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Abstract 

This Ph.D. dissertation dealt with microbial enhanced oil recovery focusing on adaptation of bacteria to 

some of subsurface conditions and the mechanisms of enhanced oil recovery through the use of microbes 

and their metabolic products. 

 

The core of this thesis consists of eight articles mostly dedicated to combination of different chemical and 

physical laboratory methods for experimentation, analysis and interpretation. These include flow injection, 

fermentation process, chromatographic assay, spectroscopy and image analysis to provide new, simple and 

robust solutions to understanding of processes during microbial enhanced oil recovery. A review of 

microbial enhanced oil recovery was presented to better comprehend the problem. The importance of 

mathematical models used in predicting the structural and morphological of bacteria cells during adaptation 

stages has been qualitatively discussed. The roles of biogenic acids and gases in carbonate rock dissolution 

and re-pressurization during microbial fluid rock interactions were also highlighted. The adapted bacteria 

strain were tested in different in formation waters from the North Sea and also, evaluated for improvement 

in oil recovery from packed columns by injection of bacteria solution to mimic in-situ oil recovery.  

 

Paper I and II presents models that explain the relationships between environmental parameters of pH, 

electrical conductivity, salinity and gas dissolution based on simple empirical models. This is valuable for 

understanding some of the interactions in the subsurface during the enhance oil recovery. The measured 

salinity is similar to those found in oil reservoirs.  

 

Paper III gives an overview of the adapted strain of Clostridium tyrobutyricum. The main objective of this 

study was to investigate the growth and metabolic products capability of this adapted strain and the 

potential to enhance oil recovery at elevated salinity. It was elaborated that quantities of some of the 

metabolites, gas, acids and biofilms have direct relationships with salinity of the medium and   recovery of 

38 % from sandstone and 25 % from chalk was achievable. 

 

Paper IV-V highlighted the microbial fluid rock interactions. It was found that porosity increase observed 

in all the rock samples was mainly due to significant dissolution of carbonate by the organic acids produced 

during microbial metabolism. The patterns of dissolution lead to reduction in the bulk volume of the chalk 

samples. The pore volumes were slightly reduced or generally remain the same and the release of Ca2+ ions 

into microbial medium.  
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Papers VI present a contribution of a simple quantitative measurement technique for monitoring microbial 

gas production by titrimetric method. It was shown that about 84 % of the gas produced during 

fermentation process of molasses is composed of carbon dioxide and the absorption rate of the gas 

decreases with increase salinity. The method gave an indication of a reliable estimate of the concentration 

of dissolved CO2 in the fluid sample can be made which can be applied to practical purposes. 

  

Paper VII outlined a simple spectroscopic and image analysis technique for characterization/discrimination 

of pure and adapted strains of bacteria. It also showed that quantitative prediction of gas production and pH 

variation with salinity can be carried out based on image analysis and multivariate data modeling. 

  

Paper VIII objective was to demonstrate the potential of thermophilic anaerobic bacteria; 

Thermoanaerobacter brockii subsp. lactiethylicus strain 9801T in microbial enhanced oil recovery 

processes. The result suggested that the strain was capable of producing organic acids and gas that can 

modify rock properties evident in dissolution of chalk samples. Cells were also able to migrate through 

pore spaces of carbonate rock sample suggesting possibility of high mobility when injected for microbial 

enhanced oil recovery purpose. Degradation of alkanes by biosurfactant produced was also highlighted. 

 

The significance of these contributions to the continued development of microbial enhanced oil recovery 

will hopefully find good use in the applied technological and industrial sectors. 
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Synopsis 
 
Denne afhandling omhandler MEOR (microbial enhanced oil recovery) med  særlig fokus på bakteries 
adaptation til underjordiske levebetingelser og mekanismer for en forbedret olieudvinding opnået igennem 
udnyttelse af diverse mikroorganismer og deres metaboliske produkter.  
 
Afhandlingens kerne udgøres af otte videnskabelige artikler, der beskriver anvendelsen af diverse 
innovative kemiske og fysiske laboratorieanalysemetoder til undersøgelse og  beskrivelse af den forbedrede 
mikrobielle olieudvinding. Formålet med anvendelsen af disse metoder, som omfatter Flow Injection, 
fermentation processer, kromatografiske og spektroskopiske undersøgelser og billedanalyse, var at skabe 
ny viden om rollen af bakterier i den mikrobielle olieudvinding. Afhandlingen starter med en gennemgang 
af litteraturen omkring emnet. Senere, bliver rollen af matematiske modeller beskrevet kvalitativt . Disse 
modeller vurderes uvurderlige for prædiktion af både morfologiske ændringer såvel som strukturændringer 
i de bakterielle celler. Afhandlingen lægger derudover fokus på rollen af biogene syrer og gasser i 
opløsning af karbonat bjergarter og i gendannelse af tryk under vekselvirkningen mellem et fluidum og en 
bestemt bjergart. Bakteriestemmerne, som blev brugt i dette projekt, kommer fra diverse oliereservoirer i 
Nordsøen, som hver især karakteriseres med unikke betingelser. Bakteriestemmernes evner til at forbedre 
olieudvindingen blev studeret in-situ i pakkede kolonner.  
 
Artikler I and II i denne afhandling fastlægger  sammenhængen imellem parametre som pH, ledningsevne, 
salinitet og opløselighed af gasser på basis af simple empiriske modeller. Denne viden er kritisk for 
forståelse af de underjordiske systemer, hvor olieudvindingen finder sted. De anvendte salinitet værdi 
afbilder salinitet værdier i oliereservoirer.  
 
Artikel III præsenterer læseren med Clostridium tyrobutyricum, en bakteriestemme tilpasset til MEOR. 
Formålet med artiklen var at beskrive bakteriens vækst og metaboliske produkter samt at undersøge 
bakteriens potentiale for MEOR ved høje saliniet værdier. Resultaterne har vist at mængder af bestemte 
metaboliske stoffer, f.eks. gasser, syrer and biofilmer, kan relateres direkte til de tilstedeværende salinitet 
værdier. Derudover blev der fastlagt at udbytte af 38% og 25% kan opnås med hhv.  sandsten og kalk som 
medium.  
 
Artikler IV og V fokuserer på interaktioner mellem det tilstedeværende fluid og bjergarter. Ifølge 
resultaterne kunne der konstateres at prøvernes stigende porøsitet  kan tilskrives opløsning af karbonater i 
metaboliske syrer og gasser. For kalk prøverne var dette forbundet med formindskelse af det samlede bulk 
volumen og frigørelse af calcium ioner.   
 
Artikel VI præsenterer en simpel titrering metode til  monitering af kuldioxid produktion. Det blev vist at 
84% af gassen produceret under fermentering af melasse består af kuldioxid. Derudover tydede resultater 
på at kuldioxids absorption rate falder med stigende salinitet værdier. Disse konklusioner kan udnyttes til 
estimering af mængder af opløst kuldioxid i fluider.   
 
Artikel VII beskriver en simpel og effektiv metode der kan skelne mellem tilpassede og ikke tilpassede 
bakteriestemmer. Resultaterne har også vist at kuldioxidproduktion og pH ændringer som funktion af 
salinitet værdier kan forudsiges ved hjælp af  billedanalyse og multivariate data analyse.   
 
Artikel VIII beskriver Thermoanaerobacter brockii, en termofil og anaerob bakteriestemme med et stort 
potentiale inden for MEOR. Resultater har vist at bakterien producerer organiske syrer og gasser som kan 
effektivt oplyse kalk. Celler af bakterierne har migreret igennem porer i prøverne, hvilket tyder på deres høj 
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mobilitet i forbindelse med en forøget olieudvinding. Analyseresultater har også vist at alkaner i olien  
bliver nedbrudt af overfladeaktive stoffer, som bliver fremstillet af bakterier.    
 
Resultater af denne afhandling vil forhåbentlig bidrage til den fortsatte udvikling af MEOR og finde 
anvendelse i både den tekniske, såvel i den industrielle sektor.  
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Preface 

This thesis is submitted in partial fulfillment of the requirement for the Ph.D. degree at the department of 

Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark. The Ph.D. 

project was carried out under supervision of Associate Professor Erik G. Søgaard and co-supervisor 

Associate Professor Svetlana N.Rudyk from CIChem research group, Section for Chemical Engineering, 

Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University Esbjerg. 

 

The Ph.D. project was conducted within the field of enhanced oil recovery with the main focus on 

microbial enhanced oil recovery (MEOR). The project draws on different aspects to form the basis to 

describe the MEOR process in biogeochemical sense. In this thesis, the MEOR process is placed in the 

context of tertiary enhanced oil recovery which is the stage after primary and secondary enhanced oil 

recovery processes. MEOR as a technology tool for enhanced oil recovery is gaining momentum across the 

world because of its low capital cost and multiple oil recovery mechanisms available. However, there are 

still several areas which are still not resolved or adequately clarified by MEOR process and are often cited 

as major concerns by the oil industry when MEOR issues are discussed.  

The challenges presented by this project are met through standard experimental approaches both 

quantitative and qualitative in nature. The project started with strain of Clostridium tyrobutyricum  (DSMZ 

663) purchased from the German Culture Collection (DSMZ) and during the course of this project, new 

strains of bacteria were developed with better abilities to withstand difficult reservoir conditions such as 

high salinity and high temperature which are often cited as some of the limitations for MEOR process. 

Studies also focused on assessment of metabolites production by the adapted strain to evaluate its potentials 

for production of the desired bio-products needed for enhancement of oil recovery through series of 

experiments such as biogenic gas production, activity at oil-water interface, modification of rocks, adhesion 

processes and rheological effects etc.  

Also attempt was made to model some of the mechanisms for enhanced oil recovery during MEOR 

process. These models were empirical, but simple enough to describe some of the basic relationships 

between different environmental parameters. Also an image analysis technique was able to quantify 

morphological and physiological changes during adaptation process. Each paper has followed the 

guidelines and reference format for intended journal.  
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Finally, this project seeks to contribute to our understanding of the complex processes involved in MEOR. 

In addition, it is expected that new developments in MEOR will add even more advantages to the present 

technology and strengthen this approach for successful application in residual oil recovery that can increase 

our reserves for energy demand. 
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1 Introduction 

1.1 Background  
At present oil productions have been experiencing decline in many parts of the world due to oilfields 

maturity and example of such includes the major oilfields in the North Sea (Aleklett et al. 2010).  Another 

major concern is the increase energy demand due to global population growth and mounting difficulty in 

discovering new oilfields. Therefore, there is a need to find alternative technologies to improve oil recovery 

from existing oilfields around the world. It is a fact that fossil fuels will still remain the key supply of 

energy source for many years to come despite the huge investments in other sources of energy such as 

biofuels, solar energy, wind energy etc. This fact is highlighted by the current global energy production 

from fossil fuels which currently stand at about 80-90% with oil and gas representing about 60 % (Graus et 

al. 2011).  

 

During oil production, primary oil recovery can account for between 30-40 % oil productions, while 

additional 15-25% can be recovered by secondary methods such as water injection leaving behind about 

35-55 % of oil as residual oil in the reservoirs (Cosse, 1993). This residual oil is usually the target of many 

enhanced oil recovery technologies and it amounts to about 2-4 trillion barrels (Hall et al., 2003) or about 

67 % of the total oil reserves, (Bryant et al. 1993).  Recovery of this residual oil is at present a big 

challenge for many oil companies and there is a continuous search for a cheap and efficient technology that 

can help in its recovery. Additional recovery from residual oil can lead to increase in global oil production 

as well as prolonging the productive life of many oilfields. The techniques employed for recovery of this 

residual oil are generally termed enhanced oil recovery (EOR) methods. 

 

EOR methods are used in oil industry to increase the ultimate recovery of crude oil. This normally involves 

application of an EOR method (sometimes called tertiary recovery method) to a specific underground oil 

bearing reservoir. Examples of well-known tertiary recovery methods are chemical flooding, miscible CO2 

injection and thermally enhanced oil recovery that uses heat as main source of additional oil recovery 

(Lake, 1989). Significant volumes of residual oil in the depleted oil reservoirs could be produced by these 

EOR methods as current technology leaves about two third of the original oil in place in the reservoir. One 

of such method is microbial enhanced oil recovery (MEOR) which is the focus of this project. MEOR 

represents the use of microorganisms to extract the remaining oil from the reservoirs. This technology can 

be potentially implemented with an exceptionally low operating cost and also said to be capable of 

producing up to 50% of the residual oil (Lazar et al. 2007; Sen, 2008). The field trials have shown that 

normal projected oil production decline curve can be reversed or level off by MEOR and the reason is 
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because microbial growth and metabolites produced can have effects on the chemical and physical 

properties of reservoir rocks and crude oil (Hitzman, 1991). 

1.2 The research objectives and scope of investigation 
MEOR technology is composed of different mechanisms, consequently, the target of this study will be to 

investigate several aspects of MEOR in order to better our understanding of those factors that limit 

performance/or can enhance performance in the area of microbial enhanced oil recovery wherein referred to 

as the challenges in MEOR. The rationale is that, fundamental understanding of structure and function in 

microbial community and its linkage to biogeochemistry in reservoirs and understanding of mechanisms in 

MEOR environmental, microbial and physiological process is a prerequisite to developing microbial 

methods to enhance the quantity and quality of the HC recovery. Therefore, the scope of this project 

covered two main aspects namely;  

(a). Microbiology in deep subsurface  

(b). MEOR processes 

 

The overall aim of this project is to come out with some answers by which microbial activity in 

hydrocarbon reservoir can be modified, improved or introduced to benefit oil recovery. Some of the project 

objectives include: 

� Review of relevant literature available on microbial enhanced oil recovery to keep abreast with 

current knowledge and development 

� Engineering of new strains  of bacteria by proper adaptation to high salinity, temperature and 

pressure conditions to meet reservoir conditions in the North Sea oilfields 

� Investigation of microbial fluid effect on rock properties  

� Identification of good nutrient for the microbes for quick stimulation under reservoir conditions 

� Investigation of oil releasing mechanisms  /oil recovery process during MEOR 

� Modelling  of MEOR activities to develop predictive models that can enhance successful 

implementations 

� Possible application or field test  of the knowledge gain from the studies and the findings on field 

scale for enhanced oil recovery 

 

Achievement of this research was based on intensive laboratory investigations and experiments, modelling, 

and statistical analyses among others; to engineer good microbes for MEOR and understand the metabolic 

and biogeochemical processes that are going on during microbial fermentation, interactions with chalk 
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samples and oil recovery processes. These investigations became necessary to shed more lights on MEOR 

mechanisms and improve forecasting abilities to enhance oil recovery in carbonate rocks which can later be 

transformed to field scale applications especially in the Danish sector of the North Sea and similar geologic 

formations. 

 

The recent oil decline in the Danish sector of the North Sea and the need to identify the most plausible 

technology to enhance oil recovery make this research an ideal one. This is because most of the reservoirs 

rocks in the Danish sector are made up of carbonate rocks and MEOR has been postulated to be more 

effective in carbonate reservoirs (Wagner, 1991). In Danish sector of the North Sea, oilfields were 

estimated to have recoverable hydrocarbon reserves of 240 million m3 of oil and 120 billion m3 of gas at 

January 1 2007 (Danish Energy Agency, 2006). According to this report, the total production of oil and 

natural gas in Denmark will exceed consumption up to and including 2015 and the remaining reserves in 

these fields are estimated to provide oil self-sufficient to 2035. In the future, additional recovery from these 

reserves demands the use of innovative ideas for improving recovery methods to sustain production. For 

example in Denmark, an increase of just 1% in the oil recovery from Danish fields would be sufficient to 

cover the country’s demand for two years (Danish Energy Agency, 2006). Therefore, enhanced oil recovery 

methods such as microbial enhanced oil recovery can provide alternative and optimum sources of 

recovering these remaining hydrocarbons. 

 

1.3 Thesis structure and content 

The present thesis is organized as 3 submitted articles and 5 published articles in different journals together 

with a review of microbial enhanced oil recovery and extended summary and future perspectives on the 

research conducted in this Ph.D. study. The introduction part (Chapter 1) provides brief information on the 

need for enhanced oil recovery including the objectives and scope of the current thesis. Chapter 2 covers 

the review on microbial enhanced oil recovery that gave an overview of microbial enhanced oil recovery 

development from early stages, the mechanism and examples of applications over the past 40 years. 

Chapter 3 covers the published and submitted articles that cover different aspect of microbial enhanced oil 

recovery such as adaptation, MEOR mechanisms, metabolites production, microbial modification of rock, 

gas production and evaluation, oil recovery from packed columns among others. Chapter 4 is the 

conclusion and highlights the most significant results achieved and relates the findings to the current state 

of the art. It is mainly based on the findings and results from the articles listed in chapter 3 but presented 

with an extensive knowledge of the microbial enhanced oil recovery and it also incorporates additional 
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unpublished data from laboratory studies performed as part of this thesis. The last chapter (Chapter 5) 

provides the future perspectives on microbial enhanced oil recovery based on the outcome of this study. 
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1 Review of microbial enhanced oil recovery 

2.1 General statement 

Microbial enhanced oil recovery is a collection of techniques that utilizes microorganisms and their 

metabolic products to improve the recovery of crude oil from reservoir rock (Yen, 1990, Zhang and Xiang, 

2010, Lazar, 2007). The application can be either in a form of cyclic (single well simulation), microbial 

flooding recovery or selective plugging recovery (Lazar, 2007). The idea of microbial enhanced oil 

recovery was first proposed by Beckmann (1926) when he published results on the possibility to use 

microbial metabolic processes to improve the oil production rate. In the later parts of the 1940’s 

experiments from Zobell (1947) further indicated the potential for microbial oil recovery from sand grains. 

The study highlighted the similarity between the compounds used to improve waterflood efficiency, in 

chemical and miscible EOR processes and the products of microbial fermentation of carbohydrates even 

though there was a setback due to hydrogen sulphide production. 

 

Gases, solvents, surface active compounds, polymers, organic acids and biomass are all regular and 

predictable products of microbial metabolism similar to compounds used in chemical enhanced oil recovery 

(Sheehy, 1991). Microbial enhanced oil recovery in general has many advantages, such as economical, low 

toxicity, biodegradability and biocompatibility, selectivity and specificity (Desai and Banat, 1997). MEOR 

therefore, offers good alternative in improving the recovery of crude oil from reservoir utilizing 

microorganisms and their metabolic products.  

 

From the classical works of Beckmann (1926) and ZoeBell (1947), it was a giant leap to the 1950s through 

1980s with other scientists reporting advances made in MEOR (Updegraff and Wren, 1954; Davis and 

Updegraff, 1954; Kuznetsov, 1961; Kuznetov et al. 1962; Senyukov et al. 1970; Lazar, 1978, Ivanov et al. 

1982, Zajic et al. 1983; Belyaev 1983; Bubela, 1983, Yarbrough and Coty, 1983, Grula et al. 1983; 

Donaldson and Grula, 1985). Further researches were carried out in the 1990s through 2000s with renewed 

significant interests (Lazar, 1991, Ivanov et al. 1993; Hitzman, and Sperl, 1994, McInerney and Sublette 

1997; Bryant and Lockhart, 2002; Li et al. 2002; Maudgalya et al.2005). A parallel development was the 

rise in crude oil prices due to the petroleum crisis in the 1970s that boosted development of MEOR 

research and validated it to scientific enhanced oil recovery method (Lazar et al. 2007). 

 

Hitzman (1988) published a review on MEOR field testing and also a review of many field applications of 

MEOR was presented by Bryant et al. (1989). Extensive body of scientific and technical understanding of 

the microbial enhanced oil recovery was presented by Donaldson et al. (1989). Additionally, significant 
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contributions to MEOR area were published in the proceedings of the international conference on MEOR, 

Donaldson (1991) and Lazar review papers (Lazar 1991; Lazar, 1998). 

 

The continuum search for a cheaper and effective enhanced oil recovery method was a major driving force 

behind the development of microbial technique of enhanced oil recovery. The advances that were made in 

the 1950s through 2000s came in a large part, from a great deal of work looking at how microorganisms 

can benefit the recovery of oil from petroleum reservoirs. Many of the results from the laboratory studies 

were promising. The laboratory study of specific microorganism is done either for the surface production of 

various compounds or for the injection of cells into a reservoir for in situ production of metabolic 

compounds. These laboratory studies on MEOR have normally utilized core samples and columns 

containing the desired substrates. These substrates were employed to demonstrate the usefulness of 

biosurfactants in oil recovery from sandstone and carbonate. Similarly, core samples were used as model in 

the movement of microorganisms and nutrients through substrates to ascertain their usefulness after 

injection into oil reservoirs (Banat, 1995).   

 

However, the results from field applications were mixed; from success to failure, because the biological, 

chemical and physical processes that occur in petroleum reservoirs where in situ metabolism occurs were 

not fully understood (Donaldson et al. 1991). As observed by Hitzman (1991), several reasons can be 

considered for the reported differences between laboratory results and field observation in MEOR studies. 

One of the important factors is the dynamic environment normally encountered in a reservoir which is 

difficult to duplicate or simulate in the laboratory with small cores and reactors.  Physical and chemical 

changes also occur within the reservoir as a result of interactions of the multiplying microorganisms with 

the reservoir matrix that cannot be duplicated in the laboratory. Another major reason identified for the 

failure of field trials is insufficient consideration of the conditions which characterize petroleum reservoirs 

(Sheehy, 1991). He observed that the activity of bacteria in reservoirs depends on the physical and 

chemical conditions they encountered. These include pH, temperature, salinity, pressure, ionic strength, 

source of energy and nutrients. Moreover lack of adequate knowledge about growth of microorganisms in 

oil under anaerobic condition during the early days of MEOR was a major factor. It was not until recently 

that bacteria have been shown conclusively to metabolize hydrocarbons in oil under anaerobic environment 

(Kropp et al. 2000). However, it was suggested some of the perceived technical problems associated with 

MEOR applications can be overcome by carefully planning (Moses, 1991; Maudgalya, 2007). 

In spite of some of the earlier setbacks, microbial enhanced oil recovery has developed rapidly over the 

past two or three decades around the world. From USA to Russia, Europe to China and Canada to Australia 
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China, several studies were carried out in different applications of MEOR, for example, Dienes and 

Yaranyi, 1973; Senyukov et al. 1970; Karaskiewicz, 1975; Lazar, 1978, Yarbrough and Coty, 1983; 

Hitzman, 1988; Wagner, 1991; Sheehy, 1991, 1992; Ivanov et al. 1993; Wang et al. 1993;  He et al. 2000; 

Bryant and Lockhart, 2002; Li et al. 2002; ). The first field trial was carried out in the Lisbon field, Union 

County, AR, in 1954 (Yarbrough and Coty, 1983). The field tests from many of these studies specified 

injection of mixed anaerobic or facultative anaerobic bacteria typically consisting of Clostridium, Bacillus, 

Pseudomonas, Micrococcus, Mycobacterium, Arthrobacterium, Peptococcus etc. with nutrients. Example 

of such nutrient is molasses, considered to be very cheap. The idea behind the selection of these 

microorganisms is based on their ability to generate high quantities of gases (e.g. CH4, H2, CO2, and N2), 

organic acids (e.g. butyric and acetic acids), solvents (e.g. acetone, butanol and ethanol), polymers (e.g. 

polysaccharides), biosurfactants and cell-biomass. Each mechanisms or a combination of these mechanisms 

could lead to increased oil recovery (McInerney et al. 2002). 

 

Research carried out in 1970-2000 as illustrated in the study by Lazar et al. (2007) and more recently by 

Brown (2010), has established the basic nature and existence of indigenous microbiota in oil reservoirs, as 

well as reservoir characteristics being essential to a successful MEOR application. At the moment, research 

into MEOR is still continuing which can be said to be the fourth generation of studies. This is buoyed by 

the combined effects of increasing matured oilfields and increased oil prices and also the need to increase 

our understanding of MEOR processes; as many of the earlier studies identified the need to improve critical 

information on mechanisms, metabolic rates and required concentrations of microbial products. Some of 

the most recent works include those of Brown et al. 2002, Bryant and Lockhart, 2002, Maudgalya et al. 

2005; Kowalewski et al. 2006, Kaster et al. 2009, Rudyk and Søgaard, 2011; Jimoh et al. 2011 and several 

other studies. All these were attempts to bridge the gap in laboratory success and the field applications of 

MEOR.  

 

Study showed that among other things, there is an improvement in the availability of methods and 

analytical equipment. Also new strains of bacteria have been identified and isolated from deep seated 

reservoirs that have abilities to grow in extreme conditions of salinities and temperatures. Examples of such 

new strains of bacteria identified include thermoanerobic bacteria such as Thermoanerobacter brockii 

subsp. lactiethylicus strain 9801T isolated from a deep subsurface French oil well at a depth of 2100 m 

where the temperature was 92 oC  and optimum growth at temperatures between 55 and 60 oC (Cayol et al. 

1995) and Thermoanaerobacter tengcongensis strain MB4T isolated from a Chinese hot spring capable of 

growth at temperatures between 50 and 80 oC (Xue et al.2001). 
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Moreover, the area of modeling of MEOR is improving. It was recognized that a mathematical model could 

be used to recognize the most important parameters and their practical relationships for the application of 

MEOR (Marshall, 2008). However, development of detailed mathematical models for MEOR is an 

extremely challenging task, not only as a consequence of the natural difficulty of the microbes, but also 

because of the diversity of physical and chemical variables that control bacteria activities in subsurface 

porous media. Modeling microbial has developed from the earlier work of Monod which modeled the 

bacteria growth (Monod 1949) to several mathematical models that were developed to stimulate MEOR 

processes. Examples include models for multidimensional flow of the multiphase fluid consisting of water 

and oil in porous media along with specific equations for adsorption and adsorption and diffusion of 

metabolites, microorganisms and nutrients (Chang et al. 1991; Islam, 1990), models for relative 

permeability changes (Al-Wahaibi et al. 2006; Nielson, et al. 2010) and models that incorporates salinity 

effects adsorption of microorganisms reduction of interfacial tension and wettability changes (Behesht et al. 

2008).  

 

In conclusion, there is absolute no question as to whether microorganisms have the capability of enhancing 

oil recovery by virtue of some of the products they can produce (Brown, 2010) but rather how to employ 

this ability in an economically, practical and scientifically valid manner, transferable from laboratory scale 

to large scale field applications. More research is required in this field and it is believe that by doing this, 

MEOR as part of the tertiary enhanced oil recovery methods could substantially increase the world’s supply 

of oil. 

 

2.2 Classification, mechanisms and constrains of MEOR  

2.2. 1 Classification of MEOR 
The objective of most microbial enhanced oil recovery is to reduce remaining oil in the reservoir however 

the implementation of the MEOR strategy can be different. Nevertheless, two major strategies are normally 

employed in MEOR. The first one is the bacteria injection normally referred to as ‘traditional’ MEOR 

method with nutrients and the second method involves  simulation of indigenous bacteria through injection 

of nutrients. The application of MEOR technology can either be in the form of a cyclic (single well 

simulation), microbial flooding recovery or selective plugging recovery (Lazar, 2007; Zhang and Zeng, 

2010).  

In cyclic microbial recovery, microorganisms and nutrients are injected into production wells. The wells 

are shut-in for a period long enough to allow microbial growth and metabolites formation. This can be for a 
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number of days or weeks. Finally, the oil production phase begins and extends over a period of weeks or 

months. In cyclic microbial recovery, when production declines, another phase of injection is normally 

started. In this case, the depth of the area covered by bacteria would be limited by the injection rate and the 

kinetics of the microbial process (Bryant and Lockhart, 2002).   

 

The second type of application is microbial flooding. In microbial flooding, the microbial growth is usually 

stimulated by adding nutrients to the injection water to encourage the proliferation of microorganisms 

indigenous to the formation. If the requisite microbial activity is not present, then microorganisms can be 

injected into the formation along with the nutrients. In some approaches injection into the formation is 

stopped to allow time for the in situ growth and metabolism to occur (Youssef et al. 2009).  In other 

approaches, injection of brine continued after nutrient and/or cell injection. This option would most likely 

be less expensive as the growth would be stimulated in larger parts of the reservoir, particularly where the 

carbon source (residual oil) is located, which is usually the target of the enhanced oil recovery treatment 

(Kaster, 2012). 

 

The microbial selective plugging encompasses microbial process to divert water into low permeability 

regions to block water channels deep in the reservoirs. With this type of treatment, nutrient preferentially 

flow into the high permeability regions, which then stimulates biomass and polymer production in these 

regions; both of which reduce the permeability of the rock (Raiders et al. 1985). In contrast, heavy oil 

modification is usually by microbial decomposition of long chain compounds within the formation. 

 

 

                               Figure 1: Basic process in microbial enhanced oil recovery schematic 
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                            Figure 2: Cyclic microbial oil recovery (www.netl.doe.gov) 

 

 

                                                        Figure 3: Microbial flooding recovery (www.netl.doe.gov) 

 

2.2.2	The	mechanisms	of	MEOR	
Over the years attempt have been made to classify the main mechanisms involve in MEOR process.  

Theses process are identified based on the end products generated from bacteria metabolism. According to 

Janshekar (1985), the main mechanisms of MEOR include viscosity reduction, rock dissolution, 

permeability reduction etc. (Table 1). All these mechanisms are similar to those as being practiced in 
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chemical EOR. The main difference is that the required products are coming from bacteria metabolism. It is 

therefore expected that the MEOR mechanisms fulfills the basic law of thermodynamics. Review of 

literatures suggested that MEOR mechanisms can be different from bacteria to bacteria and are normally 

selected based on wells or reservoir requirement. 

