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Abstract

Interest in nonlinear system identification has grown gigaintly in re-
cent years. It is much more difficult to develop general fsstiian the
concern for linear models since the nonlinear model strastare often
much more complicated. As a consequence, the thesis ongyd=os two
different kinds of models, one is a type of state space motéaiiwis de-
scribed by lb"Stochastic Differential Equations (ISDE), the other ona is
nonlinear First Order Plus Dead Time (FOPDT) model. Thisithaims
to investigate these two different kinds of nonlinear medeld to propose
the corresponding methods to deal with their system ideatifins.

Firstly, the system described by an ISDE model is consideedended
from conventional stochastic systems, where the randotoftire system
is often described as a type of normal distribution signaleaiito the de-
terministic differential equation, the ISDE model genrabnsists of not
only a structured deterministic part called drift term, bl#o a structured
random part called diffusion term. The model can descrikesgstem in
which the random features are correlated with system sfiaests, out-

puts) and this relationship can be explicitly describedh®/model itself.

The considered nonlinearity of this model can be expresgetidnon-

linearity of the system functions. The parameter identiiicabased on a
state estimation such as an Extended Kalman Filter (EKF)Uarstented
Kalman Filter (UKF), is investigated for this type of modelthe thesis.
Moreover, a new method by combining Maximum Likelihood (Megh-

nique plus UKF is proposed and its convergence property keigiard to

the consistency and normality is also investigated. Theldged meth-
ods and algorithms are tested and analyzed for a number oéncah

cases and then for a space robot system.



Secondly, the system considered is described by a nonk@RDT model.
This type of FOPDT model is an extension of the traditionalPBJ
model which pre-assumes all the model parameters are cosistahe
nonlinearity that is defined in the model is reflected in ite tvategories
of varying parameters, namely depending on time variabkoare other
variables, such as input signal etc. We refer to this type oflehas a
Time Varying FOPDT (TV-FOPDT) model. At first, the identififity
of the corresponding model is theoretically investigat@&tien, the first
concern of parameter identification of the considered aysis under as-
sumption that the parameters of TV-FOPDT model are as tirpert#ent.
Afterwards, the input dependent parameter identificatppr@ach is con-
sidered. For these two categories of FOPDT models, the soreling
methods to make the parameters identification are propaszaidingly.
Moreover, the proposed methods are further extended to pekeneter
identification of a kind of multiple inputs model. The propdsmethods
and algorithms are tested and analyzed for a number of nocah@ases
and finally applied to study the superheat dynamic in a Danfeigera-
tion system.

The proposed models and methods are further extended fqutipese
of Fault Detection and Diagnosis (FDD). In a system whergigte pos-
sible parametric fault, if some fault happens, one or séysEemeters
related to fault may change their values. Then the FDD pnoeedan be
performed by identifying these fault related parameterierivards, the
decision whether the fault happened or how large the faglimsbe made
by comparison and analysis based on the estimated values.



Resume

Interessen for ulineger system-identifikation er steggidadigt i de senere
ar. Det er imidlertid en hel del vanskeligere at na frengéherelle resul-
tater for ulinesere modeller, end for lineaere modell@rsagen er, at de
ulineaere model-strukturer ofte er vaesentligt mere korapdide. Falgeligt
beskeaeftiger denne afhandling sig kun med to forskelligertypodel, den
ene type er en tilstands-rum-model (state space modeRrdvest ved Itd
Stokastiske Differentialligninger (ISDE), den anden tygreen ulineaer
Forste Ordens Plus Dgd-Tid (FOPDT) model. Denne afhandligigr
mod at undersgge disse to forskellige slags ulinesere neodeimt at
foresla de tilsvarende metoder til system identifikation.

Farst gennemgas den model, der knytter sig ISDE beskenelodellen
er opstaet ud fra konventionelle stokastiske systemer, ten stokastisk
varierende del af systemet ofte beskrives som en slags héondelt sig-
nal overlejret signalet vedr. den deterministiske diffietialigning. ISDE
modellen bestar derfor ikke kun af en struktureret deteistisk del kaldet
drifts-leddet, men ogsa af en struktureret stokastislevande del kaldet
diffusions-leddet. Modellen kan beskrive et system, hveistbkastiske
delsystemer er korrelerede med system tilstandene (iaptgut), og hvor
denne relation kan beskrives eksplicit af selve modelleen Dndersggte
ulinearitet i denne model kan udtrykkes ved ulinearitetegstem funk-
tionerne. For modellerne i neerveerende afhandling foretpgeameter-
identifikation udfra tilstands estimering, f.eks ved Exted Kalman Fil-
trering (EKF), eller ved Unscented Kalman Filtrering (UKFderligere
foreslas en ny fremgangsmade med benyttelse af Maximkalihbod
(ML) (mest sandsynlige) teknik plus UKF, og denne metodes/kayens
egenskaber undersgges m.h.t. konsistens og normalitetudidklede



metoder og algoritmer testes og analyseres i et antal regeemwler samt
I et system med en robot.

Derpa gennemgas det andet betragtede system, beskeglvenhwlinezer
FOPDT model. Denne type FOPDT model er en udvidelse af delit tra
tionelle FOPDT model, som forudseetter, at alle modelpatiares kon-
stante. Det, som defineres som ulinearitet i denne betragtedlel, kan
henfares til to forskellige kategorier af varierende pagtim tids-varierende,
eller varierende med andre variable, sasom input. Moadlédéddes Tids-
Varierende FOPDT, dvs en TV-FOPDT model. Herefter tagest fiam-
dersgges modellens identificerbarhed. Farste skridt hed parameter-
identifikation under antagelse af, at FOPDT modellens patarer tid-
safhaengige. Derpa etableres den foreslaede identifikafide med input
varierende parametre. For disse to kategorier af FOPDT heodereslas
de tilsvarende metoder til parameter-identifikation. REsuudvides de
foreslaede metoder til at muliggare parameter-identifikafor en slags
multi-input model. De foreslaede metoder og algoritmstds og anal-
yseres i en raekke numeriske tilfeelde. Endelig bruges desdihmere at
undersgge dynamikken omkring overophedning i et Danfoleskgtem.

De foreslaede modeller og metoder er blevet yderligereédedfor ogsa
at deekke Fejl Detektering og Diagnose (FDD). Hvis et systemmer

mulighed for parametriske fejl, og der sker en fejl, da kglefeevt bero

pa, at en eller flere parametre har skiftet veerdi. Her kan pigeduren
gennemfares ved at identificere disse fejl-relateredenpetra. Derpa kan
man afgare, hvorvidt fejlen indtraf, og hvor stor den vad @t sammen-
ligne og analysere ud fra de estimerede veerdier.
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Chapter 1

Introduction

Interest in system identification for nonlinear systemsgdras/n significantly in recent
years. Its study demonstrates importance in process pisdisystem re-configuration,
fault tolerant control system and so on.

Obviously, for the nonlinear systems, different systemaliheir different nonlin-
earities. Unlike linear systems, it is difficult to find outrgal results for nonlinear
system identification. Hence, it is required to developeddht approaches to make
nonlinear system identification for varies of nonlinear misd Among lots of model
categories, State Space (SS) model and Input/Output (I@ehawe the most popular
ones. This thesis focuses on the two specific nonlinear rearfethese two kinds:
It6 Stochastic Differential Equations (ISDE) based SS modelsaveral kinds of the
extensions to First Order Plus Dead Time (FOPDT) model. dppses two different
methods to make the system identification of these two cooreding models. The
proposed methods are referred to as Unscented Kalman @eilkd¥) plus Maximum
Likelihood (ML) method and Mixed Integer Programming (MIBsed method in the
following. Furthermore, some convergency properties aeahtifiability of the pro-
posed methods are investigated. Afterwards, in order tagheir advantages, these
new methods are compared with some existing standard sydeertification meth-
ods and illustrated by some numerical examples. Finally,ptoposed methods are
applied to several real systems and showed their applicafa the purpose of Fault
Detection and Diagnosis (FDD).



1.1 Background and Motivation

1.1 Background and Motivation

Lots of engineering applications call for an accurate dpgon of the behavior of the
system under consideration, especially in the field of aatancontrol applications.
Dynamic models that describe the system of interest can hstreated by using the
first principles of physics, chemistry, biology, economylao on. However, some-
times this kind of modeling procedure can be difficult or tic@suming, because
they require really much detailed specific knowledge andrimftion, which may not
be easily obtained. Nevertheless the resulting modelsfeer wery complex. In this
sense, it is labor-intensive to develop the models in suchy and hence expensive.
Moreover, for a large amount of poorly understood systehesgderivation of a model
setting up from the first principles is even impossible. 8itiee first-principle mod-
els are often complex, simulation of them may take conshlidertime on computers,
thereby it can be challenging in the real-time applicatioktreover, Ljung proved
that these constructed models are not always accutéf®. (In the one hand, it is
difficult to determine which elements are relevant, whide@&s must be included in
the model, and which can be neglected. In the other handieertiantities needed
to build the model are unknown, and have to be estimated Hpnoeing dedicated
experiments. The resulting estimates often differ fromréed quantities, and hence
some model mismatch can occur. An alternative way of bujjdiodels is to use sys-
tem identification. In system identification, the aim is ttiraate the dynamic model
directly from observed input and output data. First pritespare not directly used to
model the system, but the knowledge about the system sipisphn important role.
Such knowledge is of great importance for setting up ideatifon experiments to
generate the required measurements, for deciding on tleedfymodels to be used,
and for determining the quality and validity of the estinthteodels. System iden-
tification often yields good models that are suitable for féds on-line applications
and for model-based predictive control, which has beenddonbe widely used in
many engineering areas. Compared with the development délmset up based on
first principles, it is not so labor-intensive. Moreover,paésent, some steps of the
identification procedure can be automated.

Nowadays, with the increasing demands for higher systerioqmeance, product
quality and much more cost effective, the complexity andabh®wmation degree of
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technical processes are continuously growing. This deveémt calls for accuracy of
the estimation in system and knowledge on system running dthe most critical
issues surrounding the design of automatic systems ismsydemntification 6).

Parameter identification is one of the most important areabe wide fields of
system identification which is the procedure of using obagons from a dynamic
system to develop mathematical models that adequatelggept the system charac-
teristics. System identification including parameter tdferation generally proceeds
as follows (L00): Firstly, a certain type of model need to be selected thedisidered
to be suitable for the application at hand. Secondly, a spagut signal is designed
or adopted such that the respondence or output can captitgetitavior of the sys-
tem to be modeled. Then an identification experiment is @drout in which input
and output signals are measured and collected. An idenitificenethod is selected to
estimate the parameters or some functions in the model fhencallected input and
output measurements. Finally, the validity of the obtaimexiel is evaluated.

The first step, also one important step in system identifioats the determination
of the model type which is used to be considered. The decisibased on knowledge
and information of the system under consideration, and thie properties of the can-
didate model. Certain types of models can be used to appabdgithe input-output
behavior of a smooth nonlinear dynamical system in a goodracy. These mod-
els have the so-called universal approximation capabifity example of a universal
estimator is the neural network i87). The drawback of this kind of model is that
is often complicated. Hence, some other model structures teceived much more
attention over the years. At first, the Linear Time Invariéitil) model is the most
popular one. It has been widely used in many engineeringagtjans successfully,
and a mature theory exists for system identification andraatic control. The au-
thoritative guide for identification in linear system is th@ok written by Ljung £00).
Although linear models are popular and widely used for sveasons, they still have
their own limitations. In the real world, most of systemswhwnlinear behavior. A
linear model can only describe a limiting range of systemih Wie increasing of the
demanding in the world, where the performance and accuesterigitions of systems
are needed, linear models are sometimes not satisfactonghrto describe the real
systems anymore. Therefore, interest in nonlinear systedeta and nonlinear system
identification methods has grown rapidB4gj.
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In the procedure of system identification including nordingystem identification,
the first step is model selection. For nonlinear system nsodeé¢re are quite a lot of
different nonlinearities and the model functions may betmoe-independent during
the system running, it is difficult to proposed general risstdr different nonlinear
models. Normally, itis only possible to propose certainlods for specific models. In
this sense, from the modeling point of view, two mathematiwadel representations,
state-space and direct input-output relationship, arelyidsed to described the real
systems. This motivates that the models discussed, imgysirameter identification,
are within these two categories.

State-space systems are more attractive for dealing witti-wauiable inputs and
outputs. Just like what is stated by Rivals and Persontizg,(state-space systems are
likely to require fewer parameters, especially for muliiable systems. Among dif-
ferent kinds of SS models, such as Ordinary Differential &muns (ODES) model,
Stochastic Differential Equations (SDE), discrete timedeloand so on, the SDE
model can describe lots of real systems. It can describemysidynamics, system
noise and system disturbance. In the real world, all the oreagents are often dis-
crete time models. In this sense, the SS model considerée itnésis is SDE model
with discrete time measurement, in which the nonlineatrityne system is reflected in
the nonlinearity of system functions.

For the linear IO models, one popular representative medék transfer function
model, thereby First Order (FO) model was in the considemadit first. However,
observed from the real industrial systems, most |0 modedd tetake the time delay
into consideration. Bearing it in the mind, the FO model imsidered with time
delay variable, which is generally called as First OrdersHhead Time (FOPDT)
model. Regarding the nonlinearity of this FOPDT model, haokind of nonlinearity
is applied, i.e., the nonlinearity is generated by the priype time varying parameters
in the systems.

For the above reasons, the thesis will consider the follgwivo specific models:

e Nonlinear SDE model with discrete measurement

e Time Varying FOPDT (TV-FOPDT) model.

Different methods has already been proposed to handle metbytstem identifica-
tion of these two types of models.
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Nonlinear SDE model with discrete measurement:
There are some different methods to make the identificafitimecparameters for non-
linear SDE model with discrete measurement.

Prediction Error Method (PEM) Prediction Error Method1(01) is one of the most

popular methods to make the system identification, whicbimsitlered as a kind
of generalized framework for it can be applied to quite agoyt model param-
eterizations. It estimates model parameters by minimigegoptimally deter-
mined one step ahead output prediction error. The existiegtification meth-
ods, such as Least Square Method (LSM), Ordinary Equatiothddie(OEM)
and so on, are special cases of PEM that are proposed forediffemodel types.
The PEM for the model with Gaussian distribution is asymiptohbiased and
efficient (101). Furthermore, the use of the PEM enables an estimate of the
associated uncertainties of the estimated model parasneBert it requires an
explicit parameterization of the model and searches fop#ntameters that gives
the best output prediction fit may be laborious.

Subspace ldentification Method (SIM) Subspace Identification Method is first to be

used for Linear Time Invariant (LTI) systems and shows goadgsmance. Its
main idea is to make the computation of the estimate of statéovs at first,
then extend observable matrix from the given input-out@miad However, in
many cases, it provides better performance than PEM in terthet precision.
Since SIM does not require a particular parameterizatidghersystem, it is nu-
merically attractive and suitable for multi-variable sysis. In recent years sub-
space identification methods have been developed for sertailinear systems:
Wiener systems (Chou and Verhaeg@m)), Hammerstein systems (Verhaegen
and Westwick {63) and so on. Although SIM is a fast, robust and convenient
approach, it still has an problem with precision and few eapions for closed-
loop identification.

Statistical Method (SM) Statistical Method is to set up a statistical function based

the measurement and its distribution. It includes Maximukelihood Estima-
tion, Least Mean Square Estimation and other differenissieal methods107).
Since the estimation is only based on the measurement asdhdoeonsider the
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structure of the state, sometimes its performance regatdithe accuracy is not
S0 good as expected.

Filter Based Method (FBM) Filter Based Method has became popular since the 1960s
(117). FBM, in general, can be classified into two different catégs. One cat-
egory is referred to as direct approaches. It takes botht#ite gariable and the
unknown parameter(s) into an augmented system state. Tieoprrespond-
ing filter technique, such as KF, Extended Kalman Filter (EKFsome other
appropriate filter is used to estimate the new state. ThetBbyunknown pa-
rameter is identified. The main advantages of this kind of FB}hat it can be
easily performed, so it is widely applied in the real worldwéver, this method
only applies part of information in the system, that is theamand variance
of the state. But in most Gaussian noise system, the difiibof the state
is known beforehand. In order to use it, some other stagisticethods can be
added to make the system identification combined with figehhique, such as
Maximum Likelihood, Least Square and so on. It is anothezgaty of FBM.

Regarding the nonlinear SS models in the thesis, it is oneay®DE models with
Gaussian noise. The FBM could be used to make its parametatifidation. But con-
sidering the distribution given in the system, the thesisfacus on the Kalman Filter
plus Maximum Likelihood method and investigate its conesce property. More-
over, in order to apply the method to the FDD procedure, thethod is extended to
an online manner as well.

Time Varying FOPDT (TV-FOPDT) model:

The traditional FOPDT model has three different parametarge delay (also called
Dead Time), system gain and time constant. If the system mloigsave time delay, it
degenerates to a standard linear time invariant systentwiais already have a mature
identification theory. Generally, there are many algorghimestimate time delay, see
(164) for some details.

Cross Correlation Method (CCM) Cross Correlation MethodL() is one of the ba-
sic method of Time Delay Estimation (TDE) problem in timeisgranalysis.
Many TDE methods are developed based on CCM. Its main idea ¢soss-
correlate the outputs and inputs and consider the time agtthat leads to the
maximum peak in the correlation series as the estimateddetay.
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Maximum Likelihood (ML) Method ML method is another important method for
TDE problem 70). The ML function is chosen to improve the accuracy of the
estimated time delay by attenuating the signals fed int@theelator in spectral
region where the Signal to Noise Ratio (SNR) is the loweste Pbpularity
of ML estimator stems from its relative simplicity of implemtation and its
optimality. For uncorrelated Gaussian signal and noigelMh estimator of time
delay is asymptotically unbiased and efficient in the linfilang observation
intervals.

Average Square Difference Function (ASDF) MethodThe Average Square Differ-
ence Function Methodl(3) is based on finding the time point of the minimal
error square between two received signals: no time delayakand time delay
signal, and considering this time point as the estimated telay. Its advantage
is due to the fact that it can give perfect estimation in theealse of noise while
the direct correlation methods can not. Moreover, ASDF ireguno multiplica-
tion, which is the most significant practical advantage alrerother methods.

Least Mean Square (LMS) adaptive filter method The LMS adaptive filter is a fi-
nite impulse response (FIR) filte8%) which can automatically adapt its coeffi-
cients to minimize the mean square difference between faeerece input signal
and desired input signal.

From previous observation, in order to make the estimatfdime delay, these meth-
ods need to perform or simulate the system several timesttergrigh data, i.e.,
different outputs signal (no time delay and time delayegots) or adopt different
input signals. Moreover, if the other parameters rathen tirae delay in the models
need to be identified as well, some extra procedure need terfermed after TDE. It
motivates us to develop a new method which can simply ideatifthe parameters in
the system model besides time delay.

However, from the modeling points of view, the tradition@PDT has its own
limitations, i.e., the parameters are considered as catsstiarring the system running.
But in the real world, the parameters would be changed duhegsystem running
for quite a lot of systems. The time varying property is monel anore important.
For these reason, in the thesis, it aims to extend the stak@PDT model to a time
varying one and find a method that
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e can be cost-effectively performed to make the parametattiittation of the
time delay and the other parameters together only basedeanésured infor-
mation from system operation;

e can be used to identify the time varying parameters, so itlshioe an on-line
method.

Application in FDD Modern systems and equipment are often subjected to some
unexpected changes, such as component faults and vasiatioperating conditions,
that tend to degrade the overall system performance. Inr @aoddesign a reliable,
fault-tolerant control system, or to maintain a high levieperformance for complex
processes, eg, spacecraft, aircraft, chemical processeselear plants, etc, it is
crucial that such changes are detected and diagnosed py@opihat corrective action
can be taken to reconfigure the control action and accommadldasystem alternation
(129.

In general, a fault&3) is to be understood as an unexpected change of system
function especially the parameters’ change, although yt ned lead to physical failure
or breakdown. A technique which is used to detect and diagfadts and identify
their types or characteristics in a system is called as Fetiection and Diagnosis
(FDD) technique. The essential tasks of FDD are: Fault Dietecmaking a binary
decision—either that something has gone wrong or that #iaryis fine; and Fault
Diagnosis, determining the source of the fault and the fatkgory, eg, which sensor,
actuator or component has become faulty and how is the qatweilevel.

During the last three decades, the so called model-baséddistection and di-
agnosis approach has received increasing attention inreettarch and application
(20; 61; 62; 63; 129 130). This approach is based on the concept of 'analytical re-
dundancy’ as opposed to physical (hardware or parallel)médncy, which uses mea-
surements from redundant sensors for fault diagnosis gegp@dnalytical redundancy
use of signals generated by the mathematical model of themyiseing considered.
These signals are compared with the actual measurememis@tfrom the system.
The comparison is done using the residual quantities whieh the difference be-
tween the measured signals and signals generated by themstibal model. Hence,
model based FDD can be defined as the determination of faudtsystem from the
comparison of available system measurements with a priormation represented
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by the system mathematical model through generation aduwasguantities and their
analysis.

In the process of FDD, residual generation can be achievéaedipllowing meth-
ods @O0):

e Observer-based methods:If the process parameters are known, either state
observers or output observers can be applied to generateditgial. Then es-
timating the residual based on the knowledge, it is used topewe with the
predefined threshold to make the decision of the fad}.(

e Parity space methods:Run the process and form an output error, then based on
the error estimation to make FDD. The general process caafbgad in 63)
as well.

e Parameter identification based methods:In most practical cases the process
parameters are partially not known or not known at all. Thbeay can be de-
termined with parameter identification methods by meagunput and output
signals if the basic model structure is known. Then basedemdsults of the
parameter identification and analyzed the change of thmat#d value of the
parameters in the system, the decision of the FDD can be ngajle (

Nowadays, in quite a lot of situations, the parameter idieation methods based FDD
is widely used and directly performed in the fault toleramtirol systems. The thesis
will consider the application of system identification iregprocedure of FDD.

1.2 Overview of previous work and related work

System identification handles with the problem of estingatimathematical models
of systems based on the measurements of inputs and outpilis gystems. It can
be originated from the work of Gauss and Fish&®)( Much of the early work was
conducted within the fields of statistics, econometricstand series analysis. Astrom
and Bohlin can be marked as the starter of system identdicat 1965 (00). From
then on, the theory has been developed much more significaitier four decade
developing, the system identification for linear systemalee a field which has a
relatively mature theory.
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Although identification theory for nonlinear systems is aéhas old as for linear
systems, its progress is not so fast as that for linear sygstespecially for the system
which is described as a SDE model with discrete measurermaigd as continuous-
discrete SDE modeH). Generally, the parameter consisting in a continuousrelis
SDE model includes two different parts: parameter in th& gert and parameter in
the diffusion part.

The development of SDE parameter estimation can be refer@@). It is firstly
studied to only consider the parameter in the determinpsit—drift parameter iden-
tification. Drift parameter estimation has been studied anynauthors. Le Breton
(88) and Dorogovcevdl) appeared to be the first persons to study estimation in dis-
cretely observed SDE model. Their model is the linear SDEehwith constant dif-
fusion coefficient. While Le Breton used Approximate Maximuikelihood (AML)
estimation, Dorogovcev used Conditional Least SquaresSj@stimation. In 1977,
Robinson used exact maximum likelihood estimation in @iy observed Ornstein-
Uhlenbeck process which is a special case of SDE model. Hnem dn, some re-
searchers work on approximate maximum likelihood estiomafwhere the continu-
ous likelihood is approximated), also called the maximumtiast estimation, such
as Bellach (1983) and Yoshida (1992). All of these approadisong to Maximum
Likelihood (ML) method category.

Another category to make parameter identification of SDE ehaglfilter based
method, which was proposed a little later than ML methodgiaRding filtering and es-
timation theory in the discrete-discrete time framewode 8.g. 95) for more details.
Similarly for the continuous-continuous framework, seg €182 for more details.
The latter framework is useful for design purposes, but é@rggued that for filtering
and estimation it is inappropriate for the true casess. (From 1980s, the Kalman Fil-
ter (KF) technique has been more and more widely used fompetea identification
in the application94). Generally, the approaches using KF can be classifiedwdo t
different categories. One category can be called as dipgebaches. This kind of ap-
proach takes both the state variable and the unknown paggisieinto an augmented
system state. Then, KF, Extended Kalman Filter (EKF) or sother appropriate filter
can be used to estimate the new state and thereby the estino&tinknown param-
eter(s). However, if the diffusion term of the SDE containgknown parameters, this

10
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kind of approach could not be directly used. Moreover, ifshistem model is a non-
linear one, this method sometimes could not provide a goddymeance in terms of
the precision.

The other kind of filter based method is to combine KF techaigith some statis-
tic methods. The scheme consists of two sequential stages fift stage conducts
the state estimation using KF, where the estimated statle,bean and variance, is a
function of unknown parameters. Then, a statistic critgrsuch as Maximum Like-
lihood (ML) and Least Mean Square (LMS), is set up in the sdcstage based on
the estimated state. Thereby, the parameter identificatioblem becomes an opti-
mization of a parameterized statistic problem. This apghiaaan be directly applied
to linear systems and an explicit solution may be fourd (07). Nevertheless, this
kind of approach needs to be extended in order to handlermealicases. Then, a
ML/Prediction Error Decomposition (PED) method for direstimation of embedded
parameters in SDE is proposed D@ based on the EKF8Q) set up the scheme of
parameter identification based on the EKF and ML as well asitdiam A Posteriori
(MAP) estimation with software implementation. Both of $keéwo methods can han-
dle with the parameter identification for cases that theudi@in item consists of the
unknown parameter(s). But the precision in the estimatieednto be improved for
some nonlinear models. In Chapter 2, a more detailed inttamuwill be given.

