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Abstract

Interest in nonlinear system identification has grown significantly in re-

cent years. It is much more difficult to develop general results than the

concern for linear models since the nonlinear model structures are often

much more complicated. As a consequence, the thesis only considers two

different kinds of models, one is a type of state space model which is de-

scribed by It ˆo Stochastic Differential Equations (ISDE), the other one isa

nonlinear First Order Plus Dead Time (FOPDT) model. This thesis aims

to investigate these two different kinds of nonlinear models and to propose

the corresponding methods to deal with their system identifications.

Firstly, the system described by an ISDE model is considered. Extended

from conventional stochastic systems, where the random part of the system

is often described as a type of normal distribution signal added to the de-

terministic differential equation, the ISDE model generally consists of not

only a structured deterministic part called drift term, butalso a structured

random part called diffusion term. The model can describe the system in

which the random features are correlated with system states(inputs, out-

puts) and this relationship can be explicitly described by the model itself.

The considered nonlinearity of this model can be expressed by the non-

linearity of the system functions. The parameter identification based on a

state estimation such as an Extended Kalman Filter (EKF) andUnscented

Kalman Filter (UKF), is investigated for this type of model in the thesis.

Moreover, a new method by combining Maximum Likelihood (ML)tech-

nique plus UKF is proposed and its convergence property withregard to

the consistency and normality is also investigated. The developed meth-

ods and algorithms are tested and analyzed for a number of numerical

cases and then for a space robot system.



Secondly, the system considered is described by a nonlinearFOPDT model.

This type of FOPDT model is an extension of the traditional FOPDT

model which pre-assumes all the model parameters are constants. The

nonlinearity that is defined in the model is reflected in its two categories

of varying parameters, namely depending on time variable orsome other

variables, such as input signal etc. We refer to this type of model as a

Time Varying FOPDT (TV-FOPDT) model. At first, the identifiability

of the corresponding model is theoretically investigated.Then, the first

concern of parameter identification of the considered systems is under as-

sumption that the parameters of TV-FOPDT model are as time dependent.

Afterwards, the input dependent parameter identification approach is con-

sidered. For these two categories of FOPDT models, the corresponding

methods to make the parameters identification are proposed accordingly.

Moreover, the proposed methods are further extended to makeparameter

identification of a kind of multiple inputs model. The proposed methods

and algorithms are tested and analyzed for a number of numerical cases

and finally applied to study the superheat dynamic in a Danfoss refrigera-

tion system.

The proposed models and methods are further extended for thepurpose

of Fault Detection and Diagnosis (FDD). In a system where it exists pos-

sible parametric fault, if some fault happens, one or several parameters

related to fault may change their values. Then the FDD procedure can be

performed by identifying these fault related parameters. Afterwards, the

decision whether the fault happened or how large the fault iscan be made

by comparison and analysis based on the estimated values.



Resume

Interessen for ulineær system-identifikation er steget betydeligt i de senere

år. Det er imidlertid en hel del vanskeligere at nå frem tilgenerelle resul-

tater for ulineære modeller, end for lineære modeller.Årsagen er, at de

ulineære model-strukturer ofte er væsentligt mere komplicerede. Følgeligt

beskæftiger denne afhandling sig kun med to forskellige typer model, den

ene type er en tilstands-rum-model (state space model), beskrevet ved Itô

Stokastiske Differentialligninger (ISDE), den anden typeer en ulineær

Første Ordens Plus Død-Tid (FOPDT) model. Denne afhandlingsigter

mod at undersøge disse to forskellige slags ulineære modeller, samt at

foreslå de tilsvarende metoder til system identifikation.

Først gennemgås den model, der knytter sig ISDE beskrivelsen. Modellen

er opstået ud fra konventionelle stokastiske systemer, hvor den stokastisk

varierende del af systemet ofte beskrives som en slags normal-fordelt sig-

nal overlejret signalet vedr. den deterministiske differentialligning. ISDE

modellen består derfor ikke kun af en struktureret deterministisk del kaldet

drifts-leddet, men også af en struktureret stokastisk varierende del kaldet

diffusions-leddet. Modellen kan beskrive et system, hvor de stokastiske

delsystemer er korrelerede med system tilstandene (input,output), og hvor

denne relation kan beskrives eksplicit af selve modellen. Den undersøgte

ulinearitet i denne model kan udtrykkes ved ulineariteten isystem funk-

tionerne. For modellerne i nærværende afhandling foretages parameter-

identifikation udfra tilstands estimering, f.eks ved Extended Kalman Fil-

trering (EKF), eller ved Unscented Kalman Filtrering (UKF). Yderligere

foreslås en ny fremgangsmåde med benyttelse af Maximum Likelihood

(ML) (mest sandsynlige) teknik plus UKF, og denne metodes konvergens

egenskaber undersøges m.h.t. konsistens og normalitet. Deudviklede



metoder og algoritmer testes og analyseres i et antal regneeksempler samt

i et system med en robot.

Derpå gennemgås det andet betragtede system, beskrevet ved en ulineær

FOPDT model. Denne type FOPDT model er en udvidelse af den tradi-

tionelle FOPDT model, som forudsætter, at alle modelparametre er kon-

stante. Det, som defineres som ulinearitet i denne betragtede model, kan

henføres til to forskellige kategorier af varierende parametre, tids-varierende,

eller varierende med andre variable, såsom input. Modellen kaldes Tids-

Varierende FOPDT, dvs en TV-FOPDT model. Herefter tages først un-

dersøges modellens identificerbarhed. Første skridt hen imod parameter-

identifikation under antagelse af, at FOPDT modellens parametre er tid-

safhængige. Derpå etableres den foreslåede identifikation af de med input

varierende parametre. For disse to kategorier af FOPDT modeller foreslås

de tilsvarende metoder til parameter-identifikation. Desuden udvides de

foreslåede metoder til at muliggøre parameter-identifikation for en slags

multi-input model. De foreslåede metoder og algoritmer testes og anal-

yseres i en række numeriske tilfælde. Endelig bruges de til nærmere at

undersøge dynamikken omkring overophedning i et Danfoss kølesystem.

De foreslåede modeller og metoder er blevet yderligere udvidet for også

at dække Fejl Detektering og Diagnose (FDD). Hvis et system rummer

mulighed for parametriske fejl, og der sker en fejl, da kan fejlen evt bero

på, at en eller flere parametre har skiftet værdi. Her kan FDDproceduren

gennemføres ved at identificere disse fejl-relaterede parametre. Derpå kan

man afgøre, hvorvidt fejlen indtraf, og hvor stor den var, ved at sammen-

ligne og analysere ud fra de estimerede værdier.
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Chapter 1

Introduction

Interest in system identification for nonlinear systems hasgrown significantly in recent

years. Its study demonstrates importance in process prediction, system re-configuration,

fault tolerant control system and so on.

Obviously, for the nonlinear systems, different systems have their different nonlin-

earities. Unlike linear systems, it is difficult to find out general results for nonlinear

system identification. Hence, it is required to develop different approaches to make

nonlinear system identification for varies of nonlinear models. Among lots of model

categories, State Space (SS) model and Input/Output (IO) model are the most popular

ones. This thesis focuses on the two specific nonlinear models of these two kinds:

Itô Stochastic Differential Equations (ISDE) based SS model and several kinds of the

extensions to First Order Plus Dead Time (FOPDT) model. It proposes two different

methods to make the system identification of these two corresponding models. The

proposed methods are referred to as Unscented Kalman Filter(UKF) plus Maximum

Likelihood (ML) method and Mixed Integer Programming (MIP)based method in the

following. Furthermore, some convergency properties and identifiability of the pro-

posed methods are investigated. Afterwards, in order to show their advantages, these

new methods are compared with some existing standard systemidentification meth-

ods and illustrated by some numerical examples. Finally, the proposed methods are

applied to several real systems and showed their applications for the purpose of Fault

Detection and Diagnosis (FDD).
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1.1 Background and Motivation

1.1 Background and Motivation

Lots of engineering applications call for an accurate description of the behavior of the

system under consideration, especially in the field of automatic control applications.

Dynamic models that describe the system of interest can be constructed by using the

first principles of physics, chemistry, biology, economy and so on. However, some-

times this kind of modeling procedure can be difficult or timeconsuming, because

they require really much detailed specific knowledge and information, which may not

be easily obtained. Nevertheless the resulting models are often very complex. In this

sense, it is labor-intensive to develop the models in such a way, and hence expensive.

Moreover, for a large amount of poorly understood systems, the derivation of a model

setting up from the first principles is even impossible. Since the first-principle mod-

els are often complex, simulation of them may take considerable time on computers,

thereby it can be challenging in the real-time applications. Moreover, Ljung proved

that these constructed models are not always accurate (100). In the one hand, it is

difficult to determine which elements are relevant, which effects must be included in

the model, and which can be neglected. In the other hand, certain quantities needed

to build the model are unknown, and have to be estimated by performing dedicated

experiments. The resulting estimates often differ from thereal quantities, and hence

some model mismatch can occur. An alternative way of building models is to use sys-

tem identification. In system identification, the aim is to estimate the dynamic model

directly from observed input and output data. First principles are not directly used to

model the system, but the knowledge about the system still plays an important role.

Such knowledge is of great importance for setting up identification experiments to

generate the required measurements, for deciding on the type of models to be used,

and for determining the quality and validity of the estimated models. System iden-

tification often yields good models that are suitable for thefast on-line applications

and for model-based predictive control, which has been found to be widely used in

many engineering areas. Compared with the development of models set up based on

first principles, it is not so labor-intensive. Moreover, atpresent, some steps of the

identification procedure can be automated.

Nowadays, with the increasing demands for higher system performance, product

quality and much more cost effective, the complexity and theautomation degree of
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1.1 Background and Motivation

technical processes are continuously growing. This development calls for accuracy of

the estimation in system and knowledge on system running. One of the most critical

issues surrounding the design of automatic systems is system identification (6).

Parameter identification is one of the most important areas in the wide fields of

system identification which is the procedure of using observations from a dynamic

system to develop mathematical models that adequately represent the system charac-

teristics. System identification including parameter identification generally proceeds

as follows (100): Firstly, a certain type of model need to be selected that isconsidered

to be suitable for the application at hand. Secondly, a special input signal is designed

or adopted such that the respondence or output can capture the behavior of the sys-

tem to be modeled. Then an identification experiment is carried out in which input

and output signals are measured and collected. An identification method is selected to

estimate the parameters or some functions in the model from the collected input and

output measurements. Finally, the validity of the obtainedmodel is evaluated.

The first step, also one important step in system identification, is the determination

of the model type which is used to be considered. The decisionis based on knowledge

and information of the system under consideration, and the main properties of the can-

didate model. Certain types of models can be used to approximate the input-output

behavior of a smooth nonlinear dynamical system in a good accuracy. These mod-

els have the so-called universal approximation capability. An example of a universal

estimator is the neural network in (57). The drawback of this kind of model is that

is often complicated. Hence, some other model structures have received much more

attention over the years. At first, the Linear Time Invariant(LTI) model is the most

popular one. It has been widely used in many engineering applications successfully,

and a mature theory exists for system identification and automatic control. The au-

thoritative guide for identification in linear system is thebook written by Ljung (100).

Although linear models are popular and widely used for several reasons, they still have

their own limitations. In the real world, most of systems show nonlinear behavior. A

linear model can only describe a limiting range of systems. With the increasing of the

demanding in the world, where the performance and accurate descriptions of systems

are needed, linear models are sometimes not satisfactory enough to describe the real

systems anymore. Therefore, interest in nonlinear system models and nonlinear system

identification methods has grown rapidly (96).

3



1.1 Background and Motivation

In the procedure of system identification including nonlinear system identification,

the first step is model selection. For nonlinear system models, there are quite a lot of

different nonlinearities and the model functions may be nottime-independent during

the system running, it is difficult to proposed general results for different nonlinear

models. Normally, it is only possible to propose certain methods for specific models. In

this sense, from the modeling point of view, two mathematical model representations,

state-space and direct input-output relationship, are widely used to described the real

systems. This motivates that the models discussed, including parameter identification,

are within these two categories.

State-space systems are more attractive for dealing with multi-variable inputs and

outputs. Just like what is stated by Rivals and Personnaz (137), state-space systems are

likely to require fewer parameters, especially for multi-variable systems. Among dif-

ferent kinds of SS models, such as Ordinary Differential Equations (ODEs) model,

Stochastic Differential Equations (SDE), discrete time model and so on, the SDE

model can describe lots of real systems. It can describe system’s dynamics, system

noise and system disturbance. In the real world, all the measurements are often dis-

crete time models. In this sense, the SS model considered in the thesis is SDE model

with discrete time measurement, in which the nonlinearity of the system is reflected in

the nonlinearity of system functions.

For the linear IO models, one popular representative model is the transfer function

model, thereby First Order (FO) model was in the consideration at first. However,

observed from the real industrial systems, most IO models need to take the time delay

into consideration. Bearing it in the mind, the FO model is considered with time

delay variable, which is generally called as First Order Plus Dead Time (FOPDT)

model. Regarding the nonlinearity of this FOPDT model, another kind of nonlinearity

is applied, i.e., the nonlinearity is generated by the property of time varying parameters

in the systems.

For the above reasons, the thesis will consider the following two specific models:

• Nonlinear SDE model with discrete measurement

• Time Varying FOPDT (TV-FOPDT) model.

Different methods has already been proposed to handle with the system identifica-

tion of these two types of models.
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Nonlinear SDE model with discrete measurement:

There are some different methods to make the identification of the parameters for non-

linear SDE model with discrete measurement.

Prediction Error Method (PEM) Prediction Error Method (101) is one of the most

popular methods to make the system identification, which is considered as a kind

of generalized framework for it can be applied to quite arbitrary model param-

eterizations. It estimates model parameters by minimizingthe optimally deter-

mined one step ahead output prediction error. The existing identification meth-

ods, such as Least Square Method (LSM), Ordinary Equation Method (OEM)

and so on, are special cases of PEM that are proposed for different model types.

The PEM for the model with Gaussian distribution is asymptotic unbiased and

efficient (101). Furthermore, the use of the PEM enables an estimate of the

associated uncertainties of the estimated model parameters. But it requires an

explicit parameterization of the model and searches for theparameters that gives

the best output prediction fit may be laborious.

Subspace Identification Method (SIM) Subspace Identification Method is first to be

used for Linear Time Invariant (LTI) systems and shows good performance. Its

main idea is to make the computation of the estimate of state vectors at first,

then extend observable matrix from the given input-output data. However, in

many cases, it provides better performance than PEM in term to the precision.

Since SIM does not require a particular parameterization inthe system, it is nu-

merically attractive and suitable for multi-variable systems. In recent years sub-

space identification methods have been developed for certain nonlinear systems:

Wiener systems (Chou and Verhaegen (21)), Hammerstein systems (Verhaegen

and Westwick (163)) and so on. Although SIM is a fast, robust and convenient

approach, it still has an problem with precision and few applications for closed-

loop identification.

Statistical Method (SM) Statistical Method is to set up a statistical function basedon

the measurement and its distribution. It includes Maximum Likelihood Estima-

tion, Least Mean Square Estimation and other different statistical methods (107).

Since the estimation is only based on the measurement and does not consider the
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structure of the state, sometimes its performance regarding to the accuracy is not

so good as expected.

Filter Based Method (FBM) Filter Based Method has became popular since the 1960s

(117). FBM, in general, can be classified into two different categories. One cat-

egory is referred to as direct approaches. It takes both the state variable and the

unknown parameter(s) into an augmented system state. Then,the correspond-

ing filter technique, such as KF, Extended Kalman Filter (EKF) or some other

appropriate filter is used to estimate the new state. Thereby, the unknown pa-

rameter is identified. The main advantages of this kind of FBMis that it can be

easily performed, so it is widely applied in the real world. However, this method

only applies part of information in the system, that is the mean and variance

of the state. But in most Gaussian noise system, the distribution of the state

is known beforehand. In order to use it, some other statistical methods can be

added to make the system identification combined with filter technique, such as

Maximum Likelihood, Least Square and so on. It is another category of FBM.

Regarding the nonlinear SS models in the thesis, it is one type of SDE models with

Gaussian noise. The FBM could be used to make its parameter identification. But con-

sidering the distribution given in the system, the thesis will focus on the Kalman Filter

plus Maximum Likelihood method and investigate its convergence property. More-

over, in order to apply the method to the FDD procedure, this method is extended to

an online manner as well.

Time Varying FOPDT (TV-FOPDT) model:

The traditional FOPDT model has three different parameters: time delay (also called

Dead Time), system gain and time constant. If the system doesnot have time delay, it

degenerates to a standard linear time invariant system which has already have a mature

identification theory. Generally, there are many algorithms to estimate time delay, see

(164) for some details.

Cross Correlation Method (CCM) Cross Correlation Method (10) is one of the ba-

sic method of Time Delay Estimation (TDE) problem in time series analysis.

Many TDE methods are developed based on CCM. Its main idea is to cross-

correlate the outputs and inputs and consider the time argument that leads to the

maximum peak in the correlation series as the estimated timedelay.
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Maximum Likelihood (ML) Method ML method is another important method for

TDE problem (70). The ML function is chosen to improve the accuracy of the

estimated time delay by attenuating the signals fed into thecorrelator in spectral

region where the Signal to Noise Ratio (SNR) is the lowest. The popularity

of ML estimator stems from its relative simplicity of implementation and its

optimality. For uncorrelated Gaussian signal and noise, the ML estimator of time

delay is asymptotically unbiased and efficient in the limit of long observation

intervals.

Average Square Difference Function (ASDF) MethodThe Average Square Differ-

ence Function Method (113) is based on finding the time point of the minimal

error square between two received signals: no time delay signal and time delay

signal, and considering this time point as the estimated time delay. Its advantage

is due to the fact that it can give perfect estimation in the absence of noise while

the direct correlation methods can not. Moreover, ASDF requires no multiplica-

tion, which is the most significant practical advantage overthe other methods.

Least Mean Square (LMS) adaptive filter method The LMS adaptive filter is a fi-

nite impulse response (FIR) filter (65) which can automatically adapt its coeffi-

cients to minimize the mean square difference between the reference input signal

and desired input signal.

From previous observation, in order to make the estimation of time delay, these meth-

ods need to perform or simulate the system several times to get enough data, i.e.,

different outputs signal (no time delay and time delayed outputs) or adopt different

input signals. Moreover, if the other parameters rather than time delay in the models

need to be identified as well, some extra procedure need to be performed after TDE. It

motivates us to develop a new method which can simply identify all the parameters in

the system model besides time delay.

However, from the modeling points of view, the traditional FOPDT has its own

limitations, i.e., the parameters are considered as constants during the system running.

But in the real world, the parameters would be changed duringthe system running

for quite a lot of systems. The time varying property is more and more important.

For these reason, in the thesis, it aims to extend the standard FOPDT model to a time

varying one and find a method that
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• can be cost-effectively performed to make the parameter identification of the

time delay and the other parameters together only based on the measured infor-

mation from system operation;

• can be used to identify the time varying parameters, so it should be an on-line

method.

Application in FDD Modern systems and equipment are often subjected to some

unexpected changes, such as component faults and variations in operating conditions,

that tend to degrade the overall system performance. In order to design a reliable,

fault-tolerant control system, or to maintain a high level of performance for complex

processes, eg, spacecraft, aircraft, chemical processes and nuclear plants, etc, it is

crucial that such changes are detected and diagnosed promptly so that corrective action

can be taken to reconfigure the control action and accommodate the system alternation

(129).

In general, a fault (63) is to be understood as an unexpected change of system

function especially the parameters’ change, although it may not lead to physical failure

or breakdown. A technique which is used to detect and diagnose faults and identify

their types or characteristics in a system is called as FaultDetection and Diagnosis

(FDD) technique. The essential tasks of FDD are: Fault Detection, making a binary

decision–either that something has gone wrong or that everything is fine; and Fault

Diagnosis, determining the source of the fault and the faultcategory, eg, which sensor,

actuator or component has become faulty and how is the quantitative level.

During the last three decades, the so called model-based fault detection and di-

agnosis approach has received increasing attention in bothresearch and application

(20; 61; 62; 63; 129; 130). This approach is based on the concept of ’analytical re-

dundancy’ as opposed to physical (hardware or parallel) redundancy, which uses mea-

surements from redundant sensors for fault diagnosis purposes. Analytical redundancy

use of signals generated by the mathematical model of the system being considered.

These signals are compared with the actual measurements obtained from the system.

The comparison is done using the residual quantities which give the difference be-

tween the measured signals and signals generated by the mathematical model. Hence,

model based FDD can be defined as the determination of faults of a system from the

comparison of available system measurements with a priori information represented
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by the system mathematical model through generation of residual quantities and their

analysis.

In the process of FDD, residual generation can be achieved bythe following meth-

ods (20):

• Observer-based methods:If the process parameters are known, either state

observers or output observers can be applied to generate theresidual. Then es-

timating the residual based on the knowledge, it is used to compare with the

predefined threshold to make the decision of the fault (63).

• Parity space methods:Run the process and form an output error, then based on

the error estimation to make FDD. The general process can be referred in (63)

as well.

• Parameter identification based methods:In most practical cases the process

parameters are partially not known or not known at all. Then,they can be de-

termined with parameter identification methods by measuring input and output

signals if the basic model structure is known. Then based on the results of the

parameter identification and analyzed the change of the estimated value of the

parameters in the system, the decision of the FDD can be made (61).

Nowadays, in quite a lot of situations, the parameter identification methods based FDD

is widely used and directly performed in the fault tolerant control systems. The thesis

will consider the application of system identification in the procedure of FDD.

1.2 Overview of previous work and related work

System identification handles with the problem of estimating mathematical models

of systems based on the measurements of inputs and outputs inthe systems. It can

be originated from the work of Gauss and Fisher (39). Much of the early work was

conducted within the fields of statistics, econometrics andtime series analysis. Astrom

and Bohlin can be marked as the starter of system identification in 1965 (100). From

then on, the theory has been developed much more significantly. After four decade

developing, the system identification for linear system became a field which has a

relatively mature theory.
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Although identification theory for nonlinear systems is almost as old as for linear

systems, its progress is not so fast as that for linear systems, especially for the system

which is described as a SDE model with discrete measurement,called as continuous-

discrete SDE model (4). Generally, the parameter consisting in a continuous-discrete

SDE model includes two different parts: parameter in the drift part and parameter in

the diffusion part.

The development of SDE parameter estimation can be referredin (12). It is firstly

studied to only consider the parameter in the deterministicpart–drift parameter iden-

tification. Drift parameter estimation has been studied by many authors. Le Breton

(88) and Dorogovcev (31) appeared to be the first persons to study estimation in dis-

cretely observed SDE model. Their model is the linear SDE model with constant dif-

fusion coefficient. While Le Breton used Approximate Maximum Likelihood (AML)

estimation, Dorogovcev used Conditional Least Squares (CLS) estimation. In 1977,

Robinson used exact maximum likelihood estimation in discretely observed Ornstein-

Uhlenbeck process which is a special case of SDE model. From then on, some re-

searchers work on approximate maximum likelihood estimation (where the continu-

ous likelihood is approximated), also called the maximum contrast estimation, such

as Bellach (1983) and Yoshida (1992). All of these approaches belong to Maximum

Likelihood (ML) method category.

Another category to make parameter identification of SDE model is filter based

method, which was proposed a little later than ML methods. Regarding filtering and es-

timation theory in the discrete-discrete time framework, see e.g. (95) for more details.

Similarly for the continuous-continuous framework, see e.g. (182) for more details.

The latter framework is useful for design purposes, but it isargued that for filtering

and estimation it is inappropriate for the true cases (66). From 1980s, the Kalman Fil-

ter (KF) technique has been more and more widely used for parameter identification

in the application (94). Generally, the approaches using KF can be classified into two

different categories. One category can be called as direct approaches. This kind of ap-

proach takes both the state variable and the unknown parameter(s) into an augmented

system state. Then, KF, Extended Kalman Filter (EKF) or someother appropriate filter

can be used to estimate the new state and thereby the estimation of unknown param-

eter(s). However, if the diffusion term of the SDE contains unknown parameters, this
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kind of approach could not be directly used. Moreover, if thesystem model is a non-

linear one, this method sometimes could not provide a good performance in terms of

the precision.

The other kind of filter based method is to combine KF technique with some statis-

tic methods. The scheme consists of two sequential stages. The first stage conducts

the state estimation using KF, where the estimated state, both mean and variance, is a

function of unknown parameters. Then, a statistic criterion, such as Maximum Like-

lihood (ML) and Least Mean Square (LMS), is set up in the second stage based on

the estimated state. Thereby, the parameter identificationproblem becomes an opti-

mization of a parameterized statistic problem. This approach can be directly applied

to linear systems and an explicit solution may be found (76; 107). Nevertheless, this

kind of approach needs to be extended in order to handle nonlinear cases. Then, a

ML/Prediction Error Decomposition (PED) method for directestimation of embedded

parameters in SDE is proposed in (108) based on the EKF. (83) set up the scheme of

parameter identification based on the EKF and ML as well as Maximum A Posteriori

(MAP) estimation with software implementation. Both of these two methods can han-

dle with the parameter identification for cases that the diffusion item consists of the

unknown parameter(s). But the precision in the estimation need to be improved for

some nonlinear models. In Chapter 2, a more detailed introduction will be given.

Another model, which is also widely used in application, is input/output model.

FOPDT model is one of the most useful input/output models andit is well known that

FOPDT model can be applied to describe many industrial processes.

The FOPDT model has three different parameters, named system gain, time con-

stant and dead time (time delay). These parameters are oftenset as constants in the

whole system running for the standard model. In reality, during the system running,

they may not stay unchanged but vary according to the time. Thereby, in order to make

up for the shortage of the standard FOPDT model, a kind of nonlinear FOPDT model

in which the time varying parameters of the system can be describe is proposed in

(85; 89; 123). The considered nonlinear FOPDT model is an extension of the standard

FOPDT model by means that both system’s gain and time constant can be changed

during the system running. This nonlinear FOPDT model is generated by using a lin-

earized method to a nonlinear model. Nearly at the same time,in (89; 123), a nonlinear

FOPDT model is proposed by linearizing the nonlinear systemat a number of different
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operating points, so the parameters of the obtained FOPDT are operating-point depen-

dent. It is observed that some simple nonlinear FOPDT modelshave been already used

in nonlinear control applications (15; 85; 89).

For the system identification, these were quite a lot of methods to make the esti-

mation of the FOPDT, such as the Tangent Method, the Area Method and so on (164).

Some methods have been already adopted to make the system identification for the

nonlinear FOPDT model. For example, an on-line nonlinear FOPDT identification

method is proposed in (85) by using the so-called longrange predictive identification

method. However, the formulated system identification leads to a nonlinear optimiza-

tion problem due to the unknown time-dependent time delay. Therefore, four different

potential time delay scenarios are assumed, before converting the nonlinear optimiza-

tion problem into a Least-Square (LS) problem using the spectral factorization tech-

nique. The assumption of time delays limits the proposed method in (85) to be applied

for any other systems except for these two specific patient cases they have studied

(179).

These methods have their own drawbacks, such as some ones need a special input

signals, some ones only can be applied in off-line manner andso on. Moreover, all

of the methods need more than two steps to make the identification of all unknown

parameters in the FOPDT models. In Chapter 3, a detailed introduction of the tech-

niques to make system identification of FOPDT is given. It describes some of the most

common methods to make the parameter identification for FOPDT model.

