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Abstract

Laminated composite materials are widely used in the design of light weight
high performance structures like wind turbine blades and aeroplanes due to
their superior stiffness and strength-to-weight-ratios compared to their metal
counter parts. Furthermore, the use of laminated composite materials allows
for a higher degree of tailoring of the resulting material. To enable better
utilization of the composite materials, optimum design procedures can be used
to assist the engineer. This PhD thesis is focused on developing numerical
methods for optimization of laminated composite structures.

The first part of the thesis is intended as an aid to read the included pa-
pers. Initially the field of research is introduced and the performed research
is motivated. Secondly, the state-of-the-art is reviewed. The review includes
parameterizations of the constitutive properties, linear and geometrically non-
linear analysis of structures, buckling and post-buckling analysis of structures,
and formulations for optimization of structures considering stiffness, buckling,
and post-buckling criteria. Lastly, descriptions, main findings, and conclusions
of the papers are presented.

The papers forming the basis of the contributions of the PhD project are
included in the second part of the thesis. Paper A presents a framework for
free material optimization where commercially available finite element analysis
software is used as analysis tool. Robust buckling optimization of laminated
composite structures by including imperfections into the optimization process
is the topic of Paper B. In Paper C the design sensitivities for asymptotic post-
buckling optimization are derived. Furthermore, optimization formulations are
introduced and demonstrated for optimum post-buckling design.
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Dansk Resumé

Laminerede kompositte materialer er bredt anvendt til konstruktion af let-
vægtsstrukturer. Kompositte materialer anvendes for eksempel i vindmølle-
vinger og flyvemaskiner grundet overlegen styrke og stivhed til vægt forhold
sammenlignet med letvægtsmetaller. Anvendelse af kompositter giver mulighe-
den for at skræddersy det endelige materiale, hvormed effektive strukturer kan
konstrueres. For at muliggøre bedre udnyttelse af kompositmaterialerne kan
optimale designprocedurer anvendes. Fokus i denne ph.d. afhandling er at ud-
vikle numeriske metoder til optimering af laminerede kompositkonstruktioner.

Den første del af afhandlingen er en hjælp til at læse de medfølgende ar-
tikler. Først introduceres forskningsområdet, ligesom den udførte forskning
motiveres. Derefter præsenteres et litteraturstudie, hvor den nyeste viden in-
denfor parameterisering af kompositmaterialer, lineær og ikke-lineær analyse
af strukturer, bulings- og postbulingsanalyse samt optimering af strukturer
med stivheds-, bulings- og postbulingskriterier er inkluderet. Slutteligt intro-
duceres artiklerne, hvor indholdet, de vigtigste resultater og konklusionerne
præsenteres.

Artiklerne, som danner grundlaget for ph.d. projektet, er inkluderet i an-
den del af afhandlingen. Artikel A omhandler free material optimization, hvor
et kommercielt tilgængeligt elementmetodeprogram benyttes som analyseværk-
tøj. Robust bulingsoptimering af laminerede kompositkonstruktioner er udført
i Artikel B. Robust optimering opnås ved at inkludere imperfektioner i optimer-
ingsprocessen. I Artikel C udledes designfølsomhederne for asymptotisk post-
bulingsoptimering. Ligeledes introduceres en række optimeringsformuleringer
og effekten af disse formuleringer demonstreres.
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Chapter 1

Introduction to the PhD project

In this chapter a short introduction to the PhD project, the field of research,
and the objectives are given. The chapter serves as an introduction to the field
of research and the choices made during the PhD period. This provides an
overview of the background for the topics covered within the PhD project.

1.1 The PhD project

The PhD study was started as a part of the research project FiberLab - The

most advanced and cost effective fibre production unit in the world sponsored
by the Danish National Advanced Technology Foundation (DNATF). Besides
Aalborg University, the project partners constituted the public research insti-
tutions; Technical University of Denmark and University of Southern Denmark
and the private companies; DESMI, EL-BO, Eltronic, and Danish Technolog-
ical Institute. The overall purpose of the project was to develop a robot-
based composite manufacturing cell for complex-shaped products e.g., pump
housings. The role of Aalborg University was to develop efficient optimiza-
tion methods using commercial available Finite Element Analysis codes for the
manufacturing cell. The PhD project was initialized within this topic, and the
findings hereof are collected in Paper A. However, in May 2013 DNATF decided
to close down the research project. This removed all obligations concerning the
research topics within the PhD project.

After the FiberLab project was terminated, the PhD study was continued
as an independent research project and the topic of the project was changed
into buckling optimization of laminated composite structures. The change in
topic was driven by two main factors:

• Since no partners remained in the project, the manufacturing cell would
not be realized, and thus the back-bone of the initial research had been
removed. Consequently, future findings would be somewhat artificial, as
these could not be demonstrated on the manufacturing cell.

1



CHAPTER 1. INTRODUCTION TO THE PHD PROJECT

• Through meetings between the supervisors and PhD student, several in-
teresting research topics within buckling optimization were identified, and
it was decided to continue the PhD studies within this topic.

The outcome of the research within buckling optimization of laminated com-
posite structures is collected in Paper B and Paper C, where a paper in robust
buckling optimal design (Paper B) and a paper in asymptotic post-buckling
optimization (Paper C) are presented.

1.2 Laminated composite materials

Composite materials are defined as materials which consist of two or more
macroscopically distinct phases. This is different from e.g., alloy steel where the
alloying materials are embedded in the microscopic scale, resulting in a material
which appears macroscopically homogeneous. The most common example of a
composite material is concrete, where particles of sand and gravel are bonded
with a mixture of cement and water, hereby forming the resulting composite
material [1]. In this work composite materials refer to fiber reinforced polymers
(FRP’s). FRP’s consist of strong and stiff fibers e.g., glass fibers and carbon
fibers, embedded in a light and compliant matrix e.g., epoxy [1], such that
the resulting composite material features the best of both. The mechanical
properties of composite materials are mainly governed by the fibers. Thus the
high stiffness and strength properties are present in the fiber direction.

Laminates are manufactured by stacking and curing a number of plies.
Figure 1.1 illustrates a five layered laminate where all plies have the same thick-
ness. Mat A represents a FRP. Since the mechanical properties are dominated
by the fibers, the orientation of the fibers within the ply must be specified.
In the figure Mat B is an isotropic material hence no orientation is required
as the mechanical properties are independent of orientation. The mechanical
properties of a laminate are determined by several factors including material
properties of each individual ply, the number of plies, the thickness of each
ply, and the ply orientation. Consequently, the use of laminated composite

Mat A( )

Mat B

Mat B

Mat A( )

k = 1

k = N

k

1

l

k = 2

k = N -1
l

k = N -2
l

Mat A( )k

qq

q

q

Figure 1.1: Exploded view of a laminate manufactured by stacking and curing a
number of plies. Mat A represents a FRP with the fiber orientation θ, whereas
Mat B is an isotropic material.
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1.2. LAMINATED COMPOSITE MATERIALS

materials enables a large design freedom and a high degree of tailoring of the
composite structure, and by careful design effective structures can be achieved,
as the fibers can be placed and oriented such that the structure only possess
stiffness to resist the operational requirements.

Composite materials are often used in high performance structures due to
their superior stiffness and strength-to-weight-ratio compared to their metal
counter parts. The high specific properties enable further weight reduction,
which for e.g., civilian air transport results in reduced fuel consumption [2].
Typical applications of laminated composite materials are given in Figure 1.2.
It is a common feature of the structures that the mass of the structure influences
the performance of the structure like increased fuel consumption, larger forces
transmitted through the structure etc.

Figure 1.2: Applications of laminated composite materials. Courtesy of Airbus,
Wikipedia, Ferrari, Titleist, Siemens, European Space Agency, and LM Wind
Power

3



CHAPTER 1. INTRODUCTION TO THE PHD PROJECT

1.3 Buckling and post-buckling of laminated composite

structures

Structures loaded in tension primarily fail due to material failure. However,
when a structure is loaded in compression, the structure may fail due to buck-
ling prior to material failure. Buckling is a phenomenon where the configuration
of a structure looses its stability and transforms to a secondary configuration
called the buckled configuration. Considering a straight slender column, the
stability can be tested by the method shown in Figure 1.3. The first step is to
apply load to the column, this shortens the column. The straight column is the
so-called pre-buckling configuration. At a fixed load level, a small disturbance
may be applied to the column e.g., a small sideways displacement. After re-
moval of the disturbance, one may define and evaluate stability. If the column
returns to the straight configuration it is stable for the given load level, however,
if the column transforms into a secondary, buckled, configuration it is unsta-
ble, and in this case the buckled configuration is a curved shape. Figure 1.4
presents a graphical description of the buckling phenomenon. Considering the
left most figure, buckling of the column can be explained. As the structure is
loaded it follows the fundamental equilibrium curve where the straight config-
uration is stable, and a small perturbation will not cause transformation into
the buckled shape. This part is called the pre-buckling regime. At a certain
load level, the fundamental equilibrium curve is crossed by a secondary equi-
librium curve causing the straight configuration to loose its stability, this is
called the critical point - or bifurcation point. At load levels above the critical
load, the straight configuration remains an equilibrium configuration shown
by the broken line in Figure 1.4, however it is unstable meaning that a small
disturbance will cause the structure to switch from the unstable fundamental
path to the stable secondary path where the column is curved. The response
after the critical point is called the post-buckling regime as the structure is in
its buckled configuration.