Another model, which is also widely used in application,riput/output model.
FOPDT model is one of the most useful input/output modelsiisdvell known that
FOPDT model can be applied to describe many industrial gsese

The FOPDT model has three different parameters, namedns\gsde, time con-
stant and dead time (time delay). These parameters are sdteas constants in the
whole system running for the standard model. In realityjrduthe system running,
they may not stay unchanged but vary according to the timeréRly, in order to make
up for the shortage of the standard FOPDT model, a kind ofineat FOPDT model
in which the time varying parameters of the system can beritbesis proposed in
(85; 89; 123). The considered nonlinear FOPDT model is an extensioneosténdard
FOPDT model by means that both system’s gain and time canséanbe changed
during the system running. This nonlinear FOPDT model isegated by using a lin-
earized method to a nonlinear model. Nearly at the same tm(&9; 123), a nonlinear
FOPDT model is proposed by linearizing the nonlinear systeannumber of different

11
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operating points, so the parameters of the obtained FOP®dparating-point depen-
dent. Itis observed that some simple nonlinear FOPDT mdudele been already used
in nonlinear control applicationd §; 85; 89).

For the system identification, these were quite a lot of mi#tho make the esti-
mation of the FOPDT, such as the Tangent Method, the Areaddethd so on164).
Some methods have been already adopted to make the systetifigdgon for the
nonlinear FOPDT model. For example, an on-line nonlineaPBO identification
method is proposed ir8f) by using the so-called longrange predictive identifiaatio
method. However, the formulated system identification$each nonlinear optimiza-
tion problem due to the unknown time-dependent time delagrédfore, four different
potential time delay scenarios are assumed, before camyéiie nonlinear optimiza-
tion problem into a Least-Square (LS) problem using the tspkfactorization tech-
nique. The assumption of time delays limits the proposedhatkin 85) to be applied
for any other systems except for these two specific patiesgescéhey have studied
(179.

These methods have their own drawbacks, such as some ortka special input
signals, some ones only can be applied in off-line mannersandn. Moreover, all
of the methods need more than two steps to make the identficat all unknown
parameters in the FOPDT models. In Chapter 3, a detailedduattion of the tech-
niques to make system identification of FOPDT is given. lcdegs some of the most
common methods to make the parameter identification for FORDdel.

One important application of the system identification,eesqlly parameter iden-
tification, is in the field of FDD. The parameter identificati@chnique based FDD is
widely studied most in the reconfiguration control area. humber of fault cases, the
faults are reflected in the physical system parametersgasmass, friction, viscosity
etc. It makes that the parametric faults are associatedsygtem parameters. It is
natural that system identification methods can be applie@ D, see e.g.41). The
parameter identification techniques has been consideradeon FDD for systems
with parametric faults since 1990s. Lots of researchersldped the theory of it, see
e.g. @1; 44; 61; 62, 129 150 to mention some references.

12
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1.3 The Objectives of the Project

This thesis focuses on some issues on nonlinear parameteification for two differ-
ent kinds of nonlinear systems. It tries to use some innesatiodels to describe the
real systems more accurately. Then based on the model fatiomuhnd the traditional
system identification approaches, some methods are extemdkeproposed. These
new methods are also compared with the traditional mettwslsdw their advantages
and difference. Furthermore, some properties of the msthoalinvestigated. Finally,
the mathematical models and their identification approsene applied to a number
of real-life relevant systems.

In order to address these objectives, the thesis contsltie following way:

¢ Different state space models are discussed and compardubpté® 2. It sug-
gests that the 1td SDE (ISDE) model can describe dynamiesyswith noise
and fault much more accurately.

e A detailed review of the Kalman Filter based system idertifan methods for
SDE model, both direct method and indirect method are given.

¢ Unscented Kalman Filter (UKF) plus Maximum Likelihood, t@ke the system
identification of nonlinear SDE model is proposed. Its cstesicy and normality
are investigated and set up the conditions under which thsisi@ncy and nor-
mality can be guaranteed for nonlinear SDE models. The ndethoompared
with EKF based method in terms of accuracy, convergency antpatation
load, respectively.

e Extend the FOPDT model to a general Time-Varying FOPDT madeteover
to TV-FOPDT model with Input Depended Dead Time. The ideattifity of
the defined FOPDT models is discussed and some theoremsgrspmmdingly
derived.

e The methods to make the estimation of time delay are conaiesicribed. The
approaches to make the system identification of FOPDT madejigen by a
detailed review. Their main procedures and drawbackste@ne discussed.

13
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e New approach, based on the Mixed Integer Non-Linear Progpiag (MINLP)
and Branch-and-Bound(BB) method, is proposed to make trepeter identi-
fication based on the TV-FOPDT model and the one with Inputdddpd Dead
Time.

¢ All the methods proposed in the thesis are simulated for abeurmf numerical
examples and some real-life relevant systems with soméitnaal methods.

e The methods are applied to the process of FDD, which are sligwseveral
testing systems.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 Firstly, outlines the different system models using Statac® formula-
tions. Then, a detailed introduction of system identifmatior nonlinear SDE
model is given. Secondly, extended from the traditionalhods, the UKF plus
ML method to make the nonlinear identification of ISDE modebroposed.
The consistency and normality properties of the proposeithadeare investi-
gated and a theorem regarding it is proved. Finally, in otdéest the proposed
method, a number of numerical examples are given to illtestitze properties
of the methods compared with some other methods. Moredusrapproach is
applied to a space robot system which is considered undez 5@ scenarios.

Chapter 3 Firstly, the FOPDT model is extended to the Time Varying ((RQPDT
model, possibly with some input depended variables. Sdgaihe identifiabil-
ity analysis is performed based on the identifiability to ttmalinear systems.
Thirdly, in the parameter identification, the problem is wented to a Mixed
Integer Non-Linear Programming (MINL) one. The Branch arauBd (BB)
method plus Least Square (LS) or Least Mean Square (LMS)adesmapplied
to solve this optimization problem. Finally, the methodssted though a number
of numerical cases and the analysis is committed based se thsts’ results.
The application of the model and method is illustrated by @esieat dynamic
model in the supermarket refrigeration system and a FDDudgon.

14
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Chapter 4 Finalizes the thesis by providing the conclusion and recemnuhations for
future works.
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Chapter 2

System ldentification for Nonlinear
SDE model and Its Application

System identification is one of the most important areas éneiigineering. In case
the considered models are linear, there exists well matineory, methodology and

algorithms to make the identification of them. But for noelin models, the situation

is more complicated, and it is much more difficult than thedinones to develop some
general results.

In the nonlinear system identification, each method is osgduo deal with certain
kind of modeled system. In this Chapter, the system ideatitia for a kind of SDE
model is the main consideration.

These issues have been addressed throughout this chagpterfallowing order:

System Model Descriptionin order to show the reason to choose 3DE model
with discrete measurement as the concerned model in thg, stoithe popular system
models are reviewed and a brief introduction of the systesntification methods is
given at first. Then some basic knowledge of ®DE model is reviewed.

Overview of the Previous Work Different methods to make the system identifica-
tion for the concerned SDE model are outlined.

UKF plus ML method An Unscented Kalman Filter (UKF) plus Maximum Like-
lihood (ML) method to make the system identification for tlomiinear SDE model is
proposed. Then the consistency and normality of the prapwsthod are investigated
and corresponding theorems are proved.
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Numerical Test and Application Finally, some numerical tests are performed to
illustrate the approach and compared with other methodseAario of FDD is used
as an application of the work.

2.1 State Space Model

State Space (SS) Model is widely applied in different fieklsch as in Control En-
gineering, Chemistry, Physics and so d (In practice, environmental disturbances,
unexpected changes within the technical process undenaties as well as mea-
surement and process noises often happened in the systamguror this reason,
the dynamic stochastic model is the most popular one amdfeyetit kinds of SS
models. The system without random features is the specal chthem. In general,
SS model using Stochastic Differential Equation (SDE) nhada cover most of dif-
ferent SS model expressiony (

Noise
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Figure 2.1: System process 1
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2.1 State Space Model

One type of SDE model, which can describe the general praneBgy. 2.1, is
expressed as:

{X:F(X,u,t)-l—EdD-l—w, X(0) = Xo 2.

Y=HX,ut)+FD+¢&

Here theX is short forX(t) stands for the state of the system at the tim¥¢andu are
the measured output and input. In case of control systemeconeis referred to as
the control inputEy, Fq are matrices of compatible dimensioilsjs a deterministic
but unknown input vectorw, ¢ are both the stochastic processes which are system
noise and measurement noise, respectively and they armeddo be uncorrelated
with each other in most cases.

Another kind of model can describe the same systempiSRE (ISDE) model,
which is

{dxz[F(X,u,t)+EdD]dt+dB[, X(0) =Xo 2.2)

Y=H(X,ut)+FD+¢
whereB; is a Brown Motion (B.M.) which will be given later. Differemhodels 2.1)
and @.2) both can describe the same system as illustrated ir2Fig.

As what we observed from most literatures, no matter how @nelom feature is
modeled, the random part is just a simple additive stoahpsticess, as shown ig.Q).
But in fact, in many practical situations, if random factacars in a complex system,
it is not only related to a simple stochastic process but tdssome other elements
such as the state of the system. For example, a loose coomettmechanical com-
ponents could lead to larger vibration influence to the malegystem comparing with
normal situation, which reflects in the mathematical modethe features change of
deterministic coefficients, as well as that of nondeterstinpart (such as the process
and measurement noises). Another example is a kind of blattztibn faulty system
of wind turbine, if the system state consists of the rotatielocity, the random part
in this type of system has some relation with it. Accordinghese real systems, it
is not so convincible that the random feature is only considi@s a simple stochastic
process. In some cases in the reality, the system is runikiegnl Fig. 2.2 rather than
Fig.2.1

From the modeling point of view, the SDE model has been ajreqglied in the
finance, refer§7) for more references. It is well known that the stock pricaldde

18



2.1 State Space Model

Noise
Outside

,,,,, ‘ System
Noise ! Factor
P — A
Noise
Random i l

Measure
u— System > >
ment Y

Disturbance
Outside

Figure 2.2: System process 2

seen as a complex stochastic process. Its random propsrsphee relation with many
factors, such as the management of the company, the pra&igdbnomy status, the
people’s expectation and so on. In the financial analyses)SIDE is just the model
used to explain this complex process, which could be seehearfdllowing. Now

let § be the price of the stock at tinte The commonest model to describe it in the
economy, decomposes the retu®/&, which is interpreted as the change rate of the
stock values, into two parts. One is predictable, detesticand anticipated return
akin to the return on money invested in a risk-free bank. uegia contributiorudt

to the return &/S, whereu is a measure of the average rate of growth of the stock
price, also known as the drift item. In the simple modeis taken to be a constant.

In more complicated modely can be a function of stock pric& and timet. The
second contribution to®/S models the random change in the stock price in response
to external effects, such as unexpected news, accidentsoamal. It is represented by

a random simple movement from a normal distribution with mearo and reflected
by atermodB;. Hereo is a function called the volatility, which measures the dtad
deviation of the returns6(). The quantityB; is the Brown Motion (B. M.), and its
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2.1 State Space Model

definition will be given later. Putting these contributidngether, the ISDE model of
stock can be obtained as:

dS/S = pdt+ odB (2.3)

which is the mathematical representation for the stockepri&s the generalization,
the coefficients of B; and d in (2.3) could be functions of§ andt. Furthermore,
the control itemu;, which is interpreted as the portfolio in the finance, cam de
embedded into the functionsando.

Contrasting with the above pricing of the stock, the systethé control engineer-
ing has the deterministic items and random features as Wad random features may
take place in the unpredictable situations and forms. Buetiones we could get some
statistic information of them, such as their distributiohaking the normal distribution
as an example, it could be interpreted as some combinati@r®an Motion since it
follows the normal distribution as well. Then the randomt jpéthe system can be de-
rived by the item of & in the mathematics as the previous stock price model. Hence,
the ISDE model could be potentially employed for the systeith wandom feature
in the engineering. According to this rule, the system in. Big@ can be reflected in
mathematic model

{ dX = [F(X,u,t) 4+ EgD]dt+ G(X,u,t)dB, X(0) = Xo

(2.4)
Y =H(X,u,t)+FgD+&

where it interprets the system noise as a structured ndisanldescribe the detailed
information of the noise rather than only simply using oreckastic process to de-
scribe the noise.

More generally, the system model can be written as

{dX: F(X,u,t)dt+G(X,u,t)dB, X(0)=Xo (2.5)

Y =H(X,ut)+§&

From the theoretical point of view, the ISDE model have aydaeen used to char-
acter some simple control systems with structured randatufes, such agi{ 107),
and there was already a set of theory to support this kind @fahia the mathematics.
Some results on system identification have been obtainextbgaing the Kalman Fil-
ter (KF) or Extended Kalman Filter (EKF) and likelihood fuions or other statistic
methods in {2, 182 for linear ISDE model.
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2.2 ISDE formulation

Of course, some measurable functions can also be addedranithem part of the
classic stochastic mode2.). But not much theory can support this kind of model,
such as the solution theory. Using the ISDE model has its avarstage to describe
the random dynamic systems. It lies in:

1. ISDE offers more clear and proper description of randowertainties in the
considered systems than previous models which only descaificdom features
as a simple class of normally distributed signals. In thisssethe ISDE model
may provide a more accurate one to describe the stochastiegs;

2. The structured description of random features could fedke developed FDD
algorithms based on ISDE model less conservative compaitbdtire current
results with a simple assumption of normal distributionsc8 the fault could
have a structure in ISDE model and it is real in some cases,ntuch more
convenient to deal with the fault using this model;

3. The situations that system random feature is correlatddsystem state, input
and/or output can also be systematically handled possdsgdon ISDE model,
besides the situation that the system random feature ip@mient of system
variables;

4. The ISDE model may open a proper window to go deeply to chenie system
random properties even for the FDD, meanwhile offer a sdatfgrm to apply
sophisticated stochastic analysis and filtering theory @aintrol engineering.

2.2 |ISDE formulation

The knowledge of ISDE is summarized in this section, retemsre details in182).

In the following, ISDE stands for d&t Stochastic Differential Equation. In order to
introduce this model, the definition of Brown Motion (B.M&e&d to be given at first. In
ISDE model B; stands for Brown Motion (B.M.), which is originated from t8eottish
botanist Robert Brown who observed that pollen grains swdgein liquid performed
an irregular motion. This motion was later explained by #redom collisions with the
molecules of the liquid. In this wa; is used to describe the motion mathematically,
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2.2 ISDE formulation

interpreted as a stochastic process which can describeottitgop of the pollen grain
at timet. Strict definition is:

Definition 2.2.1 {B }+>0 is a Brown Motion, if it satisfies

1. B is a Gaussian process,
2. B has independent increments,
3. B is continuous.

Before giving the interpretation of ISDE, some importanttimeanatical prelimi-
naries are described at first in the followirig@).

Definition 2.2.2 If Q is a given set, then a-algebrad on Q is a familyJF of subsets
of Q with the following properties:

1. Thenullseppe F

2. IfF € 7, then F* € F, where ¥ = Q\ F is the complement of F if
3. fAL,A---€F, thenA=JA €TF
i=1
Definition 2.2.3 The triple(Q,J,P) is called a probability space  is a given set,
F is theo-algebra inQ and P is the probability measure.

Definition 2.2.4 If (Q,J,P) is a given probability space, then a function ? — R"
is calledF-measurable if

YlU)={weQY(w)eU}eTF
for all open sets U= R".

Noted that in the following, théQ, F, P) is a given probability space in which the
SDE is defined. Then the SDE is given in the following:

Definition 2.2.5 A equation is called an Stochastic Differential EquatioDE if it
has the format

dX = f(t,X)dt+g(t,X)dB, (2.6)

where t is the time invariable and ¥ shot for Xt), which is a real-valued function
of t, B is a Brown Motion (B.M.). {t,X;) is called as the drift coefficient andtgX;)
is called as the diffusion coefficient.
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2.2 ISDE formulation

The notation used ir2(6) is shorthand for the corresponding integral interpretati
and is therefore ambiguous unless a specific integral irg&fon is given. SDEs may
be interpreted both in the sense of Stratonovich formula§d) and in the sense of
[t6 formulation (L82).

Definition 2.2.6 Suppose that#s a Brown Motion and Xis a measurable function
regarding theo-algebrad generated by B then the Id integral

T
/0 XdB : Q — R

is defined to be the limit of
k—1
.ijti(Blwl B Bti) (2.7)

as the mesh of the partitidh=tp < t; < - <ty =T of [0, T] tends to O (in the style of
a Riemann C Stieltjes integral).

It can be seen that the It0 integral uses the left endpoieiach subinterval to make
a sum, but Stratonovich formulation just applies the valti¢he processx; at the
meddle point of each subinterval: |é<t%+xt' in place ofX; in (2.7). In most cases,
the system identification need to be performed based on fikemation obtained until
sampling time points. For this reason, the Stratonovickrpretation is unsuitable for
system identification, then theoliriterpretation of the integral is adapted in the system
identification.

Now existence and uniqueness result for the solution of$i is given (82):

Theorem 2.2.7Let T >0and f(-,-) : [0,T] x R" = R", g(-,-) : [0, T] x R" — R™M
be measurable functions satisfying

[f(t,¥)|+]9(t,x)| <C(1+]x)); x€R", te[0,T], (2.8)

for some constant C, (whefg(t,x)|> = ¥ [g(t,X)ij|?) and such that
N

; XyeR" tel0,T], (2.9)

[£(6%) = f(ty)[ +g(t;x) —9(t,y)| < Dlx—y

for some constantD. Let Z be arandom variable which is inddpat of ther-algebra
generated by §-), s> 0 and such that

E[[ZP) < o.
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2.2 ISDE formulation

Then the stochastic differential equation
dX = f(t,X)dt+g(t,X)dB, 0<t<T, Xo=2Z (2.10)

has a unique t-continuous solutiop With the property that
T
E[/\Xt\zdt] <o, (2.11)
0

In the thesis, all the ISDE models are chosen to satisfy theaditions in order to
guarantee the existence and uniqueness of the solutiothé-wnplicity, this condition
will not be checked again when dealing with the ISDE models.

From the general ISDE mode2.@), it can be observed that the random part in
the system can depend not only on the time but also on the\statble. For some
special kinds of state dependent noised ISDE model, a maittieahtool, called as &~
Formula (L82), can be applied to simplify the model.

Theorem 2.2.8 Consider the ISDE2.6), suppose Ft,Xx), a real-valued function, de-
fined for xe R" and t€ [a,b],0 < a < b, with continuous partial derivativedy, -

and ‘;ZTE, then it can be obtained that
dF(t,%) = f(t,X)dt+§(t,%)dB, (2.12)
where
fle =020 e FEX s e 2T ey
and ) OF (t.X)
Gt %) = gl %) =5 7 (2.14)

For example, consider the ISDE
dX = f(t,%)dt+ ax2dB. (2.15)
If F(t,%) is chosen a%, then according to2.12)
dF(t,X) = f(t,%)dt— adB. (2.16)

From the former theorerd.2.8and the example, it can be seen that for some kinds
of state dependent noised ISDE modelg,Hbtrmula can really simplify them to ones
without state dependent noise. This is also an advantagettSIDE model to describe
the complex process.
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2.3 System Identification for ISDE Model

2.3 System ldentification for ISDE Model

In this section, firstly, the system identification problesrformulated, and then the
approaches to make system identification for ISDE model @nsidered.

2.3.1 Parameterized ISDE Model

The considered system is described by the following ISDE:
dX(t) = ga(X(t), u(t),t, B)dt+ga(X(t), u(t).t, 6)dB, (2.17)

wheret € R is the time variableX(t) € 2" C R" is a vector of state variables(t) €
% C RMis avector of input variablegy (-) € R", g2(-) € R™" are nonlinear or linear
functions and{B; } is ann-dimensional Brown Motionf € © is a stack consisting of
all unknown parameters. For simplicity purpoXet ), u(t) are denoted aX,u respec-
tively in the following.

The measurement of the considered system is described by

Yk - h<Xk7 Uk,tk) + &k, (218)

whereY, € # c R! is a vector of output variableh(-,-,-) € R, ty, k=0,1,...,N are
sampling instants{ &} is anl-dimensional noise process with ~ .4 (0,R) (Ris an
| x | matrix) andXy is the state value at tintg.

Noted that in order to make the identification of the paramete assumption of
the measurement need to be made as the prerequisite, edretfuency of sample
points obtained from the measurement should be much langerthe frequency of
parameter variation. Although it is impossible to get theetparameter value before
the identification, this assumption can be satisfied by nedube sampling interval as
little as possible. For the simplicity, in the thesis, iti®sen that all the measurements
(sample frequency) satisfy this condition.

In (2.18, the measurement of the system is considered as discreteSamce the
diffusion coefficient is almost surely determined by thegess, i.e., it can be esti-
mated without any error if observed continuously throughetime interval for the
linear models 43). In the other hand, parameter estimation in diffusion psses
based on measurement at discrete time points is of much macéigal importance
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2.3 System Identification for ISDE Model

due to the difficulty of observing diffusions continuoushydaughout a time interval.
Hence, the thesis focuses on the parameter identificatiocofttinuous system with
discrete measurement model.

The considered parameter identification problem could Berdeed as:

(P): Estimate the unknown parameter6 in the system(2.17) based on a set of
data which consists of some measured output signa¥ generated by(2.18 and
corresponding input signalsuy.

2.3.2 Conventional Methods

The parameter identification for continuous-discrete 1SB&tel could split into two
parts: parameter estimation in the drift coefficient anéLdibn coefficient.

In system identification for the parameterized ISDE modw,lteast Square (LS)
method was firstly applied to cope with the linear ISDE mo@snsidering the ISDE
model @.17), the idea of LS methodbg) is to minimize the quadratic cost function:

Q6) = ' X~ Xk—21 — 01(Xk—1,Uk—1,t1,0) (t — tk—l)]z.

% 05(Xk—1, Uk—1,tk—1, 0) (tx — t—1)

But since the model2(17) implies the distribution of the state variable, the Max-
imum Likelihood (ML) method, which considers the distrilaut in the system, was
proposed and widely used in the system identification fodittear SDE model. It is
firstly studied to consider only the parameter in the deteistic part—drift parame-
ter identification. Drift parameter estimation in stoclh@aptocesses based on discrete
measurement has been studied by many authors since 197Bsetbe 88) appeared
to be the first person to study the estimation in discreteBeoled ISDE model. His
models are the linear ISDE models with constant diffusiceffacients. And Le Breton
used Approximate Maximum Likelihood (AML) estimation. 19747, Robinson stud-
ied exact maximum likelihood estimation in discretely atved Ornstein-Uhlenbeck
process which is a special ISDE model. This can be referr¢tili§. From then on,
some researchers worked on approximate maximum likelilestichation (where the

(2.19)
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2.3 System Identification for ISDE Model

continuous likelihood function is approximated), alsdedthe maximum contrast es-
timation, such as in the works d¥;(46; 78) and so on. These kinds of approaches can
all be referred to as Maximum Likelihood (ML) method.

The main idea of the ML method is as follows. Since the mo@elq has the
Markov property, it is possible to express the likelihooddtion of a given sequence of
measurementg, Y1, ..., Y, ..., Yn Solely in terms of the transition Probability Density
Functions (pdfs), i.e.

N
L(G) :kl_ll p(Yo,Y]_,...,Yk,...,YN;Q) (2.20)
with 6 is the unknown parameter vectgrijs the probability density of corresponding
measurements based on the param@tdrhe ML estimates are given by

BuL = arggnegx_(e). (2.21)

Then takefy. as the result of the parameter identification. In order tatigetcondi-
tional probability density function in.20), the distribution of the state variable in the
system need to be applied before the estimation.

The ML method can belong to the category of the statistic oektiThe main idea
of the statistic method is to present a suitable statistiction, then optimize the pro-
posed function and get the optimal value as the estimaten Brwther point of view,
the ML method and LS method could also be seen as special chges Method of
Moments (MM) 65). This method was originally developed for discrete tinezhas-
tic models, yet it may be applied to ISDE by computing momemtditions from a
discrete version of the ISDE. It only used the certain monoemidition to form a
function and provide an estimate by minimizing the corresidiog function. Its main
advantage is that it requires specification only of certanmant conditions rather than
the entire pdfs. This can also be a drawback, for it does nkeratiicient use of all the
information in the samples, only applies the first momentgmer second moment
(variance), which may lead to a loss of efficiency. For the etdgtie MM can not deal
with the cases in which the state variable is unmeasured.

Another category to make parameter identification is filtlesddl method. The
ISDE model 2.17) plus .18 is considered as well. This kind of method is based
on the filter technique, especially Kalman Filter (KF) tecjue. It has been more and
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2.3 System Identification for ISDE Model

more widely used for parameter identification in the appioca(94) since last century.

Generally, the approaches using KF can be classified intdiffeyent categories. One
category is referred as direct approaches. This kind ofcampr firstly takes both of
the state variable and the unknown parameter(s) into a ngmewted system state.
Then, KF, Extended Kalman Filter (EKF) or some other suddittier is used to make
the estimation of the new state and thereby the estimatiamkfown parameter(s)
is obtained from this new state estimate. However, if thugibn term of the ISDE

model contains unknown parameters, this kind of approacitddcoot show a good

performance regarding the precision. Moreover, if theaysimodel is a nonlinear
one, this method sometimes could not provide a good perfocewith regard to the

accuracy because of the nonlinearity of the system.

The other kind of KF based method is to combine KF techniqubk some statis-
tic methods. This scheme mainly consists of two sequentges. The first stage
conducts the state estimation using KF, where the estinséee is a function of un-
known parameters. Then, a statistic criterion, such as iMami Likelihood (ML) and
Least Mean Square (LMS), is set up in the second stage bashe estimated state.
Thereby, the parameter identification problem becomes &migation of a parame-
terized statistic problem. This approach can be directpfiag to linear systems and
explicit solutions may be found ir¥6; 107) and so on. Nevertheless, this kind of ap-
proach needs to be extended in order to handle nonlineas.clsen a ML/Prediction
Error Decomposition (PED) method for direct estimation afgmeters in ISDE is
proposed in 108 based on the EKF. Kristensen, Madsen and Jgrgensed3)inset
up the scheme of parameter identification based on the EKviinas well as Max-
imum A Posteriori (MAP) estimation with software implemation. Both of the two
methods can handle parameter identification for casestipatiffusion item consists
of the unknown parameter(s). But the precision of estinmatieed to be improved for
some nonlinear model9§).

