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Abstract

As human beings, we are used to relying on ourselves to fulfill each task from
our instinctive ability to see and understand the world by eyes and minds.
However, the trend from manpower to automation in many industries has
seen a great improvement in efficiency and performance, which encourages
us to use the latest techniques to free ourselves from the labor of several
works. This PhD work accordingly investigates the application of computer
vision techniques to two projects Thermal Adaptive Architecture and Safe Harbor
for the same expectation—automatic analysis of people in thermal imagery.

Thermal Adaptive Architecture is an indoor study that aims at building an
office microclimate where individual occupant feels thermally comfortable,
in which each person’s clothing insulation rate Icl and metabolic rate M have
to be estimated. Therefore, we implement a tracking-by-detection module
to track each individual, on top of which the key body parts are detected
for measuring the skin temperature and clothes temperature that helps to
calculate his or her Icl . Besides, the detected bounding box of the person
together with the optical flow in the box can describe the personal activity
intensity from which M is estimated. Furthermore, inspired by the gender
difference in thermal comfort assessment, we have done gender classification.

Safe Harbor is an outdoor study that aims at monitoring a harbor front
and detecting anomalies of potentially dangerous or harmful incidents so
that professionals can provide immediate controls or rescues. To this end, we
propose an early-alarm strategy by detecting human activities in an alarm re-
gion that is very near to the waterside, to reduce the rescue preparation time
for drowning accident prevention. Besides, we develop anomaly detection
algorithms on a long-term thermal drift dataset that has very similar proper-
ties to a running surveillance system in real life rather than other short-term
datasets that are far away from the real conditions.

The evaluation of the solutions on both projects has proven their feasibil-
ity in understanding humans automatically in thermal imagery. The comple-
mentarity of the indoor research and the outdoor research comprehensively
explores the potential of using computer vision techniques to ease manual
work for a more comfortable and safer life.
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Resumé

Som mennesker er vi vant til selv til at udføre opgaver ud fra vores instinktive
evne til at se og forstå verden gennem øjne og sind. Tendensen fra manuel
arbejdskraft til automatisering i mange industrier har set en stor forbedring
i effektivitet og ydeevne, hvilket tilskynder os at bruge de nyeste teknikker
til at frigøre os fra manuelt arbejdet i endnu flere værker. Dette PhD arbejde
undersøger derfor anvendelsen af computer vision teknikker indenfor to pro-
jekter; Thermal Adaptive Architecture og Safe Harbor, med samme forventning—
automatisk analyse af mennesker i termiske billeder.

Thermal Adaptive Architecture er en indendørs undersøgelse der har til for-
mål at understøtte et kontor mikroklima, hvor den enkelte beboer føler sig
termisk komfortabel, hvor hver persons tøjisoleringsrate Icl og stofskifte M
skal estimeres. Derfor implementerer vi et tracking-by-detection modul til at
spore hver enkelt person, hvorpå de vigtigste kropsdele detekteres til måling
af hud temperatur og tøj temperatur, således at hans eller hendes Icl kan
beregnes. Desuden benyttes den detekterede bokse omkring personen sam-
men med det optiske flow i boksen til at beskrive den personlige aktivitets
intensitet, ud fra hvilken M estimeres. Derudover har vi, inspireret af køns-
forskellen i termisk komfort vurdering, lavet kønsklassificering.

Safe Harbor er en udendørs undersøgelse, der har til formål at overvåge
en havnefront og opdage uregelmæssigheder i form af potentielt farlige eller
skadelige hændelser, således at øjeblikkelig redning kan igangsættes. Til
dette formål foreslår vi en tidlig alarmstrategi hvor menneskelige aktivitet de-
tekteres, indenfor et alarmområde der er meget tæt på vandet, for at reducere
forberedelsestiden for redning så drukneulykker undgås. Desuden udvikler
vi anomalitets detektions algoritmer på et langsigtet termisk datasæt, der har
meget af de samme egenskaber som et virkelighedens overvågningssystem,
til forskel fra mindre tidsbegrænsede datasæts, der er langt væk fra de virke-
lige forhold.

Evalueringen af løsningerne på begge projekter har bevist deres gennem-
førlighed i at opnå en forståelse af mennesker automatisk igennem termiske
billeder. Komplementariteten af den indendørs forskning og den udendørs
forskning udgør en gennemgribende undersøgelse af potentialet ved at bruge
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Resumé

computer vision teknikker til at lette manuelt arbejde for et mere behageligt
og mere sikkert liv.
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Preface
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Chapter 1

Introduction

1 Automatic Analysis

Throughout the world history, from the Stone Age till the Industrial Revolu-
tion, humans had been relying on themselves to fulfill each task for earning
a living, no matter making the simple stone tools or building the Wonders of
the Ancient World that even astonish the modern civilization. From the 18th
century, with the widespread applications of stream engine power, electric-
ity, and petroleum energy, human manufacturing gradually turned to mech-
anization, leading to an unparalleled rise in productivity and the population
growth rate. The shift from mechanical reliance to electronic and informa-
tion technology which emerged from the middle of the 20th century has
boosted the development in automatic computation, storage, and communi-
cation technology, making the internet, computers, and other smart devices
part of daily life. The human history is running forward towards the In-
formation Age. This reveals that the human society develops with a clear
direction—from absolute manpower to full automation, to make life more
convenient and make us feel more satisfied.

The ability to improve the world for humans to better live in cannot be
separated from the understanding of the environment around us. As a kind
of creature, we use our eyes to see what the world looks like and our minds
to comprehend what it means to us. In an automated system, these two
concepts correspond to cameras that capture scenes and computer algorithms
that analyze the scenes. This camera-algorithm paradigm is the so-called
computer vision that gains high-level understanding from digital images or
videos, thus automating the tasks that are usually performed by the human
visual system [1–3].

Therefore, nowadays, with computer vision algorithms, numerous tasks
especially some repetitive and tedious assignments are going forward to au-
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tomated ways at different levels, such as defect detection for clothes [4–6],
grain diseases detection and identification in the food industry [7–9], biomet-
ric features recognition in access control in smart buildings [10–12], objects
detection and road segmentation in automated driving systems [13–15], and
crowds detection to control social distance in COVID-19 days [16–18].

Specifically, this PhD work applies computer vision to automatically anal-
yse people in thermal imagery. Concretely, we have focused on two projects:
Thermal Adaptive Architecture and Safe Harbor. Thermal Adaptive Architecture
aims at understanding the thermal status of each occupant based on which
the indoor microclimate can accordingly change to achieve individual ther-
mal comfort state. Safe Harbor aims at monitoring a harbor region and detect-
ing anomalies like drowning accidents that need timely controls or rescues
by professionals. Both projects rely on thermal cameras as imagery acquisi-
tion hardware and algorithms as software to realize human detection, human
tracking, behavior recognition, anomaly detection, etc., all of which will be
introduced next.

2 Thermal Imagery

Cameras make themselves indispensable to our everyday life, especially with
the popularization of mobile phones that are equipped with at least two
cameras—a front-facing one and a rear-facing one. This seems to lead to a
situation where each person has his or her camera to “see” the world. Almost
with no exception, the cameras people are familiar with are visible cameras
that convert visible light into RGB images or videos as those seen in cell-
phones, computers, and television programs. However, taking pictures with
a visible camera is greatly influenced by the illumination situation. Take a
daily experience as a simple example that nothing can be seen and recorded
by a visible camera in a totally dark environment.

Thermal cameras are developed and used to improve this limitation,
bringing thermal imagery—a process of converting infrared radiation into
visible images that describe the spatial heat distribution of a scene [19]. The
mentioned infrared radiation can be emitted by any object whose tempera-
ture is higher than absolute zero. This temperature-induced property makes
infrared radiation also named as thermal radiation [20]. Thereby there is no
need for thermal imagery to rely on external illumination sources anymore
as long as the object being captured emits its own thermal radiation.

The independence of external radiation and the reliance on objects them-
selves determine the widespread application of thermal cameras, such as
animals detection in the wild as warm-blooded animals most often have a
different temperature distribution from the surroundings [21], building in-
spection from outside as windows and doors have a higher heat loss than
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other regions [22], forest fire detection as hot spots [23], and of course human
activity surveillance especially when there is bad lighting due to difficult
weather conditions or periods at night [24].

Besides the above advantages of thermal imagery, other dominant
strengths in terms of understanding people with thermal cameras are the
privacy-friendly property and the ability to demonstrate a temperature dis-
tribution without contact. A thermal image with persons in it can largely
increase the difficulty in indicating a person’s identity than its visible im-
agery counterpart, which can be seen in Fig. 1.1 where the facial information
is protected in thermal images (b) and (d). This not only lets humans under
surveillance feel safe and not invaded but also complies with the General
Data Protection Regulation (GDPR) in European Union (EU) [25]. On the
contrary, a visible image needs further post-processing like blurring or pixe-
lating identity information to keep each person’s anonymity to comply with
GDPR, which consumes extra time and computation resources [26].

(a) (b)

(c) (d)

Fig. 1.1: Visible RGB images (a) and (c), and their thermal counterparts (b) and (d). Image
source: [27].

When it comes to temperature visualization, since thermal imagery re-

5



Chapter 1. Introduction

sults from the thermal radiation generated from an object’s heat distribution,
regions with different temperatures will emit different intensities of radiation
and then result in different grayscale values in the thermal image. As in Fig.
1.1 (b) and (d), brighter pixels indicate higher temperatures and darker pix-
els indicate lower temperatures; the notable temperature difference between a
human and the background also eases the person region extraction for some
tasks like human localization, especially in a complex environment full of
chaotic objects like furniture in (a) and (c). This “what you see is what tem-
perature you know” characteristic of thermal imagery is extremely popular
in such COVID-19 days when many public places like airports employ ther-
mal imaging cameras to detect passengers’ forehead temperature to detect
Coronavirus fevers, which further promotes the growth of thermal imagery
market [28].

Therefore, considering all the strengths of thermal imagery, the two
projects that the PhD work includes are using thermal cameras as hardware
to capture scenes. In this way, the indoor research of Thermal Adaptive Ar-
chitecture can protect each occupant’s privacy information, and the outdoor
research of Safe Harbor can resist the illumination shortage at night.

3 Research Scope

Although both projects, Thermal Adaptive Architecture and Safe Harbor, aim
at understanding people in thermal imagery that determines some common
research questions, the different research environments determine that the
PhD thesis will have a relatively broad research scope to meet the individual
requirements of the two projects. This complementarity of the indoor re-
search and the outdoor research makes the PhD thesis more comprehensive
to answer a general research question:

To what extent can computer vision ease manpower
for a more comfortable and safer life?

The word “comfortable” refers to an office microclimate that occupants
are thermally satisfied with, corresponding to the following research ques-
tions in Thermal Adaptive Architecture:

• What factors influence a person’s thermal sensation?

• How to acquire these factors from computer vision solutions?

• Compared with existing manual work, are the acquired factors from
computer vision solutions sufficient and accurate?
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The word “safer” refers to a harbor area where people feel safe to pass
by and play in because anomalies—emergencies and potentially dangerous
accidents—can be dealt with by professionals immediately, corresponding to
the following questions in Safe Harbor:

• What anomalies should be considered and detected?

• How to detect the considered anomalies from computer vision solu-
tions?

• Is the detection method fast and efficient for a timely control or rescue?

From the perspective of a computer vision researcher or engineer, to an-
swer these questions, a series of general tasks need to be done, that is:

• Data Acquisition This refers to images or videos recorded from a
sensor, i.e., a thermal camera in our case. For Thermal Adaptive Architec-
ture, the thermal camera is recording the occupants’ daily office work.
For Safe Harbor, the thermal camera is recording pedestrians, vehicles,
animals, etc. who appear in the harbor area being monitored.

• Feature Extraction For further tasks of recognizing what an object
is or localizing where it is, a prerequisite is to define what the object
looks like. Similar to the situation where we humans use “round, red,
and rising in the east and setting in the west” to describe the sun, a
computer vision solution has to find and use a number of overall, lo-
cal, spatial, and temporal features to accurately describe the object it
is “observing”. The mentioned temporal features are those extracted
across time instead of a single image frame, for example, the movement
characteristic.

• Object Classification This refers to a task using the features that de-
pict an object to predict what category the object belongs to, by com-
paring the similarity between the features and a set of predefined prin-
ciples. For both projects, humans need to be discriminated from other
objects via classification. For Thermal Adaptive Architecture, further cat-
egorizing a person’s clothes into long-sleeved or short-sleeved and cat-
egorizing a person’s body segments into the head, arm, hand, or other
parts are required.

• Object Detection This refers to localizing all the objects of a certain
category by a rectangular box around each object, which cannot be ful-
filled without feature extraction, as explained before. For both projects,
human detection is required before further automatic analysis.
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• Object Tracking From the moment an object is detected the first time,
a unique identity usually represented by a number is assigned to the
object to track its movement in each frame of a video until it disappears.
Therefore, with tracking, a certain object’s location is always known in
principle. For both projects, human tracking is greatly helpful for a
deeper understanding of a particular person being observed.

• Anomaly Detection Anomaly detection refers to finding a rarely-
happening event based on the recognized assumption that normality is
what happens most frequently as the opposite of an anomaly. There-
fore, directly comparing the similarity of an event to the principles
of defining an anomaly or indirectly comparing the difference of it
from the definition of a normal pattern can mark an anomaly out ef-
fectively. For Safe Harbor, rarely-occurring incidents having dangerous
consequences are these we want to find via anomaly detection.

As a whole, the above research questions of the individual projects and
the accompanying computer vision tasks will be studied in this PhD work.
More precisely, there will be some differences between the two projects in
solving the same task, and several tasks have been integrated into an end-to-
end pipeline. The detailed information will be provided in the next chapters.

4 Reader’s Guide

This PhD thesis includes three parts:

• Part I is an overview of the PhD work to guide the reader to grasp the
key points from a convenient glimpse, which consists of four chapters:
introduction, thermal adaptive architecture, safe harbor, and summary:

– Chapter 1 gives a brief description of the topics and scopes the
PhD thesis covers.

– Chapter 2 describes the background, significance, targets, related
work, and the contributions on Thermal Adaptive Architecture.

– Chapter 3 describes the background, significance, targets, related
work, and the contributions on Safe Harbor.

– Chapter 4 summarizes the overview to emphasize the key findings
of the PhD work and introduces the future work on both projects.

• Part II is a collection of three published scientific papers and one tech-
nical report of ongoing work on Thermal Adaptive Architecture.

• Part III is a collection of four published scientific papers on Safe Harbor.
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The indoor research on Thermal Adaptive Architecture (Part I Chapter 2 and
Part II) and the outdoor research on Safe Harbor (Part I Chapter 3 and Part III)
are complementary to each other and together form a more comprehensive
investigation of how computer vision technologies help realize an automatic
analysis of people in thermal imagery.
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Chapter 2

Thermal Adaptive
Architecture

1 Background

According to the World Health Organization, “health is a state of complete
physical, mental and social well-being and not merely the absence of disease
or infirmity” [1], emphasizing the health in mentality—inner peace, satis-
faction, and happiness. To maintain such a completely healthy status, the
improvement of workplace satisfaction for employees attracts more attention
than ever before. Because in the current information era, people spend more
hours indoors to fulfill tasks that are unprecedentedly dependent on comput-
ers and other electronic instruments. Though the satisfaction in a workplace
should consider multiple facets like colleagues, facilities, personal security,
etc., the workplace environment in terms of its indoor microclimate deserves
special attention. Because the microclimate is the one that continuously in-
fluences an occupant from the moment he or she enters the working space
until he or she gets off work.

In the project of Thermal Adaptive Architecture, the satisfaction with an in-
door microclimate specifically refers to a thermal state where each person
feels thermally comfortable in the office he or she works in. To achieve this
thermal comfort status, adjusting the indoor microclimate adaptively accord-
ing to the thermal conditions of occupants is an effective way. This adjust-
ment is usually realized by controlling Heating, Ventilation, and Air Condi-
tioning (HVAC) systems, the incident sunshine energy from glass windows
like Fig. 2.1 shows, and other ways. Our daily experience that a remote con-
troller can increase or decrease the chamber temperature easily as we want
is such an example. Therefore, identifying and evaluating the real-time ther-
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mal status of an occupant so that an architecture (an office, to be specific) can
adaptively change its micro-environment is the idea underlined in this PhD
project.

Fig. 2.1: Two curtains can separately control the incident sunshine energy for two office regions
and thus provide different thermal conditions for two persons. If the curtain can be drawn auto-
matically according to each person’s thermal need, individual thermal comfort will be realized
to some extent. The two office desks are icons downloaded from Iconfont © ALIMAMA MUX.

The necessity of research on Thermal Adaptive Architecture is not confined
to a healthier mentality of a worker. On the one hand, thermal satisfaction
with the working place can increase a person’s working efficiency and pro-
ductivity. On the other hand, HVAC-caused energy consumption in office
buildings comprises a large proportion of the total energy used [2]. There-
fore, abstemious energy consumption by the dynamic control of HVAC sys-
tems in offices according to real thermal needs can reduce the energy waste
from overcooling or overheating, thus further reducing greenhouse gas emis-
sions and contributing to the realization of the carbon neutrality goal.

2 Introduction

Again, the PhD project Thermal Adaptive Architecture is with the purpose of
realizing the adaptation of an architecture microclimate to human thermal re-
quirements so that each occupant in it (referring in particular to each individ-
ual in a certain office with an artificial climate) is thermally comfortable. For
this purpose, a person’s thermal sensation should be first known. Although
this sensation can be expressed as simple as only three scales of hot, neutral,
and cold that people often use on normal days, a standardized ASHRAE 7-
scale thermal sensation representation is more recognized as listed in Table
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2.1 [3] where a scale of +1 (slightly warm), 0 (neutral), or -1 (slightly cool) is
considered as an acceptable feeling of the environment generally.

Table 2.1: Seven-scale thermal sensations. The table is from [3] and also used in [4].

Sensation Scale

Hot +3
Warm +2

Slightly warm +1
Neutral 0

Slightly cool -1
Cool -2
Cold -3

To quantify a person’s thermal sensation to one of the seven scales, which
is in another word called thermal comfort assessment, the first idea that
comes to mind is using a questionnaire to record the feeling manually. How-
ever, this contradicts the principle of automatic analysis to ease manpower.
Fortunately, the most important contributor in the thermal comfort field, pro-
fessor Povl Ole Fanger, has proposed that the human thermal response to a
certain environment is determined by four environmental factors and two
personal factors [3, 5] as listed in Table 2.2.

Table 2.2: Six factors that determine a person’s thermal sensation. Adapted from [3, 5, 6].

Environmental factors Personal factors

Air temperature (Ta) Clothing insulation rate (Icl)
Mean radiant temperature (t̄r) Metabolic rate (M)

Air velocity (Va)
Relative humidity (RH)

The four factors of Ta, t̄r, Va and RH are physical properties describing
an indoor microclimate. For clothing insulation rate Icl , everyone has the ex-
perience that the clothes he or she wears on cold days are much thicker than
those on warm days, which intuitively explains Icl as an index to quantify
the clothes’ ability to insulate the bare skin from the outer air. Similarly, the
daily experience that an activity with a higher intensity like running heats our
body more effectively and quickly than taking a walk with a low intensity.
This experience explicitly explains metabolic rate M as a numerical index of
converting body chemicals like fat into thermal energy (that heats ourselves)
and mechanical energy (that corresponds to the activity we are doing).

Generally, a thermal sensation is a combined effect of energy generation
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of metabolism (related to M), energy loss by working on the surroundings
via activity (related to M), and energy exchange between the person himself
and the environment (related to Ta, t̄r, Va, RH) via skin/clothes (related to
Icl) and breathing (related to M). Therefore, the assessment of a person’s
thermal sensation is possible as long as the six factors are acquired, by using
them as inputs of Fanger’s Predicted Mean Vote (PMV) model [7, 8]. Fig. 2.2
gives such an example of predicting the feeling scale as -0.4 that indicates
a thermal neutrality state. In the figure, the red circle represents the exact
combination of the provided six parameters listed in the left column, and the
blue region represents all the combinations that can produce a comfortable
feeling corresponding to a PMV from -0.5 to +0.5. This narrow range of
[−0.5,+0.5] is even more strict than the normally accepted range of [−1,+1]
mentioned in the description of Table 2.1, for the reason that the PMV was
initially designed as the index for predicting the mean thermal response of a
group of people exposed to the same indoor environment. In this context, a
PMV value from -0.5 to +0.5 can fulfill the criteria of a thermally comfortable
chamber—at least 90% of the persons in it are thermally satisfied, or in other
words, a Predicted Percentage of Dissatisfied (PPD) rate is lower than 10%.

But the initial design for a group of people does not exclude the appli-
cation of the PMV model to individual thermal comfort assessment, which
is especially important in Thermal Adaptive Architecture where “individual”
is the most distinctive highlight from other similar studies. That means the
indoor environment in Thermal Adaptive Architecture is designed to be suit-
able for every individual by separately controlling local thermal conditions.
For this goal, the four environmental factors of each local space and the two
personal factors of each person have to be measured. Among them, multiple
thermometers, anemometers, and hygrometers installed in separate locations
according to ISO standard 7726 [11] can provide Ta, t̄r, Va and RH values
easily. Nevertheless, the measurement of Icl and M is usually done manually
by comparing an individual’s clothes type and activity type with lookup ta-
bles [3, 8, 12–18] (partly shown in Table 2.3 and Table 2.4) to get the reference
values, which is time-consuming, inefficient, and far from convenient. This
points out the necessity for developing a faster and more convenient method
to estimate Icl and M, especially considering that the two personal factors are
with a dynamic property and thus constantly change.

In summary, to realize the adaptive adjustment of the architecture’s micro-
climate according to each person’s thermal need in Thermal Adaptive Architec-
ture, from the perspective of the PhD work, the key research question is how
to dynamically acquire a person’s clothing insulation rate Icl and metabolic
rate M with a thermal camera as hardware and computer vision algorithms
as software.
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Fig. 2.2: An example of thermal comfort assessment with the six factors as inputs by using
PMV model realized in CBE thermal comfort tool [9]. The figure is adapted from [10] for better
visualization.

Table 2.3: Clothing insulation rates of various typical garments [13]. The table is also used in [6].

Garment Icl (clo)

Underwear
Singlet 0.04
T-shirt 0.09
Shirts with long sleeves 0.12

Shirts, blouses
Short sleeves 0.15
Lightweight, long sleeves 0.2
Normal, long sleeves 0.25

3 Related Work

Thermal Adaptive Architecture is an interdisciplinary project between the ther-
mal comfort field and computer vision field. For a convenient guide for
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Table 2.4: Metabolic rates (58 W/m2 = 1 MET) of typical activities [14]. A similar table is used
in [4].

Activity M (W/m2)

Sleeping 40
Reclining 45
At rest, sitting 55
At rest, standing 70

Walking on the level, even path, solid:
1. without load

2 km/h 110
3 km/h 140
4 km/h 165
5 km/h 200

2. with load
10 kg, 4 km/h 185
30 kg, 4 km/h 250

readers to the solutions to acquire an individual’s clothing insulation rate Icl
and metabolic rate M, in the section, only representative studies from both
domains are introduced, provided that the work can ease the manpower ded-
icated to the lookup tables mentioned above. Additional related works are
introduced in the scientific papers appended in Part II.

3.1 Thermal Comfort Field

In this field, clothing insulation rate Icl estimation and metabolic rate M esti-
mation are always studied in separate publications.

Clothing Insulation Rate Estimation

When choosing the clothes to wear, people usually refer to the outdoor cli-
mate. This leads to an assumption that people need clothes with low Icl (a
typical value of 0.5 clo) on warm days and clothes with high Icl (a typical
value of 1.0 clo) on cold days, which is considered to be the simplest Icl
estimation scheme mentioned in [3]. However, we all have to admit that a
general outdoor climate cannot represent the specific thermal condition of
an indoor environment such as an office in our project. To this end, more
factors have been taken into account. For example, [19] collects 1316 sets
of different participants’ personal information (Icl , gender information, and
transportation mode) and the corresponding non-personal information (out-
door air temperature at 6:00 a.m., dew point temperature at 6:00 a.m., and
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season) through questionnaire surveys to investigate the numerical relation-
ship between the Icl value and the other five parameters, which makes it
possible to predict a person’s Icl if the other information is collected. Sim-
ilarly, research [20] further considers the influence of indoor temperature,
air conditioners, and latitude on people’s dress behavior. These studies are
much more flexible than the fixed Icl values of 0.5 clo and 1.0 clo and have
relieved the manpower in terms of looking up tables to some extent, but col-
lecting new information through questionnaires may lead to extra manual
work. What’s more, in real life, individuals with exactly the same factors
considered in [19] and [20] may have very different clothes choices due to
various personal preferences, indicating that the Icl estimation should not be
decoupled from the clothes themselves.

A common sense that heavier clothes have a better protection ability
against cold air gives an impression of the correlation between the clothes
mass and the Icl value, and hence encourages the work [21] to accordingly es-
timate Icl by weighing the clothes. However, as pointed out by [13] that “gar-
ment mass on its own is not a good predictor of garment insulation”, studies
on this scheme are quite few. An equally widely accepted common sense that
the temperature difference between the inner surface and the outer surface
of an item seems to represent its ability to insulate heat. Such an example is
that a thermos cup full of cold or hot water has a much larger inside-outside
difference in temperature than a regular cup made of glass, and the content
in the thermos cup can remain cooler or hotter than the outer surroundings
for a much longer time period. This common phenomenon in daily life tal-
lies well with the insulation rate calculation defined in ISO 7933 [12] and ISO
9920 [13], according to which the skin temperature and the clothing temper-
ature are required to be measured. Work [22], therefore, uses two infrared
thermopile sensors to measure the temperature of the neck or the ankle and
the temperature of clothes to calculate Icl .

Metabolic Rate Estimation

According to ISO 8996 [14], higher levels of M determinations are suggested
by measuring the subject’s heart rate, oxygen consumption and carbon diox-
ide production rate, or energy expenditure from the body to the environment.
On the one hand, these methods work on the basis that the interior metabolic
rate is often exposed as the explicit activity intensity. The higher the intensity,
the higher the heart rate and the faster the breath to inhale more oxygen and
exhale more carbon dioxide. On the other hand, in terms of the thermal ef-
fect, a higher internal metabolic rate transfers more heat to the environment,
which can be measured if the chamber is confined.

Therefore, corresponding studies have emerged. In [23] and [24], a Fitbit
Charge HRTM wearable wristband [25] and a BioHarness 3.0 fixed on the
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chest with a strap [26] are used to monitor a user’s heartbeat for measuring
M, respectively. A COSMED K5 device [27] is used in [28] and an AE-100i
device from East Medic [29] is used in [30] for the same purpose—measuring
a user’s oxygen consumption and carbon dioxide production to monitor the
metabolic rate M. Such devices have much better accuracy in M estimation
than the lookup table counterpart, mainly because they provide the feasibility
of measuring a person’s dynamic metabolic rate in real time. However, the
inconvenience that a user has to wear the apparatus on the wrist or the chest
and even a mask (see Fig. 2.3) on the face heavily impedes this hardware-
relied M determination in everyday life.

(a) (b)

Fig. 2.3: Devices to measure oxygen consumption and carbon dioxide production. (a) is the
device of COSMED K5 and (b) is the device of AE-100i. Image source: (a) [27], (b) [30].

3.2 Computer Vision Field

The above estimations of Icl and M in the thermal comfort field are realized
by questionnaires, attached sensors, or wearable devices, which makes it im-
possible for a subject to do things without distraction. Therefore, contactless
approaches are much more welcomed—computer vision solutions benefited
from the employment of cameras.

Clothing Insulation Rate Estimation

A thermal camera can directly output the temperature of each point in the
scene it captures, therefore, this provides a contactless way to acquire a per-
son’s skin temperature and clothes surface temperature which are the crucial
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values in calculating Icl as explained in ISO 7933 [12] and ISO 9920 [13].
Accordingly, this convenient measurement in temperature has been adopted
by studies [31–33] to estimate Icl . As shown in Fig. 2.4, the polygon in (a)
represents the clothes region; the circles in (b) represent the corresponding
skin region and clothes regions; temperatures of these regions can be read
directly from the thermal camera. However, an unsolved problem is that all
the three publications do not mention how to locate skin regions and clothes
regions automatically. That means if the polygon in Fig. 2.4(a) and the circles
in Fig. 2.4(b) have to be drawn by humans, the introduced manual labor will
contradict the expected automatic analysis.

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

(a)

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

(b)

Fig. 2.4: Acquisition of skin temperature Tskin and clothing temperature Tclo in pseudo color
thermal images captured by thermal cameras. Image source: (a) [32], (b) [33].

A different scheme to estimate Icl by computer vision is from [34]. This
work first chooses five types of clothing ensembles with known insulation
rates (0.2 clo, 0.35 clo, 0.5 clo, 0.65 clo, and 0.8 clo) and takes 1000 pictures of
such clothes. And then [34] uses these images to train a clothing ensemble
classifier on the basis of a Convolutional Neural Network (CNN) so that the
classifier gains the ability to categorize an image of clothes into one of the
five types. In the testing/application phase, the image of a person wearing
any clothes is taken by an RGB webcam, and then the image is fed to the
classifier as the input to get its predicted category which corresponds to a
known Icl value. Apparently, the limitation is that only five types of clothing
ensembles cannot represent so many clothes choices in our life. It is worth
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mentioning that the brief description of this study—collecting a large number
of images of known categories, training a CNN classifier by “observing” the
images, using the well-trained classifier to predict the category of any test-
ing image—is the typical pipeline of object classification in current computer
vision solutions.

Metabolic Rate Estimation

Vision-based solutions to estimate M are rare. Studies [35, 36] use a Mi-
crosoft Kinect camera to capture the image information of a person doing
various activities. At the same time, a Fitbit Charge wearable wristband the
person wears records the heartbeat, letting each captured image correspond
to a value of the heartbeat. And thus, numerous such pairs can infer the rela-
tionship between the image of a person doing a certain activity and the heart
rate value of the person, with the help of a CNN-based regression model. As
long as the regression relationship is determined, a subject does not need to
wear the wristband anymore. Because with the image of him or her captured
from Kinect as the input of the regression model, the heartbeat is predicted
as the model’s output based on which the metabolic rate M is calculated
following ISO 8996 [14].

4 Contributions

From what has been introduced, the goal of the PhD project Thermal Adaptive
Architecture is to estimate each individual’s clothing insulation rate Icl and
metabolic rate M dynamically and automatically by computer vision solu-
tions equipped with a single thermal camera. This goal can further facilitate
the subsequent processing by our collaborators from the architecture design
field to assess individual thermal sensations based on which to control the
office microclimate so that each office worker feels thermal comfort.

From existing studies, we find that even though some of them have ap-
plied contactless computer vision algorithms in estimating Icl or M, they are
far away from the goal that Thermal Adaptive Architecture expects, especially
as to the application in real life, mainly due to these inadequacies:

• The scheme from a certain clothes type to its predefined Icl only con-
siders a very limited number of garment types, which cannot represent
hundreds of clothes choices in the real world.

• The scheme to calculate Icl from a person’s skin temperature and cloth-
ing temperature does not give a solution to measure these temperatures
automatically. That is to say, it is unable to locate the skin region and
the clothing-covered region from an algorithm’s ability.
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• The scheme to determine M from a person’s heartbeat does not con-
sider the individual difference in heart rates (some people are born
with faster or slower heartbeats than others). And the need for an addi-
tional device to calibrate the paired relationship between an image and
the value of heartbeat may involve some interference in subjects than a
contactless camera.

• Most importantly, all existing approaches only take a single person as
the research object, which is incapable of analyzing multiple persons
captured in an image.

To this end, this PhD work develops new solutions to solve the above-
mentioned drawbacks so that we can employ our method in a real-life office
environment with a single privacy-preserving thermal camera. Below, the
different components of our work during the PhD study are described.

4.1 Data Collection

Similar to the experience that a small child learns to recognize animals by
repeatedly looking at pictures of various species of animals, current computer
vision algorithms are also mainly built on the data-driven concept that needs
a very large number of images or videos. Likewise, the knowledge about the
animals that the child gets in the mind is like the parameters that a computer
vision algorithm/model consists of. Therefore, to obtain the model that is
able to recognize and locate a person, distinguish different types of clothes,
and categorize various activities, two datasets have been collected during the
PhD study.

Single-person Dataset [4, 37]

This dataset was collected in September 2019. Sixteen males and four females
were asked to act three behaviors in five types of clothes as listed in Table 2.5,
in front of a thermal camera—Xenics Gobi-384-GigE [38] demonstrated in Fig.
2.5. This collection consists of 291 long videos, and then they were trimmed
into 2422 short videos. Each short video has a frame rate up to 30 fps, an
image resolution of 384 × 288 pixels, and a length of around 3.5 seconds.

The principles for considering the five types of clothes and three types of
behaviors are:

• An office worker’s lower body part is usually occluded by the desk in
front, and thus a camera cannot capture the lower body information.
Therefore, the clothes types here only consider the garment worn on
the upper body.
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• The five clothes types—T-shirt, with long sleeves, with rolled-up
sleeves, with long sleeves and unzipped zipper, with rolled-up sleeves
and unzipped zipper—can almost cover all the clothes situations in
daily life.

• Sleeves conditions are good indicators of skin regions and clothing-
covered regions. For example, the lower arms are usually considered as
the bare-skin region when a person is wearing short-sleeved clothes.

• Zipper conditions are good indicators of clothes layers that may influ-
ence clothing insulation rate estimation according to ISO 9920 [13].

• Rolling up one’s sleeves or not and unzipping one’s zipper or not are
direct information indicating a thermal feeling of hot or cold.

• Standing, sitting, and walking are the dominant behaviors in an office
environment.

Table 2.5: Sampled images from the single-person dataset of people acting three different be-
haviors and in five different types of clothes.

Clothes Behaviors

Stand Sit Walk

T-shirt

Long sleeves

Rolled-up sleeves

Long sleeves &
Unzipped zipper

Rolled-up sleeves &
Unzipped zipper
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Fig. 2.5: The used thermal camera Xenics Gobi-384-GigE. Image source: © Xenics.

In each of the 2422 videos, there is only one person acting a certain be-
havior and wearing a certain type of clothes, as the illustration in Table 2.5.
Therefore, each video has a specific label annotating the clothes property and
behavior property of the person being recorded. Together there are 15 cat-
egories of videos considering the 15 combinations of five clothes types and
three behavior types. This mix of both types makes it possible to recognize
the two properties simultaneously instead of two separate pipelines, which
is more convenient and efficient in practice.

In summary, our contributions regarding this single-person dataset are:

• We have collected a new dataset for analyzing a single person in ther-
mal imagery. This dataset consists of 2422 videos in which each video
has been labelled as a specific category that annotates the clothes and
the behavior situation of the recorded person.

• Part of the dataset has been made public at https://www.kaggle.com/
datasets/jsliu91/single-person-thermal-dataset, for other researchers
and engineers to use. The remaining part of the dataset is for internal
use to protect the face information of the participants who are reluctant
to appear online.

Other information of this single-person dataset is in paper A [37] and
paper B [4] appended in Part II.

Multiple-person Dataset [6]

Though the single-person dataset almost considers all the clothes and behav-
ior situations in an office and thus fulfills the need of the early-stage research
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during the PhD study, we claim that it cannot fully simulate the real working
environment due to the following reasons: (1) the situation where an upper
body is occluded by computer monitors or other stuff in front is not consid-
ered; (2) the situation where multiple persons are captured in the same video
when they are working in the same office is not considered; (3) a person’s
clothes and activity situation may be changing in real time, but the video-
level recognition (instead of a frame-by-frame recognition) cannot meet this
requirement.

Therefore, in December 2020, we proposed new protocols on top of the
important principles of the single-person dataset and accordingly collected a
new multiple-person dataset, so that the real office working condition can be
truly simulated. These new protocols are:

• Two persons were recorded together in a typical office environment
with laptops or desktop monitors in front.

• Both persons were encouraged to behave spontaneously as they were
doing regular work. This made a variety of behaviors like discussing
with each other, taking notes, typing the keyboard, phoning, drinking
water, stretching arms, etc. available in the new videos.

Under these protocols, three females and seven males were the subjects
who helped us finally collect 114 videos by the same thermal camera as used
for the single-person dataset. Each video has a frame rate up to 25 fps and
a length of about 2000 frames. In this new multiple-person dataset, the two
persons in each video can wear different types of clothes and act different
activities. Besides, they may change their behaviors in real time. Therefore,
each person needs to be analyzed separately in a frame-by-frame level.

For the frame-by-frame analysis of people, each person has to be detected,
tracked, and recognized to get his or her clothes and activity situation. Ac-
cordingly, the multiple-person dataset has to be annotated to provide such
information for training and evaluating a model. We thus sampled 5263 im-
ages that are evenly distributed from the 114 videos, and then we labelled
each person’s location with a bounding box around and the category to rep-
resent his or her clothes type and key posture in all the sampled images,
making this dataset a good resource for a frame-by-frame analysis of any
person in it.

For better illustration, Fig. 2.6 shows how the frames are annotated and
what the videos look like. In the figure, people are demonstrating different
kinds of activities like typing (a), texting (b), reading (c), drinking (d), stretch-
ing arms (e), and chatting (f). The green bounding box around each person
labels the location information, and the accompanying category labels his or
her clothes and behavior status.

It is worth mentioning that: (1) the clothes type is represented by the
sleeves status as the single-person dataset does, but the zipper status is not
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(a) (b) (c)

(d) (e) (f)

Fig. 2.6: Some images from the videos of the multiple-person dataset. During the data collection,
participators were behaving in various activities without any restrictions. Also, each person in
the sampled frames has been annotated with his or her location, clothes type, and key posture.

considered anymore for simplicity, so more attention is paid to the empha-
sis that this new dataset is for expanding the research to a real-life multi-
person scenario; (2) a new clothes status called “occluded” is for the scene
that the person is occluded by stuff in front, and thus it is challenging to know
whether the garment is long-sleeved or short-sleeved; however, although a
person may be occluded in some frames, it is possible to know the sleeves
type from other frames; (3) there are two postures (sitting and standing)
without walking considered in this multiple-person dataset, as walking is a
particular type of standing and can be recognized in a frame-level analysis if
a person’s location is constantly changing while standing.

In summary, our contributions regarding this multiple-person dataset are:

• We have collected a new dataset for analyzing multiple persons in ther-
mal imagery. This dataset consists of 114 videos in which each video
has two persons acting different activities in various clothes in an of-
fice. Besides, 5263 frames have been sampled from the videos and then
annotated of each person’s location, clothes type, and posture, making
the dataset a good resource for many tasks in the thermal mode.

• Part of the dataset has been made public at https://www.kaggle.com/
datasets/jsliu91/multiple-persons-thermal-dataset so that other re-
searchers and engineers can use. The remaining part of the dataset
is for internal use to protect the face information of the participants
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who are reluctant to appear online.

For more detailed information on this multiple-person dataset, please re-
fer to paper C [6] in Part II.

4.2 Personal Factors Estimation

This section introduces our investigations and findings in estimating the two
personal factors that affect individual thermal comfort assessment—Icl and
M, by recalling the key points in publications A [37], B [4], and C [6] listed
in Part II. These works are specially characterized by that they are trying to
estimate both factors simultaneously to increase convenience and lower the
consumption in computation and processing time, which is very different
from the existing works. Besides Icl and M estimation, we have also studied
an additional topic—gender classification in thermal imagery. This study is
inspired by the gender difference in thermal comfort assessment. The work
is ongoing and therefore documented in a technical report D appended in
Part II. Below, the brief introduction of the four works will be described.

A: Vision-based Individual Factors Acquisition for Thermal Comfort As-
sessment in a Built Environment [37]

The first step of estimating Icl and M is to predict an individual’s clothes
and activity situation, for which this work has been done to concurrently
recognize a person’s clothes type and behavior type on the collected single-
person dataset.

Specifically, we have implemented a CNN to do a 15-category video clas-
sification task that will indicate what the person in the video is wearing and
behaving based on the predicted class, according to the descriptions of Ta-
ble 2.5. This CNN takes both spatial information (each thermal video) and
temporal information (optical flows extracted from the thermal video) as the
input for the reason that spatial information indicates the clothes type and
temporal information indicates the behavior-related movements.

Different from prior works [39–41] that use two CNNs to separately deal
with the video stream and the optical flow stream, our work incorporates
the spatial-temporal information into one stream by concatenating each ther-
mal image (8-bit) with its two optical flows (extracted from the horizontal
direction and the vertical direction) into a 24-bit modality. This concatena-
tion strategy not only saves resources and improves efficiency but also fills
the gap that a temporal stream does not include clothes information.

Besides, to further increase the video classification accuracy, we take ad-
vantage of the long-term information of each video by doing result fusion
inspired by [41]. This fusion is realized in three steps: (1) each thermal video
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is segmented into K parts of the same length; (2) each segment randomly
samples out one frame as the input of the CNN-based 15-category classifier;
(3) the classification scores of the K sampled frames are averaged based on
which the final class is predicted. In this way, the classification result con-
siders the long-term information of each video with the help of the K frames
that are sampled from the video along with time.

The diagram illustrating the above processing pipeline is in Fig. 2.7 where
the concatenated spatial-temporal information and the result fusion strategy
are drawn. This pipeline achieves an average recognition accuracy of 95.14%
in a 15-category (the five clothes classes and three behavior classes listed in
Table 2.5) classification problem.

Thermal 
camera

Video

Segments

Fusion

Sampled frames 
and the temporal 

information CNN backbone

Fig. 2.7: The diagram of the work A. We use the optical flows of the horizontal and vertical
directions to represent the temporal information. The result fusion strategy is to use the long-
term information for better performance. To be noted is that though a few CNN backbones
are drawn, there is only one CNN implemented in the whole pipeline. Therefore, this fusion
strategy does not consume more resources. Adapted from [37].