One important application of the system identification, especially parameter iden-

tification, is in the field of FDD. The parameter identification technique based FDD is

widely studied most in the reconfiguration control area. In anumber of fault cases, the

faults are reflected in the physical system parameters, as e.g. mass, friction, viscosity

etc. It makes that the parametric faults are associated withsystem parameters. It is

natural that system identification methods can be applied for FDD, see e.g. (41). The

parameter identification techniques has been considered touse in FDD for systems

with parametric faults since 1990s. Lots of researchers developed the theory of it, see

e.g. (41; 44; 61; 62; 129; 150) to mention some references.

12



1.3 The Objectives of the Project

1.3 The Objectives of the Project

This thesis focuses on some issues on nonlinear parameter identification for two differ-

ent kinds of nonlinear systems. It tries to use some innovative models to describe the

real systems more accurately. Then based on the model formulation and the traditional

system identification approaches, some methods are extended and proposed. These

new methods are also compared with the traditional methods to show their advantages

and difference. Furthermore, some properties of the methods are investigated. Finally,

the mathematical models and their identification approaches are applied to a number

of real-life relevant systems.

In order to address these objectives, the thesis contributes in the following way:

• Different state space models are discussed and compared in Chapter 2. It sug-

gests that the Itô SDE (ISDE) model can describe dynamic systems with noise

and fault much more accurately.

• A detailed review of the Kalman Filter based system identification methods for

SDE model, both direct method and indirect method are given.

• Unscented Kalman Filter (UKF) plus Maximum Likelihood, to make the system

identification of nonlinear SDE model is proposed. Its consistency and normality

are investigated and set up the conditions under which the consistency and nor-

mality can be guaranteed for nonlinear SDE models. The method is compared

with EKF based method in terms of accuracy, convergency and computation

load, respectively.

• Extend the FOPDT model to a general Time-Varying FOPDT model, moreover

to TV-FOPDT model with Input Depended Dead Time. The identifiability of

the defined FOPDT models is discussed and some theorems are correspondingly

derived.

• The methods to make the estimation of time delay are concisely described. The

approaches to make the system identification of FOPDT model are given by a

detailed review. Their main procedures and drawbacks/merits are discussed.
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• New approach, based on the Mixed Integer Non-Linear Programming (MINLP)

and Branch-and-Bound(BB) method, is proposed to make the parameter identi-

fication based on the TV-FOPDT model and the one with Input Depended Dead

Time.

• All the methods proposed in the thesis are simulated for a number of numerical

examples and some real-life relevant systems with some traditional methods.

• The methods are applied to the process of FDD, which are shownby several

testing systems.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 Firstly, outlines the different system models using State Space formula-

tions. Then, a detailed introduction of system identification for nonlinear SDE

model is given. Secondly, extended from the traditional methods, the UKF plus

ML method to make the nonlinear identification of ISDE model is proposed.

The consistency and normality properties of the proposed method are investi-

gated and a theorem regarding it is proved. Finally, in orderto test the proposed

method, a number of numerical examples are given to illustrate the properties

of the methods compared with some other methods. Moreover, this approach is

applied to a space robot system which is considered under some FDD scenarios.

Chapter 3 Firstly, the FOPDT model is extended to the Time Varying (TV)-FOPDT

model, possibly with some input depended variables. Secondly, the identifiabil-

ity analysis is performed based on the identifiability to thenonlinear systems.

Thirdly, in the parameter identification, the problem is converted to a Mixed

Integer Non-Linear Programming (MINL) one. The Branch and Bound (BB)

method plus Least Square (LS) or Least Mean Square (LMS) method is applied

to solve this optimization problem. Finally, the method is tested though a number

of numerical cases and the analysis is committed based on these tests’ results.

The application of the model and method is illustrated by a superheat dynamic

model in the supermarket refrigeration system and a FDD discussion.
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Chapter 4 Finalizes the thesis by providing the conclusion and recommendations for

future works.
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Chapter 2

System Identification for Nonlinear

SDE model and Its Application

System identification is one of the most important areas in the engineering. In case

the considered models are linear, there exists well maturedtheory, methodology and

algorithms to make the identification of them. But for nonlinear models, the situation

is more complicated, and it is much more difficult than the linear ones to develop some

general results.

In the nonlinear system identification, each method is only used to deal with certain

kind of modeled system. In this Chapter, the system identification for a kind of SDE

model is the main consideration.

These issues have been addressed throughout this chapter inthe following order:

System Model DescriptionIn order to show the reason to choose It ˆo SDE model

with discrete measurement as the concerned model in the study, some popular system

models are reviewed and a brief introduction of the system identification methods is

given at first. Then some basic knowledge of It ˆo SDE model is reviewed.

Overview of the Previous WorkDifferent methods to make the system identifica-

tion for the concerned SDE model are outlined.

UKF plus ML method An Unscented Kalman Filter (UKF) plus Maximum Like-

lihood (ML) method to make the system identification for the nonlinear SDE model is

proposed. Then the consistency and normality of the proposed method are investigated

and corresponding theorems are proved.
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2.1 State Space Model

Numerical Test and Application Finally, some numerical tests are performed to

illustrate the approach and compared with other methods. A scenario of FDD is used

as an application of the work.

2.1 State Space Model

State Space (SS) Model is widely applied in different fields,such as in Control En-

gineering, Chemistry, Physics and so on (4). In practice, environmental disturbances,

unexpected changes within the technical process under observation as well as mea-

surement and process noises often happened in the system running. For this reason,

the dynamic stochastic model is the most popular one among different kinds of SS

models. The system without random features is the special case of them. In general,

SS model using Stochastic Differential Equation (SDE) model can cover most of dif-

ferent SS model expressions (4).

u YN o i s eS y s t e m M e a s u r em e n t
N o i s eO u t s i d e

D i s t u r b a n c eO u t s i d e
Figure 2.1: System process 1
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2.1 State Space Model

One type of SDE model, which can describe the general processin Fig. 2.1, is

expressed as:

{

Ẋ = F(X,u, t)+EdD+ω, X(0) = X0

Y = H(X,u, t)+FdD+ξ
(2.1)

Here theX is short forX(t) stands for the state of the system at the timet. Y andu are

the measured output and input. In case of control system concern,u is referred to as

the control input,Ed, Fd are matrices of compatible dimensions,D is a deterministic

but unknown input vector,ω, ξ are both the stochastic processes which are system

noise and measurement noise, respectively and they are assumed to be uncorrelated

with each other in most cases.

Another kind of model can describe the same system, is It ˆo SDE (ISDE) model,

which is
{

dX = [F(X,u, t)+EdD]dt+dBt , X(0) = X0

Y = H(X,u, t)+FdD+ξ
(2.2)

whereBt is a Brown Motion (B.M.) which will be given later. Differentmodels (2.1)

and (2.2) both can describe the same system as illustrated in Fig.2.1.

As what we observed from most literatures, no matter how the random feature is

modeled, the random part is just a simple additive stochastic process, as shown in (2.1).

But in fact, in many practical situations, if random factor occurs in a complex system,

it is not only related to a simple stochastic process but alsoto some other elements

such as the state of the system. For example, a loose connection of mechanical com-

ponents could lead to larger vibration influence to the relevant system comparing with

normal situation, which reflects in the mathematical model as the features change of

deterministic coefficients, as well as that of nondeterministic part (such as the process

and measurement noises). Another example is a kind of blade distortion faulty system

of wind turbine, if the system state consists of the rotationvelocity, the random part

in this type of system has some relation with it. According tothese real systems, it

is not so convincible that the random feature is only considered as a simple stochastic

process. In some cases in the reality, the system is running like in Fig.2.2 rather than

Fig. 2.1.

From the modeling point of view, the SDE model has been already applied in the

finance, refer (67) for more references. It is well known that the stock price could be
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2.1 State Space Model

u YR a n d o m N o i s eS y s t e m M e a s u r em e n t
S y s t e mF a c t o rN o i s eG e n e r a t e

N o i s eO u t s i d e

D i s t u r b a n c eO u t s i d e
Figure 2.2: System process 2

seen as a complex stochastic process. Its random property has some relation with many

factors, such as the management of the company, the profit, the economy status, the

people’s expectation and so on. In the financial analysis, the ISDE is just the model

used to explain this complex process, which could be seen in the following. Now

let St be the price of the stock at timet. The commonest model to describe it in the

economy, decomposes the return dSt /St, which is interpreted as the change rate of the

stock values, into two parts. One is predictable, deterministic and anticipated return

akin to the return on money invested in a risk-free bank. It gives a contributionµdt

to the return dSt /St, whereµ is a measure of the average rate of growth of the stock

price, also known as the drift item. In the simple model,µ is taken to be a constant.

In more complicated model,µ can be a function of stock priceSt and timet. The

second contribution to dSt /St models the random change in the stock price in response

to external effects, such as unexpected news, accidents andso on. It is represented by

a random simple movement from a normal distribution with mean zero and reflected

by a termσdBt. Hereσ is a function called the volatility, which measures the standard

deviation of the returns (67). The quantityBt is the Brown Motion (B. M.), and its
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2.1 State Space Model

definition will be given later. Putting these contributionstogether, the ISDE model of

stock can be obtained as:

dSt/St = µdt +σdBt (2.3)

which is the mathematical representation for the stock price. As the generalization,

the coefficients of dBt and dt in (2.3) could be functions ofSt and t. Furthermore,

the control itemut , which is interpreted as the portfolio in the finance, can also be

embedded into the functionsµ andσ .

Contrasting with the above pricing of the stock, the system in the control engineer-

ing has the deterministic items and random features as well.The random features may

take place in the unpredictable situations and forms. But sometimes we could get some

statistic information of them, such as their distributions. Taking the normal distribution

as an example, it could be interpreted as some combinations of Brown Motion since it

follows the normal distribution as well. Then the random part of the system can be de-

rived by the item of dBt in the mathematics as the previous stock price model. Hence,

the ISDE model could be potentially employed for the system with random feature

in the engineering. According to this rule, the system in Fig. 2.2 can be reflected in

mathematic model
{

dX = [F(X,u, t)+EdD]dt+G(X,u, t)dBt, X(0) = X0

Y = H(X,u, t)+FdD+ξ
(2.4)

where it interprets the system noise as a structured noise. It can describe the detailed

information of the noise rather than only simply using one stochastic process to de-

scribe the noise.

More generally, the system model can be written as
{

dX = F̃(X,u, t)dt+G(X,u, t)dBt, X(0) = X0

Y = H̃(X,u, t)+ξ
(2.5)

From the theoretical point of view, the ISDE model have already been used to char-

acter some simple control systems with structured random features, such as (4; 107),

and there was already a set of theory to support this kind of model in the mathematics.

Some results on system identification have been obtained by extending the Kalman Fil-

ter (KF) or Extended Kalman Filter (EKF) and likelihood functions or other statistic

methods in (12; 182) for linear ISDE model.
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2.2 ISDE formulation

Of course, some measurable functions can also be added to therandom part of the

classic stochastic model (2.1). But not much theory can support this kind of model,

such as the solution theory. Using the ISDE model has its own advantage to describe

the random dynamic systems. It lies in:

1. ISDE offers more clear and proper description of random uncertainties in the

considered systems than previous models which only describe random features

as a simple class of normally distributed signals. In this sense, the ISDE model

may provide a more accurate one to describe the stochastic process;

2. The structured description of random features could leadto the developed FDD

algorithms based on ISDE model less conservative compared with the current

results with a simple assumption of normal distributions. Since the fault could

have a structure in ISDE model and it is real in some cases, it is much more

convenient to deal with the fault using this model;

3. The situations that system random feature is correlated with system state, input

and/or output can also be systematically handled possibly based on ISDE model,

besides the situation that the system random feature is independent of system

variables;

4. The ISDE model may open a proper window to go deeply to checksome system

random properties even for the FDD, meanwhile offer a solid platform to apply

sophisticated stochastic analysis and filtering theory into control engineering.

2.2 ISDE formulation

The knowledge of ISDE is summarized in this section, referred more details in (182).

In the following, ISDE stands for It ˆo Stochastic Differential Equation. In order to

introduce this model, the definition of Brown Motion (B.M.) need to be given at first. In

ISDE model,Bt stands for Brown Motion (B.M.), which is originated from theScottish

botanist Robert Brown who observed that pollen grains suspended in liquid performed

an irregular motion. This motion was later explained by the random collisions with the

molecules of the liquid. In this way,Bt is used to describe the motion mathematically,

21



2.2 ISDE formulation

interpreted as a stochastic process which can describe the position of the pollen grain

at timet. Strict definition is:

Definition 2.2.1 {Bt}t≥0 is a Brown Motion, if it satisfies

1. Bt is a Gaussian process,

2. Bt has independent increments,

3. Bt is continuous.

Before giving the interpretation of ISDE, some important mathematical prelimi-

naries are described at first in the following (182).

Definition 2.2.2 If Ω is a given set, then aσ -algebraF on Ω is a familyF of subsets

of Ω with the following properties:

1. The null setφ ∈ F

2. If F ∈ F, then FC ∈ F, where FC = Ω\F is the complement of F inΩ

3. If A1,A2 · · · ∈ F, then A:=
∞
⋃

i=1
Ai ∈ F

Definition 2.2.3 The triple(Ω,F,P) is called a probability space ifΩ is a given set,

F is theσ -algebra inΩ and P is the probability measure.

Definition 2.2.4 If (Ω,F,P) is a given probability space, then a function Y: Ω → R
n

is calledF-measurable if

Y−1(U) := {ω ∈ Ω;Y(ω) ∈U} ∈ F

for all open sets U∈ R
n.

Noted that in the following, the(Ω,F,P) is a given probability space in which the

SDE is defined. Then the SDE is given in the following:

Definition 2.2.5 A equation is called an Stochastic Differential Equation (SDE) if it

has the format

dXt = f (t,Xt)dt+g(t,Xt)dBt , (2.6)

where t is the time invariable and Xt is shot for X(t), which is a real-valued function

of t, Bt is a Brown Motion (B.M.). f(t,Xt) is called as the drift coefficient and g(t,Xt)

is called as the diffusion coefficient.
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2.2 ISDE formulation

The notation used in (2.6) is shorthand for the corresponding integral interpretation

and is therefore ambiguous unless a specific integral interpretation is given. SDEs may

be interpreted both in the sense of Stratonovich formulation (67) and in the sense of

Itô formulation (182).

Definition 2.2.6 Suppose that Bt is a Brown Motion and Xt is a measurable function

regarding theσ -algebraF generated by Bt , then the It̂o integral
∫ T

0
XtdBt : Ω → R

is defined to be the limit of
k−1

∑
i=0

Xti(Bti+1 −Bti) (2.7)

as the mesh of the partition0 = t0 < t1 < · < tk = T of [0,T] tends to 0 (in the style of

a Riemann C Stieltjes integral).

It can be seen that the Itô integral uses the left endpoint ofeach subinterval to make

a sum, but Stratonovich formulation just applies the value of the processXt at the

meddle point of each subinterval: i.e.,
Xti+1+Xti

2 in place ofXti in (2.7). In most cases,

the system identification need to be performed based on the information obtained until

sampling time points. For this reason, the Stratonovich interpretation is unsuitable for

system identification, then the It ˆo interpretation of the integral is adapted in the system

identification.

Now existence and uniqueness result for the solution of the ISDE is given (182):

Theorem 2.2.7 Let T > 0 and f(·, ·) : [0,T]×R
n → R

n, g(·, ·) : [0,T]×R
n → R

n×m

be measurable functions satisfying

| f (t,x)|+ |g(t,x)| ≤C(1+ |x|); x∈ R
n, t ∈ [0,T], (2.8)

for some constant C, (where|g(t,x)|2 = ∑
i, j
|g(t,x)i j |2) and such that

| f (t,x)− f (t,y)|+ |g(t,x)−g(t,y)| ≤ D|x−y|; x,y∈ R
n, t ∈ [0,T], (2.9)

for some constant D. Let Z be a random variable which is independent of theσ -algebra

generated by Bs(·), s≥ 0 and such that

E[|Z|2] < ∞.
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2.2 ISDE formulation

Then the stochastic differential equation

dXt = f (t,Xt)dt+g(t,Xt)dBt , 0≤ t ≤ T, X0 = Z (2.10)

has a unique t-continuous solution Xt with the property that

E[

T
∫

0

|Xt|2dt] < ∞. (2.11)

In the thesis, all the ISDE models are chosen to satisfy theseconditions in order to

guarantee the existence and uniqueness of the solution. Forthe implicity, this condition

will not be checked again when dealing with the ISDE models.

From the general ISDE model (2.6), it can be observed that the random part in

the system can depend not only on the time but also on the statevariable. For some

special kinds of state dependent noised ISDE model, a mathematical tool, called as It ˆo

Formula (182), can be applied to simplify the model.

Theorem 2.2.8 Consider the ISDE(2.6), suppose F(t,x), a real-valued function, de-

fined for x∈ R
n and t∈ [a,b],0≤ a≤ b, with continuous partial derivatives,∂F

∂ t , ∂F
∂x

and ∂ 2F
∂x2 , then it can be obtained that

dF(t,Xt) = f̃ (t,Xt)dt+ g̃(t,Xt)dBt, (2.12)

where

f̃ (t,Xt) =
∂F(t,Xt)

∂ t
+ f (t,Xt)

∂F(t,Xt)

∂Xt
+

1
2

g2(t,Xt)
∂ 2F(t,Xt)

∂X2
t

(2.13)

and

g̃(t,Xt) = g(t,Xt)
∂F(t,Xt)

∂Xt
. (2.14)

For example, consider the ISDE

dXt = f (t,Xt)dt+αX2
t dBt . (2.15)

If F(t,Xt) is chosen as1Xt
, then according to (2.12)

dF(t,Xt) = f̃ (t,Xt)dt−αdBt . (2.16)

From the former theorem2.2.8and the example, it can be seen that for some kinds

of state dependent noised ISDE models, It ˆo Formula can really simplify them to ones

without state dependent noise. This is also an advantage to use ISDE model to describe

the complex process.
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2.3 System Identification for ISDE Model

2.3 System Identification for ISDE Model

In this section, firstly, the system identification problem is formulated, and then the

approaches to make system identification for ISDE model are considered.

2.3.1 Parameterized ISDE Model

The considered system is described by the following ISDE:

dX(t) = g1(X(t),u(t), t,θ)dt+g2(X(t),u(t), t,θ)dBt, (2.17)

wheret ∈ R is the time variable,X(t) ∈ X ⊂ R
n is a vector of state variables,u(t) ∈

U ⊂ R
m is a vector of input variables,g1(·) ∈ R

n, g2(·) ∈ R
n×n are nonlinear or linear

functions and{Bt} is ann-dimensional Brown Motion.θ ∈ Θ is a stack consisting of

all unknown parameters. For simplicity purpose,X(t),u(t) are denoted asX,u respec-

tively in the following.

The measurement of the considered system is described by

Yk = h(Xk,uk, tk)+ εk, (2.18)

whereYk ∈ Y ⊂ R
l is a vector of output variables,h(·, ·, ·)∈ R

l , tk, k = 0,1, . . . ,N are

sampling instants,{εk} is anl -dimensional noise process withεk ∼ N (0,R) (R is an

l × l matrix) andXk is the state value at timetk.

Noted that in order to make the identification of the parameter, an assumption of

the measurement need to be made as the prerequisite, i.e., the frequency of sample

points obtained from the measurement should be much larger than the frequency of

parameter variation. Although it is impossible to get the true parameter value before

the identification, this assumption can be satisfied by reducing the sampling interval as

little as possible. For the simplicity, in the thesis, it is chosen that all the measurements

(sample frequency) satisfy this condition.

In (2.18), the measurement of the system is considered as discrete one. Since the

diffusion coefficient is almost surely determined by the process, i.e., it can be esti-

mated without any error if observed continuously throughout a time interval for the

linear models (43). In the other hand, parameter estimation in diffusion processes

based on measurement at discrete time points is of much more practical importance
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2.3 System Identification for ISDE Model

due to the difficulty of observing diffusions continuously throughout a time interval.

Hence, the thesis focuses on the parameter identification for continuous system with

discrete measurement model.

The considered parameter identification problem could be described as:

(P): Estimate the unknown parameterθ in the system(2.17) based on a set of

data which consists of some measured output signalsYk generated by(2.18) and

corresponding input signalsuk.

2.3.2 Conventional Methods

The parameter identification for continuous-discrete ISDEmodel could split into two

parts: parameter estimation in the drift coefficient and diffusion coefficient.

In system identification for the parameterized ISDE model, the Least Square (LS)

method was firstly applied to cope with the linear ISDE model.Considering the ISDE

model (2.17), the idea of LS method (52) is to minimize the quadratic cost function:

Q(θ) =
k=1

∑
N

[Xk−Xk−1−g1(Xk−1,uk−1, tk−1,θ)(tk− tk−1)]
2

g2
2(Xk−1,uk−1, tk−1,θ)(tk− tk−1)

. (2.19)

But since the model (2.17) implies the distribution of the state variable, the Max-

imum Likelihood (ML) method, which considers the distribution in the system, was

proposed and widely used in the system identification for thelinear SDE model. It is

firstly studied to consider only the parameter in the deterministic part–drift parame-

ter identification. Drift parameter estimation in stochastic processes based on discrete

measurement has been studied by many authors since 1970s. LeBreton (88) appeared

to be the first person to study the estimation in discretely observed ISDE model. His

models are the linear ISDE models with constant diffusion coefficients. And Le Breton

used Approximate Maximum Likelihood (AML) estimation. In 1977, Robinson stud-

ied exact maximum likelihood estimation in discretely observed Ornstein-Uhlenbeck

process which is a special ISDE model. This can be referred in(116). From then on,

some researchers worked on approximate maximum likelihoodestimation (where the
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2.3 System Identification for ISDE Model

continuous likelihood function is approximated), also called the maximum contrast es-

timation, such as in the works of (5; 46; 78) and so on. These kinds of approaches can

all be referred to as Maximum Likelihood (ML) method.

The main idea of the ML method is as follows. Since the model (2.17) has the

Markov property, it is possible to express the likelihood function of a given sequence of

measurementsY0,Y1, . . . ,Yk, . . . ,YN solely in terms of the transition Probability Density

Functions (pdfs), i.e.

L(θ) =
N

∏
k=1

p(Y0,Y1, . . . ,Yk, . . . ,YN;θ) (2.20)

with θ is the unknown parameter vector,p is the probability density of corresponding

measurements based on the parameterθ . The ML estimates are given by

θML = argmax
θ∈Θ

L(θ). (2.21)

Then takeθML as the result of the parameter identification. In order to getthe condi-

tional probability density function in (2.20), the distribution of the state variable in the

system need to be applied before the estimation.

The ML method can belong to the category of the statistic method. The main idea

of the statistic method is to present a suitable statistic function, then optimize the pro-

posed function and get the optimal value as the estimate. From another point of view,

the ML method and LS method could also be seen as special casesof the Method of

Moments (MM) (55). This method was originally developed for discrete time stochas-

tic models, yet it may be applied to ISDE by computing moment conditions from a

discrete version of the ISDE. It only used the certain momentcondition to form a

function and provide an estimate by minimizing the corresponding function. Its main

advantage is that it requires specification only of certain moment conditions rather than

the entire pdfs. This can also be a drawback, for it does not make efficient use of all the

information in the samples, only applies the first moment (mean) or second moment

(variance), which may lead to a loss of efficiency. For the model, the MM can not deal

with the cases in which the state variable is unmeasured.

Another category to make parameter identification is filter based method. The

ISDE model (2.17) plus (2.18) is considered as well. This kind of method is based

on the filter technique, especially Kalman Filter (KF) technique. It has been more and
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2.3 System Identification for ISDE Model

more widely used for parameter identification in the application (94) since last century.

Generally, the approaches using KF can be classified into twodifferent categories. One

category is referred as direct approaches. This kind of approach firstly takes both of

the state variable and the unknown parameter(s) into a new augmented system state.

Then, KF, Extended Kalman Filter (EKF) or some other suitable filter is used to make

the estimation of the new state and thereby the estimation ofunknown parameter(s)

is obtained from this new state estimate. However, if the diffusion term of the ISDE

model contains unknown parameters, this kind of approach could not show a good

performance regarding the precision. Moreover, if the system model is a nonlinear

one, this method sometimes could not provide a good performance with regard to the

accuracy because of the nonlinearity of the system.

The other kind of KF based method is to combine KF technique with some statis-

tic methods. This scheme mainly consists of two sequential stages. The first stage

conducts the state estimation using KF, where the estimatedstate is a function of un-

known parameters. Then, a statistic criterion, such as Maximum Likelihood (ML) and

Least Mean Square (LMS), is set up in the second stage based onthe estimated state.

Thereby, the parameter identification problem becomes an optimization of a parame-

terized statistic problem. This approach can be directly applied to linear systems and

explicit solutions may be found in (76; 107) and so on. Nevertheless, this kind of ap-

proach needs to be extended in order to handle nonlinear cases. Then a ML/Prediction

Error Decomposition (PED) method for direct estimation of parameters in ISDE is

proposed in (108) based on the EKF. Kristensen, Madsen and Jørgensen, in (83), set

up the scheme of parameter identification based on the EKF andML as well as Max-

imum A Posteriori (MAP) estimation with software implementation. Both of the two

methods can handle parameter identification for cases that the diffusion item consists

of the unknown parameter(s). But the precision of estimation need to be improved for

some nonlinear models (96).

For the parameter identification using the filter techniquesto estimate the state,

since it is based on the state space model, this method is referred as state estimation

based method in the thesis. In the next section, we will explain it in detail. In the

thesis, EKF plus ML method is firstly considered to make the parameter identification

for the parameters both in drift and diffusion items. Then this method is improved and

extended to Unscented Kalman Filter (UKF) plus ML method to deal with some other
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2.4 State Estimation Based Methods

nonlinear cases. It shows that using UKF plus ML method has its own advantages than

the EKF plus ML method in terms of accuracy and convergency.

2.4 State Estimation Based Methods

At first, the detailed parameter identification methods are introduced for a general state

space model, which is described by parameterized ISDE modelgiven by (2.17) plus

(2.18). Since the thesis focuses on the KF based methods, before the introduction

of the identification methods, the two kinds of Kalman Filters are summarized in the

following.

2.4.1 Discretized Model

In order to apply the EKF and UKF, the model (2.17) need to be discretized beforehand.

According to Euler discretization, the (2.17) can be discretized as:

Xk = Xk−1+g1(Xk−1,u(k−1), tk−1,θ)(tk−tk−1)+g2(Xk−1,u(k−1), tk−1,θ)(Bk−Bk−1).

(2.22)

Based on the discretized model (2.22), the EKF or UKF can be performed in the

following.

2.4.2 Extended Kalman Filter (EKF)

Based on the system (2.22) with (2.18), the EKF can be performed according to the

following procedure (18).

Initialization with: original state estimationX0 and variance estimationP0.

Time-updated (Prediction):

X̂k|k−1 = X̂k−1|k−1 +g1(X̂k−1|k−1,uk−1, tk−1,θ)(tk− tk−1),

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 +g2gT

2 (X̂k−1|k−1,uk−1, tk,θ)(tk− tk−1),
Sk = HkPk|k−1HT

k +R,

Kk = Pk|k−1HT
k S−1

k ,

whereX̂k|k−1 andPk|k−1 are the estimates of state and variance of state at timetk condi-

tionally on all the information available at timetk−1, Sk is the estimate of the variance

of measurement at timetk andKk is Kalman gain.
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Measurement-updated (Update):

rk = Yk−h(X̂k|k−1,uk, tk),
X̂k|k = X̂k|k−1+Kkrk,
Pk|k = (I −KkHk)Pk|k−1,

wherek ≥ 1, gT
2 (·) stands for the transpose ofg2(·), rk is the error between the

measurement and estimated measurement, and

Φk =
∂ (Xk+g1(Xk,uk,tk,θ )(tk−tk−1))

∂Xk
|Xk=X̂k|k

,

Hk = ∂ (h(Xk,uk,tk))
∂Xk

|Xk=X̂k|k−1

Note that in the variance prediction stage, a property of standard Brown Motion is

applied (182), i.e,

E(Bk−Bk−1)
2 = (tk− tk−1)I .