Different types of instability exist, and in this work two kinds of instabilities
are considered namely bifurcation instability and limit point instability. In
bifurcation type instability the fundamental equilibrium path is crossed by a
secondary equilibrium path causing the fundamental path to loose its stability.
This is represented by the left and center graphs in Figure 1.4. Limit point
instability is caused by the fundamental equilibrium path loosing its stability
without the crossing of a secondary equilibrium curve, and it is given by the
right most graph in Figure 1.4. Besides the load at which a structure buckles,
the response after buckling is of fundamental interest to the analyst. The post-
buckling response reveals whether a structure is capable of carrying a load level
above the critical point in its buckled configuration. If the buckled structure
is capable of carrying load above the critical point at a configuration close to
the unbuckled it is post-buckling stable, if not it is post-buckling unstable.
Bifurcation type instabilities may or may not be post-buckling stable, whereas
limit point instabilities always are unstable under load control, meaning that

4



1.3. BUCKLING AND POST-BUCKLING

Unloaded

structure

Apply load Perturb

structure

Evaluate

stability

Stable

Unstable

Figure 1.3: Buckling of a column. In the pre-buckling regime the column
is in its straight pre-buckled configuration. To evaluate the stability a small
perturbation is assigned to the column. If the column returns to the straight
configuration after the perturbation is removed the structure is stable, if not
the structure is unstable.
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Figure 1.4: Various kinds of instabilities. The left and center figures represent
bifurcation buckling with stable and unstable initial post-buckling, respectively.
The right figure represents a limit point instability. Broken lines represent
unstable equilibrium curves and solid lines stable equilibrium curves. If the
post-buckling response is unstable the structure performs a snap when the load
is increased marginally above the critical load, resulting in finite displacements.
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CHAPTER 1. INTRODUCTION TO THE PHD PROJECT

Figure 1.5: Glider plane making a tight turn. Clear buckles are present on the
wings. Photograph courtesy of Connie Indrebo.

the load is incremented, and the corresponding displacements are determined.
If the post-buckling response is unstable, the structure exhibits a so-called
snap where an infinitesimal increase in load causes a finite deformation of the
structure due to the lack of adjacent stable equilibrium configurations [3].

For thin-walled structures buckling is an important design criterion. Con-
sidering the glider plane in Figure 1.5 clear buckling patterns are visible on the
wings. It clarifies the need for analysis and design tools for structures operat-
ing around the buckling load. Buckling design tools for composite structures
have a great potential for optimizing both the pre-buckling and post-buckling
response as well as changing the critical load. Considering a square simply sup-
ported single layered composite plate subject to compression, the capabilities
to tailor the buckling properties can be shown. By aligning the fibers in the
loading direction the stiffness towards the loading is maximized, and by align-
ing the fibers at 45○ the buckling load is maximized, see Figure 1.6 and 1.7 for
the load - end shortening response and load - out-of-plane response, respec-
tively. Furthermore, the 0○ fibers possess more stiffness in the post-buckling
regime compared to the 45○ case, revealing the potential for performing both
buckling load optimization and post-buckling optimization.

6



1.3. BUCKLING AND POST-BUCKLING
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CHAPTER 1. INTRODUCTION TO THE PHD PROJECT

1.3.1 The role of imperfections

During manufacturing and operation of a structure deviations from the ideal-
ized structure and operation conditions are introduced. These deviations are
defined as imperfections and can emerge from discrepancies in material prop-
erties, imperfect geometry of the structure, load misalignments etc. A famous
example of an imperfect structure is the Leaning Tower of Pisa which has a
visible geometric imperfection, see Figure 1.8. Consequently, it is important
to assess the effect of the imperfections on the structural response. Consid-
ering the plate from the previous section, an imperfection corresponding to
the first buckling mode shape can be applied, and by varying the amplitude,
ξ, the effect of the imperfection can be determined. The nonlinear responses
are given in Figure 1.9 and 1.10 for the end shortening and the out-of-plane
deflection, respectively. It is immediately seen that the bifurcation point is
not defined, and the load-displacement response is smooth. Additionally, the
equilibrium curve is stable throughout the analysis, and the structure does not
display any stability point. This is a consequence of the stable post-buckling
response. Furthermore, for small imperfection amplitudes the perfect and im-
perfect equilibrium curves are almost coincident, and close to the critical point
of the perfect structure the out-of-plane deflections for the imperfect structure
are amplified.

If a simply supported cylindrical panel is considered instead of the plate,
a structure with a highly unstable initial post-buckling response is obtained.
Applying an imperfection corresponding to the first buckling mode shape the
effect of the imperfection can be evaluated. The load - end shortening responses
for various imperfection amplitudes are given in Figure 1.11. The buckling load

Figure 1.8: The Leaning Tower of Pisa. Photograph from Wikipedia.
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Figure 1.9: Load - end shortening response of the plate for various imperfection
amplitudes, ξ, given in [mm] and different fiber angles θ. The plate has a side
length of 1 [m] and a thickness of 2 [mm].

decreases with an increased imperfection amplitude, until the size of the imper-
fection amplitude is large such that the unstable part of the equilibrium curve
is removed. Furthermore, the bifurcation instability for the perfect structure
is replaced by a limit point instability for the imperfect structure. This effect
along with the vanishing of the bifurcation point for the plate show that im-
posing imperfections is an effective way to eliminate the crossing of equilibrium
curves and replace them with a single equilibrium curve.
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1.4. DESIGN AND OPTIMIZATION OF LAMINATED COMPOSITE STRUCTURES

Comparing the effect of imperfections for the cylindrical panel and the
plate, it is seen that applying imperfections has a large effect on the response
of the structure, and thus optimization methods where imperfections are taken
into account are necessary. Additionally, the correlation between imperfection
sensitivity and post-buckling stability is clarified, where post-buckling unstable
structures are more sensitive towards imperfections than post-buckling stable
structures.

1.4 Design and optimization of laminated composite

structures

Proper design of laminated composite structures is a far from simple task. Ap-
plication of composite materials introduces many design variables since prop-
erties like material, thickness, orientation etc., for each individual ply must be
specified throughout the structure. Furthermore, the analysis models are often
large and many design criteria are present e.g., mass, stiffness, and buckling.
The common design approach is to update the design based on engineering
knowledge and heuristics, which may result in inefficient and suboptimal de-
signs. Effectively, rational analysis and design methods to assist the engineer
during the design of laminated composite structures are desired. Application of
optimum design procedures introduces an automated and rational analysis and
design process, where the design is improved based on a performance measure
describing the quality of the optimized structure. By continuously analyzing
and improving the design of the structure the optimal structure which fulfills
the operational requirements is obtained.

1.5 Objectives of the PhD project

The objective of the PhD study is to develop finite element analysis based
methods for optimization of laminated composite structures, particulary with
regard to stiffness, buckling and post-buckling criteria. The primary topics for
investigation are:

• Effective optimization methods which can be combined with commercial
finite element analysis software.

• Robust buckling optimal structures by handling imperfections.

• Post-buckling optimization of laminated composite structures.

These topics stem partly from the FiberLab project, partly from the desire
to design even lighter composite structures which requires further knowledge
concerning the buckling and post-buckling response of structures.
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Chapter 2

State-of-the-art

This chapter presents an overview of the field of research, and serves as an aid
to read the papers. The chapter covers the parameterizations, applied analysis
methods, and optimization methods within the included papers. The PhD
work is performed within a finite element framework to enable the possibility of
analyzing general structures. Consequently, the equations are presented using
a finite element notation, except for the post-buckling analysis, which easily is
derived using the so-called Budiansky-Hutchinson notation, and afterwards is
translated into a finite element notation.

The applied optimization formulations are based on optimizing the consti-
tutive properties of the laminate, thus the chapter is initialized with a presenta-
tion of the applied parameterizations. Afterwards, linear finite element analysis
and compliance optimization are covered. This forms the basis for the contri-
butions in Paper A. Paper B concerns robust buckling optimization thus linear
and geometrically nonlinear buckling analysis are reviewed. This is followed
by design sensitivity analysis and robust buckling optimization by inclusion
of imperfections. The last part of the chapter is concerned the derivation of
the equations needed to perform asymptotic post-buckling analysis along with
considerations concerning optimization of the post-buckling response, which is
the topic of Paper C.

2.1 Parametrization of constitutive properties

The optimization formulations used in this work are based on optimizing the
constitutive properties within the structure. In the papers three different con-
stitutive parameterizations are used; Continuous Fiber Angle Optimization
(CFAO), Free Material Optimization (FMO), and Discrete Material Optimiza-
tion (DMO). The review is limited to these parameterizations. This however,
only covers a subset of parameterizations for laminated composites, and for a
comprehensive review of different parameterizations, refer to [4, 5].

13
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2.1.1 Continuous Fiber Angle Optimization

Continuous Fiber Angle Optimization (CFAO) is concerned with the optimum
orientation of an orthotropic material. In the general formulation, only the
orientations, θ, are used as design variables. Thus no change in topology is
possible. Optimal orientation of orthotropic materials is considered in [6],
where the optimum angle for orthotropic materials with high and low shear
stiffness is derived. The bounds on the elastic energy for an orthotropic material
assuming a constant strain field are derived in [7], hereby showing the extremum
angles and whether it is a minimum or maximum.

CFAO suffers from non-convexity as the orientation enters the constitutive
tensor through trigonometric functions, see Eq. (2.1). However, with proper
initial angles and move limit strategy optimum designs with good performance
are obtained.

Epl(θpl) = T(θpl)−1ET(θpl)−T , ∀p, l

T(θ) =
⎡⎢⎢⎢⎢⎢⎣

c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2

⎤⎥⎥⎥⎥⎥⎦
, c = cos(θ), s = sin(θ) (2.1)

Here p is the patch and l is the layer. A patch defines a group of elements which
are forced to have the same laminate layup properties. When optimizing using
CFAO, it is important to secure that the bounds on the design variables never
are reached, as this will have an effect on the remaining fiber angles. A good
estimate for the bounds on the fiber angles are: θinit ±180.9○, where θinit is the
initial angle.