For the parameter identification using the filter techniqieesstimate the state,
since it is based on the state space model, this method ise@fas state estimation
based method in the thesis. In the next section, we will éxptan detail. In the
thesis, EKF plus ML method is firstly considered to make theupeeter identification
for the parameters both in drift and diffusion items. Theas thethod is improved and
extended to Unscented Kalman Filter (UKF) plus ML methoddaldvith some other
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nonlinear cases. It shows that using UKF plus ML method Isa®iin advantages than
the EKF plus ML method in terms of accuracy and convergency.

2.4 State Estimation Based Methods

At first, the detailed parameter identification methods an@duced for a general state
space model, which is described by parameterized ISDE ngpdeh by .17) plus
(2.18. Since the thesis focuses on the KF based methods, beferattbduction
of the identification methods, the two kinds of Kalman Fiétare summarized in the
following.

2.4.1 Discretized Model

In order to apply the EKF and UKF, the mod2l17) need to be discretized beforehand.
According to Euler discretization, th2.(L7) can be discretized as:

Xie=Xi—1+091(Xk—1,U(k—1),t, 1, 0) (tk—tk—1) +92(Xk—1,U(k—1),t_1,0) (Bx—Bx_1).
(2.22)
Based on the discretized model22), the EKF or UKF can be performed in the
following.

2.4.2 Extended Kalman Filter (EKF)

Based on the systen2.22 with (2.18), the EKF can be performed according to the
following procedure 18).
Initialization with: original state estimatiaX, and variance estimatid®.
Time-updated (Prediction):

Rigk—1 = R 1k-1 + 91 (K- 1)k 1, U1, tk—1, 0) (e — k1),

Ruko1 = Pu—1R 1k 1Pp_q + 9205 (X 1jk1, Uk—1, t, 8) (te — te—1),
S = HiRq1H{ +R,

Kk = Pok_1H{ S

Where)A(k“(,l andPRx_1 are the estimates of state and variance of state atfiowndi-
tionally on all the information available at timg 1, S is the estimate of the variance
of measurement at timg andKy is Kalman gain.
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Measurement-updated (Update):

ik = Y — h(Xgk—1, Uk, 1),
Xk = Rk—1 1 KiTks
Pk = (I — KHi) B-1

wherek > 1, g] () stands for the transpose g4(-), ri is the error between the
measurement and estimated measurement, and

a ty,0) (tk—ti_
q)k: (Xk+gl(xkvl-g(>7(:§7 )(k k=1

) )
O (X k) i
_ Uk tk R
Hi OX ‘Xk:xk\k—l
Note that in the variance prediction stage, a property afdsed Brown Motion is

applied (82, i.e,

E(Bx— Bk,1)2 = (tk—tx_1)I.

2.4.3 Unscented Kalman Filter (UKF)

The same to the EKF, during the first stage, the state estma#in be accomplished
by UKF (35) as well. Its procedure is as follows:

Initialization with: original state estimatioy and variance estimatid®y.

The first step is to createn2- 1 sigma-points in such a way that these points to-
gether can capture both the mean and covariance of the Jtaés, the matrixy is
formulated to contain these points, and its columns areutatked as follows:

Xik-1= X1, i=0
Xik-1=X1+(/(M+A)R_1)i, 1=1....n
xi7k_1:Xk_l—(\/(n—%)\)H(_l)i_n, i=n+1,...,2n

wherei in the subscript means tlieh column,k > 1, A = a?(n+ k) —nis a scaling
parametera determines the spread range of the sigma points aroundateeXgt
and is usually set as a small positive value in order to avoittincal effects (in the
examples of thesigy is chosen as 0.001k, is called as secondary scaling parameter
which is usually set as 0.

Each sigma-point is combined with a weight. These weiglgsalculated by com-
paring the moments of these sigma-points with Taylor sexgsnsion of the models
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(35). As a result, the weights for calculating mean and covagasstimates are given
as:
m_ A
- (n+)\)’
o F(1—a?+B),

)
m) ©_ _1 i —
=W = A i=1...,2n

where parameteB is used to incorporate prior knowledge of the distributibixofor
Gaussian distribution8 = 2 is optimal in general cases. The superscnptandc
stand for that the corresponding weights are used to cadctiia mean and covariance
of the state respectively.

The filter then predicts the state in the following step bypagating sigma-points
through the state and measurement models, and calculagighted averages and
covariance matrices of the states:

Wi
Wo
wl©
Wo
(

XiKk—1 = Xik-1+02(Xik—1,Uk—1,tk1,6) (tk —tk—1)
A 2w
Xk—1= Z W X kik—1

Rik-1= ZOW( I k-1 — X1 [Xi k-1 — Rige—1] T

Yigk—1 = h(Xk\k 1,Uk-1,tk1)

Yik-1= ZW )Yi,k|k—1

The predictions are updated by: first, calculating the messent covariance and
state-measurement cross correlation matrices, and tetarnuining the Kalman gain,
at last the updated estimation of state and variance israutai

2n ~ ~
Ry = _ZOVVi(C) [Y; ki1 — Yiak—1] Vi1 — Yigka] "
i=

2 WO 2 o T
Py = ,ZOWi [Xi kik—1 — Xk 1) [Yi kgk—1 — Yigk—1]
1=
Kic = PeyRyy
M= (Yk—Yik-1)
Xk = X1+ KiT
Rk = Pqko1 — KiRyyKy
In stead of linearizing a nonlinear function, UKF genera&idst 1 sigma points for
states estimation which are propagated through the actulimear function, elimi-
nating linearization. The points are chosen such that thean, covariance as well as
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other higher order moments can be easily caught up. Thepagated points help in

recalculating the mean and covariance, then yielding moearate results compared
to ordinary function linearization. The underlying ideadasapproximate the proba-

bility distribution instead of the functior3f). This strategy results in decrement in
computational complexities at the same time increasinignatibn accuracy, gaining

faster and more accurate results.

The unscented transform approach provides another adyaofatreating noise
in a nonlinear system to account for non-Gaussian or noitiagldioises. For doing
so firstly noise is propagated through the functions by audimg the state vector
including the noise sources. This technique was first intced by Julier{2) and later
developed by Merwel(09). Sigma point samples are then selected from the augmented
state, which includes the noise values. This techniquétsasiihe accuracy of process
and measurement noise captured with same accuracy as thatstate, which in turn
increases the accuracy of the estimation for non-additiveasystems3b).

2.4.4 Parameter Identification Based on the KF Methods

The scheme of the classic method based on the KF to solvedb&epr(P) is given:
Direct approach—only using the KF technology

e Initialization with stateXy and variancé?,

e Take the unknown parameter as the augment state to the sysenie the
system model using the new state as:

X = X, 0]
L X1, U1, i X1, Ug_1,t
K= Kyt (91(Xk 1, U1, t 1())) )+ <92(Xk 1, Uk 1 k;) (Be—By1)

(2.23)

e Use KF technique, like EKF and UKF, to estimate the state takel last part of
the estimation of the augment state as the result for paeandemntification.

KF plus ML method
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Initialization with stateXy and varianceé,

Use KF technigue to estimate the state which is parametebyge¢he unknown
system parameters,

Form the Maximum Likelihood function using the parametediztate estima-
tion,

Solve the optimization problem of the parameterized Maxmhukelihood func-
tion, then get optimal solution as the result of the paramdamntification.

The original KF plus ML method applied linear Kalman Filtestly for linear state
space modell(44; 148). This method is developed to use EKF to handle the nonlinear
system in 83). In order to improve the performance for some kinds of noedr
system, this thesis applied UKF instead of EKF in the esimnatThe scheme of the
new method based on the UKF to solve the prob{Bjradopts UKF in the second state
estimation step and repeats the same procedure as that{if thlels ML method.

The first two steps of the KF plus ML method can be followed by pinevious
procedures of EKF and UKF. As soon as the state estimatiobtésred, the last two
steps will begin in the following.

Introducing the notation

g/k = [YkaYk—lv cee 7Y17Y0]7

then, the likelihood function becomes the joint probapitiensity, i.e.,

L(6;%N) = p(Zn | ), (2.24)
or equivalently
N
L(6; %) = <|'| P(Yi | %_1,9)> p(Yo | 6). (2.25)
k=1

In order to carry out the optimization of the likelihood fuion, the state estimation
needs to be solved beforehand in order to obtain the estinoatiputs. For the ISDE
in (2.17) is driven by a Brown Motion which can be seen as a Wiener mscand
the increments of a Wiener process are still Gaussian, @asanable to assume the
conditional densities can be well approximated by Gaus$tasities, which have two
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parameters, i.e., the means and covariances. Based oadh@nfl the previous results
of state estimation, the parameterized likelihood funrctian be formulated as:

-1
L(6: %) = (H X3RRIy e)> , (2.26)
V/det(Ryy)(v2m)"

whereR,v is the covariance matrix of the measureméntvhile the same matrix is rep-
resented a§ in EKF, and superscript 1 stands for the inverse of the corresponding
matrix.

Then, the previous identification problgiR) can be converted to an optimization
problem which may be described as:

(P’) Given a set of measured output? and input signalsu(tk) € %, find 8 by
solving the optimization problem which is defined in the folbwing

6= argmin{—In(L(6: % | Yo)) (2.27)

2.4.5 Optimization Computing Method

Some optimization algorithms which are used to make contiputare needed to solve
the optimization problem of the ML functior2(27). Generally, in order to get the so-
lution of it, the convex property of the formulated optintioa problem 2.27) needs
to be explored firstly. Even though it might be a non-convesbfgm sometimes and
hardly to obtain the global solution. But a better initialn@could possibly lead to a
global optimal solution. Especially, for some special sasmgch as linear systems, the
global optimal solution could be obtained. The standarthapation method to solve
ML problem could be seen see e.d.4). Another popular method to solve this opti-
mization problem of ML function is the Expectation Maximima (EM) algorithm. It
was originally proposed ir2g). The EM algorithm includes two steps: expectation (E)
step, which creates a function for the expectation of thdilajihood evaluated using
the current estimate for the parameters, and maximizatiysiep, which computes to
find parameters maximizing the expected log-likelihoodshibws good performance
especially to find the maximum likelihood parameters of éidieal model in cases
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where the equations cannot be solved directly. The detilthE EM algorithm can
be found in (06), see also from47) robust estimation of Linear Time Invariant (LTI)
state space models. 1839, a solution of more complicated problem to estimate non-
linear state space models is given, using particle filter.

In the case of this thesis, since the KF based methods aremrmtcand the ex-
plicit system model is known beforehand, EM approach is dopéed, here the quasi-
Newton using BFGS update methoti) is adopted, which is summarized as (for
simplicity, assumé (0) = —In(L(0; 2 | Yo0))):

Starting with an initial gues8y and an approximate Hessian mai@y, the following
steps are repeated unfi] converges to the solution.

1. Obtain a directiomly by solving: Cydy = — 7 F(0), wheresyF (6¢) means the
gradient of the functioir at point6y.

2. Perform a line search to find an acceptable stepaizgy minimizing F (6 +
ady) overa > 0, then updatéy., 1 = 6k + adk.

3. SetS( = agdy.

4. & = VF(6i1) — VF (6).

3. Cip1=Ck+ %65‘{ — Ckg(%(g:gﬂ.
Convergence can be checked by observing the norm of theegtaldhi/ F (6y) |. If its
value less than a predefined threshold, the process willrbertated. Take the value
6« at the recent step as the optimal solution of the originablemm, denoted ab. Itis
also severed as the estimated value of the unknown parameer system.

2.5 Consistency and Normality

Before the identification method is used, the property ofesmation should be in-
vestigated firstly.
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2.5 Consistency and Normality

2.5.1 Pre-knowledge

In order to make the content clear, several definitions neée given according to the
statistical theory beforehand®4).

e Consistency: B is said to be consistent &y — 65 in probability 1 ag\ — oo,
ie.,
P{ lim 6y =60} =1,

wheref, is the true unknown parameter value. In the foIIowingﬁ,\ifis consis-
tent, it is noted ady > 6.

e Asymptotic Normality: Oy is said to be asymptotic normality if there exists a
functiond(N) such that wheiN — o the limiting distribution ofd(N)(8y — 6o)
is normal distribution with 0 mean and variamzéo, noted asi(N) (O — 6o) 9
N(0, ago). HereagO is called the asymptotic variance of the estim@ie

e Fisher Information Matrix (FIM): Fisher information matrix of measurement
Y with regard to the parametép is defined by

dIn(6o) dl&(@o)]

00 00
Note that in the calculation ir2(24), all the sample points are taken as known
information, it is not necessary to consider the expeatatigut if the sampled
point is taken as a variable, it will have the stochastic prop Then the fisher
information considers the expectation.

¢n(6o) = E|

A property of fisher information matrix is needed in the fallag, it is summa-
rized as the following lemma:

Lemma 2.5.1
aZ|N(eo)

E( 06067

) = —¢n(6b).-

This Lemma and proof can be found i&1j. Noted that from the definition of
FIM, it is a positive semidefinite symmetric matrix. If in then positive definite
case, its inverse means Moore-Penrose inverse. For thd@tgpn the thesis,

#n(0) will be noted asp(6).
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2.5 Consistency and Normality

2.5.2 State of the Art

The KF technique plus ML methods may belong to the categoiatimum Like-
lihood Estimation. Crowder2Q), who was firstly proposed ML estimation, showed
MLE has the weak consistency and asymptotic normality fdependent observations
if the following conditions are satisfied:

® Amin{9(680)} — 0 asN — oo, whereAmin{¢(6p)} is the minimum characteristic
root of the matrix¢ (6p) and ¢ (6p) is the information matriE(—ﬁT) =@
evaluated afy which is the true value of the parameter vector.

2
© —9(60) H(Gazer) — -
e Givene > 0,3 d(¢g) > 0 subject to

d2L(6 1 0%L(6
“{aeéeoT)(ew} 10959?

()] <€]—1, as N— oo, when|0—6 <.
(2.28)

And in 1980, Adrian Pagari@5 proved that:

Theorem 2.5.2 For a linear stochastic differential model which can be désed by
(2.17 and (2.18 with that all functions are linear, if

A(i) all random features are stationary,
A(ii) 6g € interior of © compact in Euclidean space

are satisfied, then
92 (6w — 60) — N(O,1). (2.29)

Here the vaIueéML is the estimate using Kalman Filter plus Maximum Likelihood
method. This theorem showed that the estimation based ddRh#us ML method
tends to a normal distribution when the sampling numbergeadnfinity. Moreover,
the mean of the estimation tends to the true value of the peteanand its variance
tends to the inverse of the information matrix for the maxmmikelihood function.

At the same time, some condition which is called as non-logalmum have been
developed to guarantee global convergence for certairstgpenodels, such a$)
for ARMA model, @8) for ARMAX model and so on. As is observed, regarding ML
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2.5 Consistency and Normality

method based on KF technique, it2§), (46), Pagan and Ghosh considered KF plus
ML parameter identification for different linear models ahey both showed under
some conditions, the consistency and normality of the ed@mare hold. But so far,
the investigation for the convergence property of ML metha@s only based on the
linear models or some certain input-output models. Beadtiegn in the mind, in the
thesis, the consistency and normality with regard to the @kis ML method to handle
some nonlinear systems are derived.

In order to make the content more simplicity, the convergeproperty is investi-
gated for the nonlinear discrete systems. In the followiags) the system model and
the identification approach are rewritten by their discretesion. This work is based
on the UKF plus ML method to identify some kinds of the nonin&S models.

2.5.3 UKF plus ML Method

For the application convenience, since most models or mgstge performed in the
discrete version, the model considered here is a discretevih noise. It is described
by the following discrete time model:

X = F (%1, Uk_1, 0) + 1, (2.30)

wherek € Z is the discrete time variabley € 2" C R" is a vector of state variables,
ux € 7 C RMis a vector of input variableg .} is ann-dimensional standard Wiener
processH € O is the unknown parameter vector.

The measurement of the considered system is described by

Yk = h(X¢) + &, (2.31)

whereyy € % C R™is a vector of output variablek(-) € R™, { g} is anm-dimensional
white noise process.

In order to make the parameter identification to the nontisgatem described by
(2.30 and @.31), the UKF plus ML method is applied. It can be summarized & th
following steps.
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2.5 Consistency and Normality

2.5.3.1 Parameterized State Estimation

Unscented Kalman Filter (UKF):
Initialization with: state estimatiory and variance estimatid®y.
Creating sigma-points

Xik-1= X1, i=0
Xik-1=X-1+(/(N+A)R_1)i, i=1..,n
Xik-1=X%-1—(/(N+A)R1)i-n, i=n+1,...,2n
where the notation follows the previous equations.
Define the weight function

(m _ A
Wo = may
\A/I(m):\lvl(c): 1 i:l,...,zn

The prediction procedure of the UKF is

Xikk-1=F(Xik-1,Uk-1,0)
R 2n (m)
Xk—1 = izoVVi Xi kik—1

2n ~ ~
Rik-1= .ZOVVi(C) [Xi k1 — X)X k1 — Xigi1) T
i=
Yikgk—1 = N(Xi kjk—1)

2n
Yigk—1 = _ZOVVi(m)Ymk—l
i=

Then updating:

WO ; o T
Ryk = ,ZOWi Vi kik—1 = Yidk—1) [V kik—1 — Yiqk—1]
i=

WO . T
Pk = _ZOWi [Xi kik—1 — Rik—1) [ kjk—1 — Riqk—1]
£

—1

k= (Yk — Yigk—1)
Xk = Xk—1 1 Kilk .
Pk = Fok—1 — KkRykKy
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2.5 Consistency and Normality

. Here the estimated variable has the following interpi@tat probability.

Kk-1 = E(X | Zk-1)
Xk = E(% | Zk)
Pgk-1 = E[(X% — Rig—1) (% — Rigge-) " | Zhe1)
Pk = E[(X— Riqie) 0% — i) T | %)
2.5.3.2 ML Optimization

Formulating the ML function based on the previous statereston,

L<W>=<N P~ R )p(y 6) (2.32)
N kljl\/det(PyMk)(\/ZT)n ° , '

then the identification problem is to solve the followingiopkzation problem

é:arggngzg{ln(L(G;@N)}- (2.33)

In order for the convenience, in the following, let
In(8) = In(Ln(6))
N (2.34)

P(yo|6)) z In(detRyx) ) +nNIn(2m) 41 yykrk}

2.5.4 Properties of UKF Plus ML Method

In this section, the boundness is considered as elementihess for vectors and el-
ement boundness for matrices with ignoring the influencéefioise. Moreover, the
boundness means the element has both lower and upper bounds.

The main theorem for the convergence of UKF plus ML methoecescdbed as:

Theorem 2.5.3 For the stochastic parameterized system which is desciiggd.30
and (2.3, if the following conditions are satisfied

(a) Function K-,-,-) and its derivatives up to second order with regard @care
bounded with different lower and upper bounds ahdontinuous, ) and
its derivatives up to second order are bounded with diffelewer and upper
bounds and continuous.
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2.5 Consistency and Normality

(b) For the composite function(R), there exist®9-continuous functionsi;gand @

such that
h(F (%1, Uk-1,0) + @x1) = 91 (X-1,Uk1,6) (2.35)
+ 02(Uk—1, 0) (1,
and
h(F (X1, Uk-1,0)) = 91 (X1, U1, 6)- (2.36)

(c) The true valugdy of 8 is an interior point of a compact s&.

then the estimation valu@ using UKF plus ML method is consistent and asymptotic
normal, i.e., when N- oo, there is

O > 6o, (2.37)

and furthermore
B — 602 N(0,9*(60)). (2.38)

The proof of Theoren®.5.3is based on the Crowder's theorem @2 which
showed that the ML for dependent observations is considténtee conditions are
satisfied and these conditions can be seen in previous sectio

In order to make the analysis clear, boundness conditiors (@written in math-
ematics. The condition tells that there exists some coupldsnown boundaries
(mei, MEi) and (my;, Mp;) with mg; < Mg andmy; < My; asi = 0,1, 2 such that

me; < elemenfF)(x,u,0)} < Mg, (2.39)

and
My < elementhi(-)} < M. (2.40)

Here theelemen{A} means each element #&f no matterA is a vector or matrix.
In the following, for simplicity, .39 and @.40 are noted asng; < FEi, < Mg; and
My < h' < Mp;.

In order to prove Theorei2.5.3 firstly the optimization function need to be checked
for its derivatives up to second order with regard to the wmkmparameter. Differen-
tiatingIn(0) in (2.34) with respect to one paramet@y it gives:

Z{ yy,k (99| ) 09 yykrk+2rk yyk 09 yykr}

(2.41)
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2.5 Consistency and Normality

Here, the expressions for derivatives of a symmetric matfiy are used104)

9LAetAN)) _ geyar)tr(A-1x) 2A%)

ox ox )
oA (x) 4, OAKX)
xR 0T AT,

Since the last term oR(41) is a scale, it equals to its trace, then

INO) _ P 19Ryk 1Ty Org
06 _k;{ 2 (Pyyk 96 >(I_Pyy,krkrk)_09 Pyykr} (2.42)

The second order derivative is

e MU LU R
_%i [Pyyiﬁapgkpyyia;gkp k]
%2 R Rk G+ g_;)}
%aeaej Kk Z f;rg Py—ykddPéyk Pl Z 0rk 1 gg:
(2.43)

The only random variable ir2(43 is ry and from the algorithm of UKF,2.35 and
(2.36), it can be obtained th&(ryr,}) = Ry, and

Erc = E(Yk — Yik—1)
2n M)
= E{h(x) + & — Z)W Yikk-1}

= E{h(x wMy; Kk-1}
% (2.44)

2n
= E{N(F (X1 Uk-1,0) + @1) — _;vv#wh(F(xivk_l, Uc1,0))}

2n
=E{91(%~_1,Ux_1,0) %W )91 (Xik-1,Uk-1,6)}

=0.

42



2.5 Consistency and Normality

and if the measuremeyt is taken as a known scale, then

arc  O(Yk— Yk-1)
a6 06
0¥k 9k
~ 06 06
OYijk—1
06

2n
0(i§0VVi(M)Yi,k|k—1>
0& (2.45)
ZW )h(Xu Kik—1)]

:_% =0

[zW "h(F (X k-1 U1 )]

:_% =0 56

2n 2n
F

It can be observed that the random property of the first oréewative of r, with
regard tog only comes fronk; 1. As a result, from the observation kth step, the
first order derivative ofy with regard to6 only depends on past innovations and the
known input signal (control variable). It is the sam Izg‘éj. Then it can be concluded
that the first order and second order derivativesafith regard to6 are independent
with ry.

From .45 and the previous independency interpretation, takingepectation

—0—
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2.5 Consistency and Normality

of (2.43,

e =3 3 10(B, 108/ 06)/06)1 ~B3E )
—%i [Pyylka;g’ Pyylka;gkpyy}kE<rkrb1
+§:1tr{Py1k‘3§g Pk [E(j{;)E( >+E<rk>E<‘;%>J}

N 2

N ﬁ ~1 ﬂ)
& 08 WK a6

:0—52 [Pyyk 36 Pyyk 36 “|+0—-0+0— ZE Pyyk.a_&).

(2.46)

Then, using the Lemm2.5.1it can be obtained that th¢th element of the infor-
mation matrix is

92 (6)
% =" 5600, 2.47
< }tr[pflapysc 10Pyyk E( 0rk By 1 or k) (2:47)
_k:12 vk 96 Wk 006 kz (39]

Moreover, in order to prove the Theore2rb.3 the following Lemmas need to be
applied.

Lemma 2.5.4 If functions F,-,-) and H-) are uniformly bounded, thengRis uni-
formly bounded.

Proof: If F(-,-,-) andh(-) are uniformly bounded, fron2(30 and @.31), all of the
state, measurement and their one step estimation are mhyfbounded. According to
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2.5 Consistency and Normality

the UKF algorithm,x; yk—1 andY; y_1 are uniformly bounded as well.

Pk = Pok-1— KiRykKy
= Rqk-1— nykP kPx

2n
= .Z)\Ni(C) X k1 — Xk 1] Xi kg1 — Kigk-1] "
i=

2n
+ {,Z)Wi(c) [Xi ki1 = Rgk—1) (Y1 — 1]} (2.48)

2n
{Z)W Y k1 — k1) (Vi1 — i) T+

{.%\Ni(c;) [Xi k-1 — 1) Y kgk1 — Re—a] T3
i=

From @2.48, it can be seen th& is a function of the state, measurement and their
one step estimation. Since all of them are uniformly boundeeh R is uniformly
boundedt

Lemma 2.5.5 If condition (a) is satisfied, then,f and its derivatives up to second
order with regard tof are bounded.

Proof:

2n
Ryk = %W oIy, Y i1 — ko) Yk — Vi1l "

I%W Yi k-1 — %W Y|k|k1 k-1 — %W Y|k|k1

= % W h(x; Kk—1) %W h(x Kik—1)][N(Xi k1) %W "h(x Ki-1)]T

2n

c
:i;\Ni( )[h(F(Xi,kflaUk—l, %W F(Xik-1,Uk-1,0))]
[h(F (Xi k-1, Uk-1,6) %W F(Xik 1,Uk1,0))]
(2.49)
Since condition (a) is satisfied, fror@.40
Mho < h(F (Xi k-1, Uk-1,8)) < Mpo, (2.50)
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2.5 Consistency and Normality

it can be obtained
elemen{Ryx} < (Mno — Mpo)?. (2.51)

(2.51) meansRy is bounded. For the derivatives®f,x with regard tod, from (2.49,
it can be seen that it only depends on the derivativeBf x; k1, Uk—1, 8)) with regard
to 6.

Ih(F (Xi k-1, Uk-1,0) _ Oh(F (Xi k—1,Uk-1,6))
26 OF (Xi k—1,Uk-1,0)

Fo(Xik-1,U-1,0).  (2.52)

According to condition (a),4.39 and .40, there exists lower and upper bounds for
the right part in 2.52), noted asm,s1 andMp¢1. Performing the same procedure as the
proof for theR,y, it can be concluded that the first order derivativ®gk with regard

to 6 is bounded. Similarly, the second order derivativ®gk with regard tof can be
proved bounded as well.