 

Table 1: Microbial products and their contribution to enhanced oil recovery (after Janshekar, 1985) 

Bioproduct Effect 

Acids 

 

Biomass 

 

 

 

 

 

 

Gases (CO2, CH4, H2) 

 

 

 

Solvents 

Surface-active agents 

Polymers 

Modification of reservoir rock 

Improvement of porosity and permeability 

Reaction with calcareous rocks and CO2 production 

Selective or non-selective plugging 

Emulsification through adherence to hydrocarbons 

Modification of solid surfaces 

Degradation and alteration of oil 

Reduction of viscosity and oil pour point 

Desulfurization of oil 

Reservoir re-pressurization 

Oil swelling 

Viscosity reduction 

Increase permeability due to solubilization of carbonate rocks 

Dissolving of oil 

Lowering of interfacial tension 

Emulsification 

Mobility control 

Selective and non-selective plugging 

 

It has been shown that microbial enhanced oil recovery techniques are generally applied to reservoirs where 

production rates have declined over time. The reasons behind the consideration of MEOR technologies 

(Hitzman, 1991) when evaluating reservoirs for residual oil recovery usually include: 
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(a). It offers multiple application possibilities  

(b). Multiple oil recovery mechanisms available 

(c). Treatment effectiveness increases with penetration and duplication 

(d). Low startup capital and low operating costs 

The MEOR methods are believed to be more constructive than other enhanced oil recovery based on the 

above perceived advantages and moreover, the microbes produce the necessary metabolites on place and 

the method is considered to be environmentally friendly and does not require large amount of energy. 

 

2.2.3 MEOR constraints 
On the other hand, a major reason for the failure of MEOR technology is insufficient consideration of the 

conditions which characterize petroleum reservoirs and the physiology of microorganisms which thrive in 

these conditions (Sheehy, 1991). The activities of microbes employed in MEOR process depends on the 

physical and chemical conditions they encounter in the reservoirs. These include salinity, temperature, 

pressure, pH, redox potential etc. although these reservoir conditions vary a great deal from one reservoir to 

another. All these factors which are mostly physical and environmental can affects the growth of bacteria, 

proliferation, metabolism and survival and limit their ability to produce desired quantities of metabolites 

needed for enhanced oil recovery. However it is of the general opinion that with proper planning most of 

these factors can be overcome. Some of the factors which are considered as limiting for successful 

application of MEOR are enumerated below. 

 

Salinity 
Sodium chloride makes up about 90% or more of the total dissolved solids found in reservoir brines, and 

therefore, tolerance of microorganisms to salt concentration is one of the most important characteristics 

needed for microorganisms used in MEOR. The effect to which salinity causes changes in bacterial growth 

and metabolism depends on the osmotic balance required for such growth since the solute concentration of 

the surrounding environment can affect cell growth.  Grula et al. (1983) isolated Clostridia species capable 

of growth at 45 oC, but found that their ability to produce solvents and gases were reduced significantly at 

high sodium chloride concentrations (5% w/v).  

General concentrations of oilfield brines can vary from 100 mg/l to over 300 g/l (Gran et al. 1992) and the 

salinity gradient can be different in the range of the same formation. Most bacteria overcome the osmotic 

stress by the accumulation of organic compatible solutes within the cytoplasm without the need for change 

of intracellular proteins. This method is called ‘organic osmolyte strategy’ (Roberts, 2005). The second 
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adaptation strategy is intracellular accumulation of high concentration of high concentration of K+ (Oren, 

2001). 

 

Temperature 
Temperature plays a significant role in bacteria metabolism. With increasing depth, the temperature 

increases. Therefore it is certain that bacteria growth and their metabolism will be affected as increasing 

temperature can exert negative effects on enzyme function by disruption of important cell activities. This 

molecular picture of the effects of temperature on enzyme function is generally accepted, but it is also to be 

observed that the temperatures at which these phenomena occur vary widely between organisms (Marshall, 

2008). Depending on the temperature ranges for microorganisms survival, microbes can be classified 

according to their optimum temperature range as psychrophiles (< 25 o C), mesophiles (25-45 oC), and 

thermopiles (45-60 oC).  

The depths at which most oil reservoirs are situated have temperature higher than 37 oC considered as 

optimum temperature for most bacteria. For example in the North Sea the temperature gradient is about 2.5 
oC/100m (Vermooten et al 2004) therefore at a depth of 3000m, the temperature can reach about 90 oC. 

 

Pressure   
Pressure affects biological process in relation to accompanying volume changes however in many regions 

of the earth; the limiting boundary is probably set more by high temperatures than by high pressures 

(Marquis 1976; Marquis 1983a). The maximum depth for life in the deep earth has not been determined but 

for maximum recovery of oil, but in the range of 2000 to 3000 meters, the most applicable pressures for 

enhanced oil recovery in producing wells are some 20 to 30 MPa. High hydrostatic pressures in the range 

of several dozen MPa are generally assumed to be nonlethal but can exert adverse effects on the growth of 

organisms that are adapted to atmospheric pressure (Abe et al.1999, Bartlett, 2002).  

The effect of pressure on microorganisms depends not only on the magnitude but also on the duration of 

pressure applied in combination with temperature, pH, oxygen supply and composition of the culture media 

(Abe, 2007). The effects of the pressure can be very complex and often difficult to interpret. For example, 

recent results indicated that lactic acid bacteria Lactobacillus sanfranciscensis growth at 50 MPa was 30 % 

less than at atmospheric pressure and that increase of temperature did not improve its piezotolerance 

(Molina-Höppner et al. 2003). In another study, it was shown that treatment of E.coli cells at a higher 

pressure of 75 MPa for 30 min does not readily cause any morphological changes (Kawarai et al.2004). The 

challenges are therefore to establish whether the physiological responses of bacteria cells to high pressure 
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are relevant to their growth and to identify the critical factors in cell viability and lethality under high 

pressure during microbial enhanced oil recovery. 

 

pH	
pH is one of the major environmental factors that affect microbial growth and is one of the most studies 

because of its importance in fundamental research. In general, the optimal pH for growth for 

microorganisms is between a pH of 4.0 and 9.0, but at very low pH, the metabolic activities of 

microorganisms can be affected. The detrimental effect of low pH on microbial growth is well documented 

(Brock, 1969) but the mechanisms involved are not well understood. Generally, a near-neutral intracellular 

pH is maintained in bacteria (Riebeling et al. 1975) but the intracellular pH can decrease considerably when 

the cell is subjected to an acidic environment.  

As many enzymes are sensitive to pH, the growth inhibitions can be seen at low pH could be caused by a 

direct effect of the H ion on cellular components even though, such direct effects would not necessarily 

cause a decrease in the efficiency of growth (Russell and Dombrowski, 1980). pH values normally 

encountered in oil reservoirs may not pose a problem for the growth of organisms but  pH gradients can 

affect the control of specific metabolic processes required for some MEOR processes (Jenneman and Clark 

1992). 

 

Pore size 
Even though, the pores in rock can be connected in different ways, pore spaces less than 0.5 nm can place 

severe restrictions on the ability of most bacteria (most bacteria have dimensions of length approximating 

0.5-10.0 um and widths of 0.5-2.0 um to be transported through the rock matrix especially for those 

bacteria that their sizes are comparable to the sizes of the rock pores (Jenneman and Clark 1992). 

Updegraff (1983) stated that pores must be at least twice the diameter of cocci or short bacilli for effective 

transport to occur. Fredrickson et al. (1997) also showed that the sizes of pores within the rock, or the pore 

throat diameter may be an important factor in regulating the observed microbial activity.  

Pore-throat diameters of shale are on the average much smaller than those of sandstone (~0.2 mm for shale 

and up to 13 mm for sandstone (Krumholz, 2000) and the results of the study suggest that growth and 

metabolism of shale-bound organisms may be limited by slow diffusion of nutrients and/or by the inability 

of microbes to migrate easily through the narrow pores. Also, Zvyagintsev (1970) in an experiment with 

microbes stated that, placement of microbes in large capillaries (400 x 150 nm) increased the number of 

cells 7-10 times but in small capillaries, not only was an increase of cells observed but the size of the cells 

was reduced. In general, permeabilities of 75-100 mD are thought to be the lower limit for effective 
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microbial transport (Jenneman and Clark, 1992) but reports have indicated transportation of bacteria cells 

through cores of less than 75 mD (Hart et al. 1960, Kalish et al 1964). 

 

Nutrients 
Successful MEOR process will require the availability of essential nutrients in order for growth and 

metabolism to take place as it was recognized that there is a smooth relationship between growth rate and 

nutrient concentrations (Monod, 1949). Bacterial requirements for growth include sources of energy, 

mostly organic carbon (i.e. sugars and fatty acids) and mineral ions (e.g. iron and phosphorus). These 

nutrients are mostly transported in the aqueous phase. Fermentative bacteria use glucose, sucrose, or lactose 

containing nutrients.  

The choice of nutrients is very important since the types of bioproducts that are also produced by different 

types of bacteria are dependent on the types and concentrations and components of the nutrients provided. 

Molasses which is a byproduct of sugar in general has been employed in many of the field applications as 

the carbon source because of its perceived low price and presence of essential minerals and vitamins. The 

use of molasses as a substrate was first proposed by Updegraff and Wren (1954). In addition, some 

microbes utilizes oil as carbon source which is excellent for heavy oil production because it can reduce the 

carbon chain of heavy oil and increase the quality (Cooper et al.1980, Moses, 1991). Under anaerobic 

conditions however the use of petroleum components as food is thought to be not effective at least within a 

time frame required for economic recovery. Even though growth can occur, the growth can be very slow 

and hardly detected for several months (Moses et al. 1983).  

 

2.3 Microbe selection for MEOR 
In view of the obstacles provided by the reservoir conditions the main question to be answered is how to 

find the right candidate of bacteria to fulfill the purpose of MEOR in terms of adequate production of 

required metabolites such as acids (Clostridium sp., Enterobacter) gases (Enterobacter, Clostridium sp.) 

solvents (Clostridium acetobutylicum, Zymomomas mobile) biomass (Bacillus lichenifonnis, Xanthomonas 

campestris) biosurfactants (Acinetobacter calcoacticus, Arthrobacter paraffineus, Pseudomonas sp.) and 

biopolymers (Bacillus polymyxa, Brevibacterium viscogenes) etc. that will enhance oil recovery. Finding 

the right bacteria is not a simple task; understanding of the physico-chemical parameters in the reservoir is 

the key in selection of bacteria for the MEOR process. This will determine the choice of bacteria that will 

produce bioproducts which can increase oil recovery and withstand the extreme reservoir conditions. In 

case of MEOR, successful field experiments mostly used anaerobic bacteria (Maudgalya, 2007)  and it was 

suggested that four main sources from which bacteria species that are potential candidates for MEOR can 
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be isolated include formation waters, sediments from formation water purification plants, sludge from 

biogas operations and effluents from sugars (Lazar,1991). 

 

Earlier studies on microbial enhanced oil recovery showed that both mixed culture and pure strain of 

bacteria have been used for microbial enhanced oil recovery. For example Hitzman (1983) used pure and 

mixed cultures of Bacillus, Clostridium and Pseudomonas in 2-4% molasses in USA. Wang et al. 1993, and 

1995, used mixed enriched bacteria cultures of Bacillus, Pseudomonas, Eurobacterium, Fusobacterium, 

and Bacteriodes in a 4% residue sugar. Dostalek and Spurney (1957 and 1958) utilized injected sulphate-

reducing Desulfovibrio and hydrocarbon-utilizing Pseudomonas bacteria with nutrients (generally 

molasses). Yaranyi (1968) documented use of mixed sewage sludge bacteria cultures predominantly 

Clostridium, Pseudomonas, Desulfovibro. Karaskiewicz (1975) also documented the use of mixed 

microbial cultures of Pseudomonas, Escherichia, Arthrobacter, Mycobacterium, Micrococcus, 

Peptococcus, Bacillus, and Clostridium grown in formation water and 4 % molasses in 18 field trials in 

Poland between 1960 and 1961. Further works that employed used of mixed cultures of bacteria include 

those of Wagner et al. (1993) that employed mixed cultures of thermophilic Bacillus and Clostridium, 

mixed cultures of hydrocarbon degrading bacteria in free corn syrup and mineral salts were used by Coates 

et al. 1993, Nelson and Schneider 1993, Jenneman et al. 1995 among others. 

 

Those studies that employed the use of pure strain of bacteria include those of Wagner (1995) that used salt 

tolerant Clostridium to increase oil production in carbonate reservoir by in-situ gas and solvent production. 

Also, Grula et al. (1983) used isolated clostridia species that were able to produce solvents and gases. 

Furthermore, Senjucov et al. (1971), Ivanov et al. 1993, Nazina et al. 1994, Belyaev et al. (2004) and Jimoh 

et al. 2011,   all used  pure cultures of Clostridium tyrobutyricum in 2-6% molasses for different evaluation 

of MEOR processes. 

 

From the above it is evident that both mixed cultures and pure strain have been selected in the past for 

MEOR purposes. There is a general opinion that mixed cultures were more efficient in releasing oil than 

pure strains, however, since the characteristics of reservoirs are different the choice of right candidate will 

be determined after much information about the reservoir ecology have been gathered.  

 

2.4 Cases of MEOR Application 
There are numerous examples of cases of MEOR applications in different oilfields across the globe. To list 

all these examples will be an enormous task; however some of the best known cases in the last 40 years as 
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adapted from Lazar 2007 are shown in the Table 2. The lists are many and currently there are other on-

going MEOR projects in different parts of the world.   In the North Sea, out of the 19 enhanced oil recovery 

projects carried out by 2006, only one is microbial enhanced oil recovery (Awan et al.2008) the other 18 

projects have been or are gas enhanced oil recovery projects.  

 

In general with an average of 35 -45 %  recovery from  the best currently available technology of the 

original-oil-in-place in an oil field coupled with an annual production declines of between 4%-15% in 

mature fields, many more oil companies and agencies are starting to open their minds to the possibility of 

using MEOR permanently. It is believed that the use of MEOR will continue to grow with time as 

understanding of the basic processes involved in MEOR become stronger. 
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Table 2: Cases of MEOR field trials (adapted from Lazar, 2007) 

Country Microbial systems Nutrients Incremental of oil 

production 

References 

Bulgaria Indigenous  oil-oxidixing bacteria 

from water injection and water 

formation 

Water containing air + 

ammonium and 

phosphate ions 

+ Groudeva et al. 1993 

Canada Pure culture of Leuconostoc 

mesenteroides 

Dry sucrose + sugar beet 

molasses dissolved in 

water 

- Jack and Stehmeier 

1988 

Former East 

Germany 

Mixed cultures of 

thermophilic:Bacillus and 

Clostridium 

Molasses 2-4% with 

addition of nitrogen and 

phosphorus 

+ Wagner et  al. 1993 

USA Pure or mixed cultures of  Bacillus, 

Clostridium, and Pseudomonas 

Molasses 2-4% + Hitzman 1983, Grula et 

al. 1985, Bryant et al.  

1993, Jenneman et al. 

1995 , Dietrich et al. 

1996 

Russia Pure culture of Clostridium 

tyrobutyricum 

Molasses 2-6% with 

nitrogen and phosphorus 

salt addition 

+ Senyucov et al. 1970, 

Ivanov et al. 1993, 

Wagner et al. 1995 

China Mixed enriched bacterial cultures of 

Bacillus, Pseudomonas, Bacteroides 

etc. 

Molasses 4-6% 

Crude oil 5% 

Residue sugar 4% + 

Xanthan 3%  

+ Wang et al. 1993, 

Zhenggao et al. 2000 

Romania Adapted mixed enriched cultures; 

Clostridium, Bacillus, Pseudomonas 

Molasses 2-4% + Lazar and 

Constantinescu, 1985, 

Lazar et al. 1991,1998 
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2 Papers I-VIII 
 

As already mentioned, this thesis is presented as combination of different articles. The research was 

conducted within the field of microbial enhanced oil recovery drawing on several aspects of microbiology 

in the deep subsurface and different processes to form the basis to describe the microbial enhanced oil 

recovery in detail. The subjects covered by the articles intend to provide fundamental understanding of the 

specific problem investigated by laboratory experiments using different techniques. The papers are listed 

from Paper 1-VIII in the proceeding pages.  
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Dissolution of carbon dioxide in aqueous sodium chloride solutions and its 
relationships to salinity, pH and electrical conductivity properties 
I. A. JimohA, E. G. SøgaardA,B and Svetlana N. RudykA 

ADepartment of Biotechnology, Chemistry and Environment, Section of Chemical Engineering,  
Aalborg University, Niels Bohr Vej 8 Esbjerg, Denmark. 
BCorresponding  author. Email: egs@bio.aau.dk 
 

Abstract: In this study, dissolution of carbon dioxide in aqueous sodium chloride was investigated by FT-

IR spectroscopy simple modeling. The result from FT-IR spectrometry showed that the concentration of 

dissolved carbon dioxide is directly related to the salinity of the aqueous sodium chloride solution. 

Concomitant alterations in dissolution profile showed that at different salinity and constant temperature, the 

concentration of dissolved carbon dioxide in aqueous sodium chloride solutions decreased from 0.0554 -

0.0085 moles/L over the salinity range of 0 - 130 g/L while pH of the was reduced by about 2.0 units over 

the same salinity range. The relative variation of pH at different salinity after dissolution of carbon dioxide 

can be represented by a polynomial function which indicated a kind of salting out effect after 70 g/L.  

Model prediction between theoretical and experimental pH showed an average difference of 0.13 units. At 

a constant salinity of 30 g/L, the concentration of dissolved carbon dioxide decreases from 0.0463 - 0.0129 

moles/L when temperature was increased from 25 oC to 45 oC. Additional results showed that dissolution of 

carbon dioxide in aqueous sodium chloride has no significant effect on the electrical conductivity of the 

solution. 

 

Keywords: Salinity; dissolved CO2; infrared spectroscopy; conductivity; pH, activity coefficients. 
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Introduction 
Greenhouse gases such as carbon dioxide play an important role in efforts to address global climate change 

due to their high global warming potentials and the availability of cost-effective emission reduction 

opportunities. There has been increasing interest on the perspective of long term CO2 storage, and carbon 

dioxide dissolution into brine is one of the long term carbon dioxide storage mechanisms available. Saline 

aquifers appear to have great potential and geological properties for long term storage of carbon dioxide. 

However, it requires different data sets such as chemical, physical and thermodynamics parameters to carry 

out successful simulations of CO2 injection in aquifers of depleted oil reservoirs. Simple laboratory 

experiments on carbon dioxide dissolution in brine and other parameters can increase our knowledge to 

predict and understand the mechanisms of reaction. Sodium chloride solution was selected because the 

highest percentage of salt composition in saline aquifers consists of sodium chloride.  

 

Many works have been previously reported in the literature on carbon dioxide in brine. For example, the 

density of aqueous solutions with dissolved CO2 was calculated in experimental investigation by Parkinson 

and Nevers [12].  The first set of experimental data of density of CO2 solution at a lower CO2 concentration 

(less than 1.0% in mass fraction) at temperature of 273.25-284.15 K and pressure of 5-12.5MPa was also 

obtained in detail study by Ohsumi et al. [11]. Spycher and Pruess [16] measured the solubility of carbon 

dioxide in aqueous solutions of sodium chloride at temperature of 40 to 160 oC in up to 6 mol/kg salt 

solutions and total pressure of 10 MPa and deduced that the carbon dioxide molality is 0.42 mol/kg in pure 

water whereas it is 0.2 or 0.15 mol/kg in a 4 or 6 mol/kg solution of sodium chloride. An average difference 

of 3% for solubility and less than 0.05% for density between experimental and theoretical values was found 

for measured solubility of liquid CO2 using synthetic seawater at temperatures from 278 K to 293 K and 

pressures from 6.44 MPa to 29.49 MPa and densities of the corresponding aqueous solutions [19]. An 

improved model has been applied to calculate the CO2 solubility in pure water and aqueous NaCl solutions 
[6]. The study investigated a temperature range of 273 to 533 K and pressure of 0 to 2000 bar and showed 

that comparison of the model predictions with experimental data was within or close to experimental 

uncertainty, that was about 7% in CO2 solubility.  In terms of viscosity, it was shown that the measured the 

viscosity of CO2 - saturated brines increased with increasing mole fraction of dissolved CO2 
[3].  Moreover, 

other recent studies showed that brine conductivity with dissolved CO2 is also of interest in the context of 

electromagnetic monitoring and logging techniques [7].  The result of their work presented the effect of 

dissolved carbon dioxide on electrical conductivity and viscosity of aqueous sodium chloride solutions of 

varying salinity (20, 80, and 160) g/L and concluded that the variations of conductivity and viscosity as a 

function of temperature up to 100 oC are not modified by the presence of CO2. 
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From the above, it is evident that a lot of work has been carried out regarding the solubility of carbon 

dioxide in aqueous solutions at different salinity range, pressure and temperature. It is not the object of this 

paper to describe the basics of solubility of CO2 in aqueous sodium chloride solutions as details has been 

described elsewhere [14, 16].  However, there is a need to understand how specific parameters such as pH and 

electrical conductivity vary during quick saturation of brine with carbon dioxide.  

  

The aim of this investigation is therefore to study a quick saturation of brine with carbon dioxide and 

relationship that exists between these parameters and dissolved carbon dioxide in solutions over salinity 

range 0-130 g/L. Even though a lot of work has been done regarding solubility of carbon dioxide in brine, 

few have mentioned what happened during quick saturation of brine with carbon dioxide and how it relates 

to pH changes and electrical conductivity.  It is therefore essential to determine fully the effect of dissolved 

CO2 on these parameters because the injection of CO2 into saline aquifers involves multiphase flow in 

porous media and mass-transfer (dissolution) at the CO2-brine interface which requires multi-dimensional 

solutions and requires additional knowledge to widen our understanding of this phenomenon especially 

during enhanced oil recovery by CO2 injection. 

Theoretical background 
In order to check if the pH values obtained after the dissolution of carbon dioxide in aqueous sodium 

chloride solution is expected, the thermodynamics of the dissociation was calculated using the relationship 

below. The approximation we employed is that carbon is mostly present as hydrogencarbonate or carbon 

dioxide coming from carbon dioxide dissolution.  
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aK  is the thermodynamics dissociation constants and a is the activity for each species in the reaction. 

However the amount of H2CO3 is negligible and hence the expression can be re-arranged to: 
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�            (2)  

Since we can assume 3( ) ( )a H a HCO� �� ,  
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2( ) ( )aa H K aCO� �  

and therefore 
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apK  is acid dissociation constant and value of 6.35[1] for carbonic acid was used in the calculation. aCO2 is 

the activity of CO2 added to aqueous sodium chloride at different salinities. The apK  value used is 

independent of salinity since this has been taken care of by the activity coefficient.  

Activities of dissolved species can be written in terms of mole concentrations by use of an activity 
coefficient �  

For example, the CO2 activity can be written as shown in equation 4 [15]. 

2 2
*CO COa m��                  (4) 

where 
2COm is the  concentration of CO2 in molality and �

 
is the activity coefficient.   

The activity coefficient can be represented as a function of ionic strength of aqueous solution by Debye 

Hückel relationship as shown in equation 5[9]. However because equation 5 is only suitable for solutions of 

low ionic strength we have used the extended Debye Hückel equation as shown in equation 6 below. 

1/2

1/2
log( )

1

A z z I

B I
�

�
� �

� �
�

                             (5) 

A and B are constants with value of 0.509 and 3.29 at 25 oC. I  is the ionic strength in concentration units 

of /mol L , z is the  charge number of an ion while �  is related to the size of the ion.        

20.51
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1 ( / 305)

z I

I
�

�
�

�
                         (6) 

where �  is the activity coefficient of an ion charge z�  and size �  (picometers) in an aqueous solution of 

ionic strength I at 25 oC.  

At molality greater than 1 mol kg-1 the extended Debye Hückel also fails, thus Pitzer’s equation which is a 

viral expansion of excess Gibbs energy that is valid up to molality �6 mol kg-1 can be used [13]. Pitzer’s 

equation for calculating the mean ionic activity coefficient, ��  for 1:1 electrolyte is given by:  

��� ���� yyy Cmmf 2ln ��                                                                (7) 
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�� CC 2/3��
 

M is the molality and equals the ionic strength,
��f ,

��� ,
��C are virial coefficients, while 

o� ,
1� ,� and 

b are coefficients related to the virial  coefficients and ionic strength[13]. The activity coefficients used in 

this study were derived from Pitzer’s equations above.  

Experimental methods 
Aqueous sodium chloride solution of different salinity was prepared by accurately weighing specific 

amount of NaCl and dissolve in 1000 mL of deionised water (w/v % as molalities). The composition of the 

sodium chloride salt used for the experiment is shown in Table 1 while Table 2 presents the composition of 

the seawater used for comparison. Magnetic stirrer was employed to completely dissolve the salt to have a 

homogenized solution. The next part of the experiment was to measure pH and conductivity of the prepared 

solutions at different temperature.  For carbon dioxide injection, 80 mL of a NaCl solution was transferred 

to a 100 mL reactor of the SFE -CO2 apparatus (Fig. 1), for injection with carbon dioxide at temperature of 

25 oC and pressure of 100 bar (10MPa). The same procedure was repeated for all the samples at different 

salinity. The combined uncertainties of the set point pressure and temperature were 0.2 MPa and 1.0 oC.  

The injection time was 20 min at a flow rate of approximately 20 mL.min-1 at a pressure of 10 MPa (± 

0.1MPa). Water and carbon dioxide form two phase mixtures immediately after injections which become 

single liquid phase when slowly raising pressure to set point. Constant pressure was maintained to 

equilibrate the system. For measurements a waiting period of time of about 1 h was observed after 

depressurizing the mixture to 1 bar. Since the gas phase formed at the top inside the reactor will keep the 

dissolved gas in solution and prevent escape of CO2 it is can be assumed that the amount of CO2 loss is 

negligible and equilibrium is reached. 

 

1 mL of liquid sample at different salinity (containing dissolved carbon dioxide) was pippeted for spectral 

analysis with FT-IR. (The measurements were performed after depressurizing the mixture to 1 bar and at 

temperature of 25 oC).  The spectroscopic measurements were performed using model FTIR spectrometer 

(Nicolet Avatar 370, Thermo Electron, USA). Each spectrum was recorded in the region of 4000-650 cm-1 

by an average of 32 scans at a resolution of 4 cm-1. For measurement of carbon dioxide with FTIR, it is 

necessary to purge the FTIR to obtain a good background value because of the sensitivity of FTIR to 

carbon dioxide in air. The method of peak fitting was used to determine the peak. The peak area at 2343 

cm-2 measured to a baseline drawn between 2337.4 and 2347.9 as determined was used to establish the 

calibration peak. Carbon dioxide standards containing 1.16 and 2.14 g/l of CO2 were used for calibration of 

the spectra. This method for quantification of concentration of CO2 with FT-IR spectrometer has the 
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advantage of requiring few calibration samples.  Estimation of the percentage error in the measurements 

was calculated to be 3.85%. 

 

 

          Fig. 1.   Schematic diagram of supercritical reactor Spe-ed SFE 

 

pH and electrical conductivity of the prepared solutions were measured before and after injection of carbon 

dioxide (same condition above).  This was achieved by use of pH meter (Model: PHM 210, Radiometer 

Analytical) and conductivity meter (Model: CDM 210, Radiometer Analytical); the two instruments were 

calibrated prior to taking measurements. The pH meter was calibrated. The electrode was rinsed with 

distilled water from a wash bottle into an empty beaker before (in dry condition) immersing it into new 

solution. This was repeated every time electrode was moved from one solution to another in order to 

minimize contamination.  Similarly, the calibration for electrical conductivity meter was carried out using a 

standard calibration method. 
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The activity coefficient for CO2 in NaCl was also calculated using Pitzer’s equation given in equation 7. 

The parameters used in the Pitzer’s equation were taken from Campbell and Bhatnagar [5] and are shown in 

Table 3. 

 

Table 1.   Composition of the sodium chloride salt use for the experiment 

Salt Composition % 
 

Sodium 
chloride 

NaCl  Ca Mg K SO4 Moisture 
 
99.980 

 
0.001 

 
0.001 

 
0.006 

 
0.009 

 
0.001 

 

Table 2.   Composition of the seawater use for the experiment 

Sample Composition % 
 

Seawater 
NaCl Ca Mg K Br SO4 

 
94.18 

 
0.013 

 
0.036 

 
0.025 

 
0.0032 

 
2.00 

 

Table 3.   Parameters for NaCl used in equation 7 

Temp, oC )(o�  
)1(�  

)(�C  �  b  

25 0.0388 0.6522 0.0039 2 1.2 

 

 

Results and discussion 
The effects of CO2 dissolution on the relationship of the measured parameters; pH-conductivity at different 

salinities and temperature 25 oC were investigated. Fig. 2 shows the obtained spectra at a higher frame scale 

with zero line for all the spectra obtained for range of salinity (0-130 g/L). From the figure, it can be 

observed that the absorbance is directly related to concentration which again is related to the salinity of the 

solution.   