2.4.3 Unscented Kalman Filter (UKF)

The same to the EKF, during the first stage, the state estimation can be accomplished

by UKF (35) as well. Its procedure is as follows:

Initialization with: original state estimationX0 and variance estimationP0.

The first step is to create 2n+ 1 sigma-points in such a way that these points to-

gether can capture both the mean and covariance of the state.Then, the matrixχ is

formulated to contain these points, and its columns are calculated as follows:

χi,k−1 = Xk−1, i = 0
χi,k−1 = Xk−1+(

√

(n+λ )Pk−1)i , i = 1, . . . ,n
χi,k−1 = Xk−1− (

√

(n+λ )Pk−1)i−n, i = n+1, . . . ,2n

wherei in the subscript means thei-th column,k ≥ 1, λ = α2(n+κ)−n is a scaling

parameter,α determines the spread range of the sigma points around the stateXk−1

and is usually set as a small positive value in order to avoid non-local effects (in the

examples of thesis,α is chosen as 0.001),κ is called as secondary scaling parameter

which is usually set as 0.

Each sigma-point is combined with a weight. These weights are calculated by com-

paring the moments of these sigma-points with Taylor seriesexpansion of the models
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(35). As a result, the weights for calculating mean and covariance estimates are given

as:
W(m)

0 = λ
(n+λ ) ,

W(c)
0 = λ

(n+λ ) +(1−α2+β ),

W(m)
i = W(c)

i = 1
2(n+λ ) , i = 1, . . . ,2n

where parameterβ is used to incorporate prior knowledge of the distribution of X, for

Gaussian distributionsβ = 2 is optimal in general cases. The superscriptsm andc

stand for that the corresponding weights are used to calculate the mean and covariance

of the state respectively.

The filter then predicts the state in the following step by propagating sigma-points

through the state and measurement models, and calculating weighted averages and

covariance matrices of the states:

χi,k|k−1 = χi,k−1 +g1(χi,k−1,uk−1, tk−1,θ)(tk− tk−1)

X̂k|k−1 =
2n
∑

i=0
W(m)

i χi,k|k−1

Pk|k−1 =
2n
∑

i=0
W(c)

i [χi,k|k−1− X̂k|k−1][χi,k|k−1− X̂k|k−1]
T

Yk|k−1 = h(χk|k−1,uk−1, tk−1)

Ŷk|k−1 =
2n
∑

i=0
W(m)

i Yi,k|k−1

The predictions are updated by: first, calculating the measurement covariance and

state-measurement cross correlation matrices, and then, determining the Kalman gain,

at last the updated estimation of state and variance is obtained:

PYY =
2n
∑

i=0
W(c)

i [Yi,k|k−1−Ŷk|k−1][Yi,k|k−1−Ŷk|k−1]
T

PXY =
2n
∑

i=0
W(c)

i [χi,k|k−1− X̂k|k−1][Yi,k|k−1−Ŷk|k−1]
T

Kk = PXYP−1
YY

rk = (Yk−Ŷk|k−1)

X̂k|k = X̂k|k−1 +Kkrk

Pk|k = Pk|k−1−KkPYYKT
k

In stead of linearizing a nonlinear function, UKF generates2N+1 sigma points for

states estimation which are propagated through the actual non-linear function, elimi-

nating linearization. The points are chosen such that theirmean, covariance as well as
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other higher order moments can be easily caught up. These propagated points help in

recalculating the mean and covariance, then yielding more accurate results compared

to ordinary function linearization. The underlying idea isto approximate the proba-

bility distribution instead of the function (35). This strategy results in decrement in

computational complexities at the same time increasing estimation accuracy, gaining

faster and more accurate results.

The unscented transform approach provides another advantage of treating noise

in a nonlinear system to account for non-Gaussian or non-additive noises. For doing

so firstly noise is propagated through the functions by augmenting the state vector

including the noise sources. This technique was first introduced by Julier (72) and later

developed by Merwe (109). Sigma point samples are then selected from the augmented

state, which includes the noise values. This technique results in the accuracy of process

and measurement noise captured with same accuracy as that ofthe state, which in turn

increases the accuracy of the estimation for non-additive noise systems (35).

2.4.4 Parameter Identification Based on the KF Methods

The scheme of the classic method based on the KF to solve the problem(P) is given:

Direct approach–only using the KF technology

• Initialization with stateX0 and varianceP0,

• Take the unknown parameter as the augment state to the system, rewrite the

system model using the new state as:











X̃k = [Xk,θ ]′

X̃k = X̃k−1 +

(

g1(X̃k−1,uk−1, tk−1)

0

)

(tk−k−1)+

(

g2(X̃k−1,uk−1, tk)

0

)

(Bk−Bk−1)

(2.23)

• Use KF technique, like EKF and UKF, to estimate the state, andtake last part of

the estimation of the augment state as the result for parameter identification.

KF plus ML method
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• Initialization with stateX0 and varianceP0,

• Use KF technique to estimate the state which is parameterized by the unknown

system parameters,

• Form the Maximum Likelihood function using the parameterized state estima-

tion,

• Solve the optimization problem of the parameterized Maximum Likelihood func-

tion, then get optimal solution as the result of the parameter identification.

The original KF plus ML method applied linear Kalman Filter firstly for linear state

space model (144; 148). This method is developed to use EKF to handle the nonlinear

system in (83). In order to improve the performance for some kinds of nonlinear

system, this thesis applied UKF instead of EKF in the estimation. The scheme of the

new method based on the UKF to solve the problem(P) adopts UKF in the second state

estimation step and repeats the same procedure as that in theKF plus ML method.

The first two steps of the KF plus ML method can be followed by the previous

procedures of EKF and UKF. As soon as the state estimation is obtained, the last two

steps will begin in the following.

Introducing the notation

Yk = [Yk,Yk−1, . . . ,Y1,Y0],

then, the likelihood function becomes the joint probability density, i.e.,

L(θ ;YN) = p(YN | θ), (2.24)

or equivalently

L(θ ;YN) =

(

N

∏
k=1

p(Yk | Yk−1,θ)

)

p(Y0 | θ). (2.25)

In order to carry out the optimization of the likelihood function, the state estimation

needs to be solved beforehand in order to obtain the estimated outputs. For the ISDE

in (2.17) is driven by a Brown Motion which can be seen as a Wiener process, and

the increments of a Wiener process are still Gaussian, it is reasonable to assume the

conditional densities can be well approximated by Gaussiandensities, which have two
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parameters, i.e., the means and covariances. Based on this fact and the previous results

of state estimation, the parameterized likelihood function can be formulated as:

L(θ ;YN) =

(

N

∏
k=1

exp(−1
2rT

k P−1
YY rk)

√

det(PYY)(
√

2π)n
p(Y0 | θ)

)

, (2.26)

wherePYY is the covariance matrix of the measurementY, while the same matrix is rep-

resented asSk in EKF, and superscript−1 stands for the inverse of the corresponding

matrix.

Then, the previous identification problem(P) can be converted to an optimization

problem which may be described as:

(P’) Given a set of measured outputYk and input signalsu(tk) ∈ U , find θ by

solving the optimization problem which is defined in the following

θ̂ = argmin
θ∈Θ

{− ln(L(θ ;YN |Y0))}. (2.27)

2.4.5 Optimization Computing Method

Some optimization algorithms which are used to make computation are needed to solve

the optimization problem of the ML function (2.27). Generally, in order to get the so-

lution of it, the convex property of the formulated optimization problem (2.27) needs

to be explored firstly. Even though it might be a non-convex problem sometimes and

hardly to obtain the global solution. But a better initial value could possibly lead to a

global optimal solution. Especially, for some special cases such as linear systems, the

global optimal solution could be obtained. The standard optimization method to solve

ML problem could be seen see e.g. (14). Another popular method to solve this opti-

mization problem of ML function is the Expectation Maximization (EM) algorithm. It

was originally proposed in (26). The EM algorithm includes two steps: expectation (E)

step, which creates a function for the expectation of the log-likelihood evaluated using

the current estimate for the parameters, and maximization (M) step, which computes to

find parameters maximizing the expected log-likelihood. Itshows good performance

especially to find the maximum likelihood parameters of a statistical model in cases
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where the equations cannot be solved directly. The details for the EM algorithm can

be found in (106), see also from (47) robust estimation of Linear Time Invariant (LTI)

state space models. In (139), a solution of more complicated problem to estimate non-

linear state space models is given, using particle filter.

In the case of this thesis, since the KF based methods are concerned and the ex-

plicit system model is known beforehand, EM approach is not adopted, here the quasi-

Newton using BFGS update method (14) is adopted, which is summarized as (for

simplicity, assumeF(θ) = − ln(L(θ ;YN |Y0))):

Starting with an initial guessθ0 and an approximate Hessian matrixC0, the following

steps are repeated untilθk converges to the solution.

1. Obtain a directiondk by solving:Ckdk = −▽F(θ), where▽F(θk) means the

gradient of the functionF at pointθk.

2. Perform a line search to find an acceptable step sizeαk by minimizingF(θk +

αdk) overα ≥ 0, then updateθk+1 = θk +αkdk.

3. SetSk = αkdk.

4. δk = ▽F(θk+1)−▽F(θk).

5. Ck+1 = Ck +
δkδ T

k
δ T

k Sk
− CkSk(CkSk)

T

ST
k CkSk

.

Convergence can be checked by observing the norm of the gradient,| ▽F(θk) |. If its

value less than a predefined threshold, the process will be terminated. Take the value

θk at the recent step as the optimal solution of the original problem, denoted aŝθ . It is

also severed as the estimated value of the unknown parameterin the system.

2.5 Consistency and Normality

Before the identification method is used, the property of theestimation should be in-

vestigated firstly.
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2.5.1 Pre-knowledge

In order to make the content clear, several definitions need to be given according to the

statistical theory beforehand, (24).

• Consistency: θ̂N is said to be consistent if̂θN → θ0 in probability 1 asN → ∞,

i.e.,

P{ lim
N→∞

θ̂N = θ0} = 1,

whereθ0 is the true unknown parameter value. In the following, ifθ̂N is consis-

tent, it is noted aŝθN
p−→ θ0.

• Asymptotic Normality: θ̂N is said to be asymptotic normality if there exists a

functiond(N) such that whenN → ∞ the limiting distribution ofd(N)(θ̂N−θ0)

is normal distribution with 0 mean and varianceσ2
θ0

, noted asd(N)(θ̂N−θ0)
d−→

N(0,σ2
θ0

). Hereσ2
θ0

is called the asymptotic variance of the estimateθ0.

• Fisher Information Matrix (FIM): Fisher information matrix of measurement

Y with regard to the parameterθ0 is defined by

ϕN(θ0) = E[
∂ lN(θ0)

∂θ
∂ lT

N(θ0)

∂θ
].

Note that in the calculation in (2.24), all the sample points are taken as known

information, it is not necessary to consider the expectation. But if the sampled

point is taken as a variable, it will have the stochastic property. Then the fisher

information considers the expectation.

A property of fisher information matrix is needed in the following, it is summa-

rized as the following lemma:

Lemma 2.5.1

E(
∂ 2lN(θ0)

∂θ∂θT ) = −ϕN(θ0).

This Lemma and proof can be found in (91). Noted that from the definition of

FIM, it is a positive semidefinite symmetric matrix. If in thenon positive definite

case, its inverse means Moore-Penrose inverse. For the simplicity, in the thesis,

ϕN(θ) will be noted asϕ(θ).
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2.5.2 State of the Art

The KF technique plus ML methods may belong to the category ofMaximum Like-

lihood Estimation. Crowder (22), who was firstly proposed ML estimation, showed

MLE has the weak consistency and asymptotic normality for independent observations

if the following conditions are satisfied:

• λmin{ϕ(θ0)}→ ∞ asN → ∞, whereλmin{ϕ(θ0)} is the minimum characteristic

root of the matrixϕ(θ0) andϕ(θ0) is the information matrixE(− ∂L
∂θ∂θ T ) = ϕ

evaluated atθ0 which is the true value of the parameter vector.

• −ϕ(θ0)
−1(

∂ 2L(θ0)
∂θ∂θ T ) → I .

• Givenε > 0, ∃ δ (ε) > 0 subject to

P[|{∂ 2L(θ0)

∂θ∂θT (θ0)}−1∂ 2L(θ0)

∂θ∂θT (θ)|< ε]→ 1, as N→ ∞, when |θ −θ0| ≤ δ .

(2.28)

And in 1980, Adrian Pagan (125) proved that:

Theorem 2.5.2 For a linear stochastic differential model which can be described by

(2.17) and (2.18) with that all functions are linear, if

A(i) all random features are stationary,

A(ii) θ0 ∈ interior of Θ compact in Euclidean space

are satisfied, then

ϕ
1
2(θ̂ML −θ0) → N(0, I). (2.29)

Here the valuêθML is the estimate using Kalman Filter plus Maximum Likelihood

method. This theorem showed that the estimation based on theKF plus ML method

tends to a normal distribution when the sampling number tends to infinity. Moreover,

the mean of the estimation tends to the true value of the parameter and its variance

tends to the inverse of the information matrix for the maximum likelihood function.

At the same time, some condition which is called as non-localminimum have been

developed to guarantee global convergence for certain types of models, such as (5)

for ARMA model, (48) for ARMAX model and so on. As is observed, regarding ML
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method based on KF technique, in (125), (46), Pagan and Ghosh considered KF plus

ML parameter identification for different linear models andthey both showed under

some conditions, the consistency and normality of the estimate are hold. But so far,

the investigation for the convergence property of ML methods was only based on the

linear models or some certain input-output models. Bearingthem in the mind, in the

thesis, the consistency and normality with regard to the UKFplus ML method to handle

some nonlinear systems are derived.

In order to make the content more simplicity, the convergence property is investi-

gated for the nonlinear discrete systems. In the following parts, the system model and

the identification approach are rewritten by their discreteversion. This work is based

on the UKF plus ML method to identify some kinds of the nonlinear SS models.

2.5.3 UKF plus ML Method

For the application convenience, since most models or systems are performed in the

discrete version, the model considered here is a discrete one with noise. It is described

by the following discrete time model:

xk = F(xk−1,uk−1,θ)+ωk−1, (2.30)

wherek ∈ Z is the discrete time variable,xk ∈ X ⊂ R
n is a vector of state variables,

uk ∈U ⊂ R
m is a vector of input variables,{ωk} is ann-dimensional standard Wiener

process.θ ∈ Θ is the unknown parameter vector.

The measurement of the considered system is described by

yk = h(xk)+ εk, (2.31)

whereyk ∈Y ⊂R
m is a vector of output variables,h(·)∈R

m, {εk} is anm-dimensional

white noise process.

In order to make the parameter identification to the nonlinear system described by

(2.30) and (2.31), the UKF plus ML method is applied. It can be summarized in the

following steps.
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2.5.3.1 Parameterized State Estimation

Unscented Kalman Filter (UKF):

Initialization with: state estimationx0 and variance estimationP0.

Creating sigma-points

χi,k−1 = xk−1, i = 0
χi,k−1 = xk−1 +(

√

(n+λ )Pk−1)i , i = 1, . . . ,n
χi,k−1 = xk−1− (

√

(n+λ )Pk−1)i−n, i = n+1, . . . ,2n

where the notation follows the previous equations.

Define the weight function

W(m)
0 = λ

(n+λ ) ,

W(c)
0 = λ

(n+λ ) +(1−α2+β ),

W(m)
i = W(c)

i = 1
2(n+λ ) , i = 1, . . . ,2n

.

The prediction procedure of the UKF is

χi,k|k−1 = F(χi,k−1,uk−1,θ)

x̂k|k−1 =
2n
∑

i=0
W(m)

i χi,k|k−1

Pk|k−1 =
2n
∑

i=0
W(c)

i [χi,k|k−1− X̂k|k−1][χi,k|k−1− X̂k|k−1]
T

Yi,k|k−1 = h(χi,k|k−1)

ŷk|k−1 =
2n
∑

i=0
W(m)

i Yi,k|k−1

.

Then updating:

Pyy,k =
2n
∑

i=0
W(c)

i [Yi,k|k−1− ŷk|k−1][Yi,k|k−1− ŷk|k−1]
T

Pxy,k =
2n
∑

i=0
W(c)

i [χi,k|k−1− x̂k|k−1][Yi,k|k−1− x̂k|k−1]
T

Kk = Pxy,kP
−1
yy,k

rk = (yk− ŷk|k−1)
x̂k|k = x̂k|k−1 +Kkrk

Pk|k = Pk|k−1−KkPyy,kKT
k
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. Here the estimated variable has the following interpretation in probability.

x̂k|k−1 = E(xk | Yk−1)

x̂k|k = E(xk | Yk)

Pk|k−1 = E[(xk− x̂k|k−1)(xk− x̂k|k−1)
T | Yk−1)

Pk|k = E[(xk− x̂k|k)(xk− x̂k|k)
T | Yk)

2.5.3.2 ML Optimization

Formulating the ML function based on the previous state estimation,

L(θ ;YN) =

(

N

∏
k=1

exp(−1
2rT

k P−1
yy,krk)

√

det(Pyy,k)(
√

2π)n

)

p(y0 | θ), (2.32)

then the identification problem is to solve the following optimization problem

θ̂ = argmax
θ∈Θ

{ln(L(θ ;YN)}. (2.33)

In order for the convenience, in the following, let

lN(θ) = ln(LN(θ))

= ln(P(y0 | θ))−
N

∑
k=1

1
2
{ln(det(Pyy,k))+nNln(2π)+ rT

k P−1
yy,krk}.

(2.34)

2.5.4 Properties of UKF Plus ML Method

In this section, the boundness is considered as element boundness for vectors and el-

ement boundness for matrices with ignoring the influence of the noise. Moreover, the

boundness means the element has both lower and upper bounds.

The main theorem for the convergence of UKF plus ML method is described as:

Theorem 2.5.3 For the stochastic parameterized system which is describedby (2.30)

and (2.31), if the following conditions are satisfied

(a) Function F(·, ·, ·) and its derivatives up to second order with regard toθ are

bounded with different lower and upper bounds andθ -continuous, h(·) and

its derivatives up to second order are bounded with different lower and upper

bounds and continuous.
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(b) For the composite function h(F), there existsθ -continuous functions g1 and g2

such that

h(F(xk−1,uk−1,θ)+ωk−1) = g1(xk−1,uk−1,θ)

+g2(uk−1,θ)ωk−1,
(2.35)

and

h(F(xk−1,uk−1,θ)) = g1(xk−1,uk−1,θ). (2.36)

(c) The true valueθ0 of θ is an interior point of a compact setΘ.

then the estimation valuêθ using UKF plus ML method is consistent and asymptotic

normal, i.e., when N→ ∞, there is

θ̂N
p−→ θ0, (2.37)

and furthermore

θ̂N −θ0
d−→ N(0,ϕ−1(θ0)). (2.38)

The proof of Theorem2.5.3 is based on the Crowder’s theorem in (22) which

showed that the ML for dependent observations is consistentif three conditions are

satisfied and these conditions can be seen in previous section.

In order to make the analysis clear, boundness condition (a)is rewritten in math-

ematics. The condition tells that there exists some couplesof known boundaries

(mFi,MFi) and(mhi,Mhi) with mFi < MFi andmhi < Mhi asi = 0,1,2 such that

mFi ≤ element{F i
θ (x,u,θ)} ≤ MFi, (2.39)

and

mhi ≤ element{hi(·)} ≤ Mhi. (2.40)

Here theelement{A} means each element ofA no matterA is a vector or matrix.

In the following, for simplicity, (2.39) and (2.40) are noted asmFi ≤ F i
θ ≤ MFi and

mhi ≤ hi ≤ Mhi.

In order to prove Theorem2.5.3, firstly the optimization function need to be checked

for its derivatives up to second order with regard to the unknown parameter. Differen-

tiating lN(θ) in (2.34) with respect to one parameterθi , it gives:

∂ lN(θ)

∂θi
=

N

∑
k=1

{−1
2

tr(P−1
yy,k

∂Pyy,k

∂θi
)− ∂ rT

k

∂θi
P−1

yy,krk +
1
2

rT
k P−1

yy,k

∂Pyy,k

∂θi
P−1

yy,krk}. (2.41)
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Here, the expressions for derivatives of a symmetric matrixA(x) are used (104)

∂ (det(A(x)))
∂x

= det(A(x))tr(A−1(x)
∂A(x)

∂x
),

∂A−1(x)
∂x

= −A−1(x)
∂A(x)

∂x
A−1(x).

Since the last term of (2.41) is a scale, it equals to its trace, then

∂ lN(θ)

∂θi
=

N

∑
k=1

{−1
2

tr(P−1
yy,k

∂Pyy,k

∂θi
)(I −P−1

yy,krkr
T
k )− ∂ rT

k

∂θi
P−1

yy,krk}. (2.42)

The second order derivative is

∂ 2lN(θ)

∂θi∂θ j
= −1

2

N

∑
k=1

tr[∂ (P−1
yy,k∂Pyy,k/∂θi)/∂θ j(I −P−1

yy,krkr
T
k )]

− 1
2

N

∑
k=1

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,krkr
T
k ]

+
1
2

N

∑
k=1

tr{P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k(
∂ rk

∂θ j
rT
k + rk

∂ rT
k

∂θ j
)}

−
N

∑
k=1

∂ 2rk

∂θi∂θ j
P−1

yy,krk +
N

∑
k=1

∂ rT
k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,krk−
N

∑
k=1

∂ rT
k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
.

(2.43)

The only random variable in (2.43) is rk and from the algorithm of UKF, (2.35) and

(2.36), it can be obtained thatE(rkrT
k ) = Pyy,k, and

Erk = E(yk− ŷk|k−1)

= E{h(xk)+ εk−
2n

∑
i=0

W(M)
i Yi,k|k−1}

= E{h(xk)−
2n

∑
i=0

W(M)
i Yi,k|k−1}

= E{h(F(xk−1,uk−1,θ)+ωk−1)−
2n

∑
i=0

W(M)
i h(F(χi,k−1,uk−1,θ))}

= E{g1(xk−1,uk−1,θ)−
2n

∑
i=0

W(M)
i g1(χi,k−1,uk−1,θ)}

= 0.

(2.44)

42



2.5 Consistency and Normality

and if the measurementyk is taken as a known scale, then

∂ rk

∂θi
=

∂ (yk− ŷk|k−1)

∂θi

=
∂yk

∂θi
−

∂ ŷk|k−1

∂θi

= 0−
∂ ŷk|k−1

∂θi

= −
∂ (

2n
∑

i=0
W(M)

i Yi,k|k−1)

∂θi

= −
2n

∑
i=0

∂ [
2n
∑

i=0
W(M)

i h(χi,k|k−1)]

∂θi

= −
2n

∑
i=0

∂ [
2n
∑

i=0
W(M)

i h(F(χi,k−1,uk−1,θ))]

∂θi

= −
2n

∑
i=0

[
2n

∑
i=0

W(M)
i h′F · ∂F(χi,k−1,uk−1,θ)

∂θi
].

(2.45)

It can be observed that the random property of the first order derivative of rk with

regard toθi only comes fromχi,k−1. As a result, from the observation ofkth step, the

first order derivative ofrk with regard toθi only depends on past innovations and the

known input signal (control variable). It is the same to∂ 2rk
∂θi∂θ j

. Then it can be concluded

that the first order and second order derivatives ofrk with regard toθi are independent

with rk.

From (2.45) and the previous independency interpretation, taking theexpectation

43



2.5 Consistency and Normality

of (2.43),

E(
∂ 2lN(θ)

∂θi∂θ j
) = −1

2

N

∑
k=1

tr{∂ (P−1
yy,k∂Pyy,k/∂θi)/∂θ j [I −P−1

yy,kE(rkr
T
k )]}

− 1
2

N

∑
k=1

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,kE(rkr
T
k )]

+
1
2

N

∑
k=1

tr{P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k[E(
∂ rk

∂θ j
)E(rT

k )+E(rk)E(
∂ rT

k

∂θ j
)]}

−
N

∑
k=1

E(
∂ 2rk

∂θi∂θ j
)P−1

yy,kE(rk)+
N

∑
k=1

E(
∂ rT

k

∂θi
)P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,kE(rk)

−
N

∑
k=1

E(
∂ rT

k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
)

= 0− 1
2

N

∑
k=1

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
]+0−0+0−

N

∑
k=1

E(
∂ rT

k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
).

(2.46)

Then, using the Lemma2.5.1it can be obtained that thei j th element of the infor-

mation matrix is

ϕi j = −E(
∂ 2lN(θ)

∂θi∂θ j
)

=
N

∑
k=1

1
2

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
]+

N

∑
k=1

E(
∂ rT

k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
).

(2.47)

Moreover, in order to prove the Theorem2.5.3, the following Lemmas need to be

applied.

Lemma 2.5.4 If functions F(·, ·, ·) and h(·) are uniformly bounded, then Pk|k is uni-

formly bounded.

Proof: If F(·, ·, ·) andh(·) are uniformly bounded, from (2.30) and (2.31), all of the

state, measurement and their one step estimation are uniformly bounded. According to
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the UKF algorithm,χi,k|k−1 andYi,k|k−1 are uniformly bounded as well.

Pk|k = Pk|k−1−KkPyy,kK
T
k

= Pk|k−1−Pxy,kP
−1
yy,kP

T
xy,k

=
2n

∑
i=0

W(c)
i [χi,k|k−1− X̂k|k−1][χi,k|k−1− X̂k|k−1]

T

+{
2n

∑
i=0

W(c)
i [χi,k|k−1− x̂k|k−1][Yi,k|k−1− x̂k|k−1]

T}

{
2n

∑
i=0

W(c)
i [Yi,k|k−1− ŷk|k−1][Yi,k|k−1− ŷk|k−1]

T}−1

{
2n

∑
i=0

W(c)
i [χi,k|k−1− x̂k|k−1][Yi,k|k−1− x̂k|k−1]

T}T .

(2.48)

From (2.48), it can be seen thatPk|k is a function of the state, measurement and their

one step estimation. Since all of them are uniformly bounded, thenPk|k is uniformly

bounded.♯

Lemma 2.5.5 If condition (a) is satisfied, then Pyy,k and its derivatives up to second

order with regard toθ are bounded.

Proof:

Pyy,k =
2n

∑
i=0

W(c)
i [Yi,k|k−1− ŷk|k−1][Yi,k|k−1− ŷk|k−1]

T

=
2n

∑
i=0

W(c)
i [Yi,k|k−1−

2n

∑
i=0

W(m)
i Yi,k|k−1][Yi,k|k−1−

2n

∑
i=0

W(m)
i Yi,k|k−1]

T

=
2n

∑
i=0

W(c)
i [h(χi,k|k−1)−

2n

∑
i=0

W(m)
i h(χi,k|k−1)][h(χi,k|k−1)−

2n

∑
i=0

W(m)
i h(χi,k|k−1)]

T

=
2n

∑
i=0

W(c)
i [h(F(χi,k−1,uk−1,θ))−

2n

∑
i=0

W(m)
i h(F(χi,k−1,uk−1,θ))]

[h(F(χi,k−1,uk−1,θ))−
2n

∑
i=0

W(m)
i h(F(χi,k−1,uk−1,θ))]T .

