
 

  

 

Aalborg Universitet

Online Fault Detection for High Temperature Proton Exchange Membrane Fuel Cells

A Data Driven Impedance Approach

Jeppesen, Christian

DOI (link to publication from Publisher):
10.5278/vbn.phd.eng.00002

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jeppesen, C. (2017). Online Fault Detection for High Temperature Proton Exchange Membrane Fuel Cells: A
Data Driven Impedance Approach. https://doi.org/10.5278/vbn.phd.eng.00002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 19, 2024

https://doi.org/10.5278/vbn.phd.eng.00002
https://vbn.aau.dk/en/publications/b2d0871d-887d-4db6-885c-7723e75d02c0
https://doi.org/10.5278/vbn.phd.eng.00002




C
H

R
ISTIA

N
 JEPPESEN

O
N

LIN
E FA

U
LT D

ETEC
TIO

N
 FO

R
 H

IG
H

 TEM
PER

ATU
R

E PR
O

TO
N

 EXC
H

A
N

G
E M

EM
B

R
A

N
E FU

EL C
ELLS

ONLINE FAULT DETECTION FOR HIGH
TEMPERATURE PROTON EXCHANGE

MEMBRANE FUEL CELLS

- A DATA DRIVEN IMPEDANCE APPROACH

BY
CHRISTIAN JEPPESEN

DISSERTATION SUBMITTED 2017





Online Fault Detection for High
Temperature Proton Exchange

Membrane Fuel Cells
- A Data Driven Impedance Approach

Ph.D. Dissertation
Christian Jeppesen

Dissertation submitted February 28th 2017Dissertation submitted March 16th 2017



Dissertation submitted: March 16th 2017

PhD supervisors: Prof. Søren Knudsen Kær
   Aalborg University

   Søren Juhl Andreasen, PhD
   SerEnergy A/S

PhD committee:  Associate Professor Zhenyu Yang (chairman)
   Aalborg University

   Professor Daniel Hissel
   University of Franche-Comte

   Dr. Holger Janssen
   Research Center Jülich

PhD Series: Faculty of Engineering and Science, Aalborg University

ISSN (online): 2446-1636 
ISBN (online): 978-87-7112-918-2

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Christian Jeppesen

Printed in Denmark by Rosendahls, 2017



List of Publications
The main body of this dissertation is based on the contents of the following
papers:

A Christian Jeppesen , Pierpaolo Polverino , Søren Juhl Andreasen , Samuel
Simon Araya , Simon Lennart Sahlin , Cesare Pianese , Søren Knud-
sen Kær. "Impedance Characterization of High Temperature Proton Ex-
change Membrane Fuel Cell Stack under the Influence of Carbon Monox-
ide and Methanol Vapor" Submitted to International Journal of Hydrogen
Energy December 2016. Status: Under Review.

B Christian Jeppesen, Samuel Simon Araya, Simon Lennart Sahlin, Søren
Juhl Andreasen, Søren Knudsen Kær. "Investigation of Current Pulse
Injection as an On-line Characterization Method for PEM fuel cell stack".
Submitted to International Journal of Hydrogen Energy January 2017.
Status: Under Review.

C Christian Jeppesen, Mogens Blanke, Fan Zhou, Søren Juhl Andreasen.
"Diagnosis of CO Pollution in HTPEM Fuel Cell using Statistical Change
Detection". IFAC-PapersOnLine 48-21 (2015) 547–553.
DOI: 10.1016/j.ifacol.2015.09.583

D Christian Jeppesen, Samuel Simon Araya, Simon Lennart Sahlin, Sobi
Thomas, Søren Juhl Andreasen, Søren Knudsen Kær. "Fault Detection
and Isolation of High Temperature Proton Exchange Membrane Fuel Cell
Stack under the Influence of Degradation" Submitted to Journal Power
Sources January 2017. Status: Under Review.

This dissertation has been submitted for assessment in partial fulfillment of
the PhD degree. The dissertation is based on the submitted or published sci-
entific papers which are listed above. Parts of the papers are used directly
or indirectly in the extended summary of the dissertation, and referred to as
e.g. paper A. As part of the assessment, co-author statements have been made
available to the assessment committee and are also available at the Faculty.



In addition to the papers, the following conferences presentations have been
conducted:

• "Fuel Cell Equivalent Electric Circuit Parameter Mapping". CARISMA
2014, Cape Town, South Africa. December 1st 2014. Poster Presentation.

• "Diagnosis of CO Pollution in HTPEM Fuel Cell using Statistical Change
Detection". 9th IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes (SafeProcess 2015), Paris, France. Septem-
ber 3rd 2015. Oral presentation.

• "Fuel cell characterization using current pulse injection". Fuel Cells Sci-
ence and Technology 2016, Glasgow, United Kingdom. April 13th 2016.
Oral presentation.

The following publications have also been published or submitted during the
PhD period, however, are not part of the appended papers included in the
partial fulfilment of the requirements for the Ph.D. degree:

• Samuel Simon Araya, Fan Zhou, Vincenzo Liso, Simon Lennart Sahlin,
Jakob Rabjerg Vang, Sobi Thomas, Xin Gao, Christian Jeppesen, Søren
Knudsen Kær. "A comprehensive review of PBI-based high temperature
PEM fuel cells". International Journal of Hydrogen Energy 41 (2016)
21310–21344. DOI: 10.1016/j.ijhydene.2016.09.024

• Sobi Thomas, Christian Jeppesen, Samuel Simon Araya, Søren Knudsen
Kær. "New operational strategy for longer durability of HTPEM fuel
cell" Submitted to Electrochimica Acta Status: Under Review.



Abstract

An increasing share of fluctuating energy sources are being introduced in the
Danish electricity grid. This is a result of a pursuit of greener energy sys-
tem, where renewable energy sources produce the electricity. However, this
introduces new problems related to balancing the supply and demand, at all
times. In Denmark, this problem has so far been addressed by building new
high voltage electricity transmission lines to surrounding countries, but with an
increasing amount of renewable energy this solution is not feasible in long term.
One possible solution could be to introduce electricity storage solutions, that
can store the energy from surplus capacity periods and use it in low capacity pe-
riods. One way of storing electricity is to produce hydrogen using electrolyzers
and utilize it in fuel cells to produce electricity whenever electricity is needed.

For fuel cells to become ready for large scale commercialization, prices need
to come down and the durability needs to be improved. One method to improve
durability and availability is by designing fault detection and isolation (FDI)
algorithms, which can commence mitigation strategies for preventing down time
and to ensure smooth fuel cell operation with minimal degradation.

In this dissertation, FDI algorithms for detecting five common faults in high
temperature proton exchange membrane fuel cells are investigated. The five
faults investigated are related to anode and cathode gas supply. For the an-
ode, the considered faults are carbon monoxide (CO) contamination, methanol
vapor contamination and hydrogen starvation. For the cathode, oxidant star-
vation and too high flow of oxidant are considered.

The FDI algorithms are based on a data-driven impedance approach, where
databases containing data from healthy and non-healthy operations are con-
structed. The fault detection and isolation process has been divided in to three
steps: characterization, feature extracting and change detecting & isolation.

For characterization of the fuel cell impedance, two techniques are consid-
ered, electrochemical impedance spectroscopy (EIS) and current pulse injection
(CPI).

In the CPI method, small current pulses are added to the DC fuel cell
current, and based on the corresponding voltage, the parameters of a simple



equivalent electrical circuit (EEC) model can be estimated. The parameters
of the EEC model can be used as features for fault detection. The advantage
of this method is that it can be implemented simply, using a transistor and a
resistor, and although the estimated EEC model is more simple, it might be
useful for some FDI applications.

When using the EIS method for fuel cell impedance characterization, a
small sinusoidal current is superimposed on the DC current, and based on the
corresponding phase shift and amplitude difference, the impedance can be es-
timated. Based on the fuel cell impedance, two feature extraction methods are
analyzed in this dissertation. First, fitting an EEC model to the impedance
spectrum and utilizing the EEC model parameters as features. Second, ex-
tracting internal relationships of the impedance spectrum, such as angles and
magnitudes as features. Knowing the behavior of the features in healthy and
non-healthy operation, algorithms are designed for FDI.

For change detection and isolation of the faults, two methods are considered
in this dissertation. Firstly, based on an extracted feature, a squared error is
calculated and compared to a threshold. Based on this a general likelihood ratio
test is designed for detecting an increased level of CO in the anode gas, for a
change in the value of a resistor in the EECmodel. The algorithm demonstrated
the ability to detect CO contamination with very low probability of false alarm.
As a second method, an artificial neural network classifier is trained based
on a database containing healthy and non-healthy data. This approach is
demonstrated in this dissertation, resulting in a global accuracy of 94.6 %, and
the algorithm is reported to yield a good detectability for four of the five faults
investigated, with the exception of methanol vapor contamination in the anode
gas, where it showed difficulties distinguishing between healthy operation and
the faulty operation, for the investigated methanol vapour concentration.



Resumé

En stigende andel af fluktuerende energikilder bliver implementeret i det danske
elektricitetsnet. Dette er som resultat af et mål om en grønnere elektricitets
produktion, hvor vedvarende energikilder spiller en større rolle. Dette intro-
ducerer nye problemer, hvor et af dem er at balancere elektricitetsnettet, så
udbud og efterspørgsel hele tiden er i balance. I Danmark, er det hidtil løst
ved at bygge højspændingstransmissionslinjer til nabolande, men med en sti-
gende andel af produktion fra vedvarende energikilder, forbliver denne løsning
ikke holdbar. En mulig løsning kan være at introducere energilagering, der kan
lagere energien fra højproduktionsperioder, til senere tidspunkter hvor produk-
tionen fra vedvarende energikilder er lav. Dette kan implementeres ved at
producere brint ved elektrolyse, når det er nødvendigt, og brinten kan derved
bruges i brændselsceller til at producere elektricitet.

For at brændselsceller kan blive klar til kommercialiseringen i stor skala,
er det nødvendigt, at prisen sænkes og at levetiden øges. En måde at øge
levetiden og forsyningssikkerheden er ved at designe fejldetektions og isolerings
(FDI) algoritmer, som kan iværksætte forebyggende strategier, der forebygger
nedetid og sikre et minimum af brændselscelledegradering.

Denne afhandling omhandler FDI algoritmer af høj temperatur PEM brænd-
selsceller, som skal detektere fem typiske fejl. De fem typiske fejl som bliver
undersøgt, er relateret til anode og katode gasforsyningen. For fejlene der
er relateret til anode gasforsyningen, undersøges karbonoxid (CO) forgiftning,
metanoldamp forgiftning og brintmangel. For fejlene der er relateret til katode
gasforsyningen, undersøges iltmangel og iltoverskud.

De FDI algoritmer der undersøges, er baseret på den empirisk bestemte
brændselscelleimpedans. FDI algoritmerne er designet ud fra databaser, der
er sammensat af data fra normal og fejlbaseret drift. FDI processen er opdelt
i tre trin: karakterisering, feature udvinding samt forandringsdetektering og
-isolering.

For at udføre karakteriseringen af brændselscelleimpedansen, anvendes to
forskellige metoder: elektrokemisk impedans spektroskopi (EIS) samt strøm-
puls injektion (CPI).



Ved anvendelse af CPI teknikken, trækkes små ekstra strømpulse ud over
den eksisterende DC brændselscellestrøm, og baseret på den resulterende spænd-
ing, kan parametre i en simpel ækvivalent elektrisk kredsløbs (EEC) model es-
timeres. EEC model parametrene kan bruges som features til fejldetektering.
Fordelen ved denne metode er, at den nemt kan implementeres med en tran-
sistor og en modstand, og selvom EEC modellen er simpel, kan den muligvis
bruges til nogle FDI applikationer.

Ved anvendelse af EIS metoden til at karakterisere brændselscelleimpedan-
sen, overlejres DC brændselscelle strømmen med en sinusformet AC strøm.
Baseret på den tilsvarende faseforskydelse af spændingen og amplitude forholdet,
kan impedansen estimeres. Baseret på impedancen af brændselscellen kan to
metoder anvendes til at beregne features. Ved den ene metode tilpasses en
EEC model til impedansspektret, og værdierne fra EEC modelen kan anvendes
som features. Ved den anden metode udregnes features baseret på det interne
forhold for spektret, såsom vinkler og modulus. Med viden om opførslen af
disse features for normal og fejlbaseret drift kan FDI algoritmer designes.

For detektering af fejl på brændselsceller, er to metoder taget anvendt i
denne afhandling. Den ene metode er baseret på at udregne kvadratet af
afvigelse mellem den karakteriserede feature og den forventede feature. Vær-
dien sammenlignes med en grænsetærskel, hvorved normal- eller fejldrift be-
stemmes. Denne metode er demonstreret med en GLR-test for en EEC model
modstandsværdi, som kan detektere et øget niveau af CO forgiftning i anode-
gassen. Det er vist at algoritmen kan detektere CO forgiftning med en lav
sandsynlighed for falsk alarm. Den anden metode, er baseret på en udvælgelse
via et kunstigt neuralt netværk, som er trænet baseret på en database som
indeholder normal og fejlbaseret driftsdata. I afhandlingen demonstreres det,
at metoden resulterer i en 94.6 % samlet præcision, og derudover er problemer
med adskillelse mellem normal drift og fejlstadiet med metanol.
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Chapter 1
Introduction

In recent decades, there has been an increasing focus by researchers and the
public on the effects of the emissions from energy production from fossil fuels,
which have dramatically increased, since the first industrial revolution [1]. The
emission types of focus, is mainly CO2 and particle matter. In recent years,
many politicians have finally changed their interpretation what is caused by
man-made, and what is due to changes natural cycles, and opened their eyes
for the consequences of this topic [2, 3].

The consequence of the increased emissions of CO2 are by the Intergovern-
mental Panel on Climate Change (IPCC) [1] linked to climate change and global
warming. By monitoring the global temperature a clear indication on global
warming is seen for the last decades, where 2015 and 2016 had the warmest
recorded earth surface temperatures, since modern surface temperature records
began in 1880 [4, 5].

Climate change has severe effects on human health, such as the spread
of disease, reduced access to drinking water, air pollution etc., which is also
confirmed by the World Health Organization (WHO) estimates that approx.
150,000 lives have been claimed annually by climate change [6]. In addition
to costing lives climate change also causes more extreme weather conditions,
and according to estimates by the European Environment Agency, the cost of
weather extremes due to climate change, was e 33 billion (in 2015 value) in
the period 1980-2015, and varying from annual e 7.5 billion in 1980-1989 to
annual e 13.3 billion in the period 2010-2015 [7].

Another consequence of the energy production from fossil fuels, is emissions
and formation of particle matter (PM10 and PM2.5). Besides creating visual
smog conditions in larger cities all over the world, such as Beijing, Moscow,
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Figure 1.1: Forcast for the worlds energy consumption in Peta joule. Devised by the U.S.
Energy Information Administration [18].

Los Angeles, London, Paris and Naples, the particle matter also constitutes a
health risk such as premature death, increasing risk for heart or lung disease,
etc. [8–12]. Particle matter also contributes to environmental damages, such
as depleting the nutrients in soil, making lakes acidic, damaging farm crops,
etc. [13–15].

In a study by WHO, it was estimated that globally in 2012, 3 million pre-
mature deaths were due to air pollution world wide [16]. A different study by
the Health Effects Institute 1 found that 366.000 premature deaths in China
were due to air pollution, in 2013 alone [17].

If the global society continues down this lane, producing the majority of en-
ergy from fossil fuels, the above problems are only going to grow. In a study by
the U.S. Energy Information Agency (EIA) [18], the global energy consumption
will increase dramatically with a growing middleclass in developing countries.
In Figure 1.1 a prognosis of the worlds energy consumption, in the coming
years toward 2040 will increase by 48 % with respect to 2012 values, provided
no change in politics and business as usual [18].

Globally most countries are committed to implement changes. As an exam-
ple, China have committed to spend $ 360 billion on renewable energy before

1Receives funding from the U.S. Environmental Protection Agency and U.S. based motor
vehicle industry.
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2020, and to supply 15 % of their total energy consumption by renewable energy
by the year 2020 [19, 20].

In Denmark, the Danish government in 2012 approved the official Danish
targets of being fossil free by 2050. A wide range of investments will accomplish
this, by improving energy efficiency and installing renewable energy systems.
The intermediate goal is to have more than 35 % renewable energy share of
total energy consumption by 2020, and to supply approximately 50 % of the
electricity from wind turbines, 7.6 % reduction in net energy consumption and
to reduce greenhouse gas emisions by 34 % compared to 1990 [21, 22]. The
latest prognosis for 2020 from the Danish Department of Energy, Distribu-
tion, and Climate, reports that the 2020 goals for the electricity sector will be
accomplished, and that wind share in the grid will be 53-59 % [23].

To reach these goals, a broad variety of solutions, such as wind and solar is
needed. As a result electricity, will play a larger role in 2050.

1.1 An electrochemical part of the solution
Most renewable energy sources fluctuate, “as the wind blows and the sunshines”
so to say. In the Danish energy system, the aim is that more than 50 %
electricity should be supplied by wind turbines, on average in 2020. This results
in periods with more than 100 % supplied from wind turbines, and periods with
negligible supply from wind turbines. In some periods, this becomes a problem
since the grid needs to be balanced and the Danish electricity consumers also
need electricity when wind production is low [23].

In production periods with more than 100 % electricity supply from wind
turbines, this problem has been solved by exporting electricity to the surround-
ing countries. This is made possible through several established high power
transmission lines, through which surrounding countries can purchase electric-
ity when Denmark produces more than needed, or sell when Denmark is in
need. [24]

This solution is only feasible when the surrounding countries can purchase,
however the surrounding countries do also invest in wind power, and therefore
have surplus wind power production, in the same hours as Denmark [25]. With
an increasing installment of wind power in Denmark, and surrounding coun-
tries a more flexible demand and supply is needed. A flexible demand could
be achieved by implementing storage solutions for balancing between energy
supply and demand [26].

This storage solution could be achieved by producing hydrogen using elec-
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trolyzers, and thereby storing the energy as hydrogen. When grid electricity
is in shortage, the hydrogen can be used in fuel cells to generate electricity to
balance the electrical grid. Alternatively, the hydrogen could be used in the
transport sector for fuel cell electric cars, in micro combined heat and power
plants in households, or be used as a building block in the production of syn-
thetic fuels such as methanol [27–29].

1.1.1 Fuel cells
A fuel cell is an electrochemical device, that converts potential chemical energy
to electricity. The principle was first described by Grove [30], in 1843, as a gas
battery, and has the advantage compared to batteries, that it continuously can
produce electricity, as long as it is supplied with fuel and oxidant.

The most common type of fuel cell is the proton exchange membrane (PEM)
fuel cell, which uses hydrogen as fuel and oxygen as oxidant, and produces
electricity, heat and water. A PEM fuel cell consists of two electrodes, the
anode and cathode. In between the anode and cathode, a PEM is located,
which only conducts protons. The working principle of a PEM fuel cell is
illustrated in Figure 1.2. On the anode side of the PEM, hydrogen is distributed
through a gas diffusion layer (GDL) and undergoes the reaction as shown in
Equation 1.1. Protons (H+) move through the PEM to the cathode and the
electrons move as electricity through an external load. On the cathode side, an
oxygen molecule reacts with four electrons and four protons, and form water, as
shown in Equation 1.2. Normally, the cathode side is supplied by atmospheric
air, where of approx. 21 % is oxygen.

Anode : 2H2 → 4H+ + 4e− (1.1)
Cathode : O2 + 4e− + 4H+ → 2H2O (1.2)

The two GDLs, two catalyst layers and the PEM are collectively named a
membrane electrode assembly (MEA). The MEA is compressed between flow
plates, which distributes the hydrogen and the oxygen. One fuel cell MEA has
an operation voltage in the range 0.5 V to 0.8 V, which is too low for most
applications. Therefore, the MEAs are stacked together for achieving a higher
voltage.

There are two types of PEM fuel cells, a low temperature PEM (LTPEM)
fuel cell and a high temperature PEM (HTPEM) fuel cell. The most common
fuel cell type, is the low temperature PEM fuel cell, which uses Nafion as
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Figure 1.2: Working principle of a PEM fuel cell. Based on illustration from [31].

membrane material, which is operated at temperatures below 100 ◦C. The other
type of PEM fuel cell, is the HTPEM, which uses polybenzimidazole (PBI)
doped with phosphoric acid, as membrane material. HTPEM fuel cells operate
between 130-220 ◦C [32, 33]. LTPEM fuel cells require high hydrogen purity
of more than 99.9 % [34]. HTPEM fuel cells can tolerate a higher share of
impurities in the anode gas, compared to LTPEM fuel cells, and as an example
up to 3 % CO at 160 ◦C is reported in the literature [35, 36]. This is mainly
due to lower CO adsorption rates at higher temperatures, and electro-oxidation
of some CO into CO2 at higher temperature. In addition, since HTPEM is
operated at above 100 ◦C, problems with flooding never occurs, and water
management are thereby more simple. Furthermore, the waste heat quality of
a HTPEM fuel cell is higher compared to LTPEM fuel cells.

The disadvantage of HTPEM fuel cells, are that start-up time is longer,
efficiency is lower and the lifetime is shorter compared to LTPEM fuel cells [33,
37]. This is also natural since HTPEM fuel cells have been under development
for a shorter period, and the gap between them is closing.

Since HTPEM fuel cells can be operated with a higher share of impurities
in the anode gas, they can be deployed together with a reformer and run on
reformate gas, without a gas purification system.
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1.1.2 Reformed methanol fuel cell systems

In most fuel cell applications the cathode oxygen is supplied by a fan using
the surrounding atmospheric air. The anode gas is most often supplied from a
high pressure hydrogen vessel, using a pressure from 20 – 70 MPa. This stor-
age method requires a very carefully designed hydrogen vessel and the energy
density is lower compared to gasoline. Other applications store the hydrogen
in liquid form (-253 ◦C), or using metal hydrides [38]. However, these methods
are expensive and heavy.

Alternatively, hydrogen can be stored in liquid form at room temperature,
as a alchohols such as methanol (CH3OH) or ethanol (CH4OH). The advantage
is higher energy density compared to compressed hydrogen and more ease of
transportation and storage. For fitting in the fossil free synergy described in
the beginning of chapter 1, the fuel must be produced based on electricity from
renewable sources and CO2 [39].

One promising fuel is methanol, which can be used directly in direct methanol
fuel cells (DMFC). Alternatively, methanol can be converted into a hydrogen
rich gas through methanol steam reforming [40], which can be used in hydro-
gen PEM fuel cells. Instead of methanol, ethanol could also be used in a steam
reformer, however this requires higher reforming temperatures.

The Danish chemist J. A. Christiansen described methanol steam reforming
in a study from 1921, conducted at University of Copenhagen, where he discov-
ered that by running a water and methanol mix across a reduced copper surface
at 250 ◦C, it would convert to a gas containing hydrogen and CO2 [41–43].

The methanol steam reforming reaction can be seen in Equation 1.3:

CH3OH + H2O→ 3H2 + CO2 ∆H0 = +49.4
[

kJ
mol

]
(1.3)

If oxygen is available, an exothermic reaction between methanol and oxygen
can occur as a partial oxidation as shown in Equation 1.4. The reaction occurs
in the temperature range 180 – 300 ◦C.

CH3OH + 1
2O2 → 2H2 + CO2 ∆H0 = −192.2

[
kJ

mol

]
(1.4)

In a likewise temperature range a decomposition of methanol also occurs as
shown in reaction scheme 1.5, which outputs two parts hydrogen and one part
CO.

CH3OH→ 2H2 + CO ∆H0 = 198
[

kJ
mol

]
(1.5)
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Figure 1.3: A simplified schematic diagram illustrating the principle of a reformed methanol
fuel cell system [44]. Blue lines display syngas, red lines air, green lines methanol and water
fuel mix and the brown lines display movement of warm gases.

Parts of the CO produced by methanol decomposition are removed by a
water gas shift reaction:

CO + H2O→ H2 + CO2 ∆H0 = −41.1
[

kJ
mol

]
(1.6)

Designing the reformer with a good trade-off between steam reforming and
partial oxidation, the reforming reactions can be self-sustaining, without any
external heat supply. The water gas shift reaction can be controlled by ad-
justing the temperatures, and thereby the concentration of CO in the output
gas.

A reformed methanol fuel cell (RMFC) system could be composed as shown
in Figure 1.3, which is the working principle of a commercially available RMFC
system [44]. The RMFC system in this configuration was first suggested by
Kurpit [45], in 1975. The RMFC system configuration as shown in Figure 1.3,
utilizes the anode exhaust gas in a burner. The burner is thermally connected
with the reformer and fuel evaporator, and thereby provides necessary heating
for the system process.

