

Aalborg Universitet

Synchronization and Control of Quantitative Systems

Laursen, Simon

DOI (link to publication from Publisher):
10.5278/vbn.phd.engsci.00182

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Laursen, S. (2016). Synchronization and Control of Quantitative Systems. Aalborg Universitetsforlag.
https://doi.org/10.5278/vbn.phd.engsci.00182

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.5278/vbn.phd.engsci.00182
https://vbn.aau.dk/en/publications/68c7237f-06a5-4950-85c5-23f7afa692d2
https://doi.org/10.5278/vbn.phd.engsci.00182

S
Y

N
C

H
R

O
N

IZATIO
N

 A
N

D
 C

O
N

TR
O

L O
F Q

U
A

N
TITATIV

E
 S

Y
S

TE
M

S
SIM

O
N

 B
O

R
G

B
JER

G
 LA

U
R

SEN

SYNCHRONIZATION AND CONTROL OF
QUANTITATIVE SYSTEMS

BY
SIMON BORGBJERG LAURSEN

DISSERTATION SUBMITTED 2016

Synchronization and Control of
Quantitative Systems

PhD Dissertation
Simon Borgbjerg Laursen

Aalborg University
Department of Computer Science

Selma Lagerløfs Vej 300
DK-9220 Aalborg

Dissertation submitted:		 September, 2016

PhD supervisor: 		 Professor Kim Guldstrand Larsen
				 Aalborg University

Assistant PhD supervisor:	 Associate Professor Jirí Srba
				 Aalborg University

PhD committee: 		 Associate Professor Manfred Jaeger (chairman)
				 Aalborg University
				 Associate Professor Thomas Troels Hildebrandt
				 ITU University of Copenhagen
				 Professor Jean-Francois Raskin
				 Université Libre de Bruxelles

PhD Series:		 Faculty of Engineering and Science, Aalborg University

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-801-7

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Simon Borgbjerg Laursen

Printed in Denmark by Rosendahls, 2016

Hofstadter’s Law: It always takes longer
than you expect, even when you take into
account Hofstadter’s Law.

– Douglas Hofstadter [76]

∼

Abstract
Formal methods, such as model checking, theorem proving and static analysis, are
used to provide confidence in system models and designs, as it can assist in all phases
of system development and testing. However, formal modeling of software is not
trivial, and the ever increasing demand for software functionality and the complexity
of such software systems makes modeling even harder. This challenge creates
the need for expressive and computationally feasible modeling and specification
formalisms. In this thesis, we explore modeling formalisms for quantitative systems
and systems with partial observability to determine their computational limitations
and feasibility.

Initially, we study the synchronization problem, where the objective is to find a
sequence of inputs that reset a system without knowing what state the system
started in. This objective was first studied for systems where no information is
available about its current system state. We extend this to systems with partial
observability, where the controller has some information about the current state. The
objective is to find a synchronizing strategy that, based on the observations, gives the
next input. For deterministic systems, we show that the computational complexity
of finding synchronizing strategies remains the same as for the classical problem
with no observability. Furthermore, we show that for nondeterministic systems,
the complexity increases as it is possible to encode alternation. We then extend
the concept of synchronizing strategies to quantitative systems. In particular, we
analyse when the controller has partial information about the current accumulated
weight in a deterministic system. We prove the surprising result, that the existence
of synchronizing strategy for such a system is decidable in polynomial time.

We also study quantitative games, i.e. games where part of the objective is to
minimise or contratin some quantitative value. In particular average-energy games
where objective aims to optimise the long-run average of the accumulated energy.
We show that this objective arises naturally in several applications, and previous case
studies. We prove that determining the winner in such games is in the intersection of
NP and coNP and at least as hard as solving mean-payoff games. Then, we analyse
cases where the system has to minimise the average energy while maintaining the
accumulated energy within given bounds. Furthermore, we study average-energy
games where the bounds are existentially quantified. Here, we consider the problem
of determining upper bounds on the average accumulated energy and the capacity
while satisfying a given bound. We show that the existence of a sufficient bound on
the long-run average accumulated energy can be determined in doubly-exponential
time. Lastly, we consider recharge games, a version of energy games, where all
weights are negative and we have special recharge edges. For these games we show
that the problem of bounding the long-run average energy is complete for exponential
time, whereas the existential version of the problem is solvable in polynomial time.

iii

Resumé
Formelle metoder, såsom model tjekking, bevisførelse og statisk analyse, bruges
til at skabe tillid til systemmodeller og designs, og som værktøjer i alle faser af
systemudvikling og test. Men formel modellering af software er ikke trivielt, og
den stadigt stigende kompleksitet samt øget efterspørgsel af funktionalitet gør
softwaremodellering endnu sværere. Denne udvikling skaber behov for udtryksfulde
modellerings- og specifikationformalismer der samtidig er beregningsmæssigt mulige.
I denne afhandling udforsker vi modelleringsformalismer for kvantitative systemer
samt systemer med delvis observerbarhed. Derudover bestemmer vi modellers
beregningsmæssige begrænsninger og opnåelighed.

Først studerer vi synkroniseringsproblemt, hvor målet er at finde en sekvens af
input, der nulstiller et system uden at vide, hvilken tilstand systemet startede i.
Dette problem er tidlgere blevet undersøgt for systemer, hvor der ikke er infor-
mation om systemets aktuelle tilstand. Vi udvider dette til systemer med delvis
observerbarhed, hvor controlleren har nogen viden om den aktuelle tilstand. Målet
er nu at finde en synkroniserende strategi, der, baseret på observationer, giver det
næste input. For deterministiske systemer, viser vi, at kompleksiteten af at finde
en synkroniseringsstrategi forbliver den samme, som for det klassiske problem uden
nogen observerbarhed. Endvidere viser vi, at for ikke-deterministiske systemer,
stiger kompleksiteten, da det er muligt at indkode alternering. Derefter udvider vi
begrebet synkroniseringsstrategier til kvantitative systemer. Specifikt analyserer vi
når controlleren har delvis viden om den aktuelle akkumulerede værdi i et deter-
ministisk system. Vi beviser overraskende, at eksistensen af en synkroninserende
strategi er afgørtbart i polynomiel tid.

Vi studerer også kvantitative spil, nærmere præcist gennemsnitsenergispil. Målet i et
gennemsnitsenergispil er at optimere det langsigtede gennemsnit af den akkumulerede
energi. Vi viser, at dette opstår naturligt samt har en række tidligere anvendelser.
Vi beviser, at vinderen af sådanne spil kan afgøres i fællesmængden mellem NP og
coNP og at problemet mindst så svært som middelværdisspil. Derefter analyserer vi
det tilfælde, hvor man ønsker at minimere den gennemsnitlige energi samt holde
det akkumulerede energi niveau inden for nogle givende grænser. Vi betraget
desuden gennemsnitsenergispil, hvor grænserne er eksistentielt kvantificerede. Her
er problemet at bestemme en øvre grænser på den gennemsnitlige akkumulerede
energi, hvor grænserne for energi niveauet er givet. Vi beviser, at det kan afgøres
hvorvidt en sådan øvre grænse eksistere i dobbelt-eksponentiel tid. Sidst studere vi
genopladningsspil, en version af energispil, hvor alle kanter enden har ikke positive
vægte eller er særlige genopladningskanter. Vi viser at kombinationen af disse spil
og gennemsnitsenergispil er fuldstændig for eksponentiel tid og i den eksistentielle
udgave kan det afgøres i polynomiel tid.

v

Acknowledgments

First, and foremost I would like to thank my supervisors Kim Guldstrand Larsen and
Jiří Srba. Thank you for taking me under your wings and making this PhD possible
and for alle the guidance I have received during my studies, both as a Master and
PhD student.

Next, I would like to send a big thanks to Patricia Bouyer and Nicolas Markey for
making my four-month visit in Laboratoire Spécification et Vérification (LSV) at
ENS Cachan pleasant, productive and inspiring. Furthermore, I would like to thank
Mickael Randour for the valuable input and fruitful cooperation we had during
my stay. I would also like to thank my co-authors Jan Křetínský and Martin
Zimmermann. The work in this thesis would have been impossible without you.

Another big thanks goes to my fellow PhD student and long time office mate Erik
Ramsgaard Wognsen for the talks about life as a PhD and for drinking rum with
me on Fridays. The same thanks go to the fellow members of the “lunch club” and
for sharing the lunch with me every day.

To my PhD friends Petr Novotný, Guillermo A. Pérez, Jan Krčál and Mahsa
Shirmohammadi for always wanting to discuss, have driks and talk when we meet
on PhD schools, conferences and workshops. To my friends in “Laks og Nødder”
thank you for giving me a place where I do not have to think about tomorrow or
the next paper deadline.

To my mom and dad, thank you for the endless support and help you have given
me. Thanks to my little brother Kasper, for always being ready for a discussion and
give insight into the area of computer science that we both find so interesting.

Finally, to my dear wife Cæcilie, thanks for bearing over with me in the hard times,
for always loving me and supporting my choices. I am in no doubt, that without
you, I would not have been able to complete my PhD. But most of all thank you for
giving me the greatest gift of all, our wonderful daughter Thilde, who is the artists
of the drawing on the front page.

Simon Borgbjerg Laursen
Aalborg University, September 2016

vii

Thesis Details

Thesis Title: Synchronization and Control of Quantitative Systems
PhD Student: Simon Borgbjerg Laursen
Supervisors: Professor Kim Guldstrand Larsen and

Associate Professor Jiří Srba, Aalborg University

The main body of this thesis consists of the following papers.

[A] Simon Laursen, Kim Guldstrand Larsen, Jiří Srba, “Synchronizing Strategies
under Partial Observability,” at 25th International Conference on Concurrency
Theory, (CONCUR 2014), LNCS vol. 8704, pp. 188–202, Springer, 2014.

[B] Simon Laursen, Jan Křetínský, Kim Guldstrand Larsen, Jiří Srba, “Polynomial
Time Decidability of Weighted Synchronization under Partial Observability,”
at 26th International Conference on Concurrency Theory, (CONCUR 2015),
LIPIcs vol. 42, pp. 142–154, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2015.

[C] Simon Laursen, Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim
Guldstrand Larsen, “Average-energy games” in Proceedings Sixth International
Symposium on Games, Automata, Logics and Formal Verification, (GandALF
2015), EPTCS vol. 193, pp. 1–15, 2015. The full version in Acta Informatica,
pp. 1–37, July 2016.

[D] Simon Laursen, Kim Guldstrand Larsen, Martin Zimmermann, “Limit Your
Consumption! Finding Bounds in Average-energy Games,” at 24th Inter-
national Workshop on Quantitative Aspects of Programming Languages and
Systems (QAPL 2016), EPTCS, 2016.

In addition to the main papers, the following publications have also been made.

• Simon Laursen, Kim Guldstrand Larsen, Jiří Srba, “Action Investment Energy
Games,” at Mathematical and Engineering Methods in Computer Science,
8th International Doctoral Workshop, (MEMICS 2012), LNCS vol. 7721, pp.
155–167, Springer, 2012.

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers which
are listed above. Parts of the papers are used directly or indirectly in the extended
summary of the thesis. As part of the assessment, co-author statements have been
made available to the assessment committee and are also available at the Faculty.
The thesis is not in its present form acceptable for open publication but only in
limited and closed circulation as copyright may not be ensured.

ix

Contents

Abstract iii

Resumé v

Acknowledgments vii

Thesis Details ix

1 Introduction 1
1.1 Model Checking . 2
1.2 Control Synthesis and Game Theory 3
1.3 Quantitative Systems . 4
1.4 Imperfect Information . 4
1.5 Thesis Structure . 5

2 Synchronization 7
2.1 Synchronization and Partial Observability 10
2.2 Weighted Synchronization . 14
2.3 Main Contributions . 16

3 Energy Games 17
3.1 Average-energy Games . 20
3.2 Finding Upper-Bounds . 22

3.2.1 Recharge Games . 23
3.3 Main Contributions . 24

Papers 27

A Synchronizing Strategies under Partial Observability 27
A.1 Introduction . 29

A.1.1 Our Contribution . 29
A.1.2 Related Work . 32

A.2 Definitions . 33
A.3 Complexity Upper-Bounds . 37

A.3.1 Knowledge Game . 37
A.3.2 Aggregated Knowledge Graph 41

A.4 Complexity Lower-Bounds . 44
A.5 Conclusion . 52

B Weighted Synchronization under Partial Observability 53
B.1 Introduction . 55

xi

Thesis Details

B.2 Definitions . 57
B.3 Polynomial Time Algorithm for Synchronizing 59
B.4 Complexity . 67
B.5 Algorithm for Finding Period gcd(G) of Graph G 70
B.6 Detecting k-Cycles in Weighted Graphs is NP-Hard 73
B.7 Conclusion . 74

C Average-energy Games 75
C.1 Introduction . 77
C.2 Preliminaries . 82
C.3 Average-Energy . 85

C.3.1 Relation with Classical Objectives 85
C.3.2 Useful Properties of the Average-energy 88
C.3.3 One-player Games . 92
C.3.4 Two-player Games . 97

C.4 Average-Energy with Lower- and Upper-Bounded Energy 99
C.4.1 Pseudo-polynomial Algorithm and Complexity Bounds 100
C.4.2 Memory Requirements . 108

C.5 Average-Energy with Lower-Bounded Energy 111
C.5.1 One-player Games . 111
C.5.2 Two-player Games . 118

C.6 Conclusion . 124

D Finding Bounds in Average-energy Game 125
D.1 Introduction . 127
D.2 Definitions . 130
D.3 Finding Bounds in Average-energy Games 131
D.4 Finding Bounds in Average-bounded Recharge Games 135

D.4.1 Solving Average-bounded Recharge Games 135
D.4.2 Finding a Sufficient Capacity in Recharge Games 140

D.5 Tradeoffs in Recharge Games . 142
D.6 Conclusion . 143

References 145

xii

Chapter 1

Introduction

Software systems are everywhere. They control homes, drive on roads and fly in the
sky above us. We rely on software systems to do almost everything from heating the
house to guiding us from A to B. The common thread in these computing systems is
that they interact with the world around them. We group these systems under the
common term embedded system. Embedded systems can be defined as engineering
artifacts involving computation that are subject to physical constraints [73]. This
definition ranges over all software based control systems that we all use every day,
such as car brakes, heating systems, vacuum cleaners, pacemakers, elevators, etc.

There is evidence that we increasingly depend on embedded systems in our society,
and it is clear that errors in these systems can have a costly outcome, cause injury
or even lead to death. It is therefore of the utmost importance that reliability and
correctness is ensured in these systems. Ensuring error-free and correct software is
a non-trivial task; it is time-consuming and expensive to do. This is the case for
all complex software systems including embedded systems. Correcting an error in
thousands of deployed systems can be extremely costly if not impossible.

Testing is the common way for ensuring the quality and validating correctness of
systems [81]. A common task for an embedded system is to monitor and respond
to changes in the surrounding environment. A requirement of the system could be:
“Whenever A is present do B”. When doing testing, several test scenarios would be
set up and executed. If all test scenarios resolve as expected, one would say that the
system behaves correctly according to the tests, or in other words, the tests could
not find any errors. The drawback of this approach is that completeness can not be
ensured when testing, there may always be scenarios not covered by the test.

In contrast, the goal of formal methods is to verify and give an absolute insurance
that a system contains no errors and only behaves as intended. This guarantee is
given by a mathematically based method and is a much stronger result than the
one from testing. However, formal methods are by their very nature performed on
a model of the system, rather than on the actual system. The result, when using
formal methods, is, therefore, only as good as the model of the system. This creates
the need for expressive and computationally feasible modeling and specification
formalisms, which is the main topic of this thesis.

The process of performing formal methods on a model is called model-based verifi-
cation. We present an introduction to this area in the rest of this chapter.

1

1.1. Model Checking

1.1 Model Checking

Verification techniques for software were first studied in the 1960-70s. Most of these
first attempts consisted of proof systems for programs, for instance, Hoare logic [74].
A program in this setting is seen as a function that, transforms an initial state into
a final states in a sequence of steps. The goal of these proof systems was to derive
guarantees for a program. This is done by giving assumptions on the input to the
program and then, in a systematic manner, deriving guarantees about the output.
A major problem with this lies in the assumption that a program is a finite sequence
of steps that finishes and returns an output; this does not cover concurrency, where
execution might be interleaved [104], or reactive systems where programs run forever
interacting with it surroundings, which is the case for embedded system.

These limitations led to several developments, such as process algebra in the 70 and
80’s [75, 98]. This made it possible to describe concurrent, reactive and distributed
systems. Model checking as a verification technique for these systems was developed
by Clarke and Emerson [57, 45], and Queille and Sifakis [109]. Contrary to the earlier
attempts and other verification techniques from that time, model checking was fully
automatic way to analysis finite state models. The initial goal for model checking
was to prove the correctness of systems, the problem then was to define system
correctness. This lead to the development of rich temporal specification formalisms
such as computation tree logic CTL [46] and LTL [119]. Today, model checking and
similar verification techniques are used to provide confidence in system models and
designs, and it can assist in all phases of system development and testing. Model
checking has successfully been used in the development of a wide range of systems,
for instance, safety-critical medical systems [5], commercial software [32], network
protocols [72], and hardware circuits [63]. The Turing Award in 2007 was given
to Clarke, Emerson and Sifakis for their work on model checking. There are two
comprehensive books on the subject of model checking, one by Clarke, Grumberg
and Peled [47] the other by Baier and Katoen [6].

Essentially, model checking deals with two artifacts: a system model and a specifica-
tion. A model describes the behavior of a system, and the specification describes
the intended behavior of the system. Given a model of a system and a specification,
model checking is then the process of proving or disproving if the model satisfies the
specification. A model is given in a mathematical framework, often in the form of
states and transitions [83]. A state in the model represents a state in the real system,
and a transition describes how the model progresses from one state to another. The
behavior of a model is then given by sequences of states. The set of all reachable
states from a given initial state defines the state space. A specification is usually
given as a formula in modal or temporal logic. A basic model checking algorithm
would make an exhaustive search through the state space to find a sequence that
violates the sequence described in the specification. If no such sequence is found the
model checker returns that the system satisfies the specification.

2

Chapter 1. Introduction

1.2 Control Synthesis and Game Theory

Embedded systems often observe and interact with the environment surrounding
them. House heating systems react when the temperature drops, and elevators move
when they are requested on a different floor. Embedded systems can, therefore,
be seen as control systems performing actions to meet some specification. Model
checking can be used to verify that a given controller for a given environment
satisfies its specification. The problem lies in creating such a controller; this is
non-trivial for large systems and time-consuming. It is, therefore, desirable to
automatically create the controller from the specification in such a way that the
controller always satisfies the specification no matter how the environment behaves.
This problem is considerably harder than model checking, as one has to construct
a correct controller instead of checking if a proposed controller is correct. This
process of automatically creating controllers or systems from the specification is
called synthesis. The synthesis problems were first proposed and studied by Church
for circuits [44] and later by Ramadge and Wonham [110] and Pnueli and Rosner
[107] for reactive systems and control synthesis.

The synthesis problem can be formulated as a two player game where the controller
plays against the environment. The specification is encoded into the winning objective
for the controller, such that finding the winning strategy for the controller in the
game is then equivalent to answering to the control synthesis problem. These games
are played on graphs where the vertices are split into those owned by the controller
and those owned by the environment. Each vertex represents a state of the real
systems. The game starts by adding a pebble to the initial vertex and the player
owning the vertex then moves the pebble to a successor vertex. This continues and
the movement of the pebble creates a play that represents the behavior of the real
systems. The synthesis question is then to decide if the controller has a strategy for
choosing successors such that no matter how the environment behaves, the controller
ensures that the play is winning. This game-theoretic formulation has become a
standard tool for the synthesis of provable correct controllers for reactive systems
and embedded systems.

Game theory in general provides the theoretical background for modeling interaction
among agents. The framework of game theory has seen application in numerous
disciplines as widespread as physiology, economics, biology, operations research and
computer science. Morgenstern and von Neumann are seen as the pioneers and
farthers of modern game theory with their book in 1944 [123], even though work
by Cournot [48], Zermelo [124] and Borel [16] precedes them. Today, the subject of
algorithmic game theory covers decision making, voting, auctioning, cooperation
and other aspects, where multiple agents interact as teams or as opponents. A
comprehensive book on the subject was published in 2007 by Nisan, Roughgarden,
and Tardos [101].

3

1.3. Quantitative Systems

For synthesis, the focus is on two-player zero-sum games played on graphs. Zero-sum
defines the category of games where players are pure adversaries, meaning that if
one player wins the other loses. Winning a game is defined by the winning objective,
that describes the set of winning plays for one of the players. Winning objectives
can be simple objectives such as reachability or complex such that Buchi or Parity.
These games are grouped under the term ω-regular games. A comprehensive guide
to current research was published by Grädel, Thomas, and Wilke [70].

1.3 Quantitative Systems

Embedded systems are by definition constrained by the physical platform and the en-
vironment. It is, therefore, essential when modeling such a system, that the modeling
formalism used can cope with these constraints. Quantitative games [96, 12, 31, 111]
are a common way to model resource constraints and performance requirements.
The quantities represent measurable entities such as power consumption, response
time or buffer size. In this setting, games are played on weighted graphs, where the
winning objective is a map from plays to the numerical domain. This map can be
seen as a payoff function, and the players have to either maximize or minimize the
payoff depending on the objective. The classic objective to model consumption or
usages is mean-payoff [26, 121, 126], where the objective is to minimize (or maximize)
the mean of the encountered weights when a playing. Resource restrictions can
be modeled using energy games [20, 59, 78], where the objective is to keep the
accumulated weight within given bounds.

The conjunction between qualitative and quantitative objectives has also been
studied for instance in mean-payoff parity [34], and energy parity [38] and a multi-
dimensional combination of these [43]. In these games, the controller has two
objectives; a quantitative mean-payoff or energy objective, conjoined with the
qualitative objective of parity where the system must visit some specific states an
infinite number of time. Other models, such as consumption systems [23] or battery
transition systems [15], also lie in this category of dual objective games.

1.4 Imperfect Information

Before any system can interact with its environment in a meaningful way, it has to
obtain information about it surroundings. For embedded systems, obtaining this
information is often obtained by reading output from sensors or similar observers
of the environment. Sensors always have some imprecision and in most cases, is it
impossible or very expensive to obtain perfect information about the environment.
Embedded systems therefore have to make decisions based on imperfect or partial
information about the current state of the environment.

4

Chapter 1. Introduction

It is therefore necessary when modeling embedded systems, that the modeling
formalism can cope with the concepts of imperfect information. This has been
extensively studied for several different kind of models and assumptions of what is
observable, for instance in the case of omega regular games [40], real-time systems
[28] and probabilistic systems [102].

Another key feature of a system with limited or no observability is the ability to
regain knowledge of its current state or return to a known state. For example,
assume that an engineer knows how the system is supposed to operate, but does not
know its current state. Such a scenario can occur when performing blackbox tests
of an embedded system where the system state can not be observed. In this case,
the engineer would benefit from having a controlled way to either reset the system
to a known state, or give the system a sequence of inputs that reveals its state. The
latter is the concept of homing sequences and has been widely studied [99, 67, 117].
The scenario of resetting is called synchronization [30, 122]. The synchronization
problem is: Given a system deciding if it has a sequence of inputs (synchronizing
word) that will bring it to a given state no matter in that state the systems was
initially. The synchronizing problem was first studied by Ĉerný in 1964 and his
conjecture regarding the length of synchronizing words is one of the longest standing
open problems in automata theory. Problems in the area of synchronizing words
[116, 97, 10], and in particular the study of synchronizing quantitative models, have
seen a lot of attention lately [51, 50, 64].

1.5 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2: Synchronization Gives a formal introduction to the area of syn-
chronization. We start by defining synchronizing words for finite automata and recall
some classical problems and results within the area. We then introduce synchronizing
of systems with partial observability, and present the results of the first two papers
included in this thesis Paper A: Synchronizing Strategies under Partial Observability
and Paper B: Polynomial Time Decidability of Weighted Synchronization under
Partial Observability.

Chapter 3: Energy Games Introduces the concept of games on graphs and
we define the concept of Energy Game and extension of Average Energy Games.
We give an overview of the classical Energy Games problems, and present the new
results of the two papers on Average Energy Games included in this thesis, Paper C:
Average-energy games and Paper D: Limit Your Consumption! Finding Bounds in
Average-energy Games.

Papers The second part of this thesis includes the full versions of all four papers.

5

Chapter 2

Synchronization

The concept of synchronizing words for finite automata has received lots of attention
during the last years [116, 122, 103, 97]. A synchronizing word will, when read
by an automaton, change the state of the automaton to a specific known state no
matter where the automaton started. The theory has seen applications in testing
[27], bio-computing [9], and robotics [3].

In this chapter we introduce the decision problems of synchronizing words and give
an overview of the complexity results in the area. The following sections outline
the results obtained in two first papers inclosed in this thesis, where we study
synchronizing words under partial observability [95] and in a weighted setting [89].
We start by defining the model of nondeterministic finite automata.

Definition 2.1 (Nondeterministic Finite Automata). A nondeterministic finite
automaton (NFA) is a triple A = (Q,Σ, δ) where

• Q is a finite set of states,

• Σ is a finite input alphabet, and

• δ : Q× Σ→ 2Q is the transition function.

The transition function is deterministic if |δ(s, a)| = 1 for all s ∈ Q and a ∈ Σ in
witch case we call it a deterministic finite automata (DFA). Similar, if it is partial
|δ(s, a)| ≤ 1 for all s ∈ Q and a ∈ Σ then we call it a partial finite automata (PFA).

We extend the transition function to sets of states S ⊆ Q such that δ(S, a) =
{δ(s, a) | s ∈ S} and by simple induction to range over sequences of input letters
such that δ(S, ε) = S and δ(S, aw) = δ(δ(S, a), w), where a ∈ Σ and w ∈ Σ∗.

We can now write δ(Q,w) and get the set of states we reach when starting from
any state in the NFA and applying the word w. We then define the concept of a
synchronizing word, as a word which brings the automaton from every state to the
exactly same state.

Definition 2.2 (Synchronizing word). Given an NFA A = (Q,Σ, δ), a word w ∈ Σ∗
is synchronizing for A if |δ(Q,w)| = 1.

The decision problem follows naturally:

7

Decision problem. The synchronization problem, given an NFA (or PFA
or DFA), decide if a synchronization word exists.

s0

s1

s2

a, b

a

b

a

a, b

b

a

(a) An NFA over the alphabet Σ =
{a, b}

{s0, s1, s2}

{s0, s1} {s0}

a

b

b

a

b

a

(b) The subset (knowledge) construction

Figure 2.1: An NFA and the subset (knowlege) construction over the NFA.

The synchronization problem for NFAs can be solved straightforwardly using the
subset construction and searching for a path from the initial configuration to
a configuration with only a singleton state inside. This construction is shown
on Figure 2.1b for the NFA in Figure 2.1a. The subset construction provides a
PSPACE membership, as it can be constructed and explored on-the-fly using only
polynomial space. The lower bound of the problem can be shown via reduction from
the PSPACE-complete problem of language intersection for finite automata [88]. The
PSPACE-completeness result even holds for NFAs with only one nondeterministic
transition and, even more surprising, also for PFAs. For DFAs the problem is
NLOGSPACE-complete where its inclusion can be shown using the technique of
pair-wise synchronization. This technique is a result of a lemma in Černý’s first
paper on synchronization [30]. The lemma says that iff any pair of states in the DFA
can be synchronized then, all states can be. Algorithm 2.1 shows this procedure,
it finds a synchronizing word for a DFA. If the synchronizing word is stored and
returned then the algorithm uses polynomial time, otherwise it can be done in
NLOGSPACE.

The algorithm is guaranteed to terminate, as the set S gets at least one state smaller
in each iteration of the loop, given a runtime of at most |Q| iterations. In step 5,
the pair-wise synchronizing word is computed and at most |Q|2 options are explored.
The process is shown on Figure 2.2. The algorithm finds a synchronizing word if
there is one, but not always the shortest one. An overview of the complexity results
can be seen in Tabel 2.1.

Černý conjectured in 1964 that the length of the shortest synchronizing word for any
n-state DFA is at most (n− 1)2 [30]. This conjecture is one of the longest standing
conjectures in automata theory and despite numerous attempts in the last 50 years

8

Chapter 2. Synchronization

Algorithm 2.1 Synchronization of DFAs.
Input: DFA A = (Q,Σ, δ)
Output: A synchronizing word w for A, or FALSE
w ← empty sting
S ← Q

while S is non-singleton do
Pick arbitrary s1, s2 ∈ S . s1 6= s2
Compute w′ such that δ({s1, s2}, w′ ∈ Σ) = {s} . Exploring Q×Q
if no such w′ exists return FALSE
S ← δ(S,w′)
w ← ww′

return w

s0

s1 s2

s3

a

a, b

b

b
b

a

a

(a) An DFA over the alphabet Σ =
{a, b}.

{s0, s1, s2, s3}

{s2, s3}

{s0}

δ({s0, s2}, aa) = {s2}

δ({s2, s3}, bb) = {s0}
aa

bb

(b) Pair-wise synchronization given the word
aabb.

Figure 2.2: A DFA and a possible synchronizing word, found using the pair wise
synchronization. In each configuration are two states picked, these are underlined,
and the word used to synchronize the two states is shown on the edge to the next
configuration.

Complexity of Synchronization Problem
Type Complexity

DFA NLOGSPACE-complete [30, 122]
PFA PSPACE-complete [97]
NFA PSPACE-complete [116, 97]

Table 2.1: Complexity overview the Synchronization Problem.

no one has proved or disproved this. The best known upper bound by Pin [106] is
1
6(n3−n−6). From the example DFA on Figure 2.2a there are several synchronizing
words of different length for instance bbb or aabb. The decision problem related to
the length of the synchronizing word is given below.

9

2.1. Synchronization and Partial Observability

Decision problem. The short-synchronization problem: Given an NFA
(or PFA or DFA) and a bound k ∈ N, decide if there exists a synchronizing
word w such that |w| ≤ k.

The Short-Synchronization problem is NP-complete for DFAs, the hardness is proved
by a simple reduction from 3-SAT [58], and the inclusion is by nondeterministically
guessing the synchronizing word of length 1

6(n3 − n− 6) (the bound by Pin) [58].
For PFA’s and NFA’s, the problem is still PSPACE-complete [97]. A complexity
overview can be seen in Tabel 2.2.

Complexity of Short Synchronization Problem
Type Complexity

DFA NP-complete [58]
PFA PSPACE-complete [97]
NFA PSPACE-complete [97]

Table 2.2: Complexity overview the Short Synchronization Problem.

An alternative version of the synchronization problem is the subset synchronization
problem, where a subset of states is given and the objective is to find a word such
that this subset of states are synchronized into a single state. The problem is
formally defined as follows.

Decision problem. The subset synchronization problem: Given an NFA
(or PFA or DFA) a subset S ⊆ Q, decide if there is there a word w such that
|δ(S,w)| = 1.

The Subset Synchronization problem is PSPACE-complete even for DFAs [115].
Again the PSPACE-hardness comes from finite automata language intersection, as it
is possible to pick the states where the synchronization starts. A similar construction
to the one used for the synchronization problem for PFA or NFA can be used. A
complexity overview is given in Table 2.3.

2.1 Synchronization and Partial Observability

For synchronizing words, the assumption is that the system can not be observed.
This is a rather pessimistic assumption as it is often the case that the controller
has some direct or indirect knowledge about the current state of the system. This
knowledge gives the controller partial observability of the current state of the system.

10

Chapter 2. Synchronization

Complexity of Subset Synchronization Problem
Type Complexity

DFA PSPACE-complete [115, 117]
PFA PSPACE-complete [115, 117]
NFA PSPACE-complete [115, 117]

Table 2.3: Complexity overview the Subset Synchronization Problem.

Examples of such systems are sensor networks, where they only know the state of
there immediate neighbors, systems with limited communication bandwidth where
it is not possible to communicate the full state to the controller or systems where
some external monitor can observe the state changes in the system, but the internal
state is unknown.

In order to capture these more realistic scenarios, we extend the theory of synchro-
nizing words, presented above, to synchronizing strategies that enable us to study
the synchronization problems under partial observability. We deal with this problem
in the setting of finite-state automata, where each state has a single observation
from a finite set of observations, formally a Moore automaton [6].

Definition 2.3 (Nondeterministic Moore automaton). A nondeterministic Moore
automaton (NMA) is a tupleM = (Q,Σ, δ,O, γ) where

• (Q,Σ, δ) is an NFA,

• O is a nonempty observation set, and

• γ : S → O is the observation function.

Similar to the problem of synchronization words for NFAs, we distinguish between
nondeterministic, partially deterministic and deterministic transition functions, given
the three classes of Moore automata, NMA, PMA, DMA.

The objective is to find an adaptive strategy for generation of input letters based on
the so-far seen observations. As for synchronizing words, the strategy should bring
the system from any possible initial state to a single synchronizing state.

Formally, a strategy is a function from sequences of observations to input letters
σ : O+ → Σ ∪ {done} where done 6∈ Σ. The special output signal done is to show
that the synchronizing state has been reached. The set of states reached when
applying the strategy σ until the special signal done is reached is defined as σ[S],
where S ∈ Q is the subset of states started from. We can now define what a
synchronizing strategy is.

11

2.1. Synchronization and Partial Observability

s0

s1 s2

s3

a, b

a,
b

a

a

a

b b

b

U

D

(a) An NMA with no synchronizing word.

Synchronizing strategy σ

σ(D) → b

σ(DD) → done
σ(DU) → a

σ(DUU) → a

σ(DUD) → done
σ(DUUD) → done
σ(U) → a

σ(UU) → a

σ(UD) → done
σ(UUD) → done

(b) Synchronization strategy, given the
observations U and D.

Figure 2.3: An example of a NMA and a synchronizing strategy σ that brings the
system to the state s3 no matter in witch state it initial started.

Definition 2.4 (Synchronizing strategy). Given an NMAM = (Q,Σ, δ,O, γ), a
strategy σ is synchronizing if σ[Q] is a singleton set.

An example of NMA and its synchronizing strategy can be seen on Figure 2.3. The
strategy brings the automaton on the state s3. Note that the automaton does
not have any synchronizing word, and that observations up (U) and down (D) are
necessary in order for it to have a synchronizing strategy.

We can now define the decision problem for synchronization under partial observ-
ability.

Decision problem. The synchronization problem under partial observabil-
ity: Given an NMA (or PMA or DMA), decide if a synchronizing strategy
exists.

We prove in this thesis that the problem is EXPTIME-complete for NMAs. The
containment comes by translating to a two-player knowledge game, where finding
a memoryless winning strategy in this knowledge games gives the synchronizing
strategy for our original problem. This knowledge game is played on an arena
constructed similar to the subset construction used for finding synchronizing words
on NFAs. The games comes in as the opponent resolves the nondeterminism. We
prove the hardness by a reduction from the acceptance problem of alternating linear
bounded automata.

12

Chapter 2. Synchronization

For DMA and PMA, we introduce the concept of an aggregated knowledge graph
and use it to derive a PSPACE containment for PMA and NLOGSPACE containment
for DMA, despite the double-exponential size of the aggregated knowledge graph.
These results match the lower bounds for synchronizing words, making the bounds
complete. An overview of our results can be found in Table 2.4.

Synchronization under Partial Observability
Type Complexity

NMA NLOGSPACE-complete
PMA PSPACE-complete
NMA EXPTIME-complete

Table 2.4: Complexity result of Synchronization under Partial Observability for
different types of Moore automata.

The second problem of short-synchronization moreover asks about the existence of a
strategy shorter than a given length bound. The length of the strategy σ, denoted
length(σ), is defined as the longest possible play before the action done is reached.
The problem is defined as follows:

Decision problem. The short-synchronization problem under partial ob-
servability, given an NMA (or PMA or DMA) and a bound k ∈ N, decide if
there is a synchronizing strategy σ such that length(σ) ≤ k?

We show that the complexity here follows the same patten as for the synchronization
problem, the general problem for NMA is EXPTIME-complete, for PMA and DMA
the problem stays in the same complexity as for synchronization word, namely
PSPACE-complete and NP-complete. See Table 2.5 for an overview.

Short-Synchronization under Partial Observability
Type Complexity

NMA NP-complete
PMA PSPACE-complete
NMA EXPTIME-complete

Table 2.5: Complexity result of Short-Synchronization under Partial Observability
for different types of Moore automata.

Finally, the subset synchronization problem asks to synchronize only a subset of
states to a single synchronizing state.

13

2.2. Weighted Synchronization

Decision problem. The subset-synchronization problem under partial ob-
servability: Given NMA (or PMA or DMA) and subset S ⊆ Q, decide if there
is a strategy σ forM such that |last(σ[S])| = 1?

The subset-synchronization problem under partial observability is EXPTIME-
complete for NMA, where it is PSPACE-complete for both PMA and DMA. See
Table 2.6 for an overview.

Subset-Synchronization under Partial Observability
Type Complexity

NMA PSPACE-complete
PMA PSPACE-complete
NMA EXPTIME-complete

Table 2.6: Complexity result of Subset-Synchronization under Partial Observability
for different types of Moore automata.

The complexity lower-bounds for the classical word synchronization transfer to the
more general setting with partial observability. We are able to match the lower-
bounds with corresponding upper-bounds for the cases of DMA and PMA, where
the transition relation is deterministic. In case of nondeterministic systems, the
three synchronization problems become EXPTIME-complete.

2.2 Weighted Synchronization

Synchronization of weighted and quantitative systems has received attention recently,
for instance in the case of stochastic and probabilistic automata [51, 50, 53, 52],
weighted automata with positive weights [64], integer weighted and timed automata
in [49], and in the case of weighted automata with matrix-labeled transitions [77].

In general, it is impossible of find a synchronizing word for deterministic weighted
automata, where both the states and accumulated weight must be synchronized. For
instance, assume that we are in the same location ` with weights deferring only by
one, (`, z) and (`, z + 1), any word will by the assumption of determinism maintain
the relative difference in the weights, hence never synchronize them. To overcome
this challenge, we therefore introduce the concept of partial observability of the
accumulated weight. First, we formally define the model of weight automata and
their semantics.

14

Chapter 2. Synchronization

Definition 2.5 (Weighted Automaton). A (deterministic) weighted automaton
(WA) is a tuple A = (L,Act,E ,W) where

• L is a finite set of locations,

• Act is a finite set of actions,

• E : L×Act → L is a transition function, and

• W : L×Act → Z is a weight function.

A state of a weighted automaton is a pair (`, z) ∈ L×Z where ` is the current location
and z the current accumulated weight. We write (`, z) a,w−−→ (`′, z′) if E(`, a) = `′,
W (`, a) = w and z′ = z + w.

The observation function γ : L× Z→ O is a map from states (location, weight) to
an observation from the non-empty set O. Note that if O only have a single element,
it would not be possible to synchronize the system, as described above. We now
limit us to the study where O is finite and we define a strategy similarly to the
case without weights, σ : O+ → Act ∪ {done} where done 6∈ Act, signaling that no
further actions will be proposed. We similar define the set of states reached when it
is applying the strategy σ until the special signal done as σ[S], where S ⊆ L.

Definition 2.6 (Synchronizing strategy). Give a WA A = (L,Act,E ,W), an
observation function γ and the observation set O, a strategy σ is synchronizing if
σ[Q] is a singleton set.

We can now define the decision problem of weighted synchronizing under partial
observability:

Decision problem. The weighted-synchronization problem under partial
observability: Given a WA A and an observation function γ, decide if there is a
synchronizing strategy σ for WA.

To study the complexity of this decision problem, we focus on the simplest non-
trivial observation function. We define this observation function γ as a map to the
observation set O = {<0,≥0}, such that

γ((`, z)) =

<0 if z < 0
≥0 if z ≥ 0 .

This minimal observation function returns whether the accumulated weight is positive
or negative. We show that the synchronization problem for deterministic weighted
automata under (minimal) partial observability is decidable in polynomial time.
We do this by stating five necessary properties that the weighted automaton needs

15

2.3. Main Contributions

to satisfy for it to have a synchronizing strategy. Moreover, we show that these
properties are sufficient and that they all can be checked in polynomial time.

One of the properties requires the existence of reachable +1 and -1 cycles in the
weighted automaton. The algorithm for finding +1 and −1 cycles relies on finding
a positive and a negative cycle and furthermore deciding if the greatest common
divisor of all cycles in a graph is 1. The greatest common divisor of all cycles of a
graph is also know as the period.

Deciding presence of a positive and negative cycle and producing their witness can
be done using a Bellman-Ford algorithm in polynomial time. Finding the period
of a graph can also be computed in polynomial time. The result for unweighted
graphs (all weights are one) was proven by Knuth [84]. An extension to weighted
graphs was suggest but not proven in [4]. Furthermore Knuth’s work is not widely
accessible as the only hardcopy of the report is located at the library of Stanford
University, with no electronic copy online. We therefore also provide our own proof,
using different techniques.