(2.49)

Since condition (a) is satisfied, from (2.40)

mh0 ≤ h(F(χi,k−1,uk−1,θ)) ≤ Mh0, (2.50)
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it can be obtained

element{Pyy,k} ≤ (Mh0−mh0)
2. (2.51)

(2.51) meansPyy,k is bounded. For the derivatives ofPyy,k with regard toθ , from (2.49),

it can be seen that it only depends on the derivative ofh(F(χi,k−1,uk−1,θ)) with regard

to θ .

∂h(F(χi,k−1,uk−1,θ)

∂θ
=

∂h(F(χi,k−1,uk−1,θ))

∂F(χi,k−1,uk−1,θ)
·F ′

θ (χi,k−1,uk−1,θ). (2.52)

According to condition (a), (2.39) and (2.40), there exists lower and upper bounds for

the right part in (2.52), noted asmh f1 andMh f1. Performing the same procedure as the

proof for thePyy,k, it can be concluded that the first order derivative ofPyy,k with regard

to θ is bounded. Similarly, the second order derivative ofPyy,k with regard toθ can be

proved bounded as well.♯

Lemma 2.5.6 If condition (b) is satisfied, then

E(
∂ x̂k|k
∂θ

·
∂ x̂T

k|k
∂θ

) < ∞, (2.53)

and

E(x̂k|kx̂
T
k|k) < ∞. (2.54)

Proof: Using the condition (b), the conclusions can be obtained directly by the system

model equation and the definition of ˆxk|k in the UKF.♯

Lemma 2.5.7 If condition (b) is satisfied,

0 < E(
∂ rT

k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
) < ∞. (2.55)

Proof: SincePyy,k is positive definite, its inverseP−1
yy,k is positive definite as well. As

a result,
∂ rT

k
∂θi

·P−1
yy,k ·

∂ rk
∂θ j

> 0. Taking the expectation, the left inequality is proved. To
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prove the right part, firstly from the definition ofrk, it can be obtained that

E(
∂ rT

k

∂θi
·P−1

yy,k ·
∂ rk

∂θ j
)

= E(
∂ ŷT

k|k−1

∂θi
·P−1

yy,k ·
∂ ŷk|k−1

∂θ j
)

= E{
∂ [

2n
∑

i=0
W(m)

i h(F(χi,k−1,uk−1,θ))]T

∂θi
·P−1

yy,k ·
∂ [

2n
∑

i=0
W(m)

i h(F(χi,k−1,uk−1,θ))]

∂θ j
}

(2.56)

Pyy,k is positive definite and bounded, thenP−1
yy,k is also bounded. Combining with

(2.52), the three parts in the product of right part in (2.56) are all bounded, then the

right part of (2.56) is bounded. Then, the right part of (2.55) is proved. In a whole,

(2.55) is established.♯

Here a corollary can be obtained.

Corollary 2.5.8 If condition (b) is satisfied, then
∂ 2Pk|k
∂θi∂θ j

is uniformly bounded

Proof: According to the algorithm of the UKF, it can be seen that

Pk|k = Pk|k−1−KkPyy,kK
T
k

= Pk|k−1−Pxy,kP
−1
yy,kP

T
xy,k

=
2n

∑
i=0

W(c)
i [χi,k|k−1− X̂k|k−1][χi,k|k−1− X̂k|k−1]

T

−{
2n

∑
i=0

W(c)
i [χi,k|k−1− x̂k|k−1][Yi,k|k−1− x̂k|k−1]

T}

{
2n

∑
i=0

W(c)
i [Yi,k|k−1− ŷk|k−1][Yi,k|k−1− ŷk|k−1]

T}−1

{
2n

∑
i=0

W(c)
i [χi,k|k−1− x̂k|k−1][Yi,k|k−1− x̂k|k−1]

T}T

(2.57)

χi,k|k−1, x̂k|k−1 only depend on functionF(·, ·, ·) andYi,k|k−1, ŷk|k−1 only depend on

functionsh(·) andF(·, ·, ·). If differentiatingPk|k by second order with regard toθ , the

derivative only depends on second order derivative ofh(·), F(·, ·, ·) and its derivatives
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up to second order with regard toθ . Condition (b) guarantees that all of them are

bounded. As a result,
∂ 2Pk|k
∂θi∂θ j

is bounded.♯

This corollary shows that under the condition of the Theorem2.5.3, the second

derivative of the updated variance for the state is also bounded.

Theorem 2.5.9 Under the condition of Theorem2.5.3,

1
N

[
∂ 2l(θ0)

∂θ∂θ ′ +ϕ(θ0)]
p−→ 0. (2.58)

Proof: From (2.43) and (2.47),

1
N

[
∂ 2lN(θ0)

∂θi∂θ j
+ϕN,i j (θ0)]

=
1

2N

N

∑
k=1

tr[P−1
yy,k

∂ 2Pyy,k

∂θi∂θ j
(P−1

yy,krkr
T
k − I)]

− 1
2N

N

∑
k=1

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,krkr
T
k ]

− 1
2N

N

∑
k=1

tr[P−1
yy,k

∂Pyy,k

∂θ j
P−1

yy,k

∂Pyy,k

∂θi
P−1

yy,krkr
T
k ]

− 1
N

N

∑
k=1

∂ 2rk

∂θi∂θ j
P−1

yy,krk

+
1
N

N

∑
k=1

∂ rT
k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,krk

+
1

2N

N

∑
k=1

tr{P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k(
∂ rk

∂θ j
rT
k + rk

∂ rT
k

∂θ j
)}

+
1

2N

N

∑
k=1

tr(P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
)

+
1

2N

N

∑
k=1

tr(P−1
yy,k

∂Pyy,k

∂θ j
P−1

yy,k

∂Pyy,k

∂θi
).

(2.59)
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Since

E(tr[P−1
yy,k

∂ 2P−1
yy,k

∂θi∂θ j
(P−1

yy,krkr
T
k − I)])

= tr[P−1
yy,k

∂ 2P−1
yy,k

∂θi∂θ j
(P−1

yy,kE(rkr
T
k )− I)]

= tr[P−1
yy,k

∂ 2P−1
yy,k

∂θi∂θ j
(P−1

yy,kPyy,k− I)]

= 0

(2.60)

the expectation of the first term in the bracket of the right part in (2.59) is zero, then

applying Kolmogorov’s law of large numbers, the first term in(2.59) converges to zero

in probability one whenN → ∞. Similarly, in (2.59) the second and the seventh term

together, the third and the eighth terms together converge to zero as well.

Applying the independency betweenrk and its derivatives up to second order with

regard toθ , there are

E(
∂ 2rk

∂θi∂θ j
P−1

yy,krk) = E(
∂ 2rk

∂θi∂θ j
)P−1

yy,kE(rk) = 0, (2.61)

E(
∂ rT

k

∂θi
P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,krk) = E(
∂ rT

k

∂θi
)P−1

yy,k

∂Pyy,k

∂θ j
P−1

yy,kE(rk) = 0, (2.62)

and

E{tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k(
∂ rk

∂θ j
rT
k + rk

∂ rT
k

∂θ j
)]}

= tr{P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k[E(
∂ rk

∂θ j
)E(rT

k )+E(rk)E(
∂ rT

k

∂θ j
)]} = 0.

(2.63)

From (2.61), (2.62) and (2.63), the expectation of fourth, fifth and sixth terms in the

bracket of the right part in (2.59) are zero as well. Then according to the Kolmogorov’s

law of large numbers, these terms converge to zero in probability one whenN → ∞.

In all,

P( lim
N→∞

1
N

[
∂ 2lN(θ0)

∂θi∂θ j
+ϕ(θ0)] = 0) = 1. (2.64)

Then (2.58) is satisfied. ♯

Now we turn to prove the main Theorem2.5.3

Proof of Theorem 2.5.3:
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1. From (2.47), it can be observed that

ϕii(θ0) = −E(
∂ 2lN(θ0)

∂θi∂θi
)

=
N

∑
k=1

{1
2

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θi
]+E(

∂ rT
k

∂θi
·P−1

yy,k ·
∂ rk

∂θi
)}

(2.65)

Since(Pyy,k)
−1Pyy,k = Pyy,k(Pyy,k)

−1 = I , then fori = 1,2, . . . ,n, there exists

n

∑
l=1

(P−1
yy,k)il (Pyy,k)li =

n

∑
l=1

(Pyy,k)il (P
−1
yy,k)li = 1

According to (2.51), for i=1,2,. . . ,n,


















n

∑
l=1

(P−1
yy,k)li ≥ 1/(Mh0−mh0)

2

n

∑
l=1

(P−1
yy,k)il ≥ 1/(Mh0−mh0)

2
(2.66)

From Lemma2.5.5, since
∂Pyy,k

∂θi
is a symmetric matrix, it can be derived that there

exitsmp1 > 0 such that

element[
∂Pyy,k

∂θi
]2 > mp1. (2.67)

Combine (2.66) and (2.67), and sincePyy,k and
∂Pyy,k

∂θi
are both symmetric matri-

ces, any permutation is allowed for their products, there exists:

tr[P−1
yy,k

∂Pyy,k

∂θi
P−1

yy,k

∂Pyy,k

∂θi
]

= tr[P−1
yy,k

∂Pyy,k

∂θi

∂Pyy,k

∂θi
P−1

yy,k]

≥ n[
1

(Mh0−mh0)2 ·mp1 ·
1

(Mh0−mh0)2 ] > 0

(2.68)

Followed by Lemma2.5.7and (2.68), the item in the brackets of the right part

in (2.65) is positive and has a positive lower bound. Then, the whole right part

of (2.65) is tend to infinity asN → ∞. It shows that all the diagonal elements of

ϕ(θ0) tend to infinity asN → ∞. ϕ(θ0) is a symmetric positive matrix, then all

of its eigenvalues tend to∞ as well. The first condition of Crowder’s theorem is

satisfied.
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2. If condition (a) and (b) are hold, from Theorem2.2, it can be obtained that when

N → ∞,

−ϕ(θ0)
−1(

∂ 2lN(θ0)

∂θ∂θT )
p−→ I . (2.69)

The second condition of Crowder’s theorem is satisfied.

3. Considering the continuity ofθ , if all the functions in the system areθ -continuous

andθ is in its compact setΘ, then for a givenε > 0, there existsδ (ε) > 0, such

that| lN(θ)− lN(θ0) |< ε. From the condition (a), all the derivatives with regard

to θ are continuous. Then it can be obtained that function∂ 2lN(θ )
∂θ∂θ T is continuous

as well. (2.28) can be directly got by lettingN → ∞.

From the above, if the system model satisfies the conditions (a)-(c), the conditions of

Crowder’s theorem can be proved to be hold as well. Followingthe result of Crowder’s

theorem, it can be claimed that

θ̂ p−→ θ0. (2.70)

Next in order to prove the asymptotic normality, the Mean Value Theorem

f (b)− f (a)

b−a
= f ′(c) f or c∈ [a, b] (2.71)

is applied withf (θ) = l ′N(θ), b = θ̂ anda = θ0. Then

l ′N(θ̂) = l ′N(θ0)+
∂ 2lN(θ̂1)

∂θ∂θT (θ̂ −θ0) (2.72)

for someθ̂1 ∈ [θ̂ , θ0].

Since the likelihood functionlN(θ) is continuous, the maximum solution satisfies

that l ′N(θ) = 0. Moreover, whenN → ∞, since θ̂1 ∈ [θ̂ , θ0] and (2.70), it can be

obtained thatθ̂1 → θ0 and

θ̂ −θ0 = −{∂ 2lN(θ0)

∂θ∂θT }−1ϕ(θ0)ϕ−1(θ0)l
′
N(θ0). (2.73)

From (2.69), there exists−{∂ 2lN(θ0)
∂θ∂θ T }−1ϕ(θ0)

p−→ I as well. The other part in the right

side of (2.73) tends to the normal distributionN(0,ϕ−1(θ0)) according to central limit

theorem in (140) and the definition ofϕ(θ0). In all, it can be obtained that̂θ −θ0
d−→

N(0,ϕ−1(θ0)). ♯
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In order to show how to apply the Theorem2.5.3to system models, an example is

adopted in this part.

Example:

Consider a system model which is described by










xk =
θxk−1

1+x2
k−1

+ωk−1

yk = xk + εk

(2.74)

with ωk andεk are both one dimensional standard Gaussian noise, which means that

ωk, εk ∼ N(0,1). In the system, the true value ofθ is set as 1 and the initial value of

the system state isx0 = 0.1.

First, the condition of theorem2.5.3is checked.

Condition (a) Rewrite the nonlinear function in the system (2.74),

θxk−1

1+x2
k−1

=
1

1/xk−1 +xk−1
θ . (2.75)

According to the inequality of arithmetic and geometric means, we get

1/xk−1+xk−1 ≤−2 or 1/xk−1 +xk−1 ≥ 2. (2.76)

Then

−1
2
| θ |≤ θxk−1

1+x2
k−1

≤ 1
2
| θ | . (2.77)

As a result of (2.77), if neglecting the effect of the system noise and define

θ ∈ Θ whereΘ is a bounded, the state, the system function and function in

the measurement (unit function) are all bounded. Regardingthe derivatives of

functions up to second order with regard toθ , their boundness can be obtained

by calculating the deviations of the functions and applyingthe boundaries of the

states.

Condition (b) For the system model (2.74), this condition is naturally satisfied if re-

placingxk in the measurement by using the system equation.

Condition (c) If the possible setΘ is chosen as a bounded compact set inR, the

condition can be satisfied.
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From the above analysis, it can be seen that the parameter in (2.74) can be esti-

mated consistently using UKF plus ML method. The combined UKF and ML method

is simulated to make the parameter identification of the above system model. It is

assumed that the parameterθ is between 0 and 10. Here the initial value of the es-

timation is chosen as 0.1. Fig.2.3 shows 300 estimations started at 1th samples and

ended at 300 samples. For each estimation, it applied all thedata obtained to make

the parameter identification of the system. The horizontal axis is the number of the

identification, started at 1 and ended at 300. The vertical axis stands for the estimated

value. From the result, it displays that the estimated values gradually converge to the

true value 1. Moreover, it is obvious that when the number of samples that is used for

estimation tends to infinity, the estimated value will much closer to the true value of

the parameter.

0 50 100 150 200 250 300 350
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0.4

0.6

0.8
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1.4

 

 
UKF plus ML method
True Value

Figure 2.3: Estimations result forexample

Furthermore, according to the Theorem2.5.3, the variance of the estimation can be

predicted usingϕ−1
N (θ0) as its approximation. In this case,ϕ−1

N (θ0) = 0.02789 for the

estimation using 100 sampling points. If using the 50 sampling points to make the es-

timation, the variance of the identification value is 0.0352. The difference between the

variances of these two different identifications is with about 30 percent. However, the

theorem only shows asymptotic property. The more points applied, the more accurate

the result is compared with the true value and the more closerthe variance is to zero.
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This is the real case, if different largeN, for example using hundreds or thousands

sampling points, is adopted to make the estimation, the identification values are nearly

the same, and the variance are closer to zero.

2.5.5 Case Studies Using KF Based Methods

In this part, two kinds of nonlinear system models are considered. During the sim-

ulations, four KF technique based methods are implemented.Since the direct filter

methods can not lead to the good results to estimate the parameter in the diffusion

item, the system in simulation one only considers the unknown parameter in the drift

item. The simulation two will consider two parts (both driftitem and diffusion item)

parameter identification problem.

2.5.5.1 Simulation One: Classic Model

The system considered in this part can be seen as the classic model in which system

noise is considered as one simple Gaussian process, but the system model is rewritten

as the ISDE model formulation. The objective of these simulations is to make the

comparison of different KF based methods.

The system is described as:
{

dX = f (X,U,θ)dt+σdBt

Y(k) = h(X(k))+ εk

(2.78)

whereX is the system state, and it is two dimensional vector rewritten as(X1,X2)
T ,U is

the input signal,θ is the system unknown parameter,σ is a constant related to process

noise variance, andY(k) = (Y1(k),Y2(k))T is the measurement vector. Functionsf (·)∈
R

2 andh(·) ∈ R
2 are some specific nonlinear or linear functions as below:























f (X,U,θ) =

(

X2+U

2(1−θX2
1)X2−X1U

)

,

h(X(k)) =

(

X1(k)

X2(k)

)

.
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2.5 Consistency and Normality

Here Bt is a two dimensional Brown Motion, and noise in the measurement εk ∼
N(0,S) with

S=

(

0.0001 0
0 0.0001

)

.

In the simulation, parameters are set asθ = 0.5, σ = 0.1, and the initial state is

(1,1)T . The input signalU is a kind of sweeping signal which is plotted in the Fig.

2.4. The outputs is generated by simulating the predefined system and the data is

plotted in Fig.2.5.
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Figure 2.4: The inputU for 2.5.5.1

The Data used in the identification process is chosen as the continuous 100 couples

with sample interval 0.01 seconds.

For the direct methods using EKF and UKF, it need to generate an augment state to

the system. Since in the systemθ is set as a constant, the new system with the augment

state could be rewritten as:
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Figure 2.5: The outputY for 2.5.5.1















































X̃ = [X,θ ]′

˙̃X =









X̃2+U

2(1−θ X̃2
1)X̃2−UX̃1

0









dt+





σ 0
0 σ
0 0



dBt

h(X̃(k)) =

(

X̃1(k)

X̃2(k)

)

.

(2.79)

Applying EKF and UKF using the data as the previous parts to the system model,

the estimation of the augment state can be obtained. Then thelast component̃X3(k)

can be taken as the result of the parameterθ identification.

• The estimation results using EKF/UKF directly for2.5.5.1could be seen in Table

2.1.

• The two approaches are implemented under the same computational condition

(cpu: Intel Core2 Duo CPU T5900. Memory: 3GB.). The EKF basedmethod

needs 0.033732 seconds while UKF based method needs 0.081804 seconds.
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2.5 Consistency and Normality

Table 2.1: The estimation results using EKF/UKF for2.5.5.1

Approach EKF UKF

θ 0.4968 0.4989

Table 2.2: The estimation results using EKF+ML/UKF+ML for2.5.5.1

Approach EKF+ML UKF+ML

θ 0.4987 0.5003

Computing Time 4.689910 seconds 7.365839 seconds

.

The results using EKF plus ML and UKF plus ML methods are listed in Table.2.2

and Figure.2.6.

The comparison with regard to convergence of the two methodscan be judged

according to the number of iterations in solving the optimization problem required to

reach the same tolerant criteria. In the simulation, it made100 iteration steps in the

optimization and results can be seen in Figure.2.6. If the tolerant level is selected as

1.0000e− 004 in the concern, and Table.2.3 shows iteration numbers of these two

approaches.

Comparison of the Four Methods:

From the simulation tests, the following discussions couldbe made:

• Precision: It can be observed that the parameter estimated using UKF+ML based

method is the closest one to the true value than the results using the other meth-

ods. In all, regarding the precision, the order is: UKF+ML, UKF, EKF+ML and

Table 2.3: The number of required iterations for2.5.5.1

Approach EKF MLE UKF MLE

The number of the iteration 66 32
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Figure 2.6: Optimization in parameter identification usingEKF plus ML and UKF plus

ML for 2.5.5.1
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EKF methods. Since the model is a nonlinear one, the most important factor to

influence the precision is the choice of the Filter–no doubt that using UKF could

provide a more accurate state estimation. Under the condition using the same

filter technique, the method with maximum likelihood can usemore information

of the system (distribution of the noise or disturbance) than only applying KF

technique, hence it is better to use Kalman Filter method with the ML approach

to make parameter identification for some parameterized nonlinear models.

• Computation load: From the view of the computational time, under the same

conditions, it is clear that UKF based method needs more calculation power

than EKF based method does. It is because in the state estimation stage, UKF

uses a number of sigma-points which need to be generated and the Cholesky

decomposition of the covariance matrix needs to be carried out as well.

• Convergence: Regarding the convergence for ML methods, UKF+ML method

have the faster convergence property than EKF+ML. It is due to that in the state

estimation stage, UKF does not make the linearization to thenonlinear system,

while EKF makes the linearization to the original system. Inthe sense, UKF

based method can catch more properties of the system than EKFbased method.

Then, it can find the optimal solution much more quickly.

As discussed, if the Filter technique is used to deal with thecase where the diffusion

item have the unknown parameter without any other tool, the performance with regard

to the precision is too bad. Hence, in the following, the KF+ML is the main method to

handle the parameter identification problem for the ISDE model in which the diffusion

part contains the unknown parameters.

2.5.5.2 Simulation Two (Case (A) and (B)): Parameter Identification Using KF

plus ML Methods

This part, three different cases are shown to make the comparison of EKF+ML and

UKF+ML methods.

First, it will be shown that nonlinear ISDE model can deal with some kinds of the

system where the random feature can be affected by the state of the system.
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2.5 Consistency and Normality

Case A0:

This system is chosen using the so-called Cox-Ingersoll-Ross (CIR) model (124). It is

used to describe the term structure of interest rates.

{

dX = a(b−X)dt+σX
1
2dBt , X(0) = 0.1

Y = X +ωt

(2.80)

whereX is the continuous-time short-term interest rate. Many structure models can be

found using this kind of model class by setting appropriate parameter constraints (see

Chan et al., 1992) for a survey. In the test, the true parameters are set asa= 0.5,b= 1,

σ = 0.5.

According to the It ˆo Formula, let a new variableZ = 2X
1
2 , it can be obtained that

dZ =
∂2X

1
2

∂X
dX+

1
2

∂ 22X
1
2

∂X2 · (σX
1
2)2dt

= X− 1
2dX+

1
2
· (−1

2
X− 3

2) ·σ2Xdt

= (abX− 1
2 −aX

1
2)dt+σdBt −

1
4

σ2X− 1
2dt

= (abX− 1
2 −aX

1
2 − 1

4
σ2X− 1

2 )dt+σdBt .

(2.81)

From the relationship betweenZ andX, X = 1
4Z2, take place ofX in (2.81) and the

measurement in (2.80), then the transformed system model can be described using the

new state variableZ as:










dZ = (2abZ−1− 1
2

aZ− 1
2

σ2Z−1)dt+σdBt , Z(0) = 2(X(0))
1
2

Y =
1
4

Z2+ωt

(2.82)

It can be seen that the diffusion item (stochastic part) of new model (2.82) does not

depend on the new system variableZ but all the unknown parameters are not changed.

It means that to make the system identification of the original system can be accom-

plished by estimating the transformed system (2.82). Moreover, the system model

(2.82) is the common model where the state variable only affect thedeterministic part

of the system. Then different methods can be adopted to make its system identifica-

tion. This example can also be taken as one to show the merit ofusing ISDE model
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2.5 Consistency and Normality

that the ISDE model can deal with some systems with state dependent random feature

or noise.

In the thesis, the proposed UKF plus ML method is applied to make the estimation

of (2.82). Here, the data adopted is 200 points from the beginning, the step interval is

set as 0.1 second. The result is ˆa= 0.4978,b̂= 1.012,σ̂ = 0.4887. The performance of

the estimation is really nice, but the estimation for the parameter related to the random

feature has a relatively large bias due to the random noise generation.

Case A:

This example we use is the same to the example 1 in the paper (83), in which it pro-

posed a detailed algorithm using EKF+ML/MAL method to make the system identifi-

cation for the ISDE equations. The system is described as

d





X1

X2
X3



=







VX1− UX1
X3

−VX1
Y +

U(10−X2)
X3

U






dt+





σ1 0 0
0 σ2 0
0 0 σ3



dBt ,

where(X1,X2,X3)
T is the state of the system, and

V = θ
X1

0.5X2
2 +X2+0.03

,

θ is the system parameter in the drift term of the SDE,U is the input variable.σ1,σ2,σ3

are unknown parameters in the diffusion term.

The measurement equation is given as




Y1

Y2
Y3





k

=





X1

X2
X3





k

+ εk,

where(Y1,Y2,Y3)
T is the measurement of the state, andεk ∼ N(0,S) with

S=





S11 0 0
0 S22 0
0 0 S33





andS11 = 0.01,S22 = 0.001,S33 = 0.01.

The true parameters are assumed asθ = 1, σ1 = σ2 = σ3 = σ = 0.1, sampling

interval is chosen as 0.01s, and the initial state is(1,0.24495,1)T. TheU is a kind

61



2.5 Consistency and Normality

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.7: The input for the caseA
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Figure 2.8: The measurement(Y1,Y2,Y3)T for the caseA.
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Table 2.4: The estimation results for caseA

Approach EKF MLE UKF MLE

θ 1.0422 0.9983

σ 0.0935 0.0984

Table 2.5: The number of required iterations for caseA

Approach EKF MLE UKF MLE

The number of the iteration 73 53

of sweeping signal which is plotted in the Fig.2.7. A set of outputs (100 samples) is

generated by simulating the predefined system and the data isplotted in Fig.2.8.

Both the EKF and UKF plus ML methods are examined and comparedin the fol-

lowing two scenarios.

1. Normal test, i.e., the data used for identification is generated from thetrue sys-

tem, which is plotted in Fig.2.7and Fig.2.8.

• Precision:

The estimation results are shown in Table.2.4. It can be observed that the

parameter estimated using UKF based method is closer to the true value

than the situation using EKF based method. This is because UKF does not

apply linearization during the state estimation stage. Some experimental

results indicate that UKF could yield results comparable toa third order

Taylor series expansion of the state-model, while EKF of course only is

accurate to a first order linearization.

• Convergence issue.

The tolerant level is selected as 1.0000e−004 in our concern, and Table

2.5shows iteration numbers of these two approaches. It can be noticed that

the UKF plus ML method converges faster than EKF based methoddoes

for this example. The fast convergence also comes from the fact that UKF

based method does not make linearization in the state estimation. It can

catch more properties of the system than EKF based method.
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Table 2.6: The estimated parameter for robustness test in caseA

Approach EKF+ML UKF+ML

θ 1.1325 1.2578

σ 0.1082 0.1115

• Computation load.

The two approaches are implemented under the same computational con-

dition (cpu: Intel Core2 Duo CPU T5900. Memory: 3GB.). The EKF

based method needs 4.272164 seconds while UKF based needs 8.672853

seconds. From the computation point of view, it is clear thatUKF based

method needs more calculation power than EKF based method does. The

most computationally demanding part of UKF is the matrix square-root

used to calculate sigma points. Matrix diagonalization or Cholesky factor-

ization of the covariance matrix can be used to solve this problem, but still

need heavier computation load. A more direct square root approach, prop-

agating only the square-roots of the covariance matrices, may offer higher

computationally efficiency. Merwe proposed an approach fordoing this in

(109).

2. Robustness test, i.e., the data are generated from the system in which there

exists the modeling error.

Here the modeling error concerned only happens in variableV. The data is

generated according to the newV, noted asV1,

V1 = θ
X1

0.55X2
2 +X2+0.03

.

However, the following estimation still uses the original system model. The

convergent values are listed in Table.2.6.

It can be observed both results have some deviations compared with the ”true”

identification. Here the criterion to evaluate the robustness is made as:

la =
| â− âe |

â
×100%,
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2.5 Consistency and Normality

whereâ is the nominal result of the identification while ˆae is the result based on

the modeling error data (assume a is an unknown parameter of the system). The

lessla is, the more robust the method is.

According to this criterion,

• For the estimation ofθ ,

{

lθ = 0.0866, f or EKF +ML method.

lθ = 0.2599, f or UKF +ML method.

• For the estimation ofσ ,

{

lσ = 0.1572, f or EKF +ML method

lσ = 0.0853, f or UKF +ML method.

