloads. Cloud A retrieves most packets before the others. Even so, all four clouds

still show a significant spread. This is an indication that even during error-free operation,

the ratio of the download times of the providers changes, necessitating a distribution and

retrieval schema that is able to adapt to the dynamically changing conditions. When

considering a conventional replicated approach, it is imperative that the algorithm doing

the distribution and retrieval takes into account what data is stored where. The location

1 2 3 4 5 6
Number of parallel requests

0

5000

10000

15000

20000

25000

30000

35000

40000

T
im

e
 t

a
ke

n
 (

m
s)

2 clouds using RLNC
3 clouds using RLNC
4 clouds using RLNC
2 clouds using replication
3 clouds using replication
4 clouds using replication

Figure 3.10: Comparing RLNC and replication on download times, using different num-
bers of clouds



Chapter 3. Distributed cloud storage using RLNC 68

of each packet in the original file should also be stored. It is easy to see the advantage of

an approach that employs network coding, since there is no need for this bookkeeping. It

is not important which packet is placed on which cloud, only the number of the packets

on each cloud. This simplicity ensures that as long as the distribution of the packets

is proportional to the ratio of the download speeds of the providers, the time taken to

download a file will be optimal.

With a network coded approach there are no duplicate packets, each contains unique,

useful data (if we assume all packets are linearly independent) and the order with which

packets arrive is irrelevant. This enables it to outperform a replication in most cases as

shown in Figure 3.10. When employing a single cloud, a replication is slightly faster as

it does not have a decoding overhead. However, once at least two clouds are used, the

network coded approach achieves shorter download times on average.

Looking closer at the distribution of download times, the reason behind the perfor-

mance difference becomes obvious. Figure 3.11 shows how the two approaches compare

for 6 parallel requests per provider. We introduced a further limitation in the number of

packets stored on each cloud, shown on the horizontal axis. The median values are close

to the means illustrated in the previous figure. RLNC outperforms replication in terms

of the lowest measured values by a small margin. In terms of worst case times however,

the difference is very significant, replication needs up to 3 times more time to recover the

same data. The large variance shown by the replicated approach is an indication of how

vulnerable it is to variances in the time taken to download individual packets. Stragglers

have a very large impact on overall performance. Compared to this, the same variance

has a much smaller effect on the overall performance of RLNC.
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3.3.7 Coding overhead

We have shown that employing network coding can significantly reduce the time taken to

retrieve the original file. This is achieved despite the overhead associated with decoding,

which was around 657ms, ±5% for the given configuration. Opting for a smaller field,

generation or symbol size lowers this. For example, the decoding overhead of GF(2) is

less than 100ms, but the number of linearly dependent packets is higher, which in turn

delays the time when decoding is finished. There is a trade-off between minimizing the

decoding overhead and network usage due to additional packets being requested. This

problem has been studied previously in [Heide et al., 2011b].

3.4 Adapting the data distribution

Having studied several aspects related to storing data on commercial clouds in a dis-

tributed fashion using RLNC, we now turn our attention to adapting the distribution

of packets among clouds. First, we propose a method to efficiently react to short–term

changes in cloud retrieval performance. Second, we address longer–term changes by pro-

viding a method to maintain data reliability at a predefined level as clouds are removed

or added to the system or during temporary outages.

100 r1 = 25%

R1 = x Mbps

10x Mbps

R2 = 4x Mbps R3 = x Mbps R4 = x Mbps R5= 4x Mbps

100 r2 = 40% 100 r3 = 25% 100 r4 = 25% 100 r5 = 30%

Figure 3.12: The allocation of critical (blue) and performance enhancing storage (green)
depending on the different retrieval speeds.
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We distinguish between two types of packets based on their creation and purpose, as

shown on Figure 3.12.

Definition 3.2 (Critical data storage). Critical data packets are distributed during the

initial upload phase with the purpose of ensuring reliability. They are kept unchanged

unless the value of N or L changes.

These are shown in dark blue on each cloud. Since they are critical in terms of data

reliability checks, such as the one described in Section 2.4, can be applied to ensure that

the encoding matrix associated with this data has the MDS property.

Definition 3.3 (Performance enhancing storage). Performance enhancing packets are

created on the fly with the purpose of minimizing retrieval times. They are added and

removed continuously based on the relative performance of the clouds to each other.

The distribution of data should be continuously adapted to match the changing down-

load rates that the clouds provide. This involves deleting data on clouds that have become

slower and creating new data on ones that have become faster. Because this adaptation

should be done frequently, new coded packets should be created without transferring a lot

of data. However, the less data is transferred, the less information the new packets will

contain. Performance enhancing packets, shown in light green on figures, must find the

right balance between reducing retrieval times and the cost of the adaptation in terms of

network transfer.

Despite our efforts, adaptive techniques use a significant amount of storage and up-

load/download bandwidth. Therefore, frequent performance optimization should only be

performed for frequently accessed hot data. Very rarely accessed archival cold data should

not be optimized for performance, it is sufficient to ensure reliable storage. We argue that

the hotter the data, the more frequent the adaptation should be.

3.4.1 Recoding bandwidth problem

This subsection focuses on the resource allocation and adaptation process needed to op-

timize performance in terms of download time, while keeping the adaptation traffic low.

This is in fact somewhat similar to the repair bandwidth problem [Dimakis et al., 2007],

which deals with minimizing the number of packets that must be transferred to keep

the reliability criterion met in case one of the storage nodes becomes unavailable. We

formulate it by introducing three metrics which should be jointly minimized:

Definition 3.4 (Adaptation cost - B). B is the number of packets transferred for adap-

tation.
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Definition 3.5 (Linear dependence during data retrieval - X). X is the number of extra

packets needed during data retrieval to reconstruct the original file.

Definition 3.6 (Retrieval performance - T ). T is the time required to retrieve and re-

construct the original file.

We chose a set of coefficients for RLNC that ensured the MDS property for the critical

data. However, performance enhancing packets are not held to the same standard and

may be linearly dependent from other coded packets†. The time necessary to retrieve

the original file is increased because linearly dependent packets do not contribute to

the reconstruction of the original information and use valuable bandwidth. Due to the

complexity of defining an optimization problem with this new structure, specifically the

difficulty of expressing X as a function of the input parameters, we focused on heuristics.

3.4.2 Proposed solutions

We propose and evaluate four different methods to solve the recoding bandwidth problem.

Specifically, we consider the problem of creating a single new packet at a time. To create

multiple packets, the presented techniques can be applied multiple times sequentially.

(I) and (II) minimize adaptation cost B, (III) minimizes both the number of linearly

dependent packets X and retrieval performance T , but at great cost in B. (IV) uses a

novel sparse recoding technique that offers a fair compromise between reducing the value

of all three metrics. An initial idea could be to create new performance enhancing packets

by simply moving a packet from a slower cloud (Pi > ri) to a faster node (Pj < rj). This

however is unfeasible because it would break the reliability criterion as the slower node

should already be on the limit in terms of the number of critical packets it stores. Our

proposed methods avoid this by not changing critical storage.

Definition 3.7 (Inter–cloud copy (I)). Inter–cloud copy is an adaptation method where

a single packet from a slower node (Pi > ri) is copied to a faster node (Pj < rj).

Since it does not involve removing packets, it does not break the reliability criterion.

It transfers only a single packet (B = 1). If the old and new packets are used together

for data retrieval, it will increase both X and possibly T .

Definition 3.8 (Intra–cloud copy (II)). Intra–cloud copy is an adaptation method that

replicates an existing packet on the same node.

†In this case the encoding matrix used during retrieval will contain at least one submatrix of size k · k
that does not have full rank.
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This has no cost on bandwidth (B = 0), however it is expected to behave worse than

(I) due to the redundancy that is introduced among packets which have a high probability

of being used for data retrieval‡. Furthermore, the same effect could be achieved by using

parallel requests to packets during retrieval.

Definition 3.9 (Dense recoding (III)). Dense recoding is an adaptation method, where

a new packet is generated as a linear combination of k existing packets from other nodes.

This approach, combined with similar checks to those described in the previous chap-

ter, eliminates linear dependence (X), thus improving retrieval performance (T ). The

downside is that the cost of B = k is very high.

Definition 3.10 (Sparse recoding (IV)). Sparse recoding is an adaptation method that

uses recoding similarly to (III), but creates linear combinations of much fewer packets.

We are concerned with the case of combining a single packet from each of the other nodes.

We give both analytic and measurement results to show that it performs close to

optimal in terms of X and T , but at the greatly reduced cost in B = N − 1, instead of k

compared to dense recoding.

The effectiveness of (I), (II) and (IV) can be significantly improved by introducing

a procedure to select which packets to use when creating the new ones. We propose

basing this procedure on the individual probabilities of each packet being used during

retrieval. The general idea is to combine packets that are unlikely to be used together

during retrieval, therefore minimizing linear dependence and improving performance. We

introduced (I) and (II) to have a baseline to compare against and do not recommend their

use in actual systems.

3.4.2.1 Defining a packet request order

We propose introducing a node–based scheduling scheme into the content retrieval phase

by setting up a preferred order of performing the packet requests. This allows estimating

the likelihoods of a packet being used for retrieval. Let pac(i, j) denote packet number j

stored on node ci.

Definition 3.11 (Packet request order). The order in which packets are requested is

defined by relationship �, such that pac(i, l) � pac(i,m) if and only if l < m.

Packet pac(i, l) is requested no later during the content retrieval phase than pac(i,m)

if and only if its arbitrarily assigned number is smaller. Note that this ordering is valid

for a single node and there is no defined order between packets from separate nodes as

these behave as separate entities.

‡This is a consequence of the fact that the probabilities associated with packets on faster nodes of
being used for data retrieval are greater.
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Figure 3.13: Distribution of packets received from each provider over a period of 24 hours
using an adaptive approach

Let Xpac(i,j) be the indicator variables with Bernoulli distributions signifying whether

a packet is used during content retrieval:

Let

{
Xpac(i,j) = 1 if the packet is used for data retrieval

Xpac(i,j) = 0 if the packet is not used
(3.12)

The probability of being used for data retrieval will then be a non-increasing function of

j. Thus,

P (Xpac(i,0) = 1) ≥ P (Xpac(i,1) = 1) ≥ · · · ≥ P (Xpac(i,αi−1) = 1). (3.13)

Figure 3.13 shows the measured likelihood for all packets stored in the system.

3.4.2.2 Defining a recode order

To decrease linear dependence during data retrieval (X), performance data should be

generated by using that part of the critical data, which has a low probability of being

used in conjunction with the newly generated data later, during retrieval. In general,

the critical packet with the lowest probability should be used first, followed by the one

with the second lowest and so on. When selecting packets for solutions (I), (II) and

(IV), the recode order should therefore be the exact opposite of the request order with
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one important additional criterion. Namely, we only define the order for packets from

the critical data. These are the packets that should be used for solutions (I), (II) and

(IV), because they are linear combinations of all uncoded packets and therefore contain

the maximum amount of information. In contrast to this, performance enhancing packets

contain less information due to their sparse nature and therefore have a higher probability

of introducing linear dependence. By using exclusively critical packets as a source for the

adaptation, no more performance enhancing packets can be created on any cloud than

the number of critical packets stored on each cloud using solutions (I), (II) and (IV). This

limits performance in highly unbalanced systems. A possible solution is to switch to dense

recoding once this limit is reached.

Definition 3.12 (Recode order). The order in which packets are recombined during

recoding is defined by relationship a, such that

pac(i, l) a pac(i,m) if and only if l > m,where 0 ≤ l,m <
⌈ k

N − L

⌉
.

For inter–cloud copy we propose selecting a single packet from one of the other nodes

based on the recode order. It is not clear which node to use, therefore we propose selecting

one at random from the set that does not include the node that will contain the newly

generated packet. Intra–cloud copy follows the recode ordering as is. For dense recoding,
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Figure 3.14: An example of a new packet being generated with sparse recoding.



Chapter 3. Distributed cloud storage using RLNC 75

there is no need to choose packets, because it does not matter which k are used due to

the MDS property.

On the other hand, the effectiveness of sparse recoding benefits greatly if the packets

are selected based on the recoding order. As illustrated in the example on Figure 3.14,

for creating performance enhancing packet number r on a cloud, we propose gathering

only one critical packet from all other clouds, specifically number r counting from the

end of the critical packets. In the example, the retrieval performance of Cloud A has just

increased, thus a new performance enhancing packet should be added to it. Our proposed

sparse recoding solution generates the new packet A8 by creating a linear combination of

packets B7, C7, D7 and E7 using random coefficients(γi). This is then uploaded to Cloud

A. Similarly, if Cloud A becomes even faster in the future, packet A9 would be generated

by combining packets B6, C6, D6 and E6. Our sparse recoding schema requires only

N − 1 = 4 packets for each new performance packet as opposed to the number necessary

to decode the original content, 32, for the most dense recoding.

3.4.3 Experimental results

We have implemented all four methods and performed measurements to determine the

effectiveness of each techniques. We added SugarSync to the list of cloud storage providers,

increasing the count to five: Box, Dropbox, Google Drive, OneDrive and SugarSync. The

plots show the mean values for download time for a 16MB file, the mean cost of adaptation

in packets in a measurement round, and the percentage of linearly dependent packets

during retrieval based on 1000 measurements for each parameter set. We have introduced

a storage constraint (an upper bound on αi) to evaluate how each solution reacts to a

broader range of scenarios. On figures, the numbers next to the markers indicate this
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constraint. Solutions (I), (II) and (IV) are constrained to a maximum of 16 as described

in Subsection 3.4.2.2.

Figure 3.15 shows a correlation between download performance and linear dependence

in the case of solutions affected by the latter – (I), (II), and (IV). (I) and (II) retrieve

a high number of linearly dependent packets, which decreases their performance. Figure

3.16 compares the trade–off between download performance and the cost of adaptation.

Inter–cloud and intra–cloud copy use very little adaptation bandwidth, but have a higher

download time . All solutions outperform the non–adaptive approach. Dense recoding

shows the best performance overall, but needs a large number of packets for the adap-

tation. Sparse recoding uses significantly fewer packets and still achieves slightly better

performance for the scenarios with storage constraints 12 and 16. This is due in part to

the lower decoding complexity of a sparse code. Interestingly, there is more adaptation

taking place in scenarios with a storage constraint below 20. This is more pronounced

for dense recoding due to its very high adaptation cost per packet: 9x more than for

sparse recoding, 32x more than for inter–cloud copy. The effect can be explained by our

unbalanced measurement setup, where one of the clouds is significantly faster than the

others. In scenarios with a more restrictive (αi = 12 and αi = 16) storage constraint, the

fluctuation of the dynamics of the cloud providers has a more pronounced effect. It is

not so noticeable for less restrictive scenarios (20 ≤ αi ≤ 32) where the fast cloud domi-

nates and the performance of the slower ones no longer dictates generating performance

enhancing packets for them. Most of the adaptation cost associated with these scenarios

comes from filling up the fast cloud with performance enhancing packets in the initial

phases of adaptation.
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Finally, Figure 3.17 illustrates that sparse recoding generates significantly less linearly

dependent packets compared to (I) and (II) and comes very close to dense recoding. This

is due in part to the recode ordering.

We include results which illustrate the robustness of the system in handling dynamic

conditions when faced with large–scale changes in individual cloud performance. Figure

3.18 presents a period of 24 hours using the unconstrained dense recoding technique. The

upper subplot shows retrieval times, the lower the amount of packets downloaded from

Figure 3.18: Performance and distribution of retrieved packets over 24 hours.
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each provider. The different colors mark the different providers with the bottom one

being noticeably faster. A significant event occurred around the 12 hour mark to which

the system adapted by removing performance data from the previously fast cloud and

adding some to the second fastest. Over time, the distribution reverted to the pre–event

state.