2.3 Main Contributions

We now briefly summarize the main contributions of this thesis within the area of
synchronization under partial observability.

First, we have introduced synchronization under partial observability and synchroniz-
ing strategies. We have analyzed the complexity the three synchronization problems
in-depth. We have found lower-bounds matching the original problem of synchroniza-
tion words and corresponding upper bounds for the cases of DFA and PFA, where
the transition relation is deterministic. For the case of nondeterministic systems,
we found that the studied synchronization problems moved to a higher complexity
class, as the combination of nondeterminism with partial observability allows us to
encode alternation.

Second, we have extended the work of synchronization under partial observability
to the quantitative setting, where the systems are modeled by weighted automata.
We showed that the synchronization problem for deterministic weighted automata
under minimal partial observability is decidable in polynomial time, even though the
resulting synchronization strategy may be unbounded as it depends on the initial
weight value. The result is based on a polynomial time algorithm for deciding the
existence of +1 and −1 cycles in a weighted graph.

16

Chapter 3

Energy Games

Quantitative games in general [12, 111, 25], and energy games, particular [31, 18, 78,
105], have seen increasing attention in the last decade and lately several extensions
of games where they are combined with qualitative games have been studied. These
multi-objective games create a basis for coping with and modelling resource bounded
systems with multiple restrictions and tradeoffs between them.

In this chapter, we recall the concept of energy games and give an overview of the
known complexity results to some extensions of energy games. Then, we focus on
a new variant called average-energy games that is introduced in the thesis. The
chapter is based on the papers on average-energy games inclosed in this thesis
[21, 22, 94].

First, we formally define the concept of a two player game. A two player game is
played on a graph area, where we name the players Eva and Adam. Formally an
arena is defined as follows.

Definition 3.1 (Arena). A game arena is a tuple A = (V, VEva, VAdam, E, vI) where

• (V,E) is a finite directed graph,

• V = VEva] VAdam is a disjoint partition of vertices and

• vI ∈ V is the initial vertex.

The vertices in VEva belong to Eva and are drawn as circles, whereas vertices in
VAdam belong to Adam and are drawn as rectangles. A play in an arena A is an
infinite path π = v0v1v2 · · · with v0 = vI and for all i ≥ 0, (vi, vi+1) ∈ E. A game
G = (A,Win) consists of an arena A, and a set Win ⊆ V ω of winning plays for Eva,
the objective of G.

To determine who wins the game, we need to define the concept of a strategy.
In general, a strategy is a function that, based on a play history, gives the next
move. Formerly, a strategy for Eva is the map σEva : V ∗VEva → V such that
(v, σEva(wv)) ∈ E for all wv ∈ V ∗VEva, the strategy for Adam is defined similarly.

We say that a play v0v1v2 · · · is consistent with a strategy σi for Player i if all suc-
cessors are chosen by Player i in accordance with the strategy vn+1 = σi(v0v1 · · · vn)
for every n with vn ∈ Vi.

17

Eva is the winner of the game G = (A,Win) if there exists a strategy σEva such
that for any strategy for Adam σAdam, the resulting play is consistent with σEva
and σAdam is in the winning set Win. We say that Eva wins G if she has a winning
strategy for G. We can now define the decision problem for at general game.

Decision problem. The general game problem: Given a game G = (A,Win),
decide if there exists a winning strategy for Eva.

In energy games, the objective of Eva is to make sure that the accumulated weight
of a play is bounded by some constraints, where the objective for Adam is to reach a
state where the accumulated weight breaks these constraints. The weights are added
to the edges of the arena, through the introducing of a weight function. Given an
arena (V, VEva, VAdam, E, vI) a weight function W : E → Z maps every edge to an
integer weight. The weights are encoded in binary.

We can now, given a play prefix, calculate the current energy level by adding the
weight along the play path together. Formally the energy level of a play prefix
v0 · · · vn is the accumulated weight of its edges, i.e.,

EL(v0 · · · vn) =
∑n−1

i=0
W (vi, vi+1)

Using the energy level, we can now define the two classic energy objectives namely,
(1) lower bounded and (2) lower- and upper-bounded energy. The simplest is
the lower-bounded energy objective that requires Eva to keep the energy level
non-negative:

EnergyL(W) = {v0v1v2 · · · ∈ V ω | ∀n. 0 ≤ EL(v0 · · · vn)}.

The lower- and upper-bounded energy objective requires Eva to always keep the
energy level between 0 and some given upper bound cap ∈ N:

EnergyLU(W , cap) = {v0v1v2 · · · ∈ V ω | ∀n. 0 ≤ EL(v0 · · · vn) ≤ cap}.

As seen in the game arena Figure 3.1. Here the game starts in vertex a with the
accumulated energy of 0. Assume that the winning condition is a lower-bounded
energy EnergyL (we often omit the weight function as it is given from the context).
In the vertex a Eva has two options; either to take the loop of −1 and resulting in
the energy level to drop below 0 or take the +3 edge to b. It is evident that taking
the loop will lose her the game, therefore the only winning option is to follow the
+3 edge to b. It is clear that in b is it impossible for Adam to force Eva to lose,
as the loop does not change the energy level, and the −2 edge changes the energy
level to 1. In c, there are no other option for Adam than to return the play to a.
Based on this example is the winning strategy for Eva is clear; she just always has

18

Chapter 3. Energy Games

to take the +3 edge when in vertex a, and she is thereby making her the winner
of this little game. A strategy of this type is called memoryless, as the decision
of what to do next is only based on the current state of the game. lower-bound
energy games are memoryless determined [31], meaning that it suffices to consider
memoryless strategies to determine who wins the game. This is not the case for
lower- and upper-bounded energy games as the next example will show.

Again, we use the arena in Figure 3.1. Now assume that the winning objective is
lower- and upper-bounded energy EnergyLU, with the capacity bound cap = 3. If
Eva follows the memoryless strategy from before, it is clear that she loses when she
arrives in a the second time and takes the edge to b, since the energy level increases
to 4 and breaks the capacity bound. To compensate for this, she has to bring the
energy down to 0 before taking the +3 edge to b using the −1 loop on a. This gives
her a winning strategy to the EnergyLU game, and shows that memory is required
for Eva to win the game, as she has to know the current energy level to make the
correct decision in the vertex a. We prove in this thesis that pseudo-polynomial
memory is both sufficient and necessary for Eva to win.

a

bc

3

−2

0

−1

0

Figure 3.1: Simple example of game arena with weights on edges.

A complexity overview of the following two decision problem can be found in
Table 3.1.

Decision problem. The lower-bounded energy game problem: Given a
game G = (A,EnergyL(W)), decide if Eva have a winning strategy σEva?

Decision problem. The lower- and upper-Bounded energy game: Given
a game G = (A,EnergyLU(W , cap)) decide if Eva have a winning strategy σEva?

19

3.1. Average-energy Games

Complexity of energy games
Objective 1-player 2-players

EnergyL PTIME [18] NP ∩ coNP [31, 18]
EnergyLU PSPACE-complete [61] EXPTIME-complete [18]

Table 3.1: Complexity overview of energy games.

3.1 Average-energy Games

The two energy game objectives introduced above are safety objectives that ensure
that nothing bad happens i.e. not running out of energy or exceeding some fixed
capacity. The energy objective can be used to model such safety requirements.
However, in most cases, it is desirable to make the system perform some task while
being safe. This can, for instance, be done by mixing winning objectives. An
example of this is energy parity games [38], where both a parity objective and an
energy objective must be satisfied for Eva to win.

In this thesis, we introduce another quantitative winning objective, namely average-
energy. This objective relates to the long-run average of the accumulated energy.
This objective can be directly translated into the requirements in the Hydac case
study from the Quasimodo project [29]. The case study focus on controlling an oil
pump and thereby maintaining the oil level in the tank within some given safety
limits and at the same time keeping the long term average level low as possible. An
illustration of the tank can be seen on Figure 3.2. In the case study, the environment
was given as a fixed schedule. It would, however, be possible to model much more
sophisticated non-deterministic environments using average-energy games.

Formally, the average-energy objective requires Eva to keep the long-run average of
the accumulated energy below a given threshold t:

AvgEnergy(W , t) = {v0v1v2 · · · ∈ V ω | lim sup
n→∞

1
n

∑n−1
i=0

EL(v0 · · · vi) ≤ t}

This objective is interesting by itself as it can be seen as a refinement of the total-
payoff objective, in the same way as the total-payoff is seen as a refinement of the
mean-payoff objective. This refinement is illustrated on Figure 3.3, where two plays
with the same mean-payoff and total-payoff have different average-energy. We also
show that average-energy games are memoryless determined.

We then conjoin the average-energy objectives with the lower bounded energy to
create the lower bounded average objectives

AvgEnergyL(W , t) = EnergyL(W) ∩ AvgEnergy(W , t).

20

Chapter 3. Energy Games

Figure 3.2: An illustration of the oil tank from the Hydac case study from the
Quasimodo. The objective was to keep the oil level in the tank between the two
bounds Ubound and Lbound, and at the same time keep the oil level as low as possible.
It was possible to control the pump that supplied oil to the tank in the top, but the
output from the tank was controlled by the environment.

1

2 2

−2−2

2

−2

1

2 0

0−2

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE=3

(a) Play π1 sees energy levels
(1, 3, 5, 3)ω giving an average-energy
of 3.

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE=11/3

(b) Play π2 sees energy levels
(1, 3, 5, 5, 5, 3)ω giving an average-energy
of 11/3.

Figure 3.3: Both plays have identical mean-payoff of 0 and total-payoff of 5,
however the average-energy (AE) is different for the two plays.

Similar for the lower- and upper-bounded average-energy objective

AvgEnergyLU(W , cap, t) = EnergyLU(W , cap) ∩ AvgEnergy(t).

The complexity overview of deciding the winner of these games is given in Table 3.2
below.

The complexity lower bound for the 2-player AvgEnergyL problem still remain open.

21

3.2. Finding Upper-Bounds

Complexity of Average-energy Games
Objective 1-player 2-players

AvgEnergy PTIME NP ∩ coNP
AvgEnergyLU, polynomial cap PTIME NP ∩ coNP
AvgEnergyLU, arbitrary cap PSPACE-complete EXPTIME-complete

AvgEnergyL ∈ PSPACE / NP-hard open / EXPTIME-hard

Table 3.2: Complexity overview of average-energy games.

To get one step closer to solve this problem have we analyzed the existential version
of this particular problem. This analysis lead to the finding in the following section.

3.2 Finding Upper-Bounds

We further study the average-energy games by analyzing an existential version of
the decision problem, where the average threshold is existentially quantified. We
analyze the problem of deciding whether there exists a threshold to which Eva can
bound the long-run average accumulated energy while keeping the accumulated
energy non-negative. Formally the problem is defined as follows:

Decision problem. The existential threshold problem for lower-bounded
average-energy game: Given an arena A = (V, V0, V1, E, vI) and a weight function
W : E → Z, decide if there exists a threshold t ∈ N such that Eva wins
(A,AvgEnergyL(W , t))?

Now observe the game arena on Figure 3.4. To solve the existential threshold
problem we have to determine if there exists a threshold t such that Eva wins. We
can in this simple example do this by observing the state b. From b is there a
positive cycle of +2 when going to to c and back, and there is a zero cycle going
to d and back. If d was not controlled by Adam this would solve our problem as
the path abc(bd)ω would bound the average-energy by 1.5. However, d is controlled
by Adam, and Eva does not control Adams strategy there. To ensue that Adam
does not take the −4 transition from d does Eva have to arrive there with an energy
level on 4 or above. This can be done by taking the transition from c to d and then
starting the zero loop, giving the path abc(db)ω and an average-energy of 6.5. This
can be improved if Eva instead takes the +2 cycle twice giving the path abcbc(bd)ω
with an average-energy of 3.5.

We prove that in general can this problem can be solved in doubly-exponential time.
The proof is a polynomial time translation into a upper- and lower-bounded energy

22

Chapter 3. Energy Games

ba

cd

1

2

2

3

−3 0
−4

Figure 3.4: Another example of a game arena.

game with two components, i.e each edge vector of two weights, a problem which is
known to be in 2EXPTIME.

3.2.1 Recharge Games

The model of recharge games is a variation of energy games where are all weights
are non-positive, and there are special recharge edges that recharge the energy to
some given capacity. Recharge games are similar to consumption games [24], but
here Eva picks the new energy level while traversing a recharge edge. For recharge
games we define the weight function gives a non-positive weight or a special recharge
action R, i.e., W : E → −N ∪ {R}. The recharge action R returns the energy level
to a given upper bound capacity we name this cap.

For recharge games is the energy level defined as the energy left since the last
recharge action. Formally, ELcap(v0 · · · vn) = cap + EL(x), where x is the longest
suffix of v0 · · · vn without an R-edge, i.e., W (vj , vj+1) 6= R for all (vj , vj+1) in x. All
plays start which starts with energy level cap. We can now define the objective of a
recharge game as

Recharge(W , cap) = {v0v1v2 · · · ∈ V ω | ∀n.ELcap(v0 · · · vn) ≥ 0}.

We combine recharge games with the average-energy objective given the combined
objective of average-bounded recharge games

AvgRecharge(W , cap, t) =

{v0v1v2 · · · ∈ V ω | lim sup
n→∞

1
n

n−1∑
i=0

ELcap(v0 · · · vi) ≤ t} ∩ Recharge(W , cap).

We show that this combination becomes EXPTIME-hard to solve when the average
threshold is a part of the input. To overcome the high complexity, we consider the
problem where the recharge capacity is also existentially quantified. We show that

23

3.3. Main Contributions

then problem then is solvable in polynomial time by a reduction to a three-color
parity games.

3.3 Main Contributions

We now briefly summarize the main contributions of this thesis within the area of
average-energy games.

First, we have presented a thorough study of the average-energy objective and showed
that average-energy games belong to the same complexity class as mean-payoff,
total-payoff and lower-bounded energy games. Furthermore, we have studied average-
energy games with lower- and upper-bounded energy and provided preliminary results
for the case of average-energy with a lower bound. We also provided a study of
average-energy games where the bound on the average is existentially quantified
instead of given as part of the input.

Second, we showed that this problem is equivalent to determining whether the
maximal energy level can be uniformly bounded by a strategy, a problem known to
be solvable in doubly-exponential time.

Finally, we considered a different type of energy evolution, where energy is only
consumed or reset to some fixed capacity. We showed that solving the average-
bounded variants of these games is complete for the exponential time. We also
proved that the variant where the upper bound is existentially quantified can be
solvable in polynomial time. In addition, we studied tradeoffs between the different
bounds and the memory requirements of winning strategies.

24

Papers

25

Paper A

Synchronizing Strategies under
Partial Observability

Simon Laursen Kim G. Larsen Jiří Srba
Aalborg University, Department of Computer Science, Denmark

Abstract Embedded devices usually share only partial information about
their current configurations as the communication bandwidth can be restricted.
Despite this, we may wish to bring a failed device into a given predetermined
configuration. This problem, also known as resetting or synchronizing words,
has been intensively studied for systems that do not provide any information
about their configurations. In order to capture more general scenarios, we
extend the existing theory of synchronizing words to synchronizing strategies,
and study the synchronization, short-synchronization and subset-to-subset
synchronization problems under partial observability. We provide a comprehen-
sive complexity analysis of these problems, concluding that for deterministic
systems the complexity of the problems under partial observability remains
the same as for the classical synchronization problems, whereas for nondeter-
ministic systems the complexity increases already for systems with just two
observations, as we can now encode alternation.

Publication History The paper was published in the Proceedings of the
25th International Conference on Concurrency Theory, (CONCUR 2014), in
the Lecture Notes in Computer Science, LNCS vol. 8704, pp. 188–202 by
Springer, 2014. This thesis includes a full version of the paper with all proves
and a modified layout.

27

c© 2014 Springer

The layout has been revised.

Paper A. Synchronizing Strategies under Partial Observability

A.1 Introduction

In February last year (2013), Aalborg University launched an experimental
satellite [13] designed by students. There was a failure during the initialization
phase executed by the satellite at the orbit, resulting in unknown orientation of
the solar panel. This caused significant problems with energy supply and very
limited communication capabilities of the satellite, especially when transmitting
information that is energetically more expensive than receiving it. The task
was to command the satellite from the Earth so that it returned to some
predefined well-known position.

A simplified model of the problem is depicted in Figure A.1a. In the example,
we assume for illustration purposes that there are only eight possible rotation
positions of a single solar panel, numbered by 1 to 8 in the figure. The thin
lines with a dashed surface indicate the direction the panel is facing in a given
position. This determines whether the panel is active and produces energy
(facing towards light) or inactive and does not produce any energy. The thick
line at position 5 indicates the current (unknown) position of the solar panel.
The satellite cannot communicate the exact position of the solar panel, instead
it is only capable of transmitting information as to whether the current position
produces energy (observation Active) or not (observation Inactive). The panel
can be commanded to rotate one position to the left (action L) or to the right
(action R) and our task is to bring it from any possible (unknown) position
into the position 1 where it produces most energy. As we cannot observe the
actual position of the panel, we need to find a strategy that relies only on the
fact whether the panel is Active or Inactive. Such a strategy indeed exists as
shown in Figure A.1b.

The classical concept of synchronizing words [30] for deterministic finite au-
tomata dates back more than 50 years and it concerns the existence of a
word that brings a given automaton from any of its states to a single state
(see [117, 122] for recent survey papers). However, for our example in Fig-
ure A.1a it is clear that there is no single synchronizing word—in this classical
setting—over {L,R} that can bring the panel into the same position. Instead,
we need to design a strategy that relies on a partial information about the
system, in our case on whether the panel is Active or Inactive.

A.1.1 Our Contribution

We introduce a general synthesis problem for synchronizing strategies of systems
with partial observability. We deal with this problem in the setting of finite-

29

A.1. Introduction

1

2
3

4

5

6
7

8

L

RL

R

L

R

L

R

L

R L

R

L

R

L

R

Sun

ActiveInactive

(a) Unknown orientation of the satellite’s solar panel

Synchronizing strategy that
brings the system to state 1:

if Inactive then
repeat rotate L
until Active;
else repeat rotate R
until Inactive;
rotate L;

endif
rotate L;

(b) Synch. strategy

Figure A.1: Satellite with partial observability and its synchronizing strategy.

state automata where each state has a single observation from a finite set
of observations; we call the model labelled transition system with partial
observability (LTSP). The task is to suggest a strategy for adaptive generation
of actions based on the so-far seen observations. Such a strategy should bring
the system from any possible initial state into a single synchronizing state.
We also consider two other variants of the synchronization synthesis problem
(i) with a bound on the maximal length of (runs of) the strategy (short-
synchronization) and (ii) synchronization from a given set of states to a given
set of states (subset-to-subset synchronization). We provide a comprehensive
complexity study of these problems in the setting of total deterministic (DFA),
partial deterministic (PFA) and nondeterministic (NFA) finite automata. Our
results, compared to the classical synchronization problems, are summarized
in the right column of Figure A.1.

Our first technical contribution is a translation from the synthesis of history-
dependent synchronizing strategies on LTSP to the synthesis of memoryless
winning reachability strategies for a larger two-player knowledge game. This
allows us to argue for the EXPTIME containment of the synchronization
problem on NFA. However, for DFA and PFA the knowledge game is insufficient
to obtain tight complexity upper-bounds. For this reason, and as our second
contribution, we define a notion of aggregated knowledge graph allowing us to
derive a PSPACE containment for PFA and NL containment for DFA, despite
the double-exponential size of the aggregated knowledge graph in the general
nondeterministic case.

In order to complement the complexity upper-bounds with matching lower-

30

Paper A. Synchronizing Strategies under Partial Observability

Classical synchronization Partial Observability

No information, |O| = 1 No restriction on O

Sy
nc
hr
on

iz
at
io
n

DFA NLOGSPACE-complete [30, 122] NLOGSPACE-complete (Thm. A.13)

PFA PSPACE-complete [97] PSPACE-complete (Thm. A.12)

NFA PSPACE-complete [116, 97] EXPTIME-complete (Thm. A.7, A.15)

Sh
or
t-
sy
nc
h. DFA NP-complete [58] NP-complete (Thm. A.13)

PFA PSPACE-complete [97] PSPACE-complete (Thm. A.12)

NFA PSPACE-complete [97] EXPTIME-complete (Thm. A.7, A.15)

Su
bs
et
-t
o-
su
bs
et DFA PSPACE-complete [115] PSPACE-complete (Thm. A.12)

PFA PSPACE-complete ([115]) PSPACE-complete (Thm. A.12)

NFA PSPACE-complete ([115]) EXPTIME-complete (Thm. A.7, A.14)

Table A.1: Summary of complexity results (new results are in bold).

bounds, we provide as our third contribution a novel polynomial-time reduction
from alternating linear bounded automata into the synchronization problems for
NFA with partial observability. This is achieved by showing that a combination
of the partial observability and nondeterminism can capture alternation. This
technique provides matching lower-bounds for all our three synchronization
problems on NFA. The lower-bounds for DFA and PFA are derived from the
classical problem setting.

In addition, we describe a polynomial-time reduction from a setting with
an arbitrary number of observations to an equivalent setting with just two
observations, causing only a logarithmic overhead as a factor in the size of
the system. Thus all the lower-bound results mentioned earlier remain valid
even when restricting the synchronizing strategy synthesis problem to only
two observations.

31

A.1. Introduction

A.1.2 Related Work

The study of synchronizing words initiated by Černý [30] is a variant of our more
general strategy synthesis problem where all states return the same observation,
and the existence of synchronizing words, short synchronizing words and subset-
to-subset synchronizing words have been in different contexts studied up to
now; see [117, 122] for recent surveys. The computational complexities of
word synchronization problems for DFA, PFA and NFA are summarized in left
column of Table A.1. Note that the NLOGSPACE-completeness for the classical
synchronization problem on DFA (not explicitly mentioned in the literature)
follows directly from the fact that the problem of synchronizing all states is
equivalent to checking that any given pair of states can be synchronized [30, 122].
The PSPACE containment of subset-to-subset word synchronization for NFA
and PFA follows from [115] by running the algorithm for DFA in an on-the-fly
manner, while guessing step-by-step the synchronizing path.

Through the last years there has been an increasing interest in novel settings
of the synchronization problem. Volkov et al. [64] study the problem for
deterministic automata with positive cost on transitions, and constrain the
cost of the synchronizing word. They also study a synchronization game,
where the player who wants to synchronize the system proposes only every
second character in the synchronizing word. Doyen et al. [51, 50] study the
existence of infinite synchronizing words in a probabilistic setting. The theory
of synchronizing words have also seen several practical applications, for instance
in biocomputing [9], model-based testing [27], and robotics [3].

The notion of homing sequences [99, 67] is related to the study of synchronizing
words and to our study of synchronizing strategies. A homing sequence is a
sequence of input actions that makes it possible to determine the current state
of the system by looking at the outputs from the system. Homing sequences
are studied on the model of Mealy machine, essentially a DFA where each
transition produces an output from a given finite alphabet (see [117] for a
recent survey). Homing sequences have been, among others, studied in an
adaptive variant where the next input symbol is determined by the knowledge
of the previous outputs. This is related to our synchronizing strategies that
depend on the history of observations, however, there are no complexity results
for adaptive homing sequence on nondeterministic systems.

Pomeranz and Reddy [108] suggest to combine synchronizing words and adap-
tive homing sequences. They first apply a homing sequence and then find
a word that brings the machine to one particular state. The theory is ap-
plied to sequential circuit testing for deterministic systems and their adaptive

32

Paper A. Synchronizing Strategies under Partial Observability

synchronization problem can be seen as a subclass of our systems with par-
tial observability (the output actions of a Mealy machine can be encoded as
observations).

The idea of gathering the knowledge of possible states where the system can be
after a sequence of observable actions, formalized in the notion of knowledge
game, is inspired by a similar technique from [40, 28]. Our aggregated knowl-
edge graph technique is related to the super graph construction used in [90].
The complexity of the conditional planning problem from artificial intelligence
have also recently been studied under different observability assumptions [114].

Finally, regarding our EXPTIME lower bound, similar complexity results are
available for reachability on finite games with partial observability. In [113]
the authors study reachability games where both players have only a partial
information about the current configuration of the game and show 2-EXPTIME-
hardness of deciding whether the first player has a winning strategy. Our
synchronization problem for NFA can be also seen as a game, however, here
the second player (nondeterminism) has a full information. This variant,
called semiperfect-information game, was studied in [41] for a parity objective
(including reachability) and the authors show that the problem is both in NP
and coNP. Our synchronization problem for NFA is similar to the semiperfect-
information game, however, with a very different objective of synchronizing
from any given state. This is documented by the fact that the synchronization
problem under partial observability for NFA becomes EXPTIME-complete.

A.2 Definitions

We shall now formally rephrase our problem. We define labelled transition
systems with partial observability, introduce synchronizing strategies and
formulate the three decision problems we are interested in.

Definition A.1. A labelled transition system with partial observability
(LTSP) is a quintuple T = (S,Act,E ,O, γ) where S is a set of states, Act is
an action alphabet, E ⊆ S ×Act × S is the transition relation, written s a−→ s′

whenever (s, a, s′) ∈ E , O is a nonempty set of observations, and γ : S → O is
a function mapping each state to an observation.

We shall study the synchronization problems for three natural subclasses
of LTSP, namely DFA (deterministic finite automata), PFA (partial finite
automata) and NFA (nondeterministic finite automata). An LTSP is called
NFA if S, Act and O are all finite sets. If the transition relation is also

33

A.2. Definitions

deterministic, i.e. for every s ∈ S and a ∈ Act there is at most one s′ ∈ S
such that s a−→ s′, then we call it PFA. If the transition relation is moreover
complete, i.e. for all s ∈ S and a ∈ Act there is exactly one s′ ∈ S such that
s

a−→ s′, then we have a DFA. In the rest of the paper we focus on the NFA class
and its PFA and DFA subclasses (implicitly assuming partial observability).

For the rest of this section, let T = (S,Act,E ,O, γ) be a fixed LTSP. A path
in T is a finite sequence π = s1a1s2a2 . . . an−1sn where si

ai−→ si+1 for all i,
1 ≤ i < n. The length of π is the number of transitions, denoted as |π| = n−1.
The last state sn in such a path π is referred to as last(π). The set of all
finite paths in T is denoted by paths(T). The observation sequence of π is the
unique sequence of state observations γ(π) = γ(s1)γ(s2) . . . γ(sn).

A strategy on T is a function from finite sequences of observations to next
actions to be taken, formally

σ : O+ → Act ∪ {done}

where done 6∈ Act is a special symbol signalling that the achieved path is
maximal. In the rest of the paper we consider only strategies that are feasible
and terminating. A strategy σ is feasible if the action proposed by the strategy
is executable from the last state of the path; formally we require that for every
π = s1a1s2a2 . . . an−1sn ∈ paths(T) that follows the strategy, meaning that
σ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n, either σ(γ(π)) = done or there
is at least one s′ ∈ S such that last(π) σ(γ(π))−−−−→ s′. A strategy σ is terminating
if it does not generate any infinite path, in other words there is no infinite
sequence π = s1a1s2a2 . . . such that si

ai−→ si+1 and σ(γ(s1a1s2a2 . . . si)) = ai
for all i ≥ 1.

Given a subset of states X ⊆ S and a feasible, terminating strategy σ, the set
of all maximal paths that follow the strategy σ in T and start from some state
in X, denoted by σ[X], is defined as follows:

σ[X] = {π = s1a1s2a2 . . . an−1sn ∈ paths(T) | s1 ∈ X and σ(γ(π)) = done
and σ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n } .

The set of final states reached when following σ starting from X is defined
as last(σ[X]) = {last(π) | π ∈ σ[X]} and the length of σ from X is de-
fined as length(σ[X]) = max{|π| | π ∈ σ[X]}. By length(σ) we understand
length(σ[S]).

We now define a synchronizing strategy that guarantees to bring the system
from any of its states into a single state.

34

Paper A. Synchronizing Strategies under Partial Observability

Definition A.2 (Synchronizing strategy). A strategy σ for an LTSP T =
(S,Act,E ,O,
γ) is synchronizing if σ is feasible, terminating and last(σ[S]) is a singleton
set.

Note that synchronizing strategy for NFA means that any execution of the
system (for all possible nondeterministic choices) will synchronize into the
same singleton set. It is clear that a synchronizing strategy can be arbitrarily
long as it relies on the full history of observable actions. We will now show
that this is in fact not needed as we can find strategies that do not perform
unnecessary steps.

Let T = (S,Act,E ,O, γ) be an LTSP and let ω ∈ O+ be a sequence of
observations. We define the set of possible states (called belief) where the
system can be after observing the sequence ω by

belief (ω) = {last(π) | π ∈ paths(T), γ(π) = ω} .

A strategy σ for T is belief-compatible if for all ω1, ω2 ∈ O+ with belief (ω1) =
belief (ω2) we have σ(ω1) = σ(ω2).

Lemma A.3. If there is a synchronizing strategy σ for a finite LTSP T =
(S,Act,E ,
O, γ) then T has also a belief-compatible synchronizing strategy σ′ such that
length(σ′) ≤ 2|S| and length(σ′) ≤ length(σ).

Proof. Let σ be a synchronizing strategy for T . Let ω1, ω2 ∈ O+ be such that
belief (ω1) = belief (ω2). Then the strategy σω1→ω2 defined as

σω1→ω2(ω) =
{
σ(ω2ω

′) if ω = ω1ω
′

σ(ω) otherwise

is also a synchronizing strategy for T ; a fact that follows from the definition of
σ[X] and Definition A.2.

We shall now argue that if there is a synchronizing strategy for T then there
is also one of length at most 2|S|. By contradiction assume that the shortest
synchronizing strategy σ for T has length length(σ) > 2|S|. Among such
shortest synchronizing strategies, we pick one that has the smallest number
of paths from paths(T) of length length(σ). For this strategy σ, there is now
a path π = s1a1s2a2 . . . an−1sn ∈ σ(S) where |π| = length(σ) > 2|S| such that
s1 ∈ S, σ(γ(π)) = done, and σ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n. Let
ω = γ(π) be the sequence of observations on this path. As |ω| > 2|S| and we

35

A.2. Definitions

have only 2|S| possible beliefs, necessarily ω = ω1ω
′
1 and ω1 = ω2ω

′
2 such that

ω′2 is nonempty and belief (ω1) = belief (ω2). Then the strategy σω1→ω2 is also
a synchronizing strategy for T but has a smaller number of the longest paths
(of length length(σ)) in σω1→ω2 than σ. This contradicts our assumption and
we can conclude that the shortest synchronization strategy for T has length at
most 2|S|. Clearly, length(σω1→ω2) ≤ length(σ).

Assume now a synchronizing strategy σ such that length(σ) ≤ 2|S|. Then there
are only finitely many ω1, ω2 ∈ O+ that can be observed on some path that
follows σ such that belief (ω1) = belief (ω2) and σ(ω1) 6= σ(ω2). We can now
repeatedly use the strategy substitution σω1→ω2 if |ω2| ≤ |ω1|, or σω2→ω1 if
|ω1| < |ω2|, in order to construct a belief-compatible strategy for T of length
at most 2|S| a not longer than length(σ).

We shall now define three versions of the synchronization problem studied in
this paper. The first problem simply asks about the existence of a synchronizing
strategy.

Problem A.1 (Synchronization). Given an LTSP T , is there a synchronizing
strategy for T?

The second problem of short-synchronization moreover asks about the existence
of a strategy shorter than a given length bound. This can be, for instance,
used for finding the shortest synchronizing strategy via the bisection method.

Problem A.2 (Short-Synchronization). Given an LTSP T and a bound k ∈ N,
is there a synchronizing strategy σ for T such that length(σ) ≤ k?

Finally, the general subset-to-subset synchronization problem asks to synchro-
nize only a subset of states, reaching not necessarily a single synchronizing
state but any state from a given set of final states.

Problem A.3 (Subset-to-Subset Synchronization). Given an LTSP T and
subsets Sfrom, Sto ⊆ S, is there a feasible and terminating strategy σ for T such
that last(σ[Sfrom]) ⊆ Sto?

If we restrict the set of observations to a singleton set (hence the γ function
does not provide any useful information about the current state apart from the
length of the sequence), we recover the well-known decision problems studied
in the body of literature related to the classical word synchronization (see
e.g. [122, 117]). Note that in this classical case the strategy is now simply a
fixed finite sequence of actions.

36

Paper A. Synchronizing Strategies under Partial Observability

A.3 Complexity Upper-Bounds

In this section we shall introduce the concept of knowledge game and aggregated
knowledge graph so that we can conclude with the complexity upper-bounds
for the various synchronization problems with partial observability.

A.3.1 Knowledge Game

Let T = (S,Act,E ,O, γ) be a fixed LTSP. We define the set of successors from
a given state s ∈ S under the action a ∈ Act as succ(s, a) = {s′ | s a−→ s′}. For
X ⊆ S we define

succ(X, a) =

 {s
′ ∈ succ(s, a) | s ∈ X} if succ(s, a) 6= ∅ for all s ∈ X

∅ otherwise

such that succ(X, a) is nonempty iff every state from X enables the action a.
We also define a function split : 2S → 2(2S)

split(X) = {{s ∈ X | γ(s) = o} | o ∈ O} \ ∅

that partitions a given set of states X into the equivalence classes according
to the observations that can be made.

We can now define the knowledge game, a two-player game played on a graph
where each node represents a belief (a set of states where the players can end
up by following a sequence of transitions). Given a current belief, Player 1
plays by proposing a possible action that all states in the belief can perform.
Player 2 then determines which of the possible next beliefs (partitionings) the
play continues from. Player 1 wins the knowledge game if there is a strategy
so that any play from the given initial belief reaches the same singleton belief
{s}. Formally, we define the knowledge game as follows.

Definition A.4. Given an LTSP T = (S,Act,E ,O, γ), the corresponding
knowledge game is a quadruple G(T) = (V , I,Act,⇒) where

• V = {V ∈ 2S \ ∅ | {V } = split(V)} is the set of all unsplittable beliefs,

• I = split(S) is the set of initial beliefs, and

• ⇒⊆ V × Act × V is the transition relation, written V1
a=⇒ V2 for

(V1, a, V2) ∈⇒, such that V1
a=⇒ V2 iff V2 ∈ split(succ(V1, a)).

37

A.3. Complexity Upper-Bounds

{3, 4, 5, 6, 7}

{4, 5, 6, 7}

{5, 6, 7}

{6, 7}

{3, 4, 5, 6}

{3, 4, 5}

{3, 4}

{4, 5}{5, 6}

{4, 5, 6}

{2}
{1}

{8}

{7}

{6}
{5}

{4}

{3}

L

R

L

R

L

R

L

RL

R

L

R

L

R

L

R

LL

L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

R

R L
L R

R LRL

R

L

(a) A knowledge game example rooted
at {3, 4, 5, 6, 7}

{{1, 2, 8}, {3, 4, 5, 6, 7}}

{{3}, {1, 2}, {2}, {3, 4, 5, 6}}

{{7}, {1, 8}, {2}, {3, 4, 5, 6}}
{{7}, {1, 8}, {8}, {4, 5, 6, 7}}

{{3}, {1, 2}, {8}, {4, 5, 6, 7}}

{{2}, {3}, {1}, {5, 6, 7}, {8}}

{{2}, {6, 7}, {8}}

{{1}, {7}, {8}}

{{8}}

L,L

R,L, •, L

•, R,R, L, •

R,L, •

R,L, •

L,R
R,R

R,L

...

...

...

...

...

(b) A fragment of the aggregated
knowledge graph

Figure A.2: Examples of a knowledge game and an aggregated knowledge graph.

Example A.5. In Figure A.2a we show the knowledge game graph for our
running example from Figure A.1a. We only display the part of the graph
reachable from the initial belief consisting of states {3, 4, 5, 6, 7} where the
solar panel is inactive. Assume that we want to synchronize from any of these
states into the state 8. This can be understood as a two-player game where
from the current belief Player 1 proposes an action and Player 2 picks a new
belief reachable in one step under the selected action. The question is whether
Player 1 can guarantee that any play of the game reaches the belief {8}. This
is indeed the case and the strategy of Player 1 is, for example, to repeatedly
propose the action L until the belief {8} is eventually reached.

We shall now formalize the rules of the knowledge game. A play in a knowledge
game G(T) = (V , I,Act,⇒) is a sequence of beliefs µ = V1V2V3 . . . where
V1 ∈ I and for all i ≥ 1 there is ai ∈ Act such that Vi

ai=⇒ Vi+1. The set of all
plays in G(T) is denoted Plays(G(T)).

A strategy (for Player 1) is a function ρ : V → Act. A play µ = V1V2V3 . . .

follows the strategy ρ if Vi
ρ(Vi)==⇒ Vi+1 for all i ≥ 1. Note that the strategy is

memoryless as it depends only on the current belief.

Player 1 wins the game G(T) if there is s ∈ S and a strategy ρ such that for

38

Paper A. Synchronizing Strategies under Partial Observability

every play µ = V1V2V3 . . . ∈ Plays(G(T)) that follows ρ there exists an i ≥ 1
such that Vi = {s}.

The length of a play µ = V1V2V3 . . . for reaching a singleton belief {s} is
length(µ, s) = i− 1 where i is the smallest i such that Vi = {s}. The length of
a winning strategy ρ in the game G(T) that reaches the singleton belief {s} is

length(ρ) = max
µ∈Plays(G(T)), µ follows ρ

length(µ, s) .

Theorem A.6. Let T = (S,Act,E ,O, γ) and let G(T) = (V , I,Act,⇒) be
the corresponding knowledge game where I = split(S). Then Player 1 wins the
knowledge game G(T) iff there is a synchronizing strategy for T . Moreover for
any winning strategy ρ in the game G(T) there is a synchronizing strategy σ for
T such that length(ρ) = length(σ), and for any synchronizing strategy σ for T
there is a winning strategy ρ in the game G(T) such that length(ρ) ≤ length(σ).

Proof. Assume that Player 1 wins the knowledge game G(T) with the strategy
ρ so that all plays reach the belief {s}. We want to find a synchronizing
strategy σ for T . Let the initial observation be o1 ∈ O; this gives the initial
belief V1 = {t ∈ S | γ(t) = o1}. We can now use the winning strategy ρ to
determine the first action of our synchronizing strategy σ(o1) = ρ(V1). By
executing the action ρ(V1), we get the next observation o2. Now assume that we
have a sequence of observations o1o2 . . . oi−1oi. We can inductively determine
the current belief Vi as

Vi = {t ∈ succ(Vi−1, ρ(Vi−1)) | γ(t) = oi}

for all i > 1. This gives us the synchronizing strategy

σ(o1o2 . . . oi−1oi) =
{

done if Vi = {s}
ρ(Vi) otherwise

that guarantees that all plays follow the winning strategy ρ. Hence in any play
there exists an i ≥ 1 such that Vi = {s}. By this construction it is clear that
length(ρ) = length(σ).

For the other direction, assume that there is a synchronizing strategy σ for
T . Then we know from Lemma A.3 that there exists also a belief-compatible
synchronizing strategy σ′ where length(σ′) ≤ length(σ). We want to find a
winning strategy ρ for Player 1 in G(T). As we know by construction that all
states in a belief V have the same observation, we use the notation γ(V) = o if
γ(t) = o for all t ∈ V . Let the initial belief be V1 ∈ I. We use the synchronizing

39

A.3. Complexity Upper-Bounds

strategy σ′ to determine the first action that Player 1 winning strategy should
propose by ρ(V1) = σ′(γ(V1)). Now Player 2 determines the next belief V2

such that V1
σ′(γ(V1))=====⇒ V2. In general, assume inductively that we reached a

belief Vi along the play µ = V1V2 . . . Vi. The winning strategy from Vi is given
by

ρ(Vi) = σ′(γ(V1)γ(V2) . . . γ(Vi)) .

Note that this definition makes sense because σ′ is belief-compatible (and hence
different plays in the knowledge game that lead to the same belief will propose
the same action). From the construction of the strategy and by Lemma A.3 it
is also clear that length(ρ) = length(σ′) ≤ length(σ).

We conclude with a theorem proving EXPTIME-containment of the three
synchronization problems for NFA (and hence clearly also for PFA and DFA).

Theorem A.7. The synchronization, short-synchronization and subset-to-
subset synchronization problems for NFA are in EXPTIME.