The results evidently show that UKF based method has larger deviations than

EKF based method. This means that the UKF based method is moresensitive

than EKF based method in the deterministic parameter identification regarding

the modeling error. But regarding the random part, the EKF based method is

more sensitive. This is because the model error only happened in the determinis-

tic feature of the system without in random feature. Since the UKF based method

can catch more information of the systems, it caused different comparisons for

the two parts parameter identification.

Case B:

Two scenarios are investigated in this part: nonlinear systems described as a poly-

nomial format and a division format. For simplicity, all thesystems are simulated

in one time unit and the parameter identification is based on 50 continuous sampling

points with uniform time intervals of 0.01.

The system is generally described as:

dX = f (X,U,θ)dt+





σ1 0 0
0 σ2 0
0 0 σ3



dBt

Yk = h(Xk)+ εk
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Table 2.7: The estimation result for caseB-1

Approach EKF+ML UKF+ML

θ 0.7729 0.8012

σ 0.1056 0.1045

Table 2.8: The number of required iterations for caseB-1

Approach EKF MLE UKF MLE

The number of the iteration 53 71

whereX is the system state, and it is rewritten as(X1,X2,X3)
T , U is the input vari-

able. θ is the system unknown parameter, and there isσ1 = σ2 = σ3 = σ . Y(k) =

(Y1(k),Y2(k),Y3(k))T is the measurement,f (·) ∈ R
3, h(·) ∈ R

l , l ≤ 3 are some specific

nonlinear or linear functions.

B-1: The functionf (·) is a nonlinear polynomial:

f (X,U,θ) =





X2
2X1+UX1
X3+UX2

θX1(X2+X3)+U





and the measurement equation is

Y(k) = X1(k)+ εk

with εk ∼N(0,0.1). Here the true values are thatθ = 0.8, σ = 0.1, and the initial state

is (1,0,1)T . It should be remarked that the system states become partially measurable,

i.e., only X1 is measured, while in the previous cases, all system states are directly

measured. In this case, the input variableU is set asU(t) = 0.5sin(8t) and the output

signal is obtained by simulating the system.

Similarly as what we do for the former cases, the estimated and computing results

are listed in Table.2.7and Table.2.8.

• Parameters estimation (Table.2.7)

• Number of iteration (Table.2.8)
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Table 2.9: The estimation result for caseB-2

method EKF UKF

θ 0.7881 0.4883

σ 0.0950 0.0973

Table 2.10: The number of required iterations for caseB-2

Approach EKF MLE UKF MLE

The number of the iteration 82 49

• Computation load.

Here the condition of the computation is the same to the previous case. The EKF

method need 2.376364 seconds while UKF need 6.419088 seconds.

B-2: The functionf (·) has simple divisions. The only difference to the caseB-1 is

that the functionf (·) converts to the following function which has simple divisions.

f (X,U,θ) =





X2
2/X3+UX1/X3

θX3/X2
X1+U





Here the true value ofθ is 0.5, initial state is(1,1,1)T and other variables are just

the same toB-1.

Repeat the same process and the results are shown in the belowtables (Table.2.9

and2.10).

• Parameters estimation (Table.2.9)

• Number of iteration (Table.2.10)

• Computation load.

The EKF based method needs 3.666436 seconds while UKF based method needs

7.084774 seconds under the same computing condition.
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In the caseB, the robustness test is not listed because the results have the same

conclusion with caseA.

discussion:

The two case studies of caseB showed almost the same results as situation with case

A. In the polynomial case, the two estimation results illustrate that UKF based method

has a little better performance than EKF based method, if thecomputation load is

not a concern. Regarding to the converging property, the EKFbased method is a

slightly better than UKF based method. However, regarding the division case, the

UKF based method is obviously better than EKF based method without concerning of

computational loads. And UKF based method converges much faster than EKF based

method as well. It could be concluded that the UKF based method is better than EKF

based method for systems with rather complex nonlinearity.

2.5.5.3 Conclusion for Studies

Through the above studies, the characteristics of both EKF and UKF based methods

are illustrated. In general, the UKF based method can provide more accurate result

than EKF based method. Meanwhile, the UKF based method also provides faster

converging rate than EKF based method although there are some special cases. It

is due to that the EKF just picks up the first order term throughlinearization of the

nonlinear system and drops all items higher than the first order. If the influence of

the higher order items can not be ignored in the system, the EKF may provide a poor

performance in terms of the accuracy. In contrast, the UKF uses sigma-points that

are dedicatedly chosen. S. Julier indicated that UKF yieldsresults comparable to a

third order approximation of Taylor expansion (73). As a result, it can provide a better

estimation to the state of the system. That could be the reason why UKF based method

is generally better in parameter estimation. Furthermore,the studies suggest to use

UKF plus ML method to make the parameter identification for some nonlinear systems.

The payoff for better performance of the UKF based method , including combining

with ML method, is the computational load. The UKF needs to handle the Cholesky

decomposition and calculation based on double-sized sigma-points. Moreover, it has

been found that the UKF based method is more sensitive than EKF based method

regarding to potential modeling errors.
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2.6 FDD Application

In this section, the previously proposed model and the method are applied to Fault

Detection and Diagnosis (FDD) procedure based on the ISDE model formulations of

the systems.

2.6.1 The ISDE Model with Parametric Fault

Consider the following nominal ISDE model, which is a parametric one

dX(t) = g1(X(t),u(t), t,θ)dt+g2(t,θ)dBt, (2.83)

with the measurement

Y(k) = h(X(k), t(k))+ εk, (2.84)

where the definitions of the variables are the same as previous sections. Here assum-

ing that the fault is a parametric fault, i.e., if the fault happens, it only influence the

parameterθ of the systems. Supposeθ changes from the normal valueθ0 to the faulty

valueθ1 if fault happens.

According to the fault characteristics, if the fault happens, the change of the system

could be described as:

d f(t) = [g1(X(t),u(t), t,θ1)−g1(X(t),u(t), t,θ0)]dt+[g2(t,θ1)−g2(t,θ0)]dBt.

whered f(t) describes the change of the system, andd f(t) = 0 when no fault happens.

Note that here the diffusion coefficients of the system and the system change consid-

ered when the fault happens, is independent on the state. Because if considering the

state depended diffusion item, It ˆo Formula can simplify the model to one without state

depended diffusion model.

2.6.2 FDD Methods

FDD methods for the system need to consider the following problems:

1. How to make fault detection?

2. If the fault happens, how to evaluate the fault?
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Generally, for the system with possible parametric fault, the previous two prob-

lems can be considered and accomplished together, if the parameter identification of

the fault parameterθ can be made in an online manner. In this way, if the FDD proce-

dure has detected that the parameter changed deviating fromthe normal value at some

time, it can be claimed that the fault happened and of course,the change between the

normal value and the current value can be used to evaluate thefault. Sometimes in

order to deal with the fault and maintain the system running not too bad, the informa-

tion of the states is also quite important for system reconfiguration. For this reason,

the fault estimation often accompanies with the state estimation (64). Thereby, in the

thesis, the Joint Parameter Identification and State Estimation (JPISE) technique for a

FDD design for a class of ISDE modeled systems is considered.The considered faults

are types of abrupt parametric faults, which indicates thatsome system parameters will

immediately deviate from their normal values if faults happen. The concerned system

parameters consist of deterministic parts as well as those describing the stochastic fea-

tures in the system, such as the new covariances of the process noise and measurement

noise.

The JPISE problem is a nonlinear problem, no matter the considered system is a

linear one or not (59). In general, the techniques to solve a JPISE problem can be

classified into two categories. The basic idea of one category, it is named as state

estimation approaches, which is to extend the unknown system parameters as addi-

tional system states, so that an augmented state space modelcan be achieved. Then the

Extended Kalman Filter (EKF) technique is used to estimatedthe augmented system

states, which includes the original system states and the unknown system parameters

(18). The parameter identification and state estimation can be simultaneously obtained

at each sampling step. However, this kind of approach gives rise to explicit multiplica-

tion of states by other states, meanwhile it is well known that the EKF is a kind of first-

order approximation and no guarantee for global convergency (59). Another category

for solving JPISE problem is named as ”bootstrap” methods by(59). Within this type

of method, the parameter identification and state estimation are carried out sequently.

Either the (parameterized) state estimation is first obtained and then substituted into

a parameter identification process, orvice versa. The Kalman Filter with Maximum

Likelihood (KF-ML) method (83; 152) is a typical approach in this category. However,

this category also suffers some potential drawbacks, such as non-convex optimization
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problem and suboptimal solution. Nevertheless, this kind of bootstrap method seems

more flexible than the state estimation methods, e.g., beingable to directly deal with

identification of nonlinear system with unknown stochasticcharacteristics. Thereby in

the following, the previous KF-ML method is applied to deal with a JPISE problem

for a fault-tolerant space robot system which is the same to the system in (169).

The parameter identification using EKF plus ML and UKF plus MLmethods to the

ISDE model is first to use the input and output data to make state estimation, then form

a ML function based on the result of the state estimation and solve the optimization of

the ML function. It takes the optimal solution as the parameter estimate. It is only a

off-line method. If the KF plus ML methods can be applied to FDD, it need to extend

to an on-line version because the fault parameter must be investigated all the time to

grantee that if the fault happened, it could be detected immediately.

In the following, the moving windows technique is adopted toextend the KF plus

ML methods to an online manner to fit for the FDD demanding.

2.6.3 Entire FDD Procedure

Before the process is up to run, the length of one moving window N need to be chosen

at first. Then based on the input and output data, the estimation procedure can be

performed in an on-line way. When a new couple of data is collected, the latestN

couples of input and output data are used to make the parameter identification of the

system. The result of the identification is taken as the estimation of the fault parameter.

Takeθ̂ as estimation ofθ , then the predefined threshold method or some statistical

methods such as cusum method can be used to determine whetherthe fault happened

or not (178). Here, for the simplicity, the deterministic threshold method is applied,

i.e., if the value ofθ̂ is within 10% deviation to the normal valueθ0, the system is

claimed running normally. Otherwise, it will be claimed that a fault has happened.

Associated with the fault detection, state estimation can be obtained as well as a by-

product of the FDD procedure. It can be got by substituting the estimated parameter

value θ̂ to the parameterized state estimation, the state estimation x̂k(θ̂) and Pk(θ̂)

using KF method are then obtained. Sometimes if the state estimation is not smooth

enough, Kalman Smoother technique can be adopted to make theestimation more
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Figure 2.9: The scheme using KL and ML method

accurate. The Kalman Smoother proceeds backward in time (18) and it is summarized

as:

Initial with x̂k(θ̂) andPk(θ̂), and let j = k−1,k−2, . . . ,k−N+1, there is:

L j(θ̂) = Pj(θ̂)ĀT(θ̂)P−
j+1(θ̂),

x̂ j |k(θ̂) = x̂ j(θ̂)+L j(θ̂)(x̂ j+1|k(θ̂)− x̂−j+1(θ̂)),

Pj |k(θ̂) = Pj(θ̂)+L j(θ̂)(Pj+1|k(θ̂)−P−
j+1(θ̂))LT

j (θ).

(2.85)

Summarizing the above steps for FDD, the entire scheme is illustrated in Fig.2.9.

Suppose the procedure begins at k-th samples:

• Employ KF technique to make state estimation (mean and covariance), it need

to determine the certain specific KF format according to the specific form of

the system, such as KF for linear systems, EKF or other nonlinear filters for

nonlinear systems.

• Form the parameterized ML function based on the results fromprevious state

estimation.

72

Chapter2/Chapter2Figs/scheme.eps


2.7 Cases Study for a Space Robot System

• Solve the ML optimization problem, and obtain the optimal solution θ̂ as the

estimation of fault parameter.

• Compare the identification result with the value under the normal situation sys-

tem and make the fault detection decision using the predefined deterministic

threshold.

• Substitute the identified parameter into parameterized KF solution, and then ob-

tain the state estimation. If necessary, apply KS for smoothing purpose.

• Repeat the former steps when the new couple of input and output data is ob-

tained.

Note that the first three steps are just the parameter identification using KF tech-

nique plus ML method.

2.7 Cases Study for a Space Robot System

In order to show the performance of the proposed method, a case of space robot is

studied with different fault scenarios.

2.7.1 The ISDE Model Formulation

The space robot system used in (169) is considered here, the process could be seen in

Fig. 2.10. In the normal situation, system parameters are listed in Table 2.11, and the

dynamic of the normal system is described by:

N2ImΩ̈+ Ison(Ω̈+ ε̈)+β (Ω̇+ ε̇) = Te f f
j , (2.86)

Ison(Ω̈+ ε̈)+β (Ω̇+ ε̇) = −Tde f. (2.87)

The actuator part including a DC-motor and a gear box is simplified asTe f f
j = NTm

andTm = kt ic. TorqueTde f due to the deformed spring is described byTde f = cε.

In the actual system, the controllable input is the motor currentic, and the measured

signals are encoder outputΘ = Ω+ε and tachometer outputNΩ̇. The original system
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Figure 2.10: The process of a robot space referred (169)

was a SIMO system. Define state vectorX = [Ω,Ω̇,ε, ε̇]T , output vectorY = [Ω +

ε,NΩ̇]T .

The state-space model of the system is obtained as follows:

{

dX(t) = [AX(t)+BU(t)]dt+aσdBt

Y(t) = CX(t)+ωt
(2.88)

where the system matrices are:

A =











0 1 0 0
0 0 c

N2Im
0

0 0 0 1

0 − β
Ison

−( c
N2Im

+ β
Ison

) − β
Ison











, B=











0
kt

NIm
0

− kt
NIm











,C=

[

1 0 1 0
0 N 0 0

]

,.

HereBt is a two dimensional Brown Motion,aσ is the item related to the covari-

ance of the noise in the process, wherea= 0.001 andσ is the parameter in the diffusion

item. The noise in the measurementωt is the two dimensional Gaussian processes with

means0 and covariancesR. Here,

R=

[

0.0012 0
0 0.0012

]

.

2.7.2 Test Conditions

In the following situation, the different scenarios are considered to the fault detection

and state estimation. In the model, the whole time the systemrunning is 31.4 seconds

and at the 10th second the fault happened. The initial condition for the system is
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Table 2.11: System parameters of the space robot system referred in (169)

Symbol Description Unit

N=-260.6 Gear-box ratio –

Im = 0.0011 Inertia of the input axis kgm2

Ω Joint angle of the internal axis rad

Ison= 400 Inertia of the output axis kgm2

Te f f
j Torque of effective joint input Nm

ε Joint angle of output axis rad

kt = 0.6 Motor torque constant N/%

ic Motor current Am

β = 0.4 Damping coefficient N/%

c = 130 000 Spring coefficient N/%

Tde f Deformation torque of gear box Nm

Tm Motor torque Nm

x(0) = [0.01,0,0,0]T. The test is made by using two different kinds of input signals,

i.e., piecewise constant input and sinusoid input with different frequency:

u1(t) =







0.1, f or t < 5s
−0.5, f or 5s≤ t < 20s
0.2, f or others.

u2(t) = 0.5sin(0.8t).

u3(t) = sin(0.2t).

u4(t) = 0.8sin(1.5t).
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2.7.3 Fault in the Deterministic Part

2.7.3.1 Case (C): Fault In the Actuator Part

In the first, the fault considered only takes place in the deterministic input item. When

the fault happens, it is assumed to only disturb the motor constant. Fault parameter is

assumed asθ and motor toque constant is taken asθkt .

In the case, the normal system and faulty system can be written as:

{

dX(t) = [AX(t)+B(θ)U(t)]dt+aσdBt

Y(t) = CX(t)+ωt
(2.89)

with B(θ) = θB and

θ =

{

θ0, Normal system,

θ f , Faulty system.
(2.90)

In the simulation, the data is generated by settingσ = 1 is a constant, the values of

the parameter areθ0 = 1 andθ f = 1.5, choose the sample interval as 0.1 seconds and

the initial value of theθ is 0.9. The simulated output is plotted in Fig.2.11

The FDD procedure and state estimation are performed using the proposed KF+ML

method. For this case, the system is a linear one, so Kalman Filter is applied for

KF stage. The estimation is implemented with different detection windows (N) and

different inputs. The identification of the fault parameterneed to wait for the firstN

outputs at the beginning. Before the time when enough data iscollected, there are two

methods to cope with the estimation. One is to make the estimation based on all the

data obtained at sampling time. The other one is to set the fault parameter estimated as

the initial value and state estimation is based on all the sample points before reaching

N-th point. In the thesis, the later one is applied in order to show the performance in

detail. As soon asN sample points are collected, a moving window with the length

of N is used to on-line update the estimation according to the previous KF plus ML

algorithm.

Piecewise Constant Input
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Figure 2.11: Output for case (C) with u1
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Using the inputu1 and different windows lengths, the simulated output is plotted

in Fig 2.11and the estimation results could be seen in Fig.2.12, Fig. 2.13, Fig. 2.14,

and Fig.2.15.

0 5 10 15 20 25 30 35
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time

V
al

ue
Plot of the identification

 

 

Estimated value
Actual value

Figure 2.12: Parameter identification for case (C) with u1 andN = 30

From the tests, we could get the following results:

• Fault detection:

As shown in Fig.2.12and Fig.2.14, the algorithm needs to wait for the firstN

points, thereby the estimated parameter just remains at theinitial value in the

beginning. Before 10th second, the estimated fault parameter is much close to

1 which is the normal value of the system. At the 5th second, the estimated

value has a small deviation to 1 since the effect of the input signal is changed to

the different direction. When the fault happened at 10th second, the estimated

value has a large jump or deviation at the beginning period. After a while, the

estimated values converge to some steady-state values which close to the real

system values. At the moment, it is believed that the fault has happened and
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Figure 2.13: State estimation error for case (C) with u1 andN = 30
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Figure 2.14: Parameter identification for case (C) with u1 andN = 5
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Figure 2.15: State estimation error for case (C) with u1 andN = 5

its magnitude is obtained as well. Around the 20th second, a relatively large

deviation can be seen and it is due to the change of the input signal. During

almost all the time, the error for the fault identification iswithin 4%. Regarding

the identification results, if the predefined threshold is already set before the

detection, such as 10% from the normal value, it can be claimed that the fault

has happened after approximately 11th second.

• State estimation:

Fig. 2.13and Fig.2.15show the errors of the state estimation and they are ex-

pressed in percentage. Most of state estimation errors are within 1%. But as

same as the phenomenon observed in the fault detection results, at those inter-

vals and times when the condition of the system/input is changed, the estimations

may have a relatively large temporal oscillations. Moreover, when the system

tends to stop, sometimes there may be a large deviation to theestimated value.

• Length of Moving Windows:

In the test, moving windows with 5 points and 30 points are considered. From the
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parameter identification results, 30 points could give us a much better estimation

of the parameter at the cost of the detection time. But 5 points, not better than

the 30 points in the accuracy, but it saves much time in the procedure. Further,

it can react to the fault much more quickly. Meanwhile, for the state estimation

the performance of the two different kinds of sample points is nearly the same.

Sinusoid Input

In this part, the input variable is changed, 3 sinusoid inputs with different frequen-

cies and amplitudes are adopted, that are the previous inputs u2, u3 andu4. Here we

also used two different lengths of moving windows, 5 and 30.
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Figure 2.16: Output for case (C) with u2

From the output figures, the difference between 3 inputs is evidence since the fre-

quencies of these inputs are different. Even it could be guessed from the output which

input it used.

The comparison : It could hardly see the difference from the identification using 30

points, all of them are quite fine. But from the identificationusing 5 points, the

difference is obviously displayed. We could see the periodical small bias from

the results. It could be seen that these small biases emerge nearly 4 seconds
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Figure 2.17: Parameter identification for case (C) with u2 andN = 30

0 5 10 15 20 25 30 35
−5

0

5
x 10

−4 smooth difference in state 1

0 5 10 15 20 25 30 35
−0.1

0

0.1
smooth difference in state 2

0 5 10 15 20 25 30 35
−10

0

10
smooth difference in state 3

0 5 10 15 20 25 30 35
−500

0

500
smooth difference in state 4

Time

V
al

ue

 

 

difference

Figure 2.18: State estimation error for case (C) with u2 andN = 30
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Figure 2.19: Parameter identification for case (C) with u2 andN = 5
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Figure 2.20: State estimation error for case (C) with u2 andN = 5
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Figure 2.21: Output for case (C) with u3
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Figure 2.22: Parameter identification for case (C) with u3 andN = 30
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Figure 2.23: State estimation error for case (C) with u3 andN = 30
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Figure 2.24: Parameter identification for case (C) with u3 andN = 5
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Figure 2.25: State estimation error for case (C) with u3 andN = 5
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Figure 2.26: Output for case (C) with u4
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Figure 2.27: Parameter identification for case (C) with u4 andN = 30
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Figure 2.28: State estimation error for case (C) with u4 andN = 30
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Figure 2.29: Parameter identification for case (C) with u4 andN = 5
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Figure 2.30: State estimation error for case (C) with u4 andN = 5
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one time foru2 case, only one time foru3 case and more frequently foru4 in

the whole procedure. From the results for the cases usingu2 andu3, the bias

always happens at peak time of the input. It can be concluded that the input

frequency could influence the parameter identification periodically. But the am-

plitude could not disturb the estimation. Since the influence is not huge, the state

estimations are nearly the same here and the performance is quite good in terms

of the precision.

2.7.3.2 Case (D): Fault in the state item

In this part, we consider the fault only happens in the state item, that means it could

change the part of system which explicitly has the states. Inthe model, it reflects in the

model that the matrixA changes if the fault happens. Follow the same procedure as in

case(C), the normal and faulty system can adopt the model:

{

dX = [A(θ)X +BU]dt+aσdBt

Y = Cx+ωt
(2.91)

with

θ =

{

θ0, Normal system,

θ f , Faulty system.

whereA(θ) = θA. Other variable is defined as the model (2.74).

The test is using time interval as 0.05 second, inputu1 and the length of moving

windows with 30. The fault variable is making asθ0 = 1 andθ f = 0.8 and the initial

value of the estimation is made as 0.9.

The output is seen in Fig.2.31.

The fault variable identification could be seen in the following Fig. 2.32. Error

for the state estimation is plotted in Fig.2.33. From the figures, it can be seen that if

the fault happened in the state part, it can affect the systemmuch more hugely than

the fault happened in the input item. But the estimation result shows nearly the same

comparison.
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Figure 2.31: Output for case (D) with u1
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Figure 2.32: Fault detection for case (D) with u1 andN = 30
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Figure 2.33: State estimation error for case (D) with u1 andN = 30

2.7.3.3 Case (E): Fault in the all deterministic items

This part we combine the former two deterministic fault scenarios, that is the fault

could influence both the input item and the state item. The model can be described as:

{

dX = [A(θ)X +B(θ)U ]dt+aσdBt

Y = CX+ωk

(2.92)

whereA(θ) = θAA andB(θ) = θBB, and let

θ = [θA θB]T =

{

[θA0 θB0]
T , Normal system,

[θA f θB f ]
T , Faulty system.

(2.93)

When the system is running without fault, all the system matrices areA(θA0) = A and

B(θB0) = B. If the fault happens,θA f = 0.9 or 0.8 andθB f = 0.2 or 0.5.

We make tests for the following 4 situations.

E-a. u1, θA f = 0.8, θB f = 0.5 and 30 sample points.

E-b. u2, θA f = 0.9, θB f = 0.2 and 30 sample points.

E-c. u3, θA f = 0.9, θB f = 0.2 and 5 sample points.
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E-d. u4, θA f = 0.9, θB f = 0.2 and 10 sample points.
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Figure 2.34: Output for case E-a.

The output data and estimation results for Case E are showed in Fig. 2.34–Fig.

2.45.

2.7.3.4 Results Analysis

Fault detection and state estimation are implemented usingKalman Filter technique

plus Maximum Likelihood method to a class of control system which is modeled by

the ISDE equation. In the system, the fault is considered to be parametric one, that is

if the fault happens, some of the system parameters will be changed. When the fault

only affect the deterministic part of the system (drift itemfor the ISDE equation), the

following properties can be obtained for the method.

• Precision:

Regarding the accuracy performance of the method, both the identification of

the fault parameter and state estimation are quite fine except for the data col-

lected period. When the fault happens, it also need some timeto recover to the

steady identification. The method can accurately make the estimation of the fault

parameter and state.
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Figure 2.35: Fault detection for case E-a.
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Figure 2.36: State estimation error for case E-a.
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Figure 2.37: Output for case E-b.
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Figure 2.38: Fault detection with case E-b.
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Figure 2.39: State estimation error for case E-b.
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Figure 2.40: Output for case E-c.
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Figure 2.41: Fault detection with case E-b.
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Figure 2.42: State estimation error for case E-b.
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Figure 2.43: Output for case E-d.
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Figure 2.44: Fault detection for case E-d.
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Figure 2.45: State estimation error for case E-b.

• Length of Moving Windows:

In the simulation, only two kinds of length for moving windows are adopted, 5

and 30. In general, the length of moving windows should have alower limit used

in the first stage of KF technique, if the used data is too little the state estimation

will be bad. If the windows length is beyond the low limit, themore it is, the

better the estimation is for the time invariant system. But for the fault control

system, it is a time varying system, the estimation using much data (long win-

dows) would lead to the results losing time varying property. Moreover, without

considering the accuracy in the fault estimation, one long windows means large

time delay for the fault detection. It is a dilemma that the longer windows we

use, the more continuous estimation is obtained, but the more time delay in the

fault decision. It is important to find a balance to determinethe length of moving

windows.

• Input Signals:

The input signals can also affect the estimation results forthe system. From the

estimation using 5 points as the length of moving windows, itis more obvious, if

98

Chapter2/Chapter2Figs/ABSdifs4_0902_10.eps


2.7 Cases Study for a Space Robot System

the input have seriously changed, such as direction change,sudden jump, etc. or

periodically changed related with the frequency, the estimation show the same

properties with it, i.e., the performance of the estimationcan be affected by the

characteristic and frequency of the input signals.

2.7.4 Case (F): Fault in both deterministic part and random part

In this part, the system considered that if the fault happens, it can affect both deter-

ministic part and random part. For the simplicity, here the fault in deterministic part is

only considered to happen in the input item.

In the case, the normal system and faulty system can be written as:

{

dX(t) = [AX(t)+B(θ)U(t)]dt+aσdBt

Y(t) = CX(t)+ωt
(2.94)

and

Θ = [θ σ ]T =

{

[θ0 σ0]
T = [1 1]T , Normal system,

[θ f σ f ]
T , Faulty system.

(2.95)

Note that in this model, the parameterσ in the diffusion part is not a constant but an

unknown parameter related to the fault likeθ in the drift part need to be identified. The

fault detection need to be performed by identifyingΘ = [θ σ ]T .

Two different fault scenarios are considered in the following.

Same fault in both deterministic part and random part:

At first, the fault is considered the same in both deterministic part and random part.

The values in the data generation are set asθ f = 1.5, σ f = 1.5.

F-a. One parameter method: In this part, since the fault influencethe deterministic part

and random part in the same way, the two parameters in them canbe handled by

only one parameter. Hence, the fault variable both in the deterministic part and

random part could be considered as only one parameterβ , whereβ0 = 1 and

β f = 1.5. In the simulation, the input variable is usingu2. The length of moving

windows is set as 30 samples. The output can be seen in Fig.2.46and results of

the fault identification and state estimation are plotted bycorresponding figures.
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F-b. Multi-parameters method: Considering the system model in case F-a., it is to

make the parameter identification of(θ ,σ) although these two parameters change

in the same way. The results are not listed but there is a little difference to the

case F-a that the performance is not so better than it.
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Figure 2.46: Output for case F-a.

Different fault in both deterministic part and random part:

3 different tests are made in this part. The input variable isusingu1.