2.1.2 Free Material Optimization

Determination of the optimum material throughout a structure provides valu-
able information concerning e.g., the principal loading directions within a struc-
ture. Designing the optimum material among all existing and nonexisting mate-
rials is called Free Material Optimization (FMO). In FMO the only restrictions
imposed on the material properties are that the resulting constitutive tensor is
symmetric and positive semi-definite. Within these restrictions the optimum
material among all materials is determined, and thus the results emerging from
FMO define the best possible performance of a structure, which can be used
to evaluate the quality of the results from other optimization methods.

The early work within FMO was conducted in [8–11] where [8] used the en-
tries in the full symmetric constitutive matrix as design variables resulting in 6
design variables for 2D problems per design domain. Refs. [9–11] showed that
the optimum free material is orthotropic with the principal material directions
aligned and scaled with respect to the principal strains. Free Material Opti-
mization is primarily demonstrated for mass constrained stiffness optimization
where the amount of material is controlled by the trace of the constitutive
tensor. Ref. [12] provides an overview of the results obtained through the
PLATO-N project where the focus was to develop semi-definite programming
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2.1. PARAMETRIZATION OF CONSTITUTIVE PROPERTIES

Figure 2.1: Schematic description of the Discrete Material Optimization ap-
proach. Each color represents a different material, where blue and white are
isotropic materials or void and black and orange are orthotropic materials hav-
ing different orientations. A total of 10 candidate materials are defined in the
figure.

methods applicable for FMO and formulations for compliance and stress crite-
ria are presented.

The resulting material is most likely not a physical available material, since
no restrictions on the availability are imposed. FMO can be used to determine
the optimum material properties throughout the structure. This optimized de-
sign can form the basis for a subsequent interpretation into a physical material.
This has been attempted in [13] where an initial FMO design is post-processed
by fiber paths for manufacturing using automated fiber placement.

2.1.3 Discrete Material Optimization

Discrete Material Optimization (DMO) is in essence a generalization of the
multiphase topology optimization approach developed in [14]. A number of
candidate materials, with orientations, are defined in the DMO approach. The
task is to select the optimum among the available candidate materials, see
Figure 2.1. The DMO approach represents a manufacturing process where the
engineer has "a catalogue of different materials and orientations" from which
the laminated composite structure is designed.

The DMO problem represents in principle a large combinatorial problem,
but [15, 16] proposed a continuous relaxation with penalization of the integer
problem, given by

Epl(xplc) =
nc

∑
c=1

w(xplc)Ec, ∀p, l

xplc ∈ ]0, 1[
(2.2)

Here Epl is the constitutive matrix for patch p and layer l. Ec contains the con-
stitutive properties for candidate c and the total number of candidate materials
is nc. w is the weight function, and suggestions for the penalization scheme are
given in [15]. Lastly, xplc are the design variables which have a similar meaning
as for topology optimization i.e., xplc = 0 means that the candidate material is
not selected, whereas xplc = 1 represents a selected candidate material. Only a
single material can be selected in each design domain, and intermediate values
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define an artificial pseudo-material. In the original formulation the weight func-
tions are self-balancing and thus the design variables are coupled. Ref. [17, 18]
proposed the multiphase SIMP (Solid Isotropic Material with Penalization) and
multiphase RAMP (Rational Approximation of Material Properties) schemes
which decouple the design variables. The proposed schemes are generalizations
of the single isotropic material versions of the SIMP and RAMP schemes, see
e.g., [19–21]. The multiphase SIMP formulation is given as

Epl(xplc) = E0 +
nc

∑
c=1

x
q

plc
Ec, q ≥ 1, ∀p, l

xplc ∈ [0, 1]
nc

∑
c=1

xplc = 1, ∀p, l

(2.3)

Here E0 is a weak material securing positive definiteness of the constitutive
tensor, and q is the penalization factor. The formulation results in a large
number of sparse linear constraints in the optimization problem, and thus an
optimizer which efficiently can handle these is required. This formulation and
the equivalent multiphase RAMP formulation have been used throughout this
work. The DMO approach has successfully been applied to optimize structures
with several criteria functions and a large number of design variables, see [22,
23].

The DMO approach results in a large number of design variables as one de-
sign variable per candidate material per layer per patch is needed. To reduce
the number of design variables, Shape Functions with Penalization (SFP) and
Bi-value Coding Parametrization (BCP) were introduced in [24, 25], respec-
tively. SFP can be regarded as a special case of BCP where each candidate
material is given a unique coding, hereby the number of design variables only
scales logarithmic with the number of candidate materials.

2.2 Linear analysis of structures

When a structure is loaded it deforms, hereby internal forces develop which
equilibrate the externally applied loads. The basics in static finite element
analysis is to determine the displacement field which establish the equilibrium.
If the response is assumed linear then the problem of obtaining the displace-
ments can be solved directly. The linear static problem is given on finite element
form as

K0D =R (2.4)

Here K0 is the linear stiffness matrix, D is the global displacement vector, and
R is the applied load vector. Eq. (2.4) is only applicable when the displace-
ments, rotations, and strains are small.
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2.3. COMPLIANCE OPTIMIZATION

2.3 Compliance optimization

Minimum compliance, or equivalently maximum stiffness, design is a standard
optimization problem found many places in literature [19]. In Paper A it is
used to demonstrate the applied free material optimization approach. The
minimum compliance formulation applied in this work is based on the work by
[26] which is a free material optimization parametrization based on the work
by [9]. The formulation in [9] is changed from a stiffness distribution problem
into a material distribution problem as

E(x) = E(x)αxy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Formulation from ref. [9]

⇒ E(x) = w(x)Eαxy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Formulation from ref. [26]

(2.5)

Here x contains the design variables. The method in [26] resembles a topology
optimization approach where E is the maximum allowable stiffness and w is
the weight function defined in a similar manner as in topology optimization.
The anisotropy is defined by the principal strain directions and are collected
in the α12-matrix

α12 = 1

ǫ2
1 + ǫ2

2

⎡⎢⎢⎢⎢⎢⎣

ǫ2
1 ǫ1ǫ2 0

ǫ1ǫ2 ǫ2
2 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
(2.6)

Here α12 is defined in the local material coordinate system. ǫ1 and ǫ2 are the
principal strains with ǫ1 ≥ ǫ2. α12 is rotated into the structural coordinate
system to obtain αxy. The reformulation by [26] provides the advantage that
the amount of material is explicitly controlled compared to the formulation in
[9] where the material constraint is implicitly controlled through the constraint
on the amount of available stiffness.

2.4 Analysis of buckling

As described in section 1.3, the initial configuration for a slender structure
loaded in compression will at a given load level become unstable, and the
structure deforms into a secondary, buckled, configuration. Buckling is a con-
sequence of a transition from a stable through a neutral stable into an unstable
equilibrium configuration of the fundamental equilibrium curve. The stabil-
ity of a system can be determined by the definiteness of the tangent stiffness
matrix, KT . A pre-buckling equilibrium configuration has a positive definite
tangent stiffness matrix, at the critical point KT is positive semi-definite, and
it is indefinite at an unstable configuration [3, 27].

When performing buckling analysis, the analyst searches for the loads at
which the structure becomes unstable, the buckling load, and the associated
buckling mode shape, φ. The stiffness matrix is singular at a critical point,
and thus a non-zero vector, φ, exists which solves the equation

Kc
T φ = 0 thus det (Kc

T ) = 0 (2.7)
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Here a superscript c defines the load and displacement configuration at the
critical point of the structure. The lowest (positive) load factor is of primary
interest in buckling analysis. The properties given in Eq. (2.7) are used when
formulating the buckling problem. Initially geometrically nonlinear static anal-
ysis is presented, as the displacement field at the critical point is required to
formulate the buckling problem.

2.4.1 Geometrically nonlinear analysis of structures

To perform a geometrically nonlinear (GNL) analysis a body in equilibrium is
considered. For a body in equilibrium the residual P between the inner forces,
F, and the outer forces, R, must be zero

P(D, R) = F(D) −R = 0 (2.8)

The applied loads are assumed being conservative, thus are independent of the
displacement. Eq. (2.8) represents a set of nonlinear equations used to deter-
mine the displacements between the unloaded and the loaded structure. To
solve the equilibrium equations, the applied force is split up into a series of
load steps n = 1, 2, . . .. Each load step is solved using an iterative process. As-
sume that the structure is in equilibrium at load step n−1 and the equilibrium
configuration in load step n is to be determined. To establish equilibrium, the
residual is linearized and the incremental displacements δDn

i which equilibrate
the linearized problem are determined as

P(Dn
i+1, Rn) ≈ P(Dn

i , Rn) + ∂P(Dn
i , Rn)

∂D
δDn

i = 0 (2.9)

where Dn
i+1 =Dn

i + δDn
i

Here i defines the iteration number for load step n. The configuration at it-
eration i is given by the displacements Dn

i and load Rn. Furthermore, the

tangent stiffness matrix is defined as
∂P(Dn

i , Rn)
∂D

= ∂F(Dn
i )

∂D
≡KT (Dn

i ). Ad-

ditionally, proportional loads are assumed meaning Rn =Rγn where γn is the
scaling of the reference load vector R. If the above considerations are inserted
into Eq. (2.9) the nonlinear incremental equilibrium equations are obtained.

KT (Dn
i ) δDn

i =Rγn −Fn (Dn
i ) (2.10)

where KT (Dn
i ) =K0 +KL (Dn

i ) +KS (Dn
i )

or Kn
T =K0 +Kn

L +Kn
S

Here KL is the displacement stiffness matrix and KS the stress stiffness matrix.
At a converged load step the parenthesis may be omitted for simplicity, thus
KT (Dn) ≡Kn

T . In the above formulation the displacements refer to the initial
(undeformed) configuration, which is called the Total Lagrangian Form, see
e.g., [28].
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Converged solution at n − 1

Equilibrium curve

Snap under load control
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Figure 2.2: Sketch of snap through and snap back. Snap through is shown
in the left figure and can be encountered for a nonlinear solver under load
control. Here an increase in load above the load limit point results in finite
displacements. Snap back is when the response curve "turns back" in itself with
the appearance of a turning point (displacement limit point). Both of these
snapping phenomenons may result in convergence issues for the solvers.