 

The result for the concentration of dissolved carbon dioxide in aqueous sodium chloride solutions is 

presented in Fig. 3. From the plot of the results, it is indicated that the concentration of CO2 decreases with 

increased salinity i.e. from 0.055 - 0.0085 moles/L for salinity range of 0-130 g/L. This is because the 

amount of gas dissolved decreases because more water molecules are immobilized by the salt ions 

suggesting a kind of salting out effect [8, 14, 17]. This means that the equilibrium is shifted toward the left 
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where we can assume that the species present represents the sum of both H2CO3 itself and dissolved CO2 as 

shown in equation 8.  

 

� � � � � � � � � � � �aqaqaqlaqg HCOHCOHOHCOCO �� ����� 33222
         (8) 

 

Therefore we can deduce the following simple relationship for measured dissolved CO2 and salinity 

(equation 9) with a R2 value of 0.95.  

 

056.00003.0][ 2 ��� SCO                                      (9) 

where S  is the salinity of the aqueous solution. 

 

This equation showed that salinity  play a major role in the amount of carbon dioxide and the species of 

CO2 available for chemical reaction when carbon dioxide is dissolved in water and can therefore be inferred 

to be a significant factor in controlling the amount of dissolved CO2 present in aqueous salt solutions.  

 

 

Fig. 2.   FT-IR spectra of the sodium chloride solution with peak area for dissolved CO2 
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Fig. 3.   Concentration of dissolved CO2 at different salinity   

Measurements were taken of pH and electrical conductivity to see the variation in their relationships after 

injecting the sodium chloride solutions with carbon dioxide. Fig. 4 shows that the measured pH of the 

aqueous solutions (0-130 g/L)  before the injection of carbon dioxide was 5.13-6.25, however the values of 

the measured pH was 3.37-3.98 after injection due dissolved CO2 indicating that there is a pH difference of 

0.61 between salinity 0-130 g/L after carbon dioxide dissolution. The specie of CO2 that will exist when 

dissolved in water varies in proportion based on water temperature, salinity and pressure [2].  In this case, it 

evident that carbonic acid (H2CO3 + CO2) concentration is greater at low salinity and decreases with 

increasing salinity as indicated by value of pH 3.37-3.98 measured for 0-130 g/L. It is hard to find 

experimental data under the same condition from the literature for comparison; however data from Barner 

et al. [4] showed a final pH value of 3.35 for 1 Molar of NaCl solution at pressure of 10 MPa and 

temperature of 27 oC after dissolution of CO2. In our experiment the result indicated that the final pH of 1 

Molar NaCl solution at 10 MPa and 25 oC when extrapolated from the graph will be 3.6. The calculated 

concentration of hydrogencarbonate (Fig. 5) decreased with increasing salinity with a less pronounced 

change over the range of salinity measured. 
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Fig. 4.   pH before and after injection of carbon dioxide 

 

Fig. 5.   Concentration of hydrogencarbonate at different salinity after dissolution of carbon dioxide 

The relative variation in pH and electrical conductivity measurement before and after injection of carbon 

dioxide to aqueous solutions at different salinity was calculated and plotted against the salinity of the 

medium (Fig. 6).  A polynomial relationship was observed between the relative variation of pH and salinity 

after dissolution of carbon dioxide that reaches maximum value at 70 g/L and started falling as the salinity 

increases (equation 10). The relationship indicated a kind of salting out effect after salinity 70 g/L, which 

tries to neutralize hydrogencarbonate.  
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48.00025.000001.0 2 ����
�

SS
pH

pH                   (10) 

where S is the salinity in g/L. 

 

Fig. 6.   Relative variation of pH with salinity after carbon dioxide injection 

In order to check if the pH values obtained after the dissolution of carbon dioxide in aqueous sodium 

chloride solution is expected, the experimental pH was compared with theoretical pH. The theoretical pH 

was calculated using equation 3. The value of activity coefficient at each salinity (measured as molality) 

used was derived from Pitzer’s equation given in equation 7. The result obtained is presented in Fig. 6. The 

plot shows that at 25 oC deviation exists between the two even though the trends were similar. The 

theoretical and experimental pH differ by average of 0.17 units  at salinity < 70 g/L and by an average of 

0.10 units at salinity > 70 g/L suggesting a closer agreement at high salinity. Even though, there is an 

observed deviation from experimental pH that can be due to uncertainty in activity coefficients calculation 

(i.e. uncertainty in the magnitude of the ionic strength correction). The theoretical pH derived from Pitzer’s 

activity coefficients can be used to approximate the changes in pH over the ionic strength range in this 

study. 
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Fig. 7.   Comparison of theoretical pH derived and experimental pH after dissolution of carbon dioxide in 

aqueous sodium chloride solutions 

Fig. 8 shows the results for electrical conductivity relationship with salinity. The electrical conductivity is 

relatively unchanged before and after injection of carbon dioxide. The dissolved CO2 probably do not affect 

the degree of ionization significantly, or since conductivity is directly related to salinity, the ions from the 

dissolved salts control the conductivity, thus the negligible effect of dissolved CO2 on the conductivity of 

the solution. This observation confirms the earlier findings of dissolved CO2 and electrical conductivity 

relationship in aqueous sodium chloride solution reported by Fleury and Deschamps [7]. 

 

Fig. 8.   Conductivity and salinity relationship before and after injection of carbon dioxide 
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The variation of carbon dioxide solubility with temperature at constant salinity is shown in Fig. 9. Salinity 

30 g/L was selected because it is close to the salinity of seawater. It is evident from the plot that the 

concentration of dissolved carbon dioxide decreases with increasing temperature. The dissolution of CO2 

decreases with increasing temperature this suggests that less and less carbon dioxide is in aqueous solution 

at constant salinity when temperature was increased from 25 oC to 45 oC. Temperature is known to affect 

the solubility of CO2 in brine [10, 18]. The relationship between the amount of dissolved CO2 and temperature 

is given by equation 11 with a R2 value of 0.97. 

 

� � 09.0002.02 ��� TCO                                                              (11) 

Finally, the result of the dissolved CO2 in aqueous sodium chloride at a specific salinity was compared with 

that dissolved in seawater; the composition of the seawater used is given in Table 2. The concentration of 

dissolved CO2 in seawater of salinity 22 g/L was found to be around 23.07 mg/L. This amount is equivalent 

to about 0.00055 moles/L with measured pH of 7.80 at a temperature of 25 oC and represents the total 

dissolved carbon dioxide. At 1 atm the theoretical concentration of dissolved CO2 in seawater is about 

0.00882 moles/L at 25 oC. The gases dissolved in sea water are known to be in constant equilibrium with 

the atmosphere but their relative concentrations depend on each gas solubility, which depends also on 

salinity and temperature. The value is less than the value obtained when compared to extrapolated aqueous 

solution of 22 g/L injected CO2 at 10 MPa in our experiment (0.05 moles/L) probably because pressure was 

100 times greater and the total dissolved inorganic carbon load of seawater varies over time as dissolved 

CO2 is continuously consumed by the production of carbonate and organic carbon sediments [4]. 
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Fig. 9.   Carbon dioxide concentration as function of temperature at salinity 30 g/L 

Conclusion 
Laboratory investigation of dissolution of CO2 in aqueous sodium chloride solutions and effect on pH and 

electrical conductivity was investigated. The experiments were performed with salinity range of 0-130 g/L 

that fall within the range of many oil reservoirs. It was found that concentration of dissolved carbon dioxide 

decreased with increasing salinity. Also presence of CO2 alters pH of aqueous sodium chloride solutions 

considerably and there was agreement between the experimental pH and the theoretical pH calculated using 

the activity coefficients derived with Pitzer’s equation but with a small deviation. Additionally, the 

relationships between the relative variation in pH and salinity with dissolved CO2 can be represented by a 

simple polynomial function that reached a maximum at 70 g/L before decreasing at higher salinities which 

suggested a kind of salting out effect.  However there was no appreciable effect on the electrical 

conductivity of the solution after dissolution of CO2 in brine. This confirms previous observation because 

the dissolved CO2 probably do not affect the degree of ionization significantly since the dissolved salts 

control the conductivity of the aqueous solution.  
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Abstract 

Basic knowledge of the relationships between environmental and physical parameters such as pH, electrical 

conductivity, salinity and temperature are essentials to successful applications of many industrial and 

natural processes. In this study the dissolution of sodium chloride in water has been treated physico-

chemically and the relationship between pH, electrical conductivity, salinity and temperature in aqueous 

sodium chloride were investigated. The results showed that the pH of aqueous sodium chloride solutions 

increases with increasing salinity. Within the salinity range of 0-130 g/L, measured pH of the aqueous 

sodium chloride solution can be increased by one unit with a gradient of 0.005/ g.L-1.  This effect on pH 

was due to salt effect on activity coefficient which also implies non ideality for aqueous solution of varying 

salinity. The average gradient for increase in electrical conductivity with increase salinity at a constant 

temperature was approximately 0.009 mS.cm-1.gL-1. Comparison of theoretical and measured data showed 

a deviation of 0.48 and 5.7 for pH and electrical conductivity respectively. Additionally, regression analysis 

indicated that simple empirical relationships can quantify the observed relationships between the variables 

of pH and electrical conductivity and independent factors of salinity and temperature. These simple models 

can be useful in many different applications. 

Keywords: Desalination process, salinity, pH, electrical conductivity, temperature, relationships 
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1. Introduction 
An accurate understanding of parameters such as pH, temperature, salinity and electrical conductivity is 

fundamental to many applications especially water and environmental monitoring. In desalination process, 

the end result is clean and useful water, there are several aspects of the process which need to be carefully 

controlled and monitored so as not to negatively impact on the environment. For example, in reverse 

osmosis desalination process, various important parameters such as pH and conductivity must be controlled 

[1]. Also, the solid-water interface plays an important role in biology, environment, and desalination 

technology since the acidity or alkalinity of the surrounding aqueous medium measured by pH is significant 

because it controls the extent of ionization, enzyme function and oxidation potential [2, 13]. It is expected 

that all these knowledge can provide an insight to identify the factors that constrain use of such applications 

in subsurface environments, thereby providing a set of criteria by which the suitable models can be 

assessed because many variables can influence seawater reverse osmosis design [15]. 

Moreover, electrical conductivity is widely used in monitoring the mixing of fresh water and saline water, 

separating stream hydrographs, and geophysical mapping of contaminated ground water [9]. The amount of 

dissolved salt can affect the quality of water and also have critical influence on the aquatic life. 

Additionally, the performance characteristics of fluid system used in analyses to arrive at the optimum 

system designs in desalination plant depends on the feedwater salinities that has a strong relationship with 

conductivity [15].   Earlier work dated back to 1934 when Thomas et al. [24] measured the electrical 

conductivity of sea water. Calles and Calles 1990 [5] worked on method for temperature correction of 

electrical conductivity data based on regression analysis of the actual temperature/conductivity relationship 

of a number of water samples from natural streams showed  that the generally used formulae for 

temperature correction give corrected results that deviate considerably from the values determined by 

actual measurements. The error increases with decreasing water temperature and may result in data that 

deviate by as much as 20 per cent from the true values.  Patience et al. [19] reported that the limiting 

equivalent conductance Ao of NaCl increases linearly with decreasing density from 0.75 to 0.3 g-cm–1 and 

also with increasing temperature from 100 to 350 °C, and Vollmer et al. [25] develop a new algorithm to 

calculate salinity from in-situ conductivity measurements. Hayasi [9], working with natural waters with 

vastly different compositions and salinities showed that electrical conductivity - temperature relation of all 

water samples can be well represented by the linear equation with a common compensation factor in a 

temperature range of 0-30 oC. 

There are not so many studies dedicated to pH variation in aqueous sodium chloride even though there is 

large volume of work related to influence of pH on different chemical parameters.  Illustrations of work 
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related to pH investigation in aqueous salt solutions include those of Bada [4] who worked on the pKa of 

weak acid as a function of temperature and ionic strength using a pH meter. There result indicated this 

technique can be used to give good estimates of temperature variation of the pKa of most weak acids 

however due to the liquid junction potential problems involved in the use of the pH meter, the result should 

not be considered as nearly as accurate as those determined from electromotive cells measurements. 

Marcus [17], also determine pH in highly saline waters and recommended that the pH of highly saline 

waters should be measured with a cell of type (l), i.e. with a glass electrode responsive to hydrogen ions 

and a reference electrode (such as calomel) incorporating a salt bridge (3.5 mol/L KC1) that provides a 

liquid junction. 

 

The work of Malinowski [16], showed the methods for calculating the pH of aqueous solutions of salts of 

monoprotic acids and bases and found out that the simultaneous-equation method has the capability to 

solve a wide variety of complicated chemical equilibrium problems including the pH of aqueous solutions 

of salt.  All these studies pointed to importance of these parameters especially in the field of water and 

environmental sciences.  However, most of the earlier works cover low salinity range, study each parameter 

differently, or did not study the relationships that existed between pH and electrical conductivity and 

salinity together over the range of salinities presented in this study.  

It is the object of this investigation to study the relationship between pH, conductivity, temperature in 

aqueous high salinity solutions of sodium chloride (0-130 g/L) and different range of temperature (13- 45 
oC).  The salinity range was selected because it covered the range of salinity for different seawaters that can 

be exploited in desalination processes. 

1.1 Theory 
The dissociation of salt in water can be written as shown in equation 1[4].  

HA H A� ���                      (1) 

The dissociation constant for eqn. (1) is given by 

 

� �
H A

a
HA

H Aa a H A
K

a HA HA

� �
�

� �

� � � �� � � �� � � �� �         (2) 

where a is the activity of the species H � , A� and HA in aqueous solution and � is the respective activitiy 

coefficients and the bracket refers to molar concentrations. 
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The pH can be rewritten from equation 2 as  

log log log
A A A

pKa pH pKa
HA HA HA

� �
� �

� � �� �� �� � � � �       (3) 

When � �A HA�� � �� � , pKa pH� and log /pKa pH A HA� ��� �  

In ionic solutions, the interactions between ions are very strong and thus the approximation that solute 

activities can be replaced by their molalities does not hold any longer. The activity a is related to the 

molality m  by the equation shown below [3]: 

*
m

a
m

� ��            (4) 

where is m� is the molality of standard state hypothetical solution, the activity coefficient � depends on the 

composition, molality and temperature of the solution. As the solution approaches idealities at low 

molalities, the activity coefficient tends towards 1:  

As shown by Debye-Hückel theory [7] activity coefficient can be used explain the departures from ideality 

in ionic solutions as a result of long range and strength of the Columbic interaction between ions [20]. At 

very low concentrations, the activity coefficient can be calculated from the Debye-Hückel limiting law [3], 

to see how it varies with salinity. 

� �1/2
log /z z A I m�� � �� � �                                                                                                   (5) 

where A =0.509 for and aqueous solution at 25 oC, �m is the molality, �z  and �z are the positive and 

negative charge numbers and I is the ionic strength of the solution. The ionic strength I  of the solution is 

given by: 

21

2 i i
i

I z m� �             (6) 

where iz is the charge number of an ion (positive for cations and negative for anions) and im is the molality. 

When the ionic strength of the solution is too high for the limiting law to be valid, the activity coefficient 

may be estimated from the extended Debye-Hückel law [3]: 
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1/2

1/2

( / )
log

1 ( / )

A z z I m

B I m
�

�
� �

� �� �
�

         (7) 

where B is a dimensionless constant. Other parameters in the equation have been defined above. 

At molality greater than 1 mol kg-1 the extended also fails, thus Pitzer’s equation that is valid up to molality 

�6 mol kg-1 can be used. Pitzer’s equations [21] for the activity coefficient of the electrolyte in a solution 

of molality m and ionic strength I is given by 

��� ���� yyy Cmmf 2ln ��                                                                                          (8) 

m is the molality and equals the ionic strength, ��f , ��� ,
��C are virial coefficients. The activity 

coefficient used in this study was derived from experimental values of Rumpf et al. [22] that was based on 

the Pitzer’s equation described above. 

2. Materials and methods 

2.1 Sample preparation 
The first stage involves preparation of solutions of sodium chloride (99.9 0% NaCl) with different salinity. 

The method adopted was accurately weighing specific amount of sodium chloride i.e. 10, 20, 30, 40 g etc. 

using a mass balance and dissolve in 1000 mL of deionised water (w/v% as molalities) from Denmark. 

Magnetic stirrer was employed to completely dissolve the salt to have a homogenized solution. The specific 

temperatures were achieved by placing the sample flask in water bath until a constant value was reached for 

each level of temperature. For lower temperatures below room temperature of 25 oC, ice cubes were added 

to the water bath and regulated to � 0.10 oC. Measurement for higher temperature was carried out with the 

aid of water bath with an in-built electric heater also regulated to � 0.10 oC. Potential influence of 

dissolved CO2 in the water samples was reduced to minimal by boiling off the dissolved gas in the 

demineralized water used for the experiment before preparing the aqueous solutions for the experiment in 

glass where thus atmospheric CO2 does not equilibrate with the solutions. The calculated standard deviation 

between two set of measurements of pH and electrical conductivity for the range of salinity and 

temperature measured are 0.023 and 0.026 respectively. The first set of demineralized water used is 

referred to as water A (pH = 5.49 at 0 g/L and temperature 25 oC) while water B (pH = 6.13 at temperature 

25 oC) was a distilled water used for comparison of measured parameters. 

2.2 Calibration and measurements 
The next part of the experiment was to measure  pH and electrical conductivity of the prepared aqueous 

solutions at different temperature.   
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2.3	pH	measurement	
This was achieved by use of pH meter (Model: PHM 210) and conductivity meter (Model: CDM 210); the 

two instruments were calibrated prior to taking measurements. Calibration of  pH meter was done by 

putting the electrode into pH 4.0 and pH 7.00 buffer solutions. The electrode was rinsed with distilled water 

from a wash bottle into an empty beaker before immersing it into new solution. This was done every time 

electrode is moved from one solution to another in order to minimize contamination.  pH meter was 

automated for temperature correction and the electrode and solution was allowed to equilibrate thermally 

before measurements were taken. The experiment was repeated two times and the average was found.  

2.4 Electrical conductivity measurement 
The calibration for electrical conductivity meter was done with solution of known salinity. The measuring 

bottle was rinsed with demineralized water. 100 mL of the calibration solution was put into the measuring 

bottle and the conductivity meter was put into the solution. Time was allowed for the solution to adjust to 

the temperature.  The conductivity meter was adjusted until the display reads the same salinity as the 

calibration solution. For the electrical conductivity, linear temperature compensation for electrical 

conductivity is normally assumed. The linear temperature compensation assumed that the temperature 

coefficient of variation α has the same value for all measurements of temperature [12].  Generally over a 

limited temperature range, the way temperature affect conductivity can be modelled linearly using the 

equation of Sorensen and Glass [23]: 

25[1 ( 25)]tEC EC a t� � �                                                                                                            (9) 

where tEC  is electrical conductivity at temperature t (oC), 25EC is electrical conductivity at 25oC, and a (

1o C � ) is a temperatures compensation factor and can be taken as approximately 2% of electrical 

conductivity per 1 oC of temperature [9].    

2.5 Derivation of activity coefficient values 
The mean activity coefficient of each solution was derived from experimental results of Rumpf et al.[22] 

for mean ionic activity coefficient for NaCl at 25 oC and the plot of the experimental result of where the 

values of activity coefficient used in this study was extrapolated is shown in Figure 1. This method of 

extrapolation offers a quick way of deriving activity coefficient for high salinity aqueous solutions because 

the parameters of equations for Pitzer’s equations for specific conditions are hard to come by and also 

Pitzer’s equation can explains variation in ionic activity for aqueous sodium chloride for molality 

16.0molkg ��   which adequately covers the molality range for our experiment.  
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Fig. 1.  Plot for extrapolation of activity coefficients values used in this study 

2.6 Data analysis 
Data collected were subjected to statistical analysis using Statgraphics Plus®. Multifactor Anova was used 

to test differences while general linear model (GLM) was used to establish the relationships between 

different parameters.  

3. Results  
The derived values for mean ionic activity coefficient for 0-130 g/L salinity in our experiment are given in 

Table 1.  Tables 2 and 3 showed the results of the measured parameters.  

Table 1. Mean ionic activity coefficient for NaCl at 25 oC as derived from Rumpf et al.[20] experimental 

result. 

Salinity g/l) Molality mol/kg Y± 

0 0.00 1.000 

10 0.171 0.735 

20 0.342 0.706 

30 0.513 0.685 

40 0.684 0.678 

50 0.856 0.663 

60 1.027 0.650 

70 1.198 0.660 

80 1.369 0.670 

90 1.540 0.675 

100 1.711 0.680 

110 1.882 0.685 

120 2.053 0.690 

130 2.225 0.700 
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Table 2. pH measurement at different salinity and temperature. 

                                                                             pH/Temperature oC 
Salinity 

(g/L) 13 oC 18 oC 23 oC 25 oC 28 oC 33 oC 38 oC 43 oC 45 oC 

0 5.84 5.72 5.51 5.49 5.31 5.22 5.10 4.99 4.89 
10 6.31 6.18 5.96 5.93 5.77 5.67 5.56 5.46 5.35 
20 6.34 6.22 6.01 5.97 5.81 5.72 5.60 5.49 5.40 
30 6.48 6.36 6.16 6.12 5.95 5.87 5.75 5.64 5.54 
40 6.51 6.39 6.18 6.14 5.98 5.88 5.77 5.66 5.56 
50 6.55 6.43 6.22 6.18 6.01 5.93 5.81 5.70 5.60 
60 6.57 6.45 6.25 6.20 6.04 5.95 5.83 5.73 5.63 
70 6.67 6.56 6.36 6.31 6.15 6.06 5.94 5.82 5.73 
80 6.74 6.62 6.41 6.36 6.21 6.12 6.00 5.90 5.79 
90 6.76 6.64 6.44 6.39 6.23 6.14 6.02 5.91 5.81 
100 6.79 6.67 6.46 6.42 6.26 6.17 6.05 5.94 5.84 
110 6.85 6.73 6.52 6.46 6.31 6.23 6.11 6.00 5.90 
120 6.92 6.80 6.59 6.50 6.38 6.30 6.18 6.07 5.97 
130 6.96 6.84 6.64 6.55 6.42 6.34 6.23 6.10 6.01 

 

 

Table 3. Electrical conductivity measurements at different salinity and temperature 

                                                               E. Conductivity (mS/cm)/Temperature (oC) 
Salinity 

(g/L) 13oC 18 oC 23 oC 25 oC 28 oC 33 oC 38 oC 43 oC 45 oC 

0 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.12 0.13 

10 12.84 14.53 16.92 17.60 18.59 19.94 21.47 23.32 23.99 

20 24.02 27,14 31.63 32.87 34.77 37.28 40.35 43.60 44.87 

30 35.79 40.50 47.11 48.99 51.81 55.57 59.81 64.99 66.89 

40 44.76 50.65 58.90 61.63 66.76 69.50 74.59 81.28 83.83 

50 55.48. 62.79 73.10 75.21 78.33 82.14 87.18 94.74 100.67 

60 64.37 70.84 79.67 82.07 86.18 89.94 93.31 101.88 112.27 

70 72.09 79.52 84.79 86.58 92.29 96.86 102.68 112.82 121.61 

80 80.56 86.18 95.85 98.08 104.60 110.04 117.93 124.19 131.30 

90 88.54 95.19 106.48 109.13 116.17 122.47 130.66 140.78 146.43 

100 96.72 106.12 117.20 120.20 127.42 135.48 144.08 154.45 161.62 

110 102.60 115.05 125.15 128.50 136.52 144.30 155.40 161.30 172.72 

120 109.50 120.92 134.40 138.17 146.45 150.00 166.33 173.82 185.13 

130 116.43 128.73 143.15 147.27 155.80 165.77 177.95 185.41 198.56 
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From the results of the experiments for water A, it was observed that there exist significant relationships 

between the measured parameters; these results are presented below.   The output shows the results of 

fitting a linear model to describe the relationship between pH and salinity (Figure 2). The result showed 

that pH increases with salinity at constant temperature almost as a linear function. The mean difference in 

pH between 0 g/L and 130 g/L of salinities for range of temperatures is approximately 1.0 for all 

temperatures.  

 

Fig. 2. Variation of pH with salinity  

The gradient of the increase of pH with salinity at different temperature was also calculated, the gradient 

ranged between 0.0055 and 0.0063 /g.L-1 with a mean gradient of 0.005/ g.L-1 for the range of salinity and 

temperature measured for this study. The equation of the fitted model between pH and salinity is shown in 

equation 10. 

pH=5.72+0.0065*Salinity         (10) 

Figure 3 shows the variation of pH with temperature. A negative correlation was detected between pH and 

temperature as pH values decreased with increased temperature. The average difference in pH for each 

salinity level when temperature was increased from 13- 43 oC was 0.94. The relationship between  pH and 

temperature is represented by equation 11.  

pH =6.95-0.029*Temperature         (11) 
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Fig. 3. Variation of pH with temperature  

The correlation coefficient equals -0.69 which indicated a moderately strong negative relationship between 

pH and temperature. 

In Figure 4 the plot of the relationship between electrical conductivity and salinity is shown. From the plot 

it is indicated that electrical conductivity as expected increases as salinity increases for different 

temperature. The variation of the solution electrical conductivity is linked to the variation in ionic strength. 

The rate of increase at salinity range of 70-130 g/L appears to be bigger when compared to salinity range of 

0- 60 g/L. The correlation coefficient was 0.95 that suggest relatively strong relationships between the two 

variables. The linear model that described the relationship is given in equation 12.  

 E.Conductivity = 11.37 + 1.12*Salinity         (12) 

 

Fig. 4.  Variation of electrical conductivity with salinity  

In Figure 5, the plot for conductivity against temperature is shown at different salinity.  The correlation 

coefficient equals 0.260 that suggested a relatively weak relationship between the variables and proposed 

that electrical conductivity was influenced by salinity rather than temperature of the medium. Additionally, 
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at salinities greater than 80 g/L, the curves seems to converge, an indication that increment in conductivity 

values with temperature is not as high as observed with lower salinities.  

 

Fig. 5. Variation of electrical conductivity with temperature at different salinity 

If the changes in pH and conductivity were related (Figure 6), the result showed that there was a positive 

correlation between the two parameters which however was a weak relationship. As pH increases the 

electrical conductivity showed a little increase as well. However at a value of electrical conductivity greater 

than 80 mS/cm, the lines of pH started converging and no appreciable increase in electrical conductivity 

was observed. 

 

Fig. 6. Plot of pH and electrical conductivity relationship 

A multifactor analysis of variance (ANOVA) was used to test the relationship between the measured 

variables. The results of this regression analysis with pH and conductivity as dependent variables and 

salinity and temperature as quantitative factors are shown in Tables 4 and 5. The output shows the results of 

fitting a multiple linear regression model to describe the relationship between pH and two independent 

variables of salinity and temperature. The equation of the fitted model was estimated as shown in equation 

13. 
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pH = 6.52235 + 0.00655249*Salinity – 0.0289974*Temp      (13) 

Similarly for electrical conductivity (EC), the result of the multiple linear regressions with salinity and 

temperature as independent variables showed that the equation of the fitted model can be represented by 

equation 14. 

E.Conductivity = -40.2958 + 1.29025*Salinity + 1.7251*Temp     (14) 

The two results of the multifactor regression suggested the significant relationships between the variables 

(pH and electrical conductivity) and independent factors of salinity and temperature based on the values of 

R2 (0.94 and 0.99) and the P- values (<0.01) as shown in Tables 4 and 5. 

Table 4. Analysis of variance for pH 

Source Sum of squares Df Mean 
square 

F-ratio P-value 

Model 16.2042 2 8.10212 650.38 0.0000 
Residual 1.35786 109 0.0124575   

Total (Corr.) 17.5621 111   
 

 

Type III sum of squares      
Source Sum of squares Df Mean 

square 
F-ratio P-value 

Salinity 7.82005 1 7.82005 627.74 0.0000 
Temp 8.3842 1 8.3842 673.03 0.0000 

Residual 1.35786 109 0.0124   
Total (corrected) 17.5621 111  

 
  

R-squared-92.26% 
Mean absolute error-0.076% 
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Table 5. Analysis of variance for electrical conductivity. 

Source Sum of squares Df Mean 
square 

F-ratio P-value 

Model 246215 2 123107 1844.58 0.0000 
Residual 7274.67 109 66.7401   

Total (Corr.) 253490 111   
 

 

Type III sum of squares      
Source Sum of squares Df Mean 

square 
F-ratio P-value 

Salinity 229048 1 229048 3431.94 0.0000 
Temp 17167.1 1 17167.1 257.22 0.0000 

Residual 7274.67 109 66.7401   
Total (corrected) 253490 111  

 
  

R-squared- 97.13% 
Mean absolute error - 6.01% 

     

 

The deviation between the measured pH and theoretical pH calculated with equation 3 was checked at 25 
oC and similarly for measured conductivity and the theoretical electrical conductivity for the measured 

temperatures using equation 9.  The data showed that the trend of both theoretical and measured pH were 

the same however with a mean deviation of 0.48 between the two values (Figure 7).  

	
Fig. 7.  Comparison of measured pH and theoretical pH at 25 oC 

For electrical conductivity as shown in Figure 8, it was found that the mean deviation between the two set 

of data was approximately 5.7.  
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Fig. 8. Comparison of measured and theoretical electrical conductivity 

The relationships were evaluated further by making surface plots based on general linear models and these 

were used to compare the variation of the measured variables in water A and B. The results indicated that 

for pH variation with predictive factors of salinity and temperature, there was a significant difference 

between water A and water B as can be seen from Figure 9 and 10. The slope of the pH line was falling for 

water A while it was increasing for water B as both salinity and temperature increase. 