Proof. We shall first discuss the existence of synchronizing strategy. Let
T = (S,Act,E ,O, γ) and let G(T) = (V , I,Act,⇒) be the corresponding
knowledge game where I = split(S). By Theorem A.6 there is a synchronizing
strategy for T if and only if Player 1 has a winning strategy in the knowledge
game. The game G(T) is of exponential size w.r.t. the system T but we can
decide whether Player 1 has a winning strategy in G(T) in polynomial time
(in the size of G(T)) by adapting a standard backward reachability algorithm
for alternating automata. We mark some singleton belief {s} ∈ V (we try all
possible singleton beliefs if we do not succeed for {s}). Then we iteratively
mark every belief V ∈ V such that there is an action a ∈ Act enabled in V
and every V ′, where V a=⇒ V ′, is already marked. Once no more beliefs can be
marked, we check whether all initial beliefs are marked. If this is the case then
there is a winning strategy for Player 1. If on the other hand this is not the
case for any singleton belief {s} then Player 1 does not have a winning strategy.
This gives us an exponential algorithm for the synchronization problem.

Regarding the short-synchronization problem, Theorem A.6 together with
Lemma A.3 imply that there is a synchronization strategy in T of length at
most k iff there is a winning strategy for Player 1 in G(T) of length at most
k. By modifying the marking algorithm so that it for each marked belief
remembers also the length of the shortest path to the singleton belief, we can
check whether all initial beliefs are marked such that their length is at most k.

Finally, for the subset-to-subset synchronization problem from the set Sfrom
to the set Sto, we can modify the game G(T) such that the initial beliefs are

40

Paper A. Synchronizing Strategies under Partial Observability

I = split(Sfrom) and a play is winning if it reaches a belief V such that V ⊆ Sto.
The corresponding modification in the marking algorithm is straightforward.

We can so conclude that all three problems are solvable (via the knowledge
game graphs) in exponential time w.r.t. to the size of the finite LTSP T .

A.3.2 Aggregated Knowledge Graph

Knowledge games allowed us to prove EXPTIME upper-bounds for the three
synchronization problems on NFA, however, it is in general not possible to
guess winning strategies for Player 1 in polynomial space. Hence we introduce
the so-called aggregated knowledge graph where we ask a simple reachability
question (one player game). This will provide better complexity upper-bounds
for deterministic systems, despite the fact that the aggregated knowledge graph
can be exponentially larger than the knowledge game graph.

Definition A.8. Let G(T) = (V , I,Act,⇒) be a knowledge game. The
aggregated knowledge graph is a tuple AG(G(T)) = (C , C0,⇒) where

• C = 2V \ ∅ is the set of configurations (set of aggregated beliefs),

• C0 = I is the initial configuration (set of all initial beliefs), and

• ⇒⊆ C × C is the transition relation such that C1 ⇒ C2, standing for
(C1, C2) ∈⇒, is possible if for every V ∈ C1 there is an action aV ∈
Act ∪ {•} such that V aV=⇒ V ′ for at least one V ′ (by definition V •=⇒ V if
and only if |V | = 1), ending in C2 = {V ′ | V ∈ C1 and V aV=⇒ V ′}.

Example A.9. Figure A.2b shows a fragment of the aggregated knowledge
graph for our running example from Figure A.1a. The initial configuration
is the aggregation of the initial beliefs and each transition is labelled with
a sequence of actions for each belief in the aggregated configuration. The
suggested path shows how to synchronize into the state 8. Note that the action
•, allowed only on singleton beliefs, stands for the situation where the belief is
not participating in the given step.

Theorem A.10. Let G(T) = (V , I,Act,⇒) be a knowledge game and let
AG(G(T)) = (C , C0,⇒) be the corresponding aggregated knowledge graph.
Then C0 ⇒∗ {{s}} for some state s if and only if Player 1 wins the knowledge
game G(T). Moreover, for any winning strategy ρ in G(T) that reaches the
singleton belief {s} we have C0 ⇒length(ρ) {{s}}, and whenever C0 ⇒n {{s}}
then there is a winning strategy ρ in G(T) such that length(ρ) ≤ n.

41

A.3. Complexity Upper-Bounds

Proof. Assume that for some s the path η = C0 ⇒n {{s}} exists in the
aggregated knowledge graph AG(G(T)). Then there is also a path η′ = C0 ⇒n′

{{s}} such that for each belief we always propose the same action, no matter
what configuration it is in. This follows by the argument that we can use
the same strategy for each belief that appears in the aggregated knowledge
graph by following the one that makes the path shortest (reaches the belief
{s} faster). Clearly |η′| ≤ |η|. Now we construct a winning strategy ρ for
Player 1 in the knowledge game G(T) such that ρ(V) = aV where V ∈ C ∈ η′
and aV is the proposed action for the belief V in the configuration C. This is
a winning strategy for Player 1 as it reaches the belief {s}. By construction
of the strategy it is also clear that length(ρ) ≤ n.

Now in the other direction, assume that Player 1 wins the knowledge game
G(T) with the strategy ρ by bringing all plays to the belief {s} where s ∈ S.
We want to show that there is a path C0 ⇒∗ {{s}} in aggregated knowledge
graph AG(G(T)). We start with the initial configuration C0 = {V0 | V0 ∈ I}.
Assume that we already have a prefix of the path up to the configuration C.
The next configuration is then

C ′ = {V ′ | V ∈ C and V aV=⇒ V ′ where aV = ρ(V)
if V 6= {s} and aV = • otherwise } .

It is clear that this will bring us to the configuration {{s}} as all beliefs now
follow the winning strategy ρ. By counting the number of steps in the path,
we get that C0 ⇒length(ρ) {{s}}.

The aggregated knowledge graph can in general be exponentially larger than
its corresponding knowledge game as the nodes are now subsets of beliefs (that
are subsets of states). Nevertheless, we can observe that for DFA and PFA,
the size of configurations in AG(G(T)) cannot grow.

Lemma A.11. Let T be an LTSP generated by DFA or PFA. Let AG(G(T)) =
(C , C0,⇒) be the corresponding aggregated knowledge graph. Whenever
C ⇒ C ′ then ∑V ∈C |V | ≥

∑
V ′∈C′ |V ′|.

Proof. Let V ∈ C and let X = {V ′ | V aV=⇒ V ′}. It is now enough to argue
that |V | ≥ ∑V ′∈X |V ′|. Recall that V ′ ∈ X iff V ′ ∈ split(succ(V, aV)). Clearly
|succ(V, aV)| ≤ |V | for DFA and PFA. The rest follows from the fact that
the function split only partitions succ(V, aV) and hence does not increase its
size.

Theorem A.12. The synchronization, short-synchronization and subset-to-
subset synchronization problems for DFA and PFA are decidable in PSPACE.

42

Paper A. Synchronizing Strategies under Partial Observability

Proof. By Theorem A.10 and Theorem A.6 we get that we can reach the
configuration {{s}} for some s ∈ S in the aggregated graph AG(G(T)) if
and only if there is a synchronizing strategy for the given LTSP T . From
Lemma A.11 we know that for DFA and PFA the size of each aggregated
configuration reachable during any computation is bounded by the size of
the set S and therefore can be stored in polynomial space. As PSPACE
is closed under nondeterminism, the path to the configuration {{s}} for
some s ∈ S can be guessed, resulting in a polynomial-space algorithm for
the synchronizing problem. Theorem A.10 also implies that the length of
the shortest synchronizing strategy in T is the same as the length of the
shortest path to the configuration {{s}} for some s, giving us that the short-
synchronization problems for DFA and PFA are also in PSPACE. Regarding
the subset-to-subset synchronization problem from the set Sfrom to the set Sto,
we can in a straightforward manner modify the aggregated knowledge graph
so that the initial configuration is produced by splitting Sfrom according to the
observations and we end in any configuration consisting solely of beliefs V that
satisfy V ⊆ Sto (while allowing the action • from any such belief to itself).

Finally, for the synchronization and short-synchronization problems on DFA,
we can derive even better complexity upper-bounds by using the aggregated
knowledge graph.

Theorem A.13. The synchronization problem on DFA is in NLOGSPACE
and the short-synchronization problem on DFA is in NP.

Proof. Using the same arguments as in Theorem A.12, we can derive that
the question of synchronizing two given states s1 and s2 can be done in
nondeterministic logarithmic space using the aggregated knowledge graph (by
Lemma A.11 we know that on any path in the aggregated graph we need to
remember at most two states). Observe now that we can synchronize all pairs
of states independently if and only if all states can be synchronized at once (a
straightforward generalization of the result from the classical setting without
partial observability [30, 122]).

For the containment of the short-synchronization problem in NP, we first notice
that if n states can be synchronized then the shortest synchronizing strategy
has length at most (n− 1)n2. This follows from the fact that each pair-wise
synchronization takes at most n2 steps (in the aggregated knowledge graph
with configurations containing just two states we get a loop if the length of the
path exceeds n2). Clearly synchronizing one state takes zero steps. Now by
induction, assume that synchronizing the first i states into a state t requires
at most (i− 1)n2. Let s be (i + 1)’th state that we should also synchronize

43

A.4. Complexity Lower-Bounds

with. From the initial state s, we follow the strategy for synchronizing the
first i states, arriving into a state s′. Now we extend the strategy so that
we pairwise synchronize t and s′, taking at most n2 steps as argued above.
Hence to synchronize i+ 1 states we need at most (i− 1)n2 + n2 = in2 steps,
providing us with the conclusion that synchronizing n states requires a strategy
of length at most (n− 1)n2. Such a strategy can be guessed and verified in
nondeterministic polynomial time.

A.4 Complexity Lower-Bounds

We shall now describe a technique that will allow us to argue about EXPTIME-
hardness of the synchronization problems for NFA.

First, we introduce the acceptance problem of alternating linear bounded
automata that is known to be EXPTIME-complete (see e.g. [118]). For technical
convenience, we present a less standard variant of the problem where only
internal control states can read/write on the tape while the existential and
universal states that enable branching do not modify or even know the tape
content. The presented variant has the same expressive power as the standard
model.

An alternating linear bounded automaton (ALBA) is a tuple M =
(Qi, Q∀, Q∃, Q,Σ,
q0, qacc,`,a, δ1, δ2) where

• Qi is a set of internal control states,

• Q∀ is a set of universal control states,

• Q∃ is a set of existential control states,

• Q = Qi]Q∃]Q∀ is the set of all control states,

• Σ = {a, b} is the input alphabet,

• q0 ∈ Q is the initial state,

• qacc ∈ Q is the accepting state,

• δ1 : Qi× (Σ∪{`,a})→ Q× (Σ∪{`,a})×{L,R} is a transition relation
for internal states such that

– δ1(q,`) = (q′,`, R),

– δ1(q,a) = (q′,a, L),

44

Paper A. Synchronizing Strategies under Partial Observability

– δ1(q, x) = (q′, x′, D),

where q ∈ Qi, q′ ∈ Q, x, x′ 6∈ {`,a} and D ∈ {L,R},

• δ2 : (Q∃ ∪ Q∀) → Q × Q is a transition relation for existential and
universal states.

For each q ∈ Q∀∪Q∃ the transition relation δ2(q) returns a pair of two elements
(q1, q2), referred to as the first and second successor, respectively.

A configuration of an ALBAM is the current state, the position of the head
on the tape and the tape content (starting and ending with the end-markers).
We denote configurations as w1qw2 where q ∈ Q is the current state, and
w1 =`w′1 and w2 = w′2a where w′1, w′2 ∈ Σ∗ represent the tape content such
that the head points to the first letter of w2. The initial configuration for the
input word w is c0 =`q0wa. Depending on the control state a configuration
is called internal if q ∈ Qi, existential if q ∈ Q∃, universal if q ∈ Q∀ and
accepting if q = qacc.

A step of computation is a relation→ between configurations defined as follows
(where x, x′, y ∈ Σ∪{`,a}, w1, w2 ∈ (Σ∪{`,a})∗ such that all configurations
start with ` and end with a):

• w1qxw2 → w1x
′q′w2 whenever q ∈ Qi and δ1(q, x) = (q′, x′, R),

• w1yqxw2 → w1q
′yx′w2 whenever q ∈ Qi and δ1(q, x) = (q′, x′, L), and

• w1qw2 → w1q
′w2 whenever q ∈ Q∃ ∪ Q∀, δ2(q, x) = (q1, q2) and q′ = q1

or q′ = q2.

A computation tree for M on an input w ∈ Σ∗ is a possibly infinite
configuration-labelled tree rooted with the initial configuration c0 =`q0wa
such that every node labelled with a configuration c satisfies:

• if c is accepting then it is a leaf,

• if c is internal or existential then it has one child c′ such that c→ c′, and

• if c is universal then it has two children labelled with the first and the
second successor of c.

An ALBAM accepts a string w ∈ {a, b}∗ iff there is a finite computation tree
forM on w such that all leaves are accepting configurations. It is well known
that the problem whether an ALBA accepts a string w is EXPTIME-complete.

Theorem A.14. The subset-to-subset synchronization problem is EXPTIME-
hard for NFA.

45

A.4. Complexity Lower-Bounds

(q, k)

(q, k, x)

(q′, k′)

tkx ukx′

k′ = k + 1 if D = R or
k′ = k − 1 if D = L

(a) δ1(q, x) = (q′, x′, D), D ∈ {L,R}

(q, k)

(q1, k)

(q2, k)

1

2

(b) δ2(q) = (q1, q2), q ∈ Q∃

(q, k)

(q, k, 1)

(q, k, 2)

(q1, k)

(q2, k)

g

g

1

2

Observation choice1

Observation choice2

(c) δ2(q) = (q1, q2), q ∈ Q∀

(qacc, k)

sink

(|w|+1,a)(k, x)

(0,`)
$

$

$

$

Act

for x ∈ {a, b}

(d) Sink state

(k, a) (k, b)

ukb

uka

g 1

g 2

g 1

g 2

Actr
{g, ukb , tkb ,#, $}

Actr
{g, uka, tka,#, $}

(0,`) (|w|+1,a)

g 1

g 2

g 1

g 2

Act r
{g,#, $}

Act r
{g,#, $}

Observation choice1

Observation choice2

(e) Tape cell

Figure A.3: Encoding of the δ-function (k ranges over all its possible values).

46

Paper A. Synchronizing Strategies under Partial Observability

Proof. We shall now provide a polynomial-time reduction from the acceptance
problem for ALBA to synchronization problems on NFA with partial observ-
ability. Assume a given ALBAM = (Qi, Q∀, Q∃, Q,Σ, q0, qacc,`,a, δ1, δ2) and
a string w. We construct a finite LTSP (NFA) T = (S,Act,E ,O, γ) where

• S = {sink} ∪ {(q, k) | q ∈ Q, 0 ≤ k ≤ |w|+ 1} ∪
{(q, k, a), (q, k, b) | q ∈ Qi, 1 ≤ k ≤ |w|} ∪
{(q, 0,`), (q, |w|+ 1,a)} ∪
{(q, k, 1), (q, k, 2) | q ∈ Q∀, 0 ≤ k ≤ |w|+ 1} ∪
{(k, x), (k, x, 1), (k, x, 2) | 1 ≤ k ≤ |w|, x ∈ {a, b} } ∪
{(0,`), (0,`, 1), (0,`, 2)}∪
{(|w|+ 1,a), (|w|+ 1,a, 1), (|w|+ 1,a, 2)},

• Act = {tkx, ukx | 1 ≤ k ≤ |w|, x ∈ {a, b}} ∪
{t0`, u0

`, t
|w|+1
a , u

|w|+1
a } ∪ {g, 1, 2, $,#},

• O = {default, choice1, choice2}, and

• the transition relation E together with γ is given in Figure A.3. Note
that all states that are not marked with the observations choice1 or
choice2, are assigned by default the observation default.

The construction above provides a reduction to the subset-to-subset synchro-
nization problem where we assume that we synchronize from the initial states

• (q0, 1) and

• (k, xk) for all k, 0 ≤ k ≤ |w|+ 1, such that the input word w is of the
form x1x2 . . . xn and x0 =` and xn+1 =a

into the set {sink}. During the simulation of the given ALBA, we shall
preserve the invariant that there is exactly one active state of the form (q, k)
representing that we are at the control state q and the head is at position k.
Also for every tape cell at position k, we remember the current symbol stored
in each cell by being either in the state (k, a) or (k, b) (with the exception of
the end-markers that can store only one symbol).

Consider now that the active control state is (q, k). There are four cases
according to whether q is internal, existential, universal or accepting control
state.

• Let q ∈ Qi. The corresponding transitions are depicted in Figure A.3a.
The state (q, k) can perform the test action tka or tkb depending on whether
the k’th tape cell (Figure A.3e) is in the state (k, a) or (k, b), respectively.
Choosing a wrong test action means that the tape cell cannot perform the
chosen action, implying that this may not be a synchronizing strategy.

47

A.4. Complexity Lower-Bounds

After the appropriate test action was chosen, we have to necessarily
perform the update action ukx′ bringing us to the state (q′, k′) where the
head is moved accordingly and this action has to synchronize with the
k’th tape cell so that the new tape symbol x′ is updated accordingly.
Notice that any other tape cell, save the one on k’th position, simply
mimics these two actions via self-loops in their current states.

• Let q ∈ Q∃. The corresponding transitions are depicted in Figure A.3b.
Here we can freely choose the successor control state by pick the action 1
or 2 according to the first and second successor given by the δ2 function.
Clearly, all tape cells will mimic the chosen action using a self-loop.

• Let q ∈ Q∀. The corresponding transitions are depicted in Figure A.3c.
After performing the guessing action g, the system nondeterministically
decides whether to enter (q, k, 1) or (q, k, 2) and we have to investigate
the possible continuation from both situations. However, as they are in
different observation classes, we can split our strategy and design different
continuations for these two possibilities. The main point is now about
the tape cells in Figure A.3e. They have also a nondeterministic choice
about going to state with observation choice1 or choice2 but they do not
have to follow the control state choice. However, if they do not follow it,
we can observe such a behavior and design an alternative strategy for
the tape cell, continuing the simulation like if the opposite choice was
taken in the control states.

• Let q = qacc. Then the transitions in Figure A.3d apply and we can move
using the action $ into a global state called sink that is the only state
that allows to synchronize both control states and tape cells. Clearly,
any tape cell is able to perform $ and enter the synchronizing state sink
at any time, but only the accepting control state is able to enter the sink
state.

This completes the proof and we have show that the constructed subset-to-
subset synchronization problem has a synchronizing strategy if and only if
the given ALBA accepts the input string, giving us the following hardness
result.

Theorem A.15. The synchronization and short-synchronization problems
are
EXPTIME-hard for NFA.

Proof. In order to prove EXPTIME-hardness for the existence of synchronization
strategy from any given initial state, we need to introduce additional transitions

48

Paper A. Synchronizing Strategies under Partial Observability

together with a new state init as depicted in Figure A.4. These transitions add
a new action # in such a way that any synchronizing strategy has to start by
performing the action #. If any other action should be chosen instead of # then
it is impossible to synchronize the state init. It is now clear that performing
this initialization brings the system to the set of initial states in the subset-to-
subset problem discussed above, deriving the following theorem. Note that for
the short-synchronization case, we use Lemma A.3 giving us an exponential
upper-bound on the length of the shortest synchronizing strategy.

The reader may wonder whether three different observations are necessary
for proving EXPTIME-hardness of the synchronizing problems or whether one
can show the hardness only with two. By analysis of the construction, we
can observe that two observations are in fact sufficient. Moreover, there is a
general polynomial-time reduction from a given synchronization problem with
an arbitrary number of observations to just two observations, while increasing
the size of the system by only a logarithmic factor.

Theorem A.16. The synchronization, short-synchronization and subset-to-
subset synchronization problems on DFA, PFA and NFA are polynomial-time
reducible to the equivalent problems with only two observations.

Proof. Let T = (S,Act,E ,O, γ) be a given finite LTSP and let ` = dlog |O|e.
We can assume that all observations from O are written in binary and contain
exactly ` bits (including the leading zeros). Then the i’th bit of an observation
o ∈ O is denoted as oi. We construct an LTSP T ′ = (S ′,Act ′,E ′,O′, γ′) such
that

• S ′ = S ∪ {s0, s1, s2, . . . , s`−1 | s ∈ S},

• Act ′ = Act ∪ {•,#},

• E ′ = {(s, a, s1) | s′
a−→ s} ∪

{(s1, •, s2), (s2, •, s3), . . . , (s`−2, •, s`−1), (s`−1, •, s) | s ∈ S}
∪{(s1,#, s1), (s2,#, s1), (s3,#, s1), . . . , (s`−1,#, s1), (s,#, s1) | s ∈ S}
∪{(si, a, si) | s ∈ S, 1 ≤ i < `, a ∈ Act r {•,#}} ∪ {(s, •, s) | s ∈ S}
∪{(s0, a, s1) | s ∈ S, a ∈ Act},

• O′ = {0, 1}, and

• γ′(s) = γ(s)` and γ′(si) = γ(s)i for all s ∈ S and all i, 1 ≤ i < `, and
γ′(s0) = 0 for all s ∈ S.

The construction is depicted in Figure A.5. The main idea is now that instead
of entering the state s in the original system, we enter the newly added state

49

A.4. Complexity Lower-Bounds

(q0, 1)

init

(q, k, a)

(q, k)

(q, k, r)

#

#

#

#

#

for all q, k

for all q, k, a
where q ∈ Qi

for all q, k, r
where q ∈ Q∀
and r ∈
{1, 2}

(a) Control states

(k, a) (k, b)
#

#
#

#

#

#

Observation choice1

Observation choice2

(b) Tape cell if xk = a

(k, a) (k, b)
#

#

#

#

#

Observation choice1

Observation choice2

(c) Tape cell if xk = b

(k, x)
#

#

#
for (k, x) ∈
{(0,`), (|w|+1,a)}

Observation choice1

Observation choice2

(d) End-markers tape cells

Figure A.4: Initialization for the input w = x1x2 . . . xn by adding a new state init.

50

Paper A. Synchronizing Strategies under Partial Observability

s

s`−1

s`−2

s2

s1 s0

γ′(s) = b`

γ′(s`−1) = b`−1

γ′(s`−2) = b`−2

γ′(s2) = b2

γ′(s1) = b1

γ′(s0) = 0

a

•

b

•

•

•

•

#

#

#

#

Act
Act r
{•}

Act r
{•,#}

Act r
{•,#}

Act r
{•,#}

•

...

Figure A.5: New states for every s ∈ S where γ(s) = b1b2 . . . b`; the arrow labelled
with a represents incoming transitions to s and the one labelled with b outgoing
transitions from s.

s1 associated with s. Now by performing the sequence of actions •, we obtain
step-by-step the knowledge about the observation in the state s. The added
self-loops are necessary only for the case of DFA in order to have a complete
transition relation and the states s0 (not reachable from any other states) are
important only for arguing about the length of the synchronizing strategy.
Now we can show that the synchronization, short-synchronization and subset-
to-subset synchronization problems have a solution in T iff they have a solution
in T ′.

Assume a synchronizing strategy in the original LTSP T . The equivalent
strategy in T ′ will simply initially perform the action # so that is gets the
possibility to read the whole information about the observation in the given
state. After this the actions in the strategy T are separated by `-1 actions • in
order to obtain a strategy for T ′. Such a sequence provides a full information
about the original observation in the state s, allowing us to follow faithfully
the given synchronizing strategy from T also in T ′.

On the other hand, the system T ′ does not provide any additional information
by performing # compared with T ; note that after # the system T ′ must
perform the actions • until reaching the original state s as it is impossible to
synchronize the system in the newly added states s0, . . . , s`−1 and exercising
the self-loops in the newly added states does not help either. Hence any
synchronizing strategy in T ′ can be transformed into a synchronizing strategy

51

A.5. Conclusion

in T by leaving out the intermediate actions • and #.

For the short-synchronization problem for T , checking if the length of the
strategy is at most k, we will instead ask in T ′ whether there is a strategy of
length at most k · (`− 1) + 1.

A.5 Conclusion

A summary of results is provided in Table A.1, referring explicitly to theorems
with the corresponding claims. It is clear that all complexity lower-bounds
for the classical word synchronization transfer to the more general setting
with partial observability. We were able to match those lower-bounds with
corresponding upper-bounds for the cases of DFA and PFA where the transi-
tion relation is deterministic. In case of nondeterministic systems, the three
synchronization problems moved to a higher complexity class (even for systems
with just two observations) as the combination of nondeterminism with partial
observability allows us to encode alternation.

In the future work, we plan to study more general synchronization problems
where the sequences of synchronizing actions can be restricted by a logical
formula (requiring for example a certain ordering of actions), or we may want
to optimize synchronizing strategies from a quantitative point of view (find
the cheapest synchronizing strategy).

52

Paper B

Polynomial Time Decidability
of Weighted Synchronization
under Partial Observability

Simon Laursen Kim G. Larsen Jiří Srba
Aalborg University, Department of Computer Science, Denmark

Jan Křetínský
ITS Austria

Abstract We consider weighted automata with both positive and negative
integer weights on edges and study the problem of synchronization using
adaptive strategies that may only observe whether the current weight-level
is negative or nonnegative. We show that the synchronization problem is
decidable in polynomial time for deterministic weighted automata.

Publication History This paper [89] has been published in the Proceedings
of the 26th International Conference on Concurrency Theory, (CONCUR 2015),
in LIPIcs volume 42, page 142–154, by Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015. This thises includes a full version of the paper with all
proves and a modified layout.

53

The layout has been revised.

Paper B. Weighted Synchronization under Partial Observability

B.1 Introduction

The problem of synchronizing automata [30, 117, 122] studies the following
natural question: “how can we gain control over a device when its current
state is unknown?” Synchronizing automata have classically been studied in
the setting of deterministic finite automata (DFA), aiming at finding short
synchronizing words, i.e. finite sequences of input symbols that will bring the
automaton from any (unknown) state into a unique state. Here the existence
of a synchronizing word is NLOGSPACE-complete [30, 122], and polynomial
bounds were given on the length of the shortest synchronizing word. Yet,
establishing a tight bound on the length of the shortest synchronizing word
has been an open problem for the last 50 years, with Černý [30] conjecturing
that words of length at most (n− 1)2, where n is the number of states in the
DFA, are sufficient.

We consider synchronization of deterministic weighted automata (WA), where
their states are composed of locations and integer weights, and where transitions
have their associated weights from Z. In this setting, weights are simply
accumulated during the run of the system, and thus it is impossible to find
a word that will ensure synchronization to a single state: for any two states
with identical locations but different weights, e.g. (`, z) and (`, z + 1), any
word will—by the assumption of determinism—maintain the relative difference
in their weights. We therefore assume that during the synchronization, the
controller has some (minimal) information available concerning the current
weight of the system; in particular, we assume that the controller is able to
observe whether the current weight is negative or nonnegative. Under this
assumption, a solution to the synchronization problem becomes an adaptive
strategy, in the sense that the next input to be selected may be based on the
previous weight-observations made by the controller.

Our main result is that the existence of a synchronizing strategy, using only
observations of the sign of the current weight-level, is decidable in polynomial
time for deterministic WA. This result relies on a polynomial time algorithm
for detecting cycles of weight +1 and −1 in a given weighted graph.

Fig. B.1 illustrates BP (Blind Packman), a WA with 6 locations and 4 actions.
We have to find a strategy that will (under partial observability of weights)
synchronize infinitely many states of the form (`i,j, z) where `i,j is one of the 6
locations and z ∈ Z is the starting weight. First, we note that after an n-input,
BP will be in one of the 3 (top-row) locations `i,2 for i = 1, 2, 3. Given the
cyclic, horizontal structure, it is also clear that no further sequence of inputs
from the set {n, e, s,w} can provide any additional information in which of the

55

B.1. Introduction

`1,1 `2,1 `3,1

`1,2 `2,2 `3,2

`1,1

`1,2

`3,1

`3,2

e, 4 e,−2 e,−2

e, 3 e,−4 e, 2

w,−3 w, 0w,−1

w,−1 w, 5w,−2
n, 1 n, 2 n, 0

n,−1 n,−1 n, 0

s, 1 s, 2 s, 5

s,−2 s, 0 s, 2

Figure B.1: Blind Packman with moves north (n), south (s), east (e) and west
(w)

three locations we are located. However, assuming the weight-level is observed
to be nonnegative (a similar case applies if the weight-level is observed to be
negative), we may infer that BP is in a state of the form (`i,2, z) with z ≥ 0.
Noting the −1-loops from `1,2 and `2,2, it is tempting to repeatedly offer n as
input until the weight-level becomes negative. However, the presence of the
0-loop at `3,2 makes it possible that such a strategy will not terminate. Instead,
we observe that the input-word (n · e)3 will constitute a (composite) cycle in
BP that makes the weight-level drop exactly by −1, regardless as to from
which of the three top-locations the word was executed. Thus, by repeating
this input-word while constantly observing the sign of the weight-level and
terminating as soon as the weight-level becomes negative, we are able to infer
that the BP automaton is either in the location `3,2 in case the observation
changed after the input e, or in one of the states (`1,2,−1) or (`2,2,−1) if the
change happened after the input n. In the former case, we exercise the cycle
e3 until a change in observation brings us to (`3,2, 0). In the latter case, an
e-input followed by a test of the weight-level will reveal the true identity of
the state; using ±1 cycles, it is now easy to reach (`3,2, 0), thus completing the
synchronization.

As illustrated by the above example, the presence of cycles with weights +1
and −1 is essential for the synchronization under partial observability. As we
shall demonstrate, the existence of such cycles is decidable in polynomial time,
and constitutes, with a few other polynomial time checks, a necessary and
sufficient condition for the synchronization of a WA.

56

Paper B. Weighted Synchronization under Partial Observability

Related Work

Survey of results and applications for classical synchronizing words may be
found in [117, 122]. Recently, there has been an increasing interest in novel
extensions of the synchronization problem. Volkov [64] studied synchronization
games and priced synchronization on weighted automata with positive weights
and finds a synchronizing word where the worst accumulated cost is below a
given bound. In [50, 51, 53], (infinite) synchronizing words were studied in the
probabilistic settings. Synchronization of weighted timed automata was studied
in [49], where location synchronization with safety conditions on the weight
was considered, though without the requirement on the weight synchronization.
Finally, synchronization under partial observability was recently studied in [95]
but only in the context of finite automata without weights.

B.2 Definitions

We shall now formally define the synchronization problem on deterministic
and complete weighted automata.

Definition B.1 (Weighted Automaton). A (deterministic) weighted automa-
ton (WA) is a tuple A = (L,Act,E ,W) where

• L is a finite set of locations,

• Act is a finite set of actions,

• E : L× Act → L is a transition function, and

• W : L× Act → Z is a weight function.

A state of A is a pair (`, z) ∈ L × Z where ` is the current location and
z the current weight. Let S(A) be the set of all states of A. We write
(`, z) a,w−−→ (`′, z′) if E(`, a) = `′, W (`, a) = w and z′ = z + w.

A path in A is a finite sequence of states π = s0s1 . . . sn such that for all i,
0 ≤ i < n, we have si

ai,wi−−−→ si+1 for some ai ∈ Act and wi ∈ Z. The last state
sn in the path π is referred to as last(π). The set of all paths is denoted by
paths(A). For the complexity analysis in the rest of this paper, we assume a
binary encoding of integers in A.

Definition B.2 (Observation Function). An observation function γ : S(A)→
O maps each state of A to an observation from an observations set O.

57

B.2. Definitions

Assume now a given observation function γ to the set of observations O.
Let π = s0s1 . . . sn be a path in A. The observation function γ is naturally
extended to an observation sequence for π by

γ(π) = γ(s1)γ(s2) . . . γ(sn) .

Definition B.3 (Strategy). A strategy is a function σ : O+ → Act ∪ {done}
that maps a nonempty sequence of observations to a proposed action or the
symbol done 6∈ Act, signaling that no further actions will be proposed.

A path π = s0s1 . . . sn follows a strategy σ if si
ai,wi−−−→ si+1 for ai =

σ(γ(s0s1 . . . si)) and wi ∈ Z, for all i, 0 ≤ i < n. A strategy σ is termi-
nating if it does not generate any infinite path, in other words there is no
infinite sequence where all its finite prefixes follow σ.

Given a subset of states X ⊆ S(A) and a terminating strategy σ, the set of
all maximal paths that follow the strategy σ in A and start from some state
in X, denoted by σ[X], is defined as follows:

σ[X] = {π = s0s1 . . . sn ∈ paths(A) | s0 ∈ X, π follows σ and σ(γ(π)) = done} .

The set of final states reached when following σ starting from X is defined as
last(σ[X]) = {last(π) | π ∈ σ[X]}. Assuming a given observation function γ,
we can now define a synchronizing strategy that will bring the system from
any unknown initial state to the same single synchronizing state.

Definition B.4 (Synchronization). Given a WA A, a strategy σ is synchro-
nizing if σ is terminating and |last(σ[S(A)])| = 1. Further, A is synchronizable
if it admits a synchronizing strategy.

We limit our study to systems where we see no information about the current
location and have a partial observability of the current weight so that we can
distinguish whether its value is negative or nonnegative. This is the minimal
possible observation as if we cannot observe anything about the weight then
synchronization is impossible. Hence, we define the observation function γ to
the set of observations O = {<0,≥0} by

γ((`, z)) =

<0 if z < 0
≥0 if z ≥ 0 .

We are interested in deciding whether a given WA is synchronizable under this
observation function γ.

58

Paper B. Weighted Synchronization under Partial Observability

B.3 Polynomial Time Algorithm for Synchro-
nizing

Let A = (L,Act, T,W) be a WA. We write ` a,w−−→ `′ for `, `′ ∈ L whenever
E(`, a) = `′ and w = W (`, a). A cycle in A starting in `0 is a path of the form
`0

a0,w0−−−→ `1
a1,w1−−−→ . . . `n

an,wn−−−→ `0. The weight of the cycle is ∑n
i=0 wi.

We now perform a series of checks in order to test whether we can synchronize
from any possible initial state. The tests will give a necessary and sufficient
condition for synchronization. At the end, we will argue that all the checks
can be done in polynomial time. Therefore, we provide a polynomial time
algorithm for deciding synchronizability. Furthermore, if all the checks succeed,
we also construct a synchronizing strategy. It works in several phases, each
concerning some of the tests. However, we note that although our algorithm
decides synchronizability in polynomial time, the construction of a synchro-
nizing strategy as an explicit function is not possible due to the fact that the
lengths of the synchronizing sequences proposed by the strategy are unbounded
(they depend on the initial weight values). We instead provide an algorithm,
describing the unbounded strategy from any given initial state.

First, we check if the given A, viewed as a labelled directed graph, has the
following property.

Property 1. The graph A has a strongly connected component that is
reachable from any location in A.

If Property 1 is not satisfied, and such a bottom strongly connected component
does not exist, clearly there is no synchronizing strategy for A. From now on,
assume that Property 1 holds. Taking advantage of this property, we define
the first phase of the constructed synchronizing strategy σ.

. Phase 1. For every location ` let home(`) be a sequence of actions that
will bring ` into this strongly connected component and for any sequence of
actions x let `[x] be the location that we will reach from ` after performing the
sequence x (note that this is well defined due to the fact that A is determinis-
tic). Our synchronizing strategy will start by performing the action sequence
x1x2x3 . . . xn where x1 = home(`1), x2 = home(`2[x1]), x3 = home(`3[x1x2]),
. . . , xn = home(`n[x1x2 . . . xn−1]) assuming that L = {`1, `2, . . . , `n}. We shall
refer to this technique as sequentialization: intuitively, even if the initial loca-
tion is unknown, we can perform given actions for each possible initial location,
meanwhile tracking where we move if the actual initial location was different,
and execute these steps in a sequence for each possible location. /

59

B.3. Polynomial Time Algorithm for Synchronizing

Example B.5. We illustrate Phase 1 on the system below in Figure B.2. We
first execute home(`1) = a. Meanwhile both `2 and `3 move to `2. Therefore,
we proceed with home(`2) = ba. Therefore, if we started in `3 we are now in
`4, too. Since `4 is in a bottom strongly connected component, home(`4) is the
empty sequence and we are done.

`1 `2 `3

`4

a

b

b

a

a

b
a, b

Figure B.2: Example of sequentialization (the word aba will bring all locations to
`4)

Consequently, after Phase 1, we are for sure in the strongly connected compo-
nent. Within this component, we check the following property.

Property 2. Let A be strongly connected. In A, there is a cycle with weight
1 and a cycle with weight −1.

Lemma B.6. If Property 2 is not satisfied then there is no synchronizing
strategy.

Proof. Assume that A is synchronizable. Then there must be a positive and a
negative cycle in A. Further, for any location `, the states (`, 0) and (`, 1) can
be synchronized. Therefore, there is a path from both these states to some
state (`′, z) for some z ∈ Z. Since A is strongly connected, there is also a path
from (`′, z) back to the state (`, z′) for some z′ ∈ Z. Consequently, there are
two cycles from ` with weights z′ and z′ − 1, respectively; moreover, these
weights can be chosen non-zero due to existence of a positive cycle. Hence the
weights of these two cycles are relative primes and in combination with the
presence of a positive and negative cycle in A, this implies the existence of
cycles with the weights +1 and −1.

From now on, assume that A is strongly connected and Property 2 holds.
Observe that, consequently, there are +1 and −1 cycles starting and ending in
each location `. Let us denote the corresponding sequences of actions by `+

and `−. The first, and rather naive, use of these cycles is to get the weight
component of the state close to zero.

60

Paper B. Weighted Synchronization under Partial Observability

. Phase 2. We extend our strategy σ by performing the ±1 cycles until we see
a change in our observation. Assuming we start with nonnegative observation,
Phase 2 ends at the moment when a negative observation is reached (and
symmetrically for the other case). To this end, assuming L = {`1, . . . , `n}, we
employ the sequentialization technique again. We first execute the word `−1
for the −1 cycle from `1 and keep track of the resulting locations {`′1, . . . , `′n}.
Note that their weights could have increased instead, say by at most c1. Next
we execute `′2

− exactly (c1 + 1)-times, so that even if the initial location was
`2, after this many cycles the weight decreased no matter how it increased
by performing `−1 . Meanwhile `′3 changes to `′′3 and its weight could have in
total increased by at most c2. We thus execute `′′3

− exactly (c2 + 1)-times
and so on for all locations cyclically (starting again at the first location once
we went through all of them) until the weight decreases below zero. This
process terminates since whenever performing cycles for a particular location,
its weight (if we indeed started in the respective location) drops below any
previous value. /

Example B.7. We illustrate Phase 2 on the system below in Figure B.3
when the observation is nonnegative. We first execute `− = a. Meanwhile r
loops under a and increases by c1 = 3. Therefore, we proceed with repeating
r− = bab for 4 times. This in turn makes ` return again to ` with value
increased by c2 = 4 · 3 = 12. Next we repeat `− for 13 times etc.

` r

b, 0

b, 0
a, −1 a, 3

Figure B.3: Example illustrating Phase 2

We are now guaranteed that right after Phase 2, the observation has just
changed. Therefore, we are now in a state (`, z) for some ` ∈ L and

0 ≤ z < M if γ((`, z)) = ≥0 or −M ≤ z < 0 if γ((`, z)) = <0

where M is the largest absolute value of any weight used in A. Therefore,
there are finitely many states we can be at. Now that we have a bound how
far we are from zero, we can make a better use of ±1 cycles and derive for
each location, where we possibly might be at, its weight.

. Phase 3. Once again, we employ sequentialization. Assuming first that we
are in location `1 ∈ L of a state (`1, z) with −M ≤ z < M , we can perform

61

B.3. Polynomial Time Algorithm for Synchronizing

a sequence of actions corresponding to −1 or +1 cycle from `1 (depending
on whether γ((`1, z)) = ≥0 or γ((`1, z)) = <0) until the observation changes
at the end of the cycle when we are again in `1. If we indeed started in the
location `1, we know that we are now in the state (`1,−1) if γ((`1, z)) = ≥0,
or (`1, 0) if γ((`1, z)) = <0. If the weight in the reached states did not change
from nonnegative to negative (or the other way round) even after performing
M cycles, we know for sure that we were not in the location `1. The situation
where we started in a different location than `1 and the weight observation
still changed as expected simply adds an extra (false) hypothesis that can be
eliminated (as shown later on in this section).

Now consider what would happen, until now, if we were instead in location
`2 ∈ L at the moment before we started to perform the −1 or +1 cycles for
`1. After playing according to the strategy above, we would be now in a
possibly different location `′2 with weight in the range [−M ′,M ′] where M ′

can be computed from M and the strategy performed so far. We can now start
performing −1 or +1 cycle from `′2 exactly as before in order to determine the
exact weight in this location (provided we started in `2) and we continue like
this with handling `3 etc., for each location in L. /

Example B.8. We illustrate Phase 3 on the system below in Figure B.4.
If the observation is nonnegative, the current weight is at most 2 and we
start with repeating bbaa, a −1 cycle for `, for at most M = 3 times. If the
observation remains nonnegative after this sequence (case 1) we must be in
r. Otherwise (case 2), we stop when the observation changes and if we are in
` the current weight is −1. Meanwhile r returned back to r and could have
increased its weight to at most 5 in case 2. Then we proceed with repeating
bbaa at most 6 times to get for sure to (r,−1). In case 1, the observation is
negative and the weight is at least −2. Hence, we repeat aab, a +1 cycle for r.
Say that the observation changes after two repetitions. Then we are either in
(r, 0) or in the meanwhile achieved (`,−3). (The latter is, however, impossible
here since the observation would remain negative.)