Traditional Newton iterative solvers can be used to solve these equations,
but as the analysis will be performed in the vicinity of critical points, the
arc-length solver from [29, 30] is used, as the Newton solvers are unable to
traverse general critical points. This can be seen by considering a limit point
instability shown in e.g., Figure 2.2. Standard Newton solvers may sometimes
fail to converge in the case of limit point instabilities, and upon convergence it
will snap and not trace the part of the equilibrium curve under the red line.

2.4.2 Linear buckling analysis

If the pre-buckling response is linear the displacement stiffness matrix KL = 0,
and the tangent stiffness matrix is approximated using only the linear stiffness
and stress stiffness matrices K0 and KS , respectively. The stress stiffness ma-
trix is formulated based on the stresses from a linear static analysis, Eq. (2.4),
and it is assumed to scale linearly with the load. Consequently, Eq. (2.7) is
reduced to

(K0 + λjKS)φj = 0, j = 1, 2, . . . (2.11)

The eigenvalues, λj , are assumed being ordered in magnitude such that λ1 is
the lowest. Linear buckling analysis only determines bifurcation buckling, as
limit point buckling is caused by nonlinearities of the fundamental equilibrium
curve. Furthermore, the analyst cannot know a priori whether linear buckling
analysis is adequate to capture the buckling response of a structure, thus linear
buckling analysis should be used with care.
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2.4.3 Nonlinear buckling analysis

In the linear buckling analysis, it is assumed that the pre-buckling displace-
ments are small, so they do not influence the response of the structure. If the
pre-buckling displacements cannot be ignored, the full tangent stiffness matrix
from Eq. (2.10) must be utilized. The nonlinear buckling analysis applied in
this work is based on the contributions in [31–36], and the approach is described
in the following.

To perform a nonlinear buckling analysis, a geometrically nonlinear analysis
is performed, and during the analysis the load factor, γ, is monitored. The GNL
buckling analysis can capture both bifurcation and limit point instabilities. A
limit point is detected when the load factor decreases between two equilibrium
points. Tangent stiffness information is used to detect a bifurcation point. At
the critical point, the tangent stiffness matrix is singular, hence Eq. (2.7) is
satisfied, and if the load does not decrease in the following equilibrium points,
a bifurcation point is detected. To avoid an exact determination of the critical
point, the so-called one point approach is used [28]. Additionally, this method
gives information concerning an upcoming critical point and whether a critical
point has been passed. This approach uses the tangent stiffness matrix infor-
mation at the current load step to estimate the critical point. It is assumed
that the difference between the current configuration, n, and the critical con-
figuration, c, is small such that the displacements do not change, meaning that
Kn

L ≈Kc
L. Furthermore, the stress stiffness matrix is assumed to scale linearly

with the load to the critical point Kc
S ≈ λKn

S , see also [34]. This is inserted
into Eq. (2.7) hereby obtaining

(K0 +Kn
L + λjKn

S)φj = 0 (2.12)

From the nonlinear stability equation the scaling between the current and crit-
ical load factor can be obtained as

γc
j = λjγn (2.13)

From this it is seen that λ1 > 1 means that a critical point is upcoming, whereas
λ1 < 1 means that a critical point has been passed. This approach has been
shown to converge in the limit of the critical load [28]. Nonlinear buckling
analysis is more accurate than linear buckling analysis, with the expense that
the analysis needed to determine the critical point becomes nonlinear, and
thus an iterative method is needed to trace the equilibrium curve, making it
computationally expensive compared to linear buckling analysis.

2.5 Buckling optimization

When performing buckling optimization the primary interest is to maximize
or constrain the buckling load factors, λj for the linear problem and γc

j for
the nonlinear problem, hereby securing that buckling does not occur during
operation. Buckling optimization typically does not consider the post-buckling
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response of a structure, which is altered during the optimization process. The
design sensitivities in this work are determined by the direct differentiation
method. In this approach the governing equations are differentiated with re-
spect to a design variable ai to obtain the sensitivities. This is combined with
semi-analytical design sensitivity analysis where the derivatives of the stiffness
matrices are approximated by central differences at the element level. Using
semi-analytical design sensitivity analysis allows for easy implementation of
different parametrizations like fiber angles, DMO, thickness etc. In the case of
linear buckling analysis, Eq. (2.11) is differentiated, pre-multiplied by φT

j , and
dλj

dai

is isolated

dλj

dai

= φT
j (dK0

dai

+ λj

dKS

dai

)φj (2.14)

In the derivation it is used that K0 and KS are symmetric, and that the
eigenvectors are orthonormalized such that φT

j (−KS)φj = 1. In the equation
above it is important to note that the linear stiffness matrix, K0, is only a

function of the design variables associated with the element, whereas
dKS

dai

is a function of the displacements, hence is dependent on all elements. The
displacement sensitivities are obtained by differentiating Eq. (2.4)

K0
dD

dai

= −dK0

dai

D + dR

dai±
=0

(2.15)

From this it is possible to determine the sensitivities of K0 and KS using
central differences at the element level

dKe
0

dai

=
Ke

0 (ai +∆ai) −Ke
0 (ai −∆ai)

2∆ai

dKe
S

dai

=
Ke

S (ai +∆ai, De +∆De) −Ke
S (ai −∆ai, De −∆De)

2∆ai

where ∆De
≈

dDe

dai

∆ai

Here a superscript e defines an element quantity.
Next design sensitivity analysis for the nonlinear buckling analysis is con-

sidered. The approach is based on [31–33]. This approach is much similar to
the linear buckling design sensitivity analysis. Differentiating and rearrang-
ing Eq. (2.12) in a similar manner as for the linear buckling design sensitivity
analysis, the sensitivities of the eigenvalues for the GNL buckling analysis are
obtained

dλj

dai

= φT
j (dK0

dai

+ dKn
L

dai

+ λj

dKn
S

dai

)φj (2.16)

Here the sensitivities of the stiffness matrices are calculated in the same man-
ner as in the linear design sensitivity analysis. To obtain the displacement
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sensitivities the nonlinear equilibrium equations are differentiated

dP

dai

=
∂P

∂ai

+ ∂P

∂Dn

dDn

dai

= 0

⇕

Kn
T

dDn

dai

+ ∂F

∂ai

− dR

dai±
=0

= 0 (2.17)

Recall that Kn
T ≡

∂P

∂Dn
. From this, the sensitivities of the buckling load factor,

γ, is determined by differentiating Eq. (2.13).

dγc
j

dai

=
dλj

dai

γn (2.18)

2.5.1 Imperfection sensitivity optimization

When optimizing the buckling load factor, the optimized structure is often
claimed to be more sensitive towards imperfections [37]. Consequently, ro-
bust buckling design optimization procedures which take imperfections into
account during the optimization should be applied. One approach is to apply
probabilistic methods in the design process, where the imperfections are quan-
tified with respect to mean value and standard deviation, see e.g., [38] for a
review. In this approach the effects of various imperfections are determined,
and structures which are optimal towards the most common imperfections can
be designed. A large database is required to have sufficient imperfection data
to perform such optimization for the specific structure of interest. An other
design concept is to perform worst case optimization, where the performance
of the structure including the worst imperfections is optimized. This concept
may be applied in the initial design phase where little information concerning
"the real" imperfections is present.

In this work the concept of "worst" shape imperfection is applied. Here all
imperfections are represented by an equivalent geometric imperfection. To
impose the imperfection a number of base shapes are defined. The base
shapes are e.g., buckling mode shapes, imperfection measurements etc., see
also Figure 2.3. In the "worst" shape imperfection optimization the linear com-
bination of the base shapes which minimizes the buckling load is determined

"Worst" shape = +++ ⋯

XP α1Ψ1 α2Ψ2 α3Ψ3X

Figure 2.3: Representation of the "worst" shape imperfection by perturbation
of the perfect structure, XP , by a set of base shapes, αkΨk.
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Recurrence
optimization

“Worst” imperfection
optimization

Laminate
optimization

Figure 2.4: Schematic representation of the recurrence optimization.

[32, 39–42]. Combining this with a laminate optimization used to maximize the
buckling load for the imperfect structure results in the recurrence optimization
from [32]. The recurrence optimization is shown in Figure 2.4, and either of
two optimizations is performed in a sequential manner:

1. For a given laminate layup; determine the geometric imperfection which
minimizes the nonlinear buckling load, or

2. For an imperfect structure; determine the laminate layup which maxi-
mizes the nonlinear buckling load.

By continuously switching between the two optimizations the buckling load of
the "worst" shape imperfect structure is maximized. A recurrence optimization
process is given in Figure 2.5. During the recurrence optimization the buckling
load for the imperfect structure is increased. The result is that the buckling
load of the "worst" structure is maximized. The cost is that the buckling
load for the idealized perfect structure is decreased. This decrease can be
evaluated by analyzing the structure without any imperfections. The difference
between the buckling load of the perfect structure and the buckling load of the
structure with the "worst" shape imperfection imposed represents a measure of
the imperfection sensitivity of the structure. A small difference between the
perfect and imperfect structure represents a structure with a low imperfection
sensitivity and vise versa.
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Figure 2.5: Recurrence optimization of a structure. The dashed lines are the
results from the recurrence optimization. The top red boxes are the laminate
designs evaluated on the perfect structure. The imperfection sensitivity is
defined as the difference between the idealized buckling load and the imperfect
buckling load.