 

Fig. 9. Surface plot for pH relationship with salinity and temperature (Water A) 

Fig. 10. 

Surface plot for pH relationship with salinity and temperature (Water B) 
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However for electrical conductivity, (Figure 11 and 12) the surface plots look similar even though they 

have different magnitudes. 

 

Fig. 11.  Surface plot for electrical conductivity with salinity and temperature (Water A). 

 

Fig. 12.  Surface plot for electrical conductivity with salinity and temperature (Water B). 

4. Discussion  
The investigated water at 0 g/L of salinity has a low pH which characterizes it as slightly acidic, so it is not 

neutral.  Experimental results showed that pH of the aqueous sodium chloride solution increased slightly 

with increasing salinity, even though it is normally believed that pH will remain constant when sodium 

chloride dissolves in water because of its electrical neutrality [6, 26]. From the average pH of about 5.2 for 

0 g/L (starting pH for all the solutions of water sample A) at measured temperatures, the pH gradually 

increased to an average of 6.3 for 130 g/L salinity. This represents a change of about one unit over the 

measured salinity range and translates approximately to a gradient of 0.005/ g.L-1. pH is normally 

represented by logarithm scale; a difference of one pH unit is equivalent to approximately ten fold 

difference in hydrogen ion concentration. The change in pH of the solution can be interpreted to be due to 

ionic strength of the aqueous sodium chloride solution that changes with salinity. The ionic strength is not 

constant for the range of salinity measured, when calculated, it has a gradient of approximately 0.019.  This 

means that the ionic strength in 130 g/L solution is about 12 times higher than solution of 10 g/L. The ionic 
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strength normally reflects the concentration of free ions [18], and since there is a strong interaction between 

the ions, this is likely to be responsible for the non-ideality behaviour in the aqueous solutions and thus the 

observed relationship between pH and salinity with increase concentration of salt. The dissociation of water 

and sodium chloride is shown in equation 15 and 16 below: 

2H O H OH� �� �                                                                                                                  (15) 

NaCl Na Cl� �� �            (16) 

The solutions have been boiled before using for the experiments, it is assumed this would remove (or at 

least highly reduced) any dissolved CO2, and thus the main effect on pH change is coming from salinity. In 

this case the system is controlled by OH- and H+ dissociation and not by dissolved CO2. Lack of pH data 

for aqueous solutions of different salinity makes it difficult to fully compare the results with other studies, 

but it is probably certain that this pH increases with increase salinity is tenable for water with low to 

medium pH values even though chemically speaking sodium chloride salt is neutral.  

In contrast, water with dissolved carbon dioxide showed opposite relationship for pH with increasing 

salinity. pH decreases with increasing salinity when carbon dioxide is dissolved in aqueous solution of 

sodium chloride. The result of measurements of pH in concentrated brines by Hinds et al.[10] with 

dissolved carbon dioxide showed a decrease of about 1 from starting pH of 4 to final pH of about 3 for 

NaCl solutions of concentration of 0 - 250000 ppm (0-250 g/L) at 25 oC.  

When the values of mean  activity coefficient of each solution was used to derived the theoretical pH, the 

result  (Figure 7) showed that the theoretical values are slightly larger than the experimental values with a 

magnitude of between 0.36-0.52, but the observed trends of increasing pH with increasing salinity still 

holds. Attempt to calculate the mean activity coefficient from the equation shown below to compare with 

derived values from Rumpf et al. [22] yield a constant value of 1 for measured salinity range in this study. 

logpH H� �� �� � � �                                              (17) 

pH is known to be temperature dependent, this is in agreement with Le Chatelier’s principle  [3] in this case 

it decreases with temperature. The reason was because Kw gets larger as temperature increases. This 

increases H+ and therefore pH decreases. Besides, pH increases slightly with conductivity as seen from the 

plots at constant temperature, probably because the electrical conductivity is directly related to salinity of 

the aqueous solutions.  
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In addition, multiple regression analysis confirmed that there was significant relationship between pH and 

the predictive factor of salinity and temperature. The salinity was positively correlated with pH while 

temperature was negatively correlated. For pH as a function of salinity and temperature the R-Squared 

value indicates that the model as fitted explains 93% of the variability in pH.  Since the P-value was less 

than 0.01, there is a statistically significant relationship between the variables. However, there was no 

interaction between salinity and temperature. 

For an electrolyte solution such as aqueous sodium chloride solution, with increased salinity, there are more 

ions in solution, and the conductivity increases as well The conductivity depends on the number of ions in 

the solution and therefore on the degree of ionization of the electrolyte  [11, 14, 19]. We can therefore 

expect that the variation of the solution electrical conductivity is related to the variation in ionic strength. 

For 0 g/L the ionic strength was approximately 0.0 mol L-1 while for 130 g/L the ionic strength was 

approximately 2.23 mol L-1. The average gradient for increase in electrical conductivity with increase 

salinity of 10 g/L at a constant temperature approximates 0.009 mS.cm-1.gL-1. This value calculated was 

based on simple empirical model at constant temperature and might not be equivalent to the effective 

correction computed from physical models using equation of state with salinity as a variable. However 

simple empirical relationships are useful when used with automatic data logging systems having limited 

programming capability or with portable EC meters with built in temperature compensation [9] during 

many chemical processes. 

Further results from multifactor regression showed that there was significant relationship between electrical 

conductivity and factors of salinity and temperature. However the most significant influence came from 

salinity. The P-value was less than 0.01 and the model was able explain the 96% of the variability in 

electrical conductivity. No significant interaction between salinity and temperature occurred in this 

experiment. 

The difference between measured values and the theoretically derived pH and electrical conductivity were 

estimated. In the case of pH the difference was 0.47 while for electrical conductivity mean difference of 5.7 

was estimated. The difference is not very much larger than the typical uncertainty arising from electrical 

conductivity measurements but significantly higher as temperature increases. This confirms the earlier 

findings that the error of this equation will increase significantly at higher temperature [11].  

Comparison of water A with another set of water B indicated significant difference in the variation of pH 

with factors of salinity and temperature. For water A,  pH increased as function of salinity but decreased 

when temperature increased. For water sample B, pH increased when both salinity and temperature 



  

65 

 

increases. It may be argued that species present in either sample A or B affected the variation of pH as a 

function of temperature. Therefore it evident that dissolved particles can influence the trend of observed 

relationship between pH and temperature. With salinity the pattern of increased pH was constant in both 

water samples. 

5. Conclusion 
Sodium chloride solutions are mostly neutral solution and might at first be expected to vary little in terms 

of their pH value. However, this study showed that significant differences are found between the pH of 

aqueous sodium chloride of different salinities using different samples of water. The reason for the direct 

relationship between pH and salinity was due to different ionic strength at different salinity that can be 

interpreted as deviation from ideality. It is indicated that there is a significant relationship between pH, 

electrical conductivity (measured variables) and salinity and temperature (independent factors) for aqueous 

sodium chloride and that simple empirical formulas are adequate to model the relationships. The calculated 

electrical conductivity values showed a significant deviation from the experimental values at 13-45 oC 

which is the range of temperature in this experiment but are this is still within the range of acceptable limit. 

The model equations obtained were found to be adequate to describe the relationships between the 

measured variables (pH and electrical conductivity) and the independent factors of salinity and 

temperature. Through the analysis, salinity was found to be the major significant factor in the relationships. 
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Microbial	 enhanced	 oil	 recovery-laboratory	 experiments	with	 salinity	 adapted	
strain	of	Clostridium	tyrobutyricum					
Jimoh IA, Søgaard EG, and Rudyk SN, Section for Chemical Engineering, Aalborg University Esbjerg, Denmark.  

Telephone: +4599407622, E-mail: egs@bio.aau.dk 

Abstract 

A salinity adapted strain of Clostridium tyrobutyricum (DSMZ 663) labeled as 90F was investigated for 

metabolites production, potential to improve oil recovery and adaptation to high temperature using 

laboratory scale experiments with molasses based nutrient. The strain showed substantial production of 

gases, bio-acids, and biofilm at salinities of up to 100 g/L.  The amount of gas produced was 100-1200 mL 

per 20 mL of molasses over a period of 120 h with a composition of about 80 % carbon dioxide. Over the 

same period of time the concentration of acetic and butyric acids produced  during the microbial 

fermentation of molasses changed almost linearly (acetic acid increased while butyric acid decreased) with 

average yield of 3.5 g/L and 0.2 g/L, respectively. Biofilms consisting of polysaccharides with maximum 

thickness of 0.525 cm at 70 g/L were formed in the oil water interfaces at salinity of 40-130 g/L over 40 

days. Gas production of 500 and 260 mL after 120 h per 20 mL of molasses from two different formation 

waters of salinities 38 g/L and 110 g/L from the North Sea signified possible application in some part of the 

Danish fields. In microbial oil recovery experiments at salinity 90 g/L the strain gave 38 % and 25 % 

additional oil recovery in sandstone and carbonate packed columns respectively. The increased oil recovery 

was attributed to microbial growth and metabolic production. Additional result specified that the maximum 

achieved adaptation temperature in our tests was 45 oC compared to 37 oC of optimal temperature. Results 

of FT-IR spectroscopy clearly distinguished the strains adapted to salinity and temperature from that of 

pure culture and thus probably their improved abilities for metabolic production at high salinity and 

temperature levels.  

 

Keywords: Adaptation, microbial enhanced oil recovery, Clostridium tyrobutyricum, metabolites, oil 

reservoir, fermentation. 
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Introduction 
Microbial enhanced oil recovery (MEOR) is the method of using microorganisms to improve recovery of 

oil from the reservoirs after secondary oil recovery (Bryant and Lockhart 2002; McInerney et al. 2005; 

Lazar et al. 2007). This technique is based on in situ growth and metabolism of selected microorganism in 

the reservoir rock with certain nutrients. The microorganism produce gases and/or chemicals in the 

formation such as polymer, acids, gases, surfactants and biomass Production of these metabolites in the 

formation changes fluid and rock properties of the reservoir and improves the sweep efficiency. These 

changes respectively, increase the oil production from the reservoir. The MEOR application can be either in 

a form of single well simulation, microbial flooding recovery or selective plugging (Zhang and Xiang, 

2010).  The idea of MEOR was first proposed by Beckmann (1926) when he published results on the 

possibility to use microbial metabolites to improve the oil production rate. Additional work by Zoebell, 

1947 showed that these metabolites are analogue to the chemicals used in chemical enhanced oil recovery 

and are expected to perform the job of residual oil recovery   

The mechanisms by which MEOR process operate can be quite complex and may involve multiple 

biochemical process steps (Janshekar1985; Donaldson et al.1989; McInerney et al. 2005; Lazar et al. 2007). 

These mechanisms can be different from bacteria to bacteria and are normally selected based on reservoir 

requirement. In general, the mechanisms normally include selective plugging, rock dissolution, 

emulsification, viscosity reduction, permeability modification and wettability alteration. 

The physiological properties of a bacterium that would be useful in MEOR should be such that it will grow 

abundantly and vigorously under the physico-chemical conditions of the reservoir such as high salinity, 

temperature and pressure (Grula et al. 1991).  It is therefore important that adequate steps are taken to 

finding the right microorganism that will proliferate under these conditions. One of the available options is 

the pre-adaptation of bacteria to reservoir conditions. Proper adaptation of microbes before injection will 

not only improve the ability of bacteria cells to withstand any physiological and environmental stress but 

also ensure the production of desired metabolites that can be controlled and monitored. As observed in 

Almehaideb and Zekri 2002, adaptation time is a critical factor on the overall process recovery efficiency, 

and should be determined in the laboratory for every proposed microbial flooding system. A method of 

adaptation (Liu et al.2006) through a pH-controlled continuous culture with 70 g/L NaCl as the selective 

criterion showed that when compared to the parent strain, adapted strain could grow well on the medium 

containing 70 g/L NaCl. This was measured by the growth rate and pyruvate yield that was 32.5% and 

33.9% (in 150 g/L glucose as carbon source) compared to the parent strain. In another trial, laboratory 

experiments with halophilic culture adapted to subsurface conditions of 55 oC and 150 g/L using oilfield 
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carbonate rocks showed successful enhancement of oil recovery from an average of 50 tons per day to 150 

tons per day after treatment with bacteria (Wagner, 1991). 

 

Bacteria species grow at particular minimum, optimum and maximum salinity and temperatures. At 

extreme salinity and temperature conditions metabolism of organisms can be affected. Many organisms 

therefore over the years have evolved special mechanisms to adapt and survive at different salinity and 

temperature conditions. Strategies for adaptation to high salt concentrations involve the accumulation of 

organic compatible solutes that include amino acids, sugars, polyols, betaines and ectoines within the 

cytoplasm without the need for change of intracellular proteins and intracellular accumulation of high 

concentration of K+ (Oren 2001; Roberts 2005).  Adaptation strategies by bacteria to environmental 

temperature changes include alteration of membrane lipid composition. The details on mechanisms for 

temperature adaptation can be found ( Rusell 1984; Edward et al. 2010;  van de Vossenberg et al. 1999). 

The object of this study is not to investigate strategies of bacteria for adaptation to extreme salinity and 

temperature conditions but on how to improve the metabolites production needed for enhanced oil recovery 

during the adaptation process.  

There are extensive literatures on MEOR studies, however, many of these have focused on pure or isolated 

culture of bacteria, data on strains that have been adapted to high salinity and temperature and their 

microbial enhanced oil recovery potentials are rarely investigated. Therefore, in this study, we have 

investigated an adapted strain of Clostridium tyrobutyricum labeled as 90F. The detail of adaptation process 

can be found in earlier work (Rudyk and Søgaard, 2011). Strains of Clostridium tyrobutyricum have been 

previously applied in MEOR studies (Wagner 1985; Wagner and Lungerhausen 1995) because of their 

ability to produce metabolites which are useful in microbial enhanced oil recovery process. However, it is 

widely recognized that a limiting factor in the growth and metabolic activity of Clostridium species in situ 

is salinity in the water phase of the reservoir environment (Russell and Dombrowski, 1980). The main 

objective of this study is to investigate the growth and metabolic products capability of this adapted strain 

and the potential to enhance oil recovery at elevated salinity. It is expected that the knowledge gain from 

this study can give useful information in successful implementation of MEOR technology for enhanced oil 

recovery. The main parameters considered for this study are acid and gas production, biofilm production 

and the capability of the adapted strain to improve recovery in sand and carbonate packed columns. The 

growth and gas production ability of this strain at elevated temperatures was also investigated. 
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Materials and method 

Cultures and medium 
Fresh inoculums of the salinity adapted strain of Clostridium tyrobutyricum (DSMZ 663) labeled as 90F 

stored in 1 mL ampullas and  frozen at -80 o C for 12 months were defreezed and grown on reinforced 

clostridia medium (RCM)  in a 1000 mL fermentation  bottle that was previously sterilized. The medium 

salinity was adjusted to 90 g/L by dissolving specific amount of sodium chloride. This was followed by 

injection of 1 mL inoculum, completed with addition of resazurine to ensure anaerobic condition. The 

medium was incubated at 37 oC. The pH of the medium was 6.70 at 25 oC.  Bacterial growth in the medium 

was indicated by optical density (D650 = 1.8).  The optical density measurement during growth was taken 

using a Cary 50 Conc. UV-Visible Spectroprotometer.  The Bürker cell counting chamber was used for cell 

density estimations with an average bacterial population of 1 x 106 cells/mL. 

 

Solution preparation 
To prepare aqueous solutions for bacteria growth, specific amount of sodium chloride measured in g was 

dissolved in 500 mL demineralized water to make solutions of the different required salinities in 1000 mL 

fermentation bottles previously purged with nitrogen. This was followed by addition of 20 mL of molasses 

as source of nutrient. The media was sterilized (by autoclaving at 121 oC for 15 min) before subsequent 

addition of inoculum followed by addition of resazurine to ensure anaerobic condition. 

 

Fermentation experiments 
A salinity adapted strain 90F was used in this experiment to determine the gas and acid production abilities.  

Solutions of different salinities were prepared as described above. The measured salinities were 0, 10, 30, 

40 50, 60, 70 80, 90 and 100 g/L.  All the fermentation bottles and their content were sterilized and 

inoculated with 1 mL of 48 h grown culture (1 x 106 cells/mL). The whole set up completed with water 

displacement facilities for gas measurement and sample withdrawal was incubated at 37 oC for 120 h using 

a water bath system (model : MGW LAUDA M20 ). The water bath was covered with polystyrene beads 

and black polythene to prevent heat loss and any photo oxidation during the fermentation process.  

Fermentation experiment was also carried out with two different formation waters, Gorm and Harald 

formation waters from the North Sea.  The salinity of the formation waters was determined by conductivity 

measurement at 25 oC using conductivity meter (Model: CDM 210, Radiometer Analytical). The equivalent 

salinities for Gorm and Harald formation waters were approximately 38 g/L and 110 g/L, respectively. 
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Product analysis 
The cumulative gas production was calculated as total sum of gas produced during the period of 120 h. 

Liquid samples were taken out from the fermentation bottles every 24 h.  pH measurement was carried out 

using a pH meter Radiometer Analytical (Model: PHM 210).  The pH measured during at intervals of 24 h 

during the fermentation process was to be compared with initial pH condition of each medium.  

Gas analysis was carried out with a gas chromatography Clarus 500 PerkinElmer equipped with Elite-Q 

PLOT (30 m by 0.53 inner diameters). This method was completed by an external standard clause. The 

sample amount was 1.0 mL with a dilution factor of 1.0. Each sample was run for 3 cycles.  

Fluid samples taken after 120 h fermentation process were analyzed for acids with a Varian 430 series gas 

chromatograph, operating at 120 oC. The column is equipped with a glass column (Varian 25 m by 0.32 

mm internal diameter) and helium as the carrier gas. Injections were made with an autosampler in the on-

column mode. The specific acids measured were acetic acid and butyric acid.  All products measurements 

were average of two experiments. 

 

Preparation of biomass 
Cells of strain 90F cultivated in 500 mL aqueous solution under standard anaerobic condition at 37 oC were 

allowed to grow over a period of 120 h at medium salinity of 90 g/L.  100 mL of sample was carefully 

withdrawn from the fermentation bottle at every 24 h for cell harvesting.  Cells were harvested by 

centrifugation at 10,000 x g for 10 min using a centrifuge model (Heraeus -Biofuge Primo). The cell pellets 

were dried in the oven at a temperature of 25 oC and the mass was determined using a weighing balance. 

The biomass yield was expressed as g/L. 

 

Oil-water interface activity 
The activity of Clostridium tyrobutyricum 90F at the oil-water interface was monitored using the strain 

using the adapted method of Hiorth et al. (2010). In each cylindrical jar (Sherf Prazision, Germany) 

aqueous solution of sodium chloride (80 mL) with measured salinity of 40-130 g/L, enriched with molasses 

(5% v/v) and crude oil (5% v/v) was inoculated with 1 mL bacteria solution. The whole set up was kept in 

an incubator and the growth of biofilm at the oil-water interface was monitored as a function of height 

every tenth day for 40 days.  

 

Oil recovery using packed columns 

A cylindrical column of volume 440 cm3 modified after Suthar et al. 2008 was constructed with a sieve 

(100μm) and cap at both ends of the column.  The column consisted of 1. 2 mm holes in the centre for 
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insertion of tubes for injection and outflow of fluid. Rubber rings were used for packing to prevent leakage 

in the column. Approximately 450 g  sand of porosity 32 % was packed into the column and evacuated by 

passing nitrogen through it to remove oxygen. The column was then saturated with aqueous sodium 

chloride solution (90 g/L) to mimic reservoir brine using a syringe at normal atmospheric pressure. The 

volume of brine injected into the packed column during the saturation was measured to determine pore 

volume (PV) of the column (1 pore volume =170 mL). Approximately, 3 pore volumes of the brine were 

passed through the column to ensure its saturation. Saturation of the sand pack with oil was carried out 

similarly using light oil with viscosity of 7 cP by help of a syringe until residual brine saturation was 

reached. The column initial oil saturation (Soi) was 120 mL calculated by measuring the volume of the 

brine displaced. The column was again flooded with brine until residual oil saturation (Sor) of 33 mL 

calculated by measuring the volume of oil displaced. The packed column was then inoculated with 0.2 pore 

volume inoculums (consisting of 48 h cells Clostridia tyrobutyricum 90F) supplemented with 0.4 pore 

volume of nutrient consisting of reinforced clostridia media (RCM). The shut in period was 7 days and 

incubation temperature of 37 oC. After the shut in period of 7 days, the column was flooded with water by 

the same method used to saturate the column. Discharges from the column were collected in a graduated 

cylindrical jar. 50 ml of toluene was added to separate the displaced oil from the discharged water and 

carefully pipetted to calculate the amount of oil recovered. Two sets of experiments were performed to 

check the oil recovery efficiency. A similar experiment was carried out but with granular chalks with 

average porosity of 40% packed into the cylindrical column, and following the same procedure as 

described above for the sand. The control experiment consisted of an oil saturated sand column which was 

not inoculated with nutrient and bacteria. The main purpose of this control experiment was to monitor the 

amount of oil that can be recovered by brine after residual oil saturation was achieved when incubated 

under the same condition as the main experiment. 

 

Temperature adaptation 
In this experiment two strains of Clostridium tyrobutyricum were used. The pure strain Clostridium 

tyrobutyricum (DSMZ 663) and the salinity adapted strain 90F. This adapted strain could grow and 

produced gas at salinity 0 -100 g/L compared to the pure strain that can only grow and produced gas 

between salinity 0 - 40 g/L. A method similar to Hugh-Leifson technique (Hugh and Leifson, 1953) was 

used. The bacteria were placed in large test tubes containing 20 mL of aqueous solutions. For strain 90F, 

the aqueous solutions were adjusted to 90 g/L salinity by adding NaCl to the medium.  Each test tube was 

then added 5 mL of molasses and 1 mL of 48 h inoculums of each strain cultivated on reinforced clostridia 

media (RCM). 10 test tubes were prepared for pure strain (DSMZ 663) and 10 test tubes for the adapted 
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strain (90F). Anaerobic condition was maintained by first purging the test tubes with nitrogen gas, addition 

of resazurine and the sealing tubes with wax after the solution and inoculum had been put in place. The 

tubes were later secured by caps. The tubes were placed in a water bath that was covered with beads to 

maintain a constant temperature, prevent evaporation and loss of heat to the surrounding.  The range of 

temperatures in the experiment was 40-48 oC. These bacteria were normally grown at 37 oC considered as 

the optimum temperature for bacteria growth. The method of repeated sub-culturing of the bacteria was 

employed in the presence of successive increase of the temperature condition. Adaptation was indicated by 

growth and production of gas that displaced the wax plug. The time in h and height of wax in mm displaced 

were measured. The height of the displaced wax in the test tube corresponds to the amount of gas produced.  

The next step of the experiment was to move the bacteria from temperature condition of 40 oC to a new 

temperature level of 43 oC, and correspondingly to 45 oC and 48 oC using the same procedure. 

 

FT-IR spectroscopy 
In order to compare and quantify any changes in cell content during adaptation, cells were harvested from 

grown cultures of the three different strains; the pure culture Clostridium tyrobutyricum (DSMZ 663), 

salinity adapted strain 90F, and the temperature adapted strain 90F-45. Cultures of each strain were grown 

in 500 mL aqueous solutions under standard anaerobic condition and cells were harvested after 

centrifugation at 10,000 x g for 10 min. The samples collected after open-air drying was used for FT-IR 

spectroscopy. The infrared spectra of each strain were recorded using the FT-IR spectra. All the FT-IR 

spectroscopy measurements were carried out with Avatar 370 FT-IR Thermo Nicolet at a resolution of 4 

cm-1 and 32 scans.  

 

Results and discussion 
Salinity adapted strain of Clostridium tyrobutyricum (DSMZ 663) denoted as 90F was studied for its 

possible implementation for microbial enhanced oil recovery in the North Sea oil fields. Its properties were 

tested in a number of experiments that includes cell growth and biomass production. Changes of acid and 

gas production rates were also investigated at different stages of the adaptation procedure. The effect of 

chalk added as a buffer was investigated by comparing the pH alteration in microbial solutions in salinity 

range of 30-100 g/L with and without chalk.  The composition of the acid was measured at salinity of 

between 30-100 g/L. Biofilm production and its composition were also determined.  

Additionally, ability of the strain to produce gas in formation waters produced from Gorm and Harald fields 

in the North Sea and displacement of oil from chalk and sand columns were tested. At the last stage, the 
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strain was tested for adaptation to higher temperature and the obtained strain denoted as 90F-45 was 

investigated for gas production. FT-IR analysis was carried out in order to find out whether spectroscopy is 

able to distinguish strains of pure culture from adapted. 

 

Cell growth and biomass 
The fermentation data (Figure 1) showed that the specific growth rate at salinity 90 g/L is about 0.064 h-1 

for cells grown on molasses based nutrient. The strain has a particular lag phase of about 15 -20 h. Long lag 

phase is often associated with metabolic burden on cells caused by possible high concentration of salt. In 

our case, this is rather due to the low amount of inoculum used (1 mL) in the fermentation since this strain 

was already adapted to high salinity. The cell biomass yield showed an almost linear increase and reached a 

maximum value at about 100 h and that corresponds to an OD of approximately 1.70 before decreasing 

probably indicating the depletion of nutrient afterwards or starting from this point. The average biomass 

yield was on the average, approximately 2.3 g/L of cell dry weight / g of substrate for cells grown in the 

molasses medium.  

 

 

Figure 1: Biomass production and growth rate at different time 

 

In comparison to other strains, experiments showed a biomass yield of 0.05 to 0.13 g/L of cell dry weight/g 

of glucose at salinity 50 g/L for both anaerobic and aerobic strain Bacillus lincheniformis  strain JF-2 (Lin 

et al. 1991). In another experiment, biomass yield of 0.5-0.8 g/L of cell dry weight/g of substrate at salinity 

of 2 g/L was recorded for Clostridium butyricum isolated from anaerobic sewage sludge (Liu et al. 2006). 

Additionally, biomass yield of 1.73 g/L of cell dry weight/g of substrate at salinity of < 1 g/L was measured 
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for Bacillus claussi (Aparna et al. 2012). This confirmed that our strain showed active growth at high 

salinity. 

 

Gas production 
Gas production has often been mentioned as an important mechanism for microbial enhanced oil recovery 

(Brown 1992; Singh et al. 2007). The initial cultivations of 90F adapted strain in nutrient source showed 

that it produced gas from salinity 60-100 g/L as shown in Figure 2 with highest gas production occurring at 

70g/L and the lowest at 90 g/L an indication of the influence of high salt concentration on gas production. 

Indeed, microscopic observations revealed that the cells of Clostridium tyrobutyricum which had been 

grown in higher salinity media were no longer rod shaped, but instead assumed a spherical to 

agglomeration of cells (Jimoh et al. 2012b). This physiological change in relation to increased salt 

concentration of the media affects the metabolic activities of the cells as shown by the initial gas production 

profile (Figure 2).  However with continuous and repeated cultivation over time, the ability and pattern of 

gas production has changed, this strain can now produce gas over a wider range of salinity (30-100 g/L) 

and correspondingly higher for the same range of salinity as shown in Figure 3. The strain 90F produced 

from initial pure strain, Clostridium tyrobutyricum (DSMZ 663) has shown promise of gas production till 

salinity 100 g/L by utilizing molasses as carbon source. The composition of the gas was about 83 % carbon 

dioxide, and 15 % hydrogen. This is comparable to earlier results published (Jimoh et al. 2012a, Wagner 

and Lungerhausen 1995) and also 70% carbon dioxide and 10% hydrogen reported with Clostridia species 

(Wagner 1991.  However, the reported volume of gas produced varies in literatures.  Wagner reported gas 

generation of 300 mL per g of molasses for Clostridia species at salinity greater than 75 g/L after 24 h 

(Wagner, 1991). The current gas production profile of this strain showed gas volumes of 100-1200 mL in 

salinity range of 30-100 g/L; however at lower salinity (0-20 g/L) gas production can exceed 2000 mL per 

20 mL of molasses. From our previous study, we showed that the alteration of dissolved CO2 concentration 

with salinity correlates with the bulk volumes of the produced gas and that change can occur to carbonate 

rock properties during microbial process from the effect of gas and acid production (Jimoh et al. 2011; 

Jimoh et al. 2012a). 
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Figure 2: Initial gas production profile of 90F   Figure 3: Current gas production profile of 90F 

  

Acid production 
Clostridium sp. has been used in a number of studies due to their abilities to produce acids, gases and 

solvents (Grula et al. 1983; Wagner, 1991; Behlulgil and Mehmetoglu, 2002). From carbohydrates sources, 

the volume of acids produced can reach 0.0034 moles of acids per kilogram of molasses (Gray et al. 2008). 

The main acids measured in this experiment were acetic and butyric acids. The profile of the final 

concentration of the acids produced after 120 h is shown in Figure 4.  