3.4.4 Handling changes in the number of cloud providers

Cloud computing providers usually guarantee a high level of availability in their SLAs.

Despite this, outages are a relatively common occurrence. Therefore, it is advisable to

prepare for such events by storing data redundantly. Although L = 1 ensures reliable

operation during an outage, a second outage would compromise data availability. To

prevent this from happening, the number of critical data packets needs to be adapted

to the decreased number of clouds. Furthermore, reliability may also be compromised

in more common circumstances: subscription ending, billing issues or simply deciding to

discontinue the use of a service.

To adapt the level of redundancy in the system to the decreased number of storage

clouds, new coded packets need to be generated and added to the critical storage. Using
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RLNC, this can be achieved with recoding. It is not necessary to first recover the original

data as recoded packets can be generated from any number of existing coded packets.

However, to maximize the probability that they carry useful information, k should be

used. Furthermore, because this modifies the critical data storage, additional checks need

to be performed to ensure recoverability. Figure 3.19 shows how the system adapts the

distribution of data as it goes from 5 clouds to 2, such that αi ≥ dk/(N−L)e is maintained

after each change in N . The total amount of stored data increases as shown in the lower

subplot while performance decreases, as shown in the upper subplot.

A new cloud joining the system can be handled in a simpler fashion: part of the

critical data storage from the old providers can be copied to the new one. There are

always enough packets to redistribute, because the more clouds the systems contains, the

less redundant data it needs to store to be able to handle the loss of one cloud. As with

the other case, additional checks need to be performed for the new decoding matrices. An

example is shown on Figure 3.20.
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3.5 Conclusion

Using multiple cloud providers has many benefits in terms of reliability, retrieval perfor-

mance, as well as privacy and security. We characterized the relationships between these

and showed using measurements that by applying RLNC on top of the cloud storage

results in predictable performance that is superior to that of a non–encoded, replicated

solution. Most of the gains are a result of the MDS–like property of RLNC, which sim-

plifies and enhances data distribution and retrieval. This is also desirable from a system

design perspective, as some bookkeeping relating to the data distribution can be avoided.

If encoding parameters are chosen judiciously, the extra computational time of using

erasure coding is compensated by decreased retrieval times. This holds true even for

relatively costly dense versions of RLNC.

This chapter also covered adapting the data distribution scheme to reflect changes

in cloud performance in order to decrease retrieval times. We have proposed a sparse

recoding technique that has low adaptation cost while maintaining close to optimal per-

formance. Finally, we showed that the rateless nature of RLNC makes maintaining a

level of redundancy in the face of a changing number of clouds simple. While many of the

benefits of using RLNC over cloud storage generalize to all MDS codes, its rateless nature

and efficient recoding set it apart by enabling a distributed storage system to adapt to

changing conditions. Furthermore, its random selection of coefficients carries advantages

in terms of privacy and security.



Chapter 4
Erasure coding for fog computing

4.1 Introduction

Almost all current online services are centralized and are supported by a distributed

storage systems that features a central storage controller that manages the distribution,

retrieval and maintenance of data. However, many envision a move towards more decen-

tralized systems. Whether in their pure form, as a fully decentralized P2P system shown

on Figure 4.1b, or as an edge caching mechanism for cloud–based services shown on Figure

4.1c, mobile storage clouds move the data closer to where it is produced and consumed.

Because they are based on a P2P topology, they scale better, make better use of existing

infrastructure, reduce latency, improve throughput and remove the single point of failure

characteristic of a centralized topology. As such, we see them as one of the key enablers

of fog computing architectures.

(a) Centrally controlled stor-
age

(b) Decentralized mobile
cloud

(c) Decentralized mobile
cloud augmented with
high–availability nodes

Figure 4.1: Distributed storage architectures
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Offsetting the benefits somewhat, mobile storage clouds present added challenges as

the number of nodes changes continuously and is hard to predict. Erasure codes can play

a crucial role, but must meet stringent requirements, regenerating data onto new nodes

without a central arbitrator and providing slack to account for the large variance in node

numbers. Furthermore, such systems can only sustain themselves if they possess adequate

bandwidth to fill new nodes.

4.1.1 Structure and overview of the contributions of this chapter

This chapter has three main contributions. First, it introduces and contrasts different

types of data regeneration techniques for network coded distributed storage. This is

compared to replication and Reed–Solomon–based techniques through a large number of

experiments that focus on how well they maintain the integrity of the mobile clouds.

A distinction is made between centrally controlled and fully decentralized approaches.

Besides looking at how well single node failures can be recovered from, our results deal

with data regeneration in two types of concurrent node failure patterns.

Second, a sufficient set of conditions is derived for quasi–infinite longevity of data

when using network coding using realistic constraints.

Third, we explore user behavior in a mobile P2P BitTorrent system to analyze how

much aggregated bandwidth and storage may be offered by a mobile cloud. We use these

results to make rough calculations on whether such a system can be self–sustainable. We

show that mobile storage clouds are feasible as long as they meet certain requirements

and briefly look at how high–availability nodes improve the system.

Finally, we propose a two–phase technique to estimate the number of nodes in the

system based on a simple idea: by aggregating device level estimations centrally, local

knowledge can be used to improve accuracy.

Section 4.2 introduces three different approaches to regenerating data in a distributed

storage system. Section 4.3 looks at defining a set of sufficient bounds to ensure data sur-

vival for functional repair. Section 4.4 compares our proposed approaches using different

node failure patterns. Section 4.5 looks at whether mobile storage clouds are feasible and

Section 4.6 introduces a simple technique to predict node availability. Finally, Section 4.7

presents the conclusions and lays out potential directions for future work.

4.2 Reconstruction strategies

We use the same general notation and model as in the previous chapters, with some

changes. As before, our proposed system is made up of N initial nodes, each storing the

same α amount of data. When a data creator uploads a file to the system, it is first
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divided into k pieces. These are encoded to create n coded pieces, which are then evenly

distributed to the nodes. When a data collector tries to retrieve the original file, it contacts

a number of nodes and gathers at least k coded pieces to be able to decode. Unlike the

system described in the previous chapter, nodes in decentralized systems are not simply

storage locations, but intelligent entities, which can perform computations on the data.

It is distinguished from the last two chapters in that there is no coordinating entity to

oversee the operations of the system. Thus, the reconstruction strategies described in this

section differ from the repair mechanism defined in Chapter 2 in that nodes must function

autonomously, possessing a limited view of the network.

As in Chapter 2, the passage of time is simulated using a discrete sequence of rounds

(generations). During each generation, the number of nodes may vary as they join and

leave the system. When a node joins the system, it is filled with new pieces using encoded

pieces from the remaining nodes. We refer to the subset of remaining nodes that are used

in this reconstruction process as parents and use d to denote their number. Data stored

on nodes that leave the system is considered lost in Section 4.2, 4.3 and 4.4. Rejoining

nodes appear in the model in Section 4.5. Unlike the previous two chapters, the number

of available nodes in a given generation may surpass their initial number as we look at

different node patterns.

This section introduces the different strategies that deal with how L nodes are filled

by their d parents. The strategies will differ in the success probability pgS and the related

reconstruction traffic.

Definition 4.1 (Success probability(pgS)). After filling up the new L nodes, data integrity

is checked over all N nodes. If successful, the procedure starts from the beginning until

g generations are completed. The tests are repeated several times to derive the success

probability, which is defined by the ratio of successful tests to the overall number of tests

carried out.

Definition 4.2 (Reconstruction traffic(γS)). γS is the number of packets transmitted for

a specific strategy S to fill a newly joined node.

Two constraints have been considered. First, the amount of data stored on each node

is limited. Second, there is a limit on the number of parents that can be contacted by

a joining node. This is a common bottleneck in current storage systems and an active

research area [Dimakis et al., 2011, Hu et al., 2012b, Lei et al., 2013]. Ultimately, our

goal is to minimize the amount of storage over all nodes and network traffic while being

still able to retrieve the original data.
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4.2.1 RLNC–based recovery strategies

4.2.1.1 Post–recoding approach

The d parent nodes convey all available dα information to the new L nodes. Each node

out of L recodes over all dα received packets storing only α and discarding the remaining

(d− 1)α. Due to the large number of received packets and the possibility to recode, each

of the L nodes will store different coded versions and the likelihood to store redundant

information across the new nodes is reduced with an increased field size. The resulting

traffic γpost per generation equals

γpost = dαL. (4.1)

4.2.1.2 Pre–recoding approach

In order to reduce the traffic involved in filling the new nodes, pre–recoding is introduced.

Each of the d parent nodes recodes over its own α packets sending only dα/de to each

new node. For each new node, different coded versions are generated. The receiving node

stores the received coded versions without any further actions. The overall traffic γpre is

drastically reduced in comparison with the previous approach, as given by

γpre =
⌈α
d

⌉
dL = αL+ θdL, (4.2)

where θ ∈ [0, 1). While the traffic is reduced significantly by a factor of up to d, the

diversity in the recoded packets is small. Therefore, we propose a hybrid approach that

combines the benefits of the former two.

4.2.1.3 Hybrid approach

While the post–recoding approach sends the maximum traffic and achieves the maximal

mixing of the coded packets, pre–recoding sends the minimum traffic with limited mixing

capabilities across different nodes, i.e., only recoding within each existing node. As the

name implies, the hybrid solution provides a simple mechanism to trade–off traffic and

coding diversity.

In the hybrid approach, each parent recodes over its own packets sending dλα/de to

each of the L nodes. The values for λ are between 1 and d, where λ = 1 corresponds

to the pre–recoding and λ = d to the post–recoding approach. Each new node receives

dλα/ded, over which it recodes again in order to store α packets, discarding the unused
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packets. The overall traffic γhybrid for the pre–recoding approach is given by

γhybrid =

⌈
λα

d

⌉
dL = λαL+ θLd, (4.3)

where θ ∈ [0, 1).

4.2.2 Reed–Solomon coding approach

In order to compare our network coding approaches with the state of the art, we use

Reed–Solomon (RS) coding. There are two ways of using Reed–Solomon in this context

and the first one results in more traffic but makes sure the integrity of the information is

intact, while the second is prone to information loss but uses less traffic and is comparable

in its constraints to the proposed network coding approaches.

4.2.2.1 Fully controlled Reed-Solomon

Each of the L nodes has to retrieve any k segments from the remaining P parents, decode

the received segments if possible, and store the exact same information that was lost

beforehand. This approach needs some overlay control entity to organize that the L

nodes are filled in the correct way. The resulting traffic γRS,control in this case is

γRS,control = kL, (4.4)

without taking into account for the extra signaling that would be needed among the

overlay control entity and all N nodes.

An optimization in the amount of traffic generated is to retrieve all k packets in one

of the L nodes, create the missing Lα packets, then distribute the missing ones to the

other L− 1 nodes. In this case the traffic is reduced to

γRS,control = k + α(L− 1). (4.5)

If a newly joined node is unable to decode, it will replicate the rarest packet in the

system from those it receives.

4.2.2.2 Random Reed–Solomon

In contrast to the controlled approach, we can forward randomly selected pieces to the

new nodes. Following the pre- and the post–recoding approach for network coding, Reed–

Solomon can also perform a traffic aggressive or a traffic careful policy, sending either dα

or only α segments to each of the L new nodes, respectively. The resulting traffic γRS,random
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here is therefore similar to the traffic of the post and pre–recoding approach of network

coding given in Section 4.2.1.1 and 4.2.1.2, respectively, that is

γRS,random = λdαL, (4.6)

with λ being either 1 (large traffic) or 1/P (low traffic).

4.2.3 Replicated approach

Since replication is still the most common form of storing data in a distributed storage

system, we included this approach as a comparison.

4.2.3.1 Centrally controlled replication

In centralized systems, a control entity can keep track of what is lost and replicate those

packets. Newly joined nodes replicate the rarest pieces in the system from those served

by their parents. This is similar to BitTorrent [Legout et al., 2006] and has the purpose

of avoiding the loss of any given packet. Let γrepl,control be as defined in Equation (4.6).

4.2.3.2 Random replication

This uncoded approach also uses random filling as described for Reed–Solomon. Care

is taken to not replicate the same packet on a newly joined node twice. The approach

is used for comparison and not as a recommendation for use in a storage system. Let

γrepl,random be as defined in Equation (4.6).

4.3 Ensuring data availability using RLNC

This section looks at determining lower bounds on the number of parents that are needed

to maintain cloud integrity for network coded approaches and L = 1. We limit our

evaluation to hybrid recoding since it is a generalization of both pre–recoding and post–

recoding. To have results that are closer to real–world systems and be more in line with

other efforts, we use β to denote the number of packets a parent sends instead of fine–

tuning the λ parameter. Since we advocate the use of Random Linear Network Coding, we

introduce the simplification of using an infinitely large finite field. Thus, this evaluation

focuses on avoiding linear dependency introduced by the reconstruction process, rather

than by the unfortunate selection of coding and recoding coefficients. We later show using

experimental results that even moderately sized finite fields, such as GF (28), are suitable

for practical systems. Unlike the results in Chapter 2, we look at the case of homogeneous
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β, that is βi = β, as our model does not allow any coordination between the nodes. This

constraint, among other practical considerations, also makes it unfeasible to apply the

checks to the coding and recoding coefficients described in the same chapter.

4.3.1 System convergence

We wish to show that a storage system using RLNC can ensure data survival with a high

probability after a large number of failures given a judicious selection of values for some

key parameters. Using the model based on information flow graphs, the criterion for this

is to have a maximum flow with value k (or k edge–disjoint paths) between the source

and the sink. In other words, the data collector must be able to gather as many linearly

independent packets from the surviving storage nodes as the number of packets that

the source introduced into the network (k). First, the initial data distribution must be

performed such that this property is satisfied. Second, subsequent node loss and recovery

processes must ensure that the property is kept for a large number of generations. We

denote M g ⊆ Ωg
N as a randomly selected set of non–failing nodes in generation g. It is the

smallest possible set that stores k packets (to make possible a flow with value k between

the source and the sink without the traversal of other nodes of generation g).

m = |M g| =
⌈
k

α

⌉
(4.7)

Definition 4.3 (Robust Data Recoverability (RDR)). A system has the RDR property

if and only if data can be recovered from any set M g of non–failing nodes in generation

g, where |M g| =
⌈
k
α

⌉
.

For RLNC this is analogous to having a submatrix of rank k of the matrix composed

of the coefficients used to (re)encode the data for all selections of nodes of size m in each

generation. The RDR property is a generalization of the Maximum Distance Separable

(MDS) property. We introduced RDR to handle cases where α - k, common for RLNC.

To have this property, the initial distribution of data must meet some conditions. More

importantly, the storage system must have a robust reconstruction transition between

generations, as there is no way to rebuild lost data paths. Newly introduced reconstruction

edges to the recovery device have the goal of increasing the interconnectedness of nodes.

They build redundant paths to be used in case another node fails in the future.

The following proposition states that any given non–adaptive reconstruction mecha-

nism either maintains the RDR property indefinitely or loses it after some generations

and never recovers it.

Proposition 4.4. Considering a storage network with a fixed set of values for k,N, α and

a reconstruction transition with fixed values for β and d that maintains the RDR property
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between at least one pair of consequent generations l and l + 1, then this transition will

also maintain the RDR property for any generation g ∈ N+.

Proof. We divide the proof into several parts:

• For g < l: Based on the network construction that provides a topologically sorted

form, if layer l exhibits the RDR property then all layers g < l must also have this

property as the premise of the proposition can be applied recursively until generation

1.