` r

b, 0

b, 3
a, −2 a, −1

Figure B.4: Example illustrating Phase 3

We conclude that after Phase 3 we must be in one of the states from the set

{(`1, z1), (`2, z2), . . . , (`n, zn)}

62

Paper B. Weighted Synchronization under Partial Observability

`1

`2

r1

r2 r3

r4

a, k

b, 3

a, −k + 1 b, −k − 1 a, 0
b, 3

a, 1
b, −1

a, 0

b, 3

a, 1
b, −1

(`1, r1) (`2, r2) (`1, r3) (`2, r4)

.

a, k

b, 0

a, −k b, −k a, k

b, 0

a, −k b, −k

Figure B.5: Example of difference graph

called the hypothesis set, where all zi’s are exactly known. We can w.l.o.g.
assume that all locations in the assumption are pairwise different. Indeed,
we can perform a number of ±1 cycles from the location that appears in the
hypothesis set more times and determine which one of the weights is still
feasible (at most one is). Note that the size of the hypothesis set is thus at
most |L|.

The next task is to distinguish between these hypotheses. For each pair of
locations, assuming their weights from the hypothesis set, there must be a
way to synchronize them. We present three tests such that at least one of
them must be passed by each pair. All tests refer to the following notion of
difference graph.

Definition B.9 (Difference Graph). The difference graph of a WA A is a
weighted graph GA = (V,E) with E ⊆ V × Z× V such that V = L× L, and
for every a ∈ Act we have

(
(`, `′),W (`, a)−W (`′, a), (E(`, a),E(`′, a))

)
∈ E.

In other words, GA is a synchronous product of two A’s, where each edge
weight is the difference of edge weights in the first and the second component.

Example B.10. Consider the system on the upper part of Figure B.5,
parametrized by k ∈ Z. We depict a part of its difference graph on the
lower part of the figure.

63

B.3. Polynomial Time Algorithm for Synchronizing

We have already seen how to distinguish states with the same location using
±1 cycles. For all pairs of locations (`1, `2) where `1 6= `2, we run the following
three tests.

Property 3. There is a path in GA from (`1, `2) to (`, `) for some ` ∈ L.

Property 4. There is a path in GA from (`1, `2) to (`′1, `′2) such that there is
a cycle of nonzero weight (positive or negative) in GA starting in (`′1, `′2).

In order to define the last Property 5, we need additional notions and reasoning.
If Property 4 is not satisfied for a given pair (`1, `2) then every cycle in GA
reachable from (`1, `2) has zero weight. Therefore, whenever any cycle C in
GA is performed in A starting from location `1 or `2, the weight changes in
both cases by the same value, called the projected weight P(C) of C. Although
GA may be disconnected, we may w.l.o.g. assume that (`1, `2) is a node in GA
that is a part of some strongly connected component (otherwise, we bring it
there, using sequentialization).

Lemma B.11. For every strongly connected component S of GA satisfying
Property 2 and not satisfying Property 4, there is a number p such that
1 ≤ p ≤ |L| and for any node (pair of locations) in S there are cycles C+, C−

starting in this node with P(C+) = p and P(C−) = −p. Moreover, such p can
be computed in polynomial time.

Proof. Let (`1, `2) be an arbitrary node in S. Due to Property 2, there is a
cycle from `1 in A with weight +1. We repeatedly perform this +1 cycle and
follow the same behaviour from (`1, `2) in GA. At the end of each cycle, the
first component in GA will be in the location `1 and the second component in
one of the |L| possible locations. By the pigeon-hole principle, after performing
the +1 cycle at most |L| times, we will find a repeated pair in GA. Hence
we found a cycle C+ in GA with zero weight in GA, due to the violation of
Property 4, and with the projected weight 0 < P(C+) ≤ |L|. By the same
arguments, but using the fact about the existence of −1 cycle in A, we can
find a cycle C− in GA with the projected weight 0 > P(C−) ≥ −|L|.

Let us now argue that for each node we can choose cycles with absolute weights
equal to a fixed integer. Let pmin := min{|P(C)| | C is a cycle in S} denote
the smallest projection over all cycles in the strongly connected component S.
We claim that for any pair of states (`1, `2) in S, there are cycles in S starting in
(`1, `2) with projected weights pmin and −pmin. Indeed, note that there is a cycle
C in S with |P(C)| = pmin and there are cyclesD+ andD− from (`, `′) that visit
some state of C and have positive and negative projected weight, respectively.

64

Paper B. Weighted Synchronization under Partial Observability

Now by repeating C on the way either in D+ or in D−, we construct cycles E+

and E− with 0 < P(E+) ≤ pmin and 0 > P(E−) ≥ −pmin, respectively. By
minimality of pmin, we obtain P(E+) = pmin and P(E−) = −pmin. Note that,
moreover, for each cycle C is S, P(C) is a multiple of pmin. And vice versa, for
each multiple of pmin, there is a cycle with such projected weight in any node
of S. Therefore, we can perform the pigeon-hole construction of a cycle (in
polynomial time), obtaining a weight 0 < p ≤ |L|, and we are guaranteed that
from each node there are cycles with projected weights p and −p, respectively
(although p is not necessarily minimal).

Consequently, for each strongly connected component S, we have 0 < p ≤ |L|.
For S, we define a reachability problem on a graph AS = (V,→) where

• V = (L× {0, . . . , p− 1})× (L× {0, . . . , p− 1}) ∪ {separated}, and

• for each v =
(
(`1, z1), (`2, z2)

)
and a ∈ Act, let v′ =

(
(`′1, z′1), (`′2, z′2)

)
where `′1 = E(`1, a), `′2 = E(`2, a) and z′1 = z1 + W (`1, a) + α · p and
z′2 = z2 + W (`2, a) + α · p for the unique α ∈ Z such that the larger of
z′1, z

′
2 lies in the interval [0, p− 1]; we set

– v → v′ if v′ ∈ V , i.e. the lower weight is also nonnegative, and

– v → separated, otherwise, i.e. the lower weight is negative.

We say that the graph AS is distinguishing for a pair of locations (`1, `2) ∈ S
if from any initial node

(
(`1, z1), (`2, z2)

)
, for each 0 ≤ z1, z2 ≤ p− 1, we can

reach the node separated. Note that the size of AS is at most |L|4 + 1, hence
polynomial in |A|. Now we state the final test.

Property 5. If (`1, `2) belongs to a strongly connected component S of GA
then the graph AS is distinguishing for (`1, `2).

Example B.12. Consider the difference graph of Figure B.5. Observe that
there is no path from (`1, r1) to a pair with identical components, as well
as no nonzero cycle. The length p is equal 2 here. If k ≥ 2 then we have
((`1, 0), (r1, 0)) → separated as action a immediately creates a large enough
difference. If k = 1, then separated is still reachable from ((`1, 0), (r1, 0)), but
only after aa is taken. Then both weights are 1 and the next action a creates
the distinguishing difference as the weights would now be 2, 1, i.e. transformed
to 0,−1.

Supposing each pair of locations satisfies Property 3 or Property 4 or Property 5,
we can iteratively decrease the size of the hypothesis set until it becomes a
singleton as shown in the next phase.

65

B.3. Polynomial Time Algorithm for Synchronizing

. Phase 4. We employ sequentialization again. We pick any two states from
the current hypothesis set and eliminate at least one of them as described
below. Meanwhile, we update all remaining states from the hypothesis set to
their current states. We repeat this procedure until the hypothesis set becomes
a singleton. Let (`1, z1) and (`2, z2) be the currently explored pair from the
hypothesis set.

First, if Property 3 holds we perform the sequence of actions that brings both
locations into a single location. Afterwards, if their respective weights are
different, using the ±1 cycles, we detect at least one of the weights impossible
as above. Thus we decrease the size of the hypothesis set.

Second, if Property 4 holds then we can extend our strategy σ by executing the
sequence of actions that brings (`1, `2) to some (`′1, `′2) where we can repeatedly
execute actions on the nonzero cycle in GA until the weights in the pair of
states reached after this sequence are sufficiently (see below) far away from
each other. Assume w.l.o.g. that the weights z′1, z′2 of the two reached states
are both positive and z′1 < z′2 (the other situations are symmetric). Now
from the location with the lower weight (`′1), we enter a simple cycle in A
with the minimal (negative) weight and start executing it. This ensures that
if we started from `1 or `2, then the observation will change to negative in
n1 or n2 steps, respectively, where n1 < n2 (since |z′2 − z′1| was sufficiently
large) and we can compute these numbers. If the observation changes after
exactly n1 steps, we eliminate the state corresponding to `2 from the hypothesis
set. If the observation changes after exactly n2 steps, we eliminate the state
corresponding to `1 from the hypothesis set. If the observation changes after a
different number of steps, we eliminate both.

Third, let Property 5 hold (and Property 4 not) and (`1, `2) be in a strongly
connected component S of GA. By Lemma B.11, we have zero cycles in AS
with projected weights p and −p where 0 < p ≤ |L|. We perform these
cycles until the larger weight is in [0, p − 1]. If the lower weight is negative
at this moment, the current observation eliminates one of the hypotheses.
Otherwise, the weights in both states are in [0, p− 1]. Due to Property 5 we
have a strategy to reach separated in AS, inducing a strategy in A by inserting
the −p and p cycles. Upon reaching separated in AS, the observation in A
proves one of the two hypotheses impossible. (If at any moment throughout
the process, an unexpected change of observation occurs, we eliminate the
respective hypothesis from the set immediately.)

Once the hypothesis set is a singleton, we know precisely the current state.
Finally, we deterministically reach a fixed location and fixed weight (by per-
forming ±1 cycles) and thus synchronize. /

66

Paper B. Weighted Synchronization under Partial Observability

The stated properties are not only sufficient, but also necessary conditions for
synchronizability:

Lemma B.13. Let A be a strongly connected WA satisfying Property 2.
Then A is synchronizable if and only if for each pair of locations (`1, `2) either
Property 3 or Property 4 or Property 5 is satisfied.

Proof. The “if”-part follows from the previously constructed synchronizing
strategy. For the “only-if”-part, assume that there is a pair (`1, `2) satisfying
neither Property 3, nor Property 4, nor Property 5. By the last one, there are
weights z1, z2 ∈ [0, p− 1] such that the node separated is not reachable from
the configuration init =

(
(`1, z1), (`2, z2)

)
in the graph Ap. For a contradiction,

assume that A admits a synchronizing strategy σ. When σ is applied to
initial states (`1, z1) and (`2, z2), we obtain two paths π1 and π2, inducing two
sequences of observations γ(π1) and γ(π2). Comparing the respective elements
in the two sequences, there are two cases.

In the first case, observations will never differ. Since σ is synchronizing,
it brings both states (`1, z1) and (`2, z2) eventually into the same state, in
particular to the same location, witnessing Property 3 and contradicting to
our assumption.

In the second case, after a certain number of steps, the observations of the
current states (`′1, z′1) and (`′2, z′2) of the two path will differ, w.l.o.g. z′1 < 0 ≤ z′2.
Since Property 4 is not satisfied, by Lemma B.11 there are cycles increasing
and decreasing weight in both `1 and `2 by p. The two paths π1, π2 produced
by the strategy σ in A induce two sequences π̂1, π̂2 where the ith elements are
both increased/decreased by αi · p for some αi ∈ Z so that the larger one is in
[0, p− 1]. These sequences straightforwardly induce a path in AS, where S is
the strongly connected component of init. Since separated cannot be reached
from init, the smaller weight is always in [0, p − 1], too. Let ẑ′1, ẑ′2 denote
the weights in AS when σ achieves z′1, z′2. Since z′2 ≥ 0, ẑ′2 < p, and ẑ′2 ≡ z′2
(mod p), we obtain ẑ′2 ≤ z′2. Therefore, by ẑ′2− ẑ′1 = z′2− z′1 we also get ẑ′1 ≤ z′1.
Since z′1 < 0, we obtain ẑ′1 < 0, a contradiction.

B.4 Complexity

We can now state our main theorem:

Theorem B.14. The synchronizability problem for deterministic weighted
automata is decidable in polynomial time.

67

B.4. Complexity

Proof. Properties 1-5 form sufficient and necessary conditions for the existence
of a synchronizing strategy for A by Lemma B.6 and Lemma B.13. Moreover,
all properties can be verified in polynomial time. Indeed, the size of GA
is polynomial in |A| and p necessary for constructing AS is computable in
polynomial time by Lemma B.6, and the presence of ±1 cycles is decided in
polynomial time by Theorem B.17 as discussed in the rest of this section.

We now prove that the presence of ±1 cycles can be decided in polynomial
time. We assume a weighted graph G = (V,E) where V is a finite set of nodes
and E ⊆ V × Z× V are the edges written as u w−→ v whenever (u,w, v) ∈ E.
A path in G is a sequence of edges v0

w0−→ v1
w1−→ . . .

wn−1−−−→ vn. A weight of a
path π is defined as |π| = ∑n−1

i=0 wi. A k-cycle is a path π where v0 = vn such
that k = |π|.

Remark B.15. We first briefly discuss related problems and point to severe
differences, preventing us from adapting the existing results. On the one hand,
we note that the problem whether there is a k-cycle, where k is a part of
the input, is NP-hard (see Section B.6). On the other hand, it is a classical
result [87] that existence of 0-cycles is decidable in polynomial time. The
result can be proven by a reduction to linear programming. The idea is the
following. For each transition, there is a variable encoding the frequency of the
transition on the desired cycle. Encoding of Kirchhoff’s flow-preservation laws
then ensures that the frequencies indeed induce a cycle. Finally, the sum of
transition weights multiplied by the frequencies is required to be 0. From every
rational solution, we can by multiplication obtain an integer solution, and
thus a realizable cycle. Since 0 multiplied by any number remains 0, we thus
obtain a 0-cycle. In contrast, in our setting, this idea cannot be used. Indeed,
suppose we require the frequency-weighted sum of edge-weights to be 1. Since
the frequencies and thus also the number 1 must be multiplied by an a priori
unknown integer, in order to obtain an integer solution, the resulting total
weight is not 1. Asking instead directly for an integer solution to the system
is an instance of integer linear programming, which is an NP-hard problem.
Instead of using linear programming, we employ a number theoretic arguments
and exploit Dijkstra’s shortest path algorithm on graphs where weights are
counted modulo various numbers. Finally, note that although we can decide
the existence of ±1-cycles in polynomial time, the length (number of edges)
of the shortest one may still be exponential. For instance, consider a single
vertex with two self-loops labelled by 2n + 1 and −2. 4

The discussion suggests that number theoretic techniques have to be applied.
We reduce our problem to the problem whether the greatest common divisor

68

Paper B. Weighted Synchronization under Partial Observability

of all cycles in a graph is 1. Formally, for a weighted graph G, let the period
gcd(G) denote gcd{k | k ∈ Z, G has a k-cycle}.

Proposition B.16. For every strongly connected weighted graph G, there is
a 1-cycle and a −1-cycle in G if and only if there is a positive and a negative
cycle in G and gcd(G) = 1.

Proof. The ‘Only-if’ direction is trivial. For the ‘If’ direction, gcd(G) = 1
yields by Bézout’s identity an equality

1 = α1 · k1 + · · ·+ αn · km (B.1)

for some m ∈ N, αi ∈ Z, and ki being the weight of some cycle ci in G, and
where, moreover, some kp > 0 and some kn < 0. Note that these numbers can
be extracted using the extended Euclidean algorithm. First, we argue, we can
choose all αi ≥ 0 so that Equation (B.1) still holds.

Whenever αi < 0 with ki positive, we increase αi by x · (−kn) for some x ∈ N
so that it becomes positive. Further, we increase αn by x · ki, thus preserving
Equation (B.1). For negative ki, we proceed similarly, using kp and αp instead.
Since this procedure only increases α’s, they all eventually become positive.

Nonnegative coefficients αi determine the number of repetitions of each cycle
ci. Since these cycles may be disconnected, this does not yield a single 1-
cycle yet. To this end, we consider a negative cycle visiting each vertex of
G, guaranteed by assumptions. Let −ω denote its weight. We construct a
1-cycle by executing this cycle and on the way, whenever reaching a vertex
where the cycle ci originates, we execute ci for (ω + 1) · αi times. A −1-cycle
is constructed similarly.

Theorem B.17. The presence of both a 1-cycle and at the same time a
−1-cycle in a weighted graph G is decidable in polynomial time. Moreover,
such cycles can be effectively constructed.

Proof. Deciding presence of a negative cycle and producing a witness can
be done in polynomial time using, for instance, Bellman-Ford algorithm (see
e.g. [8]); the same holds for positive cycles by swapping the signs.

The period of a graph can be computed in polynomial time, too. Indeed, the
result for unweighted graphs (all weights are one) was proven in [84]. Further,
[4] suggests an extension of the technique to weighted graphs. Since [84] is to
the best of our knowledge not accessible electronically (the only hardcopy of
the report is located at library of Stanford University) and the correctness of
the extension to weighted graphs is not proven in [4], we also provide our own
proof, using supposedly different techniques. Section B.5 gives the details.

69

B.5. Algorithm for Finding Period gcd(G) of Graph G

Remark B.18. The polynomial time algorithm for deciding synchronizability
is relying only a single observation, testing whether the accumulated weight is
negative or nonnegative. In a more general setting, we may consider a richer
set of observations checking whether the weights are less-than/greater-or-equal
to a given number of integer values. The techniques in this paper can be
directly reused to handle this more generation situation and the only check
that must be modified is Property 5. Here, if some observations are far away
from each other (the integers that they test have distance more than p) then
it is sufficient to check if at least of them succeeds, otherwise the graph AS is
extended to include weights in the range [0, kp− 1] where k is the number of
observations that are close to each other so that all of them are considered in
the check for distinguishability of a given pair of locations. As the observations
are part of the input (of the problem description), this still creates a graph
with only polynomially many nodes.

B.5 Algorithm for Finding Period gcd(G) of
Graph G

We show how to compute the period (gcd of all cycles) of a weighted graph.
Although it is actually sufficient to examine simple cycles in the graph, there
are still exponentially many of them. Hence, we compute gcd(G) in a more
efficient way by Algorithm B.1.

The idea is to pick any cycle, say with weight ω (for simplicity of notation,
assume it is positive). If we knew the primal decomposition ω = pk1

1 · · · pkn
n ,

we could search, for each pi, for a cycle with weight not divisible by pi. If we
find such a cycle for each i, then gcd(G) = 1. However, prime decomposition
is not known to be computable in polynomial time. Therefore, we look instead
for a cycle with an arbitrary weight ω̄ not divisible by ω, i.e. ω̄ 6≡ 0 (mod ω).
We use gcd(ω, ω̄) as the new ω and iterate this procedure until all cycles have
weight divisible by the current ω. Intuitively, ω̄ eliminates at least one factor
from the primal decomposition, although we cannot upfront determine which
one.

The invariant of Algorithm B.1 is that gcd(G) divides ω, following from
gcd(G) = gcd(gcd(G), gcd(ω, ω̄)) for any ω̄-cycle. Further, whenever ω 6=
gcd(G), there is an ω̄-cycle with gcd(ω̄, ω) 6= ω, which is thus found in line 2,
implying partial correctness of the algorithm. Termination follows from the
unique finite primal decomposition by the fundamental theorem of arithmetic.

70

Paper B. Weighted Synchronization under Partial Observability

Algorithm B.1 Computation of gcd(G) for a weighted graph G
Input: Weighted graph G = (V,E)
Output: gcd(G)
1: Pick an arbitrary simple cycle in G with positive weight, denoted by ω
2: while there is ω̄-cycle with ω̄ 6≡ 0 (mod ω) do . gcd(ω̄, ω) 6= ω

3: ω ← gcd(ω, ω̄) . using e.g. Euclidean algorithm
4: return ω

We now implement the test in line 2, returning the value ω̄, by Algorithm B.2.
Instead of finding an ω̄-cycle with ω̄ 6≡ 0 (mod ω), we decompose the cycle
into an edge and the remaining path that form the cycle.

Algorithm B.2 Detection of a cycle with weight not divisible by ω
Input: Weighted graph G = (V,E), a number ω ∈ N
Output: Weight ω̄ of some cycle in G with ω̄ 6≡ 0 (mod ω), ff if there is none
1: for all u x→ v in G do
2: if there is a y-path from v to u with y 6≡ −x (mod ω) then
3: return x+ y

4: return ff

This small trick allows us to use a modification of Dijkstra’s algorithm for
shortest paths. This modification is inspired by [71], where a similar idea was
used in the context of minimum cycle bases.

Definition B.19. For d ∈ Z and p ∈ N, a path π is a (d, p)-path if |π| 6≡ d

(mod p).

In line 2 of Algorithm B.2, we ask for the existence of a (−x, ω)-path. We find
more convenient to be more specific and, in Algorithm B.3, we compute in
some sense the shortest (d, p)-path. In order to avoid problems with negative
weights in the context of shortest paths, we change every edge u w−→ v in G
into u w′−→ v where w′ = w mod p, i.e. we modify its weight so that the new
weight w′ belongs to the interval [0, p) and satisfies w′ ≡ w (mod p). Clearly,
the set of (d, p)-paths stays the same under this transformation. We denote
the resulting weighted graph by G mod p.

Given vertices start and target, Algorithm B.3 first computes the shortest
paths πv from start to every node v in G mod p. If the shortest path to target
happens to be a (d, p)-path, we are done. Otherwise, for every vertex v, we
compute the shortest non-Dijkstra path, i.e. the shortest path to v with a
remainder modulo p different from that of |πv|. Technically, in a Dijkstra-like
computation, keyv stores the weight of the current shortest non-Dijkstra path

71

B.5. Algorithm for Finding Period gcd(G) of Graph G

Algorithm B.3 Dijkstra’s algorithm modified for the shortest (d, p)-path
Input: Weighted graph G = (V,E), start, target ∈ V , d ∈ Z, p ∈ N
Output: Weight of a shortest path π in G mod p from start to target with |π| 6≡ d

(mod p), ff if there is none
1: G← G mod p . constructing G mod p with only positive weights
2: for each v ∈ V , compute the shortest path πv from start to v

. using e.g. Dijkstra’s algorithm
3: if |πtarget | 6≡ d (mod p) then
4: return |πtarget |
5: else
6: for all v ∈ V do
7: keyv ← min{|πu|+ w | u w→ v, |πu|+ w 6≡ |πv| (mod p)} . min ∅ =∞
8: enqueue all v ∈ V with keyv <∞ to the priority queue Q ordered by key
9: while Q 6= ∅ do

10: u← dequeue from Q

11: for all u w→ v do
12: k ← keyu + w

13: if k < keyv and k 6≡ |πv| (mod p) then
14: keyv ← k

15: enqueue v to Q
16: if keytarget =∞ then return ff
17: else return keytarget

to v, i.e. keyv 6≡ |πv| (mod p). This ensures that we always have an alternative
remainder to the one given by |πv|. Consequently, either |πv| or keyv will
always have a remainder modulo p different from d. Formally, correctness of
Algorithm B.3 is a consequence of the following lemma:

Lemma B.20. Every shortest non-Dijkstra path from u to v is

a) either of the form πs
w→ v, where πs is a shortest path from u to s,

b) or ρs w→ v where ρs is a shortest non-Dijkstra path from u to s.

Proof. Suppose σ w→ v is a shortest non-Dijkstra path from u to v and the
condition a) does not hold, i.e. |σ| > |πs| where s = last(σ). We want to
prove that then condition b) must hold. Since πs w→ v is shorter than a
shortest non-Dijkstra path σ w→ v, it cannot be a non-Dijkstra path and hence
|πs|+ w ≡ |πv| (mod p). Therefore, for any non-Dijkstra path σ′ from u to s,
i.e. with |σ′| 6≡ |πs| (mod p), we thus obtain |σ′|+w 6≡ |πv| (mod p), implying
σ′

w→ v is a non-Dijkstra path. Consequently, the no n-Dijkstra path σ must
be a shortest one.

72

Paper B. Weighted Synchronization under Partial Observability

In summary, Algorithm B.2 decides in polynomial time for a given graph G
and a weight ω whether G has a ω̄-cycle such that ω̄ 6≡ 0 (mod ω). The use
of Algorithm B.3 as a subroutine for line 2 is correct due to the fact that (i)
every cycle in G has the same value in G mod ω modulo ω and (ii) whenever
there is a (d, p)-path between two nodes, there is also a shortest one.

B.6 Detecting k-Cycles in Weighted Graphs
is NP-Hard

We want to show that given a weighted graph G and an integer k, the existence
of a k-cycle in G is NP-hard. The folklore reduction from the subset sum
problem [118] to the existence of a path of a given weight k in a weighted
graph must be slighly modified in order to work also for cycles.

. . .
x1

0

x2

0

xn

0

T + 1

Figure B.6: Subset sum is solvable if and only if there is a (2T + 1)-cycle.

Lemma B.21. Given a weighted graph G and an integer k, the problem
whether G contains a k-cycle is NP-hard.

Proof. We provide a reduction from the subset sum problem. Given an instance
of subset sum ({x1, x2, . . . , xn}, T), where T ∈ N and xi ∈ N for all i, 1 ≤ i ≤ n,
the subset sum question is whether there is a subset X ⊆ {x1, x2, . . . , xn} such
that ∑X = T . From the subset sum instance, we construct a weighted graph
G as in Fig. B.6. Clearly, the subset sum instance has a solution if and only if
there is a (2T + 1)-cycle in G. Notice that the extra edge with weight T + 1
is necessary as it allows to take the cycle only once in order to compose the
remaining number T from the edges with weights xi, 1 ≤ i ≤ n. Should the
cycle be taken more than once, its weight will for sure be at least 2T + 2 and
hence it will not be a (2T + 1)-cycle.

73

B.7. Conclusion

B.7 Conclusion

We have shown that the synchronization problem for deterministic WA under
(minimal) partial observability is decidable in polynomial time. This result
is based on a polynomial time algorithm for deciding the existence of +1
and −1 cycles in a weighted graph and states five necessary and sufficient
conditions for synchronizability. All conditions are verifiable in polynomial
time, despite the fact that the length of the resulting synchronization strategy
is unbounded (as it depends on the initial weight values). The presented
techniques are general and allow for a straightforward adaptation to the
situation when more observations become available. Future research will
include nontrivial extensions to nondeterministic WA and synchronization
under safety constraints, e.g. constraints on the weight-levels encountered
during the synchronization.

Acknowledgments. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement 601148 (CASSTING), EU FP7 FET project SENSA-
TION, Sino-Danish Basic Research Center IDAE4CPS, the European Research
Council (ERC) under grant agreement 267989 (QUAREM), the Austrian Sci-
ence Fund (FWF) project S11402-N23 (RiSE) and Z211-N23 (Wittgenstein
Award), the Czech Science Foundation under grant agreement P202/12/G061,
and People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) REA Grant No 291734.

74

Paper C

Average-energy Games

Simon Laursen Kim G. Larsen
Aalborg University, Department of Computer Science, Denmark

Patricia Bouyer Nicolas Markey Mickael Randour
LSV – CNRS & ENS Cachan, France

Mickael Randour
ULB - Université libre de Bruxelles, Belgium

Abstract Two-player quantitative zero-sum games provide a natural frame-
work to synthesize controllers with performance guarantees for reactive systems
within an uncontrollable environment. Classical settings include mean-payoff
games, where the objective is to optimize the long-run average gain per action,
and energy games, where the system has to avoid running out of energy. We
study average-energy games, where the goal is to optimize the long-run average
of the accumulated energy. We show that this objective arises naturally in
several applications, and that it yields interesting connections with previous
concepts in the literature. We prove that deciding the winner in such games
is in NP ∩ coNP and at least as hard as solving mean-payoff games, and we
establish that memoryless strategies suffice to win. We also consider the case
where the system has to minimize the average-energy while maintaining the
accumulated energy within predefined bounds at all times: this corresponds to
operating with a finite-capacity storage for energy. We give results for one-
player and two-player games, and establish complexity bounds and memory
requirements.

Publication History The paper was published in the Proceedings the Sixth
International Symposium on Games, Automata, Logics and Formal Verification,
(GandALF 2015), EPTCS volume 193, pp. 1–15, 2015 by the Open Publishing
Association. The full version was published in the journal Acta Informatica
July 2016, pp. 1–37. This thesis includes the full version of the paper with all
proves and a modified layout.

75

The layout has been revised.

Paper C. Average-energy Games

C.1 Introduction

Quantitative games. Game-theoretic formulations are a standard tool for
the synthesis of provably-correct controllers for reactive systems [70]. We
consider two-player (system vs. environment) turn-based games played on
finite graphs. Vertices of the graph are called states and partitioned into states
of player 1 and states of player 2. The game is played by moving a pebble
from state to state, along edges in the graph, and starting from a given initial
state. Whenever the pebble is on a state belonging to player i, player i decides
where to move the pebble next, according to his strategy. The infinite path
followed by the pebble is called a play: it represents one possible behavior of
the system. A winning objective encodes acceptable behaviors of the system
and can be seen as a set of winning plays. The goal of player 1 is to ensure
that the outcome of the game will be a winning play, whatever the strategy
played by his adversary.

To reason about resource constraints and the performance of strategies,
quantitative games have been considered in the literature. See for exam-
ple [31, 12, 111], or [112] for an overview. Those games are played on weighted
graphs, where edges are fitted with integer weights modeling rewards or costs.
The performance of a play is evaluated via a payoff function that maps it to the
numerical domain. The objective of player 1 is then to ensure a sufficient payoff
with regard to a given threshold value. Seminal classes of quantitative games
include mean-payoff (MP), total-payoff (TP) and energy games (EG). In MP
games [54, 126, 79], player 1 has to optimize his long-run average gain per edge
taken whereas, in TP games [68, 66], player 1 has to optimize his long-run sum
of weights. Energy games [31, 18, 78] model safety-like properties: the goal
is to ensure that the running sum of weights never drops below zero and/or
that it never exceeds a given upper bound U ∈ N. All three classes share
common properties. First, MP games, TP games, and EG games with only
a lower bound (EnergyL) are memoryless determined (given an initial state,
either player 1 has a strategy to win, or player 2 has one, and in both cases
no memory is required to win). Second, deciding the winner for those games
is in NP ∩ coNP and no polynomial algorithm is known despite many efforts
(e.g., [26, 33]). Energy games with both lower and upper bounds (EnergyLU)
are more complex: they are EXPTIME-complete and winning requires memory
in general [18].

While those classes are well-known, it is sometimes necessary to go beyond them
to accurately model practical applications. For example, multi-dimensional
games and conjunctions with a parity objective model trade-offs between

77

C.1. Introduction

different quantitative aspects [38, 36, 121]. Similarly, window objectives address
the need for strategies ensuring good quantitative behaviors within reasonable
time frames [33].

Average-energy games. We study the average-energy (AE) payoff func-
tion: in AE games, the goal of player 1 is to optimize the long-run average
accumulated energy over a play. We introduce this objective to formalize the
specification desired in a practical application [29], which we detail in the
following as a motivating example. Interestingly, it turns out that this payoff
first appeared long ago [120], but it was not subject to a systematic study
until very recently: see related work for more discussion.

In addition to being meaningful w.r.t. practical applications, AE games also
have theoretical interest. In [35], Chatterjee and Prabhu define the average
debit-sum level objective, which can be seen as a variation of the average-
energy where the accumulated energy is taken to be zero in any point where
it is actually positive (hence, it focuses on the average debt). They use the
corresponding games to compute the values of quantitative timed simulation
functions. In particular, they provide a pseudo-polynomial-time algorithm to
solve those games, but the complexity of deciding the winner as well as the
memory requirements are open. Here, we solve those questions for the very
similar average-energy objective.

Motivating example. Our example is a simplified version of the industrial
application studied by Cassez et al. in [29]. Consider a machine that consumes
oil, stored in a connected accumulator. We want to synthesize an appropriate
controller to operate the oil pump that fills the accumulator, and by the effect of
pressure, that releases oil from the accumulator into the machine with a (time-
varying) rate according to desired production. In order to ensure safety, the oil
level in the accumulator should be maintained at all times between a minimal
and a maximal level. This part of the specification can be encoded as an energy
objective with both lower and upper bounds (EnergyLU). At the same time,
the more oil (thus pressure) in the accumulator, the faster the whole apparatus
wears out. Hence, an ideal controller should minimize the average level of oil
in the long run. This desire can be formalized through the average-energy
payoff (AE). Overall, the specification is thus to minimize the average-energy
under the strong energy constraints: we denote the corresponding objective
by AvgEnergyLU.

Contributions. Our main results are summarized in Table C.1.

78

Paper C. Average-energy Games

Game objective 1-player 2-player memory

MP PTIME [82] NP ∩ coNP [126] memoryless [54]
TP PTIME [62] NP ∩ coNP [66] memoryless [68]

EnergyL PTIME [18] NP ∩ coNP [31, 18] memoryless [31]
EnergyLU PSPACE-c. [61] EXPTIME-c. [18] pseudo-polynomial

AE PTIME NP ∩ coNP memoryless
AvgEnergyLU, polynomial U PTIME NP ∩ coNP polynomial
AvgEnergyLU, arbitrary U PSPACE-c. EXPTIME-c. pseudo-polynomial

AvgEnergyL PSPACE-e. / NP-h. open / EXPTIME-h. open (≥ pseudo-p.)

Table C.1: Complexity of deciding the winner and memory requirements for
quantitative games: MeanPayoff stands for mean-payoff, TP for total-payoff, EnergyL
(resp. EnergyLU) for lower-bounded (resp. lower- and upper-bounded) energy, AE for
average-energy, AvgEnergyL (resp. AvgEnergyLU) for average-energy under a lower
bound (resp. and upper bound U ∈ N) on the energy, c. for complete, e. for easy,
and h. for hard. Results without reference are proved in this paper.

A) We establish that the average-energy objective can be seen as a refinement
of total-payoff, in the same sense as total-payoff is seen as a refinement of mean-
payoff [66]: it allows to distinguish strategies yielding identical mean-payoff
and total-payoff.

B) We show that deciding the winner in two-player AE games is in NP ∩
coNP whereas it is in PTIME for one-player games. In both cases, memoryless
strategies suffice (Thm. C.8). Those complexities match the state-of-the-art
for MeanPayoff and TP games [126, 79, 66, 26]. Furthermore we prove that
AE games are at least as hard as mean-payoff games (Thm. C.10). Therefore,
the NP ∩ coNP-membership can be considered optimal w.r.t. our knowledge
of MeanPayoff games. Technically, the crux of our approach is as follows.
First, we show that memoryless strategies suffice in one-player AE games
(Thm. C.6): this requires to prove important properties of the AE payoff as
classical sufficient criteria for memoryless determinacy present in the literature
fail to apply directly. Second, we establish a polynomial-time algorithm for
the one-player case: it exploits the structure of winning strategies and mixes
graph techniques with local linear program solving (Thm. C.7). Finally, we lift
memoryless determinacy to the two-player case using results by Gimbert and
Zielonka [69] and obtain the NP ∩ coNP-membership as a corollary (Thm. C.9).

C) We establish an EXPTIME algorithm to solve two-player AE games with
lower- and upper-bounded energy (AvgEnergyLU) with an arbitrary upper
bound U ∈ N (Thm. C.13). It relies on a reduction of the AvgEnergyLU game
to a pseudo-polynomially larger AE game where the energy constraints are

79

C.1. Introduction

encoded in the graph structure. Applying straightforwardly the AE algorithm
on this game would only give us NEXPTIME ∩ coNEXPTIME-membership,
hence we avoid this blowup by further reducing the problem to a particular
MeanPayoff game and applying a pseudo-polynomial algorithm, with some
care to ensure that overall the algorithm only requires pseudo-polynomial
time in the original AvgEnergyLU game. Since the simpler EnergyLU games (i.e.,
AvgEnergyLU with a trivial AE constraint) are already EXPTIME-hard [18], the
EXPTIME-membership result is optimal. We also prove that pseudo-polynomial
memory is both sufficient and in general necessary to win in AvgEnergyLU games,
for both players (Thm. C.15). We show that one-player AvgEnergyLU games
are PSPACE-complete via the on-the-fly construction of a witness path based
on the aforementioned reduction, answering a question left open in [19]. For
polynomial (in the size of the game graph) values of the upper bound U—
or if it is given in unary—the complexity of the two-player (resp. one-player)
AvgEnergyLU problem collapses to NP ∩ coNP (resp. PTIME) with the same
approach, and polynomial memory suffices for both players.

D) We provide partial answers for the AvgEnergyL objective—AE under a
lower bound constraint on energy but no upper bound. We show PSPACE-
membership for the one-player case (Thm. C.18), by reducing the problem
to an AvgEnergyLU game with a sufficiently large upper bound. That is,
we prove that if the player can win for the AvgEnergyL objective, then he
can do so without ever increasing its energy above a well-chosen bound.
We also prove the AvgEnergyL problem to be at least NP-hard in one-player
games (Thm. C.18) and EXPTIME-hard in two-player games (Lem. C.21) via
reductions from the subset-sum problem and countdown games respectively.
Finally, we show that memory is required for both players in two-player
AvgEnergyL games (Lem. C.22), and that pseudo-polynomial memory is both
sufficient and necessary in the one-player case (Thm. C.19). The decidability
status of two-player AvgEnergyL games remains open as we only provide a
correct but incomplete incremental algorithm (Lem. C.20). We conjecture
that the two-player AvgEnergyL problem is decidable and sketch a potential
approach to solve it. We highlight the key remaining questions and discuss
some connections with related models that are known to be difficult.

Observe that in many applications, the energy must be stocked in a finite-
capacity storage for which an upper bound is provided. Hence, the model of
choice in this case is AvgEnergyLU.

Related work. This paper extends previous work presented in a confer-
ence [19]: it gives a full presentation of the technical details, along with

80

Paper C. Average-energy Games

additional results and improved complexities.

The average-energy payoff—Eq. (C.1)—appeared in a paper by Thuijsman
and Vrieze in the late eighties [120], under the name total-reward. This
definition is different from the classical total-payoff —see Sect. C.2—commonly
studied in the formal methods community (see for example [68, 66]), which,
despite that, has been referred in many papers as either total-payoff or total-
reward equivalently. We will see in this paper that both definitions are indeed
different and exhibit different behaviors.

Maybe due to this confusion, the payoff of Eq. (C.1)—which we call average-
energy thus avoiding misunderstandings—was not studied extensively until
recently. Nothing was known about memoryless determinacy and complexity of
deciding the winner. Independently to our work, Boros et al. recently studied
the same payoff (under the name total-payoff). In [17], they study Markov
decision processes and stochastic games with the payoff of Eq. (C.1) and solve
both questions. Their results overlap with ours for AE games (Table C.1). Let
us first mention that our results were obtained independently. Second, and most
importantly, our approach and techniques are different, and we believe our take
on the problem yields some interest for our community. Indeed, the algorithm
of Boros et al. entirely relies on linear programming in the one-player case,
and resorts to approximation by discounted games in the two-player one. Our
techniques are arguably more constructive and based on inherent properties of
the payoff. In that sense, it is closer to what is usually deemed important in our
field. For example, we provide an extensive comparison with classical payoffs.
We base our proof of memoryless determinacy on operational understanding
of the AE which is crucial in order to formalize proper specifications. Our
technique then benefits from seminal works [69] to bypass the reduction to
discounted games and obtain a direct proof, thanks to our more constructive
approach. Lastly, while [17] considers the AE problem in the stochastic context,
we focus on the deterministic one but consider multi-criteria extensions by
adding bounds on the energy (AvgEnergyLU and AvgEnergyL games). Those
extensions are completely new, exhibit theoretical interest and are adequate
for practical applications in constrained energy systems, as witnessed by the
case study of [29].

Recent work of Brázdil et al. [23] considers the optimization of a payoff under
energy constraint. They study mean-payoff in consumption systems, i.e.,
simplified one-player energy games where all edges consume energy but some
states can atomically produce a reload of the energy up to the allowed capacity.

81

C.2. Preliminaries

C.2 Preliminaries

Graph games. We consider turn-based games played on graphs between
two players denoted by P1 and P2. A game is a tuple G(T) = (S1, S2,E ,w)
where (i) S1 and S2 are disjoint finite sets of states belonging to P1 and P2,
with S = S1] S2, (ii) E ⊆ S × S is a finite set of edges, and (iii) w : E → Z
is an integer weight function. Given edge (s1, s2) ∈ E , we write w(s1, s2) as a
shortcut for w((s1, s2)). We denote by W the largest absolute weight assigned
by function w. A game is called 1-player if S1 = ∅ or S2 = ∅.