Lemma 2.5.6 If condition (b) is satisfied, then

Ik i
E( 30 30 ) < oo, (2.53)
and
E (RiiKi) < - (2.54)

Proof: Using the condition (b), the conclusions can be obtainegttiy by the system
model equation and the definitionxfyin the UKF. 4

Lemma 2.5.7 If condition (b) is satisfied,

0 T
0< g2k .p-1. 9%

Proof: SinceRy is positive definite, its invers@‘y}( is positive definite as well. As
ar} /

36 P‘}(- g—g? > 0. Taking the expectation, the left inequality is proved. To

a result Wy
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prove the right part, firstly from the definition of, it can be obtained that

(58 Pk 5g;)
:E<dy-li—|k1_ ,1_a)7k\k71)
96wk Tag,
2n 2n
1’y W™ h(F (X k_1,U_1,6))]T [’ W™N(F (Xik_1,Uc_1,6))]
— E{ i=0 P—]l_( i=0 }
96 Y. 36;

(2.56)

Ryk Is positive definite and bounded, thé’@}( is also bounded. Combining with
(2.52), the three parts in the product of right part .56 are all bounded, then the
right part of .56 is bounded. Then, the right part &.65) is proved. In a whole,

(2.59 is established
Here a corollary can be obtained.

2
Corollary 2.5.8 If condition (b) is satisfied, theﬁ%}; is uniformly bounded

Proof: According to the algorithm of the UKF, it can be seen that

Pk = Pak-1— KiRyykKy
=Fgk-1— nyku;}(P&k

2n
= _Z)Wi(c) [Xi kik—1 = Rgk—) Xi k-1 — X"
i=

2n
- {.Z)Wi(c) X s = R 2] Vi1 — K1 "} (2.57)
i=

2n
{'Z)Wi((:) (¥ k1 — Vg1 Y k1 = Viga] T3
i=

2n
{_%\Ni((:) [Xi k-1 — 1] i1 = Ree-a] T3
i=

Xikk—1» Xk—1 only depend on functiof (-,-,-) and; yx—1, Yik—1 only depend on

functionsh(-) andF(-,-,-). If differentiatingR, by second order with regard & the
derivative only depends on second order derivativi(ef, F (-, -, ) and its derivatives
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2.5 Consistency and Normality

up to second order with regard th Condition (b) guarantees that all of them are

2
bounded. As a resultga% is bounded#
This corollary shows that under the condition of the Theo&mh3 the second

derivative of the updated variance for the state is also 8edn

Theorem 2.5.9 Under the condition of Theoreth5.3

1[(94(90)
N'9606'

Proof: From 2.43 and @.47),

+¢(60)] > 0. (2.58)

1 (92|N(90)

N[W‘“”NM (60)]

— d yy.K 1 T
2N Zt Wkaeaej (Rykic 1))

2N Zt i g, vk 36, Pk

2N Z” ik 36, T PAK]

(2.59)

B Al LIS VUL AL 53
on 2 Py gg Pk 06, X " ¥08,

Ton 2, " (Rak g Bk e, )

N 10R 10R
- Yy K 5— yy.k
2N kz "Rk 20 Pk 26
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2.5 Consistency and Normality

Since

E(tr[P—la ny(Pyykrkrk )

_ tr[P—l—W’k(Py‘yiE(rkrD ~1)] (2.60)

_ K

the expectation of the first term in the bracket of the right pa(2.59 is zero, then
applying Kolmogorov’s law of large numbers, the first ternf2rb9 converges to zero
in probability one wherN — . Similarly, in (2.59 the second and the seventh term
together, the third and the eighth terms together convergero as well.

Applying the independency betwegpnand its derivatives up to second order with
regard tof, there are

aZrk 02rk
2.61
B (3606, k) = E(5g06, PnkE(r0 =0, (2.61)
ar;(F _10Pyy,k 1 drk - dpyyk 1
(58 Wk g6, yMkrk):E(ae)Pyyk 76 PiE(M) =0, (262)

and

IRk org or T
1 Yy, T
E{t [Pyyk (99 Pyyk(ae k +r kael )]}

oR or or]
_ —1 YTyyk K “Tk
tr{ vwk 3o 69 yy7 [ ae])E< )+E(rk)E(dej )]}
From 2.61), (2.62 and .63, the expectation of fourth, fifth and sixth terms in the
bracket of the right part ir;59 are zero as well. Then according to the Kolmogorov’'s
law of large numbers, these terms converge to zero in prbtyatohe whenN — oo,
In all,

(2.63)

E( = 0.

L N
PIM. N ae.(ge,-)
Then @.58) is satisfied. i
Now we turn to prove the main Theore2rb.3
Proof of Theorem 2.5.3

+¢(6g)] =0)=1. (2.64)
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1. From @.47), it can be observed that

92In(6b)
N T '
- A {Ztr[Pyy,k ael I:)yy,k ael ]+E( del I:)yy,k ael)}

Since(Ryk) Ryk = Ryk(Ryk) =1, then fori = 1,2,...,n, there exists

n n

I;(Pﬁ()n (Rywii = l;(Pyy,k)il (P =1

According to @.5)), fori=1,2,...,n,

i(Pyﬁ()n > 1/(Mno — Myo)?
=1

" (2.66)
(Ryiit = 1/(Mno— o)
1

From Lemm&2.5.5 sincea(':—g"k Is a symmetric matrix, it can be derived that there

exitsmpy > 0 such that

oR
element agk
|

]2 > mpy. (2.67)

Combine 2.66 and @.67), and sinceRy andag—gk are both symmetric matri-
ces, any permutation is allowed for their products, therstex

1 0Rvk 1 ORNK
1 Y, 1 Y,
tr[Pny( 26 Pk 26 ]

0P,k OP
_ —1YFyyk UFyyk 51
=Pk 36 36 ok (2.68)

1 1
>n———m—— My —m—mMm8M8Mm
- [(Mho—mho)z PL™ (Mo — Myo)2

]>0

Followed by Lemma&.5.7and .68, the item in the brackets of the right part
in (2.65 is positive and has a positive lower bound. Then, the whgla part

of (2.69) is tend to infinity adN — . It shows that all the diagonal elements of
¢ (6p) tend to infinity asN — oo, ¢(6p) is a symmetric positive matrix, then all
of its eigenvalues tend te® as well. The first condition of Crowder’s theorem is
satisfied.
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2. If condition (a) and (b) are hold, from Theoréh?, it can be obtained that when

N — oo,

2
—qb(eo)—l(dd(';:;g?) LY (2.69)

The second condition of Crowder’s theorem is satisfied.

3. Considering the continuity &, if all the functions in the system aécontinuous
and@ is in its compact se®, then for a givere > 0, there exist®(e) > 0, such
that| In(6) —In(6o) |< €. From the condition (a), all the derivatives with regard
to 6 are continuous. Then it can be obtained that func@%@% is continuous
as well. .28 can be directly got by lettinyl — co.

From the above, if the system model satisfies the conditiap&], the conditions of
Crowder’s theorem can be proved to be hold as well. Followhegesult of Crowder’s

theorem, it can be claimed that
62 g, (2.70)

Next in order to prove the asymptotic normality, the Meanugal heorem

w =f'(c) for cela, b (2.71)
is applied withf (0) = 1(0), b= 6 anda= 6y. Then
R AN (61) ,

4(0) = 1a(B0) + 2 (6 g) (2.72)

for somef; € [, ).

Since the likelihood functiohy(0) is continuous, the maximum solution satisfies
that1{,(8) = 0. Moreover, wherN — o, since; € [0, 6] and .70, it can be
obtained tha8; — 6, and

A 2
0= (%) )1 60)6 G 6. 273)

From .69, there emsts—{%r 1q)(90) — | as well. The other part in the right

side of @.73 tends to the normal distributioni(0, ¢ ~1(68y)) according to central limit
theorem in {40) and the definition ofp (6p). In all, it can be obtained that — 6o LN

N(0,¢~*(60)). £
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In order to show how to apply the Theoréhb.3to system models, an example is
adopted in this part.

Example:

Consider a system model which is described by

k—1
X = + W1
14X 4 (2.74)
Yik = Xk + &

with w¢ and g, are both one dimensional standard Gaussian noise, whichaleat
o, & ~ N(0,1). In the system, the true value 6fis set as 1 and the initial value of
the system state gy = 0.1.

First, the condition of theorer®.5.3is checked.

Condition (a) Rewrite the nonlinear function in the systet{4),

According to the inequality of arithmetic and geometric mgave get
/X 1+X-1<—-2 or 1/x1+X_1>2 (2.76)
Then 1 0% 1 1
18IS <5100 (2.77)

As a result of 2.77), if neglecting the effect of the system noise and define
6 € © where© is a bounded, the state, the system function and function in
the measurement (unit function) are all bounded. Regarttieglerivatives of
functions up to second order with regard@ptheir boundness can be obtained
by calculating the deviations of the functions and applyhmgboundaries of the
states.

Condition (b) For the system modeR(74), this condition is naturally satisfied if re-
placingx in the measurement by using the system equation.

Condition (c) If the possible se® is chosen as a bounded compact seRinthe
condition can be satisfied.
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2.5 Consistency and Normality

From the above analysis, it can be seen that the paramet2r74) €an be esti-
mated consistently using UKF plus ML method. The combined~&Kd ML method
is simulated to make the parameter identification of the alsystem model. It is
assumed that the parameteis between 0 and 10. Here the initial value of the es-
timation is chosen as 0.1. Fig.3 shows 300 estimations started at 1th samples and
ended at 300 samples. For each estimation, it applied allidkee obtained to make
the parameter identification of the system. The horizonta & the number of the
identification, started at 1 and ended at 300. The vertidalstands for the estimated
value. From the result, it displays that the estimated \&a@iradually converge to the
true value 1. Moreover, it is obvious that when the numberaafigles that is used for
estimation tends to infinity, the estimated value will muébser to the true value of
the parameter.

141

— UKF plus ML method
True Value
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Figure 2.3: Estimations result fexample

Furthermore, according to the Theor@rb.3 the variance of the estimation can be
predicted using (o) as its approximation. In this casgy*(6o) = 0.02789 for the
estimation using 100 sampling points. If using the 50 sanggtioints to make the es-
timation, the variance of the identification value is 0.035B8e difference between the
variances of these two different identifications is with ab®0 percent. However, the
theorem only shows asymptotic property. The more pointfieghghe more accurate
the result is compared with the true value and the more clbgevariance is to zero.
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2.5 Consistency and Normality

This is the real case, if different lard¢, for example using hundreds or thousands
sampling points, is adopted to make the estimation, theifittion values are nearly
the same, and the variance are closer to zero.

2.5.5 Case Studies Using KF Based Methods

In this part, two kinds of nonlinear system models are carsid. During the sim-
ulations, four KF technique based methods are implemerace the direct filter
methods can not lead to the good results to estimate the pteamn the diffusion
item, the system in simulation one only considers the unknparameter in the drift
item. The simulation two will consider two parts (both ditm and diffusion item)
parameter identification problem.

2.5.5.1 Simulation One: Classic Model

The system considered in this part can be seen as the clasdiel m which system
noise is considered as one simple Gaussian process, byistieensmodel is rewritten
as the ISDE model formulation. The objective of these sithg is to make the
comparison of different KF based methods.

The system is described as:

dX = f(X,U,8)dt+ od
{ ( Jdt+odB (2.78)

Y (k) = h(X(K)) + &

whereX is the system state, and it is two dimensional vector rwvriﬂs(xl,xz)T, Uis
the input signalf is the system unknown parameteris a constant related to process
noise variance, and(k) = (Y1(k),Y2(k))T is the measurement vector. Functidifs) €

R? andh(-) € R? are some specific nonlinear or linear functions as below:

Xo+U
f(X,U,8)= ) ,
2(1—-0X{ )X — XU

Xa (K
h@&»:(é&o.
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2.5 Consistency and Normality

Here B; is a two dimensional Brown Motion, and noise in the measurdgnag~

N(0,S) with
o_ (00001 0
~\ 0o 00001

In the simulation, parameters are setéas- 0.5, 0 = 0.1, and the initial state is
(1,1)". The input signaU is a kind of sweeping signal which is plotted in the Fig.
2.4. The outputs is generated by simulating the predefined myatad the data is
plotted in Fig.2.5.

0.8

0.6

0.4}

0.2}

0 0.2 0.4 0.6 0.8 1

Figure 2.4: The input) for 2.5.5.1

The Data used in the identification process is chosen as ttimaous 100 couples
with sample interval 0.01 seconds.

For the direct methods using EKF and UKF, it need to generataigment state to
the system. Since in the systéhis set as a constant, the new system with the augment
state could be rewritten as:
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0.8
0.6
0.4 * * : *
0 0.2 0.4 0.6 0.8
Figure 2.5: The output for 2.5.5.1
( X=[X,0]

O ©oQ

)22—|—U
X =|21-6%3)% -UX | dt+ (

0
. Xq(k
h(X (k) = xi;(;) .

0
o |d
0

(2.79)

Applying EKF and UKF using the data as the previous parts écsirstem model,
the estimation of the augment state can be obtained. ThelagheomponenXz(k)

can be taken as the result of the paramétetentification.

e The estimation results using EKF/UKF directly a5.5.1could be seen in Table

2.1

e The two approaches are implemented under the same congmadationdition
(cpu: Intel Core2 Duo CPU T5900. Memory: 3GB.). The EKF basedhod
needs 0.033732 seconds while UKF based method needs 098486nhds.
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Table 2.1: The estimation results using EKF/UKF 205.5.1

Approach| EKF UKF
0 0.4968| 0.4989

Table 2.2: The estimation results using EKF+ML/UKF+ML f6.5.1

Approach EKF+ML UKF+ML
0 0.4987 0.5003
Computing Time|| 4.689910 seconds 7.365839 second

[72)

The results using EKF plus ML and UKF plus ML methods are tisteTable.2.2
and Figure2.6.

The comparison with regard to convergence of the two metloadsbe judged
according to the number of iterations in solving the optitian problem required to
reach the same tolerant criteria. In the simulation, it mb@@ iteration steps in the
optimization and results can be seen in Figt&. If the tolerant level is selected as
1.000@=— 004 in the concern, and Tabl&.3 shows iteration numbers of these two
approaches.

Comparison of the Four Methods:

From the simulation tests, the following discussions cdogdanade:

e Precision: It can be observed that the parameter estimaieg UKF+ML based
method is the closest one to the true value than the resittg thee other meth-
ods. In all, regarding the precision, the order is: UKF+MIKRE) EKF+ML and

Table 2.3: The number of required iterations 206.5.1

Approach EKF MLE || UKF MLE
The number of the iteratiof] 66 32

==
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2.5 Consistency and Normality

141
— UKF plus ML
EKF plus ML
1.2 Real Value
1 =
0.8+
0 J\\’R
0.4H
0.2 1
0 1 1 1 1 1 J
0 20 40 60 80 100 120

Figure 2.6: Optimization in parameter identification ud#i¢f plus ML and UKF plus
ML for 2.5.5.1
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EKF methods. Since the model is a nonlinear one, the mostrianpidfactor to

influence the precision is the choice of the Filter—no dohét tising UKF could

provide a more accurate state estimation. Under the conditsing the same
filter technique, the method with maximum likelihood can oe@e information

of the system (distribution of the noise or disturbanceptbaly applying KF

technique, hence it is better to use Kalman Filter method thi¢ ML approach
to make parameter identification for some parameterizetimear models.

e Computation load: From the view of the computational timeder the same
conditions, it is clear that UKF based method needs moreulzdion power
than EKF based method does. It is because in the state estinstdige, UKF
uses a number of sigma-points which need to be generatechandholesky
decomposition of the covariance matrix needs to be carueaswell.

e Convergence: Regarding the convergence for ML methods,#M{Fmethod
have the faster convergence property than EKF+ML. It is dubadt in the state
estimation stage, UKF does not make the linearization totrdinear system,
while EKF makes the linearization to the original system.tHa sense, UKF
based method can catch more properties of the system tharb&s&ed method.
Then, it can find the optimal solution much more quickly.

As discussed, if the Filter technique is used to deal witlts® where the diffusion
item have the unknown parameter without any other tool, @réopmance with regard
to the precision is too bad. Hence, in the following, the KH+glthe main method to
handle the parameter identification problem for the ISDE ehadwhich the diffusion
part contains the unknown parameters.

2.5.5.2 Simulation Two (Case (A) and (B)): Parameter Idenfication Using KF
plus ML Methods

This part, three different cases are shown to make the caosopaof EKF+ML and
UKF+ML methods.

First, it will be shown that nonlinear ISDE model can dealhnsbme kinds of the
system where the random feature can be affected by the $tie £ystem.
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2.5 Consistency and Normality

Case AO:
This system is chosen using the so-called Cox-IngersatisRGIR) model124). Itis
used to describe the term structure of interest rates.

{dxza(b—X)dH oXzdB,  X(0)=0.1 (2.80)

Y=X+w
whereX is the continuous-time short-term interest rate. Manycstme models can be
found using this kind of model class by setting appropri@emeter constraints (see
Chan et al., 1992) for a survey. In the test, the true parasate setaa=0.5,b=1,
o =0.5.
According to the lb'Formula, let a new variablé = ZX%, it can be obtained that

92X 3 1922X3 1,
= xFdX4 S (—Ix-). o2xdt
2 2 (2.81)

= (abX‘% — aX%)dt—i— odB — %azx—%dt
= (abX‘% —ax:— %GZX_%)d'H- odB;.

From the relationship betweehand X, X = 172, take place o in (2.81) and the
measurement ir2(80), then the transformed system model can be described useng t
new state variablg as:

dzZ=(2abz 1 - }aZ—}azz_l)dt—i— odB, Z(0) = 2(X(0))2
1 22 (2.82)
Y = 21z2 + o

It can be seen that the diffusion item (stochastic part) @f nedel .82 does not
depend on the new system variaBleut all the unknown parameters are not changed.
It means that to make the system identification of the origsggatem can be accom-
plished by estimating the transformed systehB®. Moreover, the system model
(2.82 is the common model where the state variable only affecti#terministic part

of the system. Then different methods can be adopted to nisisystem identifica-
tion. This example can also be taken as one to show the meauging ISDE model
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2.5 Consistency and Normality

that the ISDE model can deal with some systems with statendiepe random feature
or noise.

In the thesis, the proposed UKF plus ML method is applied tkerthe estimation
of (2.82. Here, the data adopted is 200 points from the beginniregstbp interval is
setas 0.1 second. The resulais 0.4978,b=1.012,6 = 0.4887. The performance of
the estimation is really nice, but the estimation for theapaater related to the random
feature has a relatively large bias due to the random noiserggon.

Case A:

This example we use is the same to the example 1 in the p@pgrirf which it pro-
posed a detailed algorithm using EKF+ML/MAL method to make system identifi-
cation for the ISDE equations. The system is described as

X, VX - 53 o 0 0
dl X | =| ¥ 238%) fdt+| 0 o 0 |dB,
X3 U ¥ 0 0 03

where(Xy, X2, X3)T is the state of the system, and

X1
0.5XZ + Xo+0.03’

0 is the system parameter in the drift term of the SDEs the input variableos, 0», 03
are unknown parameters in the diffusion term.
The measurement equation is given as

Y1 X1
Y2 = X2 | +&,
Y3 X3

k k

where(Y1,Y2,Y3)T is the measurement of the state, @gd- N(0, S) with

S2 0 0
S= 0 S O
0 0 S

andS;; = 0.01, S, = 0.001, S33 = 0.01.
The true parameters are assumeddas 1, 01 = 0» = 03 = 0 = 0.1, sampling
interval is chosen as 0.01s, and the initial statéli©.244951)". TheU is a kind
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0.8}

0.2

0 20 40 60 80 100

Figure 2.7: The input for the cage

0 0.2 0.4 0.6 0.8 1

Figure 2.8: The measuremeirt, Y2,Y3)T for the case\.
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2.5 Consistency and Normality

Table 2.4: The estimation results for case

Approach| EKF MLE || UKF MLE
6 1.0422 0.9983
g 0.0935 0.0984

Table 2.5: The number of required iterations for cAse

UKF MLE
53

EKF MLE
73

Approach
The number of the iteratiof]

==

of sweeping signal which is plotted in the Fig.7. A set of outputs (100 samples) is
generated by simulating the predefined system and the dalatied in Fig.2.8.

Both the EKF and UKF plus ML methods are examined and compartt fol-
lowing two scenarios.

1. Normal test, i.e., the data used for identification is generated fromtrine sys-
tem, which is plotted in Fig2.7 and Fig.2.8.

e Precision:

The estimation results are shown in Tal#e4. It can be observed that the
parameter estimated using UKF based method is closer toubesalue
than the situation using EKF based method. This is becauseddi€s not
apply linearization during the state estimation stage. &emrperimental
results indicate that UKF could yield results comparable third order
Taylor series expansion of the state-model, while EKF ofrsewnly is
accurate to a first order linearization.

e Convergence issue.
The tolerant level is selected ad)Q0C — 004 in our concern, and Table
2.5shows iteration numbers of these two approaches. It cantimeddhat
the UKF plus ML method converges faster than EKF based metibed
for this example. The fast convergence also comes from tigHat UKF
based method does not make linearization in the state d@ginmdt can
catch more properties of the system than EKF based method.
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2.5 Consistency and Normality

Table 2.6: The estimated parameter for robustness tess@’ca

Approach| EKF+ML | UKF+ML
6 1.1325 1.2578
o 0.1082 0.1115

e Computation load.

The two approaches are implemented under the same congmatiaton-
dition (cpu: Intel Core2 Duo CPU T5900. Memory: 3GB.). TheEK
based method needs 4.272164 seconds while UKF based nég@s®3
seconds. From the computation point of view, it is clear thdF based
method needs more calculation power than EKF based methex] dde
most computationally demanding part of UKF is the matrix asguroot
used to calculate sigma points. Matrix diagonalization bol€sky factor-
ization of the covariance matrix can be used to solve thiblpro, but still
need heavier computation load. A more direct square roaoagp, prop-
agating only the square-roots of the covariance matricay, offer higher
computationally efficiency. Merwe proposed an approachléang this in

(109.
2. Robustness testi.e., the data are generated from the system in which there
exists the modeling error.

Here the modeling error concerned only happens in varigbleThe data is
generated according to the n®ynoted ad/,

6 X
0.55X% + X+ 0.03"

V=
However, the following estimation still uses the origingstem model. The

convergent values are listed in TabZe6.

It can be observed both results have some deviations cocthpatie the "true”
identification. Here the criterion to evaluate the robuss$nise made as:
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whered’is the nominal result of the identification whitg is the result based on
the modeling error data (assume a is an unknown parametee sf/stem). The
lessl, is, the more robust the method is.

According to this criterion,

e For the estimation 08,

{I9:O.0866 for EKF+ML method

lg =0.2599 for UKF + ML method
e For the estimation of,

lo =0.1572 for EKF+ML method
lo =0.0853 for UKF +ML method

The results evidently show that UKF based method has largé@ations than
EKF based method. This means that the UKF based method issans#ive
than EKF based method in the deterministic parameter iieation regarding
the modeling error. But regarding the random part, the EK$etlanethod is
more sensitive. This is because the model error only hagjeriee determinis-
tic feature of the system without in random feature. SinedtKF based method
can catch more information of the systems, it caused diffezemparisons for
the two parts parameter identification.

Case B:

Two scenarios are investigated in this part: nonlinearesystdescribed as a poly-
nomial format and a division format. For simplicity, all tlsgstems are simulated
in one time unit and the parameter identification is basedGaodhtinuous sampling
points with uniform time intervals of 0.01.

The system is generally described as:

oo O 0
dX=f(X,U,8)dt+| 0 o, 0 |dB
0 0 o3

Yie = h(X«) + &
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Table 2.7: The estimation result for ca3€l

Approach| EKF+ML || UKF+ML
6 0.7729 0.8012
o 0.1056 0.1045

Table 2.8: The number of required iterations for cBsk

EKF MLE
53

Approach
The number of the iteratiof

UKF MLE
71

==

whereX is the system state, and it is rewritten(aq,xz,X3)T, U is the input vari-
able. 6 is the system unknown parameter, and therejis- 0, = 03 = 0. Y(k) =
(Y1(k), Y2(K), Y3(k))T is the measurement(-) € R3, h(-) ¢ R',| < 3 are some specific
nonlinear or linear functions.

B-1: The functionf(-) is a nonlinear polynomial:

XZX1+UXq

X3+UXo

0X1(X2+X3) +U

f(X,U,0) =

and the measurement equation is
Y(k) = Xl(k) =+ &k

with & ~ N(0,0.1). Here the true values are tht= 0.8, 0 = 0.1, and the initial state
is (1,0,1)T. It should be remarked that the system states become pantieasurable,
l.e., only X; is measured, while in the previous cases, all system stategdi@ctly
measured. In this case, the input varidblés set agJ (t) = 0.5sin(8t) and the output
signal is obtained by simulating the system.

Similarly as what we do for the former cases, the estimatédcamputing results
are listed in Table2.7and Table2.8.

e Parameters estimation (Tabk27)

e Number of iteration (Table2.8)
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Table 2.9: The estimation result for caBe

method|| EKF UKF
e 0.7881}| 0.4883
o 0.0950|| 0.0973

Table 2.10: The number of required iterations for cAs2

Approach EKF MLE || UKF MLE
The number of the iteratiof] 82 49

==

e Computation load.
Here the condition of the computation is the same to the pusstase. The EKF
method need 2.376364 seconds while UKF need 6.419088 second

B-2: The functionf(-) has simple divisions. The only difference to the cBskis
that the functionf (-) converts to the following function which has simple divisso

X2 /X3+UXq1 /X3
f(X,U,8) = 0X3/Xo

X1+U

Here the true value o is 0.5, initial state i1,1,1)T and other variables are just

the same td-1.
Repeat the same process and the results are shown in thethblew (Table2.9

and2.10.
e Parameters estimation (TabR9)
e Number of iteration (Table2.10

e Computation load.

The EKF based method needs 3.666436 seconds while UKF batbddmeeds
7.084774 seconds under the same computing condition.