F-c. θB = 0.5, σ f = 1.5.

F-d. θB = 0.5, σ f = 10.

F-e. Another test–using the real system (2.94) with (2.95) to generate the data but

for the detection using deterministic fault model (2.89) with (2.90), θB = 0.5,

σ f = 10.

The output signal and estimation results of Case F-c, F-d, F-e could be seen in the

following figures Fig.2.49–Fig. 2.57.

Results analysis:
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Figure 2.47: Parameter identification for case F-a.
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Figure 2.48: State estimation error for case F-a.
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Figure 2.49: Output with case F-c.
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Figure 2.50: Fault detection with case F-c.
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Figure 2.51: State estimation error for case F-c
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Figure 2.52: Output with case F-d
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Figure 2.53: Fault detection with case f-d
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Figure 2.54: State estimation error for case F-d
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Figure 2.55: Output with case F-e
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Figure 2.56: Fault detection with case F-e
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Figure 2.57: State estimation error for case F-e

Parameter identification: The results of the parameter identification show that only

the deterministic part of the fault are estimated accurately for all the cases. For

the random part of the fault, the precisions of case F-a and F-b are better. Esti-

mations under the cases F-c and F-d are bias from the true values. Case F-e is

the worst, the result is even not convergent. From the results, it can be observed

that if the parameter in the random part is considered to the identification, the

accuracy of the identification of the deterministic will be better than that without

considering the parameter in the random part. But for the estimated parameter

in random part, the performance will depend on the system itself. From the fault

detection, the method with the model can detect both part of the fault on time

without considering the sample delay. This phenomenon is generated since the

random property of the noise sometimes destroys its main property. However, it

can still diagnosis the fault accurately in some senses witha little bias for the pa-

rameter estimated although estimation for the random part is not good for some

cases.

Sample points: In this section, the cases using different sample points (moving win-
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dows) are not listed in the thesis. This is because its effectshows the same phe-

nomenon as the previous tests. For example, 30 points estimation is much better

than the 5 points estimation with regards to the stability, continuous property. It

is really the case that the more points applied, the more stable and continuous

the estimation was. However, the cost of more sample points used is more time

delay to detect whether the fault happened.

State estimation: It is obvious that for all the cases, the state estimations are quite

good. But for any of these case, at some initial time the estimation is bad, which

is because the process need some time to catch up the propertyof the system.

After a short while, the estimation shows good performance.Then when the

fault happens, the estimation is destroyed. It need some time to recover to the

good level for the estimation. Sometimes, at the end of the running time, there

may be several estimation which is not good.

2.8 Conclusion

A system identification method with state estimation using UKF-ML technique for

ISDE model is proposed. The KF technique is firstly applied toget a parameterized

state estimation. Secondly, the ML function is formed usingthe parameterized state

estimation and the noise distribution knowledge. Then, an optimization problem of the

ML function needs to be solved and the optimal value is taken as the estimated system

parameter. The method is proved to be consistency and normality for the considering

systems. And it can be extended to an online manner.

A large amount of numerical simulation showed that it could provide a better per-

formance than traditional methods, such as EKF, UKF and EKF plus ML methods, in

terms of the accuracy and the convergency at the cost of more computation load. But

with the increasing of computer, this is not the concerned problem as before. If the

approach is using in an online manner, it can be seen obvious that several factors can

affect the performance of the estimation, such as the lengthof the moving windows,

input signals.

The model and methods can be also applied to the FDD process. Based on the

predefined threshold method, the fault decision can be made based on the system iden-
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tification. Meanwhile, the estimated parameter related with fault is substituted into

the parameterized state estimation and the Kalman Smootheris applied for the state

estimation. Thereby the state estimation can be obtained asanother byproduct.

The simulation results based on a robot system showed a promising performance of

the proposed method in terms of providing a quick, accurate and robust fault parameter

identification and state estimation.
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Chapter 3

System Identification Method for

TV-FOPDT Model and Its Application

In this chapter, we will discuss the system identification ofa nonlinear FOPDT model

and its application in a real-life relevant system. Extending the standard FOPDT

model, this Chapter proposed some new FOPDT models and corresponding methods

to make parameter identification of them.

The content in this chapter is as follows:

Overview of the Previous Work In order to show the motivation, the model de-

velopment is shortly described. Furthermore, the methods to make the parameter iden-

tification of the standard FOPDT model are summarized.

Model Extension and Identification MethodsSeveral different models are ex-

tended based on the standard FOPDT model. According to the characteristic of the

new models, the identifiability is defined and investigated.Corresponding theorems

regarding the identifiability are proved. Then some new methods based on a kind

of nonlinear programming problem are proposed to make parameter identification of

these different models.

Numerical Test and Application Finally, a number of numerical tests are per-

formed to illustrate the approach and compared with other methods. A scenario of the

application in superheat dynamic modeling is used as an application of the work.
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3.1 Motivation and Purpose

In last chapter, the state space model is discussed. It extends the stochastic state space

model using ISDE model. There is another kind of model which is also widely used in

application, that is input/output model. First Order Plus Dead Time (FOPDT) model

is the famous one in this category which is widely applied andit can model many

industrial processes.

The FOPDT model has three different parameters, named system gain, time con-

stant and dead time (time delay). These parameters are oftenset as constants in the

whole system running for the standard model. In reality, during the system running,

the system may not stay unchanged but vary according to the time. Thereby, in or-

der to make up for the shortage of the standard FOPDT model, a kind of nonlinear

FOPDT model in which the time varying parameters of the system can be describe is

proposed in (85; 89; 123). The considered nonlinear FOPDT model is an extension

of the standard FOPDT model by means that both system’s gain and time constant

can be changed during the system running. This nonlinear FOPDT model is gener-

ated by using a linearized method to a nonlinear model. In thethesis, a new type of

explicit nonlinear FOPDT model is proposed as well, named Time-Varying FOPDT

(TV-FOPDT) model, which is used to model the superheat dynamic in a supermarket

refrigeration system. The TV-FOPDT model is an extension ofthe standard FOPDT

by allowing the system parameters (system gain, time constant and time delay) to be

time dependent variables.

Sometimes, in the practical system, the parameters may depend on the other vari-

ables besides the time. For example, considering the systemof the superheat in a

refrigeration system, the time that used in the process of changing the evaporation

temperature depends on some conditions, such as the refringent filling of the evapora-

tor. The more the refringent is filled in the evaporator, the more time needed. If this

refringent filling is taken as the system input, the time thatused in the temperature

change process, which could be taken as the time delay for thesystem changing, may

depend on this input refringent filling (87; 135; 171). In order to express this property

of system, this thesis will extend the TV-FOPDT model to a more general one with as-

suming that the dead time (time delay) can be also input dependent and the model can
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be called as a kind of TV-FOPDT model with input dependent dead time. Furthermore,

the model is extended to Multiple Input (MI) systems.

For the different proposed models, the corresponding methods to make parameter

identification are developed based on some nonlinear programming techniques. In the

beginning, the traditional methods to make parameter identification of the standard

FOPDT model are reviewed.

3.2 FOPDT Identification

A standard FOPDT model can be expressed by the following equation and transfer

function:

Y(s) = G(s)U(s), (3.1)

with transfer function

G(s) =
K

Tps+1
exp−Tds. (3.2)

whereY(s) andU(s) are the Laplace-transform of system output and system input, K

is the system gain,Tp is the time constant andTd is the (apparent) time delay (dead

time).

Different methods (164) have been already proposed to estimate these three param-

eters in the FOPDT model (3.1) with (3.2) by performing a simple experiment on the

plant. This is motivated by the fact that many processes can be described effectively

by this dynamic model and it suits well with the simple structure of some kinds of

controller.

Tangent Method referred in (17), firstly draws the tangent of the system response

at the inflection point. Then, the method determines the system gain by dividing the

steady-state change in the system outputy using the amplitude of the step in input.

And the dead timeTd can be determined as the time interval between the application

of the step input and the intersection of the tangent line with the time axis. Finally,

the value ofTp + Td is estimated as the time interval between the application ofthe

step input and the intersection of the tangent line with liney= y∞ wherey∞ is the final

steady state value of the system output. And the time constant Tp can be calculated

by subtracting the previously estimated value of the time delay Td. This method can

provide exact results for a true FOPDT system. But its main drawback is that it only
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depends on one single point of the reaction curve (i.e., the inflection point) and for this

reason, it is much sensible to the measurement noise. In fact, the measurement noise

may cause large errors in the estimation of inflection point and of time derivative of

the system output (164).

Area Method is an approach that is more robust to the measurement noise (164).

Considering that the system gainK can be determined the same as for the tangent

method, it firstly calculates the area between the system output and liney = y∞. Then,

Tp +Td is to be determined by the division between this area and estimatedK. Subse-

quently, the area between the system output and the time axisin the time interval from

initial time to Tp + Td is calculated. Finally,Tp andTd are determined by the combi-

nation of these two area calculation and estimatedK. Since it need to calculate some

integrals, it is more relevant from the computational view,but it has advantage that it

is more robust to the noise in the measurement than the tangent method. However, it

has a drawback in the possible determination of a negative value of the time delayTd

when the process exhibits a nonlinear lag-dominant dynamics (164).

Two-points-based Methodis based on the estimation of two time instants of the

reaction curve, which has been proposed in (155) (it is also reported in (141)). It

consists in determining two time instants when the process output attains 35.3% and

85.3% of its final steady state respectively. Then, the dead timeand the time constant

are calculated by the combination of these two instants. Thegain of the process is

determined as in the area method. This approach is very simple and it can be applied

by hand easily. This technique, in addition to the problem ofbeing sensible to the

measurement noise in the estimation of the two times, suffers from the same problem

as the area method (164).

Optimization-based MethodOptimization based method is to estimate the three

transfer function parametersK, Td and Tp by minimizing the integral of difference

between the experimental step response and the model step response (132). The major

drawback of this method is the computation load.

Least Square (LS) MethodLS method, referred in (154), is widely used to make

the identification of FOPDT model. This method firstly applies moving covariance to

find the dead time of the system. And then uses least square method to identify the

other two parameters.
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Prediction Error Method (PEM) PEM is a more general method that can identify

many models (100). It is already being implemented in software matlab. But for the

certain model, it is not the best method with regarding to theaccuracy and computation

load (179).

3.3 TV-FOPDT System Identification

Based on the standard FOPDT model, a TV-FOPDT model is proposed. Now, the new

TV-FOPDT model is the main concern in this section.

3.3.1 TV-FOPDT Formulation and Its Identification Problem

In the following, a kind of First-Order Plus Dead-Time (FOPDT) process model by:

y(s) = Gt(s)u(s), (3.3)

with transfer function

Gt(s) =
Kt

Tt
ps+1

exp−Tt
ds. (3.4)

Here y(s) is the system output,u(s) is the system input,Kt is the process gain,Tt
p

is the system time constant andTt
d is the time delay in the system. Note that the

superscriptt means that the corresponding variable may have the alteration during the

whole running time of the system. In order to recognize this model from the standard

FOPDT model, it is called as Time Varying FOPDT (TV-FOPDT) model.

Then the corresponding system identification could be described as follows, which

is the main problem concerned in this Chapter as well.

(P): Estimate the parameters includingKt , Tt
p and Tt

d in the system modeled by

(3.3) with (3.4) based on a set of input and output data.

3.3.2 Model Discretization

System model (3.3) with (3.4) is firstly approximated by its discrete version. The

transfer function (3.4) is discretized as

Gt(z) =
Kt(1−αt)

zl (z−αt)
, (3.5)
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whereαt , exp
− Ts

Tt
p , andTs is the sample interval. Here,l is the simplicity ofl t , which

is the discrete approximation of system delayTt
d, and it is an integer number with

property:lTs ≤ Tt
d ≤ (l +1)Ts.

Now defineβ t , Kt(1−αt), the TV-FOPDT model (3.3) with (3.4) can be further

transferred into a description using difference equation as:

y(k) = αty(k−1)+β tu(k− l −1), (3.6)

for k = l +1, l +2, · · ·∞.

Then the model identification problem(P) with parametersKt , Tt
p andTt

d is con-

verted to estimate the new parametersαt , β t andl for the discrete model version (3.6).

3.3.3 Identifiability Analysis

Before the identification procedure is performed to the system models, the identifiabil-

ity of the corresponding models should be firstly checked. In(99), the identifiability of

parameterized model was given. It proposed to express the identifiability of the param-

eterized model as that the identified value is the same to the true value of the model. It

is described in (100) for some kinds of models such as SISO transfer function model

and state space model. But sometimes, it is hard to know the true values of the system

parameters beforehand. The comparison between the estimation and the true value can

not be accomplished.

In this chapter, the model considered is a nonlinear FOPDT model, in which the

nonlinearity is expressed by its time varying property and time delay, no identifiability

analysis could be found for this kind of system in the previous work. Here the thesis

tends to set up the definition of the identifiability based on the time varying nonlinear

FOPDT and then prove a corresponding theorem.

Definition 3.3.1 Suppose the nonlinear modelM with discrete measurement,Θ is the

parameters in the model, consider the identification methodI, if there exists an integer

N, based on any given N couples of data points{yi}t+N−1
i=t and corresponding input

signal, the identification resultŝΘt+N−1 using I is unique for any time t, then the

identification methodI is said to be globally N identifiable for modelM.
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3.3 TV-FOPDT System Identification

This definition of globally identifiable is based on the sample points and the iden-

tification method. It is reasonable, because for the nonlinear identification, in general,

the method can only be applied for some certain models and theaccuracy performance

is affected by the number of the sample points much hugely. And it is set up on the

uniqueness of the estimation. In some sense, it would be equivalent to the definition of

the identifiability in (100). However, this definition may be more practical because it

do not need to know the true value before the identification.

In the following, if the identification methodI is globallyN identifiable for model

M, it is noted asM-N globally identifiable for simplicity.

Proposition 3.3.2 Suppose modelM is time invariant system, if the identification

methodI is M-N0 globally identifiable, then for any N≥ N0, I is M-N globally iden-

tifiable as well.

Proof: This proposition can be easily proved by the method of contradiction. It will

be omitted here.

For the time invariant system, the proposition shows that ifa method is globally

identifiable, it will be globally identifiable when the number of data points used for

the identification exceeds a fixed number. That means the sample points should be

sufficiently enough to get the right estimation of the system. But for the time varying

system, the proposition3.3.2is no longer hold. Since the time varying property, too

many data will lose the time varying of the parameter so that the identification only

shows the average level which would lead to bad result. However, less samples can

maintain the time varying property, but can not grab all the information of system so

it would not provide an accurate identification. From these two angles, there should

be a balance to choose the number of the sample points to make the identification.

That is to say, for the time varying system, there may exist anoptimal sample number

to make system identification. For this sense, it need to re-consider the property of

identifiability.

Now, considering the model (3.6), which is the one in the linear manner and the

parameters are time varying. In order not to loss the generality, in the following, the

more general time varying linear model is studied. First, wewill prove the following

theorem regarding to the identifiability.
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3.3 TV-FOPDT System Identification

Theorem 3.3.3 Consider a time varying transfer function system

Y(s) = G(s,Θt)U(s) (3.7)

here the superscript t means the corresponding variable is time varying. If

1. The system(3.7) can be rewritten equivalently as

y(t) = φT(t)Θ̃t, (3.8)

with φ(t) is the information vector consisting of some observations up to time

(t−1), andΘ̃t is corresponding parameter vector converted byΘ at time t. And

the frequency of the observation is much larger than the frequency of parameter

changing.

2. The input u(t) is persistently excited.

are satisfied, then there exists an integer N such that the Least Square (LS) estimator

is (3.8)-N globally identifiable, then LS is(3.7)-N globally identifiable.

Note that the first condition requires that the system shouldbe equal to a time varying

linear system. And there is frequency requirement on the observation. It is really

natural to guarantee the estimation can track the change of the parameters. Although

it is difficult to know the frequency of parameter changing beforehand, the frequency

demanding can still be satisfied by decreasing the samples interval as little as possible.

The second condition is the requirement to the input signal.

Proof: If the input u(t) is persistently excited, it means that there existsα, β
satisfying 0< α ≤ β < ∞ and a positive integerN, such that for the successiveN

samples

αI ≤
t+N

∑
i=t+1

φ(i)φT(i) ≤ β I , a.s. f or any t> 0. (3.9)

Also, for the equivalent system (3.8), there is

y(t + i) = φT(t + i)Θ̃t, (3.10)

for anyt > 0 andi = 1,2,3, · · · ,N. It can be formalized by matrices

Y = ΦΘ̃t , (3.11)
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3.3 TV-FOPDT System Identification

whereY = [y(t +1) y(t +2) · · · y(t +N)]T , Φ = [φ(t +1) φ(t +2) · · · φ(t +N)]T .

From (3.9), the matrix
t+N
∑

i=t+1
φ(i)φT(i) is a full rank matrix, noted its rank asR, where

R= dim(Θ̃t), and
t+N

∑
i=t+1

φ(i)φT(i) = ΦΦT . (3.12)

As a result,ΦΦT is nonsingular and its inverse exists. According to the algorithm of

Least Square Estimator, the former equation (3.11) has a unique solution. It is also the

solution of the system identification of (3.8).

From the equivalence of the model (3.8) and (3.7), the parameter identification can

be obtained uniquely based on the estimation ofΘ̃t in the model (3.8). At last, it is

proved that there existsN, the Least Square estimator is (3.8)-N globally identifiable

and hence (3.7)-N globally identifiable.♯

Now the LS estimator is proved to be (3.8)-N globally identifiable and (3.7)-N

globally identifiable. For time varying system, Theorem3.3.3only proved the exis-

tence ofN to make LS estimator identifiable. There should be many choices ofN.

But since the model is time varying one, different choices ofN will lead to different

estimation performance. It need us to select an optimal one to get the best estimation.

Theorem 3.3.4 Consider the model,

y(t) = φT(u(t), t)Θt, (3.13)

the variables are defined the same to the previous Theorem3.3.3, suppose

1. u(t) is persistently excited, i.e., there existsα, β satisfying0< α ≤ β < ∞ and a

positive integer N, such that for the continuous N samples, the(3.9) is satisfied.

2. parameter changing rate is bounded, i.e.,∆t = Θt −Θt−1 ≤ M.

then the best choice of data sample number in the system identification using LS es-

timator is N, i.e., LS estimator with N samples will get the estimation with the least

upper bound of the error.

Proof: Define the estimation error

εt = Θ̂t −Θt . (3.14)
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3.3 TV-FOPDT System Identification

where the recursive LS algorithm with fixed windows lengthq gives the estimation

Θ̂t = Θ̂t−1+Ptφt [y(t)−φT
t Θ̂t ]

P−1
t = P−1

t−1+φtφT
t −φt−N+1φT

t−N+1.
(3.15)

Then,

εt = Θ̂t − (Θt−1+∆t)

= Θ̂t − (Θ̂t−1− εt +∆t)

= Ptφt [y(t)−φT
t Θ̂t ]+ εt −∆t

= [I −PtφtφT
t ]εt −∆t .

(3.16)

DefineΓt = −PtφtφT
t εt −∆t , then there is

εt+i = εt +
i

∑
k=0

Γt+k (3.17)

and

φT
t+i [εt +

i−1

∑
k=0

Γt+k] = φT
t+iεt+i . (3.18)

or

φT
t+iεt = −φT

t+i

i−1

∑
k=0

Γt+k +φT t + iεt+i. (3.19)

Taking‖ · ‖2
2 to both sides of (3.19), there is

tr[εT
t φφT

t+iεt ] =‖ −φT
t+i

i−1

∑
k=0

Γt+k +φTt + iεt+i ‖2
2 . (3.20)

Make sum of (3.20) from i = 0 to i = N−1, it is obtained that

tr{εT
t

i=N−1

∑
i=0

[φt+iφT
t+i ]εt} =

i=N−1

∑
i=0

[‖ −φT
t+i

i−1

∑
k=0

Γt+k +φT t + iεt+i ‖2
2]. (3.21)

Apply the condition(1),

Nα ‖ εT
t ‖2

2 ≤ 2{
i=N−1

∑
i=0

[‖ φT
t+i

i−1

∑
k=0

Γt+k ‖2
2 + ‖ φT t + iεt+i ‖2

2]}

≤ 2{
i=N−1

∑
i=0

[Nβ ‖
i−1

∑
k=0

Γt+k ‖2
2 + ‖ φTt + iεt+i ‖2

2]}.
(3.22)
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3.3 TV-FOPDT System Identification

Then

‖ εT
t ‖2

2 ≤
2

Nα
{

i=N−1

∑
i=0

[N2β ‖
i−1

∑
k=0

Γt+k ‖2
2 + ‖ φTt + iεt+i ‖2

2]}

=
2Nβ

α

i=N−1

∑
i=0

i−1

∑
k=0

‖ Γt+k ‖2
2 +

2
Nα

i=N−1

∑
i=0

‖ φTt + iεt+i ‖2
2 .

(3.23)

Taking limit to the (3.23), there is

lim
t→∞

‖ εT
t ‖2

2

≤ limsup
t→∞

{2Nβ
α

i=N−1

∑
i=0

i−1

∑
k=0

‖ Γt+k ‖2
2 +

2
Nα

i=N−1

∑
i=0

‖ φTt + iεt+i ‖2
2}

≤ limsup
t→∞

{2N3β
α

‖ Γt ‖2
2 +

2
α

‖ φTtεt ‖2
2}

≤ limsup
t→∞

{2N3β
α

‖ −PtφtφT
t εt −∆t ‖2

2 +
2
α

‖ φTtεt ‖2
2}

≤ limsup
t→∞

{2N3β
α

[φT
t P2

t φt ‖ φT
t εt ‖2

2 + ‖ ∆t ‖2
2]+

2
α

‖ φTtεt ‖2
2}

≤ limsup
t→∞

{2N3β
α

[
1

(q−N+1)α
‖ φT

t εt ‖2
2 + ‖ ∆t ‖2

2]+
2
α

‖ φTtεt ‖2
2}

≤ limsup
t→∞

{(2N3β
α2 +

2
α

) ‖ φT
t εt ‖2

2 +
2N3β

α
‖ ∆t ‖2

2}

≤ limsup
t→∞

{(2N3β
α

+
2
α

)
2(N+1)(q+N)β 2

α
‖ ∆t ‖2

2 +
2N3β

α
‖ ∆t ‖2

2}

= limsup
t→∞

{(4N3(N+1)(q+N)β 3

α3 +
4(N+1)(q+N)β 2

α2 +
2N3β

α
) ‖ ∆t ‖2

2}.

(3.24)

From (3.24), the estimation error is a strictly monotone increasing function of q and

from the last theoremq should not be less thanN, then the optimal simple number is

the smallest one in the possible set, that isN. ♯

The Definition3.3.1need to look for a fixed numberN to make the identification

of the system, and Theorem3.3.4shows thatN can be really found out for the model

(3.13). But sometimes it is difficult to find this kind of number, especially for some

time varying systems and nonlinear systems, there is not a fixed number of sample

points to make the optimal estimation. Another definition ofthe identifiability which

is more general to the Definition3.3.1is given in the following.
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3.3 TV-FOPDT System Identification

Definition 3.3.5 Suppose the nonlinear modelM with discrete measurement,Θ is the

parameters in the model, consider the identification methodI, the identification results

Θ̂t usingI is unique, then the identification methodI is said to be globally identifiable

for modelM.

Based on Definition3.3.5, we will consider a time varying system with time delay:

Theorem 3.3.6 Consider the model,

y(t) = φT(u(t), t,dt)Θt, (3.25)

with dt is unknown time delay in the system, other variables are the same to the Theo-

rem3.3.3,

1. u(t) is persistently excited, i.e., there existsα, β satisfying0< α ≤ β < ∞ and a

positive integer N, such that for the successive N samples, the(3.9) is satisfied.

2. dt ∈ D, D is a finite countable set

3. parameter changing rate is bounded, i.e., there exist twopositive values M1, such

that ∆t =| Θt −Θt−1 |≤ M1.

then the Least Square estimator is globally identifiable formodel(3.25).

In order to prove this theorem, the lemma should be given beforehand.

Lemma 3.3.7 Suppose two different system which can start at any given time point,

can be described as:

yi(t) = φT(t)Θt
i , i = 1,2. (3.26)

hereΘt
i , i = 1,2 are different time varying parameters in these two systems respectively.

If

• the system matrixφT(t) 6≡ 0;

• the parameters vectorΘt
1 6≡ Θt

2,

then for any given time variable t0 > 0, there exists t≥ t0 such that y1(t) 6= y2(t).
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3.3 TV-FOPDT System Identification

This lemma can be proved by method of contrapositive.

Proof: Suppose the conclusion is not right, then there exists onet1 > 0 such that for

anyt ≥ t1, y1(t) = y2(t). Considering the difference between (3.26), then it is obtained

that for anyt ≥ t1, φT(t)(Θt
1−Θt

2) = 0. SinceφT(t) 6≡ 0, Θt
1 = Θt

2 for t ≥ t1. If we

assume that the system start at timet1, then the two different systems (3.26) are the

same system. It is contradictive to the precondition. It is proved the conclusion is

correct.♯

Now we turn to prove the theorem3.3.6.

Proof: In the system (3.25), dt ∈ D, D is a finite countable set, thedt is bounded.

SupposeD = {dt
i }i=1,··· ,M, for each fixeddt

i , according to the Theorem3.3.4and3.3.3,

there existsNi such that the Least Square estimator is (3.25)-Ni globally identifiable.

Let (Θ̂t
i) is the identification results based on time delaydt

i , the estimated output is

noted as ˆyi(t), and the error of the identification is defined respectively as

ei(t) =
t

∑
k=t0

‖ ŷi(t)−y(t) ‖2
2 . (3.27)

If there exists only onec∈ {1, · · · ,M}, such that

ec(tNmax) = min
i={1,··· ,M}

ei(t), (3.28)

whereNmax is defined as max
i={1,··· ,M}

{Ni}. Then the couple(Θ̂t
c,d

t
c) is the optimal result

of identification and it is unique.

If the consideredc is not unique, suppose there are two indexc1 andc2 such that

ec1(tNmax) = ec2(tNmax) = min
i={1,··· ,M}

ei(t). (3.29)

According to the Lemma3.3.7, for the estimated output ˆyc1(t) andŷc2(t), there exists

t1 ≥ t0, such that ˆyc1(t1) 6= ŷc2(t2). Supposeec1(t1) > ec2(t1), then the couple(Θ̂t
c2,d

t
c2)

can be seen as the optimal solution of the identification and it is the unique solution of

the identification.

In the whole, the Least Square estimator is (3.25) globally identifiable.♯

Here the Theorem3.3.6only points that the LS estimator is globally identifiable

for the time varying linear model with time delay. But since its time varying property

and the unknown parameter is include the time delay, it is hardly to determine a fixed

optimal sample number to make the estimation.
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3.3 TV-FOPDT System Identification

3.3.4 Iterative LS Method

Now, turn to the system identification for model (3.6). Assume that the conditions

of Theorem3.3.6 are satisfied, then LS estimator could be applied to make system

identification. Moreover, the thesis extends this method toan iterative one, called as

iterative LS method. This iterative LS method to make the identification of the model

(3.6) is summarized as follows.

ConsiderN is the number of latest samples of the output and input which is the

length of the moving windows for each estimation step, and defineϒt , [αt β t ]T . From

(3.6), based onN couples of input and output signals, a mixed integer optimization

problem can be defined to solve the problem of system identification as:

min
l : positive integer

ϒ ∈ Ω

‖ BN −AN(l)ϒ ‖2
2, (3.30)

whereBN is a stack of the measured outputs

BN , [y(k) y(k+1) · · · y(k+N−1)]T . (3.31)

AN(l) is a stack of measured inputs and outputs, depending on the delay parameterl ,

AN(l) ,











y(k−1) u(k− l −1)
y(k−2) u(k− l −2)

...
...

y(k−N) u(k− l −N)











. (3.32)

Ω represents the possible range ofϒ, which is determined by the system gainKt and

time constantTt
p in the (3.4).