2.6 Asymptotic post-buckling analysis

Post-buckling analysis is used to determine the response of a structure after a
critical point has been passed. The analysis provides information concerning
the post-buckling deformations and whether the post-buckling response is sta-
ble or unstable. Furthermore, post-buckling stability is closely related to the
imperfection sensitivity of the structure, see also Figure 1.9-1.11.

To perform a post-buckling analysis on the full finite element model, an
approach similar to geometrically nonlinear finite element analysis described
in section 2.4 is required. Since the post-buckling response may become unsta-
ble, a solver like the arc-length solver has desirable properties as it is able to
trace unstable equilibrium curves. If a bifurcation point is present the solver
may not switch branch and follow the unstable fundamental equilibrium curve.
One method to force branch switching is to apply an imperfection, which has
been demonstrated in section 1.3. The multiple equilibrium curves are replaced
by a single equilibrium curve and branching is automatically performed. GNL
analysis can be difficult and time consuming when having several load cases
and a complex structural response. One method to reduce the complexity and
extract the most important properties of the post-buckling response is to use
asymptotic methods. Asymptotic methods substitute the full and complex re-
sponse by a series of simpler problems [43]. Much research within asymptotic
post-buckling analysis is based on the work by Koiter [44], see also [45, 46] for
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an exhaustive description of the analytical approach to Koiter analysis. The
analysis method has been extended to multiple buckling loads and nonlinear
pre-buckling in [47, 48], respectively. Koiter analysis has been implemented
within a finite element framework where shell and beam elements have been
used [49–53], and using the differential quadrature method in [54]. In the stan-
dard Koiter analysis only the first two terms in the expansions are of interest
as these describe the stability in the vicinity of the critical point and the type
of stability. If the response further in the post-buckling regime is required
more terms are needed in the expansion. In such case Padé approximants has
proven to be more effective than the Taylor-like expansion from Koiter analysis
[55, 56].

The primary interest is in the initial response, thus Koiter’s method is
considered in this work. Assuming that the load and deformation for the
critical point c are known, the initial post-buckling response is represented by
a Taylor-like expansion, where the expanded load factor, λ, displacements, u,
strains, ǫ, and stresses, σ, are extrapolated into the post-buckling regime as

λ =λc + aλcξ + bλcξ2
+ cλcξ3

+ . . . (2.19)

u =λ0u + 1uξ + ũ

=λ0u + 1uξ +
∞

∑
j=2

juξj (2.20)

ǫ =λ0ǫ + 1ǫξ + 2ǫξ2
+

3ǫξ3
+ . . . (2.21)

σ =λ0σ + 1σξ + 2σξ2
+

3σξ3
+ . . . (2.22)

Here a superscript 0 defines a pre-buckling quantity, whereas all higher quanti-
ties are related to the post-buckling state. a, b, and c are the linear, quadratic,
and cubic Koiter-factors. A geometric interpretation of the a and b-factors is
given in Figure 2.6. The a-factor is the slope of the initial post-buckling re-
sponse and the b-factor is the curvature. Through the derivation the terms are
grouped by the powers of the perturbation parameter, ξ, and for ξ → 0 the
structure approaches the critical configuration. Considering the expanded dis-
placement field, u, the expansion from the critical pre-buckling configuration
λc

0u to the post-buckled configuration u is stipulated to follow 1u and a cor-
rection term ũ which is formed based on the higher order buckling mode shapes
2u, 3u, etc. Some important aspects should be noted about the expansions:

1. The post-buckling quantities: a, b, pu, pǫ, and pσ, p ≥ 1, are decoupled
from the pre-buckling response1.

2. The 2u, 3u, . . . displacement fields are used to correct the predicted
post-buckling field from 1u. Accordingly, they are given the following
orthogonality properties: 1σ ⋅ l1 (qu) = 0σ ⋅ l11 (1u, qu) = 0, q ≥ 2. This is

1In the remainder of the section, when a superscript p is used in front of a (Greek) letter
it defines a post-buckling field: 1u, 1ǫ, 1σ, 2u, 2ǫ, 2σ etc.
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λλλ

ξξξ

b > 0

b < 0
a > 0
b > 0

Figure 2.6: Definition of the Koiter a and b-factors. The plots display the
perturbation of the load factor λ in the post-buckling regime. a and b represent
the slope and the curvature of the post-buckling response, respectively. a = 0
in the left and center figures. The only stable response is the one in the left
figure. When a ≠ 0 the response is always unstable regardless of the sign of a,
but for b > 0 stability is recovered in the post-buckling regime.

equivalent to 1UT K0
qU = 1UT KS

qU = 0 on finite element form. 2u, 3u,
. . ., are not given any mutual orthogonality properties.

3. The stability of the structure is determined by the Koiter a and b-factors,
where only one combination can give an initial stable post-buckling re-
sponse: a = 0 and b > 0, see Figure 2.62. a ≠ 0 and b > 0 gives a structural
response which initially is unstable, but it recovers the stability.

4. For ξ = 0 the structure is in the critical configuration.

5. The expansion cannot handle phenomena like mode switching, secondary
instabilities etc., as only the responses included into the expansion can
be accounted for.

The equations needed in the Koiter analysis are derived using the Budiansky-
Hutchinson notation due to the simplicity of the equations compared to using
index notation. In the Budiansky-Hutchinson notation the strain is given by
the following definition

ǫ = l1 (u) + 1

2
l2 (u) (2.23)

The strain consists of a linear homogenous operator, l1, and a quadratic ho-
mogenous operator, l2. The properties of the operators vary with respect to
the applied theory i.e., beam, plate, shell etc. Here the focus is on the contin-
uum version, and to obtain a description of the operators they are compared

2Note that in a numerical framework a ≡ 0 is nearly impossible to obtain, and thus a = 0
should be interpreted as ∣a∣ ≪ b.
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to tensor notation

ǫij =
1

2
(ui,j + uj,i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l1(u)

+
1

2
(uk,iuk,j)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l2(u)

(2.24)

From this a definition of the operators is obtained. If Eq. (2.20), (2.21), (2.23),
and (2.24) are considered, the link between the expanded displacements and
strains can be established. Inserting the expanded displacements, Eq. (2.20),
into the strain definition, Eq. (2.24), the expanded strains on tensor notation
are given as

ǫij =
1

2
(λ0ui,j + λ0uj,i + (λ2) 0uk,i

0uk,j) + 1

2
(1ui,j +

1uj,i +
1uk,i

1uk,jξ) ξ

+
1

2
(2ui,j +

2uj,i +
2uk,i

2uk,jξ2) ξ2
+

1

2
(3ui,j +

3uj,i +
3uk,i

3uk,jξ3) ξ3

+
1

2
(λ0uk,i

1uk,j + λ0uk,j
1uk,i) ξ +

1

2
(λ0uk,i

2uk,j + λ0uk,j
2uk,i) ξ2

+
1

2
(λ0uk,i

3uk,j + λ0uk,j
3uk,i +

1uk,i
2uk,j +

1uk,j
2uk,i) ξ3

+ . . . (2.25)

Recall that a linear pre-buckling response is assumed, thus the quadratic term
0uk,i

0uk,j vanish. Furthermore, the derivatives of 0u are small, thus any prod-
uct involving the pre-buckling quantity is at least one order of magnitude
smaller than the other terms, hence can be removed. This reduces Eq. (2.25)
to

ǫij =
1

2
λ (0ui,j +

0uj,i) + 1

2
(1ui,j +

1uj,i) ξ +
1

2
(2ui,j +

2uj,i +
1uk,i

1uk,j+) ξ2

+
1

2
(3ui,j +

3uj,i +
1uk,i

2uk,j +
1uk,j

2uk,i) ξ3
+ . . . (2.26)

In the expansion of the quadratic term in the strain definition, a bilinear term is
obtained. This is represented by the symmetric l11 operator in the Budiansky-
Hutchinson notation and has the following properties

l2 (u + v) = l2 (u) + 2l11 (u, v) + l2 (v)
l11 (u, v) = 1

2
(uk,ivk,j + uk,jvk,i) (2.27)

Furthermore, the l operators possess the following properties

l1 (ku) = kl1 (u), l1 (u + v) = l1 (u)+ l1 (v)
l2 (ku) = k2l2 (u), l11 (k1u, k2v) = k1k2l11 (u, v)
l11 (u, u) = l2 (u)

(2.28)

From Eq. (2.26) the expanded strains are given in the Budiansky-Hutchinson
notation as

ǫ = λ l1 (0u)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

0ǫ

+ l1 (1u)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

1ǫ

ξ +(l1 (2u) + 1

2
l2 (1u))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2ǫ

ξ2
+ (l1 (3u) + l11 (1u, 2u))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3ǫ

ξ3
+ . . .

(2.29)
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By comparing Eq. (2.25), (2.26), and (2.29), it is observed that l2 (0u) =
l11(0u, v) = 0. This follows from the discussion that the derivatives of 0u are
small. The post-buckling displacement fields, pu, are nonlinear, and thus the
nonlinear part of the strain definition from Eq. (2.27) cannot be neglected. The
strain fields are defined based on the powers of ξ and not a displacement field
i.e., ǫ (1u) ≠ 1ǫ. The stresses are defined based on the expanded strains. As-
suming linear elasticity the stresses are given through the linear homogeneous
constitutive H-operator

σ =H (ǫ) (2.30)

The equivalent tensor form with H = Cijkl is

σij = Cijklǫkl

The principle of virtual displacements is used to derive the equations for the
asymptotic analysis. In tensor form the variational form of the total elastic
potential is given by [45, 57]

δΠ(ui) =∫
V

σijδǫij dV −∫
V

λBiδui dV −∫
S

λF iδui dS −
n

k

∑
k=1

λR
k

i δuk
i

=∫
V

σijδǫij dV −∫
Ω

λT iδui dΩ = 0 (2.31)

Here Bi, F i, and Ri are the load distributions for body, surface, and point
loads, respectively, and they are collected in T i, where Ω defines definite inte-
gration. Proportional loading is assumed, thus λ is the scaling of the reference
loads. Using the Budiansky-Hutchinson notation the variation of the total
potential energy is given by

δΠ(u) = σ ⋅ δǫ − λT ⋅ δu = 0 (2.32)

The ⋅ operator defines a multiplication and definite integration. The total
variation of the strains is given by

δ(T )ǫ = ǫ (u + δu) − ǫ (u)
= l1 (u) + l1 (δu) + 1

2
l2 (u) + l11 (u, δu) + 1

2
l2 (δu) − l1 (u) − 1

2
l2 (u)

= l1 (δu) + l11 (u, δu) + l2 (δu) (2.33)

The first variation can be represented by Eq. (2.34), as l2 (δu) is of higher
order.