67



2.5 Consistency and Normality

In the caseB, the robustness test is not listed because the results hav&atne
conclusion with casa.

discussion:
The two case studies of caBeshowed almost the same results as situation with case
A. In the polynomial case, the two estimation results illatthat UKF based method
has a little better performance than EKF based method, ictmputation load is
not a concern. Regarding to the converging property, the B&E$ed method is a
slightly better than UKF based method. However, regardivgdivision case, the
UKF based method is obviously better than EKF based methtitbuti concerning of
computational loads. And UKF based method converges mtérfthan EKF based
method as well. It could be concluded that the UKF based ndethbetter than EKF
based method for systems with rather complex nonlinearity.

2.5.5.3 Conclusion for Studies

Through the above studies, the characteristics of both BMFUKF based methods
are illustrated. In general, the UKF based method can peomidre accurate result
than EKF based method. Meanwhile, the UKF based method atsodes faster
converging rate than EKF based method although there are special cases. It
is due to that the EKF just picks up the first order term throligéarization of the
nonlinear system and drops all items higher than the firstrortf the influence of
the higher order items can not be ignored in the system, the ilBKy provide a poor
performance in terms of the accuracy. In contrast, the UKéS wssgma-points that
are dedicatedly chosen. S. Julier indicated that UKF yieddsilts comparable to a
third order approximation of Taylor expansiof]. As a result, it can provide a better
estimation to the state of the system. That could be the neakyg UKF based method
is generally better in parameter estimation. Furthermthre,studies suggest to use
UKF plus ML method to make the parameter identification fansamonlinear systems.
The payoff for better performance of the UKF based methodluding combining
with ML method, is the computational load. The UKF needs todba the Cholesky
decomposition and calculation based on double-sized sppitds. Moreover, it has
been found that the UKF based method is more sensitive than lidsed method
regarding to potential modeling errors.
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2.6 FDD Application

In this section, the previously proposed model and the nuietre applied to Fault
Detection and Diagnosis (FDD) procedure based on the ISDi#ehformulations of
the systems.

2.6.1 The ISDE Model with Parametric Fault
Consider the following nominal ISDE model, which is a par&mene
dX(t) = gr(X(t),u(t),t,0)dt+go(t, 0)dB, (2.83)
with the measurement
Y (k) = h(X(k),t(K)) + &, (2.84)

where the definitions of the variables are the same as pregections. Here assum-
ing that the fault is a parametric fault, i.e., if the faulippans, it only influence the
parameteP of the systems. Suppos$kechanges from the normal valég to the faulty
value 6, if fault happens.

According to the fault characteristics, if the fault happehe change of the system
could be described as:

df(t) = [ga(X (1), u(t),t, 61) — gu(X (), u(t),t, 6o)]dt + [g2(t, 61) — 2(t, 6p)|dBr.

whered f(t) describes the change of the system, dft) = 0 when no fault happens.
Note that here the diffusion coefficients of the system ardsifstem change consid-
ered when the fault happens, is independent on the stateuBedf considering the
state depended diffusion itemoliEormula can simplify the model to one without state
depended diffusion model.

2.6.2 FDD Methods

FDD methods for the system need to consider the followingleros:
1. How to make fault detection?

2. If the fault happens, how to evaluate the fault?
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Generally, for the system with possible parametric fallg previous two prob-
lems can be considered and accomplished together, if tlzeneder identification of
the fault paramete can be made in an online manner. In this way, if the FDD proce-
dure has detected that the parameter changed deviatinglinormal value at some
time, it can be claimed that the fault happened and of cotineechange between the
normal value and the current value can be used to evaluat@uhle Sometimes in
order to deal with the fault and maintain the system runnioiggoo bad, the informa-
tion of the states is also quite important for system recamndition. For this reason,
the fault estimation often accompanies with the state egtom ©4). Thereby, in the
thesis, the Joint Parameter Identification and State EBbm&IPISE) technique for a
FDD design for a class of ISDE modeled systems is considditeelconsidered faults
are types of abrupt parametric faults, which indicatessbate system parameters will
immediately deviate from their normal values if faults happThe concerned system
parameters consist of deterministic parts as well as theseritbing the stochastic fea-
tures in the system, such as the new covariances of the grooese and measurement
noise.

The JPISE problem is a nonlinear problem, no matter the dered system is a
linear one or not%9). In general, the techniques to solve a JPISE problem can be
classified into two categories. The basic idea of one cayegois named as state
estimation approaches, which is to extend the unknown syprameters as addi-
tional system states, so that an augmented state space caod® achieved. Then the
Extended Kalman Filter (EKF) technique is used to estim#tedaugmented system
states, which includes the original system states and tkieawn system parameters
(18). The parameter identification and state estimation cambatsneously obtained
at each sampling step. However, this kind of approach gigsedo explicit multiplica-
tion of states by other states, meanwhile it is well known the EKF is a kind of first-
order approximation and no guarantee for global convergést@). Another category
for solving JPISE problem is named as "bootstrap” method&By Within this type
of method, the parameter identification and state estimatie carried out sequently.
Either the (parameterized) state estimation is first obthiand then substituted into
a parameter identification process,wice versa The Kalman Filter with Maximum
Likelihood (KF-ML) method 83; 152) is a typical approach in this category. However,
this category also suffers some potential drawbacks, ssicioa-convex optimization
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problem and suboptimal solution. Nevertheless, this kihdomtstrap method seems
more flexible than the state estimation methods, e.g., katgto directly deal with
identification of nonlinear system with unknown stochasharacteristics. Thereby in
the following, the previous KF-ML method is applied to deathwa JPISE problem
for a fault-tolerant space robot system which is the samledsystem in169).

The parameter identification using EKF plus ML and UKF plus Mé&thods to the
ISDE model is first to use the input and output data to make stgttimation, then form
a ML function based on the result of the state estimation ahathe optimization of
the ML function. It takes the optimal solution as the paranestimate. It is only a
off-line method. If the KF plus ML methods can be applied tox0t need to extend
to an on-line version because the fault parameter must lestigated all the time to
grantee that if the fault happened, it could be detected idnaely.

In the following, the moving windows technique is adopte@xtend the KF plus
ML methods to an online manner to fit for the FDD demanding.

2.6.3 Entire FDD Procedure

Before the process is up to run, the length of one moving winaneed to be chosen
at first. Then based on the input and output data, the estmatiocedure can be
performed in an on-line way. When a new couple of data is ctdl the latesN
couples of input and output data are used to make the panaidettification of the
system. The result of the identification is taken as the egton of the fault parameter.
Take® as estimation 08, then the predefined threshold method or some statistical
methods such as cusum method can be used to determine wtnettiault happened
or not (L78. Here, for the simplicity, the deterministic thresholdtha is applied,
i.e., if the value off is within 10% deviation to the normal valu, the system is
claimed running normally. Otherwise, it will be claimed tla&fault has happened.
Associated with the fault detection, state estimation aaoliained as well as a by-
product of the FDD procedure. It can be got by substitutirgebtimated parameter
value 8 to the parameterized state estimation, the state estiméti®) and R(6)
using KF method are then obtained. Sometimes if the staiteasdn is not smooth
enough, Kalman Smoother technique can be adopted to makestimeation more
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Figure 2.9: The scheme using KL and ML method

accurate. The Kalman Smoother proceeds backward in fiB)efd it is summarized
as:

Initial with %(8) andR(8), and letj =k—1,k—2,....k—N+1, there is:
Li(0) =Pi(B)AT(B)P4(8), )
Xjk(6) = %(8) +Lj(8)(Xj+1k(0) —X},1(6)), (2.85)
Pii(0) = Pi(8) +L;j(6) (P yk(0) — P 1(6))L] (6).

Summarizing the above steps for FDD, the entire schemeustidted in Fig2.9.
Suppose the procedure begins at k-th samples:

e Employ KF technique to make state estimation (mean and @), it need
to determine the certain specific KF format according to thecsic form of
the system, such as KF for linear systems, EKF or other neafifilters for
nonlinear systems.

e Form the parameterized ML function based on the results foognious state
estimation.
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e Solve the ML optimization problem, and obtain the optimaugon 6 as the
estimation of fault parameter.

e Compare the identification result with the value under thenad situation sys-
tem and make the fault detection decision using the predkfil@erministic
threshold.

e Substitute the identified parameter into parameterizedditisn, and then ob-
tain the state estimation. If necessary, apply KS for smogthurpose.

e Repeat the former steps when the new couple of input and bdgia is ob-
tained.

Note that the first three steps are just the parameter id=iidn using KF tech-
nique plus ML method.

2.7 Cases Study for a Space Robot System

In order to show the performance of the proposed method, @ @laspace robot is
studied with different fault scenarios.

2.7.1 The ISDE Model Formulation

The space robot system used 169) is considered here, the process could be seen in
Fig. 2.10 In the normal situation, system parameters are listedlleTa1l, and the
dynamic of the normal system is described by:

N2l + lson(Q + &) + B(Q+&) = T, (2.86)

lsor(Q+ &)+ B(Q+&) = —Tger. (2.87)

The actuator part including a DC-motor and a gear box is s';f're(ilasTjeff =NTpn
and Ty, = kiic. TorqueTyes due to the deformed spring is describedTys = ce.

In the actual system, the controllable input is the motorenti, and the measured
signals are encoder outpBt= Q + £ and tachometer outpdQ. The original system
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Figure 2.10: The process of a robot space referiéd)(

was a SIMO system. Define state vec¥e [Q,Q,s,é]T, output vectorY = [Q +
g,NQT.
The state-space model of the system is obtained as follows:

dX(t) = [AX(t) +BU(t)]dt+aocdB
(t) = [AX(t) (t)] (2.88)
Y(t) =CX(t) +
where the system matrices are:
0o 1 0 0 0
0O O = 0 ke
. N2|m . Nim . 1 010
A=lo o 0 1 |*B=] 0 'C_[ONOO"
0 1 Wt s

HereB; is a two dimensional Brown Motiorao is the item related to the covari-
ance of the noise in the process, whare0.001 ando is the parameter in the diffusion
item. The noise in the measuremests the two dimensional Gaussian processes with
meang) and covarianceR. Here,

R 0.00 0O
- 0 0002 |

2.7.2 Test Conditions

In the following situation, the different scenarios are sidered to the fault detection
and state estimation. In the model, the whole time the systiaming is 314 seconds
and at the 10th second the fault happened. The initial comdfor the system is

74


Chapter2/Chapter2Figs/robot.eps

2.7 Cases Study for a Space Robot System

Table 2.11: System parameters of the space robot systemeckfa (L69)

Symbol Description Unit
N=-260.6 Gear-box ratio -
Im=0.0011 Inertia of the input axis kig?
Q Joint angle of the internal axis  rad
lson=400 Inertia of the output axis kg
Tjeff Torque of effective jointinput ~ Nm
€ Joint angle of output axis rad
ki =0.6 Motor torque constant N/%
Ic Motor current Am
B=04 Damping coefficient N/%
c=130000 Spring coefficient N/%
Tgef Deformation torque of gear box Nm
Tm Motor torque Nm

x(0) = [0.01,0,0,0]". The test is made by using two different kinds of input signal
i.e., piecewise constant input and sinusoid input withedéht frequency:

0.1, for t <5s
up(t)y=¢ —0.5,  for 5s<t < 20s
0.2, for others
up(t) = 0.5sin(0.8t).

uz(t) = sin(0.2t).

us(t) = 0.8sin(1.5t).
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2.7.3 Faultin the Deterministic Part
2.7.3.1 Case (C): Fault In the Actuator Part

In the first, the fault considered only takes place in thermeit@stic input item. When
the fault happens, it is assumed to only disturb the motosteon. Fault parameter is
assumed a8 and motor toque constant is taken@is.

In the case, the normal system and faulty system can be wage

dX(t) = [AX(t) +B(6)U (t)]dt+acdB (2.89)
Y(t) = CX(t) + @ '
with B(6) = 6B and
6o, Normal system
g1 7" y (2.90)
6s, Faulty system

In the simulation, the data is generated by setting 1 is a constant, the values of
the parameter aréy = 1 and6; = 1.5, choose the sample interval as 0.1 seconds and
the initial value of thed is 0.9. The simulated output is plotted in Fig.11

The FDD procedure and state estimation are performed useqgoposed KF+ML
method. For this case, the system is a linear one, so Kalnltar i§ applied for
KF stage. The estimation is implemented with different diev& windows ) and
different inputs. The identification of the fault parameteed to wait for the firsN
outputs at the beginning. Before the time when enough datallescted, there are two
methods to cope with the estimation. One is to make the estimbased on all the
data obtained at sampling time. The other one is to set thiggdatameter estimated as
the initial value and state estimation is based on all thepsapoints before reaching
N-th point. In the thesis, the later one is applied in ordetiovsthe performance in
detail. As soon a®l sample points are collected, a moving window with the length
of N is used to on-line update the estimation according to theique KF plus ML
algorithm.

Piecewise Constant Input
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Figure 2.11: Output for cas€} with u;
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Using the inputu; and different windows lengths, the simulated output istphbt
in Fig 2.11and the estimation results could be seen in Big2 Fig. 2.13 Fig.2.14
and Fig.2.15

Plot of the identification

1.6
15F — MM, Oaa\
1.4+ Estimated value
Actual value
1.3r
()
=}
<
>
1.2r
1.1r
1 e
0.9 L 1 1 1 1 1 J
0 5 10 15 20 25 30 35

Time

Figure 2.12: Parameter identification for ca€g ith u; andN = 30

From the tests, we could get the following results:

e Fault detection:
As shown in Fig2.12and Fig.2.14 the algorithm needs to wait for the firlsit
points, thereby the estimated parameter just remains anitied value in the
beginning. Before 10th second, the estimated fault pammeimuch close to
1 which is the normal value of the system. At the 5th seconel,etstimated
value has a small deviation to 1 since the effect of the injguned is changed to
the different direction. When the fault happened at 10tlosdcthe estimated
value has a large jump or deviation at the beginning perioiterAa while, the
estimated values converge to some steady-state values wloise to the real
system values. At the moment, it is believed that the faust in@ppened and
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Figure 2.13: State estimation error for ca€g ith u; andN = 30
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Figure 2.14: Parameter identification for ca€g With u; andN =5
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Figure 2.15: State estimation error for ca€@ (vith uy andN =5

its magnitude is obtained as well. Around the 20th secona|aively large
deviation can be seen and it is due to the change of the ingoalsi During
almost all the time, the error for the fault identificatiorwghin 4%. Regarding
the identification results, if the predefined threshold ieady set before the
detection, such as 10% from the normal value, it can be clhitnat the fault
has happened after approximately 11th second.

State estimation:

Fig. 2.13and Fig.2.15show the errors of the state estimation and they are ex-
pressed in percentage. Most of state estimation errors dinévi%. But as
same as the phenomenon observed in the fault detections,esuthose inter-
vals and times when the condition of the system/input is ghdnthe estimations
may have a relatively large temporal oscillations. Morepwden the system
tends to stop, sometimes there may be a large deviation &stiveated value.

Length of Moving Windows:
In the test, moving windows with 5 points and 30 points aresaered. From the
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parameter identification results, 30 points could give usiambetter estimation
of the parameter at the cost of the detection time. But 5 ppmit better than
the 30 points in the accuracy, but it saves much time in thequore. Further,
it can react to the fault much more quickly. Meanwhile, foe 8tate estimation
the performance of the two different kinds of sample poistsdarly the same.

Sinusoid Input

In this part, the input variable is changed, 3 sinusoid iaputh different frequen-
cies and amplitudes are adopted, that are the previoussioputiz andus. Here we
also used two different lengths of moving windows, 5 and 30.

5

—

-10

L L L L L L
0 5 10 15 20 25 30 35

150 T T . :

100
g
< 50r
>

0
_50 1
5 10 15 20 25 30 35

Time

Figure 2.16: Output for cas€} with up

From the output figures, the difference between 3 inputsigesxe since the fre-
quencies of these inputs are different. Even it could begpeetom the output which
input it used.

The comparison : It could hardly see the difference from the identificaticing 30
points, all of them are quite fine. But from the identificatissing 5 points, the
difference is obviously displayed. We could see the pecaldimall bias from
the results. It could be seen that these small biases emeryty @ seconds
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Figure 2.17: Parameter identification for ca€g with u, andN = 30
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Figure 2.18: State estimation error for ca€g ith u, andN = 30
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Figure 2.19: Parameter identification for ca€g with u, andN =5

smooth difference in state 1

-100

2 T T T T T T
N
—2 . . . . . .
0 5 10 15 20 25 30 35
smooth difference in state 2
0.05
. | A
~0.05 . . . . . .
0 5 10 15 20 25 30 35
smooth difference in state 3
10 T T .
ol
_10 1 1 1 1 1 1
0 5 10 15 20 25 30 35
smooth difference in state 4
100 T T T .
: ]
3 0 v
>
0

Time

Figure 2.20: State estimation error for ca€g (ith up andN =5
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Figure 2.21: Output for cas€f with us
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Figure 2.22: Parameter identification for ca€g with uz andN = 30
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Figure 2.23: State estimation error for ca€g Yith uz3 andN = 30
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Figure 2.24: Parameter identification for ca€g yith uz3 andN =5
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Figure 2.25: State estimation error for ca€g (ith uz andN =5
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Figure 2.26: Output for cas€f with uy
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Figure 2.28
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Figure 2.29: Parameter identification for ca€g with us andN =5
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Figure 2.30: State estimation error for ca€@ (ith ug andN =5
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one time foru, case, only one time fauz case and more frequently fog in
the whole procedure. From the results for the cases usirapdus, the bias
always happens at peak time of the input. It can be conclud&dthe input
frequency could influence the parameter identificationquically. But the am-
plitude could not disturb the estimation. Since the infleeis;mot huge, the state
estimations are nearly the same here and the performanaogesygod in terms
of the precision.

2.7.3.2 Case (D): Faultin the state item

In this part, we consider the fault only happens in the stata,that means it could
change the part of system which explicitly has the statethdmodel, it reflects in the
model that the matriA changes if the fault happens. Follow the same procedure as in
case(C), the normal and faulty system can adopt the model:

dX = [A(6)X+BU|dt+acdB
(2.91)
Y =Cx+ w
with
0 6o, Normal system
B 6, Faulty system

whereA(68) = 6A. Other variable is defined as the modai74).

The test is using time interval as 0.05 second, inguand the length of moving
windows with 30. The fault variable is making 8= 1 and68; = 0.8 and the initial
value of the estimation is made a®0

The output is seen in Fig.31

The fault variable identification could be seen in the foilogvFig. 2.32 Error
for the state estimation is plotted in Fi2.33 From the figures, it can be seen that if
the fault happened in the state part, it can affect the systeich more hugely than
the fault happened in the input item. But the estimationlteshows nearly the same
comparison.
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Figure 2.31: Output for cas®] with u;
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Figure 2.32: Fault detection for cade)(with u; andN = 30
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Figure 2.33: State estimation error for caBg yith u; andN = 30

2.7.3.3 Case (E): Fault in the all deterministic items

This part we combine the former two deterministic fault soérs, that is the fault
could influence both the input item and the state item. Theahoah be described as:

dX = [A(6)X +B(6)U]dt + acdB
(2.92)
Y = CX+
whereA(0) = 6pA andB(6) = 6gB, and let
Oa0 Ogol", Normal syste
6 6, 6T = [6a0 6o ystem (2.93)
XN Faulty system

When the system is running without fault, all the system roasrareA(6x0) = A and
B(6s0) = B. If the fault happensdas = 0.9 or 0.8 andfg¢ = 0.2 or 0.5.
We make tests for the following 4 situations.

E-a. up, Bar = 0.8, 631 = 0.5 and 30 sample points.
E-b. up, Baf = 0.9, 635 = 0.2 and 30 sample points.

E-c. uz, Ba1 = 0.9, 3¢ = 0.2 and 5 sample points.
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E-d. ug, Ba5 = 0.9, 6t = 0.2 and 10 sample points.
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Figure 2.34: Output for case E-a.

The output data and estimation results for Case E are shawied)i 2.34-Fig.
2.45

2.7.3.4 Results Analysis

Fault detection and state estimation are implemented usahgan Filter technique
plus Maximum Likelihood method to a class of control systehiol is modeled by
the ISDE equation. In the system, the fault is considerectpdyametric one, that is
if the fault happens, some of the system parameters will bagid. When the fault
only affect the deterministic part of the system (drift itéon the ISDE equation), the
following properties can be obtained for the method.

e Precision:
Regarding the accuracy performance of the method, bothddwification of
the fault parameter and state estimation are quite fine &Xoephe data col-
lected period. When the fault happens, it also need somettimerover to the
steady identification. The method can accurately make tire@son of the fault
parameter and state.
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Figure 2.35: Fault detection for case E-a.
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Figure 2.36: State estimation error for case E-a.
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Figure 2.38: Fault detection with case E-b.
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Figure 2.39: State estimation error for case E-b.
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Figure 2.40: Output for case E-c.

95


Chapter2/Chapter2Figs/ABSdifs2_0902_30.eps
Chapter2/Chapter2Figs/ABOut3_0902_5.eps

2.7 Cases Study for a Space Robot System

Value

Plot of the identification

35
Estimated (-)Af
3r Estimated 6,
true BAf
25r true BBf
2k
1.5F
1
| /\v/\ ‘ A/\ Iy A M
of | U V\
~05 . . . . . . )
0 5 10 15 20 25 30 35
Time
Figure 2.41: Fault detection with case E-b.
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Figure 2.42: State estimation error for case E-b.
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Figure 2.43: Output for case E-d.
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Figure 2.44: Fault detection for case E-d.
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Figure 2.45: State estimation error for case E-b.

e Length of Moving Windows:

In the simulation, only two kinds of length for moving windsware adopted, 5
and 30. In general, the length of moving windows should hdweevar limit used
in the first stage of KF technique, if the used data is tocelitle state estimation
will be bad. If the windows length is beyond the low limit, theore it is, the
better the estimation is for the time invariant system. Butthe fault control
system, it is a time varying system, the estimation usinghrdata (long win-
dows) would lead to the results losing time varying propevtgreover, without
considering the accuracy in the fault estimation, one lomglaws means large
time delay for the fault detection. It is a dilemma that theger windows we
use, the more continuous estimation is obtained, but the e delay in the
fault decision. Itis important to find a balance to determirelength of moving
windows.

e Input Signals:
The input signals can also affect the estimation resultth®isystem. From the
estimation using 5 points as the length of moving windowis,fihore obvious, if
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the input have seriously changed, such as direction changegen jump, etc. or
periodically changed related with the frequency, the estiiom show the same
properties with it, i.e., the performance of the estimatian be affected by the
characteristic and frequency of the input signals.

2.7.4 Case (F): Fault in both deterministic part and random fart

In this part, the system considered that if the fault happerean affect both deter-
ministic part and random part. For the simplicity, here thdtfin deterministic part is
only considered to happen in the input item.

In the case, the normal system and faulty system can be weate

{dX(t) = [AX(t) +B(6)U (t)]dt+acdB (2.94)
Y(t) = CX(t) +
and
T _ (o7
o—(0 a]T:{[eo o) =11, Normal system (2.95)
6s of]", Faulty system

Note that in this model, the parameterin the diffusion part is not a constant but an
unknown parameter related to the fault I&én the drift part need to be identified. The
fault detection need to be performed by identifydg- [8 o].

Two different fault scenarios are considered in the follogvi

Same fault in both deterministic part and random part:
At first, the fault is considered the same in both determimsart and random part.
The values in the data generation are séijas 1.5, o = 1.5.

F-a. One parameter method: In this part, since the fault influmedeterministic part
and random part in the same way, the two parameters in theimechandled by
only one parameter. Hence, the fault variable both in therdehistic part and
random part could be considered as only one paranfsterhere3p = 1 and
Bs = 1.5. In the simulation, the input variable is usiag The length of moving
windows is set as 30 samples. The output can be seen i2 Bigand results of
the fault identification and state estimation are plotteddayesponding figures.
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F-b. Multi-parameters method: Considering the system modebsed--a., it is to
make the parameter identification(éf, o) although these two parameters change
in the same way. The results are not listed but there is a tifference to the
case F-a that the performance is not so better than it.

‘

output

Time

Figure 2.46: Output for case F-a.

Different fault in both deterministic part and random part:

3 different tests are made in this part. The input variabiesiagu;.
F-c. 6 =0.5,0f = 15.
F-d. 6g = 0.5, s = 10.

F-e. Another test—using the real systeth94 with (2.95 to generate the data but
for the detection using deterministic fault mod2l§9 with (2.90, 6z = 0.5,

o; = 10.

The output signal and estimation results of Case F-c, Fal¢cBuld be seen in the

following figures Fig.2.49-Fig. 2.57.
Results analysis:
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Figure 2.47: Parameter identification for case F-a.
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Figure 2.48: State estimation error for case F-a.
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Figure 2.49: Output with case F-c.
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Figure 2.50: Fault detection with case F-c.

102


Chapter2/Chapter2Figs/2outno_1505_30_original.eps
Chapter2/Chapter2Figs/2Pno_1505_30_original.eps

2.7 Cases Study for a Space Robot System

smooth difference in state 1

0.01 T T T T T T
0 —M/\)Lk —
—0.01 . . . . . .
0 5 10 15 20 25 30 35
x 107 smooth difference in state 2
0 W
-5 . . . . . .
0 5 10 15 20 25 30 35
smooth difference in state 3
500
° 1
~500 . . . . . .
0 5 10 15 20 25 30 35
smooth difference in state 4
2000 T T
: J
T 0
>

—-2000
0

Time

Figure 2.51: State estimation error for case F-c
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Figure 2.52: Output with case F-d
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Figure 2.53: Fault detection with case f-d
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Figure 2.54: State estimation error for case F-d

104


Chapter2/Chapter2Figs/2Pno_1005_30_sigma.eps
Chapter2/Chapter2Figs/2Sdifsno_1005_30_sigma.eps

2.7 Cases Study for a Space Robot System

Value

‘

30

20

101

-10
0

output

100

-100

-200

-300

-400
35

Time

Figure 2.55: Output with case F-e

Plot of the identification
101

Estimated value(1)
real value(1)
real value(2)

Value
ol

0 5 10 15 20 25 30 35
Time

Figure 2.56: Fault detection with case F-e
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Figure 2.57: State estimation error for case F-e

Parameter identification: The results of the parameter identification show that only
the deterministic part of the fault are estimated accwdtelall the cases. For
the random part of the fault, the precisions of case F-a ahdfe better. Esti-
mations under the cases F-c and F-d are bias from the truesvaltase F-e is
the worst, the result is even not convergent. From the iedtittan be observed
that if the parameter in the random part is considered todaatification, the
accuracy of the identification of the deterministic will better than that without
considering the parameter in the random part. But for thienas¢éd parameter
in random part, the performance will depend on the systegtf.itSrom the fault
detection, the method with the model can detect both pattefdult on time
without considering the sample delay. This phenomenonngigeed since the
random property of the noise sometimes destroys its mapeptyp However, it
can still diagnosis the fault accurately in some sensesanlittie bias for the pa-
rameter estimated although estimation for the random pantt good for some
cases.