In summary, our contributions regarding this work A are:

• We have implemented a CNN-based video classifier that considers both
spatial information and temporal information to simultaneously recog-
nize a person’s clothes type and behavior type, which makes it possible
to realize further Icl and M estimation. As far as we can tell, this is the
first work that acquires the individual factors for thermal comfort as-
sessment from a perspective of clothing (sleeves and zipper) situations
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and behaving actions.

• We have done extended experiments to discover some good practices
for similar tasks involving optical flow extraction and thermal image
recognition: (1) the camera should avoid a too high frame rate, be-
cause under this situation there is no visible movement between two
adjacent frames, which makes the extracted optical flow information
almost empty; (2) sometimes, a proper preprocessing step for a thermal
input is necessary to enhance the objects due to the much fewer details
compared with an RGB video.

For more detailed information of this work A, please refer to paper A in
Part II.

B: Automatic Estimation of Clothing Insulation Rate and Metabolic Rate
for Dynamic Thermal Comfort Assessment [4]

This work is built on top of paper A and aimed at estimating Icl and M from
the recognized clothes type and behavior type.

For Icl estimation, the difference between an individual’s skin tempera-
ture and clothes temperature has been proven crucial according to ISO stan-
dards [12, 13]. And thus, automatically locating the skin region and clothing-
covered region is extremely important for extracting the corresponding tem-
peratures, which includes two sub-problems: (1) how to distinguish the two
regions from each other; (2) how to locate a certain point in the known skin
region or clothes region. To solve the first sub-problem, from the recog-
nized clothes type of short sleeves or long sleeves, we can treat the lower
arm as the skin region or not, thus increasing the variety and robustness
compared to the existing work which only considers facial area as the skin
region. To solve the second sub-problem, we have applied OpenPose [42]
to the single-person dataset to detect key body parts like shoulders, elbows,
wrists, etc. These key parts are good landmarks to locate a skin-region point
or a clothes-region point. For example, the shoulders are always covered by
clothes, while the wrists of a person in short-sleeved clothes are the points in
the skin region. By taking advantage of a thermal camera, the temperatures
of these landmarks are easily acquired and can be good representations of the
skin temperature and clothes temperature. Moreover, after calculating the Icl
value based on the above-acquired temperatures, we have further considered
more factors that may have an influence on Icl according to ISO 9920 [13], in
order to make the estimated Icl value more accurate. These factors include:
(1) the decrease in clothing-covered body surface ratio caused by rolled-up
sleeves or unzipped zippers will induce a decrease in Icl ; (2) the extra insu-
lation from an office chair when sitting will induce an increase in Icl ; (3) the
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increased air exchange via clothes collars and cuffs when walking will induce
a change in Icl .

For M estimation, the recognized behavior of sitting, standing, or walking
is linked to a specific metabolic rate value according to ISO 8996 [14]. This
scheme provides an automatic lookup without manual work and any addi-
tional device. Considering that these three types of behaviors dominantly oc-
cur in an office environment, they can efficiently represent an office worker’s
M value as ISO 8996 [14] always does.

The pipeline of this automatic estimation of Icl and M on the single-person
dataset is illustrated in Fig. 2.8 where the module for recognizing clothes type
and behavior type, the module for acquiring skin temperature and clothes
temperature, and the module for calculating Icl and M are shown. From the
figure, it is clear to see that the three modules are closely related, and thus
the final estimation is a comprehensive result that considers multiple factors.

Thermal 
camera

OpenPose

Video

Detected body key points

CNN classifier
Temporal information in horizontal 

and vertical directions

Skin temperature
Clothes temperature

CLO

MET

1

2

3

Fig. 2.8: The diagram of the work B. The green dashed box refers to the CNN module for clothes
type and behavior type recognition, similar to what has been done in paper A. The red dashed
box refers to the utilization of OpenPose (for detecting key body points) and the recognized
clothes type to acquire a person’s skin temperature and clothes temperature. The purple dashed
box refers to the calculation module of Icl and M that takes both the recognized type and the
acquired temperatures as inputs. Image source: [4].

All the three modules have been evaluated in paper B: (1) the type recogni-
tion module realized by a CNN-based 15-category video classifier achieves an
average accuracy of 95.17%, proving that the implemented spatial-temporal
CNN is able to recognize not only the clothes which rely more on the spa-
tial information but also the behaviors which rely more on the temporal in-
formation; (2) the temperature acquisition module that closely depends on
the OpenPose tool works reliably, given that OpenPose can detect body key
points accurately on 14123 images out of a sampled thermal dataset con-
sisting of 14928 images (which equals an accuracy of 94.61%); (3) the es-
timated values of the calculation module are compared with the reference
values listed in ISO standards, proving the consistency of our estimations
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with the widely-accepted table look-up method.
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Fig. 2.9: Assessed thermal feelings from personal factors (Icl and M) that are acquired from
different methods. (a) Fixed Icl as 0.5 clo (the representative value on warm days according
to [3]) and fixed M as 55 W/m2 (the value for sitting that is the dominant posture in an office).
(b) Calculated Icl from us and fixed M as 55 W/m2. (c) Fixed Icl as 0.5 clo and calculated M
from us. (d) Calculated Icl and M from us. (e) Seven-scale thermal feelings according to Table
2.1. Cited and adapted from [4].

Moreover, since the developed automatic estimation of Icl and M is for the
ultimate goal of dynamic thermal comfort assessment, by means of the CBE
thermal comfort tool [10], the assessed thermal feelings of a subject are ac-
quired based on the personal factors estimated by us and other methods. The
results are illustrated in Fig. 2.9. In the figure, compared to the sub-figures
from (a) to (c) where at least one factor is not estimated from the proposed
method, the sub-figure (d) that uses the both factors estimated by us shows
much more reasonable and dynamic changes in the assessed thermal sensa-
tion; because (d) illustrates that the person feels cool to slightly warm when
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his activity intensity and clothing insulation ability increase. This compari-
son in Fig. 2.9 further demonstrates the potential of the proposed approach
in a real application.

In summary, our contributions regarding this work B are:

• We have extended the work in paper A of recognizing a person’s clothes
type and behavior type to the field of estimating Icl and M together. As
far as we know, this is the first work that estimates the both personal
factors for thermal comfort assessment by use of a contactless privacy-
friendly thermal camera and accompanying computer vision solutions.

• The Icl estimation scheme considers multiple aspects of the sleeves sta-
tus, zipper status, activity status, skin temperature, and clothes temper-
ature, making itself a comprehensive and more accurate approach. The
M estimation scheme from the recognized activity type is also proven
convenient and effective.

• We have quantitatively evaluated the performance of OpenPose on ther-
mal datasets and thus provide a helpful reference for other engineers
or researchers to investigate similar research questions.

For more detailed information of this work B, please refer to paper B in
Part II.

C: Clothing Insulation Rate and Metabolic Rate Estimation for Individual
Thermal Comfort Assessment in Real Life [6]

Papers A and B have successfully estimated Icl and M values for a single-
person scenario, giving us a picture of what can be expected from a computer
vision solution in Thermal Adaptive Architecture. On the basis of them, the
extended investigation of how to employ vision-based Icl and M estimation
in the multiple-person dataset of a real office environment is explored in
paper C.

When there is more than one person in the view captured by a camera,
to achieve individual thermal comfort, each individual’s thermal sensation
needs to be assessed. That means each person’s Icl and M have to be esti-
mated, which requires the detection and tracking of every identity. To this
end, we have used a tracking-by-detection framework (incorporating a detec-
tor YOLOv5 [43] and a tracker DeepSort [44]) to track each identity across
frames. At the same time, the object classification function implied in the de-
tector YOLOv5 helps to recognize each person’s clothes type and key posture
since such information has been annotated in the multiple-person dataset (see
Fig. 2.6).

Specifically, we decided to use the DeepSort-by-YOLOv5 framework on
the multiple-person dataset due to the following reasons: (1) the researched
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thermal data has much fewer details compared to normally used RGB data,
therefore, utilizing these precious features/details to its utmost is of great
significance; fortunately, the detector YOLOv5 has used Path Aggregation
Network (PANet) [45] in its backbone, which makes the deeper layers reuse
the lower-layer features in a more efficient way; (2) the tracker DeepSort has
a low complexity and thus can achieve real-time performance, very suitable
for our office environment with a limited number of persons instead of other
crowded environments like a heavy traffic that need complex trackers; (3) in
detail, DeepSort has an ability to filter out false negatives and false positives
for the detection output from YOLOv5, making the integrated DeepSort-by-
YOLOv5 paradigm work robustly to track each person for the further indi-
vidual analysis.

Therefore, by using this tracking-by-detection framework, each person in
a video will be tracked with a consistent identity (ID) across frames, like the
figures shown in Fig. 2.10 where the ID numbers 1 and 2 are assigned to
the two individuals over time. Then each person’s Icl and M can be esti-
mated from the specific visual features of himself or herself without being
interfered by other people. For Icl , as what is done in paper B, the OpenPose
tool for detecting key body parts, together with the recognized sleeves type
from YOLOv5, can locate skin regions and clothes-covered regions. From
these regions, the individual’s skin temperature and clothes temperature are
acquired for the further calculation of Icl .

(a) (b)

Fig. 2.10: How the tracking-by-detection module will result in for an input video. (a) and (b) are
two frames from the video where ID numbers 1 and 2 indicate the two persons across frames,
respectively. At the same time, each person’s clothes type and posture type are recognized by
the classification header of YOLOv5. Adapted from [6].

For M, we have discovered three vision-based features that can describe
a person’s activity intensity efficiently based on which his or her metabolic
rate can be estimated. In detail, as each individual is tracked by a bound-
ing box around, within a certain period of time, the bounding box location
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(represented by the center coordinates of the box) change can capture the
person’s overall movement, while the bounding box scale (represented by
the upper-right coordinates of the box when the center of the box is set at
the origin (0, 0)) change can capture the limb movement. Besides, the optical
flow intensity from the bounding box region can capture the detailed and
much smaller movements. Therefore, these three aspects of features explic-
itly encode a person’s activity intensity, and we have proven that the higher
activity intensity the person behaves, the larger bounding box changes and
optical flow intensity we can extract.
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Fig. 2.11: For the ID 1 person in Fig. 2.10: the bounding box location change (a), the bounding
box scale change (c), and the optical flow intensities in the bounding boxes (e). For the ID 2
person in Fig. 2.10: the bounding box location change (b), the bounding box scale change (d),
and the optical flow intensities in the bounding boxes (f). Image source: [6].

As illustrated in Fig. 2.11, the ID 1 and ID 2 correspond to the two individ-
uals in Fig. 2.10 where the ID 1 female is texting with low activity intensity
while the ID 2 male is stretching arms with high activity intensity. Accord-
ingly, take a period of 10 seconds for example, the bounding box location
changes, scale changes, and the optical flow intensities of them demonstrate
totally different distributions in Fig. 2.11. The points in the sub-figures Fig.
2.11(b) and (d) are much more spread out than those in (a) and (c); besides,
the intensities in (f) are also much larger than those in (e), all of which are
accurately describing the activity intensity difference of the ID 1 person and
the ID 2 person. From this example, the link between the three vision-based
features and an individual’s activity intensity is verified. Therefore, a classi-
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fier with the three features as inputs can be designed to categorize a person’s
activity intensity into one of the three levels (low, moderate, high) based on
which the M value is calculated.

As a whole, we can draw the work C as the diagram in Fig. 2.12. From it,
we can summarize our work in three modules:

• A tracking-by-detection module to track each individual (with a bound-
ing box and a consistent ID across frames) and at the same time recog-
nize the person’s clothes and posture situations. This module gets a
detection rate of 89.10% measured by mAP50 on 434 testing images and
a tracking rate of 99.50% measured by Multiple Object Tracking Accu-
racy (MOTA) on 15 testing videos.

• A Icl estimation module with both the skin temperature and clothes
temperatures as its inputs that are acquired from a key body point de-
tection tool—OpenPose. We have verified that OpenPose can detect
body key points accurately on 4714 images out of a sampled thermal
dataset consisting of 4901 images, which equals an accuracy of 96.18%.
Besides, the estimated Icl values by us have been compared with those
listed in ISO 9920 [13], proving the consistency of this module and those
recognized international standards.

• A M estimation module based on the categorized result of an individ-
ual’s activity intensity (low, moderate, or high), realized by a classi-
fier which feeds on the three proposed vision-based features explained
above. We have verified that a random forest-based classifier can
achieve a classification rate of 95.60% on a testing set of 68 samples.
Besides, the estimated M values from us are very close to the reference
values in the widely-used compendium of physical activities tables [18],
certifying that this module is an effective and reliable method for M cal-
culation.

With the above explanation of the proposed modules and the evaluations
of them, our specific contributions regarding this work C are:

• We have initially extended the work of estimating Icl and M for a single-
person scenario to a multiple-person situation in real life, which pro-
vides a way to analyze each person’s thermal condition in a same envi-
ronment. By use of this scheme, it is possible for architecture designers
to regulate the indoor microclimate that responds to different subjective
thermal states.

• We have quantitatively evaluated the performance of OpenPose on a
thermal dataset that has multiple persons exhibiting various types of
behaviors in each frame. This investigates the potential of using Open-
Pose in a different mode from its initial target (RGB) and thus provides
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Fig. 2.12: The diagram of the work C. Both the modules that the proposed methodology includes
and the applications that the methodology can be applied to are drawn. Image source: the
graphical abstract for [6].

a good reference for other engineers and researchers when exploring
similar research questions.

• The proposed three vision-based features are proved as good indicators
of human activity intensity, which have the potential to be applied to
many other problems regarding action recognition besides the estima-
tion of metabolic rate in the thermal comfort domain.

For more detailed information of this work C, please refer to paper C in
Part II.
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D: Knowing Where to Look: Gender Classification in Thermal Imagery
[Technical Report D in Part II]

More and more research has pointed out that females and males can have
different thermal sensations in the same environment [46–53]. Therefore, if
Thermal Adaptive Architecture can take the gender information of each occu-
pant into consideration in addition to the estimated clothing insulate rate and
metabolic rate, the applied thermal adaptive building has a potential to pro-
vide a more satisfactory microclimate for the occupants. Motivated by this,
gender classification in thermal imagery has been studied.

Considering that images in thermal modality have much less information
compared to the visible modality, decreased performance is anticipated for
gender classification in thermal imagery. Accordingly, general approaches
like designing more sophisticated networks, introducing more advanced
training strategies, increasing the amount of data, etc., can be proposed to
improve the performance. However, more research questions like how a data-
driven model (specifically referring to a CNN in this work) obtains the abil-
ity to do gender recognition, which input region is most discriminative for a
model to use to give a prediction, and if the knowledge a model has learnt
for prediction is reliable, etc. are still unknown. Because existing works on
gender classification in thermal imagery [54–58] just use a CNN as a “black
box”.

To this end, the work D focuses on making a CNN targeted at gender
classification more “transparent” by using a technique of explainable CNN—
class activation mapping. This explainable AI tool can generate a heat map of
the input that will show which input regions are activated for the predicted
result. On top of this, a deeper understanding of gender classification can be
achieved, and thus more specific strategies for the thermal modality can be
introduced to lead toward a more robust performance of gender recognition
in thermal imagery.

In detail, on a thermal subset (including images from 37 females and 37
males) of the Tufts facial database [59, 60], we have finetuned AlexNet [61]
as a binary gender classifier. To understand which patterns/principles the
CNN has learnt to make a prediction, we have used Gradient-weighted Class
Activation Mapping++ (Grad-CAM++) [62] to generate the class activation
maps of some training images and some validation images (thermal images
of the VAP RGB-D-T dataset [63]). Examples of these activation maps are
illustrated in Fig. 2.13.

From the activation maps Fig. 2.13(a), we find that a female’s hair ends
are often the gender-discriminative region, which indicates the importance
of hair in this task. Therefore, the corresponding regions near the ear, neck,
shoulder, and upper arms that a female’s hair is expected to cover and the
hair regions themselves are also activated in the validation maps Fig. 2.13(b)
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(a)

(b)

(c)

Fig. 2.13: Some sampled images from the training/validation set and their corresponding class
activation maps to show what the CNN has learnt. Pay attention to the regions in red color
in these maps. (a) Training images of females. (b) Validation images of females. (c) Validation
images of males. Image source: technical report D in Part II.

and (c), based on which the CNN distinguishes a female from a male. We at-
tribute this phenomenon to an observation that females are expected to have
shoulder-length or longer hair than males. However, this observation result
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concluded by the classifier is potentially risky, as hair features are extrinsic
that have no ability to describe an identity intrinsically. Hence, the finetuned
CNN will be very prone to data imbalance problems and may be problematic
in the application phase.

In fact, the activated regions in Fig. 2.13 have shown that the CNN has
been influenced by the data bias problem, as we further find that there are
more females with shoulder-length and long hair than those with short hair
in the training set. To further explore how this bias influences the gender-
discriminative region and whether it is possible to extract intrinsic features
for gender classification in thermal imagery, we have done two extended
experiments: (1) Exp1: the training set only includes females with long hair
and hijabs similar to long hair; (2) Exp2: the training set only includes females
with short hair and ponytails. The hypothesis is that Exp1 will mainly focus
on the long hair area to make a prediction and hence neglect other features,
which will mis-classify a female with short hair as a male; Exp2 can take more
information into consideration and thus potentially achieve a more robust
classification result.

After the same finetuning phase as the basic experiment, on the same val-
idation set, both the CNNs of Exp1 and Exp2 perform as hypothesized, and
the validation classification rate increases from 80% (Exp1) to 96.25% (Exp2).
For better illustration, the class activation maps of some validation images
from Grad-CAM++ are shown in Fig. 2.14 including both maps correspond-
ing to Exp1 and Exp2. Additional information is that these maps in the figure
are an assembled version obtained by a person-wise average; this assembling
process considers all the activation maps of a same person as each person
for validation is captured several times; hence, the maps in Fig. 2.14(b) and
(c) gain the capacity to comprehensively represent all the activated regions
in Exp1 and Exp2. From Fig. 2.14(b) and (c), it can be observed that from
Exp1 to Exp2, the gender-discriminative regions are updated from areas in-
dicating a shoulder-length and longer hair to the top of the head and more
general broader areas. However, these results still imply the importance of
the hairstyle difference of genders for such a task, and more importance in-
trinsic facial features seems not to play a major role.

Together with other extensive analyses in the technical report D, it is con-
cluded that a finetuned CNN on the Tufts dataset for recognizing gender in
thermal imagery is more focused on hair features rather than the facial fea-
tures. This makes sense considering that the detailed facial information is
not acquired from a thermal camera, but one problem is that these non-facial
features are prone to training data biases which will cause the extraction of
improper features that lead to degraded performance. In contrast, though
RGB visible datasets also suffer from biases, we believe that the much more
available details in an RGB image can provide sufficient information based
on which the impact of a bias can be mitigated to some degree.
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(a) (b) (c)

Fig. 2.14: Example validation images and their assembled class activation maps. (a) A partici-
pator’s frontal image. (b) Exp1-generated assembled class activation maps. (c) Exp2-generated
assembled class activation maps. Image source: technical report D in Part II.

We further suggest some good empirical practices to find biases in ther-
mal imagery more effectively—keep an eye on the object/phenomenon that
has thermal/temperature properties, for instance, the data collection dura-
tion that affects the environment temperature, a warm-blooded animal that
exhibits a similar temperature distribution as a person, glasses/hats worn by
persons but exhibit a totally distinct temperature distribution from humans,
etc. Besides, a CNN overfitting the training set can extract every detailed
feature of the training images. And thus, using the trained model to generate
class activation maps for the training images can visualize what the CNN has
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learnt to illustrate if a bias exists.
As a whole, our specific contributions regarding this technical report D

are:

• We have done a visualization-based analysis to find gender-
discriminative regions for the CNN-based gender classification in ther-
mal imagery. Accordingly, we have discovered the importance of extrin-
sic features for this task, which gives a “transparent” understanding of
how a CNN recognizes a female or a male.

• Due to the concern that extrinsic features are inclined to be influenced
by training data biases, we have also done some extended experiments
to investigate the influence of hairstyle stereotypes on the performance
and accordingly provide good recommendations to find data imbal-
ances for more robust training and testing.

For more detailed information of this work D, please refer to the technical
report D in Part II.

Sub-conclusion

These works A, B, C, and D were done along with the progress of the PhD
project. Among them, the first three works on Icl and M estimation follow
the sequence from easy to hard, from a single-person scenario to a multiple-
person scenario, from a laboratory study to a real-life field study, and from
a video-level recognition to a frame-by-frame recognition. The last work on
gender classification is ongoing work inspired by the newly-learnt knowl-
edge of the gender difference in thermal comfort assessment. All the works
together emphasize the importance of the sleeves status for Icl , OpenPose for
Icl , the key posture for M, the optical flow for M, the tracking function, and
the gender classification for an “individual” assessment.
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Chapter 3

Safe Harbor

1 Background

Over the past decades, we humans have witnessed a great development in
various social sectors including food supply, education, health care, etc., mak-
ing raiment and daily bread not the minimum requirement in our life. Ac-
cordingly, how to live a life with more happiness has aroused growing atten-
tion, among which security is the most important factor to guarantee other
expectations.

As a result, surveillance cameras have been installed in more and more
public and private places to provide safety as all-around as possible. To oper-
ate the existing surveillance systems, many agencies rely on human resources
to provide manual monitoring by looking at the captured videos for 24 hours
a day, which is inefficient and expensive, not to mention the increasing er-
ror rate when the operator becomes tired after a concentrated focus for long
periods of time.

Hence, there is a pressing need for an automated surveillance system to
assist humans, not only to improve the efficiency for lower consumption of
manpower but also to reduce human mistakes for better stability. The de-
velopment of such a smart surveillance tool is the transformation from the
traditional function of video display to the capability of giving analyzed re-
sults like a human being, so that beforehand warnings, the immediate rescue
of accidents, evidence search afterward in helping solve crimes, and others
are possible.

To realize this, besides the simple acquisition-display pipeline, an au-
tonomous surveillance framework must integrate new function modules
which are generally data preprocessing, data analysis, decision making, etc.
The preprocessing of videos occurs when there is a need to improve the
spatial resolution, remove noises like blurring effects, enhance the contrast
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resulting from bad illumination conditions, or other situations. This pre-
processing makes the data in a better format for subsequent analysis and
decision making. Nowadays, these two modules are benefited from the main-
stream data-driven computer vision algorithms that leverage vast amounts of
data (in a similar way that a human gains precious experience from years of
manual observation on displayed real-time videos) to decide whether a scene
it looks at needs further involvement of human operators.

In this way, an autonomous surveillance system using multiple cameras
in the same mode (e.g., visible RGB), fixed camera(s), moving camera(s), or
multi-modal cameras (e.g., visible RGB, thermal, depth) can be applied to
many applications in various indoor and outdoor scenarios like bus termi-
nals, airports, department stores, hospitals, highways, etc. [1–4]. This trend
makes it possible to realize the detection and tracking of pedestrians for safer
traffic [5], fall detection for older people to prevent serious health issues [6],
fire detection to reduce injuries and deaths [7], and other specific purposes.

Besides, the feeling of not being invaded of privacy is as important as
the feeling of safety, especially for some people who feel uncomfortable
when they are under monitoring. For this concern, the widespread surveil-
lance cameras have to obey regulations like GDPR to protect the facial and
other personal information of users so that a good balance between privacy-
preserving and safety guarantees can be achieved. Fortunately, thermal cam-
eras provide a perfect solution for this condition as mentioned in Chapter
1. Therefore, within the context of an automated surveillance system, the
improved efficiency, decreased manual failures, and preserved personal in-
formation will together set a better living standard for all people.

2 Introduction

In this particular PhD project Safe Harbor, the location under monitoring by
a surveillance system is a harbor area in Aalborg, a coastal city in Denmark,
and the specific region under surveillance is shown in Fig. 3.1(a). There are
two fixed cameras whose field of view (FOV) are 22◦ and 11◦, respectively,
to monitor the harbor front area. There is another Pan-Tilt-Zoom (PTZ) cam-
era with its FOV of 11◦ monitoring the water area for manually searching
for objects in the water. This PhD project is specifically using the 22◦ fixed
camera to analyze human activities in the harbor front, and an image sample
captured by this camera is shown in Fig. 3.1(b).

The choice of monitoring such a harbor front is on the basis of its impor-
tant function in people’s lives, as it provides the site not only for daily traffic
routes but also for leisure hours spent. Therefore, the surveillance of this har-
bor front can provide a wealth of information that involves monitoring traffic
situations, statistics study of outdoor activities, observing social distance on
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(a) (b)

Fig. 3.1: The specific region under monitoring by the surveillance system with three cameras
is shown in (a). An thermal image acquired by the camera with a FOV of 22◦ is shown in (b).
Image source: (a) [8].

coronavirus days, preventing and rescuing drowning accidents, and many
other aspects.

Among these things, some are more significant as they may involve a
higher probability of danger or harm. That is, traffic situations referring in
particular to jams and even accidents due to the narrower path along the
harbor front compared to other normal roads, increased epidemic spreading
from people gathering without considering the social distance, and potential
drowning when a person sits or stands near the harbor edge especially when
there is no witness nearby. Some of these situations are shown in Fig. 3.2.

(a) (b)

Fig. 3.2: Examples of harbor front scenes. The left figure (a) shows heavy traffic flows and people
crowds. The right figure (b) shows a potential danger of sitting near the harbor edge. The green
line in the figure locates the harbor edge, the left of which is the water area.

On the one hand, people may think these dangerous events are far from
their lives and thus do not always pay attention to them. However, taking
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drowning accidents as an example, “there is an estimated number of 372000
people died from drowning in 2012, and hence drowning has been the third
leading unintentional injury killer in the world”, according to the report from
the World Health Organization (WHO) [9]. Solely in Denmark, “1565 people
drowned in the years from 2001 to 2014, and 390 (25%) of these deaths oc-
curred at harbor areas” [8]. Therefore, extra attention is absolutely necessary
to these issues to reduce injuries and deaths.

On the other hand, compared with normal events which account for the
overwhelming majority, the events of danger or harms are extremely rare
and thus can be treated as anomalies. Therefore, if there is a need for an
automated surveillance system to assist humans in finding such accidents ef-
fectively, following the commonly-used data-driven computer vision strategy
that uses a large amount of annotated data to teach a CNN what the danger-
ous scenes look like will be extremely difficult. Besides, because there are
a lot of different kinds of events requiring extra human control or rescue, it
will be impossible to include all the event types through data collection.

In summary, Safe Harbor aims at monitoring a harbor front region and
detecting anomalies of emergencies and potentially dangerous incidents that
need extra attention or even immediate controls and rescues by professionals,
by the use of a fixed thermal camera as hardware and computer vision so-
lutions that can overcome the above-mentioned challenges as software. This
means that Safe Harbor is a project that defines a relatively large range of re-
search questions as long as they help to improve the safety level in the harbor
front area. To specify the research area, we have aroused two questions to be
investigated—a specific one on drowning accident prevention and a general
one on anomaly detection on thermal data.

3 Related Work

To chime in with the defined research directions of drowning accident pre-
vention and anomaly detection on thermal data, the representative work re-
lated to the two topics will be introduced. For the avoidance of redundancy,
other related studies have been introduced in papers E, F, G, and H appended
in Part III.

3.1 Drowning Accident Prevention

In the context of a (semi-)automatic surveillance system, studies on drowning
prevention are surprisingly rare. For a clear description, we have categorized
these very limited number of studies into two types according to their appli-
cation areas.
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The first type is in the context of swimming in pools equipped with
underwater and above-water cameras instead of falling into water in our
case. [10–13] are such representatives that define a set of rules to describe a
drowning swimmer: moving very slowly or staying in a small water region,
abnormal limbs movements like irregularly and rapidly tapping the water
with arms, underwater more than a predefined time threshold, etc. To com-
pare a swimmer to these rules, the swimmer has to be detected in the water
by a human detector or background segmentation and then analyzed to get
his or her velocity and posture. If a swimmer exhibits these drowning signs,
alarms will be sent out to lifeguards or authorities to provide an immediate
rescue. Another realization of drowning detection [14] is more direct from
the perspective of CNN-based computer vision algorithms. It first collects a
dataset of images demonstrating drowning poses and non-drowning poses,
based on which a binary classifier on top of AlexNet [15] is trained to predict
whether a testing frame of a person is drowning or not.

(a) (b)

Fig. 3.3: Illustrations of the optical flow (green arrows) when a person starts falling into water
from the harbor edge (a) and when the person is just before hitting the water (b). The red
dashed line locates the harbor edge, the left of which is the water area. Both images are adapted
from [16] for better visualization.

The second type is in the context of falling into water near the sea, lake, or
pool. However, drowning prevention designed for these areas is extremely
rare. A representative study [16] focusing on the same harbor front with
us realizes the prevention of drowning accidents by calculating the human
movement in the form of optical flow magnitude. If the magnitude in the
water area is larger than a predefined threshold, there is a just happening
falling accident from the harbor to the water, which indicates an early drown-
ing. The subsequent alarm can be aroused to authorities very quickly before
the person hits the water. The feasibility of this idea is visualized in Fig. 3.3.
When there is no falling accident or when a person is just leaving the harbor
edge to the water, the optical flow pattern in the water area is weak. How-
ever, when a person is falling and just before hitting the water, the optical
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flow pattern in the water area will fluctuate significantly with a much larger
magnitude that predicts a falling accident.

3.2 Anomaly Detection

The incidents that need extra attention from professionals to provide con-
trols and rescues are much rarer compared to overwhelmingly frequent nor-
mal events. This property determines that the detection of aforesaid scarce
incidents can be effectively realized by anomaly detection, according to its
definition that “anomaly detection refers to the problem of finding patterns
in data that do not conform to expected behavior” [17].

In terms of the popular deep learning guided computer vision, super-
vised classification through a large number of labelled anomalies is unre-
alistic, and thus unsupervised/self-supervised algorithms without labeling
are more preferred. [18] initially uses a convolutional autoencoder (AE) [19]
which is trained with only normal patterns to reconstruct the input; because
the AE has not seen anomalies in the training phase, the reconstructed out-
put will be more similar to the normality no matter what input is fed into
the AE. Hence, the difference between an anomalous input and its output
will be much larger than that of a normal input, based on which an anomaly
is detected. It is worth mentioning that the brief description of this study
is the typical pipeline of AE-based anomaly detection in today’s computer
vision solutions. On the strength of [18], research [20] considers the temporal
information across frames of a video volume in detecting anomalies by in-
corporating convolutional Long Short Term Memory (LSTM) models [21] in
both the encoder and the decoder of the AE.

In the wake of the extensive application of this AE-reconstruction-error
paradigm, people have found an undesirable problem—sometimes the ca-
pacity of the deep autoencoder is too powerful and thus it can reconstruct
an anomaly quite well, which will cause some missing detections. To amend
this, two appreciated improvements are invented. (1) [22] proposes a future-
frame-prediction paradigm that predicts the next frame based on its historical
frames by using a U-shape network [23] as the generator, making the predic-
tion decoupled with the current frame. The feasibility of this method is on
the basis that if the generator has been trained to predict the next normal
pattern successfully, a normal frame is predictable while an abnormal one is
unpredictable in the testing phase. (2) [24] proposes a memory-augmented
deep AE (MemAE). This MemAE has a memory slot to store prototypical
features of normal data at the training stage. Then at the testing stage, the
encoded features of any input are not directly fed to the decoder to recon-
struct the input. Instead, these features are used to retrieve the most relevant
stored features from the memory slot as the “food” to the decoder, forming
a new pipeline that does not strictly rely on the testing input. An illustration
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of MemAE is shown in Fig. 3.4 that helps to give an intuitive explanation.

Abnormal 
input

Normal 
input

Abnormal 
input

Recon. of 
normal

Recon. of 
anomaly 

Normal 
input

Anomaly?

Recon. error

Recon. error

Encoding of normal input

Encoding of abnormal input Prototypical normal patterns  in memory slots

Retrieving memory 

Fig. 3.4: The diagram of anomaly detection using MemAE. “Recon.” is short for reconstruction.
With MemAE, the reconstruction error of an anomaly input should be always larger than that
of a normal input. For the visualization simplicity, [24] assumes only one retrieved feature is
required. Image source: [24].

When further expanding the scope of AE-based anomaly detection, peo-
ple have found that a well-trained AE on one scene cannot be directly applied
to another scene. For example, an AE designed on ShanghaiTech dataset [25]
needs the retraining of the AE if it has to be used on Avenue dataset [26].
To save the inconvenience for a cross-domain application provided that the
anomalies are defined identically in both scenarios, studies [27, 28] propose
object-centric AEs that only take the object of interest instead of the full im-
age as the input. For this, an object detector like SSD [29] or YOLOv3 [30]
has to be implemented in the first stage of the pipeline for frame-by-frame
object detection. This object-centric idea calculates the final anomaly score
of a frame from the anomaly scores of all the detected objects within it, and
here all of the scores are regarding a pixel-level difference between the recon-
structed result and the input.

As a whole, all of these studies are on visible data, that is, Avenue [26],
ShanghaiTech [25], UCSD [31], UMN [32], Subway [33], etc. Anomaly detec-
tion on thermal data is enormously rare as far as we have surveyed, making
itself an open research question to be explored.

4 Contributions

Even though existing studies have been applied in preventing drowning ac-
cidents and detecting anomalies, the specific research on how to do them
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in the area of harbor fronts, especially in thermal imagery as posted in Safe
Harbor is scarce. The main differences between the available work and our
realizations are listed in Table 3.1.

Table 3.1: The main differences between the available work and our realizations in preventing
drowning accidents and detecting anomalies.

Drowning prevention Anomaly detection

Others Ours Others Ours

Drowning
detection in the

water.

Drowning

::::::::
warning

::
in

:::::::
advance if a

person is very
near the water.

Evaluation on
visible data.

Evaluation on
new

:::::::
thermal

data we have
collected.

Very rare data
of people falling
into water or in

the water.

Collected a
dataset by using

a
::::::::::
human-like

::::
doll to simulate
a person falling

into water to

::::::
reduce

::::::::
injuries.

Evaluation on
data with short
time duration.

Evaluation on

::::::::
long-term data
for a

:::::::::
real-world

application.

In the table, the keywords of our contributions on Safe Harbor during the
PhD study are underlined with wavy lines. The following contents will use
the studies done in papers E, F, G, and H in Part III to explain these points in
detail.

4.1 Data Collection

As listed in Table 3.1, there is very scarce data on people falling into wa-
ter or in the water for the research on drowning prevention. Besides, the
benchmark datasets (Avenue [26], ShanghaiTech [25], UCSD [31], UMN [32],
Subway [33]) for anomaly detection have a common problem—the duration
is short (only several minutes or hours). The algorithms evaluated on them,
therefore, might be problematic for a long-term surveillance system that runs
for months and years in the real world.

To settle these matters, during the PhD study we have collected a new
falling-into-water dataset and a long-term thermal dataset spanning eight
months. Both of them were captured by the fixed camera of 22◦ FOV which
is actually a thermal-visible bi-spectrum camera [34], but only the thermal
channel is used in Safe Harbor considering pedestrians’ privacy concerns.
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Falling-into-water Dataset as Part of Paper H [35]

If a falling from the harbor edge can be detected before the person hits the
water, there will be a longer response time for lifeguards or other profes-
sionals to provide assistance, which will have a higher rescue rate than the
situation where the person is detected in the water.

Therefore, a falling-into-water dataset is so valuable that we accordingly
gathered such a dataset in November 2021 and then made it public as part
of paper H—Imitating Emergencies: Generating Thermal Surveillance Fall Data
Using Low-Cost Human-like Dolls [35].

The main innovation of this dataset paper is using a low-cost inflatable
doll that is similar to a real person to simulate falling incidents from a harbor
front to the water. This idea not only reduces the potential injuries if human
volunteers are involved in such a dangerous scenario but also avoids the
problem of unconvincing simulation if we use computer software to generate
artificial data.

During the dataset construction phase, to make the doll visualized as a
human-like appearance in thermal imagery, it must have a stable and higher
temperature than the environment. However, the doll has no ability to gen-
erate heat from itself like us humans. We, therefore, solved this by dressing
the doll in clothes on which hot water was poured to keep the doll warm
enough. A picture taken indoors of the clothed doll is in Fig. 3.5(a). We
chose this heating method instead of chemical heating pads and electrical
warm vests. Because when the doll is in the water, the chemicals in the pad
may pollute the sea, and the seawater has a high probability of destroying
the heating device. After the doll was heated with hot water, a comparison
between the temperatures of body parts of a real person and of the doll was
made with an infrared thermometer. The results show a temperature simi-
larity between them, which proves the feasibility of using a clothed doll to
simulate a human-like thermal appearance.

However, the heating strategy of the hot water poured on clothes has no
ability to constantly warm the doll, which means the doll’s surface temper-
ature will decrease over time. Therefore, how the doll temperature changes
along with time has to be investigated so that enough time (during which
the doll remains at an optimal temperature for thermal imagery) is reserved
for collecting the falling-into-water action—from the timing when the doll
leaves the harbor edge to the timing when it hits the water. This investiga-
tion was done in three different scenarios: an indoor environment of 24 ◦C,
and two outdoor environments of 17 ◦C and 0 ◦C, respectively. By measur-
ing the doll’s surface temperature along with time, we have found that the
average decrease rates of the surface temperature are 0.03 ◦C/s, 0.06 ◦C/s,
and 0.12 ◦C/s in the environments of 24 ◦C, 17 ◦C, and 0 ◦C, respectively.
This has testified that all the three environments can reserve a time slot of at
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least 3 minutes (before the doll temperature is decreased to the environment
temperature) for performing a falling event.

(a) (b)

Fig. 3.5: The doll used for data collection and the sampled images from the gathered dataset. (a)
The doll dressed in clothes. (b) Four sampled images showing the doll (in red bounding box)
falling into water. Image source: [35].

After the preparation work mentioned above had been verified, we did the
data collection in the harbor front by pushing the doll into water, throwing
it into water, kicking it into water, letting it fall into water without exterior
interference, etc. In this way, we have collected 22 thermal videos where 22
times of falling from the waterside were recorded. Each video has a frame
rate of 25 fps, a resolution of 384 × 288 pixels, and a length varying from 5
seconds to 14 seconds. From these videos, we randomly sampled four images
as shown in Fig. 3.5(b) to illustrate how the doll falls into water.

Not limited to making the doll’s appearance in thermal imagery similar
to humans, we have to further compare the motion features (from leaving
the harbor to hitting the water) of the doll and a real person, to investigate
whether this new falling-into-water dataset can be used in falling detection
for drowning prevention in real life. We did this by comparing two aspects
of the doll dataset and the person volunteers dataset in [16]: the number of
frames and the optical flow in the period of leaving the waterfront edge to
touching the water, which has shown the similarity in the falling motion of
the doll and the volunteers.

Furthermore, due to the fact that a computer vision solution for drowning
prevention usually inevitably requires human detection, the detection rate on
the doll dataset by a human detector is thus a significant index to see whether
this new dataset can contribute to preventing drowning accidents or not. By
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using YOLOv5 that is trained to detect humans, we find that it can detect
the doll effectively with reliable confidence scores similar to what it does for
detecting real persons.

In summary, our contributions regarding this falling-into-water dataset as
part of paper H are:

• We have used a low-cost inflatable doll that is similar to a real person to
simulate falling actions from a harbor edge to the water and thus col-
lected a dataset that consists of 22 videos depicting 22 times of falling
events. This data collection method not only avoids the problem of un-
convincing simulation of generated artificial data by computer software
but also reduces the potential injuries if human volunteers have to be
involved in data collection.

• Both the appearance information and motion information of the doll
dataset have been compared with those of real person volunteers. The
similarity between them has proven that this falling-into-water dataset
is suitable for drowning accident prevention in real life, from the per-
spective of the early detection (of a person suddenly disappearing from
the harbor edge) instead of the late detection (of a person in water).

• For other researchers and engineers to use, this dataset has
been made public at https://www.kaggle.com/datasets/ivannikolov/
thermal-mannequin-fall-image-dataset.

For more detailed information of this dataset work, please refer to paper
H in Part III.

Long-term Thermal Dataset as Part of Paper F [36]

A generalization from a laboratory-tested algorithm to a real-life application
always encounters a performance degradation, on account of the more com-
plex and varied conditions in reality. Therefore, a computer vision solution
that is targeted for the long-running surveillance system on Safe Harbor must
be evaluated on a long-term thermal dataset that is similar to the scenes
“seen” by the surveillance system as much as possible.

To this end, we have gathered such a long-term thermal dataset from the
same surveillance system running in Safe Harbor, during the period from May
2020 to September 2020 and another period from January 2021 to April 2021.
And then we have made the dataset public as part of paper F—Seasons in
Drift: A Long-Term Thermal Imaging Dataset for Studying Concept Drift [36].

In general, the dataset is named as Long-term Thermal Drift (LTD) dataset
as it includes many kinds of concept drift—the sudden, recurring, or gradual
visual changes that happened during such a long period of eight months,
comprehensively representing the real scenes of the certain harbor front in
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Aalborg, Denmark. To give clearer illustration, Table 3.2 exhibits a few sam-
pled images that demonstrate the concept drift from seasons, day and night
shift, environments of different weather and human activities to show how
the eight-month LTD dataset looks like.

Table 3.2: Sampled images of extreme concept drift contained in the LTD dataset. The right
column “Environment” shows visualization changes based on human activities and weather
situations which are many vehicles, many people, fog, rain, and snow from the first row to the
last row, respectively. Adapted from paper F [36].

Day Night Environment

Feb.

Mar.

Apr.

Jun.

Aug.

In detail, the raw data of the gathered videos is too large for storage and
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publication. Thus the raw videos were split into shorter segments so that one
2-min clip was trimmed from each half-hour segment. This preprocessing
not only decreases the resource consumption but also keeps the concept drift
information that existing datasets do not have, resulting in the published
version of the LTD dataset whose main information is listed in Table 3.3.
Besides, to advance a further analysis of the LTD dataset, more metadata of
it (listed in Table 3.4) is provided and made public.