δ(1)ǫ ≡ δǫ = l1 (δu) + l11 (u, δu) (2.34)
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The next step is to insert the expansions into Eq. (2.32) and collect these in
the powers of ξ

λc
0σ ⋅ l1 (δu) − λcT ⋅ δu´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Zeroth order problem

+ [λc
0σ ⋅ l11 (1u, δu) + 1σ ⋅ l1 (δu) + aλc (0σ ⋅ l1 (δu) − T ⋅ δu)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

First order problem

ξ

+ [λc
0σ ⋅ l11 (2u, δu) + (aλc

0σ + 1σ) ⋅ l11 (1u, δu) + 2σ ⋅ l1 (δu)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Second order problem

ξ2

+ bλc (0σ ⋅ l1 (δu) − T ⋅ δu)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Second order problem cont’d

ξ2

+ [λc
0σ ⋅ l11 (3u, δu) + 3σ ⋅ l1 (δu) + (aλc

0σ + 1σ1) ⋅ l11 (2u, δu)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Third order problem

ξ3

+ [(bλc
0σ + 2σ) ⋅ l11 (1u, δu) + cλc (0σ ⋅ l1 (δu) − T ⋅ δu)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Third order problem cont’d

ξ3
+ ⋅ ⋅ ⋅ = 0 (2.35)

This equation must be valid for any value of ξ, and thus each coefficient in the
expansion must be zero. If Eq. (2.35) is considered, some important aspects
can be deduced. The GNL equilibrium equations in Eq. (2.10) are replaced
by a series of simpler linear problems. Furthermore, the zeroth order problem
relies on pre-buckling information i.e., 0u and 0σ, the first order problem only
on the zeroth and first order information i.e., 0u, 1u, 0ǫ, 1ǫ, 0σ, 1σ, a etc.,
therefore, the problem can be solved sequentially. Consequently, if a higher
precision is required in the expansion more terms can be included. As only
the initial post-buckling response is of interest in this work, the problems up
to the third order are considered. Based on Eq. (2.35) the equations to obtain
0u, 1u, 2u, a, b, and λc can be established. The zeroth order problem is the
linear equilibrium equations, and the problem is used to determine 0u by

0σ ⋅ l1 (δu) − T ⋅ δu = 0 (2.36)

It is important to note that this equation is present in all terms, thus the
expansion for the higher order terms in Eq. (2.35) is reduced to

[λc
0σ ⋅ l11 (1u, δu) + 1σ ⋅ l1 (δu)] ξ

+ [λc
0σ ⋅ l11 (2u, δu) + (aλc

0σ + 1σ) ⋅ l11 (1u, δu) + 2σ ⋅ l1 (δu)] ξ2

+ [λc
0σ ⋅ l11 (3u, δu) + 3σ ⋅ l1 (δu) + (aλc

0σ + 1σ1) ⋅ l11 (2u, δu)] ξ3

+ [(bλc
0σ + 2σ) ⋅ l11 (1u, δu)] ξ3

+ ⋅ ⋅ ⋅ = 0

From this reduction it follows that the a-factor is eliminated from the first order
problem, the b-factor from the second order problem etc. Consequently, the sec-
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ond order problem is required to determine the a-factor, the third order prob-
lem to determine the b-factor and so on. To determine the j’th post-buckling
displacement field the j’th order problem is needed i.e., 1u is determined from
the first order problem. The first order problem is the linear buckling problem,
which is used to determine 1u and λc

1σ ⋅ l1 (δu) + λc
0σ ⋅ l11 (1u, δu) = 0 (2.37)

The link between Eq. (2.11) and Eq. (2.37) might be difficult to see, but it
can be established using Table 2.1. To determine the second post-buckling
displacement field, 2u, and the Koiter a-factor, one may assume without loss
of generality that the variation of the displacement field has the form

δu = δα1u + δw (2.38)

Here δα is an arbitrary scalar and δw is an arbitrary displacement field orthog-
onal to 1u in the same manner as 2u, 3u, . . .. Inserting this in the second order
problem, 2u and a can be determined, and similarly 3u and b are determined
from the third order problem. By substituting Eq. (2.38) into the reduced sec-
ond order problem it is separated into a part used to determine the a-factor
and a part used to determine 2u.

δα [λc
0σ ⋅ l11 (2u, 1u) + (aλc

0σ + 1σ) ⋅ l11 (1u, 1u) + 2σ ⋅ l1 (1u)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Used to determine a

+ [λc
0σ ⋅ l11 (2u, δw) + (aλc

0σ + 1σ) ⋅ l11 (1u, δw) + 2σ ⋅ l1 (δw)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Used to determine 2u

= 0 (2.39)

Each part of the equation must equate to zero in order to be able to select
δα and δw arbitrarily. From the first bracket the a-factor can be determined.
The orthogonality condition 0σ ⋅ l11 (1u, 2u) = 0 is applied hereby eliminating
the first term. The last term includes the undetermined second post-buckling
stress, 2σ which is a function of 2u. To eliminate 2u the following identity is
used

2σ ⋅ l1 (1u) =2σ ⋅ 1ǫ = 1σ ⋅ 2ǫ = 1σ ⋅ (l1 (2u) + 1

2
l2 (1u))

=
1

2
1σ ⋅ l2 (1u) (2.40)

Here the orthogonality condition 1σ ⋅ l1 (2u) = 0 is applied. The first identity

can be realized by switching to index notation and noting that 2σij = Cijkl
2ǫkl

thus
2σij

1ǫij = Cijkl
2ǫkl

1ǫij

Remembering from theory of elasticity that Cijkl = Cklij one obtain

Cijkl
2ǫkl

1ǫij = Cklij
2ǫkl

1ǫij =
2ǫkl

1σkl =
2ǫ ⋅ 1σ
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Inserting Eq. (2.40) into Eq. (2.39) the a-factor is determined as

aλc = −
3

2

1σ ⋅ l2 (1u)
0σ ⋅ l2 (1u) (2.41)

In the second part of Eq. (2.39) aλc
0σ ⋅ l11 (1u, δw) = 0 because δw pos-

sesses the same orthogonality properties as the pu displacement fields. The
1σ ⋅ l11 (1u, δw)-term is non-zero, as the orthogonality is defined through the
pre-buckling stress field, whereas this term consist of post-buckling terms. By
rearranging the equation, the second post-buckling displacement field is deter-
mined

2σ ⋅ l1 (δu) + λc
0σ ⋅ l11 (2u, δu) = −1σ ⋅ l11 (1u, δu) (2.42)

By comparison to Eq. (2.37) the left hand side is singular and the right hand
side represents a pseudo load vector. The equation can be solved with the
constraint that 2u is orthogonal to 1u such that a definite system is obtained.

In the third order problem only the b-factor is of interest when determining
whether the initial post-buckling response is stable or unstable, see Figure 2.6.
Inserting δu from Eq. (2.38) into the third order problem, the equation is
separated into a part used to determine b and a part used to determine 3u in
the same manner as Eq. (2.41)

δα [λc
0σ ⋅ l11 (3u, 1u) + 3σ ⋅ l1 (1u) + (aλc

0σ + 1σ1) ⋅ l11 (2u, 1u)]
+ δα [(bλc

0σ + 2σ) ⋅ l11 (1u, 1u)]
+ [λc

0σ ⋅ l11 (3u, δw) + 3σ ⋅ l1 (δw) + (aλc
0σ + 1σ1) ⋅ l11 (2u, δw)]

+ (bλc
0σ + 2σ) ⋅ l11 (1u, δw) = 0 (2.43)

Again δα and δw can be selected arbitrary, thus each coefficient must equate
to zero. Since only the b-factor is of interest the δα term is considered

λc
0σ ⋅ l11 (3u, 1u) + 3σ ⋅ l1 (1u) + (aλc

0σ + 1σ1) ⋅ l11 (2u, 1u)
+ (bλc

0σ + 2σ) ⋅ l11 (1u, 1u) = 0 (2.44)

The idea is now to apply a similar approach as when the a-factor is determined.
Due to orthogonality, λc

0σ ⋅ l11 (3u, 1u) = aλc
0σ ⋅ l11 (2u, 1u) = 0. To eliminate

the unknown stress 3σ the same approach as used to eliminate 2σ in Eq. (2.40)
is applied. From this 3σ ⋅ 1ǫ = 1σ ⋅ l11 (1u, 2u), and the b-factor is determined
as

bλc = −

2σ ⋅ l2 (1u) + 21σ1 ⋅ l11 (1u, 2u)
0σ ⋅ l2 (1u) (2.45)

Note that the denominators between the two Koiter factors are equal.
The Budiansky-Hutchinson notation can be translated into finite element

notation by using Table 2.1. To have a notation consistent with the one used in
Paper C, the nodal displacements are termed U instead of D. This translation
can be obtained by comparing the governing finite element equations and the
equations derived above.
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Table 2.1: Translation between the Budiansky-Hutchinson notation and finite
element notation. B0 and BL are the linear and nonlinear element strain-
displacement matrices, respectively, E is the constitutive matrix, U and V are
the global nodal displacements, and Ue and Ve are element nodal displace-
ments.