The reformer output gas flow therefore needs to be controlled in such a
manner that it never brings the fuel cell in hydrogen starvation, and must
never create temperature spikes in the burner. Control of the reformer output
gas flow, is a process linked with large time delays, and that is why the control
of a RMFC system is an interesting task for control engineers.

A RMFC system in the configuration shown in Figure 1.3, is not able to
start-up, but need an external source of heating, such as electric heaters. In
some configurations the external heat source is a combination of electric heaters
in the burner and the methanol/water fuel being feed into the burner.



8 Introduction

In the RMFC system configuration as shown in Figure 1.3, the reformer
output gas is connected directly to the anode input on the fuel cell, without
any gas purification system. The fuel cell therefore needs to be robust toward
impurities such as CO and methanol vapor. As mentioned in the end of sec-
tion 1.1.1, HTPEM fuel cells can operate with a higher share of impurities
compared to LTPEM, and they are well-suited for this type of application.

Faults on RMFC systems

One of the advantages of RMFC systems, such as the concept illustrated in
Figure 1.3, is a potentially higher reliability and availability compared to its
internal combustion engine counterpart. However, the reliability and availabil-
ity of RMFC systems can be jeopardized by several faults occurring on sensors,
actuators or on the control system.

The Department of Energy (US) has in their program, set a target for
the lifetime of fuel cell applications, which needs to be fulfilled for fuel cell
systems’ commercial competitiveness, compared to other available electricity
generators. This target has been the global target for fuel cells systems, and
demands 40,000 h for stationary and 5,000 h for automotive, before degrading
to 80 % of rated power [46]. For this reason it is desirable to detect and isolate
faults on fuel cell systems, in order to commence a mitigation strategy.

Any fault on the RMFC system, will result in a fault on the most expensive
component; the fuel cell stack. A fault on the fuel cell stack will easily lead
to an increased degradation which would yield a decreased lifetime of the fuel
cell. The different faults lead to different degradation mechanisms, which leads
to a degraded fuel cell. Most degradation mechanisms lead to a decrease in
electrochemical surface area, while some leads to membrane degradation or
loss of carbon support. The loss of electrochemical surface area is related to
a reduction on platinum catalyst or adsorption of impurities on the catalyst
sites. The membrane degradation is a result of e.g. leaching of phosphoric
acid or membrane tinning and pin hole formation, because of hotspots. The
loss of carbon support, can also lead to membrane tinning, but are most often
related to change in the gas diffusion layer or the carbon support in the catalyst
layer [47, 48].

The input and output of the fuel cell stack is the anode and cathode gases,
and the coolant. In this dissertation, the considered faults, will be limited to
faults occurring based on abnormalities in anode and cathode gases, and can
be summarized as five different faults (φ1-φ5).
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Faults related to the air delivery system, can be divided into two cases:

φ1 A decrease in cathode stoichiometry (λAir). The occasion could be a
faulty fan/compressor, or a gas channel blockade or reduction. Alter-
natively, the system could be deployed at high altitude, without control
adjustments.

φ2 An increase in cathode stoichiometry (λAir). The occasion could be a
change in fan/compressor characteristics or a software error.

Faults related to the anode gas delivery system, can be divided into three cases:

φ3 An increase of carbon monoxide in the anode gas. The occasion could be
a change in the temperature profile of the reformer, or a degradation on
the reformer catalyst.

φ4 An increase of methanol vapor in the anode gas. The occasion could be
a change in the temperature profile of the reformer, or a degradation on
the reformer catalyst. Alternatively, it could be due to more methanol
delivered by the methanol pump than expected or a fault on the methanol
evaporation system.

φ5 A decrease in the anode stoichiometry (λH2). The occasion could be a
decrease in methanol delivered by the methanol pump or due to a degra-
dation on the reformer catalyst. Alternatively, a gas channel blockade or
reduction.

1.2 Project objective
The primary objective of this PhD study is to advance the fundamental knowl-
edge about fault detection and isolation on HTPEM fuel cell stacks, which are
deployed in RMFC systems. The faults considered is limited to faults related
to anode and cathode supplies.

It is a requirement specified prior the project, that the fault detection and
isolation algorithms must not rely on additional sensors, and only depend on
available measured signals.
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Chapter 2
Diagnostics of Fuel Cells

To extend the life time of fuel cells, effort must be put into research improv-
ing MEA materials, design of bipolar flow plates and optimal control of the
fuel cell operation. In addition to this, proper fault detection and isolation
(FDI) algorithms must be designed, to prevent them from causing an increased
degradation of the fuel cell.

In the final construction, the diagnostic algorithm will be a part of a health
management system, which has the purpose of maintaining the fuel cell oper-
ation in a reliable way to extend the lifetime [49].

For FDI algorithms to be successful, they must be able to function in-situ
in a non-intrusive manner. Furthermore, it is desired that the algorithm can
function without any additional sensors, and must therefore rely on fuel cell
voltage, current and temperature, as measured signals. This requirement is
desired for reducing the cost of the fuel cell system, reducing the complexity
and most importantly for increasing the reliability.

This chapter aims at describing the state of the art within the research
areas of FDI of fuel cells.

Most available fault detection (FD) algorithms for fuel cells function as
shown in Figure 2.1. The characterization is based on direct measurements,
conducted on the fuel cell system or a specific characterization technique such as
e.g. estimating the fuel cell impedance, the total harmonic distortion or the like.
The feature extraction could be based on e.g.: calculating a residual between
a model and the measured signal, estimating a model parameter, calculating
a maximum phase for the impedance spectra or the like. The selected feature
is then used for determining whether the fuel cell is in normal operation, and
could be based on e.g. comparing to a threshold, a machine learning approach
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Figure 2.1: "Flow chart of most available methods for fuel cell fault detection." Paper B

or the like.
In general FD of fuel cells can be accomplished quite straight forward by

monitoring the fuel cell voltage. An example of this is given in Figure 2.2,
where in the left column ((a),(c),(e)) a high CO in the anode gas fault (0.5
% to 2.5 %), is analyzed and in the right column ((b),(d),(f)) the occurrence
of a low cathode stoichiometry (λAir = 4 to λAir = 1.5) fault is analyzed. In
both columns, the fault occurs at 150 s (marked by a vertical black line in the
two top plots in Figure 2.2). The voltage data illustrated in the top row of
Figure 2.2, is collected in the initial phase of experiments for Paper D.

For illustrating how fault detection can be performed using the voltage as
characterization method, two feature extraction methods are used for detecting
the two faults above. In Figure 2.2.c and 2.2.d, the squared error of the above
voltage signal is illustrated. The squared error is calculated as the square of the
residual between the expected value of the voltage and the actual voltage. It is
clearly seen that the voltage drops when the fault is introduced. The squared
error can then be compared to a threshold (horizontal dashed line in Figure 2.2.c
and 2.2.d) for determining if the fuel cell is in non-healthy operation.

In Figure 2.2.e and 2.2.f, the standard deviation of the voltage signal is
shown. The standard deviation is calculated based on a moving window of
length 10. It is clearly seen that the standard deviation of the voltage signal
increases when the two faults are introduced. The standard deviation can again
be compared to a threshold, for determining if the fuel cell is in non-healthy
operation.

These two simple methods can be used for fault detection of a fuel cell,
alternatively the voltage variance or voltage gradient could be used in a similar
way. The advantages of these methods are that they are easy to implement,
are low in computational cost and can be performed at a low sampling rate of
the voltage. Even though the methods above are suitable for fault detection
of fuel cells, it is questionable whether the methods can be used for full fault
identification, meaning determining what kind of fault, the amplitude and the
location of the fault.

One evident method for isolating the faults that occur on a fuel cell system,
is installing additional sensors for monitoring extra states of the system. It
could be obvious to install e.g. flow meters, advanced humidity sensors, gas
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Figure 2.2: (a) Fuel cell voltage during a high CO in the anode gas fault. (b) Fuel cell
voltage at the occurrence of a low cathode stoichiometry (λAir) fault. Both faults occurs at
150 s. (c) and (d) The squared error of the above signal. (e) and (f) Standard deviation
of the voltage signal above (moving window of size 10). The data is collected in the initial
phase of experiments for Paper D.

analyzers, however, this would increase the cost of the fuel cell system and
reduce the power density of the system. Therefore, if additional sensors are
to be installed, it is important that they are at low cost and size. Several
studies have addressed this approach such as in the work by Lee and Lee [50],
a metallic micro sensor was described for the detection and isolation of anode
and cathode starvation. In a similar manner, Lee et al. [51] installed micro-
electro-mechanical sensor, for estimating the flow, temperature and voltage,
inside a HTPEM fuel cell. Alternatively, many studies have investigated small
differential pressure sensors, for detecting a flooding state of LTPEM fuel cells
[52–54], or other types of sensors for detecting flooding and drying of LTPEM
fuel cells, such as hot wires [55, 56] or acoustic emission sensors [57]. But,
as mentioned earlier in this section, adding additional sensors is not desired.
Therefore, different methods needs to be addressed for fault detection and
isolation for fuel cells, which will be addressed in the following section.



14 Diagnostics of Fuel Cells

Model based methods

White box Gray box Black box

First principles Observers

Parameter esti-
mation

Neural network

ANFIS

Support vector
machines

Figure 2.3: Different available model based diagnostic methods for fuel cell applications.
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2.1 State of the Art on Fuel Cell FDI
Even though FD on fuel cells are straight forward, isolating what fault occurred
is more challenging. This is why, many fuel cell researchers focus on experi-
mental characterization and mathematical modeling and fault diagnostics of
fuel cells, for accomplishing FDI of fuel cells. Activities on online diagnosis of
fuel cells started in the early 2000s [52, 58, 59], and are now spread-out around
the world. The studies done on fault detection and isolation often focus on
low temperature PEM fuel cells, and are often related to water management
problems [60, 61]. The studies done within HTPEM fuel cells are limited, and
the literature study in section 2.1.1 and 2.1.2 will therefore include studies on
all types of fuel cells, where the two sections will focus on model based and
non-model based methods, respectively. Section 2.1.3 will focus on state of the
art of diagnostics of HTPEM.

2.1.1 Model based

Model based FDI of fuel cells can be divided into three categories; white box,
gray box and black box based models, as shown in Figure 2.3. These three
categories, can then be divided into different subcategories.

White box model based FDI approaches often rely on a set of non-linear first
principle algebraic and differential equations, which mathematically describe
the behavior of fuel cells. For fuel cells, this yields a multiscale, multidimen-
sional and multiphysical model, with a wide span of time constants. The time
scales vary from micro second range of electrical power and electrochemical
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reactions, to temperature changes of minutes.
For diagnostic purposes, the white box model is simulated online with the

same inputs as the physical system, and the model output is used for calculating
a residual between the model and output of the physical system. There are a
few studies in the literature pursuing this direction, as in Escobet et al. [63],
where a relative fault sensitivity method is used for detecting faults on auxiliary
components of a LTPEM fuel cell system. In the studies by Rosich et al. [64, 65]
and Yang et al. [66, 67], a structural model approach was presented for FDI on
auxiliary components of a LTPEM fuel cell system. In the work by Polverino
et al. [68], a white box model based on first principles was used for calculating
residuals for binary decision, isolating the faults using a fault signature matrix.
Simulating a complex white box model is in many cases too computationally
intensive for online use, and are therefore, not suitable for online FDI of fuel
cell systems. A similar approach is attempted in Polverino et al. [69], using
static scalar values for describing the nominal operation conditions and without
a model of the fuel cell. For this reason, the presented algorithm will not
function, under the influence of degradation.

Gray box models are in general built on first principle equations but are
supported with prior knowledge or are heavily simplified. Often, gray box
models are based on a set of linear equations, which e.g. can be put on a
state space form, and used in cooperation with an observer. In the study by
De Lira et al. [70, 71] a Luenberger observer is designed based on a linear
parameter varying dynamic model, which is able to detect four typical sensor
fault scenarios, and utilizes an adaptive threshold for robustness of the proposed
algorithm. For FDI on the actual fuel cells, this approach is only useful if a
dynamic linear model is available in the literature, which is not the case for
any type of fuel cell. Fuel cell models build on first principle equations are
often very complicated on a microscopic scale, and not suited for linearization.
Alternatively, the models that are simple and fast executable are empirical data
driven and far away from physical relations.

Another gray box model FDI approach is parameter estimation, which can
be performed on a low cost micro controller during the operation of the fuel
cell. The estimated parameter, which is related to a specific behavior of the
fuel cell can then be compared to the normal value. If the value differs from
the normal value and it can be linked to a specific fault, the fault can thereby
be isolated.

A well described powerful method for characterization of fuel cells is elec-
trochemical impedance spectroscopy (EIS) [72–75]. The method empirically
determines the impedance for a given range of frequencies, and yields an instant
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of the dynamic behavior. The method will be further described in section 3.2.
A common approach for quantifying the impedance is to estimate parameters
of an equivalent electrical circuit (EEC) model [76–79]. For the application of
FDI of fuel cells, the parameters of the EEC model can be used as features
for determining whether the fuel cell is in healthy or non-healthy operation.
The EEC model used for FDI propose is most often a modified version of the
Randles circuit [80, 81], or a series of RC circuits [82, 83].

In the study by Fouquet et al. [81], a Randles-like EEC model was fitted to
the acquired EIS measurements, and the three resistances of the EEC model
were used for FDI of flooding, drying and normal operation. The isolation is
shown graphically but no explicit algorithm or threshold for online implemen-
tation is suggested, which is common for early publications for fuel cell FDI. In
the study by Tant et al. [84], the EEC model parameters were used to detect
flooding and drying. In a study by Mousa et al. [85] a LTPEM fuel cell is char-
acterized by EIS for hydrogen leaking cells into the cathode side, and quantified
by the parameters of a simple Randles EEC model, and in a later paper [86],
the findings are coupled with a set of fuzzy rules, for online implementation
of the algorithm. In the work, no other faults were considered. In the study
by Konomi and Saho [87],[88], a Fast Fourier Transform of a LTPEM fuel cell
voltage was used to estimate the fuel cell impedance, and an EEC model of
three RC circuits was fitted to the impedance. In the work seven faults were
investigated and the faults were isolated based on a fault signature matrix and
a set of rules, using the resistors of an EEC model as fault features.

In the work by Génevé et al. [82], a time-constant spectrum is estimated
by applying small current steps, and thereby a series of RC circuits. Génevé
et al. [82] then utilized the peak amplitude of the resistance and time constant
as features for comparing them to a threshold for fault detection. In the work
only flooding is considered.

In some of the above references, EIS is used for the characterization of the
fuel cell. EIS measurements on laboratory scale are traditionally performed
by expensive potentiostats and spectrum analyzers. The online implementa-
tion of EIS measurements on the DC/DC converter was suggested by Narjiss
et al. [89] and Bethoux et al. [90], and investigated in depth by the two EU
projects D-code1 and Health code2. In this dissertation, all EIS measurements
are performed by a commercial potentiostat, but it is assumed that the EIS
measurements can be performed online by a DC/DC converter.

The advantage of white and gray box models is their ability to adapt and

1Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement No 256673.
2Fuel Cells and Hydrogen Joint Undertaking (FCH JU) under grant agreement No 671486.
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detect faults that are not previously seen, by linking a physical parameter
directly to a new fault. However, the problem with model based FDI of fuel
cells is that the quality, accuracy and robustness are directly linked to the
model performance, and a very large number of parameters are needed for fuel
cell modelling. This is most likely also why all white box model FDI approaches
have focused on auxiliary components. No model based FDI studies have yet
described a method, which take degradation of the fuel cell into account, which
is needed for the method to function during the entire lifetime of the fuel cell.

The third category on Figure 2.3 of model based FDI of fuel cell, is a
black box approach. Black box models are a data driven approach to establish
a relationship between inputs and outputs, and do not rely on any physical
relations. Black box models are well suited for online implementation and for
modelling of complex non-linear systems such as fuel cells. The down side of the
method is that it requires a large data foundation and that the implementation
of new functionality requires new experiments. The three most common black
box models for fuel cells are Artificial Neural Networks (ANN) [91–93], Support
Vector Machines (SVM) [94–96] and Adaptive Neuro-Fuzzy inference system
(ANFIS) [97–99], and all of them can be static or dynamic models.

In the study by Steiner et al. [100], an ANN model was used to model the
pressure drop over a LTPEM fuel cell stack, using fuel cell current, stack tem-
perature, cathode gas dew point and cathode gas volume flow. The modelled
pressure drop was then compared to the measured pressure drop and a residual
was calculated as fault feature, and the method was successfully demonstrated.
The study was extended by the same authors [101], where in addition to the
above model, the ANN model was trained to also have the voltage as output.
By comparing the two outputs to the measured signal, two residuals can be
calculated as fault features, and by comparing the two residuals to thresholds
a rule decision based FDI algorithm can distinguish between flooding, drying
and normal operation of a LTPEM fuel cell. The same approach was used by
Sorrentino et al. [102], where a black box static model of the voltage of a solid
oxide fuel cell (SOFC), using 12 inputs of fuel cell current and different temper-
atures and flows was utilized to detect 4 different faults, operation under high
temperature gradients and anode re-oxidation at degraded and non-degraded
operation. The accuracy of detection of the faults varied from 32.81 % to
88.75 %. The work concludes high accuracy and reliability, but it neither com-
ments on false alarm or false detection, nor mentions the implementation of
the method for online use.

To summarize, the model based FDI approaches for fuel cells rely on calcu-
lating a residual based on a model of one or more of the fuel cell states or an
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Figure 2.4: Different available non-model based diagnostic methods for fuel cell applica-
tions. Inspired by [103]

estimated parameter, which is compared to a threshold. For fault isolation, a
fault feature matrix is most often used for linking different feature signatures
to a specific fault.

2.1.2 Non-model based

Non-model based FDI methods of fuel cells are also often divided into three
categories: Signal processing, Statistical and Machine learning, as shown in
Figure 2.4. These three categories can then be divided into different subcate-
gories.

Signal processing non-model based FDI approaches for fuel cells use signal
processing methods of raw measured signals to detect and isolate faults on fuel
cell systems, often over a sliding window. The methods detect a change of sig-
nal oscillations or harmonics when the fuel cell go into non-healthy operation.
There are many different approaches and methods to signal processing [104]
for FDI, but the most described in the literature are Wavelet transform (WT),
Short time fourier transform (STFT) (in different formulations), Singularity
spectrum (SS) and Empirical mode decomposition (EMD).

Wavelet transform (WT) is a method for feature extraction of a measured
signal. The WT method reconstructs the measured signal, by a series of su-
perpositioned wavelets, of which the set of decomposition signals can be used
as fault features. For isolation of the faults, the WT must be utilized in co-
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operation with a fault classifier, such as an ANN, SVM or a fault signature
matrix.

For using the WT for FDI of fuel cells often the measured signal is the fuel
cell voltage, but examples of the WT of the pressure drop across the fuel cell
stack is also reported. In the study by Ibrahim et al. [105], WT of the measured
LTPEM fuel cell voltage was used to distinguish between normal operation,
flooding and drying. In the work, a comparison between the continuous WT
and the discrete WT was performed, and they concluded that the discrete WT
was superior based on evaluation time and the localization of the beginning
and end of the faulty mode. In the work no classifier was suggested for fault
isolation. In the study by Rubio et al. [106], the WT of the measured LTPEM
fuel cell voltage under steady state operation, was utilized for detecting three
faults: flooding, drying and the cathode stoichiometry. A Chebyshev distance
residual was used for comparing the normal operation conditions, and a fault
signature matrix was used for fault isolation.

In the study by Pahon et al. [107], using the WT of the air pressure drop
across the fuel cell stack, for detecting three faults: an emulated electrical short
circuit fault, high air stoichiometry fault and a cooling system fault. In the
study, the authors claim that the faults can be isolated, but do not demonstrate
it or propose a classifier algorithm.

An extended feature extraction method to the WT is the Wavelet Transform
Modulus Maxima as suggested by Benouioua et al. [108], for using as fault
feature for FDI of fuel cells. In the work by the same authors [109], the same
method was applied for FDI of five faults on a LTPEM fuel cell, using a k-
nearest neighbor (kNN) and support vector machines (SVM) as fault classifier,
which yielded a 91 % global accuracy, with 25 % probability of false alarm.
The authors described a small computational time of the method. Wavelet
leader was used as features on the same dataset in a study by the same authors
[110], in which it was investigated the performance of the classifiers for different
number of extracted features, where the best global accuracy was 90 % by kNN
[111].

There are several different methods available for converting a signal from
the time domain to the frequency domain. The most common ones are based
on different versions of the Fourier Transform, such as Fast Fourier Transform
(FFT) or the Short-Time Fourier Transform (STFT). By this transformation,
the signal is represented as a series of magnitude and phase components, which
can be used as fault features. The Fourier Transform is therefore, a feature
extraction method comparable to the wavelet transform, and needs a fault
classifier for isolation of faults. In most cases, this method is used for analyz-
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ing the fuel cell voltage, where the system is excited by a small AC current
perturbation, superpositioned on the fuel cell DC current. This is also known
as EIS measurement, which is referred to in subsection 2.1.1. It is demonstrated
that FFT can be implemented on the DC in the study by e.g. Katayama and
Kogoshi [112] and others. However, the FFT can also be used as features ex-
traction of the measured differential pressure drop across the gas channels, as
demonstrated by Chen and Zhou [113], for detection of flooding states. In the
study by Dotelli et al. [114], the Fourier transform of the voltage signal, was
used to detect flooding and drying, by changing the switching mode of the
DC-DC converter in order to create non-sinusoidal current harmonics. The
resulting frequency spectrum is then used as fault feature, where the high and
low frequency spectrum is used to distinguish between normal, flooding and
drying states. In the work, no classifier algorithm is proposed.

In the study by Damour et al. [115], empirical mode decomposition (EMD),
is investigated for FDI of flooding and drying of a LTPEM fuel cell. EMD is
based on a small number of Intrinsic Mode Functions that admit a series of well-
behaved Hilbert transforms. The described method relies only on the measured
LTPEM fuel cell voltage, and do not require any excitation signal, such as EIS
do. Fault isolation is managed by a fault signature matrix and a set of rules,
with a global accuracy of 98.6 %, based on two Intrinsic Mode Functions as
features. The method promises low computational time, and is therefore well
suited for online implementation.

The statistical non-model based FDI methods for fuel cells use large datasets
to extract the most dominant features that are related to non-healthy operation.
Often, many signals are measured on fuel cell systems, which cannot be used
for FDI since many signals are correlated. However, by applying statistical
methods the number of dimensions can be reduced. The reduced dimensions
can then be used as features for fault detection, and a classifier is needed for
FDI.

The most common dimensional reduction methods in the literature is Prin-
ciple Component analysis (PCA) and Fisher Discriminant analysis (FDA), and
their nonlinear kernel versions KPCA and KFDA. Studies of fuel cell FDI,
have been carried out using PCA [57, 116] and FDA [117–119], for reducing
the dimensions of the measured signals. In an extensive study by Li et al.
[120], PCA, FDA, KPCA and KFDA are compared for reducing the dimension
of 20 individual cell measurements of a LTPEM fuel cell stack, for detecting
flooding, drying and normal operation, with kNN, SVM and Gaussian Mixture
Model (GMM) as FDI classifiers. The result is that FDA in cooperation with
SVM classifier yields the best performance, and the lowest computational cost.
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Bayesian Networks (BN) are a class of statistical classifiers which have been
used for FDI of fuel cell. They are sets of probabilistic graphical models,
which are constructed in a network, for representing a set of random variables
that describe a static system. Using a BN consists of two parts: setting the
network structure and calculating conditional probabilities using a data driven
approach.

In the study by Riascos et al. [121, 122], a BN is suggested for detecting
four faults on a fuel cell system: fault in the cathode supply, cooling system
fault, increase in hydrogen crossover fault and hydrogen pressure fault. The
authors report an early FDI and demonstrate online implementation. In the
study by Wasterlain et al. [123], six impedance points at six frequencies are
used as input to a BN, for detection of flooding, drying and normal operation
of a LTPEM fuel cell, where more degrees of flooding and drying were included.
The study reported a 91 % global accuracy. In the study by Wang et al. [124],
a BN was constructed using 6 operating variables as input, and trained based
on data from two different SOFC stack, installed in two different test benches.
The method was trained for six different faults which yielded a 67 % global
accuracy. BNs are an alternative classifier to the Machine learning and fault
signature rule based methods, which is described in the literature of fuel cell
FDI.

Most signal processing methods, such as PCA and FDA presented on Fig-
ure 2.4 are for the purpose of feature extraction. The methods in the machine
learning (ML) category shown on Figure 2.4, are in the content of non-model
based FDI of fuel cells, for fault classification. The application of FDI using ML
can be divided into two categories, supervised and unsupervised learning. The
most commonly described method is supervised learning, where a database of
healthy and non-healthy data, which is labeled by the state, is used for training.
One of the ML methods mentioned in Figure 2.4, is then deployed online, for
fuel cell FDI. Even though supervised learning is the most common approach
to FDI of fuel cells, examples of unsupervised ML approaches are also available
[125]. The most common methods for classification of the fault isolation of fuel
cells are Artificial Neural Network (ANN), k-Nearest Neighbor (kNN), Fuzzy
Logic (FL) and Support Vector Machines (SVM).