• For g > l+ 1: Let us assume that generation g is the first generation after l+ 1, for

which there exists a selection of nodes M g that do not have k edge–disjoint paths

pass through them. We will show by contradiction that such a selection cannot be

made and thus generation g also has the RDR property.

M g can be selected in
(
N
m

)
ways. Fortunately, it is enough to consider two distinct

cases.

– M g does not include the newly recovered node.

In this case, all nodes in M g were already present in the previous generation,

therefore we can easily find the corresponding set of nodes M g−1 that includes

the same storage nodes. These can support k edge–disjoint paths because

generation g is the first to not have the RDR property. The α paths between

the m pairs of nodes in generation M g−1 and M g will ensure k edge–disjoint

paths pass through M g. We have arrived to a contradiction.

– M g includes the newly recovered node.

Surviving nodes already ensure at least k−α edge–disjoint paths pass through

nodes in the corresponding M g−1 set in generation g − 1. Let us assume that

the recovered node does not provide the minimal number of α additional paths

necessary for the system to keep the RDR property in generation g. This

implies that there are less than α edges between the recovery node and nodes

from generation g − 1 outside of M g−1, i.e. (p− (m− 1))β < α. The original

assumption of the proposition is that d, k, α, β and thus m have a fixed value.

Therefore, this bound must also have had to have been in place in generations

l and l + 1. This would mean that the transition to generation l + 1 would

have lost the system the RDR property because the M l+1 set that included the

node recovered in generation l + 1 would not have had k edge–disjoint paths

pass through it either. Again, we have arrived to a contradiction.
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Because we arrived at contradictions for both categories of cases, we can conclude

that the system must be able to support robust data recoverability in generations

following generation l + 1 as well.

An important consequence of Proposition 4.4 is that the system becomes memory–less

if the RDR property is maintained because the ability of a reconstruction transition to

maintain the RDR property is only influenced by the state of the system in the pre–

transition generation.

4.3.2 Criteria for maintaining the Robust Data Recoverability

property

In the previous section, we have shown that given a correct set of values for the parameters

of the system, the RDR property can be maintained for a large number of generations

indefinitely, if we assume the use an infinitely large finite field. Here we give the criteria

for the parameters as a set of inequalities.

Our model can be defined using the previously introduced parameters: N,α, k, d, β ∈
N+. We derive the key constraints for these by examining each state and state change of

the system. From the initial state it is possible to conclude that to be able to store the

data, we must have at least N ≥ d k
α
e nodes. However, an extra node is required to be

able to handle a loss.

N ≥
⌈
k

α

⌉
+ 1. (4.8)

Because the original data is divided into k pieces, there is no reason to store more

than α ≤ k packets on a single node (there is a k sized cut between the source and the

rest of the network).

The defining state changes is the transition between any two consecutive generations l

and l+1. A node fails in generation l and a recovery node is filled with data in generation

l+ 1 to functionally repair the lost data. To be able to contact enough parent nodes, the

recovery node must have access to at least these d nodes. Therefore,

N ≥ d+ 1, (4.9)

where the +1 is the recovery node in generation l + 1. Furthermore, each node stores α

packets, therefore it should receive at least that many to make the recoding of α linearly

independent packets possible

α ≤ dβ. (4.10)
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Let us look at how to ensure that the system maintains the RDR property in generation

l+1, i.e. there exists a network flow with value k between the source and the sink that only

traverses nodes from a selected M l+1. This is the same as having k linearly independent

packets transferred on k edge–disjoint paths. We assume that this property holds for

generation l and let us examine the transition to l + 1. We denote the set of nodes

representing the surviving devices from generation l which are also elements of M l+1 with

M l′ as illustrated on Figure 4.2a.

We can choose m nodes out of N in
(
N
m

)
ways and the parent nodes for the recovery

node can be chosen in
(
N−1
d

)
ways. However, there are only three distinct cases to analyze:

• Case I. M l+1 does not include the newly joined recovery node.

In this case, there are no additional constraints on any of the parameters, as the

property will hold true regardless of which nodes were used to fill the recovery node.

This is because M l+1 includes the same devices as M l′ for which the property was

true.

• Case II. M l+1 includes the newly joined node, which was repaired using all m − 1

nodes in M l′ except itself, i.e. d ≥ m− 1.

(a) Case I. M l+1 does not include the newly
joined recovery node.

(b) Case II. M l+1 includes the newly joined
node, which was repaired using all m − 1
nodes in M l′ except itself: d ≥ m− 1.

Figure 4.2: An illustration of cases I. and II.
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Figure 4.3: Case III. M l+1 includes the newly joined node, which was repaired using
j = 0, · · · ,m− 2 nodes from M l.

Each of these parent nodes will supply α edge–disjoint paths. To be able to have

a total of k edge–disjoint paths crossing M l+1, additional paths must traverse the

recovery node. However, these should not be the same paths as supplied by the

parents, as those would not necessarily be edge–disjoint. This can be achieved

using additional parents (dadd), which results in

dadd =

⌈
k − (m− 1)α

β

⌉
=

⌈
k − (d k

α
e − 1)α

β

⌉
(4.11)

Considering the additional parents from inequality (4.11) results in

d ≥ m− 1 + dadd =

⌈
k

α

⌉
− 1 +

⌈
k − (d k

α
e − 1)α

β

⌉
(4.12)

• Case III. M l+1 includes the newly joined node, which was repaired using j =

0, · · · ,m− 2 nodes from M l.

A total of jβ paths are created between M l′ and the newly joined node. With

reasoning similar to II., the number of additional paths that must be created between

parents not in M l′ and the recovery node is the same as described in Equation (4.11).
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This gives the following lower bound for the number of parents:

d ≥ j + dadd = j +

⌈
k − (d k

α
e − 1)α

β

⌉
(4.13)

This is a less strict condition for d than Inequality (4.12) because j < m−1 = d k
α
e−1

by definition. Furthermore, this case is only possible if: N ≥ (m− j− 1) + d+ 1 (to

have enough nodes in M l not taking part in the repair) for nodes, which is a more

strict condition for N then the one in Inequality (4.9).

Having studied all types of transitions from generation l to l + 1, we have identified

the sufficient conditions to ensure that any randomly chosen M l+1 surviving nodes can be

used to create a flow with value k in generation l+1 if the property was true for generation

l. A constraint on the number of nodes can also be expressed using Inequalities (4.9) and

(4.12).

N ≥
⌈
k

α

⌉
+

⌈
k − (d k

α
e − 1)α

β

⌉
∀k, α, β ∈ N+ (4.14)

Our initial expectation is that these or a subset of these also defines the necessary

conditions. We plan to investigate this in the future. Finally, the last state change is

the data retrieval itself. However, having already established the constraints to allow the

recovery of the data using any m nodes for the repair transition, no new constraints need

to be added.

4.3.3 Discussion

In this section we evaluate a storage system with parameters that satisfy all previously

presented constraints. First, we examine the number of storage devices Nsuf that are

sufficient to maintain the RDR property between subsequent generations. We derive

these results from Equations (4.8) and (4.14). Figure 4.4 shows that by increasing the

storage space α on each device, the amount of devices needed initially declines. The

reason behind this reduction is that the required edge–disjoint paths used by the repair

process can be provided by fewer parent nodes as expressed in Inequality (4.12). However,

Nsuf increases after a point, as the amount of parent nodes required to fill the recovery

node increases with α as expressed by Inequality (4.10). The relationship between the

parameters of the system shows similar trends for both k = 10 and k = 20, as well as

other values we have examined but not included to save space.

Figure 4.5 shows the same relationship for a wider range of values for repair traffic (β).

A similar trend can be observed as in Figure 4.4 for values to the right of the β = α plane.
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Figure 4.4: The minimum number of storage devices needed to safely store data, with
constraints on per device storage (α) and repair traffic provided (β) for selected values.

Values to the left of the β = α plane are for cases where β > α. Clearly, such systems

have no advantage compared to systems where β = α, as recoding cannot produce more

linearly independent packets to send to the recovery device than was stored on the parent

device.

The set of constraints offers a wide range of values for the parameters for which data

integrity is guaranteed. This is due to the effectiveness of recoding in the reconstruction

process and makes RLNC–based systems cost–effective.
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Figure 4.5: The minimum number of storage devices needed to safely store data, with
constraints on per device storage (α) and repair traffic provided (β) for a wider range of
values.
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4.4 The performance of erasure coded repair

Section 4.2 presented three different approaches for handling storage in both centrally

controlled and decentralized systems and Section 4.3 established lower bounds on the

parameters of functional repair. This section looks at how well the codes perform in

practice, given the same types of restrictions. Besides single and multiple concurrent

node losses, it also covers a sinus–wave–like node change pattern, more typical of real

systems.

4.4.1 Single node failure

First, we look at how systems behave when faced with the loss of a single node, which

should give a good general indication of the resilience of the compared strategies and is

the most common case in data centers [Ford et al., 2010]. In Figure 4.6 cloud integrity

is given for different coding strategies in relation to the number of available parents and

the number of storage place per node α. The first, second, and third column show cloud

integrity after 10, 100, or 1000 generations of node failure, respectively. Results except

those involving pre–coding use λ = d.

The first two rows show the replicated approach. Cloud integrity can only be guaran-

teed for a large value of α, which means high costs in maintaining the cloud infrastructure.

In the decentralized case, the number of parents has a smaller impact and for larger gen-

erations the probability to retrieve the data is going towards zero. When employing a

centrally controlled approach, replication can maintain cloud integrity, albeit at a high

cost in storage and network bandwidth.

The third row shows the random RS approach. For 10 generations the cloud integrity

can be ensured by a small number of parents (d ≥ 1) and a small number of storage

(α ≥ 2). For 100 generations the cloud integrity is significantly decreased and can only

be ensured by a large number of parents (d ≥ 3) and a very large number of storage per

node (α ≥ 8). For 1000 generations the cloud integrity can not be guaranteed anymore.

However, if a controlling entity coordinates the operation of the cloud system, cloud

integrity is maintained for a wider range of parameters than replication. This is shown in

the fourth row.

In the final two rows, the post and pre–recoding network coding approaches are pre-

sented. Both outperform replication and Reed-Solomon, despite being fully decentralized

with no central coordinating controller. Even for large generation numbers such as 1000,

both approaches are still robust. The difference for 10 generations is not visible and both

clouds are intact for d ≥ 1 and α ≥ 2. For 100 generations the pre–recoding approach
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(r) RLNC–post g = 1000

Figure 4.6: Probability of successfully recovering the data after a given number of gener-
ations with constraints on storage (α) and the number of parents (d). N = 15.

can assure the integrity with d ≥ 2 and α ≥ 7 or with d ≥ 4 and α ≥ 4 (optimal working

point with respect to storage).
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The post–recoding approach can ensure integrity with d ≥ 2 and α ≥ 5 (optimal

working point with respect to traffic) or with d ≥ 5 and α ≥ 2 (optimal working point

with respect to storage) after 100 generations.

4.4.2 The impact of field size on the effectiveness of recoding

To verify the assumption we made based on prior work [Heide et al., 2011a] that recoding

does not introduce a significant amount of linear dependence for RLNC given a large

enough field for calculations, we have conducted further simulations with different fields.

We chose four fields of practical interest. GF(2) allows for very efficient computations due

to the addition operation corresponding to the logical XOR operation and multiplication

to logical AND respectively. Both use a small number of cycles on modern CPUs. GF(28)

is a natural choice for use in erasure codes as its elements can be represented in a byte

on most modern hardware architectures. The relative large size of the field is sufficient

for use with non-deterministic coding schemes yet small enough that a multiplication

and addition table can fit in memory for many systems. GF(216) has significantly more

elements but is slower in terms of encoding and decoding performance. Finally, we have

included the field based on the prime number 232 − 5. It has the benefit of having a

very large number of elements as well as relatively low encoding and decoding complexity

because addition and multiplication can be performed using efficient integer addition,

multiplication and the modulo operation. However, it requires some additional steps to

map data prior to encoding, decoding [Paul Crowley, 2006, Pedersen et al., 2013].
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Figure 4.7: Impact of field size on RLNC with post–recoding: the minimal values for d
and α for which data survival is ensured with a given probability p1000

S . Multiple fields
are illustrated over which operations are performed.
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As in Section 4.3.3, we fixed the values of the parameters N = 15, k = 15, β = α and

explored different values for α and d. We looked at the success probability p1000
S of being

able to recover the data after 1000 generations of simulation.

Figure 4.7 shows a top–down view of the results for RLNC from Figure 4.6. It illus-

trates the smallest values of α and d for which data survival is ensured with probability

p1000
S . GF(2) performs worse than the larger fields, however the difference is relatively

small. The larger fields perform almost identically, with the prime field only surpassing

GF(28) and GF(216) in a few cases. These results confirm that GF(28) is sufficient to

ensure data survival for RLNC with high probability over a large number of failure and

recovery generations.

4.4.3 Multiple node failures

While concurrent failures in data centers account for only a small part of fail-

ures [Ford et al., 2010], it is important to plan for them nevertheless. Furthermore, we

expect concurrent node failures to be the norm in mobile clouds.

4.4.3.1 Concurrent node failure

First, let us look at the case where the nodes are lost and rebuilt concurrently, shown on

Figure 4.8.
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Figure 4.8: First model for node failure patterns, L = {1, 2, 3}

Figure 4.9 is a top–down view of the last column of Figure 4.6 for L = {1, 2, 3}.
The lines define the plateaus where cloud integrity is maintained with a probability of
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Figure 4.9: First node variance model: the limit of maintaining data integrity after 1000
generations with probability of at least p1000

S ≥ 0.95. L = 1, 2, 3 randomly selected nodes
are removed and new ones are added in every generation. N = 15.

at least p1000
s ≥ 0.95 after 1000 generations. We have omitted random replication due to

its unsatisfactory performance and pre–recoding for conciseness. There are only subtle

differences compared to the single node loss model for erasure coding based approaches,

each requiring slightly more storage and/or repair traffic as L increases. Replication

performs significantly worse with higher losses, the probability that the last replica of the

least common part is lost tends to 1 as the number of generations increases in traffic and

storage constrained scenarios.

4.4.3.2 A more realistic failure pattern

Second, let us look at a more realistic failure pattern, motivated by user behaviour in

mobile P2P systems with a global user base. Figure 4.10a shows the number of online

users of DrTorrent [Andras Bori, 2014], a popular Android BitTorrent client, for a one

week period between 23/03/2014 and 30/03/2014. This is a typical example chosen from a

set of several months that show similar patterns. To be able to better visualize short–term

seasonal trends, we employed a Fast Fourier Transformation and removed all frequencies

above 1/343716 Hz (around 4 days) as a low–pass filter. The estimated mean value is

µ̂ = 91.47 and the standard deviation is σ̂ = 8.07. The sample minimum is Nmin = 70

on Thursday at 3:42 GMT, the sample maximum is Nmax = 127 on Sunday 20:13 GMT.

There is a distinguishable periodicity that can be attributed to the day–night cycle and

the geographic location of users. The number of connected nodes increases during the day

until around 20:30 GMT and decreases again until around 03:30 GMT. Other, much larger

systems show similar usage patterns. The Steam gaming service publishes the number of

concurrent connected users on its website [Corporation, 2017].
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(a) Variance in the number of active nodes
based on DrTorrent trace
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Figure 4.10: Second time–varying model for node variance

Based on these general patterns, we have chosen to use a discrete triangular signal with

a step of 1 in each generation for our second model as shown in Figure 4.10b. Compared

to our first model, it is a significantly more challenging pattern due to the large fluctuation

in the number of nodes. In the descending phase, N falls considerably below the original

Ninit to Nmin, potentially approaching the theoretical limit of data integrity of n ≥ k. In

the ascending phase, the ability of reconstruction techniques to spread information evenly

on new nodes is tested as the number of nodes rises to Nmax.