Term Budiansky-Hutchinson Finite element

l1 (u) B0Ue

l2 (u) BL (Ue)Ue

l11 (u, v) BL (Ue)Ve

0ǫ l1 (0u) B0
0U

e

1ǫ l1 (1u) B0
1U

e

2ǫ l1 (2u) + 1
2
l2 (1u) B0

2U
e
+

1
2
BL (1U

e) 1U
e

σ H(ǫ) Eǫ

The zeroth and first order problems are given by Eq. (2.4) and (2.11), re-
spectively, thus no more attention is paid to those. The second order problem
to obtain 2U is given by

[ K0 + λcK0
σ K0

1U

(1U)T K0 −ε
]{ 2U

µ
} = { − (K1

σ +
1
2
K0L) 1U

0
} (2.46)

Here the superscript before U defines the displacement field in the expansion,
K0

σ and K1
σ are the stress stiffness matrices formulated on the pre-buckling

displacement field and the first buckling mode shape, respectively. K0L is an
unsymmetric matrix given as

K0L =

ne

∑
e
∫

Ve

BT
0 EBL (1U

e) dV (2.47)

Here the summation over all elements involves assembly to global level, B0 is
the linear element strain displacement matrix, E is the element constitutive
matrix, BL (1U

e) is the element nonlinear strain-displacement matrix con-
structed using the buckling mode shape, Ve is the element volume, and ne is
the number of finite elements. The orthogonality condition is imposed using a
perturbed Lagrangian approach, and the resulting system of equations is non-
singular. Different values of the penalization parameter, ε, have been tested,
and it did not show any effect on the final results, thus a penalization of 1 is
chosen. Furthermore, following the approach proposed in [53], where λc has
been perturbed by a parameter close to but smaller than 1 did not provide any
numerical advantages over Eq. (2.46). The Koiter factors are most effectively
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calculated using element summations, and they are given as

aλc = −
3

2

ne

∑
e=1

∫Ve

1σT BL (1U
e) dV 1U

e

∫Ve

0σT BL (1U
e) dV 1U

e (2.48)

bλc = −

ne

∑
e=1

∫Ve

2σT BL (1U
e) dV 1U

e
+ 2 ∫Ve

1σT BL (1U
e) dV 2U

e

∫Ve

0σT BL (1U
e) dV 1U

e

(2.49)

These equations can be used to implement Koiter asymptotic analysis with gen-
eral isoparametric elements. The Koiter analysis comes with some important
properties:

• The nonlinear post-buckling equations are replaced by a series of much
simpler linear problems.

• The higher order problems depend on the lower order problems but not
vice versa.

• If a better representation of the post-buckling response is needed one
can add additional terms into the expansion. The cost is roughly an
additional linear analysis.

• The computational cost of performing a two term Koiter analysis is ap-
proximately one buckling analysis and one linear static analysis.

• The stability of the structure is determined by the Koiter factors which
makes it easy to evaluate the post-buckling stability compared to a full
GNL analysis. If a structure is subjected to several load cases, then
Koiter analysis is an effective method to determine the load cases of
interest which should be subject to a more detailed GNL analysis.

2.7 Post-buckling optimization

Often a structure is designed such that buckling does not occur during oper-
ation. Analyzing the post-buckling response will reveal whether the structure
is capable of carrying more load in the buckled configuration, which may be
the case in overload situations, and if the structure is sensitive towards imper-
fections. Buckling of a structure results in a load redistribution throughout
the structure which may or may not be catastrophical. To be able to push the
design load closer to the buckling load it is important to design a structure
which is capable of operating in a buckled configuration.

When performing post-buckling optimization it is important to apply the
correct post-buckling optimization criteria. Considering a plate one may for-
mulate the post-buckling optimization criteria based on the inplane properties
like compliance, end-shortening, end-strain etc., or the out-of-plane properties
like out-of-plane deflection. The optimum for one criterion is not necessarily
the optimum for the other [58, 59]. The displacements emerging from buckling
can be critical if:
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λλ
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Figure 2.7: Sketch of the considered post-buckling stability optimization crite-
ria. Green defines the optimized response and black the initial response. The
left figure displays a maximization of the post-buckling curvature, whereas the
right figure is a minimization of the asymmetry in the post-buckling response.

• The structure must have a shape close to the pre-buckled to perform
optimally. This can be the case if an aerodynamic shape is required.

• Especially for stiffened panels: the buckled shape can induce a displace-
ment field resembling a mode I crack, which can cause skin-stiffener sep-
aration.

Out-of-plane deflection has been observed to cause failure of wind turbine
blades. An example is given in [60] where the blade failed because of skin
buckling and subsequent delamination between the skin and main spar.

In this work post-buckling optimization is attempted based on asymptotic
analysis and gradient based design optimization in Paper C. If the asymptotic
post-buckling analysis is applied the optimization can be formulated based on
the Koiter factors. Optimization using asymptotic approximations of the post-
buckling response has previously been conducted in [61, 62]. Considering the
Koiter asymptotic expansion two different optimization criteria can be formu-
lated relating to the load factor expansion. With reference to Figure 2.7 the
optimizations either consider maximization of the curvature or minimization of
the asymmetry in the load factor expansion. Defining post-buckling stability
as the resistance towards evolution of the buckled shape, then maximization of
the post-buckling curvature is equivalent to maximization of the post-buckling
stability of the structure considering symmetric post-buckling. Since asymmet-
ric buckling always is unstable, minimization of the asymmetry can be used
to obtain a symmetric response which then can be subjected to a secondary
optimization making the structure post-buckling stable.
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Chapter 3

Summary of results and

concluding remarks

This chapter serves as an introduction to the included papers. Initially a
summary of each paper is given highlighting the objectives, approaches, and
conclusions. Afterwards, a summary of the contributions and the impact of the
work is presented. Lastly, recommendations and directions for future research
are given.

3.1 Description and conclusions of the papers

In this chapter a summary of the papers is given. The papers constitute the
basis for the contributions obtained during the PhD project.

3.1.1 Paper A

In the paper a method for stiffness optimization of laminated composite struc-
tures is developed. The optimization is formulated on basis of Free Material
Optimization, and the commercially available finite element analysis software
ANSYS is used to evaluate the structural response. This is chosen to avoid the
use of specialized analysis and design optimization codes and to demonstrate
the applicability of optimization in conjunction with commercially available
finite element analysis software. To avoid the use of finite differences and
stochastic search methods, the optimality criterion approach and heuristic up-
date scheme from [26] are used to optimize the structures. The Free Material
Optimization formulation is extended to accommodate commercially available
finite element analysis codes and shell elements. To enhance manufactura-
bility a patch formulation is derived which decouples the material and finite
element discretizations, and secure a minimum length scale in the final design.
Laminated composite materials rarely consist of a single ply, hence a multi-
layered Free Material Optimization is formulated to enable the optimization
of laminated materials. The optimization procedure is demonstrated on two
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examples; the clamped-clamped plate with two load cases from [10] and the
square doubly curved corner hinged shell from [15].

The first example is used to demonstrate both a multiple load case example
and the effect of including patches of various size. The optimized structures
from Free Material Optimization are compared to those from Discrete Mate-
rial Optimization and Continuous Fiber Angle Optimization using a sequential
linear programming algorithm. Good correlation exists between the different
optimization procedures. For the Free Material Optimization formulation it is
observed that increasing the patch size results in a material which possess more
bi-directional constitutive properties. This is because the individual patches
must span a larger part of the strain field, which increases the possibility of
variations in the strains within the individual patches. Consequently, the op-
timum material must possess stiffness in more directions compared to a finer
patch discretization.

The advantage of a multilayered free material formulation is demonstrated
in the second example. The optimized shell is a complex sandwich structure
where each individual layer has a unique topology and set of fiber angles.
The obtained layered structure would be difficult or impossible to interpret
from a single layered model. The results from Free Material Optimization are
compared to those from Discrete Material Optimization and good correlation
in the topology and fiber angles is obtained.

In conclusion, the paper demonstrates the applicability of Free Material
Optimization implemented within a commercial environment to obtain optimal
designs of laminated composite structures.

3.1.2 Paper B

The second paper follows up on the work in [32] and further develops the re-
currence optimization approach for robust buckling optimization of laminated
composite structures. Furthermore, a Discrete Material Optimization formula-
tion for nonlinear buckling analysis is formulated. It is combined with "worst"
shape imperfection optimization to obtain robust buckling optimal structures.
In the recurrence optimization either the laminate is optimized for a geometri-
cally imperfect structure, hereby maximizing the buckling load, or for a given
laminate layup, the geometric imperfection which minimizes the buckling load
is determined. The optimization problems are solved in a sequential manner
until convergence. A new evaluation of the imperfection sensitivity is formu-
lated, where the imperfection sensitivity is defined as the difference in buckling
load between the perfect structure and the structure with the "worst" shape
imperfection imposed. A common basis for comparison of the laminate designs
is obtained. The framework enables the possibility to monitor the imperfection
sensitivity throughout the optimization, and the effect of the optimization on
the upper bound (perfect) performance is clarified.

To secure a consistent penalization between the tangential stiffness matrix,
internal forces, and the nonlinear buckling problem in the Discrete Material
Optimization, the same penalization is used for K0, KL, and KS . Since the
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same penalization is applied for all stiffness terms, one might expect conver-
gence problems. Throughout the paper it is demonstrated that convergence
is not an issue when having the same penalization. The "worst" shape imper-
fection optimization is parameterized using the lowest linear buckling mode
shapes as these are easily obtained and provide an orthogonal basis for the
optimization.