In the literature, there are two approaches described for attempting FDI of
fuel cells, one is to use directly measured signals for dimensional reduction in
cooperation with a ML classifier, and another one is to use extracted features
from the impedance spectrum as features for ML classifiers.

In five studies with Z. Li as main author [117–119, 126, 127], individual
cell measurements were used as measurement space and FDA for reducing the
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dimensions. In all the five studies, the authors use SVM or a subvariant of SVM
as fault classifier. In most cases the reported accuracy is larger than 90 %. In
one of the studies the authors propose an online incremental learning of the
classifier [118, 127], for retraining the classifier to adapt to new and unknown
faults during the life time of the fuel cell. However, the accuracy of the new
unknown fault is less than 40 %. The authors demonstrate that the method
can be applied for different stack sizes after retraining [119].

Using the individual cell voltages as measurement space requires that these
are measured online, which is not the case for some fuel cell systems. Alter-
natively, EIS measurements can be used for characterization of the fuel cell in
operation, and based on the EIS measurement, the fuel cell impedance can be
estimated. In the study by Debenjak et al. [128], three points of the impedance
are used as features for distinguishing between flooding, drying and normal
operation of a LTPEM fuel cell. The faults are isolated by a fault signature
matrix and a set of rules, and the method is demonstrated on a commercial
fuel cell system.

As an alternative to using impedance points directly, features can be calcu-
lated and extracted based on internal relations of the impedance spectra, such
as, the maximum phase of the impedance spectra, high frequency crossing of
the real axis, maximum impedance amplitude, etc. In the work by Onanena
et al. [129], kNN was used as a classifier in cooperation with two different fea-
ture extraction methods from the impedance spectrum, the first was specific
impedance points and the second feature extraction method is based on the
high frequency crossing of the real axis, the difference between the high and
low frequency crossing of the real axis and the maximum phase. The authors
reported a fault detection accuracy of 99.6 % for the former feature extraction
method and 94.3 % accuracy for the latter feature extraction method. In the
work by Zheng et al. [130][131], extracted features based on internal relations
of the impedance spectrum were used as input to a fuzzy clustering classifi-
cation algorithm for detecting three different degrees of drying, air starvation
and normal operation. The paper reported the combination of fuzzy clustering
and fuel cell impedance data is well suited for FDI of LTPEM fuel cells, but
must be extended to include more fault states.

To summarize non-model based methods use different signal processing and
statistical methods for feature extraction of measured signals, and fault signa-
ture matrix based on rules or machine learning classifiers for fault isolation.
The main disadvantage for the FDI methods described in the literature is the
need for a large database of healthy and non-healthy operational data. Fur-
thermore, most of the methods lack the ability for adapting new unseen faults
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for online deployment. None of the described model based or non-model based
methods for FDI of fuel cells account for the degradation of the fuel cell, which
is needed for real life fuel cell FDI applications.

2.1.3 State of the Art on HTPEM fuel cell diagnostics

As can be seen from the literature survey in subsection 2.1.1 and subsec-
tion 2.1.2, the majority of available studies within the area of FDI of fuel
cells, treat the topic of water management of LTPEM fuel cells. However, this
dissertation treats the topic of FDI of HTPEM fuel cell systems, where the
water management problem, known from LTPEM fuel cells is not a problem,
since water vaporizes at the operational temperature for HTPEM fuel cells and
do not rely on the presence of liquid water in the polymer membrane for proton
conduction.

As stated in the beginning of section 2.1, limited work has been done in the
field of FDI of fuel cells. In several studies, HTPEM fuel cells have been charac-
terized for changes in temperature, CO contamination of anode gas, anode and
cathode stoichiometry [74, 75, 77, 79, 132], wherein the EIS characterization
method has been proven a powerful tool. Only one study available in literature
has pursued characterization of small levels (less than 2 % Vol.) of methanol
vapor in the anode gas [83], but more studies focus on methanol vapor (above
3 % Vol.) influence on the degradation of fuel cells [133–135]. The study inves-
tigating small levels of methanol vapor in the anode gas [83], did not combine
the characterization of different CO and current levels.

The topic of FDI of HTPEM fuel cells is almost nonexistent in literature,
and algorithms needs to be further developed. However, some studies have
focused on FD on HTPEM fuel cells. In a study by Jensen et al. [136], a method
for estimating the CO contamination concentration of the anode gas of a single
HTPEM fuel cell is pursued, based on a mapping of the impedance using EIS
as characterization method, using three methods of feature extraction. The
method considers six different temperatures and only one current set point.
The work reported an estimation error less than 1.5 %, using the real values
of the impedance at 100 Hz and the temperature as features. In the study, the
authors do not take fuel cell degradation into consideration for the algorithm.

In the work by Thomas et al. [137], a method for detection of anode and
cathode starvation of a HTPEM fuel cell stack is purposed. The work utilizes
the total harmonic distortion (THD), during an EIS measurement for char-
acterizing the linearity of the fuel cell. The authors investigate how the THD
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increases at different frequencies for starvation of anode and cathode gases. The
authors report that THD at 15 Hz is linked to anode starvation and THD at
25 and 15 Hz is linked to cathode starvation, but do not propose any algorithm
to distinguish between healthy and non-healthy operation.

In the work by de Beer et al. [138], the use of EIS to characterize a HTPEM
fuel cell at different levels of CO contamination, by fitting an EEC model to the
impedance spectrum was investigated. The authors propose to use the param-
eters of the EEC model as features for fault detection, but do not propose any
algorithm for online implementation. In the study by the same authors [132],
the characterization was extended to include anode and cathode starvation,
phosphoric acid leaching, loss of catalyst and CO contamination. Based on the
characterization, the authors propose a fault signature matrix for fault detec-
tion, but do not report any suggestions for an online implementation and do
not suggest any mitigation strategy for the phosphoric acid leaching and loss
of catalyst faults.

The same authors suggest a method for fuel cell characterization, based
on small current pulses injecting (CPI) and estimating an EEC model for the
responding signal [139], and tested the method on a power supply with an
electric circuit in series. In a later study [140] the authors tested the method
on a HTPEM fuel cell with offline data processing, but do report that the
method is capable of detecting a change in the fuel cell dynamics when CO
contamination is introduced in the anode gas.

To summarize, only few studies have been performed in the field of FD
of HTPEM fuel cells, with focus on CO contamination of the anode gas and
starvation of the anode and cathode. None of the studies have purposed an
algorithm for online implementation for FD, and no studies have attempted to
perform fault isolation, for the full degree of FDI for HTPEM fuel cells.

2.2 Main contributions
As it can be seen in the literature study above, the field of FDI of fuel cells
is active and has been growing rapidly for the past half decade. Most of the
published work within FDI of fuel cells is on LTPEM fuel cells, and the field of
diagnostics of HTPEM needs to be expanded. In the literature study above, it
has been proven that impedance spectroscopy is a power full tool for charac-
terization of fuel cells, and different feature extraction methods can be applied
for FDI. Hence, in this dissertation the method will be used as the preferred
characterization technique. However, there is a lack of understanding of how
the impedance behaviour of a HTPEM fuel cell is, for small concentrations of
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methanol vapor and CO in the anode gas, which will be investigated in this
work, and quantified by the parameters of an EEC model.

In literature, the most common method for estimating the fuel cell impedance
is EIS measurements, which is time consuming and complicated to implement
online. As an alternative to EIS measurements, CPI can be used for estimat-
ing the impedance based on time domain signals. This method is not well
described as a method for online implementations, and a parameter estimation
method which is suited for online implementation is needed. This will be de-
scribed in this dissertation, and the CPI method will be benchmarked against
EIS measurements.

No studies found in the literature, reports any method for online FD, of CO
contamination in the anode gas for a HTPEM fuel cell. Hence, in this disserta-
tion, a method for FD of CO contamination of the anode gas is proposed, based
on a model based statistical change detection approach. No studies available
on FDI of fuel cells address the issue that the static and dynamic characteristic
of fuel cells change, during degradation at normal operation. This issue will be
addressed in this dissertation, and a FDI method, which can detect and isolate
common faults in HTPEM fuel cells and is robust towards fuel cell degradation
will be proposed.

All studies presented in this dissertation will be based on an experimental
data driven methodology, and aim to advance the fundamental understanding
of HTPEM fuel cell behavior under healthy and non-healthy operation.
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Chapter 3
Impedance Characterization of HTPEM
Fuel Cells

As shown in the beginning of chapter 2 in Figure 2.1, fuel cell diagnostics is
often divided into characterization, feature extraction and change detection.
In this dissertation the characterization will be based on impedance driven
methods, as stated in section 2.2. Impedance based FDI methods have been
proven powerful in the literature, and can provide information on the fuel cell
dynamic behavior, which when known both for healthy and non-healthy fuel
cell operation, can be used to diagnose the fuel cell.

3.1 Experimental Setup

This dissertation is based on a data driven approach for FDI of HTPEM fuel
cells. A set of experimental data is therefore needed for the development and
assessment of the FDI algorithms. The experimental work for this dissertation
is conducted solely for the propose for this dissertation. For all experiments, the
purpose has been to reproduce the operation of a methanol reformer system,
such as the one shown in Figure 1.3.

The experimental work is conducted on two different GreenLight fuel cell
test stations, where the operational parameters can be controlled and differ-
ent fault scenarios can be emulated. Test on single cell level is conducted on
a GreenLight G60 test station with an 800 W electric load. For single cell
testing the cell assembly is heated by electric heaters which is installed in the
endplates. The short stack testing is conducted on a GreenLight G200 test sta-
tion with a 12 kW electric load. For heating and cooling of the HTPEM short
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Figure 3.1: Flow schematic of the two GreenLight fuel cell test stations used for the
experimental work in this dissertation.

stack, an external cooling cart running an oil circuit is used. For humidification
of the gases, both test stations use a bubbler principle, where the temperature
of the water can be controlled. It is assumed that the size of the bubbler tank is
sufficient for the gas to obtain the same dew point temperature as the tempera-
ture of the water in the bubbler tank. The humidification can be bypassed, for
using dry gas. For estimation of the impedance a commercial Gamry Reference
3000 potentiostat is utilized. When conducting the impedance measurements,
7.5% of the DC value is used as AC amplitude, with a maximum AC current
amplitude of ±3 A.

For the experimental work in paper B, the GreenLight test station was
modified, using an external electrical load and an external National Instru-
ment compact RIO system for controlling the electrical load and for fast data
logging.

3.2 Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is an in-situ characterization
method frequently used for fuel cells. The method can be conducted in steady
state operation, and is well suited for online operation. Electrochemists widely
use the method for gaining information on the dynamic operation of the fuel
cell, and how changing different materials or operational conditions influences
the fuel cell. The method works by superimposing a sinusoidal signal onto
the current or the voltage, and measuring the responding voltage or current.
The impedance can then be estimated based on the ratio between the signal
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amplitudes and the phase shift (ϕ):

Z =
∆V
∆I

ejϕ (3.1)

The estimation of the amplitude difference and the phase shift is often
base on Fast Fourier Transform (FFT) or sine correlation [141]. This is then
repeated for a range of frequencies, for yielding the impedance spectrum. For
this dissertation, the frequency range for all impedance measurements are from
10 kHz to 0.1 Hz. The impedance spectrum is often illustrated using Nyquist
plots or bode plots.

Generally, when using EIS for fuel cell diagnosis, there are two ways to
extract features for change detection, model based and non-model based. For
the model based approach, the impedance spectrum is fitted to a EEC model
whereof the parameters are used as features. For the non-model based ap-
proach, internal relations of the impedance spectrum, such as different angles
or magnitudes are extracted as features for change detection.

3.2.1 Model based feature extraction
In paper A and C a model based approach was used for extracting features
to analyse different operational conditions. In the literature, different EEC
models are used for fitting the impedance of LTPEM and HTPEM fuel cells.
Most often, the impedance reassembles two to three capacitive semicircles by
two to three RC loops and a series resistance [77, 79] or an EEC model as
shown in Figure 3.2, e.g. in combination with an additional RC loop [142].

The fitting of the EEC model to the impedance spectrum is often auto-
mated by an optimization algorithm using a least squares cost function. Many
available programs rely on gradient based optimization algorithms, which con-
verge fast but not necessarily to the global minimum, since the task of fitting
an EEC model to the impedance spectrum is a highly non-linear problem.
Therefore, researchers aim to fit the EEC model to the impedance spectrum,
using non-gradient based algorithms such as the Nelder–Mead Simplex algo-
rithm. However, for ensuring that the algorithms converge fast, an initial guess
is needed. In the study by Tant et al. [84], initial guess values were extracted
from the polarization curve. An alternative approach to initial guesses for
the optimization algorithm was suggested by Petrone [143], who proposed a
geometrical first guess algorithm, which is based on extracted values from a
geometrical representation of the impedance spectrum.

In this dissertation, all EEC model parameters fitting were performed using
a series of matlab scripts developed during the duration of this PhD study. The
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Figure 3.2: The Equivalent electrical circuit model used in Paper A.

routine is based on a differential evolution optimization algorithm [144] and a
complex least squares cost function. This algorithm is not well suited for online
implementation on low cost micro controllers, but ensures a higher probabil-
ity of finding the global minimum [145]. The alternative non-gradient based
algorithms such as the Nelder–Mead Simplex algorithm, can be implemented
on floating points DSP, however, the fitting of EEC model parameters will
be computationally intensive and time consuming. Implementation on DSP
microcontrollers is necessary for industrial products, since full size computers
are too expressive, too energy inefficient and physically too large, for real life
systems.

For the study in paper A, the EEC model shown in Figure 3.2, was used for
quantifying the impedance of a short HTPEM fuel cell stack, at varying load
current, CO anode contamination and methanol vapor anode contamination.
A complete mapping of contamination levels of CO in the range 0-1.5 % and
methanol vapor in the range 0-0.5 % was measured at 21 different current loads.

An EEC model parameter mapping, as the one conducted in paper A, could
potentially be used for designing a fault signature matrix, for isolating differ-
ent faults on a HTPEM fuel cell. The experiment in paper A is conducted for
realistic reformer output values, and the value of the EEC model parameters is
therefore not too distinct. However, the data clearly indicates a change of EEC
model parameters, and the data can be used for FD, for both CO and methanol
vapor contamination. The correlation between EEC model parameters and in-
creasing levels of CO and methanol vapor contamination is illustrated in Table
3.1. It is shown that the same parameters vary for both a change in CO and
methanol vapor contamination, and a unique fault signature matrix is therefore
not possible.

In paper C, a more simple circuit based on one R-CPE loop in series with
a resistor is utilized for FD of CO contamination in the anode gas. The sim-
pler EEC model was adapted for faster fitting times and low variance of the
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Table 3.1: "The correlation between increasing levels of CO and methanol vapor contami-
nation of the anode gas and the EEC model parameters." Paper A

R1 R2 α Q1 T1 RW
CO ↑ ↑ ↓ ↑ - ↑
CH3OH ↑ ↑ ↓ ↑ - ↑

estimated EEC model parameters. The parameter resistance in the R-CPE
loop and the α coefficient of the CPE element were proven to be good fault
indicators, when CO was mixed into the anode gas. Although the simple EEC
model was proven efficient to detect CO, it would be difficult to find unique
parametric signatures for new faults, and therefore, it is not possible to isolate
new faults.

3.2.2 Non-model based feature extraction
As an alternative to fitting an EEC model to the impedance spectrum, features
can be extracted based on internal relations in the impedance spectrum. This
can be done, by directly choosing k of the d dimensions which contain the most
information needed for the fault classification, where d is the measurement
space [128, 146]. As an alternative, a set of features can be calculated, based
on the shape of the impedance spectrum, such as angles and magnitudes.

In Figure 3.3, a typical impedance spectrum of a PEM fuel cell is illustrated,
together with four (a-d) extracted features for fuel cell FDI, which are often
found in the literature. The first (a) is the internal or series resistance, which
often is estimated as the high frequency intercept with the real axis [129], the
second (b) is the span of the impedance spectrum, often referred to as the
sum of the charge transfer and mass transport resistance, and calculated as the
difference between the internal resistance and the low frequency intercept with
the real axis [130, 147]. The third is the low frequency intercept with the real
axis or the maximum magnitude of the impedance spectrum, which is often
referred to as the polarizing resistance [130, 131]. The fourth is the maximum
angle of the impedance spectrum [129, 131] or the frequency at the maximum
angle [130].

Based on an analysis performed in paper D, it is seen that the proposed
features (a)-(d) change during degradation of the fuel cell. For the FDI algo-
rithm to be consistent during the entire lifetime of the fuel cell, it is necessary
that the features do not change with degradation. This is important because
if change detection can be based on features, with a low variance that do not
change during the fuel cell life time, the thresholds could be designed more
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Figure 3.3: Typically non-model based features found in the literature ((a)-(d)) and the
two features (f2 , f3) used in Paper D.

aggressively. If thresholds are designed more aggressively, faults at lower am-
plitudes can be detected. Further, when the features change during the fuel
cell life time, the FDI algorithm becomes more prone to giving false alarm or
false detection.

In paper D, two alternative features are suggested, which are shown to be
independent to fuel cell degradation. The two proposed features are the angle
between the 1 kHz and 100 Hz marker and the angle between the 1 Hz and
0.1 Hz marker, which are suggested together with the DC component of the
current. In paper D, these three features are proven suitable for detecting the
faults listed in section 1.1.2.

3.2.3 EIS feature extraction discussion

In this dissertation both model based and non-model based feature extraction
has been applied. Based on this, a series of observations have been made, which
led to some recommendations.

As stated in the previous section, the model based method for feature ex-
traction is a result of a gray box model approach, where many researchers give
physical meaning to the different parameters of the EEC model. However, the
physical meaning of the parameters is often different from study to study, and
based on observations made during this PhD project, a change in one opera-
tional parameter, which in theory should only be reflected in one part of the
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impedance spectrum, often causes more parts of the spectrum to change. This
makes the physical meaning of the EEC model parameters ambiguous. This is
further underlined by the fact that different EEC models might fit the same
impedance spectrum and support the initial statement that this is a gray box
model approach.

An additional problem is illustrated in Figure 3.4, which is impedance spec-
tra from paper A, at different load currents using pure hydrogen. For low
currents, the spectrum is shaped as one semicircle and when the load current
increases, the shape of the impedance spectrum changes. By investigating the
other Nyquist plots seen in paper A, it can be seen that for high concentra-
tions of CO and methanol vapor, a third semicircle appears. This change in
the shape of the impedance spectra, is hard to capture with one generic EEC
model, when working with large data sets. Furthermore, it is often seen that
the impedance spectrum changes shape when a fault is introduced.
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Figure 3.4: Nyquist impedance plot at different current loads, using pure hydrogen for the
anode gas. The black markers indicate the frequency decades {1k,100,10,1,0.1} Hz. The blue
line indicates the EEC model fit for each EIS measurement, using the EEC model shown in
Figure 3.2. Data from Paper A

One downside of the gray box model approach to feature extraction of
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the impedance spectrum is, as mentioned in section 3.2.1, that the fitting al-
gorithms are computationally intensive compared to extraction by means of
internal angles and magnitudes of the impedance spectrum. During this PhD
study, substancial amount of time has been spent to adjust EEC model fitting
scripts and changing parameter constrains, and the same can be expected if an
EEC model based feature extraction method should be implemented online.

For non-model based feature extraction methods, the downside is that they
often only rely on few points in the impedance spectrum, which makes them
more sensitive towards noise. Extracting a feature based on an impedance
point which is highly influenced by noise, will result in a larger probability of
false alarm or false detection.

Furthermore, for the non-model based approach, it is not possible to predict
or identify new and previously unseen faults. To include new faults in the FDI
algorithm a large new dataset of faulty data will be required. This will to some
extent also be the case with the model based feature extraction method, but it
is considered to be less data demanding.

An advantage of the non-model based method is that only parts of the
spectrum could be necessary for extracting features for FDI algorithms. Thus,
the characterization time of the fuel cell operation will be shorter.

Based on the above discussion, it is recommended that for new studies
on impedance based FDI algorithms the non-model based feature extraction
approach is pursued.

3.3 Current Pulse Injection
An alternative method to EIS fuel cell characterization is current pulse injection
(CPI), which is analyzed in paper B. When using the CPI method, small current
pulses are added to the DC current, and based on the responding voltage signal,
the fuel cell dynamic behavior can be estimated. This dynamic behavior can
be modeled using a EEC model, whereas the EEC model parameters were
estimated in the frequency domain for EIS they are estimated in the time
domain when using the CPI characterization method.

One of the disadvantages of EIS measurements are that the method is most
often demonstrated on lab scale. On lab scale the method is often implemented
by expensive commercial potentiostats, which are not suited for online imple-
mentation. Therefore, researchers suggest to implement the EIS method in the
DC/DC converter [89, 90], however, this sets strict requirements for the band-
width of the DC/DC converter. This can be accomplished, but demands some
development and a set requirements to the output of the DC/DC converter.
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Figure 3.5: "Selected time series data of 1 Hz (duty cycle=0.5) pulses, including the simple
R-RC EEC model, at a 1 A current pulse amplitude." Paper B

The advantage of the CPI method is that the implementation is simple, and
only requires two components: a transistor and a resistor.

The EEC model which can be obtained using the CPI method, is in gen-
eral simpler than what can be obtained using EIS. For some applications, this
simpler EEC model might be sufficient for fuel cell FDI. In Figure 3.5, a nor-
malized voltage response is illustrated, for two current pulses of 1 A amplitude,
together with the model fit of a R-RC EEC model. The advantage of fitting
a simpler EEC model to the experimental data, is lower fitting times, and a
lower variance of the parameters of the EEC model. In paper B, a non-recursive
least squares parameter estimation method is proposed, which is well suited for
online implementation on a low cost floating point DSP micro controller.

When comparing the EEC model, which is estimated using EIS character-
ization and CPI characterization, it can be seen that the low frequency infor-
mation of the impedance spectrum is lost in the CPI method, as illustrated on
Figure 3.6. The low frequency part of the impedance spectrum holds informa-
tion on phenomena which are related to mass transport and the gas channel
geometry [79]. When using the CPI characterization method, the gas oscilla-
tions in the gas channel in not excited as when using the EIS method for fuel
cell characterization, and the low frequency part of the impedance spectrum
is therefore not captured [148–151]. When comparing the EIS method to the
CPI method, the low frequency part of the spectrum is therefore not fitted to
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Figure 3.6: "Simple R-RC EEC model fitted to high and intermediate frequencies. EIS
data collected at 0.2 Acm−2 load current density. The black markers indicate the frequency
decades {10k, 1k, 100, 10, 1, 0.1} Hz." Paper B

the EEC model, as shown in Figure 3.6. In Figure 3.6, an R-RC EEC model
is fitted to the impedance spectrum of all the negative imaginary points until
2 Hz. The resulting EEC model parameters are shown in Table 3.2, were com-
pared to the EEC model parameters obtained using the CPI method. It can
be concluded that the CPI method captures the same EEC model parameters
as the ones obtained using EIS, within a reasonable band of uncertainty.

In this dissertation, the CPI fuel cell characterization method has not been
investigated for non-healthy operation. The method has therefore not been
evaluated directly for fuel cell FDI. Based on the simplicity of fitting and ease

Table 3.2: "Comparing the estimated EEC parameters using the CPI method and the EIS
method at 0.2 Acm−2 DC fuel cell output current." Paper B

1 A CPI EIS
Rs 16.5 mΩ 16.9 mΩ 2.3 %
R1 22.8 mΩ 23.6 mΩ 3.4 %
C1 1.05 F 0.99 F 6 %
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of implementation, this method can be considered suitable for fault detection
of fuel cells. However, since the low frequency information of the impedance
spectrum is lost, as seen in Figure 3.6, the fault isolation property of the method
is considered to be unlikely for a wide range of faults, such as the case study
in section 1.1.2.
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Chapter 4
Diagnostics of HTPEM Fuel Cells

Based on the extracted features, such as the ones described in chapter 3, an
algorithm for change detection and fault isolation can be designed. These al-
gorithms are often divided into model based and non-model based methods,
but this refers to the feature extraction method. By principle, the same algo-
rithms for change detection and fault isolation can be applied for both model
based and non-model based feature extraction methods. To summarize from
section 2.1, the most common change detection and fault isolation methods
for data driven fuel cell FDI, is Bayesian networks, various machine learning
approaches and fault signature matrices using thresholds.