Table 3.3: Main information of the LTD dataset. Adapted from the supplementary material of
paper F.

Property Value

Number of video clips 8940
Length of each clip 2 minutes
Length of all clips 298 hours

Time span 8 months
Season span Spring, summer, winter

Format of each clip MP4
Frame rate 25 fps

Spatial resolution 384 × 288

Table 3.4: Released metadata of the LTD dataset along with the video clips. Adapted from paper
F and its supplementary material.

Metadata Unit

Timestamp year-month-day-hour-minute
Temperature ◦ C

Humidity %
Accumulated precipitation kg/m2

Dew point temperature ◦ C
Wind direction degrees

Wind speed m/s
Mean sun radiation W/m2

Sunshine minute

For its long-term property, the LTD dataset provides a new benchmark on
which many computer vision models can be evaluated other than the usu-
ally used short-term benchmark datasets. Accordingly, to investigate how
the performances of popular vision tasks will change on the dataset, six deep
learning models corresponding to three fundamental tasks (two for autoen-
coders, two for anomaly detection, and the last two for human detection)
have been tested on the LTD dataset with the following protocols:
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• The two autoencoders are one 9-layer CNN-structured Classical Au-
toencoder (CAE) designed by us [37] and one Vector Quantized Vari-
ational Autoencoder (VQVAE2) [38]. The two models for anomaly
detection are the reconstruction version and prediction version of the
Memory-guided Normality for Anomaly Detection (MNAD) [39]. The
two models for human detection are YOLOv5 [40] and Faster R-CNN
[41].

• In this eight-month LTD dataset across seasons, the temperature change
is one of the most significant variables and thus leads to a principal
drift in thermal imagery. Therefore, for all the six models, the training
sets come from the coldest February but are formed in three different
variants—images sampled from the coldest day, the coldest week, and
the whole month to study whether or not more varieties in training
images help to improve the performance. The testing sets also have
three variants—images sampled from January with a cold climate, April
with a moderate climate, and August with a warm climate, respectively.

• Autoencoders and the models for anomaly detection are unsupervised
studies that do not need manual annotations. Therefore, a total of 15000
frames for the training sets (with 5000 frames for each training variant)
and 300 images for the testing sets (with each testing variant consisting
of 100 images) are sampled from the LTD dataset. On the contrary,
human detectors are supervised models that need annotated bounding
boxes on humans. We, therefore, have annotated all the persons in 300
training frames (with each variant consisting of 100 images) and 300
testing frames (with each variant also consisting of 100 images) from
the LTD dataset.

• For the two autoencoders and the two models for anomaly detection,
the performance metric is the averaged Mean Square Error (MSE) over
all the frames in the testing set. For the two human detectors, the per-
formance metric is the detection rate mAP50 on the testing set.

Based on these protocols, we get the results in Table 3.5 and Table 3.6.
From both tables, it is clear that when the testing images exhibit seasonal
drifts from the training data, the performances of all the six models except
the prediction version of MNAD decrease. This result meets the anticipation
that a model trained on specific short-term data has difficulty in generalizing
itself to a long-term application. The stable performance of MNAD Pred. is
because this model needs a volume of consecutive frames as the input while
the other five models only need one frame as the input; therefore, MNAD
Pred. can get much richer and more robust input features than others.

Regarding the research question that whether or not more varieties in the
training set can improve the performance, the two tables show that the train-
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ing images sampled from a week-level and a month-level indeed improve
the performance in the MSE-measured models; but they do not improve the
performance for YOLOv5 and Faster R-CNN. We attribute this difference to
the reason that the annotated persons for human detectors may have minor
variations no matter whether the frames are sampled from a shorter or longer
period of time.

Table 3.5: Results of autoencoders and anomaly detection models measured by the averaged
MSE over all the testing frames. Lower results indicate better performances. Table source: [36].

Methods
Train Test
Feb. Jan. Apr. Aug.

CAE
Day 5k 0.0096 0.0202 0.0242

Week 5k 0.0061 0.0167 0.0212
Month 5k 0.0042 0.0109 0.0147

VQVAE2
Day 5k 0.0051 0.0072 0.0068

Week 5k 0.0039 0.0066 0.0061
Month 5k 0.0021 0.0039 0.0035

MNAD Recon.
Day 5k 0.0028 0.0057 0.0069

Week 5k 0.0065 0.0066 0.0062
Month 5k 0.0015 0.0041 0.0048

MNAD Pred.
Day 5k 0.0008 0.0007 0.0009

Week 5k 0.0007 0.0006 0.0007
Month 5k 0.0007 0.0006 0.0007

Table 3.6: Results of human detection models measured by the detection rate mAP50 over all the
testing frames. Higher results indicate better performances. Table source: [36].

Methods
Train Test
Feb. Jan. Apr. Aug.

YOLOv5
Day 100 0.8010 0.5390 0.5240

Week 100 0.7940 0.4540 0.4860
Month 100 0.7930 0.4860 0.4830

Faster R-CNN
Day 100 0.6760 0.3230 0.3370

Week 100 0.6740 0.2790 0.3060
Month 100 0.6400 0.2560 0.3180

Spontaneously, how to mitigate this effect of concept drift on computer vi-
sion tasks that decreases the performance is worthy of study. We correspond-
ingly propose a solution as a baseline for it. To be specific, a novelty/outlier
detector to find the time period during which the images are most different
from others is applied, which can indicate the “time slot” of the prominent
drift. By adding images from this slot to the training set, the performance on
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the testing set can get an improvement. In our case, from March 5th 2021 (on
which a large number of outliers were detected), we sampled and then added
another 100 annotated images for human detectors and 5000 unannotated im-
ages for the other unsupervised models to redo the above evaluations. And
the performances indeed get an improvement as expected.

Moreover, thanks to the metadata mentioned in Table 3.4, the exploration
of which metadata factor accounts most for the performance drift is possible.
We correspondingly did a correlation analysis and then found that the tem-
perature and humidity have higher correlations to most of the model results
than other factors, which encourages us to pay more attention to them when
doing similar tasks in the future.

In summary, our contributions regarding this long-term thermal dataset
as part of paper F are:

• We have collected a long-term thermal dataset from a real harbor
surveillance system. This dataset consists of 8940 video clips from
eight months during which seasonal, weather-caused, day and night
shift-caused, and human activity-caused variations were recorded. The
timestamp and climate conditions of each clip are also contained as
metadata.

• This dataset provides a new benchmark to investigate how computer
vision algorithms react to concept drift that exists in long-term periods,
which helps to bridge the gap between short-term laboratory tests and
long-running surveillance systems in the real world. Accordingly, we
have tested six common computer vision models on the dataset and
then proposed a baseline to mitigate the performance decrease due to
concept drift.

• The accompanying metadata provides the material to explore the rela-
tionship between the performance of computer vision tasks and various
environmental factors, based on which people can pay more attention
to some specific environmental aspects for a better and stable result.
Accordingly, we have found that the temperature and humidity have a
great influence on performances in our case.

• For other researchers and engineers, this long-term thermal dataset,
together with the training and testing sets for the six computer vi-
sion models, is made public at https://www.kaggle.com/datasets/
ivannikolov/longterm-thermal-drift-dataset. The accompanying codes
are also made public at https://github.com/IvanNik17/Seasonal-
Changes-in-Thermal-Surveillance-Imaging.

For more detailed information of this dataset work, please refer to paper
F in Part III.
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4.2 Drowning Accident Prevention: Warning in Advance

Compared to conditions of swimming pools, a harbor front has a much larger
area, and the lifeguards are on standby in a relatively farther away place. This
determines the importance of a warning in advance to indicate a potentially
drowning accident. With it, authorities or professionals can pay beforehand
attention to the person in danger and get prior knowledge of his or her loca-
tion. Thus, such an idea of warning in advance will significantly reduce the
preparation time for rescue and then reduce the casualties, especially under
the anticipation that a successful rescue has to be performed within a few
short minutes.

Therefore, different from existing works on drowning detection in the wa-
ter, we prevent drowning accidents by sending out alarms when detecting a
person very near to the waterside. This idea is viable under an observational
finding that people tend to walk away from the harbor edge when there is
no accompanies during the night (Fig. 3.6); therefore, there will be a very
limited number of false alarms. On the other hand, a situation where a per-
son is within a waterside region without witnesses nearby is most dangerous
and may cause drowning accidents, for which an alarm in advance is in dire
need.

(a) (b)

Fig. 3.6: Trajectories of 237 persons in the daytime (a) and of 42 persons at night (b). The more
pedestrian traffic, the larger density in trajectories with more intense colors. The red dashed line
locates the harbor edge and the left of it is the water area. Image source: [16].

To meet such a need in computer vision, paper E, Supervised versus Self-
supervised Assistant for Surveillance of Harbor Fronts [37], has proposed two
alternative solutions:

• Supervised human detection: A human detector can give the informa-
tion of a person’s location and the distance from the waterside, based
on which an alarm will be raised or not.
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• Self-supervised anomaly detection: A predefined region very near to
the water is the input of an autoencoder for anomaly detection. The
autoencoder is first trained with only normal data where there is no
person in it. And then, during the application phase, the autoencoder
can help to detect anomalous inputs where there is human activity near
the waterside by using the reconstruction error as an indicator.

To apply the supervised human detection approach, we decided to use
YOLOv5 [40] object detector for its powerful feature reuse ability by means
of PANet [42] and its multiple-scale outputs that fit the multiple sizes of
people from far and near. When a person is detected by YOLOv5, the next
step is to decide if he or she is in the alarm region based on the detected
location of him or her. Accordingly, the alarm region of the specific harbor
front in Safe Harbor has to be defined in advance as the left area of the red line
shown in Fig. 3.7. This definition is empirical on the basis of the fieldwork in
the harbor front and the long-time observations of the captured scenes.

In mathematics, the image captured by the surveillance camera constructs
an image coordinate system, also shown in Fig. 3.7. The origin of the system
is the left bottom, and the image canvas is a 2D plane from (0, 0) to (383, 0)
on x-axis and from (0, 0) to (0, 287) on y-axis, considering that the thermal
camera sensor has a spatial resolution of 384 × 288 pixels. In this coordi-
nate system, the red boundary line is defined in equation 3.1. For a detected
person represented by a bounding box from YOLOv5, if any pixel with co-
ordinates (xp, yp) in the bounding box satisfies the formula 3.2, the person is
considered in the alarm region that may result in a falling into water accident.

Fig. 3.7: The red line indicates the alarm boundary and the left of it is defined as the alarm
region. Image source: [37].
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1.53x + y − 283 = 0 (3.1)

1.53xp + yp − 283 < 0 (3.2)

To apply the self-supervised anomaly detection approach, we have de-
signed and implemented a 9-layer CNN-structured autoencoder in which a
5-layer encoder and a 5-layer decoder share a layer of bottleneck. To comply
with the alarm region defined for the supervised human detection approach,
the input of the autoencoder is also a specifically defined image region shown
in Fig. 3.8, that is, the region from the water edge to the alarm line. To make
this region in a rectangular shape of size 64 × 192 that can be fed to the au-
toencoder, a further transformation is done for this region, which results in
the red box area on the right side of the figure.

Fig. 3.8: The region from the water edge to the alarm line is defined as the input for the autoen-
coder to detect anomalies. To make the region rectangular, a transformation is then required.
Image source: [37].

The autoencoder is first trained with those 64× 192 rectangles where there
is no human. While in the testing phase, any 64× 192 rectangle with or with-
out persons in it will be fed to the well-trained autoencoder. As the autoen-
coder has never seen a person in its training phase, it cannot reconstruct any
person patterns. Therefore, for an input with humans in it, the reconstruction
error (in the form of MSE) between the input and the reconstructed output
will be higher than that of an input without a human in it.

In a real application, defining a threshold in advance is required for the
aim that an input with its MSE above the threshold is detected as an anomaly.
By applying the autoencoder on a small annotated dataset from which each
image is labelled with normal or abnormal, a threshold that achieves a good
balance between the detection precision and the recall rate can be acquired.
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And then, for the testing data, if an input has its MSE larger than the thresh-
old, it will be detected as an anomaly referring to human activities in the
alarm region.

To evaluate these two schemes, corresponding training sets and testing
sets have been prepared:

• 2358 thermal images were sampled from the videos captured by the
harbor surveillance system from February 3th 2020 to March 3th 2020.
All the persons in these images were then annotated with a bounding
box around for YOLOv5. As a result, the annotated dataset was further
split into a training set of 1715 images, a validation set of 143 images,
and a testing set of 500 images.

• The same 2358 images were used to train and evaluate the designed
autoencoder. The same 1715 images for training YOLOv5 were labelled
into 87 abnormal images with persons in the alarm region and other
1628 normal images without persons in the alarm region. On this 1715
labelled dataset, a threshold is obtained.

• For the final goal of detecting anomalies, the testing set of 500 images
was labelled into 91 abnormal images and 409 normal images for the
evaluation purpose.

Correspondingly, on the above-prepared datasets, YOLOv5 achieves a hu-
man detection rate of 97.70% measured by mAP50. Based on the human de-
tection result and the formula 3.2, 85 images are detected as abnormal out of
the whole 91 testing images, and no false alarm is raised, equaling a precision
rate of 100% and a recall rate of 93.41%. On the other hand, based on the ac-
quired threshold, the autoencoder (trained with 1628 normal images) detects
103 images as abnormal, but there are 21 false alarms, equaling a precision
rate of 79.61% and a recall rate of 90.11%.

From these results, an initial thought is that the human detection ap-
proach is better than the anomaly detection approach. A further analysis
of the failed cases of the autoencoder has been done, which points out two
dominant problems: (1) false alarms are caused by non-living objects with
high temperatures, as shown in Fig. 3.9(a); (2) missing detections will happen
when a person is going from the safe region to the alarm region, because only
a very tiny part of the body is captured in the 64 × 192 sized input, as shown
in Fig. 3.9(b). After a manual double-check to filter out the cases similar to
Fig. 3.9(b) (people are just entering the alarm region from the safe region),
the performance of the autoencoder-based anomaly detection improves a lot
from 0.929 to 0.995 measured by the area under the precision-recall curve
(AUC).

In summary, our contributions regarding this warning in advance idea as
the key innovation of paper E are:
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(a) (b)

Fig. 3.9: A false alarm (a) caused by the harbor front metals and concretes that have a high
temperature after a long day of direct solar radiation. A missing detection (b) that a person is
going from the safe region to the alarm region indicated by the very few brighter pixels near the
right boundary. Image source: [37].

• Different from existing works on preventing drowning accidents that
detect persons in the water, we have proposed a “one-step-earlier” strat-
egy that sends out alarms when detecting humans very near to the wa-
terside. This makes lifeguards or other professionals pay beforehand
attention to the situation in advance to prevent a drowning event from
happening or provide faster rescues.

• Accordingly, we have proposed one human detection scheme and one
anomaly detection scheme to detect the potentially dangerous scenes,
and both of them are proved effective.

• For other researchers and engineers to refer to and use, the codes
and the labelled training and testing sets are made public at
https://github.com/JinsongCV/Supervised-Versus-Self-supervised-
Assistant-for-Surveillance-of-Harbor-Fronts.

For more detailed information of this warning in advance work, please
refer to paper E in Part III.

4.3 Anomaly Detection: on Long-term Data with Concept
Drift

Anomaly detection, as mentioned before, is often realized by the strategy that
trains an autoencoder with only normal data, which makes it unfamiliar with
anomalous data. This “unfamiliarity” is presented by the reconstruction error
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between the input and its output. The larger error, the larger probability the
input is an anomaly.

However, this strategy only works provided that the definition of normal
data is fixed. A long-running surveillance system is hardly to guarantee this
prerequisite due to concept drift across time. Therefore, the evolution from an
existing anomaly detector evaluated on short-term datasets to a new version
that can be applied to long-term systems is in dire need. The expectation is
that the improved anomaly detector must have the ability to distinguish real
anomalies from irrelevant changes resulting from concept drift.

For this aim, paper G, Detecting Anomalies Reliably in Long-term Surveil-
lance Systems [43], has proposed a weighted reconstruction error strategy to
get robust results on long-term data. Specifically, the development and evalu-
ation are done on the collected LTD dataset [36] as it is a good representation
of a long-running surveillance system in real life—considering the diverse
concept drift phenomena in the LTD dataset as exemplified in Fig. 3.10.

(a) (b)

(c) (d)

Fig. 3.10: All the images are normal data without dangerous/harmful human activities but show
significant visual changes: (a) August, (b) January, (c) February, (d) April. Image source: [43].

In detail, the diagram of the proposed anomaly detection scheme is in
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Fig. 3.11 where the reconstruction error between the input and the output is
calculated by a pixel-by-pixel difference in the form of MSE. The red pipeline
refers to the traditional scheme in which the weight of each pixel is the same.
Therefore, all the pixels (no matter whether they are from the background
or the foreground) will have an equal contribution in calculating the MSE
value, which inevitably considers the influence of environmental drifts (like
the contrast change and the sea ripples in Fig. 3.10) into the MSE as well.
In this way, the long-term input with concept drift will make the MSE curve
fluctuate across time, which will cause the MSE values of normal data to be
even higher than that of anomalies and thus induce missing detections.

Input

time

MSE

time

W-MSE

Autoencoder

Background Estimators

Object-centric Foreground Extractors

Reconstruction

Anomaly

Fig. 3.11: The diagram of the proposed anomaly detection scheme with weighted reconstruction
error as its main idea. The red flow is the traditional pipeline. The green flow is the proposed
pipeline. The red dashed line refers to the predefined threshold to detect an anomaly, and an
input with its MSE above it will be detected. Image source: [43].

On the contrary, the green pipeline in Fig. 3.11 refers to the proposed
scheme that uses the weighted reconstruction error strategy. This scheme ad-
ditionally introduces a foreground/background segmentation module, and
thus different weights can be assigned to the foreground pixels and back-
ground pixels in calculating the reconstruction error MSE. By giving fore-
ground pixels larger weights, the MSE value can pay more attention to the
human activity region where anomalies occur in default and thus, at the same
time, mitigate the influence of the environmental changes in the background
region. In this way, the weighted MSE curve will not fluctuate as much as the
MSE curve of the conventional scheme for a long-term input, making the de-
tection of anomalies much more accurate by detecting peaks that are above
the threshold. To be noted is that the diagram is specifically depicting the
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inference phase.
To evaluate the proposed weighted reconstruction error strategy for

anomaly detection, paper G implemented the corresponding autoencoders
and the foreground/background segmentation modules and prepared the
required dataset:

• Three autoencoders are applied: one Vector Quantized Variational Au-
toencoder (VQVAE2) [38], one autoencoder using Memory-guided Nor-
mality for Anomaly Detection (MNAD Recon.) [39], and one CNN-
structured Classical Autoencoder (CAE) composed of an 11-layer en-
coder and an 11-layer decoder designed by us.

• Five kinds of foreground/background segmentation methods are ap-
plied: mixture of Gaussians (MOG2) for background estimation [44],
mixture of Gaussians using K-nearest neighbours (KNN) for back-
ground estimation [45], image difference with arithmetic mean (IDa)
for background estimation, image difference with Gaussian mean (IDg)
for background estimation, and object-centric foreground estimation by
use of the YOLOv5-based human detection [40].

• The segmentation results of a thermal image are shown in Fig. 3.12
in which (b)-(e) demonstrate foreground regions with grayscale val-
ues near 255 and background regions with values near 0. In con-
trast, YOLOv5-based segmentation in Fig. 3.12(f) demonstrates each
foreground region as a bounding box with a constant grayscale value
(which equals the multiplication of the corresponding person’s detec-
tion confidence score and 255), while the background regions are with
grayscale value 0.

• For any input I whose segmentation map is M, the weight of each
pixel (Ix, Iy) for calculating the reconstruction error is the quotient of
a division. The dividend of the division is the grayscale value of the
corresponding pixel (Mx, My) from M, and the divisor is value 255.
This weight assignment method is the simplest way to increase the fore-
ground region weight and weaken the background region weight in the
MSE calculation. It is worth mentioning that the proposed weighted
reconstruction error strategy is not limited to this weight assignment
scheme; more complex schemes like a combination of multiple seg-
mentation results are also possible, which have been given in paper G.

• The three autoencoders (VQVAE2, MNAD, and CAE) are trained with
images from February 2021 as part of the LTD dataset. The testing
sets have two versions: 300Ver of 300 images sparsely sampled from
April 2021, January 2021, and August 2020, and 3515Ver of 3515 images
densely sampled from the same months for an extended evaluation.

72



4. Contributions

In 300Ver, there are 78 anomaly images; and in 3515Ver, there are 60
anomaly images.

(a) (b) (c)

(d) (e) (f)

Fig. 3.12: One thermal input and the foreground/background segmentation results from the
implemented five methods. (a) Input. (b) MOG2. (c) KNN. (d) IDa. (e) IDg. (f) YOLOv5. Image
source: [43].

To show the evaluation result, we draw how the MSE curve changes when
applying VQVAE2 to the 300Ver testing set in Fig. 3.13. In it, a new term GT
refers to ground truth, and the GT curve means the version that the segmen-
tation is based on the manually annotated human bounding boxes. Obvi-
ously, all the MSE curves in Fig. 3.13(b) that either use the conventional MSE
calculation or pay more attention to the background region have a highly-
similar trend, demonstrating that the conventional MSE calculation cannot
accurately detect anomalies which usually happen in the foreground area.
In contrast, the six MSE curves in Fig. 3.13(a) that pay more attention to
the foreground region have totally different trends from the curves in Fig.
3.13(b), demonstrating that the weighted MSE idea can avoid the influence of
environmental changes that significantly degrade the robustness of the con-
ventional MSE calculation scheme. Therefore, the proposed pipeline has the
ability to do anomaly detection reliably on long-term datasets with concept
drift.

To further verify this ability, the detection rate of VQVAE2 on 300Ver has
been calculated by finding how many anomalies are detected from the im-
ages of the largest 10% MSE values. And hence we get the anomaly detection
rates of the conventional method, MOG2-based weighted method, KNN-
based weighted method, IDa-based weighted method, IDg-based weighted

73



Chapter 3. Safe Harbor

(a)

(b)

Fig. 3.13: (a) Weighted MSE curves that pay more attention to the foreground (FG). (b) Weighted
MSE curves that pay more attention to the background (BG) and a conventional MSE curve.
These MSE curves across time are drawn after a smoothing step of a mean filter whose kernel
size is 10, a step of normalization to [0, 1], and a step of translation to avoid the overlapping with
other curves. We use some vertical dashed azure lines to separate months of August, January,
and April. Image source: [43].

method, and YOLOv5-based weighted method as 24.36%, 69.23%, 71.79%,
65.38%, 65.38%, and 78.21%, respectively. Similar results are also observed
when applying MNAD and CAE on 300Ver and from the extended experi-
ments on 3515Ver. All of these results prove the improvement of the proposed
weighted-MSE strategy in anomaly detection.

In summary, our contributions regarding this weighted reconstruction er-
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ror idea from paper G are:

• To solve the problem that existing anomaly detection evaluated on
short-term datasets may be problematic for long-term applications with
concept drift, we have proposed a “pay attention to what is crucial”
strategy.

• The specific idea is that the background pixels and foreground pixels
have different weights in calculating the reconstruction error between
an input and its output of an autoencoder, which can assign an extra
focus on human activities that an anomaly in default relates to. In this
way, the drawback that environmental drifts are also counted as part
of the reconstruction error in conventional anomaly detection pipelines
is overcome to some extent, and thus more reliable anomaly detection
results are possible.

• We have used three kinds of autoencoders and two datasets spanning
three months to evaluate our idea and proven that the proposed method
is a more robust solution for anomaly detection in long-term applica-
tions that run for months and years.

• For other researchers and engineers, the codes and the accompanying
datasets are made public at https://github.com/JinsongCV/Weighted-
MSE.

For more detailed information of this anomaly detection work developed
for long-term datasets, please refer to paper G in Part III.

Sub-conclusion

In the project of Safe Harbor, we not only pay attention to the most danger-
ous accident on harbor fronts—drowning (papers E and H) but also keep
an eye on other incidents that may induce harmful or potentially dangerous
consequences (papers F and G).

Specifically, as every second counts in rescuing drowning persons, an alert
system in advance instead of finding persons in the water is more important.
For this purpose, detecting persons very near the waterfront (paper E) and
detecting the falling event from a harbor edge (paper H) are useful solutions.
Furthermore, rarely-happening incidents (fighting, vehicle collision, anoma-
lous crowds, etc.) in the harbor front need immediate control too. For this
purpose, a robust anomaly detector (paper G) that has to work in an environ-
ment with concept drift (paper F) is developed. We expect these four works
together to provide a solution to improve the safety level in a waterfront area.
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Chapter 4

Summary

The PhD thesis studies how to apply the latest computer vision ideas and
techniques to two projects Thermal Adaptive Architecture and Safe Harbor.
Though the projects are different in many aspects, both are interested in
analyzing people in thermal imagery. In this overview, the background, in-
troduction, and related work of each project have been narrated. Besides,
our contributions to each project are also described by introducing the key
contents of our publications appended in the following parts. Together they
have answered the questions we raised in Chapter 1.

Thermal Adaptive Architecture

Q: What factors influence a person’s thermal sensation?

A: According to ISO standards, four environmental factors of air tem-
perature (Ta), mean radiant temperature (t̄r), air velocity (Va), and
relative humidity (RH); two personal factors of clothing insulation
rate (Icl) and metabolic rate (M). Besides, the gender difference
also has an influence on individual thermal sensation.

Q: How to acquire these factors from computer vision solutions?

A: The environmental factors are measured easily by sensors. The ac-
quisition of the personal factors of Icl and M requires three mod-
ules: (1) a human detection and tracking module by YOLOv5 and
DeepSort to track each individual, (2) a key body parts detection
module by OpenPose for the measurement of clothes temperature
and skin temperature based on which to calculate Icl , (3) an opti-
cal flow calculation module based on which to predict the person’s
activity level that indicates the M value. The recognition of gender
can be achieved by a CNN-based classifier.
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Q: Compared with existing manual work, are the acquired factors from
computer vision solutions sufficient and accurate?

A: All the computer vision modules mentioned above have been eval-
uated on corresponding data and thus been proven that they to-
gether provide an automatic solution with both convenience and
accuracy than manual work. Detailed information of the perfor-
mances and analyses are in the papers and the technical report in
Part II.

Safe Harbor

Q: What anomalies should be considered and detected?

A: A specific anomaly of drowning and other general anomalies with
dangerous or harmful consequences (like traffic accidents, crowds
during an epidemic, fights, etc.) that need extra attention and
further controls or rescues from professionals.

Q: How to detect the considered anomalies from computer vision solu-
tions?

A: A human detector can give the information of a person’s location
and the distance to the waterside, based on which we can predict
if the person is in an alarm region that may lead to the anomaly
of drowning. A general anomaly detector structured from an au-
toencoder can detect an anomaly by marking it as “unfamiliarity”
which is represented by a large reconstruction error between the
autoencoder’s input and output.

Q: Is the detection method fast and efficient for a timely control or rescue?

A: To give a fast and efficient response to anomalies that require extra
human attention, we not only consider an early-alarm strategy to
reduce the preparation time for a rescue but also develop anomaly
detection algorithms on a long-term thermal drift dataset. This
new dataset has very similar properties to a running surveillance
system in real life, unlike other short-term datasets that are far
away from the real conditions. We believe both aspects are benefi-
cial for a faster and stronger method.

As a whole, this complementarity of the indoor research Thermal Adaptive
Architecture and the outdoor research Safe Harbor makes the PhD thesis more
comprehensive and decidedly claims that

With the automatic analysis of people in thermal imagery, computer vision
techniques can ease manpower for a more comfortable and safer life.
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Future Work

Though we have achieved the above-summarized results, there are many
other works in the future worthy of study, which are introduced as follows.

Thermal Adaptive Architecture

From this PhD work, an automatic and dynamic estimation of individual
clothing insulation rate and metabolic rate is developed, which makes it pos-
sible to assess each person’s thermal feeling in real time in an indoor mi-
croclimate. Therefore, in the future, we plan to conduct closer cooperation
with researchers and engineers from the architecture design field so that our
work can be applied to control the HVAC systems, intelligent curtains, or
other facilities. In this way, the direct regulation of the temperature in sep-
arate local areas is possible, which can meet the requirements of different
subjective thermal sensations. Besides, regarding the ongoing work—gender
classification in thermal imagery, we plan to extend existing experiments and
analyses to more thermal datasets to further verify what we have discovered.
For this plan, a modality conversion of transforming existing RGB bench-
mark datasets to the thermal modality using generative adversarial networks
will be studied, considering that the amount and diversity of visible datasets
are much larger and richer than thermal modality databases.

Safe Harbor

From this PhD work, by developing algorithms on the long-term thermal
drift dataset, raising early warnings for preventing drowning accidents and
detecting other emergencies or potentially dangerous incidents are possible.
In the future, we plan to extend these researches on the dataset to the real
running surveillance system to detect falling events into water, traffic acci-
dents, anomalous crowds, etc., so as to improve the safety level in the harbor
front in real life. Besides, regarding the concept drift phenomenon which has
a negative impact on almost all computer vision tasks, we plan to propose
more solutions to mitigate this influence on object detection and anomaly
detection in addition to those that have been studied in papers F and G.
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1. Introduction

Abstract

To maintain satisfactory chamber thermal environments for occupants, heating, ven-
tilation and air conditioning (HVAC) systems have to work frequently. However,
the room conditions especially the temperatures are usually set empirically which
fail to consider occupants’ real needs, not to mention personalized thermal comfort,
therefore, the HVAC systems are underutilized and unavoidably induce energy waste.
To solve this problem, a vision-based method to acquire multiple individual factors
that are critical for assessing personalized thermal sensation is proposed. Specifically,
with the indoor videos captured by a thermal camera as inputs, a convolutional neu-
ral network (CNN) is implemented to recognize an occupant’s clothes and action type
simultaneously. With a dataset of 20 persons, the experimental results show an av-
erage classification rate of 95.14% on 4 dataset partitions for a 15-category scenario,
which prove the effectiveness of the proposed method.

1 Introduction

People spend most time indoors, and heating, ventilation and air condition-
ing (HVAC) systems, therefore, have to operate frequently to maintain sat-
isfactory indoor thermal conditions for occupants thus improving their life
quality. Though current HVAC systems do have controllers, the environment
is usually set with fixed empirical temperatures like 26◦C in summer and
20◦C in winter, which ignores the dynamic thermal needs of individuals and
also leads to overcooling or overheating with great energy waste.

Researchers have tried to solve this problem in various ways. In the 1960s,
Fanger [1] first defined 7-scale thermal sensations (cold, cool, slightly cool,
neutral, slightly warm, warm and hot) and gave a predicted mean vote model
that estimated a group of persons’ average thermal sensation in a certain in-
door condition. This model is determined by six factors: four environmental
values (air temperature, mean radiation temperature, relative humidity and
air velocity) and two personal values (clothing rate (CLO) and metabolic rate
(MET)).

However, as Fanger’s model is based on college-aged students in a con-
stant indoor environment of moderate thermal climate zones, it failed to gen-
eralize to other situations, and thus several improvements have emerged. For
instance, the questionnaire-based methods record age, gender, CLO, MET
and thermal feelings manually in various indoor environments, making the
modified models more applicable to different situations; the measurement-
based methods rely on devices to measure an occupant’s thermal-related at-
tributes, which mainly pay attention to human body temperature acquisition
for its simplicity.

Whatever the approaches are, they all accept the significance of the
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Table A.1: CLO values of some clothes [2].

Clothes Type T-shirts Short-sleeve shirt Long-sleeve shirt
CLO 0.08 0.19 0.25

Table A.2: MET values of some actions [1].

Action Type Sitting Standing Normal walking
MET 1.0 1.4 2.6

above-mentioned six factors in assessing an occupant’s thermal comfort level.
Among them, the four environmental factors can be measured by the ther-
mometer, hygrometer and anemograph. The remaining personal factors are
usually ignored due to the difficulty of acquisition. To overcome this prob-
lem, we propose a vision-based approach to simultaneously obtain an occu-
pant’s clothes type and action type which correspond to specific CLO and
MET values, like what Table A.1 and Table A.2 list. The concrete contribu-
tions are:

• A contactless and privacy-preserving method is proposed to acquire
multiple personal factors with only one thermal camera as the input
source.

• A convolutional neural network (CNN) considering both spatial and
temporal information to classify an occupant’s clothes and action type
is implemented, achieving an average classification rate of 95.14% for a
15-category (5 clothes types and 3 action types) thermal dataset.

• Comprehensive experiments with different scenarios are given to ad-
vise good practices for such a task.

The rest of the paper is organized as follows. Section 2 introduces the
related work. Section 3 describes the proposed method. Section 4 presents
the experiments. Section 5 concludes this paper.

2 Related Work

For a more accurate thermal comfort assessment, several works have been
published. Questionnaire-based methods [3–5], are a simple and direct way
to know a person’s thermal state. However, this method is impractical in
modern applications as it interferes with subjects. Therefore, the related
works we focus on are measurement-based methods, further subdivided into
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contact, semi-contact and contactless methods according to the employed de-
vice types.

Contact methods refer to using devices attached to the skin to detect hu-
man body physiological parameters. Sim [6], Wu [7] and Chaudhuri [8] uti-
lized the thermistor (Lattron LNJT103F), the surface thermometer (Testo 905-
T2) and the skin thermometer (Exacon D-S18JK) respectively to acquire skin
temperatures of different body locations and then explored the relationship
between an occupant’s thermal feelings and the detected temperatures.

Semi-contact methods refer to using wearable devices to detect human
body physiological parameters. Ghahramani [9, 10] used an infrared sensor
installed on the eyeglass frame to measure the change of skin temperatures on
a human face under different conditions. Na [11] employed a smart bracelet
(Fitbit Charge 2) to monitor a person’s heart rate variation continuously to
discover the connection between activities and heart rates thus predicting the
MET.

Even though the above two categories contribute to the development of
thermal comfort understanding, their practical applications are immensely
limited due to the inconvenience caused by adhered or wearable devices.
Contactless methods, therefore, stand out. Cheng [12] proposed a method
that extracts the saturation channel of images of the hand captured by a nor-
mal RGB camera; as this channel information is closely relevant to the skin
temperature, it can be used to predict thermal sensations directly without ex-
tra temperature extraction. Li [13] presented a thermal camera-based frame-
work that measures temperatures of different facial parts and found that ears,
nose and cheeks are most indicative of one’s thermal comfort levels. Lu [14]
provided an RGB camera-based system for activity level classification real-
ized by finding pixels with large deviations which indicate people moving to
control the HVAC switch.

In summary, the existing methods usually focus on only one aspect, either
human body temperatures or activity situations, not to mention an integrated
system to acquire multiple personal factors. In other words, lots of useful
information is missing. To fill the gap, we provide a method that simulta-
neously acquires an occupant’s clothes and action type for further CLO and
MET estimation, thus benefiting individual thermal comfort assessment. To
the best of our knowledge, the proposed approach is the first comprehensive
work in this research field.

3 Proposed Method

Clothes type and action type can be recognized via two separate phases, but
a single pipeline predicting both tasks is much more efficient and practically
useful. The overview of our proposed method can be seen in Fig. A.1.
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Fig. A.1: Overview of the proposed method.

For action recognition, the two-stream convolutional networks [15] as well
as its improvements like the hidden two-stream convolutional networks [16]
and the temporal segment networks (TSNs) [17] lay a solid direction for this
task. All of them rely on two streams, one is the spatial flow with an individ-
ual frame as input thus acquiring information about scenes/objects depicted
in the video, the other is the temporal flow with the motion across the frames
as input therefore conveying the movement of the objects; and then, a late
fusion of both flows gives the final recognition result. This architecture is
successful because the two streams are complementary since both flows can
do action recognition on their own. But this is not consistent with our situa-
tion, as the temporal stream which usually uses optical flow fields as inputs
cannot get any information about clothes and naturally excludes the ability
to classify them. Therefore, the two-stream structure does not fit this joint
clothes and action classification task.

Moreover, in an indoor environment, it is rare that the occupants fre-
quently (in seconds) change their clothes or actions, indicating that a dense
frame-by-frame prediction is unnecessary. While this does not contradict the
fact that a fusion of predicted results on several sparsely sampled frames
along time to grasp long-term information can decrease the error rate effec-
tively. That’s why we predict the category based on K (in the experiments 6
is proved to be the best value) frames around every 3.5 seconds.

Based on the above analyses and inspired by the TSNs, we implemented
a single-stream network shown in Fig. A.2, where a thermal video is first
divided into K segments of the same duration and then a single frame is ran-
domly sampled from each segment as the “input” of the backbone network
Inception v2, namely the GoogLeNet with Inception module (to decrease
the number of parameters) and batch normalization (to accelerate conver-
gence) [18, 19]. The output of Inception v2 is a list of prediction scores of
all classes for the current frame; takes K segments into consideration, there
are K lists of scores describing the original video; these lists are then calcu-
lated by an evenly average to get a sole score list which is finally fed into a
15-category Softmax classifier layer giving the predicted class label.
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Fig. A.2: Network for clothes and action classification.

It is to be noted that the word “input” in the previous paragraph is with
a quotation mark since it has several modalities: (i) an original 24-bit thermal
image; (ii) a concatenated image of an 8-bit thermal image (the first channel
of the original 24-bit one) and its two optical flow fields (in horizontal and
vertical directions) extracted by the TVL1 algorithm [20].

4 Experiments

In this section, we first introduce the collected thermal dataset; then we test
the proposed method.

4.1 Dataset Information

As there is no public thermal dataset for clothes classification, we collected
a dataset in September 2019 when the average indoor temperature is around
24◦C (measured by Rosenborg thermometer 66762), which gave a wide range
of garment choices for occupants to select. 20 subjects (4 females, 16 males)
were asked to stand, sit and walk in front of the thermal camera with at most
5 clothes types (t-shirts, long sleeves, rolled-up sleeves, long sleeves and un-
zipped zipper, rolled-up sleeves and unzipped zipper). We regulate the 3
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actions and 5 garment categories as they are the most usual cases in an of-
fice/classroom environment, besides, a person with his/her sleeves rolled up
or zipper unzipped is an immediate signal of hot feelings in most situations.
When recording videos, we encouraged each subject to behave as naturally as
usual, therefore, folded arms, cross legs, akimbo pose and other spontaneous
postures existed in the dataset, and we kept each original video as long as
30 seconds or above allowing us to divide it into short videos with durations
about 3.5 seconds thus increasing the amount of videos greatly. In this way,
we obtained 291 long videos which were then trimmed into 2422 short videos.
For a clear description, Fig. A.3(a), (b) and (c) illustrate the sampled frames of
SitLongUnzip (sit with long sleeves and unzipped zipper), StandRollUnzip
(stand with rolled-up sleeves and unzipped zipper) and WalkTshirts (walk
with t-shirts), respectively. Table A.3 gives detailed number of short videos
in the 15 categories. There is indeed a data unbalance problem due to two
reasons: (i) not every subject wore all the 5 clothes types; (ii) only in an
approximately front-view can a short video of walking be used for clothes
classification.

(a) (b) (c)

Fig. A.3: Sampled frames of SitLongUnzip (a), StandRollUnzip (b) and WalkTshirts (c).

Table A.3: Number of short videos in 15 categories.

- Stand Sit Walk
T-shirts 114 125 47

Long Sleeves 284 308 109
Rolled-up Sleeves 279 309 115

Long Sleeves and Unzipped Zipper 157 155 59
Rolled-up Sleeves and Unzipped Zipper 144 161 56

When separating the dataset into the training set and testing set, we follow
the principle of impartiality strictly, which means the subjects of the test set
and the subjects of the training set should be totally different thus giving
no biased clue for the testing phase to refer. This separation results in 4
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partitions (4-fold cross validation with 5 subjects corresponding to 1 fold) of
training/testing sets in Table A.4.

Table A.4: Training/testing sets (S.V.N. means short video number).

- Training Set Testing Set
- Subjects ID S.V.N Subjects ID S.V.N

Partition 1 1-15 1683 16-20 739
Partition 2 1-10, 16-20 1810 11-15 612
Partition 3 1-5, 11-20 1938 6-10 484
Partition 4 6-20 1835 1-5 587

4.2 Evaluation of the Proposed Method

Implementation Details

With Ubuntu 16.04 LTS, Python 3.5.2, PyTorch 1.2.0, CUDA 9.2, one NVIDIA
GeForce RTX 2080 Ti as the software and hardware platform, the whole net-
work is finetuned with the mini-batch stochastic gradient descent to learn
the weights specific for the collected dataset under the basis of the backbone
Inception v2 initialized with a pretrained model from ImageNet [21]. The
learning rate is initialized as 0.001 and then decreases to its 1/10 after every
2,000 iterations (35 epochs), and the whole training ceases after 120 epochs.

To avoid overfitting, data augmentation is employed. Multi-scale crop-
ping which makes the height and width of the cropped region randomly
selected from {100%, 90%, 80%, 75%} of the frame shorter side and horizon-
tal flipping enlarge the amount and diversity of the training set effectively.
This crop strategy guarantees that all the cropped regions can always have
the subject located in them. Finally, all the original training set as well as
the augmented ones will be resized to 224 × 224 as the network requires. Be-
sides, a dropout ratio of 0.8 and a weight-decay parameter of 0.1 are also set
as regularization terms to improve the network’s generalization ability.

Results of Different Input Modalities

Here we evaluate the influences of different input modalities (see the last
paragraph in Section 3) on the classification accuracy.

An experiment is first done with partition 1 and the results on the testing
set are illustrated in Table A.5. From it, the 24-bit thermal image modality
corresponds to low performance as this kind of input conveys no information
of human motions along time. However, the 8-bit thermal image and optical
flows -v1 modality unexpectedly works worse. A reasonable explanation is
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that even though this modality combines both the spatial and temporal infor-
mation, the too high frame rate at 90 fps determines the fact that almost no
changes exist within two adjacent frames, therefore, the extracted temporal
fields are empty. This explanation is well supported by the improved perfor-
mances of v2 and v3 where the frame rates are 45 fps and 30 fps, respectively.