A play from an initial state sinit ∈ S is an infinite sequence π = s0s1 . . . sn . . .

such that s0 = sinit and for all i ≥ 0 we have (si, si+1) ∈ E . The (finite) prefix
of π up to position n gives the sequence π(n) = s0s1 . . . sn, the first (resp.
last) element s0 (resp. sn) is denoted first(π(n)) (resp. last(π(n))). The set
of all plays in G(T) is denoted by Plays(G(T)) and the set of all prefixes is
denoted by Prefs(G(T)). We say that a prefix ρ ∈ Prefs(G(T)) belongs to Pi,
i ∈ {1, 2}, if last(ρ) ∈ Si. The set of prefixes that belong to Pi is denoted
by Prefsi(G(T)). The classical concatenation between prefixes (resp. prefix
and play) is denoted by the · operator. The length of a non-empty prefix
ρ = s0 . . . sn is defined as the number of edges and denoted by |ρ| = n.

Payoffs of plays. Given a play π = s0s1 . . . sn . . . we define

• its energy level at position n as

EL(π(n)) =
n−1∑
i=0

w(si, si+1);

• its mean-payoff as

MP(π) = lim sup
n→∞

1
n

n−1∑
i=0

w(si, si+1) = lim sup
n→∞

1
n

EL(π(n));

• its total-payoff as

TP(π) = lim sup
n→∞

n−1∑
i=0

w(si, si+1) = lim sup
n→∞

EL(π(n));

• and its average-energy as

AE(π) = lim sup
n→∞

1
n

n∑
i=1

i−1∑
j=0

w(sj, sj+1)
 = lim sup

n→∞

1
n

n∑
i=1

EL(π(i)).

(C.1)

82

Paper C. Average-energy Games

We will sometimes consider those measures defined with lim inf instead of
lim sup, in which case we write MP , TP and AE respectively. Finally, we also
consider those measures over prefixes: we naturally define them by dropping
the lim supn→∞ operator and taking n = |ρ| for a prefix ρ ∈ Prefs(G(T)). In
this case, we simply write MeanPayoff(ρ), TP(ρ) and AE(ρ) to denote the fact
that we consider finite sequences.

Strategies. A strategy for Pi, i ∈ {1, 2}, is a function σi : Prefsi(G(T))→ S

such that for all ρ ∈ Prefsi(G(T)) we have (last(ρ), σi(ρ)) ∈ E . A strategy σi
for Pi is finite-memory if it can be encoded by a deterministic Moore machine
(M,m0, αu, αn) where M is a finite set of states (the memory of the strategy),
m0 ∈M is the initial memory state, αu : M × S →M is an update function,
and αn : M × Si → S is the next-action function. If the game is in s ∈ Si and
m ∈M is the current memory value, then the strategy chooses s′ = αn(m, s)
as the next state of the game. When the game leaves a state s ∈ S, the
memory is updated to αu(m, s). Formally, (M,m0, αu, αn) defines the strategy
σi such that σi(ρ · s) = αn(α̂u(m0, ρ), s) for all ρ ∈ S∗ and s ∈ Si, where α̂u
extends αu to sequences of states as expected. A strategy is memoryless if
|M | = 1, i.e., it does not depend on the history but only on the current state
of the game. We denote by Σi(G(T)), the sets of strategies for player Pi. We
drop G(T) when the context is clear.

A play π = s0s1 . . . is consistent with a strategy σi of Pi if, for all n ≥ 0 where
last(π(n)) ∈ Si, we have σi(π(n)) = sn+1. Given an initial state sinit ∈ S and
strategies σ1 and σ2 for the two players, we denote by Outcome(sinit, σ1, σ2) the
unique play that starts in sinit and is consistent with both σ1 and σ2. When
fixing the strategy of only Pi, we denote the set of consistent outcomes by
Outcomes(sinit, σi).

Objectives. An objective in G(T) is a setW ⊆ Plays(G(T)) that is declared
winning for P1. Given a game G(T), an initial state sinit, and an objective W ,
a strategy σ1 ∈ Σ1 is winning for P1 if for all strategy σ2 ∈ Σ2, we have that
Outcome(sinit, σ1, σ2) ∈ W. Symmetrically, a strategy σ2 ∈ Σ2 is winning for
P2 if for all strategy σ1 ∈ Σ1, we have that Outcome(sinit, σ1, σ2) 6∈ W. That
is, we consider zero-sum games.

We consider the following objectives and combinations of those objectives.

• Given an initial energy level cinit ∈ N, the lower-bounded energy
(EnergyL) objective EnergyL(cinit) = {π ∈ Plays(G) | ∀n ≥ 0, cinit +
EL(π(n)) ≥ 0} requires non-negative energy at all times.

83

C.2. Preliminaries

• Given an upper bound U ∈ N and an initial energy level cinit ∈
N, the lower- and upper-bounded energy (EnergyLU) objective
EnergyLU (U, cinit) = {π ∈ Plays(G(T)) | ∀n ≥ 0, cinit + EL(π(n)) ∈
[0, U]} requires that the energy always remains non-negative and below
the upper bound U along a play.

• Given a threshold t ∈ Q, the mean-payoff (MP) objective
MeanPayoff (t) = {π ∈ Plays(G(T)) | MP(π) ≤ t} requires that the
mean-payoff is at most t.

• Given a threshold t ∈ Z, the total-payoff (TP) objective
TotalPayoff (t) = {π ∈ Plays(G(T)) | TP(π) ≤ t} requires that the
total-payoff is at most t.

• Given a threshold t ∈ Q, the average-energy (AE) objective
AvgEnergy(t) = {π ∈ Plays(G(T)) | AE(π) ≤ t} requires that the
average-energy is at most t.

For the MP , TP and AE objectives, note that P1 aims to minimize the payoff
value while P2 tries to maximize it. The reversed convention is also often used
in the literature but both are equivalent. For our motivating example, seeing
P1 as a minimizer is more natural. Note that we define the objectives using
the lim sup variants of MP, TP and AE , but similar results are obtained for
the lim inf variants.

Decision problem. Given a game G(T), an initial state sinit ∈ S, and an
objective W ⊆ Plays(G(T)) as defined above, the associated decision problem
is to decide if P1 has a winning strategy for this objective.

We recall classical results in Table C.1. Memoryless strategies suffice for both
players for EnergyL [31, 18], MP [54] and TP [62, 68] objectives. Since all
associated problems can be solved in polynomial time for 1-player games, it
follows that the 2-player decision problem is in NP ∩ coNP for those three
objectives [18, 126, 66]. For the EnergyLU objective, memory is in general needed
and the associated decision problem is EXPTIME-complete [18] (PSPACE-
complete for one-player games [61]).

Game values. Given a game with an objective W ∈
{MeanPayoff ,TotalPayoff , AvgEnergy} and an initial state sinit, we refer to
the value from sinit as v = inf{t ∈ Q | ∃σ1 ∈ Σ1, Outcomes(sinit, σ1) ⊆ W(t)}.
For both MP and TP objectives, it is known that the value can be achieved

84

Paper C. Average-energy Games

by an optimal memoryless strategy; for the AE objective it follows from our
results (Thm. C.8).

C.3 Average-Energy

In this section, we consider the problem of ensuring a sufficiently low average-
energy.

Problem C.1 (AE). Given a game G(T), an initial state sinit, and a thresh-
old t ∈ Q, decide if P1 has a winning strategy σ1 ∈ Σ1 for the objective
AvgEnergy(t).

We first compare the AE objective with traditional quantitative objectives and
study how they can be connected (Sect. C.3.1). Then we want to establish that
in AE games, memoryless strategies are always sufficient to play optimally, for
both players. Interestingly, this result cannot be obtained by straightforward
application of many well-known sufficient criteria for memoryless determinacy
existing in the literature. We thus introduce some technical lemmas that high-
light the inherent features of the AE payoff function (Sect. C.3.2) and permit
to prove the result for one-player AE games (Sect. C.3.3). We then prove
that one-player AE games can be solved in polynomial-time via an algorithm
combining graph analysis techniques with linear programming. Finally, we
consider the two-player case (Sect. C.3.4). Applying a result by Gimbert and
Zielonka [69], combined with our results on the one-player case, we derive
memoryless determinacy of two-player AE games. This also induces NP∩coNP-
membership of the AE problem by the PTIME algorithm of Sect. C.3.3. We
conclude by proving that AE games are at least as hard as MP games, hence
indicating that the NP ∩ coNP upper bound is essentially optimal with regard
to our current knowledge of MP games (whose membership to PTIME is a
long-standing open problem [126, 79, 26, 33]).

C.3.1 Relation with Classical Objectives

Several links between EnergyL, MP and TP objectives can be established.
Intuitively, P1 can only ensure a lower bound on energy if he can prevent P2
from enforcing strictly-negative cycles (otherwise the initial energy is eventually
exhausted). This is the case if and only if P1 can ensure a non-negative mean-
payoff in G(T) (here, he wants to maximize the MeanPayoff), and if this is
the case, P1 can prevent the running sum of weights from ever going too far

85

C.3. Average-Energy

beyond zero along a play, hence granting a lower bound on total-payoff. We
introduce the sign-reversed game G(T)′ in the next lemma by consistency with
our view of P1 as a minimizer with regard to payoffs (as discussed in Sect. C.2).

Lemma C.1. Let G(T) = (S1, S2,E ,w) be a game and sinit ∈ S be the initial
state. The following assertions are equivalent.

A. There exists cinit ∈ N such that P1 has a (memoryless) winning strategy
for objective EnergyL(cinit).

B. Player P1 has a (memoryless) winning strategy for objective MeanPayoff (0)
in the game G(T)′ defined by reversing the sign of the weight function, i.e.,
for all (s1, s2) ∈ E , w ′(s1, s2) = −w(s1, s2).

C. Player P1 has a (memoryless) winning strategy for objective TotalPayoff (t),
with t = 2 · (|S| − 1) ·W , in the game G(T)′ defined by reversing the sign
of the weight function.

D. There exists t ∈ Z such that P1 has a (memoryless) winning strategy for
objective TotalPayoff (t), in the game G(T)′ defined by reversing the sign
of the weight function.

Proof. Proof of A⇔ B is given in [18, Proposition 12]. Proof of B ⇔ C ⇔ D

is in [33, Lem. 1].

The TP objective is sometimes seen as a refinement of MP for the case where
P1 —as a minimizer—can ensure MeanPayoff equal to zero but not lower, i.e.,
the MP game has value zero [66]. Indeed, one may use the TP to further
discriminate between strategies that guarantee MeanPayoff zero. In the same
philosophy, the average-energy can help in distinguishing strategies that yield
identical total-payoffs. See Fig. C.1. The AE values in both examples can be
computed easily using the upcoming technical lemmas (Sect. C.3.2).

In these examples, the average-energy is clearly comprised between the infimum
and supremum total-payoffs. This remains true for any play.

Lemma C.2. For any play π ∈ Plays(G(T)), we have that

AE(π),AE(π) ∈
[
TP(π),TP(π)

]
⊆ R ∪ {−∞,∞}.

Proof. Consider a play π ∈ Plays(G(T)). By definition of the total-payoff and
thanks to weights taking integer values, we have that there exists some index
m ∈ N0 such that, for all n ≥ m, EL(π(n)) ∈

[
TP(π),TP(π)

]
. By definition,

the average-energy AE (resp. AE) measures the supremum (resp. infinimum)

86

Paper C. Average-energy Games

1

2 2

−2−2

2

−2

1

2 0

0−2

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE=3

(c) Play π1 sees energy levels
(1, 3, 5, 3)ω.

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE=11/3

(d) Play π2 sees energy levels
(1, 3, 5, 5, 5, 3)ω.

Figure C.1: Both plays have identical mean-payoff and total-payoff: MP(π1) =
MP(π1) = MP(π2) = MP(π2) = 0, TP(π1) = TP(π2) = 5, and TP(π1) = TP(π2) =
1. But play π1 has a lower average-energy: AE(π1) = AE(π1) = 3 < AE(π2) =
AE(π2) = 11/3.

limit of the averages of those partial sums, hence it holds that AE(π),AE(π) ∈[
TP(π),TP(π)

]
.

In particular, if the mean-payoff value from a state is not zero, its total-payoff
value is infinite and the following lemma holds.

Lemma C.3. Let G(T) = (S1, S2,E ,w) be a game and sinit ∈ S be the initial
state.

1. If there exists t < 0 such that P1 has a (memoryless) winning strategy
for objective MeanPayoff (t), then P1 has a memoryless strategy that is
winning for AvgEnergy(t′) for all t′ ∈ Q, i.e., this strategy ensures that
any consistent outcome π is such that AE(π) = AE(π) = −∞.

2. If P1 has no (memoryless) winning strategy for MeanPayoff (0), then, for
any t′ ∈ Q, P1 has no winning strategy for AvgEnergy(t′). In particular,
P2 has a memoryless strategy ensuring that any consistent outcome π is
such that AE(π) = AE(π) =∞.

Proof. Consider the first implication. Assume P1 has a memoryless strategy σ1
ensuring that all outcomes π ∈ Outcomes(sinit, σ1) are such that MP(π) < 0.
For any such outcome, it is guaranteed that all simple cycles have a strictly
negative energy level. Thus, we have that TP(π) = −∞, and by Lem. C.2, it
implies that AE(π) = −∞, as claimed. Since AE(π) ≤ AE(π) by definition,

87

C.3. Average-Energy

the property holds.

Now consider the second implication. Assume there exists no winning strategy
for P1 for the mean-payoff objective. By equivalence B ⇔ D of Lem. C.1, and
memoryless determinacy of total-payoff games (see for example [68]), it follows
that P2 has a memoryless strategy σ2 ensuring that all consistent outcomes
π ∈ Outcomes(sinit, σ2) are such that TP(π) =∞. By Lem. C.2, this induces
the claim.

C.3.2 Useful Properties of the Average-energy

In this subsection, we will first review some classical criteria that usually prove
sufficient to deduce memoryless determinacy in quantitative games and discuss
why they cannot be applied straight out of the box to the average-energy
payoff. We will then prove two useful properties of this payoff that will later
help us to prove the desired result.

Classical sufficient criteria. We briefly discuss traditional approaches to
prove memoryless determinacy in quantitative games. The first one is to study
a variant of the infinite-duration game where the game halts as soon as a cycle
is closed and then to relate the properties of this variant to the infinite-duration
game. This technique was used in the original proof of memoryless determinacy
for mean-payoff games by Ehrenfeucht and Mycielski [54], and in a following
simpler proof by Björklund et al. [11]. The connection between infinite-duration
games and so-called first cycle games was recently streamlined by Aminof
and Rubin [2], identifying sufficient conditions to prove that first cycle games
and their infinite-duration counterparts admit optimal memoryless strategies
for both players. Among those conditions is the need for winning objectives
to be closed under cyclic permutation and under concatenation. Without
further assumptions, the average-energy objective satisfies neither. Indeed,
consider cycles represented by sequences of weights C1 = {−1}, C2 = {1} and
C3 = {1,−2}. We see that AE(C1C2) = (−1 + 0)/2 = −1/2 < AE(C2C1) =
(1− 0)/2 = 1/2, hence AE is not closed under cyclic permutations. Intuitively,
the order in which the weights are seen does matter, in contrast to most classical
payoffs. For concatenation, see that AE(C3) = 0 while AE(C3C3) = −1/2 < 0.
Here the intuition is that the overall AE is impacted by the energy of the first
cycle which is strictly negative (−1). In a sense, the AE of a cycle can only be
maintained through repetition if this cycle is neutral with regard to the total
energy level, i.e., if it has energy level zero: we will formalize this intuition in
Lem. C.5.

88

Paper C. Average-energy Games

Other criteria for memoryless determinacy or half-memoryless determinacy
(i.e., holding only for one of the two players) respectively appear in works by
Gimbert and Zielonka [68] and by Kopczynski [86]. They involve checking
that the payoff is fairly mixing, or concave. Again, both are false for arbitrary
sequences of weights in the case of the average-energy, for essentially the same
reasons as above. Nevertheless, we will be able to prove that memoryless
strategies suffice for both players using similar ideas but first taking care of the
problematic cases. Intuitively, when those cases are dealt with, we will regain
a payoff that satisfies the above conditions. We also obtain monotonicity and
selectivity of the payoff function as defined in [69].

Extraction of prefixes. The following lemma describes the impact of
adding a finite prefix to an infinite play. We prove that the average-energy
over a play can be decomposed w.r.t. to the energy level of any of its prefixes
and the average-energy of the remaining suffix.

Lemma C.4 (Average-energy prefix). Let ρ ∈ Prefs(G(T)), π ∈
Plays(G(T)). Then,

AE(ρ · π) = EL(ρ) + AE(π).

The same equality holds for AE .

Proof. Let ρ = s0 . . . sk ∈ Prefs(G(T)) and π ∈ Plays(G(T)) be a prefix and
a play over a game G(T). We prove the property for AE . By definition and
decomposition, we have that

AE(ρ · π) = lim sup
n→∞

1
n

n∑
i=1

EL((ρ · π)(i))

= lim sup
n→∞

 1
n
·
k∑
i=1

EL(ρ(i)) + 1
n
·

n∑
i=k+1

EL(ρ) + 1
n
·

n∑
i=k+1

EL(π(i− k))
 .

For clarity, we rewrite this expression as AE(ρ · π) = lim supn→∞
[
X1(n) +

X2(n) +X3(n)
]
, maintaining the same order.

Since k is fixed and finite, and EL(ρ(i)) is bounded for all i ≤ k, we have
that lim supn→∞X1(n) = limn→∞X1(n) = 0. Furthermore, for n ≥ k + 1, we
rewrite the second term as X2(n) = (n− k − 1) · EL(ρ)/n, and it follows that
lim supn→∞X2(n) = limn→∞X2(n) = EL(ρ). Since both sequences X1(n) and

89

C.3. Average-Energy

X2(n) converge, we can write

lim inf
n→∞

X1(n) + lim inf
n→∞

X2(n) + lim sup
n→∞

X3(n) ≤ AE(ρ · π)

≤ lim sup
n→∞

X1(n) + lim sup
n→∞

X2(n) + lim sup
n→∞

X3(n).

Hence, by a small change of variable,

AE(ρ · π) = EL(ρ) + lim sup
n→∞

X3(n) = EL(ρ) + lim sup
n→∞

[
1
n
·
n−k−1∑
i=1

EL(π(i))
]

= EL(ρ) + AE(π),

as, in the limit, the (k + 1) missing terms in the sum are negligible. The proof
for AE is similar.

Extraction of a best cycle. The next lemma is crucial to prove that
memoryless strategies suffice: under well-chosen conditions, one can always
select a best cycle in a play—hence, there is no interest in mixing different
cycles and no use for memory. It holds only for sequences of cycles that have
energy level zero: since they do not change the energy, they do not modify
the AE of the following suffix of play, and one can decompose the AE as a
weighted average over zero cycles.

Lemma C.5 (Repeated zero cycles of bounded length). Let
C1, C2, C3, . . . be an infinite sequence of cycles Ci ∈ Prefs(G(T)) such that
(i) π = C1 ·C2 ·C3 · · · ∈ Plays(G(T)),1 (ii) ∀ i ≥ 1, EL(Ci) = 0 and (iii) ∃ ` ∈ N∗
such that ∀ i ≥ 1, |Ci| ≤ `. Then the following properties hold.

1. The average-energy of π is the weighted average of the average-energies
of the cycles:

AE(π) = lim sup
k→∞

[∑k
i=1 |Ci| · AE(Ci)∑k

i=1 |Ci|

]
. (C.2)

2. For any cycle C ∈ Prefs(G(T)) such that EL(C) = 0, we have that
AE(Cω) = AE(C).

3. Repeating the best cycle gives the lowest AE :

inf
i∈N∗

AE(Ci) = inf
i∈N∗

AE((Ci)ω) ≤ AE(π)

.
1We slightly abuse the notation as we see cycles as sequences of edges. The concatenation

of cycles Ca = s s′ . . . s and Cb = s s′′ . . . s is to be understood as its natural interpretation
Ca · Cb = s s′ . . . s s′′ . . . s: the origin state s only appears once in the middle and not twice
as it would with Ca and Cb seen as true sequences of states.

90

Paper C. Average-energy Games

Similar properties hold for AE .

Observe that since we assume a bound ` ∈ N∗ on the length of cycles, and the
game is played on a finite graph, Point 3 of Lem. C.5 does actually allow to
select a best cycle: the set of possible cycles of length at most ` is finite and
the infimum is reached, hence can be replaced by a miminum.

Proof. We prove the three points for AE , similar arguments can be applied for
AE . Consider Point 1. Let π = s1

0 . . . s
1
|C1|s

2
1 . . . s

2
|C2|s

3
1 . . . where sij denotes the

j-th state of cycle Ci, with C1 = s1
0 . . . s

1
|C1| and for all i > 1, Ci = si−1

|Ci−1|s
i
1 . . . s

i
|Ci|.

Essentially, si−1
|Ci−1| is both the last state of Ci−1 and the first one of Ci: it can

also be seen as si0 and we later use both notations depending on the role
we consider for this state. Given index k ∈ N of a state sk in the classical
formulation π = s0s1s2 . . . such that sk denotes state sij in our new formulation
π = s1

0 . . . s
1
|C1|s

2
1 . . . s

2
|C2|s

3
1 . . . , we define c(k) = i and p(k) = j, respectively

denoting the index of the corresponding cycle and the position of state sk
within this cycle. We can rewrite the definition of the average-energy of π as

AE(π) = lim sup
n→∞

[
1
n

n∑
k=1

EL(π(k))
]

= lim sup
n→∞

 1
n

c(n)−1∑
i=1

|Ci|∑
j=1

EL(s1
0 . . . s

i
j) +

p(n)∑
j=1

EL(s1
0 . . . s

c(n)
j)

 . (C.3)

Observe that since all cycles are such that EL(Ci) = 0, we have that
EL(s1

0 . . . s
i
j) = EL(si0 . . . sij) for all indices i ∈ N∗, j ∈ {1, . . . , |Ci|}. In

other words, the energy level in a given position only depends on the current
cycle. Hence, for all i ∈ N∗,

|Ci|∑
j=1

EL(s1
0 . . . s

i
j) =

|Ci|∑
j=1

EL(si0 . . . sij) = |Ci| · AE(Ci)

where the second equality follows by definition of AE(Ci). Therefore, Eq. (C.3)
becomes

AE(π) = lim sup
n→∞

 1
n

c(n)−1∑
i=1
|Ci| · AE(Ci) +

p(n)∑
j=1

EL(sc(n)
0 . . . s

c(n)
j)

 .
Recall that, by hypothesis, there exists ` ∈ N∗ such that for all i ≥ 1, |Ci| ≤ `.
Observe that the boundedness of cycles length implies that

(a) p(n) ≤ `,

(b) ∑p(n)
j=1 EL(sc(n)

0 . . . s
c(n)
j) is bounded,

91

C.3. Average-Energy

(c) ∑c(n)−1
i=1 |Ci| ≤ n = ∑c(n)−1

i=1 |Ci|+ p(n) ≤ ∑c(n)−1
i=1 |Ci|+ `.

Combining those three arguments, we obtain that

lim sup
n→∞

∑c(n)−1
i=1 |Ci| · AE(Ci)∑c(n)−1

i=1 |Ci|+ `

 ≤ AE(π) ≤ lim sup
n→∞

∑c(n)−1
i=1 |Ci| · AE(Ci)∑c(n)−1

i=1 |Ci|


Hence,

AE(π) = lim sup
k→∞

[∑k
i=1 |Ci| · AE(Ci)∑k

i=1 |Ci|

]

as claimed by Point 1.

Now consider Point 2. For any cycle C ∈ Prefs(G(T)) such that EL(C) = 0,
all three hypotheses (i), (ii), and (iii) are clearly satisfied, with ` = |C|. Hence
by Point 1, we have that

AE(Cω) = lim sup
k→∞

[
k · |C| · AE(C)

k · |C|

]
= AE(C).

Finally, we prove Point 3. The equality straightforwardly follows from Point 2.
It remains to consider the inequality. By definition of the infimum, we have
that, for all k ≥ 1,

inf
i∈N∗

AE(Ci) =
∑k
i=1 |Ci| · infi∈N∗AE(Ci)∑k

i=1 |Ci|
≤
∑k
i=1 |Ci| · AE(Ci)∑k

i=1 |Ci|
.

Hence by taking the limit, we obtain

inf
i∈N∗

AE(Ci) = lim sup
k→∞

[
inf
i∈N∗

AE(Ci)
]
≤ lim sup

k→∞

[∑k
i=1 |Ci| · AE(Ci)∑k

i=1 |Ci|

]
= AE(π).

This concludes our proof.

C.3.3 One-player Games

We assume that the unique player is P1, hence that S2 = ∅. The proofs are
similar for the case where all states belong to P2 (i.e., S1 = ∅). Similarly, we
present our results for the AE variant, but they carry over to the AE one.
Actually, since we show that we can restrict ourselves to memoryless strategies,
all consistent outcomes will be periodic and thus both variants will be equal
over those outcomes.

92

Paper C. Average-energy Games

Memoryless determinacy. Intuitively, we use Lem. C.4 and Lem. C.5 to
transform any arbitrary path in a simple lasso path, repeating a unique simple
cycle, and yielding an at least as good AE , thus proving that any threshold
achievable with memory can also be achieved without it.

Theorem C.6. Memoryless strategies are sufficient to win one-player AE
games.

Proof. As a preliminary step, we look whether the graph contains a reachable
strictly negative cycle, e.g., using the Bellman-Ford algorithm in O(|S| · |T |)-
time. If so, then P1 can ensure a strictly negative mean-payoff, and by Point 1
of Lem. C.3, a memoryless strategy exists to make the average-energy be −∞:
such a strategy consists in reaching and repeating the negative simple cycle
forever.

Now, assume that the graph contains no (reachable) strictly negative cycles.
If the graph also contains no zero cycles, then the energy level necessarily
diverges to +∞, and the average-energy is +∞ along any run. Indeed, we are
in the case of Point 2 of Lem. C.3. Any strategy is optimal in that case: in
particular, any memoryless strategy is.

For the rest of this proof, we assume that the graph contains no strictly negative
cycles, but that it does contain zero cycles. An important consequence of this
is that any subcycle of a zero cycle is a zero cycle. Now, consider an infinite
path π with AE(π) ≤ t (t being the threshold considered for the AE problem),
and pick a state s that appears infinitely many times along π. The sequence of
energy levels in the successive visits to s is nondecreasing (because there are no
negative cycles), and for the average-energy to remain bounded along π, this
sequence must converge to some value (Lem. C.2: AE(π) ≥ TP(π)). Assume
that the sequence is not constant: write ρ0 for the prefix of π until the first
visit to s, and π2 for the “longest” suffix of π starting in s and along which
the energy level when visiting s is constant. Finally, we let ρ1 be the portion
of π such that π = ρ0 · ρ1 · π2. Applying Lem. C.4, we get

AE(ρ0 · π2) = EL(ρ0) + AE(π2)
≤ EL(ρ0) + EL(ρ1) + AE(π2) = EL(ρ0 · ρ1) + AE(π2) = AE(π).

Applying similar arguments, we can build an acyclic path ρ′0 based on ρ0, if
not already acyclic, such that

AE(ρ′0 · π2) ≤ AE(ρ0 · π2).

Now, by construction, π2 can be decomposed into infinitely many simple zero
cycles (Ci)i∈N, starting and ending in s. This sequence of cycles satisfies all

93

C.3. Average-Energy

three conditions of Lem. C.5, and following Point 3, we get the existence of a
simple cycle C such that

AE(ρ′0 · Cω) ≤ AE(π) ≤ t.

The play π′ = ρ′0 · Cω is a simple lasso path: this proves that memoryless
strategies are sufficient to win one-player average-energy games.

Polynomial-time algorithm. We now know the form of optimal memory-
less strategies: an optimal lasso path π = ρ · Cω w.r.t. the AE . We establish a
polynomial-time algorithm to solve one-player AE games.

The crux of our algorithm consists in computing, for each state s, the best—
w.r.t. the AE — zero cycle Cs starting and ending in s (if any). This is achieved
through linear programming (LP) over expanded graphs. For each state s and
length k ∈ {1, . . . , |S|}, we compute the best cycle Cs,k by considering a graph
(Fig. C.2) that models all cycles of length k from s and that uses k + 1 levels
and two-dimensional weights on edges of the form (c, l · c) where c is the weight
in the original game and l ∈ {k, k−1, . . . , 1} is the level of the edge. In the LP,
we look for cycles Cs,k of length k on s such that (a) the sum of weights in the
first dimension is zero (thus Cs,k is a zero cycle), and (b) the sum in the second
one is minimal. Fortunately, this sum is exactly equal to AE(C) · k thanks to
the l factors used in the weights of the expanded graph. Hence, we obtain the
optimal cycle Cs,k (in polynomial time). Doing this |S| times for each state s,
we obtain for each of them the optimal cycle Cs (if one zero cycle exists). Then,
by Lem. C.4, it remains to compute the least EL with which each state s
can be reached using classical graph techniques (e.g., Bellman-Ford), and to
pick the optimal combination to obtain an optimal memoryless strategy, in
polynomial time.

s′ s s′′

1 1

−1−1

(a) Original game.

(s,2)
(s′,1)

(s′′,1)
(s,0)

(−1,−2)

(1,2)

(1,1)

(−1,−1)

(b) Expanded graph for k = 2.

Figure C.2: The best cycle Cs,2 is computed by looking for a path from (s, 2) to
(s, 0) with sum zero in the first dimension (zero cycle) and minimal sum in the
second dimension (minimal AE). Here, the cycle via s′ is clearly better, with AE
equal to −1/2 in contrast to 1/2 via s′′.

Theorem C.7. The AE problem for one-player games is in PTIME.

94

Paper C. Average-energy Games

Proof. Let sinit be the initial state and t ∈ Q be the threshold. From Thm. C.6,
we can restrict our search to memoryless strategies achieving average-energy
less than or equal to t. As noted in the proof of Thm. C.6, if a strictly negative
simple cycle exists and can be reached from sinit, then the answer to the AE
problem is clearly Yes, as average-energy −∞ is achievable. Checking if such a
cycle exists and is reachable can be done in cubic time in the number of states
(e.g., using Bellman-Ford to detect negative cycles).

Hence, we now assume that no negative cycle exists. The main part of our
algorithm consists in computing, for each state s, the least average-energy that
can be achieved along a simple zero cycle starting and ending in s (if any).
Indeed, strictly positive cycles should be avoided as there is no negative cycle
to counteract them. Applying Lem. C.4, it then remains to compute the least
energy level with which each state s can be reached (simple paths are sufficient
as there are no negative cycles), and to pick the optimal combination. Again,
this last part can be solved by using classical graph algorithms in cubic time
in |S|.

We now focus on computing the best zero cycle from a state s. This is achieved
by enumerating the possible lengths, from 1 to |S| (simple cycles suffice). For a
fixed length k, we consider a new graph Gs,k, made of k+1 copies of the original
game G(T). The states of Gs,k are pairs (u, l) with u ∈ S and 0 ≤ l ≤ k.
The new graph is arranged in levels, indexed from l = k for the top one to
l = 0 for the bottom one: l represents the number of steps remaining to close
the cycle of length k. For each edge (u, u′) of G(T), with w(u, u′) = c, and
for each 1 ≤ l ≤ k, except if both u′ = s and l < k (in order to rule out
intermediary visits to s), there is an edge from (u, l) to (u′, l − 1). This edge
carries a pair of weights (c, l · c). Our aim is to find a path in this graph
from (s, k) to (s, 0) (hence this is a simple cycle of length k) such that the
sum of the weights on the first dimension is zero (hence this is a zero cycle)
and the sum on the second dimension is minimized (when divided by k, this
sum is precisely the average-energy, if starting from energy level zero).

This problem can be expressed as a linear program, with variables xu,u′,l for
each edge u → u′ and each 1 ≤ l ≤ k. While they are not required to take
integer values, these variables are intended to represent the number of times
the edge from (u, l) to (u′, l − 1) is taken along a “path” in Gs,k. The linear
program is as follows:

95

C.3. Average-Energy

minimize ∑xu,u′,l · l · w(u, u′) subject to
1. 0 ≤ xu,u′,l ≤ 1 for all xu,u′,l;
2. for all (u, l) with 1 ≤ l ≤ k − 1, ∑u′ xu′,u,l+1 = ∑

u′ xu,u′,l;
3. ∑u′ xs,u′,k = ∑

u′ xu′,s,1 = 1;
4. ∑xu,u′,l · w(u, u′) = 0;
5. ∑xu,u′,l ≥ 1.

Condition (2) states that each state has the same amount of “incoming” and
“outgoing” flow. Condition (3) expresses the fact that we start and end up
in state s. Condition (4) encodes the fact that we are looking for zero cycles,
and Condition (5) rules out the (possible) trivial solution where all variables
are zero.

First observe that if this LP has no solution, then there is no zero cycle of
length k from s. Now, assume it has a solution (x0

u,u′,l): this solution minimizes∑
xu,u′,l · l · w(u, u′). Consider a sequence of edges s = uk → uk−1 → · · · →

u1 → u0 = s for which xul,ul−1,l > 0 for all l. The existence of such a sequence
easily follows from Conditions (2) and (3). Assume that this is not a zero
cycle. As there are no negative cycles, then this must be a positive cycle. But
in order to fulfill Condition (4), we would need a negative cycle to compensate
for this positive cycle, hence implying contradiction. We conclude that any
sequence of consecutive edges as selected above is a zero cycle. Similarly, there
cannot be a zero cycle of length k from s with better average-energy, as this
would contradict the optimality of this solution. We thus have obtained an
average-energy-optimal simple zero cycle of length k from s, in polynomial
time. Indeed, the LP is polynomial in the size of Gs,k, itself polynomial in
the size of the original game: the expanded graph has its size bounded by
|S| · (k + 1) and all weights are bounded by k ·W with k ≤ |S| and W the
largest absolute weight in the original game.

As discussed above, this process can be repeated for each state s and each
length k, 1 ≤ k ≤ |S|, hence at most |S|2 times. For each state, we select the
best cycle among the |S| possible ones (one for each length). Therefore, in
polynomial time, we get a description of the best cycles w.r.t. the average-
energy, for each s ∈ S. Clearly if no such cycle exists, then the answer to the
AE problem is No, as all cycles are strictly positive and the average-energy of
any play will be +∞. If some exist, we can find an optimal strategy by picking
the best combination between such a cycle from a state s and a corresponding
prefix from sinit to s of minimal energy level. As presented before, this is
achieved in polynomial time. Then the answer to the AE problem is Yes if
and only if this optimal combination yields average-energy at most equal to t.
This concludes our proof.

96

Paper C. Average-energy Games

C.3.4 Two-player Games

Memoryless determinacy. We now prove that memoryless strategies still
suffice in two-player games. As discussed in Sect. C.3.2, most classical criteria
do not apply. There is, however, one result that proves particularly useful.
Consider any payoff function such that memoryless strategies suffice for both
one-player versions (S1 = ∅, resp. S2 = ∅). In [69, Cor. 7], Gimbert and
Zielonka establish that memoryless strategies also suffice in two-player games
with the same payoff. Thanks to Thm. C.6, this entails the next theorem.

Theorem C.8. Average-energy games are determined and both players have
memoryless optimal strategies.

Observe that this result is true for both variants of the average-energy payoff
function, namely AE and AE . When both players play optimally, they can
restrict themselves to memoryless strategies and both variants thus coincide
as mentioned earlier.

Solving average-energy games. Finally, consider the complexity of de-
ciding the winner in a two-player AE game. By Thm. C.8, one can guess an
optimal memoryless strategy for P2 and solve the remaining one-player game
for P1, in polynomial time (by Thm. C.7). The converse is also true: one
can guess the strategy of P1 and solve the remaining game where S1 = ∅ in
polynomial time. Thus, we obtain the following result.

Theorem C.9. The AE problem for two-player games is in NP ∩ coNP.

We complete our study by proving that MP games can be encoded into AE ones
in polynomial time. The former are known to be in NP ∩ coNP but whether
they belong to PTIME is a long-standing open question (e.g., [126, 79, 26, 33]).
Hence, w.r.t. current knowledge, the NP ∩ coNP-membership of the AE
problem can be considered optimal. The key of the construction is to double
each edge of the original game and modify the weight function such that each
pair of successive edges corresponding to such a doubled edge now has a total
energy level of zero, and an average-energy that is exactly equal to the weight
of the original edge. Then we apply decomposition techniques as in Lem. C.5
to establish the equivalence.

Theorem C.10. Mean-payoff games can be reduced to average-energy games
in polynomial time.

Proof. Let G = (S1, S2, E, w) be a game, and t ∈ Q be the threshold for the

97

C.3. Average-Energy

mean-payoff problem. From G, we build another game G′ = (S ′1, S ′2, E ′, w′)
such that

• S ′1 = S1 ∪ E and S ′2 = S2;

• E ′ contains two types of edges:

– (s, e) ∈ E ′ iff there exists s′ such that e = (s, s′) ∈ E. Then
w′(s, e) = 2 · w(e).

– (e, s′) ∈ E ′ for any e = (s, s′) ∈ E. Then w′(e, s′) = −2 · w(e).

We claim that P1 has a strategy ensuring objective MeanPayoff (t) in G if and
only if the answer for the AE problem in G′ is Yes for the same threshold t. A
similar construction is used in [17].

With a prefix ρ = (si)i≤n in G, we can associate a prefix ρ′ = (s′i)i≤2n in G′
as follows: for all k ≤ n, s′2k = sk, and for all k < n, s′2k+1 = (sk, sk+1). The
mean-payoff along ρ then equals the average energy along ρ′ (assuming initial
energy 0 for ρ′). Indeed, applying the same decomposition arguments as for
Lem. C.5 and by definition of the weight function w′, we have that

AE(ρ′) = 1
n

n−1∑
i=0

2 · w′(si, (si, si+1)) + w′((si, si+1), si+1)
2

= 1
n

n−1∑
i=0

4 · w(si, si+1)− 2 · w(si, si+1)
2 = 1

n

n−1∑
i=0

w(si, si+1) = MeanPayoff(ρ).

Conversely, with a prefix ρ′ = (s′i)i≤2n in G′ starting and ending in a state
in S1 ∪ S2, we can associate a prefix ρ = (si)i≤n in G such that sk = s′2k for
all k ≤ n. Again, assuming the initial energy is zero in ρ′, the average energy
along ρ′ equals the mean payoff along ρ.

Now, assume that P1 has a winning strategy σ in G from some state s ∈ S1∪S2,
achieving mean-payoff less than or equal to t. Consider the strategy σ′ for G′
defined as σ′(ρ′) = σ(ρ) if ρ′ ends in S1. If ρ′ ends in a T -state of the form (s, s′),
then we let σ′(ρ′) = s′, which is the only possible outgoing edge. We see that
the outcomes of σ′ correspond to the outcomes of σ, so that, assuming that the
initial energy level is zero, σ′ enforces that the average-energy is below t for
any infinite outcome. Conversely, given a strategy σ′ for G′ whose outcomes
have average-energy below t, the strategy defined by σ(ρ) = σ′(ρ′) for all finite
paths ρ in G secures a mean-payoff below t. Observe that the equivalence holds
both between AE and MP, and between AE and MP. Indeed, we have seen
that for both MP and AE games, memoryless strategies suffice and decision
problems for both variants coincide.

98

Paper C. Average-energy Games

C.4 Average-Energy with Lower- and Upper-
Bounded Energy

We extend the AE framework with constraints on the running energy level
of the system. Such constraints are natural in many applications where the
energy capacity is bounded (e.g., fuel tank, battery charge). We first study
the case where the energy is subject to both a lower bound (here, zero) and an
upper bound (U ∈ N). We study the problem for the fixed initial energy level
cinit := 0. In this case, the range of acceptable energy levels is by definition
constrained to the interval [0, U]. Our approach benefits from this: we solve
the AvgEnergyLU problem by considering an AE problem (and subsequently,
an MP problem) over an expanded game that explicitly accounts for the lower
and upper bounds on the energy.

Formally, we want to decide if P1 can ensure a sufficiently low AE while
keeping the EL within the allowed range.

Problem C.2 (AvgEnergyLU). Given a game G(T), an initial state sinit, an
upper bound U ∈ N, and a threshold t ∈ Q, decide if P1 has a winning strategy
σ1 ∈ Σ1 for the objective EnergyLU (U, cinit := 0) ∩ AvgEnergy(t).

Again, we present results for the supremum variant AE but they also hold for
the infimum one AE .