4.1 Threshold design
When a set of features have been selected and analyzed at healthy and non-
healthy operating conditions, the last step, which is shown in Figure 2.1, has
to be completed. One approach is to compare the characterized feature to a
reference value, and then deciding the condition based on a threshold. The
value of the threshold could be chosen arbitrarily during the initial phase of
the fuel cell system life time, to a value which shows a promising result. Alter-
natively, the threshold could be designed based on the statistical properties of
the features, of which the probability of false alarm and false detection could
be calculated. This topic is discussed in paper C.

In Figure 4.1, the probability density function of the feature R2, for healthy
(H0) and non-healthy (H1) operation in one set point is illustrated, where
non-healthy operation is when there is CO present in the anode gas. It can be
shown that the EEC model parameter R2 follows a Gaussian distribution, both
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Figure 4.1: "Histogram of the R2 EEC parameter in non-faulty and faulty operation.
The non-faulty operation R2 data follows a normal distribution with mean of µ0 = 7.459 ·
10−3 and a variance of σ2 = 2.179 · 10−9. The faulty operation R2 data follows a normal
distribution with mean of µ0 = 9.45 · 10−3 and a variance of σ2 = 0.188 · 10−3." Paper C

in healthy and non-healthy operation. There is a clear change from healthy to
non-healthy operation, and non-healthy operation can therefore be detected as
a change in the amplitude of the parameter R2.

Detecting a change in amplitude of unknown amplitude, of a parameter,
can be formulated as a one-sided hypothesis test. The null-hypothesis (H0) as
the healthy operation and the alternative hypothesis (H1) as the non-healthy
operation:

H0 : R2 = µ0(Ī)

H1 : R2 > µ0(Ī)

Since this detecting algorithm in paper C aims to detect a change in R2
of unknown amplitude for an unknown amplitude of CO contamination in the
anode gas, the detecting algorithm will be a Composite hypothesis test. For
Composite hypothesis testing without prior knowledge on the CO contamina-
tion likelihood, a Neumann-Pearson approach using a Generalized Likelihood
Ratio Test (GLRT) [141] can be applied. When the GLRT algorithm is ap-
plied for detecting a change of a parameter amplitude, the GLRT algorithm is
based on the maximum likelihood estimation (MLE) approach. The MLE of a
Gaussian signal can be calculated as the mean of the signal [152]. The GLRT
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Figure 4.2: "The GLRT decision algorithm g(k) detecting a change in the mean value of
R2." Paper C

algorithm can be formulated as [153]:

g(k) =
1

2σ2M

 k∑
i=k−M+1

(R2(i)− µ0(Ī))

2

(4.1)

The output of the GLRT algorithm, when 0.5 % and 1 % CO is present in
the anode gas, is shown in Figure 4.2. The value can be determined based on the
test statistics of the GLRT algorithm output for normal operation. In paper C,
the GLRT algorithm output during normal operation is proven to follow an
exponential distribution. Based on this, the threshold can calculated for a
tradeoff between probability of false alarm and probability of false detecting.

For the study in paper C, the CO contamination fault is introduced as step.
In a real-life application, this would not be the case, but since the proposed
method detects a change in amplitude of the EEC model parameter R2, the
algorithm is robust toward incipient faults.

Using this method for designing thresholds, the probabilities for false alarm
and false detecting are only valid at the present state of degradation. Further-
more, the method only takes into consideration a change in the load current,
and is not robust toward fault isolation, such as the ones listed in section 1.1.2.
Detection and isolation of other faults could be approached using a fault signa-
ture matrix, with a similar approach for threshold design. However, based on
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Table 4.1: The five faults described in section 1.1.2, which is analyzed for FDI in paper D,
at the listed amplitudes.

Nr. Fault Normal Abnormal
φ1 Low λAir 2.5 [-] 1.5 [-]
φ2 High λAir 2.5 [-] 4 [-]
φ3 High CO 0.5 % Vol. 2.5 % Vol.
φ4 High MeOH vapor 0 % Vol. 5 % Vol.
φ5 Low λH2 1.4 [-] 1.15 [-]

the experience from paper D this would require a more complex EEC model,
than the one suggested in paper C.

4.2 Fault isolation using artificial neural net-
work

As an alternative to comparing a feature to a reference value and then checking
the state based on a threshold, a Machine learning approach such as an artificial
neural network (ANN) can be used for the same purpose. For using ANN for
FDI of fuel cells, a data set under healthy and non-healthy operation is needed
for the training of the ANN. This is both an advantage and a disadvantage.
It is an advantage, because almost no time is spent on modelling, and it is a
disadvantage because time is spent on collecting experimental data.

In paper D, the five faults described in section 1.1.2 are experimentally
analyzed and an ANN FDI algorithm is proposed. In Table 4.1, the amplitudes
of the five faults analyzed in paper D are listed.

In paper D, the proposed FDI algorithm is split into four steps, as shown
in Figure 4.3. The first step is to acquire an EIS measurement of the fuel
cell system, as it runs online in the field. The experiments conducted for
paper D are on a lab scale, using a commercial potentiostat, in a controlled
environment. However, for real life applications, the EIS measurements should
be implemented on the onboard DC/DC converter, as disused earlier in this
dissertation. The second step of the FDI algorithm, is the preprocessing of the
EIS measurement. The main purpose of the preprocessing is noise rejection.
Using one impedance point to extract a feature, which are highly influenced
by noise, could lead to a false detection or a false alarm. In paper D, a zero
phase implementation of a Butterworth filter is suggested, which requires a full
impedance spectrum. In the paper, it was pointed out that an advantage of the
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Figure 4.3: "Flow chart of the artificial neural network fault detection and isolation method-
ology." Paper D.

method is that it only requires parts of the impedance spectrum. In the case
when only parts of the spectrum are acquired, the preprocessing step must be
changed. This could be done by taking multiple impedance measurements at
the relevant points.

The third step of the algorithm, is feature extraction. For the work in
paper D the value of the DC current, and two internal angles of the impedance
spectrum is utilized as feature extracting. As mentioned in section 3.2.2, the
two angles are robust toward degradation, which is important for reducing
the number of cases of false alarms. However, other extracted features could
have been used for the purpose. As the fourth step of the FDI algorithm,
the extracted features (f1-f3) are used as inputs to the ANN classifier, which
selects one of the 6 different cases (φ0- φ6), where φ0 is healthy operation.

The ANN classifier is constructed as a feed forward on standard form, and
consists of one hidden layer with 10 neurons, with a tansig transfer function.
The output layer consists of one outlet for each of the six cases, with a softmax
transfer function.

The ANN is trained based on an experimental database, where data for
healthy and non-healthy operations are represented and labeled. The training
process is thereby a supervised procedure. The data set is divided into three
parts: training, validation and test. The training part of the data set is used
for the training of the ANN classifier neurons and transfer functions. The
validation data set is used as stop criteria for the training algorithm. The
test part of the data set is used for testing the performance of the algorithm,
on data which has not yet been used during the training and validation of the
ANN algorithm. The majority of the database consists of healthy data, which is
over represented compared to non-healthy data. The test data set, is selectively
chosen to contain an equal amount of data points for each fault. The remainder
of the data set was randomly divided between training and validation, but in
theory one fault case could be under represented. A method to overcome this,
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Table 4.2: "The result of the test data, listed in a confusion matrix. The results are listed
in %. Global accuracy is 94.6 %." Paper D. The faults φ1 - φ6 is described in section 1.1.2.

Target class
φ0 φ1 φ2 φ3 φ4 φ5

A
N
N

ou
tp
ut

cl
as
s φ0 98 0 0 0 70 0

φ1 0 100 0 0 0 0
φ2 0 0 100 0 0 0
φ3 0 0 0 100 0 0
φ4 2 0 0 0 30 0
φ5 0 0 0 0 0 100

could be to implement a K-fold cross validation of the ANN, for the training
process, meaning splitting the complete training and validation data set into
K parts, and running the training K number of iterations.

The performance of the ANN classifier based FDI algorithm proposed in
paper D, is illustrated in Table 4.2. A good accuracy of four out of the five
faults is reported, yielding a 100 % detectability. It was found that the algo-
rithm had difficulties distinguishing between healthy operation (φ0) and the
methanol fault (φ4), yielding in only 30 % detection of φ4 data instances. The
global accuracy of the algorithm is 94.6 %. For FDI of HTPEM fuel cells, no
studies have been reported in the literature, but the global accuracy is in good
alignment with similar studies for LTPEM fuel cells [129, 130, 147].



Chapter 5
Final remarks

In this dissertation, the study of developing fault detection and isolation al-
gorithms for high temperature proton exchange membrane fuel cells has been
investigated. Throughout the dissertation, a data driven approach has been
used, with the fuel cell impedance as the characterized parameter. The faults
that have been investigated are related to anode and cathode gasses. For the
anode, the considered faults have been carbon monoxide (CO) and methanol
vapor contamination and hydrogen starvation. For the cathode, oxidant star-
vation and too high flow of oxidant is considered. The fault detection and
isolation process has been divided in to three steps: characterization, feature
extraction and change detection and isolation.

For characterization of the fuel cell impedance, two methods have been
considered: electrochemical impedance spectroscopy (EIS) and current pulse
injection (CPI). For EIS a sinusoidal current is superimposed on the DC current
and the phase shift and amplitude difference for the corresponding voltage is
measured. By repeating this for a range of frequencies, the impedance spectrum
can be characterized. EIS has been proven to be a powerful characterization
method throughout the project, to distinguish between healthy and non-healthy
fuel cell operation.

With inspiration from the battery field, an alternative method to EIS is
investigated, namely CPI. For CPI, a small current pulse is drawn in addition
to the DC current, and the resulting voltage transient is measured. In this
PhD study, a procedure for estimating the parameters of an equivalent electri-
cal circuit based on the transient voltage response is suggested, which is suited
for online implementation. The method was proven to be effective on exper-
imental data, however, with a loss of information in the low frequency part,
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compared to what can be obtained using EIS as characterization method. The
CPI method yielded consistent results with low variance for different current
pulse amplitudes. The CPI characterization method could be useful in some
fault detecting algorithms for fuel cells, but this has not been investigated in
the frame of this dissertation.

For extraction of features based on the impedance spectrum acquired from
EIS measurements, two general methods have been investigated during the PhD
study: model and non-model based feature extraction methods. For the model
based approach an EEC model is fitted to the impedance spectrum, and the
parameters of the EEC model are used as features for change detection. The
fitting process is computationally intensive and time consuming. Furthermore,
the choice of model structure is not trivial, as a fuel cell could be represented
using different model structures for different operating conditions. The EEC
model complexity needs to be high, to be able to isolate multiple faults. How-
ever, increasing the complexity of the EEC model lowers the consistency of the
fitting accuracy.

As an alternative to model based feature extraction, non-model based fea-
ture extraction could be applied. For the non-model based feature extraction,
internal relations of the impedance spectrum are calculated, such as angles and
amplitude. The computational cost of this is significantly lower than the model
based approach, and no information is lost.

Based on the work done on model and non-model based feature extraction in
this PhD project, it can be concluded that non-model based feature extraction
of the impedance spectra is best suited for online fault detection and isolation
of high temperature proton exchange membrane fuel cells.

During normal degradation, the impedance spectrum spreads and is slightly
shifted. This is a problem when using the impedance as a feature for fault
detection, since the thresholds need to be designed less aggressively and the
algorithms become more prone towards false alarm. In this PhD study the
impedance during the first 800 hours of fuel cell operation is investigated and a
new set of non-model based features that are independent of degradation was
suggested.

A complete mapping of the fuel cell impedance using EIS, quantified by
equivalent electrical circuit (EEC) model parameters was also presented. The
mapping spanned seven points of CO contamination in the anode gas in the
range 0 – 1.5 % vol. and three points of methanol vapor contamination in
the anode gas, in the range 0 – 0.5 % vol. The different combinations of gas
compositions were evaluated for 21 current set points in the range 5 – 100 A.
Based on the study, it can be concluded that it is not possible to isolate whether
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CO or methanol vapor is present in the anode gas based on the EEC model
parameters for the suggested EEC model.

The General likelihood ratio test is proposed for change detection of a re-
sistor in an EEC model, for distinguishing between healthy data and CO con-
tamination in the anode gas. Using this method, an analysis of probability of
false alarm is given.

For isolating five common faults, which occurs on high temperature proton
exchange membrane fuel cells, an artificial neural network (ANN) classifier is
proposed. It is trained through a supervised procedure based on an experi-
mental database containing healthy and non-healthy data. The ANN classifier
method was concluded to be effective for the application of fault detection and
isolation in fuel cells, however, with problems of distinguishing between healthy
operation and methanol vapor contamination in the anode gas. A global accu-
racy of 94.6 % was demonstrated.

5.1 Future work
As with most other scientific research projects, the result of this study show
many results, but also open new areas of investigation.

In order to improve the algorithms suggested in this study, it could be
helpful to diagnose the amplitude or the degree of the faults. This could be
extended by adding additional measurements points to the database, and re-
training the algorithm. Alternatively, the change detecting algorithm could be
changed to a fuzzy based methodology.

The fault detecting and isolating algorithms rely on a set of characteristic
features extracted from the impedance. However, the impedance is known to
vary from fuel cell stack to fuel cell stack. This is a matter of reliable fuel
cells production, which in term of impedance is not yet investigated for high
temperature proton exchange membrane fuel cells.

Moreover, the experimental studies performed for this project are conducted
on single cell level or using a 10 cell short stack. Testing the suggested algo-
rithms on full size stacks or complete systems could give a good idea regarding
the robustness of the algorithms and the possibilities of their implementation in
real life systems, with integrated methanol reformer. This would require that
the EIS measurement technique is implemented as a part of the system, for
example on the on-board DC/DC converter. This in turn opens many tasks to
be investigated, such as the bandwidth of the DC/DC converter for controlling
the current by a sinusoidal wave form, and making sure that the output of the
DC/DC converter can handle a fluctuating voltage/current. Furthermore, the
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algorithm must also be retrained with impedance data from the new fuel cell
stack.

This study has been focused on FDI of fuel cells, using the fuel cell impedance
as indicator of the fuel cell state of health. It could be interesting to study the
fuel cell FDI, including indicators from surrounding components. The sur-
rounding components, for the fuel cell in a reformed methanol fuel cell system,
are the reformer, burner and cooling system. Such indicators could include,
temperatures, temperature gradients, flows, etc., and could be in combination
with or without the fuel cell impedance.

Future studies could also include new fault cases, such as: cell reversal,
phosphoric acid washout, coolant leakage into anode and cathode gas channels,
anode or cathode gas channel blockage, pin hole formation, presence of hot
spots, etc. In the future, analysis of the mean time between faults for each
fault case could be assessed for evaluating which faults have higher priority to
be included in a fuel cell FDI algorithm.

Finally, expanding the fault detecting and isolation algorithms to the full
class of health management and prognostics system topology could be of great
interest for future studies. This involves developing mitigation strategies for
each fault classes, and incorporating them in fault tolerant control systems on
heuristic systems control level. Furthermore, the health management system
must be expanded to include prognostic functions for estimating the remaining
useful life time of the system.

If the methods suggested in this dissertation, and some of the initiatives
suggested in this chapter is implemented in real life fuel cell systems, it will
lead to more robust and reliable operation, which have the potential to increase
the life time. For HTPEM fuel cells stacks which are deployed in reformed
methanol systems, this will contribute to commercialization and bring down
the maintenance cost.
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Abstract

This work presents a comprehensive mapping of electrochemical impedance

measurements under the influence of CO and methanol vapor contamination

of the anode gas in a high temperature proton exchange membrane fuel cell, at

varying load current. Electrical equivalent circuit model parameters based on

experimental evaluation of electrochemical impedance spectroscopy measure-

ments were used to quantify the changes caused by different contamination

levels. The changes are generally in good agreement with what is found in the

literature. It is shown that an increased level of CO contamination resulted

in an increase in the high frequency and intermediate frequency impedances.

When adding CO and methanol to the anode gas, the low frequency part of

the impedance spectrum is especially affected at high load currents, which is

clearly seen as a result of the high load current resolution used in this work.

The negative effects of methanol vapor are found to be more pronounced on

the series resistance. When CO and methanol vapor are both present in anode

gas, the entire frequency spectrum and thereby all the equivalent circuit model

parameters are affected. It is also shown that the trends of contamination ef-

fects are similar for all the test cases, namely, CO alone, methanol alone and a

mix of the two, suggesting that effects of methanol may include oxidation into

CO on the catalyst layer.

Keywords: Fuel Cell, PEM, PBI, Electrochemical impedance spectroscopy,

∗Corresponding author
Email address: chj@et.aau.dk (Christian Jeppesen)
URL: http://et.aau.dk (Christian Jeppesen)

Preprint submitted to International Journal of Hydrogen Energy March 9, 2017



CO, Methanol vapor, Equivalent electrical circuit

1. Introduction

Fuel cells are today considered as a promising alternative to internal com-

bustion engines for applications such as automotive and backup power. Fuel

cells are electrochemical devices that convert chemical energy of gases, typically

hydrogen, into electricity and heat. They presents the advantage of have no

particle emissions, silent operation, high efficiency and they can be deployed

as green house gas neutral [1, 2]. Compared to batteries fuel cells can continu-

ously produce electricity as long as reactants are supplied, and do therefore not

require long down time during refuelling but can be refueled within minutes.

In the resent decades a large number of research projects have been con-

ducted on fuel cells, and now the technology is maturing for commercial use,

such as stationary power, portable power and automotive power. However

durability and reliability need to be improved in order to justify a higher price

tag compared to the alternatives or production and maintenance costs need to

be reduced significantly [3].

The most common fuel cell type is by far the low temperature proton ex-

change membrane (LTPEM) fuel cell with Nafion® as proton conductor. It

typically utilizes pure hydrogen and air as reactants, and for most applications

the hydrogen is stored under high pressure. The compressed hydrogen vessel

poses a potential safety risk and energy density is lower compared to gasoline

and further the energy required for the compression is significant and the dis-

tribution is inefficient due to the low volumetric energy density compared to

liquid fuels. An alternative to storing hydrogen under pressure is using e.g. liq-

uid methanol in combination with a steam reformer, which converts methanol

and water into a hydrogen rich gas mixture [4, 5, 6]. However the downside is

that the output gas from steam reforming also contains CO2, CO and vapor-

ized methanol, and is therefore not suitable for LTPEM fuel cells since they

require a 99.9 % purity of the hydrogen [7]. LTPEM fuel cell systems with

a reformer requires a gas purification system, which is costly and lowers the

system efficiency.

An alternative to LTPEM fuel cells are high temperature proton exchange

membrane (HTPEM) fuel cells [8]. HTPEM fuel cells have the advantage of be-

ing more tolerant to impurities in the anode gas, and can operate with methanol

vapor, CO and CO2 at anode side [9, 10]. They can therefore be deployed

together with a steam reformer without gas purification systems. However,

performance of the fuel cell drops and the expected lifetime decrease, when
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higher concentrations of CO and methanol vapor are present in the anode gas

[11].

Several works have dealt with CO and methanol vapor contamination of

the anode gas in a HTPEM fuel cell, but separately. Many works have treated

the topic of performance loss during CO contamination. They have found

that they can operate without major performance loss until a CO contamina-

tion level of up to 3 % by volume at temperatures above 160 � [12, 13, 14].

These studies have investigated the CO effect on the steady state performance,

while other studies have fitted electrical equivalent circuit (EEC) models to

impedance measurements and compared the value of the EEC model parame-

ters for different concentrations of CO [15, 9, 16]. All the studies which treat

CO contamination of the anode gas all suggest that CO adsorbs on the plat-

inum catalyst, and occupy otherwise active catalyst sites that could otherwise

maintain the electrochemical fuel cell reactions.

In the literature there are not many works that deal with methanol vapor

poisoning of the anode of a HTPEM fuel cell. Two works reported an increase

in degradation when introducing methanol vapor in the anode gas of a HTPEM

fuel cell by using the impedance and the direct fuel cell voltage, and confirming

it by a membrane scanning in an electron microscope [17, 18]. In the work

by Araya et al. [19], a methanol vapor concentration of 3 % in the anode

gas corresponding to a methanol reformer conversion of less than 90 % was

investigated at different fuel cell temperatures, with the conclusion that the

effect of methanol is negligible for small concentrations in the anode gas. All

the considered for the studies suggest that the performance drop is due to

phosphoric acid leaching or DMFC phenomena, such as methanol crossover or

the formation of formaldehyde or similar. Only one study investigates how both

CO and methanol vapor in the anode gas affects the impedance of a HTPEM

fuel cell [20]. In this study three concentrations of CO and three concentrations

of methanol vapor where investigated, but not with realistic values of methanol

slip for methanol reformers.

In the present work, a comprehensive study was carried out to investigate

how the fuel cell impedance changes when CO and methanol vapor are intro-

duced into the anode gas. An impedance mapping was done based on realistic

reformer output gas compositions and the impedance change under different

current loads was analyzed.

A mapping of the EEC model parameters could potentially be used for de-

signing a model-based diagnostic algorithm, which relies on a suitable Fault

Signature Matrix [21]. As proved in the literature [22], this latter could poten-

tially be used for online diagnostic applications, as in this case, for detecting
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CO and methanol vapor contamination in the anode gas. By detecting CO and

methanol vapor contamination in the anode gas, a mitigation strategy could

be deployed and thereby enhance the lifetime of fuel cell system [23].

This article is organized as follows: in section 2 the experimental setup

and procedure will be described for the impedance mapping of the fuel cell

stack. In section 3 the electrochemical impedance spectroscopy measurement

method is introduced and how the impedance measurements can be quantified

into equivalent electrical circuit model parameters. In section 4 the results are

presented and discussed, and the conclusions drawn in section 5.

2. Experimental Setup

The experiments carried out in the current work have been conducted on

a 10 cell short stack from SerEnergy A/S, which is made up of PBI-based

SerEnergy MEAs, and flow plates from a SerEnergy S165L stack. The active

area of the fuel cells is 165 cm2. The short-stack is shown in Fig. 1. The short

stack is mounted in a GreenLight G200 fuel cell test station, where anode gas

composition such as H2, CO2 and CO can be controlled by mass flow controllers,

and CH3OH vapour can be controlled by a HPLC pump and a heat exchanger.

The stack is liquid cooled by Paratherm oil, fed by an external Greenlight

cooling cart.

Before starting the characterization experiments, the fuel cell stack was

operated in a break-in procedure of 100 hr, at 0.194 A/cm2 (32 A), as sug-

gested in [24]. After end of break-in procedure the short-stack was operated

for additional 40 hr to ensure steady voltage profile. The break-in procedure

was conducted with an air stoichiometric ratio of λair = 5 and a hydrogen

stoichiometric ratio of λH2
= 2.

During the experimental characterization of the fuel cell, the impedance is

measured using a Gamry Reference 3000 instrument running in galvanostatic

mode.

2.1. Fuel cell characterization procedures

The characterization of the short stack has been carried out at 21 differ-

ent anode gas compositions, which are based on realistic gas outputs from a

methanol steam reformer [25]. The H2, CO, CO2 and CH3OH gas composition

range used in this work, is based on experimental data from a SerEnergy H3-

5000 reformer module. The CO content was varied from 0 % CO to 1.5 % CO

by volume, in steps of 0.25 % Vol. These 7 CO set points were then repeated

for 0 %, 0.25 % and 0.5 % by volume of vaporized CH3OH in the anode gas.
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Figure 1: On the left the 10 cell short-stack used for the experimental work is shown. On the

right the Gamry Reference 3000 instrument used for impedance measurements is shown. The

stack is installed in a GreenLight G200 fuel cell test station, where operational conditions

for the fuel cell stack can be controlled.

For all anode gas compositions, hydrogen content was set constant at 75 % by

volume, and the remainder was filled by CO2. The stoichiometric ratios were

set to λH2 = 1.5 and λair = 2.5 throughout the entire experiment. The anode

and cathode gases were preheated to 167 �. The cathode gas is atmospheric

dry air. The anode gas is humidified by a bubbler at a dew point of 49 �,

which corresponds to the normal level of water content in the anode gas when

the fuel is reformed from methanol with a steam to carbon ratio of 1.5. The

stack is heated and cooled by a inlet coolant temperature of 167 �.

An overview of the test set points is given in Table 1. A total of 441

unique current and gas composition set points were conducted, and for each of

them three electrochemical impedance spectroscopy (EIS) measurements have

been recorded with a 60 seconds interval between each of the 3 measurements.

This yields a total of 1323 unique EIS measurements for the entire fuel cell

characterization experiment.

The 21 current set points were varied from 5 A to 100 A as shown in Fig. 2,

and the overall experiment is shown in Fig. 3. The vertical dashed black lines

in Fig. 3 indicate a start/stop operation, where the start/stop at approximately

110 hr was an unscheduled emergency shutdown due to low gas supply.
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Table 1: Overview of the set points during the fuel cell characterization experiment. All CO

test points are repeated for current test points and all methanol test points are repeated for

all CO and current set points. For each of the test points 3 EIS measurements are conducted.