Sample points: In this section, the cases using different sample pointsiimgowin-
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dows) are not listed in the thesis. This is because its eftemivs the same phe-
nomenon as the previous tests. For example, 30 points estmissmuch better
than the 5 points estimation with regards to the stabildptmuous property. It
is really the case that the more points applied, the mordestaidl continuous
the estimation was. However, the cost of more sample pos#d is more time
delay to detect whether the fault happened.

State estimation: It is obvious that for all the cases, the state estimatioesgaite
good. But for any of these case, at some initial time the egton is bad, which
is because the process need some time to catch up the propdnty system.
After a short while, the estimation shows good performantkeen when the
fault happens, the estimation is destroyed. It need some tiomnecover to the
good level for the estimation. Sometimes, at the end of thaing time, there
may be several estimation which is not good.

2.8 Conclusion

A system identification method with state estimation usigFtML technique for
ISDE model is proposed. The KF technique is firstly appliedeba parameterized
state estimation. Secondly, the ML function is formed ugimg parameterized state
estimation and the noise distribution knowledge. Then,@imozation problem of the
ML function needs to be solved and the optimal value is talseih@ estimated system
parameter. The method is proved to be consistency and nioyrftalthe considering
systems. And it can be extended to an online manner.

A large amount of numerical simulation showed that it coulovle a better per-
formance than traditional methods, such as EKF, UKF and BK§& L methods, in
terms of the accuracy and the convergency at the cost of noon@wtation load. But
with the increasing of computer, this is not the concernexblem as before. If the
approach is using in an online manner, it can be seen obviatiséveral factors can
affect the performance of the estimation, such as the leoigthe moving windows,
input signals.

The model and methods can be also applied to the FDD processedBon the
predefined threshold method, the fault decision can be maskdlon the system iden-
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tification. Meanwhile, the estimated parameter relatedh ault is substituted into
the parameterized state estimation and the Kalman Smoistlagplied for the state
estimation. Thereby the state estimation can be obtainad@her byproduct.

The simulation results based on a robot system showed a girapperformance of

the proposed method in terms of providing a quick, accunader@bust fault parameter
identification and state estimation.
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Chapter 3

System ldentification Method for
TV-FOPDT Model and Its Application

In this chapter, we will discuss the system identificatioa ofonlinear FOPDT model
and its application in a real-life relevant system. Extegdihe standard FOPDT
model, this Chapter proposed some new FOPDT models andspomding methods
to make parameter identification of them.

The content in this chapter is as follows:

Overview of the Previous Work In order to show the motivation, the model de-
velopment is shortly described. Furthermore, the methmdsake the parameter iden-
tification of the standard FOPDT model are summarized.

Model Extension and Identification Methods Several different models are ex-
tended based on the standard FOPDT model. According to taderistic of the
new models, the identifiability is defined and investigat€rresponding theorems
regarding the identifiability are proved. Then some new mdshbased on a kind
of nonlinear programming problem are proposed to make patemnidentification of
these different models.

Numerical Test and Application Finally, a number of numerical tests are per-
formed to illustrate the approach and compared with othéhats. A scenario of the
application in superheat dynamic modeling is used as arncapipin of the work.
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3.1 Motivation and Purpose

In last chapter, the state space model is discussed. Itdtha stochastic state space
model using ISDE model. There is another kind of model whicil$o widely used in
application, that is input/output model. First Order PlusaD Time (FOPDT) model
is the famous one in this category which is widely applied @arnchn model many
industrial processes.

The FOPDT model has three different parameters, namedns\gsde, time con-
stant and dead time (time delay). These parameters are s#teas constants in the
whole system running for the standard model. In realityjrduthe system running,
the system may not stay unchanged but vary according to rie tiThereby, in or-
der to make up for the shortage of the standard FOPDT modehdadf nonlinear
FOPDT model in which the time varying parameters of the systan be describe is
proposed in§5; 89; 123). The considered nonlinear FOPDT model is an extension
of the standard FOPDT model by means that both system’s guairtiame constant
can be changed during the system running. This nonlinealDHORodel is gener-
ated by using a linearized method to a nonlinear model. Irthbsis, a new type of
explicit nonlinear FOPDT model is proposed as well, namedeFvarying FOPDT
(TV-FOPDT) model, which is used to model the superheat dyoama supermarket
refrigeration system. The TV-FOPDT model is an extensiothefstandard FOPDT
by allowing the system parameters (system gain, time conatal time delay) to be
time dependent variables.

Sometimes, in the practical system, the parameters mayndepethe other vari-
ables besides the time. For example, considering the systahe superheat in a
refrigeration system, the time that used in the process ahgimg the evaporation
temperature depends on some conditions, such as the egftifidjng of the evapora-
tor. The more the refringent is filled in the evaporator, thareértime needed. If this
refringent filling is taken as the system input, the time thsed in the temperature
change process, which could be taken as the time delay faytem changing, may
depend on this input refringent fillin@{; 135 171). In order to express this property
of system, this thesis will extend the TV-FOPDT model to aexgeneral one with as-
suming that the dead time (time delay) can be also input diggrand the model can
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be called as a kind of TV-FOPDT model with input dependentidizae. Furthermore,
the model is extended to Multiple Input (MI) systems.

For the different proposed models, the corresponding nasttm make parameter
identification are developed based on some nonlinear prmograg techniques. In the
beginning, the traditional methods to make parameter ifigation of the standard
FOPDT model are reviewed.

3.2 FOPDT Ildentification

A standard FOPDT model can be expressed by the followingteguand transfer
function:
Y(s) =G(s)U(s), (3.1)

with transfer function

G(s) exp S, (3.2)

whereY (s) andU (s) are the Laplace-transform of system output and system,iiput
is the system gainl,, is the time constant an@ is the (apparent) time delay (dead
time).

Different methods164) have been already proposed to estimate these three param-
eters in the FOPDT modeB(1) with (3.2) by performing a simple experiment on the
plant. This is motivated by the fact that many processes eattelscribed effectively
by this dynamic model and it suits well with the simple stuwetof some kinds of
controller.

Tangent Method referred in (7), firstly draws the tangent of the system response
at the inflection point. Then, the method determines thesgygjain by dividing the
steady-state change in the system ougpusing the amplitude of the step in input.
And the dead timdy can be determined as the time interval between the applicati
of the step input and the intersection of the tangent lind Wit time axis. Finally,

T Tps+1

the value ofTp + Ty is estimated as the time interval between the applicatiothef
step input and the intersection of the tangent line with yirey., wherey., is the final

steady state value of the system output. And the time con$gacan be calculated
by subtracting the previously estimated value of the timlayd&. This method can
provide exact results for a true FOPDT system. But its maawback is that it only
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depends on one single point of the reaction curve (i.e. ithedtion point) and for this
reason, it is much sensible to the measurement noise. Intfecmeasurement noise
may cause large errors in the estimation of inflection pomt af time derivative of
the system outputl4).

Area Method is an approach that is more robust to the measurement ridgige (
Considering that the system gaihcan be determined the same as for the tangent
method, it firstly calculates the area between the systepubvand liney = y.. Then,
Tp+Tq is to be determined by the division between this area anthattdK. Subse-
guently, the area between the system output and the timénatkis time interval from
initial time to Tp + Ty is calculated. FinallyT, and Ty are determined by the combi-
nation of these two area calculation and estim#étedince it need to calculate some
integrals, it is more relevant from the computational viewt it has advantage that it
IS more robust to the noise in the measurement than the tanggthod. However, it
has a drawback in the possible determination of a negative @ the time delayly
when the process exhibits a nonlinear lag-dominant dyra(h&).

Two-points-based Methodis based on the estimation of two time instants of the
reaction curve, which has been proposedlf (it is also reported in¥41). It
consists in determining two time instants when the procegsub attains 38% and
85.3% of its final steady state respectively. Then, the dead &intethe time constant
are calculated by the combination of these two instants. gdie of the process is
determined as in the area method. This approach is very siamul it can be applied
by hand easily. This technique, in addition to the problenbeihg sensible to the
measurement noise in the estimation of the two times, suffem the same problem
as the area method §4).

Optimization-based Method Optimization based method is to estimate the three
transfer function parameteks, Ty and T, by minimizing the integral of difference
between the experimental step response and the model spgmee 132). The major
drawback of this method is the computation load.

Least Square (LS) MethodLS method, referred inlG4), is widely used to make
the identification of FOPDT model. This method firstly applieoving covariance to
find the dead time of the system. And then uses least squatedti identify the
other two parameters.
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Prediction Error Method (PEM) PEM is a more general method that can identify
many modelsX00). It is already being implemented in software matlab. Buttfe
certain model, it is not the best method with regarding taitmiracy and computation
load (L79).

3.3 TV-FOPDT System Identification

Based on the standard FOPDT model, a TV-FOPDT model is peahbd$ow, the new
TV-FOPDT model is the main concern in this section.

3.3.1 TV-FOPDT Formulation and Its Identification Problem
In the following, a kind of First-Order Plus Dead-Time (FOPIprocess model by:
y(s) = G(s)u(s), (3.3)
with transfer function Kt
G(s)= Tis+1

exp 1S, (3.4)

Herey(s) is the system output)(s) is the system inputk! is the process gain'l,'l},
is the system time constant alTQ is the time delay in the system. Note that the
superscript means that the corresponding variable may have the atierdtiring the
whole running time of the system. In order to recognize thislet from the standard
FOPDT model, itis called as Time Varying FOPDT (TV-FOPDT)deb

Then the corresponding system identification could be de=tas follows, which
is the main problem concerned in this Chapter as well.
(P): Estimate the parameters includingK', Tj and T} in the system modeled by
(3.3) with (3.4) based on a set of input and output data.

3.3.2 Model Discretization

System model3.3) with (3.4) is firstly approximated by its discrete version. The
transfer function3.4) is discretized as
K{(1-at)

Gt(z):m,

(3.5)
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wherea! £ exp_%;, andTs is the sample interval. Herkjs the simplicity ofl*, which
is the discrete approximation of system del‘ajy and it is an integer number with
property:I Ts < T§ < (1 +1)Ts.

Now defineB! £ K'(1—at), the TV-FOPDT model3.3) with (3.4) can be further
transferred into a description using difference equatin a

y(k) = aly(k—1) + Bluk—1 - 1), (3.6)

fork=I1+1,142,---00.
Then the model identification proble(®) with parameters!, TFt, andTé is con-
verted to estimate the new parametefsBt andl for the discrete model versioB.g).

3.3.3 Identifiability Analysis

Before the identification procedure is performed to theeysnodels, the identifiabil-
ity of the corresponding models should be firstly checked98), the identifiability of
parameterized model was given. It proposed to expresséndfidbility of the param-
eterized model as that the identified value is the same taukesalue of the model. It
is described in100 for some kinds of models such as SISO transfer function mode
and state space model. But sometimes, it is hard to knowulkesailues of the system
parameters beforehand. The comparison between the dstiraad the true value can
not be accomplished.

In this chapter, the model considered is a nonlinear FOPDdaindn which the
nonlinearity is expressed by its time varying property ancktdelay, no identifiability
analysis could be found for this kind of system in the presiawrk. Here the thesis
tends to set up the definition of the identifiability based lwatime varying nonlinear
FOPDT and then prove a corresponding theorem.

Definition 3.3.1 Suppose the nonlinear model with discrete measuremei@,is the
parameters in the model, consider the identification methddhere exists an integer
N, based on any given N couples of data poimé,}it'\“l and corresponding input
signal, the identification resultéHN,l usingJ is unique for any time t, then the
identification method is said to be globally N identifiable for modp.
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This definition of globally identifiable is based on the sagnpbints and the iden-
tification method. It is reasonable, because for the noatirgentification, in general,
the method can only be applied for some certain models anactheacy performance
is affected by the number of the sample points much hugelyd i&is set up on the
uniqueness of the estimation. In some sense, it would bea&eut to the definition of
the identifiability in (L00). However, this definition may be more practical because it
do not need to know the true value before the identification.

In the following, if the identification methodlis globallyN identifiable for model
M, itis noted asV(-N globally identifiable for simplicity.

Proposition 3.3.2 Suppose modeM is time invariant system, if the identification
methodJ is M-Np globally identifiable, then for any ¥ Np, J is M-N globally iden-
tifiable as well.

Proof: This proposition can be easily proved by the method of eatttion. It will
be omitted here.

For the time invariant system, the proposition shows thatnfiethod is globally
identifiable, it will be globally identifiable when the nuntbef data points used for
the identification exceeds a fixed number. That means thelsgmomts should be
sufficiently enough to get the right estimation of the syst&ut for the time varying
system, the propositio®.3.2is no longer hold. Since the time varying property, too
many data will lose the time varying of the parameter so thatidentification only
shows the average level which would lead to bad result. Hewdess samples can
maintain the time varying property, but can not grab all thferimation of system so
it would not provide an accurate identification. From thege angles, there should
be a balance to choose the number of the sample points to rhakidentification.
That is to say, for the time varying system, there may exisi@gimal sample number
to make system identification. For this sense, it need tonrsider the property of
identifiability.

Now, considering the modeB(6), which is the one in the linear manner and the
parameters are time varying. In order not to loss the geiheria the following, the
more general time varying linear model is studied. Firstwileprove the following
theorem regarding to the identifiability.
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Theorem 3.3.3 Consider a time varying transfer function system
Y(s) = G(s,0"YU (s) (3.7)
here the superscriptt means the corresponding variabliens varying. If

1. The syster(B8.7) can be rewritten equivalently as
y(t) = 9" ()&, (3.8)

with ¢(t) is the information vector consisting of some observatigmsoutime
(t—1), and®! is corresponding parameter vector converteddgt time t. And
the frequency of the observation is much larger than theuleegy of parameter
changing.

2. The input @) is persistently excited.

are satisfied, then there exists an integer N such that thetl®guare (LS) estimator
is (3.8-N globally identifiable, then LS 8.7)-N globally identifiable.

Note that the first condition requires that the system shbeldqual to a time varying
linear system. And there is frequency requirement on thembason. It is really
natural to guarantee the estimation can track the chandeegiarameters. Although
it is difficult to know the frequency of parameter changindobehand, the frequency
demanding can still be satisfied by decreasing the sampvahas little as possible.
The second condition is the requirement to the input signal.
Proof: If the inputu(t) is persistently excited, it means that there exists3

satisfying O0< a < 3 < o and a positive integel, such that for the successie

samples
t+N

al< y e (i) <Bl, as for any t>0. (3.9)
i-f71

Also, for the equivalent syster3.Q), there is
yt+i) =@ (t+i0)8", (3.10)
foranyt >0andi =1,2,3,---,N. It can be formalized by matrices

Y = &', (3.11)
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3.3 TV-FOPDT System Identification

whereY = [y(t+1) y(t+2) - y(t+N)]T, @ = [p(t+1) (t+2) --- @(t+N)| .
t+N
From @.9), the matrix @(i)@" (i) is a full rank matrix, noted its rank @& where

. i=t+1
R=dim(@"), and
t4+N
Y oo’ (i) = o0 (3.12)
i~t71

As a result®®T is nonsingular and its inverse exists. According to the rtlym of
Least Square Estimator, the former equati®id ) has a unique solution. It is also the
solution of the system identification d3.Q).

From the equivalence of the mod8&l§) and @.7), the parameter identification can
be obtained uniquely based on the estimatio®bfn the model 8.8). At last, it is
proved that there exists, the Least Square estimator &&)-N globally identifiable
and hence3.7)-N globally identifiable 4

Now the LS estimator is proved to b8.8)-N globally identifiable and3.7)-N
globally identifiable. For time varying system, Theor&m.3only proved the exis-
tence ofN to make LS estimator identifiable. There should be many esoaf N.
But since the model is time varying one, different choicedlofill lead to different
estimation performance. It need us to select an optimal@gettthe best estimation.

Theorem 3.3.4 Consider the model,

y(t) = @' (u(t),H)e", (3.13)
the variables are defined the same to the previous The8r8r8 suppose

1. u(t) is persistently excited, i.e., there exiatsB satisfyingd < a <3 <~ and a
positive integer N, such that for the continuous N samphe3.9) is satisfied.

2. parameter changing rate is bounded, i&.= 0! — 01 < M.

then the best choice of data sample number in the systemfidatibn using LS es-
timator is N, i.e., LS estimator with N samples will get theneation with the least
upper bound of the error.

Proof: Define the estimation error

A

§ =0 -0 (3.14)
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3.3 TV-FOPDT System Identification

where the recursive LS algorithm with fixed windows lengthives the estimation

6 =6 +Ralyt) - q O]
Rt=P1+aq@ —a n1@ N1
Then,
g =06 — (@ 14+AY
_ ét i (ét—l _ & —l—At)
=Raly(t) - ¢ 6 +g—A'
= -Raqg & —A"
Definel' = —R@@' & — A!, then there is
i
i =&+ M4k
2,
and
T - T
@ ile+ %rwk] = @yict+i-
k=
or
i-1 '
CQTHSt = —qﬂri Z Mk + §0Tt +1&+4i-
K=o

Taking || - ||3 to both sides 0f.19), there is

i1
tr(g’ oa'ie] =[ —@% Y e+ @ t+iagi 3.
=

Make sum of 8.20 fromi=0toi =N — 1, it is obtained that

i=N—1 i=N-1

i1
trig’ @ gl = @ S T+ t+ig. 3.
{& i; [@+iyilet |; [l @i k; tik+ @ tri |]

Apply the condition(1),
T2 i 2 T, 2
Na | & [2<2{ % @y > Tz + 1l @ t+iei [15]}
i= K=0

i=N-1 i—1

<2{ 5 INBII'S e l3+ 1| 9"t +igi 13}
2, W12, |
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3.3 TV-FOPDT System Identification

Then
i=N—-1 2
&' |15 < Na{ % B Zrt+k||2+||¢t+|5t+l 15}
ZNBI N—1i—1 2 i=N—1 T _ ) (3'23)
g iZ) Z | rt+k||2+ iZ) | @ t+iggi|l5.
Taking limit to the 8.23), there is
lim || &7 113
I 2N i=N-1i—-1 ) 2 i=N—-1 T )
< limsup{—— r +— t+i&
<lmsup(== 5 3 ITexlBgy > 1@ t+isn )
. 2N3g 2
< limsup{ T 15 +g | @'te |5}
: 2N3p t T
Sllrtnsup{ | -Ra@ &—A ||2+ | te |3}
N3B
< nrtnsmup{ @ PPall @ als+] A5 += || ot |5} (3.24)
. 2N3B 1 2
<lims T 124 1A 12+ 2 || 0"te |2
_|kup{ g [(q N+l) @ &5+ | ||2]+a||fP t |12}

2N°B

2N3B
< limsup{(—>- >|| @ & |13 +— a3}

t—oo

. 2N3B 2 2(N+1)(q+N)B 2N
< fimsup aB+a> (NFDEENET) x5 208 ) ot

. AN3(N+1)(q+N)B%  4(N+1)(g+N 2N3
imsupy (PN DAL SN DGENE 2B i3,

From 3.24), the estimation error is a strictly monotone increasingction of g and
from the last theorem should not be less thax, then the optimal simple number is
the smallest one in the possible set, thallig

The Definition3.3.1need to look for a fixed numbé to make the identification
of the system, and Theore&3.4shows thatN can be really found out for the model
(3.13. But sometimes it is difficult to find this kind of number, esmlly for some
time varying systems and nonlinear systems, there is noted fiximber of sample
points to make the optimal estimation. Another definitiorthedf identifiability which
is more general to the Definitiah3.1is given in the following.
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3.3 TV-FOPDT System Identification

Definition 3.3.5 Suppose the nonlinear model with discrete measuremei@,is the
parameters in the model, consider the identification methtie identification results
& usingJ is unique, then the identification methd said to be globally identifiable
for modelM.

Based on Definitior3.3.5 we will consider a time varying system with time delay:

Theorem 3.3.6 Consider the model,
y(t) = o' (u(t),t,d")e", (3.25)

with d! is unknown time delay in the system, other variables aredheego the Theo-
rem3.3.3

1. u(t) is persistently excited, i.e., there exiatsB satisfyingd < a <3 <~ and a
positive integer N, such that for the successive N same$319) is satisfied.

2. d € D, Dis afinite countable set

3. parameter changing rate is bounded, i.e., there exispwgitive values ly] such
thatA' =| @' — @1 |< My.

then the Least Square estimator is globally identifiableniodel(3.25).
In order to prove this theorem, the lemma should be givenrbbfnd.

Lemma 3.3.7 Suppose two different system which can start at any gives piomt,

can be described as:
yi(t) = @' (1)6L, i=1,2 (3.26)

here@®!,i = 1,2 are different time varying parameters in these two systesactively.
If

e the system matrixp' (t) # 0;
e the parameters vect® # ©),

then for any given time variablg t> 0, there exists t to such that y(t) # ya(t).
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3.3 TV-FOPDT System Identification

This lemma can be proved by method of contrapositive.
Proof: Suppose the conclusion is not right, then there existapnre0 such that for
anyt >tj, y1(t) = y2(t). Considering the difference betweeéhZ6), then it is obtained
that for anyt > t1, @ (t)(©} — ©}) = 0. Since@' (t) #0, ©} = &% fort > t;. If we
assume that the system start at timethen the two different system8.26) are the
same system. It is contradictive to the precondition. Itnsvpd the conclusion is
correct.f

Now we turn to prove the theore®3.6
Proof: In the system3.25, d' € D, D is a finite countable set, th# is bounded.
Suppos® = {d!}i_1 ... u, for each fixed!, according to the Theoref3.4and3.3.3
there existd\; such that the Least Square estimatoBi29-N; globally identifiable.
Let (@}) is the identification results based on time dettiythe estimated output is
noted agy{t), and the error of the identification is defined respectively a

t
at)= 5 [%it)—yt) 3. (3.27)

k=tg

If there exists only one € {1,--- M}, such that

&ltne) =, min, & (1), (3.28)

whereNmax is defined as max}{Ni}. Then the coupléég,dé) is the optimal result

RIEN

of identification and it is unique.
If the considerea is not unique, suppose there are two indéxandc2 such that

t = et = i t). 2
ot (tNnax) = E2(thner) = i, &(1) (3.29)

According to the Lemm&.3.7, for the estimated outpyt(t) andyg(t), there exists
ty > to, such thayéi (t1) # Yeo(t2). Supposec (t1) > ex(t1), then the couplédL,, di,)
can be seen as the optimal solution of the identification tisdlhe unique solution of
the identification.

In the whole, the Least Square estimator3p globally identifiable 4

Here the Theorer3.3.60only points that the LS estimator is globally identifiable
for the time varying linear model with time delay. But sintetime varying property
and the unknown parameter is include the time delay, it idlizdo determine a fixed
optimal sample number to make the estimation.
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3.3 TV-FOPDT System Identification

3.3.4 lterative LS Method

Now, turn to the system identification for modé&.§). Assume that the conditions
of Theorem3.3.6 are satisfied, then LS estimator could be applied to makeisyst
identification. Moreover, the thesis extends this methodrtaterative one, called as
iterative LS method. This iterative LS method to make thaidieation of the model
(3.6) is summarized as follows.

ConsiderN is the number of latest samples of the output and input wtsdhe
length of the moving windows for each estimation step, arfitid®* = [at B']T. From
(3.6), based orN couples of input and output signals, a mixed integer opthtinn
problem can be defined to solve the problem of system idestiific as:

min IBn—An(DY |3, (3.30)
| . positive integer
YeQ

whereBy is a stack of the measured outputs
Bn 2 [y(K) y(k+1) --- y(k+N—-1)]". (3.31)
An(l) is a stack of measured inputs and outputs, depending on kéne piErametet,

y(k—1) u(k—1-1)

y(k—2) uk—1-2)

An(l) = (3.32)

y(k:—N) u(k—:l —N)

Q represents the possible rangeYofwhich is determined by the system g#ihand
time constant in the (3.4).

The optimization 8.30 sometimes leads to a non-convex nonlinear programming
problem. However, the Branch-Bound (BB) method combineth Wweast Square
method could still work out the solution in a reasonable effit way, with respect
to some potential pre-knowledge of the system, such as thslde range of the time
delay. Thereby, a procedure using BB and LS method is appkee if we can have
some way to determingin < | < lmax

Then, the Iterative identification based on the LS methodh=maperformed ifN
has been already chosen.
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3.3 TV-FOPDT System Identification

In the each step, first construct a loop starting frigy and ending atmax by
taking the increment of | as 1 at each step.

For each iteration of |, based on the lathistouples of input and output obtain
the LS solutionY{(l) to optimization 8.30 by using the specific number of I, and
record the corresponding prediction error, where

Y(1) = (AL (HAN()) AL (1B (3.33)

The pair of {**, 1) which leads to the minimal prediction error among all it-
erations in all steps with regards tanoving from|lmin t0 Imax IS the optimal
candidate for3.30 based on the correspondihigsample couples.

The parameters in the original systeBn3) with (3.4), TFt, andK!, can be obtained
from Y& = [a%* BY|T asT{* = — b and K = —t—lf; Time delayT} is
estimated a8 *Ts.

Repeat the former four steps when a new couple data of inglipatput is
obtained.

One couple of input and output will lead to one parametenstifieation. Then, the

on-line system identification can be performed accordinthéopreviously proposed
scheme.