Table A.5: Classification accuracy with different input modalities (CAoTS means classification
accuracy on testing set).

Modality Partition CAoTS
24-bit thermal image 1 83.09%

8-bit thermal image and optical flows -v1 1 82.14%
8-bit thermal image and optical flows -v2 1 84.57%
8-bit thermal image and optical flows -v3 1 94.32%
8-bit thermal image and optical flows -v3 2 87.91%
8-bit thermal image and optical flows -v3 3 96.28%
8-bit thermal image and optical flows -v3 4 94.21%

Based on the above comparison, we fix the modality as 8-bit thermal im-
age and optical flows -v3, and use the remaining partitions to further assess
the method. We achieve performances of 87.91%, 96.28%, 94.21% on partition
2, partition 3, partition 4, respectively, also listed in Table A.5.

Result of an Input Preprocessing

The drop in performance on partition 2 stands out. By observing its confu-
sion matrix (see Fig. A.4) and comparing the predicted labels with ground
truth, we find that the incorrectly classified cases only relate to the clothes
type and mainly belong to two subjects (ID 12 and ID 15). A common prob-
lem of these wrongly classified videos is that the contrast in the region con-
taining the person is low due to the overall high brightness, thus raising the
difficulty of distinguishing clothing from skin, not to mention the clothes
type classification. To solve this issue, a linear grayscale transformation for
the foreground region is done by stretching its original grayscale distribu-
tion to an 8-bit range [0, 255] thus increasing the subtle gray value difference
between human skin and clothing to some extent. This input preprocessing
for test videos from ID 12 and ID 15 boosts the classification accuracy on
partition 2 to 95.75% with nothing else changed, and the new confusion ma-
trix is shown in Fig. A.4(b). From Fig. A.4(b), the inability to differentiate
long sleeves/rolled-up sleeves from t-shirts occurred in Fig. A.4(a) is suc-
cessfully solved, but a new problem of SitRoll-StandRoll confusion caused
by the disappearance of the chair after processing stresses the importance of
selecting a proper image preprocessing. The original frame (Fig. A.5(a)), its
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Fig. A.4: Confusion matrices before and after a preprocessing on partition 2. (a) Before the
preprocessing. (b) After the preprocessing.
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foreground mask (Fig. A.5(b)) and the grayscale-stretched frame (Fig. A.5(c))
of an incorrectly classified case from subject ID 12 are displayed below. From
Fig. A.5(c), it is easy to see that the foreground region has more details in-
dicating the enhanced distinction between the human skin and her clothing
compared with that in Fig. A.5(a), which explains the big improvement of
the classification rate.

(a) (b) (c)

Fig. A.5: The original frame (a), foreground mask (b) and preprocessed frame (c) of an incorrectly
classified case from Subject ID 12.

Good Practices

From the above evaluation of the proposed method, we summarize some
good practices for this sort of task: (i) the modality fusing 8-bit spatial image
and two temporal flows is an effective way to tackle video-based classifi-
cation problems; (ii) temporal information extracted between two adjacent
frames is closely related to the video’s frame rate; (iii) an appropriate frame
preprocessing scheme to enhance the image details is quite useful for the
following predictions. With all these good practices, the proposed method
finally achieves an average classification rate of 95.14% on 4 partitions (sep-
arate rates of 94.32%, 95.75%, 96.28% and 94.21% on partition 1, partition 2,
partition 3 and partition 4, respectively).

5 Conclusions

In this paper, we proposed a vision-based individual factor acquisition
method relying on a CNN classifier to acquire an occupant’s clothes and
action type in a built environment, which can be used to estimate CLO and
MET thus assessing his/her thermal comfort levels. A new thermal dataset
with 20 subjects verifies the feasibility and effectiveness of the proposed
method with an average 15-category classification accuracy at 95.14% on 4
dataset partitions. These results prove the value of this computer-vision re-
search in personalized thermal comfort assessment and the further potential
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in urban design and energy saving. Future research will take more clothes
and action types into consideration for a multi-person scenario.
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1. Introduction

Abstract

Existing heating, ventilation, and air-conditioning (HVAC) systems have difficulties
in considering occupants’ dynamic thermal needs, thus resulting in overheating or
overcooling with huge energy waste. This situation emphasizes the importance of
occupant-oriented microclimate control where dynamic individual thermal comfort
assessment is the key. Therefore, in this paper, a vision-based approach to estimate
individual clothing insulation rate (Icl) and metabolic rate (M), the two critical
factors to assess personal thermal comfort level, is proposed. Specifically, with a
thermal camera as the input source, a convolutional neural network (CNN) is im-
plemented to recognize an occupant’s clothes type and activity type simultaneously.
The clothes type then helps to differentiate the skin region from the clothing-covered
region, allowing to calculate the skin temperature and the clothes temperature.
With the two recognized types and the two computed temperatures, Icl and M
can be estimated effectively. In the experimental phase, a novel thermal dataset is
introduced, which allows evaluations of the CNN-based recognizer module, the skin
and clothes temperatures acquisition module, as well as the Icl and M estimation
module, proving the effectiveness and automation of the proposed approach.

keywords: thermal camera; computer vision; clothing insulation rate; metabolic rate;
thermal comfort

1 Introduction

In modern life, people spend more time indoors than ever before, especially
for office workers. To maintain a comfortable indoor environment thus im-
proving their working efficiency, heating, ventilation, and air-conditioning
(HVAC) facilities operate continuously, consuming nearly half of the in-
door used energy according to the residential energy consumption survey
in 2005 [1].

Almost all HVAC systems are temperature-aimed so that occupants can
set empirical temperatures like 22◦C in winter and 26◦C in summer. How-
ever, this ignores personal dynamic thermal sensations and needs, which
results in overheating or overcooling with huge energy waste.

To address this problem, dynamic microclimate control by classical HVAC
systems or emerging deformable envelopes to change solar radiation is im-
portant, in which human thermal comfort assessment is critical. To facilitate
applications by HVAC industry, Fanger [2] first presented a predicted mean
vote (PMV) model with 7-scaled thermal sensations (see Table B.1) to assess
occupants’ average thermal comfort level in a laboratory environment. Ac-
cordingly, this model recommends a very narrow range (-0.5≤PMV≤+0.5)
representing that at least 90% of the occupants are satisfied with a certain
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environment. Later for its validity and applicability in the industry, the PMV
model was recognized as a standard in ISO 7730 [3] and widely applied to
more controlled indoor microclimates [4–9].

Table B.1: Seven-scale list of thermal sensations [2].

Sensation Scale
Hot 3

Warm 2
Slightly warm 1

Neutral 0
Slightly cool -1

Cool -2
Cold -3

In detail, the PMV model is determined by six factors, that is, four en-
vironmental values (air temperature (ta), mean radiation temperature (t̄r),
relative humidity (RH), air velocity (Va)) and two personal values (clothing
insulation rate (Icl), metabolic rate (M)). Icl means the thermal insulation
ability provided by clothing to protect the skin from a cold or hot environ-
ment outside the clothes, indicating a person’s heat conduction and transfer.
M means the amount of energy used by a person per unit of time, indicating
his/her self heat generation. In practical applications, ta, t̄r, RH, and Va can
be measured by the thermometer, hygrometer, and anemograph. The acqui-
sition of Icl and M requires either large manual work or expensive precise
instruments. Therefore, realizing accurate and dynamic thermal comfort as-
sessment is still difficult. To improve this situation and further help to build
a thermal adaptive architecture, we propose an automatic estimation scheme
of Icl and M from extracted key factors (the clothes type, the activity type,
the skin temperature, and the clothes temperature), thus facilitating Fanger’s
model to be applied to modern smart buildings. The concrete contributions
are:

1. A vision-based contactless method to automatically estimate both Icl
and M for a single-person scenario is proposed, which is also privacy-
preserving as a low-resolution (384 × 288) thermal camera is the only
input source.

2. A convolutional neural network (CNN) considering both spatial and
temporal information to recognize an occupant’s clothes type and activ-
ity type simultaneously is designed, achieving an average classification
rate of 95.17% on 6 test partitions for a 15-category scenario.

3. The feasibility of applying OpenPose [10] to the thermal mode is exper-
imentally and quantitatively verified.
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4. A comprehensive Icl estimation model considering multiple factors (the
clothes type, the activity type, the skin temperature, and the clothes
temperature) is suggested.

5. The M of an occupant is conveniently estimated from his/her activity
type.

The rest of this paper is organized as follows. Section 2 introduces the
related work. Section 3 describes the proposed method. Section 4 gives the
experiments. Section 5 concludes this paper and discusses future work.

2 Related Work

For Icl estimation, the published works can be classified into clothes-
unrelated methods and clothes-related methods according to whether the
method correlates to the specific clothes the occupant wears or not.

Among clothes-unrelated methods, the simplest way is to set a fixed Icl
(1.0 clo in winter, 0.5 clo in summer, 1 clo = 0.155 m2K/W) on accordance with
the ISO 7730 [3] or ASHRAE Standard 55 [11]. Other works found the cor-
relation between clothing insulation levels and the season [12], outdoor tem-
perature [12–17], indoor temperature [13, 14], gender [12, 14], latitude [14],
mode of transportation [12], and so on, and then used the relationship mod-
els (linear or nonlinear regression) to estimate the Icl . Such methods ignore
the intrinsic properties of clothes and usually need time-consuming ques-
tionnaires, which is why some researches move towards the clothes-related
methods.

The typical tool in clothes-related methods is the thermal manikin dressed
in the garments to be estimated and placed in an environmental chamber [18].
But one research [19] pointed out that the Icl values measured on a thermal
manikin and volunteers are different, and ISO 9920 [18] mentioned that the
cost for the specialized equipment based on manikins is beyond the reach
of most people. Therefore more researches did Icl measurements directly
with humans. Researches [19, 20] used ordinary infrared sensors attached
to the subject to calculate Icl from the temperature difference between the
skin and the clothes. Works [21–23] calculated Icl simply from measuring the
weight of the clothes. These two types of approaches are low-cost but they
are inconvenient due to their interference with subjects. Hence contactless
methods started to appear. Lee in 2016 [24], Miura in 2019 [25], and Lee in
2020 [26] all used an infrared camera to measure the skin and clothes temper-
atures to estimate Icl . However, [24] and [26] failed to give information about
how to acquire temperatures of clothes and skin automatically, making them
difficult to be applied without manual work. [25] and [26] did not consider
the influence of activities (sitting, standing, or walking) on Icl . And all these
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three researches ignored the Icl changes because of rolled-up sleeves and un-
zipped zippers that occur frequently in daily life. As a whole, automatic and
comprehensive estimation of Icl is still underexploited.

For M estimation, most works rely on specific equipment, for the rea-
son that M could be calculated from a person’s oxygen (O2) consumption
and carbon dioxide (CO2) generation [27–29], heart rate (HR) [30–33], breath-
ing frequency (BF) [30, 31], or blood pressure (BP) [34]. The Vmax Encore
Metabolic Cart used by Luo [27] and the COSMED K5 used by Zhai [28]
can measure O2 and CO2 values simultaneously, and both the equipment
need masks that cover the subject’s nose and mouth. The Telarire-7001 and
the Philips D12 used by Ji [29] are handheld devices measuring the amounts
of inhaled O2 and exhaled CO2 separately. Calvaresi [30] and Casaccia [31]
utilized a BioHarness 3.0 attached on the chest to get a person’s HR and
BF. Na [32] and Hasan [33] used wearable Fitbit smart bracelets to measure
the HR. Gilani [34] employed an arm blood pressure monitor to obtain BP.
Even though equipment-based M estimation methods are relatively accu-
rate, a common problem is that the devices are skin-attached, which not only
causes inconvenience but also remains impossible to use outside a laboratory.
On the other hand, ISO 8996 [35], ISO 7933 [36], ISO 7730, and ASHRAE 55
all give standard M values for specific activities (see Table B.2), indicating an
efficient estimation approach, and thus work [32] used this as M reference
values with the person’s activity known as a manual recording knowledge.

Table B.2: Metabolic rate for specific activities [35].

Activity M (W/m2)
Sleeping 40
At rest, sitting 55
At rest, standing 70
Walking on the level, even path, solid

1. Without load
At 2 km/h 110
At 3 km/h 140
At 4 km/h 165
At 5 km/h 200

2. With load
10 kg, 4 km/h 185
30 kg, 4 km/h 250

Table B.3 summarizes the main information of the studied literature. It
is obvious to see that current Icl and M estimation methods rely on either
inconvenient and expensive devices or time-consuming manual work.

As the specific work about vision-based Icl or M estimation is very lim-
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Table B.3: Main information of the studied literature about Icl and M estimation.

Type Source Approach Drawback

Icl [3, 11]
Fixed values: 1.0 clo in

winter, 0.5 clo in summer.
Not dynamic.

Icl [12–17]
Estimation from seasons,

outdoor and indoor
temperatures, gender, etc.

Ignore clothes
properties, require

questionnaires.

Icl [19, 20]
Estimation from skin and

clothes temperatures
obtained by attached sensors.

Interference with
subjects.

Icl [21–23]
Estimation from clothes

weight.
Interference with

subjects.

Icl [24–26]

Estimation from skin and
clothes temperatures

obtained by a thermal
camera.

Require manual
work, ignore some

factors like activities
and clothes types.

M [27–29]
Estimation from O2

consumption and CO2
generation.

Require expensive
equipment,

inconvenient masks.

M [30–34]
Estimation from heart rate,

breathing frequency, or blood
pressure.

Require specific
equipment,

inconveniently
wearable.

M
[3, 11, 32,
35, 36]

Estimation from activities.
Require manual

work.

ited, to broadly investigate the developments of the thermal comfort field
relying on computer vision, more surveys are done. Cheng [37, 38] used a
normal RGB camera to take pictures of the hand back and then investigated
the relationship between the hand back skin color saturation and the skin
temperature. Jazizadeh [39] also used an RGB camera to take pictures of fa-
cial areas and then assessed human thermal comfort levels by analysing face
illumination differences caused by blood flow variations. Li [40, 41] used
a thermal camera to detect facial skin temperatures and then mapped the
temperatures into three personal thermal feelings of hot, neutral, and cold.
Lu [42] sought help from machine learning (ML) algorithms of random forest
(RF) and support vector machine (SVM) to predict thermal sensations from a
feature set consisting of indoor air temperature, relative humidity, skin tem-
perature, and clothing surface temperature, where the temperatures were
acquired from a thermal camera. Qian [43] studied the direct correlation be-
tween a person’s pose (shivering, hand rubbing, etc.) with his/her thermal
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feelings (hot or cold) by using an RGB camera as the data source.
To sum up, no matter contacted or contactless methods for estimating Icl ,

most of them require labor-some manual work; methods for M estimation
have to use expensive devices; vision-based researches on thermal comfort
assessment usually take advantage of new ML models instead of Fanger’s
model to directly predict thermal sensations from skin temperatures, which
ignores many useful environmental/personal factors. Different from the re-
lated works, the proposed method has such characteristics: (1) it can estimate
both Icl and M; (2) the Icl estimation considers multiple factors including skin
temperature, clothes temperature, clothes type, and activity type, which is
more comprehensive; (3) the estimations of both Icl and M rely on computer
vision algorithms without requiring extra manual work, which is automatic;
(4) the estimated Icl and M are used as personal factors in Fanger’s model
(well proved across years) for dynamic thermal comfort assessment, which is
solid and reliable.

3 Proposed Method

In this section, we describe our approach. The idea which is illustrated in
Fig. B.1 consists of three components:

Thermal 
camera

OpenPose

Video

Detected body key points

CNN classifier
Temporal information in horizontal 

and vertical directions

Skin temperature
Clothes temperature

CLO

MET

1

2

3

Fig. B.1: Overview of the proposed method.

1. A CNN classifier is implemented to recognize an occupant’s clothes
type and activity type at the same time. See the green dashed box in
Fig. B.1.

2. The occupant’s body key points (like the nose, neck, shoulders, elbows,
and so on) are detected by OpenPose [10], which act as body part lo-
cation references. These body part landmarks together with the recog-
nized clothes type help to differentiate the skin-bare region from the
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clothing-covered region, and thus the skin temperature and the clothes
temperature are calculated. See the red dashed box in Fig. B.1.

3. A basic Icl is calculated from the skin temperature and the clothes tem-
perature, and then the final Icl is calculated by additional corrections
involved with the clothes type and activity type. M is estimated from
the recognized activity type directly. See the purple dashed box in Fig.
B.1.

In the following contents, details of each component are provided.

3.1 Clothes and Activity Recognition

Clothes type and activity type can be recognized via two phases, but we
prefer to predict both tasks at the same time, which is more efficient and
practically useful. However, two-stream CNNs [44–46] cannot realize this ex-
pectation as the temporal information is usually represented by optical flows
that have no information about clothes. Hence, we simplify the two-stream
network into a single stream network with its three-channel input containing
both spatial information (represented by one 8-bit thermal frame) and tem-
poral information (represented by two 8-bit optical flows in horizontal and
vertical directions calculated by the TVL1 algorithm [47]). Moreover, in an in-
door environment, an occupant seldom changes his/her clothes and activity
very frequently as the frame rate, indicating that a frame-by-frame recogni-
tion is unnecessary. But a fusion of predictions on several frames across time
like [46] did is still very important, as this can capture essential long-term
information to reduce the classification error rate. [48]

Based on the above analysis we extend our previous work [48]. Con-
cretely, we implement a CNN with its architecture shown in Fig. B.2 [48]. In
the CNN, a thermal video is first divided into K segments of the same length,
and then a frame is randomly sampled from each segment as the “input” of
the backbone network Inception v2 [49, 50]; the output of the backbone is a
list of prediction scores of all classes for the current “input”; because of K
segments, there are K lists of scores describing the original thermal video;
these lists are then evenly averaged as a single score list that is fed into a
softmax classifier layer to give the predicted class label [48].

It is to be noted that the word “input” in the last paragraph is with a
quotation mark as it means a concatenated image composed of one 8-bit
thermal frame and its corresponding two 8-bit optical flows [48]. And the
implemented CNN is a 15-category classifier indicating five clothes types and
three activity types that are the primary types in a normal office environment
(see Table B.4 [48]).
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Fig. B.2: Network for clothes and action recognition.

Table B.4: Details of the 15 categories.

Category Meaning
SitLong Long-sleeved clothes, sitting

SitLongUnzip Long-sleeved and zipper unzipped clothes, sitting
SitRoll Sleeves rolled-up clothes, sitting

SitRollUnzip Sleeves rolled-up and zipper unzipped clothes, sitting
SitTshirts Short-sleeved t-shirt, sitting

StandLong Long-sleeved clothes, standing
StandLongUnzip Long-sleeved and zipper unzipped clothes, standing

StandRoll Sleeves rolled-up clothes, standing
StandRollUnzip Sleeves rolled-up and zipper unzipped clothes, standing

StandTshirts Short-sleeved t-shirt, standing
WalkLong Long-sleeved clothes, walking

WalkLongUnzip Long-sleeved and zipper unzipped clothes, walking
WalkRoll Sleeves rolled-up clothes, walking

WalkRollUnzip Sleeves rolled-up and zipper unzipped clothes, walking
WalkTshirts Short-sleeved t-shirt, walking

3.2 Skin and Clothes Temperatures Acquisition

A person’s temperature distribution is the most direct way to indicate his/her
thermal sensation, what’s more, Icl can be effectively estimated from the skin
temperature and the clothes temperature.

To calculate both temperatures, we first utilize the key points detected by
OpenPose as location references of body parts. We focus on the Icl of the up-
per body, and hence detect the right eye, left eye, nose, neck, right shoulder,
left shoulder, right elbow, left elbow, right wrist, and left wrist. Besides, for
more precise body parts localization, we also calculate the coordinates of the
middle points between the nose and the neck, the neck and the shoulders, the
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shoulders and the elbows, respectively, with the help of the detected points.
Then, the clothes type predicted by the above CNN helps to distinguish

the skin region Rs from the clothes region Rc. That is, for clothes with sleeves
rolled-up or t-shirt with short sleeves, the lower arm region is treated as the
skin region Rs, while for clothes with long sleeves, the lower arm region
belongs to the clothes region Rc. Besides, as the face area and the chest
area are the critical segments representing a person’s temperature distribu-
tion [51, 52], they are classified as the skin region Rs and the clothes region
Rc, respectively.

For a better explanation, Fig. B.3 shows the detailed skin region Rs and
clothes region Rc of a standing person wearing long-sleeved clothes and
sleeves rolled-up clothes, in which the red hollow circles represent the key
points detected by OpenPose; the blue crosses are the additional middle
points of two nearby key points; the green box and green lines mean the
skin region Rs; the yellow box and yellow lines mean the clothes region Rc.
Specifically, the green region is the segment below the nose while above the
jaw with the vertical coordinates of two eyes as the right and left boundaries,
thus avoiding the influences of glasses and the neck covered by a collar. The
yellow region is the segment below the neck while above the elbow with
proper vertical boundaries to exactly cover the chest.

(a) (b)

Fig. B.3: Skin region and clothes region of a standing person in two different garments. (a)
Long-sleeved clothes. (b) Sleeves rolled-up clothes.

As a whole, the skin region Rs and the clothes region Rc are summarized
in Table B.5, where the specific coordinates of the regions are obtained with
the help of key points from OpenPose mentioned above.

At last, the skin temperature Ts and the clothes temperature Tc can be
calculated as the average value from the skin region Rs and the clothes region
Rc, respectively.

Ts =
∑(x,y)∈Rs

Tx,y

∑(x,y)∈Rs
1

(B.1)
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Table B.5: Skin region Rs and clothes region Rc.

Clothes Category Skin Region Rs Clothes Region Rc
Long-sleeved clothes Face Chest & arms

Sleeves rolled-up clothes & t-shirt Face & lower arms Chest & upper arms

Tc =
∑(x,y)∈Rc

Tx,y

∑(x,y)∈Rc
1

(B.2)

here Tx,y is the temperature at location (x, y) which can be acquired directly
from the thermal camera. In our case, the utilized thermal camera (Xenics-
Gobi-384) is a thermography camera that can give the temperature of every
location in the captured scene. In addition, it has a NETD (noise-equivalent
temperature difference) of 80mK in the temperature range from -20◦C to
120◦C, which means a tiny temperature change of 0.08◦C can be captured
by the camera. Therefore, this camera is a satisfactory temperature acquisi-
tion device for skin and clothes.

3.3 Icl and M Estimation

This part utilizes the clothes type, the activity type, the skin temperature Ts,
and the clothes temperature Tc, extracted from Section 3.1 and Section 3.2, to
estimate Icl (in unit clo) and M (in unit W/m2).

The steps of Icl estimation are illustrated in Fig. B.4, where the corrections
1 to 4 are based on ISO 9920 [18], and the detailed derivations of correspond-
ing Equation B.4 to Equation B.8 are in the appendix.

Start 
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rolled-
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No

Yes

No

Yes
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Fig. B.4: Diagram of estimating Icl .

Firstly, a basic clothing insulation rate BIcl is calculated from Ts and Tc by
Equation B.3 [25]:

BIcl =
1

0.155 · h
· Ts − Tc

Tc − To
(B.3)

where 0.155 is the scale of the unit-conversion from m2K/W to clo; h is the
heat transfer coefficient of a human which is set to 8.6 [25]; To is the operative
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temperature which takes into account not only the indoor air temperature but
also the radiant temperatures of surfaces (floor, walls, and ceiling); therefore,
we use the average of the temperatures of the background scene which ex-
cludes the human foreground to represent To. It is to be noted that with Ts
and Tc extracted from our method, any calculation model for estimating the
basic clothing insulation rate BIcl can be used.

Secondly, according to the person’s clothes type, some corrections may
happen, that is, Icl correction 1 and Icl correction 2, see Fig. B.4.

Icl correction 1 If the sleeves of the worn clothes are rolled up, the person’s
lower arms are not covered by clothing, resulting in a decrease in clothing
insulation; hence, the basic Icl value BIcl is corrected to:

C1Icl = BIcl − 0.00874 · Acov,0 (B.4)

where Acov,0 is the increased body surface area not covered by clothing. In
this case, it is equal to 6.2.

Icl correction 2 If the zipper of the worn clothes is unzipped, the person’s
chest and abdomen region will be covered by a single clothing layer under
a normal indoor condition, also leading to a decrease of clothing insulation;
hence, BIcl or C1Icl is corrected to:

C2Icl = BIcl − 0.00510 · Acov,1 (B.5)

or
C2Icl = C1Icl − 0.00510 · Acov,1 (B.6)

where Acov,1 is the increased body surface area covered by a single clothing
layer. In this case, it is equal to 16.3.

Lastly, if the person is standing, no more correction is needed. While
if he/she is sitting or walking, further correction is necessary, that is, Icl
correction 3 or Icl correction 4, see Fig. B.4.

Icl correction 3 If the person is sitting, the air layer between the skin and
the clothes on the back is compressed, inducing an average Icl decrease by
12%, but the office chair gives extra insulation by 0.105 clo on average. Hence,

C3Icl = 0.88 · CIcl + 0.105 (B.7)

where CIcl could be BIcl , C1Icl , or C2Icl according to the clothes type.
Icl correction 4 If the person is walking, the body motion and the wind

motion increase the air exchange via clothes openings (collars, cuffs) [18]. In
an office environment with air velocity smaller than 0.2 m/s and air insula-
tion as 0.7 clo, when the human walking velocity is 1 m/s, the Icl value can
be corrected as:

C4Icl =

{
0.9878 · C2

Icl
+ 0.091 · CIcl , 0 < CIcl ≤ 0.6

0.5927 · CIcl + 0.0546, 0.6 < CIcl < 1.4
(B.8)
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As for M estimation, we refer to Table B.2 to get the M for sitting, stand-
ing, and walking (3.6 km/h) being 55, 70, and 150, respectively, which avoids
any additional device and manual annotation.

4 Experiments

In this section, we first introduce our collected thermal dataset, and then we
evaluate the proposed method.

4.1 Dataset Information

Since there is no public dataset for clothes type recognition in thermal mode,
we collected a dataset of 20 subjects in an office in September 2019. The
air temperature and the air humidity in the room were around 24◦C and
40% (measured by a Rosenborg thermometer 66762). The 20 subjects include
four females and 16 males who were standing (about 3 meters away), sitting
(about 3 meters away), and walking (about 1 to 3 meters away) from a thermal
camera (Xenics Gobi-384-GigE) with at most five clothes types (long sleeves,
long sleeves and unzipped zipper, rolled-up sleeves, rolled-up sleeves and
unzipped zipper, t-shirt). To best detect human temperatures, the emissiv-
ity of the camera is set as 0.98. The three activities and five garments were
chosen as they are the most common cases in an office environment. Fur-
thermore, a person with his/her sleeves rolled up or zipper unzipped is an
immediate signal of feeling hot in most situations. We encouraged each sub-
ject to behave naturally; therefore, folded arms, akimbo pose, crossed legs,
or other spontaneous postures existed in the videos. A video (of a subject
with one activity in one type of garment) was recorded with a length of 30
s or more, so we could trim it into short videos with a duration of about
3.5 s. In this way, we obtained 291 long videos which were then trimmed
into 2422 short videos, see Table B.6. The data unbalance problem is due to
two reasons: (i) not all subjects wore the five types of clothes; (ii) only in an
approximately-front view can a short video of walking be used for clothes
type recognition. [48]

Table B.6: Short video number of each category [48].

- Sit Stand Walk
Long sleeves 308 284 109

Long sleeves, unzipped zipper 155 157 59
Rolled-up sleeves 309 279 115

Rolled-up sleeves, unzipped zipper 161 144 56
T-shirt 125 114 47
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4.2 Evaluation of the CNN for Clothes Type and Activity
Recognition

Evaluation of a CNN needs a partition of training, validation, and testing set.
To avoid the bias where the three sets have common subjects, we separate the
collected dataset according to the subject ID. For a comprehensive evaluation,
we give 6 partitions recorded in Table B.7.

Table B.7: Training/validation/testing sets information (SID means subject ID, # means the
number of videos).

- Training Validation Testing
- SID # SID # SID #

Partition 1 1-12 1337 13-16 476 17-20 609
Partition 2 1-12 1337 17-20 609 13-16 476
Partition 3 9-20 1586 1-4 470 5-8 366
Partition 4 9-20 1586 5-8 366 1-4 470
Partition 5 1-6, 15-20 1518 7-10 443 11-14 461
Partition 6 1-6, 15-20 1518 11-14 461 7-10 443

The hardware and software platforms for implementing the CNN are one
NVIDIA GeForce RTX 2080 Ti, Ubuntu 16.04 LTS, CUDA 9.2, Python 3.5.2,
and PyTorch 1.2.0. The network backbone Inception v2 is pretrained with
ImageNet [53] dataset, and then the whole CNN is finetuned with the col-
lected thermal dataset. The number of segments divided from a video is 6
which is the largest value considering the used GPU capacity. The learning
rate is initialized as 0.0005 and then multiply with a factor of 0.1 at the 60th
epoch and the 120th epoch, respectively. The whole training ceases at the
150th epoch where the CNN has already converged.

Data augmentation strategies including a multiscale cropping and a hor-
izontal flipping are also implemented. The height and the width of the
cropped region are randomly selected from {288, 274, 260} which refer to
{100, 95, 90%} of the shorter edge size of the thermal frame (384× 288), guar-
anteeing all the cropped regions always contain the subject. Finally, all the
original frames as well as the augmented ones are resized to 224 × 224 as
the network requires. Besides, to improve the network’s generalization abil-
ity, a dropout ratio of 0.75 and a weight-decay parameter of 0.005 are also
used. [48]

For each partition, we use the best-trained model on the validation set
to evaluate the testing set. At first, we get a poor classification result on
the 6 partitions, see the middle column of Table B.8. We attribute this to
the temporal information insufficiency. Because the default frame rate of the
used thermal camera is 90 fps, there is almost no movement between two
adjacent frames. Therefore, the extracted temporal information is empty and
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thus leading to an inability to distinguish standing from walking.

Table B.8: Classification accuracy on the testing set.

Partition Accuracy (90 fps)(%) Accuracy (30 fps)(%)
1 62.56 95.57
2 85.50 93.70
3 86.89 99.18
4 66.38 94.47
5 77.44 93.49
6 82.39 94.58

Average 76.86 95.17

To fix this problem, for every video, we sample one frame from every
three frames and get the video of 30 fps. We redo the experiment with the
same configurations as the 90 fps version experiment, achieving a significant
improvement in the classification rate, see the last column in Table B.8.

For better insights into the influence of the frame rate on the activity
recognition, the confusion matrices on partition 1 where the largest improve-
ment happens are given in Fig. B.5. The upper matrix and the lower matrix
correspond to 90 fps and 30 fps, respectively.

As there is no other work doing simultaneous recognition of clothes type
and activity, we compare our results with works on clothes type recognition
or activity recognition separately. FashionNet got an 82.58% top-3 classifica-
tion accuracy on the DeepFashion dataset, an RGB garment dataset with 50
fine-grained categories [54]. A research group in Japan collected a thermal
dataset including 5 categories (no action, walking, sitting down, standing
up, and falling down) and gave recognition rates of 91.07% in 2017 [55] and
96.98% in 2020 [56]. Compared to these works, our method identifying both
types with an average accuracy of 95.17% is effective.

4.3 Evaluation of Temperature Acquisition

The acquisition of the skin temperature and the clothes temperature critically
relies on the body parts localization by detected body key points from Open-
Pose [10]. We evaluate the temperature acquisition module by examining the
performance of OpenPose. As far as we know, this is the first evaluation of
the assessment of applying OpenPose to thermal data quantitatively.

We randomly sample 10 short videos in each category and examine the
performance of OpenPose on these videos. Specifically, as OpenPose is a
frame-by-frame body key part detection algorithm, we save each processed
frame and then count the number of unsatisfactory frames. It is worth men-
tioning that: (i) each frame is examined conservatively, meaning that a frame
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Fig. B.5: Confusion matrices on partition 1. (a) 90 fps. (b) 30 fps.
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with only one missing or wrongly detected body part is counted as an un-
satisfactory frame; (ii) only the parts of the upper body (eyes, nose, neck,
shoulders, elbows, and wrists) are examined as we aim at upper body parts
for the reason that lower body parts are usually occluded by desks thus in-
visible.

Table B.9 lists the number of unsatisfactory frames (before “/”) and the
number of all sampled frames (after “/”) within a certain category. The total
number 805/14928 (0.0539) indicates that OpenPose can accurately detect
human key body points on 94.61% of the sampled thermal frames, showing
the reliability of applying OpenPose to the thermal dataset.

Table B.9: OpenPose performance on sampled frames.

- Stand Sit Walk Total
Long sleeves 8/1070 0/900 47/1004 55/2974

Long, unzipped 75/968 0/1070 99/888 174/2926
Rolled-up sleeves 89/917 69/1070 14/829 172/2816

Rolled-up, unzipped 0/1070 103/1070 128/1009 231/3149
T-shirt 107/973 25/1014 41/1076 173/3063
Total 279/4998 197/5124 329/4806 805/14928

Among the unsatisfactory frames, many of them belong to a few partic-
ular videos. For instance, 87 frames are related to wrongly detected eyes
because the person bows his/her head (in Fig. B.6(a)). 80 frames are related
to wrongly detected right wrist because the person overlaps his/her hands
(in Fig. B.6(b)). Fortunately, these two types of wrongly detected body parts
have minor influences on the skin region and clothes region segmentation
described in Section 3.2.

(a) (b)

Fig. B.6: Two types of wrongly detected body parts. (a) Wrongly detected eyes. (b) Wrongly
detected right wrist.
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As this is the first work evaluating OpenPose on thermal data quantita-
tively, we can only refer to the performance of OpenPose on the RGB mode as
a comparison. For MPII dataset [57], an RGB dataset including about 25,000
images containing over 40,000 people, OpenPose achieves an average accu-
racy of 80.83% in detecting the upper body parts. Even though the RGB mode
gives more visual details, the MPII dataset is extracted from YouTube videos
and covers 410 activities like doing sports, playing music, taking medication,
and so on. Therefore, it is more difficult than our thermal dataset but still
indicates that our performance of 94.61% is reasonable and reliable.

4.4 Evaluation of Icl and M Estimation

To assess the effectiveness of estimating Icl and M from extracted key factors,
we select a subject who wore all the five types of clothes during the dataset
collection phase as a representative and list the calculated Icl (in unit clo) and
M (in unit W/m2) in Table B.10.

The basic Icl in the table is an average value over all the frames from a
randomly selected short video, and the value in the round brackets is the
variance. The final Icl is the corrected value from the basic one.

From Table B.10, the same clothes usually have similar basic Icl values de-
spite different activities, revealing the intrinsic property of the clothes. Cor-
rections considering activities or decreased clothing-covered regions intro-
duce additional fluctuations in Icl values. At the same time, the M values can
be estimated directly from the occupant’s activity type mentioned in Section
3.3 without extra equipment or human annotations.

Our estimations of Icl and M are based on a contactless method without
interference with subjects, unlike other related researches involving ques-
tionnaires, skin-attached sensors, weighing clothes, or wearable devices that
cannot be applied to daily life. Therefore, to verify the feasibility of using
our method in a real environment, we use CBE thermal comfort tool [58, 59]
to compute the assessed human thermal comfort sensations of the subject,
see the last four columns of Table B.10. This calculation is based on the
PMV model mentioned in Section 1, and the other four environmental factors
used in the calculation are air temperature (24◦C), mean radiant temperature
(24◦C), air speed (0.1 m/s), and relative humidity (40%).

For better explanation, Table B.11 gives the meanings of PMV1 to PMV4.
Specifically, PMV1 means the assessed thermal sensations when using fixed
Icl and M as 0.5 (a representative Icl value in summer) and 55 (the M of
sitting, the predominant activity in an office), respectively. PMV2 means
the assessed thermal sensations when calculating Icl and using a fixed M as
55. PMV3 means the assessed thermal sensations when using a fixed Icl as
0.5 and calculating M. PMV4 means the assessed thermal sensations when
calculating both Icl and M. It is clear that by using the proposed estimation of
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4. Experiments

Icl and M, the subject’s assessed thermal sensations are much more dynamic
which is more realistic and reasonable in daily life.

Table B.11: Meanings of PMV1 to PMV4.

- Fixed Icl Proposed Icl estimation
Fixed M PMV1 PMV2

Proposed M estimation PMV3 PMV4

Moreover, as in practice many engineers [17, 60–63] directly use Icl val-
ues of typical garments (t-shirt, shirt, sleeveless vest, etc.) from ISO 8996 or
ASHRAE 55 for simplicity, to have a further investigation and comparison,
we also refer such Icl values from ASHRAE 55 as basic reference Icl in Ta-
ble B.12, where 0.5600 refers to two layers of clothes (a t-shirt and a winter
coat) and 0.0800 refers to a t-shirt. Also in Table B.12, basic Icl , final Icl , and
PMV4 are the same as those in Table B.10; final reference Icl represents the
corrected values from basic reference Icl based on the proposed correction 1
to 4; PMV5 refers to the assessed thermal sensations when using the basic
reference Icl and calculating M; PMV6 refers to the assessed thermal sensa-
tions when using the final reference Icl and calculating M. From Table B.12,
the difference between reference Icl and estimated Icl is usually less than 0.1
which is equivalently the insulation rate of a t-shirt, well showing the con-
sistency and acceptance of the proposed method. Besides, when considering
the influences of rolled-up sleeves, unzipped zippers, and different activities,
the final reference Icl is more dynamic, which makes it more applicable to
real indoor environments.

To best illustrate the comparison of assessed thermal sensations (PMV1 to
PMV6), Fig. B.7 draws the sensations as colorful circles in a more readable
way based on the standard 7 scales. It is obvious to see that with fixed Icl and
M (see Fig. B.7(a)), the subject is always regarded to be slightly cool, suggest-
ing that the indoor microclimate should be warmer. A similar phenomenon
happens when M is fixed in PMV2 (see Fig. B.7(b)). When only fixing Icl ,
resultant sensations in PMV3 (see Fig. B.7(c)) seems plausible; however, feel-
ing slightly warm when walking with a short-sleeved t-shirt in a 24◦C room
is contradicting the real sensation stated by the subject when collecting the
dataset. After calculating both Icl and M, PMV4 (see Fig. B.7(d)) is much
more reasonable, as the thermal sensations change dynamically from cool
to slightly warm with the increase of the clothes’ thermal insulation ability
and the activity intensity. When taking basic reference Icl into consideration,
PMV5 (see Fig. B.7(e)) is more acceptable than PMV3, but it is still difficult to
describe the real situation as the basic reference Icl ignores the different status
of sleeves and zippers. As a contrast, corrected reference Icl in PMV6 (see Fig.
B.7(f)) makes assessed thermal feelings dynamic and realistic. By comparing
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5. Conclusions and Future Work
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Fig. B.7: Assessed thermal comfort sensations. (a) PMV1. (b) PMV2. (c) PMV3. (d) PMV4. (e)
PMV5. (f) PMV6.

PMV4 (Fig. B.7(d)) and PMV6 (Fig. B.7(f)), 12/15 (80%) feelings are same,
revealing the consistency between ISO-based Icl and our proposed estimation
method. As a whole, these comparisons emphasize the practicability of our
method in a daily environment.

5 Conclusions and Future Work

In this paper, an occupant’s clothes type, activity type, skin temperature, and
clothes temperature are extracted by vision-based procedures. These per-
sonal factors are used to automatically estimate individual clothing insulation
rate Icl and metabolic rate M, which are critical for dynamic thermal comfort
assessment. Specifically, with the captured thermal videos as inputs, a con-
volutional neural network (CNN) is implemented to recognize an occupant’s
clothes type and activity type simultaneously. With key body parts detected
by OpenPose as localization references, the recognized clothes type can help
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to separate a human body into the skin-bare regions and the clothing-covered
regions that correspond to the skin temperature and the clothes temperature.
From these extracted personal factors, a comprehensive estimation of Icl and
M according to the international standards is implemented. Experiments
evaluating the CNN module, the temperature calculation module, and the
Icl/M estimation module are also given. By our method, the assessed ther-
mal sensations are dynamically changing according to the estimated Icl and
M, which is reasonable and realistic in daily life, well proving the feasibility
of the proposed scheme.

Future work includes taking additional clothes types, activity types, and
other physiological aspects into consideration and expanding the proposed
scheme in field studies of multi-person for better microclimate control.

6 Appendix

According to Annex H of ISO 9920 [18], Icl can be calculated from the mass
of the clothes and the body surface area covered by clothing, that is

Icl =0.919 + 0.255 × 10−3 · m − 0.00874 · Acov,0

− 0.00510 · Acov,1
(B.9)

where, m is the mass of the clothes, without shoes, in grams; Acov,0 is the
body surface area not covered by clothing; Acov,1 is the body surface area
covered by a single clothing layer; both Acov,0 and Acov,1 are expressed as
percentages of the total body surface area shown in Table B.13.

When a person rolls up the sleeves or unzips the zipper, the mass of the
clothes remains the same, while the Acov,0 or the Acov,1 is changed, leading to
a correction in Icl by Equations B.4, B.5 or B.6 in Section 3.3.

According to Section 9 of ISO 9920, when a person is sitting, the com-
pressed air between the body and the clothes leads to a decrease in Icl by 6%
to 18%. Office chairs introduce an increase in Icl of 0.04 clo to 0.17 clo. We
use the median values of these fluctuations as 12% and 0.105 clo, respectively,
and get Equation B.7 in Section 3.3.

According to Section 8.2 of ISO 9920, the dynamic clothing insulation rate
Icl,d under a condition having air and body movement can be calculated from

Icl,d =
(0.6 − Icl,s) · Ia,d + Icl,s · It,d

0.6
− Ia,d

(0 < Icl,s ≤ 0.6)
(B.10)

Icl,d = It,d − Ia,d(0.6 < Icl,s < 1.4) (B.11)

It,d = It,s · Ct (B.12)
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6. Appendix

Table B.13: Body surface area percentage [18].