Parameter No. test points Range

Current 21 5 - 100 A

CO 7 0 - 1.5 %

CH3OH 3 0 - 0.5 %

total 441

3. Impedance identification and model

For fuel cell characterization, several in-situ methods are available in the

literature, where the most common are polarization curve, current interruption

(CI), cyclic voltammetry (CV) and electrochemical impedance spectroscopy

(EIS). The polarization curve method plots the stack voltage against the stack

current for indicating the performance and indirectly the efficiency of the fuel

cell stack [26]. The CV method sweeps the potential of the fuel cell stack while

recording the current, which gives an indication of the electrochemical reac-

tions of the cells [26, 27]. The CI method records the voltage while the current

is interrupted, and the voltage response can be divided into an abrupt change

and a transient voltage change [26, 28]. Based on the abrupt voltage change the

ohmic resistance can be estimated, which is related to the membrane resistance.

The EIS method is widely used in the electrochemical community for a broad

range of applications, and yields high quality diagnostic abilities [26, 29, 30, 31].

In this work the EIS method has been used to characterize the fuel cell stack.

3.1. Electrochemical impedance spectroscopy

An EIS measurement is conducted by imposing a sinusoidal perturbation

to the fuel cell and by analyzing the response from the fuel cell. Based on

the sweep in frequency, the amplitude ratio and the phase shift between the

input and output signals, the impedance can be calculated at each frequency.

The measurement can be conducted in potentiostatic or galvanostatic mode, by

perturbing a sinusoidal voltage or current, respectively. For this work all EIS

measurements are conducted in galvanostatic mode. The number of frequency

points differ from work to work, and must be balanced between high enough

to ensure sufficient points for fitting equivalent electrical circuit (EEC) models

and at the same time a higher number of frequencies increase the measurement

duration. A long measurement time could yield non steady state operation, and
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Figure 2: Stack voltage and current for a current sweep with 21 current set points. At each

current set point are 3 EIS measurements are performed. This current sweep is repeated for

21 different anode gas compositions.

thereby results in a unusable measurement. The majority of papers dealing

with EIS measurements of PEM fuel cells use between 10 to 20 points per

decade [31]. In this work, the acquired frequency span is 10 kHz to 0.1 Hz,

with 10 data points per decade, divided into logarithmic intervals.

During an EIS measurement it is assumed that the measured response is

linear, meaning that the measured voltage is sinusoidal without any harmonics.

This is not true for any electrochemical fuel cell reaction and the amplitude

must therefore be minimized for the linearity assumption to be valid. However,

if the perturbation amplitude is too small the impedance response will be scat-

tered and the fitting of an EEC model can be difficult due to a higher level of

noice [31]. The amplitude of the perturbation signal for this work was set to

7.5 % of the DC load current, which is a good trade-off between signal to noise

ratio and being in the linear voltage region and is also recommended by Dale

et al. [32]. The instrument limitation is ±3 A of AC current perturbation.
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Figure 3: The total characterization experiment: 21 different gas composition set points all

undergoing 21 current set points.
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3.2. Equivalent electrical circuit model

The equivalent electrical circuit (EEC) models are often used for the tran-

sient behavior or often referred to as the impedance of fuel cells. The EEC

models can be divided into two sub classes: a first principle class, where gov-

erning equations are used to model the impedance [33] and a second data-driven

class, where an EEC model is used to describe the experimental impedance of

a fuel cell. Common for both is that they quantify different operational con-

ditions into a frequency dependent impedance spectrum. For multi-physics

systems, such as fuel cells, the governing equations for the electrochemical pro-

cess are complex and the EEC model becomes very comprehensive in terms

of components [34]. For this reason, the experimental impedance is often fit-

ted to a EEC model of simpler nature. The simplification of the EEC model

comes with the consequence that the physical meaning of its parameters is

questionable and are only valid in the neighborhood of the measured system’s

operational parameters [31]. For comparing the impact of different system op-

erational parameters, the data driven approach is by far the most widely used

method and therefore for this work this approach will be used.

The most common EEC model used in the literature is the Randles cir-

cuit [35] or variations of it. The original circuit was constructed with a resistor

in series with a frequency dependent resistor and capacitor in parallel with a

conventional capacitor. Later Grahame [36] proposed to replace the frequency

dependent resistor and capacitor with a pseudocapacity element named the

Warburg element. In Figure 4, the Randles EEC model used in this work is

shown, where ZW is the Warburg element and the capacitance element is re-

placed by a constant phase element (ZCPE). This EEC model has not been

derived based on fuel cell governing equations, but has been proven by Fouquet

et al. [37] to capture most impedance measurements of PEM fuel cells.

The impedance of a constant phase element (ZCPE) is defined as shown in

equation 1.

ZCPE(Q,α, ω) =
1

Q(jω)α
(1)

where ω is the angular frequency (2πf), Q is the pseudocapacitance and α

is the CPE power coefficient, which can vary from 0.5 to 1, where 1 yields

the same element properties as an ideal capacitor. Some papers suggest that

α should be constant for the entire operation of a fuel cell [37], while others

found that α should vary with the load current [38].

The bounded Warburg element (ZW ) used in this work, is defined as shown

in equation 2 [37].
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ZW (RW , T, ω) = RW
tanh(TW (jω)

1
2 )

TW (jω)
1
2

(2)

where ω is the angular frequency (2πf), TW is the diffusion parameter and RW
is the Warburg coefficient.

W

Rs

ZCPE

R1 ZW

Figure 4: Equivalent electrical circuit model used in this work.

Previous studies have shown that the inductive part of the impedance is

constant for different current loads and contamination and only slightly depen-

dent on the temperature [9]. This is due to the fact that the inductive part

is related to wiring and therefore constant for all measurements in this study.

Furthermore, a low number of EEC model parameters will ease the fitting pro-

cess which is important if the fitting process should be implemented in-situ at

some point in the future. Therefore, all measurement points with a positive

imaginary part have been deleted and excluded in the fitting process, and no

inductive elements are included in the EEC model shown in Figure 4.

3.3. Parameter identification

For fitting the measured data to the EEC model presented in Figure 4,

a fitting routine has been developed in Matlab. The routine is based on a

differential evolution optimization algorithm [39] with a least squares objective

function. The advantage of the optimization algorithm is that it is well suited

for parameter estimation, it converges fast and yields a large chance for global

minimum [39].

The cost function used for the parameter estimation is presented in equation

3, and is formulated as a least squares of the Euclidean norm of the complex

impedance. The cost function is formulated with a penalty on the middle

frequency region, to ensure a correct location of the transition between inter-

mediate and low frequency semicircles. In this work, the middle frequency
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region is defined from 20 to 0.5 Hz, and the size weighted penalty is 4. In or-

der to avoid correlated solutions to the optimization problem, boundary values

have been set for the parameters.

J(f, θ̂) =
∑

f∈{fs≤f<fm1}

∥∥∥z(f)− ẑ(f, θ̂)
∥∥∥
2

+

= wp


 ∑

f∈{fm1≤f≤fm2}

∥∥∥z(f)− ẑ(f, θ̂)
∥∥∥
2




=
∑

f∈{fm2<f≤fe}

∥∥∥z(f)− ẑ(f, θ̂)
∥∥∥
2

(3)

where f is the frequency of the perturbated signal, θ̂ are the estimated param-

eters of the EEC model, ẑ is the modelled impedance, wp is the weight penalty

coefficient, fs is the start frequency, fe is the end frequency, fm1 is the start of

the mid frequency region and fm2 is the end of the mid frequency region.

4. EEC model parameter identification results

In the following, the identified EEC model parameters are analysed and

discussed. After some general observations on the measurements, a detailed

analysis of the effects of the different gas compositions in the anode feed are

given based on the EEC model parameters.

Figures 5 and 6 show the initial EIS measurements without CO or CH3OH

at {5 , 7.5 , 10 , 15 , 30} A and at {30 , 50 , 75 , 100} A, respectively. In

the figures, blue line indicates the EEC model fit of the measurements and the

black markers indicates the frequency decades {1k, 100, 10, 1, 0.1} Hz of the

sinusoidal current signal, with decreasing frequency to the right.

It can be seen that the impedance spectrum decreases with the increase in

DC value of the current load. This is due to the nature of the polarization curve,

where at higher currents the DC value of the fuel cell voltage is lower, which

gives a lower amplitude of the sinusoidal AC voltage response and consequently

a lower magnitude of the complex impedance.

Furthermore, the low frequency arc at 5 A in Figure 5 is almost negligi-

ble. It can also be seen that for an increasing current, the low frequency arc

becomes relatively larger compared to the intermediate frequency arc, and for

EIS measurements above 30 A the low frequency arc becomes larger than the

intermediate frequency arc. This behavior manifest itself as a discontinuity for

the Warburg element parameter RW , which for the current sweeps, increases
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until 10 A, and decreases for further increase in current. The low frequency

arc is in some works related to diffusion limitations in the gas diffusion layer

[34], in other studies it is suggested that it is related to the cathode supply

[40], while Schneider et al. [41, 42] suggest it is due to oscillations in the gas

along the gas channels. To collate the different explanations, mass transport

issues are a common factor.

The intermediate frequency arc dependencies, are often explained by a re-

lationship to the activations losses from the cathode [43], or as a combination

of the anode and cathode activation losses [40]. In this work, the intermediate

frequency arc is more dominant than the low frequency arc at low currents and

contrary at higher currents.

As for the low and intermediate frequency arcs, the origin of the high fre-

quency arc also has different point of views in the literature. Often the high

frequency arc is correlated to the hydrogen oxidation reaction [44, 45], while

others suggest that it is related to conduction in the catalyst layer [46]. As

stated in section 3.2, a high frequency arc is not included in the EEC model.

As seen on the extract in Figure 6, a very small high frequency arc is present

between 1 kHz and 400 Hz, but its size makes it hard to obtain consistent model

fits, since the high frequency arc merges with the intermediate frequency loop

at lower currents. Furthermore, it can be seen that the high frequency arc does

not depend on the current.

4.1. Measurements with CO

The advantage of HTPEM fuel cells is that they are tolerant toward contam-

inants, such as CO. Where LTPEM fuel cells require high quality of hydrogen,

HTPEM can operate with up to 3 % of CO in the anode gas [12, 13, 14]. This is

an advantage since many fuel cell applications have their hydrogen supply from

reformers, which reform hydrocarbons to a hydrogen rich gas, where CO is typ-

ically also present. However, the presence of CO still affects the performance

and durability of an HTPEM fuel cell.

It is well know that when CO is added to the anode gas it occupies platinum

sites, and since platinum is the catalyst for adsorbing hydrogen molecules into

hydrogen atoms and free electrons, this reduces the electrochemical process and

thereby the fuel cell performance. At higher temperature the electrochemical

kinetics increases and the adsorption of CO on platinum sites is disfavored

[12], making HTPEM fuel cells more tolerant towards CO contamination than

LTPEM fuel cells. However, when increasing the temperature, the degradation

mechanisms also increase and the lifetime of the fuel cell is reduced. Therefore,

when finding an optimum operating temperature it is important to consider
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Figure 5: Nyquist impedance plot at {5A , 7.5A , 10A , 15A , 30A} current loads, without

any contamination in the anode gas. The blue line indicates the EEC model fit for each EIS

measurement. The black markers indicate the frequency decades {1k,100,10,1,0.1} Hz.

the tolerance towards contamination, performance, and lifetime of the fuel cell

stack.

In Figure 7 the impedance spectra for EIS measurements at 30 A and at

CO contamination levels of {0.25 , 0.5 , 0.75 , 1 , 1,25 , 1,5} % by volume in

the anode gas are shown. As already stated, the high frequency arc is related

to anode reactions. Therefore, a slight increase in the high frequency arc is

observed, when CO contamination is increased. It is easily observed by the

100 Hz marker in Figure 7, in which both the real and imaginary part increase.

Furthermore, the series resistance also increases as can be observed by the

movement of the 1 kHz marker, for which there are no direct explanation in

the literature, but has sometimes been ascribed to degradation effects [9]. Since

no dedicated high frequency loop has been used in the EEC model illustrated

in Figure 4, the increase in the real part seen at 100 Hz marker also results

in an increase in the series resistance (RS). It can also be seen in Figure 8

that the trend for the increase in the series resistance is independent of the
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Figure 6: Nyquist impedance plot at {30A , 50A , 75A , 100A} current loads, without any

contamination in the anode gas. The blue line indicates the EEC model fit for each EIS

measurement. The black markers indicate the frequency decades {1k,100,10,1,0.1} Hz. On

the extract a zoom-in on the high frequency part is shown.

load current. The EEC model parameters shown on Figure 8 are an average

based on parameter estimation of the three EIS measurements taken at each

gas composition and load current set point.

As it can be seen in Figure 7, the real part increases with increase in the

level of CO contamination at the 10 Hz marker. This consolidates the argument

that the intermediate frequency arc yields information on both the anode and

the cathode reactions. By inspecting the second plot (R1 in Figure 8), it can

be seen that the change in the size of the intermediate frequency arc caused by

the increase in CO contamination level is independent of the load current.

Similarly to the intermediate frequency arc, the low frequency arc also in-
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creases with increasing CO contamination levels. The reason for this could be

a dilution effect of the increased level of CO in the anode gas, which can hinder

the diffusion of hydrogen into the gas diffusion layer, and thereby decrease the

fuel cell performance. When investigating the size of the low frequency arc by

the EEC model parameter RW an increasing trend is observed for the EEC

model parameter RW at higher currents loads. This is in agreement with the

work of Das et al. [14], who reported an increase in concentration losses on

the polarization curve when adding CO, when compared to the polarization

curve without any CO contamination. In Figure 8 the trend for RW at low

current loads is decreasing for increasing levels of CO contamination. There is

no electrochemical explanation for this, but it could simply be a fitting phe-

nomena when the impedance spectra changes from one arc to multiple arcs, as

illustrated in Figure 5.

4.2. Measurements with methanol

When HTPEM fuel cells are deployed with a methanol reformer, often a

small amount of unconverted methanol vapor is present in the anode gas. HT-

PEM fuel cells have the advantage of being able to operate with small amounts

of methanol vapor in the anode gas, and therefore, do not require a gas purifi-

cation system. However, if present at high concentrations, methanol vapor can

affect the fuel cell performance negatively [47, 17, 18].

When methanol vapor is added to the anode gas a combination of phe-

nomena occur in the fuel cell. It has been suggested by Boaventura et al. [17]

that a formation of CO takes place inside the anode, via a reverse water-gas

shift reaction on the catalyst layer. Additional CO in the anode affects the

performance of the fuel cell as described in the previous section of this paper.

Other works suggest that methanol undergoes electro-oxidation on the cata-

lyst to forms non-CO species, such as formic acid or formaldehyde [48], which

also cause a decrease in the fuel cell performance. Moreover, the presence of

methanol and water vapor can dilute the phosphoric acid concentration [47].

However, this will mainly affect the long-term durability if the fuel cell, and

not yield an instantaneous performance drop.

Figure 9 shows a Nyquist plot for data measured at 30 A, at different levels

of methanol vapor in the anode gas. It can be seen that the 100 Hz marker

increases with increasing level of methanol vapor contamination, similar to

what is observed for CO contamination. This supports the assumption that

the effect of methanol is through electro-oxidation into CO on the catalyst.

Furthermore, it can be observed that the intermediate frequency arc and the

low frequency arc slightly increase with the level of methanol vapor in the anode
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Figure 7: Nyquist impedance plot at 30 A current load, for different levels of CO contamina-

tion in the anode gas. The blue line indicates the EEC model fit for each EIS measurement.

The black markers indicate the frequency decades {1k,100,10,1,0.1} Hz.

gas. This is also seen in Figure 10, where the middle plot show the EEC model

parameter R1, which is related to the intermediate frequency arc increases

with level of methanol vapor in anode gas, independent of the load current.

Moreover, it can be seen that the parameter R1 increases for an increasing

level of methanol vapor independent the load current. For the low frequency

arc, it can be seen in Figure 10, that the resistances increase with load current.

It is clearly seen in Figures 9 and 10 that the parameter that is most sensitive

to changes in the level of methanol vapor contamination is the series resistance

(Rs), which increases with an increasing level of methanol vapor in the anode

gas. Araya et al. [20] also support this finding, however not as distinct as

found in this work. Some degradation mechanisms could play a role in this
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Figure 8: The EEC model parameters RS , R1 and RW as a function of the fuel cell load

current, for different levels of CO contamination.
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Figure 9: Nyquist impedance plot at 30 A current load, for different levels of methanol

vapour contamination in the anode gas. The blue line indicates the EEC model fit for each

EIS measurement. The black markers indicate the frequency decades {1k,100,10,1,0.1} Hz.

pronounced increase in series resistance, since there is approx. 75 hr of fuel cell

operation between the EIS measurements, as illustrated in Figure 3.

4.3. CO and methanol EEC model parameter correlation

As mentioned in the introduction of the paper, a mapping of the EEC

model parameters could potentially be used for designing a fault detection and

isolation algorithm for on-line deployment in fuel cell systems. This requires a

unique parameter signature of the faults (CO and CH3OH in the current work)

to isolate the faults [21]. However, when fuel cell stack is exposed to both

CO and methanol vapor contamination the trend in EEC model parameters at

different load currents are similar, as seen in Figure 11.
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Figure 10: The EEC model parameters RS , R1 and RW as a function of the fuel cell load

current, for different levels of methanol vapor contamination.
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For the EEC model parameter Rs, the trend across the entire span of con-

tamination levels is illustrated in Figure 8 and 10, where it can be seen that Rs is

increases with increasing levels of contamination of both CO and methanol va-

por. Which is also shown on Figure 11, for different mixes of CO and methanol

vapor contamination. The fit of the parameter is consistent, and could be used

in a detection algorithm.

The EEC model parameter R1 slightly with increasing levels of both CO and

methanol vapor contamination in the anode gas. The R1 parameters depen-

dency on the change in contamination level is slightly higher at lower currents.

For the Warburg element, the parameter T1 is close to be independent from

the contamination level, but is highly dependent on the load current level.

Contrary to the parameter T1, the parameter RW yields a clearer change at

different levels of contamination. The value of the parameter RW increases

with with increasing level of contamination, especially at high load currents,

and therefore would be the parameter that is best suited for fault detection.

Further it can be seen on Figure 11 that adding the methanol vapor yields an

influence, and that it e.g. is better to run with 1.5 % of CO and no methanol

vapor, than running with 1 % of CO and 0.5 % of methanol vapor. However,

as seen on Figure 3, there is approx. 100 hr of fuel cell operation between the

two measurements and therefore the influence of degradations can also play a

role.

Among the constant phase element parameters (α, Q1), the value of the

α element decreases with increasing level of CO and methanol vapor contam-

ination. Furthermore, it is seen that the EEC model parameters α and Q1

are correlated, i.e., when α decreases, Q1 increases. It was difficult to get a

consistent fit of the two parameters. The parameter α was kept constant, and

it was observed that when fixing α to one value, the remaining five EEC model

parameters fluctuate more. Therefore, it was decided that a more consistent

fit of the remaining five parameters is a higher priority.

The correlation between EEC model parameters and increasing levels of CO

and methanol vapor contamination is summarized in Table 2. It can be seen

that all the EEC model parameters change in the same direction, for changes in

both contamination of CO and methanol vapor. This means that based on the

EEC model parameters, it is not possible to isolate whether CO or methanol

vapor contaminates the anode gas. Moreover, when analyzing the data for

realistic reformer gas outputs investigated based on the EEC model parameters

in this work, it is not possible to design a robust fault detection algorithm with

low probability of false alarm and a good probability of detection. In order to

achieve data for detection of CO and methanol vapor in the anode gas using
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Table 2: The correlation between increasing levels of CO and methanol vapor contamination

of the anode gas and the EEC model parameters.

R1 R2 α Q1 T1 RW

CO ↑ ↑ ↓ ↑ - ↑
CH3OH ↑ ↑ ↓ ↑ - ↑

this method, the authors suggest that tests should be done on contamination

levels above normal reformer gas composition outputs, where the differences

between EIS spectra under faulty conditions and healthy conditions are more

evident.

5. Conclusions

This work presents a comprehensive mapping of EEC model parameters to

evaluate the influence of CO and methanol vapor contamination in the anode

gas of a HTPEM fuel cell, at varying load values. The EEC model parameters

are based on the evaluation of EIS measurements, where the data are fitted

to an EEC model by a custom made fitting algorithm based on a differential

evolution optimization algorithm.

The impedance results obtained using pure hydrogen are in good agreement

with the literature. However, a change in the impedance spectra are observed

at low current, where the impedance spectra shape yields one arc compared to

higher currents, where the impedance spectra shape yields two to three arcs.

In this work, it is shown that when adding CO and methanol vapor to the

anode gas, all the high, intermediate and low frequency parts of the spectrum

are affected. This indicates that the two to three arcs in the spectrum are a

combination of phenomena and cannot be ascribed to one reaction, an effect

or a part of the fuel cell. However, there are strong indications that the low

frequency part of the spectrum is related to mass transport effects.

When adding CO to the anode gas, the change in impedance was caused

by CO adsorption on catalyst sites and thereby reduced active area of the fuel

cell. It was found that an increased level of CO contamination in the anode gas

resulted in an increase in the high and intermediate frequency arcs, which is

in-line with what is described in the literature. When adding methanol to the

anode gas, a pronounced increase in series resistance is observed in this work.

This finding is supported in the literature, however, not to the same degree as

reported in this work, and influence of degradation mechanisms cannot be ruled

out. When adding methanol vapor to the anode gas, a slight increase in the

high frequency impedance part is also observed, which supports the assumption
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Figure 11: The EEC model parameters RS , R1 and RW as a function of the fuel cell load

current, for a mix of different levels of CO and methanol vapor contaminations.
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that CO is formed, and thereby occupies catalyst sites. For higher currents,

the low frequency part of the impedance spectrum distinctly increases with

increasing level of CO and methanol vapor in the anode gas.

An experimental impedance mapping as the one presented in this work

could be useful for determining design and control parameters for a methanol

reformer, when deployed together with a HTPEM fuel cell, without installing

any additional gas purification system. Moreover, an impedance mapping as

presented in this work could be useful for designing diagnostic algorithms for

detecting CO or methanol vapor in the anode gas. However, it can be concluded

that it is not possible to isolate whether it is the CO or methanol vapor or

both that are present in the anode gas based on the value of the EEC model

parameters, since the same parameters change in the same direction when either

or both levels are increased.
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Abstract

In this paper a method for estimating the fuel cell impedance is presented,

namely the current pulse injection (CPI) method, which is well suited for on-

line implementation. This method estimates the fuel cell impedance and unlike

electrochemical impedance spectroscopy (EIS), it is simple to implement at a

low cost. This makes it appealing as a characterization method for on-line diag-

nostic algorithms. In this work a parameter estimation method for estimation

of equivalent electrical circuit (EEC) parameters, which is suited for on-line

use is proposed. Tests on a 10 cell high temperature PEM fuel cell show that

the method yields consistent results in estimating EEC parameters for differ-

ent current pulse at different current loads, with a low variance. A comparison

with EIS shows that despite its simplicity the response of CPI can reproduce

well the impedance response of the high and intermediate frequencies.

Keywords: Fuel Cell, PEM, characterization, EIS, CPI, Current Pulse

Injection

1. Introduction

In recent years, the environmental effect of the rising temperatures around

the world, has been gaining attention from politicians. The consequences of

climate change are being more widely accepted in the general public, and the

approval of renewable energy sources is increasing. With more fluctuating
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renewable energy sources providing power for the electrical grid, new storage

solutions that can balance the grid are necessary [1]. Hydrogen produced from

water electrolysis using renewable electricity can be a viable option as an energy

carrier, which among other things can be used in fuel cells both for stationary

and mobile power generation.

The Department of Energy (DoE) in USA, has set a target for fuel cell

price and durability for stationary and transport applications. For fuel cells to

be competitive the lifetime of a fuel cell must exceed 5000 hours for transport

applications and 40000 for stationary applications [2]. During the last decade

the durability of fuel cells has improved significantly, due to extensive research

in the field and experiences from the industry. However, the lifetime span is

still has not reached the targets yet.

For improving the durability of advanced systems such as fuel cells, it is

crucial that a proper online diagnostic system is deployed [3]. Such a system

could detect faults early, and through a mitigation strategy change the system

settings and prevent rapid degradation of the fuel cell stack. Furthermore, a

well-designed diagnostic system, could be a part of a prognostics system, which

could predict component failure to manage service of the fuel cell system, thus

reducing the down time of the systems.