Illustration. Consider the one-player game in Fig. C.3. The energy con-
straints force P1 to keep the energy in [0, 3] at all times. Hence, only three
strategies can be followed safely, respectively inducing plays π1, π2 and π3. Due
to the bounds on energy, it is natural that strategies need to alternate between
both a positive and a negative cycle to satisfy objective EnergyLU (U, cinit := 0)
(since no simple zero cycle exists). It is yet interesting that to play optimally
(play π3), P1 actually has to use both positive cycles, and in the appropriate
order (compare plays π2 and π3).
This type of alternating behavior is more intricate than for other classical
conjunctions of objectives. Consider for example energy parity [38] or multi-
dimensional energy games [36, 121]. It is usually necessary to use different
cycles in such games: intuitively, one needs one “good” cycle for each dimension
and one for the parity objective, and a winning strategy needs to alternate
between those cycles. However, there is no need to use two different cycles that
are “good” w.r.t. the same part of the objective. In the case of AvgEnergyLU
games, we see that it is sometimes necessary to use two (or more) different
cycles even though they impact the sum of weights in the same direction (e.g.,

99

C.4. Average-Energy with Lower- and Upper-Bounded Energy

b a c

2

0 1

0−3

(a) One-player
AvgEnergyLU game.

Step

Energy

0
1
2
3

1 2 3 4 5 6 7 8

AE = 3/2

(b) Play π1 = (acacacab)ω.

Step

Energy

0
1
2
3

1 2 3 4 5

AE = 8/5

(c) Play π2 = (aacab)ω.

Step

Energy

0
1
2
3

1 2 3 4 5

AE = 1

(d) Play π3 = (acaab)ω.

Figure C.3: Example of a one-player AvgEnergyLU game (U = 3) and the evolution
of energy under different strategies that maintain it within [0, 3] at all times. The
minimal average-energy is obtained with play π3: alternating in order between the
+1, +2 and −3 cycles.

several positive cycles). This gives a hint of the complexity of AvgEnergyLU
games.

C.4.1 Pseudo-polynomial Algorithm and Complexity
Bounds

We first reduce the AvgEnergyLU problem to the AE problem over a pseudo-
polynomial expanded game, i.e., polynomial in the size of the original
AvgEnergyLU game and in U ∈ N. By Thm. C.9 and Thm. C.7, this re-
duction induces NEXPTIME ∩ coNEXPTIME-membership of the two-player
AvgEnergyLU problem, and EXPTIME-membership of the one-player one. We im-
prove the complexity for two-player games by further reducing the AE game
to an MeanPayoff game: this yields EXPTIME-membership, which is optimal
(Thm. C.13). We also improve the one-player case by observing that a witness
lasso path in the MeanPayoff game can be built on-the-fly, and the mean-payoff
of this path can be computed using only polynomial space in the original game,
hence we end up with PSPACE-membership which we also prove optimal in
Thm. C.13.

Observe that if U is encoded in unary or if U is polynomial in the size of
the original game, the complexity of the AvgEnergyLU problem collapses to
NP∩ coNP for two-player games and to PTIME for one-player games thanks to

100

Paper C. Average-energy Games

our reduction to an AE problem and the results of Thm. C.9 and Thm. C.7.

The reductions. Given a game G = (S1, S2, E, w), an initial state sinit, an
upper bound U ∈ N, and a threshold t ∈ Q, we reduce the AvgEnergyLU problem
to an AE problem as follows. If at any point along a play, the energy drops
below zero or exceeds U , the play will be losing for the EnergyLU (U, cinit := 0)
objective, hence also for its conjunction with the AE one. So we build a
new game G′ over the state space (S × {0, 1, . . . , U}) ∪ {sink}. The idea is to
include the energy level within the state labels, with sink as an absorbing state
reached only when the energy constraint is breached. We now consider the
AE problem for threshold t on G′. By putting a self-loop of weight 1 on sink,
we ensure that if the energy constraint is not guaranteed in G, the answer to
the AE problem in G′ will be No as the average-energy will be infinite due to
reaching this positive loop and repeating it forever. Hence, we show that the
AvgEnergyLU objective can be won in G if and only if the AE one can be won
in G′ (thus avoiding the sink state). The result of the reduction for the game
in Fig. C.3a is presented in Fig. C.4.

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c, 0) (c, 1) (c, 2) (c, 3)

sink

1 | 0 1 | 1 1 | 2
0 | 0 0 | 1 0 | 2 0 | 3

1 | 0 1 | 1 1 | 2 1 | 3
1 | 2

0 | 0 0 | 1 0 | 2 0 | 3

−3 | 3

2 | 0 2 | 1

Figure C.4: Reduction from the AvgEnergyLU game in Fig. C.3a to an AE game
and further reduction to an MeanPayoff game over the same expanded graph. For
the sake of succinctness, the weights are written as c | c′ with c the weight used
in the AE game and c′ the one used in the MeanPayoff game. We use the upper
bound U = 3 and the average-energy threshold t = 1 (the optimal value in this case).
The optimal play π3 = (acaab)ω of the original game corresponds to an optimal
memoryless play in the expanded graph.

Lemma C.11. The AvgEnergyLU problem over a game G = (S1, S2, E, w),
with an initial state sinit, an upper bound U ∈ N, and a threshold t ∈ Q, is
reducible to an AE problem for the same threshold t ∈ Q over a game G′ =
(S ′1, S ′2, E ′, w′) such that |S ′| = (U+1) · |S|+1 andW ′ = max {min {W, U}, 1},
i.e., the largest absolute weight in G′ is at most the same as in G, or equal to
constant 1.

Proof. Consider the game G = (S1, S2, E, w), with initial state sinit, upper

101

C.4. Average-Energy with Lower- and Upper-Bounded Energy

bound U ∈ N and threshold t ∈ Q. We define the expanded game G′ =
(S ′1, S ′2, E ′, w′) as follows.

• S ′1 = (S1 × {0, 1, . . . , U}) ∪ {sink}.

• S ′2 = S2 × {0, 1, . . . , U}.

• For all (u, v) ∈ E, (u, c) ∈ S ′, we have that:

1. if d = c + w(u, v) ∈ [0, U], then e =
(
(u, c), (v, d)

)
∈ E ′ and

w′(e) = w(u, v),

2. else e =
(
(u, c), sink

)
∈ E ′ and w′(e) = 1.

• (sink, sink) ∈ E ′ and w(sink, sink) = 1.

The game G′ starts in state (sinit, 0) and edges are built naturally to reflect the
changes in the energy level. Whenever the energy drops below zero or exceeds
U , we redirect the edge to sink, where a self-loop of weight 1 is repeated forever.

We claim that P1 has a winning strategy σ1 for the AvgEnergyLU objective in
G if and only if he has a winning strategy σ′1 for the AE objective in G′, for
the very same average-energy threshold t.

First, consider the left-to-right implication. Assume σ1 is winning for objective
EnergyLU (U, cinit := 0) ∩ AvgEnergy(t) in G. The very same strategy can
be followed in G′, ignoring the additional information on the energy in the
state labels. Precisely, for any prefix ρ′ = (s0, c0)(s1, c1) . . . (sn, cn) in G′, we
define σ′1(ρ′) = (s, c) where s = σ1(ρ) for ρ = s0s1 . . . sn and c = cn + w(sn, s).
Obviously, playing this strategy ensures that the special state sink is never
reached, as otherwise it would not be winning for EnergyLU (U, cinit := 0) in G,
by construction of G′. Since all weights are identical in both games except on
edges entering the sink state, we have that any consistent outcome π′ of σ′1 in G′
corresponds to a consistent outcome π of σ1 in G such that AE(π′) = AE(π),
and conversely. Therefore, σ′ is clearly winning for objective AvgEnergy(t) in
G′.

Second, consider the right-to-left implication. Assume σ′1 is winning for
objective AvgEnergy(t) in G′. Then this strategy ensures that sink is avoided
forever. Otherwise, there would exist a consistent outcome π′ reaching sink,
and such that AE(π′) =∞ > t because of the strictly positive self-loop. Thus
the strategy would not be winning. Hence by construction of G′, this strategy
trivially ensures EnergyLU (U, cinit := 0) in G′. From σ′1, we build a strategy σ1
in G in the natural way, potentially integrating the information on the energy
within the memory of σ1. Again, there is a bijection between plays avoiding

102

Paper C. Average-energy Games

sink in G′ and plays in G, such that σ1 is winning for EnergyLU (U, cinit :=
0) ∩ AvgEnergy(t) in G.

Hence we have shown the claimed reduction. For the sake of completeness,
observe that the reduction holds both for AE and AE variants of the average-
energy. It remains to discuss the size of the expanded game. Observe that
|S ′| = (U + 1) · |S| + 1. Furthermore, if W is the largest absolute weight in
G, then W ′ = max {min {W,U}, 1} is the largest one in G′. Indeed, W ′ is
upper-bounded by U by construction (as all edges of absolute weight larger
than U can be redirected directly to sink) and it is lower-bounded by 1 due to
edges leading to sink. So the state space of G′ is polynomial in the state space
of G and in the value of the upper bound U , while its weights are bounded by
either the largest weight W , the upper bound U or constant 1.

We now show that the AE game G′ can be further reduced to an MeanPayoff
game G′′ by modifying the weight structure of the graph. Essentially, all edges
leaving a state (s, c) of G′ are given weight c in G′′, i.e., the current energy
level, and the self-loop on sink is given weight (dte + 1). This modification
is depicted in Fig. C.4. We claim that the AE problem for threshold t ∈ Q
in G′ is equivalent to the MP problem for the same threshold in G′′. Indeed,
we show that with our change of weight function, reaching sink implies losing,
both in G′ for AE and in G′′ for MP , and all plays that do not reach sink have
the same value for their average-energy in G′ as for their mean-payoff in G′′.

Lemma C.12. The AE problem over the game G′ = (S ′1, S ′2, E ′, w′) defined
in Lem. C.11 is reducible to an MP problem for the same threshold t ∈ Q over
a game G′′ = (S ′1, S ′2, E ′, w′′) sharing the same state space but with largest
absolute weight W ′′ = max{U, dte+ 1}, where U is the energy upper bound
of the original AvgEnergyLU problem.

Proof. Let G′ = (S ′1, S ′2, E ′, w′) be the game defined in Lem. C.11, as a re-
duction from the original game G for the AvgEnergyLU problem with upper
bound U ∈ N and average-energy threshold t ∈ Q. We now build the game
G′′ = (S ′1, S ′2, E ′, w′′) by simply modifying the weight function of G′. The
changes are as follows:

• For all edge e = ((s, c), (s′, c′)) ∈ E ′, its weight in G′ is w′(e) = c′ − c
and we now set it to w′′(e) = c in G′′. Recall that by construction of
G′, the value c represents the current energy level for any prefix ending
in (s, c). This is the value we now use for the outgoing edge. Also, this
value is constrained in [0, U] by definition of G′.

• For all edge e = ((s, c), sink) ∈ E ′, its weight in G′ is w′(e) = 1 and we

103

C.4. Average-Energy with Lower- and Upper-Bounded Energy

now set it to w′′(e) = c in G′′ for the sake of consistency (the actual
value over this type of edges will not matter eventually).

• For the self-loop e = (sink, sink) ∈ E ′, its weight in G′ is w′(e) = 1 and
we now set it to w′′(e) = dte+ 1 in G′′. That is, reaching sink will imply
a mean-payoff higher than the threshold.

Before proving the claim, we show that for all plays π ∈ Plays(G′) = Plays(G′′)
that do not reach sink, we have that AEG′(π) = MPG′′(π), where the subscript
naturally refers to the change of weight function. Let

π = s′0s
′
1s
′
2 . . . = (s0, c0)(s1, c1)(s2, c2) . . .

be such a play, where for all i ≥ 0, s′i ∈ S ′ and (si, ci) ∈ S × [0, U] ∩ N is its
corresponding label. By definition of G′′, we have that,

∀n ≥ 0, w′′(s′n, s′n+1) = cn = ELG′(π(n)).

Hence by definition of the mean-payoff and the average-energy,

MPG′′(π) = lim sup
n→∞

1
n

n−1∑
i=0

w′′(s′i, s′i+1)

= lim sup
n→∞

1
n

n−1∑
i=0

ELG′(π(i)) = AEG′(π). (C.4)

For the sake of completeness, observe that this equality does not hold for plays
reaching sink, as they have infinite average-energy in G′ but finite mean-payoff
in G′′.

We proceed by proving the claim that P1 has a winning strategy σ′1 for the AE
objective in G′ if and only if he has a winning strategy σ′′1 for the MeanPayoff
objective in G′′, for the very same threshold t.

First, consider the left-to-right implication. Assume σ′1 is winning for objective
AvgEnergy(t) in G′. We apply the same strategy in G′′ straightforwardly as
the underlying graph is not modified. Since this strategy is winning for the
AE objective in G′, it necessarily avoids sink both in G′ and G′′ (as otherwise
the AE would be infinite). Hence by Eq. (C.4), we have that σ′1 is also winning
for MeanPayoff (t) in G′′.

Second, consider the right-to-left implication. Assume σ′′1 is winning for
objective MeanPayoff (t) in G′′. Since the self-loop on sink has weight dte+ 1,
it is necessary that σ′′1 never reaches sink otherwise it would not be winning.
Hence we apply the same strategy in G′ and by Eq. (C.4), we have that σ′′1 is
also winning for AvgEnergy(t) in G′.

104

Paper C. Average-energy Games

This proves correctness of the reduction. The same reasoning can be followed
for AE (thus using MP) instead of AE . We end by discussing the size of G′′.
Clearly, the state space S ′′ is identical to S ′, hence |S ′′| = (U + 1) · |S| + 1.
However, the largest absolute weight in G′′ is W ′′ = max{U, dte+ 1}. Indeed,
the self-loop on sink has weight (dte + 1) and all other edges have weight
bounded by the energy upper bound U by construction.

Illustration. Consider the AvgEnergyLU game G depicted in Fig. C.3a. We
have seen that the optimal strategy is π3 = (acaab)ω. Now consider the
reduction to the AE game, and further to the MeanPayoff game, depicted in
Fig. C.4. The optimal (memoryless) strategy in both the AE game G′ and the
MP game G′′ is to create the play π′ = ((a, 0)(c, 1)(a, 1)(a, 3)(b, 0))ω, which
corresponds to the optimal play π3 in the original game. It can be checked
that AEG(π3) = AEG′(π′) = MPG′′(π′).

Complexity. The reduction from the AvgEnergyLU game to the AE one
induces a pseudo-polynomial blow-up in the number of states. Thanks to
the second reduction and the use of a pseudo-polynomial algorithm for the
MeanPayoff game [126, 26], we get EXPTIME-membership, which is optimal
for two-player games thanks to the lower bound proved for EnergyLU [18]. The
complexity is reduced when the bound U is given in unary or is polynomial in
the size of the game, matching the one obtained for AE games without energy
constraints.

For the one-player case, we also use the reduction to an MeanPayoff game.
By [54], optimal memoryless strategies exist, hence it suffices to non-
deterministically build a simple lasso path in G′′, and to check that it satisfies
the mean-payoff constraint. It can be done using only polynomial space through
on-the-fly computation.

Theorem C.13. The AvgEnergyLU problem is EXPTIME-complete for two-
player games and PSPACE-complete for one-player games. If the upper
bound U ∈ N is polynomial in the size of the game or encoded in unary,
the AvgEnergyLU problem collapses to NP ∩ coNP and PTIME for two-player
and one-player games, respectively.

Proof. Let G = (S1, S2, E, w) be the original AvgEnergyLU game, W ∈ N
its largest absolute weight, U ∈ N the upper bound for energy and t ∈ Q
the threshold for the AvgEnergyLU problem. By Lem. C.11, this AvgEnergyLU
problem is reducible to an AE problem for the same threshold t over a
game G′ = (S ′1, S ′2, E ′, w′) such that |S ′| = (U + 1) · |S| + 1 and W ′ =

105

C.4. Average-Energy with Lower- and Upper-Bounded Energy

max {min {W, U}, 1}. By Lem. C.12, the AvgEnergyLU problem can be further
reduced to an MP problem for the same threshold t over a game G′′ =
(S ′1, S ′2, E ′, w′′) sharing the same state space as G′ but with largest absolute
weight W ′′ = max{U, dte + 1}. We start by proving the complexity upper
bounds.

First, consider the one-player case. Combining Thm. C.7 and the reduction to
an AE game, we obtain that one-player AvgEnergyLU games can be solved in
pseudo-polynomial time, i.e., polynomial in |S| but also in the value of U (hence
exponential in the size of its binary encoding). This both gives EXPTIME-
membership of one-player AvgEnergyLU games with arbitrary upper bounds,
and PTIME-membership of the same games with polynomial or unary upper
bounds. For arbitrary bounds, we improve the complexity from EXPTIME to
PSPACE. To do so, we consider the further reduction to an MeanPayoff game,
but we do not completely build the MeanPayoff game G′′ which is known to
be of exponential size. Instead, we build non-deterministically a witness lasso
path (thanks to memoryless determinacy [54], they are sufficient) and check
on-the-fly that the path is winning or not, using only polynomial space. Recall
that we consider a game G′′ such that S ′2 = ∅. Our non-deterministic algorithm
answers Yes if P1 has a winning strategy in G′′ (and hence in G thanks to
Lem. C.11 and Lem. C.12), No otherwise, and is as follows:

1. Guess a state s′r ∈ S ′1 = (S1 × {0, 1, . . . , U}) ∪ {sink} that will be the
starting (and ending) state of the cycling part of the lasso path. For the
following, we assume that s′r 6= sink otherwise the lasso path that we are
trying to build is clearly losing (see proof of Lem. C.12) and the algorithm
answers No. Thus, store state s′r = (sr,m) for some m ∈ {0, . . . , U}.

2. Check that s′r is reachable from the initial state (sinit, 0). This can be done
in NLOGSPACE w.r.t. the size of G′′ (see e.g., [118]), hence NPSPACE
w.r.t. the original problem. If it is not, then the answer is No.

3. Build step by step2 a lasso path by constructing a simple cycle in G′′
starting in s′r. This construction is non-deterministic: if at any point,
the sink state is reached, the algorithm returns No. The construction
stops as soon as s′r is reached, or after |S ′|+ 1 steps if s′r is not reached:
in the latter case, the answer is also No (after |S ′|+ 1 steps, we know for
certain that a cycle was created hence our lasso path is complete). While
constructing the cycle, we make on-the-fly computations: at each step,
the next state is chosen non-deterministically and the only information

2Observe that given a state in G′′, it is indeed possible to build any neighboring state
using only E and w from the original game: one can effectively build the graph G′′ on-the-fly.

106

Paper C. Average-energy Games

that is stored — except from state s′r used to determine the end of the
cycle — is the number of steps from leaving s′r, and the sum of the
weights seen along the cycle.

4. Assume s′r is reached (otherwise we have seen that the answer is No).
Let s′0s′1 . . . s′l be the sequence of states visited along the construction,
with s′0 = s′l = s′r. We have stored the length l and the sum of weights

γ =
l−1∑
i=0

w′′(s′i, s′i+1).

Now, we check if γ
l
≤ t: this quantity is the mean-payoff of the lasso path

we have constructed. If yes, then the answer is Yes, thanks to Lem. C.11
and Lem. C.12: the lasso path describes a winning strategy. Otherwise,
the answer is No as this lasso path represents a losing strategy, by the
same lemmas.

The correctness of this algorithm is guaranteed by Lem. C.11 and Lem. C.12. It
remains to argue that it only uses polynomial space in the original AvgEnergyLU
problem. Observe that our on-the-fly computations only need to record the
state s′r, the current state, the current length and the current sum. We have
that both states belong to S1 × {0, 1, . . . , U}, that l < |S ′| = (U + 1) · |S|+ 1
and that the sum is bounded by l ·W ′′ = l ·max{U, dte+ 1}. Hence, encoding
those values only requires a polynomial number of bits w.r.t. the input of
the AvgEnergyLU problem (i.e., logarithmic in the upper bound U , the largest
weightW and the threshold t). This proves that our algorithm lies in NPSPACE,
and by Savitch’s theorem [118] we know that NPSPACE = PSPACE: hence we
proved the upper bound for the one-player AvgEnergyLU problem.

Second, consider two-player AvgEnergyLU games. In this case, we solve the
MP problem over G′′ using a pseudo-polynomial algorithm such as the one
presented in [26], whose complexity is O(|S∗|3 ·W ∗) for a game with |S∗| states
and largest absolute weight W ∗ ∈ N. Therefore, the complexity of solving the
original AvgEnergyLU problem is

O
(
|S ′|3 ·W ′′

)
= O

((
(U + 1) · |S|+ 1

)3
·max{U, dte+ 1}

)
,

which is clearly pseudo-polynomial. Hence we obtain EXPTIME-membership for
two-player AvgEnergyLU games. If the upper bound U ∈ N is polynomial in the
size of the game or encoded in unary, it is sufficient to solve the polynomially-
larger AE game G′ using Thm. C.9 to obtain NP ∩ coNP-membership.

Now consider lower bounds. The AvgEnergyLU problem trivially encompasses
the lower- and upper-bounded energy problem EnergyLU, i.e., the AvgEnergyLU

107

C.4. Average-Energy with Lower- and Upper-Bounded Energy

without consideration of the average-energy. Indeed, consider a game G with
an objective EnergyLU (U, cinit := 0), for some U ∈ N. Assume P1 has a
winning strategy for this objective. Then this strategy ensures that along
any consistent outcome π, the running energy at any point is at most equal
to U . By definition, this implies that AE(π) ≤ AE(π) ≤ U . Hence this
strategy is also winning for the AvgEnergyLU objective written as the conjunction
EnergyLU (U, cinit := 0)∩AvgEnergy(t := U). The converse is also trivially true.
Ergo, any lower bound on the complexity of the EnergyLU problem also holds
for the AvgEnergyLU one. The EXPTIME-hardness of the two-player EnergyLU
problem was proved in [18], the PSPACE-hardness of the one-player version was
proved in [61] (in the equivalent setting of reachability in bounded one-counter
automata). Note that those results clearly rely on having an upper bound U
larger than polynomial (w.r.t. the size of the game) and encoded in binary, as
we have already shown that in the opposite case the complexity of the problem
is reduced.

Finally, observe that the same reduction and complexities also hold if we use
AE instead of AE to define the AvgEnergyLU problem. This concludes our
proof.

Remark C.14. One could argue that the reduction from AE games to MP
games presented in Lem. C.12 could be used to solve AE games without
resorting to the specific analysis of Sect. C.3. Indeed, in the case where
the mean-payoff value is zero, any memoryless strategy (which we know to
suffice) that is winning should only create zero-cycles: the energy can be
constrained in the range [−2 · |S| · W, 2 · |S| · W] along any winning play.
However, applying a pseudo-polynomial MP algorithm on this new game would
only grant EXPTIME-membership for AE games (because of the polynomial
dependency on W), in contrast to the NP ∩ coNP and PTIME results obtained
with the refined analysis for two-player and one-player AE games respectively.

C.4.2 Memory Requirements

We prove pseudo-polynomial lower and upper bounds on memory for the two
players in AvgEnergyLU games. The upper bound follows from the reduction
to a pseudo-polynomial AE game and the memoryless determinacy of AE
games proved in Thm. C.8. Observe that winning strategies obtained via our
reductions have a natural form: they are memoryless w.r.t. configurations
(s, c) denoting the current state and the current energy level. As noted before,
when the upper bound on energy U ∈ N is polynomial or given in unary, the
expanded game is only polynomial in size, and the memory needs are also

108

Paper C. Average-energy Games

reduced.

The lower bound can be witnessed in two families of games asking for strategies
using memory polynomial in the energy upper bound U ∈ N to be won by P1
(Fig. C.5a) or P2 (Fig. C.5b) respectively. It is interesting to observe that those
families already ask for such memory when considering the simpler EnergyLU
objective (i.e., bounded energy only). Sufficiency of pseudo-polynomial memory
for EnergyLU games follows from [18] but to the best of our knowledge, it was
not proved in the literature that such memory is also necessary.

s s′−U

1

0

(a) P1 needs to take U

times (s, s′) before taking
(s, s) once and repeating.

s a

b c d e f

g

1

−1 1 0 0 0

0 0 −U 0 1

(b) P2 needs to increase the energy up to U
using (a, c) to force P1 to take (g, d) then make
him lose by taking (a, b).

Figure C.5: Families of games witnessing the need for pseudo-polynomial-memory
strategies for EnergyLU (and AvgEnergyLU) objectives. The goal of P1 is to keep the
energy in [0, U] at all times, for U ∈ N. The left game is won by P1 and the right
one by P2 but both require memory polynomial in the value U to be won.

Theorem C.15. Pseudo-polynomial-memory strategies are both sufficient
and necessary to win in EnergyLU and AvgEnergyLU games with arbitrary energy
upper bound U ∈ N, for both players. Polynomial memory suffices when U is
polynomial in the size of the game or encoded in unary.

Proof. We first prove the upper bound on memory. The expanded game G′
built in the reduction from the AvgEnergyLU to the AE problem (Lem. C.11)
has a state space of size |S ′| = (U + 1) · |S| + 1, over which memoryless
strategies suffice, by Thm. C.8. Thus, winning for the AvgEnergyLU objective
only requires memory that is polynomial in the original number of states and
the upper bound value U ∈ N. The same reduction holds for EnergyLU games
with an even simpler safety objective (never reaching sink) instead of the AE
one (or equivalently with the AE objective for threshold t = U). Thus, with
regard to the binary encoding of U , strategies require exponential memory
in general. For the special cases of unary encoding or polynomially bounded
value U , polynomial memory suffices. Note that as usual, these arguments are
true for both the AE and the AE versions of the objective.

109

C.4. Average-Energy with Lower- and Upper-Bounded Energy

We now discuss the two families of games witnessing that pseudo-polynomial
memory is also a lower bound for both players.

First, consider the one-player game depicted in Fig. C.5a and parametrized
by the value U ∈ N. Assume the objective is EnergyLU, asking for the energy
to remain within [0, U] at all times. Recall that the initial energy level is
fixed to cinit := 0. It is easy to see that there is only one acceptable strategy
for P1: playing (s, s′) exactly U times, then playing the self-loop (s, s) once,
and repeating this forever. Indeed, any other strategy eventually leads the
energy outside the allowed range. Hence, to win this game, P1 needs a strategy
described by a Moore machine whose memory contains at least (U + 1) states.
This proves that pseudo-polynomial memory is required for P1 in EnergyLU
games. Furthermore, the same argument can be applied on this game with
objective AvgEnergyLU by considering the average-energy threshold t := U

which is trivially ensured by strategies satisfying the EnergyLU objective.

Second, consider the two-player3 EnergyLU game depicted in Fig. C.5b. Again
this game is parametrized by the energy upper bound U ∈ N and the initial
energy level is fixed to cinit := 0. This game can be won by P2 using the
following strategy: if the energy level is in [1, U], play (a, c), otherwise play
(a, b). Note that this strategy again requires at least (U + 1) states of memory
in its Moore machine (to keep track of the energy level).

This strategy is indeed winning. Observe that P1 can only decrease the energy
by using edge (g, d) of weight −U , and this edge can only be used safely if
the energy level is exactly U . In addition, the energy is bound to reach or
exceed U eventually (as it will increase by 1 or 2 between each visit of a). If
it exceeds U , then P2 wins directly. Otherwise, assume that the energy is U
when the game is in state g. If P1 plays (g, f), he loses (the energy reaches
U + 1). If he plays (g, e), P2 wins by playing (a, c) (the energy also reaches
U + 1). And if P1 plays (g, d), P2 wins by playing (a, b) (the energy reaches
−1). Hence, P2 wins the game against all strategies of P1.

Now, observe that P2 cannot win if he uses a strategy with less memory states
in its Moore machine. Indeed, any such strategy cannot keep track of all the
energy levels between 0 and U and play (a, c) a sufficient number of times in a
row before switching to the appropriate choice (depending on the energy being
0 or U). Therefore, if P2 uses such a strategy, P1 can maintain the energy in
the allowed range by simply reacting to edge (a, b) with (g, f) and to edge (a, c)
by choosing between (g, d) (if the energy is U) and (g, e) (otherwise). Such

3In EnergyLU games with only P2 (i.e., S1 = ∅), P2 does not need memory to play as he
can pick beforehand which of the energy bounds (lower or upper) he will transgress, and
then do so with a memoryless strategy.

110

Paper C. Average-energy Games

choices are safe for P1 as the strategy of P2 does not have enough memory to
distinguish the resulting energy levels from the intermediate ones.

This proves that P2 also needs pseudo-polynomial memory in EnergyLU games.
Finally, we remark that this reasoning also holds for the AvgEnergyLU objective
with threshold t := U , as for the previous game.

C.5 Average-Energy with Lower-Bounded En-
ergy

We conclude with the conjunction of an AE objective with a lower bound (again
equal to zero) constraint on the running energy, but no upper bound. This cor-
responds to an hypothetical unbounded energy storage. Hence, its applicability
is limited, but it may prove interesting on the theoretical standpoint.

Problem C.3 (AvgEnergyL). Given a game G(T), an initial state sinit and a
threshold t ∈ Q, decide if P1 has a winning strategy σ1 ∈ Σ1 for objective
EnergyL(cinit := 0) ∩ AvgEnergy(t).

This problem proves to be challenging to solve: we provide partial answers in
the following, with a proper algorithm for one-player games but only a correct
but incomplete method for two-player games. As usual, we present our results
for the supremum variant AE .

Illustration. Consider the game in Fig. C.3. Recall that for AvgEnergyLU
with U = 3, the optimal play is π3, and it requires alternation between all
three different simple cycles. Now consider AvgEnergyL. One may think that
relaxing the objective would allow for simpler winning strategies. This is not
the case. Some new plays are now acceptable w.r.t. the energy constraint,
such as π4 = (aabaaba)ω, with AE(π4) = 11/7 and π5 = (aaababa)ω, with
AE(π5) = 18/7. Yet, the optimal play w.r.t. the AE (under the lower-bound
energy constraint) is still π3, hence still requires to use all the available cycles,
in the appropriate order. This indicates that AvgEnergyL games also require
complex solutions.

C.5.1 One-player Games

We assume that the unique player is P1. Indeed, the opposite case is easy as
for P2, the objective is a disjunction and P2 can choose beforehand which sub-

111

C.5. Average-Energy with Lower-Bounded Energy

objective he will transgress, and do so with a simple memoryless strategy (both
AE and EnergyL games admit memoryless optimal strategies as seen before).
We show that one-player AvgEnergyL problems lie in PSPACEby reduction
to AvgEnergyLU problems for a well-chosen upper bound U ∈ N and then
application of Thm. C.13.

The reduction. Given a game G = (S1, S2 = ∅, E, w) with largest weight
W ∈ N, an initial state sinit, and a threshold t ∈ Q, we reduce the AvgEnergyL
problem to an AvgEnergyLU problem with an upper bound U ∈ N defined as
U := t + N2 + N3, with N = W · (|S| + 2). Observe that the length of the
binary encoding of U is polynomial in the size of the game, the encoding
of the largest weight W and the encoding of the threshold t. The intuition
is that if P1 can win a one-player AvgEnergyL game, he can win it without
ever reaching energy levels higher than the chosen bound U , even if he is
technically allowed to do so. Essentially, the interest of increasing the energy
is making more cycles available (as they become safe to take w.r.t. the lower
bound constraint), but increasing the energy further than necessary is not
a good idea as it will negatively impact the average-energy. To prove this
reduction, we start from an arbitrary winning path in the AvgEnergyL game,
and build a witness path that is still winning for the AvgEnergyL objective,
but also keeps the energy below U at all times. Our construction exploits
a result of Lafourcade et al. that bounds the value of the counter along a
path in a one-counter automaton (stated in [93] and proved in [92, Lem. 42]).
We slightly adapt it to our framework in the next lemma. The technique
is identical, but the statement is more precise. In the following, we call an
expanded configuration of the game G a couple (s, c) where s ∈ S is a state
and c ∈ Z a level of energy.

Lemma C.16. Let g ∈ Z. Let (s, c) and (s′, c′) be two expanded config-
urations of the game G such that there exists an expanded path ρexp =
(s0, c0) . . . (sm, cm) in G from (s, c) to (s′, c′) with ci ≥ g for every 0 ≤ i ≤ m.
Then, there is a path ρ′exp = (s′0, c′0)(s′1, c′1) . . . (s′n, c′n) in G from (s, c) to (s′, c′)
such that:

• for every 0 ≤ i ≤ n, g ≤ c′i ≤ max{c, c′, g} + N2 + N3, where N =
W · (|S|+ 2), with W the maximal absolute weight in G;

• there is an (injective) increasing mapping ι : {1, . . . , n} → {1, . . . ,m}
such that for every 1 ≤ i ≤ n, s′i = sι(i) and c′i ≤ cι(i).

Furthermore, for any two expanded paths ρ1 and ρ2, with last(ρ1) = (s, c)
and first(ρ2) = (s′, c′), if AE(ρ1 · ρexp · ρ2) ≤ g, then it also holds that

112

Paper C. Average-energy Games

AE(ρ1 · ρ′exp · ρ2) ≤ AE(ρ1 · ρexp · ρ2) ≤ g.

Proof. We write α = W · (|S| + 1), β = (α + W) · (α + W − 1) − 1 and
K = max

{
c, c′, g

}
+ (α + W)2. We apply inductively a transformation that

removes similar ascending and descending segments of the path. The segments
are selected such that their composition is neutral w.r.t. the energy.

Pick a subpath ρexp[k, k + h] = (sk, ck) . . . (sk+h, ck+h) of ρexp, if it exists, such
that:

(a) ck ≤ K and ck+h ≤ K;

(b) for every 0 < ` < h, ck+` > K;

(c) there is 0 < ` < h such that ck+` > K +W · (|S|+ 1) · β.

If such a subpath does not exist, then this means that the cost along ρexp is
overall bounded by K +W · (|S|+ 1) · β (since condition (a) is not restrictive –
c, c′ ≤ K), which then concludes the proof. Hence, assume such a subpath
exists for the following steps.

Ascent part. Let k ≤ `0 ≤ · · · ≤ `β ≤ k + h be indices such that:

• c`i > K + i ·W · (|S|+ 1);

• for every k ≤ ` < `i, c` ≤ K + i ·W · (|S|+ 1).

Fix 0 ≤ i ≤ β. Then it holds that c`i ≤ K + i · W · (|S| + 1) + W and
thus c`i+1 − c`i > K + (i+ 1) ·W · (|S|+ 1)− (K + i ·W · (|S|+ 1) +W) =
W · (|S| + 1) − W = W · |S|. Let Ji be a subset of [`i; `i+1] defined by
`i ∈ Ji, and if j ∈ Ji, then let j′ ≤ `i+1 be the smallest index larger than
j (if it exists) such that cj′ > cj. Obviously we have cj < cj′ ≤ cj + W .
Hence the cardinal of Ji is at least 1 + W ·|S|

W
≥ |S| + 1. Hence there is a

state s̃(i) and two indices ji,1 < ji,2 ∈ Ji with (sji,1 , cji,1) = (s̃(i), α1) and
(sji,2 , cji,2) = (s̃(i), α2) with c`i ≤ α1 < α2 ≤ c`i+1 , hence using previous
computed bounds, 0 < α2 − α1 ≤ c`i+1 − c`i < W · (|S| + 2) = α + W . We
write d̃(i) = α2 − α1. The segment between indices ji,1 and ji,2 is a candidate
for being removed. Due to the value of β, there is d ∈ {d̃(i) | 0 ≤ i ≤ β} that
appears (α +W) times in that set.

Descent part. We do a similar reasoning for the “descent” part. There
must exist indices k ≤ m0 ≤ · · · ≤ mβ ≤ k + h such that:

• cmi
> K + (β − i) ·W · (|S|+ 1);

113

C.5. Average-Energy with Lower-Bounded Energy

• for every mi < m ≤ k + h, cm ≤ K + (β − i) ·W · (|S|+ 1).

Note that we obviously have `β < m0.

Then we apply the same combinatorics as for the ascent part. There is some
value 0 < d′ < α +W which appears at least α +W times in potential cycles
within the segment ρexp[k, k + h].

Transformation. The algorithm then proceeds by removing d′ segments
that increase the cost by d within ρexp[`0, `β] and d segments that decrease the
cost by d′ within ρexp[m0,mβ]. This yields another path ρ′exp and an obvious
injection of ρ′exp into ρexp which satisfies all the mentioned constraints. The
sum of all energy levels along ρ′exp is smaller than that along ρexp, and any
energy level along ρ′exp is obtained from that along ρexp by decreasing by at
most 0 < d · d′ < (α + W)2. By assumption on segment ρexp[k, k + h] and
bound K, we get that the cost along ρ′exp is always larger than or equal to g, c
and c′.

We iterate this transformation to get a uniform upper bound. We finally notice
that the obtained upper bound K + W · (|S| + 1) · β is bounded itself by
max{c, c′, g}+N2 +N3, where N = W · (|S|+ 2). This implies the expected
result.

We build upon this lemma to define an appropriate transformation leading to
the witness path and derive a sufficiently large upper bound U ∈ N for the
AvgEnergyLU problem.

Lemma C.17. The AvgEnergyL problem over a one-player gameG = (S1, S2 =
∅, E, w), with an initial state sinit and a threshold t ∈ Q, is reducible to an
AvgEnergyLU problem over the same game G, for the same threshold t and
upper bound U := t+N2 +N3, with N = W · (|S|+ 2).

Proof. We prove that we can bound the energy along a witness of the one-
player AvgEnergyL problem. Let σ be a winning strategy of P1 for objective
EnergyL(cinit := 0)∩AvgEnergy(t) and π = s0s1 . . . sn . . . be the corresponding
outcome.

We build another strategy σ̃ with corresponding play π̃ such that for every n,
0 ≤ cinit + EL(π̃(n)) ≤ cinit + t+N2 +N3, where N = W · (|S|+ 2) (W is the
maximal absolute weight in G), and such that AE(π̃) ≤ AE(π). We actually
build the play π̃ directly, and infer strategy σ̃.

114

Paper C. Average-energy Games

From π, we build the expanded play πexp = (s0, c0)(s1, c1) . . . (sn, cn) . . . such
that ci = EL(π(i)) for every i ≥ 0. Since π is a witness satisfying the objective
EnergyL(cinit) ∩ AvgEnergy(t), it holds that ci + cinit ≥ 0 for every i ≥ 0. We
now show that some pair (s, c) is visited infinitely often along πexp. Toward
a contradiction, assume that it is not the case. Then since energy levels are
bounded from below along π, this means that lim infn→∞ cn = TP(π) = +∞,
and by Lem. C.2, that AE(π) = +∞ which contradicts the play being winning
for the AE objective with threshold t ∈ Q. Now select the smallest energy c
and state s such that (s, c) is visited infinitely often along πexp. Pick n0 such
that (1) (sn0 , cn0) = (s, c), (2) π[≥ n0] = sn0sn0+1 . . . only visits states that
are visited infinitely often along π, and (3) for every (s′, c′) along πexp[≥ n0],
it holds that c′ ≥ c.

We can then write πexp as πexp[≤ n0] · C1 · C2 . . . where each Ci ends at con-
figuration (s, c) (hence Ci forms a cycle), and each configuration (s′, c′) along
some Ci satisfies c′ ≥ c. We write γi for the projection of Ci on states (without
energy level)— it forms a cycle as well. We obviously have

AE(π) = EL(π(n0)) + AE(π[> n0]) = c+ AE(π[> n0])

by Lem. C.4, and since AE(π) ≤ t, there must be some cycle Ci such that
AE(γi) ≤ t − c. We write γ for such a γi, and we define $ = π(n0) · γω:
it is a lasso-shaped play which also satisfies the objective EnergyL(cinit) ∩
AvgEnergy(t).

We will now modify the play $, so that the energy does not grow too much
along it. We write $exp for the expanded version of $: it is of the form

$exp[≤ n0] ·
(
$exp[n0 + 1, n0 + p]

)ω
,

where$exp[n0+1, n0+p] projects onto γ when the energy information is removed
(note that the last configurations of $exp[≤ n0] and of $exp[n0 + 1, n0 + p]
are (s, c)). We will do two things: (i) first we will work on the cycle γ;
and (ii) then we will work on the prefix $[≤ n0], to build a witness with a
fixed upper bound on the energy. For the rest of the proof, we assume that
$exp = (s0, c0)(s1, c1) . . . so that (sn, cn) = (s, c) for every n = n0 + b · p for
some integer b.