We have used the same values for this model as in the previous subsection, most

significantly Ninit = 15. Because the measurement data had a much higher mean value

of µ̂ = 91.47, we downscaled the variance of the system accordingly. We looked at three

sets of parameters: Nmin = 9 and Nmax = 21, Nmin = 10 and Nmax = 20, Nmin = 11 and

Nmax = 19.

The much larger differences between Nmax and Nmin create a different type of challenge

for the various encoding techniques. Figure 4.11 shows the plateaus where p1000
S ≥ 0.95. A

crucial difference compared to previous results is that decentralized Reed–Solomon does

slightly better than centralized replication in the scenarios with more variance in the

number of nodes. Replication–based codes and decentralized RS both only ensure data

integrity if α is large enough to lower the probability of loosing all replicas of a given

piece. The number of available parents has a reduced influence on the results.

Post–recoding does best for this model and is barely affected by the increase in node

number variance. The recoding mechanism is highly effective in spreading the redundancy

among the new nodes evenly. This is crucial as the original nodes eventually drop out.
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Figure 4.11: Time–varying second model: the limit of maintaining data integrity after
1000 generations with probability of at least p1000

S ≥ 0.95. The number of nodes in the
system varies in accordance with the second triangular node variance model. Ninit = 15.

Centralized RS behaves reasonably well, however it needs significantly more storage and

network traffic to achieve the same degree of data integrity.

Since the initial publication of our work, some of our experimental results have been

validated by theoretical results. [Abdrashitov and Medard, 2015] examined how the rank

of the encoding matrix changes over generations of reconstructions.

4.5 The feasibility of mobile clouds

4.5.1 Conditions for a self–sustaining mobile storage cloud

To maintain data availability, the system must fill newly joined nodes (NJ denotes their

number) with data during the reconstruction process. To do this, it must have parent

nodes with a sufficient combined available upload bandwidth. We have aggregated this

requirement for the entire mobile cloud for a given period of time:

Ch(∆t) ≤
B(∆t)

γ
, (4.15)

where Ch is the rate at which new nodes join the system, B is the total amount of upload

bandwidth available from potential parents and γ is the reconstruction traffic for one

newly joined node. ∆t is the period of time of the observation.

The rate at which new nodes join the system (Ch) provides a means of quantifying

how dynamic the system is. We have chosen this metric, because the number of joining

nodes determines the amount of reconstruction traffic. Nodes that rejoin already posses
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the data, therefore it is enough to only consider newly joined nodes:

Ch(∆t) =
NJ(∆t)

∆t
. [nodes/∆t] (4.16)

The aggregated upload capability of the system (B) can be estimated by simply summing

together the individual upload bandwidth (Bi) of the nodes, assuming that all connected

nodes can be accessed from all joining nodes:

B(∆t) =
∑

Ni∈N(∆t)

Bi. [bits/∆t] (4.17)

If there are difficulties in measuring the individual bandwidth of the nodes, but the

connection types are known, the total available bandwidth can be estimated by using

fixed values based on the connection type:

B(∆t) = NWiFi(∆t) ·BWiFi +Ncell(∆t) ·Bcell. [bits/∆t] (4.18)

Finally, the amount of data that needs to be transferred to fill one joining node dur-

ing reconstruction depends on several factors. There is an inherent trade–off between

the amount of data that is transferred to a new node and the amount of new, useful

information it can build and store from this as shows in the measurements in Section 4.4.

The type of coding is a critical factor in ensuring data availability, as it determines how

well the data is spread among the nodes. Some coding techniques can also be customized

to be traffic–heavy or a traffic–light. Using RLNC, we vary the parameter λ, with λ =

1 corresponds to traffic–light pre–recoding and λ = P to traffic–heavy post–recoding

approach.

The maximum amount of data that can be transferred to every newly joined node

limits the total amount of storage the system can use:

αmax(∆t) ≤ γmax(∆t)

λ
. (4.19)

This is a potentially important practical limitation, therefore γmax is an important metric

of the system:

γmax(∆t) =
B(∆t)

Ch(∆t)
. (4.20)

4.5.2 Managing variations in the number of nodes

It is a natural property of the mobile cloud that nodes leave and join at arbitrary points

in time. The reconstruction process maintains data availability despite this, however it
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is only effective as long as there are enough new nodes to balance out leaving nodes.

The system must therefore have some slack to account for time spans when the number

of leaving nodes is higher than the number of joining nodes. Having redundancy in the

erasure code achieves this slack. In the case of MDS codes, this is another representation

of the rate of the code:

R = 100
n− k
k

. [%] (4.21)

The necessary condition for maintaining data availability for MDS–like codes such as

RLNC with an initial node count of N is given using the condition in (4.23). To be able

to recover the data after loosing NL nodes and NJ joining nodes, the coded pieces stored

on any N − NL + NJ sized subset of nodes must contain at least the same amount of

data as the original file. This condition is only sufficient, if the reconstruction process

guarantees that the MDS property of the code is maintained. Section 4.3 presented a set

of sufficient bounds for RLNC. We introduce

R′ =
R

100
+ 1 (4.22)

to simplify the formulas and to express the requirement on node dynamics:

R′ ≥ N

N −NL +NJ

. (4.23)

By employing a number of always on nodes (NA) with very high availability, this

requirement can be relaxed. These could be conventional cloud storage providers or

servers that include some guarantees in their service level agreements. We have chosen to

model these nodes as somewhat separate to the mobile cloud and not include them when

calculating R and R′ :

R′ ≥ N

N −NL +NJ +NA

(4.24)

4.5.3 User behavior in a mobile P2P system

4.5.3.1 Trace analysis

Let us look at a real–world scenario to characterize node dynamics. DrTorrent is a popu-

lar BitTorrent client for mobile devices running the Android operating system with over

50000 downloads as of August 2014. The app collects anonymous usage information re-

garding the network and battery status of devices and the torrent files being downloaded

and shared. The creators of DrTorrent have published a paper [Csorba et al., 2013] de-

tailing some initial long–term trends. We have been given permission to use the collected

information to evaluate the feasibility of our proposed system. As both BitTorrent ap-
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Figure 4.12: The evolution of concurrently online nodes and newly joined nodes in the
middle of 2014. To be able to show the large number of node joins (almost 1400 in
August), the values have been divided by 10.

plications and mobile storage clouds are P2P storage systems, we believe the traces are

relevant and suitable for evaluation. Besides the common underlying architecture, both

are community–driven and characterized by a constant stream of users joining and leav-

ing. Both use the same resources: the storage and available network bandwidth of user

devices. In BitTorrent systems a certain number of seeders and leachers with a high com-

pletion ratio are needed to be able to retrieve information. Likewise, mobile clouds must

contain some nodes that remain connected even when not actively retrieving information.

These underlying similarities motivate using the DrTorrent traces.

As the popularity of DrTorrent increased, the variance in the number of connected

nodes stabilized somewhat as shown on Figure 4.12. We have therefore decided to use the

latest results and limit our evaluation to the month of August 2014. Figure 4.13 shows

the number of active nodes during this period with samples taken every second. The

short–term variance is relatively low and shows a periodicity typical of global systems

with a large number of users. This can be attributed to a certain degree to the day–night

Figure 4.13: The number of concurrently online nodes in August 2014.
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Figure 4.14: Histograms showing the number of concurrent online users and elapsed time
between node joins.
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Figure 4.15: Histograms showing the usage patterns. Values below 5 minutes have been
removed to eliminate reconnects due to technical issues.

cycle and the globally distributed user base. However, there are periods – such as the 25th

of August – when the number of nodes falls considerably bellow the mean value. We have

no knowledge of the cause of this event. Figure 4.14a shows the histogram of the number

of connected nodes. Values over 60 have a close to normal distribution with a mean value

of µ = 115.2 and a relatively low standard deviation of σ = 14.82. This suggests based on

the central limit theorem, that the number of similar random processes – individual user

actions – is high enough to make statistically sound conclusions. Values between 20 and

40 are caused by the large node loss on the 25th. We have fitted a normal distribution

with a mean value of µ = 31.7 and standard deviation of σ = 3.19. Values between 40

and 60 are caused by the transition from the high node numbers to the low numbers. We

argue that traces for August 2014 are suitable to base our evaluation on, because the data

set shows both normal operation and a challenging situation it may face.
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4.5.3.2 Individual user behavior

This subsections presents figures and statistics about the individual behavior of DrTorrent

users relevant to distributed storage. These are generally at a lower level of abstraction

compared to our model and are presented here to give an insight into their influence on

higher–level processes.

Figure 4.14b is an illustration of the dynamics of the system, showing a histogram of

the elapsed time between subsequent new node joins. Values below 30 minutes dominate.

Figure 4.15a shows the typical length of online sessions. Most values are below 1 hour,

with higher values becoming increasingly rarer. The very low values can be attributed

in part to issues related to BitTorrent applications in general: failed downloads caused

by not having enough peers to connect to, users not being able to use the application

without the appropriate .torrent files and so on. Figure 4.15b shows the offline times

between online sessions. Low values are more numerous than high values, but the effect is

less pronounced compared to the online periods. Most users use the application at least

once a day. All three figures demonstrate that it is a very dynamic P2P system.

The connection type is important in terms of the available bandwidth it offers. Ex-

amining the trace, 73.6% of the time devices connected to the Internet using WiFi and

25.9% of the time using a cellular network, while the rest of time (< 0.5%) devices used

either Ethernet or WiMAX. As the measurement involved devices using mostly battery–

powered devices, a critical aspect was the power status of the nodes. The traces show an

unexpected result: the devices are being charged 69% of the time while the application

is running. This is an indication that users are aware of the energy implications of data

and computation–intensive applications and are willing to adapt their habits to a certain

degree.

4.5.4 Bounds on required bandwidth

In this subsection we apply Equation (4.20) to calculate Tmax, the maximum amount of

data that can be transferred across the network to each joining node. We have computed

the available upload bandwidth by counting the number of connected nodes using WiFi

and cellular with a resolution of 1 second and applied it to Equation (4.18), with values

of BWiFi = 8.7 Mbit/s and Bcell = 3.27 Mbit/s. These are the global average upload rates

for the month of August 2014 as measured by Ookla [Ookla, 2014], one of the largest

public services for measuring bandwidth. First, we have applied the formula over the

whole month of August to get a first estimate. The average values for this period are

B = 828.25 Mbit/s and Ch = 1412 nodes/month, making γmax,month = B/Ch = 1 571 094

Mbit/node. Whilst only a ballpark figure, it far exceeds the storage capacity of current
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devices. We continued by applying Equation (4.20) for several much shorter time intervals

over the entire month: 1 day, 1 hour and 10 minutes respectively. This gave sets of

more exact values and the lowest values from each set are better indications of the real

bandwidth limitation: γmax,day = 1 259 343 Mbit/node, γmax,hour = 318 798 Mbit/node,

γmax,10min = 86 909 Mbit/node. There were time spans in the evaluated period when the

ability of the network to fill new nodes decreased significantly, but the calculated limit is

still high enough to not pose a practical limitation.

Figure 4.16: Upload bandwidth available and the amount of bandwidth needed for γmax,day

and γmax,hour.

To evaluate the accuracy of these theoretical values, we simulated the node join and

loss processes based on the trace with a 1 second resolution. We looked at how much

upload bandwidth Breq was required to transfer γmax data to every newly joined node

as part of the reconstruction process. We took into consideration the limited download

bandwidth of joining nodes, spreading transfers out over time. We consider the mobile

cloud self–sustaining as long as B ≥ Breq is achieved at all times. Figure 4.16 shows that

the values of Breq,day for γmax,day give good estimations of the overall capability of the

mobile cloud. However, values of B < Breq,day persist for periods of time in excess of 12

hours, impairing self–sustainability for those periods. On the other hand, storing only

γmax,hour ensures self–sustainability with a significant margin. This suggests that taking

hourly mean values for node dynamics over a period of 1 month provides a safe estimate on

the maximum amount of data that can be stored on individual nodes. Since even the most

conservative calculated values are an order of magnitude higher than the typical available



Chapter 4. Erasure coding for fog computing 107

storage space on most mobile devices, we can conclude that self–sustaining mobile storage

clouds are feasible in this respect.

4.5.5 Measuring the required level of redundancy

This subsection looks at how much redundancy would have been needed to provide enough

slack to ensure data availability throughout the month of August. All results are shown

on Figure 4.17. First, we used Equation 4.23 to evaluate a pure mobile cloud without

high–availability nodes (NA = 0). We select N = 115 as it is close to the mean value for

the number of connected users in the month, all other values originate from the trace.

As expected, no redundancy ensures data availability around 50% of the time. R = 75%

increases this to 99.28% and 100% data availability is first ensured for R = 200%. Pure

mobile clouds are therefore feasible in this regard, requiring levels of redundant storage

close to those used in data centers [Shvachko et al., 2010].
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Figure 4.17: The relationship between data availability and storage redundancy

Second, we employed Equation (4.24) to evaluate how adding always–on nodes changes

data availability. This brings the model much closer to fog computing. It increased the

time data was available significantly, especially for low values of R, providing 100% data

availability for R = 100% and NA = 20. Furthermore, because mobile clouds used in

hybrid systems with always–on nodes do not necessarily require 100% data availability,

they can be deployed effectively, even when using lower levels of storage redundancy.

Third, we investigated the effect of adding redundancy on–demand, when a significant

drop in the number of nodes is detected. Figure 4.13 shows such a drop on the 25th of

August. We assumed that the system would be able to detect the sudden loss of nodes

quickly enough to compensate. We doubled the amount of stored pieces on each nodes

for this day. Once the number of nodes rebound the following day, we removed the extra
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pieces. This resulted in a significant improvement in data availability, especially when

employing always–on nodes. Thus, if the system is able to adapt to changing conditions, it

could employ much lower levels of redundancy in the long term. For NA = 20, the mobile

storage only needed 50% redundancy to achieve data availability 100% of the time.

4.6 Predicting node availability

This section presents an evaluation of a two–stage model that predicts the number of

concurrent nodes in a system. It can be used to plan for a given level of redundancy,

effectively managing the network and storage loads experienced by the nodes. Lacking

real–world data of sufficient granularity and scope, we created a simulation to generate

inputs to our proposed model. Thus, the goal of this section first and foremost is to provide

a framework for calculating how much redundancy is needed. The expected accuracy of

such predictions in a real–world setting is hard to discern, our experimental results serve

more as examples.

4.6.1 Training data

We have written an application in C++ that simulates the behavior of nodes in a P2P

network. For the sake of simplicity the network addresses of the nodes are set explicitly

and a specialized (central) node polls the other nodes once every 5 seconds. The other

(simple) nodes respond with a YES/NO flag, signaling whether they are available or not

(this is the target variable that we want to predict) and also send several key values on their

condition. These values are the ones that the predictive model described in Subsection

4.6.2 is trained with. The simple nodes are initialized with the following variables: device

id, battery capacity when new, available storage, age, and mobility, a synthetic variable.

The central node collects the following parameters from the simple nodes:

• the id of the device,

• the average number of nodes it could reach, measured from the last poll,

• the percentage of time the node was unable to reach any other nodes, measured

from the last poll,

• the charge level of the battery,

• the available storage space on the device,

• the age of the device, and

• the reason, in case of failure (network unavailability, discharged battery, insufficient

storage space, miscellaneous malfunction).
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The last parameter was included in order to check the validity of the simulation, but

was not used in building the model since it directly correlates with the target variable.