When dealing with diagnostics of fuel cells, the majority of methods avail-

able in the literature treats the topic of fault detection in three parts, as shown

in Figure 1 [4, 5]. In many studies the fuel cell fault detection is done by

detecting a change in the parameters of an equivalent electrical circuit (EEC)

model of the fuel cell’s dynamic voltage behavior. The most used technique for

obtaining EECs model is electrochemical impedance spectroscopy (EIS) [6, 7],

with current interruption (CI) method also used to some extent [8, 9]. The for-

mer yields the full impedance response and the latter primarily yields a simpler

response and often only the ohmic resistance is extracted.

An alternative method for estimating the impedance of an electrochemical

device is the Current Pulse Injection (CPI) method. This method is widely

used in the battery community, for estimating the state of charge and the state

of health [10, 11, 12, 13]. The CPI characterization method works by drawing

a small current pulse from the electrochemical device, and then measuring the

corresponding transient voltage. By using the current as input and the fuel cell

stack voltage as output, an input/output parameter estimation methods can

be utilized for estimate the parameters of a EEC model.

In the fuel cell community, different papers have focused on the tran-

sient voltage during current steps as a method for fuel cell characterization

[14, 15, 16, 17, 18], but not as a diagnostics tool for fuel cells. In [19], small
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Figure 1: Flow chart of most available model based methods for fuel cell fault detection.

current pulses have been used for estimating EEC model parameters. In an-

other paper, the CPI method was treated in relation to diagnostics of PEM

fuel cells, however with a limited access to experimental data and a parameter

estimation method not suited for online fuel cell diagnostics [20].

In this work, the CPI method will be used for characterization of a fuel cell

short stack, and EEC model parameter estimation method suited for online

deployment are suggested. Furthermore, the CPI method performance is com-

pared to the electrochemical impedance spectroscopy characterization method.

The paper is structured as follows:

In section 2 the current pulse characterization method is presented and dis-

cussed, and the applied parameter estimation method is presented. In section

3 the experimental setup is presented and the experimental procedure is ex-

plained. In section 4 the results of the characterization of the fuel cell stack are

presented and in section 5 the current pulse injection characterization method

is compared with the electrochemical impedance spectroscopy method.

2. Current Pulse Injection method

Current Pulse Injection (CPI) method is an alternative fuel cell characteri-

zation method that utilizes small current pulses in the form of an extra drawn

current step in a small period of time. Based on the corresponding transient

voltage time signals, the fuel cell impedance can be estimated, by standard

available system identification methods. A conceptual voltage profile of a fuel

cell voltage is shown in Figure 2, during a small current step. The EEC model

estimated based on the CPI method is in general simpler than what can be ob-

served by EIS measurements, but for some diagnostic purposes this technique

could be proven sufficient.

The EIS and CPI characterization methods can be conducted in-situ con-

trary to the CI method, as for the CI method the load must completely be

discontinued.

The EIS method is very expensive on lab scale, and even though there are

European projects, such as the D-code project (FCH JU, grant No 256673),
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Figure 2: Conceptual drawing of transient voltage durring a small current step.

working on implementing the EIS measurement on an onboard DC-DC con-

verter for fuel cell systems, it still has strict requirements to the bandwidth of

the DC-DC converter. The idea behind EIS measurements is simple but will

still require a great deal of engineering before it can run on real life fuel cell

systems.

The main advantage of the CPI method is that it can be implemented at

relatively low cost. As shown in Figure 3, the current pulses used for the CPI

method can be implemented by a series resistor and transistor in parallel with

the fuel cell terminals. By controlling the transistor with a PWM signal the

small electrical circuit will then draw small current pulses from the fuel cell,

depending on the size of the resistor.

In order to use CPI method for estimating the impedance of a fuel cell, a

common approach is to use a parameter estimation method to fit the voltage

response to an EEC model. Most fuel cell EEC models utilize a form of the

Randles circuit, with 1-3 parallel RC loops. For this work a Randles circuit

with one parallel RC loop is used, giving one semicircle in the complex plane,

as shown in Figure 4. This is a quite simple circuit, giving a simple response,

and yielding a similar transient response as shown in Figure 2. The advantage

of such a simple model is that it has lower fitting times and a more consistent

parameter fitting algorithm performance and parameter space. Furthermore,
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Figure 3: Electrical implementation of the current pulse injection characterization method.

as reported in [21], a more complex model might yield a better fit to the

data, but at the same time becomes more sensitive to small variations such

as measurement noise, and it is therefore the recommendation by Vang et al.

[21] to use the less complex EEC models if their accuracy is sufficient for the

application.

2.1. Parameter estimation

There are many different methods available for parameter estimation of fuel

cell systems, such as EEC models. An extensive review and collection of these

methods are available in Ljung’s work on system identification [22].

The most common methods available utilize a model prediction error (ε),

which is the difference between the measured value and the output of a model.

The parameter estimation method then aims to minimize the prediction er-

ror, and is thereby treated as an optimization problem. For this work a non-

recursive least squares method is applied for estimating the parameters of the

EEC model, shown in Figure 4. The optimization problem is solved as a linear

regression problem, where the prediction error is defined as shown in equation

1, where V FC is a column vector of the measured voltage of N length of dataset

used for the parameter estimation, and V̂ FC is a column vector of the model

output also of length N .

ε = V FC − V̂ FC (1)

The model output V̂FC , which is a mathematical representation of VFC , can

be described as the open circuit voltage (VOC) minus the voltage drop across

the EEC model (where s is the Laplace operator), where IFC is the fuel cell

current:
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Figure 4: Conceptual Nyquist plot of the EEC model used for the CPI method.

VFC = VOC −RsIFC −
R1

R1C1s+ 1
IFC (2)

The model given in equation 2 is not linear due to the VOC term. Equation

2 is therefore linearized, and the terms are collected as one fraction. The linear

input / output dynamics for VFC can thereby be described as the transfer

function, where ICPI is the pulse current:

VFC

ICPI
=
RsR1C1 · s+ (Rs +R1)

R1C1 · s+ 1
(3)

The transfer function given in equation 3, must be converted to the discrete

time domain in order to apply the parameter estimation method to the model,

where lower-case z is the z-domain operator and Ts is period of time between

the samples. The transfer function in equation 3, will be mapped into the

discrete domain using the bilinear transform (Tustin):

s← 2

Ts

z − 1

z + 1
(4)

The transfer function given in equation 3, is converted to the discrete time

domain using equation 4:

6



VFC

ICPI
=
b1 · z−1 + b2
a1 · z−1 + 1

(5)

where:

b1 =
Ts(R1 +Rs)− 2RSR1C1

2R1C1 + Ts
(6)

b2 =
2RsR1C1 + Ts(R1 +Rs)

2R1C1 + Ts
(7)

a1 =
Ts − 2R1C1

2R1C1 + Ts
(8)

The input / output dynamics for equation 5 can be described as a difference

equation, where k indicates the kth sample (k ∈ {1, 2, ..., N}):

VFC,k = −a1VFC,(k−1) + b1IFC,(k−1) + b2IFC,k (9)

Based on the above an unknown parameter vector (θ̂) can be defined:

θ̂ =



a1
b1
b2


 (10)

and a data row vector:

φ
k

=
[
−VFC,(k−1) IFC,(k−1) IFC,k

]
(11)

The difference equation (9) can then be expressed as:

VFC,k = φ
k
θ̂ (12)

The entire fuel cell voltage model output (V FC) with length N , can be

described by replacing the data row vector with the entire dataset matrix
(
φ
)

in equation 12, where φ has the dimension of N × 3).

In order to formulated the residual prediction error, described in equation

1, the formulation from above can now be inserted:

ε = V FC − φ θ̂ (13)

7



The residual prediction error vector given in 13 can now be squared, and

minimized as a convex optimization problem, where the cost function (J(θ̂)) is

given as:

J(θ̂) = εT ε (14)

=
(
V FC

T − φT θ̂
T
)(

V FC − φ θ̂
)

(15)

It can be shown that the solution to the convex optimization problem given

in eq. 15 is given by [23]:

θ̂ =
(
φTφ

)−1

V FC (16)

The estimated parameter vector (θ̂) can now be converted back to the con-

tinuous EEC model parameters, by solving equations 6-8 for the parameters

R1, C1 and Rs:

R1 =
2a1b2 − 2b1
a21 − 1

(17)

C1 =
Tsa

2
1 − 2Tsa1 + Ts
4b1 − 4a1b2

(18)

Rs =
b1 − b2
a1 − 1

(19)

3. Experimental setup

To verify the CPI method, experiments have been conducted on a 10 cell

SerEnergy high temperature PEM fuel cell short stack. The method can also

be used for other types of fuel cells, however this stack was available at the

start of the experiment. The stack was operated in a GreenLight Innovation

test stand, with an external cooling cart for oil circulation. The stack consisted

of 10 cells based on BASF MEAs with an active area of 165 cm2 and standard

flow plates form a S165L SerEnergy stack.

The short stack is shown in Figure 5. It is heated and cooled by an external

oil circuit at a forward temperature set point of 169 ◦C. The anode gas consists

of dry hydrogen with a stoichiometric of λH2= 2, and the cathode gas consists of

non-humidified atmospheric air from an air compressor, where the volume flow

is controlled at stoichiometric ratio of λair=4. During the current pulses, the H2

and air flows are not changed. This is done due to the fact that the bandwidth

8



Figure 5: The 10 cell HT-PEM fuel cell stack, used for the experimental work.

of the mass flow controllers are too slow compared to the frequency of the

current pulses. Furthermore, the anode and cathode stoichiometric ratios are

high enough to accommodate the extra current load. The anode and cathode

gases are not preheated or pre-humidified.

The current is drawn from an external TDi RBL-488 electronic load with

a 20 kHz bandwidth, which is controlled by a NI cRIO-9033 with a NI-9263

voltage output module. The internal data logging system in the GreenLight

Innovation test stand is too slow for the purpose of this work, and therefore,

cRIO is also utilized for data logging of the current and voltage. For volt-

age input a NI-9223 module was used for simultaneous measurements, with a

sampling frequency of VFC and IFC of Fs=100 kHz.

In order to compare the CPI method to the full impedance spectrum, EIS

measurements were conducted in a galvanostatic mode using a Gamry refer-

ence 3000 potentiostat. The EIS measurements are performed at a starting

frequency of 10 kHz and a final frequency of 0.1 Hz, with 10 points per decade.

The AC perturbation current was fixed to 7.5 % of the DC value of the load

current.

4. Results

The CPI characterization method is demonstrated below based on the ex-

perimental data, and EEC model parameters were fitted using the method

9



described in section 2.1.

4.1. Experimental data

During the test of the CPI method, the fuel cell stack was tested at the

following DC levels:

iFC = {0.2, 0.3, 0.4} Acm−2

which correspond to 32 A, 48 A and 64 A, respectively, for this size of fuel cell

stack.

For testing the CPI characterization method, different amplitudes are tested

to identify the effect of different current pulse amplitudes on the transient

behavior. The amplitudes of the injected current pulses are:

ICPI = {1, 2, 3, 4, 5} A

As an initial experiment the CPI method was tested at different pulse fre-

quencies. Figure 6 shows the data from an initial experiment, where the CPI

method was tested at the following frequencies:

fCPI = {100, 10, 1, 0.1} Hz

It can be seen that at 100 and 10 Hz, the transient over potential is not fully

developed. These frequencies are therefore not suited for this method, since

the parameter estimation method descried in section 2 of this paper yields the

best and most accurate performance if the transient voltage is fully developed.

The time series data shown in Figure 6 are conducted with current pulses of 1

A, and the transient voltage behavior at different frequencies is representative

for the remaining current pulse amplitudes.

For the frequencies 1 and 0.1 Hz, it can be seen that the transient voltage

response is fully developed, as can be illustrated from the example of two pulses

at 1 Hz with a duty cycle of 0.5 shown in Figure 7. These two frequencies

can therefore be used for the parameter estimation of the electrical equivalent

circuit. It can also be seen that in Figure 7 that the frequency could not e.g.

be 2 Hz, since the period of steady state voltage level after the transient period

would be cut off. It can also be seen in Figure 7 that the time the voltage is

steady state is as long as the transient period during the pulses.

When inspecting the 0.1 Hz data in Figure 6, it can be seen that the tran-

sient voltage is fully developed to a steady state level. At this frequency, the

voltage is at steady state for the majority of the pulse time. This data could

also be used for the parameter estimation, but the time required for one char-

acterization experiment is 10 times longer than the 1 Hz data set. This is not a

10
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Figure 6: Time series of small current steps for the 1 A amplitude experiment, at different

frequencies (fCPI = {100, 10, 1, 0.1} Hz).

problem, when temperatures and operational parameters are constant during

the characterization experiment, but by choosing the 1 Hz current pulses this

uncertainty is eliminated. The 1 Hz current pulses seems to be a good trade-off,

and are chosen for the parameter estimation.

4.2. CPI EEC model parameter estimation at different current pulse amplitudes

The CPI characterization method was tested based on the experimental

data, at the two different DC current loads and at five different current pulse

amplitudes.

In Figure 8 a typical dataset of two 1 A pulses, at a DC current density

of 0.2 Acm−2 can be seen. The red dots are measured voltage data, and the

blue line is the EEC model fit, where the EEC model parameters are estimated

using the parameter estimation method described in section 2.1. The voltage

response has been superpositioned by subtracting the DC value of the fuel cell

voltage and by projecting the voltage signal into the positive plane. This is
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Figure 7: Selected time series data of two current pulses at 1 Hz (duty cycle=0.5), with 1 A

current amplitude.

done in order to have a linear response, as described in section 2.1 and shown

in Figure 8.

The time series window, where the parameters estimation was conducted

is 2.1 s. It was kept constant for all the CPI tests to ensure comparability

between them, meaning that two pulses at 1 Hz and a duty cycle of 0.5 are

used for all CPI tests. The EEC model parameter estimation could also be done

with different number of pulses, however two pulses were chosen as a trade-off

between sufficient data and low enough time span of the experiment.

In Figure 8, it can be seen that some noise is present. However, this noise

is Gaussian, and can be considered as normal measurement noise, with a low

amplitude of approximately 2 mV. The noise could be filtered, but this would

change the amplitude of the abrupt voltage jump caused by the fuel cell stack

series resistance. Furthermore, the signal to noise ratio is sufficiently low for

the EEC model parameter estimation.

The blue model fit shown in Figure 8 is representative of the abrupt change

of 17.5 mV, in the fuel cell stack voltage caused by the fuel cell stack series
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Figure 8: Selected time series data of 1 Hz (duty cycle=0.5) pulses, including the simple

R-RC EEC model, at a 1 A current pulse amplitude.

resistance. The first half of the transient voltage period shows a good fit to the

model, but the second half of the transient period is slightly off. However, this

EEC model fit is, as stated in section 2.1, the optimal solution to the parameter

estimation problem. A more complex EEC model could yield a better model fit

for the second half of the transient period, but this would require more fitting

time and the authors found the solution to the parameter estimation problem

of more complex EEC models to be unstable in some cases. Moreover, the sum

of the resistances of the EEC model would be constant, independent of the

EEC model structure.

In Tables 1, 2 and 3 are shown the results of the EEC model parameter

estimation of the CPI characterization experiments at 0.2 Acm−2, 0.3 Acm−2

and 0.4 Acm−2, respectively.

Throughout all the three DC current loads, all the EEC model parameters

are consistent with low variance (σ2). The variance of the parameters can be

seen in the right column of the Tables 1, 2 and 3. The variance is especially

important when the measurement method is being used for fault detection,

since a low variance can withhold a more aggressive threshold between faulty

and non-faulty operation with relatively low probability of false alarm. As

expected, the R1 resistance of the RC loop decreases with increase in current

density, which is also reported in previous works [24, 25].
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Table 1: Estimated EEC parameters for using the current pulse injection method at 0.2

Acm−2 DC fuel cell output current for 5 current pulse amplitudes.

1 A 2 A 3 A 4 A 5 A σ2

Rs [mΩ] 16.5 16.6 16.6 16.0 16.3 0.06

R1 [mΩ] 22.8 22.6 22.5 22.9 22.4 0.04

C1 [F ] 1.05 1.06 1.1 1.01 1.06 0.001

Table 2: Estimated EEC parameters for using the current pulse injection method at 0.3

Acm−2 DC fuel cell output current for 5 current pulse amplitudes.

1 A 2 A 3 A 4 A 5 A σ2

Rs [mΩ] 15.4 15.2 15.7 15.4 15.8 0.06

R1 [mΩ] 17.9 17.6 17.4 17.4 17.5 0.04

C1 [F ] 1.08 1.11 1.13 1.12 1.13 0.0004

The value of the EEC model parameters are independent of the current pulse

amplitude, between 1 – 5 A, which is the range of testing in this work. This is

an advantage when the characterization method is physically implemented as

suggested in Figure 3. The amplitude of the pulse will depend on the fuel cell

voltage, which changes according to the polarization curve, which at its time

changes with degradation. The amplitude of the current pulse will therefore

be smaller at higher fuel cell stack load currents compared to the current pulse

amplitude at lower load. It is important that the size of the resistor RCPI is

chosen small enough to accommodate sufficient signal to noise ratio. However,

smaller current pulse amplitude also means a larger energy usage and the size

of the current pulse should be limited in such a way that the anode and cathode

stoichiometric ratios do not change, since these will affect the transient behavior

of the fuel cell voltage, and thereby change the EEC model parameters. A

constant flow of the anode and cathode gasses, will also ease the implementation

of the method.

Table 3: Estimated EEC parameters for using the current pulse injection method at 0.4

Acm−2 DC fuel cell output current for 5 current pulse amplitudes.

1 A 2 A 3 A 4 A 5 A σ2

Rs [mΩ] 15.2 15.0 15.1 15.1 14.9 0.01

R1 [mΩ] 15.6 16.3 15.6 15.7 15.8 0.08

C1 [F ] 1.16 1.21 1.17 1.19 1.15 0.0006
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4.3. Comparison between CPI and EIS EEC model parameters

To validate the EEC model parameters identified using the CPI fuel cell

characterization method, EIS measurements are conducted at each current load

set point.

As it is known the low frequency part of the impedance spectra is related

to the mass transport and the gas channel geometry [25]. Unlike during EIS

measurements, CPI do not cause oscillation of gas flows due to low frequency

current [26, 27, 28, 29]. The low frequency part of the measured impedance

spectrum is therefore not represented in the impedance spectrum reassembled

by the CPI EEC model parameters. When fitting EEC model parameters to the

EIS data set, only the high and intermediate frequency points were considered.

The experimental fuel cell EIS data in Figure 9 shows a clear boundary between

the intermediate and low frequency data points in the range between the 10

and 1 Hz frequency markers, at around 2 Hz. Therefore, the fitting of the EIS

EEC model parameters includes only data points above 2 Hz.

The fitting algorithm used for fitting the EIS EEC model parameters is

a home made algorithm that utilizes a least square objective function and a

Differential evolution optimization algorithm. The EIS fitted EEC model has

been plotted using the entire frequency span (from 10k – 0.1 Hz) in order to

show the low frequency intersection with the real axis on the Nyquist plot, as

can be seen in Figure 9.

In Figure 9 an example of a model fit of the EIS data set can be seen. A

more accurate model fit could have been accomplished using a constant phase

element instead of the capacitor in the RC loop. However, since the EIS fitted

EEC model parameters are to be compared to the CPI EEC model parameters,

a capacitor has been used.

The result of the EIS fitted EEC model parameters and the CPI fitted EEC

model parameters for 1 A current pulse amplitude are given in Tables 4, 5 and

6 for fuel cell current densities of 0.2, 0.3 and 0.4 Acm−2, respectively. At

0.2 and 0.3 Acm−2 the difference between the CPI and the EIS fitted EEC

model resistances are low, with 2.3 % difference for Rs at 0.2 Acm−2 compared

to the EIS fitted Rs parameter. The differences between the two are more

pronounced at 0.4 Acm−2, as can be seen in Table 6. However, they are

within the same order of magnitude, and it can be concluded that the CPI

characterization method can reproduce the EIS measurements for high and

intermediate frequencies.
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collected at 0.2 Acm−2 load current density. The black markers indicate the frequency

decades {10k, 1k, 100, 10, 1, 0.1} Hz.

5. Conclusion

In this work an EIS alternative to fuel cell characterization method has

been investigated, namely the current pulse injection (CPI) characterization

method. The proposed technique is a parameter estimation method for the

electrical equivalent circuit (EEC) model parameters, based on the transient

voltage response during current pulses, and can be said suitable for online use.

The method yields consistent EEC model parameter sets at different current

pulse amplitudes, with low variance. The low variance makes the method

attractive in fault detection systems, as it can minimize the probability of false

alarm.

It can be concluded that the CPI fitted EEC model parameters can predict

the impedance measurements similarly to the EIS fitted EEC model param-

eters, for the high and intermediate frequencies impedance loops. The EEC

model estimated using CPI is generally simpler than what can be observed by

EIS measurements, but could be sufficient for many diagnostics systems, such

as the detection of drying or flooding of a low temperature PEM fuel cell stack,

or it could be used for poisoning detection of CO contamination in the anode
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Table 4: Comparing the estimated EEC parameters using the CPI method and the EIS

method at 0.2 Acm−2 DC fuel cell output current.

1 A CPI EIS
Rs 16.5 mΩ 16.9 mΩ 2.3 %

R1 22.8 mΩ 23.6 mΩ 3.4 %

C1 1.05 F 0.99 F 6 %

Table 5: Comparing the estimated EEC parameters using the CPI method and the EIS

method at 0.3 Acm−2 DC fuel cell output current.

1 A CPI EIS
Rs 15.4 mΩ 16.5 mΩ 6.6 %

R1 17.9 mΩ 18.2 mΩ 1.6 %

C1 1.08 F 0.89 F 19 %

Table 6: Comparing the estimated EEC parameters using the CPI method and the EIS

method at 0.4 Acm−2 DC fuel cell output current.

1 A CPI EIS
Rs 15.2 mΩ 16.7 mΩ 9 %

R1 15.6 mΩ 16.9 mΩ 7.7 %

C1 1.16 F 1.03 F 12.6 %

gas of a high temperature PEM fuel cell stack.

The characterization method can be implemented physically using a single

resistor and transistor. This makes the solution attractive for mass deployment

in fuel cell system diagnosis.
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Abstract

The fuel cell technologies are advancing and maturing for commercial markets.

However proper diagnostic tools needs to be developed in order to insure relia-

bility and durability of fuel cell systems. This paper presents a design of a data

driven method to detect CO content in the anode gas of a high temperature

fuel cell. In this work the fuel cell characterization is based on an experimental

equivalent electrical circuit, where model parameters are mapped as a function

of the load current. The designed general likelihood ratio test detection scheme

detects whether a equivalent electrical circuit parameter differ from the non-

faulty operation. It is proven that the general likelihood ratio test detection

scheme, with a very low probability of false alarm, can detect CO content in

the anode gas of the fuel cell.

Keywords: Change detection, GLRT, Fault Diagnosis, PEM Fuel Cell,

HTPEM, EIS

1. Introduction

Proton exchange membrane (PEM) fuel cells have been predicted to have

a promising future in applications such as auxiliary power, backup power, etc.

where gasoline or diesel generators used to be the preferred electricity gener-

ator. Fuel cells are appealing in areas with high air pollution, since fuel cells

can be operated without particle emissions in the exhaust gas. This is an im-

portant property since in many major cities around the world, are introducing

regulations on particle emissions, such as NOx and SO2 etc. Fuel cells could

be a solution to designing an energy system without particle emissions. [1]

Preprint submitted to International Journal of Hydrogen Energy March 9, 2017



The majority of commercial fuel cell applications use low temperature PEM

fuel cells, which is one of the most advanced fuel cell technologies, however it

often requires an advanced humidity control system for the membrane. If the

membrane is too humidified the membrane will flood, and thereby reduce the

gas flow. If the humidity gets too low, the membrane will dry out, and this

will also reduce the performance of the fuel cell. [2]

To overcome this problem, the temperature of the fuel cell can be raised

to above 100 ◦C. Thereby the water evaporate, and the water management is

not an issue any more. To achieve this, the membrane material is changed to

for example a polybenzimidazole (PBI) based polymer doped with phosphoric

acid. The increase in temperature also yields a raise in electrochemical kinetic

rates. This has the benefit that the fuel cell becomes more tolerant to impuri-

ties in the gas composition.

High temperature PEM (HTPEM) fuel cells are therefore often used in combi-

nation with a natural gas or methanol reformer. Reformed gas often contains

CO, [3] which at too high concentrations damage the fuel cell, but can maintain

normal operation at low concentrations of CO in the anode gas. It is therefore

desirable to detect small concentration variations in the CO anode gas concen-

tration.

Very little in the literature have done in the area of detecting CO in the

anode gas of HTPEM fuel cells. In [4] and others the effect on the fuel cell

impedance when introducing CO an CO2 in the anode gas was investigated.