The optimization (3.30) sometimes leads to a non-convex nonlinear programming

problem. However, the Branch-Bound (BB) method combined with Least Square

method could still work out the solution in a reasonable efficient way, with respect

to some potential pre-knowledge of the system, such as the possible range of the time

delay. Thereby, a procedure using BB and LS method is appliedhere if we can have

some way to determinelmin ≤ l ≤ lmax.

Then, the Iterative identification based on the LS method canbe performed ifN

has been already chosen.
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3.3 TV-FOPDT System Identification

• In the each step, first construct a loop starting fromlmin and ending atlmax by

taking the increment of l as 1 at each step.

• For each iteration of l, based on the latestN couples of input and output obtain

the LS solutionϒ(l) to optimization (3.30) by using the specific number of l, and

record the corresponding prediction error, where

ϒ(l) = (AT
N(l)AN(l))−1AT

N(l)BN. (3.33)

• The pair of (ϒt∗, l t∗) which leads to the minimal prediction error among all it-

erations in all steps with regards tol moving from lmin to lmax, is the optimal

candidate for (3.30) based on the correspondingN sample couples.

• The parameters in the original system (3.3) with (3.4), Tt
p andKt , can be obtained

from ϒt∗ = [αt∗ β t∗]T as Tt∗
p = − Ts

lnα t∗ and Kt∗ = β t∗

1−α t∗ . Time delayTt
d is

estimated asl t∗Ts.

• Repeat the former four steps when a new couple data of input and output is

obtained.

One couple of input and output will lead to one parameters identification. Then, the

on-line system identification can be performed according tothe previously proposed

scheme.

In order to release the computation load, the former procedure can be improved

from iterative LS method to recursive LS method in order to solve the optimization

(3.30). Following the same procedure, only (3.33) changes to the recursive format at

the kth step and fixedl . Defineϕk = [y(k)u(k− l)]T , φk = [ϕ(k)ϕ(k−N)] then the

recursive LS solution could be:

ϒk(l) = ϒk−1(l)+Pk(l)ϕk[y(k)−ϕT
k ϒk−1(l)]

Pk(l) = Pk−1(l)−Pk−1(l)φk[I +φT
k Pk−1(l)φk]

−1φT
k Pk−1(l).

(3.34)
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3.4 Simulation

In the following simulation tests, two different scenariosare conducted: Time Invari-

ant System and Time Varying System. Noted that in order to show the merits of this

method, the method defined in Matlab system identification toolbox is applied to com-

pare with our method. The matlab toolbox (MT) method to estimate the process model

(3.3) with (3.4) is based on the prediction error method (PEM), see (100; 101) for de-

tails. In the thesis, the on-line system identification can be performed using matlab

function ’pem’ based on the recentN samples data.

3.4.1 Case A: Time Invariant System Test

In this part, Time Invariant System is considered. The system considered is described

as:

y(s) = G(s)u(s), (3.35)

with transfer function

G(s) =
K

Tps+1
exp−Tds. (3.36)

HereG(s), K, Tp, Td, which do not have the superscriptt, mean that they do not change

with time in the system running.

In the test, parameters of the system are set asTd = 2.05,Tp = 2 andK = 4. Fig.3.1

displays the input and output signals. In order to show the performance of the iterative

LS method and MT method, two different sample numbersN are adopted. Note that

the iterative LS method need to wait until more thanN + lmax samples obtained to

collect the enough data. It means the identification procedure will be started after

Ts(N+ lmax). Here the time delay is refined in time interval from 0 to 5 seconds.

Firstly, the sample interval is chosen asTs = 0.1second.

• 50 Samples Estimation:A moving window with 50 samples is used to make

the estimation. The results could be seen in the following figures, Fig.3.2 and

Fig. 3.3for LS method, Fig.3.4and Fig.3.5for MT method.

• 100 Samples Estimation:In the second test, the length of sample window is

changed to 100. The results could be seen in the following figures, Fig.3.6and
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Figure 3.1: The input and output data for case A
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Figure 3.2: The delay estimation using LS for 50 samples in case A

Fig. 3.7 for LS method. For MT method, the results are quite good. The time

delayTd is estimated as 1.954, whileK is 4.0 andTp is 2. The value has little

change in the whole procedure.

Secondly, in order to show the influence of the sample interval to the parameters

identification, under the same condition of the above 100 samples estimation, onlyTs

is changed to 0.25 to make another test. The results could be seen in Fig.3.8, Fig. 3.9

for LS method. The MT method approximated thatTd is 1.7727,K is 4.0 andTp is 2.0.

The computation times of the numerical tests for the two methods are listed in Table

3.1. The whole procedure for the system identification is running in the simulation

under the same computation condition.

From the tests, the following discussion could be made:

• Time delay: Only regarding time delay (with enough samples and small sample

interval), both small delay and large delay are checked in the test, but large

delay case is not listed here. For the small time delay, if thetime delay is near

the sample time, the result of iterative LS method is more accurate than MT

method. Otherwise, MT method is better. It is because in LS method the time
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Figure 3.3: The parameters identification using LS forK andTp for 50 samples in case
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Figure 3.4: The delay estimation using MT for 50 samples in case A

Table 3.1: The computation times for the simulation (second)

LS Method MT Method

Condition CUP–T2300, RAM–1GB, software–matlab 7.6.0

50 Samples 0.531928 seconds 1600.054329 seconds

100 Samples 0.548145 seconds 1800.222629 seconds

delay is estimated by the sampled input delay in the discretization of the system,

while the MT method just applies moving covariance to estimate the time delay

directly. For the relatively larger time delay, LS method ismuch better than MT
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Figure 3.5: The parameters identification using MT forK andTp for 50 samples case
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Figure 3.6: The delay estimation using LS for 100 samples in case A

method. The numerical simulation shows that if the time delay exceeds the 40

samples, MT method will return a warning and the result will be worse. But LS

method does not have this problem. It could deal with all timedelay estimation,

only the performances could have a little difference.

• Parameters identification: Under the good condition–not too large time delay,

enough samples and small sample interval, both two methods could make the

parameters identification and show good performance. LS method has some

fluctuations at first, then tends to a fixed value that only has asmall deviation

to the true value. The error is below 5%. MT method is much better than LS

method. The estimated value using MT method only remain one fixed value that

is quite close to the real value. This is because LS method first estimates the

parameters of the discrete version of the system and then converts to the real

parameters. No doubt it will decrease the accuracy of the original parameters
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Figure 3.7: The parameters identification using LS forK andTp for 100 samples in

case A
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Figure 3.8: The delay estimation using LS for 100 samples with Ts = 0.25 in case A

estimation.

• Sample interval: The numerical simulations apply different sample interval

times in order to indicate the sample interval could affect the performance of

the estimations. From the simulation, estimation using small sample interval

will be more accurate than using large sample interval. Fromthe above tests,

using large sample interval could lead to a relatively larger deviation to the real

time delay for MT method. Even for some other larger sample intervals, results

of the parameters estimation using MT method are not so good.But the choice

of sample interval has less influence to the iterative LS method.
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Figure 3.9: The parameters identification using LS forK andTp for 100 samples with

Ts = 0.25 in case A

• Moving window: The length of data window used to make the estimation could

affect the results. The more data used, the more accurate theestimation is. But

for MT method, too few data could lead to an unsatisfied estimation more obvi-

ously. It need much more data than the LS method to complete the estimation.

• Computation load: From Table3.1 which shows the time two methods used,

it can be observed that LS method need much less computation time than MT

method.

From the test in case A, the iterative LS method has a good robustness to different

conditions of system identification, such as sample interval, length of data and so on,

which sometimes could affect the performance of MT method greatly. But, we also

observed that MT method gives us a better estimation of the parameters under the

good condition at the cost of a little more computation load.

3.4.2 Case B: Time Varying System Test

In this part, the time varying system is considered in the test. The system is considered

as (3.3) with (3.4) as well, where the parameters of the system are as follows:

Kt = 3,Tt
p = 1,Tt

d = 3.05, when running time t< 30; (3.37)
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Figure 3.10: The input and output data for case B

Kt = 4,Tt
p = 2,Tt

d = 2.05, when running time t≥ 30. (3.38)

Actually, this system is a kind of switching system. The iterative LS method is still

used to make the identification. The data comes from the simulation using the simulink

of such a system. The input and output could be seen in Fig.3.10. In this test, two

different sample numbers are considered.

The sample interval is chosen asTs = 0.1. The time delay is assumed in the range

of 5 seconds.

• 50 Samples Estimation:A moving window with 50 samples is used to make

the estimation. The procedure begins at 10th second. The results could be seen

in the following figures, Fig.3.11and Fig.3.12for LS method. The result of the

MT method is not listed since 50 samples are not enough to makethe estimation,

as a result, the performance of the estimatioin is quite bad.

• 100 Samples Estimation:In the second test, the length of sample window is

changed to 100. The procedure begins at 15th second. The results could be seen

in the following figures, Fig.3.13and Fig.3.14for LS method. For MT method,

see Fig.3.15and Fig.3.16.
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Figure 3.11: The delay estimation using LS for 50 samples with in case B
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Figure 3.12: The parameters identification using LS forK andTp for 50 samples in

case B

According to the tests, the LS method showed good performance regarding to the

precision for both of different sample points. In the different tests, the estimated value

is stable when the procedure begins. When the system has a switching, the LS method

need some delay to react to this switching. This delay is lessthan half length of win-

dows. Then the estimated value will bias from the original stable value and some

fluctuation emerge. In a while less than one length of windowstime, the estimated

131

Chapter3/Chapter3Figs/B1delay.eps
Chapter3/Chapter3Figs/B1K.eps


3.4 Simulation

15 20 25 30 35 40 45 50 55 60
1.8

2

2.2

2.4

2.6

2.8

3

3.2
delay

Time

V
al

ue

 

 

estimated value
real value

Figure 3.13: The delay estimation using LS for 100 samples with in case B
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Figure 3.14: The parameters identification using LS forK andTp for 100 samples in

case B

value will recover to another stable value. It is obvious that the more sample points

used, the more delay is. And since the inevitable error due tothe discretization of the

model, the estimated value has a little difference to the true value of the parameters,

about one time interval for the dead time estimation and corresponding error for the

other parameters identification. This can be reduced by decreasing the sampling inter-

val. It can be seen for the two tests with different sampling points, 50 and 100 samples,
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Figure 3.15: The delay estimation using MT for 100 samples with in case B
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Figure 3.16: The parameters identification using MT forK andTp for 100 samples in

case B

the accuracy is nearly the same. But for MT method, it can not make the parameter

identification using 50 points, the matlab returned not enough data alarm. Compared

it with LS method for the 100 samples estimation, the MT method has the error for

the time delay estimation as well. But the results for the other parameters are really

better than LS method. And during the period when the system has a switching, the
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MT method also has the fluctuation in the estimation and it is really severe than the

LS method. Moreover, during a number of simulations, it has been observed that if the

system time delay is more than 40 samples time, the MT method often returned a warn-

ing and the estimation result often really bad. But the LS method does not have this

kind of problem. In general, it can be concluded that the proposed LS method is quite

promising for TV-FOPDT model identification in terms of accuracy and flexibility.

3.5 System Identification for TV-FOPDT model with

Input Depended Dead Time

In this part, the TV-FOPDT model adopted is the one with inputdepended dead time.

Furthermore, the measurement of the system output is added with a Gaussian noise.

3.5.1 TV-FOPDT Model with Input Depended Dead Time

The system described in a Time-Varying FOPDT (TV-FOPDT) model with input de-

pended dead time is defined in the following.

Y(s) = Gu(t),t(s)U(s), (3.39)

with transfer function

Gu(t),t(s) =
Kt

Tt
ps+1

exp−Tu(t),t
d s. (3.40)

And the measurement is

x(s) = y(s)+ω(s). (3.41)

whereY(s)/U(s) is the Laplace-transform of the system output/inputy(t)/u(t). Kt ,

Tt
p andTu(t),t

d are the system gain, time constant, and time delay (dead-time), respec-

tively. Different with the standard FOPDT model, all these system parameters can be

time-dependent, especially the time delay can also depend on the input signal. This

dependence feature is represented by the corresponding subscript. x(s) is the mea-

sured output of the system andω(s) is the noise in the output measurement, which is

assumed as a Gaussion process with 0 mean and varianceQ.

The same problem of the system identification problem is considered as well. The

only difference is the outputx(s), which is based on the measurement model (3.41).
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

Following the similar procedure as in the last section, the model (3.39) can be

approximated by its discrete-time equivalence, i.e.,

Y(z) = Gu(k),k(z)U(z), (3.42)

with

Gu(k),k(z) =
Kk(1−αk)

zlu(k),k
(z−αk)

.

Hereαk , exp
− Ts

Tk
p , andTs is the sample interval. It should be noticed thatKk andTk

p are

not the same asKt andTt
p in (3.40). The latter two are piecewise-constant (constant

during every sampling period) timed functions, while the former two in (3.42) are

sampled sequences. The relationship of these two description is thatKk is equal toKt ,

Tk
p is equal toTt

p at each sampling time, i.e.,Kk = Kt andTk
p = Tt

p whent = kTs for any

k. Thereby,Kk, Tt
p are called as thekth sampled (time-varying) system gain, thekth

sampled (time-varying) time constant (? ). Herelu(k),k is the discrete approximation

of the kth sampled system delayTu(k),k
d (the kth sampled (time-varying) time delay,

Tu(k),k
d = Tu(t),t

d whent = kTs for anyk), and it is defined as an integer with the property:

lu(k),kTs ≤ Tu(k),k
d ≤ (lu(k),k +1)Ts (3.43)

Defineβ k , Kk(1−αk), then TV-FOPDT model with input depended dead time

(3.6) can be transferred into a difference equation model described as

y(k) = αky(k−1)+β ku(k− lu(k),k−1), (3.44)

for k = lu(k),k +1, lu(k),k +2, · · ·∞.

The output measurement is not changed, but the measured output signal can only

be obtained at each sampled time:

x(k) = y(k)+ω(k). (3.45)

Then, the original continuous-time model identification problem of (3.39) with pa-

rametersKt , Tt
p andTu(t),t

d is converted to estimate parameter sequences ofαk, β k and

lu(k),k for a stochastic discrete-time system (3.44) based on a number of sampled input

and measured output obtained by (3.45). This random discrete-time system identifica-

tion problem is called the discreteized approximation of the original continuous-time

identification problem.

135



3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

3.5.2 Iterative LMSP method

Since the measured output is added with noise, the previous LS estimator need to be

extended in probability meaning. Furthermore, in order to make the estimation more

accurate at each iterative step, a forgetting factor is added in the proposed algorithm.

The method proposed in the following, is named as Least Mean Square Prediction

(LMSP) identification method, in order to handle this systemidentification problem

for the TV-FOPDT model with input depended dead time.

Suppose that the considered system (3.39) is running atkth sampling step and take

N as the number of latest samples of the measured output and input into consideration,

whereN is the length of the moving data window used in each estimation step. Define

θk = [αk β k]T , then the parameters identification of the system (3.44) at thekth sam-

pling step can be formulated as a Stochastic Mixed Integer Non-Linear Programming

(SMINLP) problem, which is defined as:

min
lu(k),k : positive integer

θk ∈ Θk

E{‖ Bk
N −Ak

N(lu(k),k)θk ‖2
2}, (3.46)

whereBk
N is a stack ofN latest measured outputs with forgetting factor at the current

kth sampling step, i.e.,

Bk
N , [x(k) ρx(k−1) · · · ρN−2x(k−N+2) ρN−1x(k−N+1)]T . (3.47)

Ak
N(lu(k),k) is a stack ofN inputs and measured output with forgetting factor at the

currentkth sampling step which can generateBk
N, depending on the delay parameter

lu(k),k, i.e.,

Ak
N(lu(k),k) ,















x(k−1) u(k− lu(k),k−1)

ρx(k−2) ρu(k− lu(k),k−2)
...

...
ρN−2x(k−N+1) ρN−2u(k− lu(k),k−N+1)

ρN−1x(k−N) ρN−1u(k− lu(k),k−N)















. (3.48)

Θk represents the possible range ofθk, which is determined by the limits of the original

system gainKt and time constantTt
p in (3.40) at the current sampling timekTs. Here

ρ is called as forgetting factor, which is used in order to decrease the effect of old data

to the estimation at the current sampling time.
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

If the system runs with no time delay, or the time delay is the prior knowledge,

the optimization problem (3.46) can be simplified to a problem of the minimization

of the Mean Squared Error (MSE). In general, this SMINLP problem (3.46) may lead

to some non-convex issue due to the unknown time delaylu(k),k. But if some pre-

knowledge about time delay in system can be obtained, such asthe potential upper

and lower limits of the time delay(s) for the entire system oreach sampling step, an

iterative numerical algorithm can be performed by combining the BB method, which is

one typical method for MINLP problem, and the LMS technique for efficiently solving

this SMINLP problem. The algorithm is called as an iterativeLMS algorithm, which

is summarized in the following:

• Preparation: The upper and lower limits for system time delay(s) in terms of

some integer number multiplying with sampling period need to be given. With-

out losing generality, we assume thatlu(k),k
min ≤ lu(k),k ≤ lu(k),k

max and lu(k),k
min , lu(k),k

max

are known before the procedure. The sampling rateTs, sliding window lengthN

and forgetting factorρ need to be decided before the procedure.

• Data collection period:In the beginning, the algorithm only collects the sampled

data until the process reaches a specific sampling step, denoted this step askini ,

whereN+ lu(kini),kini
max = kini . It is to guarantee that there is enough data to construct

matrix (3.47) and (3.48).

• Iteration period:The iterative identification starts from thekini step in an on-line

manner.k is denoted as the sampling step and there isk≥ kini , a computing loop

is constructed with regard tolu(k),k starting fromlu(k),k
min and ending atlu(k),k

max by

taking the unit increment.

- For each iteration (k) oflu(k),k (lu(k),k
min ≤ lu(k),k ≤ lu(k),k

max ), solve the LMS

problem (3.46) and record the corresponding prediction error. The LMS

method with forgetting factor is adopted in this paper. The analytical solu-

tion has the format as:

θ̂k(lu(k),k) = ((Ak
N(lu(k),k))TQ−1Ak

N(lu(k),k))−1

(Ak
N)T(lu(k),k)Q−1Bk

N,

Cov(θ̂k) = ((Ak
N(lu(k),k))TQ−1Ak

N(lu(k),k))−1,

(3.49)

whereCov(θ̂k) means the covariance ofθ̂k.
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- (θ̂k(l̂u(k),k), l̂u(k),k) which leads to the minimal prediction error among all

iterations moving fromlu(k),k
min to lu(k),k

min , denoted as(θk∗(lu(k∗),k∗), lu(k∗),k∗),

is chosen as the optimal solution for (3.46) at the current step.

- The estimation of thekth sampled system parameters of (3.6) for the current

sample,Tk
p andKk, can be obtained fromθk∗(lu(k∗),k∗) = [αk∗ β k∗]T by

Tk
p = − Ts

lnαk∗ and Kk =
β k∗

1−αk∗ , (3.50)

and the sampled time delayTu(k),k
d is estimated aslu(k∗),k∗Ts.

- Repeat the above steps when a (couple) new data of input and measured

output is obtained.

According to the above procedure, the system identificationfor TV-FOPDT model

with input depended dead time can be executed in an on-line manner. Note that in this

system identification, only the result of the parameters estimation is focused on, so the

covariance of estimated parameter which can be calculated by the second part of (3.49)

is not recorded.

The previous method applies LS to make the system identification. The require-

ment of the LS is that the measurement noise should be uncorrelated with the system

variable. Under this condition, the LS estimator is unbiased and consistent (151). How-

ever, in many cases, the measurement noise and some system variable are unmeasured,

causal variables collapsed into the noise term are correlated, then the LS estimator is

generally biased and inconsistent (151).

For this reason, the LS estimator in the algorithm need to be revised as Instrumental

Variable (IV) methods, which is the generalization of the LSestimate. The main idea

of the IV method is to modify the LS method so that it can be one consistent estimator

for an arbitrary noises. Accordingly, the IV method modifiesthe former (3.49) as

θ̂k(lu(k),k) = (ZT
k Q−1Zk)

−1ZT
k Q−1Bk

N,

Cov(θ̂k) = (ZT
k Q−1Zk)

−1,
(3.51)

whereZk is the chosen instrumental variable, which is correlated with the system vari-

ables and uncorrelated with noises. The major problem with the IV approach is the
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generation of the instrumental variables. The basic idea isthat by pre-filtering the

deterministic input, and it is possible to generate an IV vector Zk, which is highly cor-

related with the noise-free process vector. In addition, itwill be uncorrelated with any

other noise in the system provided the input command is noise-free (151).

This IV method shows it is a consistent and unbias estimator for the system with

arbitrary disturbance or noises. But in order to get more efficiency, this IV method

should be adopted its recursive manner. Defineϕk = [y(k)u(k− l)]T, φk = [ϕ(k)ϕ(k−
N)], the recursive IV procedure can be summarized as following:

θ̂k(lu(k),k) = θ̂k−1(lu(k),k)+Pk(l)Zk[y(k)−ϕT
k θ̂k−1(lu(k),k)]

Pk(l) = Pk−1(l)−Pk−1(l)Zk[I +φT
k Pk−1(l)Zk]

−1φT
k Pk−1(l).

(3.52)

3.5.3 Numerical Examples

A number of numerical simulations are applied to make the test of the proposed system

identification method for TV-FOPDT model with input depended time delay.

The system considered is a switching FOPDT model with input depended time

delay. The time delay of the system is dependent on the input signalu(t) in the manner

thatTu(t),t
d = 0.5u(t). Other parameters are set as:

{

Tt
p = 1, Kt = 3, when t< 30seconds;

Tt
p = 2, Kt = 4, when t≥ 30seconds.

Heret is the system running time. It means that the system has a switching at 30th sec-

ond. The noise in the measurement of the output follows the distributionN(0, 0.001).

The test condition in the first case is set asTs = 0.1 second, the sample number

for the estimationN = 40, forgetting factorρ = 0.95 and the pre-knowledge of the

sampled time delay is assumed aslu(k),k
max = 30, lu(k),k

min = 0. According to the proposed

method, it need to wait more than 7 seconds (the data collection period is(40+30)×
0.1 = 7 seconds) to start the identification procedure in the beginning. In the test, the

identification begins at 100th sampling time. The system is simulated in the simulink

with the step input signal. Fig.3.17shows the input signal and measured output signal.

Fig.3.18and Fig.3.19display the results of the system identification. And in order

to investigate the relation between the input and time delay, the rate between the time
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Figure 3.17: The input and output data for the first test
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Figure 3.18: The time delay estimation for the first test
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Figure 3.19: The parameters identification for the first test
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Figure 3.20: The estimated delay to input relationship for the first test
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delay and input is calculated at each estimation step. From the simulation results, the

following discussion could be made:

• Time delay estimation:The result of the estimation for time delay is showed in

Fig.3.18. Before the 10th second, it is the data collection period. From 10th sec-

ond, the estimation procedure begins. It need some time to attain the steady time

delay estimation. This time is about 2 seconds, which is lessthan the time of one

moving window length (40×0.1= 4 seconds). When the time delay changed in

the system, the estimation need a little time (less than 1 second) to react to this

change. Then the steady estimation was disturbed and a peak appeared. After a

short time, the estimation value will stabilized to a new value that is quite close

to the true time delay again. In each time period when the timedelay changes,

the same phenomenon will emerge to the estimated value. But at 30th second,

the system switched to a completely different system, in which not only time de-

lay changed but also the other parameters changed. Unlike the other time when

the time delay changed, before the changing time, the estimated value has been

already different with the former steps. And in a period of about 2 seconds, it

arises more than 2 peaks before it is back to the steady estimated value. Two

different factors, both time delay change and system switching, work together

to lead to this estimated value fluctuating more than before.It is observed that

except for the time period when the system has a change, only small steady es-

timation errors (about 0.1 second) to the real time delay canbe observed. This

small estimation error is due to the fact that this identification solution is deter-

mined byTs (see (3.30)).

• Parameters identification: The result of identification to the other two param-

eters expect time delay could be seen in Fig.3.19. Regarding the estimation of

system gainKt , unlike the time delay estimation, it does not need time to attain

the steady estimated value. From the beginning at 10th second, it showed a quite

good performance to this parameter identification. The estimated value is nearly

the same to the true value. WhenKt changed at 30th second, the estimated value

would be away from the original steady estimated value. The estimated value

had a large peak before it returns to another new steady value. But the time it
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needed (about 5 seconds) is much more than the time used in thetime delay es-

timation. At all sample time where the estimation value is steady, the error for

the estimation ofKt is below 1%. For another parameterTt
p, in the beginning,

it has a small deviation and quickly returns back to the steady estimation value

which is quite close to the real value 1. At the time the systemchanged, it can be

observed a rather large peak appeared (in order to show most estimation result

in detail, the value is omitted in the figure). In more than 5 seconds, it recovered

to the steady value. But it seems not so steadier than the estimation for the pa-

rameterKt . It is believed that the unavoidable error of the time delay estimation

affects much more on this time constant than the system gain.

• Time delay and input: In order to show the relation between time delay and

input signal, the rate between estimated time delay and measured input signal

at each sampling time is calculated, which can be seen in Fig.3.20. It can be

observed that except for the time period the time delay changed, the rate is in

the range of 0.4-0.5 at each sample points showed steady estimation. The result

approximately shows that how the time delay depended on the input.

In order to show the moving widow length can affect the estimation result, a num-

ber of other tests are conducted. In each test, onlyN is changed with the first test to

make the estimation. The results could be seen from Fig.3.21to Fig.3.24.

From these tests, it can be observed:

• Sample number: From Fig.3.21 to Fig. 3.24, different sample numbers are

adopted. According to the results, estimation using 50 samples could provide

the smoothest results at the cost of the delay to detect the parameters change in

the system. But the result using 30 samples not only is less smooth, but also had

an obvious decreasing in the accuracy.

Conclusion from above simulation tests:

From a number of the simulations, for a TV-FOPDT modeled system, in which the

time delay depended on the input and other parameters of the system have a sudden

change at some time, the proposed method, using SMINLP programming based on the

BB and LMS method, can provide a reasonably accurate and prompt estimation for

the time delay and parameters. The choosing of length of moving widow could affect

143



3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
delay

Time

V
al

ue

 

 
estimated value
real value

Figure 3.21: The time delay estimation based on 30 samples
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Figure 3.22: The parameters identification based on 30 samples
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Figure 3.23: The time delay estimation based on 50 samples
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Figure 3.24: The parameters identification based on 50 samples
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3.6 Multi-Input FOPDT Identification

the performance of the estimation. Less data leads that the estimation can not capture

the property of the system and results in an unsatisfied performance. In general, the

more samples are used for estimation in each step, the much smoother estimation result

could be obtained. But too many sample points can decrease the estimation to reflect

time varying property of the parameters. It need to look for abalanced sample number

in the estimation.

3.6 Multi-Input FOPDT Identification

In the previous sections, a Time-Varying FOPDT (TV-FOPDT) model even with in-

put dependent dead time, is proposed. All of the above mentioned models and the

corresponding identification methods are only suitable forSISO system situation.