In order to release the computation load, the former proeedan be improved

from iterative LS method to recursive LS method in order ttveséhe optimization
(3.30. Following the same procedure, only.83 changes to the recursive format at
the kth step and fixed. Define ¢y = [y(K)u(k—1)]T, @ = [¢(K)$ (k— N)] then the
recursive LS solution could be:

Yic(h) = Yiea (1) + R $ily(k) — ¢ Yieea(1)]

3.34
R(1) = Re1() = Rea(adl + @ Rea(ad o Bea(l). 59
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3.4 Simulation

3.4 Simulation

In the following simulation tests, two different scenarare conducted: Time Invari-
ant System and Time Varying System. Noted that in order tavghe merits of this
method, the method defined in Matlab system identificatiotbtax is applied to com-
pare with our method. The matlab toolbox (MT) method to eatarthe process model
(3.3) with (3.4) is based on the prediction error method (PEM), dé#)(101) for de-
tails. In the thesis, the on-line system identification carpkrformed using matlab
function ‘pem’ based on the recelNtsamples data.

3.4.1 Case A: Time Invariant System Test

In this part, Time Invariant System is considered. The systensidered is described
as:
y(s) = G(s)u(s), (3.35)

with transfer function

G(s) exp ¢S, (3.36)

HereG(s), K, Tp, Tq, which do not have the superscriptnean that they do not change
with time in the system running.

In the test, parameters of the system are s&jjas2.05, Tp = 2 andK = 4. Fig.3.1
displays the input and output signals. In order to show thipmance of the iterative
LS method and MT method, two different sample numb¢rmre adopted. Note that
the iterative LS method need to wait until more thdn- |,,ax Samples obtained to
collect the enough data. It means the identification proeedull be started after
Ts(N+Imax). Here the time delay is refined in time interval from O to 5 s&i

Firstly, the sample interval is chosens= 0.1second

T Tps+1

e 50 Samples Estimation: A moving window with 50 samples is used to make
the estimation. The results could be seen in the followingrég, Fig.3.2 and
Fig. 3.3for LS method, Fig3.4and Fig.3.5for MT method.

e 100 Samples Estimation:In the second test, the length of sample window is
changed to 100. The results could be seen in the followingdgyFig.3.6 and
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. input-output output

input

N
T

Value
o

-2t

. . . . . )
0 10 20 30 40 50 60
Time

Figure 3.1: The input and output data for case A

delay
3

2

Value

15r

1 . . . . )
10 20 30 40 50 60
Time

Figure 3.2: The delay estimation using LS for 50 samples s ¢&a

Fig. 3.7 for LS method. For MT method, the results are quite good. Tre t
delay Ty is estimated as 1.954, while is 4.0 andT, is 2. The value has little
change in the whole procedure.

Secondly, in order to show the influence of the sample inteéovthe parameters
identification, under the same condition of the above 100p$@srestimation, onlyfs
is changed to 0.25 to make another test. The results coulddreis Fig.3.8, Fig. 3.9
for LS method. The MT method approximated tfigts 1.7727,K is 4.0 andTp is 2.0.

The computation times of the numerical tests for the two wdsttare listed in Table
3.1 The whole procedure for the system identification is rugrimthe simulation
under the same computation condition.

From the tests, the following discussion could be made:

e Time delay: Only regarding time delay (with enough samples and smalpéam
interval), both small delay and large delay are checked entést, but large
delay case is not listed here. For the small time delay, itithe delay is near
the sample time, the result of iterative LS method is moreuate than MT
method. Otherwise, MT method is better. It is because in L&atkthe time
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3.4 Simulation
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Figure 3.3: The parameters identification using LS{a@ndT, for 50 samples in case
A

delay‘

delay L

20

15

Value
[
o

ol

N NI U NI
1 1 1

k=)

0 20 30 40 50 60
Time

Figure 3.4: The delay estimation using MT for 50 samples seda

Table 3.1: The computation times for the simulation (se¢ond
LS Method MT Method

Condition CUP-T2300, RAM-1GB, software—matlab 7.6.0

50 Samples || 0.531928 seconds 1600.054329 seconds

100 Samples|| 0.548145 seconds  1800.222629 seconds

delay is estimated by the sampled input delay in the distatdtin of the system,
while the MT method just applies moving covariance to esténtlae time delay
directly. For the relatively larger time delay, LS methodriach better than MT
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3.4 Simulation

Figure 3.5:
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The parameters identification using MT Koand T, for 50 samples case
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Figure 3.6: The delay estimation using LS for 100 samplesge @

method. The numerical simulation shows that if the time ylebleceeds the 40
samples, MT method will return a warning and the result waélMorse. But LS
method does not have this problem. It could deal with all tdakay estimation,
only the performances could have a little difference.

Parameters identification: Under the good condition—not too large time delay,

enough samples and small sample interval, both two methmalsl enake the
parameters identification and show good performance. L3$iodehas some
fluctuations at first, then tends to a fixed value that only hamall deviation
to the true value. The error is below 5%. MT method is muchebdttan LS
method. The estimated value using MT method only remain aeed fralue that
is quite close to the real value. This is because LS methadefstsmates the
parameters of the discrete version of the system and theredsrto the real
parameters. No doubt it will decrease the accuracy of trgirai parameters
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Figure 3.7: The parameters identification using LSKoand T, for 100 samples in
case A

delay
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Figure 3.8: The delay estimation using LS for 100 samplebk Wit= 0.25 in case A

estimation.

e Sample interval: The numerical simulations apply different sample interval
times in order to indicate the sample interval could afféet performance of
the estimations. From the simulation, estimation usinglissample interval
will be more accurate than using large sample interval. Fiioenabove tests,
using large sample interval could lead to a relatively ladgyiation to the real
time delay for MT method. Even for some other larger samplerials, results
of the parameters estimation using MT method are not so gdotthe choice
of sample interval has less influence to the iterative LS okth
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Figure 3.9: The parameters identification using LSKoand Ty, for 100 samples with
Ts=0.25in case A

e Moving window: The length of data window used to make the estimation could
affect the results. The more data used, the more accuragstimeation is. But
for MT method, too few data could lead to an unsatisfied esiomanore obvi-
ously. It need much more data than the LS method to completedtimation.

e Computation load: From Table3.1 which shows the time two methods used,
it can be observed that LS method need much less computatierthan MT
method.

From the test in case A, the iterative LS method has a goodstobss to different
conditions of system identification, such as sample intetgagth of data and so on,
which sometimes could affect the performance of MT methahty. But, we also
observed that MT method gives us a better estimation of thanpeters under the
good condition at the cost of a little more computation load.

3.4.2 Case B: Time Varying System Test

In this part, the time varying system is considered in the fEse system is considered
as 3.3 with (3.4) as well, where the parameters of the system are as follows:

K'=3,T)=1T§=305 when running time & 30; (3.37)
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input-output

Value

input

0 10 20 30 40 50 60
Time

Figure 3.10: The input and output data for case B

K'=4T)=2T§=205 when running time t 30. (3.38)

Actually, this system is a kind of switching system. Theatere LS method is still
used to make the identification. The data comes from the sitoulusing the simulink
of such a system. The input and output could be seen inFid) In this test, two
different sample numbers are considered.

The sample interval is chosen &s= 0.1. The time delay is assumed in the range
of 5 seconds.

e 50 Samples Estimation: A moving window with 50 samples is used to make
the estimation. The procedure begins at 10th second. Thésesuld be seen
in the following figures, Fig3.11and Fig.3.12for LS method. The result of the
MT method is not listed since 50 samples are not enough to thakestimation,
as a result, the performance of the estimatioin is quite bad.

e 100 Samples Estimation:In the second test, the length of sample window is
changed to 100. The procedure begins at 15th second. THesresuld be seen
in the following figures, Fig3.13and Fig.3.14for LS method. For MT method,
see Fig3.15and Fig.3.16
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Figure 3.11: The delay estimation using LS for 50 samplek imitase B
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Figure 3.12: The parameters identification using LSKoand T, for 50 samples in
case B

According to the tests, the LS method showed good performeggarding to the
precision for both of different sample points. In the diffet tests, the estimated value
is stable when the procedure begins. When the system haschiswi the LS method
need some delay to react to this switching. This delay istlems half length of win-
dows. Then the estimated value will bias from the originabtt value and some
fluctuation emerge. In a while less than one length of windbme, the estimated
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Figure 3.13: The delay estimation using LS for 100 sampldis iwvicase B
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Figure 3.14: The parameters identification using LSKaand T, for 100 samples in
case B

value will recover to another stable value. It is obvioud tih@ more sample points
used, the more delay is. And since the inevitable error dilegaliscretization of the
model, the estimated value has a little difference to the #alue of the parameters,
about one time interval for the dead time estimation andespwnding error for the
other parameters identification. This can be reduced byedstrg the sampling inter-
val. It can be seen for the two tests with different sampliagfs, 50 and 100 samples,
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Figure 3.15: The delay estimation using MT for 100 sampléhk wicase B
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Figure 3.16: The parameters identification using MTKoand T, for 100 samples in
case B

the accuracy is nearly the same. But for MT method, it can retkerthe parameter
identification using 50 points, the matlab returned not ghodata alarm. Compared
it with LS method for the 100 samples estimation, the MT mdthas the error for
the time delay estimation as well. But the results for theepfarameters are really
better than LS method. And during the period when the systesmahswitching, the
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

MT method also has the fluctuation in the estimation and ie&ly severe than the
LS method. Moreover, during a number of simulations, it hesrbobserved that if the
system time delay is more than 40 samples time, the MT metfted eeturned a warn-
ing and the estimation result often really bad. But the LShoétdoes not have this
kind of problem. In general, it can be concluded that the psed LS method is quite
promising for TV-FOPDT model identification in terms of acacy and flexibility.

3.5 System ldentification for TV-FOPDT model with
Input Depended Dead Time

In this part, the TV-FOPDT model adopted is the one with infepgended dead time.
Furthermore, the measurement of the system output is adidlec @aussian noise.

3.5.1 TV-FOPDT Model with Input Depended Dead Time

The system described in a Time-Varying FOPDT (TV-FOPDT) efadth input de-
pended dead time is defined in the following.

Y(s) = G'O(s)U(s), (3.39)
with transfer function Kt
U(t) oy — _TiO g
G (s) Tg,s+1exlo d >, (3.40)
And the measurement is
X(s) = y(s) + w(s). (3.41)

whereY (s)/U (s) is the Laplace-transform of the system output/ing} /u(t). K¢,
TI}, ande“(t)’t are the system gain, time constant, and time delay (deag}timaspec-
tively. Different with the standard FOPDT model, all thegstem parameters can be
time-dependent, especially the time delay can also deperitleoinput signal. This
dependence feature is represented by the correspondisgrigib x(s) is the mea-
sured output of the system ang(s) is the noise in the output measurement, which is
assumed as a Gaussion process with 0 mean and vafance

The same problem of the system identification problem isidensd as well. The
only difference is the outpu{(s), which is based on the measurement modet1).
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

Following the similar procedure as in the last section, tredeh 3.39 can be
approximated by its discrete-time equivalence, i.e.,

Y(z) = Gk (U (2), (3.42)
with Kk(l k)
u(k)k —a
G (Z> z|u(k).k(z_ ak) :

_Ts
Hereak 2 exp ™, andTsis the sample interval. It should be noticed tii&andT X are

not the same ak! andTI}, in (3.40. The latter two are piecewise-constant (constant
during every sampling period) timed functions, while thenfer two in 3.42 are
sampled sequences. The relationship of these two descrigtthatk¥ is equal toK,
TXis equal toT} at each sampling time, i.&K* = K' andT$ = T} whent = kTs for any

k. Thereby,KX, Trt, are called as thkth sampled (time-varying) system gain, tkté
sampled (time-varying) time constar®t §. HerelU®K is the discrete approximation
of the kth sampled system delﬂu(k)’k (the kth sampled (time-varying) time delay,
Td”(k)’k = Td“(t)’t whent = kT for anyk), and it is defined as an integer with the property:

|U(k),kTs S Tdu(k)7k S (| u(k),k + 1>TS (343)

Define g £ KX(1— a¥), then TV-FOPDT model with input depended dead time
(3.6) can be transferred into a difference equation model desdras

y(K) = afy(k—1) + ru(k — VKK _ 1) (3.44)

for k= 1UKK 1 JUKK 42 .. o
The output measurement is not changed, but the measuredt sigpal can only
be obtained at each sampled time:

X(k) = y(k) + w(k). (3.45)

Then, the original continuous-time model identificationldem of 3.39 with pa-
rameter', T} ande”(t)’t is converted to estimate parameter sequence g% and
|-k for a stochastic discrete-time systeB4) based on a number of sampled input
and measured output obtained By45). This random discrete-time system identifica-
tion problem is called the discreteized approximation ef dhiginal continuous-time
identification problem.
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3.5.2 Iterative LMSP method

Since the measured output is added with noise, the previSusstimator need to be
extended in probability meaning. Furthermore, in order skenthe estimation more
accurate at each iterative step, a forgetting factor is ddudthe proposed algorithm.

The method proposed in the following, is named as Least Megaar® Prediction
(LMSP) identification method, in order to handle this systdentification problem
for the TV-FOPDT model with input depended dead time.

Suppose that the considered syst@139 is running akth sampling step and take
N as the number of latest samples of the measured output amid g consideration,
whereN is the length of the moving data window used in each estimatiep. Define
6k = [ak BXT, then the parameters identification of the syst8rd4) at thekth sam-
pling step can be formulated as a Stochastic Mixed IntegerNoear Programming
(SMINLP) problem, which is defined as:

min E{]| BN —AR(I"*) 6% |13}, (3.46)
|uk)-k - positive integer
ok € Ok
WhereBK, is a stack olN latest measured outputs with forgetting factor at the curre
kth sampling step, i.e.,

BN £ [x(k) px(k—1) - p""2x(k—=N+2) pNIx(k—=N+ D). (3.47)

AS (14R:K) s a stack ofN inputs and measured output with forgetting factor at the

currentkth sampling step which can generﬁ{@, depending on the delay parameter
[k e,

x(k—1) u(k — ULk 1)
px(k—2) pu(k — Utk _2)
AKI (lu(k),k) A : : (3.48)
PN "2x(k—N+1) pN“2u(k— UK _N 1)
pN‘lx(k—N) pN_lu(k—|u(k)’k—N)

©K represents the possible rangebf which is determined by the limits of the original
system gairk! and time constanTFt, in (3.40 at the current sampling timels. Here
p is called as forgetting factor, which is used in order to dase the effect of old data
to the estimation at the current sampling time.
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

If the system runs with no time delay, or the time delay is thergknowledge,
the optimization problem3(46 can be simplified to a problem of the minimization
of the Mean Squared Error (MSE). In general, this SMINLP prob(3.46 may lead
to some non-convex issue due to the unknown time def&/X. But if some pre-
knowledge about time delay in system can be obtained, sutheagotential upper
and lower limits of the time delay(s) for the entire systeneach sampling step, an
iterative numerical algorithm can be performed by comlgrire BB method, which is
one typical method for MINLP problem, and the LMS techniqoiedfficiently solving
this SMINLP problem. The algorithm is called as an iterati#S algorithm, which
iIs summarized in the following:

e Preparation: The upper and lower limits for system time delay(s) in terrhs o
some integer number multiplying with sampling period neeté given. With-
out losing generality, we assume thif™ < [uklk < |poK ang Uk jado

are known before the procedure. The sampling Tatsliding window lengthiN

and forgetting factop need to be decided before the procedure.

e Data collection periodin the beginning, the algorithm only collects the sampled
data until the process reaches a specific sampling steptedketios step akini,
whereN +Ima (k'“') kini _ kini. Itis to guarantee that there is enough data to construct
matrix (3.47) and @3.498).

e lteration period: The iterative identification starts from thg; step in an on-line
mannerk is denoted as the sampling step and theketki,i, a computing loop
is constructed with regard 18 starting fromlm(m) and ending atﬂg’k by
taking the unit increment.

- For each iteration (k) ofu(k)-k (Ifrfi';)’k < Uk < 14K solve the LMS
problem @.46 and record the corresponding prediction error. The LMS
method with forgetting factor is adopted in this paper. Thalgical solu-
tion has the format as:

Ok (1409 K) = ((Afy (1400 ))TQ LA (11Ut~
(AT (14 7k)Q BK, (3.49)
Cou 8 — (A (14K5)) TQ LA 1449,

whereCoV(6¥) means the covariance 6F.
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- (BK(Iu(k:ky [uk:ky which leads to the minimal prediction error among all
iterations moving from"** to | "% ' denoted ag@ke (ulke)-ke) julke).ke)

is chosen as the optimal solution f&.46) at the current step.

- The estimation of thith sampled system parameters2f] for the current
sample;TX andK, can be obtained fror** (|Uk<)}k*) = [gk« Bk|T py

k___Ts

Bk*
p Inak* and Kkzl_iak*, (350)

and the sampled time dela'g’(k)’k is estimated ak/(k*)-ke T,

- Repeat the above steps when a (couple) new data of input aadured
output is obtained.

According to the above procedure, the system identificdbom V-FOPDT model
with input depended dead time can be executed in an on-limnenaNote that in this
system identification, only the result of the parameterisnadion is focused on, so the
covariance of estimated parameter which can be calculgtdtelsecond part o8(49
is not recorded.

The previous method applies LS to make the system identditailhe require-
ment of the LS is that the measurement noise should be utei@adeavith the system
variable. Under this condition, the LS estimator is unhikesed consistent61). How-
ever, in many cases, the measurement noise and some sysiafevare unmeasured,
causal variables collapsed into the noise term are coeléhen the LS estimator is
generally biased and inconsistehb().

For this reason, the LS estimator in the algorithm need tebsed as Instrumental
Variable (IV) methods, which is the generalization of theds$imate. The main idea
of the IV method is to modify the LS method so that it can be ameststent estimator
for an arbitrary noises. Accordingly, the IV method modifies former 8.49 as

oKUK = (ZZQ 'z ZTQ B,

5 3.51
Cov(6) = (xQ 'z, 250

whereZy is the chosen instrumental variable, which is correlated thie system vari-
ables and uncorrelated with noises. The major problem wighl¥ approach is the
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generation of the instrumental variables. The basic iddhds by pre-filtering the
deterministic input, and it is possible to generate an IM®eZy, which is highly cor-

related with the noise-free process vector. In additiowjlitbe uncorrelated with any
other noise in the system provided the input command is fioése(151).

This IV method shows it is a consistent and unbias estimaitothie system with
arbitrary disturbance or noises. But in order to get moreieficy, this IV method
should be adopted its recursive manner. Defige- [y(K)u(k— )], @ = [¢ (K) ¢ (k —
N)], the recursive IV procedure can be summarized as following:

(14K = B 1(1409%) 1 (1) Zly(K) — 7 B 1(1109%)

3.52
A1) =Pc1(1) =R 1(DZ + @ Pe1()Zd Ml Beea (1) (852

3.5.3 Numerical Examples

A number of numerical simulations are applied to make thiedtidhie proposed system
identification method for TV-FOPDT model with input depeddene delay.

The system considered is a switching FOPDT model with ingytedded time
delay. The time delay of the system is dependent on the ifgrki(t) in the manner
thatTd”(t)’t = 0.5u(t). Other parameters are set as:

T5=1, K =3, when t<30seconds
Ts=2,K'=4, when t>30seconds

Heret is the system running time. It means that the system has elsagtat 30th sec-
ond. The noise in the measurement of the output follows tseiblitionN (0, 0.001).

The test condition in the first case is setTgs= 0.1 second, the sample number
for the estimatiorN = 40, forgetting factop = 0.95 and the pre-knowledge of the
sampled time delay is assumedl%(é){k = 30, Irl:](ii:,)’k = 0. According to the proposed
method, it need to wait more than 7 seconds (the data caltepgriod is(40+ 30) x
0.1 =7 seconds) to start the identification procedure in the lmeggn In the test, the
identification begins at 100th sampling time. The systennmikated in the simulink
with the step input signal. Fi@.17shows the input signal and measured output signal.

Fig.3.18and Fig.3.19display the results of the system identification. And in orde

to investigate the relation between the input and time déteyrate between the time
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Figure 3.17: The input and output data for the first test
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Figure 3.18: The time delay estimation for the first test
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Figure 3.19: The parameters identification for the first test
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Figure 3.20: The estimated delay to input relationship lerftrst test
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3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

delay and input is calculated at each estimation step. Fnensimulation results, the
following discussion could be made:

e Time delay estimation: The result of the estimation for time delay is showed in
Fig.3.18 Before the 10th second, it is the data collection periodnFi0th sec-
ond, the estimation procedure begins. It need some timedim ébhe steady time
delay estimation. This time is about 2 seconds, which istless the time of one
moving window length (4& 0.1 = 4 seconds). When the time delay changed in
the system, the estimation need a little time (less than Anghdo react to this
change. Then the steady estimation was disturbed and a ppakrad. After a
short time, the estimation value will stabilized to a newuealhat is quite close
to the true time delay again. In each time period when the telay changes,
the same phenomenon will emerge to the estimated value. tB@itla second,
the system switched to a completely different system, irctvhiot only time de-
lay changed but also the other parameters changed. Unkketlter time when
the time delay changed, before the changing time, the esttnalue has been
already different with the former steps. And in a period obath2 seconds, it
arises more than 2 peaks before it is back to the steady e@stimalue. Two
different factors, both time delay change and system swiggtwork together
to lead to this estimated value fluctuating more than beftires. observed that
except for the time period when the system has a change, ovdif steady es-
timation errors (about 0.1 second) to the real time delaybsaobserved. This
small estimation error is due to the fact that this identifaasolution is deter-
mined byTs (see 8.30).

e Parameters identification: The result of identification to the other two param-
eters expect time delay could be seen in Bid.9 Regarding the estimation of
system gairK!, unlike the time delay estimation, it does not need time tairat
the steady estimated value. From the beginning at 10th dett@howed a quite
good performance to this parameter identification. Theregtd value is nearly
the same to the true value. Whhchanged at 30th second, the estimated value
would be away from the original steady estimated value. Hienated value
had a large peak before it returns to another new steady.v8uethe time it
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needed (about 5 seconds) is much more than the time usedtimiheelay es-
timation. At all sample time where the estimation value easly, the error for
the estimation oK' is below 1%. For another parametﬁ&', in the beginning,
it has a small deviation and quickly returns back to the stemtimation value
which is quite close to the real value 1. At the time the systeanged, it can be
observed a rather large peak appeared (in order to show stosaéion result
in detail, the value is omitted in the figure). In more than &osels, it recovered
to the steady value. But it seems not so steadier than theagin for the pa-
rameterK!. It is believed that the unavoidable error of the time delstyneation
affects much more on this time constant than the system gain.

e Time delay and input: In order to show the relation between time delay and
input signal, the rate between estimated time delay and uneésnput signal
at each sampling time is calculated, which can be seen in322. It can be
observed that except for the time period the time delay obéntine rate is in
the range of 0.4-0.5 at each sample points showed steadyatisin. The result
approximately shows that how the time delay depended omthe.i

In order to show the moving widow length can affect the estiomaresult, a num-
ber of other tests are conducted. In each test, bhiy changed with the first test to
make the estimation. The results could be seen from3&j.to Fig.3.24

From these tests, it can be observed:

e Sample number: From Fig.3.21to Fig. 3.24 different sample numbers are
adopted. According to the results, estimation using 50 $ssnguld provide
the smoothest results at the cost of the delay to detect ttaengders change in
the system. But the result using 30 samples not only is les®gmbut also had
an obvious decreasing in the accuracy.

Conclusion from above simulation tests:
From a number of the simulations, for a TV-FOPDT modeledesystin which the
time delay depended on the input and other parameters of/#tens have a sudden
change at some time, the proposed method, using SMINLP gmoging based on the
BB and LMS method, can provide a reasonably accurate andptrestimation for
the time delay and parameters. The choosing of length of mgavidow could affect

143



3.5 System Identification for TV-FOPDT model with Input Depended Dead Time

1.8

16f

141

1.2

Value
=
T

0.6

0.4

0.2

delay

estimated value
real value

20

25

30 35 40 45 50 55
Time

60
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Figure 3.23: The time delay estimation based on 50 samples
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Figure 3.24: The parameters identification based on 50 ssmpl
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3.6 Multi-Input FOPDT Identification

the performance of the estimation. Less data leads thatstimeation can not capture
the property of the system and results in an unsatisfied ipedgioce. In general, the
more samples are used for estimation in each step, the muartisen estimation result

could be obtained. But too many sample points can decreasestimation to reflect

time varying property of the parameters. It need to look foakanced sample number
in the estimation.

3.6 Multi-Input FOPDT Identification

In the previous sections, a Time-Varying FOPDT (TV-FOPDT9d®l even with in-
put dependent dead time, is proposed. All of the above meedionodels and the
corresponding identification methods are only suitableSI®O system situation.

But from the application point of view, many systems may lbecéd by more than
one issue besides the known input variable, such as sonsgldiste from the physical
mechanics, unknown noise and so on. Bearing it in the mireditiasis extends the
proposed TV-FOPDT methods into MISO case.

3.6.1 MISO TV-FOPDT Model Formulation

An MISO TV-FOPDT model considered here can be defined in theviiong manner:

Y (s) = Gi(s)U1(s) + G5(s)Ux(s), (3.53)
with transfer functions Kt
t _ 1 —Tis
Gi(s) 7Trt,s+ 1€ (3.54)
and
(g = (3.55)
29 = 57 '
The measurement is
X(t) = y(t) + w(t). (3.56)

Hereuy (t) is a known part of inputu(t) is an unknown part of input, which is defined
as the system'disturbancey(t) is the "noise free” output, an¥(s) /Ui(s), i = 1,2 is
Laplace-transform of the system output/inpt.) is the noisy system output, and the
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3.6 Multi-Input FOPDT Identification

noisew(t) is zero-mean white Gaussian noise with variaQceT] is the time delay
happened in the inpuT{, is the system time constant, aK@, Kg are system gains for
different parts of inputsii(t) anduy(t), respectively. The superscripof variables

also mean the time varying feature of the correspondinglibas.