In [5] the author investigates the effect of CO in the anode gas on an extended

equivalent electrical circuit, where an dedicated fault element is introduced. In

[6] the amount of CO was estimated by examining the fuel cell impedance at

100 Hz.

The purpose of this paper is to develop a methodology for indirect detection

of CO in the anode gas, of a high temperature fuel cell. The paper first charac-

terize normal fuel cell behavior, mainly seen through the electrical impedance

of the fuel cell under non-faulty conditions and under variations in load current,

and based on this, developing a equivalent electrical circuit parameter estima-

tion as a function of the load current. Statistical properties are investigated

for the non-faulty state, and based on that a generalized likelihood ratio test

(GLRT) is implemented, and proven suitable for this diagnostic problem. A

change detection scheme that can detect when a CO concentration in anode gas

begins to reach a level, where the cell could develop non-reversible degradation
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which will lead to a lifetime reduction which will require timely demanding

maintenance of the fuel cell system. A detection scheme that detects a high

level of CO in the anode gas could therefore shutdown the fuel cell system be-

fore it gets damaged, or change operating conditions in the hydrogen supplying

reformer in order to reduce the CO contamination.

2. Fuel cell characterization and Equivalent model

For characterization of fuel cells the most popular method by far, based on

the number of publications, is electrochemical impedance spectroscopy (EIS).

In galvanostatic EIS a small AC current signal, of known frequency and am-

plitude, is applied to the fuel cell. The resulting amplitude and phase of the

voltage is measured, and the experiment is repeated for a wide sweep of fre-

quencies. From the frequency data, the impedance can be calculated, and

plotted in a Bode plot or Nyquist plot. In Fig. 1 is an example of a Nyquist

plot shown, where the impedance spectra for a typical PEM fuel cell with one

arc, where the frequencies decrease from left to right.

Based on the impedance data, the parameters of an equivalent electric circuit

(EEC) network can be fitted, and thereby the impedance data can be quantified

into electric component parameters. Many different EEC have been proposed,

for PEM fuel cells, and some of the have been adopted for HTPEM fuel cells as

in [7]. In this paper, a simplified Randle’s EEC is utilized, where only one arc

is included. This is done since the impedance response of the fuel cell used in

this work is rather simple. A simpler EEC also reduces the fitting time, which

is convenient for online diagnostic purpose.

The EEC used in this work is shown in Fig. 1, where the impedance response

for a small L1 is shown in same figure. In order to incorporate mass transport

phenomenons and the adsorption of CO in the electrochemical reaction, the

capacitor in the Randle’s EEC is modeled as a constant phase element (CPE).

Furthermore it has been found necessary to get a suitable fit. The impedance

response for a CPE, is represented as follows:

zCPE(ω,C1, α) =
1

C1(jω)α
(1)

It was proven in [8] that EEC parameter estimation can be done effectively

by evolutionary optimization algorithms such as Differential evolution [9]. The

Differential evolution optimization algorithm is adapted, to fit the acquired

impedance data to the EEC shown in Fig 1.
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Figure 1: Nyquist plot for a HTPEM fuel cell, with corresponding equivalent model.

3. Experimental setup

The tests were conducted using a single BASF prototype Celtec P2100 HT-

PEM fuel cell, designed for reformate gas. The active fuel cell area is 45 cm2,

and was operated at 160 ◦C by electric heaters and waste heat from the fuel

cell. The fuel cell was installed in a G60 800 W Greenlight fuel cell test sta-

tion, where the concentration of CO in the anode gas can be controlled. The

experiment set-up is shown in Fig. 2.

Before the experiment, the fuel cell was operated in a break-in procedure for

100 hr at 0.2 A/cm2, as an activation procedure in order to achieve a state of

equilibrium between the phosphorus acid and the platinum in the membrane.

The break-in and the experiment was conducted by an air stoichiometry of

λair = 4 and a hydrogen stoichiometry of λH2 = 2.5. The experiment was

preformed at a load current of 10A.

The EIS measurements are preformed using a Gamry Reference 3000 instru-

ment running in galvanostatic mode, in a frequency range from 10 kHz to 0.1

Hz, with 20 data points per decade. During the entire CO experiment an EIS

measurement is conducted every 20 min. This is also shown in Fig. 5, where

it is clearly seen that a change in voltage amplitude occurs every 20 min. This

change in voltage amplitude occurs due to the overlaid small amplitude AC

current. The duration of one EIS measurement is approximately 4,5 min.
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Fuel Cell Gamry system

Figure 2: Test setup used for the experiment. In the left and right circle, the fuel cell assembly

and the Gamry system are shown, respectively.

4. System analysis

Since the impedance is used as a model for the fuel cell, it is necessary to

know how the EEC parameters vary, at different operating conditions. Their

value depends on different parameters such as the current, temperature, con-

tamination of the anode and cathode gas, etc. as shown in [7]. This is also

why the EEC parameters can be used for change detection.

4.1. Experiment to characterize H0 conditions

This therefore requires some pre knowledge on how the EEC parameters

vary, as a function on the current and temperature. However, the temperature

is kept constant at all time during operation, and therefore the change in EEC

parameters as a function of the temperature is neglected.

In order to map the EEC parameters as a function of the current, an experi-

ment is conducted in order to identify this mapping. The fuel cell impedance

is measured from 1 A to 4 A for 6 hours, and from 5 A to 25 A for 12 hours,

with an impedance measurement every 10 minutes. This results in an 11.5 days

experiment. The experiment is conducted without any CO contamination in

the anode gas. The current and voltage profile is shown in Fig. 3. For every

individual impedance measurement, the EEC parameters are estimated using

a Differential evolution optimization algorithm. For every current set point,

all the EEC parameters are averaged, giving values for each current set point.
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Figure 3: The voltage polarization profile from the EEC parameters mapping experiment.

The average EEC parameters is shown in Fig. 4.

The EEC parameters have a uniform variance at all set points. The mean the

variance at each setpoint for R1 is σ2
R1

= 1.6 · 10−8, for R2 is σ2
R2

= 3.5 · 10−6,

for C1 is σ2
C1

= 2.4 ·10−2, for α1 is σ2
α1

= 1.8 ·10−8. It is therefore seen that the

dispersion of R1, R2 and α1 is very low, which is convenient for the application

of fault detection.

The average EEC parameters in normal operation (no CO contamination

in anode gas) is shown in Fig. 4, are fitted using a power function, as shown

in eq. 2.

{R1, R2, C1, α} = a · Ī b + c (2)

The power function parameters giving the mapping between the steady

state current and the EEC parameters, are listed in Table 1. For this mapping

to be accurate, it is important that the current used in Eq. 2 is the steady

state current. It is therefore suggested that Ī the average current during the
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Figure 4: The EEC parameters as function of the current. The experiment is conducted at

160 ◦C with pure hydrogen as anode gas. λH2 = 2.5 and λair = 4.
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Table 1: Parameters for the EEC model mapping as a function of the current.

a b c

R1 0.006204 -0.09585 -0.001004

R2 0.03421 -0.9097 0.004472

C1 5.583 0.1774 -3.215

α -1.631 0.04947 2.485

time span of an impedance measurement, or a longer period.

4.2. Experiment to characterize H1 conditions

In order to obtain the statistical basis for the change detection scheme of the

CO content in the anode gas, an experiment has been conducted. The fuel cell

is operated 24 hours in normal operation with no CO present in the anode gas

with a load of 10 A. This base test will form the basis of a statistical analysis

of the non-faulty operation. In the first 24 hours, an EIS measurement will be

conducted every 20 minutes, giving a total of 72 unique model parameter sets.

Based on this data an estimation of a probability density function (PDF) for

the non-faulty operation will be estimated.

After the first period at normal operation, a concentration of 0.5% CO will be

mixed into the anode gas, and the system will operate at 10 hours, with an EIS

measurement every 20 minutes. After the first period with CO mixed into the

anode gas, a small period of 2 hours without CO mixed into the gas followed

by a 10 hours period with 1% of CO mixed into the anode gas. In Fig. 5 the

actual volume flow of CO is illustrated by the green line.

As shown in Fig. 5 the CO flow for 0.5% contamination corresponds to less

that 1 mL
min at 10 A and λH2

= 2.5, which is the lower limit of the CO mass

flow controller. The fuel cell can therefore not be tested at lower contamination

rates.

In Fig. 5 it can clearly be seen that when CO is introduced, the fuel cell is

rapidly losing performance, by means of a reduction in the cell voltage.

The change in performance can also clearly be seen in Fig. 6. The red data

shows the fuel cell impedance without CO mixed into the anode gas, and the

blue data shows the impedance with 0.5% CO mixed into the anode gas. It is

clearly seen that by introducing CO in the anode gas, the impedance is spread.

This corresponds with previously published work. [10]

The changes in EEC parameters over time are given in given in Fig. 7. The

first step in CO concentration is introduced at sample nr. 74. As seen in Fig.
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Figure 5: Fuel cell voltage during the experiment. After 24 hours 0.5% of CO in introduced

in the gas, and after 36 hours 1% of CO is introduced in the gas.

7 the parameters R2 and α indicates evident detectability, when the fault is

introduced. The parameter R1 remains constant when CO is introduced and

the C1 parameter changes when CO is introduced but with slower dynamics.

In Fig. 7 it is seen that the amplitude change for R2 and α not is the same, for

the two different CO concentrations. It can therefore be concluded, that when

designing a detection scheme, for an arbitrary change in CO concentration, it

have to detect a change with unknown amplitude.

Examining Fig. 7 it is seen that a detection scheme designed to detect on

parameter R2 or α will yield strong detectability of a steady injection of CO

in the anode gas. The parameter R2 is chosen to be the driving parameter in

the design of the detection scheme.

The best distribution that fits the data of the parameter R2, before the

CO is introduced, is a Gaussian distribution which is shown in Fig. 8 with

a red color. The Gaussian distribution is fitted to the data with a mean of

µ0 = 7.459 · 10−3 and a variance of σ2 = 2.179 · 10−9.

The best distribution that fits the data of the parameter R2, after there is

mixed 0.5 % CO into the anode gas, is a Gaussian distribution which is shown

in Fig. 8 with blue color. The Gaussian distribution is fitted to the data with

a mean of µ0 = 9.45 · 10−3 and a variance of σ2 = 0.188 · 10−3. On the basis of

this prior knowledge, the change detection scheme can aim to detect a change
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CO in the anode gas (blue). The markers indicate the frequency decades.

in mean with unknown amplitude.

5. Detection scheme

The statistical change detector will be designed to detect a deviation in the

R2 parameter amplitude, indicating a rise in CO concentration in the anode gas.

The detector will be designed based on the experimental data. The problem

can therefore be formulated as a one-sided hypothesis test, to detect a change of

R2 with an unknown amplitude, with the null hypothesis (H0) as the no-faulty

state and the alternative hypothesis (H1) as the faulty state.

H0 : R2 = µ0(Ī)

H1 : R2 > µ0(Ī)

Since the test aims to detect a change in mean value of R2, but with an

unknown amplitude, for an unknown CO concentration, the detector will be

a Composite hypothesis testing. Composite hypothesis testing without prior

knowledge of the likelihood of whether or not CO pollution is present, is based

on the Neumann-Pearson approach and the Generalized Likelihood Ratio Test

(GLRT)is employed. [11]. When the change has unknown magnitude, the
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faulty operation R2 data follows a normal distribution with mean of µ0 = 7.459 · 10−3 and

a variance of σ2 = 2.179 · 10−9. The faulty operation R2 data follows a normal distribution

with mean of µ0 = 9.45 · 10−3 and a variance of σ2 = 0.188 · 10−3.

change is estimated by the GLRT using a maximum likelihood estimation

(MLE) approach. Based on previous experience, it appears to preform ex-

tremely well in technical applications, even though optimality is not guaranteed

for the GLRT.

The first step in the GLRT is to determine the unknown parameter, in this

case the amplitude of change of resistance from H0 to H1 conditions. MLE of

the amplitude in a Gaussian signal, is in [12] determined to be the mean of the

signal.

The GLRT decision algorithm g(k) detects a rise in the CO concentration,

through monitoring of the resistance changes in the fuel cell and decides H1

when the g(k) function becomes larger than a threshold γ. Two versions of the

GLRT algorithm are tested, one is implemented as shown in Eq. 4 [13] where

both change magnitude and instant of change are estimated, the other is Eq.

3, which does not estimate the most likely instant of change. In Eqs. 3 and 4

σ2 is the variance of R2 in the non-faulty operation, µ0(Ī) is the mean value

of R2 in non-faulty operation and obtained as given in Eq. 2, where Ī denotes

the steady state current.

The GLR test statistic for detection of a change in mean with unchanged
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variance before and after the change, and a window size M , reads

g(k) =
1

2σ2M

[
k∑

i=k−M+1

(
R2(i)− µ0(Ī)

)
]2

(3)

A slight variation, which estimates the instant of change, and is more com-

putation heavy, is also tested. The gm(k) GLRT from [13] is shown in Eq.

4.

gm(k) =
1

2σ2
max

k−M+1≤j≤k
1

k − j + 1




k∑

i=j

(
R2(i)− µ0(Ī)

)


2

(4)

The maximization of g(k) is implemented with a window of size M, as shown

in Eq. 3. The window size is chosen as a balance between probability PD to

detect a change of a desired magnitude, and the delay of detection. As seen

in Fig. 5, the voltage changes during 2 hours, when a CO contamination is

introduced. The window size is therefore chosen to M = 6 corresponding to 2

hours.

The test statistic g(k) is shown for the time series of the EEC parameter R2(k),

in Fig. 9. The red line shows the threshold (γ).

It is seen in Fig. 9 that gm(k) given in Eq. 4 has a slightly faster detection

compared with g(k), the two tests are alike outside this transient region. In

praxis, therefore, since CO contamination could be imagined to be incipient,

the computationally cheaper g(k) could be used.

A probability plot of g(k) is shown in Fig. 11 for the non-faulty H0 case.

According to [11], the test statistics the square sum of normal distributed ran-

dom variables that are independent and identically distributed (IID), should

follow a χ2
ν distribution where ν is the number of parameters being estimated.

In our case, ν = 1

The autocorrelation of R2 is plotted in Fig. 10, which shows samples to be

reasonably uncorrelated. However, as seen in Fig. 11 the g(k) data do not

follow the theoretical χ2
1 distribution. The low number of samples in R2 under

H0 conditions results in a relatively high whiteness level, and the identical dis-

tribution of samples has not been experimentally verified. If more samples were

available, the whiteness level would be lower, and the indication of indepen-

dence would change. The test statistics g(k) is therefore fitted to a exponential

distribution which provides the best fit of the data, as shown in Fig. 11. The

estimated parameters are shown in Table 2.
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Table 2: Parameters for the probability distributions fitted to the H0 data in Fig. 11.

µg0 a b

Exponential 2.7820

Gamma 0.7022 3.962

Table 3: Parameters for the probability distributions fitted to the H1 data in Fig. 12.

a b

Gamma 108.169 42.4392

The threshold (γ) needs to be determined to give an good balance between

PFA and PD. The PFA can be determined from the test statistics for g(k) given

in Fig. 11, as P{g > γ|H0}. The threshold (γ) is determined by the right tail

area of the exponential density function, see [11] for theoretical results and [14]

for discussion of various real-life issues.
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Figure 10: Autocorrelation for the EEC parameter R2 under H0 conditions.

PFA = P{g > γ|H0} (5)

=

∫ ∞

γ

P{g > γ|H0}dg (6)

=

∫ ∞

γ

1

µg0
exp

(
− 1

µg0
· g
)

dg (7)

= exp

(
− γ

µg0

)
⇔ (8)

ln (PFA) =
−γ
µg0
⇔ (9)

γ = −µg0 ln (PFA) (10)

Designing for an extremely low PFA = 10−39, gives γ = 250. This results

in a good detection probability but at the same time a negligible probability

of false detection. This is due to a very strong sensitivity of the R2 parameter

to CO contamination and due to low variance on .

A probability plot of g(k) for the faulty H1 conditions is shown in Fig.

12 with a Gamma distribution fittet to the data. Furthermore the threshold

(γ) is shown in Fig. 12 by a red line. It is clearly seen that the probability

of detection is very high, and in practice the probability of detection will be
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PD ≈ 1. A probability of detection of PD ≈ 1 indicates that lower rates of CO

contamination can be detected.

6. Discussion

This method indicates a strong detectability for CO contamination in the

anode gas of a HTPEM fuel cell. The method does not take into account

that the fuel cell impedance is changing with catalyst degradation and other

degradation mechanisms. Furthermore the fuel cell impedance is dependent on

different operating conditions such as the current, temperature, contamination

of the anode and cathode gas, etc. as shown in [4]. This method takes the

change in current into account and is neglecting other operating conditions.

As stated in this paper the temperature is kept constant during all operation,

however in practice this is hard to accomplish. Small temperature variations

of the fuel cell will the detection scheme be robust toward, since around the

temperature set point is the cell impedance only varying within small limits.

[7] It is suggested to be investigated further what effect the degradation and

change in other operating conditions will have on the EEC parameters, so the

mapping of the EEC parameters done in Fig. 4, can be expanded if necessary

to take these phenomena into account.

The fault is introduced as step in the CO gas flow. In real life the introduction
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Figure 12: Probability plot of the g(k) data for H1 conditions of 1% CO contamination fitted

to a Gamma distribution. The red line shows the threshold (γ = 250).

of CO will happen with some dynamic and therefore not as a step. However the

GLRT detection scheme detects a change in the amplitude of the R2 parameter

and can therefore also detect incipient faults.

7. Conclusion

This paper has shown design and empirical verification of a detection scheme

to diagnose CO contamination in the anode gas of a high temperature PEM

fuel cell. The data was experimentally determined impedance that was used to

estimate parameters in an electrical equivalence model. The equivalence circuit

was a simplified Randle’s circuit, which was found sufficient for the purpose.

A differential evolution optimization method was used to fit impedance data

to the electrical equivalent circuit model. The method that uses the change

in impedance as a function of varying load current was found effective for the

purpose. A generalized likelihood ratio change detection test was designed to

detect possible CO contamination. The method showed very high detectability

for the 0.5% CO concentration used in experiments, with a negligible proba-

bility of false alarms. The detection method promise very high sensitivity of

contamination. Further investigation of the change in impedance as function

of fuel cell degradation and other impedance dependencies, and also effects of
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contamination with other than CO need be investigated before the method

could be implemented in full scale applications.
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Abstract

This study proposes a data-drive impedance-based methodology for fault detec-

tion and isolation of low and high cathode stoichiometry, high CO concentration

in the anode gas, high methanol vapour concentrations in the anode gas and low

anode stoichiometry. The fault detection and isolation algorithm is based on an

artificial neural network classifier, which uses three extracted features as input.

Two of the proposed features are based on angles in the impedance spectrum,

and are therefore relative to specific points, and independent of degradation.

The experimental data is based on a 35 day experiment, where 2010 unique

electrochemical impedance spectroscopy measurements were recorded. The test

of the algorithm resulted in a good detectability of the faults, except for high

methanol vapour concentration in the anode gas fault, which was found to be

difficult to distinguish from a normal operational data. The achieved accuracy

for faults related to CO pollution, anode- and cathode stoichiometry is 100 %

success rate. Overall global accuracy on the test data is 94.6 %.

Keywords: Fault diagnosis, Classification, Pattern recognition, Fuel Cell,

PEM, Electrochemical impedance spectroscopy (EIS)

1. Introduction

In the transition from fossil fuel powered electrical grid to a renewable

energy supplied electrical grid, many fluctuating energy sources such as solar
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and wind has been adapted. Since the renewable energy sources are fluctuating,

energy storage technologies are needed, and here hydrogen could play a role,

both for transport and stationary applications [1, 2, 3, 4, 5].

Hydrogen storage uses electrolyzers to produces hydrogen from the excess

energy in the electrical grid, and when electrical production from renewable en-

ergy sources are low the hydrogen is feed into fuel cells, which produce electrical

energy. The most common type of fuel cells are proton exchange membrane

(PEM) fuel cells, which operate between 60-100 ◦C with Nafion® as mem-

brane conductor. These fuel cells require high purity of the hydrogen supplied

to the fuel cell. An alternative to PEM fuel cells are high temperature proton

exchange membrane (HTPEM) fuel cells, which operate between 150-200 ◦C

with phosphoric acid-doped polybenzimidazole (PBI) as membrane conduc-

tor [6]. The advantage of HTPEM fuel cells is that they are more tolerant

towards impurities in the anode gas, without a gas purification system [7]. The

HTPEM fuel cells can thereby be deployed with a methanol reformer system,

which is an environmental friendly technology, given the methanol is produced

based on renewable hydrogen [8].

Hydrogen storage technologies are expensive and some of the most impor-

tant factors for commercial success are reliability, cost and durability. The

American Department of Energy (DoE) has set ambitious minimum targets

for the lifetime of fuel cell applications, meaning 40,000 h for stationary and

5,000 h for automotive, before degrading to 80 % of rated power [9].

One of the ways to improve fuel cell reliability and durability is a well-

designed on-line diagnostics scheme, which can detect faults on the fuel cell and

with a mitigation strategy impede fault factors before the fuel cell degradation

is accelerated [10, 11].

On-line diagnostic algorithms are usually divided into model based [12] and

non-model based [13] methods. Common for these are that they are divided

into fuel cell characterization, feature extraction and change detection. For the

non-model based methods, the change detection part is often conducted by a

machine learning method. Common for many of these diagnostics methods are

that the fuel cell characterization often is done by electrochemical impedance

spectroscopy (EIS) [12, 13], which has the main advantage that it can be done

in-situ at low energy cost [10]. When using EIS as fuel cell characterization

technique, the model based methods utilize the parameters of an electrical

equivalent circuit (EEC) as features [14, 15, 16]. For the non-model based

methods, using EIS as fuel cell characterization method, often uses parts of the

impedance spectrum as features for fault detection [17, 18, 19].
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The above methods are manly applied on PEM fuel cells and most of them

focus on detecting flooding and drying. When moving to HTPEM fuel cells

the water management issue are no longer present since they are operated

above 100 ◦C, but alternative faults arises when deployed with a hydrocarbon

or alcohol-based fuel reformer, such as detecting impurities in the anode gas.

Such faults have been addressed in the literature by model based methods us-

ing EIS as fuel cell characterization method, and EEC model parameters as

features [20, 21]. However, non-model based fault diagnostics method for HT-

PEM fuel cells have not been investigated yet.

It is a well-established fact in the literature, that the impedance spectrum

spread during normal degradation which applies to both the high- and the

low-frequency intersect with the real axis. This complies for both PEM fuel

cells [22, 23] and HTPEM fuel cells [24]. In the work by Hissel et al. [25]

life time EIS data from two different fuel cell stacks, were used to design a

fuzzy-clustering algorithm to determine the type of ageing. However, to date

there are no fault detecting algorithms for fuel cells, which is robust towards

the change in the impedance spectrum due to degradation.

In this work, an impedance data driven non-model based fault detection

and isolation (FDI) method has been described. The method is used for the

detection of five different faults, which commonly occur on a HTPEM fuel cell

methanol reformer system. Furthermore, the described method is independent

of the fuel cell degradation.

The paper is structured as follows:

In section 2 the experimental setup and the experimental procedure will be

presented. In section 3, the feature extraction and the diagnostic algorithm

will be explained. The results will be presented and discussed in section 4.

Finally the concluding remarks will be made in section 5.

2. Experimental data foundation

Since the FDI method presented in this work is data-driven, a fuel cell

database both in healthy and faulty conditions is necessary. Therefore, tests

have been conducted on a short HTPEM fuel cell stack, where real life situations

were emulated using a GreenLight Innovation fuel cell test station. The test

matrix was based on the operating parameters and conditions of a methanol

reformer-HTPEM fuel cell systems, such as the SerEnergy H3-5000 fuel cell
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Figure 1: On the right the Gamry Reference 3000 instrument used for impedance measure-

ments is shown. On the left the 10 cell short-stack used for the experimental work is shown.

The stack is installed in a GreenLight G200 fuel cell test station, fuel cell faults can be

emulated.

system, for healthy and non-healthy operations. The fuel cell stack used for

this work is a 10 cell SerEnergy short stack, shown in Figure 1.

As stated in the introduction, EIS will be utilized as fuel cell characteri-

zation technique, which is well described in the literature, and is a powerfull

characterization technique for fault detection of fuel cells [10, 26]. An elec-

trochemical device such as a fuel cell is a highly non-linear system, and a full

mechanistic impedance model based on first principles are very complex. EIS is

therefore often used as an empirical linearization of the fuel cell, where a sinu-

soidal signal is superimposed to the DC value, and by measuring the responding

signal, the amplitude ratio and the phase shift can be determined and on that

basis the impedance can be calculated. This is typically done in galvanostatic

mode in fuel cells, where a small AC current perturbation is induced on the

DC current load and the voltage response is measured. By sweeping over the

desired frequency range, the full impedance spectrum can be determined. The

drawback of this method is that the impedance is only valid at one operating

point, and therefore, EIS measurements at all the operational points of interest

are needed.