But from the application point of view, many systems may be affected by more than

one issue besides the known input variable, such as some disturbance from the physical

mechanics, unknown noise and so on. Bearing it in the mind, the thesis extends the

proposed TV-FOPDT methods into MISO case.

3.6.1 MISO TV-FOPDT Model Formulation

An MISO TV-FOPDT model considered here can be defined in the following manner:

Y(s) = Gt
1(s)U1(s)+Gt

2(s)U2(s), (3.53)

with transfer functions

Gt
1(s) =

Kt
1

Tt
ps+1

e−Tt
ds. (3.54)

and

Gt
2(s) =

Kt
2

Tt
ps+1

. (3.55)

The measurement is

x(t) = y(t)+ω(t). (3.56)

Hereu1(t) is a known part of input.u2(t) is an unknown part of input, which is defined

as the system’sdisturbance. y(t) is the ”noise free” output, andX(s)/Ui(s), i = 1,2 is

Laplace-transform of the system output/input.x(t) is the noisy system output, and the
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3.6 Multi-Input FOPDT Identification

noiseω(t) is zero-mean white Gaussian noise with varianceQ. Tt
d is the time delay

happened in the input,Tt
p is the system time constant, andKt

1, Kt
2 are system gains for

different parts of inputsu1(t) andu2(t), respectively. The superscriptt of variables

also mean the time varying feature of the corresponding variables.

It is assumed that the time constants inGt
1(s) andGt

2(s) are the same in this con-

sideration, which indicts that both of the two part of input affect the output in the same

dynamic manner. It is also assumed that the time delay only affect to the known part

of inputu1(t), and hereKt
2 is supposed to be known beforehand. All unknown factors

relevant toGt
2(s) was modeled into the unknown part of inputu2(t).

The considered MISO TV-FOPDT identification problem can be also formulated

as: to identify system parametersKt
1, Tt

p andTt
d, as well as to simultaneously estimate

the unknown inputu2(t) based on the sampled data of control inputu1(t) and output

y(t), in an on-line optimal manner (153).

3.6.2 Iterative LMS Method

In order to apply the same idea to make the system identification of the MISO TV-

FOPDT model, the method proposed in the previous sections need to be extended to

the multi-input cases.

As the same procedure, the continuous-time system (3.53) with (3.54) and (3.55) is

approximated by its discrete-time equivalence followed bythe same technique in the

last section, i.e.,

Y(z) = Gk
1(z)U1(z)+Gk

2(z)U2(z), (3.57)

with

Gk
1(z) =

Kk
1(1−αk)

zlk(z−αk)
, (3.58)

and

Gk
2(z) =

Kk
2(1−αk)

z−αk , (3.59)

whereαk , exp
− Ts

Tk
p , andTs is the sampled interval. As stated in last section,{Kk

i }i=1,2

andTk
p are not the same to{Kt

i }i=1,2 andTt
p in (3.54) and (3.55): The former ones

are piecewise-constant (constant in each sampling interval) functions, while the latter

ones are real timed functions. Their relationships can be described as{Kk
i }i=1,2 are
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3.6 Multi-Input FOPDT Identification

equal to{Kt
i }i=1,2 andTk

p is equal toTt
p at each sampling time, i.e.,Kk

i = Kt
i , i = 1,2

andTk
p = Tt

p whent = kTs for any nonnegative integerk. Hence, we call{Kk
i }i=1,2,

Tk
p as thekth sampled (time-varying) system gains, the kth sampled (time-varying)

time constant, respectively. Thelk in (3.58) is the discrete approximation of thekth

sampled system delay Tk
d (Tk

d = Tt
d whent = kTs for any nonnegative integerk), with

the propertyTk
d ≈ lkTs (153).

Defineβ k , Kk
1(1−αk), γk , u2(k)(1−αk), then model (3.53) with (3.54) and

(3.55) can be converted to














y(k) = y1(k)+y2(k)

y1(k) = αky1(k−1)+β ku1(k− lk−1)

y2(k) = αky2(k−1)+ γkKk
2

(3.60)

Make a sum of the last two equations in (3.60)) and use the first equation, the following

model can be obtained:

y(k) = αky(k−1)+β ku1(k− lk−1)+ γkKk
2, (3.61)

for k = lk +1, lk +2, · · ·∞.

The measured output signal is collected at each sampled time:

x(k) = y(k)+ω(k). (3.62)

Take (3.61) and (3.62) together, then there exists

x(k) = αkx(k−1)+β ku1(k− lk−1)+ γkKk
2 +ω

′
(k), (3.63)

for k = lk + 1, lk + 2, · · ·∞. Hereω ′
(k) is a new Gaussian noise thatω ′

(k) , (1−
αk)ω(k).

Then, the original parameter identification problem of continuous-time model is

converted to identify the parametersαk, β k, γk and lk for a stochastic discrete-time

system (3.63) based on a number of sampled input signals and measured outputs.

The considered system identification problem of (3.63) can be formulated as a

Stochastic Mixed Integer Nonlinear Programming (SMINP) problem according to the

same procedure in previous sections. Then choosing the Bound and Branch strategy

(51) to handle the corresponding mixed integer optimization, the LMS method can be
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3.6 Multi-Input FOPDT Identification

applied to cope with each optimal parameter identification under the assumption of

boundness of time delays as well.

Assume that system (3.53) is running atkth sampling step and letN be the number

of latest sample pairs of the measured output and input used to make the estimation

at kth step. ThisN is also the length of the sliding window used in every estimation

step. Defineθk , [αk β k γk]T , then the identification/esitmation problem at thekth

sampling step can be formulated as:

min
lk ∈ L

θk ∈ Θk

E{‖ Bk
N −Ak

N(lk)θk ‖2
2}, (3.64)

whereBk
N is a vector variable consisting ofN latest measured outputs with forgetting

factor at the currentkth sampling step, i.e.,

Bk
N , [x(k) ρx(k−1) · · · ρN−2x(k−N+2) ρN−1x(k−N+1)]T . (3.65)

Ak
N(lk) is a system matrix which depends on time delay parameter, andis generated us-

ing N pairs of input and measured output with a forgetting factor,it can be constructed

by:

Ak
N(lk) ,















x(k−1) u1(k− lk−1) Kk−1
2

ρx(k−2) ρu1(k− lk−2) ρKk−2
2

...
...

...
ρN−2x(k−N+1) ρN−2u1(k− lk−N+1) ρN−2Kk−N+

2
ρN−1x(k−N) ρN−1u1(k− lk−N) ρN−1Kk−N

2















.

(3.66)

Θk stands for the possible range ofθk, L means the boundaries of time delay,ρ is a

so-called forgetting factor, which is used to decrease the effect of the old data to the

new estimation at the current sampling time. It is much useful especially for the cases

that some of system characteristics may be time varying (40). In the following part,

the forgetting factor is selected in the interval[0.95, 1].

Note that if there is no time delay in the system model, or the time delay is known

beforehand, the optimization problem of the system (3.64) can be degenerated to a

standard LMS problem. Moreover, if some pre-knowledge of time delay in the system

can be known or obtained, such as the upper boundary and lowerboundary at each
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sampling step, an iterative algorithm can be performed by searching the optimal solu-

tion in the entire possible region of time delay in an one-by-one manner as previous

Iterative LS methods. For each iteration, LMS problem can besolved by applying

some standard techniques referred in (100). In general, the LMS based method require

to enumerate all the possible situation with regard to time delay. But this method can

guarantee that the solution is globally optimal in most cases.

The same as the previous assumption, the boundary of time delay is described by

some integer numbers multiplying with sampling period, i.e., lk
min ≤ lk ≤ lk

max andlk
min,

lk
max, which are known beforehand. Moreover, in order to make parameter identifica-

tion, the sampling intervalTs, the sliding window lengthN and forgetting factorρ need

to be decided as well before the procedure.

In the start, the algorithm need to wait to collect the enoughsampled data to con-

struct matrices (3.41) and (3.42) until a specific sampling step. Suppose this initial step

askini , where the conditionN + lkini
max≤ kini should be satisfied. Then, the main iden-

tification procedure can start from thekini step. Let sampling stepk ≥ kini , the whole

scheme is in the following:

- A computing loop is constructed with regard tolk starting fromlk
min and ending

at lk
max by taking the unit increment tolk. For each iteration(k) of lk (lk

min ≤ lk ≤
lk
max), solve the LMS problem (3.40) and record the corresponding prediction

error. The LMS problem has an analytical solution as:

θ̂k(lk) = ((Ak
N(lk))TAk

N(lk))−1(Ak
N(lk))TBk

N,

Cov(θ̂k) = ((Ak
N(lk))TQ̂(k)−1Ak

N(lk))−1,
(3.67)

where θ̂k(lk) stands for the estimation ofθk at current iteration with discrete

time delaylk, Cov(θ̂k) means the covariance ofθ̂k, andQ(k)=̂(1− α̂k)2Q is the

covariance ofω ′
(k).

- (θ̂k(l̂k), l̂k) which leads to the minimal prediction error among all iterations with

regards tolk moving fromlk
min to lk

min, denoted as(θk∗(lk∗), lk∗), is chosen as the

optimal solution for (3.40) at the current step.

- The estimation of thekth sampled system parameters of (3.58) and (3.59) for

the current sample, i.e.,̂Tk
p , K̂k

1 and û2(k), can be obtained fromθk∗(lk∗) =
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[αk∗ β k∗ γk∗]T using the following relation:

T̂k
p = − Ts

lnαk∗ , (3.68)

K̂k
1 =

β k∗
1

1−αk∗ , (3.69)

û2(k) = γk∗/(1−αk∗), (3.70)

and the sampled time delaylk is estimated aslk∗. As a result,K̂k
1, T̂k

p , û2(k) and

lk∗Ts are set as the approximations of the original parameters andunknown input

for the continuous system (3.3) at the current sampled step.

When a new (couple) data of input and measured output is obtained, the above

procedure will be repeated. Thereby the system idenficiation/estimation for the model

(3.53) can be executed in an on-line iterative manner. It can be noticed that the original

method proposed in previous sections can become a special case of the considered

problem here, i.e., corresponding tou2(t)≡ 0.

3.6.3 Numerical Examples

In the following, the proposed method in section 3.6 and the method used in section

3.5 are both applied and compared. For simplicity, the proposed method is noted as

new method, while the latter one is noted asold method.

Case A-I: Data generated from a system with unknown input

Consider a switching TV-FOPDT system, where system parameters are set as:

whent < 30 seconds, there are

Tt
p = 2, Kt

1 = 3, Kt
2 = 3, Tt

d = 3.05;

whent ≥ 30 seconds, the parameters change to

Tt
p = 3, Kt

1 = 4, Kt
2 = 4, Tt

d = 2.05.

The noise in the measurement of the output follows the distributionN(0, 0.001). The

sampling period is set asTs = 0.1 second. The length of sliding window is selected

asN = 50, and the forgetting factorρ = 0.95. Assume we have the pre-knowledge
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3.6 Multi-Input FOPDT Identification

of the sampled time delay likelk
max = 40 andlk

min = 0. According to the proposed

method, it need to wait more than 8 seconds (the data collection period is(50+40)×
0.1 = 9 seconds) to start the identification procedure in the beginning. In the test,

the identification begins after 100th sampling time, i.e., after 10 seconds. The data is

collected by simulated the considered system with a sweep signal as the control input,

and a multi-step signal as the unknown input with the property

u2(t) =















1, t < 40

1.2, 40≤ t < 60

2, t ≥ 60.

The known input signal and measured output obtained from this simulation are illus-

trated in Fig.3.25.
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Figure 3.25: The known input and output data for Case A-I

Fig. 3.26, Fig. 3.27, Fig. 3.28and Fig.3.29display the results of the system esti-

mation for time delay, system gain of known input, time constant and unknown input,

respectively. Here the red line plots the real value, the blue one shows the estimated

value using the proposed method and the green one is the result using the original

method proposed in the prevous section. From the simulationresults, the following

observation could be made. All of the results, including parameter identification, time

delay estimation and unknown input estimation, show nearlythe same characteristics.

It is obvious that the proposed method exhibited much betterresults than the old

one did, which is supposed to be used only for SISO TV-FOPDT case. For the pro-

posed method, the identification algorithm starts at 10th second. Since the system is
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Figure 3.26: The time delay estimation for Case A-I
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Figure 3.27: The identification result ofKt
1 for Case A-I
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Figure 3.28: The estimated time constant for Case A-I
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Figure 3.29: The estimated unknown input for Case A-I using proposed method
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already at a steady situation, the estimations showed reasonably good approximations

and precisions. This stable estimation lasted for about 20 seconds until the system had

a switching at 30th second. Some deviations are clearly observed during a short period

after the switch of system parameters (30 sec.). The fluctuation period is approxi-

mately equal to one window length (50∗0.1=5 seconds) before the estimated parame-

ters started to converge to new steady-state values. The same phenomenon happened

when the unknown input has jumps at 40th second and 60th second, respectively.

Regarding the accuracy, the time delay estimation showed some small steady-state

estimated error and they are below 2% in most cases. These offsets are mainly due

to the discretization of the system model, thereby it can be reduced by increasing the

sampling frequency. All results of the other three estimation showed the steady-state

error are less than 1% to the real values in most steady state cases.

Case A-II: Data generated from a system without unknown input

In this test, the data used for estimation is generated by applying the same input as

used in Case A-I except that there is no unknown input, which meansu2 ≡ 0. Both

identification methods are tested and compared in the following.
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Figure 3.30: The time delay estimation for Case A-II

The results turned out that both methods showed almost same performances except

different amplitudes of fluctuations after the switching point (30 sec), where the system
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Figure 3.31: The identification result ofKt
1 for Case A-II
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Figure 3.32: The estimated time constant for Case A-II
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Figure 3.33: The estimated unknown input for Case A-II usingthe proposed method

parameters abruptly changed. Thenew methodled to larger fluctuations than theold

method. This is because that thenew methodgot a wrong estimation (non-zero) of

the unknown input for a short while, as shown in Fig.3.33, which caused further

deviations to all parameter estimations. Otherwise, we canconclude that both methods

can provide almost same estimation performances.

3.7 Application for Superheat Modeling

3.7.1 Refrigeration and Superheat System

Figure 3.34: Refrigeration system

One of typical refrigeration systems follows the principlewith vapor compression

by using some types of refrigerant as the heat transfer medium. Generally, one refriger-
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ation system composes of four basic components, that are expansion valve, evaporator,

compressor and condenser. A vital variable that can greatlyaffect the efficiency of

this kind of system is the filling refrigerant in the evaporator. The important factor to

evaluate this refrigerant filling is the superheat, which can be defined as the difference

between the outlet temperature of the gas and the inner temperature of the evaporator.

This kind of superheat can be controlled by adjusting the degree to open the expansion

valve. In order to maximally utilize the potential of the evaporator, the superheat needs

to be maintained as low as possible.

Most existing commercial refrigeration systems use eithera thermostatic expansion

valve or a kind of on-off control of the expansion valve. These types of control are easy

and simple for design and implementation, however they often do not lead to (smooth)

comfort and energy-efficient performance. Some advanced feedback control methods

are expected for this type of system. Nevertheless, no matter what kind of methods

were used, generally, one mathematical model of the considered superheat dynamic is

often required in order to have a automatical control designing and tuning process. The

dynamics of superheat in a refrigeration system must be verycomplicated, which can

consist of high nonlinearities and time varying properties. The detailed model of the

evaoprator/superheat can be set up according to the conservation of mass, momentum

and energy on the refrigerant, air and tube wall etc. However, this category of detailed

model often causes some difficulties during the control design stage because of the

complexity of the system model. For these reasons, in order to get a simple model

of the system, Li (92) proposed an empirical model to decouple the superheat and

capacity control, where the superheat system was modeled byso called First-Order

Plus Dead-Time (FOPDT) model. However, a FOPDT model can only make sense for

some local operating points. Later, Russmus and Lars (135) proposed another kind

of nonlinear First-Order (FO) model in 2009, based on the first modeling principle.

Their considered nonlinear FO model can be seen as an extension of the standard FO

model by means that both of the system gain and time constant of the model were

taken as functions of the inputs and disturbances, and hencean adaptive control of

superheat was developed based on back-stepping method. However, the acquisition

of this nonlinear FO model need many assumptions to be founded due to the physical

modeling principle, and many of these assumptions are either impossible or difficult to
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be examined in the reality. Moreover, the time-delay feature of the superheat dynamic

is not explicitly expressed in this model either.

But the proposed model TV-FOPDT, including some inputs dependent dead time,

can describe the former status and solve the problems. In thethesis, Time-Varying

FOPDT (TV-FOPDT) model is applied to model the superheat dynamic in a supermar-

ket refrigeration system.

Figure 3.35: A superheat model

A popular superheat dynamic can be seen in the Fig.3.35.

3.7.2 Superheat Dynamic Identification

Two different systems are considered in the following system identification. The con-

sidered refrigeration system is a supermarket display casecooler as shown in Fig.3.34.

Compared with a freezer, the display case cooler has a less efficient (adjustable) air

curtain. Two sensors are installed to gain the superheat measurement. One pressure

sensor is placed close to the inlet tube of the evaporator. Then the evaporation tempera-

ture is estimated based on this pressure measurement and theknowledge of refrigerant
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type. A thermostat transducer is placed at the evaporator outlet to measure the gaseous

refrigerant temperature (172).

Case S1: TV-FOPDT with noiseFirst, the system model is chosen as with only

one transfer function (3.39) and the measurement model is described as (3.41). It is

obvious there is noise in the measurement of the system.

The experimental data is collected from a real system installed at Danfoss A/S

(172). The sampling periodTs is selected as 2 seconds. Moreover, it has been noticed

from the experience that time delay of the real system is no more than 300 seconds,

i.e., the upper limit of the time delay can be set up as 150 samples. The input data

is the measurement of the percentage in the openness of the expansion valve, and the

output data is the calculated temperature of superheat based on two sensor (both inner

and outer) measurements. In order to significantly excite the considered system, the

designed input signal is composed of a number of asymmetrical relay cycles. One set

of input and output data is illustrated in Fig.3.36.
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Figure 3.36: Input/Output Data for Case S1

A rectangular window with a length of 200 samples is used. Thereby the first es-

timation result comes at the next step after the 350th sampling step, i.e., 200 (window

length) + 150 (maximal delay) =350. The estimated system time delay is indicated

in Fig. 3.37. It can be noticed that during the period from the beginning to the 744th

sampling step, the estimation stayed at a value of 32 sec. From the 746th sampling
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step, the estimated value stabilized around a value of 234 sec. The estimated system

delay only significantly changed twice regarding to this tested experiment. The iden-

tification results of (sampled) system gain and time constant can be seen in Fig.3.38.

The time varying feature of these two parameters is quite obvious. In general, the es-

timated system gain has a trend to slightly increase until reaching some steady-state

while the estimated system time constant has a trend to slightly decrease until reaching

some steady-state. This test also showed that the superheatgradually converge to its

expected working point (10 degree for this case). It has beenfound in [10] that the

system parameters of a nonlinear FO model of the superheat dynamic are relevant to

system input, output and disturbance as well. The coupling between the superheat dy-

namic and the compressor behavior is also studied in [7]. Thereby, a 3-D plot of the

estimated time delay w.r.t. the input and output signals is shown in Fig.3.39. From this

observation, it seems that the system time delay mainly depends on the output value.
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Figure 3.37: Delay Estimation for Case S1

Case S2: MI TV-FOPDT model

In this part, the data generated from a real refrigeration system, which is another

set different to the case S1, is used to estimate a Multi-Input TV-FOPDT model of

the superheat dynamic in the considered system. Some conditions are the same to the

former case, i.e., the sampling periodTs is still selected as 2 seconds. Moreover, it

has been noticed that the system time delay is no more than 400sec., i.e., we can set
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Figure 3.38: Parameter Estimation for Case S1
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Figure 3.39: 3-D Plot for Case S1
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up the upper limit of the time delay as 200 samples. The known part of input data is

the measurement of the openness percentage of the expansionvalve, and the output

data is the calculated superheat (temperature) based on twosensor measurements. The

designed input signal consists of a number of asymmetrical relay cycles. One set of

input and output data is illustrated in Fig.3.40.
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Figure 3.40: The input and output data from a real system

Under the assumption that the superheat (temperature) dynamic can be approxi-

mated by system model (3.53), we define parameterKt
2 as 2. It should be noticed that

the value ofKt
2 does not critically affect the estimation results, even though it could

influence the estimated aptitude of the unknown input. Theoretically, it can be set as

any value. A sliding window with a length of 200 samples is used. Thereby the first

estimation result comes at 400 sampling step, i.e., 200 (window length) + 200 (maxi-

mal delay) =400, this means that the first estimation should start at 800 second. In this

test, both thenew methodandold methodare employed as well. The estimated system

parameters are illustrated in Fig.3.41, Fig.3.42and Fig.3.43, respectively. At this mo-

ment, we are not always sure that the proposednew methodworks better than theold

methoddid. From the so-far observed results, we can conclude that superheat model in

this refrigeration system should take the disturbances into consideration, which could

be due to the influences of compressor and/or the ambient thermal environment. Fur-

thermore, since we expect a model which is suitable for modeling superheat dynamic
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in large operating region, there is no doubt that TV-FOPDT model should be one of

the good candidates.
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Figure 3.41: Time delay estimation for the real system

3.8 Conclusion

This Chapter considered a TV-FOPDT system identification problem. The models

consist of three different kinds, simple TV-FOPDT, TV-FOPDT with input dependent

dead time and Multi-Input FOPDT. The first two models can together called as SISO

TV-FOPDT model compared with MI TV-FOPDT model. From the model studying,

MI TV-FOPDT model can describe the disturbance input much better.

Correspondingly, a number of identification algorithms to estimate the time depen-

dent parameters, as well as the unknown input for the MI TV-FOPDT model, are pro-

posed. By regarding all unknown parameters as the ones need to be identified including
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Figure 3.42: System gain and time constant estimation for the real system
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Figure 3.43: Unknown input estimation for the real system
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the unknown input, the considered problem can be formulatedas a Stochastic Mixed

Integer Nonlinear Programming (SMINP) problem. Then bound-branch method for

handling the mixed integer programming, the Least Mean Square (LMS) for handling

the optimal parameter identification, together with the sliding window with forgetting

factor for data selection, are adopted and combined to handle the formulated problem.

The method can make the system identification in an on-line manner.

The proposed approaches are tested on a number of numerical examples and com-

pared with the relevant methods. For the application, it is applied to model the su-

perheat dynamic in a supermarket refrigeration system. There is no doubt that the MI

TV-FOPDT provides more flexibility to model complex systemsin a more realistic

manner.
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Chapter 4

Conclusions and Future Work

4.1 Thesis Conclusions

The thesis considered the techniques of parameter identification for two different kinds

of nonlinear models, i.e., nonlinear ISDE model and nonlinear FOPDT model. The ap-

proaches to make the corresponding parameter identification are proposed, which are

called as UKF plus ML method and Mixed Integer Nonlinear Programming (MINP)

based method. The thesis make contribution to several points to the development of

system identification. Firstly, the thesis suggests to apply some new nonlinear models

to describe the systems more accurately. Secondly, some newmethods are proposed to

make parameter identifications of the corresponding modelsand these methods have

their own merits. Thirdly, some theorems proved in the thesis can provide some the-

oretical support to the new models and parameter identification methods, such as the

identifiability and convergence issues.

Nonlinear ISDE Model

• The merits of using Itô SDE model lies in that it can describethe structure of the

random feature of system in a more accurate way and the matureISDE theory

can provide a theoretical support to this model.

• A nonlinear system identification approach was proposed to make the estima-

tion of the system modeled by ISDE. The approach combined theUnscented

Kalman Filter and Maximum Likelihood to make the parameter identification.
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4.1 Thesis Conclusions

The characteristics and advantages of the proposed method is its relatively good

precision, accuracy and computation load regarding to the parameter identifica-

tion.

• The consistency and normality of the proposed method, UKF plus ML method,

were proved under conditions of boundness for system functions including their

derivatives and parameter possible ranges.

• A number of numerical tests were formulated to make the evaluation of the new

scheme. The results showed it can provide a good performancein terms of the

accuracy, convergence at a small extra cost of the computation load.

All in all, the ISDE model has its own unique merits to describe the random sys-

tems. Since it can describe the system in which the random part can be related with

the state variable, the ISDE model can model the system with fault that may depend

on the state variable. Moreover, the mature theory on ISDE can provide a useful sup-

port to the system analysis. For example, the Itô formula can simplify some system

with state related random features to ones without state related random features. Then

the technique of system identification can be applied simplyto the system. The pro-

posed approach of nonlinear system identification, UKF plusML method, is proved

to be consistency and normality under the corresponding conditions. It can guaran-

tee the estimation using UKF plus ML method is correct for some kinds of systems.

Furthermore, the normality property can show the confidential level of the estimation.

Moreover, from a number of tests, it showed better performance in accuracy and con-

vergence than direct Kalman Filter technique and EKF plus MLmethods at cost of

computation load.

Nonlinear FOPDT Model

• The identifiability of the time varying models are particularly defined based

on the model structure, identification method and sampling points. Under the

new definition, the condition that can guarantee the identifiability of nonlinear

FOPDT is derived.

• The Time Varying FOPDT model, even with the input dependent dead time, was

proposed. A method based on the Stochastic Mixed Integer Nonlinear Program-

ming (SMINP) was developed to make the estimation of the parameters with

168



4.2 Future Work

time delay for the system. The approach applied Branch-Bound method and

Least Mean Square method to solve the concerned problem.

• A number of numerical tests were formulated to make the evaluation of the al-

gorithm. The results showed it can provide a good performance in terms of the

accuracy and speed. The method was applied to make the estimation of a real

system which models superheat in a refrigeration system.

All in all, the proposed nonlinear FOPDT has much more flexibility in modeling some

complex processes much better than the traditional FOPDT model. The identifiability

analysis showed that under some conditions the nonlinear FOPDT identification can

be guaranteed using LS based method. The simulation resultsshowed it is a fast and

flexible method. But the sampling number and input signals can affect the performance

of the accuracy.

4.2 Future Work

Nonlinear ISDE Model

Firstly, the UKF plus ML method can identify some models withstate depended

random features which can be simplified to ones without statedepended random fea-

tures using Itô formula. To find the approach to identify other models with state de-

pended random features can be part of future works for the system identification of

ISDE model.

Secondly, how to extend the parameter identification methodproposed here to be

a recursive version to make the on-line identification in order for the computation ef-

ficiency as well as the FDD purpose, is still open. The most difficulty lies in how to

handle the time varying delay estimation recursively.

Nonlinear FOPDT Model

Firstly, whether the identifiability analysis of the nonlinear FOPDT can be extended

to other nonlinear models or not need to be further investigated and studied in the

future.

Secondly, it is undoubtable that nonlinear FOPDT model can not be used to de-

scribe all the system. For this reason, to find out what kind ofsystem can be described

using nonlinear FOPDT model is part of the future work. And how can we make
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4.2 Future Work

the controller design or system reconfiguration based on theestimation of nonlinear

FOPDT can also be the following work. Moreover, the correlation between the con-

vergence rate of the selected identification algorithm and the time varying features of

unknown parameters need to be further deeply investigated.
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[7] K. J. Åström, H. Pnagopoulos and T. Hägglund, Design of PI controllers based on

non-convex optimization,Automatica, Vol. 34, No. 5, 1998, pp. 585-601.

[8] A. Beghi, L. Cecchinato and M. Rampazzo, On-line, auto-tuning control of Elec-

tronic Expansion Valves,International Journal of Refrigeration, Vol. 34, 2011, pp.

1151-1161.

[9] S. Björklund, A Survey and Comparison of Time-Delay Estimation Methods in
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