 

 

Figure 4: Acid production profile from molasses by salinity adapted strain 90F 

 

The highest concentration of acetic acid of about 3.5 g/L was measured at highest salinity of 140 g/L that 

corresponds to a final acetic acid yield of 0.175 g/g of substrate while the highest concentration of butyric 

acid was approximately 0.2 g/L or an equivalent of 0.01 g/g of substrate.  The average acetic/butyric acid 
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ratio (g/g) involving all salinities was approximately 18. The total yield of acetic acid and butyric acid per g 

of molasses was approximately 0.176 g/g of substrate. The total yield of the acid yield generally increases 

with salinity and the total acid relationship with salinity is given by a polynomial function as shown in 

equation 1. The increase in acidity correlated well with increase in salinity with a R2 value of 0.85. 

 

Total acid = 0.047S2 - 0.264S +2.599                  (1) 

 

If acid production is correlated with salinity and  pH as shown in Figure 5, the result indicates an increasing 

yield of acetic acid with increasing salinity and pH while the butyric acid has almost a reverse profile; a 

decreasing yield with increasing salinity and pH. Correlation of acetic acid with salinity gave a R2 value of 

0.71 while correlation with butyric acid showed R2 value of 0.92. The equation that represents the 

relationship of the acetic acid with salinity is given by: 

 

Acetic acid = 0.1829S + 1.63                    (2) 

 

The corresponding equation for butyric acid relationship with salinity is given by: 

 

Butyric acid = -0.0236S + 0.23                   (3) 

 

The S in the equations (1-3) denotes salinity of the medium. 

 

From equations 2 and 3, it showed that acetic acid correlates positively with salinity while the correlation 

was negative for butyric acid. Therefore it can be suggested that production of butyric acid decreases as 

salinity rises while production of acetic acid reversely increases with increasing salinity. The point of 

intersection between the two acids corresponds to salinity 70 g/L and pH of about 6.0. One of the 

adaptations of this strain could be that its activity changes to more acetic production at higher salinity. 

Acetic acid is a stronger acid than butyric acid if we compared the pKa values; acetic acid: pKa 4.76; 

butyric acid: pKa 4.82 (Martin et al. 1983). This suggests that the strain can better handle the situation with 

increasing pH due to increasing salinity. 
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Figure 5: Acetic and butyric acid relationship with pH and salinity 

Data on organic acids produced by similar strains indicated that the amount and types of organic acids 

produced can vary between 3 and 45 g/L depending on the quantity of inoculum, medium, volume of 

substrate used and the end product desired. For different strains of Clostridium tyrobutyricum, Liu et al. 

reported a value of 9.7-42 g/L, Jiang et al. reported a value of 26.2 g/L for butyrate in a fibrous bed reactor 

using cane molasses while Wagner and Lungerhausen reported organic acid production of 11.4 g/L 

(Wagner and Lungerhausen, 1995; Liu et al. 2006; Jiang et al. 2009).  

 

Variation of pH  
pH measurements during the gas and acid production is shown in Figure 6. It can be observed that acidity 

in microbial experiments increased significantly in all the media. The values were variable depending on 

the salinity of the medium; however we observed a fast decrease in pH after 24 h for all media.  In the case 

of media without chalk, for salinity between 30-60 g/L , pH continue to drop after 24 h while for salinity 

range of 70-100 g/L, pH  were relatively stable. The lowest pH of 5.23 after 120 hours corresponds to 

salinity 30 g/L while the highest pH of 5.84 corresponds to 120 g/L. For media saturated with chalk, the 30-

60 g/L were similar to the trends observed in media without chalk; however the reverse was the case for 

salinity range of 70-100 g/L where the pH was increasing towards the end. The media with chalk has 

lowest pH of 5.6 at salinity 30 g/l while the highest pH after 120 h was 6.28 at salinity 100 g/L.  

The decrease in pH in both cases was due to production of acids and gases during fermentation of molasses 

medium. However the presence of chalk samples in some of the media presented was able to neutralise the 

effect of acids, hence the increasing pH observed in the media with chalk (70-100 g/L). The average 

separation in measured pH with and without chalk for salinities between 30-60 g/L corresponds to a pH 
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unit of 0.16 while for salinities between 70-100 g/L the measured average separation corresponds to a pH 

unit of 0.18. This showed separation of the pH values into two groups of low and high salinity with a 

common boundary at 70 g/L that matches the intersection of acetic and butyric acid (Figure 5) and further 

confirms the earlier observation made in similar study (Jimoh et al 2011).  

 

Oil-water interface activity 
The activity at the oil-water interface was monitored at salinity range of 40-130 g/L by the thickness of 

biofilm growth measured from the bottom of oil-water interface which was approximately the same in each 

container. The structure of the dried biofilm was also examined with FT-IR spectroscopy. Figure 7 shows 

the variation in biofilm thickness with salinity at different time. The highest thickness was observed at 

salinity 70 g/L for each period, while no growth of biofilm was observed at salinity of 110 -130 g/L that 

might be as a result of inhibition by high salinity of these media for the strain of bacteria used. All the 

curves approached zero amount of biofilm at 110 g/L irrespective of number of days; this probably 

suggests that the salinity limit for formation of biofilm for this adapted strain of bacteria around is 

approximately 100 g/L.   

The microscopic images of the harvested biofilm shows that they were composed of immobile, irreversibly 

attached live bacteria in clusters and some whitish fibrous material at varying degrees of density throughout 

the slides as shown in Figure 8a. Such observation has earlier been reported by Rachman et al. (1997).  

Furthermore the spectra analysis using the FT-IR revealed the structure shown in Figure 8b.  There is a 

broad absorption band between 3200 and 3400 cm-1 which is suggestive of O-H content, a C-H stretch 

between 2950 and 2860 cm-1, a strong band at 1630 cm-1 which specified the presence of >C=O group, an 

absorption at 1403 cm-1 indicating the presence of C-N bond and a band at 1074 cm-1 indicating the 

presence of ether group (C-O-C) probably from carbohydrates.  The structure of the biofilm as shown by 

the FTIR is suggested a polysaccharide. The biofilm formation can probably increase the adherence of the 

cells to oil-water interface, how they can affect crude oil biodegradation still remains obscure. However, 

biofilms can act as a surfactant that can be able to bring small oil drops out in the water phase. 
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Figure 6: Comparison of the pH profile at different salinity for media with chalk and without chalk 
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Figure 7: Biofilm formation at different salinity 

  

Figure 8: Microscopic image of biofilm as examined under microscope (x40) and the FT-IR spectrum; a. 
the microscopic image and b. the FT-IR spectrum of the dried biofilm. 

 

Growth in formation waters 
The result indicated that gas production began in Gorm formation water (salinity 38 g/L) during the first 24 

h while in Harald formation (110 g/L) it was after 48 h suggesting a longer lag period for bacteria growth 

and metabolism. The cumulative gas produced from Gorm formation water was about 500 mL, while 260 

mL was produced from the Harald formation water after 120 h (Figure 9). pH of the Gorm and Harald 

media were also reduced from 6.81 and 6.08 to 4.81 and 5.82 respectively ; that corresponds to optical 
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density (OD650) of 1.48 and 1.00 at the end of 120 h. Blank experiment with both Gorm and Harald 

formation waters and molasses without strain 90F did not produce any measurable amount of gas which 

shows that the gas was produced by Clostridium strain 90F and not by microbes in the formation waters. 

  

Figure 9: Gas production in Gorm and Harald production waters 

These results confirmed bacterial growth and the production of gases in both media. The Danish fields have 

high salinities as many of them are adjacent to salt domes with the salinity of formation waters increasing 

from south to north to 300 g/L (Gran et al. 1992). The salinity measurements of the two formation waters 

showed 38 g/L and 110 g/L respectively which are much lower than the published values probably because 

the salty formation waters were diluted with sea water injected into the formations. This result gave an 

indication that this adapted strain can grow and produce gas in some part of the Danish fields of the North 

Sea. 

  

Oil recovery experiment 
The objective of the packed column experiment was to assess the recovery enhancement resulting after 

inoculation with strain 90F at a relatively high salinity (90 g/L). The summary of result for the oil recovery 

experiment in sandstone and granulated chalk samples packed columns is shown in Table 1. As can be seen 

from the table, the average oil recovery after one week incubation at temperature of 37 oC is about 39 % for 

sandstone column and 25 % for chalk column designed to stimulate oil reservoirs. The observed additional 

recovery in these experiments is believed to be a direct result of the in situ growth and metabolism of 

injected bacteria. The control experiment (without nutrient and bacteria) did not show any significant 

release of oil after 7 days when water flooded during secondary flooding.  
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Table 1: Summary of the oil recovery experiment 

Parameters Sandstone Chalk 
 

Pore volume 
 

1PV=170 mL 
 

1PV= 200 mL 
Initial oil saturation 120 mL 145 mL 

Residual oil saturation 33 mL 60 mL 
Nutrient injected 0.4PV 0.4PV 

Inoculum 0.2PV 0.2PV 
Incubation 7 days (37 oC) 7 days (37 oC) 

Secondary water flooding 7 PV 4.5 PV 
Oil displaced after secondary 

water flooding 
13 mL 15 mL 

% oil recovery after microbial 
treatment 

39 % 25% 

 

The difference in the percentage recovery between sand and carbonate columns could be explained by the 

fact that less amount of water could be used during secondary water flooding for the chalk sample as it 

became increasingly difficult to pass water through the column for oil displacement. This was probably due 

to non-uniformity of the chalk packed in the column as compared to the sandstone packed column.The 

effluent samples collected during secondary flooding to displace oil in the bacteria inoculated sand and 

chalk packed columns when examined under microscope indicated presence of bacteria, however, it can be 

anticipated that this represents only a small percentage of the total population of cells.   

 

Temperature adaptation 
In this study, an adapted strain of Clostridium tyrobuytricum (DSMZ 663) froze over a period of 6 months 

at -80 oC and labeled as 90F was evaluated for microbial enhanced oil recovery potential. The first set of 

experiment was to test the temperature increment on the growth of this salinity adapted strain, since the 

final aim was to have a strain that can withstand both high salinity and high temperature conditions. The 

temperature adaptation results for salinity adapted strains 90F is shown in Figures 10. The graph indicates 

the measured height of the gas at different temperature and the time taken to displace the wax.  At 40 oC 

and time of 96 h, the displace wax was the highest with an average height about 1.5 cm. This is followed by 

the height at 43 oC and time of 96 h with an average of about 0.5 cm. The lowest heights were seen at 45 oC 

at a time of 168 h with an average of 0.3cm. The displaced wax corresponds to the amount of gas produced. 

In this case it can be inferred that no gas was displaced at 48 oC at a time 240 h. It is therefore suggested 

that with increase temperature, the amount of gas produced is decreasing, an indication of reduced bacteria 

metabolism. It was also observed during the experiment that the time taken to displace the wax which 

corresponds to gas production increased with increasing temperature.  
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Figure 10: Comparison of gas height at different temperature for adapted strain 

Furthermore, the gas production ability of the pure strain (DSMZ 663), the salinity adapted strain (90F) and 

the temperature adapted strain (90F-45) were compared in different experiment. The result obtained over 

120 h is shown in Figure 11. The highest cumulative gas production was recorded with 90F however the 

temperature adapted strain (90F-45) was able to show even better gas production at relatively high salinity 

of 90 g/L compared to strain 90F. This was a significant improvement over the initial ability of the pure 

strain that was only able to grow till salinity of between 40-50 g/L.  

 

Figure 11: Comparison of gas production potential for pure strain, salinity adapted strain (90F) and 
temperature adapted strain (90F-45). 

Additionally the cell structures of the pure 90F-45 was compared with that of salinity adapted strain 90F 

and pure strain (DSZM 663) as shown in Figure 12 (Jimoh et al. 2012b). The result indicated that the 

contents of the cells were different at certain wavelengths.  The most significant spectral differences come 

from the N-H stretching of proteins around 3400-3278 cm-1,  the amide bands of protein at 1675 cm-1 and 
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the  point which represent the C=C-O-C, C-O, C-O-P, P-O-P  vibrations of polysaccharides at 1072 cm-1 

modes, respectively.  This is based on the values of the intensities of the major bands corresponding to 

these functional groups. In the ranges of 3400-3278 cm-1 and 600-900 cm-1, the transmittance is decreasing 

as follows: pure culture, 90F, and 90F-45. The reverse trend can be observed in the range of 2900-3000 cm-

1. The sequence of curves clearly separates adapted strains from pure culture. 

 

 

Figure 12: Spectra for dry harvested cells of pure strain, salinity adapted strain and temperature adapted 
strain of Clostridium tyrobutyricum. 

 

Conclusion 
It was found out that pure culture of bacteria can become adapted to high levels of salinity and moderate 

temperature after a careful and repeated sub culturing over time. This adaptation process could be 

monitored by gas production. The main metabolites produced by salinity adapted strain of Clostridium 

tyrobutyricum labeled as 90F include gas, bio-acids, biomass and biofilm when cultured in molasses based 

media. Strain 90F was able to produce gas and biofilm to salinity of 100 g/L. When exposed to formation 

water of salinity of 110 g/L, this strain also showed stable gas production. The quantities of some of the 

metabolites was found to have  direct relationships with salinity of the medium as it was observed that the 

acid yield generally increases with salinity while the amount of gas produced decreases with salinity. 

Although presence of chalk facilitated higher gas production in the experiments with microbial solutions, 

recovery of 39 % was greater from sandstone compared to 25 % from chalk. This was thought to be partly 

due to a more complex porous structure of chalk.  
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The temperature adapted strain improved performance of the salinity adapted strain and demonstrated 

ability to produce more gas at salinity 90 g/L. Microscopic observations make to deduce that bacteria 

formed aggregations of cells as an adaptation mechanism. Spectroscopic analysis proved to be a tool able to 

make a distinction of the different strains.  The most significant spectral differences between pure and 

adapted strains came from the N-H stretching of proteins. 
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Microbial fluid-rock interactions in chalk samples and salinity factor in divalent Ca2+ 
ions release for microbial enhanced oil recovery purposes 

Ismaila A. Jimoh, Svetlana N. Rudyk and Erik G. Søgaard 

Section for Chemical Engineering, Esbjerg Institute of Technology,  Aalborg University,  Niels Bohr Vej 8, 6700 Denmark. 
Telephone: +45791272622, E-mail: sr@bio.aau.dk 

 

In this study core laboratory experiments were performed on chalk samples from Danish sector of the 

North Sea to study microbial fluid-rock interactions with carbonate rock and to evaluate the dissolution of 

rock matrix (CaCO3). Result showed that the average concentration of Ca2+ ions after microbial fluid 

interactions with chalk samples in media of salinity 40-100g/l increased from initial average concentration 

of 203 mg/l at the start of the experiment to 1178 mg/l in 28 days. 3-D surface plot (salinity, Ca2+, pH) with 

time revealed delineation of the measured salinity into two groups with a boundary between 70 - 80 g/l. In 

the low salinity group (40, 50, 60, 70 g/l) pH increased but decreased in the high salinity group (80, 90, 100 

g/l) at the end of the experiment. The highest Ca2+ ion concentrations was measured at highest salinities at 

the end of experiment which means that the dissolution rate of chalk increased with increase in salinity due 

to the lower values of pH indicative that higher salt concentration facilitates more acid production by 

bacteria. 
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1. Introduction 
In the last few years oil production in the Danish sector of the North Sea started declining. It was estimated 

that an increase of only 1% in oil recovery will provide Denmark additional oil for two years (OCD, 2007). 

The method of microbial enhanced oil recovery (MEOR) is considered for application to the North Sea oil 

bearing chalk reservoirs; however, microbial fluid interaction in subsurface formations is governed by 

complicated physical, chemical, and biological phenomenon. Although several attempts have been made to 

describe microbial processes, no model has yet fully incorporated all of the complex phenomena that are 

believed to be important thus it requires close coordination between laboratory mechanistic studies and oil 

displacement experiments under carefully controlled conditions to develop and validate a computer model 

(Bryant et al., 1992).  

 

Development of such models must incorporate all the physical, chemical and biological processes that 

occurred during microbial enhanced oil recovery processes such as adsorption, interaction between 

microorganisms and substrate, biomass formation and ions release. Many works have been carried out to 

document different aspect of MEOR processes; however the release of divalent Ca2+ ions and the role 

played by the reservoir brine remains one of the least studied parts of microbial fluid rock interaction 

during microbial enhanced oil recovery. Only few reports refer to ions release during MEOR process in 

carbonate rocks. During microbial fluid interactions with carbonate rocks, divalent cations are being 

released as a consequence of dissolution of the rock matrix (Udegbunam et al, 1991). Adkins et al., 1992b 

have reported similar phenomenon in their work where they used a halophilic bacteria in-situ growth in a 

packed columns with crushed carbonate rocks. However, they did not mention the concentration of Ca2+ 

ions released.  Divalent cations such as Ca2+ can influence biofilm formation and can possibly enhance 

adhesion of bacteria to the rock particles in the medium (Marshall, 1985). In microbial enhanced oil 

mechanism, migration of these adhered bacteria to other parts of the reservoir rock can induce mobilization 

of oil in the new location.  

 

In the present study, we describe the microbial fluid interaction with chalk samples at different salinity and 

the release of calcium ions from this interaction. Incorporation of such information can increase our 

understanding of models that attempts to describe fluid-rock interaction during microbial enhanced oil 

recovery.  

2. Experimental procedure 
The chalk samples used in this investigation were obtained from Dan-chalk. These chalk samples were cut 

into identical cylindrical shapes of 2.0 cm length and 2.4 cm diameter. They were characterized by whitish, 
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fine textured and average porosity of 40%.  The chalk samples were pre-treated by drying in the oven for 

72 hours at 90 oC. The method of modification involved immersion of the chalk samples in growth 

chamber filled with microbial solution at different salinity. The salinity range used in the experiment was 

40 -100 g/l. (4-10 % w/v). The growth chambers were 500 ml fermentation bottles, sterilized, with cork 

consisting of a hole for sample withdrawal. Sodium chloride salt of different concentration was dissolved in 

250 ml of de-ionized water to provide the desired values of salinity.20 ml of molasses was then added to 

each flask to serve as source of nutrient.  

 

The medium were inoculated each with 10 ml of a strain of Clostridium tyrobutyricum designated as 90F. 

This strain was already adapted to grow till salinity range of 100 g/l. Detail of the adaptation process is 

given in (Rudyk and Søgaard, 2011). The bacteria had earlier been cultivated on a reinforced clostridia 

media (RCM). The whole set up for main experiments and control experiments (without chalk samples) 

and blank experiments (chalk and salt solutions only) to check background values  were incubated at 37 oC 

for 28 days under anaerobic condition. Growth in the media was indicated by increased turbidity. The pH 

and electrical conductivity measurements were made every 7 days and the fluid samples analyzed for 

calcium ions concentration by induction couple plasma (ICP). 

3. Results and discussion 
Fig.1. shows the relationship between Ca2+ concentrations with time. A significant content of Ca2+ was 

found for all the media and this correlates with the period of immersion. The   average concentration at 7, 

14, 21, and 28 days for the salinity measured was 611, 822, 2100 and 3257 mg/l respectively. This amount 

is significantly different when compared to the average value of 203 mg/l for control experiment (the 

average starting point of all salinity measured without chalk samples) and average background value of 

about 50 mg/l for blank experiment  ( chalk samples and salt solutions  at 90 g/l ) over the same period of 

time.  
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Figure 1. Ca2+ ions concentration variation with time at different salinity 

 

Figure 2. pH variation with time at different salinity 

The change in pH of the media with time is shown in Fig. 2. For salinity 40, 50  60 and 70 g/l, the pH is 

increasing from day 7 to the end of 28 days, while for salinity 80, 90 and 100 g/l the pH is decreasing from 

day 14 suggesting more acidic condition. These results appeared to separate the salinity range into two 

groups i.e. 40, 50, 60, and 70 g/l and 80, 90 and 100 g/l.  However correlation between the Ca2+ ion content 

in the fluid and salt concentration cannot be ascertained as it became very irregular. 

Increase in the pH of the media with time is indicative of carbonate mineral dissolution as represented by 

equation (1). This will lead to formation of water soluble bicarbonates.  

 
2 2

3 2 2 32CaCO CO H O Ca HCO� �� � � �                                                                                 (1) 

As the concentration of 2
3HCO �  increases, the media become less acidic and the pH increases. The opposite 

effect noticed at salinity (80 -100g/l) from day 14 which is more acidic can be attributed to effect  of 

salinity on metabolism of bacteria that promotes more acid production and reduces the influence of HCO3
2- 

on pH as it is shown in Fig. 3 for salinities 40 and 100 g/l as example. 
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Figure 3.Comparison of media dynamics at (a) 40 g/l and (b) 100 g/l 

The results for all salinity measured put together is shown in Fig 4. A strong correlation can be observed 

between pH and Ca2+ concentration with time for the measured salinity range (Fig.4). The equations show a 

negative correlation for different period of time and an almost equal gradient for dissolution of Ca2+ ions 

which is reflected in parallel lines and almost equal constants in equations. The system is limited with lines 

between 40 and 100 g/l showing that low salinity corresponds to high pH and high salinity corresponds to 

low pH.  This negative correlation can be an indication of increasing acidic environment with increasing 

salinity despite relatively higher concentration of Ca2+ ions. For more clear presentation of this multivariate 

system, 3D surface model was made as shown in Fig.5.           

 

Figure 4.Overall dynamics of the media based on Ca2+ ions concentration and pH                           
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Figure 5. Surface representation of the media parameters 

3-D surface plot for all the media (i.e. 40 -100 g/l) as shown in Figure 5 revealed an interesting result. The 

plane angle of the salinity measured was delineated into two with a boundary between 70-80 g/l that 

separates the low salinity group (40, 50, 60 and 70 g/l) and high salinity group (80, 90 and 100 g/l). The 

low salinity group has an elevated plane surface corresponding to higher pH while the high salinity group 

has a lower plane surface that corresponds to lower pH than the low salinity group. The model thus 

confirms the deviations corresponding to the low salinity and high salinity groups as in Fig.3. These 

deviations could be related to the effect of different rates of metabolic process of the bacteria in the 

different ranges of salinity. At high salinities, the condition in the medium was more acidic. It is also likely 

that a part of pH change comes from salinity alone and the resultant change in activity coefficients. The pH 

of aqueous sodium chloride was found to vary with increasing salinity due to different ionic strength 

(unpublished results). 

4. Conclusion  
The results from this study suggest that incongruent dissolution of chalk samples by microbial solution at 

different salinity enriched the solution with Ca2+ ions about 20 times more than the background value. 

However the concentration of Ca2+ ions in the media did not have clear correlation with salinity. The 

highest release of Ca2+ ions due to higher acidity was observed at harsher environment for bacteria at the 

highest salinity. The 3-D surface plot was able to distinguish a possible partitioning of pH along two 

salinity groups.  This effect on pH is clearly related to the concentration of Ca2+ ions in the media over time 
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due to bacteria metabolism or those coming from salinity alone. These parameters should be taken into 

consideration when modeling for microbial fluid rock interactions in carbonate rocks.  
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Microbial	fluid-rock	interactions	in	chalk	samples	and	implications	for	
enhanced	oil	recovery	
Ismaila A. Jimoh1, Svetlana N.Rudyk2, and Erik G. Sogaard3* 

1,2,3, Section for Chemical Engineering , Esbjerg Institute of Technology 
Aalborg University Niels Bohrs Vej 8 6700 Denmark, egs@bio.aau.dk 
 
 

In this study laboratory scale experiment was used to investigate the effect of microbial treatment on chalk 

samples from Danish sector of the North Sea. Microbial media consisted of Clostridium tyrobutyricum in 

reinforced clostridia media supplemented with molasses as carbon and energy sources. After 28 days of 

incubation, bacteria treatment was found to increase porosity of all rock samples. The mean porosity of all 

the samples increases from 40.0% to 44.0%. Additional results showed that the bulk volumes correlates 

with the biomass retained (r = 0.70). Further results from pH and electrical conductivity measurements 

over the period showed that the dynamics of the media was constantly changing because of release of 

calcium ions from the chalks. Measured concentration of the calcium ions in the bacteria media increased 

from initial average concentration of 203 mg/l at the start of the experiment to 1178 mg/l in 28 days. All the 

bacteria media irrespective of their salinity condition experienced a decrease in measured pH from average 

of 7.0 to 6.0 in the first week; this however started to increase again from second week with release of 

calcium ions suggesting a correlation between pH and calcium ions released. However the correlation 

observed with calcium ions released and the measured electrical conductivity is weak. 3-D surface plot for 

the range of salinity measured revealed delineation of measured salinity into two groups with boundary 

between 70-80 g/l. The highest calcium ions concentration was measured at the highest salinities by the end 

of experiment which indicates the dissolution rate of chalk was faster at higher salinity. This could be due 

to the lower values of pH as indication of that higher salt concentration facilitates more acid production by 

bacteria. 
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1. Introduction 
Microbial enhanced oil recovery (MEOR) method has recently gained increased attention because of the 

dwindling oil reserves around the world and the need to find an alternative way to improve oil recovery. 

One of the many ways by which microbes can be useful in MEOR process is the alteration of physical 

properties of rock. Microorganisms alter rates and mechanisms of chemical and physical weathering and 

clay growth, thus playing fundamental roles in soil and sediment formation. For example microbes 

contribute to dissolution of insoluble secondary phosphates, possibly via release of organic acids (Banfield 

et al., 1999).  

During microbial growth, the pore environment is altered in many ways which include modification of rock 

texture, pore size, pore shape and grain surface roughness (Atekwana et al., 2006). The change in rock 

properties due to microbial process can have significant effect in reservoir properties especially in 

carbonate rocks which are more susceptible to modifications by post depositional mechanisms. Carbonate 

rocks are important focus in microbial enhanced oil recovery because they contain more than 50% of the 

world oil reserves (Harbaugh, J.W., 1967) and also because it has been suggested that MEOR process are 

more likely to be successful in carbonate rocks than in sandstones since carbonate rocks are chemically 

formed sedimentary rocks and the injected bacteria spread wider and more quickly through fissures, 

fractures and pure canals (Wagner et al., 1992). Two of the most important rock properties affected by 

microbial process are porosity and permeability. Both permeability and porosity are related. While porosity 

is an essential factor in determination of water saturation; permeability is necessary for the flow of oil 

through the reservoir rock. Understanding of how bacterial treatment and their metabolic products affects 

reservoir rock properties will allow for good application of microorganisms for enhanced oil recovery. 

 

Several workers have documented the plugging of permeability modification by bacteria to plug the zone of 

high permeability to increase sweep efficiency in low permeability region. For example the work of Stepp 

et al., 1996 showed that applying permeability modification treatments can significantly extend the 

productive lives of active oil recovery projects, curtailing the prospect of premature abandonment and 

Effective modification of reservoir sweep can improve the economics of an oil recovery process. Meehan et 

al., 1978 have also demonstrated that additional oil recovery is possible if the channelling water in a water 

flood can be immobilized by selective plugging process using the in-situ growth of bacteria.  

Moreover, the rock porosity can be altered by microbial process especially in carbonates rocks by acids 

produced during microbial process; these acids can dissolve the bed-rock with carbonate matrix. Rock 

dissolution is one of the desired products of MEOR as it has ability to increase oil release when porosity is 

increased. Also porosity is an important factor for bacteria adhesion and migration through porous rock for 
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application of microbial enhanced oil recovery and also for accumulation of biomass that can physically 

dislodged oil from the reservoir. 

 

Not only is porosity increased, significant amount of calcium ions can be released into the microbial 

solution during this microbial fluid-rock interaction as a consequence of dissolution (Udegbunam et al., 

1991, Adkins et al, 1992b). Divalent cations such as Ca2+ can influence biofilm formation directly through 

their effect on electrostatic interactions and indirectly via a physiology-dependent attachment process by 

acting as an important cellular cation and enzyme co-factor (Fletcher, M., 1996, Marshall, K.C., 1985).  

Despite large volumes of work on microbial enhanced oil recovery, very few literatures have documented 

the modification of carbonate rock during the process of microbial enhanced oil recovery. Therefore it is 

relevant that an investigation of the effects of microbial treatment on rock modification be conducted. This 

can be very useful in design and screening of reservoirs for MEOR purposes. The aim of this study 

therefore is to investigate effect of microbial treatment on chalk samples using Clostridium tyrobutyricum 

species and to evaluate the modification with time. 

 

2. Materials and method 
The chalk samples used in this investigation were obtained from Dan-chalk. These chalk samples were cut 

into identical cylindrical shapes of 2.0 cm length and 2.4 cm diameter. They were characterized by whitish, 

fine textured and average porosity of 40%.  The chalk samples were pre-treated by drying in the oven for 

72 hours at 90 oC. The method of modification involved immersion of the chalk samples in growth 

chamber filled with microbial solution at different salinity. The salinity range used in the experiment was 

40 -100 g/l. (4-10 % w/v). The growth chambers were 500 ml fermentation bottles, sterilized, with cork 

consisting of a hole for sample withdrawal. Sodium chloride salt of different concentration was dissolved in 

250 ml of de-ionized water to provide the desired values of salinity.20 ml of molasses was then added to 

each flask to serve as source of nutrient. The medium were inoculated each with 10 ml of a strain of 

Clostridium tyrobutyricum designated as 90F. This strain was already adapted to grow till salinity range of 

100 g/l. Detail of the adaptation process is given in (Rudyk and Søgaard, 2011). The bacteria had earlier 

been cultivated on a reinforced clostridia media (RCM). The whole set up for main experiments and control 

experiments (without chalk samples) and blank experiments (chalk and salt solutions only) to check 

background values  were incubated at 37 oC for 28 days under anaerobic condition. Growth in the media 

was indicated by increased turbidity. The pH and electrical conductivity measurements were made every 7 

days and the fluid samples analyzed for calcium ions concentration by induction couple plasma (ICP). 
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Porosity Determination 
For the determination of porosity, rock samples were pretreated and dried in oven, the initial porosity was 

later determined using the principle based on introduction of a fluid of known density into the rock 

samples. The weight of the saturated sample (Ws) is determined. The dry weight of the sample (Wd) is also 

determined. The pore volume (Vp) is determined by dividing the difference in weight between the saturated 

sample and the dry sample by the fluid density. The fluid in this case was water. The bulk volume of the 

rock samples (Vb) was determined by measuring the difference in level of the saturating liquid before and 

after the immersion of the saturated rock samples in a graduated cylinder containing the same saturating 

fluid at specified level.  