Since one of the scopes of this work is designing a FDI algorithm, which

is robust toward degradation, the experimental work needs to ensure a large
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Figure 2: (a) Impedance spectra for the 5 different faults considered in this work and normal

operation impedance spectra for reference. Impedance spectra measured at 16.5 A. (b)

Impedance spectra at normal operation conditions, from beginning of experiment and end of

experiment. Impedance spectra measured at 16.5 A.

amount of healthy data for determining how the impedance changes during

degradation.

2.1. Considered faults

In this work five different conditions identified as abnormal fuel cell opera-

tion, are considered as faults (φ1-φ5) and listed in Table 1.

When fuel cell systems are deployed in the field, the cathode oxygen is

normally supplied by a fan or a compressor, from the surrounding air. It is

desired to be able to detect and isolate faults related to the air delivery system,

which can be divided into two different cases:

φ1 A decrease in cathode stoichiometry (λAir). This could be due to a faulty

fan/compressor or that the deployed systems is at high altitude.

φ2 An increase in cathode stoichiometry (λAir). This could be due to a

change in fan/compressor characteristics or a software error.

The advantage of HTPEM fuel cells is that they are more tolerant toward

impurities in the anode gas, due to the faster kinetics at higher temperatures.

HTPEM fuel cells can therefore be deployed in combination with a reformer,

such as a methanol reformer, without a gas purification system. However, this

requires that the reformer is in nominal operation. If the reformer differs from

normal operation or the reformer goes into faulty operation, three different

effects can occur:
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Table 1: Overview of the faults considered. The faults are investigated for the fuel cell

current set points 16.5, 24.75, 33, 41.25, 49.5 A with 6 EIS measurements for each fault at

each current set point.

Nr. Fault Normal Abnormal

φ1 Low λAir 2.5 [-] 1.5 [-]

φ2 High λAir 2.5 [-] 4 [-]

φ3 High CO 0.5 % Vol. 2.5 % Vol.

φ4 High MeOH vapor 0 % Vol. 5 % Vol.

φ5 Low λH2
1.4 [-] 1.15 [-]

φ3 The anode gas content of carbon monoxide increases from the normal

level. This could be due to a change in the temperature profile of the

reformer, or a fault on the reformer catalyst.

φ4 Methanol vapour content in the anode gas appears, which could be due

to a change in the temperature profile of the reformer, or a fault on

the reformer catalyst. Alternatively, it could be due to more methanol

delivered by the methanol pump than expected or a fault on the methanol

evaporation system.

φ5 A decrease in the anode stoichiometry (λH2). This could be due to a

decrease in methanol delivered by the methanol pump or due to a fault

on the reformer catalyst.

The impedance spectrum for each of the five faults and the normal opera-

tion impedance (black), is shown on Figure 2.a. The data shown is from the

experiment described in the next section. It can be seen, that the low air fault

(φ1), yields the most significant change in the impedance spectrum, and that

during the high air fault (φ2), the low frequency arch disappears. Addition-

ally, it can be seen that the high CO content fault (φ3) and the low hydrogen

stoichiometry fault (φ5) increases the low frequency arch. Further, it can be

observed that the high content of methanol fault (φ4) is quite close to the

normal operational data (φ0).

2.2. Experimental procedure

The experiments for this work is conducted on a 10-cell short stack, based

on standard flow plates and MEA’s from a SerEnergy S165L stack, with a cell

active area of 165 cm2. The stack is installed in a GreenLight fuel cell test

station, and shown on Figure 1, where the Air, H2, CO and CO2 gas flows can
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be controlled by mass flow controllers. The methanol vapour delivery systems

is based on a liquid HPLC pump and a heat exchanger.

Before the experiment, the fuel cell short stack was operated in a break-in

procedure as suggested by Vang et al. [27]. The short stack break-in duration

was 100 h at 33 A (0.2 A cm−2), with λAir=4 and λH2
=2.

The experiment duration is 35 days, where each day is structured as shown

on Figure 3.a. During the first 6 h and aprox. the last 8 h of each day, the

stack is operated at 82.5 A, which corresponds to 0.5 Acm−2. After the first 6

h of operation the fuel cell characterization is scheduled at 16.5 A (0.1 Acm−2),

24.75 A (0.15 Acm−2), 33 A (0.2 Acm−2), 41.25 A (0.25 Acm−2) and 49.5 A

(0.3 Acm−2). 12 EIS measurements were conducted at each current set point.

This procedure is repeated every day, except for day 14, 21, 28 and 35, where

a faulty condition is introduced. The same current set points are repeated for

each faulty operation, with 6 EIS measurements at each current set point. An

overview of the number of EIS measurements is given in Table 2.

On day 14 the low air stoichiometry, fault (φ1) and high air stoichiometry,

fault (φ2) were induced; on day 21 high content of CO was introduced in the

anode gas, fault (φ3); on day 28 high content of MeOH vapour was introduced

in the anode gas, fault (φ4) and on day 35 the low anode stoichiometry, fault

(φ5) is induced.

The overview of the fuel cell stack voltage and current for the entire expe-

riment is given in Figure 3.b.

2.2.1. Gas composition

The anode gas composition is based on experience with a H3-5000 SerEn-

ergy methanol reformer. Hydrogen fraction is kept constant at 75 % by volume,

and for normal days the CO content is kept at 0.5 % by volume. CO2 is used

as a fill gas, meaning that at normal days the CO2 fraction is kept at 24.5 %

by volume of the total anode gas flow, and at abnormal days the CO2 frac-

tion is kept lower. The stoichiometric ratios are kept at λAir=2.5 and λH2=1.4

during the experiment, except for day 14 and day 35, where they are changed

accordingly to Table 1.

2.2.2. Gas humidification

The anode gas is humidified by mean of a bubbler, with a dew point temper-

ature of 49 ◦C. This corresponds the anode gas water content, for the output

gas of a methanol steam reformer operating with a fuel steam to carbon ra-

tion of 1.5. A mass flow controller supplies the cathode gas, from oil free air

compressor.
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Figure 3: (a) Stack voltage and current during a day with normal operating conditions.

During the characterization 12 EIS measurements is acquired at each current set point. (b)

Fuel cell stack voltage and current during the entire 810 h experiment, corresponding to 35

days of operation.
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Table 2: Overview of the set points during the fuel cell characterization experiment.

No. of EIS

Nr. at each normal current set point 12

Nr. at each abnormal current set point 6

Total at Normal day 60

Total at Abnormal day 30

Total experiment 2010

2.2.3. Temperature

The short stack of subject in this work is oil heated and cooled by an

external cooling cart using Paratherm oil, in a closed circuit. The temperature

controller is set to keep a fuel cell output temperature of 167 ◦C throughout

the entire experiment. When changing current set point, a current ramp of

0.05 As−1 is applied to ensure minimum temperature variation. Furthermore,

a 20 min delay without any temperature deviations of more than 0.5 ◦C is

performed, before any EIS measurement is conducted.

2.2.4. EIS measurements

For EIS measurements a Gamry Reference 3000, running in galvanostatic

mode is utilized. The AC current amplitude is set to 7.5 % of current DC

value, as recommended by Dale et al. [28], however, with a maximum of ±3

A due to instrumental limitation. The starting frequency is 10 kHz and the

end frequency is 0.1 Hz with 10 points pr. decade, divided into logarithmic

intervals. In Table 2 the number of EIS measurements at each current set

point and at each day are listed.

EIS
measurement

Preprocess
data

Feature
extraction

ANN
classifier

f3f3

f2

Re(z)

Im
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)

Re(z)Re(z)

Im
(z
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z(ω) f ,f ,f 1    2    3z (ω)f

Figure 4: Flow chart of the proposed artificial neural network fault detection and isolation

methodology.
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3. FDI Algorithm

As seen in Figure 2.b, the impedance spectrum changes due to degradation.

The impedance spectrum spreads and moves to the right during degradation,

which manifest itself by an increase in the series resistance (the first inter-

sect with the real axis), and more significantly expressed by an increasing real

part of the low frequency part of the spectrum. Thus, it is evident that an

impedance based FDI algorithm for fuel cell applications needs to be robust

towards degradation.

In this work, a feedforward artificial neural network (ANN) classifier fault

detection and isolation (FDI) methodology is proposed, for detecting the faults

listed in Table 1. The principle of the methodology is illustrated in Figure 4,

where the four different steps are listed. This is a supervised machine learn-

ing approach, and therefore the 2010 EIS measurements, from the experiment

described in section 2.2, needs to be labeled with the 6 different cases (φ0-φ5),

prior to the training, validation and testing of the ANN classifier.

The proposed FDI methodology initially takes a real time EIS measure-

ment from a deployed fuel cell system, runs the acquired impedance spectrum

through a pre-processing layer, which will be described in section 3.1. Hereafter

three selected features will be calculated based on section 3.2, which are used

as input to the ANN classifier algorithm. The ANN classifier algorithm which

is trained is explained in section 3.3.

3.1. Data pre-processing

After the EIS measurement is acquired, a pre-processing step of the method-

ology is applied. The purpose of this step is to prepare the impedance spectrum

for the feature calculation. Some of the EIS measurements, especially at higher

currents are slightly noisy, for the low frequencies. The primarily reason for

this, is the ±3 A current limit of the Gamry galvanostat used for the experi-

mental characterization. This makes the relative AC current amplitude smaller

compared to the DC component of the fuel cell current, and thereby decreas-

ing the signal to noise ratio. The impedance spectrum is therefore filtered, for

noise rejection.

The filter used in the pre-processing step is a zero phase butterworth filter,

by filtering the impedance spectrum in both forward and reverse direction [29],

going from high to low and again back to high frequency. Two examples can

be seen in Figure 5.a, where a low noise spectrum can be seen (red) and a high
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noise spectrum (magenta). For the low noise spectrum it can be observed that

the phase between the unfiltered and the filtered data is low, and for the high

noise spectrum it can be noted that the filter rejects the noisy measurement

points.

3.2. Feature extraction/selection

For dimensional reduction of the measurements space, for FDI algorithms

for fuel cell applications using EIS as characterization, there are in general two

different approaches, feature extraction or feature selection.

Feature selection is preformed, by directly choosing k of the d dimensions

which yield the most information needed for the fault classification, where d is

the dimension of the measurements space [18, 30]. Alternatively, k features can

be calculated based on the measurement space, as a feature extraction. Some of

the most common dimensional reduction methods described in machine learn-

ing literature are statistically based methods such as principal component anal-

ysis and linear discriminant analysis [13, 30]. Alternatively, feature extraction

can be performed by fitting an electrical equivalent circuit to the impedance

spectrum, and using the parameters as features [20, 31], mathematically repre-

senting the impedance spectrum by more generic model, or extracting features

which are based on knowledge of the fault nature.

This work will be based on simple knowledge based feature extraction. In

Figure 5.b, a typically impedance spectrum is illustrated, with the four (a-d)

typically knowledge based features found in the literature. The four features

are listed here:

(a) The internal series resistance, often extracted as the value of the first

intersect with the real axis [17]

(b) The difference between the internal resistance and the real part of the

second intersect with the real axis, or put differently, the span of the

impedance spectrum [19, 25].

(c) The second intersect with the real axis, sometimes denoted as the polariz-

ing resistance or just the maximum amplitude of the impedance spectrum

[19, 32].

(d) The maximum angle of the impedance spectrum [17, 32] or the frequency

at the maximum angle [19].

The features (a-d), which are shown in Figure 5 and listed above, are often

used for detecting flooding and drying of low temperature PEM fuel cells. The
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Figure 5: (a) Impedance spectra for 16.5 and 33 A at day 2, before and after preprocessing.

(b) Typically features found in the literature ((a)-(d)) and the two features (f2 , f3) used

for this work.
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Table 3: Description of the three features, which is used as input to the ANN classifier.

Feature No. Description

f1 DC component of fuel cell current

f2 ∠ (z(100Hz)− z(1kHz))

f3 ∠ (z(0.1Hz)− z(1Hz))

faults considered in this work are listed in Table 1, and are for HTPEM appli-

cations. Some of the features above like the series resistance are therefore not

useful for this algorithm. In addition, it can be seen that some extracted fea-

tures change with degradation. This is illustrated in Figure 6(a), where 4 differ-

ent extracted features are plotted with respect to degradation. In Figure 6(a),

the top left is the internal series resistance (represented as the high frequency

intercept) plotted with respect to fuel cell operational time, and the top right

is the real value of the 0.1 Hz impedance point plotted. In Figure 6(a), the

two bottom figures shows how the internal magnitude of the spectrum changes

relatively to the operational time. It can be seen that the features shown in

Figure 6(a), is changing with the operational time and thereby the degradation.

It is not desirable to use features, that change with time, since the design of

thresholds become difficult. When features change with time, the fault detec-

tion becomes more prone to false alarm or false detection.

A self-cognizant diagnostic methodology could solve this problem, by adapt-

ing to the change in features as result of degradation. Alternatively, a set of

features that are constant for healthy operation and independent of degradation

could be chosen, if possible.

Different methods to extract features from the impedance spectrum have

been analyzed in this work, and three features were found to be independent of

degradation and suitable for detecting the faults listed in Table 1. The meth-

ods suggested for feature extraction are listed in Table 3 as f2 and f3. The

features f2 and f3 are angles between the frequencies decades 1 kHz to 100 Hz

(f1) and 1 Hz to 0.1 Hz (f2). Since the features are angles of the spectrum,

they are relative and do not change with respect to degradation. The feature

f1 is illustrated in Figure 6(b), as a function of the fuel cell operational time.

In Figure 6.b it can also be seen that the feature f1 is dependent on the fuel

cell current and for this reason is the DC component of fuel cell current chosen

as the third feature (f1).

The behavior of the features f2 and f3 under normal and faulty conditions,
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Table 4: Based on empirical analysis, how the features f2 and f3 changes, for the faults φ1
- φ5.

φ0 φ1 φ2 φ3 φ4 φ5

f2 - - - ↑ ↓ -

f3 - ↑ ↓ - - ↓

is shown in Figure 7(a), for the entire data set at 16.5 A. As stated in Table 4,

it can be seen that faults φ3 and φ4 are correlated with feature f2 and the faults

φ1, φ2 and φ5 are correlated with feature f3. Furthermore, it can be observed

that a high methanol vapour in the anode gas (φ4), is quite close to the normal

operation data set. Thus, it is expected that that fault is harder to detect and

isolate.

In Figure 7(b), the entire feature space with the entire data set is plotted.

Here, it can be seen that the value of the features f2 and f3 changes with

f1, and therefore, it is necessary to include the DC component of the fuel cell

current as a feature.

3.3. ANN classifier and the training

As fault detection and isolation classifier, a feed forward neural network

is trained for the task. In Figure 8, an overview of the offline training is

illustrated. Firstly, the experimental data from the experiment described in

section 2.2, is labeled with a fault identifier (φ0-φ5) and the features (f1 -

f3) are calculated for each of the 2010 EIS measurements. Next, the data set

is divided into training data, validation data and test data. The test data

is manually selected for ensuring that each fault case is equally represented.

For each day at non-healthy operation two EIS measurements are reserved for

testing at each current set point, and for each day at healthy operation one EIS

measurement is reserved for testing at each current set point. The remaining

data set is split randomly with 85 % for training and 15 % for validation. An

overview of the allocation of the overall data is given in Table 5.

The training data is used in the training process of the ANN classifier, the

validation data is used as a stop criteria for the training algorithm and the test

data is used for human expert approval of the ANN classifier performance.

The feed forward ANN consists of one hidden layer with 10 neurons and

with a tansig transfer function and an output layer with one outlet for each of

the fault cases, with a softmax transfer function. No normalization of any of

the inputs is performed.
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Figure 8: Offline procedure for the training of artificial neural network in the dashed square.

For the online procedure, an EIS measurement is acquired, the feature extraction is calcu-

lated, and the features is used for input to the artificial neural network.

As training the scaled conjugate gradient optimization algorithm is uti-

lized. As stop criteria for the training there are three options; 10 number of

validation checks, where the ANN performance has not increased, the gradient

becomes less than 10−6 or the performance becomes 0, where the performance

is calculated as the Cross-Entropy.

4. Results and discussion

4.1. Training results accuracy and performance evaluation

The proposed ANN classifier methodology presented in the previous sec-

tion, in combination with the proposed features, has in general proven to be

well suited for fault detection and isolation, of the five faults (φ1-φ5) listed in

Table 1.
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Table 5: In percentage, how the entire dataset (2010 EIS measurements) is divided in the

training, validation and test data subsets. Test dataset in selected, and the remaining data

in randomly divided into training and validation data subsets.

% of data

Training data 76 %

Validation data 14 %

Test data 10 %

Table 6: The result of the test data, listed in a confusion matrix. The results are listed in

%. Global accuracy is 94.6 %.

Target class

φ0 φ1 φ2 φ3 φ4 φ5

A
N

N
ou

tp
u

t
cl

as
s φ0 98 0 0 0 70 0

φ1 0 100 0 0 0 0

φ2 0 0 100 0 0 0

φ3 0 0 0 100 0 0

φ4 2 0 0 0 30 0

φ5 0 0 0 0 0 100

The results of the test data (10% of the entire dataset) is listed in a confusion

matrix between the ANN output and the actual target class, in Table 6. It can

be seen that the faults φ1, φ2 and φ3 and φ5 have 100 % success rate. As it

can be seen in Table 6, the ANN classifier has problems distinguishing between

high methanol content fault and normal operation data. This is supported

by Figure 2(a), where it can be seen that the impedance spectrum of high

methanol vapour concentration in the anode gas fault (φ4), is quite close to the

impedance spectrum of the normal operation data (φ0).

To improve detectability of fault φ4, the methanol concentration could be

increased. However, a methanol vapour concentration of 5% is considered a

well-established fault and would not be considered as early detection. Fur-

thermore, it is expected that a higher than 5% methanol vapour concentration

would yield a impedance signature comparable to the high CO concentration

fault (φ3), and therefore, a higher than 5% methanol vapour concentration

fault would only move the problem to distinguishing between high CO and

high methanol concentrations.

The global accuracy of the test data classification using the proposed method-

ology is 94.6 %. This is good in line with previously reported values in the

18



literature, for LTPEM fuel cell FDI. Hissel et al. [25] reported a 89 % accuracy

and Zheng et al. [19] reported a 100 % accuracy, both using a Fuzzy Clustering

Algorithm. Onanena et al. [17] did a comparison of k-nearest neighbor and

linear discriminant analysis with two different ways of feature extraction, which

yielded a 93.9 % - 99.6 % accuracy for different methods.

4.2. Discussion

One of the benefits to this methodology, compared to using the parameters

of an equivalent electrical circuit, is that it is not necessary to acquire the entire

spectrum, but only impedance at four frequencies. To acquire an incomplete

impedance spectrum is less time consuming than acquiring the full spectrum,

which is an advantage since there are less risk that the fuel cell moves away

from steady state operation. In this work, the entire impedance spectrum was

acquired, and therefore, if only the relevant frequencies were measured, the

pre-processing part of the methodology would need to be changed, e.g. by

calculating the average of the impedance at the neighboring frequency points.

One of the major issues with EIS as reported in literature is complex data

processing and time consuming process. Here in the present work the frequency

domain is reduced and hence the data processing and the measurement time is

relatively smaller. The accuracy level of the measurements in separating out

the different faulty conditions are quite high which makes the process more

promising and efficient. The FDI methodology from the present study could

be easily implemented in the existing fuel cell system with minor modification

provided the training is carried out offline. The study takes into account the

degradation of the cell which makes the algorithm robust and minimal human

interference as required in some others FDI methods proposed in the litera-

ture’s.

This work builds on a data driven method, and there is no knowledge of

how the methodology would perform if utilized on a different stack from an-

other production batch. Therefore, for deploying this methodology in the field,

a larger database with impedance data from different production batches is

needed, since there is no information of the impedance variance from stack to

stack in the literature.

Furthermore, this analysis was carried out on a 10 cell short stack, but

normally a fuel cell of this type is deployed in the field in a 60 or 120 cells con-

figuration. The experimental procedure would therefore need to be reinitialized

for a full-size stack. Moreover, the impedance spectrum of full-size HTPEM
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stack is not reported in literature, for the faults considered in this work. This

could be subject of future studies.

The experiments for this work were performed on laboratory scale, with a

Gamry galvanostat for impedance measurements. This implementation is quite

expensive, and is therefore not suited for in-field implementation. However,

some EU projects work on implementing the EIS characterization method on

the onboard DC/DC converter (D-code project Grant: 256673). This requires

great attention to the bandwidth of the DC/DC converter and requirements to

the onboard computer. In this work all data processing was done offline, which

would not be the case for a system in the field.

Based on this work, there is no evidence how the algorithm will perform

for faults at intermediate fault amplitude. For-example, a larger concentration

of CO (φ3) could resemble the low anode stoichiometry fault (φ5) or a lower

concentration of CO could resemble the high methanol vapour concentration

fault (φ4). This could be subject of future studies.

5. Conclusions

In this work a methodology for fault detection and isolation of low and

high cathode stoichiometry, high CO concentration in the anode gas, high

methanol vapour concentration in the anode gas and low anode stoichiometry

was proposed. The fault detection and isolation methodology is data driven

based on EIS impedance spectrum.

The fault detection and isolation is divided into 4 steps; acquiring of EIS

measurement, pre-processing of data, feature extraction and artificial neural

network classification of fault class. The pre-processing of the impedance spec-

trum is conducted by a zero phase Butterworth filter, which is used to remove

outliers. The extracted features used in this work are the DC component of

the fuel cell current, and two angles between the impedance at 100 Hz and 1

kHz and between 0.1 Hz and 1 Hz.

A broad selection of features is analyzed with respect to degradation, and it

is found that the selected features are robust towards degradation. Therefore,

there is no need to retrain the artificial neural network classifier.

The experimental data foundation is based on a 35 day experiment, where

the first week is fault free and hereafter a new fault is introduced on the last

day of the week, for the remainder 3 weeks. This results in 2010 unique EIS

measurements under the influence of degradation.
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The proposed fault detection and isolation methodology is based on an

artificial neural network classifier, which is trained on 76 % of the entire data-

set and validated on 14 % of the data-set. 10 % of the data-set is used for

testing the algorithm.

Overall global accuracy on the test data is 94.6 %, which is considered

a good result, and it can be concluded that the artificial neural network to-

gether with the suggested features, is feasible for fault detection and isolation.

The achieved accuracy for faults related to CO pollution, anode- and cath-

ode stoichiometry is 100 % success rate. It can be concluded that the proposed

algorithm has difficulties distinguishing between the high methanol vapour con-

centration in the anode gas fault and normal operational data.
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valho, Hydrogen as an energy vector in the islands’ energy supply,

International Journal of Hydrogen Energy 33 (4) (2008) 1091–1103.

doi:10.1016/j.ijhydene.2007.12.025.

21



[5] D. Teichmann, W. Arlt, P. Wasserscheid, Liquid Organic Hydrogen Carri-

ers as an efficient vector for the transport and storage of renewable energy,

International Journal of Hydrogen Energy 37 (23) (2012) 18118–18132.

doi:10.1016/j.ijhydene.2012.08.066.

[6] Q. Li, R. He, J. Jensen, N. Bjerrum, Approaches and recent development

of polymer electrolyte membranes for fuel cells operating above 100 C,

Chemistry of materials (2003) 4896–4915doi:10.1021/cm0310519.

[7] S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao,

C. Jeppesen, S. K. Kær, A comprehensive review of PBI-based high tem-

perature PEM fuel cells, International Journal of Hydrogen Energy 41 (46)

(2016) 21310–21344. doi:10.1016/j.ijhydene.2016.09.024.

[8] G. A. Olah, A. Goeppert, G. K. S. Prakash, Chemical recycling of

carbon dioxide to methanol and dimethyl ether: From greenhouse

gas to renewable, environmentally carbon neutral fuels and synthetic

hydrocarbons, Journal of Organic Chemistry 74 (2) (2009) 487–498.

doi:10.1021/jo801260f.

[9] U.S. DOE., The Fuel Cell Technologies Office Multi-Year Research, Devel-

opment, and Demonstration Plan, Tech. rep., U.S. Department of Energy

(2016).

URL https://energy.gov/eere/fuelcells/fuel-cells

[10] D. Hissel, M. Pera, Diagnostic & health management of fuel cell sys-

tems: Issues and solutions, Annual Reviews in Control 42 (2016) 201–211.

doi:10.1016/j.arcontrol.2016.09.005.
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