These parameters (except for the first and the last one) are recalculated every 5 seconds.

The charge level of the battery decreases each time by a random value. Recharging is

simulated based on the current battery charge level, the lower the level, the higher the

probability that the user recharges it. The available storage space increases or decreases

randomly as well, with a decrease having a higher probability. When it drops below a cer-

tain level, the user might make a larger amount available again. The network parameters

are simulated based on the mobility variable with which the node was initialized. A higher

mobility simulates a user which is more active and as a result the node is more likely to

lose contact with neighboring nodes. The passage of time is simulated at an increased

rate, each cycle corresponds to 1 hour of operation. This enables us to analyze a longer

period of time, taking into account the storage habits of users and battery degradation

amongst other things.

4.6.2 Local predictions at the nodes

It is important to first define what we understand by the term availability. According to

the Merriam–Webster Dictionary [Merriam-Webster, 2013] a resource is available, if it is

present or ready for immediate use. Let us consider a node available only if it satisfies

both of these conditions. Note that reachability is not the only important parameter for

distributed storage, for example a node with a good network connection, but insufficient

storage space or available computational capacity cannot be used to store files and as

such, should be considered unavailable.

The role of this step is to predict whether a node will be available during the fol-

lowing cycle based on the value of a series of variables. For this task we used a binary

classification model with two categories: Available and Unavailable. There are several

methods for creating such a model and one of the simplest is based on logistic regression,

a type of regression analysis used [Hosmer and Lemeshow, 2000] to predict the value of

a categorical dependent variable. This simplicity enables a low energy implementation

on mobile devices that is a common requirement in today’s battery–limited era. We

have also considered using other techniques and evaluated them with the same data. We

selected a naive Bayes classifier [Rish, 2005] and one based on an alternating decision

tree [Freund and Mason, 1999], both work based on fundamentally different principles

compared to logistic regression.

Table 4.1 represents the results of the comparison between the three classifiers. It

can be seen that the naive Bayes classifier is significantly faster, but has lower accuracy,

especially in the case of available nodes. The alternating decision tree offers better ac-
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Logistic regr. Naive Bayes AD Tree
Accuracy (Overall) 78.3% 75.4% 81%
Accuracy (Available) 94.3% 82% 95.9%
Accuracy (Unavailable) 38.5% 57.7% 44.1%
Model build time 7.85s 2s 82.93s

Table 4.1: A comparison of classification methods

curacy, but at the cost of significantly longer model build times and therefore higher

computational complexity and energy demands. In a mobile scenario where the model

is refreshed regularly to account for variances in network conditions, the method with a

lower run time is advantageous, whereas in a scenario with infrequent model rebuilding

the one with the highest accuracy is preferred. In this case, logistic regression is a good

compromise between accuracy and computational complexity.
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Figure 4.18: The frequencies of the responses

Figure 4.18 highlights the number of the cases where devices were unavailable along

with the corresponding reasons. There are 4 such reasons: no network connection, insuffi-

cient storage space, the battery is discharged, or a general malfunction has occurred. For

our purpose of predicting the target variable, it is not necessary to predict each of these

individually, but rather if any of them will occur.

Run1 Run2 Run3 Run4 Run5
Accuracy (Overall) 78.3% 78.1% 78.2% 75.5% 79.1%
Accuracy (Avail.) 94.3% 88.6% 92.1% 95.1% 94.4%
Accuracy (Unavail.) 38.5% 57.9% 48.3% 24% 40.7%
Model build time 7.85s 7.45s 6.73s 6.46s 8.57s

Table 4.2: Prediction accuracy for five different models

We performed five simulations and the resulting data was used to build five models

with significantly differing parameters. The overall accuracy of the predictions based on
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these models was similar, therefore subsequent calculations have been performed using

only the results from the first run. The prediction accuracy for the two classes as well as

the build times of the models are shown in Table 4.2.

The training set was generated using the simulation described in Section 4.6.1. 10000

cycles were run with 30 nodes resulting in a training set of 300000. To test the results of

the prediction, we employed 10–fold cross–validation when building the model. In order

to ensure that the computed coefficients for the variables are up–to–date, this process

must be repeated from time to time. It is beyond the scope of this thesis to determine its

optimal frequency.

The training set was used in its entirety to build a single model. However, the simu-

lated devices all had different characteristics, therefore it is safe to say that they behave

quite differently. A separate per–device model would be preferred as this should in theory

outperform the general model that we have described. We have abstained from this to

be able to give mathematical guarantees on the accuracy of the aggregation presented in

the following subsection. However, we did build per–device models with 1/30 part of the

data to see whether this was a reasonable compromise. These showed quite large variance

in their accuracy, but the mean was close to that of the shared model.

4.6.3 Centralized predictions

The second step of our proposed technique is to aggregate results from the first step.

Nodes report their individual predictions to a central location. There are several ways to

aggregate results, the simplest is to add the results together. Provided the expected value

of the error for the estimation at the node level is known and equal for all participating

nodes, we can calculate the correctness of our estimation with this simple technique.

A further requirement is for the local results to not influence each other. This comes

naturally from the distributed nature of the estimation and can also be verified using a

Chi–square test with random sampling.

Let us suppose we have N participating nodes. Out of these, let us define M as

the number of those responding positively, stating that they will be available during the

next cycle. Let X1..XM be the Bernoulli indicator variables of the predictions of these

nodes. These have to independent and identically distributed as stated less formally in

the previous paragraph.

Let

{
Xi = 1 if the prediction is correct

Xi = 0 if the prediction is incorrect

Based on the training set, we have a statistical estimate for P (Xi = 1) = 0.943 and

P (Xi = 0) = 0.057. Similarly, let K denote the number of nodes responding that they
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will be unavailable and Y1..YK the independent identically distributed indicator variables

of their predictions:

Let

{
Yi = 1 if the prediction is incorrect

Yi = 0 if the prediction is correct

Note, that here we assign the two values in the opposite manner to simplify calculations

later. We are allowed to do this as P (Yi = 1) = 1−P (Yi = 0). Based on the training set,

we have a statistical estimate for P (Yi = 1) = 0.615 and P (Yi = 0) = 0.385.

We are interested in both
∑
Xi and

∑
Yi to estimate the number of nodes that will

be available.
∑
Xi is the expected number of nodes that predict correctly that they

will be available,
∑
Yi is the number of nodes that incorrectly predict that they will

be unavailable. The sum of independent Bernoulli type indicator variables is a random

variable with a binomial distribution, which makes the calculations simple.

Let Bx =
∑

Xi and By =
∑

Yi,

where both Bx and By are random variables of binomial distribution.

We can easily calculate the expected value of both using the formula for the binomial

distribution η = np, where η is the expected value, n is the number of experiments and p

is the probability of one experiment:

ηBx = MP (Xi = 1) = 0.943M

ηBy = KP (Yi = 1) = 0.615K
(4.25)

and NA = ηBx + ηBy will be the estimation on the number of available nodes.

This is useful, but so far we do not have a measure of certainty for our estimation. To

do this, we can use the formula for calculating the cumulative probability of a binomial

variable. The cumulative distributed function is the following:

P (X > x) = 1−
bnc∑
i=1

(
n

i

)
pi(1− p)(n−i) (4.26)

By calculating both P (Bx > j) and P (By > l) for several j and l, where j ∈ [0,M ]

and l ∈ [0, K], we will get several predictions with various levels of confidence. We can

select the one appropriate for our scenario and based on this we can calculate the number

of available nodes for that level of confidence by simply adding j and l together. Let

NA be the predicted number of available nodes and NA = j + l for the chosen level of

confidence.
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For example, suppose we have N = 100 nodes and out of these M = 75 nodes

respond with YES, K = 25 with NO. The probabilities for Xi and Yi are those previously

mentioned.

In this case the estimate for the number of available nodes is:

ηBx + ηBy = P (Xi = 1) ·M + P (Yi = 1) ·K

ηBx + ηBy = 0.943 · 75 + 0.615 · 25 = 86.1
(4.27)

By calculating the cumulative probabilities for Bx and By for several values j and l

we get the following table:

j 25 65 66 67 68 75
Confidence 100% 99.6% 98.9% 97.3% 93.6% 1.2%

l 5 9 10 11 12 25
Confidence 100% 99.7% 99.1% 97.6% 94.2% 0.0%

Table 4.3: Confidence levels for various values of j and l

For example, for j = 67 the level of confidence is 97.3%, for l = 11 the level of

confidence is 97.6%. In this case we estimate the number of available nodes to be NA =

k + l = 78 with a lower bound of 97.3% on the level of confidence. We can calculate the

required redundancy based on this. For 100 percent redundancy we need to distribute

approximately 2NA = 156 fragments of information assuming any subset of size NA is

enough to recover it. It is also possible to calculate NA for a given level of confidence

more accurately using Chernoff’s inequality.

So far, we have considered the simplest case, with local predictions done solely based

on the model built in Section 4.6.2. In an extended model, where a node has further

knowledge that could influence its prediction, only ηBx should be taken into considera-

tion. This is because in this case there are nodes which signal that they will be unavailable

based on a certain event which modifies the probabilities P (Yi = 1) and P (Yi = 0). De-

vices might opt–out without penalties when it is very likely that they will be unavailable.

An example of this is when a user sets the phone to turn off its network interfaces when

the battery discharges below a certain level. Another one is checking the calendar of the

mobile device and opting–out if the user is set to go abroad and does not have data roam-

ing activated. It is also possible to further enhance prediction precision using, amongst

other things, location–based services [Feher and Forstner, 2011]. Only considering ηBx

seemingly lowers the accuracy of the aggregation, but assuming that such further knowl-

edge makes the local predictions more accurate, this is no longer true. Therefore, a useful
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addendum to the presented technique is to enable the nodes to have three kinds of pre-

dictions: YES/NO/OPT–OUT. If we assume that the probability of a node incorrectly

opting–out to be 0, we can use the above presented formulas with just one modification:

N should be equal to the number of nodes that didn’t opt–out.

The aggregation can be performed using more elaborate methods as well. For example,

if X1..XN and similarly Y1..YN are not identically distributed, the above formulas can

no longer be applied. Indeed, this is a more correct assumption, since it should be

more accurate for the nodes to build different models with different error rates. This

makes calculating the precision of the aggregation more difficult, but also increases overall

accuracy because we can safely assume that the local predictions will be at least as

accurate given a training set of equal size.

In order to ensure that nodes that perform poorly or are trying to cheat with their

personal predictions do not cause availability issues or degrade the performance of the

system, a penalty scheme should be put in place. The simplest way to penalize a node

is to disregard its prediction and exclude it from active service for a predefined duration

of time in case of an incorrect prediction. To ensure that nodes that do this more often

are penalized more, this duration of time can be increased with each incorrect predic-

tion. Other solutions present themselves as well: a simple multiplier that expresses how

many times the node has incorrectly reported its availability or a ranking system based

on more complicated assessments. These might make calculating the confidence of the

aggregated prediction more complicated, but if applied correctly, may further increase

overall accuracy.

4.7 Conclusion

More and more storage, network capacity and computations can be found at the edge

of the network and more and more services require a large amount of computations, low

latency and large throughput. This trend is likely to continue with the introduction of

5G. Many of these services work with shared data, thus it makes sense to store it, at

least partially, on user devices. The core idea behind fog computing is to take advantage

of this and move communication and storage away, at least partly, from the backbone

infrastructure.

This chapter looked at employing network coding for fog computing as the enabler of a

mobile storage cloud. Moving to this highly dynamic setting presented more opportunities

to use RLNC’s flexibility compared to the scenarios described in the previous two chapters.

We showed that conventional erasure codes do not work well in decentralized systems,

where nodes perform data reconstruction without a central node to direct the process.
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The random coefficient selection used during recoding made it particularly suited to this

scenario. RLNC’s rateless nature was also a natural fit when handling the continuously

changing number of nodes.

We introduced theoretic bounds with realistic considerations to characterize recoding–

based repair and created a simulation environment to assess how it compares to more

traditional approaches. Interestingly, RLNC outperformed Reed–Solomon and replication

codes even when a central entity to control the reconstruction was present.

Finally, we looked at whether these systems can sustain themselves. We have shown

that even using current technology, mobile storage clouds have enough aggregate band-

width to deal with typical changes in node numbers. We have also proposed a two–phase

mechanism to predict user behavior in mobile environments.



Chapter 5
Updating erasure–coded data

5.1 Introduction

The goal of this chapter is to address the efficient update of encoded fragments from a file

that has been modified, i.e. where bytes have been changed, added, or removed. This is a

key issue that has not been thoroughly studied for network codes (or other erasure codes)

and where the state–of–the–art follows a costly approach [Esmaili et al., 2013], namely, to

update encoded fragments entirely regardless of the nature or size of the change. Beyond

a strain on the network, this process also requires a large use of space, especially if several

versions of the file need to be maintained. The reason for this issue comes from the

fact that each encoded fragment is created by the combination of all fragments from the

original file. Thus, even small changes in various fragments can be compounded to large

changes in the encoded fragments.

5.1.1 Structure and overview of the contributions of this chapter

Our main contribution is a mechanism that exploits the linear operations of erasure codes

to provide a means to update encoded fragments. Our solution does not send the original

data and supports version control in encoded storage systems while reducing network

use and storage use of the overall system. The mechanism supports parts of files being

added, deleted, or individual bytes being modified. It is useful in distributed storage

using linear erasure codes and is fully compatible with random linear network codes and

other network code variants. Crucially, it does not introduce changes to the encoding

and decoding processes, thus it can be viewed as a “bolt–on” solution for existing storage

systems.

To get a better understanding of how our proposed technique may work in practice, we

focused the analysis of its effectiveness on an application area that is particularly update–
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heavy: version control. We use a Git repository with the source code for an actively

maintained software library. We consider systems such as Git [Chacon, 2009] as state of

the art and use it as a baseline to evaluate the storage and transmission overhead of our

proposed solution. We have no knowledge of any version control systems in use today

that supports erasure codes.

This chapter is organized as follows. Section 5.2 describes how an erasure–coded

distributed storage system can store multiple versions of a file using elements from Chapter

3 as an example. Section 5.3 presents the problem of updating encoded data following

three types of changes and proposes a solution that can be applied to all three with slight

changes. Formulas describe the storage and network overhead of our solution. With the

goal of increasing the practical value of our work, Section 5.4 and 5.5 present the details

regarding the implementation of our solution, including an algorithm that remaps data

to set aside an element from a finite field for signaling purposes. Section 5.6 describes our

experiments using a Git repository to establish the effectiveness of our solution. Finally,

Section 5.7 presents the conclusions and future challenges.

5.2 Description of cloud–based version control

Figure 5.1 shows an overview of our proposed solution, seen as an extension to the cloud

storage system described in Chapter 3. We use this scenario to better describe the high–

level workings of our solution and to tie theory to practice. We have strived to make our

algorithms as general as possible to have very few technical requirements. Thus, they can

be applied in a multitude of other scenarios. The figure shows the state of the system

where a file has previously been encoded and distributed to five clouds and the client

application has just changed a part of the file. First, the client calculates the difference

between the latest and the newly modified version of the stored file. The difference can

then be divided into a number of unencoded difference packets by the client, which are

then linearly combined using the same coefficients as used for the original distribution of

the file. This generates a somewhat larger number of encoded difference packets. Each of

these are linked to a specific encoded packet already stored on one of the clouds based on

which coefficients were used to create it. If the encoded difference packets contain only a

few non–zero elements, they can be effectively compressed before being uploaded to the

clouds. This is possible if the changes occur in bursts, only affecting a localized part of

the original file, as shown in the example. The encoded differences can then be stored to

give a simple and storage–friendly form of version control. If the cloud can perform simple

computations on the data, such as XORs, the difference can also be applied to update

the stored files to the newest version. If this is not possible, the client must retrieve both
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Figure 5.1: Example of updating an erasure–coded bitmap. The difference between the
original and modified bitmap files is calculated, encoded and then uploaded to the storage
clouds in a compressed form. This can either be stored for later use on the nodes as part
of version control system or applied directly on the encoded data. During retrieval, the
modified file is recreated after decoding.

the encoded packets and the encoded difference packets and apply them before decoding.