Segment % total area
Head + neck 8.7

Chest 10.2
Back 9.2

Abdomen 6.1
Buttocks 6.6

Right upper arm 5.0
Left upper arm 5.0
Right lower arm 3.1
Left lower arm 3.1

Right hand 2.5
Left hand 2.5

Right thigh 9.2
Left thigh 9.2
Right calf 6.1
Left calf 6.1

Right foot 3.7
Left foot 3.7

Total 100

Ia,d = Ia,s · Ca (B.13)

It,s = Icl,s + Ia,s (B.14)

Ct = e[−0.281·(va−0.15)+0.044·(va−0.15)2−0.492·vw+0.176·v2
w] (B.15)

Ca = e[−0.533·(va−0.15)+0.069·(va−0.15)2−0.462·vw+0.201·v2
w] (B.16)

where, It,d, Ia,d, Icl,s, It,s, Ia,s, va, and vw are the dynamic total thermal in-
sulation, the dynamic air insulation, the static clothes insulation, the static
total insulation, the static air insulation, the relative air velocity in relation to
human motion, and the human motion velocity, respectively.

As Section 6 of ISO 9920 mentions, the static air insulation Ia,s in most
studies is around 0.7 clo. When the human motion velocity is 1 m/s, for a
wind-free environment (air velocity is smaller than 0.2 m/s), the relative air
velocity in relation to human motion is about 1 m/s, and then from Equations
B.10-B.16, Equation B.8 in Section 3.3 is derived.
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1. Introduction

Abstract

Satisfactory indoor thermal environments can improve working efficiencies of office
staff. To build such satisfactory indoor microclimates, individual thermal comfort
assessment is important, for which personal clothing insulation rate (Icl) and
metabolic rate (M) need to be estimated dynamically. Therefore, this paper proposes
a vision-based method. Specifically, a human tracking-by-detection framework is
implemented to acquire each person’s clothing status (short-sleeved, long-sleeved),
key posture (sitting, standing), and bounding box information simultaneously. The
clothing status together with a key body points detector locate the person’s skin
region and clothes region, allowing the measurement of skin temperature (Ts) and
clothes temperature (Tc), and realizing the calculation of Icl from Ts and Tc. The
key posture and the bounding box change across time can category the person’s
activity intensity into a corresponding level, from which the M value is estimated.
Moreover, we have collected a multi-person thermal dataset to evaluate the method.
The tracking-by-detection framework achieves a mAP50 (Mean Average Precision)
rate of 89.1% and a MOTA (Multiple Object Tracking Accuracy) rate of 99.5%. The
Icl estimation module gets an accuracy of 96.2% in locating skin and clothes. The
M estimation module obtains a classification rate of 95.6% in categorizing activity
level. All of these prove the usefulness of the proposed method in a multi-person
scenario of real-life applications.

keywords: thermal comfort; clothing insulation rate; metabolic rate; multi-person;
real life

1 Introduction

In the world today, more people have to rely on computers to tackle various
tasks. This results in indoor office work being much more popular than
ever before. From the commercial buildings energy consumption survey in
2012 [1], offices consume much more energy for heating and cooling than
other types of buildings. If energy can be used according to office workers’
thermal needs, energy waste resulting from overheating or overcooling will
be greatly reduced, and also staff will have better working efficiencies as they
feel comfortable with the environment they work in.

To make each office staff feel thermal comfort and at the same time re-
duce energy waste, two main kinds of methods have been researched. One is
directly relying on the worn clothes to control a person’s micro-environment
between the body skin and the indoor atmosphere, which avoids controlling
the entire indoor microclimate via heaters, ventilation, and air condition-
ers (HVAC) that consume lots of energy. This kind of method takes advan-
tage of different thermal properties (thermal resistance, thermal conductivity,
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thermal radiation, thermal convection, water evaporation, etc.) of different
clothes in materials, thicknesses, and layers to maintain the body tempera-
ture in a comfortable range [2–5]. The other kind of method still focuses
on the entire indoor environment but in a way that adjusts the microclimate
according to each occupant’s thermal need, which is the topic of this paper.

However, each person’s thermal need is unique and dynamic, which can-
not be met well by existing microclimate-controlling systems like HVAC that
all rely on static assumptions to serve the occupants in a room. For example,
a standard air conditioner’s temperature is set to 25 to 27 degrees for cooling
in summer, and 18 to 20 degrees for heating in winter, no matter whether this
is what the office workers need.

To improve this situation, individual thermal comfort feeling has to be as-
sessed, like in scales (cold, cool, slightly cool, neutral, slightly warm, warm,
and hot) [6–8]. These scales depend on both environmental factors and per-
sonal factors. The environmental factors are air temperature (ta), mean ra-
diation temperature (t̄r), relative humidity (RH), and air velocity (Va), which
can be measured by sensors. The personal factors include clothing insulation
rate (Icl) and metabolic rate (M); Icl describes the ability of the clothes to in-
sulate the heat exchange between the skin and the environment outside the
clothes, and M describes the amount of energy, in-unit time, consumed by a
person. Both the personal factors are difficult to acquire for their complexity
and dynamics.

Accordingly, international standards [8–12] have defined reference values
of Icl and M in certain situations (see Tables C.1 and C.2). Such values are
empirical and fixed, and thus cannot describe a person’s dynamic property
for that the situation in real life is much more complex than these noted
ones. This hinders the development of systems and applications for adjusting
indoor microclimates according to occupants’ thermal needs. Therefore, the
solution dynamically estimating a person’s Icl and M is to be explored. To
this end, we propose a method to do this, and the concrete contributions are:

• The method inventively adapts state-of-the-art computer vision solu-
tions to the thermal comfort domain, achieving a contactless approach
that can be employed in multi-person real-life applications.

• The method can detect and track each person, at the same time recog-
nizing his or her clothing status (long-sleeved, short-sleeved) and key
posture (sitting, standing).

• The method can further output a person’s skin temperature and clothes
temperature, based on which his or her Icl is estimated.

• The method proposes three useful features from a person’s bounding
box tracked across time. These features can category the person’s activ-
ity into a certain intensity level which indicates the M.
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Table C.1: Insulation values of various typical garments [10].

Garment Icl (clo)

Underwear
Singlet 0.04
T-shirt 0.09

Shirts with long sleeves 0.12

Shirts, blouses
Short sleeves 0.15

Lightweight, long sleeves 0.2
Normal, long sleeves 0.25

Table C.2: Metabolic rates of typical activities [8].

Activity M (W/m2)
Reclining 46
Seated, relaxed 58
Sedentary activity 70
Standing, light activity 93
Standing, medium activity 116
Walking on level ground:

2 km/h 110
3 km/h 140
4 km/h 165
5 km/h 200

The rest contents are organized as follows. Section 2 introduces the re-
lated work. Section 3 describes our methodology. Section 4 tells the experi-
ments. Section 5 concludes the paper and proposes future work.

2 Related Work

This paper applies computer vision solutions to the thermal comfort domain.
Therefore, the related researches of both Icl and M estimation and computer
vision methods are studied.

2.1 Icl and M Estimation

Several works have been published to calculate the two personal factors, Icl
and M, for assessing the human thermal sensation. However, most works
only focus on one of them, leaving the other one unsolved.

Some works take advantage of the relationship between clothing choice
and environment temperature [13–16] to predict clothing insulation ability.
This type of method is simple but neglects the inherent property of clothes
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themselves. To resolve this drawback, work [17] uses the weight of the clothes
to predict Icl , which is unrealistic in real applications; studies estimate Icl
from the temperature difference between the body skin and the clothes sur-
face with infrared sensors [18, 19], however, this is also inconvenient due
to the attached sensors on the human body. To decouple such interference
with personal life, researches [20–22] all adopt contactless infrared cameras
to monitor persons. Unfortunately, refs. [20, 21] do not mention the method
of acquiring temperatures of interested body locations, limiting their appli-
cations in the real world; ref. [22] only considers five types of garments that
cannot represent various clothing choices in daily life.

For metabolic rate estimation, almost all works have to use attached
equipment. Correspondingly, a person’s M is estimated by measuring his
or her oxygen consumption and carbon dioxide generation [23–25], heart
rates [26–29], or blood pressure [30]. Though [31–33] adopt cameras for such
a task, they still partly rely on sophisticated equipment mentioned above.
These devices have to be worn by subjects, making them unrealistically used
in daily life.

When estimating both Icl and M, refs. [34, 35] use a CNN (Convolutional
Neural Network)-based classifier to recognize a person’s clothes type and
activity type, and then refer ISO (International Organization for Standard-
ization) standard tables to get the Icl and M values from the recognized
types. These works prove the importance of clothing status (short sleeves,
long sleeves) and posture (sitting, standing) in estimating Icl and M. How-
ever, refs. [34, 35] are only valid in a simple and controlled single-person
environment. Expanding and enriching this kind of solution is in great need.
Therefore, this paper closes this gap and is the first work targeted at a multi-
person scenario in the real world.

2.2 Detection and Tracking

The ability to do individual processing from multiple persons is the crucial
point of the proposed method, which mainly comes from our implemented
human tracking-by-detection framework. To this end, widely used object de-
tectors are studied, like Faster R-CNN (Region-based Convolutional Neural
Network) [36], YOLO (You Only Look Once) series [37–41], and FPN (Fea-
ture Pyramid Network) [42] which all consist of a backbone network (to ex-
tract deep features) and headers (to predict bounding box locations and cate-
gories). All these methods perform well on RGB (Red Green Blue) benchmark
datasets [43, 44].

When it comes to the tracking part (referring in particular to online multi-
object tracking in this paper), SORT (Simple Online and Realtime Track-
ing) [45] initially replaces the conventional object detector with a CNN-based
detector and thus improves the tracking result by up to 18.9%, revealing the
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importance of accurate detections for tracking. The following DeepSort (Sim-
ple Online and Realtime Tracking with a Deep Association Metric) [46] and
CDA_DDAL (Confidence-based Data Association and Discriminative Deep
Appearance Learning) [47] incorporate appearance information into the data
association phase and solve the ID (Identity)-switch problem. Other works
focus on improving the correlation filter to estimate better positions of targets
in the next frame [48], fusing multi-modality data in data association [49], and
linking detection and tracking to let them benefit each other [50].

In general, though existing methods on human detection and tracking
are quite mature in RGB datasets, studies applying them in thermal datasets
like [51–53] are few and far between. This situation makes our research with
the thermal camera more essential.

3 Methodology

In this section, we describe our approach, the overview of which is illustrated
in Fig. C.1 including three key parts:

1. The thermal input goes through a tracking-by-detection framework (see
the red dashed box) to track each individual (see the ID 1 and ID 2) and
at the same time categorize each person to get his or her clothing status
and key posture (see the red and green solid boxes around persons
which indicate different categories).

2. With ID information, for each person, the clothing status classified by
the tracking-by-detection part helps differentiate the skin region from
the clothing-covered region. Then the detected key body points from
these two regions can represent the skin temperature and the clothes
temperature, based on which Icl is estimated.

3. With ID information, for each person, the optical flow within each per-
son’s bounding box region, together with the bounding box (center lo-
cation and box size) changes across time are calculated. These three fea-
tures are good representations of the person’s activity intensity, which
are used to estimate M.

Details of the three parts are described below.

3.1 Tracking-by-Detection

This part has two main components, one is an object detector, YOLOv5 [41],
for human detection, the other is a tracker, DeepSort [46].

The video collected from a thermal camera is the input to the detector
YOLOv5 for frame-by-frame human detection. To integrate clothing status
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3. Methodology

and key posture recognition into this detection procedure, we classify per-
sons into six categories (see Table C.3). Here the clothing status is represented
by the sleeve status (long, short) for four reasons: (i) these two are the most
common clothing situations in an office environment while the lower part of
the body is often totally occluded by the desk; (ii) according to to [10, 34, 35],
sleeve status is significantly important in estimating Icl ; (iii) the change be-
tween a long-sleeved status to a short-sleeved status by rolling up sleeves or
taking off outer jackets is a sign of feeling hot and vice versa, indicating a
person’s thermal sensation directly; (iv) the sleeves status helps to locate skin
region and clothes region separately for further skin and clothes tempera-
tures acquisition. For example, the elbows of a person wearing short-sleeved
clothes are skin regions, while the elbows of a person wearing long-sleeved
clothes are clothes regions. This localization makes it possible to use such
key body points to calculate a person’s skin temperature and clothes tem-
perature, because key body points on arms are widely used sensitive heat
receptors in thermal comfort assessment [35, 54–56]. Besides the two statuses
of long sleeves and short sleeves, another status called difficult to predict
clothes type due to occlusion is also usual in daily life. For clear illustration,
such cases are in Fig. C.2. The right persons in Fig. C.2(a) and Fig. C.2(b)
are partly occluded by the computer monitor; the right person in Fig. C.2(c)
moves the arms out of the scene; the left person in Fig. C.2(d) occludes his
lower arms by hiding them behind the torso. These occlusions make it unre-
alistic to know whether the sleeves are long or short. One thing to be noted
is that even though a person is occluded in a few frames, his or her clothing
status can be recognized in other frames. Therefore, voting of a classified
category over a few seconds is important. When it comes to the key posture
recognition, from ISO standards [8, 9, 11, 12], a person’s metabolic rate M is
closely related to the behaving posture (sitting, standing, lying down, etc.).
And in a typical office environment the most common ones are sitting and
standing, therefore, these two are considered in our study.

Table C.3: Persons in six categories.

Category Meaning
LongSit Long-sleeved clothes, sitting
ShortSit Short-sleeved clothes, sitting
OclSit Difficult to predict clothes type due to occlusion, sitting

LongStand Long-sleeved clothes, standing
ShortStand Short-sleeved clothes, standing
OclStand Difficult to predict clothes type due to occlusion, standing

The ultimate goal of this research is to acquire every occupant’s personal
factors and thus facilitate individual thermal comfort assessment. This means
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(a) (b)

(c) (d)

Fig. C.2: Persons difficult to predict clothing type due to occlusion. They are pointed by the
green arrows. (a) The right person is partly occluded by the monitor. (b) The right person is
partly occluded by the monitor. (c) The right person moves the arms out of the scene. (d) The
left person hides the arms behind the torso.

that each person must be tracked across time. To this end, we adopt Deep-
Sort. This tracker receives the image information and YOLOv5-predicted
detections, and then decides which tracking ID a detection should be associ-
ated to. Like Fig. C.1 shows, DeepSort can use the detected bounding box
information in the (t − 1)th frame (xi,t−1, yi,t−1, wi,t−1, hi,t−1 indicating the ith
box’s top-left coordinates, width, height, respectively) to infer the location
of the same object in the tth frame in the form of x

′
i,t, y

′
i,t, w

′
i,t, h

′
i,t by Kalman

filter. At the same time, DeepSort extracts and saves the deep features of
the object as its appearance information. In this way, two similarity metrics
(location and appearance) can be calculated, based on which each detected
person can be linked to a specific identity thus making the same person be
tracked with a consistent ID over time.

The reason why this DeepSort-by-YOLOv5 paradigm is chosen and ap-
plied to such a specific research field is explained further below. The data we
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use is in a thermal mode having significantly fewer details compared with
its RGB counterpart. This makes the reuse of such limited details/features
extremely important. Compared with other detectors, YOLOv5 introduces
PANet (Path Aggregation Network) [57] as its neck, making the deeper lay-
ers access to the lower-layer features much more efficiently, so the thermal
features are well reused. When it comes to the tracking part, the Maximum
Age strategy in DeepSort that deletes a track only when it is not associated to
any detection more than Amax frames can guarantee a consistent ID with the
existence of a few false negatives (FN) from YOLOv5. The Tentative Track
strategy in DeepSort which confirms a track only after it is associated with
detection in three continuous frames also guarantees that occasional false
positives (FP) from YOLOv5 have no severe influence on the output. That is
to say, this tracking-by-detection framework smooths the direct output from
a detector by filtering the undesired consequences of FN and FP, making
both the detector and the tracker benefit each other. Additionally, the low
complexity and real-time performance of DeepSort fit well the relatively sim-
ple scene in our case compared with other cases like pedestrians/vehicles
tracking in autonomous driving assistance systems.

Overall, this design not only locates and tracks each individual with a
consistent ID in the scene, but also predicts the person’s clothing and posture
status simultaneously that directly influence Icl and M estimation.

3.2 Icl Estimation

Icl estimation relying on lookup tables in ISO standards [8–10, 12] and up-
dated clothes databases [58, 59] can be a fast solution for laboratory studies,
but it is unfeasible to use such a scheme in real applications due to reasons:
(i) looking up the Icl value for a person needs extra manual work which is
tedious and expensive; (ii) if this look-up task is expected to be done auto-
matically, the solution must have the ability to recognize hundreds of dif-
ferent garment combinations that vary in materials and number of layers as
the latest research has revealed the significant importance of them in thermal
comfort [2], which is far beyond the capability of existing algorithms.

Therefore, to realize automated estimation, we go another way—using the
difference between the skin temperature Ts and the clothes temperature Tc to
calculate Icl . This method is intuitive since the difference between Ts and Tc
explicitly reveals the heat insulation of clothes to isolate the bare skin from
the environmental air. The larger the temperature difference, the higher the
clothing insulation rate.

To get Ts and Tc for each individual, the person’s skin region Rs and
clothing-covered region Rc need to be differentiated from each other. Empir-
ically, Rs includes face, hands, and neck; Rc includes shoulders, torso, and
upper arms. However, in daily life, accessories (hat, glasses, scarf, watch,
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etc.), spontaneous behaviors (lower one’s head, turn one’s face away, hide
one’s arm behind the torso, etc.), and inevitable occlusions by things in front
make many body parts be detected unreliably and even totally invisible.
After considering such situations, this research counts the lower arms (the
middle point of the elbow and wrist) for short-sleeved clothes and the nose
area as Rs, and the elbows for long-sleeved clothes and the shoulders as
Rc. These regions are also widely used heat receptors in thermal comfort
research [35, 54–56]. Fig. C.3 illustrates Rs in green crosses and Rc in red
crosses on four images.

(a) (b)

(c) (d)

Fig. C.3: Skin region Rs and clothing-covered region Rc. Rs in green crosses and Rc in red
crosses. (a)-(d) illustrate persons doing different tasks in different poses.

To locate these body parts, we employ OpenPose [60]—a 2D pose estima-
tion tool. OpenPose has a robust ability against occlusions to detect key body
points. The level of the ability against occlusions is determined by a parame-
ter called confidence threshold which means that only the detected key point
whose confidence score is higher than the threshold will be counted as the
output. The higher threshold, the lower the level of ability against occlusions
but the higher accuracy of detection; the lower threshold, the higher-level
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ability against occlusions but more false positives. This can be shown in Fig.
C.4 which draws the detected key body points by OpenPose with different
confidence thresholds of 0.1, 0.3, 0.5, and 0.7.

(a) (b)

(c) (d)

Fig. C.4: Detected key body points by OpenPose with different confidence thresholds. (a)
Threshold of 0.1. (b) Threshold of 0.3. (c) Threshold of 0.5. (d) Threshold of 0.7. For better
visualization, each key point is the end of the colorful line segment.

Since the detected key points are representations of Rs and Rc and thus
directly related to Ts and Tc, a higher accuracy instead of the ability against
occlusions is much more important. Like in Fig. C.4(a) and Fig. C.4(b), the
detected elbows of the left person are in fact in the computer monitor re-
gion; the result in Fig. C.4(c) is more accurate, but the detected wrists of
the right person are in the laptop region which will influence the lower arm
localization in Rs. These preliminary trials inspire us to set the confidence
threshold as high as possible, but a too high threshold produces more miss-
ing detections. Therefore, our work uses 0.6 as the threshold in the entire
research which has been proved as an effective parameter in the experimen-
tal part Section 4.3. To further decrease the influence of miss detections, an
accumulation strategy of all the detected key points within a duration like
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five minutes is introduced since a person’s clothes status is not changed very
frequently, which at the same time filters out potential noises.

Another thing worth mentioning is that although OpenPose detects key
body points for each person, it has no function of multi-person tracking, and
hence our tracking-by-detection framework is still necessary.

In mathematics, based on the recognized sleeves status and OpenPose-
predicted key body points, the skin region Rs and the clothing-covered region
Rc are determined, both of which are a set of pixel coordinates (x, y) in the
image plane like Equation (C.1) and (C.2).

Rs =
{
(x1s

t , y1s
t ), (x2s

t , y2s
t ), ..., (xms

t+1, yms
t+1), ..., (xns

t+itv−1, yns
t+itv−1)

}
(C.1)

Rc =
{
(x1c

t , y1c
t ), (x2c

t , y2c
t ), ..., (xmc

t+1, ymc
t+1), ..., (xnc

t+itv−1, ync
t+itv−1)

}
(C.2)

In the equations, the subscript (t, t + 1, t + itv − 1) refers to the index of
each frame within a time period of itv frames; the superscript (1s, 2s, ms,
ns, 1c, 2c, mc, nc) refers to the index of each detected key point. So in the
consecutive itv frames there are ns and nc key points detected in Rs and Rc,
respectively.

The thermal camera we use is Xenics Gobi-384-GigE that can visualize
a thermography of the scene it captures and measure the temperature of
each pixel within the image with an accurate resolution of 0.08 ◦C. Therefore,
temperatures of the detected key points (T1s , T2s ,..., Tns ) in Rs and (T1c , T2c ,...,
Tnc ) in Rc are easily read from the camera. Then an average calculation of
the temperature values (T1s , T2s ,..., Tns ) and (T1c , T2c ,..., Tnc ) gets Ts and Tc,
respectively.

As long as Ts and Tc of each individual are calculated, the person’s Icl can
be estimated by:

Icl =
1

0.155 · h
· Ts − Tc

Tc − To
(C.3)

where h equals to 8.6 referring to human’s heat transfer coefficient; To is the
operative temperature considering both the air temperature and the mean
radiation temperature, so here it is calculated by the average temperature
of the background region in each frame. This calculation comes from [35]
according to [10, 61], and all the temperatures Ts, Tc, and To are in degrees
Celsius. We claim that our emphasis is the OpenPose strategy for localizing
Rs and Rc to get Ts and Tc, based on which any Icl calculation method can be
applied.
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3.3 M Estimation

In this part, we first propose three vision-based features to represent each
person’s activity intensity, based on which M is estimated.

Three Vision-Based Features

Though M can be estimated by a person’s key posture or activity type listed
in ISO standards [8, 9, 11, 12] and updated databases [62, 63], this is a rough
estimation in many cases, since we have observed that different people tend
to have different activity intensities for the same posture. For example, some
people will do a bit of stretching when standing up while others may just
stand still. Therefore, a more accurate and dynamic M estimation is ex-
pected. This is done by computing three vision-based features—a person’s
bounding box changes in two aspects (location and scale) and the optical
flow intensity within the bounding box, over a few seconds like 10 s (210
frames) in our case. Here, the choice of 10 s comes from an observation that
it takes similar durations for a smart bracelet to monitor a user’s heartbeats
and blood oxygen content—two human physiological signals indicating the
M value. This three-feature idea is motivated by that: the bounding box lo-
cation change captures the general body movement; the bounding box scale
change captures the motion of limbs; the optical flow intensity within the box
captures the subtle movement that the box changes may ignore.

To realize this, for the location change of a certain person’s bounding
boxes during 10 s (210 frames), the center coordinates (cx, cy) of the person’s
bounding box in each frame is drawn as a point in a 2D plane, and totally the
210 2D points form a cluster-shaped pattern. The more spread out the points
are, the larger the general body movement is. The degree of spread can be
approximated by fitting an ellipse to the cluster and then calculating the area
of this ellipse. In mathematics, first, the covariance matrix of the vector Vcx
(composed of the horizontal coordinates of the 210 points) and the vector Vcy
(composed of the vertical coordinates of the 210 points) is computed, and
then the two eigenvalues of the covariance matrix are computed, at last, the
multiplication of these two eigenvalues represents the area of the ellipse.

For the scale change of a certain person’s bounding boxes, after translating
the 210 bounding boxes from 210 frames, they will have the same center at
the origin, and then the upper-right coordinates (ux, uy) of each bounding
box represents its scale. Similarly, the 210 upper right points form a cluster
in a 2D plane, and the area of the ellipse fitting to the cluster will represent
the scale change across time. The larger the area, the larger movement of
limbs.

When it comes to the optical flow intensity in a person’s bounding box
from the tth to (t + itv − 1)th frame (itv equals to 210 here), for each frame
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two optical flows in horizontal and vertical directions are extracted by the
TV-L1 algorithm [64] realized in a tool called MMAction [65]. Each optical
flow is saved as an 8-bit image in which pixels with a grayscale value of 127
represent no movement while these pixels with grayscale values farther away
from 127 represent larger movements. Therefore, within a duration of itv
frames, a person’s optical flow intensity Ixy is calculated by:

Ixy =
∑τ=t+itv−1

τ=t Iτ
xy

itv
(C.4)

Iτ
xy =

√
(Iτ

x )
2 + (Iτ

y )
2 (C.5)

Iτ
x =

∑(x,y)∈boxτ

∣∣ f τ
hrz(x, y)− 127

∣∣
∑(x,y)∈boxτ

1
(C.6)

Iτ
y =

∑(x,y)∈boxτ
| f τ

vtc(x, y)− 127|
∑(x,y)∈boxτ

1
(C.7)

where τ indicates the frame index; Iτ
xy is the person’s optical flow intensity

in the τth frame; Iτ
x and Iτ

y are the person’s optical flow intensity in the
horizontal and vertical directions in the τth frame, respectively; (x, y) is any
pixel in the optical flow; boxτ is the bounding box region of the person in
the τth frame; fhrz and fvtc mean the two optical flows in the horizontal and
vertical directions, respectively. In Equations (C.6) and (C.7), the number
of pixels in the bounding box is acted as the denominator to normalize the
influence of the size of the box.

In this way, the three features (bounding box location change, bounding
box scale change, optical flow intensity) representing an individual’s activity
intensity are acquired. A visualization showing the bounding box location
change by a cluster of 210 2D points/circles, the bounding box scale change
also by a cluster of 210 2D points/circles, and the optical flow intensity within
the bounding box in each frame from a duration of 210 frames are in Fig.
C.5, in which ID 1 person is standing with very limited movements while
ID 2 person is standing and stretching with large movements. This figure
intuitively illustrates that the larger body movements of ID 2, the more spread
out the points/circles in Fig. C.5(d) and Fig. C.5(f), and the larger optical flow
intensity in Fig. C.5(h).

M Estimation from the Three Features

In real life, persons may have various activities which are unrealistic to be
analyzed accurately. However, for an office environment, staff usually have
scheduled routines and thus relatively fixed behaviors. Generally, the sitting
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ID1: Optical flow intensity change
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Fig. C.5: Using bounding box changes in location and scale, and the optical flow in the bounding
box to represent an individual’s activity intensity. (a) and (b): ID 1 person is with small move-
ments and ID 2 person is with large movements. (c) and (d): Bounding box location change of
ID 1 person and ID 2 person, respectively. (e) and (f): Bounding box scale change of ID 1 person
and ID 2 person, respectively. (g) and (h): Optical flow intensity change of ID 1 person and ID 2
person, respectively.

staff are typing the keyboard, reading, taking notes, sorting through files,
chatting with colleagues, online meetings, etc. And the standing staff are
also occupied by the same tasks but may be involved with some walking
or body stretching. This prior knowledge is such important that it gives a
metabolic rate range from which each individual’s M varies.

Therefore, with the above prior knowledge of standard office behaviors,
by referring Table A.1 and Table A.2 in ISO 8996 [11], the CBE (Center for the
Built Environment) thermal comfort tool [66], and the 2011 compendium of
physical activities tables [63, 67], the usual metabolic rate range of a sitting
office staff is quite narrow from 58 W/m2 (1.0 MET) to 87 W/m2 (1.5 MET),
while a standing staff’s metabolic rate usually varies from 75 W/m2 (1.3
MET) to 174 W/m2 (3.0 MET). According to the CBE thermal comfort tool,
the slight M change of a sitting person within the range [58 W/m2, 87 W/m2]
has a mild influence on his or her thermal sensation, while the M change
within the much larger range of a standing person significantly influences
the thermal feeling. This result inspires us to use a middle value of 72.5
W/m2 to represent a sitting office staff’s M for simplicity and generalization
which also relieves the three-feature extraction for him or her, but we need
to specifically define a standing person’s M from his or her dynamic activity
intensity situation represented by the three vision-based features.

To map such features to a value of M, a classification idea is introduced.
Similar to Table A.2 in ISO 8896 where metabolic rates from 55 W/m2 to more
than 260 W/m2 are categorized into resting, low, moderate, high, and very
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high levels, we decide to categorize the metabolic rate of a standing office staff
into low, moderate, and high levels. Specifically, a low level means standing
with very limited movements or transient spontaneous movements (standing
quietly in a line, reading, using a cellphone, normally chatting, etc.); a mod-
erate level means standing with spontaneous but lasting movements (nat-
ural and small paces, limbs movements, head movements, discussing with
gestures, etc.); a high level means standing with significant movements usu-
ally indicating intentional actions like sustained location changes by walking,
constant trunk movements to stretch/relax the body, etc.

It is extremely important that the three levels do not mean there are only
three options for the M value. Instead, for a person’s activity intensity, there
are three classification probabilities Pl , Pm, and Ph indicating the possibilities
of being viewed as low, moderate, and high level, respectively. Based on Pl ,
Pm, and Ph, the person’s final M is estimated by:

M = Pl · Ml + Pm · Mm + Ph · Mh (C.8)

where Ml , Mm, and Mh are the lower boundary, the middle value, and the
upper boundary of a standing person’s M, that are, 75 W/m2, 125 W/m2,
and 174 W/m2, respectively.

To realize this solution, the classification probabilities Pl , Pm, and Ph are in
need. With only three features describing a person’s activity intensity within
a few seconds as the input, a simple and flexible classification model instead
of a CNN can be used. So, in this study, several lightweight models are
employed and the random forest model works best. The training and testing
details are in Section 4.4.

In summary, the proposed M estimation method has several advantages:
(i) the three explicitly-extracted features can guide the metabolic rate esti-
mation efficiently, considering that the features automatically extracted by
a learning method are relatively difficult to anticipate and thus may poten-
tially fail for a specific task; (ii) the three features are really low dimensional,
making it possible to use lightweight machine learning classifiers which are
flexible to be integrated into the whole system; (iii) the probability-weighted
summation (Equation (C.8)) makes the estimated M continuously change in
a range, which not only fits the real-life scenario than limited and discrete
choices in existing methods but also avoids the very difficult annotation if a
regression model is adopted.

4 Experiments

In this part, we first introduce the information of the dataset we col-
lected from a multi-person environment, and then the proposed tracking-
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by-detection module, Icl estimation module, and M estimation module are
evaluated.

4.1 Dataset Information

There is no available public dataset for visual analysis of Icl and M in a
multi-person environment. We, therefore, collected such a dataset in De-
cember 2020 in Denmark. During the collection, two persons were sitting or
standing with different types of clothes in a typical office environment where
the indoor temperature and humidity were 22 ◦C and 32%, and they were
encouraged to behave naturally. That means, typing the keyboard, texting
with cellphones, chatting with each other, reading, stretching the body to re-
lax, and others were captured in the collected videos. The horizontal distance
between the camera and persons is around 3.5 meters, and the vertical dis-
tance between the camera and the ground is around 2.7 meters. In this way,
ten subjects contributed to 114 videos with each video’s length about 2000
frames by using a thermal camera (Xenics Gobi-384-GigE whose sensor size
is 384 × 288).

4.2 Evaluation of the Tracking-by-Detection Module

The tracking-by-detection (DeepSort-by-YOLOv5) module needs a well-
trained human detector to detect persons in six categories mentioned before
in Table C.3. To train YOLOv5, from the dataset we sampled one frame every
50 frames for annotation and thus 5263 frames are selected in which each
person’s bounding box and category are labeled. These 5263 images are then
divided into a training set (4467), validation set (362), and testing set (434) to
guarantee that subjects in the testing set never exist in the training set and
validation set for a fair evaluation. Additionally, we selected and labeled 832
images from a single-person thermal dataset from [34] to increase the amount
and diversity of the training set. The detailed information of the data to train
and evaluate YOLOv5 is listed in Table C.4. Accordingly, the 15 videos from
which the 434 testing images are sampled are used to evaluate the whole
DeepSort-by-YOLOv5 framework.

With a desktop equipped with Windows 10, CUDA (Compute Unified De-
vice Architecture) 10.2, PyTorch 1.7.1, and one NVIDIA 2080Ti GPU (Graph-
ics Processing Unit) card, the YOLOv5m version [41] is finetuned with the
learning rate 0.0075 and stops at the 200th epoch at which the training loss is
not decreasing any more. Other settings remain the same with the released
YOLOv5m. The best model on the validation set is performed on the testing
set and then achieves a mAP50 (Mean Average Precision) of 89.1% over six
categories. Specifically, the AP50 rates of LongSit, ShortSit, OclSit, LongStand,
ShortStand, and OclStand are 98.8%, 90.0%, 95.5%, 98.5%, 99.5%, and 52.5%,
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Table C.4: Detailed information of the data to train and evaluate YOLOv5.

- Training Validation Testing
Number of images 5299 362 434

Number of persons

LongSit 2099 172 22
ShortSit 1615 29 157
OclSit 828 274 92

LongStand 2280 140 149
ShortStand 2735 100 443
OclStand 254 9 2

respectively. The AP50 drop in OclStand is due to the data imbalance prob-
lem. There are less than 300 images having OclStand persons in the training
set, and there are only two images having Oclstand persons in the testing
set (see Fig. C.6). In Fig. C.6, persons with bounding box SSD (ShortStand),
SS(ShortSit), and OSD (OclStand) are categorized correctly, while the one
with box LSD (LongStand) is categorized wrongly since the person’s sleeve
status is unknown and thus should have been recognized as OclStand (OSD).

(a) (b)

Fig. C.6: Detection results on two test images with OclStand (OSD) persons in them. (a) The
right person is wrongly categorized as LongStand (LSD). (b) Both persons are detected and
categorized correctly.

With the same hardware and software platforms, DeepSort-by-YOLOv5
runs on the 15 testing videos without further fine-tuning of the tracker it-
self. There are a total of 44,077 ground truth persons, 206 false negatives,
16 false positives, and 0 ID-switch in the 15 videos, which achieves an av-
erage MOTA (Multiple Object Tracking Accuracy) of 99.5% and the lowest
MOTA of an individual video is 93.7%. Fig. C.7 shows four sampled track-
ing results. The eight persons from left to right in Fig. C.7 are in category
ShortSit, LongStand, ShortSit, LongStand, ShortSit, OclSit, ShortStand, and
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(a) (b)

(c) (d)

Fig. C.7: Sampled tracking results on the testing set. No false positive and false negative in (a)
and (b). One false negative in (c). One false positive in (d). The numbers indicate tracked ID
numbers.

ShortStand, respectively. Fig. C.7(a) and Fig. C.7(b) are near frames from
a video, and both persons are well tracked though the person with ID 2 is
moving intensely. The false negative in Fig. C.7(c) is because there is no
similar situation in the training set that a person is occluded so severely. The
mug with hot coffee in Fig. C.7(d) has a similar temperature distribution as
humans, which leads to the false positive.

In summary, the proposed DeepSort-by-YOLOv5 module achieves a
mAP50 rate of 89.1% and a MOTA rate of 99.5% on the testing data. As
this is the first work on multi-person analysis in terms of clothing and ac-
tivity status recognition for thermal comfort, a direct comparison with other
works is not possible. Instead, we refer to the latest performance of human
detection/tracking on other thermal databases as an indirect comparison.
Work [51] shows that the mAP50 values are from 62.0% to 96.0% on bench-
mark databases with different difficulties like OSU, KAIST, VOT-TIR2015,
etc. Work [68] shows that the MOTA values are from 54.3% to 64.9% with
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different trackers on SCUT-FIR pedestrian dataset. These reference results
indicate that our results are good enough and thus the proposed method can
be included in a real application.

4.3 Evaluation of the Icl Estimation Module

The Icl estimation closely depends on the skin temperature Ts and clothes
temperature Tc acquisition, which is bridged by the localization of skin region
Rs and clothing-covered region Rc via OpenPose. Therefore, this evaluation
first looks at the efficacy of applying OpenPose to our dataset.

4901 images are used to examine OpenPose’s performance. These 4901
images come from the 5263 annotated images for YOLOv5 but do not include
the images where persons are wearing masks due to coronavirus restrictions.
Such an evaluation set is evenly sampled from the 114 collected videos, guar-
anteeing comprehensiveness and fairness. The evaluation protocols are: (i)
the OpenPose tool is not finetuned with our thermal dataset, and the confi-
dence threshold is set as 0.6 as mentioned in Section 3.2; (ii) only these key
points that influence Rs and Rc localization are checked, i.e., nose, shoulders,
elbows, and wrists; (iii) any frame with even only one wrongly detected key
body point is counted as one error frame, to make the evaluation strict and
conservative.

After a frame-by-frame check, there are 187 error frames out of the whole
4901 frames, indicating an accuracy of 96.2%. We found that there are two
types of representative errors—nose detected in the hair region due to a low-
ering head (Fig. C.8(a)) and nose detected in the background region due to a
turned side face (Fig. C.8(b)). The good point is that with the average com-
putation within a few minutes to get Ts and Tc, the influence of these errors
can be eliminated effectively, and of course, a higher confidence threshold
can further reduce such errors if needed.

Therefore, the efficacy of applying OpenPose to our multi-person thermal
scenario to locate Rs and Rc is verified. The performance surpasses that of ap-
plying OpenPose to a controlled single-person thermal environment [35] and
applying OpenPose to RGB MPII dataset [69], further proving the feasibility
of our strategy relying on OpenPose.

Based on the above acquired Rs and Rc, here we calculate the Ts and
Tc, and then estimate the Icl value. Since an individual Icl estimation also
involves the human tracking part, we use the testing videos for the tracking
module to evaluate this Icl estimation module too. From the testing videos, a
female wearing a lightweight T-shirt is acting as the subject to be researched,
because there is an available reference for her clothes type in the ISO tables
so that we can make a comparison. And thus, two videos including various
situations where the female is sitting, standing, reading, writing, typing the
keyboard, chatting, and drinking coffee (some frames are shown in Fig. C.9)
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(a) (b)

Fig. C.8: Two representative error frames with red arrows pointing to the wrongly detected
noses. (a) Nose is detected in the hair region. (b) Nose is detected in the background region.

go through our methodology pipeline to get her Icl . In one video consisting
of 1477 frames (70 seconds), 3326 skin points and 2849 clothes points are
detected for the female, from which the Ts and Tc are calculated as 34.67 ◦C
and 33.32 ◦C, respectively. Together with the To as 24.96 ◦C, the female’s Icl is
estimated as 0.1220 clo. In the other video of 1536 frames (73 seconds), 2496
skin points and 2502 clothes points are detected for the female; the resultant
Ts is 34.73 ◦C and Tc is 33.48 ◦C; together with the To as 25.58 ◦C, the female’s
Icl is estimated as 0.1182 clo.

From above calculation, we find that: (i) within a time period like more
than 1 minute, the accumulated detected points in Rs and Rc are way enough
for an accurate Ts and Tc calculation as the potential noises can be filtered
out efficiently; (ii) the estimated Icl values of 0.1220 clo and 0.1182 clo are
quite similar, revealing the stability and robustness of the method; (iii) the
reference value of the female’s Icl is 0.09 clo to 0.15 clo from Table B.1 in
ISO 9920 [10], showing the consistency of our method with the international
standards, and proving the feasibility of the proposed method.

4.4 Evaluation of the M Estimation Module

This subsection evaluates the effectiveness of the M estimation based on the
three extracted vision features, specifically for a standing person. As this
estimation is a probability-weighted summation, measuring the accuracy of
the classifier is the key.

Therefore, by dividing the 114 collected videos into small clips of 10 sec-
onds and then extracting the three vision features for each standing person
in these clips, 315 sets of the three features are used as the training data to
help the classifier learn the ability to category each person’s activity intensity
into low, moderate, or high level, and another 68 sets are used as the testing
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(a) (b)

(c) (d)

Fig. C.9: The female to be researched is pointed by the green arrow. (a) Chatting. (b) Reading.
(c) Chatting with gestures. (d) Drinking.

data to evaluate the classifier’s performance.
During the phase of preparing the training and testing data—annotating

a standing person’s activity intensity level, we met another dilemma that fre-
quently happens in the real world—there are always the situations where a
person’s movement is mixed with transient, lasting, mild, or intensive move-
ments within a short period which makes it very difficult to label the intensity
level. Therefore, these difficult cases are not included in the training/testing
sets to not confuse the classifier. From the positive side, this situation further
indicates the strength of our probability-weighted summation strategy that
makes the estimated M a continuous value.

To avoid being one-sided, three widely-used classifiers—KNN (K-
NearestNeighbor), SVM (Support Vector Machine), and RF (Random Forest)
are used. The parameters and performances of the three classifiers are listed
in Table C.5, in which each parameter is tuned by grid searching using the
training data and the meaning of each parameter is explained in the scikit-
learn library [70]. These accuracy values in Table C.5 prove that the three
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features are good representations of a person’s activity intensity, and thus
the M estimation from them by a classifier’s probability-weighted summa-
tion is also reasonable. And then we decide to use RF as the classifier for M
estimation due to its best performance on the testing data.

Table C.5: The parameters and performances of the used three classifiers.