It is assumed that the time constants3j(s) andG,(s) are the same in this con-
sideration, which indicts that both of the two part of inpfieet the output in the same
dynamic manner. It is also assumed that the time delay ofggtao the known part
of inputuy (t), and hereK}, is supposed to be known beforehand. All unknown factors
relevant toG}(s) was modeled into the unknown part of inputt).

The considered MISO TV-FOPDT identification problem can ls® &ormulated
as: to identify system paramete¢s, Trt> andT(}, as well as to simultaneously estimate
the unknown inputix(t) based on the sampled data of control inpi(t) and output
y(t), in an on-line optimal mannef 3.

3.6.2 lterative LMS Method

In order to apply the same idea to make the system identdicatf the MISO TV-
FOPDT model, the method proposed in the previous sectioed ttebe extended to
the multi-input cases.

As the same procedure, the continuous-time sys&&8(with (3.54) and .55 is
approximated by its discrete-time equivalence followedh®s/same technique in the
last section, i.e.,

Y (2) = G§(2)U1(2) + G5(2)U2(2), (3.57)
with Kk(l k)
ki (L —0a
Gi@ = o )’ (3.58)
and o y
G5(2) = % (3.59)

_Ts
wherea® £ exp ™, andTs is the sampled interval. As stated in last secti@(]'f}i:u

and TF',< are not the same tfK'}i_1, and TI}, in (3.54 and B.595: The former ones
are piecewise-constant (constant in each sampling iljdaractions, while the latter
ones are real timed functions. Their relationships can Iserdsed aS{Kik}i:Lz are
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equal to{K{}i_1» andTX is equal toT} at each sampling time, i.e&kK = Kf, i =1,2
andi Tt whent = kT for any nonnegative integde Hence, we calI{K Fie1,2,
TF',‘ as thekth sampled (time-varying) system gains, the kth sampisck{tarying)
time constantrespectively. ThéX in (3.58 is the discrete approximation of ttkth
sampled system dela)f'(Tdk = Té whent = kTs for any nonnegative integég, with
the propertyTX ~ |¥Ts (153)

Define Bk £ KK(1— ak), Y 2 uy(k)(1— a¥), then model 8.53 with (3.54) and
(3.59 can be converted to

y(K) = y1(K) +y2(K)
ya(k) = a*y(k—1) + Brus(k—1*-1) (3.60)
y2(k) = a¥ya(k— 1) + K5
Make a sum of the last two equations 81§0) and use the first equation, the following
model can be obtained:

y(K) = aXy(k— 1) + B*uy (k—1¥— 1) 4+ y¥KS, (3.61)

fork=1K+1,1K+2, .. 00
The measured output signal is collected at each sampled time

X(k) = y(k) + cw(k). (3.62)
Take @.61) and B.62 together, then there exists
x(K) = a*x(k — 1) + XUy (k— 1¥ — 1) + y*KE + w (K), (3.63)

for k= 1K+ 1,1K4+2,...0. Herew (k) is a new Gaussian noise thaf(k) £ (1—
a“w(k).

Then, the original parameter identification problem of awnus-time model is
converted to identify the parameter, BK, Y andI for a stochastic discrete-time
system B.63 based on a number of sampled input signals and measureatsutp

The considered system identification problem 860 can be formulated as a
Stochastic Mixed Integer Nonlinear Programming (SMINR)gdem according to the
same procedure in previous sections. Then choosing theBamih Branch strategy
(51) to handle the corresponding mixed integer optimizatiba,ltMS method can be
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applied to cope with each optimal parameter identificatindes the assumption of
boundness of time delays as well.

Assume that systen3(53 is running akth sampling step and I&t be the number
of latest sample pairs of the measured output and input wsethke the estimation
at kth step. ThisN is also the length of the sliding window used in every estiomat
step. Define* £ [aX BX yX|T, then the identification/esitmation problem at ik
sampling step can be formulated as:

min  E{| B — AR (1%)6% |13}, (3.64)
ke L
gk c OK

whereBﬁ Is a vector variable consisting df latest measured outputs with forgetting
factor at the curreritth sampling step, i.e.,

BK 2 [x(k) px(k—1) --- pN"2x(k—N+2) pN"Ix(k—N+1)]". (3.65)

AX (1¥) is a system matrix which depends on time delay parameteisayeherated us-
ing N pairs of input and measured output with a forgetting fadt@an be constructed

x(k—1) up(k—1kK—1) K51
px(k—2) pug(k—1%—2) pKE—2

PN2x(k—N+1) pN2uy(k—1X—N+1) pN-2kkN*
prlx(k_ N) prlul(k_ |k N) pN—1KI2<7N
(3.66)

oK stands for the possible range @&, L means the boundaries of time delayis a
so-called forgetting factor, which is used to decrease tleeteof the old data to the
new estimation at the current sampling time. It is much usefpecially for the cases
that some of system characteristics may be time varyd@y (In the following part,
the forgetting factor is selected in the inter{@&B5, 1.

Note that if there is no time delay in the system model, or ithe delay is known
beforehand, the optimization problem of the systéht4) can be degenerated to a
standard LMS problem. Moreover, if some pre-knowledgerogtdelay in the system
can be known or obtained, such as the upper boundary and lmwedary at each
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sampling step, an iterative algorithm can be performed byckéng the optimal solu-
tion in the entire possible region of time delay in an onesbg- manner as previous
Iterative LS methods. For each iteration, LMS problem carstleed by applying
some standard techniques referredlid. In general, the LMS based method require
to enumerate all the possible situation with regard to tilayl But this method can
guarantee that the solution is globally optimal in most sase

The same as the previous assumption, the boundary of tirag tetlescribed by
some integer numbers multiplying with sampling period, Ife < 1X <X andIX, ,
IX o5 Which are known beforehand. Moreover, in order to makerpatar identifica-
tion, the sampling intervdls, the sliding window lengtiN and forgetting factop need
to be decided as well before the procedure.

In the start, the algorithm need to wait to collect the enos@mpled data to con-
struct matrices3.41) and @.42) until a specific sampling step. Suppose this initial step
askini, where the conditiomN + |,'$5rgx < kini should be satisfied. Then, the main iden-
tification procedure can start from thg; step. Let sampling step> kini, the whole
scheme is in the following:

- A computing loop is constructed with regardifostarting fromlX,, and ending

atlX ., by taking the unitincrement t5. For each iteratiok) of IX (1K <1¥ <
1X ), solve the LMS problem340 and record the corresponding prediction
error. The LMS problem has an analytical solution as:

OK(1) = (AR (M) TAR (1) HAR (1) B,

COV(ékT: ((AKIUk))TQ(k)*lAKl“k))—l, (3.67)

where 6(1¥) stands for the estimation @ at current iteration with discrete
time delayl¥, Co(8%) means the covariance 6f, andQ(k)=(1— &¥)2Qis the
covariance ofv (k).

- (B%(i%), %) which leads to the minimal prediction error among all itenas with
regards td* moving fromlK. tolX. , denoted ag6**(1%),1%"), is chosen as the
optimal solution for 8.40) at the current step.

- The estimation of th&th sampled system parameters 859 and @.59 for

the current sample, i.eTX, KX and(k), can be obtained frong(1%) =
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3.6 Multi-Input FOPDT Identification

[a® Bk YT using the following relation:

Ts

T~k
ks
ok 1
RE = 175 (3.69)
Go(k) = y/(1-a"), (3.70)

and the sampled time del&¥is estimated a%. As a resultK¥, Tk, Gz(k) and
Ik*Ts are set as the approximations of the original parametersmakitbwn input
for the continuous systen3 (3 at the current sampled step.

When a new (couple) data of input and measured output isr@utaithe above
procedure will be repeated. Thereby the system idenficiasiimation for the model
(3.53 can be executed in an on-line iterative manner. It can bieeubthat the original
method proposed in previous sections can become a spesmlotdhe considered
problem here, i.e., correspondingug(t) = 0.

3.6.3 Numerical Examples

In the following, the proposed method in section 3.6 and tle¢hod used in section
3.5 are both applied and compared. For simplicity, the pgedanethod is noted as
new methogwhile the latter one is noted atd method

Case A-I: Data generated from a system with unknown input

Consider a switching TV-FOPDT system, where system paemetre set as:
whent < 30 seconds, there are

Ty=2 Kj=3, K;=3, Tj=23.05;
whent > 30 seconds, the parameters change to
Ti=3 Ki=4 K,=4 Tj=205

The noise in the measurement of the output follows the digionN'(0, 0.001). The
sampling period is set @k = 0.1 second. The length of sliding window is selected
asN = 50, and the forgetting factqyw = 0.95. Assume we have the pre-knowledge
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3.6 Multi-Input FOPDT Identification

of the sampled time delay likk ,, = 40 andlr';m = 0. According to the proposed
method, it need to wait more than 8 seconds (the data catepgriod is(50+ 40) x

0.1 =9 seconds) to start the identification procedure in the lmggn In the test,
the identification begins after 100th sampling time, i.&eral0 seconds. The data is
collected by simulated the considered system with a swegakas the control input,
and a multi-step signal as the unknown input with the prgpert

1, t<40
W(t)={ 1.2, 40<t< 60
2, t> 60,

The known input signal and measured output obtained fromdinnulation are illus-
trated in Fig.3.25

output
inputu,

input u; and output

VIIN

| \\”“‘H“\ ‘\”‘\\“\H\ MM\'
N/ ‘\‘ | ‘\M“H”\‘ ‘H‘H fil ‘HH“\‘\H\H\\‘H‘\\WH
: ’\/ “MHU”‘ U‘\U‘MW \U M

) 120
Toe

Figure 3.25: The known input and output data for Case A-I

Fig. 3.26 Fig. 3.27, Fig. 3.28and Fig.3.29display the results of the system esti-
mation for time delay, system gain of known input, time canstind unknown input,
respectively. Here the red line plots the real value, the lolie shows the estimated
value using the proposed method and the green one is the ussud) the original
method proposed in the prevous section. From the simulagisults, the following
observation could be made. All of the results, includingapagter identification, time
delay estimation and unknown input estimation, show neadysame characteristics.

It is obvious that the proposed method exhibited much bettults than the old
one did, which is supposed to be used only for SISO TV-FOPDSE c#&or the pro-
posed method, the identification algorithm starts at 10tosé. Since the system is
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Figure 3.26: The time delay estimation for Case A-I
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Figure 3.27: The identification result &f for Case A-|
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Figure 3.28: The estimated time constant for Case A-I
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Figure 3.29: The estimated unknown input for Case A-I usimgppsed method
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3.6 Multi-Input FOPDT Identification

already at a steady situation, the estimations showedmabiogood approximations
and precisions. This stable estimation lasted for aboue26reds until the system had
a switching at 30th second. Some deviations are clearlyrebgdeluring a short period
after the switch of system parameters (30 sec.). The fluotuateriod is approxi-
mately equal to one window length (8D.1=5 seconds) before the estimated parame-
ters started to converge to new steady-state values. The ghemomenon happened
when the unknown input has jumps at 40th second and 60th despectively.

Regarding the accuracy, the time delay estimation showee sonall steady-state
estimated error and they are below 2% in most cases. Theseto#re mainly due
to the discretization of the system model, thereby it cangoeiced by increasing the
sampling frequency. All results of the other three estiorashowed the steady-state
error are less than 1% to the real values in most steady staés.c

Case A-ll: Data generated from a system without unknown inpu

In this test, the data used for estimation is generated blyagpthe same input as
used in Case A-l except that there is no unknown input, whielamsu, = 0. Both
identification methods are tested and compared in the fallgw

Delay T,
35-

05+

I I L I I I I I I )
10 20 30 40 50 60 70 80 90 100 110
Time

Figure 3.30: The time delay estimation for Case A-lI

The results turned out that both methods showed almost sarfegmmances except
different amplitudes of fluctuations after the switchingm¢30 sec), where the system
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Figure 3.31: The identification result &£ for Case A-lI
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Figure 3.32: The estimated time constant for Case A-II
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Figure 3.33: The estimated unknown input for Case A-ll usiregproposed method

parameters abruptly changed. Tinewv methoded to larger fluctuations than tiodd
method This is because that theew methodyot a wrong estimation (non-zero) of
the unknown input for a short while, as shown in F&)33 which caused further
deviations to all parameter estimations. Otherwise, wecoaclude that both methods
can provide almost same estimation performances.

3.7 Application for Superheat Modeling

3.7.1 Refrigeration and Superheat System

Figure 3.34: Refrigeration system

One of typical refrigeration systems follows the principlgh vapor compression
by using some types of refrigerant as the heat transfer medaenerally, one refriger-
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ation system composes of four basic components, that aemexqm valve, evaporator,
compressor and condenser. A vital variable that can gradfiaet the efficiency of
this kind of system is the filling refrigerant in the evaporafThe important factor to
evaluate this refrigerant filling is the superheat, which ba defined as the difference
between the outlet temperature of the gas and the inner tatope of the evaporator.
This kind of superheat can be controlled by adjusting theaketp open the expansion
valve. In order to maximally utilize the potential of the paaator, the superheat needs
to be maintained as low as possible.

Most existing commercial refrigeration systems use eiglt@ermostatic expansion
valve or a kind of on-off control of the expansion valve. Téggoes of control are easy
and simple for design and implementation, however theyhaftenot lead to (smooth)
comfort and energy-efficient performance. Some advanastbieck control methods
are expected for this type of system. Nevertheless, no matiat kind of methods
were used, generally, one mathematical model of the corezidiperheat dynamic is
often required in order to have a automatical control desggand tuning process. The
dynamics of superheat in a refrigeration system must bea@mplicated, which can
consist of high nonlinearities and time varying properti€be detailed model of the
evaoprator/superheat can be set up according to the catiserof mass, momentum
and energy on the refrigerant, air and tube wall etc. Howekiesr category of detailed
model often causes some difficulties during the controlgfestage because of the
complexity of the system model. For these reasons, in oalget a simple model
of the system, Li 92) proposed an empirical model to decouple the superheat and
capacity control, where the superheat system was modele lopalled First-Order
Plus Dead-Time (FOPDT) model. However, a FOPDT model can malke sense for
some local operating points. Later, Russmus and LEBS)(proposed another kind
of nonlinear First-Order (FO) model in 2009, based on thé firadeling principle.
Their considered nonlinear FO model can be seen as an extesfsine standard FO
model by means that both of the system gain and time constaheanodel were
taken as functions of the inputs and disturbances, and hem@alaptive control of
superheat was developed based on back-stepping methodeveigwhe acquisition
of this nonlinear FO model need many assumptions to be falidde to the physical
modeling principle, and many of these assumptions areraitipossible or difficult to
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3.7 Application for Superheat Modeling

be examined in the reality. Moreover, the time-delay featfrthe superheat dynamic
is not explicitly expressed in this model either.

But the proposed model TV-FOPDT, including some inputs ddpat dead time,
can describe the former status and solve the problems. Ithdses, Time-Varying
FOPDT (TV-FOPDT) model is applied to model the superheatdyio in a supermar-
ket refrigeration system.

Figure 3.35: A superheat model

A popular superheat dynamic can be seen in theJFRh

3.7.2 Superheat Dynamic Identification

Two different systems are considered in the following sysikgentification. The con-
sidered refrigeration system is a supermarket display@asier as shown in Fig.34
Compared with a freezer, the display case cooler has a lése®f (adjustable) air
curtain. Two sensors are installed to gain the superheasumement. One pressure
sensor is placed close to the inlet tube of the evaporaten Te evaporation tempera-
ture is estimated based on this pressure measurement akbthikedge of refrigerant
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3.7 Application for Superheat Modeling

type. A thermostat transducer is placed at the evaporatt@téo measure the gaseous
refrigerant temperaturé.72).

Case S1: TV-FOPDT with noiseFirst, the system model is chosen as with only
one transfer function3(39 and the measurement model is described3a&l). It is
obvious there is noise in the measurement of the system.

The experimental data is collected from a real system ilestat Danfoss A/S
(172). The sampling periods is selected as 2 seconds. Moreover, it has been noticed
from the experience that time delay of the real system is neertttan 300 seconds,
l.e., the upper limit of the time delay can be set up as 150 Emnphe input data
is the measurement of the percentage in the openness offiaasan valve, and the
output data is the calculated temperature of superheatl lmasevo sensor (both inner
and outer) measurements. In order to significantly excikectinsidered system, the
designed input signal is composed of a number of asymmetelzgy cycles. One set
of input and output data is illustrated in Fi§.36

input-output
161

output
14t input

12r

10

Value
[e2]

0 100 200 300 400 500 600 700 800 900
Time

Figure 3.36: Input/Output Data for Case S1

A rectangular window with a length of 200 samples is used.r@lnethe first es-
timation result comes at the next step after the 350th saigptep, i.e., 200 (window
length) + 150 (maximal delay) =350. The estimated systene tii@lay is indicated
in Fig. 3.37. It can be noticed that during the period from the beginnothe 744th
sampling step, the estimation stayed at a value of 32 sean Hre 746th sampling
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3.7 Application for Superheat Modeling

step, the estimated value stabilized around a value of 284 ”ee estimated system
delay only significantly changed twice regarding to thisgdsexperiment. The iden-
tification results of (sampled) system gain and time coristan be seen in Fig3.38
The time varying feature of these two parameters is quitéooisv In general, the es-
timated system gain has a trend to slightly increase urdidhisng some steady-state
while the estimated system time constant has a trend talslidgcrease until reaching
some steady-state. This test also showed that the supe@naelaially converge to its
expected working point (10 degree for this case). It has lbeend in [10] that the
system parameters of a nonlinear FO model of the superheatdy are relevant to
system input, output and disturbance as well. The couplatgy&en the superheat dy-
namic and the compressor behavior is also studied in [7]relye a 3-D plot of the
estimated time delay w.r.t. the input and output signalbdsw in Fig.3.39 From this
observation, it seems that the system time delay mainlyrdigpen the output value.

delay
250

200

150

Value

1001

50

\ \ \ )
700 750 800 850 900
Time

Figure 3.37: Delay Estimation for Case S1

Case S2: MI TV-FOPDT model

In this part, the data generated from a real refrigerati®tesy, which is another
set different to the case S1, is used to estimate a MultitlipaFOPDT model of
the superheat dynamic in the considered system. Some mogdétre the same to the
former case, i.e., the sampling peridglis still selected as 2 seconds. Moreover, it
has been noticed that the system time delay is no more thaset0i.e., we can set
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Figure 3.38: Parameter Estimation for Case S1
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Figure 3.39: 3-D Plot for Case S1
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3.7 Application for Superheat Modeling

up the upper limit of the time delay as 200 samples. The knoavhqf input data is
the measurement of the openness percentage of the expaasrenand the output
data is the calculated superheat (temperature) based @etvgor measurements. The
designed input signal consists of a number of asymmetrétal/rcycles. One set of
input and output data is illustrated in Fig40

input u, and output
101

output
input u N
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(9]

\ \ \ \ \ )
0 200 400 600 800 1000 1200
Time

Figure 3.40: The input and output data from a real system

Under the assumption that the superheat (temperature)vdgreaan be approxi-
mated by system mode3 563, we define parametét}, as 2. It should be noticed that
the value ofk}, does not critically affect the estimation results, everutftoit could
influence the estimated aptitude of the unknown input. Tétemally, it can be set as
any value. A sliding window with a length of 200 samples isdis€hereby the first
estimation result comes at 400 sampling step, i.e., 200d@vinlength) + 200 (maxi-
mal delay) =400, this means that the first estimation shdald at 800 second. In this
test, both thewew metho@ndold methodare employed as well. The estimated system
parameters are illustrated in F®y41, Fig. 3.42and Fig.3.43 respectively. At this mo-
ment, we are not always sure that the propasad methodvorks better than theld
methoddid. From the so-far observed results, we can conclude tipatrbeat model in
this refrigeration system should take the disturbancesdansideration, which could
be due to the influences of compressor and/or the ambiemh#h@nvironment. Fur-
thermore, since we expect a model which is suitable for mogauperheat dynamic
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3.8 Conclusion

in large operating region, there is no doubt that TV-FOPDTdaetshould be one of
the good candidates.

Delay T:j
350 -

new method
old method

Value

| | |
800 850 900 950 1000 1050 1100
Time

Figure 3.41: Time delay estimation for the real system

3.8 Conclusion

This Chapter considered a TV-FOPDT system identificatiavbl@m. The models
consist of three different kinds, simple TV-FOPDT, TV-FOP@ith input dependent
dead time and Multi-Input FOPDT. The first two models can tbgecalled as SISO
TV-FOPDT model compared with Ml TV-FOPDT model. From the rabstudying,
MI TV-FOPDT model can describe the disturbance input mudtebe
Correspondingly, a number of identification algorithmsgtireate the time depen-
dent parameters, as well as the unknown input for the Ml T\RBO model, are pro-
posed. By regarding all unknown parameters as the ones mbeddentified including
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Figure 3.42: System gain and time constant estimation rehl system
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Figure 3.43: Unknown input estimation for the real system
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3.8 Conclusion

the unknown input, the considered problem can be formulaseal Stochastic Mixed
Integer Nonlinear Programming (SMINP) problem. Then bebrahch method for
handling the mixed integer programming, the Least Mean &q{taMS) for handling
the optimal parameter identification, together with thdialj window with forgetting
factor for data selection, are adopted and combined to kahdlformulated problem.
The method can make the system identification in an on-linenaia

The proposed approaches are tested on a number of numemcapkes and com-
pared with the relevant methods. For the application, itpigliad to model the su-
perheat dynamic in a supermarket refrigeration systemreliseno doubt that the M
TV-FOPDT provides more flexibility to model complex systemsa more realistic
manner.
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Chapter 4

Conclusions and Future Work

4.1 Thesis Conclusions

The thesis considered the techniques of parameter idexitsiicfor two different kinds
of nonlinear models, i.e., nonlinear ISDE model and no@ite€OPDT model. The ap-
proaches to make the corresponding parameter identificat® proposed, which are
called as UKF plus ML method and Mixed Integer Nonlinear Paogming (MINP)
based method. The thesis make contribution to severalptorthe development of
system identification. Firstly, the thesis suggests toyappine new nonlinear models
to describe the systems more accurately. Secondly, somenedwds are proposed to
make parameter identifications of the corresponding magladisthese methods have
their own merits. Thirdly, some theorems proved in the thean provide some the-
oretical support to the new models and parameter identdicabethods, such as the
identifiability and convergence issues.

Nonlinear ISDE Model

e The merits of using I1td SDE model lies in that it can desctiteestructure of the
random feature of system in a more accurate way and the mi&Die theory
can provide a theoretical support to this model.

e A nonlinear system identification approach was proposeddkenthe estima-
tion of the system modeled by ISDE. The approach combinedJtiszented
Kalman Filter and Maximum Likelihood to make the parametiEniification.
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4.1 Thesis Conclusions

The characteristics and advantages of the proposed metltsdelatively good
precision, accuracy and computation load regarding to #inameter identifica-
tion.

e The consistency and normality of the proposed method, UKIE pIL method,
were proved under conditions of boundness for system fomgiincluding their
derivatives and parameter possible ranges.

e A number of numerical tests were formulated to make the eti@n of the new
scheme. The results showed it can provide a good performarieems of the
accuracy, convergence at a small extra cost of the compntiaiad.

All'in all, the ISDE model has its own unique merits to deserihe random sys-
tems. Since it can describe the system in which the randobcparbe related with
the state variable, the ISDE model can model the system waaith that may depend
on the state variable. Moreover, the mature theory on ISDEpecavide a useful sup-
port to the system analysis. For example, the Itd formutasimplify some system
with state related random features to ones without stas¢adrandom features. Then
the technique of system identification can be applied sinphle system. The pro-
posed approach of nonlinear system identification, UKF pilsmethod, is proved
to be consistency and normality under the correspondingitions. It can guaran-
tee the estimation using UKF plus ML method is correct for edamds of systems.
Furthermore, the normality property can show the confidétevel of the estimation.
Moreover, from a number of tests, it showed better perfocaan accuracy and con-
vergence than direct Kalman Filter technique and EKF plusrivithods at cost of
computation load.

Nonlinear FOPDT Model

e The identifiability of the time varying models are partialyadefined based
on the model structure, identification method and samplimigtp. Under the
new definition, the condition that can guarantee the idaiiity of nonlinear
FOPDT is derived.

e The Time Varying FOPDT model, even with the input dependeatdime, was
proposed. A method based on the Stochastic Mixed Integeliiéam Program-
ming (SMINP) was developed to make the estimation of therpaters with
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time delay for the system. The approach applied Branch-Bouathod and
Least Mean Square method to solve the concerned problem.

e A number of numerical tests were formulated to make the ewiao of the al-
gorithm. The results showed it can provide a good performameerms of the
accuracy and speed. The method was applied to make the gstiroéa real
system which models superheat in a refrigeration system.

All'in all, the proposed nonlinear FOPDT has much more fléixjbin modeling some

complex processes much better than the traditional FOPDdemad he identifiability

analysis showed that under some conditions the nonline®CHOdentification can

be guaranteed using LS based method. The simulation reshigtged it is a fast and
flexible method. But the sampling number and input signaisatiect the performance
of the accuracy.

4.2 Future Work

Nonlinear ISDE Model

Firstly, the UKF plus ML method can identify some models wstate depended
random features which can be simplified to ones without stepended random fea-
tures using Itd formula. To find the approach to identifyastmodels with state de-
pended random features can be part of future works for theesyglentification of
ISDE model.

Secondly, how to extend the parameter identification megirodosed here to be
a recursive version to make the on-line identification ineoridr the computation ef-
ficiency as well as the FDD purpose, is still open. The modicdity lies in how to
handle the time varying delay estimation recursively.

Nonlinear FOPDT Model

Firstly, whether the identifiability analysis of the nordar FOPDT can be extended
to other nonlinear models or not need to be further invesdyand studied in the
future.

Secondly, it is undoubtable that nonlinear FOPDT model aatrbe used to de-
scribe all the system. For this reason, to find out what kingystem can be described
using nonlinear FOPDT model is part of the future work. Andvhman we make
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the controller design or system reconfiguration based orestienation of nonlinear
FOPDT can also be the following work. Moreover, the corietabetween the con-
vergence rate of the selected identification algorithm &editme varying features of
unknown parameters need to be further deeply investigated.
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