The result is the modified version of the file in both cases. If several encoded differences

are stored, the client can choose which version of the file to retrieve, making for a simple

but effective version control system.

Decompressing the encoded difference only happens right before its application. This

ensures that it is always in a compressed encoded form when stored or sent over the

network, minimizing the use of network and storage resources.

Crucially, the technique works with all linear block codes without requiring changes to

the encoding and decoding mechanisms. It can be applied transparently to both system-

atic and non–systematic codes and does not require distinguishing between systematic

and non–systematic packets.
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5.3 A theoretical model of updating encoded data

To update a file to a new version, we have identified three types of changes on its elements

that we wish to support. These cover all types of changes that can be made to the content

of a file apart from deleting the entire file.

Definition 5.1 (Modification). A modification is a change in the value of one or more

elements of a file∗.

Definition 5.2 (Deletion). A deletion is the removal of one or more elements of a file

from a specific location.

Definition 5.3 (Insertion). An insertion is the addition of one or more elements into a

specific locations in the file.

This section provides solutions supported by examples to all three types of changes and

introduces most of the notation, summarized in Table 5.1. In the examples, calculations

are performed over GF(3) with elements {0,−,+} ∈ GF(3) and the summation and

product operations shown in (5.1). Most practical solutions use a non–prime field in the

form of GF(2m), where m is typically 1, 2, 4, 8 or 16. We decided on using GF(3) for our

examples because its small size makes it easier for readers to follow. While GF(2) seemed

like a better choice in this regard, illustrating deletions would have been difficult. Since

our algorithms only use summation and product operations, our proposed solution works

over any finite field.

⊕ − 0 +

− + − 0

0 − 0 +

+ 0 + −

⊗ − 0 +

− + 0 −
0 0 0 0

+ − 0 +

(5.1)

We can use GF(3) with the aforementioned operations in the examples because:

• it is closed under both addition and multiplication:

∀a, b ∈ GF (3) : a⊕ b ∈ GF (3), a⊗ b ∈ GF (3)

• associativity of addition and multiplication:

∀a, b, c ∈ GF (3) : (a⊕ b)⊕ c = a⊕ (b⊕ c), (a⊗ b)⊗ c = a⊗ (b⊕ c)

• commutativity of addition and multiplication:

∀a, b ∈ GF (3) : a⊕ b = b⊕ a, a⊗ b = b⊗ a
∗Modifying elements could also be achieved through a deletion and an insertion. However, it would

require more operations and generally be less storage and network efficient.
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• 0 is the additive identity element:

∀a ∈ GF (3) : a⊕ 0 = a

• all elements have an additive inverse:

∀a ∈ GF (3) : ∃ 	 a, a	 (	a) = 0

• + is the multiplicative identity element:

∀a ∈ GF (3) : a⊗+ = a

• all elements except 0 have a multiplicative inverse:

∀a ∈ GF (3), a 6= 0 : ∃a−1, a⊗ a−1 = +

• distributivity of multiplication over addition:

∀a, b, c ∈ GF (3) : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Let us first look at the operation of modifying some elements in a file through a

slightly simplified example, starting from the initial creation of the file and finishing with

the retrieval of a modified version from a storage node.

We organize the original data into matrix M by dividing it into 4 fragments (k = 4)

with 3 symbols each (pac len = 3). The encoding matrix V is defined by the erasure code

and is not modified by our solution in order to ensure compatibility with all linear block

codes. Each of its n rows is associated with data in an erasure coded packet. Normally,

additional encoded packets would be generated depending on the desired redundancy

using an encoding matrix with additional rows, i.e. n > k. To recover the data, at

least one of the k × k submatrices of V associated with available encoded data must be

invertible. We use n = k to keep the example simple without losing generality. Let us

use matrices generated using random elements from GF (3) \ {0}† and GF (3) for M and

V respectively:

M :=


− − −
+ − +

+ + −
+ − +

 V :=


+ − + −
− + + 0

0 + − 0

+ − + 0

 (5.2)

Initially, the client encodes four packets that are distributed to the storage nodes.

X = V ·M =


+ − −
0 + +

0 + −
− + 0

 (5.3)

†We set aside the 0 value as it will have a special significance in signaling deleted elements later on.
A more practical solution that does note set aside values is described in Section 5.5.2.
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Table 5.1: Table of Notations

Matrices
M – the original data
M′ – the modified data

M̂ – difference between the original and the modified data:
M̂ = M′ −M

V – the encoding matrix containing the coefficient vectors
X – the original encoded data
X′ – the modified encoded data

X̂ – the encoded difference between the original and the modified data:
X̂ = X′ −X

Row vectors and single values
del – vector of deleted indices
ins – vector of elements to be inserted
ind – the index of the first element to be inserted into the original data
n – the number of encoded packets – the number of rows of M

pac len – the length of encoded packets in symbols – the number of columns
of M

Modified matrices
At – the transformed version of matrix A
Ar – the remapped version of matrix A

Ã – a version of matrix A that contains some invalid elements
A+ – a version of matrix A that contains some extra columns
A− – a version of matrix A that has had a sequence of its elements re-

moved

The data is later updated on the client side M → M′, the change is marked with ()

in (5.4).

M′ :=


(+) − −
+ − +

+ + −
+ − +

 (5.4)

The client then calculates the difference M̂ between the original and the modified file.

Definition 5.4 (Unencoded difference). M̂ is a matrix representing the difference between

two versions of a file, defined as M̂ := M′ −M.
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M̂ = M′ −M
− 0 0

0 0 0

0 0 0

0 0 0

 =


(+) − −
+ − +

+ + −
+ − +

−

− − −
+ − +

+ + −
+ − +


(5.5)

This can then be used to generate the encoded updates for the four original encoded

packets by taking the product of M̂ and the original coefficients, which remain unchanged.

Definition 5.5 (Encoded difference). X̂ is a matrix representing the difference between

two versions of a file in an erasure–coded form, defined as X̂ := V · M̂.

X̂ = V · M̂ =


− 0 0

+ 0 0

0 0 0

− 0 0

 (5.6)

Each row of X̂ corresponds to an encoded difference packet and is sent to the storage

node that has the data associated with the coefficients in that row of V. If the node can

perform simple computations, it can apply the difference once it receives it using matrix

addition. Otherwise, this operation is performed on the client during data retrieval‡:

X′ = X + X̂
0 − −
+ + +

0 + −
+ + 0

 =


+ − −
0 + +

0 + −
− + 0

+


− 0 0

+ 0 0

0 0 0

− 0 0


(5.7)

The resulting data can be decoded seamlessly to recover the updated file:

M′ = V−1 ·X′ =


(+) − −
+ − +

+ + −
+ − +

 (5.8)

‡Another option that is not covered in this work is to transmit a compressed version of M̂ to each
storage node and calculate parts of X̂ there.
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Proposition 5.6. The changed version (M′) of a file can be recovered by decoding

(M′ = V−1 ·X′) the encoded representation of the change (X′), where V is the invertible

encoding matrix associated with the linear block code used to encode the original file and

the unencoded difference.

Proof.

M′ = V−1 ·X′

M′ = V−1 · (X + X̂)

M′ = V−1 ·V ·M + V−1 ·V · M̂

M′ = M + M̂

(5.9)

5.3.1 Representing bursty modifications in an encoded form

Most changes in textual data occur in bursts. Words, sentences, paragraphs, lines of code

are more likely to be modified, added and deleted together. Using a natural approach

of representing data, the cost of changing each element is multiplied by the number of

packets once encoded. In fact, a single change that is at least pac len long is propagated

to all elements of all packets, making the encoded change as large as the file itself.

Definition 5.7 (Bursty change). A bursty change is a modification, deletion or addition

that affects several subsequent elements of the stored version of the data.

Throughout this chapter, we focus on reducing the storage required to represent bursty

changes of length len in erasure-coded data. Let us first look at why the location of changes

in a file is important once erasure coding is applied, again through an example.

Let M̂ be

M̂ :=


0 (−) (+)

(−) 0 0

0 0 0

0 0 0

 . (5.10)

Once the change is encoded with the same V as defined previously, the resulting

matrix becomes dense, even though the length of the change was only 3:

X̂ = V · M̂ =


+ − +

− + −
− 0 0

+ 0 +

 . (5.11)
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Let us measure the density of a matrix by counting the number of elements that are

potentially§ non–zero. We use this simple metric to express how well the data in the rows

of the matrix can be compressed in a lossless manner. A metric that also expresses the

distribution of non–zero elements would have carried more information on this aspect,

but is unnecessary for our purposes thanks to the well–determined position of potentially

non–zero elements.

Let nz(A) denote the number of non–zero elements of matrix A and let κ(len) :=

nz(X̂) after encoding a change of len consequent elements in M′ using a completely

dense¶ encoding matrix to get X̂.

Definition 5.8 (Overhead of encoded updates). O(len) is the storage and equivalent net-

work overhead of representing a bursty change of length len in an encoded form compared

to a non–encoded form, defined as O(len) := κ(len)
len
− 1 .

Using the natural representation of data as in the example, we can determine Onat(len)

based on how elements are multiplied and added together during encoding. The overhead

shown on Equation (5.12) is irrespective of the location of the first changed element.

κnat(len) only depends on the number of columns of M̂ with at least one non–zero element

and that is irrespective of where the bursty change is located.

Onat(len) =
min(pac len, len) · n

len
− 1 (5.12)

This is maximized by len = pac len, where Onat(pac len) = n−1. With len ≥ pac len,

the number of non–zero elements in the encoded change packets reaches the size of the

original encoded packets, making storing each version of the file as costly as storing

multiple copies of the file. Clearly, such a high storage cost is unacceptable and would

make storing changes in an encoded form unfeasible.

We propose transforming the data before any operations are executed on it by laying

it out column by column rather then row by row as shown on Figure 5.2. Thus, bursts of

changes would now be in columns of M′, impacting far fewer columns of X̂ after encoding

and reducing κtrans(len).

§0 is an element of the field and thus may occur naturally in the encoded data. However, when
generalizing over a family of matrices, we are interested in the number of elements which can take values
other than zero.
¶This can be considered a worst–case scenario, since a sparse encoding matrix would potentially create

more 0 elements in X̂. Thus, for example, we expect systematic codes to be able to achieve a slightly
lower overhead using appropriate compression algorithms.
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1 2 3

4 5 6

7 8 9

10 11 12


(a) Natural representation


1 5 9

2 6 10

3 7 11

4 8 12


(b) Transformed representation

Figure 5.2: Example on how data may be represented to increase storage efficiency.

For example, let us look at the same changes as before, but in a transformed repre-

sentation:

M̂ =


0 0 0

(−) 0 0

(+) 0 0

(−) 0 0

 . (5.13)

After encoding M̂, only the first column in X̂ is affected, all other elements are zero:

X̂ = V · M̂ =


0 0 0

0 0 0

+ 0 0

− 0 0

 . (5.14)

The number of affected columns varies based on the location of the change. For

example, if the changes had occurred one or two positions later, both the first and second

columns would have been affected. Equation (5.15) shows the expected value of the cost

of updating len consequent elements, derived from the expected number of columns of X̂

that will potentially contain non–zero elements.

E[κtransf(len)] =

(⌊
len

n

⌋
+ 1 +

(len mod n)− 1

n

)
n (5.15)

Besides the location of the change, the cost is determined by how many columns the

changes span in M′. At least b len
n
c columns are needed to hold the modified elements.

Depending on the location of the change, it may overflow into the following column. The

expected value of the overflow is given by the second and third term of the addition.

Finally, n is the number of elements in a column.

E[Otransf(len)] =
E[κtransf(len)]

len
− 1 (5.16)

Theorem 5.9. The expected overhead of representing a coded bursty change is at most
2n−2
len

.
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Proof. Let us simplify (5.16) by using upper estimates for b c and mod operations.

E[Otransf(len)] =
(b len

n
c+ 1 + (len mod n)−1

n
)n

len
− 1

E[Otransf(len)] ≤
( len
n

+ 1 + n−2
n

)n

len
− 1

E[Otransf(len)] ≤ (len+ 2n− 2)

len
− 1

E[Otransf(len)] ≤ 2n− 2

len

(5.17)

Corollary 5.10. The expected overhead of representing a coded bursty change tends to 0

as the length of the change tends towards the length of the file and the length of a packet

tends towards infinity.

Proof. The length of the file is pac len · n, thus:

lim
len→pac len·n
pac len→∞

2n− 2

len
=

2

pac len
− 2

pac len · n
= 0 (5.18)

Figure 5.3 compares the overheads of the transformed and the natural representation

of bursty changes of varying length. The transformed representation is significantly more

storage efficient, and its overhead becomes negligible as len increases. We do not expect

the transformed representation to bring benefits for changes that are random in nature

in terms of their location in the original file, i.e. non–bursty changes.
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Figure 5.3: The overhead of different representations of data (pac len = 50).
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5.3.2 Deleting elements

The second important change with regard to updating files is the deletion of individual

elements. We have chosen to trace this back to the previously presented operation of

modifying elements. Thus, the overhead of encoded updates is identical to that presented

in Equations (5.12) and (5.16). We propose signaling deletions in M′ by using a special

symbol. However, in order to be able to rely on the same basic operations of matrix

addition, substraction, multiplication and inversion, the special symbol must be a part

of the finite field we use to represent data. This requires either setting aside an element

of the field and ensuring that it does not occur in M or representing data using a higher

field. We argue for the first option as it does not require changing decoding and encoding

operations, and makes it compatible with erasure codes that are tailored to a particular

field. We describe a solution for this problem in Section 5.5.5 and analyze the overhead

it introduces.

Here we show how deletions work through an example, using 0 as the signaling symbol

and deleting the first element of the file. Let M and M′ have the following values:

M :=


− − −
+ − +

+ + −
+ − +

 M′ :=


(0) − −
+ − +

+ + −
+ − +

 (5.19)

The encoded difference can be calculated the same way as previously:

X̂ = V · (M′ −M)
+ 0 0

− 0 0

0 0 0

+ 0 0

 =


+ − + −
− + + 0

0 + − 0

+ − + 0

 ·


+ 0 0

0 0 0

0 0 0

0 0 0


(5.20)

Based on Proposition 5.6, we can recover the updated file by decoding the stored coded

difference after adding it to X. At this point, the client can simply remove elements from

the recovered M′ that have been marked with the deleted symbol to get the modified

version of the file. The size of the data remains unchanged until the last moment, making

deletions fully transparent to encoding and decoding operations.

5.3.3 Adding elements

Adding elements can be done in the same general way. However, unlike the previous two

changes, it changes the size and shape of the data. We avoided this for deletions by only
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removing the elements at the last moment, after data has successfully been recovered

through decoding. This is not possible for additions if we want to keep using the same

simple matrix operations. To make sure that data lines up with the original version, we

pad some of the matrices with the special deletion symbol. Thus, this operation also has

the requirement that the deletion symbol is not present in M or in the inserted elements.

Having previously shown the benefits of using a transformed data representation, we focus

solely on this.