Classifier Parameters
Training
accuracy

Testing
accuracy

KNN
metric=‘manhattan’, weights=

‘distance’, n_neighbors=13
100% 92.7%

SVM
C=50, kernel=‘rbf’,

gamma=‘scale’
83.5% 88.2%

RF max_depth=2, random_state=0 95.6% 95.6%

Based on RF’s classification probabilities Pl , Pm, and Ph, by Equation (C.8),
the M values of a same standing person with two totally different activity in-
tensities are estimated. The person is shown in Fig. C.10, in which Fig.
C.10(a) is a frame from a clip where the standing person is normally chatting
with many gestures, and Fig. C.10(b) is a frame from another clip where
the standing person is stretching his body like doing Pilates. For them, our
method outputs the estimated M values of 99 W/m2 and 170 W/m2, respec-
tively, which are very similar to the reference values of 104 W/m2 (CODE
09050 in [67]) and 174 W/m2 (CODE 02105 in [67]), further proving the fea-
sibility and usability of the proposed M estimation module.

(a) (b)

Fig. C.10: The standing person to be researched for M estimation is pointed by the green arrow.
(a) Normally chatting but with many gestures. (b) Stretching body like doing Pilates.
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4.5 Application in Thermal Comfort Assessment

From all the above evaluations, the proposed method indeed has the abil-
ity to estimate individual Icl and M across time for each person in a room.
With these two dynamic personal factors and the other four environmental
factors easily measured from sensors, a thermal comfort model like Fanger’s
model [6, 7] can calculate individual thermal comfort sensation to see if the
person feels hot, cold, or satisfied with the indoor environment. Although
occupants may have different thermal feelings at the same time, by regulating
the indoor microclimate in separate local regions, it is possible to achieve var-
ied thermal conditions that respond to the different subjective thermal states.
Moreover, the used thermal camera instead of an RGB camera, the computa-
tion in a local device, and the erasing function of captured image information
as long as Icl and M are estimated will make the whole processing pipeline
privacy-friendly.

5 Conclusions and Future Work

This paper proposes a contactless method to estimate each person’s clothing
insulation rate Icl and metabolic rate M dynamically by use of a thermal
camera, in an uncontrolled multi-person indoor environment.

Specifically, the method composes of a tracking-by-detection (DeepSort-
by-YOLOv5) module to track each person and recognize his or her clothing
status and key posture simultaneous, a key body points detection module to
measure the skin temperature and clothes temperature for Icl estimation, and
a random forest classifier module to categorize each individual’s activity in-
tensity into different levels for M estimation. All three modules are evaluated
with a new multi-person thermal dataset, verifying that the methodology is
robust to be applied in real-life applications for individual thermal comfort
assessment.

The future work will be to include this research into such an application to
facilitate thermal comfort control systems for lower energy waste and higher
working comfort in an office building.
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1. Introduction

Abstract

For a built environment that thermally satisfies the humans in it, the indoor
thermal conditions should change adaptively according to the occupants’ thermal
sensations and needs. Recently more studies have found that the gender difference
has an impact on one’s thermal sensation, which has stimulated interest in gender
classification. Accordingly, this work investigates this topic in thermal imagery
for its privacy-friendly property instead of in more common RGB visible imagery.
Considering the lack of details in a thermal image compared with its visible coun-
terpart, data-driven-based CNN classifiers for thermal inputs usually encounter
more challenges and have lower performances. To solve this problem, a number of
analyses from the perspective of explainable AI (Grad-CAM++) have been conducted
to explore which input region a CNN classifier looks at to distinguish a female
from a male and vice versa, which helps to avoid extracting improper features that
result in unsatisfactory performance. These analyses straightforwardly emphasize
the importance of removing biases and increasing diversity for a training dataset,
the guarantee of which will improve the generalization ability of the CNN model and
thus render more fair results.

keywords: gender classification; thermal imagery; explainable CNN; Grad-CAM++;
dataset biases

1 Introduction

Gender classification has been frequently used in many fields of our life,
like access control, product recommendation, social statistics, etc. Regard-
ing the popular trend of designing smart buildings, there is also a place
for gender classification based on the notion that females and males usually
have different thermal sensations in the same environment [1–8]. Therefore,
smart buildings (specifically referring to a thermal adaptive architecture in
this work that regulates its indoor microclimate according to individual ther-
mal needs) can provide a more satisfactory microclimate for the occupants if
the gender information of each occupant is taken into consideration.

Accordingly, automatic gender classification as a computer vision task has
been more prevalent recently, as it can save a lot of manpower involved in the
manual recognition of genders. Most of the gender classification works are
targeted at visible facial images (see Fig. D.1) [9–15] and gait information of a
whole body (see Fig. D.2) [16–20]. However, as to the application in a specific
domain of a thermal adaptive built environment in real life, these studies are
not that effective anymore. Because occupants are usually reluctant to have
their facial information recorded by visible cameras for privacy concerns and
it is much more difficult to extract gait information as sitting is the domi-
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nant posture in such indoor environments. Therefore, gender classification
in thermal imagery which is more privacy-friendly draws more attention in
recent days.

(a) (b)

Fig. D.1: Example RGB images for gender classification. (a) Females. (b) Males. Image source:
[9].

Fig. D.2: Human silhouettes in a gait cycle and the averaged gait energy image (the right one)
for gender classification. Image source: [16].

As to gender classification for thermal inputs, researches are quite rare as
expected since the number of thermal sensors is dramatically lower than that
of visible sensors from our daily experiences. From these researches, some of
them use thermal imagery as an auxiliary modality besides visible imagery
to solve illumination problems caused by shadows or day and night shifts.
Studies [21–23] are such cases that either use a late fusion (of classification
scores of the thermal pipeline and the visible pipeline) or an early fusion (of
the extracted thermal features and visible features) to get the final classifica-
tion result. The difference is that [21, 22] use the full human body while [23]
uses the facial image as the input for subsequent gender classification. Other
works [24, 25] only use thermal imagery as the data source and correspond-
ingly apply convolutional neural network (CNN)-based classifiers to predict
the gender category for each acquired facial image.

Generally, these studies have demonstrated the potential of doing gender
classification in thermal imagery. However, in these works, the CNN classi-
fiers are working as a “black box” where only the input images, the output
gender categories, and an accuracy rate are known. A lot more questions are
unsolved. For example, why a classifier can grasp the ability to recognize a
female from a male and vice versa; why some of the inputs are mis-classified
while others are correctly-classified; how to improve the performance further,
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etc. To answer these queries, a technology called explainable AI (artificial
intelligence) can be employed to make the CNN processing pipeline more
“transparent”.

Accordingly, this work uses explainable CNN to visualize the most dis-
criminative regions that a classifier looks at to predict the gender of the per-
son in the input image—the “where to look” problem. By doing a series of
such visualization experiments in thermal imagery, we have found a severe
influence of bias in the training set on the classification result and further
emphasized the importance of a diverse dataset for the better generalization
ability of a CNN model. Taking this into consideration (remove the bias and
increase the diversity of the used dataset) can pave the way to a more ro-
bust and successful gender recognition in thermal imagery. As a whole, our
contributions are:

• We have done extensive experiments on gender classification in ther-
mal imagery and discovered that a CNN-based gender classifier focuses
more on extrinsic features, especially the hair.

• Considering that extrinsic features are more prone to data imbal-
ance/bias problems than intrinsic facial features, we have done ablation
analyses to investigate how biases/stereotypes in a dataset influence
the gender classification result and also recommended good practices
to find biases more effectively in advance.

2 Explainable CNN

This work is characterized by using explainable CNN to investigate the
gender-discriminative regions of an input image, especially in thermal im-
agery that has much fewer details for a CNN to use compared to visible
imagery. Therefore, this section is centred on the explainable CNN which
specifically refers to class activation mapping (CAM) [26]-based interpreta-
tion for a classification task.

2.1 Class Activation Mapping

For an image fed to a classical CNN composed of several convolutional layers,
the first convolutional layer works on the image in a way of using multiple
filters to do pixel-wise multiply and accumulate operations with the move of
a sliding window; this processing generates a number of feature maps that
will be fed to the subsequent layers where the same operations are repeated.
Usually, the feature maps extracted in deeper layers have abstracted the input
details into a general representation that can be used for semantic high-level
computer vision tasks. Therefore, the feature maps of the last convolutional
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layer are expected to have the best semantic information and also contain
the spatial information before being converted to a fully-connected shape.
Therefore, analyzing the influence of these feature maps on the prediction
result (or any class) can localize the most important feature map region for
this class, based on which the corresponding important region in the input is
known.

In detail, if the feature maps of the last convolutional layer is a H ×W ×C
tensor (H, W, and C represent the size of height, the size of width, and the
number of channels, respectively), we can imagine that each channel of these
maps must have a different contribution to the predicted class (or any class).
If this channel-wise contribution can be measured as a value, all the channels
of feature maps can be integrated into a map of size H × W by a weighted
summation. In this way, the value of each point location in the map can
represent the importance of this location to the predicted class (or any class).
Therefore, a series of subsequent procedures (including a visualization of this
map based on the value of each point, an interpolation of this visualization
to the input image size, and an overlapping of this interpolated map on the
original input image) will generate a final class activation map that shows a
class-discriminative location distribution as exampled in Fig. D.3. In the Fig.
D.3(b) and (c), the regions with red color contribute most to a certain class; in
other words, the region of the dog head (or the cat head) exactly corresponds
to the dog (or cat) class. Such a color distribution also gives a class activation
map another name for convenience—heat map.

(a) (b) (c)

Fig. D.3: An example of class activation maps. (a) The input image. (b) The class activation map
for the class of dog. (c) The class activation map for the class of cat. Image source: [27].

From this example, a CNN interpreted by CAM is much more “transpar-
ent” instead of a “black box”, explicitly explaining which region it looks at
for a result so that we can get an understanding of “why it predicts what it
predicts”. For this advantage, many works have used the technology of CAM
in various applications. Work [28] uses CAM to visualize the heat maps of
chest X-ray and CT-scan images regarding distinguishing COVID-19 cases
from normal cases by a CNN classifier. These CAM visualizations point out
the crucial locations of a lung image that should be paid more attention to
and thus help medical workers give a faster and more accurate diagnosis.
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Similarly, medical researches [29, 30] use the CAM technology to do diabetic
retinopathy classification on fundus images and sclerosis types classification
on brain MRI images, respectively. Both works have visualized the most
discriminative image region for the diagnosis which helps to increase the
diagnosis accuracy, reduce the examination time, understand the disease de-
velopment, and improve the treatment. In other fields, CAM are applied to
railway scene classification [31], iconography artwork analysis [32], examina-
tion of loosening bolts of automotive parts [33], etc.

2.2 Generating Class Activation Maps

As mentioned above, CAM has been applied to many applications. How-
ever, the exact research on gender classification in thermal imagery has not
used it yet. Therefore, this specific task via CNN is still a “black box” where
we do not know what happens and whether we can trust the result or not.
To this end, visualizing the gender-discriminative region for an input is im-
plemented in this work, for which each input’s class activation map has to
be generated. Hence, this subsection explains how to generate it, specif-
ically referring to Gradient-weighted Class Activation Mapping++ (Grad-
CAM++) [34].

Grad-CAM++ is an improved version of Grad-CAM [35] which will be
first introduced here. As mentioned in the last subsection, a class activation
map is an interpolated version of the weighted summation of the feature
maps from the last convolutional layers. Thus, calculating the weight of each
feature map that represents its contribution to the predicted class (or any
class) is the key. Inspired by the back-propagation in CNN, the gradient
flowing from any class score to a certain neuron can represent its importance
for the class. Intuitively, a large positive gradient means that the increase of
the neuron value will result in a large increase in the class score. In contrast,
a small positive gradient means that the increase of the neuron value only ac-
counts for a limited increase in the class score. On the other hand, a negative
gradient means the change of the neuron value and the change of the class
score are in different directions.

From this understanding, the gradient of a class score yc (for a certain
class c) with respect to a pixel value Ak

ij at location (i, j) on the Kth feature

map Ak explicitly represents the location’s importance to yc. Then according
to equation D.1 [35], the gradients of all locations on Ak are globally averaged
to a value αc

k which represents the importance of Ak to yc. This αc
k is the

weight of this channel Ak in calculating the class activation map. In the same
way, the weights of other channels of feature maps are obtained. With them,
the initial class activation map (heat map) considering all the channels by
a weighted summation is obtained, in the form of D.2 [35] where a ReLU
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operation filters out the influence of features that have a negative influence
on the class score. After interpolating the initial heat map to the original
input size and then overlapping it on the input, the final class activation map
via Grad-CAM for the class c is obtained.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(D.1)

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak) (D.2)

This Grad-CAM scheme has been verified in many studies and success-
fully visualizes class-discriminative regions. However, the global average cal-
culation in equation D.1 has sacrificed the spatial information, which may
influence the localization ability to find the region of interest for a certain
class. To solve this, Grad-CAM++ proposes that the gradient on each pixel
location (i, j) on the Kth channel Ak should has its own weight αkc

ij (obtained
via partial differential equation of higher order) when calculating the inte-
grated weight wc

k for Ak and thus improves equation D.1 to D.3 [34]. With
other similar subsequent calculations, the class activation map of an input
via Grad-CAM++ will be generated.

wc
k = ∑

i
∑

j
αkc

ij · ReLU(
∂yc

∂Ak
ij
) (D.3)

According to the comparisons in [34], Grad-CAM++ provides a more ac-
curate localization ability in heat maps, and thus this work chooses Grad-
CAM++ for all the analyses.

3 Explainable Gender Classification

This section gives the information of the used thermal dataset, the imple-
mented CNN, the corresponding performances, and the detailed analyses of
the results via Grad-CAM++.

3.1 Dataset and Implementation Information

Dataset Information

The thermal modality dataset from Tufts face database [36, 37] is chosen as
the images to train a CNN gender classifier for the reasons: (1) faces are
important regions for gender recognition not only from our daily experi-
ences but also from existing works in RGB visible imagery; (2) according to
the database description [38], the thermal modality dataset has recorded the
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faces of 112 participators including 37 females and 75 males, which makes
itself a relatively large dataset to train a classifier. To be specific, this thermal
dataset consists of two scenarios. One is the TD_IR_A (Tufts Dataset Infrared
Around) subset captured by a FLIR camera which is moved to nine positions
around each participator in an approximate semicircle shape; the other one
is the TD_IR_E (Tufts Dataset Infrared Emotion) subset to record each per-
son with five different emotions by the same FLIR camera. Example images
of these two kinds of thermal subsets are shown in Fig. D.4 and Fig. D.5,
respectively. The images from these two subsets have the same spatial res-
olution of 336 × 256 pixels. We, therefore, decide to combine them together
for the gender classification task. Accordingly, the thermal images from all
the 37 females and another 37 males constitute the training set. After an aug-
mentation step of one horizontal flipping and two kinds of rotations (-5◦ and
5◦), there are a total of 3108 female images and 3102 male images for training.

Instead of separating part of the images from the Tufts dataset into a
validation set, we chose the thermal facial images from the VAP RGB-D-T
dataset [39] for validation (see Fig. D.6). In detail, the validation set includes
40 images from all the eight females recorded in the VAP RGB-D-T dataset
and another 40 images from eight males for a fair evaluation. It is worth
mentioning that: (1) we have resized the validation images into the same size
of 336 × 256 as the training set for convenience and better model generaliza-
tion; (2) we do not prepare a testing set as the number of female participators
is not enough for three subsets, and this work is primarily targeted at the vi-
sualized understanding of how a CNN does gender classification instead of
only boosting the performance. As a whole, the information of the training
set and validation set is listed in Table D.1.

(a) (b)

Fig. D.4: Example images of the TD_IR_A (around) subset. Each person has nine images corre-
sponding to nine directions. (a) Images of a female. (b) Images of a male.
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(a)

(b)

Fig. D.5: Example images of the TD_IR_E (emotion) subset. Each person has five images corre-
sponding to five emotions: neutral, smile, closing eyes, shocked, with sunglasses. (a) Images of
a female. (b) Images of a male.

(a)

(b)

Fig. D.6: Example images of the validation set. Each person has five images corresponding to
five directions. (a) Images of a female. (b) Images of a male.

Table D.1: The information of the training set and validation set for gender classification.

Number of images Number of participators
Training Validation Training Validation

Female 518 augmented to 3108 40 37 8
Male 517 augmented to 3102 40 37 8

Implementation Information

To realize the CNN-based classification of genders, we finetuned AlexNet [40]
whose last fully-connected layer (of a drop-out rate as 0.25) has two output
neurons representing the predicted scores of the two genders. In detail, the
AlexNet is finetuned for 50 epoches with the batch size of 64 and the Adam
optimizer whose learning rate is 1e-4, and then the model at the last epoch (at
which the network is converged) is used to conduct the visualization analysis

176



3. Explainable Gender Classification

by using Grad-CAM++ PyTorch toolbox [27]. It is also worth mentioning that
we do not use very deep networks (more than ten convolutional layers) like
VGG series [41], ResNet series [42], Inception series [43], etc., considering
that the number of the thermal data is not large and the details of a thermal
image are also fewer.

3.2 Results and Analyses

After 50 epochs, both the training and validation loss curves tend to be flat,
indicating that the finetuned AlexNet has stabilized. And it achieves a clas-
sification rate of 100% on the validation set. The corresponding checkpoint
is saved and used to analyze how the CNN does gender classification. Ac-
cordingly, Fig. D.7 shows some validation images and their class activation
maps.

(a)

(b)

Fig. D.7: Some validation images and their class activation maps. (a) Females. (b) Males.

From Fig. D.7, it can be seen that the common discriminative regions are
the hair area (for females), near the ear/neck/shoulder area (for males), or
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near the upper part of the arms (for both genders). Based on our daily expe-
riences, one hypothesis that females are expected to have long hair that can
cover the ear, shoulder, neck, and upper arm regions is proposed to explain
these highlighted areas. In a thermal image, the temperature of hair is lower
than that of a bare-skin area but higher than the background temperature.
Therefore, a hair area has a high potential to be recognized by the CNN,
based on which gender classification is realized. To test the hypothesis, class
activation maps of some training images are also generated and then shown
in Fig. D.8.

Fig. D.8: Some training images and their class activation maps.

From these figures, it is clear to see that a female’s hair ends are always
intensively activated, which indicates that the shoulder-length and longer
hair (covering shoulders, necks, and part of the chest and upper arms) is an
important sign of a female. Whereas the ear, neck, and shoulder region of a
male usually have no signs of hair (as shown in Fig. D.7 (b)) that makes him
distinguished from a female. Therefore, it is the hair area that the CNN looks
at for gender classification on this dataset.

Extended Experiment: the Bias of Hairstyles

The above analysis points out the importance of hairstyles in gender classi-
fication. However, hairstyle is an extrinsic character that cannot intrinsically
represent a person; besides, the CNN-learnt knowledge of females having
longer hair than males is a stereotype. Hence, a CNN looking at this re-
gion for gender classification is potentially dangerous as it is highly prone to
biases.

The fact that the CNN learns such a stereotype certainly indicates that it
has been impacted by the bias of hairstyles in the training phase. By manually
examining the 37 females in the training set, we find out there are 19 females
with shoulder-length or longer hair, two females with hijabs that are similar
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to long hair, 12 females tying a ponytail, and only four females with short
hair above the ears. The number of long-hair females is almost five times
that of females with short hair. Though this imbalance has not influenced the
validation performance (due to the simplicity of the validation set), the learnt
discriminative regions have been influenced by this hairstyle bias greatly.
In other words, if we leave this bias alone, the trained CNN will always
only look at the neck/shoulder/upper arms region to recognize a female or
male and thus ignore other useful information, which will potentially lead to
undesired classification results in a testing phase.

Therefore, a further investigation of how gender-discriminative regions
react to this hairstyle bias is conducted, which includes two extended exper-
iments: (1) there are only females with shoulder-length or longer hair and
hijabs in the training set, noted as Exp1; (2) there are only females with tied
ponytails and short hair in the training set, noted as Exp2. Both the extended
experiments use the same validation set as the basic experiment for evalua-
tion. Whereas the training sets are changed as listed in Table D.2.

Table D.2: The information of the training set and validation set for extended experiments to
investigate the influence of hairstyle biases on gender classification.

Number of images Number of participators
Training Validation Training Validation

Exp1
Female 294 augmented to 1764 40 21 8
Male 294 augmented to 1764 40 21 8

Exp2
Female 224 augmented to 1344 40 16 8
Male 224 augmented to 1344 40 16 8

Exp1 is an experiment to deliberately enhance the bias of hairstyle for
gender classification. We, therefore, hypothesize that the learned features are
stereotyped and unfair and thus degrade the performance. After the same
training process as the basic experiment, the finetuned AlexNet only gets
a classification rate of 80% on the same validation set. All the failed cases
are those females with tied ponytails that are mis-classified as males. On the
contrary, Exp2 is an experiment to remove the stereotype/bias of hairstyles in
the training set so that the CNN can learn a series of fair and comprehensive
features or the best intrinsic features to recognize a female or a male. There-
fore, the expectation is that the new learned weight/model can pay attention
to regions besides those shown in Fig. D.7 and Fig. D.8 for more robust
performance. After the same training process, the model of the last epoch
achieves a significantly-improved classification rate of 96.25% compared to
Exp1. For the visualization-based analysis, the respective model of Exp1 and
Exp2 is used to generate the class activation maps for the validation images
that are mis-classified in Exp1, as shown in Fig. D.9.

From these figures, the activated areas generated by Exp2 (Fig. D.9(c)) are
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(a) (b) (c)

Fig. D.9: Class activation maps of validation images (mis-classified in Exp1). (a) The input
images. (b) The class activation maps from Exp1. (c) The class activation maps from Exp2.

now either the top of the head or much broader compared to the neck areas
(Fig. D.9(b)) that indicate shoulder-length hair in Exp1, making these failed
cases in Exp1 correctly classified in Exp2. Therefore, removing the biggest
bias of the hair length in the training set indeed helps the CNN to consider
more aspects for a prediction.

Besides the mis-classified cases by Exp1, we have conducted a broader ex-
ploration for other validation images to compare the activated discriminative
regions in Exp1 and Exp2. The procedures are: we first generated the five
class activation maps of each validation participator’s five images but did
not overlap these maps on their corresponding input images; then, for each
person, we assembled the five maps into a single map from a channel/image-
wise average; at last, we overlapped the single map on the frontal image of
the corresponding person to get the final activation map. In this way, a final
map grasps the ability to generally represent all the discriminative regions
of an individual and provides a more comprehensive comparison between
Exp1 and Exp2. For the illustration, these final maps are shown in the sec-
ond column referring to Exp1 and the third column referring to Exp2 in Fig
.D.10 and Fig. D.11. From these figures, the activated regions from Exp2
are always larger and more general than those from Exp1, demonstrating the
more information the CNN looks at for a decision. Still, the hairstyle on the
top of the head (Fig. D.10) is important, and the best intrinsic facial feature
seems not to take a leading role from both experiments.
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(a) (b) (c)

Fig. D.10: The assembled class activation maps of validation images. (a) The frontal image of
a participator. (b) The assembled class activation maps from Exp1. (c) The assembled class
activation maps from Exp2.

(a) (b) (c)

Fig. D.11: The assembled class activation maps of validation images. (a) The frontal image of
a participator. (b) The assembled class activation maps from Exp1. (c) The assembled class
activation maps from Exp2.

4 Discussion

From these experiments on thermal images of the Tufts dataset and the VAP
RGB-D-T dataset, it is concluded that the CNN for gender classification in
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thermal imagery focuses more on extrinsic features (especially the hair) in-
stead of the intrinsic facial features that are normally used in identity recogni-
tion [44]. This is reasonable as more detailed information is lost in a thermal
image compared to its visible counterpart.

However, extrinsic features are highly prone to data imbalance/bias prob-
lems. Hence, from the perspective of data collection for data-driven ap-
proaches, a large and diverse dataset, especially with no biases, is very im-
portant. On the one hand, any bias may cause a disastrous influence as the
available thermal features are limited. On the other hand, finding biases may
be much easier in thermal imagery as it only has a relationship with ther-
mal radiations. Therefore, paying more attention to the object/phenomena
with thermal/temperature properties is an effective way, for example, the
time duration during which the data is collected as this may influence the
environment temperature, any object that has a similar temperature distri-
bution with humans (e.g. a warm-blooded animal) as it may be recognized
as a person, any object that has a very different temperature distribution but
has a relationship with humans (e.g. accessories like glasses as shown and
explained in the next paragraph), etc. In contrast, much more stereotypes
exist in visible imagery for gender classification, like the color of clothes, the
makeup, the skin color, etc., which require more careful consideration.

Besides the above-mentioned recommendations to find biases in thermal
imagery, a more practical method is to apply class activation mapping to
the training images to see what the CNN has learnt, provided that the CNN
has overfitted the training data so that it extracts the features of the training
images completely. In this way, the activated regions on a training image will
directly illustrate if there exists a data imbalance/bias. For example, a bias
that only females wear glasses in the training set will make the corresponding
glasses region activated as the class-discriminative area shown in Fig. D.12.
And then, a male with glasses will be recognized as a female in the testing
phase. This kind of bias usually has a severe impact on thermal datasets
because the distinctive temperature difference between a person and his/her
accessories (glasses) will enhance the influence of a nonliving thing on the
performance.

5 Conclusion and Future Work

This work investigates the “where to look” problem regarding gender classi-
fication in thermal imagery, that is, to find the gender-discriminative region
by using the technology of class activation mapping. On the basis of exten-
sive experiments and corresponding analyses on two thermal datasets, we
have discovered that a CNN-based gender classifier focuses more on extrin-
sic features. However, these extrinsic aspects are prone to introducing biases
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Fig. D.12: The class activation maps of some training images if there exists a bias that only
females wear glasses in the training set. These images are from the Tufts dataset.

and stereotypes that will cause improper feature extraction and unfair re-
sults. Keeping an eye on this side-effect and then removing such biases in
the training set can make the class-discriminative regions more general and
reasonable, which has the potential to lead to more robust performance.

In the future, we plan to extend our experiments and analyses to more
thermal datasets and scenarios to further testify our findings, for example,
investigating the gender-discriminative regions for cropped face-only images.
Besides, as we have emphasized the importance of the dataset diversity for
improving performances, we plan to convert some benchmark RGB datasets
to the thermal modality by using generative adversarial networks so that a
lot more images/videos can be utilized for tasks in thermal imagery.
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1. Introduction

Abstract

Drowning in harbors and along waterfronts is a serious problem, worsened by the
challenge of achieving timely rescue efforts. To address this problem, we propose a
privacy-friendly assistant surveillance system for identifying potentially hazardous
situations (human activities near the water’s edge) in order to give early warning.
This will allow lifeguards and first responders to react proactively with a basis
in accurate information. In order to achieve this, we develop and compare two
vision-based solutions. One is a supervised approach based on the popular object
detection framework, which allows us to detect humans in a defined area near the
water’s edge. The other is a self-supervised approach where anomalies are detected
based on the reconstruction error from an autoencoder. To best comply with privacy
requirements both solutions rely on thermal imaging captured in an active harbor
environment. With a dataset having both safe and risky scenes, the two solutions are
evaluated and compared, showing that the detector-based method wins in terms of
performances, while the autoencoder-based method has the benefit of not requiring
expensive annotations.

keywords: safety; drowning; surveillance; thermal imaging; deep learning; human
detection; anomaly detection

1 Introduction

More than 40 people drown every hour of every day. Drownings typically
occur when children fall into ponds, pools or wells; passengers or workers fall
overboard or sink with ships; as a consequence of floods or when people are
drunk in the vicinity of water [1]. Clearly, the causes of drowning accidents
are many, as are the solutions. Here, we specifically want to address the
deaths that can be prevented in urban spaces and industrial areas that are
associated with harbor fronts.

A drowning person must be rescued within a few minutes. Unfortunately,
it takes around 6 minutes from the authorities being alerted till a rescue boat
is in the water [2]. This means the chance of a successful rescue is greatly
improved by early preparations and accurate knowledge of the person’s po-
sition. This calls for a precautionary surveillance system to provide early
warnings for hazardous situations in critical areas like Fig. E.1 shows.

Such a surveillance system is mostly fulfilled by manual video surveil-
lance now. However, continuously monitoring large areas of waterfronts
manually is inefficient. If the operators who monitor the streams can be
assisted by an intelligent system, the efficiency will be much higher. Like a
human, the assistant system should be able to understand what is safe vs.
risky or normal vs. abnormal. In order to grasp the ability, the system must

193



Paper E.

Fig. E.1: Thermal surveillance imaging for detecting potentially dangerous situations and alert-
ing authorities. An alert should be raised when someone crosses the red line.

rely on cues correlated with drowning accidents, among which the most im-
portant cue is human activity near the water’s edge. Relying on this cue,
we investigate two alternative solutions based on computer vision and deep
learning:

• Supervised human detection: A person’s location and thus distance to
the harbor’s edge is used to determine whether the surveillance opera-
tor should be notified.

• Self-supervised anomaly detection: Scenes near the harbor’s edge are
classified as either normal or abnormal using the reconstruction loss
from an autoencoder. In our case we consider a scene with any human
activity in it to be unsafe, which should be classified as an anomaly.
This solution is based on the fact that human activity near the water’s
edge is very rare.

The contributions in this work can be summarized as: An assistant
surveillance system realized by two practical solutions (supervised vs. self-
supervised) is proposed to detect potential drowning accidents from har-
bor fronts. The two solutions are evaluated and analysed with respect to
strengths and weaknesses.
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2 Related Work

Although most methods, databases, and benchmarks for detecting people,
activities, and anomalies differ in various ways from our harbor scenario, it
is likely that many of their findings will be useful and can be transferred
from RGB images to thermal images. For this reason we give an overview of
related work.

2.1 Object Detection

With the advent of convolutional neural networks (CNN), object detection
has grown rapidly. A modern detector usually consists of a backbone which
is pre-trained on large databases like ImageNet [3], a neck composed of sev-
eral top-down connects or down-top connects to reuse extracted features, and
a head predicting the objects’ class and bounding box coordinates. The ef-
fectiveness of many mainstream detectors such as Faster R-CNN [4], SSD [5],
YOLO [6–10], and RetinaNet [11] has been proven in benchmarks such as MS
COCO [12] and PASCAL VOC [13].

Besides working on these general object detection benchmarks, the de-
tectors are applied to specific situations, like analyzing soccer matches by
detecting players [14], detecting stalled vehicles from moving vehicles to pre-
vent traffic accidents [15], detecting pedestrians in autonomous driving con-
text [16], monitoring social distance by human detection to stop the spread
of epidemics [17]. Note that the above-applied scenarios are all in RGB mode
and the detectors’ application to thermal mode remains underexplored.

2.2 Anomaly Detection

Anomalies are generally defined as incidents that are unusual and rare. This
makes it difficult to gather a large balanced database to train a binary normal
vs. abnormal classifier using supervised learning. Interestingly, with self-
supervised learning the unbalanced nature of the problem can be turned into
an advantage. For this reason, techniques such as autoencoders are popular
for anomaly detection [18–23].

An autoencoder consists of an encoder and a decoder. The encoder learns
to produce a compressed representation of the input, ending in a bottleneck.
The bottleneck is the input to the decoder whose task is to reconstruct the
original input from the compressed bottleneck representation. Both net-
works are trained by minimizing the difference between the input and its
reconstruction. The core idea of self-supervised anomaly detection using au-
toencoders is to use normal data to train the autoencoder. This results in the
autoencoder learning to faithfully reconstruct normal data while performing
poorly with abnormal data. In this way, the reconstruction error can be used

195



Paper E.

to recognize anomalies, and the unbalanced nature of the data becomes an
advantage.

This kind of methods for anomaly detection have been applied to datasets
such as UCSD [24] and Avenue [25]. With the UCSD dataset, the aim is to
classify the occurrence of carts, wheelchairs, skaters, and bikers as anoma-
lies. With the Avenue dataset, anomalies include running and walking in
the wrong direction as well as walking with bicycles. Again, note that these
datasets are in RGB mode and the application of anomaly detection using
autoencoders is unexplored when it comes to thermal mode datasets.

3 Challenges

In order to realize an assistant surveillance system for raising alarms to pre-
vent drowning accidents, a range of challenges must be considered. These
challenges include concerns such as privacy, challenges specific to thermal
imaging, and a long tail of rare events.

3.1 Sensitive Data

According to the European general data protection regulation (GDPR) [26],
personal data should be protected from being invaded and abused. To best
comply with this set of rules, privacy-friendly thermal cameras are used,
making it difficult to recognize a person in captured images.

3.2 Thermal Imaging

The use of thermal cameras is associated with benefits and drawbacks com-
pared with RGB cameras. Thermal cameras can be used to capture people
both day and night without the need of light sources. As thermal cameras
rely on thermal radiation, temperature changes in the scene will influence the
imaging. For instance, during warm days, the environment temperature will
approach the temperature of the human body, resulting in a loss of contrast
between the foreground (people) and the background.

The insulating properties of clothing also impact the appearance of peo-
ple in thermal images, thus constituting a significant source of variation.
Weather-induced phenomena such as wind, rain, and ice may also impact
cameras installed outside. Moreover, the spatial resolution of thermal cam-
eras is lower than visible light RGB cameras, which leads to the challenge of
applying methods intended for high resolution RGB images to low resolution
thermal images where the size of humans is relatively small.
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3.3 Rare Phenomena

(a) (b)

Fig. E.2: (a) Animal. (b) Reflection.

Rare and disturbing phenomena pose a challenge when developing an intel-
ligent system since it is difficult to anticipate them. Fig. E.2 provides two
examples from the harbor area: Fig. E.2(a) shows a red box around a dog
which may be mistaken as a child; reflections due to water on the ground
introduce false detections, as indicated by the two red boxes in Fig. E.2(b).
Besides, as the same with other scenes, a person whose body is occluded
severely or a person cluttered with a very similar background will make it
difficult for any detector to work.

4 Applied Methods

As mentioned before, we believe both object detection and anomaly detec-
tion are worth pursuing for an assistant precaution system. This section will
describe these two methods in detail. The approach based on object detec-
tion is illustrated in Fig. E.3(a). It processes frames individually as input
and locate people in the image. If a detection is made on the water side of
the red boundary, an alarm is raised. Fig. E.3(b) illustrates the autoencoder-
based approach, where pixels from the water side of the red boundary are
passed through the autoencoder and an alarm is raised if the input is poorly
reconstructed, signifying an anomaly—human activity near the water’s edge.

4.1 Supervised Human Detection

To detect a human from a long distance a successful detector should have the
ability to tackle small objects, and we value three aspects that matter to this
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(a)

(b)

Fig. E.3: (a) Object detector where alerts are raised when people are detected on the risky side
of the red boundary. (b) Autoencoder where the reconstruction error is used as an indicator of
anomalies.

ability: anchor boxes, feature reuse, and scales, which are well designed in
YOLOv5 [10]—the applied detector in the harbor scenario.

An anchor box gives the initial size of an object, and the predicted bound-
ing box is the updated version of the anchor box that the object corresponds
to. Therefore, the definition of anchor boxes is critical in a detector because
an improper anchor box (either too large or too small) not only increases
the prediction time but also leads to missing objects as this anchor box may
have a very low intersection-over-union (IoU) with any ground truth box. For
instance, to get a satisfactory performance on COCO database, YOLOv3 [8]
uses a k-means clustering algorithm on COCO training set to define 9 an-
chors boxes, which emphasizes the importance of database-adaptive anchor
boxes. That’s why YOLOv5 is utilized here. Its capacity to dynamically de-
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fine the number and sizes of anchor boxes according to the training set is of
great benefit.

To accurately localize an object, appearance information from lower layers
of a CNN is greatly helpful. But this information may vanish after passing
through multiple layers in a deep network thus increasing the difficulty of
object detection, especially for small objects. Feature reuse can address this
problem by top-down or down-top bypass connections to combine features
from both lower layers and deeper layers. It is to be noted that if the addi-
tional bypass itself has to go through deep layers, the efficiency of feature
reuse will be reduced. YOLOv5 solves this reduced efficiency problem by
introducing PANet [27] instead of FPN [28] as its network neck.

A detector with predictions at only one scale often fails for objects with
different sizes. To address this issue, a detector should work on several
scales, a way to avoid missing detections of small objects whose informa-
tion may disappear in deeper layers. Therefore, small objects are detected
with larger feature maps while large objects are detected with smaller fea-
ture maps. YOLOv5 predicts outputs on three scales which have different
spatial resolutions, making it a good human detector for our task.

Safe vs. Risky Classification

If a person is detected, his/her relative location to the harbor’s edge is the key
to determine whether an alarm should be raised. Therefore, an alarm region
near the water is predefined empirically. In Fig. E.4, the red line represents
the alarm boundary expressed by Equation E.1, and the points p1 = (67, 180)
and p2 = (170, 23) are the two endpoints of the line segment. For a person
detected in the xy coordinate system of the image, if any coordinate (xp, yp)
within the bounding box results in a zp in Equation E.2 smaller than 0, the
person is deemed inside the alarm region.

1.53x + y − 283 = 0 (E.1)

zp = 1.53xp + yp − 283

{
≥ 0, sa f e
< 0, risky

(E.2)

4.2 Self-supervised Anomaly Detection

In order to measure human activities in regions near the water, we train an
autoencoder formed by a standard 9-layer CNN structure, where the 5-layer
encoder and 5-layer decoder share a bottleneck having 8 channels. In the
encoder the convolutional filters increase in numbers (32, 64, 128, 256) while
the feature maps decrease in sizes along with layers going deeper. Inversely,
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Fig. E.4: Alarm region defined as the area between the red line and the water.

the decoder consists of transposed convolutions where the filters decrease in
numbers (256, 128, 64, 32) and feature maps increase in sizes as the network
approaches the output. With exception of the penultimate layer of the de-
coder, the output of each layer is batch-normalized and uses a LeakyReLU
activation function. And the autoencoder is trained using normal images
consisting of the background with the Mean Squared Error (MSE) as its loss
function 1.

Reconstruction Error as a Measure of Activity

In order to explore the usefulness of reconstruction error as a measure of hu-
man activity, we use a square region (of size 64 × 64) near the water’s edge.
From this region 35,809 thermal images with very limited or no human ac-
tivities are collected across hours and then used as normal frames to train an
autoencoder. After training, a continuous sequence of 1250 thermal images,
with significant human activities in some frames, is fed into the autoencoder
to explore the change in reconstruction error over time.

This exploration is illustrated in Fig. E.5. The four images in Fig. E.5(a)
are samples from the 4 locations represented by the red lines in Fig. E.5(c),
and Fig. E.5(b) shows the reconstructions by the autoencoder for their corre-
sponding inputs in Fig. E.5(a). From Fig. E.5(b), it is clear that the autoen-

1Code at https://github.com/JinsongCV/Supervised-Versus-Self-supervised-Assistant-for-
Surveillance-of-Harbor-Fronts.
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coder fails to reconstruct humans. This results in a high reconstruction error
represented by the blue graph in Fig. E.5(c). As more people enter the area,
the error increases further. This exploration proves the potential for monitor-
ing human activity and detecting anomalies by self-supervised learning with
the reconstruction error as a measurement.

(a)

(b)

(c)

Fig. E.5: (a) Input patches from the region near the water’s edge. (b) Corresponding reconstruc-
tions from the autoencoder. (c) The blue graph illustrates the reconstruction loss as across the
sequence and the vertical red lines correspond to the samples shown in (a) in the same order.

Normal vs. Abnormal Classification

A threshold, as defined in Equation E.3, can be used to classify the data
as normal (safe) or abnormal (risky). It can be determined either manually
or automatically. If determined manually, the threshold will be based on
the tacit knowledge and experience of the human operator. An automatic
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threshold can be determined from a small labeled dataset, where the thresh-
old reaching the desired balance between precision and recall for anomaly
alarms is chosen. {

MSE < threshold, normal(sa f e)
MSE ≥ threshold, abnormal(risky)

(E.3)

To enable comparison with the detector-based method, an alarm region is
defined between the red line segment defined in Section 4.1 and the edge of
the harbor (see Fig. E.6). This region is transformed to a rectangle (of size
64× 192) as the input to the autoencoder by using OpenCV’s warpPerspective
function.

Fig. E.6: Region for anomaly detection by the autoencoder.

5 Experiments

This section gives the dataset information and experiments to prove the fea-
sibility of both solutions.

The thermal camera is placed below the bridge to cover a popular walk-
ing path. To evaluate the two methods, the videos (of size 384 × 288) from
February 3, 2020 to March 3, 2020 were collected by an authorized computer
which protects the data from invasions. Different types of weather (rainy
days, snowy days, windy days, and sunny days) occurred during this period,
making the database more diverse and less biased. To consider the challenges
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of contrast, weather, and rare phenomena mentioned before, we manually se-
lected and annotated 2358 images, which were then divided into the training
set (1715), validation set (143), and test set (500). Note that this manual anno-
tation means labeling bounding boxes for human detection. Besides, to fairly
compare both solutions, autoencoder-based anomaly detection also uses the
same 2358 images for training and evaluation. The experimental platform
consists of a machine equipped with a NVIDIA GeForce RTX 2080Ti, Ubuntu
16.04 LTS, CUDA 9.2, Python 3.7.0, and PyTorch 1.6.0.

5.1 Supervised Surveillance Assistant

YOLOv5s [10] is fine-tuned by stochastic gradient descent with momentum
0.9 from a pretrained model on COCO dataset. The learning rate is set as
0.001. The training phase stops at 120th epoch where the network has con-
verged. Other settings remain the same with the original YOLOv5s.

Fig. E.7: A failed case which should have raised an alarm. The red box refers to the undetected
person.

In the testing phase, the best model on the validation set is used to do
detection on the test set, achieving an average precision (AP50) of 97.70%. Be-
sides AP50, the accuracy of true alarms for risky situations is also measured.
Among the 500 test images, 91 of them have persons existing in the alarm
region defined in Section 4.1. Based on the human locations predicted by
YOLOv5s and Equation E.2, 85 out of the 91 images are classified as risky
situations and no false alarms are raised, indicating a recall of 93.41% and
a precision of 100%. All the 6 failed cases are related to undetected persons
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having very small sizes. One example is shown in Fig. E.7 where the red
box refers to the undetected person. As YOLOv5s is applied to frames from
videos, it is likely that the undetected person will be detected in the earlier
or later frames. As a whole, no matter with AP50 or with alarm rates, the
human detection-based method works well.