 

Density and biomass determination 
Calculation of the density of the rock samples before and after the microbial treatment was carried out 

using the dry density method. Densities were determined by weighing the samples after drying and dividing 

the mass by the total sample volume. In simple term, dry density D�  is equal to the dry mass DM  of the 

sample divided by the total volume V  of the sample. Mathematically it can be expressed as; 

 

D
D

M

V
� �  

            For biomass determination, dry weight of sample before immersion in bacteria solution IW  was 

subtracted from the dry weight after microbial treatment FW ; the difference in weight gives the amount of 

biomass expressed as the dry weight in g/l.  Samples were left in the oven overnight dry complete at a 

temperature of 100 oC. The mathematical expression for biomass is given by;  

 

F IBiomass W W� �  
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3. Results 
The experimental conditions and results before and after microbial treatment is given in Table 1.  

 
Table 1: Summary of result for chalk samples before and after microbial treatment 

Salinity 
(g/l) 

Sample 
ID 

Initial 
�  

Final 
�  

Change 
in�  

Initial 
W (g) 
(W1) 

Final 
W (g) 
(W2) 

Biomass 
Acc.(g) 
(W2-
W1) 

Initial 
B.V 

(cm3) 

Final 
B.V 

(cm3) 

Initial 
Dens. 

Final 
Dens. 

40 1 0.40 0.46 0.06 19.36 20.09 0.73 8.80 8.59 2.20 2.33 
50 2 0.40 0.44 0.04 16.38 17.07 0.69 8.75 8.59 1.87 1.99 
60 3 0.42 0.46 0.04 18.08 18.97 0.89 9.30 9.00 1.94 2.09 
70 4 0.41 0.46 0.05 15.74 16.41 0.67 7.90 7.69 1.99 2.14 
80 5 0.40 0.45 0.05 14.79 15.39 0.60 6.78 6.43 2.18 2.43 
90 6 0.39 0.43 0.04 16.43 17.11 0.68 7.92 7.47 2.07 2.28 

100 7 0.40 0.45 0.05 16.74 17.58 0.84 8.93 8.59 1.87 2.05 

� =porosity, B.V = bulk volume, Dens. = density, W = weight 

 
From Table 1, it is evident that there is a change in porosity value of each rock sample after bacteria 

treatment. The increase in average chalk porosity for set of samples increased by the end of experiment.  

The average porosity increase value was about 0.04 representing an increase of about 11% per sample.  

Also there is attachment of biomass to rock samples giving the difference in the dry weight before and after 

microbial treatment. Another property that was modified is the density of the samples. The density 

increased after the microbial treatment. This is due to the bulk volume of the samples that generally 

reduced due to dissolution of the rocks. When biomass accumulation is plotted against bulk volume, there 

is a strong correlation between the two parameters as shown in Figure 1. This suggests that the bigger the 

bulk volume the bigger the amount of biomass retained on the rock.  

 

The bacteria solution was analysed for calcium ion which is the main ion released into solution after 

dissolution of rock matrix of the samples. Figure 2 shows the plot of calcium ions in the microbial fluid 

over time at different salinity.  The average concentrations at 7, 14, 21 and 28 days were 611, 822, 2100 

and 3527 mg/l respectively. 
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Figure 1: Biomass and bulk volume relationship for the chalk samples 
 
This amount is significantly different when compared to the average value of 230 mg/l  without chalk 

samples (salt solutions and bacteria media) and average background value of 50 mg/l for blank sample 

(chalk sample and salt solution at 90 g/l without bacteria media). The relationship observed did not show a 

clear correlation between salinity and amount of calcium ions released. Figure 3 shows the change in pH 

with time, for salinity 40, 50, 60 and 70 g/l, the pH is increasing from day 7 to the end of 28 days, while for 

salinity 80, 90, and 100 g/l, the pH is decreasing from day 14 suggesting more acidic condition at high 

salinities.  

 

 

 
 
Figure 2:Ca2+ ions concentration variation with time at different salinity 
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Figure 3: pH variation with time at different salinity 
 

The release of calcium ions also has effect on the electrical conductivity of the media. The measured 

electrical conductivity increases over time when compared with the electrical conductivity measurement at 

the start (Figure 4) for the range of salinity measured.  

 

 

 
Figure 4: Electrical conductivity variation with time at different salinity  
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Figure 5: Comparison of media dynamics at (a) 40 g/l and (b) 100 g/l 
 

The dynamics of the media with chalk samples were compared with those of control experiments without 

chalk samples at different salinity for example as shown in Figure 5. It can be observed that the curve for 

40 g/l  (similarly for 50, 60 and 70 g/l) considered as low salinity is different from that of 100 g/l (similarly 

for 80 and 90 g/l) considered as high salinity by their orientation.  

 

  

 
Figure 6: Overall dynamics of the media based on Ca2+ ions concentration and pH 
 

The result for all salinity measured when put together is shown in Figure 6. A strong correlation can be 

observed between the pH and calcium ion concentration with time.  The equations show a negative 

correlation for different period of time and an almost equal gradient for dissolution of Ca2+ ions at every 7 

days which is reflected in parallel and almost equal constants in the equations for each period. The system 

is limited with lines between 40 and 100 g/l showing low salinity group has increasing pH with increase 
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calcium concentration while the high salinity group shows a decreasing pH with increase calcium 

concentration. 

 

Figure 7 below shows the 3D representation of this multivariate system representing all the measured 

salinity (40-100 g/l). As it can be observed from Figure 7, the plane angle of the salinity measured was 

delineated into two with a boundary between 70-80 g/l that separates the low salinity group (40,50 60 and 

70 g/l) and high salinity group (80, 90 and 100 g/l).  This partition suggests the influence of salinity on 

microbial metabolism in the different media 

 

 
Figure 7: Surface representation of the media parameters 
 
 

4. Discussion 
Microbial modification of carbonate rocks was investigated in this study. The average porosity values 

increased at the end of incubation period.  This is directly related to the microbial activities, suggesting 

organic acid production and carbon dioxide formation both processes that leads to rapid dissolution of rock 

mass leading to porosity increase. One of the major factors for feasibility of MEOR in reservoir rock is the 

transportation of bacteria. With increase in the porosity it can be assumed that more bacteria will be able to 

percolate the formation. It has been shown that permeability in chalk depends on porosity and rock surface 

area (Mortensen et al., 1998, Rogen and Fabricius, 2002). Increase porosity can also results in increase 

permeability therefore reducing the formation resistance to bacteria movement and larger surface area to be 
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exposed to bacteria treatment therefore enhance oil recovery by providing the required permeability to 

drain oil saturated low permeability rock matrix  The increase in porosity can also have the advantage of 

internal pores which can be colonized. Huysman et al., 1983 has found out that the favourable conditions 

for biofilm formation in a porous material are the size of the pores and the degree of porosity.  

 

The bulk volume of the rock samples was reduced after the treatment with bacteria culture; however the 

void ratio which is defined as the ratio of the volume of void space to the volume of solid in a given total 

volume (Hustrulid and Johnson, 1990) was increased. The increase void space can be filled with growing 

biomass and enabling bacteria adhesion that can encourage the growth of biofilm. Biofilm can grow on the 

surface of the porous rock which may lead to a change of surface properties and/or a decrease in 

permeability (Gandler, 2006). Permeability change cannot explain the increased oil production from water 

wet cores; however the change in surface properties inside the porous rock can thus lead to change in 

wetting properties causing mobilization of oil (Hiorth, 2007). 

 

Calculation of the density of the rock samples before and after the microbial treatment using the dry mass 

showed that there is increase in density of the rock samples as a result of amount of biomass retained in 

pores of the rock samples. Difference in the pre-treatment and post treatment density and porosity can 

therefore arise only as a result of the modification effect of the bacterial medium on the chalk samples since 

no such effects were observed in the control experiment. 

 

The result showed the release of calcium ions into the bacteria media that increases with period of 

immersion.  This release of ions can possibly enhance adhesion of bacteria to the rock particles in the 

medium. In microbial enhanced oil mechanism, migration of these adhered bacteria to other parts of the 

reservoir rock can induce mobilization of oil in the new location. On the order hand, it not known what the 

influence of these ions would be during the separation process for produce water after the oil has been 

separated, since some rock matrix will be produced along oil. Recently there are concerns about the fate of 

metallic ions such as calcium ions during separation process based on laboratory experience. However 

adequate separation techniques can overcome this problem. 

 

The dynamics of the rock dissolution and microbial activity can also be inferred from the changes observed 

in the pH of the medium and the electrical conductivity measurement (Figure 6). These are indicative of the 

heterogeneous and constant changes taking place in the media. Increase in the pH of the media with time 
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reflects the dissolution of the rock matrix into the medium and release of calcium ions as represented in 

equation (1) with formation of water soluble bicarbonates. 

 
2 2

3 2 2 32CaCO CO H O Ca HCO� �� � � �                                                                                              (1) 

 

It is expected that as the concentration of 3HCO �  increases, the media will become more alkaline and the 

pH will increase. However, opposite effect was noticed at higher salinity (i.e. 80, 90, 100 g/l) from day 14 

which shows lower pH values. An explanation for the observed difference can be attributed to effect of 

salinity on metabolism of bacteria that promotes more acid production and reduces the influence of 3HCO �  

on pH. When compared with low salinity (40, 50, 60 and 70 g/l), the pH increases as the concentration of 

calcium increases. The negative correlation noticed between calcium ions and pH over time is thus an 

indication of increasing acidic environment with increasing salinity despite relatively higher concentration 

of calcium ions. 3-D surface plot for all the media ( i.e. 40-100 g/l) as shown in Figure 7 revealed that the 

plane angle of the salinity measured was partition into two with a boundary between 70-80 g/l that 

separates the low salinity group ( 40,50,60 and 70 g/l) and high salinity group (80,90, and 100 g/l).  The 

low salinity group when compared to high salinity group has an elevated plane surface that corresponds to 

higher pH while the high salinity group has a lower plane surface that corresponds to lower pH. The 3-D 

model thus confirms the deviation between the low salinity and high salinity group.  This deviation is due 

to effect of salinity on bacteria metabolism resulting in different rate of metabolic process. Another 

possible explanation is that part of pH change comes from salinity alone and the resultant change in activity 

coefficients. The pH of aqueous sodium chloride was found to vary with increasing salinity due to different 

ionic strength (unpublished results) however with presence of microbes in the media this observation might 

be different from a pure aqueous salt solution even though increase salinity can cause a decrease in bacteria 

population in the media. 

 

The variation of electrical conductivity of the medium over time shows a slight increase when compared to 

the start value however it did not match the correlation between ions release and time suggesting a weak 

correlation between calcium ions and electrical conductivity. Electrical conductivity of solutions depends 

on the concentrations and the movement of charged particles in the solution. The bacteria culture is a 

heterogeneous and complex one that is constantly changing as seen from the pH variation. There is a direct 

correlation between conductivity measurements in relation to bacteria metabolism products; (Parsons and 

Sturges 1926). Sierakowski and Leczyeka (1983) have reported that there is always some relationship 

between electrical conductivity and metabolic processes even though the direct cause for the alteration in 
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electrical field strength may be obscure. In this present investigation, the electrical conductivity shows a 

weak correlation with calcium ions release. It is possible that the calcium ions in this media are not 

completely dissociated and therefore their low influences on the conductivity of the bacteria media. This 

means some of the calcium ions that would have responsible for significant increases in electrical 

conductivity of the solution are bound by the basic microbes.  

 

5.	Conclusion	
Successful application of microbial enhanced oil recovery requires a lot of understanding of not only the 

reservoir properties but also an understanding of the effect of microbial treatment on reservoir rocks in 

order to get a desirable result. The experiment with treatment of carbonate rocks with a media inoculated 

with a strain of Clostridium tyrobutyricium indicated porosity increase in the course of the experiment. The 

porosity increase observed in all the rock samples was mainly due to significant dissolution of carbonate by 

the organic acids produced during microbial metabolism. The pattern of dissolution lead to reduction in the 

bulk volume with pore volume slightly reduced or generally remains the same. The density of the carbonate 

rocks was also increased due to the fractions of biomass retained in the pore spaces. Further results suggest 

incongruent dissolution of chalk samples by microbial solution at different salinity enriched the solution 

with Ca2+ ions about 5 times on the average more than starting Ca2+ concentration in the media. No clear 

correlation was however established between concentration of Ca2+ in the media and salinity. The highest 

concentration of Ca2+ ions due to higher acidity was observed at highest salinity. 3-D surface plot was able 

to distinguish a possible partitioning of pH along two salinity groups low salinity (i.e. 40, 50, 60 and 70 g/l) 

and high salinity group (80, 90,100 g/l). The effect on pH is clearly related to the concentration of Ca2+ ions 

in the media over time due to bacteria metabolism or those coming from salinity alone, however the 

electrical conductivity shows a weak correlation with calcium ions release suggesting that the calcium ions 

in this media are not completely dissociated. Since modification of rock properties during microbial process 

can be positively applicable in different forms: increasing the reservoir porosity can expose larger fraction 

of the reservoir to bacterial treatment causing a change in surface properties inside the reservoir rock and 

inducing wettability that can improve oil recovery.  
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Evaluation of produced volumes of carbon dioxide from the concentration of the gas 
absorbed in the media during microbial fermentation for enhanced oil recovery 

purposes 
 

Ismaila A. Jimoh, Erik G. Søgaard *, Svetlana N.Rudyk 

Section of Chemical Engineering, Aalborg University Esbjerg, Denmark. Telephone +4599409821 
egs@bio.aau.dk 
 
 

Carbon dioxide produced by microbes during microbial enhanced oil recovery process (MEOR) promotes 

oil displacement and productivity through re-pressurization of the oil field and dissolution of the rock 

matrix. In the laboratory studies conducted using an adapted strain of Clostridium tyrobutyricum (DSMZ 

663) in fermentation media of 500 mL, the volume of the produced gas, the concentration of the dissolved 

gas determined using titrimetric method and pH of the media as a result of microbial metabolic activities at 

different salt concentrations (0, 30, 60, 90 and 100 g/L) were measured after 24, 72 and 120 h. The volume 

of produced gas decreased from about 3000 mL at 0 g/L to 250 mL at 100 g/L. The rate of absorption, 

volumetric mass transfer coefficient and partial pressure were then related quantitatively as a function of 

salinity and were compared. The result shows that the rate of absorption decreases exponentially with 

salinity suggesting a strong correlation with R2 value of 0.75-0.98 at constant coefficient of 0.0002. The 

volumetric mass transfer coefficient for carbon dioxide at 0 g/L is approximately 6 times greater than at 

100 g/L suggesting the influence of the salinity of the media. The correlation of the gas concentration in the 

solution with the gas bulk volumes produced at different salinities after 120 h (R2 = 0.97) suggests an 

accurate tool for the estimation of the amount of gas produced by microbes. 
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Introduction 
Microbial enhanced oil recovery (MEOR) involves the use of specific bacteria capable of producing useful 

metabolites in-situ such as gases, acids, surfactants, solvents and polymers in order that their presence will 

aid further reduction of residual oil left in the reservoir after secondary recovery (Lazar, et al. 2007). The 

production of biogenic gases as earlier mentioned creates a free gas phase that can account for incremental 

oil recovery in MEOR processes either by reduction of the oil viscosity by solution of the gas in the oil, or 

by repressurization of the reservoir causing displacement from trapped capillaries and enhancing 

mobilization of the oil to the producing wells (Sen, 2008). The most important gas-producing bacteria are 

Clostridium, Desulfovibrio, Pseudomonas, and some methanogens (Behlülgil and Mehmetoğlu, 2002). The 

composition of the biogenic gas from bacteria metabolism can include carbon dioxide, hydrogen, methane 

and nitrogen.  

However, certain factors can affect gas production by either reducing the volume of gas produced or the 

amount that can go into solution.  One of such factor is salinity of the media.  Salinity is known to affect 

the solubility of gas in liquid because of the salting out effect (Duan and Sun, 2006).  Oilfield brines can 

have a wide range of concentrations of a large variety of cations and anions with concentrations ranging 

from less than 100 mg/L to more than 200,000 mg/L (Donaldson et al. 1989). 

  

During fermentation process under anaerobic condition, gases are produced by conversion of carbon source 

such as molasses which is a cheap and universally available nutrient. The effectiveness of the gas produced 

to enhance oil recovery will depend on how much of it can be transferred into the system. Evaluation of the 

amount of gas that can dissolve into the solution during microbial process is thus important. This can give 

an idea of how much of the gas produced goes into solution for displacement of oil at the oil-water-rock 

interface. However, all these processes happen inside the reservoir which can be very difficult to determine 

and monitor. Therefore, there is a need for simple system to determine measurement to handle fluid 

samples from reservoirs. Measurement of concentration of gas produced in situ can give an indication of 

effectiveness and limit of bacteria metabolism. For example, a fixed amount of bacteria inoculum under 

laboratory conditions when grown in a medium produces gas, of which the concentration in the solution 

can be determined by chemical methods and correlated with the measured volume of the produced gas. If 

the concentration of the gas in the fluid sample from a reservoir is known, then it will be possible to predict 

the volume of gas produced. Correspondingly, this information would be crucial in simulation of MEOR 

performance as the salinity level is different for many reservoirs. 
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For this reason,  a simple experimental procedure was used to assess the gas production and evaluate the 

concentration of carbon dioxide in media of different salinity in order to estimate how much of such can go 

into solution. Another objective is to find correlation between gas concentration in the media and volume of 

gas produced. 

 

Materials and methods 

Fermentation set up 
Solutions of different salinity were prepared in fermentation bottles of 1 L volume by accurately weighing 

specific amount of sodium chloride and dissolving in 500 mL of demineralized water to make solution of 

salinity 0, 30 60, 90 and 100 g/L. The fermentation bottles and media were initially purged of air by 

passing pure nitrogen for about 5 min. This was to create anaerobic conditions in the bottles. The nutrient 

consists of 50 mL of molasses and was added into already prepared 500 mL of salt solution of different 

salinity; the molasses acted as the substrate for the bacteria. Each set up was inoculated with 10 mL 

inoculum of an adapted strain of Clostridium tyrobutyricum (DSMZ 663) cultivated on reinforced clostridia 

medium after growth of 48 h indicated by change in turbidity.  The full process of adaptation for this strain 

is described in Rudyk and Søgaard, 2011. The set up was completed with water displacement apparatus for 

gas collection and measurement of volume produced. The whole process was maintained in water bath at 

37 oC. Cumulative gas production was calculated as total sum of gas produce during the period of 120 h. 

Liquid samples were carefully taken out from the fermentation bottles every 24 h for pH measurement 

using a pH meter (Model: PH 2000 Radiometer Analytical). 

 

Gas analysis 
The gas composition analysis was carried out using gas chromatography equipment (Model: Clarus 500 

Perkin Elmer). The sample amount was 1.0 mL with a dilution factor of 1.0. Each sample was run for 3 

cycles. The gas samples analyzed were collected after a fermentation period of 48 h.  

 

Titration 
The determination of concentration of dissolved CO2 in the liquid sample was carried out using the method 

of end point pH with the titration manager (Model: ABU 901 Radiometer Analytical). 10 mL of samples 

were carefully taken from fermentation bottle at intervals of 48 h.  5 mL of each sample was titrated with a 

standard sodium hydroxide solution. Free CO2 reacts with the sodium hydroxide to form sodium 

bicarbonate. The completion of the reaction is indicated automatically at end point pH of 8.3. The 

equivalent concentration of CO2 in each sample is indicated after the completion of the reaction. All the 
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samples were corrected for any dissolved CO2 in the molasses by subtracting the background value in 

molasses from the measured values of dissolved CO2 at different time. 

The concentration of the dissolved CO2 determined by the titration method as described above can be 

expressed by Henry’s equation (Yagi and Yoshida, 1977) as given in equation 1 below. 

 

22 ][ pCOKCO H�        (1)      

  
where HK  is Henry’s law constant (mol/L.atm) and 2pCO is the partial pressure of CO2 in the gas phase 

(atm). The value of Henry’s constant used for calculation is 3.4 x 10-2 (mol/L.atm) at temperature of 37 oC. 

As shown by (Dixon and Kell, 1989), due to stepwise increase of the 2pCO  in the gas phase, the rate of gas 

absorption ( sR ) can be written as: 

 
dTdCRs /�                                                                                                                    (2)                                            

 
C is the concentration of the gas in the bulk liquid, and T is the time.  It follows that the rate of absorption 

sR  of CO2 can be calculated from the slope of the graph of CO2 concentration and time and this is the basis 

of the work to be described. 

The volumetric mass transfer coefficient LK a of CO2 in the fermentation bottle is calculated from equation 

3 below. 
 

gsL HpRaK /�                                                                                                                          (3)                                

                                                                           
H is the Henry constant already described above, and gp is the partial pressure of CO2 in the gas phase 

(assumed to be 1 bar). The transfer rate of the gas produced is dependent upon the volumetric transfer 

coefficient LK a .  

 

Result 
During fermentation process of molasses by Clostridia tyrobutyricum in solutions of different salinity, gas 

was produced. Figure 1 illustrates the cumulative gas production at different salinity per 50 mL of molasses 

in each fermentation bottle. At salt concentration of 0 g/L, the cumulative gas production reached 2900 mL. 

With increasing salinity, the cumulative gas decreases and is about 250 mL at the highest salt concentration 

of 100 g/L measured in the experiment within 120 h. The cumulative gas production at 30, 60 and 90 g/L 

are in between 500-1200 mL. It can be inferred that there is an influence of salinity on the total amount of 

gas produced as indicated by volume reduction with increase salinity. 
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The pH variation in the fermentation medium over time at different salinity is shown in Figure 2. The initial 

pH values fall significantly in the first 24 h at all measured salinity. The decrease of pH values was 

probably due to acid formation and production of gas. At salinity 0 g/L the pH appeared to increase slightly 

from 72 h after the process started, while at other salinity ranges it appeared lowered or remain constant 

after 72 h. 

 

The composition of the gas phase was determined and main constituents are shown in Table 1 as 

percentage composition. The other gases in Table 1 are assumed to be mixture of hydrogen and methane. 

With the result of gas composition supporting that main constituent is carbon dioxide, further analysis was 

done using equations 2 - 3 to evaluate those parameters described.    

 

                                                             

Figure: 1 Cum. gas production at 120 h                Figure 2: pH variation with time at different salinity 

Figure 3 shows the measured amount of dissolved CO2 in the fermentation medium at different time and 

salinity. The highest concentrations were found at 120 h. If the salt concentration of the media is 

considered, irrespective of time, concentration of dissolved CO2 in the medium is in decreasing order of 0, 

30, 60, 90 and 100 g/L respectively. The measured values for 90 g/L and 100 g/L are similar due to the 

closeness of their salinity range. This result further suggests the effect of salinity on dissolution of CO2 as 

well. From the slope of the graph in Figure 3, the rate of absorption was calculated using equation 2 and the 

result is shown as function of salinity in Figure 4. 

Table 1: Average gas composition for gas sample from fermentation of molasses 

Component % Composition 
Carbon dioxide 83.66 

Others 16.23 
Nitrogen 0.11 

Total 100.0 
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Figure 3: Concentration of dissolved carbon dioxide with time at different salinity 

The rate of absorption ( sR ) decreases exponentially with salinity with R2 value of 0.88 - 0.98. This suggests 

a strong correlation between rate of absorption and medium salinity. However the highest rate occurred at 

24 h probably because the largest volume contributing to cumulative gas production was produced in the 

first 24 h. The concentration of dissolved carbon dioxide is plotted against the cumulative gas production 

after 120 h and is shown in Figure 5. 

 

 

Figure 4: Rate of absorption of carbon dioxide at different salinity and time 

The alteration of dissolved CO2 concentration with salinity correlates with the bulk volumes of the 

produced gas after 120 h (R2 = 0.97). The two deviating points are 60 g/L and 90 g/L respectively; however 

the reason for the deviation is not clear yet.  The equation for the relationship is given below in equation 

(4): 

 

gCCO *000008.0][ 2 �                                                                                                                     (4) 

where gC is the cumulative gas produced after 120 h.  
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Figure 5: Correlation between concentration of dissolved CO2 and cumulative gas after 120 h 

Table 2 shows the result of transfer coefficient as calculated using equation 3. The result shows that value 

of volumetric mass transfer coefficient decreases with increase salinity. It was observed that the trend in 

LK a   followed that of the absorption rate CO2 quite closely. 

Table 2:  Result of calculated volumetric mass transfer coefficient at different salinity 

Salinity (g/L) 0 30 60 90 100 

(H-1) 
0.010 0.0042 0.0026 0.0018 0.0017 

 

Discussion 
In the production of gas by an adapted strain of Clostridium tyrobutyricum (DSMZ 663) grown on 

molasses, we have shown that the main constituent of the gas phase is carbon dioxide (Table 1). The 

measured pH values also decreases and it is comparable to our earlier result (Jimoh et al. 2011) where we 

reported a decrease of pH for this strain of bacteria as indication of gas and acid production. The 

cumulative volume of gas produced decreases with salinity as a result of the inhibition of the bacterial 

growth. The volume of cumulative gas at salinity 0 g/L is approximately 13 times greater than at 100 g/L. 

However, the rates of gas production of approximately 300-700 mL from initial volume of media of 500 

mL at salinity range of 90-100 g/L showed that this strain underwent adaptation process successfully and 

can be productive even at such high salt concentrations.   

 

Furthermore, the calculated values of volumetric mass transfer coefficient of carbon dioxide (Table 2) show 

a significant influence of salinity of the medium.  Thus at high salinity (low carbon dioxide production), a 

low volumetric mass transfer coefficient of carbon dioxide can be expected. The measured concentration of 

dissolved CO2 from titration experiment decreases with salinity of the medium also (Figure 1). The 

concentration of dissolved CO2 in the media by the end of the experiment at different salinity probably 

settles at a value that provides the absorption rate which is directly related to the volume of gas produced. 

LK a
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When the concentration of dissolved CO2 is plotted against the cumulative gas produced at 120 h there is a 

strong correlation between the two parameters with R2 value of 0.97. If concentration of dissolved CO2 

correlates almost at 100 % with the total produced gas, salting out effect could be considered to be minimal 

taking into account low gas volumes produced. This probably suggests that a reliable estimate of the 

amount of gas produced can be made from the measurements of the concentration of dissolved CO2 in the 

fluid sample and applied to practical purposes of the monitoring of the microbial gas production during 

MEOR operations.  

 

Conclusion 
The adapted strain of Clostridium tyrobutyricum (DSMZ 663) is able to produce gas at high salinity. It was 

shown that about 84 % of the gas produced during fermentation process of molasses is composed of carbon 

dioxide and the absorption rate decreases with increase salinity. Further evaluation showed that from the 

concentration of the dissolved gas in microbial media measured from titration method, the estimation of 

volume of gas produced can be made.  
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Spectroscopy and image analysis characterization of adapted strains of Clostridium 
tyrobutyricum for microbial enhanced oil recovery purposes 

 
 

Abstract— In this study, spectroscopy and image analysis have been employed to characterize the 

difference between pure strains of Clostridium tyrobutyricum and the strains adapted to salinity and 

temperature for microbial enhanced oil recovery purposes. The pure strain and adapted bacteria strains 

have been metabolically characterized by gas production, pH and morphologically by FT-IR 

spectroscopy and image analysis. The result of FT-IR analysis was able to distinguish the adapted strains 

from the pure strain based on cell content. Further results from multivariate data analysis using PCA 

method showed that the morphological and physiological changes were induced with increasing salt 

concentration that correlates with gas production and change in pH.  It was found that the adaptation 

probably occurred due to the formation of bacterial clusters at extremely high salinity. High density of 

bacteria cells occurring as single cells and rod like shape were found in low to medium salinity in 

contrast to high salinity where the proportion of bacteria cells were found in clusters, round shaped  but 

with decreasing cell density. The shifts in the morphological as well as the physiological composition of 

the bacterial assemblage in the media allow for a clear subdivision into different salinity groups. 

 
Index Terms—Adaptation, FT-IR spectroscopy,   image analysis, salinity  
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Introduction 
Microbial enhanced oil recovery (MEOR) applies injection of bacteria to the depleted oil reservoir to create 

in-situ production of gas and other metabolic products in order to increase oil extraction [6]. However, 

there are some challenges that must be overcome for MEOR application to be successful. Challenges in 

MEOR are mainly the extreme conditions in oil reservoirs. Two of such conditions are high salinity and 

temperature. However, it has been suggested that careful adaptation of bacteria to such conditions can be 

carried out under laboratory conditions [1], [10].  