Let us again showcase this operation through an example. Let M and M′ have the

following values:

M :=


− − −
+ − +

+ + −
+ − +

 M′ :=


− − (0) −
+ (+) − +

+ (0) + −
+ (0) − +

 (5.21)

Equation (5.21) shows how an element was added into the second position in the

second column of M′ followed by deletion symbols as padding up to a multiple of n. The

padding ensures that elements that are not in the affected columns are not shifted from

their original rows, reducing κtrans(len). To be able to calculate the unencoded difference

between the two versions of the file, M must also have d len
n
en deletion symbols inserted

as columns following the insertion. We denote the padded matrix with M+ and calculate

M̂ as previously.

M̂ = M′ −M+
0 0 0 0

0 − − 0

0 − + 0

0 + − 0

 =


− − (0) −
+ (+) − +

+ (0) + −
+ (0) − +

−

− − 0 −
+ − 0 +

+ + 0 −
+ − 0 +


(5.22)

Encoding the difference is performed in the same way and is not affected by the change

in the size of pac len, apart from the increase in the number of operations. The same V

can be used as n has not changed.

X̂ = V · M̂
0 − 0 0

0 + 0 0

0 0 − 0

0 0 + 0

 =


+ − + −
− + + 0

0 + − 0

+ − + 0

 ·


0 0 0 0

0 − − 0

0 − + 0

0 + − 0


(5.23)
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Before X̂ can be added to X to apply the update, it must also be padded in the same

way M was, as shown on Equation (5.24).

X′ = X+ + X̂
+ + 0 −
0 − 0 +

0 + − −
− + + 0

 =


+ − 0 −
0 + 0 +

0 + 0 −
− + 0 0

+


0 − 0 0

0 + 0 0

0 0 − 0

0 0 + 0


(5.24)

Based on Proposition 5.6, we can recover the updated file by decoding X′ as in the

case of the previous two operations. Finally, the deletion symbols introduced as padding

can be removed from the recovered M′.

A transformed representation of data benefits bursty additions as well. Compared

to the previous operations, the extra column adds a fixed n to the formula in Equation

(5.15).

E[κtransf(len)] =

(⌊
len

n

⌋
+ 1 +

(len mod n)− 1

n

)
n+ n (5.25)

Corollary 5.11. The expected overhead of representing a coded bursty insertion is at

most 3n−2
len

.

Proof.

E[Onat(len)] =
(b len

n
c+ 2 + (len mod n)−1

n
)n

len
− 1

E[Onat(len)] ≤
( len
n

+ 2 + n−2
n

)n

len
− 1

E[Onat(len)] ≤ (len+ 3n− 2)

len
− 1

E[Onat(len)] ≤ 3n− 2

len

(5.26)

Corollary 5.12. The expected overhead of representing a coded bursty insertion tends to

0 as the length of the insertion tends towards the length of the file and the length of a

packet tends towards infinity.

Proof. The length of the file is pac len · n.

lim
len→pac len·n
pac len→∞

3n− 2

len
=

3

pac len
− 2

pac len · n
= 0 (5.27)
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5.4 Proposed solution – implementation

So far we have included a formal description of methods for handling three types of

changes that may occur in files, complemented by examples. These translate relatively

well into practice with a few exceptions. This section presents an overview of how the

methods can be implemented, broken down into individual steps. This is followed in the

next section by a more detailed algorithmic presentation of the individual steps.

The first difference between the proposed mathematical model and the implementation

arises from the fact that files cannot always be divided into rows of equal length to form

a matrix, therefore most files will have an incomplete last row. In a purely mathematical

model, this can easily be overcome by padding the file with 0s, however this would be

wasteful in practice. Because of this, all algorithms that we present deal with non–

padded files. We keep the notation consistent and use non–bold letters (M,M ′, V,X,

etc.) to distinguish data structures that cannot be considered matrices but correspond to

the previously defined M,M′,V,X, etc..

The second difference also stems from the desire to make the operations more efficient.

We store and transmit the encoded differences using a compressed form. To make the

representation of changes as sparse as possible and thus enable effective compression, we

transform the way data is represented before operating on it. This requires some metadata

regarding the changes be transmitted and stored alongside the data.

Thirdly, signaling deletions requires a special data symbol that is not present in the

original data. Computers typically use fixed sized variables to represent any one of a fix

number of symbols. For example, one byte can be used to represent at most 256 different

symbols. Using an alternate representation of data that changes the number of repre-

sentable symbols would greatly reduce storage efficiency and may break the correctness of

mathematical operations. Thus, a workaround is needed that does not require specialized,

and thus unoptimized operations and has relatively low overhead.

Finally, maintaining compatibility between operations is important to enhance the

practical usability of our algorithms for version control as it is necessary to enable differ-

ent types of modifications to be aggregated. This intention, along with the interactions

between the different steps adds significant complexity.

5.4.1 Modifying elements

This operation involves modifying any number of individual elements in a location in the

original data and is shown on Figure 5.4. It does not involve deleting or adding new

elements, therefore the size and the structure of the data remains unchanged.
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Figure 5.4: Overview of modifying individual elements

First, both the original (M) and the changed (M ′) data is remapped to enable signaling

deletions‖. Both are then transformed to minimize the impact of bursty modifications on

the encoded difference (X̂). Following this, the difference between the two matrices is

calculated and encoded. This is then compressed and sent over the network to the storage

node. The storage node can store it as a separate version of the file (not shown on the

figure) or decompress it and apply it. If the storage node does not support computations

on the data, only the former is possible. In this case, the encoded difference and the

original encoded data are transferred to the client when the file is requested and the

application of the difference takes place here. This is followed in both cases by the

decoding of the modified data. Finally, the reverse of the transformation and mapping

processes are performed to recover the modified file (M ′).

5.4.2 Deleting elements

Deleting is the process of removing an arbitrary number of elements from an arbitrary

location in the original data. The basic idea is to signal deletions with a special value

(we use 0 without loss of generality) in M ′ and then perform the modification operation.

However, implementation-wise there are aspects that make it differ slightly from this. A

general overview is shown on Figure 5.5.

‖While this process is not strictly necessary for this operation, we have included it to maintain com-
patibility between the three types of changes.
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Figure 5.5: Overview of deleting elements

First, the original data is remapped and transformed. Based on this and a vector of

deleted indices del, the changed data M t′
r is calculated. This is then used to calculate

the difference. It is possible to calculate the difference without creating the deleted data

by only modifying the removed elements individually in M̂ t
r , as all other values are 0.

Encoding and applying the difference and decoding are identical to the previous operation.

Following this, the data is transformed back. A mask del (a vector of the indices of the

deleted elements) of the deleted elements is created. This is applied after unmapping

to actually remove the deleted elements. The elements could also be removed before

unmapping is performed. However, this would require a more complex unmapping process

that takes into account the amount of removed elements in each part of the remapped

data.

5.4.3 Adding elements

Adding data is the process of inserting an arbitrary number of elements into the original

data. It differs significantly from both previously presented operations as it increases the

size of the data. A general overview is shown on Figure 5.6. The basic idea is to insert

0 values where the new data is supposed to go into the original data in the form of new

columns before calculating the difference. The length of the inserted elements and the

index of the first element are stored as separate metadata. Most of the complexity of

the algorithms is given by the need to align data in M and M ′ in such a way, that the

inserted data only affects localized parts of M̂ and subsequently X̂.
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Figure 5.6: Overview of adding elements

The first step is to remap and transform the original data. Based on this, along with

the vector of inserted elements ins, and the index of the first element in M , the changed

data M t′
r is calculated. To calculate the difference, columns filled with 0 values must first

be inserted into the required place in the original data. Encoding, applying the differences

and decoding is identical to the other two operations. Before the difference can be applied,

columns filled with 0 values must first be inserted into the stored encoded data as well.

Finally, after the reverse of the transformation is applied to the changed data, the inserted

elements must temporarily be removed for unmapping to take place and then reinserted.

Similarly to the previous operation, the final three steps can be merged. This should

reduce computational complexity but makes them more difficult to implement.

5.5 Detailed description of algorithms

5.5.1 Creating, applying, encoding and decoding the difference

between two versions of a file

Since most erasure codes of practical interest work over finite fields of type GF(2n), we

focus our discussion on these. The difference between two vectors can be calculated by

performing XOR operations on their elements individually.

Likewise, applying the difference on the stored version of the file in order to update it

can also be done using Algorithm 5.1 with the stored encoded file and encoded change as

input.

The encoding of linear block codes is typically performed by multiplying the data

matrix and the encoding matrix : X̂ = M̂ · V . Decoding is performed after the difference

is applied and in general can be done by multiplying the encoded data with the inverse

of the encoding matrix: M ′ = X ′ · V −1.



Chapter 5. Updating erasure–coded data 134

Algorithm 5.1 Creating the difference between two vectors

1: procedure CALCULATE DIFF(original, changed)
2: for i < len(original) do
3: difference[i]← original[i] XOR changed[i]
4: end for
5: return difference
6: end procedure

5.5.2 Remapping data to enable signaling deletions

To be able to mark elements as deleted in M ′, we have arbitrarily chosen the element 0

to use as the signaling value. However, before it becomes suitable for this purpose, we

must ensure it is not present in either M or M ′. The remapping operation (shown on

Figure 5.7) solves this by removing all 0 values from a vector and substituting them with

other values that are not present in a certain part of the data. Let q denote the size of

the finite field in use by the encode and decode operations. The original vector is divided

into blocks, the maximum amount of data in each block is the amount of values that can

be represented by an element minus 1, i.e. q − 1. For example, if we work with bytes,

blocks are at most 28 − 1 = 255 long. This guarantees that there will be at least one

value between 0 and 255 in each block that is not present. This unused value becomes

the remapping element in the remapped data for that block and will store the value that

was used to substitute 0 values with.

Algorithm 5.2 Remapping a vector over GF(q)

1: procedure REMAP(original)
2: for each q − 1 long block of original do
3: unused sym← find a symbol between 0..q − 1, which /∈ block
4: result[block begin+ block ctr · q]← unused sym
5: for i← 0 to len(block) do
6: if block[i] = 0 then
7: result[block begin+ block ctr · q + i+ 1]← unused sym
8: else
9: result[block begin+ block ctr · q + i+ 1]←

10: original[block begin+ i]
11: end if
12: end for
13: block ctr ← block ctr + 1
14: end for
15: return result
16: end procedure

Unmapping is the reverse of the mapping operation. It takes a vector of elements and

substitutes the 0 values back into it based on the signaling elements.



Chapter 5. Updating erasure–coded data 135

Algorithm 5.3 Unmapping a vector over GF(q)

1: procedure UNMAP(remapped)
2: for each q long block of remapped do
3: remapped symbol← remapped[block begin] . retrieve the remapped symbol
4: for i← 1 to len(block) do . unmap the remapped values to 0
5: if block[i] = remapped symbol then
6: result[block begin+ i− block ctr − 1]← 0
7: else
8: result[block begin+ i− block ctr − 1]←
9: remapped[block begin+ i]

10: end if
11: end for
12: block ctr ← block ctr + 1
13: end for
14: return result
15: end procedure

M =
(

m1 m2 · · · 0 · · · mq−1 | · · ·
)

↓
Mr =

(
α m1 m2 · · · α · · · mq−1 | · · ·

)
Figure 5.7: Remapping the data to replace 0 values with unused values over GF(q).

M ′r =
(

α m′1 m′2 · · · α · · · α · · · m′q−1 | · · ·
)

↓

M ′ =
(

m′1 m′2 · · · 0 · · · 0 · · · m′q−1 | · · ·
)

Figure 5.8: Unmapping the data to reinsert 0 values over GF(q).

The remapping element introduces a small overhead that depends on the size of the

finite field in use.

Definition 5.13 (Remapping overhead). Oremap is the ratio of the additional elements

inserted to signal deletions to the length of the original file, defined as Oremap =⌊
file len

q

⌋
+

(
file len

q
−
⌊

file len
q

⌋)
file len

.

All blocks apart from the last one have 1 remapping element for q-1 data elements

(the last block will have fewer data elements if (q − 1) - dim(M)). For larger files, the

overhead is approximately 1
q
, as the impact of the last block diminishes:

lim
file len→∞

OPremap =
1

q
(5.28)
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Thus, for moderate–sized fields such as GF(28), the overhead is almost negligible. On

the other hand, it is overwhelming for small fields such as GF(2), making our proposed

solution unpractical for these cases.

5.5.3 Transforming the data

All of the three proposed operations can be performed without this step, however we have

found that most modifications in text files generally occur grouped together in chunks. To

use this property for creating a more efficient solution, we propose transforming the order

of elements in a vector to make them align in a particular way. The goal is to be able

to represent changes that are grouped together more efficiently after applying an erasure

code. Each file is represented as a potentially incomplete 2D array, where the number

of rows is the number of coded packets and the number of columns is the size of each

packet. It is potentially incomplete as the last row might be shorter than others. The

transformation is identical in concept to transposing a square matrix, but slightly more

complicated due to the data matrix generally not being a square matrix and the potential

of an incomplete last row. It places elements that were close to each other in the original

array in the same column or in adjacent columns in the transformed array. This ensures

that changes made to chunks of the original data (M ′) only affect the encoded difference

(X̂) in a localized manner. The operation is illustrated on Figure 5.9 and defined in detail

as Algorithm 5.4. The reverse operation can be performed using Algorithm 5.5.

Algorithm 5.4 Transforming a 2D array

1: procedure TRANSFORM(original, pac len)
2: current element← 0 . the index of the data to be copied
3: lrl← len(original) mod pac len . length of the last row
4: for i← 0 to len(original) do
5: result[i]← original[current element]
6: if (i+ 1) mod pac len > lrl then
7: offset← 1
8: else
9: offset← 0

10: end if
11: current element← current element+ offset
12: if (i+ 1) mod pac len = 0 then
13: current element← (i+ 1)/pac len
14: end if
15: end for
16: return transformed
17: end procedure
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Mr =


m1 m2 · · · · · · ms

ms+1 ms+2 · · · · · · m2s

...
...

...
. . .

...
m(n−2)·s+1 · · · · · · · · · m(n−1)·s

ml−lrl · · · ml

 −−→ M t
r =



m1 mn+1 · · · · · · ml−n+1

m2 mn+2 · · · · · ·
...

...
...

...
. . .

...
mn−1 · · · · · · · · · ml

mn · · · mn·lrl


︸ ︷︷ ︸

last row length (lrl)

︸ ︷︷ ︸
lrl

l − size of the file, s− pac len

Figure 5.9: Transforming the way data is represented to increase the effectiveness of
compression.

Algorithm 5.5 Transforming back a 2D array

1: procedure TRANSFORM−1(transformed, pac len)
2: current element← 0
3: n← ceil(len(transformed)/pac len)
4: last row length← len(transformed) mod pac len
5: for i← 0 to len(original) do
6: result[current element]← transformed[i]
7: if (i+ 1) mod pac len > lastRowLength then
8: offset← 1
9: else

10: offset← 0
11: end if
12: current element← current element+ n− offset
13: if current element ≥ len(transformed) then
14: current element← (i+ 1)/pac len
15: end if
16: end for
17: return transformed
18: end procedure

5.5.4 Compressing the difference

Important to the effectiveness of our proposed solution is the creation of highly–

compressible encoded differences. Compression should be applied after the difference

is calculated, just before it is sent over the network to the storage node. Decompression

should always proceed applying the difference. This can be performed either on the stor-

age node or on the client that retrieves the file. In either case, these rules ensure that the

minimal amount of data is transferred over the network and stored.