A laminated composite U-profile and a cylindrical panel are used to demon-
strate the optimization. The U-profile buckles with a limit point instability,
where no mode switching is observed during the optimization. The cylindrical
panel buckles with a bifurcation instability, and the four lowest buckling loads
are located within 1%, thus mode switching is expected during the optimiza-
tion. For both cases the imperfection sensitivity is decreased, as the recurrence
optimization is performed. Even though mode switching is present during the
optimization, the recurrence optimization converges, with the cost of more it-
erations compared to the cases where mode switching does not occur. For
both examples the imperfect buckling load is increased during the optimiza-
tion, while the imperfection sensitivity is decreased. Thus buckling optimal
designs which are less sensitive towards imperfections are obtained.

To sum up, this paper demonstrates a framework for robust buckling op-
timization of laminated composite structures. Robustness is defined through
the imperfection sensitivity, where a new formulation for evaluating the imper-
fection sensitivity is presented.

3.1.3 Paper C

In this paper a novel method for gradient based post-buckling optimization
of laminated composite structures is developed. The optimization is based
on asymptotic post-buckling analysis assuming a linear pre-buckling state and
simple (distinct) buckling load factors. The design sensitivities for the Koiter
a and b-factors and the associated displacement fields are derived in order to
perform gradient based optimization.

The paper discusses different choices of optimization formulations when
optimizing the post-buckling response, and it is demonstrated that optimal
structures for one criteria are not necessarily optimal for other post-buckling
criteria. Post-buckling stability is defined as the resistance towards evolution
of a buckle, and the more stable the post-buckling response the higher load is
needed.

Different optimization formulations are developed. The new objectives and
constraints are based on the Koiter factors, and they are used to demonstrate
the proposed method. These criterion functions are formulated to maximize the
stability or in the case of an asymmetric post-buckling response, minimize the
asymmetry of the response hereby obtaining a more symmetric post-buckling
response.

The proposed optimization formulations are demonstrated on a single lay-
ered simply supported square plate and an 8 layered simply supported cylin-
drical panel. The plate represents an example which exhibits symmetric post-
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buckling whereas the cylindrical panel has an asymmetric post-buckling re-
sponse. The proposed methods successfully maximize the post-buckling sta-
bility of the structures and minimize the asymmetry in the asymptotic post-
buckling response. Furthermore, for both examples the dependency between
the buckling load and the post-buckling response is demonstrated. Gener-
ally speaking, by optimizing the post-buckling stability the buckling load is
decreased and vise versa. In the paper, the effects of constraining either the
Koiter parameters or the buckling load factors are demonstrated. Additionally,
it is demonstrated how to obtain post-buckling optimal designs which possess
a high buckling load with the use of asymptotic post-buckling analysis.

In conclusion, this paper presents a novel method for gradient based post-
buckling optimization of laminated composite structures. The design sensi-
tivities for the Koiter factors are derived within this work. Formulations for
post-buckling optimization are developed and demonstrated to provide post-
buckling optimum structures.

3.2 Contributions and impact

The work presented in the thesis focuses on developing optimization methods
for laminated composite structures. Three different topics have been addressed
throughout the thesis, namely stiffness optimization using Free Material Opti-
mization, robust buckling optimization using Discrete Material Optimization
and "worst" shape imperfection, and lastly post-buckling optimization using
Continuous Fiber Angle Optimization.

The methods formulated in Paper B and C, although applied to laminated
composite structures, are derived in a general sense, and thus can be used with
other kinds of material parameterizations and for other kinds of structures e.g.,
metallic structures.

The first steps towards applying free material optimization in a commercial
context have been performed in this work. This demonstrates the potential
for application of Free Material Optimization in industry. A multilayered Free
Material Optimization formulation is derived within this work that allows in-
terpretation of a multilayered laminated composite structure which otherwise
remain hidden in the single layer Free Material Optimization formulation.

Manufacturability of free material optimized structures has been enhanced by
the introduction of a patch formulation which forces larger areas of a structure
to have the same material properties.

Paper B extends the Discrete Material Optimization approach to structures
exhibiting nonlinear response, more precisely nonlinear buckling and geomet-
rically nonlinear static analysis. It is demonstrated that applying the same
penalization on all stiffness terms provides a consistent penalization of the
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static and buckling problems without convergence issues.

Manufacturable robust buckling design optimization of laminated composite
structures is demonstrated by combining the Discrete Material Optimization
approach with the "worst" shape imperfection optimization approach. Here the
laminate layup consist of fibers aligned at standard angles, and by optimizing
the "worst" imperfect structure manufacturable imperfection insensitive struc-
tures are obtained.

Normally when robust design is conducted only the performance of the im-
perfect structure is considered when evaluating the imperfection sensitivity.
Paper B provides a new interpretation of imperfection sensitivity which can be
used to compare structures with different laminate layup. This is enabled by
using the perfect structure as basis for comparison together with the "worst"
shape imperfect structure.

In Paper C a novel post-buckling optimization formulation is derived. The op-
timization method combines asymptotic post-buckling analysis with a gradient
based optimization method to obtain post-buckling optimal structures. For-
mulations which handle both asymmetric post-buckling and symmetric post-
buckling responses are developed and demonstrated.

The design sensitivities for asymptotic post-buckling optimization are derived
using the direct differentiation method. The derivation is performed in a gen-
eral manner to enable the use of different parameterizations. Demonstration
of the gradient based optimization is conducted using Continuous Fiber Angle
Optimization, but other laminate parameterizations like the Discrete Mate-
rial Optimization parameterization can be implemented within the presented
framework.

The proposed post-buckling optimization successfully optimizes the post-buck-
ling stability even though the pre-buckling response is nonlinear, resulting in
structures with increased post-buckling stability.

The post-buckling optimization method operates directly on the physical phe-
nomenon related to post-buckling stability. Other post-buckling optimization
formulations e.g., nonlinear compliance at a post-buckling configuration do not
operate directly on the physics controlling the post-buckling response. Con-
sequently, the proposed method enables the possibility of obtaining a better
performance of the structure in the post-buckling regime.

3.3 Perspectives and future work

The research conducted during the PhD project naturally leads to new topics
to be pursued in the future. These are summarized for each paper individually.
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Paper A demonstrates stiffness design using commercially available finite
element analysis codes using a free material parameterization. As free material
optimized designs do not represent a physical material, a method to determine
the optimum physical material from the free material is needed. Furthermore,
stiffness optimal designs are not optimum in all cases, thus new formulations
which effectively handle other design criteria like strength, buckling, eigenfre-
quency, mass etc., in combination with commercially available finite element
analysis software are needed.

Paper B combines the Discrete Material Optimization and "worst" shape
imperfection optimization approaches to perform robust design optimization.
However, when increasing the penalization for the Discrete Material Optimiza-
tion problem care must be taken to secure that the structural response remains
similar before and after the change in penalization. Because of that, new pe-
nalization strategies should be developed which secure that sufficient stiffness
remains after penalization. This can also be exploited in standard topology op-
timization. The recurrence optimization approach has only been demonstrated
for cases where the laminate and shape optimizations are performed until con-
vergence before the next recurrence optimization iteration is performed. This
approach can be time consuming if several recurrence optimization iterations
are required. To reduce the total optimization time it might be possible to
switch between the two optimizations after a fixed number of iterations, but
comparative studies to the current approach are needed to validate the sug-
gested change.

Paper C develops a novel gradient based optimization method based on
asymptotic post-buckling analysis. The design sensitivities have been derived
in a general manner, but the optimization formulations need to be demon-
strated with other parameterizations like Discrete Material Optimization. Fur-
thermore, formulations which can handle mode switching in the post-buckling
regime and effectively optimize the structure under these circumstances are
needed. In the current formulation an asymmetric post-buckling response is
minimized subject to a curvature constraint. It may be advantageous to con-
sider a combined optimization formulation, where the optimum combination
between the post-buckling asymmetry and curvature is determined, hereby
allowing a slightly larger post-buckling asymmetry with the effect of a sig-
nificantly increased post-buckling curvature. A comparison study with other
post-buckling optimization formulations can reveal the effectiveness and fur-
ther properties of the proposed method. The optimization has been demon-
strated on simple structures, and to demonstrate the general applicability of
the method, general structures with possible nonlinear pre-buckling response
should be optimized. This also requires that the derived sensitivities are ex-
tended to the nonlinear case.
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Laminated composite materials are widely used in the design of light weight 
high performance structures like wind turbine blades and aeroplanes due to 
their superior stiffness and strength-to-weight-ratios compared to their metal 
counter parts. Furthermore, the use of laminated composite materials allows 
for a higher degree of tailoring of the resulting material. To enable better uti-
lization of the composite materials, optimum design procedures can be used 
to assist the engineer. This PhD thesis is focused on developing numerical 
methods for optimization of laminated composite structures.
The first part of the thesis is intended as an aid to read the included papers. 
Initially the field of research is introduced and the performed research is 
motivated. Secondly, the state-of-the-art is reviewed. The review includes 
parameterizations of the constitutive properties, linear and geometrically 
nonlinear analysis of structures, buckling and post-buckling analysis of struc-
tures, and formulations for optimization of structures considering stiffness, 
buckling, and post-buckling criteria. Lastly, descriptions, main findings, and 
conclusions of the papers are presented.
The papers forming the basis of the contributions of the PhD project are in-
cluded in the second part of the thesis. Paper A presents a framework for free 
material optimization where commercially available finite element analysis 
software is used as analysis tool. Robust buckling optimization of laminated 
composite structures by including imperfections into the optimization pro-
cess is the topic of Paper B. In Paper C the design sensitivities for asymptotic 
postbuckling optimization are derived. Furthermore, optimization formula-
tions are introduced and demonstrated for optimum post-buckling design.