5.2 Self-supervised Surveillance Assistant

In order to produce comparable results to the supervised surveillance assis-
tant, the alarm region defined in Fig. E.6 is cropped and transformed from
the same training set and test set used for the human detector. The autoen-
coder is trained from scratch for 200 epochs using the Adam optimizer with
a learning rate of 0.0005. The experiments regarding anomaly detection us-
ing an autoencoder includes: (1) Automatically determining a threshold. (2)
Investigating the sensitivity to abnormal data in the training set.

Finding a Suitable Threshold

As mentioned in Section 4.2, a threshold for the reconstruction error can
either be determined manually or automatically. Here, we suggest computing
the threshold by optimizing the F1 score on the training dataset (including
1628 normal images and 87 abnormal images). With the maximal F1 score of
0.917, this leads to a threshold at 0.000597 MSE.

Sensitivity to Abnormal Training Data

It is labor-intensive to make sure that the training set contains only normal
patterns. For this reason we want to investigate the sensitivity of the method
to small amounts of abnormal data. We compare training with two datasets,
one consists of 1628 normal patterns, and the other consists of 1715 in total
(1628 normal and 87 abnormal images). Table E.1 shows the two versions’
performances on the test set, expressed as the area under the precision-recall
curve (AUC). The slightly lower performance with the inclusion of abnormal
images demonstrates the method’s sensitivity to abnormal training data and
supports the suspected conclusion that the occurrence of abnormal data is
detrimental in the training set.

Table E.1: Performance comparison between two models trained on different datasets. “Nor-
mal” is trained on 1628 normal images. “Normal+abnormal” is trained on a set containing an
additional 87 abnormal images.

Model AUC
Normal 0.929

Normal+abnormal 0.904
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Fig. E.8: Distribution of normal (green dot) and abnormal (red dot) samples along with the
decision threshold (red line). 21 False Positives (FP), 9 False Negatives (FN), 82 True Positives
(TP), 388 True Negatives (TN).

Distribution of Normal and Abnormal Samples

With a threshold at the MSE of 0.000597, the best performing model achieves
a recall of 90.11% and a precision of 79.61% on the test set. Fig. E.8 shows the
distribution of normal and abnormal samples in the test set along with the
threshold found using the F1 score. We expect normal frames (green dot) to
generally be placed underneath the red line and abnormal frames (red dot)
to be placed above the line.

To further investigate the failures in Fig. E.8, 4 cases are selected (two
correctly and two wrongly classified) shown in Fig. E.9. Specifically, Fig.
E.9(a) is a normal image mis-classified as abnormal due to the higher heat
absorption and reflection of the harbor’s concretes and metals; Fig. E.9(c)
is an abnormal image mis-classified as normal because of the low signal of
human activity as a person is just entering the scene from the right side.
This indicates the challenge of providing a reasonable standard of anomaly
especially when a person has just entered the region. As a contrast, Fig.
E.9(b) and Fig. E.9(d) are classified correctly.

This person-entering problem originates from a simple automatic anno-
tation based on human locations. Any coordinate (within a ground truth
bounding box of a person) located in the alarm region results in a labeling
as abnormal. To reduce the unfair influence of such entering phenomena, we
manually sort both the 1715 training set and the 500 test set, resulting in an
additional “entering” category that will be disregarded. Therefore, the train-
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(a) (b) (c) (d)

Fig. E.9: (a) A normal image with loss of 0.00095. (b) A normal image with loss of 0.00006. (c)
An abnormal image with loss of 0.00029. (d) An abnormal image with loss of 0.02281.

ing set is now composed of 1628 normal images and 30 abnormal images,
without 57 entering images; the new test set is composed of 409 normal im-
ages and 79 abnormal images, without 12 entering images. The experiment
mentioned in Table E.1 is redone with the new datasets, and the results can
be seen in Table E.2, where “Normal” and “Normal+abnormal” are the same
models from Table E.1. Because the entering images are removed, the AUC
is much better on the reduced test set (409+79). “Normal+clean abnormal”
means that the model is trained on the new training set (1628+30) without
entering images.

Table E.2: Performance comparison on the test set having no entering images. “Normal” and
“Normal+abnormal” correspond to the models in Table E.1. “Normal+ clean abnormal” is
trained on the training set without entering images.

Model AUC
Normal 0.995

Normal+abnormal 0.974
Normal+clean abnormal 0.975
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6 Discussion

Failure Modes The object detector is prone to FN due to unconventional ap-
pearance, occlusion, and clutter. The autoencoder on the other hand benefits
from unconventional appearance but suffers from FP due to unusual back-
grounds such as higher heat reflections.
Training Effort The object detector requires a large number of annotations.
If this can be achieved, a detector can perform well in the vast majority of
scenes without additional fine-tuning or reconfiguration. The autoencoder
on the other hand requires retraining for each scene. In return, it requires no
labeling or very limited labeling, which means it can be adapted to a specific
problem with little effort.
Future Work In the future we want to consider temporal information and
depth information for better differentiation of activities and image homogra-
phy to remove perspective influences. Besides, the two approaches will have
to be evaluated using a much larger and more diverse dataset to ensure that
these solutions are workable all year across multiple locations.

7 Conclusion

We compare two alternative vision-based methods for assisting the surveil-
lance of harbor fronts with a high risk of drowning accidents. One method
utilizes object detection to detect people in low resolution thermal images
and to raise warnings when people are detected inside a risky area. The de-
tector is able to perform this task with perfect precision and a high recall of
93.41%. It fails in situations with occlusion and clutter. The other method
uses an autoencoder and measures human activity based on the reconstruc-
tion error between input frames and the autoencoder’s reconstructions. The
autoencoder-based approach achieves a recall of 90.11% and a precision of
79.61%. It fails due to unusual background phenomena such as heat reflec-
tions and people only partially entering the monitored region. Given that
the two methods have different strengths and weaknesses, one or the other
might be more appropriate depending on the application.
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1. Introduction

Abstract

The time dimension of datasets and long-term performance of machine learning mod-
els have received little attention. With extended deployments in the wild, models
are bound to encounter novel scenarios and concept drift that cannot be accounted
for during development and training. In order for long-term patterns and cycles
to appear in datasets, the datasets must cover long periods of time. Since this is
rarely the case, it is difficult to explore how computer vision algorithms cope with
changes in data distribution occurring across long-term cycles such as seasons. Video
surveillance is an application area clearly affected by concept drift. For this reason
we publish the Long-term Thermal Drift (LTD) dataset. LTD consists of thermal
surveillance imaging from a single location across 8 months. Along with thermal
images we provide relevant metadata such as weather, the day/night cycle and scene
activity. In this paper we use the metadata for in-depth analysis of the causal and
correlational relationships between environmental variables and the performance of
selected computer vision algorithms used for anomaly and object detection. Long-
term performance is shown to be most correlated with temperature, humidity, the
day/night cycle and scene activity level. This suggests that the coverage of these
variables should be prioritised when building datasets for similar applications. As a
baseline, we propose to mitigate the impact of concept drift by first detecting points
in time where drift occurs. At this point we collect additional data that is used to
retraining the models. This improves later performance by an average of 25% across
all tested algorithms.

1 Introduction

Once computer vision algorithms step outside the lab and are deployed in
real-life outdoor applications, their performance tends to drop significantly
due to conditions changing over time, i.e. concept drift [1–3]. Concept drift
can materialize as gradual, recurring or sudden changes in the visual rep-
resentation of the scene. Existing datasets, in general, favour coverage of
multiple locations [4, 5] for short periods of time [6–8]. Such datasets are ill
suited for exploring long-term effects such as concept drift and algorithms
developed on their basis are unlikely to show robustness to long-term phe-
nomena. Research studying concept drift [9, 10], uses synthetic datasets or
datasets augmented in order to introduce drift. This does not necessarily
completely represent real-world concept drift.

Our work presents a novel real-world dataset covering the 8 months from
January to August. This time span means that the dataset encompasses a
wide range of weather conditions, human activity, seasonal transitions, and
recurring cycles such as weekdays, weekends, mornings and evenings. Along
with the thermal images, timestamped metadata has been gathered. The
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metadata includes weather data such as temperature, humidity, precipitation,
etc. as well as metrics for scene activity level. We use the dataset to study
concept drift by exploring contributing factors and demonstrating their ef-
fects on algorithmic performance. By publishing the dataset, we seek to aid
the community in evaluating exiting algorithms against a long-term bench-
mark and in the development of algorithms that show greater robustness to
long-term phenomena.

To explore the dataset, two common tasks are chosen, namely anomaly
and people detection. These tasks tend to suffer strong performance degra-
dation when exposed to long-term concept drift [11]. Object detection in
general or detecting people in particular is a fundamental task involved in
many use cases such as autonomous driving [12–14], tracking [15–18] and
re-identification [19–21]. Common for many of the use cases is the applica-
tion of object detection in unconstrained environments and across long spans
of time. Anomaly detection, where the goal is to detect unusual behavioral
patterns, is another task that is exposed to concept drift. These algorithms
must be able to distinguish irrelevant changes due to e.g. concept drift from
emergencies such as burglaries or assaults [5], car accidents [22], loitering
and suspicious behaviour [23], indoor [24] and outdoor [25–27] falls.

We select representative algorithms for each task and evaluate their per-
formance across time and in relation to environmental factors. As expected,
all models exhibit performance degradation, as the test data diverges from
the training set. Temperature and humidity prove to influence the models
the most, followed by the change between day and night and the activity
level of the scene. On the other hand, variation in precipitation and wind do
not influence the performance of the models. In general, methods that learn
from solving tasks that consider the entirety of the image are likely to be less
impacted by drift, compared to methods that consider small regions or indi-
vidual pixels [28]. An example could be object detectors vs. autoencoders,
where something like brightness is likely to impact the autoencoder’s recon-
struction significantly, but won’t effect the class or position of objects. By
including both autoencoders and object detectors we ensure that both ends
of this spectrum are covered in our analysis.

Finally, a baseline algorithm is presented to reduce the consequences of
concept drift. This algorithm provides additional training data from points
in time where concept drift is detected. This baseline is intended to encour-
age researchers to develop other methods of reducing the impact of concept
drift. We believe that our findings on this novel dataset generalize to other
environments and use cases, as well as other modalities and therefore will be
an example to follow for future definition and collection of datasets. This in
turn will help the community getting closer to deploying long-term computer
vision algorithms for real-life outdoor applications. The main contributions
of this paper can be summarized as follows:
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• The Long-term Thermal Drift (LTD) dataset—the longest-spanning sys-
tematically collected thermal dataset comprised of 8 months of video
data, containing both timestamp and weather condition metadata;

• In-depth analysis of the correlational and causal relationships between
the performance of models and environmental factors;

• A baseline algorithm for reducing the effects of concept drift.

2 Related Work

2.1 Concept Drift Detection

As many systems need to be deployed and work stably for long periods of
time and with input data which can change both gradually and suddenly,
the presence of drift and ways to deal with it is a topic that has been widely
studied. In computer vision it is normally studied by either focusing on
specific real-world use cases or synthetically augmenting existing datasets.
Real-world cases can be taken from egocentric video [29] or industrial in-
spection [30]. These cases present both examples of the problem and de-
tection methods, but have limited use outside of the specific environments.
Augmented versions of popular datasets such as MNIST and CIFAR can also
be used. The works by [10] and [31] focus on methods for detecting data
shifts using differences between the training and testing data, utilizing di-
mensionality reduction and statistical tests like Maximum Mean Discrepancy
and Kolmogorov-Smirnov test. The benefit of using synthetically augmented
data for testing is that different types of shifts can easily be simulated—from
gradual drift to adversarial attacks [9]. But these simulated shifts do not
always correspond to real-world ones. Some more robust methods also ex-
ist [11], aimed at using real-world drift in wider variety of use cases. The
need for more research into concept drift, paired with a long-term real-world
dataset is evident, as the effects from it can limit long term deployment of
vision systems [32, 33].

2.2 Datasets

We can separate previous work roughly in two types of use cases—datasets
that contain a scene from a stationary location, like the ones captured from
CCTV and surveillance cameras and datasets with constantly changing loca-
tions, like the ones specifically directed towards autonomous cars, robots and
human egocentric footage. The two types of datasets are used for different
tasks, like vehicle and pedestrian detection and environmental segmentation
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for changing datasets [4, 34, 35] and pedestrian tracking and anomaly detec-
tion for stationary ones [7, 36, 37]. The changing datasets also benefit from
more diverse data coming from different sensors, compared to more image
based stationary datasets. Our proposed LTD dataset is directed towards ad-
vancing the state-of-the-art in stationary location outdoor urban datasets by
providing a longer duration, larger variation and rich metadata. A compari-
son in Table F.1 shows how the dataset stacks up against previous work.

Datasets used for autonomous driving with changing locations [34, 35, 40,
41] contain multiple modalities like LiDARs, RGB, depth cameras, as well as
GPS and IMU data. They also contain data with longer duration from multi-
ple days [43] to a whole year [39]. These datasets also focus on presenting ad-
verse weather conditions, which can be used for domain adaptation and mak-
ing autonomous driving and robotics application more robust [35, 42, 43].
Thermal datasets are less prevalent but still widely used [38, 49]. These mov-
ing location car datasets normally do not contain explicit information of their
duration, as they are captured from many cars and the data is sampled.

On the other hand stationary location datasets do not contain any infor-
mation about the period over which they were collected. This combined with
the relative short duration of many of the widely used datasets ( [7, 44, 45, 50])
makes it impossible for them to be used for studying long-term effects on de-
ployed machine learning solutions. The duration of some of these datasets
is taken from the research presented in [47]. Some larger datasets are gath-
ered from internet videos [5], which lack the needed continuity for testing
gradual concept drift in the data. More recent datasets have been produced
with the goal to capture larger variations in the environments [37, 47], but
with a limited scope. The lack of metadata is another problem, limiting
the study of factors causing concept drift, as only some of the investigated
datasets provide insufficient metadata [37, 48, 51]. Most of the investigated
datasets focus on RGB data, with only some containing both RGB and ther-
mal data [4, 37]. However, thermal imaging is better at preserving people’s
anonymity as it does not capture facial and body details. This removes the
need for post-processing like blurring or pixelating faces to protect personal
data [52–54], which is a crucial requirement for complying with the European
general data protection regulations (GDPR). The thermal imaging market has
seen significant growth [55] and is forecast to expand even more in the fol-
lowing years [56, 57], which makes it necessary for long-term public thermal
datasets to be easily accessible.

3 The Long-term Thermal Drift (LTD) Dataset

To address the gaps seen in the stationary surveillance state-of-the-art and
to leverage the need for more thermal data, a new dataset is proposed. It
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3. The Long-term Thermal Drift (LTD) Dataset
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consists of thermal videos with resolution 288 × 384 captured through the
period of 8 months using a Hikvision DS-2TD2235D-25/50 thermal cam-
era [58]. The camera is a long wavelength infrared (LWIR) unit, capturing
wavelengths between 8 and 14 µm. Raw data is captured through the day
and saved in a mp4 format as 8-bit uncalibrated grayscale videos. A pre-
processing algorithm is then run through the data. It first cuts the raw files
into days starting from 00 : 00 and separates them into folders. Each folder
is timestamped with the year, month and day timestamp. The videos for
each day are then cut into 2-minute clips selected from every 30 minutes
through the day, for a total of 298 hours. These videos are additionally
timestamped with hour and minute timestamp. The starting point of the
data is May 2020 until September 2020, together with a second part from
January 2021, up until May 2021. This gives the data a large weather vari-
ation through the winter, spring and summer seasons. The images were
taken on the harbor front in Aalborg, Denmark. The approximate longi-
tude and latitude coordinates are given as (9.9217, 57.0488). We provide
the dataset—https://www.kaggle.com/ivannikolov/longterm-thermal-drift-
dataset, together with the code to extract the necessary data and to reproduce
the experimental pipeline https://github.com/IvanNik17/Seasonal-Changes-
in-Thermal-Surveillance-Imaging.

Some examples of seasonal and day and night variation of the captured
data, together with weather and human activity variation can be seen in Fig.
F.1. These large variations, together with a total size almost twice as large as
other datasets in Section 2.2, allow for studying the effects of concept drift on
trained models.

Seasons
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N
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ht
En

vi
ro

nm
en

t

Fig. F.1: Examples of extreme changes in the image data contained in the proposed dataset.
From left to right the day and night rows show example changes from data of February, March,
April, June and August. The third row shows changes based on weather conditions and human
activity.
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3. The Long-term Thermal Drift (LTD) Dataset

Fig. F.1 depicts issues stemming from the natural thermal data concept
drift, such as grayscale inversion in the background and people in differ-
ent seasons, view limitation and reflections caused by weather like fog, rain,
snow, view cluttering from multiple people and vehicles.

3.1 Metadata Analysis

Besides video data we also provide metadata in the form of weather
data, gathered using the open source Danish Meteorological Institute (DMI)
weather API [59] in 10-minute intervals. The selected properties are—
temperature, measured in [◦C], relative humidity percentage measured 2m
over terrain, accumulated precipitation in [kg/m2], dew point temperature
in [◦C] measured 2m over terrain, wind direction in degrees orientation,
wind speed in [m/s], both measured 10m over terrain, mean sun radiation in
[W/m2] and minutes of sunshine in the measured interval. These properties
are selected, as it is speculated that they would be useful to explain changes in
the captured image data. An overview of the average weather metadata mea-
surements of the dataset can be seen in Table F.2. Temperature and relative
humidity have been shown to affect thermal cameras, when detecting sur-
face defects in concrete structures [60], measuring skin temperature changes
on athletes [61], getting accurate readings for volcanology [62] and inspecting
food [63]. Precipitation and dew point temperature can indicate the presence
of rain, fog or high moisture and condensation. These can increase attenua-
tion of infrared light and change the produced camera response [64, 65]. The
build-up of moisture can create puddles in the images, which would change
the scene reflectivity and reflected temperature [66]. The sun radiation and
amount of sunshine can affect the captured images by rapidly changing the
intensity of the infrared light. Finally wind speed and direction can cause
movement of background parts of the scene like water ripples, ropes, etc., as
well as movement of the camera itself.

Table F.2: Average metadata for each month. From left—temperature, humidity, precipitation,
dew point, wind direction, wind speed, sun radiation and minutes of sunshine in a 10-minute
interval.

Temp.
[◦C]

Hum.
[%]

Precip.
[kg/m2]

Dew P.
[◦C]

Wind Dir.
[degrees]

Wind Sp.
[m/s]

Sun Rad.
[W/m2]

Sun
[min]

Jan. -0.48 90.10 0.01 -1.96 161.91 2.58 23.97 0.90
Feb. -0.54 85.15 0.01 -2.83 131.00 2.95 51.12 1.42
Mar. 3.75 83.61 0.01 0.93 218.80 3.58 99.35 1.85
Apr. 4.47 97.25 0.13 4.10 126.50 2.97 67.31 2.23
May 10.74 75.46 0.01 6.07 217.32 3.04 256.76 3.66
June 16.36 71.46 0.01 10.57 151.27 2.37 256.46 3.63
July 12.91 75.32 0.01 8.46 268.15 3.97 270.17 3.62
Aug. 16.93 79.17 0.02 12.69 163.18 2.08 197.86 3.15
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4 Long-term Performance Experiment

We study the effects of concept drift on six machine learning models—two
autoencoders, two object detectors and anomaly detectors. For these exper-
iments only weather parameters not found to have significant correlation
to other parameters are considered, namely—temperature, humidity, wind
speed, wind direction and precipitation. More information on the correlation
between weather parameters is given in the Appendix.

4.1 Data Selection Protocol

In order to keep the experiments and labelling effort manageable, samples
across the full data set are selected based on the following protocol. This is
done to minimize the number of frames and maximize the variation covered
by the selection. For the sampling temperature metadata is used, as it is
proven to directly correlate with changes to thermal images [60, 61, 63]. The
protocol can be summarized as follows:

1. Every 2-minute clip in the dataset is sampled with a frequency of one
frame per second, resulting in 120 frames per clip;

2. Based on the temperature metadata, we select a cold month for the
training set and another cold month, a median temperature one, and a
warm month for the test set;

3. The training set exists in three variants: coldest day 13th of February,
the corresponding week 13-20 of February, and the entirety of February;

4. The test sets consist of data from January (similar cold month), April
(month with median temperature), and August (warmest month).

From each of the thus created subsets, a greedy furthest point sampling is
used for selecting frames. The frames for each day are sampled by calculating
the farthest distances in the 2D feature space of the frame numbering and the
temperature. A visual example of the sampling can be seen in the Appendix.
The amounts of selected samples vary for the training data depending on the
used algorithm. This is further discussed in the next sections.

4.2 Tested Models

Six deep learning models are tested. All six are originally designed to work
with RGB data, so their input channel is reduced from 3 to 1, correspond-
ing to a change to the grayscale thermal data. No additional changes were
made, as the focus of the paper is not algorithm performance but change in
performance over time.
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4. Long-term Performance Experiment

Two of the tested models are autoencoders, as representatives for dimen-
sional reduction, noise removal, concept drift detection and anomaly detec-
tion methods. Autoencoders are well suited for researching concept drift in
long-term datasets, as their reconstruction performance is inherently tightly
connected to the training data. The first autoencoder follows a simple fully
convolutional architecture with symmetric 5-layer encoder and decoder. The
implementation is based on the autoencoder used in a previous work [27].
It is theorized that its simplicity will make it sensitive to concept drift in
the input data. The second autoencoder is the latest version of the Vector
Quantised Variational Autoencoder (VQVAE2) [67]. This autoencoder uses
collections of multi-scale hierarchical discrete tensors, called codebooks, to
map its latent space. This gives it more robustness compared to regular au-
toencoders. The VQVAE2 implementation used here is closely based on [68].
Both autoencoders are trained for 200 epochs.

Two versions of the anomaly detector method MNAD [69] are also
tested. They extend traditional autoencoders, by introducing memory-
guided normality detection. We look at the typical reconstruction based
version (MNAD_recon), as well as the prediction approach (MNAD_pred)
using the preceding four consecutive frames to predict the future frame. The
backbone consists of the U-Net structure, without skip-connections for the
MNAD_recon variant. In between the encoder and decoder of U-Net is a
memory module, storing prototypical events, concatenated with the original
encoder output. The memory is primarily learned during training, but also
updates during testing. Both versions are trained for 100 epochs.

Lastly two supervised object detectors are also tested—the YOLOv5 and
Faster R-CNN [70]. The chosen hyperparameters for YOLOv5 remain the
same as the work in [71], except that the initial learning rate is set to 0.00075
and trained for 200 epochs. The Faster R-CNN is trained for 200 epochs as
well with SGD, with initial learning rate set as 0.005, the weight decay as
0.005 and the momentum kept at 0.9. Both object detectors have previously
been successfully applied to outdoor thermal imaging [72–75].

The autoencoders are trained on a NVIDIA GTX1070 Super, the anomaly
detectors on a NVIDIA RTX3080 and the object detectors on a NVIDIA
RTX2080Ti.

4.3 Drift Algorithmic Performance Analysis

This experiment aims to see how the performance of the selected algorithms
changes depending on the variation of the training data.

The training sets for the autoencoders and the anomaly detectors contain
5000 frames per subset, sampled using the method discussed in Section 4.1,
where 20% are used for validation. Performance is reported as the average
MSE across every image in each of the three test sets. The performance of the
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two autoencoders and anomaly detectors is listed in Table F.3. We can see that
the MSE for the CAE, VQVAE2 and MNAD_recon increases the farther away
the test data goes from the training data. It can also be seen that the larger
temporal pool provided for sampling for the weekly and monthly training
data helps with keeping the MSE lower through the different months. The
MNAD_pred is the only model keeping a consistent performance through
the months without any noticeable drift. This is most likely due to the U-Net
skip connections being able to reconstruct the background scene with a very
low reconstruction error.

Table F.3: Results are reported as the average of the MSE across every frame in the test set.
Higher results show worse performance.

Methods
Train Test
Feb. Jan. Apr. Aug.

CAE
Day 5k 0.0096 0.0202 0.0242

Week 5k 0.0061 0.0167 0.0212
Month 5k 0.0042 0.0109 0.0147

VQVAE2
Day 5k 0.0051 0.0072 0.0068

Week 5k 0.0039 0.0066 0.0061
Month 5k 0.0021 0.0039 0.0035

MNAD Recon.
Day 5k 0.0028 0.0057 0.0069

Week 5k 0.0065 0.0066 0.0062
Month 5k 0.0015 0.0041 0.0048

MNAD Pred.
Day 5k 0.0008 0.0007 0.0009

Week 5k 0.0007 0.0006 0.0007
Month 5k 0.0007 0.0006 0.0007

For the object detectors, because of the necessary data-labeling a smaller
number of images are used for training and testing—both having 100 frames
per subset. In addition to these a validation set comprising of 51 images
evenly sampled from a previous annotated dataset [27] collected in February
2020 is used. All of the subsets are annotated with bounding boxes around
people seen in each frame using the LabelImg open source program [76]. The
annotations are also part of the LTD dataset. Since the performance of object
detector is based on detected bounding boxes, mAP is used to evaluate it.
The performance of the object detectors is given in Table F.4. The accuracy
of both object detectors, drastically drops in the month of April. To prevent
overfitting the smaller amount of training data, we also observe the validation
and test loss.

As a conclusion from the performance analysis the higher variation pro-
vided by sampling from the week and month data, has been translated to
better and more stable models in all the tested models. We can still see the
effects of the seasonal drift, so additional analysis will be provided in the
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5. Drift Analysis

Table F.4: Results are reported as the mAP50 across every frame in the test set. Lower results
show worse performance.

Methods
Train Test
Feb. Jan. Apr. Aug.

YOLOv5
Day 100 0.8010 0.5390 0.5240

Week 100 0.7940 0.4540 0.4860
Month 100 0.7930 0.4860 0.4830

Faster R-CNN
Day 100 0.6760 0.3230 0.3370

Week 100 0.6740 0.2790 0.3060
Month 100 0.6400 0.2560 0.3180

following sections.

5 Drift Analysis

In this section we look at the possible relations between the observed model
performance drift and the changes in the captured metadata. Looking
through the data examples given in Fig. F.1, two main visual change types
are identified—seasonal and day/night. These types can be caused by ei-
ther changes in the weather conditions, the human activity or a combina-
tion between the two. The relation between the model performance metrics
and metadata features representing these changes is analysed. As discussed
in Section 3.1, we choose temperature, humidity, precipitation, wind direc-
tion and wind speed as weather data features. For analysing the day/night
changes the timestamp data is used to calculate hours of the day, as well as
to calculate the sunrise and sunset times [77, 78]. To quantify the activity in
the scene the difference between each testing frame and the previous frame
is calculated. The mean value from this difference is selected. To focus only
on the scene activity, everything in the background that moves like the wa-
terfront and the visible ropes and masts is masked out. More information on
this can be found in the Appendix.

We choose to use the results only from the models trained on the monthly
February data, for easier visualization. The correlation between each of these
features and the measured performance metric for each of the methods is
first calculated. For the autoencoders and anomaly detectors this is the MSE,
while for the object detectors we calculate the F1-score from all images con-
taining people, as it gives a good overview of the precision and recall of
the models. Both the basic Pearson’s correlation, as well as Distance cor-
relation that is more sensitive to non-linear relations are calculated [79, 80].
The statistical significance p-values are also calculated with threshold at 0.05.
The calculated correlation r values are given in Table F.5 where those with
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p-values below the threshold are shown in red.
From Table F.5 it can be seen that temperature and humidity have the

largest correlation values to most of the metrics, as well as the most consistent
statistically significant results, followed by the scene activity and day/night
features. We focus on these four features in the following analysis.

To get a better understanding of not only the correlational, but also causal
relations between the models’ performance metrics and the chosen features,
we look at the Granger causality test [81]. The test only guarantees a predic-
tive causality between variables, but would be able to point out any possible
connections. The Granger causality tests the null hypothesis that the past
values of one variable do not cause another. The p-value threshold is set to
0.05, below that the null hypothesis can be rejected, with the conclusion that
there is a predictive causality between the variables. As the normal Granger
causality test as presented in [82] is used on data with linear relations, we also
use the more robust non-linear Neural Granger test [83]. Two best perform-
ing versions are used, based on long-short term memory networks (LSTM)
and multi-level perceptron (MLP). Both models were trained using proximal
gradient descent [84], with λ = 0.002, ridge regression coefficient 0.01 and
learning rate of 0.005. The results from the Granger causality tests are given
in Table F.6, where cells shown with green indicate a statistically significant
presence of Granger causality and the ones with red—no presence.

The results show that the human activity has no predictive causality to-
wards the performance of the models, which combined with the results from
the correlation analysis, can point towards a second-hand relation. Our hy-
pothesis is that the change in weather conditions and the day/night cycle are
related to the change in human activity. From the other features, tempera-
ture and the day/night cycle have stronger predictive causality towards the
autoencoders and anomaly detectors, while humidity has a more balanced
predictive causality.

Fig. F.2 shows the relationship between the features and the model met-
rics. As a processing step before plotting the temperature and humidity they
are first smoothed using a mean filter with a kernel size of 20 and then the
MSE is normalized between 0 and 1. This is done as they cannot be directly
compared, but the trend of their change can be visualized. We plot the av-
erage values for the training month of February, as a vertical red line, to
indicate a “threshold”.

6 Drift Prediction Baseline

As a baseline for exploring and mitigating the effects of concept drift a ref-
erence algorithm for predicting drift is presented. We use three strongest
features—temperature, humidity and day/night cycle, together with MSE
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Fig. F.2: Visual representation of the changes of MSE and F1-score for the tested models com-
pared to the temperature, humidity and day/night cycle.

from our convolutional autoencoder (CAE) trained on the February monthly
data. The CAE is chosen, as it is the most sensitive to changes in the dataset
and is strongly correlated to the performance of all other tested models, ex-
cept Faster R-CNN. The CAE MSE results from the training data are used
together with the chosen features to train two widely used novelty/outlier
detection models—isolation forests [85] and one-class SVM [86], available as
part of scikit-learn [87]. The isolation forest has 100 base estimators, and the
one-class SVM has a radial basis function (RBF) kernel and γ of 0.03. We
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then test the results from each day from the full LTD dataset to detect points
where many outliers emerge in both predictors. The first large concentration
of outliers in 7 consecutive days is selected, which in our case is 5th of March.

To test if taking into consideration the data from the found drift point can
help with the performance of the models against concept drift, training data
from one week starting after the 5th of March is sampled. The new data is
used together with the previous training data from February to retrain the
tested models. The results, together with the month results from Table F.3 and
F.4 for comparison, are given in Table F.7 and Table F.8. By adding the March
data, all tested models achieve better results. We can see that the outlier
detection models trained on the CAE MSE, together with the temperature,
humidity and day/night cycle can be used together as an indicator for the
amount of drift present in the input data.

Table F.7: The MSE results from the full month in Table F.3, compared to the ones using the new
training datasets containing a combination of February and the week in March where drift is
detected. Higher results show worse performance.

Methods Train
Test

Jan. Apr. Aug.

VQVAE2
Feb. 5k 0.0021 0.0039 0.0035

Feb. 5k + Mar. 5k 0.0020 0.0033 0.0030

MNAD Recon.
Feb. 5k 0.0015 0.0041 0.0048

Feb. 5k + Mar. 5k 0.0006 0.0015 0.0025

MNAD Pred.
Feb. 5k 0.0007 0.0006 0.0007

Feb. 5k + Mar. 5k 0.0007 0.0005 0.0006

Table F.8: The mAP50 results from the full month in Table F.4, compared to the ones using the
new training datasets containing a combination of February and the week in March where drift
is detected. Lower results show worse performance.

Methods Train
Test

Jan. Apr. Aug.

YOLOv5
Feb. 100 0.7930 0.4860 0.4830

Feb. 100 + Mar. 100 0.8690 0.6640 0.6110

Faster R-CNN
Feb. 100 0.6400 0.2560 0.3180

Feb. 100 + Mar. 100 0.6990 0.3910 0.3380

7 Conclusion and Future Work

In this paper we introduced the Long-term Thermal Drift (LTD) dataset span-
ning 8 months for detecting concept drift in deep learning models. The

227



Paper F.

dataset and the accompanying metadata can be used to document perfor-
mance degradation as data drifts from the training set. These effects were
studied on anomaly and object detection models, as well as autoencoders. It
was demonstrated that more diverse training data lowers the effects of con-
cept drift. The performance of the models showed a strong correlational and
causal relationship to the change in temperature and humidity. A less pro-
nounced relationship was observed to the day/night cycle and scene activity.
Lastly, we showed how the concept drift can be further mitigated by detect-
ing when it starts to manifest and providing additional data to the training
process.

The proposed LTD dataset contains a combination of diverse environmen-
tal images and granular metadata. The equally spaced long-term data can be
used to test the change in performance of deep learning models at different
data scenarios—only day or night data, changes between activity in the week-
day and weekends, summer and winter scenarios. The influence of weather
conditions like rain, snow or fog can also be explored. The possibility of train-
ing more robust models and predicting when steps need to be taken before
their performance degrades, is only possible with such long-term sequential
datasets.

Possible negative social impacts of such long-term datasets concentrating
on a single location is that they can be used to track the habits, interactions
and movements of people. We offset this by providing a thermal dataset,
which provides greater protection of people’s anonymity than conventional
RGB imagery and does not require post-processing for blurring facial fea-
tures.

The long-term nature of the dataset can also be used, as demonstrated
in this paper, to do time-series analysis procedures on the outputs from dif-
ferent layers of deep learning models, from simple time-series analysis and
forecasting models like Vector Autoregressive (VAR) Models [88] to more
complex and data agnostic models like STRIPE [89] or Adversarial Sparse
Transformers [90].

We believe that the proposed dataset and the accompanied analysis would
help researchers understand the causes for performance drift in models and
hence enable easier deployment of long-term solutions in outdoor environ-
ments.

8 Appendix

8.1 Metadata Correlation

The see all possible correlations between the captured weather data, the Pear-
son correlation matrix is calculated in Fig. F.3. The p-values for all correla-

228



8. Appendix

tions are close to 0, making them statistically significant. We additionally set
a threshold of significant correlation above 50%. We can divide the weather
data roughly in three categories: (1) correlated to temperature: dew point
(correlation of 0.85) and sun radiation intensity (correlation of 0.54), (2) corre-
lated to humidity: sun radiation intensity (correlation of −0.72) and minutes
of sunshine every 10 min (correlation of −0.66), (3) not correlated to any-
thing: precipitation, wind speed and wind direction. In addition, it should be
mentioned that the sun radiation and minutes of sunshine are also strongly
correlated, as both measurements are derivatives of the sun’s intensity.

Fig. F.3: Raw weather data correlation matrix. Three categories are formed based on the cor-
relations between the captured conditions—ones significantly correlated to temperature, ones
significantly correlated to humidity and ones not significantly connected to anything.

8.2 Data Sampling

Example of a 100-frame sampling created for the training week between 13-
20 of February can be seen in Fig. F.4 together with examples of the selected
images. The blue points are all the images present in the week of February,
while the red ones are the sampled images.
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Fig. F.4: Sampling of the week between 13-20 of February. The sampling is done depending on
the frame numbering and temperature. Some example images and their positions are given.

8.3 Activity Calculation

The difference between two consecutive frames in the dataset is set as the
activity of the scene. When multiple people are moving in the scene or cars
and bikes are passing through this will prompt a strong change between
consecutive frames, signifying more activity. As the background contains
moving parts which can be misinterpreted as activities, a mask is created,
removing the waterfront water and the swaying ropes and masts. Examples
of the calculation steps for a scene with small activity change and one with
large are given in Fig F.5, where the final numbers represent the activity.

(a)
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(b)

Fig. F.5: Steps for calculating the scene activity level. (a) A frame with low activity. (b) A frame
with high activity. The middle images in (a) and (b) represent the masked moving elements of
the background—the water, mast and ropes.

References
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1. Introduction

Abstract

In surveillance systems, detecting anomalous events like emergencies or potentially
dangerous incidents by manual labor is an expensive task. To improve this, anomaly
detection automatically by computer vision relying on the reconstruction error of an
autoencoder (AE) is extensively studied. However, these detection methods are often
studied in benchmark datasets with relatively short time duration—a few minutes
or hours. This is different from long-term applications where time-induced environ-
mental changes impose an additional influence on the reconstruction error. To reduce
this effect, we propose a weighted reconstruction error for anomaly detection in
long-term conditions, which separates the foreground from the background and gives
them different weights in calculating the error, so that extra attention is paid on
human-related regions. Compared with the conventional reconstruction error where
each pixel contributes the same, the proposed method increases the anomaly detection
rate by more than twice with three kinds of AEs (a variational AE, a memory-guided
AE, and a classical AE) running on long-term (three months) thermal datasets,
proving the effectiveness of the method.

keywords: surveillance; anomaly detection; autoencoder; long-term; weighted recon-
struction error; background estimation

1 Introduction

For a safer daily life, round-the-clock surveillance systems have been installed
in some private and public places. Generally they are manually operated,
which is expensive. Therefore, an automatic tool to help find emergencies or
potentially dangerous incidents that require extra attention is in dire needed.

From the perspective of computer vision, such a tool can be realized us-
ing either supervised or unsupervised learning. Supervised learning needs
a large amount of annotated data illustrating what the emergencies or po-
tentially dangerous incidents look like. This is too expensive as collecting
enough data of rarely-occurring incidents is time consuming and even unfea-
sible. On the contrary, unsupervised learning greatly lowers the cost, making
it more preferred in this task.

This unsupervised solution is often realized by anomaly detection via an
autoencoder (AE), which treats these rarely-happening emergencies and po-
tentially dangerous incidents as anomalies but frequently-occurring incidents
as normal. In general, an anomaly is deviating from a normal in many as-
pects. An AE trained with only normal data can reconstruct similar normal
patterns with minimal errors, but struggles with abnormal patterns. Hence
the difference between the input and the reconstructed output, usually in the
form of mean square error (MSE), has the ability to measure the input’s de-
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viation from the normal data. Input with the MSE larger than a predefined
threshold is detected as an anomaly.

This detection strategy works with an assumption that the concept of
what is normal is constant. Benchmark datasets on which existing anomaly
detection solutions are evaluated satisfy this assumption, because they are
relatively short in time duration. However, in real life a surveillance system
will be running for months and hence the normal pattern will inevitably drift.
This can be illustrated in Fig. G.1 where all these four harbor front scenes are
normal in terms of human activities, but the obvious changes across time in
contrast, illumination, water ripples, and other environmental aspects make
them different from what has been defined as normal in the training phase.
This time-induced drift has a large influence on the reconstruction error and
thus the anomaly detection is not reliable any more. This phenomenon raises
an open research question—how to detect anomalies reliably in long-term
surveillance systems.

(a) (b)

(c) (d)

Fig. G.1: Example images from different months. All show normal activity but with significant
differences due to the seasons. (a) August. (b) January. (c) February. (d) April.

To this end, we propose a weighted reconstruction error method that uses
different weights for foreground pixels and background pixels in calculat-
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ing the error, for which five background estimation (foreground extraction)
methods are implemented and evaluated. In this way, the influence of the
time-induced drift on the reconstruction error is reduced and hence anomaly
detection is more reliable.

By applying the proposed method to long-term datasets spanning three
months (August 2020, January 2021, April 2021) collected from a real-world
harbor front surveillance system, the experimental results show that the
weighted reconstruction error increases the anomaly detection rate by at least
twice than that with the conventional reconstruction error, for all the three
kinds of AEs (a variational AE, a memory-guided AE, and a classical AE),
proving the effectiveness of the method.

The datasets and code are published on GitHub—https://github.com/
JinsongCV/Weighted-MSE, making the integration of the weighted recon-
struction error and the comparison between before and after results much
easier.

2 Related Work

Existing work on anomaly detection [1–10] is usually AE-based. Though
some attempts are made to improve the anomaly detection performance, for
example incorporating temporal information [3–5], introducing a generative
adversarial network (GAN) to differentiate reconstructions from inputs [6],
using both the memorized features of the training set and the input’s features
to do reconstruction [7, 11], and so on, these methods are only studies on
benchmark datasets—Avenue [12], ShanghaiTech [13], UCSD [14], UMN [15],
and Subway [16]), which have an imperfection in common—a short duration
of a few minutes or hours (shown in Table G.1) [17, 18]. Therefore, generaliz-
ing the existing work evaluated on such datasets to a long-term application
in real life can be problematic, considering the extra time-induced changes.
For example, the illumination and contrast vary from the shifts in day and
night, weather, seasons, etc. This environmental drift imposes an additional
variation on the reconstruction error and thus makes it not solely correlated
to human activities that are responsible for most anomalies.

Table G.1: Time duration (hours) of benchmark datasets for anomaly detection.

Avenue ShanghaiTech UCSD UMN Subway
0.5 3.6 3.1 0.07 2.3

This challenge inspires us to focus more on foreground regions where
anomalies are assumed in when calculating the reconstruction error, to elim-
inate the influence of the time-induced environmental drift, which is exactly
the proposed weighted reconstruction error does.
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A similar solution to ours is the object-centric AE [19, 20] that takes the
pre-detected object region instead of the full image as the input. Despite the
similarity, there are four distinctions. (i) The goals are different. Their work
expects to generalize an AE trained on one scene to another scene without
further finetuning, while our method targets to reduce the effect of the en-
vironmental drift in long-term surveillance systems. (ii) Our method still re-
constructs the full image instead of only object regions, because the location
of an object relative to the background is important, for example, a drown-
ing accident only happens in the water area. (iii) Our method is much more
flexible like a post-processing module and thus easily incorporated to any
framework. (iv) Our method treating foreground and background regions
separately also provides an ability to investigate environmental anomalies
like a sudden contrast change due to an extreme weather event.

3 Methods

Input

time

MSE

time

W-MSE

Autoencoder

Background Estimators

Object-centric Foreground Extractors

Reconstruction

Anomaly

Fig. G.2: Diagram of the proposed method.

This paper proposes a weighted reconstruction error for anomaly detec-
tion illustrated by the diagram in Fig. G.2.