Compression methods make up an entire field of information theory and certain tech-

niques work better for certain types of data. However, generally, sparse data can be

stored using significantly fewer symbols than dense data. Thus, our techniques aim to

increase the number of 0s in the encoded difference. To evaluate how well they performed

in this regard, we didn’t actually use compression in our experiments. Instead, we sent
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and stored only the elements in the changed columns, along with the index of the first

affected column. The overhead of this metadata can be avoided for modifications and

deletions, but not for adding elements due to the positioning of the padding.

5.5.5 Algorithms used for deleting elements

Algorithm 5.6 creates the array that stores the changed information to support the delete

operation based on the list of deleted indices as shown on Figure 5.10. It requires that the

input (M) array be previously remapped to ensure that it does not contain the 0 value.

M =
(
m1 m2 · · · md1 · · · md2 · · ·

)
↓

M ′ =
(
m′1 m′2 · · · 0 · · · 0 · · ·

)
m′i - elements marked for deletion

Figure 5.10: Creating the modified version of that has had some elements removed.

Algorithm 5.6 Create deleted data

1: procedure CREATE DEL. DATA(original,del)
2: for i← 0 to len(original) do
3: if adjust index(i) ∈ del then
4: result[i]← 0
5: else
6: result[i]← original[i]
7: end if
8: end for
9: return result

10: end procedure

Algorithm 5.7 returns the indices of all 0 values in an array.

Algorithm 5.8 removes values from an array based on a list of deleted indices, as shown

on Figure 5.11.

M̃ ′ =
(
m′1 · · · m′a 0 m′a+1 · · · 0 · · · m′n

)
↓

M ′ =
(
m′1 · · · m′a m′a+1 · · · 0 · · · m′n

)
Figure 5.11: Removing elements based on a list of deleted indices.
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Algorithm 5.7 Create deleted mask

1: procedure CREATE DEL. MASK(original)
2: delete count← 0
3: for i← 0 to len(original) do
4: if original[i] = 0 then
5: result[delete count]← i . save the deleted index
6: delete count← delete count+ 1
7: end if
8: end for
9: return result

10: end procedure

Algorithm 5.8 Apply deleted mask

1: procedure APPLY MASK(original,del)
2: delete count← 0
3: for i← 0 to len(original) do
4: if adjust index(i) /∈ del then
5: result[i− delete count]← original[i] . copy non-deleted items
6: delete count← delete count+ 1
7: end if
8: end for
9: return result

10: end procedure

5.5.6 Algorithms used for adding elements

Algorithm 5.9 adds padding in the form of 0 values to the array that will be inserted to

make its length a multiple of n. This ensures that the data stays aligned after the insert

operation. The padded array is then copied into the array that holds the original data,

as presented on Figure 5.12.

M t
r =

(
· · ·

)
Inserts =

(
i1 · · · ilen

)
︸ ︷︷ ︸

Inserts+ =
(
i1 · · · ilen 0 · · · 0

)
︸ ︷︷ ︸

M t′

r =
(
· · · i1 · · · i2 · · · ilen · · · 0 · · · 0 · · ·

)

Figure 5.12: Creating the modified version of the data that includes newly inserted ele-
ments.

Algorithm 5.10 appends columns into the original array as shown on Figure 5.13. It

also copies elements that are to be overwritten into the last newly inserted column.
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Algorithm 5.9 Create inserted data

1: procedure CREATE INS. DATA(original, ins, ind, n)
2: for i← len(ins) to len(ins) + n− (len(ins) mod n) do
3: ins[i]← 0 . pad the ins array with 0s to make
4: end for . its length a multiple of n
5: for i← 0 to ind do
6: result[adjust idx(i)]← original[adjust idx(i)]
7: end for
8: for i← ind to len(ins) do . Insert content
9: result[adjust idx(i)]← ins[i]

10: end for
11: for i← ind+ len(ins) to len(original) + len(ins) do
12: result[adjust idx(i)]← original[adjust idx(i+ len(ins))]
13: end for
14: return result
15: end procedure

Algorithm 5.10 Create inserted columns

1: procedure INSERT COLUMNS(original, len(ins), ind, n)

2: Calculate number of columns to insert

3: for i← 0 to ind do

4: result[adjust index(i)]← original[adjust index(i)]

5: end for

6: for i← 0 to columns to insert · n do

7: result[adjust index(ind+ i)]← 0

8: end for

9: overwritten length← n− (ind mod n)

10: for i← 0 to overwritten length do

11: result[adjust index(ind+ columns to insert · n+ i)]

12: ← original[adjust index(ind+ i+ overwritten length)]

13: end for

14: return result

15: end procedure

Algorithm 5.11 temporarily removes elements from an array and saves the removed

elements in a separate array. As shown on Figure 5.14, it does not copy 0 values which

were added as padding.
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Mt
r =



m1 · · · a f · · · ml−n+1

... b
...

...

... c
...

...
...

...
...

...
... d · · · · · · ml

mn · · · e mn·lrl


−→Mt+

r =



m1 · · · a · · · 0 f · · · ml−n+1

... 0 b
...

...
... 0 c

...
...

... 0
...

...
...

... 0 d · · · · · · ml

mn · · · 0 · · · e mn·lrl


︸ ︷︷ ︸

lrl
︸ ︷︷ ︸

columns to insert

b - index of insertion (ind), l − size of the file

Figure 5.13: Appending the original version of the data to include new columns. Shows
the case in which the number of the column where the insertion starts is smaller than the
last row’s length.

Algorithm 5.11 Remove inserted elements

1: procedure REMOVE INS. ELEMENTS(original, ind, length, n)

2: j ← 0

3: padding ← length mod n

4: for i← 0 to len(original) do

5: if i ≥ ind and i < ind+ length+ padding then

6: if < ind+ length then

7: inserted[j]← original[i] . inserted data

8: end if

9: j ← j + 1

10: else

11: result[i− j]← original[i] . original data

12: end if

13: end for

14: return result, inserted

15: end procedure

M ′r =
(
m′1

· · · m′a | i1 · · · ilen 0 · · · 0 | m′b
· · · m′l

)
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

M
′−
r =

(
m′1

· · · m′a m′b
· · · m′n

)
Inserts =

(
i1 · · · ilen

)

Figure 5.14: Temporarily removing inserted elements.
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Finally, Algorithm 5.12 inserts elements into an array. It is different from Algorithm

5.9 as it works with unmapped, untransformed data.

Algorithm 5.12 Add inserted elements

1: procedure ADD INS. ELEMENTS(original, ind, ins)
2: for i← 0 to ind do
3: result[i]← original[i]
4: end for
5: for i← ind to ind+ len(ins) do
6: result[i]← ins[i− ind]
7: end for
8: for i← ind+ len(ins) to len(original) + len(ins) do
9: result[i]← original[i− len(ins)]

10: end for
11: return result, ins
12: end procedure

5.6 Experiments on a version control system

5.6.1 Measuring storage/transmission overhead

We evaluated the effectiveness of our proposed solution using data from the publicly

available Git repository [Steinwurf ApS, 2014] of the Storage Benchmarks project. The

project has the goal of comparing the coding throughput of some of the most popular

publicly available erasure correcting libraries. We chose to use a Git repository to work

with data from a real–world scenario. As Git stores all individual modifications of files

line by line, it is possible to recreate any version from the original to the most recent. The

project contains 261 files out of which 29 undergo significant modifications. We restricted

our evaluation to these, with a total of 1749 modified lines. The rest mostly had a single

version.

We examined commits on the master branch that occurred between February 12th

and December 1st 2014 using the following command:

$ git log -p --reverse --full-diff

We parsed the output and saved each modified line along with its offset in the file.

We considered each modification as a separate version of the file. Git stores differences

on a line by line basis: when data is modified, the containing line is deleted and re–added

in its modified form. This is potentially wasteful if only a few elements are modified

and something that our proposed solution can avoid by only storing individual modified

elements instead of lines. We did not include this optimization to give a fairer comparison
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Figure 5.15: Storage and network traffic overhead of our proposed solution compared to
a non–encoded representation.

to Git’s unencoded way of storing differences between versions. Thus, we only used two of

our supported operations: adding and deleting elements. Besides the actual modifications,

we also created a metadata file roughly 5 kB in size that stored the type of operation, the

offset of the modification in the previous version and the length of the modification. We

measured the size of modifications, as output by the git log command instead of the files

created by Git, since it stores a significant amount of metadata for each change including

date, modifying user and file permissions in the same files.

We compared the amount of data necessary to represent the original files and the

modifications using three different values for the number of encoded n: 4, 8 and 16.

We restricted ourselves to n = k to have a more direct comparison with non–encoded

solutions. For systems that include redundancy, results scale according to the rate of

the code as expected. All results are aggregated across the entire project. To store all

versions of the files, AU = 79.887 MB needed to be transmitted across the network in one

direction and stored. This is how much a current typical state of the art storage system

needs to transfer to update encoded data. Next, we calculated the differences and encoded

them using RLNC over GF(28). This required AC4 = 80.290 MB, AC8 = 80.670 MB and

AC16 = 82.087 MB for values of n of 4, 8 and 16 respectively (including the encoding

matrix V ). However, thanks to the transformation step, most of the encoded data was very

sparse as the modifications aligned and only affected a few columns of X ′ and consequently

X̂. By removing the coefficients from the data (which are already available on the storage

nodes along with the original version of the file) as well as the non–modified portions
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containing only 0 values, the storage cost is reduced by 5 orders of magnitude to AC4′ =

271.6 kB, AC8′ = 291.2 kB and AC16′ = 330.9 kB. The effectiveness of our solution

results less from choosing the appropriate compression algorithm and more from creating a

highly compressible representation of differences by aligning data. Therefore, conventional

compression algorithms that do not have knowledge of the metadata should also perform

well.

We compared our solution to systems which store data in a non–encoded fashion and

found the efficiency of our proposed solution is only slightly worse. Storing only the dif-

ference in a non–encoded form using the line by line difference approach employed by Git

requires AU′ = 202.7 kB. Figure 5.15 compares this value to our solution using several

values for the number of encoded packets n. The extra cost in storage and network traffic

is relatively small compared to the benefits of being able to erasure–code modifications in

a file. Smaller values of n achieve a slightly smaller compressed representation. This can

be explained by looking at Equations (5.15) and (5.25): the penalty in the overhead asso-

ciated with changes overflowing into subsequent columns of X̂ decreases with decreasing

values for the multiplication factor n.

5.6.2 Some practical considerations

Our solution also has a computational overhead compared to state of the art systems that

do not encode differences. It is a natural consequence of using erasure codes. Fortunately,

calculating and applying encoded and unencoded differences, remapping, unmapping,

transformations and reverse transformations are all linear operations in the size of the

data. The same is true for algorithms specific to deleting and adding elements. We chose

not to go into greater detail as we do not claim that our solution is optimal in terms of

minimizing the number of operation. We have broken down the three main operations

into as many small steps as we could to increase clarity. When implementing a system

with our proposed solution, we suggest looking at merging some of these steps to reduce

computational complexity.

A large part of the computational overhead can be attributed to encoding and decoding

operations as they are both O(n3). However, our solution creates very sparse differences,

therefore the practical number of operations for encoding the difference should be much

lower than for the original encoding.

There is a trade–off therefore between the storage and network overhead on one side,

and the computational overhead on the other. Larger values of n decrease storage and

network overhead and increase the flexibility of the data distribution in some cases. On the

other hand, they increase the number of operations that are performed during encoding

and decoding. Real–world performance is dependent on a great deal of things besides the
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number of operations and significant advances have been made by erasure coding libraries

in recent years [Steven Max Paterson, 2014].

Finally, when our technique is applied to a version control system, a large number of

versions and associated metadata will be created over time. If this causes issues, older

versions can be archived by merging them together. This reduces the amount of metadata

stored and may reduce overall storage use as well if the merged versions modify the same

parts of a file.

5.7 Conclusion

We have presented a detailed mechanism to support updating files when using erasure

correcting codes for storage applications, including any random linear network coded

system. These ideas can be applied to standard data center systems as well as novel

cloud storage and peer–to–peer distributed storage systems that are keen on supporting

various versions of the same file without high storage costs or for efficient updates without

the inherent costs of uploading full files to all storage nodes. It is, to our knowledge, the

first solution that tackles this problem and the first to be designed around the idea of

being transparent to the erasure code used. We have shown through theoretical results as

well as real–world measurements that the transmission and storage overhead it introduces

is relatively low for bursty changes.

Significant challenges still lie ahead in terms of making the encoded representation of

non–bursty changes compressible as well as finding compression algorithms that work well

for these cases. Furthermore, while our solution supports signaling deletions over small

finite fields as well, it is inefficient for these cases.

Nevertheless, we hope the work presented in this chapter is a significant step towards

making erasure coding systems better suited to storing mutable data and the creation of

commercially available erasure–coded version control systems.
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Conclusions and future perspectives

We have shown that many of the drawbacks associated with erasure coding in general

can be alleviated by using network coding judiciously. While we tried to identify the key

challenges and suggest solutions, a lot remains to be done. It is difficult to know what

new challenges the future holds for erasure–coded storage. Nevertheless, we would like

to close this dissertation with a few ideas on how our contributions might be applied in

future systems. Some of these use cases are already observable today, but most might

only become relevant in 5 to 10 years.

In Chapter 2 we proposed a very generic solution to making erasure codes network–

aware. We believe the technique addresses a very current problem and therefore carries

potential benefits for today’s systems. Unfortunately, it requires a relatively deep knowl-

edge of network bottlenecks and traffic schemes. To make it more accessible, the creation

of a mechanism that maintains costs automatically based on a predefined goal would be

beneficial. It is hard to foresee how data center networks will evolve in coming years,

but they will most likely remain dynamic, ever–changing entities and erasure codes that

possess these same properties will no doubt remain well suited for this scenario.

Chapter 3 dealt with aggregated cloud storage systems. Several commercial appli-

cations follow this basic idea, yet few if any use the techniques we proposed. Thus, our

research could form the basis of a network–coded commercial product that offers increased

reliability, retrieval performance and security. Several open questions remain related to

our adaptive approach, mainly the rate and measure of interventions. A solution based

on constructs from control theory would be ideal for this purpose. Furthermore, an infor-

mation theoretical analysis of how much random linear network coding adds to security in

conjunction with conventional methods would help convince users to move more of their

data to the cloud.

The balance of storage space, network transfers and computing resources greatly influ-

ences both the need for and the feasibility of using erasure coding. It is hard to predict how
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it will evolve with time and will likely differ across scenarios. At least for mobile devices,

the limited spectrum and the amount of effort placed in improving battery technology

makes it likely that network costs will continue to outweigh computing costs. Thus, our

results from Chapter 4 can be used in a variety of future applications. As cars become

smarter and start communicating with each other and the surrounding infrastructure, it

makes sense to keep data that has local relevance, such as current road conditions on-

board or in small microservers close to its physical origin. Thus, it can be retrieved and

updated with much lower latency and makes the system more robust by not having to

rely on a failure–prone central service or continuous network connectivity to a cell tower.

This scenario also carries with it one of the biggest obstacles faced by fog computing,

the continuous variation in the nodes of the system. Many expect swarms of drones or

other robots to be tasked with several tasks such as mapping terrain, observing natural

phenomena, solving sanitation issues and so forth. Like self–driving cars, much of the

data has local relevance and is shared by the nodes.

Our contributions from Chapter 5 are perhaps our most generic and widely applicable.

However, practical systems that implement the algorithms should be fairly unbalanced

in the sense that computing resources must be readily available while network traffic and

storage space should be at a premium. We showcased our ideas through a version control

system and hope that they can be used for other purposes as well. The development of

compression techniques that work for less bursty modifications and engineering techniques

that cache and merge updates would help in this regard.
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