First consider point (i). Let us notice that c ≤ t, otherwise the average-
energy along $ could not be at most t (remember that the cost along the
expanded version of γ starting at (s, c) is always larger than or equal to c by
construction). We pick the first maximal subpath $exp[k, k + h] of $exp with
[k, k+h] ⊆ (n0, n0 +p), such that ck+` > t for every 0 ≤ ` ≤ h. By maximality
of $exp[k, k + h], it is the case that ck−1 ≤ t and ck+h+1 ≤ t. We infer that

115

C.5. Average-Energy with Lower-Bounded Energy

t < ck ≤ t + W and t < ck+h ≤ t + W , where W is the maximal absolute
weight in the game G. We apply Lem. C.16 to the path $exp[k, k + h] with
g = t, and we get that we can build an expanded path $(k)

exp which is shorter
than $exp[k, k + h] and such that:

• at all positions of $(k)
exp, the energy is in the interval [t, t + N2 + N3],

where N = W · (|S|+ 2);

• there is an injective increasing mapping ι : [0, |$(k)
exp|]→ [k, k + h] such

that for every index 1 ≤ i ≤ |$(k)
exp|, the state of $(k)

exp[= i] coincides with
that of $exp[= ι(i)] and the energy at position i of $(k)

exp is smaller than
or equal to cι(i).

In particular, we have a new witness for the objective EnergyL(cinit) ∩
AvgEnergy(t), which is the play $[< n0] ·

(
$[n0, k − 1] · $(k) · $[k + h +

1, n0 + |γ| − 1]
)ω

, where $(k) is the projection of $(k)
exp over the states of the

game G. We iterate this transformation over all relevant segments of γ (this
will happen only a finite number of times), and we end up with a new lasso-play
$′ = $[≤ n0] · (γ′)ω such that:

• $′ satisfies the objective EnergyL(cinit) ∩ AvgEnergy(t);

• for every 1 ≤ ` ≤ |γ′|, −cinit ≤ EL($′(n0 + `)) ≤ t+N2 +N3.

Now, consider point (ii). It remains to work on the prefix $[≤ n0] (which is
still a prefix of $′). We apply Lem. C.16 to the prefix $[≤ n0] with g = 0,
and we get an appropriately bounded witness.

Summing up, our construction proves that if there exists a winning play for
EnergyL(cinit := 0) ∩AvgEnergy(t) in the one-player game G, then there exists
one for EnergyLU (U, cinit := 0) ∩ AvgEnergy(t), with U := t+N2 +N3. Since
the converse implication is obvious (as the second objective is strictly stronger),
this concludes the proof of the reduction to an AvgEnergyLU game.

Complexity. Plugging this bound U in the PSPACEalgorithm for one-player
AvgEnergyLU games (Thm. C.13) implies PSPACE-membership for one-player
AvgEnergyL games also. In terms of time complexity, we saw that this problem
can thus be solved in pseudo-polynomial time. We prove that no truly-
polynomial-time algorithm can be obtained unless PTIME = NP as the one-
player AvgEnergyL problem is NP-hard. We show it by reduction from the
subset-sum problem [65]: given a finite set of naturals A = {a1, . . . , an} and a
target natural v, decide if there exists a subset B ⊆ A such that ∑ai∈B ai = v.
The reduction is sketched in Fig. C.6: a play corresponds to a choice of subset.

116

Paper C. Average-energy Games

In order to keep a positive energy level, P1 has to pick a subset that achieves
a sum at least equal to v, but in order to satisfy the AE threshold, this sum
must be at most v: hence P1 must be able to pick a subset whose sum is
exactly the target v.

s1

a1

¬a1

s2

a2

¬a2

sn

an

¬an

end 0

a1

0

0

0

a2

0

0

0

an

0

−v

−v

Figure C.6: Reduction from the subset-sum problem for target v ∈ N to a one-
player AvgEnergyL problem for average-energy threshold t := v.

Theorem C.18. The AvgEnergyL problem is in PSPACE and at least NP-hard
for one-player games.

Proof. First, consider the claim of PSPACE-membership. Let G = (S1, S2 =
∅, E, w) be a game with initial state sinit. Consider the AvgEnergyL problem
for a given average-energy threshold t ∈ Q. By Lem. C.17, this problem is
reducible to the AvgEnergyLU problem with upper bound U := t + N2 + N3,
with N = W · (|S|+ 2). Hence, U is of order O(t+W 3 · |S|3), and its encoding
is polynomial in the encoding of the original AvgEnergyL problem (including
thresholds and weights, not only in the number of states of the original game!).
Following the complexity analysis presented in Thm. C.13, we thus conclude
that the one-player AvgEnergyL problem is indeed in PSPACE. In terms of
time, by using the MeanPayoff reduction and the pseudo-polynomial algorithm,
we have an algorithm for the one-player AvgEnergyL problem that takes time
of order

O
((

(U + 1) · |S|+ 1
)3
·max{U, dte+ 1}

)
= O

((
t+W 3 · |S|3

)4
· |S|3

)
,

which is still pseudo-polynomial in the size of the original AvgEnergyL problem
(i.e., polynomial in the number of states and in the values of the largest absolute
weight and of the average-energy threshold).

Second, we prove that the one-player AvgEnergyL problem is NP-hard. Consider
the subset-sum problem for the set A = {a1, . . . , an} such that for all i ∈
{1, . . . , n}, ai ∈ N, and target v ∈ N. Deciding if there exists a subset B ⊆ A

such that ∑ai∈B ai = v is well-known to be NP-complete [65]. We reduce
this problem to an AvgEnergyL problem over the game G depicted in Fig. C.6.
Observe that this game has polynomially as many states as the size of A, and
that its largest absolute weight is equal to the maximum between the largest
element of A and the target v. It is clear that there is a bijection between

117

C.5. Average-Energy with Lower-Bounded Energy

choices of subsets of A and plays in G. Let us fix threshold t := v for the
average-energy. Recall that Lem. C.4 implies that the average-energy of any
play is exactly its energy level at the first visit of end (because afterwards the
zero self-loop is repeated forever). Hence, we have that

1. a play π in G is winning for EnergyL(cinit := 0) if and only if the corre-
sponding subset B is such that ∑ai∈B ai ≥ v;

2. a play π in G is winning for AvgEnergy(t := v) if and only if the
corresponding subset B is such that ∑ai∈B ai ≤ v.

Therefore, P1 has a winning strategy for the AvgEnergyL objective
EnergyL(cinit := 0) ∩ AvgEnergy(t := v) in G if and only if there exists a
subset B for which the sum of elements is exactly equal to the target v.

This proves the reduction from the subset-sum problem and the NP-hardness
result. Observe two things. First, the hardness proof relies on having set
elements and a target value that are not polynomial in the size of the input
set A. Indeed, the subset-sum problem is solvable with a pseudo-polynomial
algorithm, hence in PTIME for polynomial values. Second, our reduction also
holds for the AE variant of the average-energy.

Memory requirements. Recall that for P2, the situation is simpler and
memoryless strategies suffice. By the reduction to AvgEnergyLU, we know that
pseudo-polynomial memory suffices for P1. This bound is tight as witnessed
by the family of games already presented in Fig. C.5a. To ensure the lower
bound on energy, P1 has to play edge (s, s′) at least U times before taking
the (s, s) self-loop. But to minimize the average-energy, edge (s, s′) should
never be played more than necessary. The optimal strategy is the same
as for the AvgEnergyLU problem: playing (s, s′) exactly U times, then (s, s)
once, then repeating, forever. As shown in Thm. C.15, this strategy requires
pseudo-polynomial memory.

Theorem C.19. Pseudo-polynomial-memory strategies are both sufficient
and necessary to win for P1 in one-player AvgEnergyL games. Memoryless
strategies suffice for P2 in such games.

C.5.2 Two-player Games

For the two-player AvgEnergyL problem, we only provide partial answers, as
open questions remain. We first discuss decidability: we present an incremental
algorithm that is correct but incomplete (Lem. C.20) and we draw the outline

118

Paper C. Average-energy Games

of a potential approach to obtain completeness hence decidability. Then,
we prove that the two-player AvgEnergyL problem is at least EXPTIME-hard
(Lem. C.21). Finally, we show that in contrast to the one-player case, P2 also
requires memory in two-player AvgEnergyL games (Lem. C.22).

Decidability. Assume that there exists some U ∈ N such that P1 has a
winning strategy for the AvgEnergyLU problem with upper bound U and average-
energy threshold t. Then, this strategy is trivially winning for the AvgEnergyL
problem as well. This observation leads to an incremental algorithm that is
correct (no false positives) but incomplete (it is not guaranteed to stop).

Lemma C.20. There is an algorithm that takes as input an AvgEnergyL prob-
lem and iteratively solves corresponding AvgEnergyLU problems for incremental
values of U ∈ N. If a winning strategy is found for some U ∈ N, then it is
also winning for the original AvgEnergyL problem. If no strategy is found up to
value U ∈ N, then no strategy of P1 can simultaneously win the AvgEnergyL
problem and prevent the energy from exceeding U at all times.

While an incomplete algorithm clearly seems limiting from a theoretical stand-
point, it is worth noting that in practice, such approaches are common and
often necessary restrictions, even for problems where a complete algorithm is
known to exist. For example, the existence of an initial energy level sufficient
to win in multi-dimensional energy games can be decided [36] but practical
implementations resort to an incremental scheme that is in practice incomplete
because the theoretical bound granting completeness is too large to be tackled
efficiently by software synthesis tools [14]. In our case, we have already seen
that if such a bound exists for the two-player AvgEnergyL problem, it needs to
be at least exponential in the encoding of problem (cf. one-player AvgEnergyL
games). Hence it seems likely that a prohibitive bound would be necessary,
rendering the algorithm of Lem. C.20 more appealing in practice.

Nevertheless, we conjecture that the AvgEnergyL problem is decidable for two-
player games and that, similarly to the one-player case, an upper bound on the
energy can be obtained. Unfortunately, this claim is much more challenging
to prove for two-player games. Clearly, the approach of Lem. C.17 has to be
generalized: while in one-player games we could pick a witness winning play
and transform it, we now have to deal with tree unfoldings—describing sets
of plays—because of the uncontrollable choices made by P2.

A potentially promising approach is to define a notion close to the self-covering
trees used in [36] for energy games. Roughly, take any winning strategy of P1
in a two-player AvgEnergyL game. Without further assumption, this strategy

119

C.5. Average-Energy with Lower-Bounded Energy

could be infinite-memory. It can be represented by its corresponding infinite
tree unfolding where in nodes of P1, a unique child is given by the strategy,
and in nodes of P2, all possible successors yield different branches. Every
rooted branch of this tree is infinite and describes a winning play. Then, we
would like to achieve the following steps.

1. Prove that all branches of this unfolding can be cut in such a way that
the resulting finite tree describes a finite-memory strategy that is still
winning for the AvgEnergyL objective.

2. Reduce the height of this finite tree by compressing parts of the branches:
deleting embedded zero cycles seems to be a good candidate for the
transformation to apply.

3. Derive an upper bound on the height of the compressed tree and, conse-
quently, on the maximal energy level reached along any play consistent
with the corresponding strategy.

4. Use this upper bound to reduce the AvgEnergyL problem to an
AvgEnergyLU problem.

Sadly, some challenges appear on the technical side when trying to implement
this approach, mainly for items 1 and 3. Intuitively, the additional difficulty
(when compared to the approach developed in [36] and similar works) arises
from the fact that describing what is a good cycle pattern for the AvgEnergyL
objective is much more intricate than it is for a simple EnergyL objective (in
which case we simply look for zero cycles). This makes the precise definition
of an appropriate transformation of branches, and the resulting tree height
analysis, more tedious to achieve.

We also mention that the AvgEnergyL problem could be reduced, following a
construction similar to the one given in Sect. C.4.1, to a mean-payoff threshold
problem over an infinite arena, where states of the expanded graph are arranged
respectively to their energy level, ranging from zero to infinity, and where
weights would also take values inside N ∪ {∞} (as they reflect the possible
energy levels). To the best of our knowledge, it is not known if mean-payoff
games over such particular structures are decidable. If so, an algorithm would
have to fully exploit the peculiar form of those arenas, as it is for example
known that general models such as pushdown games are undecidable for the
mean-payoff [37].

Finally, one could envision to fill the gap between one-player and two-player
AvgEnergyL games by using a general result similar to [69, Cor. 7]. Recall
that we used it to derive memoryless determinacy in the two-player case from

120

Paper C. Average-energy Games

memoryless determinacy of both one-player versions (S1 = ∅ and S2 = ∅).
However, we here have that in one-player games, P1 requires pseudo-polynomial
memory. Therefore, it is necessary to extend the result of Gimbert and Zielonka
to finite-memory strategies: that is, to show that if we have a bound on memory
valid in both one-player versions of a game, then this bound, or a derived
one, is also valid in the two-player version. This is not known to be the case
in general, and establishing it for a sufficiently general class of games seems
challenging.

Complexity lower bound. We now prove that the two-player AvgEnergyL
problem would require at least exponential time to solve. Our proof is by
reduction from countdown games. A countdown game C is a weighted graph
(V , E), where V is the finite set of states, and E ⊆ V × N \ {0} × V is the
edge relation. Configurations are of the form (v, c), v ∈ V, c ∈ N. The game
starts in an initial configuration (vinit, c0) and transitions from a configuration
(s, c) are performed as follows. First, P1 chooses a duration d, 0 < d ≤ c

such that there exists e = (v, d, v′) ∈ E for some v′ ∈ V. Second, P2 chooses
a state v′ ∈ V such that e = (v, d, v′) ∈ E . Then the game advances to
(v′, c− d). Terminal configurations are reached whenever no legitimate move
is available. If such a configuration is of the form (v, 0), P1 wins the play,
otherwise P2 wins. Deciding the winner given an initial configuration (vinit, c0)
is EXPTIME-complete [80].

Our reduction is depicted in Fig. C.7. The EL is initialized to c0, then it is
decreasing along any play. Consider the AvgEnergyL objective for AE threshold
t := 0. To ensure that the energy always stays non-negative, P1 has to switch
to stop while the EL is no less than zero. In addition, to ensure an AE no more
than t = 0, P1 has to obtain an EL at most equal to zero before switching
to stop (as the AE will be equal to this EL thanks to Lem. C.4 and the zero
self-loop on stop). Hence, P1 wins the AvgEnergyL objective only if he can
ensure a total sum of chosen durations that is exactly equal to c0, i.e., if he can
reach a winning terminal configuration for the countdown game. The converse
also holds.

Lemma C.21. The AvgEnergyL problem is EXPTIME-hard for two-player
games.

Proof. Given a countdown game C = (V , E) and an initial configuration
(vinit, c0), we build a game G = (S1, S2, E, w) with initial state sinit such that
P1 has a winning strategy in G for the AvgEnergyL objective for threshold t := 0
if and only if he has a winning strategy in C to reach a terminal configuration

121

C.5. Average-Energy with Lower-Bounded Energy

start

vinit

(vinit,d1)

(vinit,d2)

(vinit,d3)

v′′

v′

v′′′

stop

c0

0

−d2

−d1

−d3

0

0

0

0 0

−d4

−d5

−d6

Figure C.7: Reduction from a countdown game C = (V, E) with initial configuration
(vinit, c0) to a two-player AvgEnergyL problem for average-energy threshold t := 0.

with counter value zero. The construction is depicted in Fig. C.7. Formally,
the game G is built as follows.

• S1 = V ∪ {start, stop}.

• S2 = {(v, d) ∈ V × N \ {0} | ∃ v′ ∈ V , (v, d, v′) ∈ E}.

• sinit = start.

• For each (v, d, v′) ∈ E , we have that (v, (v, d)) ∈ E with w(v, (v, d)) = −d
and ((v, d), v′) ∈ E with w((v, d), v′) = 0.

• Additionally, (start, vinit) ∈ E with w(start, vinit) = c0, (stop, stop) ∈ E
with w(stop, stop) = 0 and for all v ∈ V , (v, stop) ∈ E with w(v, stop) =
0.

First, consider the left-to-right direction of the claim. Assume P1 has a
winning strategy for the AvgEnergyL objective in G. As noted before, such a
strategy necessarily reaches the energy level zero then switches to stop directly.
Hence, applying this strategy in the countdown game ensures that the sum of
durations will be exactly equal to c0 (recall that we start our AvgEnergyL game
by initializing the energy to c0 then decrease it at every step by the duration
chosen by P1). Thus, this strategy is winning in the countdown game C.

Second, consider the right-to-left direction. Assume that P1 has a winning
strategy in the countdown game C. Playing this strategy in G ensures to reach
a state v ∈ S1 with energy level exactly equal to zero. Thus a winning strategy
for the AvgEnergyL objective is to play the countdown strategy up to this point
then to immediately take the edge (v, stop). Indeed, any consistent outcome
will satisfy the lower bound on energy (as the energy will never go below zero),
and it will have an average-energy equal to t = 0 (because the energy level
when reaching stop will be zero).

This shows both directions of the claim and concludes our proof. Observe

122

Paper C. Average-energy Games

that this reduction is also true if we consider the AE variant of the average-
energy.

Memory requirements. We close our study of two-player AvgEnergyL
games by discussing the memory needs. First note that we cannot pro-
vide upper bounds: if we had such bounds, we could derive a bound on the
energy along any consistent play and reduce the AvgEnergyL problem to an
AvgEnergyLU one as discussed before, hence proving its decidability. Second,
we already know by Thm. C.19 that pseudo-polynomial memory is necessary
for P1. Finally, we present a simple game (Fig. C.8) where P2 needs to use
memory in order to prevent P1 from winning.

s1 s2 s3

0

−11 −1

2

Figure C.8: Simple two-player AvgEnergyL game witnessing the need for memory
even for P2.

Lemma C.22. Pseudo-polynomial-memory strategies are necessary to win
for P1 in two-player AvgEnergyL games. Memory is also required for P2 in such
games.

Proof. We only have to prove that P2 needs memory in the game of Fig. C.8.
Consider the AvgEnergyL objective for the average-energy threshold t := 1 on
this game. Assume that P2 is restricted to memoryless strategies. Then, there
are only two possible strategies for P2. If P2 always takes the self-loop (s2, s2),
then the only consistent play is s1(s2)ω: it has AE equal to 1, and satisfies the
lower bound constraint on energy, thus P1 wins. If P2 always takes (s2, s3),
then P1 can win by producing the following play: s1s2(s3s2s3)ω. It also has
AE equal to 1, and satisfies the energy constraint. Hence P2 cannot win this
game with a memoryless strategy. Nonetheless, he has a winning strategy
that uses memory. Let this strategy be the one that plays (s2, s3) once then
chooses the self-loop (s2, s2) forever. When this strategy is used by P2, P1 has
to pick (s3, s2) in the first visit of s3 otherwise he loses because the energy goes
below zero. But if P1 picks this edge, the unique outcome becomes s1s2s3(s2)ω,
whose average-energy is 2 > t, hence also losing for P1. Thus, the defined
strategy is winning for P2.

123

C.6. Conclusion

C.6 Conclusion

We presented a thorough study of the average-energy payoff. We showed
that average-energy games belong to the same intriguing complexity class
as mean-payoff, total-payoff and energy games and that they are similarly
memoryless determined. We then solved average-energy games with lower-
and upper-bounded energy: such a conjunction is motivated by previous case
studies in the literature [29]. Lastly, we provided preliminary results for the
case of average-energy with a lower bound but no upper bound on the energy.
Following the publication of [19], Larsen et al. adressed a different problem
in [94]: they proved that deciding if there exists a threshold t ∈ Q such that
P1 can win a two-player game for objective EnergyL(cinit := 0) ∩ AvgEnergy(t)
can be done in doubly-exponential time. This is indeed equivalent to deciding
if there exists an upper-bound U ∈ N such that P1 can win for the objective
EnergyLU (U, cinit := 0), which is known to be in 2EXPTIME [78]. Unfortunately,
this approach does not help in solving Problem C.3, where the threshold t ∈ Q
for the average-energy is part of the input: solving two-player AvgEnergyL
games is still an open question.

We believe that the average-energy objective and its variations model relevant
aspects of systems in practical applications as hinted by the aforementioned
case study. Hence, we would like to extend our knowledge of this objective to
more general models such as stochastic games, or games with multi-dimensional
weights. Of course, the open questions regarding the AvgEnergyL objective are
intriguing. Finally, we would like to implement our techniques in synthesis
tools and assess their applicability through proper case studies.

124

Paper D

Limit Your Consumption!
Finding Bounds in

Average-energy Game

Simon Laursen Kim G. Larsen
Aalborg University, Department of Computer Science, Denmark
Martin Zimmermann
Reactive Systems Group, Saarland University, Germany

Abstract Energy games are infinite two-player games played in weighted
arenas with quantitative objectives that restrict the consumption of a resource
modeled by the weights, e.g., a battery that is charged and drained. Typically,
upper and/or lower bounds on the battery capacity are part of the problem
description. Here, we consider the problem of determining upper bounds on
the average accumulated energy or on the capacity while satisfying a given
lower bound, i.e., we do not determine whether a given bound is sufficient to
meet the specification, but if there exists a sufficient bound to meet it. We
show that the problem of determining the existence of a sufficient bound on
the long-run average accumulated energy can be solved in doubly-exponential
time. Then, we consider recharge games: here, all weights are negative, but
there are recharge edges that recharge the energy to some fixed capacity. We
show that bounding the long-run average energy in such games is complete for
exponential time. Then, we consider the existential version of the problem,
which turns out to be solvable in polynomial time: here, we ask whether there
is a recharge capacity that allows the system player to win the game.

Publication History The paper has been accepted for the 24th Interna-
tional Workshop on Quantitative Aspects of Programming Languages and
Systems, EPTCS, by the Open Publishing Association 2016. The version
included in this thises is a full version of the paper with all proves and a
modified layout.

125

The layout has been revised.

Paper D. Finding Bounds in Average-energy Games

D.1 Introduction

Quantitative games provide a natural framework for synthesizing controllers
with resource restrictions and for performance requirements for reactive systems
with an uncontrollable environment. In a traditional two-player graph game of
infinite duration (see [70]), two players, Player 0 (who represents the system
to be synthesized) and Player 1 (representing the antagonistic environment),
construct an infinite path by moving a pebble through a graph, which describes
the interaction between the system and its environment. The objective, which
encodes the controller’s specification, determines the winner of such a play.
Quantitative games extend classical ones by having weights on edges for
modeling costs, consumption or rewards, and a quantitative objective to
encode the specification in terms of the weights.

v2

v1v0

-32
0

-1

-13

Figure D.1: Example of a game arena.

Consider the game depicted on Figure D.1: we interpret negative weights as
energy consumption and correspondingly positive weights as recharges. Then,
Player 0 (who moves the pebble at the circled vertices) can always maintain
an energy level (the sum of the weights seen along a play prefix starting with
energy 0) between zero and five using the following strategy: when at vertex v0
with non-zero energy level go to vertex v1, otherwise go to vertex v2 in order
to satisfy the lower bound. At vertex v1 she moves to v0 if the energy level is
zero, otherwise to v2. It is straightforward to verify that the strategy has the
desired property when starting at the initial vertex v0 with initial energy 0.
However, this strategy requires memory to implement, as its choices depend
on the current energy level.

Quantitative games [12, 31, 111] and objectives such as mean-payoff [26, 121,
126], energy [20, 39, 78], and their combination [43] have attracted considerable
attention recently. The focus has been on establishing the computational
complexity of deciding whether Player 0 wins the game and on memory
requirements. In mean-payoff games, Player 0’s goal is to optimize the long-
run average gain per edge taken, whereas in energy games the goal is to keep

127

D.1. Introduction

the accumulated energy within given bounds. Recently, the average-energy
objective was introduced [21] to capture the specification in an industrial case
study [29]. In this study, the authors synthesize a controller to operate an oil
pump using timed games and Uppaal TiGA. The controller has to keep the
amount of oil in an accumulator within given bounds while minimizing the
average amount of oil in the accumulator in the long run. A discrete version
of this problem is exactly an average-energy game, where the goal for Player 0
is to optimize the long-run average accumulated energy during a play while
keeping the accumulated energy within given bounds.

Recall the introductory example above. The strategy for Player 0 described
there realizes the long-run average 4: the consistent play v0(v2v0v1)ω with
energy levels 0, (3, 5, 4)ω has average 4, obtained by dividing the sum of the
levels in the period by the length of the period. Every other consistent play
has a smaller or equal average.

The computational complexity of these quantitative objectives are typically
studied with respect to given bounds on the energy level or given thresholds
on the mean-payoff or on the average accumulated energy. In this work,
we consider the variants where the bounds and thresholds are existentially
quantified instead of given as part of the input, i.e., we ask if there exist bounds
and thresholds such that Player 0 has a winning strategy. This question is
natural for models with bounds and thresholds as it desirable to know if a
given model is realizable for some bounds. In a second step, one would then
determine the minimal bounds for which Player 0 is able to win.

In particular, we study existential questions on two different game models,
average-energy games and average-bounded recharge games. Average-energy
games are defined as in [21] with both positive and negative weights on edges
whereas in average-bounded recharge games all weights are negative, but there
are designated recharge-edges that recharge the energy to some fixed capacity.

Our contribution. For average-energy games, we show that the problem of
deciding whether there exists a threshold to which Player 0 can bound the
long-run average accumulated energy while keeping the accumulated energy
non-negative can be solved in doubly-exponential time. To this end, we show
that the problem is equivalent to determining whether the maximal energy
level can be uniformly bounded by a strategy. The latter problem is known
to be in 2EXPTIME [78]. The challenging part is to construct a strategy that
uniformly bounds the energy from the strategy that only bounds the long-run
average accumulated energy, but might reach arbitrarily high energy levels.
But whenever the energy level increases above the given threshold, it has to

128

Paper D. Finding Bounds in Average-energy Games

drop below it at some later point. Thus, we can always play like in a situation
where the peak between these two threshold crossings is as small as possible.
This yields a new strategy that bounds the energy level. Our result is one step
towards solving the open problem of solving lower-bounded average-energy
games with a given threshold [21].

For average-bounded recharge games, we show that given a bound on the
long-run average energy, deciding the winner is EXPTIME-complete. For the
existential versions of the problem, we show that it remains EXPTIME-hard
when the recharge capacity is quantified and the average threshold is given.
The problem becomes solvable in polynomial time when only the recharge
capacity is considered: here, we ask whether there is a recharge capacity such
that Player 0 wins the game with respect to this capacity.

Finally, we study tradeoffs between the different bounds and the memory
requirements of winning strategies, and show that increasing the upper bound
on the maximal energy level allows to improve the average energy level and
memory can be traded for smaller upper bounds and vice versa.

Related Work. The average energy objective was first introduced in [120]
under the name total-reward but has until recently not undergone a systematic
study. Independently, it was studied (under the name total-payoff) for Markov
decision processes and stochastic games [17], and [21] presented a comprehen-
sive investigation into the problem in the deterministic case. The latter also
considered extensions where the average-energy objective is combined with
bounds on the energy, which is the model we consider here.

Several other games with combined objectives have been introduced such
as mean-payoff parity [42], energy-parity [39], multi-dimensional energy [59],
multi-dimensional mean-payoff [121] and the combination of multi-dimensional
energy, mean-payoff and parity [43]. In [24], consumption games are studied
where edges only have negative weights, and some distinguished edges recharge
the energy to a level determined by Player 0. This model is related to recharge
games, but in recharge games the recharge capacity is given and we consider
average-bounded objectives. Existential questions in games have been studied
before in the form of determining the emptiness of a set of bounds that
allow Player 0 to win a quantitative game, e.g., for multi-dimensional energy
games with upper bounds [78] and for games with objectives in parameterized
generalizations of LTL [1, 60, 91, 125].

129

D.2. Definitions

D.2 Definitions

An arena A = (V, V0, V1, E, vI) consists of a finite directed graph (V,E) without
terminal vertices, a partition V = V0] V1 of the vertices, and an initial
vertex vI ∈ V . Vertices in V0 are under Player 0’s control and are drawn
as circles, whereas vertices in V1 are under Player 1’s control and drawn as
rectangles. A play in A is an infinite path π = v0v1v2 · · · with v0 = vI . A game
G = (A,Win) consists of an arena A, and a set Win ⊆ V ω of winning plays for
Player 0, the objective of G. The objectives we consider are induced by weight
functions, assigning integer weights to edges, which are encoded in binary. We
say an algorithm runs in pseudo-polynomial time, if it runs in polynomial time
in the number of vertices and in the largest absolute weight. An algorithm
runs in polynomial time, if it runs in polynomial time in the number of vertices
and in the size of the encoding of the largest absolute weight.

A strategy for Player i ∈ {0, 1} is a mapping σi : V ∗Vi → V such that
(v, σi(wv)) ∈ E for all wv ∈ V ∗Vi. A play v0v1v2 · · · is consistent with a
strategy σi for Player i if vn+1 = σi(v0v1 · · · vn) for every n with vn ∈ Vi. A
strategy σ0 for Player 0 is winning for the game G = (A,Win) if every play
that is consistent with σ0 is in Win. We say that Player 0 wins G if she has
a winning strategy for G. We define Prefs(σ) to denote the set of finite play
prefixes that are consistent with σ. We denote the last vertex of a non-empty
word w by last(w).

A memory structureM = (M,mI ,Upd) for an arena (V, V0, V1, E, vI) consists
of a finite set M of memory states, an initial memory state mI ∈M , and an
update function Upd: M × E →M . The update function can be extended to
Upd+ : V + →M in the usual way: Upd+(v0) = mI and Upd+(v0 · · · vnvn+1) =
Upd(Upd+(v0 · · · vn), (vn, vn+1)). A next-move function (for Player i) Nxt : Vi×
M → V has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and all m ∈ M . It
induces a strategy σ for Player i via σ(v0 · · · vn) = Nxt(vn,Upd+(v0 · · · vn)).
A strategy is called finite-state (positional) if it can be implemented by a
memory structure (with a single state). Intuitively, the next move of a
positional strategy only depends on the last vertex of the play prefix. An arena
A = (V, V0, V1, E, vI) and a memory structureM = (M,mI ,Upd) for A induce
the expanded arena A ×M = (V ×M,V0 ×M,V1 ×M,E ′, (vI ,mI)) where
((v,m), (v′,m′)) ∈ E ′ if and only if (v, v′) ∈ E and Upd(m, (v, v′)) = m′. Each
play v0v1v2 · · · in A has a unique extended play (v0,m0)(v1,m1)(v2,m2) · · ·
in A ×M defined by m0 = mI and mn+1 = Upd(mn, (vn, vn+1)), i.e., mn =
Upd+(v0 · · · vn). A game G = (A,Win) is reducible to G ′ = (A′,Win′) viaM,
written G ≤M G ′, if A′ = A×M and every play π in G is won by the player

130

Paper D. Finding Bounds in Average-energy Games

who wins the extended play π′ in G ′, i.e., π ∈Win if, and only if, π′ ∈Win′.

Lemma D.1. If G ≤M G ′ and Player i has a positional winning strategy for
G ′, then she has a finite-state winning strategy for G which is implemented by
M.

D.3 Finding Bounds in Average-energy
Games

In this section, we study average-energy games with existentially quantified
bounds on the average accumulated energy: our main theorem shows that
these games are solvable in doubly-exponential time.

A weight function for an arena (V, V0, V1, E, vI) is a function W : E → Z
mapping every edge to an integer weight. The energy level of a play prefix
is the accumulated weight of its edges, i.e., EL(v0 · · · vn) = ∑n−1

i=0 W (vi, vi+1).
We consider several objectives obtained by specifying upper and lower bounds
on the energy level and on the long-run average accumulated energy.

• The lower-bounded energy objective requires Player 0 to keep the energy
level non-negative:

EnergyL(W) = {v0v1v2 · · · ∈ V ω | ∀n. 0 ≤ EL(v0 · · · vn)}

• The lower- and upper-bounded energy objective requires Player 0 to keep
the energy level always between 0 and some given upper bound cap, the
so-called capacity:

EnergyLU(W , cap) = {v0v1v2 · · · ∈ V ω | ∀n. 0 ≤ EL(v0 · · · vn) ≤ cap}

• The average-energy objective requires Player 0 to keep the long-run
average of the accumulated energy below a given threshold t:

AE(W , t) = {v0v1v2 · · · ∈ V ω | lim sup
n→∞

1
n

∑n−1
i=0 EL(v0 · · · vi) ≤ t}

• Also, we consider conjunctions of objectives, i.e., the lower-bounded
average-energy objective

AvgEnergyL(W , t) = EnergyL(W) ∩ AE(W , t)

and the lower- and upper-bounded average-energy objective

AvgEnergyLU(W , cap, t) = EnergyLU(W , cap) ∩ AE(t).

131

D.3. Finding Bounds in Average-energy Games

Note that we always assume the initial energy level to be zero. This is not a
restriction, as one can always add a fresh initial vertex with an edge to the old
initial vertex that is labeled by the desired initial energy level. Similarly, one
can reduce arbitrary non-zero lower bounds to the case of the lower bound
being zero, which is the one we consider here.

Decidability of determining the winner of a game with lower-bounded average-
energy objective with a given threshold t is an open problem [21]. To take a
step towards solving this problem, we consider the existential variant of the
problem, i.e., we ask whether there exists some threshold t such that Player 0
wins the game with objective AvgEnergyL(W , t):

Problem D.1. Existence of a threshold in a lower-bounded average-energy
game.
Input: Arena A = (V, V0, V1, E, vI) and W : E → Z
Question: Exists a threshold t ∈ N s.t. Player 0 wins (A,AvgEnergyL(W , t))?

We show that this problem is reducible to asking for the existence of an upper
bound on the capacity cap. Note that such an upper bound also bounds
the average accumulated energy. However, the converse is non-trivial as the
average can be bounded while the energy level is unbounded. Formally, we
consider the following problem:

Problem D.2. Existence of an upper bound in a lower- and upper-bounded
energy game.
Input: Arena A = (V, V0, V1, E, vI) and W : E → Z
Question: Exists a capacity cap ∈ N s.t. Player 0 wins (A,EnergyLU(W , cap))?

The main theorem of this section shows that the existence of a threshold in a
lower-bounded average-energy game can be checked in doubly-exponential time.
Our choice of encoding the weights influences the complexity of the problem:
if the weights are encoded in unary, then the complexity drops to EXPTIME.
Furthermore, the problem is trivially at least as hard as solving mean-payoff
games.

Theorem D.2. The threshold problem for lower-bounded average-energy
games is in 2EXPTIME.

To prove this theorem, it suffices to show that Problem D.1 and Problem D.2
are equivalent, as the latter problem was shown to be in 2EXPTIME [78].

Lemma D.3. Let A be an arena and let W be a weight function for A.
Player 0 wins (A,AvgEnergyL(W , t)) for some t ∈ N if, and only if, Player 0

132

Paper D. Finding Bounds in Average-energy Games

wins (A,EnergyLU(W , cap)) for some cap ∈ N.

Proof. It is clear that a winning strategy σ for (A,EnergyLU(W , cap)) for some
cap ∈ N is a winning strategy for (A,AvgEnergyL(W , cap)), as if the energy
level is always below some cap, then the average energy is also bounded by
cap.

For the other direction, assume that σ is a winning strategy for Player 0 in
(A,AvgEnergyL(W , t)) for some t ∈ N. Now, we want to construct a strategy σ′
that is winning for Player 0 in (A,EnergyLU(W , cap)) for some cap ∈ N. Note
that σ might bound the average to some value while the energy level might be
unbounded. But whenever the energy level increases above t, it has to drop
below t at some point. We use this property to construct a strategy σ′ that
bounds the energy level.

First, we need to introduce some notation. Fix a play prefix w ∈ Prefs(σ)
with EL(w) > t and define

Peak(w) = sup{EL(wx) | wx ∈ Prefs(σ) and EL(wx′) > t for all x′ v x},

i.e., Peak(w) is the supremum of the energy levels of prolongations of w that
are consistent with σ and have not yet had an energy level below t. Applying
König’s Lemma [85] and the fact that σ is a winning strategy implies that the
peak is always bounded.

Remark D.4. We have Peak(w) ∈ N for every w ∈ Prefs(σ).

For an energy level c ∈ N and a vertex v ∈ V we define the set of possible
ways to end up in vertex v with the energy level c playing consistently with σ
as

Real(v, c) = {w ∈ Prefs(σ) | last(w) = v and EL(w) = c}.

For every combination (v, c) with c > t, we pick a representative from Real(v, c)
that minimizes the peak height among all such realizations, i.e., we define
Rep(v, c) to be an element w from Real(v, c) with minimal peak-value Peak(w)
among the play prefixes in Real(v, c). Note that Rep(v, c) might be undefined,
i.e., if there is no play prefix ending in v with energy level c.

Intuitively, we construct a new strategy that mimics the behavior of σ until
the energy level increases above t. At this point, the history is replaced by the
representative for the last vertex and the current energy level. Then, our new
strategy mimics the behavior of σ with this history until the threshold t is again
crossed from below. Then, the next representative is picked. This strategy
satisfies an upper bound, as only a finite number of representatives, each with

133

D.3. Finding Bounds in Average-energy Games

a bounded peak-value, are considered when mimicking σ. To formalize this,
we recursively define h : V + → Prefs(σ) via h(vI) = vI and

h(wv) =

Rep(v,EL(h(w)v)) if EL(h(w)) ≤ t and EL(h(w)v) > t

h(w)v otherwise

for a play prefix wv ∈ V + ending in a vertex v, i.e., h(w) is the play prefix that
simulates w. Now, we define the new strategy σ′ via σ′(w) = σ(h(w)). The
following remark implies that this is well-defined, although Rep and therefore
h and σ might be undefined for certain inputs.

Remark D.5. Let w be consistent with σ′. Then, h(w) is defined and
consistent with σ, last(w) = last(h(w)), and EL(w) = EL(h(w)).

Applying the remark inductively we conclude that h(w) is defined for every
play prefix w that is consistent with σ′. This implies that σ′(w) is well-defined
for every such w that ends in a vertex from V0. Furthermore, this also implies
that σ′ still satisfies the lower bound on the energy level.

Thus, it remains to prove that an upper bound exists. Let π = v0v1v2 · · · be con-
sistent with σ′ and let n be such that EL(v0 · · · vn) ≤ t and EL(v0 · · · vnvn+1) >
t. If there is no such n, then σ bounds the energy level by t and we are done.
Furthermore, define n′ to be minimal with n′ > n+ 1 and EL(v0 · · · vn′) ≤ t

and EL(v0 · · · vn′vn′+1) > t (if no such n′ exists the reasoning is analogous). As
the energy level between the positions n+1 and n′ never crosses the threshold t
from below, we are always in the second case of the definition of h. Thus, after
the play prefix v0 · · · vn+1, the strategy σ′ mimics the behavior of σ after the
prefix h(v0 · · · vn+1) = Rep(vn+1,EL(v0 · · · vn+1)). Therefore, the energy level
between these two positions is bounded by Peak(Rep(vn+1,EL(v0 · · · vn+1))).
As we only take those representatives into account that have an energy level
between t+ 1 and t+W , where W is the largest positive weight in the image
of W , the energy level of the play is bounded by the maximal peak of one
of these representatives. Finally, this bound is uniform for all plays that are
consistent with σ′. Thus, σ′ is winning in the game (A,AvgEnergyL(W , cap))
for some cap.

Note that we do not obtain any upper bounds on the energy level or on the
long-run average energy realized by σ′, as they depend on properties of σ. One
can even construct examples that show these values to be arbitrarily large by
starting with a bad winning strategy σ for the energy game.

134

Paper D. Finding Bounds in Average-energy Games

D.4 Finding Bounds in Average-bounded
Recharge Games

In this section, we study a variation of energy games called recharge games
(the name is inspired by recharge automata, first introduced in [55]). In
such games, there are designated recharge edges that recharge the energy to
some given capacity. All other edges have non-positive cost, i.e., they only
decrease the energy level or leave it unchanged. This is reminiscent of so-called
consumption games [24], where Player 0 picks the new energy level while
traversing a recharge edge. There, one is interested in which initial energy
levels allow Player 0 to win and to compute upper bounds on the recharge
levels picked by Player 0.

In this section, we go beyond just bounding the energy level by also considering
bounds on the average accumulated energy, as we have done for average-energy
games. However, the resulting games are intractable, as soon as the threshold on
the average is part of the input. These results are presented in Subsection D.4.1.
To overcome the high complexity, in Subsection D.4.2 we consider the problem
where the recharge capacity is existentially quantified: this problem is solvable
in polynomial time by a reduction to three-color parity games.

Here, we consider weight functions with only non-positive weights and a special
recharge action R, i.e., W : E → −N ∪ {R}. The recharge action R returns
the energy level to some given upper bound capacity cap. The recharge energy
level is the energy left since the last recharge action, which is defined as
ELcap(v0 · · · vn) = cap+EL(x), where x is the longest suffix of v0 · · · vn without
an R-edge, i.e., W (vj, vj+1) 6= R for all (vj, vj+1) in x, which implies that a
play starts with energy level cap. We define the objective of a recharge game
as

Recharge(W , cap) = {v0v1v2 · · · ∈ V ω | ∀n.ELcap(v0 · · · vn) ≥ 0}

and the average-bounded version as

AvgRecharge(W , cap, t) =

{v0v1v2 · · · ∈ V ω | lim sup
n→∞

1
n

n−1∑
i=0

ELcap(v0 · · · vi) ≤ t} ∩ Recharge(W , cap).