 

To enable them to survive and grow in extreme environments, bacteria have evolved a complex range of 

adaptations to all of their cellular components, including cell membranes, energy-generating systems, 

protein synthesis machinery, biodegradative enzymes and the components responsible for nutrient uptake 

 

 [11]. Adaptation to salinity by bacteria is achieved in different ways. The first and the most important one 

involve the accumulation of organic compatible solutes within the cytoplasm without the need for change 

of intracellular proteins. This method is called ‘organic osmolyte strategy’ [8], [9]. The second adaptation 

strategy is intracellular accumulation of high concentration of K+. This method is referred to as ‘salt in 

cytoplasm strategy’, and this requires extensive adaptation of the intracellular enzymatic machinery and is 

therefore energetically expensive [8]. The objective of this study is not on adaptation mechanism of 

bacteria. Details of adaptation strategy by bacteria to environmental temperature changes can be found [3], 

[13]. 

 

As pointed out from many reviews on MEOR that reservoir temperature and pressure may not be as 

restrictive to MEOR as salinity, this however still remains to be solved by carefully conducted laboratory 

and field experiments [2]. One operational strategy that can be applied to minimize the effect caused by 

salinity and high temperature is to gradually adapt the microorganisms to high salinity and temperature 

levels. But questions still remain on how the changes that occurred during adaptation process can be linked 

to metabolic characteristics. 

 

In this study, Clostridium tyrobutyricum which is a Gram-positive rod shaped, spore-forming, obligate 

anaerobic bacterium have been used in molasses fermentation process that generates energy-rich metabolic 

products. This genus of bacteria has earlier been used by some researchers [4, 15], because of their ability 

to produce gases that include carbon dioxide and hydrogen and also butyric and acetic acids which are 
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useful in microbial enhanced oil recovery process from various carbon sources [14]. The results presented 

in this paper form a part of our ongoing investigation to characterize adapted strain of bacteria for microbial 

enhanced oil recovery purposes. Additionally, not much work has been carried out on how to distinguish 

the strains of pure culture from adapted mutants. The changes that occur in the properties of bacteria cells 

can be advantageously used in monitoring their metabolic potentials. Gas production has been used as a 

measure of successful adaptation to salinity and temperature [4].  For evaluation of morphological 

modifications, a combination of image analysis technique and FT-IR spectroscopy were employed. The two 

methods are extremely rapid, non-destructive and they can provide quantitative information   about 

structure of investigated objects as well as the interactions between non-visual properties of the objects 

[12].  Both FT-IR spectroscopy and image analysis have been applied in microbiology in different ways for 

quantitative and qualitative analysis and can fulfill the requirement of this study.  

 

Materials and methods 

Cell harvesting 
Salinity adapted strain (90F) and temperature adapted strain (90F-45) were used for comparison with the 

pure strain (PS) of Clostridium tyrobutyricum (DSMZ 663). The cells of pure strain, strains from salinity 

and temperature adaptation were harvested just after 72 h of their growth. The broth solutions were filtered 

to separate cells from the suspended solid materials. The liquid containing the cells was measured into a 

graduated plastic centrifuge cylindrical bottle (50 mL) for separation of the cells by centrifugation at 

10,000 x g for 10 mins using centrifuge model (Biofuge Primo, Heraeus Instruments).  

The broth was carefully discarded and the cell pellet was rinsed 3 times with deionized water to remove 

any trapped ions. The cell pellet was dried at room temperature so as to record the FT-IR spectra. For each 

cell harvesting at specific salinity, the total amount of broth used was 300 mL and the amount of dry cell 

collected varied from 2.0 to 4.0 g. Fresh cells mass was generated to have enough quantity for 

experimentation. The dry cells were later used for spectra collection with FT-IR spectrometer. 

 

Spectra recording 
FT-IR technique was employed for this study. The infrared spectra of the samples of the pure strain (PS), 

90F and 90F-45 were recorded using Avatar 370 FT-IR spectrometer.  Samples were placed directly on the 

crystal which uses DTGS-KBr as detector. 10 spectra each of the different strains were recorded to verify 

reproducibility. The number of scan for each spectrum is 32 at a resolution of 4 cm-1.  
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Zeta-potential measurements 
The zeta-potential measurements of the different strains investigated were made with Zetaphoremeter IV 

(CAD Instrumentation) equipped with a microscope after about 1 h conditioning.  1 mL of the bacteria 

solutions used for measurement was diluted by a factor of 200 using sterilized distilled water to reduce the 

number of bacteria cells in the solutions for effective measurement. All the measurements were at a 

constant ionic strength of 0.01 M using KCl. The zeta potential of the bacteria cells and the pH of each 

solution were measured simultaneously. 

 

Image acquisition and analysis 
72 h culture samples were drawn from media of 0-100 g/l during adaption process using the test tubes 

similar to Hugh-Leifson technique [5]. The bacteria were cultivated on reinforced clostridia media (RCM). 

The image acquisition was performed in 640 x 476 pixels and 8-bit format with 40 x magnifications. 

Around 30 images per sample were acquired in a Nikon Eclipse E-200 (Nikon) coupled to a NIS-elements 

F2.3 (fotoprogram Nikon).   

The image processing and analysis program for bacteria characterization during salinity adaptation was 

developed in Matlab (The Mathworks Inc.). Primarily, the image processing steps involved transformation 

of the binary images from the cultures grown at different salinity, from which the morphological 

parameters and cell density were evaluated. The main steps of the program comprise the image pre-

treatment, segmentation, and outlier elimination. The image analysis program is oriented to the single cell 

characterization and content determination.  With this procedure every image had a vector of features, 

describing its complexity which was then used for classification into different salinity groups using PCA 

analysis. 

 

Statistical analysis 
The statistical analysis was performed using the Matlab (The Mathworks Inc.,).  The obtained spectra were 

analyzed by PCA method to reduce the spectra into different possible classes.  The spectra were first 

smoothened before processing to the same integrated intensity for the given spectra region which in this 

case was 650-4000 cm-1. The first derivative using Savitzky-Golay algorithm to minimize baseline 

variability and to enhance resolution was employed. 
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Results and discussion 

Comparison of different strains 
The spectra of the adapted strains (90F and 90F-45) as compared to the pure strain (PS) are shown in Fig. 

1. The measurement was performed after air-drying the sample. The intensity of the bands at wavenumbers 

and the interaction of radiance with the sample are affected differently. The most significant spectral 

differences come from the N-H stretching of proteins around 3400-3278 cm-1 in point A,  the amide bands 

of protein at 1675 cm-1 at point B and at  point C which represent the C=C-O-C, C-O, C-O-P, P-O-P  

vibrations of polysaccharides at 1072 cm-1 modes, respectively.  This is based on the values of the 

intensities of the major bands corresponding to these functional groups.  

 

Fig. 1.  Spectra for dry harvested cells of pure strain, salinity adapted strain and temperature adapted strain 

of Clostridium tyrobutyricum 

 

Following the initial discrimination between the Clostridium tyrobutricum strains based on the FT-IR 

spectroscopy, data were collected and PCA decomposition was computed. The major PCA results for the 

spectra are shown in Figs. 2 and 3.  Fig. 2a is the loading plot for PC1 while Fig. 2b is the loading plot for 

PC2. The loading of PC1 (Fig.2a) had a strong negative correlation between 1072-1675 cm-1. The strong 

positive loading of PC2 is at 1072 cm-1 while the strong bands of negative loading were at 600 cm-1, 1250-

1275 cm-1 and 1675 cm-1 respectively (Fig.2b). From PC1 and PC2 loading plots, the significant bands can 
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be inferred to be 1072 cm-1 and 1675 cm-1 that corresponds to the vibrations of polysaccharides and amide 

bands of proteins in the samples.  The score plots are shown in Fig. 3. The scatter plot of PC1 against PC2 

(Fig. 3a) shows clear differences between the three strains (at 95 % confidence level). The PS samples 

clustered in the positive direction of PC1 while both 90F and 90F-45 are in the negative direction of PC1; 

however, 90F had a positive PC2 value and 90F-45 a negative PC2. In the plot of PC2 against PC3 (Fig. 

3b), the 90F cells appeared in the quadrant where both PC2 and PC3 were positive and both PS and 90F-45 

samples in negative direction of PC2. In summary about 91.3 % of the difference between the samples can 

be explained by PC1.  

 

Fig. 2.  The score loadings of PC1 and PC2; a — PC1, b — PC2. 

    

Fig. 3.   PCA of the first three PC components showing good classification between different strains of 

Clostridium tyrobutyricum cells; a. — PC1 against PC2, b. — PC2 against PC3. 

 

Attempt was also made to evaluate the difference between the different strains using the zeta potential 

measurement. The surface of a bacterial cell is charged due to the presence of functional groups such as 

carboxyl (-COOH), amino (-NH2) and hydroxyl (-OH), originating from the cell wall components of the 

lipopolysaccharides, lipoproteins and bacterial surface proteins [1]. The zeta potential measurement of the 

pure strain (PS), 90F and 90F-45 as function of pH is shown in Fig. 4. The result showed that the cells are 
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negatively charged and the zeta potential values differ substantially and it matches the score plot of PC1 

and PC2 (Fig. 3a).  

  

Fig. 4.   Zeta potential plot for the different strains of Clostridium tyrobutyricum 

 

Changes during salinity adaptation 
The representative images for the groups identified from the image analysis are shown in Fig. 5. The 

salinity group and aggregated morphological structures were subdivided into 3 groups representing the low, 

medium and high salinity groups. It was difficult to obtain a model that could correspond to each salinity 

level.  Figure 5a shows the representative images of low salinity group (0-30 g/L), Fig. 5b shows the 

medium salinity group (40-60 g/L) and Fig. 5c belongs to the high salinity group (70-100 g/L). The low 

salinity group was characterized by isolated bacteria cells, rod like shaped with a dense population of cells. 

The medium salinity group was characterized by lower cell density, low agglomeration of cells and rod and 

spherical shaped bacteria cells. The third group that belongs to high salinity showed that the bacteria cells 

are mostly present in clusters, with very low cell density and spherically shaped.  

           

Fig. 5.   Representative images of the three sub groups of salinity (magnification:40x);   a. — low salinity 

group,  b. —medium salinity group  and  c. — high salinity group. 
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The image analysis result that showed morphological difference and cell density was matched with the 

score plots of the gas production and change in pH of the media for different salinity measured.  The result 

is shown in Fig. 6. It can be seen that for all the figures (Figs. 6a-6d) low salinity group (0-30 g/L) plots in 

the lower left hand corner, the medium salinity group (40- 60 g/L) plots more or less in the upper right hand 

corner of the score plot and the high salinity group (70 -100 g/L) plots in the center of the score plot. PC1 

was able to explain 83.51% of the variation in the differences between the groups. 

Evidence of morphological changes, cells density and aggregations of the bacteria cells as indicated by 

image analysis probably suggests that with increased salt concentration the bacteria cells shifts to an 

adaptation strategy with a pronounced change in ability to produce gas. These conform to the observations 

made earlier as in that increasing salt concentrations can incite physical modifications in bacteria cells [7].  

 

     

 

Fig. 6. Scores plots for image analysis, gas production and the pH variation. (a) is the model for salinity of 

the media, (b) is the model for initial pH measurements, (c) is the model for final pH measurements and (d) 

is the model based on gas production. 
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As can be seen from Fig. 5 there are some structural changes on images with different salinity values, these 

changes can be notified by eye (subjective) and also by mathematical models (objective), Fig. 6.  If we 

match the image analysis with metabolic gas production and pH measurements (Figs. 5 and 6), we can 

probable discriminate within separate samples with very low and very high salinity (as well as for low and 

high initial and final pH values, and low and high gas production) which is a good result for such images. 

Even though three groups can be depicted from the model, there is quite a bit of mixing of some of the 

samples. This can be due to a few quality problems with some of the images even though many of these 

quality problems were corrected using various preprocessing algorithms. The lower left cluster of the 

samples represents the low salinity group (0-30 g/L). However, a small group of samples are intermixed 

between the medium salinity group and high salinity group. It is expected that with further refinement of 

this technique, an improved model can be obtained.  

       

 

Conclusion 
The results of this work reinforced the statement that adaptation of bacteria to extreme reservoir conditions 

of high salinity and temperature is possible to a certain extent. However, for adaptation to be successful, it 

has to be through a gradual acclimation.  The pure strains adapted in this study were able to reach higher 

level of salinity and temperature but the process of adaptation caused shifts in morphological structure and 

metabolic potential. The implementation of image analysis and PCA techniques has shown to provide 

important information for a better understanding of the morphological and cells characteristics at different 

salt concentration. Moreover, the obtained results explained the strong relationships between the bacteria 

cells contents, aggregates morphology and gas production. Initial gas production can be affected 

significantly however bacteria can quickly overcome this shortcoming after proper adaptation. Finally it is 

shown that a simple and rapid method such as PCA can be used to determine significant changes in the 

composition of the bacteria cells during adaptation process for microbial enhanced oil recovery. 
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Abstract 

Thermoanaerobacter brockii subsp. lactiethylicus strain 9801T originally isolated from a deep 

reservoir environment was evaluated for potential use in microbial enhanced oil recovery 

(MEOR). Investigation was conducted for finding the optimum environmental parameters for 

growth (temperature, salinity and pH) and production of metabolites desired for microbial 

enhanced oil recovery. There was growth in the media with pH from 6-9.5 and salinity range of 

0.5-3.5% (w/v) and temperature of 50-60 oC. The optimum growth occurred at about pH of 7 and 

temperature of 55 oC.  The fermentable substrates included molasses, reinforced clostridia 

medium, thioglycolate and crude oil with major fermentation end products being lactic acid, 

volatile fatty acids and some amount of gas that included carbon dioxide. The concentration of 

lactic acid reached 11.7 g/l with a corrosive effect on core chalk samples that led to dissolution 

and release of calcium ions approximately 38 times greater than the background value. 

Additionally, this strain also produced biomass with a yield of between 0.0034-0.052 g/h per 100 

ml of broth. Result of biosurfactant production assay indicated an oil displacement area of 3.5 

cm2 and fermentation of crude oil indicated a significant reduction in concentration of long chain 

alkanes in both light and heavy oils. Finally this strain compared favorably well in terms of 

metabolites production with other known bacteria strains employed in MEOR thus confirming 

the potential of  Thermoanerobacter brockii subsp. lactiethylicus 9801T for utilization in 

microbial enhance oil recovery. 

 

Key words: Thermoanaerobacter, fermentation, degradation, oil recovery, metabolites 
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1 Introduction 
Microbial enhanced oil recovery (MEOR) is an enhanced oil recovery technique that uses 

bacteria in oil reservoirs through production of specific metabolic processes that can lead to 

enhance oil recovery. The concept of using microorganisms to enhance oil recovery was first 

proposed by Beckman [4]. However, it was not until the after the work of Zobell [30] that the 

research on MEOR gained wider attention. Since that time multiples of microbiological 

enhanced oil recovery projects have been carried out in different parts of the world. MEOR is a 

tertiary oil recovery process, where bacteria are supported via injection of nutrients. Some 

processes involved injecting fermentable carbohydrates into the reservoir. Other reservoirs 

require inorganic nutrients and oxygen to be introduced into the oil bearing strata in quantities 

that allow the microbes to release the residual oil into the water phase and substrates for cellular 

activities.  

 

The mechanisms by which MEOR processes work can be highly complex. In general, the 

mechanisms of MEOR’s action are most probably due to multiple effects of the microorganisms 

on the environment and oil. These mechanisms include gas formation, and pressure increases, 

acid production and degradation of carbonate matrices, reduction in oil viscosity and interfacial 

tension by biosurfactant, solvent production, plugging by biomass accumulation and degradation 

of large molecules in oil resulting in enhanced oil recovery [9, 14, 19]. 

 

The actual mode of MEOR in a particular reservoir will be very dependent on the characteristics 

of the reservoir and the types of indigenous microbes present in a particular reservoir. MEOR 

differs from chemical enhanced oil recovery through the method by which enhancing products 

are introduced into the reservoirs. In MEOR, microbes produce all the necessary chemicals in-

situ but generally, the application, conditions and cultures can be targeted to meet a particular oil 

recovery situation [12].  

 

Although MEOR has many advantages compared to other enhanced oil recovery technologies its 

successful application requires the selection of microorganisms producing effective quantities of 

desired metabolites, processes which permits injection and dispersion of these microorganisms, 

and their supporting nutrients, predictable proliferation, and metabolic activity and an ability for 
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the new ecosystem to persist for periods consistent with economic profitability [26].  The most 

active applications of the MEOR process are single well simulation treatments for removal of 

near wellbore formation damage or oil mobilization in the region around wellbore [5], use of 

microbial of microbial systems for permeability modifications to improve water flooding sweep 

efficiency [15], use of microorganisms to produce gas, surfactants, acids and alcohols useful for 

enhanced oil recovery [6]. Although the use of microorganisms has been studied and tested for 

many years, the success of its application can be limited by the extreme reservoir conditions.  

 

Thus, finding the right bacteria candidate for MEOR to fulfill the environmental conditions 

normally encountered in the petroleum reservoirs can be very challenging. This has made the 

search for the bacteria that will perform the work of releasing residual oil in the reservoir 

environments a continuous process.  One of such group of bacteria targeted for application in 

microbial enhanced oil recovery are members of the order Thermoanerobacteriales within the 

Firmicutes which are commonly encountered in oilfields and include isolates belonging to the 

genera Thermoanarobacter [7, 11]. This is because they are conducive for growth in deep seated 

environment such as oil bearing reservoirs [7]. Thermoanaerobacter brockii is one of the 

thermophilic bacteria under current investigation for evaluation of the potential of these 

organisms for production of metabolites that can enhance oil recovery. Such metabolites include 

gas and acid production, surfactants, biomass etc. Their high growth temperature offers process 

advantage in high temperature oil reservoirs and their broad substrate spectrum may allow 

utilization of inexpensive carbon sources available such as molasses.  

 

The main goal of this study is to choose thermophilic anaerobic bacteria, Thermoanaerobacter 

brockii subsp. lactiethylicus strain 9801T for laboratory investigation of its potential for 

production of metabolites needed in microbial enhanced oil recovery processes. This strain of 

bacteria have been studied previously in terms of its characterization and genetic properties [7, 

11] but little is known about its potential for enhance oil recovery purposes. It is believe that 

initial outcome from this study can be specific in determining the mechanisms by which this 

strain could enhance or improve oil recovery before planning physical simulation experiments 

and also to determine if adaptation to reservoir conditions such as high salinity will be required. 
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2 Materials and methods 

Microorganisms 
The microorganism, Thermoanaerobacter brockii subsp. lactiethylicus strain 9801T was 

purchased from the German Culture Collection (DSM) and it was the same strain that was 

originally isolated from a deep subsurface French oil well at a depth of 2100 m where the 

temperature was 92 oC and now deposited at DSM. The details of the oil strata and reservoir 

conditions have been described [7]. The cells are gram-positive, straight motile rods (0.5 by 2 to 

3 microns) with flagella uniformly distributed over the entire surface of the cell. During 

cultivation, optimum growth occurred between 55 and 60 oC, the fermentable substrates include 

glucose, fructose, galactose, mannose, cellobiose, maltose sucrose etc. The products of 

fermentation of glucose were lactate, acetate, ethanol, hydrogen and carbon dioxide and 

hydrogen while the DNA base composition is 35 mol % G + C . 

Determination of most suitable nutrient broth for growth of Thermoanaerobacter brockii 9801-T 
All nutrients broths were prepared by weighing the accurate amount specified on the products 

bottles and mixed in a volumetric flask to 1000 ml. After all salts were completely dissolved they 

were divided into 100 ml portions in serum bottles flushed with nitrogen and autoclaved at 

121oC for 20 min. The nutrient broths were later inoculated with 0.5 ml and incubated for 42 h at 

50 oC.  

Optimization of pH in the substrate  
Clostridia nutrient medium and thioglycolate broth with resazurine was prepared according to the 

given instructions on the bottles and divided into portion where the pH was adjusted with the 

help of a pH Meter and a calibrated pH electrode and NaOH and HCl. For clostridium medium, 

the pH was adjusted to 5.00, 6.00, 6.60 (which is the original pH of the base) 7.00, 8.00, 9.00, 

10.00, 11.00 and12.00 while for thioglycolate broth, the pH was adjusted to 5.00, 6.00, 7.00 

(which is the original pH of the base), 8.00, 9.00, 10.00, and 11.00. 100 ml of each nutrient broth 

was dispensed into serum bottles, purged with nitrogen for 2 min and autoclaved at 121oC. All 

the serums bottles were inoculated with 0.5 ml culture with a sterile needle and syringe and 

incubated in an anaerobic jar at 50 oC for approximately 42 h, and OD was measured. There 

were 4 replicates of each pH solution. Graphs were drawn over the average results (standard 

deviation = 0.08). 
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Effect of temperature on growth 
Clostridia media and thioglycolate broth with resazurine were used in this experiment. The 

media were dispensed into 100 ml serum bottles, purged with nitrogen and autoclaved at 121oC 

for 2 min.   The pH was adjusted to 6.60 and 7.10 for both media. All the serums bottles were 

inoculated with 0.5 ml culture with a sterile needle and syringe and incubated in an anaerobic jar 

at 50, 55, 60, 65, 70, and 75 oC for 42 h .OD was measured and graphs were drawn over the 

average results of 4 replicates (standard deviation = 0.1) The temperature of the incubation oven 

was monitored with a calibrated digital thermometer. 

Effect of salinity on growth 
Clostridia media was prepared according to specifications and the broth were adjusted to salt 

concentration of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6 7 and 10 % (w/v) respectively. 100 ml was 

dispensed into serum bottles, autoclaved and inoculated with 0.5 ml culture with a sterile needle 

and syringe and incubated in an anaerobic jar at 50 oC for 42 h. The optical density (OD) was 

measured and graphs drawn over the average of 4 results (standard deviation = 0.12). The 

temperature of the incubation oven was monitored with a calibrated digital thermometer. 

Screening for metabolites production 
2½ litres of Clostridial nutrient medium (Fluka 27546) was prepared and autoclaved at 121oC 

according to the given instructions. The pH electrode and temperature sensor were calibrated 

prior to start of the experiment. The fermentation cultivation vessel-; tubing, temperature sensor, 

pH electrode and all other utensils were sterilized following standard procedure. After all 

components were sterilized the reactor system was assembled and the medium was aseptically 

poured into the vessel and was purged with nitrogen so it was anaerobic and inoculated with 10 

ml of a 42 h old culture. The temperature was set at 55 oC and start pH at 7.28. 4 gas wash 

bottles were connected to the outlet; the first bottle was empty used as a safety bottle number 2 

was with the saturated Ba(OH)2, bottle number 3 was with the 0.1 M Cu(NO3)2 the last bottles 

was with water from which a tube ran over to a graduated cylinder (it is very important that the 

system is 100% anaerobic).These wash bottles were used for qualitative detection of gases. 

Carbon dioxide when passed through Ba(OH)2 gives a white precipitate of BaCO3, similarly 

when hydrogen sulphide is passed through Cu(NO3)2 it gives a reaction which result is a 

precipitate of CuS. The gas wash bottle with water was used for the purpose of the occurrence of 

other types of gas which could be detected by the displacement of water. The process was started 



 

144 

 

and samples were taken for OD analysis and VFA at convenient intervals. The fermentation was 

continued for 52 h and at the end of the fermentation ethanol and lactic acid was determined.  

Cell biomass determination 
Triplicate 5 ml samples (fermentation broth) were put in 100 mm centrifuge tubes. The samples 

were centrifuged for 15 min at 5000 rpm. The supernatant was decanted. The precipitate was 

washed twice with 10 ml distilled water. The final residue was poured into a tarred aluminum 

weighing dish which had been previously dried in the oven for 24 h. The dishes were placed in 

an oven at 105 oC and dried to constant weight. The aluminum dishes were cooled in a dessicator 

before weighing. The biomass was determined by calculating the difference in the weight of the 

full and empty dishes. The final cell biomass concentrations were reported as g of dry biomass 

per 100 ml of fermentation broth. 

Determination of biosurfactant activity and surface tension 
A qualitative method to determine the displacement of oil by biosurfactant was employed [28]. 

The produced biosurfactant was separated from the culture media by centrifugation to get culture 

supernatant.  50 ml of distilled water was pipetted on a petri dish (18 cm diameter) followed by 

addition of 20 µl of crude oil to the water surface, and finally 10 µl of culture broth supernatant 

were gently put on the centre of the oil. The displacement pattern was observed.  A clear circle 

was visible under light. The area of the circle was measured and calculated for oil displacement 

area (ODA) by the equation (1). 

ODA =22/7 (radius) 2 cm2                  

(1) 

Fermentation of light and heavy oil  
Fermentation processes was carried using light and heavy oil with and without molasses. 1500 

ml of seawater, 5% thin oil, and 0.5% molasses was put in a 2000 ml blue cap media storage 

bottle and a second solution consisting of 1500 ml of seawater, 5% thin oil without molasses was 

put into another 2000 ml bottle. The two set ups were completed with two outlets on the cap 

from which samples were taken and the other outlet for gas exhaustion. Both oil solutions were 

sterilized at 120 oC for 20 min. Wash bottles were attached to the exhaust outlets with the help of 

silicone tubing. Like in the screening experiment, the first wash bottle was a safety bottle, the 

second was with saturated Ba(OH)2 that could precipitate any carbon dioxide produced, the third 
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wash bottle contain 0.1M Cu(NO3)2 to absorb any H2S and the last bottle was with water to 

detect any other gas produced through displacement of water (Figure 1). The oil mixtures were 

then inoculated with 10 ml of 48 h culture and both bottles were incubated in a water bath at 55 
oC. The pH and temperature were monitored with the help of a data logger. Samples were taken 

at intervals for analysis and also to monitor the culture under microscope. A similar experiment 

as was carried out with heavy oil for comparison.  

Degradation of different alkanes 
9 ml aliquot of seawater was dispensed into 8 serum bottles purged with nitrogen and sterilized. 

Prior to inoculation, 100 µl of vitamins, and 200 µl minerals were injected from sterile stock 

solutions and 100 µg of different alkanes were put in the serum bottles respectively and 

identified by a clear label. Repeated experiments were carried out by replacing seawater with 

reinforced clostridia media to evaluate the effect of additional nutrient on the degradation 

process.  

Bacteria solution in chalk sample 
A chalk core obtained from a Danish oilfield with a diameter of 2.1 cm was cut into a piece of 5 

cm long. It was sterilized and placed in a sterile core holder and attached to a sterile blue cap 

bottles with an assembly spout and 200 ml clostridia nutrient media at each end. Before all 

experimental runs, the flowing tubing and fittings were disinfected with 70% IPA spirits and 

then completely flushed with sterile 0.9% brine before each start-up. It is very important to be 

very sure that there is no leaking of media from one chamber to another by ensuring that the core 

fits tightly. The system was flushed with nitrogen to ensure anaerobic condition. The only way 

the bacteria and broth can reach the other chamber is to migrate through the pores of the chalk 

core. One of the bottles was inoculated with 10 ml 48 h culture and incubated at 55 oC. The 

apparatus was monitored for leaks and the system proved to be leak proof. The experiment was 

carried out twice. The system fulfilled all the requirements for rapidly and effectively identifying 

a migration of a growing culture which showed potential of being candidates for further testing 

when time permits [13]. 

 

The second experiment with chalk samples was to determine the effect of acid produced by the 

strain on carbonate rock. Four identical chalk samples with diameter of 2.0 cm and length of 2.5 

cm were used for the experiment. Duplicate samples were immersed in flasks containing 100 ml 
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bacteria solution for 72 h. Duplicate samples were also immersed in flasks containing 100 ml 

demineralized water for the same period to serve as control. Final result was average of two 

measurements (standard deviation = 0.023). Background value of calcium ions measured in the 

reinforced clostridia media was deducted from the measured concentration after 72 h.  The initial 

and final pH of each the media were also measured. 

 

Analytical methods 
The optical density measurements were acquired a spectrophotometer (Model: Cecil 7200). The 

concentration of volatile fatty acid (VFA) and the ethanol produced during fermentation was 

analyzed using GC Varian 3800 model with column; Varian 25 m, 0.32 mm ID. The carrier gas 

was helium/10 psi. The lactic acid was determined using bio-analysis kit for lactic acid (Cat. No 

10 139 084 035) from Food Diagnostics. The biogas yield was measured by using a lure lock 

syringe and a needle. Varian GC-MS (Model Varian 3800) was used for chromatographic test of 

alkanes and crude oil. Viscosity of the oil sample before and after bacteria inoculation was 

determined using a Brookfield viscosimeter. The surface tension measurements were taken using 

a modified Wilhelmy surface tensiometer and measurement taken at static mode.  The fluid 

samples were analyzed for calcium ions concentration by atomic absorption spectra (AAS) using 

Perkin Elmer Optima (DV 3000). All the analyses were performed according to standard 

methods.  

 

Figure 1:  Schematic of substrate fermentation process 
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3 Results  

3.1. Growth in nutrients 
The ability to utilize various substrates was tested and given as a function of optical density (OD) 

(Table 1). The OD of the growth showed that the highest growth occurred in the clostridial 

nutrient media with and without vitamins. The use of thioglycolate broth with vitamins resulted 

in a better growth than thioglycolate broth without vitamins. The glucose based medium with or 

without vitamins showed little or no growth. All the results were obtained after 42 h of 

incubation, the glucose medium when incubated for a period of 4 days longer showed only a 

minimal extra growth. These results suggest that both clostridial and thioglycolate can be a better 

substrate than glucose based medium for cultivation of Thermoanerobacter brockii subsp. 

lactiethylicus 9801T as they provide enough nourishment for the bacteria to survive with a 

reasonable growth rate.  Thus, the two media were selected for evaluation of the optimum pH for 

growth. Figure 2 showed the phase contrast micrograph of  Thermoanerobacter brockii subsp. 

lactiethylicus 9801T. 

 

Table 1:  The results of the different media used for growth based on optical density 
measurement 

Media Optical Density (650 nm) 
Glucose based medium with 0.2 ml trace 

elements and 0.2 ml vitamin solution 
0.328 

Glucose based medium with 0.2 ml trace 
elements without vitamins 

0.156 

Glucose based medium without trace elements 
and vitamin solution 

0.051 

Glucose based medium without trace elements 
and with 0.2 ml vitamin solution 

0.013 

Clostridial nutrient medium without vitamins 1.344 
Clostridial nutrient medium with 0.2 ml 
vitamins 

1.270 

Thioglycolate broth with resazurine without 
vitamins 

0.904 

Thioglycolate broth with resazurine with 0.2 ml 
vitamins 

1.256 

 

 



 

148 

 

 

 

 

Figure 2:  Phase-contrast micrograph of Thermoanerobacter brockii subsp. lactiethylicus 9801T 

(x 40) 

 

3.2. Optimization of pH in the substrate 
An overlay of the results of the pH in different media is shown in Figure 3. The result shows that 

there is optimal growth at a pH interval of 6.5-8.5 for clostridia medium with and without 

vitamins. This suggests there is no need to add vitamins as the growth seem to be the same. 

When compared to the thioglycolate broth with and without vitamins, it shows that the 

thioglycolate with vitamins has growth at pH of 7.5-8.7 and thioglycolate without vitamins has 

an optimal growth at an approximate pH of 6.5-7.5. Combining all the results, it can be deduced 

that this strain can grow at a pH of 6-9.5. 
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Figure 3:  Optimum pH for growth in different media 

 

3.3. Effect of temperature on growth 
As shown in Figure 4, growth was observed at a temperature range of 45-70 oC for the two 

substrates.  The OD was highest at 55 oC for reinforced clostridia media; however for the 

thioglycolate the OD was slightly lower at 55 oC. When the two lines for the broths were 

statistically compared by running an F-test, both averages was found to be the same. It can be 

concluded that given a pH of 6.6 affords the best optimal temperature for this strain to be 

deduced in a substrate. Since the clostridial nutrient medium gives the best result for optimum 

temperature, further experiments conducted uses this substrate as growth media. It is time saving 

and affords the opportunity to concentrate entirely on a single substrate.  
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Figure 4:  Temperature optimum after 24 h incubation 

 

3.4. Effect of salinity on growth 
The effect of salt concentration on Thermoanerobacter brockii subsp. lactiethylicus 9801T is 

shown in Figure 5. The bacteria appear to grow reasonably well in salt concentrations from 0.5% 

to 3.5% (w/v) which is the concentration of seawater. The optimum growth was found at 1.5% 

(w/v) concentration. When the concentration becomes greater, the growth slows down, and 

subsequently results in death of the bacterium culture. Further experiments showed that if this 

strain is grown repeatedly at 4% (w/v) concentration, they become adapted and subsequent 

increased by 1% (w/v) of salt concentration at time causes growth till 5%  (w/v) of salinity. 
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Figure 5:  Growth of Thermoanaerobacter brockii 9801T at different salt concentration 

 

3.5. Cell Biomass determination 
The result of cell biomass determination is shown in Figure 6. The final cell biomass 

concentrations are reported as g of dry biomass per 100 ml of fermentation broth. If we consider 

the cell biomass production rate over time, the cell biomass rate decrease from 0.052 g.h-1 in 17 

hours to about 0.0034 g.h-1 in 46 h. The decrease in the cell biomass rate can be related to 

decrease in growth rate over time as less and less nutrient is available and suggest that less cell 

biomass can be harvested as time increase. 

 

Figure 6:  Biomass per 100 ml substrate over 46 h of fermentation 

 

3.6. Fermentation of medium 
Table 2 shows the summary of metabolite products from the fermentation process using RCM as 

substrates. It was observed that a good amount of CO2 was produced as indicated by precipitate 

of barium carbonate. The volume produced was not measured. No hydrogen sulphide was 

detected during the fermentation process, but there was about 100 ml of water displaced which 

suggests that there was a production of another type of gas, probably methane.  

 

Table 2:  Metabolites produced during fermentation process with reinforced clostridia medium 

Products Lactic acid  

 

Ethanol  

 

Acetic acid 

 

Iso-valeric 
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CO2 H2S Other 
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(g/l) (g/l) (g/l) (g/l)  

(ml) 

Amount 11.7   2.5 0.08 P N.P 100 

P=produced, N.P=not produced 

 

The pH fell from 6.8 to 4.48 in the fermentation flask suggesting the productions of acids. 

Analysis of the samples showed the presence of acetic acid, iso-valeric acid, lactic acid and 

ethanol. The average concentration of lactic acid produced during the fermentation process was 

11.7 g/l. The volatile fatty acids (VFA) that turned out to be acetic acid and of iso-valeric acid 

had average concentrations of 2.5 g/l and 0.08 g/l respectively. The concentration of the ethanol 

produced during fermentation was in average about 2.4 g/l.  

 

Furthermore, the effect of ionic strength of the media on gas production per 100 ml of substrate 

after 48 h was investigated. The results (Figure 7) showed that the specific salt concentration that 

was present at the optimal growth also were involved in the highest gas production, i.e. 1.5 % 

(w/v) with the exception of 0.5% (w/v) which gives almost the same amount. The volume of gas 

produced was between 10-40 ml and it decreases with increasing ionic strength. 

 

Figure 7:  Gas production per 100 ml of substrate 

 

3.7. Biosurfactant production and surface tension measurement  
The result of surface tension measurement for the culture grown on different salt concentration is 

shown in Table 3. The measurement of surface tension gives a rough idea about the 
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concentration of the biosurfactant in the broth. The surface tension measurement showed almost 

constant surface tension independent of salinity or culture growth and very similar to the value of 

pure water at room temperature. Therefore, this method was not able to show increase in 

concentration of biosurfactant at the relatively high salinities. 

 

 

Table 3: The result of surface tension measurement for culture grown on different salt 

concentration 

        

NaCl (% w/v) 

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 

3.0 

 

3.5 

Initial surface 

tension (N/m)  

0.057 0.059 0.057 0.059 0.057 0.057 0.056 

Final surface 

tension (N/m) 

0.054 0.055 0.053 0.053 0.056 0.058 0.057 

 

Contrary to this, the bio surfactant activity monitored by oil displacement showed a very 

distinctive effect visible under light (Figure 8). It can be seen that there was a very distinctive 

displacement of oil when the culture broth supernatant was put on top of it; an indication of that 

biosurfactant possibly reduces the surface activity resulting in the formation of a clear zone on 

the drop of oil. The area of the circle as calculated by equation (1) was 3.5 cm2 representing 

about 10% of area of the oil spread. No such effect was observed when distilled water was drop 

on the surface of the oil.  The blank experiment showed that there is no clearing and the drop of 

oil stayed intact. This test indicated that biosurfactant was produced by Thermoanerobacter 

brockii subsp. lactiethylicus 9801T.  
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Figure 8:  Oil displacement by biosurfactant. The area displaced can be seen as whitish halo 

within the oil spread. 

 

3.8. Fermentation of hydrocarbon 
The results from fermentation of heavy and thin oil showed different characteristics. The 

viscosity of thin oil did not change during the period of fermentation. The initial viscosity 

measured was 23 cP at the start of experiment; the final viscosity measured at the end after 

approximately 130 days is 24 cP indicating almost no change. However, for the thick oil, the 

viscosity was reduced from initially value of 70 cP to 8 cP, representing an about 9 times 

reduction in viscosity. Acetic acid, butyric acid and ethanol were also produced as shown in 

Table 4 during fermentation of crude oil in seawater. 

 

Table 4:  VFA and ethanol production in heavy and thin oil after fermentation  

Components Acetic acid Butyric acid  Ethanol 

       (mg/l)  

Thin oil    

Initial conc. 0.0 0.0 0.0 

Final conc. 4869.0 795.3 0.30 

Heavy Oil    

Initial conc. 0.0  0.0 0.0 

Final conc. 700.97 0.0 0.17 
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The result of the alkane degradation is shown in Figure 9.  The results from the GC/MS runs 

were calculated by taking the top height of the chromatogram from the alkanes and dividing it 

with the top height of the internal standard. When the results are analyzed as shown in Figure 9, 

it can be concluded that the ratio of alkanes falls during the period of incubation. C15, C16, C18, 

C20 and C28 all show a drastic fall in concentration, while for carbon chains C10, C12 and C13, the 

fall in concentration was minimal.   

 

Figure 9:  The result of the degradation of alkanes 

 

When the degradation of heavy oil in seawater and in the reinforced clostridium media (RCM) 

were compared (Figure 10 and 11), the oil in seawater showed a slower degradation than oil in 

the reinforced media. This suggests there was better metabolism for this strain in the reinforced 

media and oil as carbon source than with oil and seawater.    
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   Figure 10:  Growth in heavy oil with seawater as substrate 

 

Figure 11:  Growth in heavy oil with reinforced clostridia media as substrate 

  

3.9. Bacteria solution in chalk sample 
The result of bacteria solution in chalk core showed that bacteria migration through chalk core 

occurred after 3 days of incubation. There was growth in the media which was not inoculated 

with culture suggesting a migration of bacteria through chalk core from the inoculated part had 

taken place which was indicated by change of turbidity of the not inoculated fluid. However, 
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after further incubation for another week, it was observed when examined under the microscope 

that there was an aggregation of the cells on the surface ends of the chalk (Figure 12). 

 

Figure 12:  Aggregated cells of at one end of chalk core 

 

The result of the corrosive effect of the acid produced on chalk samples is shown in Table 5. The 

measured concentration of calcium ions in the fermentation medium of Thermoanerobacter 

brockii subsp. lactiethylicus 9801T was 354.8 g/l compared to 3.1 g/l when chalk samples were 

immersed only in de-mineralized water. The background value of calcium ions in the bacteria 

media without chalk samples was only 9.4 g/l an indication that the acid effect increased the 

calcium ions concentration by a factor of 38.  

 

Table 5:  Comparison of chalk dissolution in bacteria medium and demineralized water 

 

Experiment 

 

Medium 

 

Initial pH 

 

Final pH 

[Ca2+ ] 

(mg/l) 

1 Chalk + bacteria solution 6.80 6.15 354.8 

2 Chalk + demineralized water 6.34 6.30 3.12 

3 Bacteria solution without chalk sample 6.80 5.12 9.43 

 

4 Discussions 
In this study, Thermoanaerobacter brockii  subsp. lactiethylicus strain 9801T an anaerobic, rod 

shaped,  gram positive and thermophilic was found to ferments a variety of carbohydrates and 

produce lactate ethanol, acetic, CO2 and other gases. This matches earlier descriptions [7]. Also 
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the strain utilizes thiosulphate as an electron acceptor to produce sulphide but does not utilize 

sulphate.  Sulphide production makes strain 9801T a potential bio-corrosive agent in oil wells 

because of the presence of thiosulphate as it has been mentioned that the Thermoanaerobacter 

species have the ability to reduce thiosulphate during growth on carbohydrates [8, 11].  

 

On the basis of its optimum temperature for growth and sodium chloride requirement,   

Thermoanaerobacter brockii subsp. lactiethylicus 9801T did not grow at temperature above 70 
oC although the in-situ temperature of the oil well from which it was isolated was 92 oC 

indicating that this microbe may have colonized in the cooler parts of the reservoir. The optimum 

growth occurred at temperatures of 55 oC. This falls within the optimum temperature range of 

between 55-60 oC reported by [7, 11]. Even though many oil reservoirs have initial temperature 

of greater than 75 oC but due to continuous injection of water for oil recovery over time, the 

temperature in the reservoirs is much less than the initial reservoir temperature as the field 

matures. MEOR application is usually targeted for matured waterflooded reservoir, therefore 

there is a potential for this strain to be utilized in MEOR if other properties such as acids, gases 

and biosurfactant production for improve oil recovery are fulfilled. Compared to mesophilic 

bacteria such as Clostridium tyrobutyricum and Bacillus that normally grows at optimal 

temperature of 37 oC, this strain has a potential for application in high temperature reservoirs. 

 

There was growth in the media with pH from 6-10 and salinity range of 0.5-3.5% (w/v). The 

optimum growth was found at a salinity of 1.5% (w/v). However, further experiments showed 

that if this strain was grown repeatedly at 4% (w/v) concentration of NaCl, they become adapted, 

but no growth occurred when the concentration was further increased to 7% and 10% (w/v) salt 

concentration, respectively. It is evident that the current salinity range at which growth occurred 

for this strain is low compared to salinity condition for many oil wells. For example Bacillus 

licheniformis strain, JF-2 from an oilfiled water injection was found to grow and produced 

biosurfactant at salinity up to 8% and temperatures up to 45 oC [29]. Experience have shown that 

with careful planning and repeated sub-culturing, it is possible that this strain can grow in higher 

salt concentrations normally encountered in the reservoirs, given that salinity gradient can vary 

from low to high, however we did not investigate this further in the current study.   

 



 

159 

 

The fermentable substrates include molasses, thioglycolate, RCM and crude oil. However the 

strain showed little or no growth in glucose medium with or without vitamins which is opposite 

to earlier observation reported by different workers [7, 11]. The reason for this cannot be fully 

understood, and raises the question whether the lower pH is actually causing the reduction in 

growth rate observed in the presence of glucose.  It was also found that Thermoanaerobacter 

brockii  subsp. lactiethylicus strain 9801T  can grow in media containing oil supplemented with 

either reinforced clostridia medium, molasses or seawater.  At a temperature of 55 oC the strain 

was capable of producing biogas and bioacids.  

 

Analysis of the samples for VFA’s showed the presence of acetic acid, iso-valeric acid, lactic 

acid and ethanol. The average concentration of lactic acid produced during the fermentation 

process was 11.7 g/l. The volatile fatty acids (VFA) that turned out to be acetic acid and of iso-

valeric acid had average concentrations of 2.5 g/l and 0.08 g/l respectively while concentration of 

the ethanol is about 2.4 g/l. Analysis at different intervals indicated an irregular pattern of rise 

and fall for the net VFA’s produced during fermentation suggesting that bacteria can be utilizing 

some of the acid for metabolism. These results support the earlier findings regarding the 

metabolic products of Thermoanerobacter brockii subsp. lactiethylicus 9801T during 

fermentation and was comparable to the measured value of organic acids of 9.7 - 42 g/l reported 

for Clostridium tyrobutyricum ATCC 25755 [21] and 11.4 g/l of organic acids by another strain 

of Clostridium tyrobutyricum [27].  

 

The full composition of the biogas formed was not determined, but it was clear that one of the 

major constituent was carbon dioxide as indicated by the precipitate of barium carbonate. 

Composition of biogas production from other bacteria strains employed in microbial enhanced 

oil recovery showed that Clostridium tyrobutyricum produces about 80% hydrogen and 15-20% 

of hydrogen and small amount of methane [18, 27]. However the volume of biogas produced is 

very low. In comparison, reported range of biogas include between 250-3000 ml by adapted 

strain of Clostridium tyrobutyricum 663 [18], and 9700 ml for Clostridium sp. [27]. Explanation 

for the low volume of gas could be as a result of low volume of fermentation broth and nutrient 

which was only 100 ml compared to the 500 ml for the results cited. Biogas formation during a 
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microbial oil recovery process may decrease the oil viscosity and increase reservoir pressure that 

can force out oil from the rock pores.   

 

This strain was also capable of producing cell biomass. The cell biomass yield per 100 ml of 

broth decreased from 0.052 g.h-1 in 17 h to about 0.0034 g.h-1 in 46 h. The decrease in the cell 

biomass rate can be related to decrease in growth rate over time as less and less nutrient is 

available and suggest that less cell biomass can be harvested as time increase. The cell biomass 

yield can be said to be low for this strain as similar experiments showed a biomass concentration 

of 0.11-0.15 g/g for Clostridium tyrobutyricum  ATCC 25755  [21] and a value of 1.73 g/l for 

Bacillus claussi [3]. A likely explanation for the observed low cell biomass yields is that most of 

the energy source consumed is diverted for the production of metabolic products. This argument 

is supported by the presence of high concentration of lactic acid and VFAs in the fermentation 

broth. 

 

The presence of biosurfactant produced by bacteria has been shown to reduce the surface tension 

and interfacial tension (IFT) of the medium [23]. Result of biosurfactant production by surface 

tension measurement method could not clearly indicate change in surface tension measurement 

at relatively higher salinities (>2.5% (w/v)) for the RCM cultures. This was consistent with 

earlier observation that little changes can occur in the surface active properties of biosurfactant 

with addition of NaCl up to 2.0 mol-1 [1]. However, the production of biosurfactant was 

confirmed by oil displacement test. There was a very distinct displacement of oil when the 

culture is put on top it, an indication that the biosurfactant reduces the surface activity thereby 

making a clear zone on the drop of oil. The oil displacement area was about 3.5 cm2 or a 

diameter of 1.5 cm in less than 1 h. This result is comparable to that of experiment with a 

biosurfactant producing Staphylococcus with potential application on hydrocarbon 

bioremediation that measured diameter of 2.5 cm for oil displacement test [10]. We did not 

measure the concentration of the biosurfactant produced, however, the quality and quantity of 

biosurfactant production are affected and influenced by the nature of the carbon substrate [22, 

24]. Biosurfactant yield from a strain of Bacillus measured 0.015 mol biosurfactant/ mol glucose 

[29]. 
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The ability to produce biosurfactant can increase the oil degradation potential at a higher rate 

with possibilities of lowering the viscosity as shown by the results of oil degradation. The 

viscosity in heavy oil was approximately 10 times thinner than the original oil but no change was 

observed in the viscosity of thin oil under the same condition.   

 

Moreover, the degradation of alkanes was also very significant probably from the effect of 

biosurfactant production. All the alkanes both thin and heavy oil form a pattern to show that 

Thermoanerobacter brockii subsp. lactiethylicus 9801T can degrade alkanes. Comparison of 

heavy oil degradation using two different media of seawater and reinforced clostridia medium 

showed that the seawater had a slower degradation than the oil in reinforced clostridia media 

which suggests there was better metabolism for this strain in the reinforced media and oil as 

carbon source than with oil and seawater.  It can also be concluded from the results (Figures 9 

and 10) that not all the alkanes were equally reduced as a difference was recorded in each graph 

but it suggested interesting properties for its application in microbial enhanced oil recovery as 

biosurfactant is one of the most sought after bioproducts in oil and gas industry. 

 

Evidence of bacteria transportation through the chalk core was manifested by growth in the 

media which was not inoculated with culture suggesting a migration of bacteria through chalk 

from the inoculated media. This a good property as it demonstrated that after injection, further 

transport of bacteria during incubation can occur by growth and mobility through the stagnant 

nutrient medium which fills the porous rock.  However, after further incubation for another 

week, it was observed when examined under the microscope that there was an aggregation of the 

cells on the surface ends of the chalk. This can be an indication of potential plugging of the inlet 

surface of the core and can also suggest that this strain may be used to stimulate the in-situ 

growth of microorganisms in high permeable zone during selective microbial plugging process. 

 

It was earlier shown that the average concentration of lactic acid produced during fermentation 

process was 11.7g/L the effect of which was confirmed by the corrosion of the chalk samples as 

indicated by increased concentration of calcium ions in the media after 72 h of immersion in the 

fermentation fluid (Table 5). The concentration of the calcium ions was increased by a factor of 

38. The increased concentration of calcium ions can only be explained by the dissolution of the 
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chalk samples, which in MEOR application can improve chalk formation porosity and 

permeability. In comparison, acid and gas production by Clostridium tyrobutyricum increased 

dissolved calcium ions in carbonate chalk samples by a factor of 20 [17], B. lichenformis 

increased dissolved calcium by 13 % [2], fourfold increase of the calcium ions of the stratum 

water compared to the initial value was also reported [27]. 

 

Success of microbial enhanced oil recovery depends not only on the ability of selected microbes 

to produce desired metabolites but also on the good understanding of the reservoir conditions and 

whether the selected strain can proliferate and produced desired metabolites under such 

conditions. It can be inferred from the experimental results that this strain exhibited some 

desirable properties in production of metabolites such as acid production, production of 

biosurfactant, biomass production and ability to degrade alkanes in light and heavy oils and 

ability to penetrate core pores. The amounts of the metabolites produced are comparable to 

values cited in the literatures for other strains of bacteria commonly employed in microbial 

enhanced oil recovery purposes. However, what makes this strain better lies in the ability to 

grow at high temperature of 55 oC in comparison to many bacteria isolated and identified for 

microbial enhanced oil recovery purposes. Many of the bacteria strains used in MEOR usually 

experienced low efficiency when maintained at higher temperatures but this strain was able to 

exhibit good potential in production of metabolites at such high temperature. The significant 

production of lactic acids as well as acetic, iso-valeric acid, ethanol and biomass can be an 

additional factor in rock modification and oil mobilization. Although, composition of gas was 

not specifically determined, formation of gaseous products under anaerobic condition is a 

positive result. Four conditions indicated to be met to achieve successful in situ bacteria growth 

and core plugging are: the cells must be transported throughout the rock stratum, nutrients must 

be transported for growth, the microorganisms must be able to grow and reduce the permeability 

of the rock by biomass and extracellular polymer production, the bacteria growth must not be so 

rapid that it results in the formation of bacterial plugs farther away from the wellbore [16, 20]. 

The results of this study have demonstrated that Thermoanerobacter brockii subsp. lactiethylicus 

9801T meets all of these criteria and in addition was able to produce a broad spectrum of 

metabolites including acids, biomass, biosurfactants, gases whose production can be important in 

the oil recovery process. The only concern is its low growth at relatively high salinity (>5%) but 
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it is believed that careful adaptation process can help to overcome this limitation as it has been  

shown that  successful adaptation of bacteria  to high salinity condition is possible [25]. 

 

5 Conclusions 
Thermoanaerobacter brockii subsp. lactiethylicus 9801T has been investigated as a suitable 

candidate for microbial enhanced oil recovery. From this investigation, it can be concluded that 

Thermoanaerobacter brockii subsp. lactiethylicus 9801T have a potential for possible utilization 

in microbial enhanced oil recovery. This is based on the ability of this strain to grow at an 

optimal temperature of 55 oC and production of metabolites that can be utilized for MEOR 

purposes. The strain was capable of producing organic acids that can modify rock properties 

evident in dissolution of chalk samples. Cells were also able to migrate through pore spaces of 

carbonate rock sample suggesting possibility of high mobility when injected for microbial 

enhanced oil recovery purpose. Degradation of the alkanes was also significant. It is evident that 

this strain offer useful metabolic products such as biosurfactants, biogas, biomass, in addition to 

bio-acids for enhancing oil recovery. These bio-products can contribute to different microbial 

systems which can tackle specific problems of oil recovery. However, the finding indicated that 

the range of salinity at which this strain could grow is low compared to saline content of many 

oil wells but it could provide an opportunity for further research in terms of its applications in 

microbial enhanced oil recovery.  
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4	Conclusion	and	major	findings	
 

4.1 Conclusion 
In the present study, strain of Clostridium tyrobutyricum (DSZM 663) was employed for 

investigation of microbial enhanced oil recovery with molasses based fermentation process. The 

main aspects covered during the investigation were adaptation to reservoir conditions of salinity, 

temperature and pressure, metabolites production, microbial fluid rock interactions, oil recovery 

mechanisms and modeling of some of the parameters related to microbial enhanced oil recovery 

processes. All these have described in details in separate papers that formed the bone of this 

thesis. 

This work established the practicality that pure culture of bacteria can become adapted to high 

levels of salinity and temperature after a careful and repeated sub culturing over time and that 

adaptation to high salinity and temperature could be monitored by gas production.  The 

important point to be made here is that efficiency of gas production was found to reflect rapid 

metabolism and successful adaptation. Inhibition of cell growth can be observed during initial 

introduction of bacteria cells to high salt concentration however cells were able to recover after a 

period of adaptation to high salinity. This suggested that continuous sub-culturing can prolong 

the limit of adaptation for salinity.  

 

Through a detailed microscopic study it was detected that in response to high salt concentration, 

bacteria cells became round or spherical shaped and formed aggregates of cells compared to rod 

shape and existence of single cells at minimal salt concentration. The final stage of the 

adaptation process produced two main strains, strain 90F which is salinity adapted strain and 

strain 90F-45 which is temperature improved version of strain 90F.  The preliminary 

investigation at a pressure of 200 bar indicated growth but with some morphological changes. It 

could not however be concluded if metabolite production was affected. A view of overall results 

revealed that strain 90F that was  salinity adapted strain could grow and proliferate at up to 

minimum salinity of 100 g/L. Temperature adaptation of this strain (90F) was achievable to 45 
oC and confirmed better improve gas ability at a relatively high salinity of 90 g/L. These were 

significant improvement over the pure culture that can grow and produce metabolites till salinity 



 

168 

 

of only 40 g/L.  FT-IR spectroscopy and image analysis was able to confirm the difference 

between the pure culture and adapted strains. 

 

The salinity adapted strain produced gas when introduced to  different formation waters with 

salinity of 30 g/L and 110 g/L respectively from the North Sea. This confirmed its readiness for 

potential application in some of the North Sea oil reservoirs. 

 

Significant reduction in pH of the medium was also observed after experiments with bacteria 

inoculums. The decrease in pH was due to the production of acids and gases during fermentation 

of molasses medium. The lowest pH measured was ranged from 4-5 and the onset of lowering of 

pH was around 15-20 h after incubation after which the pattern of pH can vary depending on the 

salinity and metabolites production. Experiments indicated that growth and activity of bacteria 

are dependent on the amount of nutrient available. The composition of the gas indicated a 

composition > 80% carbon dioxide while the main acids identified were butyric and acetic acids. 

It was observed that at increasing salinity the acetic acid concentration increases and vice versa 

for butyric acid.  

 

The enrichment of microbial fluids by calcium ions during microbial fluid rock interactions was 

due to rock dissolving properties of the organic acids. This later caused neutralization of the 

acidity and can therefore improve the production of active metabolites in the medium. 

 

Treatment for microbial improved oil recovery from sand and carbonate packed columns by 

application of molasses and inoculums of adapted strain at a salt concentration of 90 g/L showed 

38% improved recovery in sandstone and 25 % in carbonate rock after a shut in period. It was 

believed that mechanisms of oil recovery were combination of effects from metabolic process 

since it was not possible to separate individual contributions of each mechanism. 

 

The information reported in this thesis supported the view that a careful laboratory investigation 

can improve the understanding of bacteria environmental conditions, growth, metabolisms, 

interactions with reservoir rock and oil release mechanisms.   Through this, it will be possible to 
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effectively control, monitor and utilize microbial activities in the recovery and utilization of oil 

resources. 

 

4.2 Major findings 
The following summary lists the most significant findings in this thesis. 

� Adaptation of bacteria to environmental conditions of salinity, temperature and pressure 

is possible with careful planning. 

� Volume of inoculum can have an effect on the lag phase during microbial growth in 

medium of high salinity. 

� Gas, acid and biofilm production showed direct relationships with salinity of the medium. 

� pH partitioning was observed between low and high salinity groups with a common 

boundary at 70 g/L that probably indicate start of salting out effect. 

� Fast and robust spectroscopic and image analysis can be performed to determine the 

changes that occurred during adaptation to salinity and allowed morphological grouping.  

It can also relate metabolite production (such as gas) to observed morphological and 

physiological changes. 

� Simple method of titrimetric was proposed to quantify the amount of gas (carbon 

dioxide) produced in-situ during fermentation process. This can be used to determine 

effectiveness and limit of bacteria metabolism. 

� Organic acid can cause release of significant amount of calcium ions during microbial 

fluid interactions with carbonate chalk samples and these are most likely to neutralize the 

acidity and promote effective metabolite production. 

� Oil recovery resulted from combination of different mechanisms. 
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5 Future perspectives 
 

The field of microbial enhanced oil recovery is growing every day as the cost of other enhanced 

recovery methods become larger. Microbial enhanced oil recovery can be applied in different 

ways to remediate problems during oil and gas production but to increase its chances for 

successful application more knowledge is needed. Further research within the following areas 

will help improve the understanding of microbial enhanced oil recovery. On the basis of the 

conclusions drawn, some future work considerations are presented in the following. 

 

� A complete evaluation and assessment of MEOR from an engineering standpoint based 

on economics, applicability and performance is required to further improve the process 

efficiency for writing more success stories.  

� Development of adequate thermodynamic models that can quantify bacteria metabolism 

and mechanisms are need. 

� MEOR has been investigated in most details and hence more studies in area of 

optimization of the processes and reservoir geomicrobiology can be invaluable. 

� Mobilization and transport of bacteria in-situ are still often questioned when MEOR is 

applied; therefore more studies investigating this phenomenon are needed. Most research 

suggests that bacteria can be transported in pore spaces of the rocks but well documented 

field tests could elucidate this issue. 

� In general well documented and published field scale applications are needed to support 

and validate the observations from small scale laboratory tests. 
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