D.4.1 Solving Average-bounded Recharge Games

First, we show that solving average-bounded recharge games for a given
threshold t and a given recharge capacity cap is EXPTIME-complete and that

135

D.4. Finding Bounds in Average-bounded Recharge Games

the problem is still EXPTIME-hard, if the capacity is existentially quantified
and only the threshold is given. Formally, we are interested in the following
problems:

Problem D.3. Solving Average-bounded recharge games
Input: Arena A = (V, V0, V1, E, vI), W : E → −N∪ {R}, cap ∈ N, and t ∈ N.
Question: Does Player 0 win (A,AvgRecharge(W , cap, t))?

Problem D.4. Solving Average-bounded recharge games with existentially
quantified capacity
Input: Arena A = (V, V0, V1, E, vI), W : E → −N ∪ {R}, and t ∈ N.
Question: Exists cap ∈ N s.t. Player 0 wins (A,AvgRecharge(W , cap, t))?

First, we consider Problem D.3.

Theorem D.6. Solving average-bounded recharge games is EXPTIME-
complete.

We begin the proof by presenting an exponential time algorithm for solving
average-bounded recharge games by reducing them to mean-payoff games,
similarly to the reduction from lower- and upper-bounded energy games to
mean-payoff games [21]. The mean-payoff objective is given by

MeanPayoff(W , t) = {v0v1v2 · · · ∈ V ω | lim sup
n→∞

1
n

EL(v0 · · · vn−1) ≤ t}.

Lemma D.7. Average-bounded recharge games can be solved in exponential
time.

Proof. Fix an arena A = (V, V0, V1, E, vI), W : E → −N ∪ {R}, cap ∈ N,
and t ∈ N. We construct a memory structureM = (M,mI ,Upd) to reduce
the average-bounded recharge game to a mean-payoff game. To this end, let
M = {0, . . . , cap} ∪ {⊥}, mI = cap, Upd(⊥, (v, v′)) = ⊥, and

Upd(c, (v, v′)) =


cap if W (v, v′) = R,
c+ W (v, v′) if c+ W (v, v′) ≥ 0,
⊥ if c+ W (v, v′) < 0.

Intuitively, the memory structure keeps track of the energy level as long as it is
non-negative. If it is negative, then a sink state is reached. Finally, we define
a new weight function W ′ by W ′((v, c), (v′,m)) = c for every c ∈ M \ {⊥}
and m ∈M and W ′((v,⊥), (v′,⊥)) = t+ 1.

136

Paper D. Finding Bounds in Average-energy Games

v0 v1

R

−1
−1

Figure D.2: The arena for the lower bound on memory requirements in average-
bounded recharge games.

Remark D.8. Let π = v0v1v2 · · · and π′ = (v0,m0)(v1,m1)(v2,m2) · · · be
such that π is a play in A and π′ is the corresponding extended play in A×M.

1. If there is no s ≤ n such that ELcap(v0 · · · vs) < 0, then mn =
ELcap(v0 · · · vn).

2. If there is an s ≤ n such that ELcap(v0 · · · vs) < 0, then mn = ⊥.

3. If there is no s such that ELcap(v0 · · · vs) < 0, then

lim sup
n→∞

1
n

EL((v0,m0) · · · (vn−1,mn−1)) = lim sup
n→∞

1
n

∑n−1
i=0 ELcap(v0 · · · vi).

4. If there is an s such that ELcap(v0 · · · vs) < 0, then

lim sup
n→∞

1
n

EL((v0,m0) · · · (vn−1,mn−1) = t+ 1.

5. π ∈ AvgRecharge(W , cap, t) if, and only if, π′ ∈ MeanPayoff(W ′, t).

Thus, we have (A,AvgRecharge(W , cap, t)) ≤M (A ×M,MeanPayoff(W ′, t)).
Hence, positional determinacy of mean-payoff games [54], Lemma D.1, and
mean-payoff games being solvable in pseudo-polynomial time [126] yield the
exponential time algorithm.

An application of Lemma D.1 additionally yields an upper bound on the
necessary memory states to implement a winning strategy.

Corollary D.9. If Player 0 wins an average-bounded recharge game with
capacity cap, then she also wins it with a finite-state strategy of size cap+ 2.

Conversely, it is straightforward to show that this bound is tight: consider
the average-bounded recharge game depicted in Figure D.2 with some fixed
even capacity cap and threshold t = cap

2 . With cap memory states, Player 0
can implement a strategy whose unique consistent play has the form (v0v

cap
1)ω

which has the energy levels (cap, cap− 1, . . . , 1, 0)ω, which results in a long-run
average of t. However, with n < cap memory states, the best Player 0 is able

137

D.4. Finding Bounds in Average-bounded Recharge Games

to do is to implement a strategy whose unique consistent play has the form
(v0v

n
1)ω which has the energy levels (cap, cap− 1, . . . , cap− n)ω, which results

in a long-run average of (cap− n) + n
2 = cap− n

2 > cap− cap
2 = t. Every other

play that is implementable with n memory states has an even higher average.
Thus, Player 0 needs cap memory states to meet the bound on the average.

Next, we give an EXPTIME lower bound by a reduction from countdown games.
The arena A = (V, V0, V1, E, vI) and the weight function W of such a game are
subject to some restrictions:

1. The initial vertex is in V0 and there is a designated sink vertex v⊥ ∈ V1
with a self loop,

2. every vertex in V0 has an edge to v⊥ and all other edges are in V0× (V1 \
{v⊥}) ∪ (V1 \ {v⊥})× V0,

3. all edges in V0 × (V1 \ {v⊥}) have negative weight and there are no two
outgoing transitions from a vertex in V0 with the same weight, and

4. all other edges have weight zero.

The objective is given as

Countdown(W , c) = {v0v1v2 · · · ∈ V ω | ∃n. vn = v⊥ and c+EL(v0 · · · vn) = 0}.

Intuitively, Player 0 picks negative weights that are subtracted from the initial
energy c and Player 1 picks the next vertex to continue at (vertices of the
countdown game are in V0, V1 only contains auxiliary vertices). Player 0 wins
if the energy level is exactly zero at some point, at which she has to move
to the sink vertex. Otherwise, Player 1 wins. Solving countdown games is
EXPTIME-complete [80]. Our reduction is a straightforward adaption of the
reduction from countdown to average-energy games [21].

Lemma D.10. Solving average-bounded recharge games is EXPTIME-hard.

Proof. Fix A = (V, V0, V1, E, vI) and W satisfying the requirements of a count-
down game and some initial energy c. We add a fresh vertex v′I to V1, add
an edge from v′I to vI and label it with the recharge action R to obtain the
arena A′ and the weight function W ′. As every play that does not reach
the sink vertex traverses infinitely many edges with negative weight, we
have π ∈ Countdown(W , c) if, and only if, v′I · π ∈ AvgRecharge(W ′, c, 0).
Thus, Player 0 wins (A′,AvgRecharge(W ′, c, 0)) if, and only if, she wins
(A,Countdown(W , c)). Hence, solving average-bounded recharge games is
EXPTIME-hard.

138

Paper D. Finding Bounds in Average-energy Games

Note that the hardness depends on the requirement to bound the average.
Recharge games without average-bound are solvable in pseudo-polynomial
time, as such a game can be expressed as a one-dimensional consumption
game [24]. Determining the minimal cover (the analogue of our capacity in
consumption games, see [24] for a formal definition) for the initial vertex and
comparing it to the given capacity yields the desired result, as the minimal
cover in a one-dimensional consumption game can be computed in pseudo-
polynomial-time [24]. Whether recharge games can be solved in polynomial
time is open. In the next subsection, we present a variant that is solvable in
polynomial time.

Also, the previous hardness proof can be adapted to recharge games with a
given threshold and existentially quantified capacity (Problem D.4). To this
end, we add the initial gadget presented in Figure D.3 to a countdown game G.
In order to win this game, Player 0 has to reach the Player 1 vertex with
energy level c. If the energy level is larger then Player 1 can take the edge
with weight −c and reach the sink with a positive energy level. Hence, the
average accumulated energy will be non-zero, too. Conversely, if the energy
level is smaller than c, then taking the same edge yields a negative energy
level. Hence, in both cases the objective AvgRecharge(W , cap, 0) is violated,
independently of the value of c. However, if Player 0 reaches the Player 1
vertex with energy level c, then she wins from there, if and only if, she has
a winning strategy for the countdown game G with initial value c. Thus, she
wins the recharge game with objective AvgRecharge(W , cap, 0) for some cap if,
and only if, she wins the countdown game G with objective Countdown(W , c).

0

−c

0

−1 0 G

Figure D.3: The gadget for showing Problem D.4 EXPTIME-hard.

Theorem D.11. Solving average-bounded recharge games with existentially
quantified capacity and a given threshold is EXPTIME-hard.

However, it is an open problem whether these games can be solved in expo-
nential time. The reduction to mean-payoff games presented above depends
on the capacity being part of the input. This is related to the absence of good
upper bounds on the necessary capacity to achieve a given threshold.

139

D.4. Finding Bounds in Average-bounded Recharge Games

D.4.2 Finding a Sufficient Capacity in Recharge Games

To tackle the high complexity of solving average-bounded recharge games, we
consider the problem where the recharge capacity cap and the threshold t are
existentially quantified. As the energy level is always bounded from above by
cap, which implies that the average accumulated energy is also bounded by
cap, it suffices to consider the objective Recharge(W , cap), analogous results
hold for the objective AvgRecharge(W , cap, t). We show that the following
problem can be solved in polynomial time.

Problem D.5. Existence of a sufficient recharge level in recharge games
Input: Arena A = (V, V0, V1, E, vI) and W : E → −N ∪ {R}
Question: Exists a capacity cap s.t. Player 0 wins (A,Recharge(W , cap))?

One attempt to prove this result is to again encode the game as a one-
dimensional consumption game as described above. However, this only yields
a pseudo-polynomial time algorithm. In the following, we present a truly
polynomial time algorithm by a reduction to three-color parity games. Given
a coloring Ω: V → N, Parity(Ω) denotes the (max)-parity objective, which
contains all plays v0v1v2 · · · ∈ V ω such that the maximal color appearing
infinitely often in Ω(v0)Ω(v1)Ω(v2) · · · is even.

Theorem D.12. The existence of a sufficient recharge level in a recharge
game can be determined in polynomial time.

Proof. Fix an arena A = (V, V0, V1, E, vI) and W : E → −N ∪ {R}. We
construct a three-color parity game with the following property: Player 0
wins the parity game if, and only if, there is a cap such that Player 0 wins
(A,Recharge(W , cap)). We assume w.l.o.g. that every vertex of A either only
has incoming edges labeled with R, only has incoming edges labeled with 0,
or only has incoming edges labeled with a negative weight. This can always
be achieved by tripling the set of vertices, one copy for each type of incoming
edge. The new initial vertex is some fixed copy of the original initial vertex.
This transformation does not change the winner and only results in a linear
increase in the number of states.

Now, we can speak of recharge-vertices, zero-vertices, and of decrement-vertices
and define the coloring Ω such that it assigns color 2 to the recharge-vertices,
color 1 to the decrement-vertices, and color 0 to the zero-vertices. We claim
that Player 0 has a winning strategy for the induced parity game if, and only
if, there is a cap such that Player 0 wins (A,Recharge(W , cap)).

First, assume Player 0 has a winning strategy for the parity game, which we

140

Paper D. Finding Bounds in Average-energy Games

can assume w.l.o.g. to be positional [56, 100]. Let W be the largest absolute
weight in the image of W and define cap = (|V | − 1) ·W . We claim that
σ is a winning strategy for Player 0 in (A,Recharge(W , cap)). Assume it is
not: then, there is a play prefix v0 · · · vn that is consistent with σ such that
ELcap(v0 · · · vn) < 0. Let vi · · · vn be the suffix since the last recharge edge was
traversed, i.e., −EL(vi · · · vn) > cap. By the choice of cap, there are positions
j and j′ satisfying i < j < j′ ≤ n such that vj = vj′ and EL(vj · · · vj′) < 0,
i.e., there is a cycle with negative cost and without recharge edge. As σ is
positional, the play v0 · · · vj−1(vj · · · vj′−1)ω obtained by reaching and then
repeating this cycle is consistent with σ as well. However, in the parity game,
this cycle visits no recharge-vertex, but at least one decrement-vertex. Hence,
it is losing for Player 0, which contradicts σ being a winning strategy. Hence,
σ is indeed also a winning strategy for (A,Recharge(W , cap)).

Now, assume there is some cap and a strategy σ that is winning for Player 0
in (A,Recharge(W , cap)). We claim that this strategy is also winning for her
in the parity game. Assume, it is not, i.e., there is a play that is consistent
with σ, but losing for Player 0 in the parity game. By our choice of colors, this
implies that this play visits only finitely many recharge-vertices, but infinitely
many decrement-vertices. Thus, it has a prefix whose recharge energy level
is negative. But this contradicts the fact that σ is a winning strategy for the
recharge game.

To conclude, it remains to remark that three-color parity games can be solved
in polynomial time.

By applying both directions of the equivalence, we obtain the following corol-
lary.

Corollary D.13. If there is a cap such that Player 0 wins
(A,Recharge(W , cap)), then she also wins (A,Recharge(3 · (n − 1) · W,W)),
where n is the number of vertices of A and W is the largest absolute weight in
the domain of W . Player 0 wins the latter game with a finite-state strategy of
size three.

Note that this can be improved slightly by a finer analysis: the factor (n −
1) can be replaced by the number of decrement-vertices. Conversely, it is
straightforward to construct examples that prove these bounds to be tight, e.g.,
a cycle of n edges, one being a recharge edge and all others having weight −W .

141

D.5. Tradeoffs in Recharge Games

D.5 Tradeoffs in Recharge Games

In this section, we illustrate two different tradeoff scenarios between different
quality measures for winning strategies that occur in average-bounded recharge
games, i.e., tradeoffs between capacity and long-run average and between
memory size and long-run average. Note that increasing the recharge capacity
in such a game has a (possibly negative) influence on the long-run average, as
every recharge returns the energy level to the capacity. All games we consider
here are solitaire games for Player 0, i.e., every vertex belongs to Player 0.
Thus, a strategy can be identified with the unique play consistent with it.

(a) (b)

(c) (d) (e)

v0 v3

v4v5

v2

v1

−3
0

0
000

−1
R

Capacity

Average

0

1

2

1 2 3 4 5 6 7

•
•
•
•
• •

•

(v0v1v2v0)ω, cap=1
Step

Energy

0

1

1 2 3 4

cap = 1
AE = 3

4

(v0v1v2v0v1v2v0)ω, cap=2
Step

Energy

0

1

2

1 2 3 4 5 6 7

cap = 2
AE = 9

7

(v0v3v4v4v0)ω, cap=3
Step

Energy

0
1
2
3

1 2 3 4 5

cap = 3

AE = 3
5

Figure D.4: (a) An average-bounded recharge game with tradeoff between capacity
and long-run average. (b) A plot of the tradeoff. (c) - (e) Energy progressions of
different plays in the average-bounded recharge game for different capacities.

First, we study the tradeoff between the capacity and the long-run average
energy level. Consider the game in Figure D.4(a): Player 0 wins the game for
cap = 1 and t = 1 by realizing the long-run average 3

4 with the play (v0v1v2v0)ω
(Figure D.4(c)). But, by increasing the capacity to cap = 2, it is no longer
possible for her to win for t = 1, as the best long-run average she can realize
is 9

7 by playing (v0v1v2v0v1v2v0)ω (Figure D.4(d)). However, for cap = 3, she
can again win for t = 1, and it is possible to realize the long-run average 3

5 by
playing (v0v3v4v5v0)ω (Figure D.4(e)). Again, with cap = 4 Player 0 loses for
t = 1.

This example shows that higher capacity can be traded for a lower long-run
average and that the tradeoff is non-monotonic. Figure D.4(b) shows a plot of
the tradeoff for capacities ranging from 1 to 7.

142

Paper D. Finding Bounds in Average-energy Games

Memory

Average
cap− 1

2

cap
2

0
cap1

Figure D.5: A plot of the tradeoff between memory size and long-run average in
the game in Figure D.2.

Another tradeoff scenario is between the number of memory states required to
implement a strategy and the long-run average energy level it realizes. Consider
the recharge game from Figure D.2: as discussed below Corollary D.9, Player 0
can win for the threshold t = cap

2 with cap memory states. However, with n <
cap memory states, she can only guarantee the long-run average (cap− n) + n

2 .
In particular, the best long-run average that is realizable by a positional
strategy (which requires one memory state to implement) is cap − 1

2 (see
Fig. D.5).

D.6 Conclusion

We continued the study of average-energy games by considering problems
where the bound on the average is existentially quantified instead of given
as part of the input. We showed that solving this problem is equivalent to
determining whether the maximal energy level can be uniformly bounded by a
strategy. The latter problem is known to be decidable in doubly-exponential
time, which therefore also holds for our original problem. Then, we considered
a different type of energy evolution where energy is only consumed or reset
to some fixed capacity. Solving the average-bounded variants of these games
is shown to be complete for exponential time. Due to this high complexity,
we again considered a variant where the bounds are existentially quantified.
This problem turns out to be solvable in polynomial time. Finally, we studied
tradeoffs between the different bounds and the memory requirements of winning
strategies: increasing the upper bound on the maximal energy level is shown
to allow to improve the average energy level and memory can be traded for
smaller upper bounds and vice versa.

For future work, it would be interesting to extend our results to a multi-
dimensional setting. Also, the exact complexity of determining the existence of

143

D.6. Conclusion

an upper bound in average-energy games is open. Finally, the decidability of
average-energy games with a given threshold, but without an upper bound on
the energy level is open [21]. In current work, we study whether our approach
presented in Section D.3 can be adapted to solve these problems, e.g., by not
picking representatives by minimizing peak height but some other measure.
These questions are also related to the complexity of recharge games with a
given threshold where the capacity is existentially quantified. Finally, we are
studying upper bounds on the tradeoffs presented in Section D.5.

Acknowledgements. The work presented here was carried out while the
third author visited the Distributed and Embedded Systems Unit at Aalborg
University and while the second author visited the Reactive Systems Group
at Saarland University. We thank these institutions for their hospitality, and
for the support by the DFG project TriCS (ZI 1516/1-1), the ERC Advanced
Grant LASSO and the EU FET projects SENSATION and CASSTING.

144

References
[1] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled.

Parametric temporal logic for model measuring. ACM Trans. Comput.
Log., 2(3):388–407, 2001.

[2] B. Aminof and S. Rubin. First cycle games. In Proc. of SR, EPTCS 146,
pages 83–90, 2014.

[3] D.S. Ananichev and M.V. Volkov. Synchronizing monotonic automata.
Theoretical Computer Science, 327(3):225 – 239, 2004.

[4] Esther M. Arkin, Christos H. Papadimitriou, and Mihalis Yannakakis.
Modularity of cycles and paths in graphs. J. ACM, 38(2):255–274, 1991.

[5] David Arney, Miroslav Pajic, Julian M Goldman, Insup Lee, Rahul
Mangharam, and Oleg Sokolsky. Toward patient safety in closed-loop
medical device systems. In Proceedings of the 1st ACM/IEEE Inter-
national Conference on Cyber-Physical Systems, pages 139–148. ACM,
2010.

[6] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[7] Paolo Baldan and Daniele Gorla, editors. CONCUR 2014 - Concurrency
Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014. Proceedings, volume 8704 of Lecture Notes in
Computer Science. Springer, 2014.

[8] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms
and Applications. Springer, 2nd edition, 2008.

[9] Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud
Shapiro. Dna molecule provides a computing machine with both data
and fuel. Proceedings of the National Academy of Sciences of the USA,
100(5):2191–2196, March 2003.

[10] Mikhail V Berlinkov. On two algorithmic problems about synchronizing
automata. In International Conference on Developments in Language
Theory, pages 61–67. Springer, 2014.

[11] H. Björklund, S. Sandberg, and S. Vorobyov. Memoryless determinacy
of parity and mean payoff games: A simple proof. Theoretical Computer
Science, 310(1-3):365–378, 2004.

[12] R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better

145

References

quality in synthesis through quantitative objectives. In Proc. of CAV,
LNCS 5643, pages 140–156. Springer, 2009.

[13] Thomas Boel. Årsag til fejl på Aalborg-satellit: Solcellerne vendte væk
fra solen. Ingeniøren (Weekly national news magazine about engineering),
8. March 2013. https://ing.dk/artikel/aarsag-til-fejl-paa-aalborg-satellit-
solcellerne-vendte-vaek-fra-solen-156828.

[14] A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. Synthesis from LTL
specifications with mean-payoff objectives. In Proc. of TACAS, LNCS
7795, pages 169–184. Springer, 2013.

[15] Udi Boker, Thomas A. Henzinger, and Arjun Radhakrishna. Battery
transition systems. SIGPLAN Not., 49(1):595–606, January 2014.

[16] Emile Borel and Jean Ville. Applications aux jeux de hasard. Gauthier-
Vilars, 1938.

[17] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Kazuhisa
Makino. Markov decision processes and stochastic games with total
effective payoff. In Ernst W. Mayr and Nicolas Ollinger, editors, STACS
2015, volume 30 of LIPIcs, pages 103–115. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[18] P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba. Infinite
runs in weighted timed automata with energy constraints. In Proc. of
FORMATS, LNCS 5215, pages 33–47. Springer, 2008.

[19] P. Bouyer, N. Markey, M. Randour, K.G. Larsen, and S. Laursen. Average-
energy games. In Proc. of GandALF, EPTCS 193, pages 1–15, 2015.

[20] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jiří
Srba. Infinite runs in weighted timed automata with energy constraints.
In Franck Cassez and Claude Jard, editors, Formats 2008, volume 5215
of LNCS, pages 33–47. Springer, 2008.

[21] Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and
Simon Laursen. Average-energy games. In Javier Esparza and Enrico
Tronci, editors, GandALF 2015, volume 193 of EPTCS, pages 1–15.
Open Publishing Association, 2015.

[22] Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and
Simon Laursen. Average-energy games. Acta Informatica, pages 1–37,
2016.

[23] T. Brázdil, D. Klaška, A. Kučera, and P. Novotný. Minimizing running

146

https://ing.dk/artikel/aarsag-til-fejl-paa-aalborg-satellit-solcellerne-vendte-vaek-fra-solen-156828
https://ing.dk/artikel/aarsag-til-fejl-paa-aalborg-satellit-solcellerne-vendte-vaek-fra-solen-156828

References

costs in consumption systems. In Proc. of CAV, LNCS 8559, pages
457–472. Springer, 2014.

[24] Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, and Petr
Novotný. Efficient controller synthesis for consumption games with
multiple resource types. In P. Madhusudan and Sanjit A. Seshia, editors,
CAV 2012, volume 7358 of LNCS, pages 23–38. Springer, 2012.

[25] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Benjamin Monmege,
Guillermo A. Pérez, and Gabriel Renault. Quantitative games under
failures. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS
Annual Conference on Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore,
India, volume 45 of LIPIcs, pages 293–306. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[26] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster
algorithms for mean-payoff games. Formal Methods in System Design,
38(2):97–118, 2011.

[27] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors. Model-Based Testing of Reactive Systems,
Advanced Lectures, volume 3472 of Lecture Notes in Computer Science.
Springer, 2005.

[28] Franck Cassez, Alexandre David, KimG. Larsen, Didier Lime, and Jean-
François Raskin. Timed control with observation based and stuttering
invariant strategies. In Automated Technology for Verification and Anal-
ysis, volume 4762 of Lecture Notes in Computer Science, pages 192–206.
Springer, 2007.

[29] Franck Cassez, Jan J. Jensen, Kim G. Larsen, Jean-François Raskin,
and Pierre-Alain Reynier. Automatic synthesis of robust and optimal
controllers – an industrial case study. In Rupak Majumdar and Paulo
Tabuada, editors, HSCC 2009, volume 5469 of LNCS, pages 90–104.
Springer, 2009.

[30] Ján Černý. Poznámka k. homogénnym experimentom s konecnými
automatmi. Mat. fyz. čas SAV, 14:208–215, 1964.

[31] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mar-
iëlle Stoelinga. Resource interfaces. In Rajeev Alur and Insup Lee,
editors, EMSOFT 2003, volume 2855 of LNCS, pages 117–133. Springer,
2003.

147

References

[32] Satish Chandra, Patrice Godefroid, and Christopher Palm. Software
model checking in practice: An industrial case study. In Proceedings of
the 24th International Conference on Software Engineering, ICSE ’02,
pages 431–441, New York, NY, USA, 2002. ACM.

[33] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-
payoff and total-payoff through windows. Information and Computation,
242:25–52, 2015.

[34] K. Chatterjee, T.A. Henzinger, and M. Jurdziński. Mean-payoff parity
games. In Proc. of LICS, pages 178–187. IEEE Comp. Soc. Press, 2005.

[35] K. Chatterjee and V.S. Prabhu. Quantitative timed simulation functions
and refinement metrics for real-time systems. In Proc. of HSCC, pages
273–282. ACM, 2013.

[36] K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129–
163, 2014.

[37] K. Chatterjee and Y. Velner. Mean-payoff pushdown games. In Proc. of
LICS, pages 195–204. IEEE Computer Society, 2012.

[38] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In
Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Proceedings of the 37th
International Colloquium on Automata, Languages and Programming
(ICALP’10) – Part II, volume 6199 of Lecture Notes in Computer Science,
pages 599–610. Springer-Verlag, July 2010.

[39] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor.
Comput. Sci., 458:49–60, 2012.

[40] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean
françois Raskin. Algorithms for omega-regular games with imperfect
information. In CSL’06, volume 4207 of LNCS, pages 287–302. Springer,
2006.

[41] Krishnendu Chatterjee and Thomas A Henzinger. Semiperfect-
information games. In FSTTCS’05, pages 1–18. Springer, 2005.

[42] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński.
Mean-payoff parity games. In LICS 2005, pages 178–187. IEEE Computer
Society, 2005.

[43] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.

148

References

Strategy synthesis for multi-dimensional quantitative objectives. Acta
Informatica, 51(3):129–163, 2013.

[44] Alonzo Church. Applications of recursive arithmetic to the problem of
circuit synthesis. Summaries of the Summer Institute of Symbolic Logic,
1:3–50, 1957.

[45] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In Dexter
Kozen, editor, Logics of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer Berlin Heidelberg, 1982.

[46] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logic speci-
fications. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244–263, 1986.

[47] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[48] Antoine-Augustin Cournot. Recherches sur les principes mathématiques
de la théorie des richesses [researches into the mathematical principles
of the theory of wealth]. L. Hachette, 1838. Original paper in French,
English version by Macmillan, New York, 1897. (Reprinted Augustus M.
Kelley, New York, 1971).

[49] Laurent Doyen, Line Juhl, Kim Guldstrand Larsen, Nicolas Markey,
and Mahsa Shirmohammadi. Synchronizing words for weighted and
timed automata. In Venkatesh Raman and S. P. Suresh, editors, 34th
International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India, volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2014.

[50] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite
synchronizing words for probabilistic automata. In MFCS’11, volume
6907 of LNCS, pages 278–289. Springer, 2011.

[51] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Synchro-
nizing objectives for markov decision processes. In Johannes Reich and
Bernd Finkbeiner, editors, iWIGP, volume 50 of EPTCS, pages 61–75,
2011.

[52] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit
synchronization in markov decision processes. In Anca Muscholl, editor,

149

References

Foundations of Software Science and Computation Structures - 17th
International Conference, FOSSACS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of Lecture
Notes in Computer Science, pages 58–72. Springer, 2014.

[53] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Robust
synchronization in markov decision processes. In Baldan and Gorla [7],
pages 234–248.

[54] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff
games. International Journal of Game Theory, 8:109–113, 1979.

[55] Daniel Ejsing-Dunn and Lisa Fontani. Infinite runs in recharge automata.
Master’s thesis, Computer Science Department, Aalborg University, Den-
mark, 2013. Available at http://www.cassting-project.eu/wp-content/
uploads/master13-EF.pdf.

[56] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In FOCS 1991, pages 368–377.
IEEE, 1991.

[57] E.Allen Emerson and EdmundM. Clarke. Characterizing correctness
properties of parallel programs using fixpoints. In Jaco de Bakker and Jan
van Leeuwen, editors, Automata, Languages and Programming, volume 85
of Lecture Notes in Computer Science, pages 169–181. Springer Berlin
Heidelberg, 1980.

[58] D. Eppstein. Reset sequences for monotonic automata. SIAM Journal
on Computing, 19(3):500–510, 1990.

[59] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games
in multiweighted automata. In Antonio Cerone and Pekka Pihlajasaari,
editors, ICTAC, volume 6916 of Lecture Notes in Computer Science,
pages 95–115. Springer, 2011.

[60] Peter Faymonville and Martin Zimmermann. Parametric linear dynamic
logic. In Adriano Peron and Carla Piazza, editors, GandALF 2014,
volume 161 of EPTCS, pages 60–73, 2014.

[61] J. Fearnley and M. Jurdziński. Reachability in two-clock timed automata
is PSPACE-complete. In Proc. of ICALP, LNCS 7966, pages 212–223.
Springer, 2013.

[62] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer,
1997.

150

http://www.cassting-project.eu/wp-content/uploads/master13-EF.pdf
http://www.cassting-project.eu/wp-content/uploads/master13-EF.pdf

References

[63] Limor Fix. Fifteen years of formal property verification in intel. In 25
Years of Model Checking, pages 139–144. Springer, 2008.

[64] Fedor Fominykh and Mikhail Volkov. P(l)aying for synchronization. In
Implementation and Application of Automata, volume 7381 of Lecture
Notes in Computer Science, pages 159–170. Springer, 2012.

[65] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to
the Theory of NP-Completeness. Freeman New York, 1979.

[66] T. Gawlitza and H. Seidl. Games through nested fixpoints. In Proc. of
CAV, LNCS 5643, pages 291–305. Springer, 2009.

[67] Arthur Gill. State-identification experiments in finite automata. Infor-
mation and Control, 4(2–3):132 – 154, 1961.

[68] H. Gimbert and W. Zielonka. When can you play positionnaly? In Proc.
of MFCS, LNCS 3153, pages 686–697. Springer, 2004.

[69] H. Gimbert and W. Zielonka. Games where you can play optimally
without any memory. In Proc. of CONCUR, LNCS 3653, pages 428–442.
Springer, 2005.

[70] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume 2500
of LNCS. Springer, 2002.

[71] Ramesh Hariharan, Telikepalli Kavitha, and Kurt Mehlhorn. Faster
algorithms for minimum cycle basis in directed graphs. SIAM J. Comput.,
38(4):1430–1447, 2008.

[72] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling
and analysis of an audio/video protocol: an industrial case study using
uppaal. In Real-Time Systems Symposium, 1997. Proceedings., The 18th
IEEE, pages 2–13, Dec 1997.

[73] Thomas A Henzinger and Joseph Sifakis. The embedded systems design
challenge. In FM 2006: Formal Methods, pages 1–15. Springer, 2006.

[74] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580, 1969.

[75] Charles Antony Richard Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[76] D.R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid. Basic
Books. Basic Books, 1999.

151

References

[77] Szabolcs Iván. Synchronizing weighted automata. In Zoltán Ésik and
Zoltán Fülöp, editors, Proceedings 14th International Conference on
Automata and Formal Languages, AFL 2014, Szeged, Hungary, May
27-29, 2014., volume 151 of EPTCS, pages 301–313, 2014.

[78] Line Juhl, Kim G. Larsen, and Jean-François Raskin. Optimal bounds
for multiweighted and parametrised energy games. In Zhiming Liu, Jim
Woodcock, and Huibiao Zhu, editors, Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His
70th Birthday, volume 8051 of LNCS, pages 244–255. Springer, 2013.

[79] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP.
Information Processing Letters, 68(3):119–124, 1998.

[80] Marcin Jurdziński, Jeremy Sproston, and François Laroussinie. Model
checking probabilistic timed automata with one or two clocks. LMCS,
4(3), 2008.

[81] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer
Software Second Edition. Dreamtech Press, 2000.

[82] R.M. Karp. A characterization of the minimum cycle mean in a digraph.
Discrete Mathematics, 23(3), 1978.

[83] Robert M. Keller. Formal verification of parallel programs. Commun.
ACM, 19(7):371–384, July 1976.

[84] Donald Knuth. Strong components. Technical Report 004639, Comput.
Sci. Dept., Stanford University, Stanford, Calif., 1973.

[85] Dénes König. Über eine schlussweise aus dem endlichen ins unendliche.
Acta Litt. ac. sci. Szeged, 3:121–130, 1927.

[86] E. Kopczynski. Half-positional determinacy of infinite games. In Proc.
of ICALP, LNCS 4052, pages 336–347. Springer, 2006.

[87] S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic
graphs in polynomial time (preliminary version). In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 398–406. ACM, 1988.

[88] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 254–266. IEEE
Computer Society, 1977.

[89] Jan Kretínský, Kim Guldstrand Larsen, Simon Laursen, and Jirí Srba.

152

References

Polynomial time decidability of weighted synchronization under par-
tial observability. In Luca Aceto and David de Frutos-Escrig, editors,
26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 142–154.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[90] Moez Krichen. State identification. In Broy et al. [27], pages 35–67.

[91] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to
promptness. Formal Methods in System Design, 34(2):83–103, 2009.

[92] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC-like
equational theories with homomorphisms. Research Report LSV-04-16,
Laboratoire Spécification et Vérification, ENS Cachan, France, 2004.

[93] P. Lafourcade, D. Lugiez, and R. Treinen. Intruder deduction for AC -like
equational theories with homomorphisms. In Proc. of RTA, LNCS 3467,
pages 308–322. Springer, 2005.

[94] K.G. Larsen, S. Laursen, and M. Zimmermann. Limit your consumption!
Finding bounds in average-energy games. CoRR, abs/1510.05774, 2015.

[95] Kim Guldstrand Larsen, Simon Laursen, and Jiří Srba. Synchronizing
strategies under partial observability. In Baldan and Gorla [7], pages
188–202.

[96] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 229–242. Springer, 1995.

[97] Pavel Martyugin. Computational complexity of certain problems related
to carefully synchronizing words for partial automata and directing words
for nondeterministic automata. Theory of Com. Systems, pages 1–12,
2013.

[98] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

[99] Edward F. Moore. Gedanken Experiments on Sequential Machines. In
Automata Studies, pages 129–153. Princeton U., 1956.

[100] Andrzej Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdańsk, 1991.

[101] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algo-
rithmic game theory, volume 1. Cambridge University Press Cambridge,
2007.

153

References

[102] Gethin Norman, David Parker, and Xueyi Zou. Verification and control
of partially observable probabilistic real-time systems. In International
Conference on Formal Modeling and Analysis of Timed Systems, pages
240–255. Springer, 2015.

[103] Jörg Olschewski and Michael Ummels. The complexity of finding reset
words in finite automata. In Petr Hlinený and Antonín Kucera, editors,
Mathematical Foundations of Computer Science 2010, 35th International
Symposium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010.
Proceedings, volume 6281 of Lecture Notes in Computer Science, pages
568–579. Springer, 2010.

[104] Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Communications of the ACM, 19(5):279–285,
1976.

[105] Guillermo A. Pérez. The fixed initial credit problem for energy games
with partial-observation is ackermann-complete. CoRR, abs/1512.04255,
2015.

[106] Jean-Eric Pin. On two combinatorial problems arising from automata
theory. North-Holland Mathematics Studies, 75:535–548, 1983.

[107] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’89, pages 179–190, New York, NY,
USA, 1989. ACM.

[108] Irith Pomeranz and Sudhakar M. Reddy. Application of homing sequences
to synchronous sequential circuit testing. IEEE Trans. Computers,
43(5):569–580, 1994.

[109] J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Mariangiola Dezani-Ciancaglini and Ugo Montanari,
editors, International Symposium on Programming, volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer Berlin Heidelberg,
1982.

[110] P. Ramadge and W. Wonham. Supervisory Control of a Class of Discrete
Event Processes. Siam J. Control and Optimization, 25(1), 1987.

[111] M. Randour. Automated synthesis of reliable and efficient systems
through game theory: A case study. In Proceedings of the European Con-
ference on Complex Systems 2012, Springer Proceedings in Complexity
XVII, pages 731–738. Springer, 2013.

154

References

[112] M. Randour. Synthesis in Multi-Criteria Quantitative Games. PhD
thesis, University of Mons, Belgium, 2014.

[113] John H Reif. The complexity of two-player games of incomplete in-
formation. Journal of computer and system sciences, 29(2):274–301,
1984.

[114] Jussi Rintanen. Complexity of conditional planning under partial ob-
servability and infinite executions. In ECAI, pages 678–683, 2012.

[115] I.K. Rystsov. Polynomial complete problems in automata theory. Infor-
mation Processing Letters, 16(3):147–151, 1983.

[116] I.K. Rystsov. Rank of a finite automaton. Cybernetics and Systems
Analysis, 28(3):323–328, 1992.

[117] Sven Sandberg. Homing and synchronizing sequences. In Broy et al. [27],
pages 5–33.

[118] M. Sipser. Introduction to the Theory of Computation. Course Technology,
2006.

[119] A Prasad Sistla and Edmund M Clarke. The complexity of propositional
linear temporal logics. Journal of the ACM (JACM), 32(3):733–749,
1985.

[120] F. Thuijsman and O.J. Vrieze. The bad match; a total reward stochastic
game. OR Spektrum, 9(2):93–99, 1987.

[121] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Hen-
zinger, Alexander Moshe Rabinovich, and Jean-François Raskin. The
complexity of multi-mean-payoff and multi-energy games. Inf. Comput.,
241:177–196, 2015.

[122] Mikhail V Volkov. Synchronizing automata and the černỳ conjecture. In
Language and automata theory and applications, pages 11–27. Springer,
2008.

[123] John von Neumann and Oskar Morgenstern. Theory of games and
economic behavior. Princeton university press, 1944.

[124] Ernst Zermelo. Über eine anwendung der mengenlehre auf die theorie
des schachspiels. In Proceedings of the fifth international congress of
mathematicians, volume 2, pages 501–504. II, Cambridge UP, Cambridge,
1913.

[125] Martin Zimmermann. Parameterized linear temporal logics meet costs:

155

References

Still not costlier than LTL. In Javier Esparza and Enrico Tronci, editors,
GandALF 2015, volume 193 of EPTCS, pages 144–157. Open Publishing
Association, 2015.

[126] U. Zwick and M. Paterson. The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1-2):343–359, 1996.

156

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-801-7

S
Y

N
C

H
R

O
N

IZATIO
N

 A
N

D
 C

O
N

TR
O

L O
F Q

U
A

N
TITATIV

E
 S

Y
S

TE
M

S
SIM

O
N

 B
O

R
G

B
JER

G
 LA

U
R

SEN

	Front page
	Abstract
	Resumé
	Acknowledgments
	Thesis Details
	Contents
	Introduction
	Model Checking
	Control Synthesis and Game Theory
	Quantitative Systems
	Imperfect Information
	Thesis Structure

	Synchronization
	Synchronization and Partial Observability
	Weighted Synchronization
	Main Contributions
	Energy Games
	Average-energy Games
	Finding Upper-Bounds
	Recharge Games

	Main Contributions
	Papers
	Synchronizing Strategies under Partial Observability
	Introduction
	Our Contribution
	Related Work

	Definitions
	Complexity Upper-Bounds
	Knowledge Game
	Aggregated Knowledge Graph

	Complexity Lower-Bounds
	Conclusion
	Weighted Synchronization under Partial Observability
	Introduction
	Definitions
	Polynomial Time Algorithm for Synchronizing
	Complexity
	Algorithm for Finding Period gcd(G) of Graph G
	Detecting k-Cycles in Weighted Graphs is NP-Hard
	Conclusion
	Average-energy Games
	Introduction
	Preliminaries
	Average-Energy
	Relation with Classical Objectives
	Useful Properties of the Average-energy
	One-player Games
	Two-player Games

	Average-Energy with Lower- and Upper-Bounded Energy
	Pseudo-polynomial Algorithm and Complexity Bounds
	Memory Requirements

	Average-Energy with Lower-Bounded Energy
	One-player Games
	Two-player Games

	Conclusion
	Finding Bounds in Average-energy Game
	Introduction
	Definitions
	Finding Bounds in Average-energy Games
	Finding Bounds in Average-bounded Recharge Games
	Solving Average-bounded Recharge Games
	Finding a Sufficient Capacity in Recharge Games

	Tradeoffs in Recharge Games
	Conclusion

	References
	Blank Page
	Blank Page
	Blank Page