In it, the red flow indicates the conventional anomaly detection scheme
where the reconstruction error (in the form of MSE) is directly calculated
from the input and the reconstructed output with each pixel contributes the
same. This calculation also considers the time-induced environmental drift
as part of the reconstruction error, and thus for input spanning a long time
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period the MSE curve will fluctuate greatly. This is very dangerous as a
real anomaly will be ignored, if its MSE value is lower than other fluctuated
MSE values of normal inputs. Such a phenomenon is shown in the upper
MSE curve where normal inputs with drift have larger MSE values than the
threshold (the red dashed line), not only introducing false positives but also
missing the real anomaly.

In contrast, the green flow in the diagram indicates the proposed weighted
reconstruction error-based anomaly detection scheme. Additional back-
ground estimators or object-centric foreground extractors can segment an
input into foreground region and background region. This information to-
gether with the input and the reconstruction are used to calculate the recon-
struction error where the foreground pixels and background pixels are as-
signed different weights, so that the error focuses more on the region where
anomalies usually happen and thus the effect of the environmental drift is re-
duced. In this way, the weighted MSE curve will be much more smoother for
normal inputs but generates a peak if an anomaly comes in, like the lower
W-MSE curve shows. Another thing to be mentioned is that both the red
flow scheme and the proposed green flow scheme are indicating the infer-
ence phase—anomaly detection.

3.1 Autoencoder

Following what is customary, we use an AE to detect anomalies by finding
frames with the largest reconstruction errors. Three AEs are applied. The
first is a variational AE—VQVAE2 [21] whose encoder compresses the input
into multi-scale quantized latent maps for the decoder to process. The sec-
ond is a memory-guided AE—MNAD [11] that uses a concatenated latent
space (of the naive latent space from the encoder output and the typical fea-
tures stored in a memory module constructed from training) to reconstruct
the input. An anomaly is measured by not only the reconstruction error but
also the distance between the encoder output and the nearest memorized
features. The third is a classical AE (CAE) designed by us, which is without
any advanced processing of the latent space. This CAE uses eleven convo-
lution layers and five pooling layers to downsize the input (384 × 288 × 1)
into a compressed feature tensor (10 × 7 × 64), and another six transposed
convolution layers and five convolution layers to transform the latent feature
space into the reconstructed output. Detailed implementations are shared on
GitHub.

3.2 Background Estimation

As mentioned before, the method is characteristic of foreground regions and
background regions contributing differently to the weighted reconstruction
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error. Therefore, separating the background from the foreground is the key.
To achieve this we test out two pipelines, one using classical statistical meth-
ods to estimate the background, the other one using the result of a human
detector as the foreground and everything else as the background.

In section 4, we will test all the methods of the two pipelines and deter-
mine which is the best method or the best combination of a few methods
to separate the foreground from the background, so that the drift can be
removed effectively for improving the anomaly detection rate.

Statistical Background Estimation

This pipeline is composed of classical statistical approaches instead of deep
learning segmentation methods [22, 23] to minimize the complexity. Also
this avoids the high price of supervised segmentation concerning pixel-level
annotations. In our harbor front scenario, the objects in the foreground vary
significantly—humans from a single one to groups, vehicles, bicycles, and
others. These variations cause extra difficulties and manpower in pixel-level
annotations if a deep model is chosen. The four classical background estima-
tors are as follows:

• Mixture of Gaussians (MOG2) [24] — using Gaussian mixture proba-
bility density to continuously model the background.

• Mixture of Gaussians using K-nearest neighbours (KNN) [25] — an ex-
tension of the MOG2 method by implementing a K-nearest neighbours
algorithm on top for a more robust kernel density estimation.

• Image difference with arithmetic mean (IDa) — the difference between
the current image and the previous one is processed by adaptive thresh-
olding to get the background mask. IDa uses an arithmetic mean
weight—each pixel in the neighborhood contributes equally to compute
the local threshold.

• Image difference with Gaussian mean (IDg) — the same principle with
IDa, but with a different adaptive thresholding strategy. IDg uses a
Gaussian mean weight—pixels in the neighborhood farther away from
the center contribute less to the local threshold computing.

To do background estimation, all the four methods need the neighbouring
images of the current frame. For the MOG2 and KNN methods, the number
of neighbouring images is heuristically set to 20, as it has been shown that
more frames are better at modeling the background. For the IDa and IDg
methods, only one previous image is used.
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Once a mask is acquired from any of the four methods, it goes through a
post-processing procedure—a morphological closing with a structuring ele-
ment of size 7× 7 followed by an opening with an element of size 3× 3. This
step serves to remove small noise particles. Finally, the moving elements in
the background like the water, ropes, and masts are removed from the mask
by prior knowledge of their locations. The resulting mask will have fore-
ground pixels with large grayscale values approaching 255 and background
pixels with small values near 0. All of these procedures are implemented
from the OpenCV library [26].

Object-centric Foreground Extraction

Besides the above four classical approaches, we test another method—object-
centric foreground extraction, provided that there is a well-trained human
detector at hand and human activities are the targets. The detector we use is
YOLOv5 [27, 28], with which each person is represented by a rectangle in the
mask. The pixels in the rectangle has a same grayscale value—the person’s
detection confidence multiplied by 255, while pixels in other regions are with
the value 0.

As a whole, these five versions of masks explicitly locate foreground ar-
eas with very large grayscale values, so for a clear reference the subsequent
contents will call such a mask foreground map. Fig. G.3 shows one input
image and the results from the five methods.

(a) (b) (c)

(d) (e) (f)

Fig. G.3: An input thermal image (a) and the outputs (b)-(f) from the five implemented back-
ground estimation (foreground extraction) methods. (a) Input. (b) MOG2. (c) KNN. (d) IDa. (e)
IDg. (f) YOLOv5.
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3.3 Weighted Reconstruction Error

First to be noted is that this paper goes with the convention and thus opts for
the MSE to measure the difference between the input and the reconstructed
output, so the following contents will directly use MSE to represent the dif-
ference without further explanation.

As long as there is a foreground map M locating foreground pixels Pf g,
any weighted MSE is possible by giving Pf g and background pixels Pbg
arbitrarily-defined weights for a specific task.

For an input I with size H ×W and its corresponding reconstruction R, a
general weighted MSEw is:

MSEw =
∑H

i=1 ∑W
j=1

(
Iij · M̄ij − Rij · M̄ij

)2

H × W
(G.1)

where M̄ij is the value of the weight map M̄ at pixel (i, j). M̄ is calculated
using Equation G.2.

M̄ =
w f g × M + wbg × (255 − M)

255
(G.2)

where w f g and wbg are normalized weights for Pf g and Pbg, respectively; as
an 8-bit image, 255 − M is the “inverse” operation of M, explicitly locating
Pbg; therefore M̄ is the final weight map normalized to 0-1 for calculating
weighted MSE in Equation G.1.

Setting w f g as 1 and wbg as 0 is the special case of the MSE only consid-
ering Pf g. Likewise, setting w f g as 0 and wbg as 1 is the MSE only looking at
Pbg.

A more general case is a weighted MSEw combining foreground maps
(e.g., M1, M2) from several background estimators (foreground extractors).

MSEw =
∑H

i=1 ∑W
j=1

(
Iij · M̄ij − Rij · M̄ij

)2

H × W
(G.3)

M̄ = w1 × M̄1 + w2 × M̄2 (G.4)

M̄1 =
w f g1 × M1 + wbg1 × (255 − M1)

255
(G.5)

M̄2 =
w f g2 × M2 + wbg2 × (255 − M2)

255
(G.6)

where, M̄1 is the weight map from M1 with w f g1 and wbg1 as normalized
weights for Pf g and Pbg in M1; M̄2 is the weight map from M2 with w f g2 and
wbg2 as normalized weights for Pf g and Pbg in M2; M̄ is the final weight map
combining M̄1 with weight w1 and M̄2 with weight w2; the resulting MSEw
is the weighted MSE considering foreground maps from two methods.
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4 Experiments

4.1 Dataset Information

Two datasets collected from a long-term harbor front surveillance system are
used to investigate the proposed weighted MSE on anomaly detection.

One dataset called 300Ver has 300 images with every 100 sampled from
August 2020, January 2021, and April 2021, making itself a dataset spanning
76 days. This dataset is a subset of a larger one covering 8-month and publicly
available as part of the publication [18]. The sampling protocol for 300Ver is
also given in [18] which uses the temperature as a basis to construct datasets
covering cold, warm, and in-between months.

The other dataset called 3515Ver is also a subset of the dataset from [18],
and has 3515 images intensively sampled with a frame rate of 0.5fps from 15
pm to 18 pm from 14-16 August 2020, 14-16 January 2021, and 14-16 April
2021. This sampling protocol comes from three strategies. (i) Empirically 15
pm to 18 pm is the time period when there are most people present in view.
(ii) Three days from each month not only guarantee the data diversity across
time but also limit the amount of the dataset for a better visualization. (iii)
0.5fps limits the amount of 3515Ver, at the same time keeping the information
continuity between neighboring frames.

In 300Ver persons are annotated with bounding boxes. Therefore, six fore-
ground maps from MOG2, KNN, IDa, IDg, YOLOv5, and ground truth (GT),
are prepared for each image. The 3515Ver dataset has no such annotations,
so only five kinds of foreground maps are calculated.

First the 300Ver dataset is used. The 3515Ver dataset is then used to verify
what has been found on 300Ver and the related contents are in the section
of extended experiments. There are three reasons why we do experiments
on both datasets. (i) 300Ver covers 76 days with less images while 3515Ver
have more images but only covering 9 days; these two datasets compensate
for each other, making the experiments consider both a long-term duration
and a large number of images. (ii) This separation of two datasets avoids the
problem that if all the images are sampled intensively from the 76 days, the
resultant 30000 images will make the visualization of drawing the MSE values
of them into one curve (like the curve in the following contents) extremely
difficult. (iii) Annotating a small dataset (300Ver) is much easier to provide a
very accurate foreground extraction, based on which the findings of section
4.3 will be more convincing.

4.2 Implementation Details

Both VQVAE2 and MNAD are trained with 4000 images and validated with
1000 images. CAE is trained with 15000 images and validated with 5000
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images due to its naive function compared with the other two. VQVAE2
is trained with a batch size of 32 and a learning rate of 0.0001. MNAD is
trained with a batch size of 32, a learning rate of 0.0002, and a value of 0.1 for
the weight of the feature separateness and compactness loss. CAE is trained
with a batch size of 16 and a learning rate of 0.0003. The training phases
stop at the 100th epoch, the 100th epoch, and the 200th epoch for VQVAE2,
MNAD, and CAE, respectively, at which the networks are converged with
the training losses not decreasing any more. All these training and validation
sets are sampled from February 2021 to not only avoid the overlapping with
the three-month datasets this paper uses but also enhance the effect of the
time-induced drift that we want to address. A kind reminder is that the
following experiments are done with all these three AEs but we usually only
show related visualizations of VQVAE2 to avoid the repeat of similar results.

The YOLOv5 detector uses a pretrained model from [28] and the training
set has no overlapping with the images we use in this paper.

4.3 Weighted MSE

Weighted MSE Curves

To simplify the work and directly answer the question how the conventional
MSE and weighted MSE behave for long-term datasets, according to Equation
G.1 and Equation G.2, the MSE investigated will consider three situations: the
foreground only, the background only, and the full image where each pixel
contributes the same as the convention, which are represented as MSE f g,
MSEbg, MSEcvt, respectively. These representations will be used in all the
following contents.

Therefore, for each AE with 300Ver as input, six kinds of foreground maps
produce six MSE f g curves and six MSEbg curves describing the weighted
MSE changes across time; likewise, one MSEcvt curve can be drawn to de-
scribe the conventional MSE changes across time.

For a better comparison, Fig. G.4 shows the above mentioned 13 MSE
curves, produced by the VQVAE2 model. This visualization (of showing
multiple curves in one chart) is achieved with a critical pre-processing mod-
ule before plotting: first the original MSE values are smoothed by a mean
filter with its kernel size as 10; then the smoothed values are normalized be-
tween 0 and 1; after normalization the curves are overlapped with each other,
so a further translation is done for each curve by adding an extra value. In
this way, the ranges of curves of MOG2, KNN, IDa, IDg, YOLOv5, and GT are
[2.5, 3.5], [2.0, 3.0], [1.5, 2.5], [1.0, 2.0], [0.5, 1.5], [0, 1], respectively; the range of
the conventional MSE curve is [3.0, 4.0].

From Fig. G.4 several observations are found. (i) The six MSE f g curves
in (a) have totally different trends with the trends of MSEbg curves in (b),
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(a) MSE f g (b) MSEbg and MSEcvt

Fig. G.4: MSE (after smoothing, normalization, and translation) curves across time from VQ-
VAE2 on 300Ver. The vertical azure dashed lines are used to separate different months.

which is reasonable as the image regions they look at are not the same. (ii)
The MSEcvt curve in (b) has almost exactly same trend with that of the six
MSEbg curves in (b), but largely deviates from the trends of MSE f g curves
in (a), proving that on 300Ver the conventional MSE (where each pixel in the
full image contributes the same) cannot represent what happens in the fore-
ground region and thus has no ability to do anomaly detection reliably. (iii)
Though the six MSE f g curves in (a) are diverse, they share a similar trend to
some extent especially between the MSE f g curve of YOLOv5 and the MSE f g
curve of GT. This reflects that they have the ability to represent the fore-
ground changes along with time but also have their own focuses shown by
distinct peaks due to the methods’ differences. The MSE f g curve of YOLOv5
and the MSE f g curve of GT are bounding box-based focusing only on per-
sons, therefore a larger similarity is found between them. (iv) The trends of
all the MSEbg curves and the MSEcvt curve in (b) are U-shape, revealing the
influence of the drift across time on the MSE as mentioned before. However,
the U-shape trend is not shown in foreground MSE curves in (a), indicating
that the time-induced effect influences background regions higher than fore-
ground regions. Hence researches on long-term datasets (applications) need
separate analysis on them.

In addition to this, experiments done with MNAD and CAE also get sim-
ilar results that all support the above findings. As a whole, this part confirms
that in long-term datasets (applications) with time-induced drift, the conven-
tional MSE (where each pixel contributes the same) is not suitable to describe
the foreground information, not to mention a further step—detecting anoma-
lies.

Weighted MSE for Anomaly Detection

This section will test whether the proposed weighted MSE performs better in
anomaly detection. Since there are no specified anomalies in the dataset, and
detecting specific anomalies is not the focus of this work, we decide to use
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a strategy that maximizes the difference between an anomaly and a normal
image, to better focus on the main research problem—how to do anomaly
detection reliably in long-term datasets.

To realize this, we synthesize anomalies by overlapping “black-white-
pixel” patterns (that the three AEs have never seen) on the person regions
of some images. But it seems that such patterns overlapped on only person
regions will give the YOLOv5-based foreground map a biased advantage.
Hence, to evaluate the five kinds of foreground maps more fairly, four shapes
(rectangle, square, circle, and ellipse) of the “black-white-pixel” pattern are
considered for the reason that the detector-based map has no round-cornered
foregrounds but the other four kinds of maps have. We admit this four-shape
strategy cannot totally remove the bias on the YOLOv5-generated map, but
if we put the “black-white-pixel” pattern on other foreground regions where
there are no people, a greater bias will be given to other statistical back-
ground estimators because YOLOv5 only predicts human regions. Therefore,
this four-shape strategy should be the best solution to treat these five kinds
of foreground maps equally.

(a) (b)

(c) (d)

Fig. G.5: Examples of anomalies with “black-white-pixel” patterns in four different shapes. (a)
Rectangle. (b) Square. (c) Circle. (d) Ellipse.
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Accordingly, on the premise of having at least one person in each synthe-
sized anomalous image, 21 rectangle-shaped anomalies (the 1st, 11st, 21st,
..., 281st images of 300ver), 21 square-shaped anomalies (the 3rd, 13rd, ...,
293rd images of 300ver), 20 circle-shaped anomalies (the 2nd, 12nd, ..., 282nd
images of 300ver), and 16 ellipse-shaped anomalies (the 4th, 14th, ..., 284th
images of 300ver) are synthesized. In each of them the annotated GT per-
son regions are randomly chosen to be overlapped with “black-white-pixel”
patterns. Examples of the synthesized anomalies are shown in Fig. G.5.

First, the rectangle-shaped anomalies are used to test the anomaly detec-
tion rate. Accordingly, in Fig. G.6, six MSE curves (five MSE f g curves and
one MSEcvt curve) of VQVAE2 are drawn in color blue, and the anomalies are
located with orange peaks. Each sub-figure caption has the same meaning
with what has been used in the previous subsection.

(a) MSE f g of MOG2 (b) MSE f g of KNN

(c) MSE f g of IDa (d) MSE f g of IDg

(e) MSE f g of YOLOv5 (f) MSEcvt

Fig. G.6: After introducing rectangle-shaped anomalies, MSE curves across time from VQVAE2
on the 300Ver dataset. The blue curves describe the MSE changes, and the orange peaks indicate
the locations of anomalies. The vertical azure dashed lines are used to separate different months.
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From Fig. G.6, the large percentage of overlapping between orange peaks
and blue peaks in (a)-(e) proves the usefulness of the proposed weighted
MSE in anomaly detection. This also happens in the experiments of VQ-
VAE2 on 300Ver but with anomalies in the other three shapes. Specifically,
among the images of the largest 30 (10% of the dataset) MSE values of each
curve, the number of anomalies is listed in Table G.2. From the table, the
weighted MSE using any foreground map has a way high detection rate than
the conventional MSE.

Table G.2: Anomaly detection results of weighted MSE and conventional MSE.

Statistical Background Object-centric Foreground
Conventional

MOG2 KNN IDa IDg YOLOv5
Rectangle (21) 16 17 15 15 16 4

Square (21) 13 14 12 13 15 7
Circle (20) 11 13 10 10 16 4
Ellipse (16) 14 12 14 13 14 4
Sum (78) 54 56 51 51 61 19

Detection Rate 69.23% 71.79% 65.38% 65.38% 78.21% 24.36%

When taking multiple foreground maps from different methods into con-
sideration, the top two results in Table G.2—YOLOv5 and KNN, inspire us
to combine their foreground maps by applying Equation G.3-G.6 in which
w1 (namely wYOLOv5) and w2 (namely wKNN) are 0.52 and 0.48, respectively
as the normalized values of 78.21% and 71.79%. To be noted is that any
combination is possible no matter whether a supervised human detector is
available.

To avoid being one-sided, we do further experiments with MNAD and
CAE on 300Ver in a way of using rectangle-shaped anomalies and the fore-
ground map combining YOLOv5 and KNN. By using the weighted MSE in-
stead of the conventional MSE, the detection rate increases from 9.52% to
66.67% for MNAD and from 4.76% to 66.67% for CAE.

As a whole, the proposed weighted MSE improves anomaly detection
rate markedly on 300Ver—VQVAE2 (2.68 times-3.21 times), MNAD (7 times),
CAE (14 times), verifying that this strategy is worth being incorporated in
datasets or applications spanning a long time period.

Extended Experiments

The extended experiments on 3515Ver use rectangle-shaped “black-white-
pixel” patterns overlapping on the persons who are near the horizontal edge
of the water to simulate the anomalies. The resultant 60 synthesized anoma-
lies are consecutive frames and the persons overlapped with the abnormal
pattern are fixed individuals. This increases the authenticity of the simulated
anomalies—in real life an anomaly usually persists through multiple frames
and involves fixed persons.
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Fig. G.7 gives the MSE curves of the three AEs on 3515Ver with synthe-
sized anomalies, in which the curves of absolute MSE values are in blue and
the smoothed ones are in red, and the anomalies are located with orange
peaks. In Fig. G.7, by using the weighted MSE with the foreground map
MYOLOv5&KNN combining YOLOv5 and KNN, the ascending peaks in (a), (c),
and (e) accurately detect the anomalies, yet the conventional MSE curves in
(b), (d), and (f) are entirely dominated by time-induced influences for exam-
ple the fall of a cliff due to the seasonal transition between August 2020 and
January 2021. We therefore believe that the extended experiments on a much
larger dataset also prove the effectiveness of the proposed weighted MSE in
anomaly detection.

(a) VQVAE2: MSE f g of MYOLOv5&KNN (b) VQVAE2: MSEcvt

(c) MNAD: MSE f g of MYOLOv5&KNN (d) MNAD: MSEcvt

(e) CAE: MSE f g of MYOLOv5&KNN (f) CAE: MSEcvt

Fig. G.7: MSE curves of VQVAE2, MNAD, and CAE on 3515Ver with synthesized rectangle-
shaped anomalies. The curve of absolute MSE values is in blue. The curve of the smoothed
values are in red. The anomalies are located with orange peaks. The vertical azure dashed lines
are used to separate different months.
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5 Conclusions

This paper proposes a weighted reconstruction error in autoencoder-based
anomaly detection for long-term surveillance systems. The method aims to
make the calculated error more focused on the region where anomalies are
assumed in and thus reduces the influence of time-induced environmental
drift.

We apply three selected autoencoders to three-month datasets to test
the anomaly detection performance. With synthesized anomalies, the au-
toencoder with proposed weighted reconstruction error always gets a much
higher detection rate (more than twice) than the conventional reconstruction
error version where each pixel contributes the same, which proves the use-
fulness of the proposed strategy.

This method is implemented as a flexible module, therefore we expect
it can be integrated into and verified by more frameworks. Besides, as a
study at harbor fronts, in the future we will use this method to detect emer-
gencies and potentially dangerous incidents like traffic accidents, drowning
accidents, crowds in coronavirus days, etc., so that timely controls or rescues
by polices, safeguards, and other professionals can be provided for a safer
life.
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1. Introduction

Abstract

Outdoor fall detection, in the context of accidents, such as falling from heights
or in water, is a research area that has not received as much attention as other
automated surveillance areas. Gathering sufficient data for developing deep-learning
models for such applications has also proven to be not a straight-forward task.
Normally, footage of volunteer people falling is used for providing data, but that can
be a complicated and dangerous process. In this paper, we propose an application
for gathering thermal images of a low-cost rubber doll falling in a harbor, for
simulating real emergencies. We achieve thermal signatures similar to a human on
different parts of the doll’s body. The change of these thermal signatures over time is
measured, and its stability is verified. We demonstrate that, even with the size and
weight differences of the doll, the produced videos of falling have a similar motion
and appearance to what is expected from real people. We show that the captured
thermal doll data can be used for the real-world application of pedestrian detection by
running the captured data through a state-of-the-art object detector trained on real
people. An average confidence score of 0.730 is achieved, compared to a confidence
score of 0.761 when using footage of real people falling. The captured fall sequences
using the doll can be used as a substitute to sequences of people.

keywords: thermal cameras; fall detection; thermal mannequin; anomaly detection;
machine learning

1 Introduction

Automated security systems are becoming increasingly ubiquitous together
with the growing requirements for public safety. The possibility to offload
parts of the manual surveillance from people to an automated system has
driven a great deal of research in better algorithms and extended them for
different use cases. These use cases can be roughly separated into outdoor
and indoor use. Indoor surveillance mostly focuses on the care for children,
patients and elderly [1, 2].

Outdoor surveillance is directed towards detecting suspicious and anoma-
lous pedestrian behaviors on streets, in airports, in libraries [3, 4] and in traf-
fic surveillance and for the early prevention of accidents [5, 6]. Thermal im-
ages are also becoming more prevalent for surveillance use cases [7], and this
trend is likely to continue to rise in future years due to privacy concerns [8].

Fall detection, as apart of surveillance, has become an increasingly re-
searched field, focusing on methods for the detection and prevention of fall
accidents [9]. Fall events can lead to serious injuries and negative conse-
quences to vulnerable groups, such as small children, patients in hospital
care and the elderly. It has been shown that a quick reaction is required
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when such events occur and especially for the elderly, which can prevent
more severe outcomes [10]. Modern deep-learning methods have been em-
ployed steadily in tackling the problem of fall detection [11–13].

Such methods have been proven useful in environments with single peo-
ple as well as crowded areas with a large amount of foot traffic and groups
of people [14, 15]. Such deep-learning solutions require enough training and
testing data to correctly detect falls and minimize the possibility of either
missing or misclassifying important events. Most of the time, the required
fall events can occur sporadically or would require certain conditions. This
requires data gathering for these events that either depends on acting these
scenes out in real life with volunteers [16, 17] or on creating simulated videos
and images [18, 19].

Both of these have their pros and cons; however, generally computer sim-
ulations cost less time and resources and can produce higher amount of vari-
ations but are limited to the scenarios that can be convincingly simulated.
For scenarios that cannot be easily simulated, acting them out in real life is
left as the only possibility. A problem that can arise in these cases is if the
scenario is too dangerous or too complicated for repeated testing. In these
cases, mannequins or crash test dummies can be used instead [20, 21]. Ensur-
ing that the used mannequin properly represents a human is then required.
This means that the shape, size, appearance, weight, movement and inter-
actions with the environment of the dummy need to be as close to that of
humans as possible.

This paper focuses on falls happening in outdoor environments. Detect-
ing falls into water is required as part of drowning prevention surveillance
applications. Every year an estimated of 236,000 people drown around the
world [22]. Compared to other types of fall events, falls in water are not
that widely studied; and datasets and the methods for capturing data are
not thoroughly documented. Most of the research is also directed towards
specific more-isolated use cases, such as drowning prevention in swimming
pools [23, 24] or falls from boats [11], and only some look into warning sys-
tems for every day surveillance [25, 26].

As drowning events can happen any time around the clock and systems
need to be able to register them independent of weather or lighting condi-
tions, we choose to focus on thermal data. Thermal images are more robust
to environmental changes compared to RGB images and can also provide
better anonymity preservation, as facial features and clothing cannot be eas-
ily recognized. We investigate the use of low-cost dolls for gathering training
and testing data for fall detection using thermal images. We look into the re-
quirements for designing a simple doll and separate these requirements into
two main categories—appearance and motion.

As we focus on generating thermal data, the appearance requirements
include not only the shape of the doll but also the need for it to provide a
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temperature distribution similar to the one from real people. The motion
requirements revolve around ensuring that constructing falls in a believable
way, similar to a human. An overview of the investigation presented in the
paper is given in Fig. H.1.

Fig. H.1: Overview of the proposed system and the investigation done in the paper. First, a
human-like figure is designed with appropriate weights and support (a), followed by compar-
isons between the thermal signature of humans and the doll (b) and the stability of the signature
through time (c). The fall motion of the figure is then compared to those of humans (d). Finally,
the usability of the generated data is verified using a pedestrian detection algorithm (e).

To ensure that both categories of requirements are satisfied, a number of
tests were conducted both in indoor laboratory settings as well as outdoor.
We show that a simple inflated clothed doll can exhibit human-like tempera-
ture distribution in different body parts, such as the head, torso, hands and
legs. Furthermore, this temperature distribution can be kept for a sufficiently
long time in both warm and cold weather.

Fall data were also produced with the use of the doll in an outdoor envi-
ronment and compared to the data produced by human volunteers. The mo-
tion of both the doll and the volunteer were estimated using optical flow,
which showed minimum deviations between the two. Finally, the captured
doll footage ran through a pedestrian detection algorithm and the results
were compared to the ones from real human footage. The detection confi-
dences of the two were very similar with only a 4% difference.

The main contributions of the paper revolve around proving the usability
of an off-the-shelf doll for outdoor fall thermal data gathering. They can be
summarized as:

• Experimentally verifying the visual representation of a doll construct
for thermal imaging.

• Analyzing the motion representation of the doll for falling visualiza-
tion.

• Presenting a real world use case of the captured thermal footage for
pedestrian detection.
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This work was created as a step-by-step guide to how a data-capturing
system for emergency situations can be developed and verified. Its main use
is for speeding up the initial process of capturing training and testing data
for falling and drowning accidents, which normally require a great deal of
overhead in both equipment and human-power. We show that the proposed
doll system can be a viable alternative for data capture to other more complex
and expensive systems [27–29] for the initial stages of building deep-learning-
based fall detection systems.

The captured fall video dataset is provided as part of the publication—
https://www.kaggle.com/ivannikolov/thermal-mannequin-fall-image-
dataset.

2 Related Work

In this section, we discuss the related work in three main directions. Ini-
tially automated fall detection is discussed as a research area with different
sensors and deep-learning techniques employed for different use cases, such
as automated indoor and outdoor CCTV surveillance for anomaly detection,
retirement homes and kindergarten surveillance, as well as medical facility
for patient fall detection. All of these algorithms are shown to have the same
requirements for a large amount of training and testing data.

This is why the next part of the related work discusses the ways man-
nequins are used for data capturing when it is hard to reproduce or danger-
ous scenarios are required. Finally, as we want to use thermal data for an un-
interrupted 24-h fall detection, we focus on specifically thermal mannequins.
This is required, as ensuring a mannequin gives off the same thermal signa-
ture as a real human is a non-trivial task that can significantly complicate the
capturing setup.

2.1 Fall Detection

Fall detection systems can be roughly separated into indoor and outdoor use.
The indoor use cases mostly focus on healthcare systems for children, the el-
derly or medical patients, while outdoor cases are connected to surveillance
and accident prevention. Indoor fall detection systems can rely on using ad-
ditional sensors and hardware for monitoring. These can be sensors mounted
somewhere in the surroundings and used for surveying such as radar [30] or
Dopplers [31], or sensors directly worn by people such as smart watches [32]
or accelerometers [33].

These sensors can produce very precise time series data of a person’s
position, motion and state but cannot be easily used in outdoor environ-
ments. Other possibilities are to use cameras for detection of falls. These
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algorithms rely on classical approaches, such as Gaussian Mixture Models
and contour-based template matching [34], pose estimation and SVMs [35]
and optical flow oriented histogram analysis [36]. Deep-learning techniques,
such as CNNs for activity prediction and skeletal pose extraction [16, 37],
LSTM [1, 2] and autoencoders together with transfer learning and feature
residuals [17, 38, 39], are also used on RGB, depth and thermal data.

Outdoor fall detection needs to be feasible in non-static environments
with changing backgrounds, light conditions, density and clutter. This ne-
cessitates more robust approaches combining video motion detection and
temporal features using three dimensional LSTM and ConvLSTM [12, 40], ex-
tracting depth from single images using Markov Random Fields and human
detection using particle swarm optimization [41] or body posture analysis
using two-branch multi-stage CNNs [42].

Outdoor fall detection can also be directed towards detecting falls from
heights, such as ships using image patch clustering and HOG features [11]
or falls in harbor fronts using optical flow [26] or convolutional autoencoders
and YOLOv5 object detection [43]. All these algorithms require many exam-
ples of falls, which cannot be always captured easily and with a high level
of reproductivity. Mannequins can be used in many of the cases to gather
enough synthetic data of falls.

2.2 Mannequins in Data Capture

Using mannequins and dummies for gathering testing data has been an im-
portant part of the research and development in many fields. In the auto-
motive industry, test dummies are used for gathering data from crashes to
make vehicles safer [44, 45]. In medicine and the healthcare industry, man-
nequins are used for simulating emergency situations, such as falls of senior
citizens [21] and medical patients [20, 46], through the use of both camera
systems and wearable sensors.

Training doctors in performing diagnosis [47] and first responders on
proper CPR techniques [48] are also areas where mannequin testing data
are widely used. Mannequin torsos and heads are also regularly used in
testing audio wave propagation and tuning devices [49, 50]. The flexibility
of using mannequins provides the possibility to capture widely varying data
for people’s movements, poses and interactions.

Such data can either be immoral to capture with people [51] or require
a considerable time investment [52, 53]. Mannequins are also used in robot
vision where obstacle avoidance and interaction with humans are required,
for generating RGB, depth or thermal images as well as point clouds [54, 55].
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2.3 Thermal Mannequins

The use of mannequins in scenarios requiring the capture and evaluation of
thermal data necessitates implementing specialized parts to simulate a ther-
mal signature. Depending on the use case, either separate body parts, such as
heads, torsos and feet, or full body male, female and child representations are
produced [56]. All the thermal mannequins used in research contain compli-
cated systems required to produce visuals and readings close to those of
humans—multiple heat production zones [57], sweating [58, 59], soft tissue
skin reactions [60], movement mechanisms [61] etc.

This becomes even more evident in for example work focusing on analyz-
ing human thermoregulation using mannequins [61–63]. These mannequins
are mostly suited for laboratory testing because of their size and required
sensors and actuators connected to them. For outdoor environment test-
ing, rescue mannequins and dummies can be used [27–29]; however, they
still have the problems of high costs and being built with specific use cases.
For generating thermal images of falling in water in outdoor environments,
a simpler, lower-cost and easier to transport solution is required.

3 Capturing Cameras

Two cameras are used for the experiments in this paper. The experiments
done on the harbor front use a Hikvision DS-2TD2235D-25 thermal cam-
era [64], while all other experiments use an AXIS Q1921 thermal camera [65].
The Hikvision camera is pre-installed to monitor the harbor for safety by the
city municipality, and the AXIS camera is used as a more mobile alternative
as it provides internal parameters close to the Hikvision. Both are long-
wavelength infrared (LWIR) cameras, which produce 8-bit grayscale images
of relative temperature. The specifications of the two cameras are given in
Table H.1.

Table H.1: The two thermal cameras used in the experiments. The main testing camera is the
Hikvision DS-2TD2235D, while the AXIS Q1921 is used for laboratory testing. The Hikvision
additionally contains an RGB sensor, which is not used in the experiments for this paper.

AXIS Q1921 Hikvision DS-2TD2235D
Resolution 384 × 288 384 × 288

Image Sensor Uncooled Vanadium Oxide Uncooled
Response Waveband 8–13 µm 8–14 µm

Focal Length 19 mm 25 mm
Output 8-bit grayscale 8-bit grayscale
NETD <100 milli-Kelvin <50 milli-Kelvin
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Both cameras capture video with a resolution of 288 × 384 and 25 frames
per second and have comparable lens optics at 25 mm for the Hikvision cam-
era, versus 19 mm for the AXIS camera. The Hikvision contains an additional
RGB sensor, which is not used for the purposes of this paper. The Noise
Equivalent Temperature Difference (NETD) specification of the two cameras
differs with the Hikvision camera having a NETD < 50 milli-Kelvin, while
the AXIS camera is rated at NETD < 100 milli-Kelvin.

The NETD is a measure of the size of difference between thermal points
that the camera can distinguish, a smaller NETD specifying better contrast
differentiation. As we use the AXIS camera for testing the thermal visual-
ization, we speculate that, if the doll can be detected with the camera with
the worse NETD rating, then it should be detected on the one with the better
NETD. The Hikvision camera uses a vanadium oxide uncooled image sensor
and has working wavelengths between 8 and 14 µm, while the AXIS camera
gives no specification for the image sensor, except that it is also uncooled and
the working wavelengths were shown to be between 8 and 13 µm in [66].

4 Thermal Doll Design

As seen in Section 2.3, current state-of-the-art mannequins used for thermal
data collection are expensive, hard to transport and heavy. This makes them
not suitable for the use in outdoor tests, especially when the falls are into
water. To address this, we selected a simple air-filled rubber doll as a basis
of the design. This provides a human-like shape. The rubber exterior makes
the process of drying off easier, and it can be easily inflated with an air
compressor or pump. The height of the doll is 1.6 m, and its weight after
being fully inflated is 1.5 kg.

As the doll will be thrown in a harbor, conventional heating solutions,
such as electrical pads, vests, gel thermal pads etc. would be unusable, as the
combination of sea water, dirt, seaweed and low temperature would easily
degrade and destroy them. A simpler solution was thus selected where water
is boiled and put in sealed thermoses. Before each experiment, the water is
poured onto the doll.

As there will not be a solution to continuously provide heat to the doll’s
exterior, and it is made out of rubber which has bad thermal conductivity
and retention, a layer of clothes is required. Each part of the doll’s body
that should be detected by the thermal cameras is clothed, using polyester
clothing consisting of a tracksuit, a sweatshirt with a hood, gloves, socks and
a winter hat. The clothes are chosen as the material would keep the heat from
the applied water, without losing their shape or shrinking.

To make the doll behave closer to a human when thrown, four training
ankle weights are strapped to it—one on each hand and leg. Each weight is 2
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kg, boosting the overall weight of the mannequin to 9.5 kg. Finally, because of
the additional weight strapped to it, together with the weight from the wet
clothes, the mannequin requires additional structural support. Aluminum
tube supports are made for each leg and connected to a main structure at the
lower back of the doll. A heavy base stand is also made, with slots for the
leg supports, so the doll can be set up standing for the easier pouring of hot
water onto it. The final construction can be seen in Fig. H.2.

Fig. H.2: View of the created low-cost doll, together with clothes and ankle weights.

5 Doll Thermal Appearance

To test the thermal visuals of the doll after hot water is poured over it, two
experiments were conducted. The first one aimed to compare the tempera-
ture of different body parts of the doll to the temperature of humans in the
same environment. This would show that the visual representation of the
clothed doll would be close enough to a human, when thrown in the water.
The second experiment would test the temperature change of the clothed doll
over time. This is necessary as no persistent source of heat is applied, and it
is expected that the initial heat from the hot water would dissipate over time,
especially in colder weather. For both experiments, we used the AXIS Q1921
thermal camera.
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5.1 Comparing Temperature between the Doll and Real Peo-
ple

The first test was designed to determine if the clothed doll would exhibit
temperature readings similar to those seen in real humans after the clothes
were positioned on it and the hot water has been poured on it. A static lab-
oratory environment was chosen for this test so that any possible effects of
environmental variables can be minimized. For this test, we took inspiration
from the comparison between human and mannequin thermal visuals pre-
sented in the research by [63, 67], together with the separation of the body
in heat zones for the detection of different facial expressions presented in the
work by [68].

We captured the thermal visuals of 11 volunteers, as well as the doll from
four distances—1, 2, 3 and 4 m. We chose the nearer distance as only a
very small part of the participants could be seen at the farther distance due
to the constraints of the laboratory. We separated six thermal zones—head
(H), body (B), left (LA) and right (RA) arm and left (LL) and right (RL) leg.
Example of these zones on a participant and the doll can be seen in Fig. H.3.

(a) Human Zones (b) Doll Zones

Fig. H.3: Visualization of the six thermal zones—head (H), body (B), left arm (LA), right arm
(RA), left leg (LL) and right leg (RL) on one of the volunteers and the doll. Blue squares show
the central pixels used for calculating the thermal image calibration.
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The AXIS camera captures uncalibrated thermal images which change
their intensity depending on the real maximum temperature of the captured
object and surrounding environment. This can cause variations in the thermal
images. To minimize these variations, a simple scaling step was included so
that all captured intensities were transformed to real world temperatures.

To do this, we used an infrared thermometer to measure the temperature
in Celsius in the body center of each participant and the doll. We then cal-
culated the average intensity of a square of pixels from the captured thermal
images in the center of the body of each participant, and the doll at each
captured distance (seen as blue squares in Fig. H.3).

The ratio between the thermometer measurements and the average inten-
sities can then be used to scale the intensities of all other pixels of each image
to real world temperatures. Fig. H.4 shows the average temperature value for
each body part of the participants compared to the doll’s body part temper-
ature. The doll had an overall higher temperature in the leg zones and lower
temperature in the head zone. The readings were relatively stable between
the three distance measurements. The results show that the clothed doll ex-
hibited overall temperature readings close to the ones from humans and that
it can be used as a visual replacement of a human.

Fig. H.4: Average temperatures of the volunteers’ thermal zones, compared to the ones from the
doll captured from 4, 3 and 2 m, respectively.
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5.2 Doll Temperature Change over Time

It was shown that the doll’s temperature representation after hot water has
been poured over it closely resembles the ones from real humans. The change
over time of the doll’s temperature needs to be studied, as it is not dynami-
cally maintained over time. It is expected that, without a constant source of
heat, the initial measured temperature would decline steadily and that the
speed of the decline would depend on the environment in which it is. Know-
ing how the temperature would change over time is necessary so that enough
time is given for performing the fall experiments and generating data while
the temperature remains optimal.

We measured the change of the doll’s temperature from the time the hot
water was poured until the difference between it and the background be-
comes small enough that it would be hard to distinguish the doll. In our
case, this difference should be at least 5 ◦C. We measured this change in
three different scenarios—outdoor in cold weather, outdoor in mild weather
and indoor. For the temperature readings, we calculated the average tem-
perature in Celsius using the same scaling presented in the previous section.
The results from these measurements are given in Fig. H.5.

Fig. H.5: Measured doll temperature over time in three different scenarios—outdoor in cold
weather at 0 ◦C, outdoor in mild weather at 17 ◦C and indoor at 24 ◦C.

The cold weather scenario was captured at an environmental tempera-
ture of 0 ◦C. The warm weather scenario was captured at an environmental
temperature of 17 ◦C and the indoor scenario at a temperature of 24 ◦C.
In both outdoor scenarios, there was wind present. The temperature of the
doll changed at an average rate of 0.12 ◦C/s in cold weather, at 0.06 ◦C/s
in mild weather and at 0.03 ◦C/s indoors. In the outdoor scenarios, the
wind lowered the temperature faster, with the cold weather contributing to
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an even faster decline. On the other hand, the difference between the envi-
ronment and the doll was much larger in cold weather, compared with that
in the warmer weather and indoors. In all cases, there should be at least 3 to
4 mins for performing a fall. This would require a re-application of hot water
after each fall.

6 Fall Motion Comparison

To obtain better insights into the fall behavior of the created doll construc-
tion, it was compared to real people falling in the harbor front. For this test,
the Hikvision DS-2TD2235D camera was used, mounted in the outdoor en-
vironment where it will be used—overlooking a harbor front in the city of
Aalborg, Denmark, as seen in Fig. H.6.

Fig. H.6: The area and field of view of the Hikvision DS-2TD2235D camera used for the out-
door experiments.

We used five videos captured as part of the publication by [26] of five real
people falling in different ways—from stationary position, while walking and
while running. We then captured videos of the doll in the same place. All
in all, 22 videos of falls were captured in different scenarios—being moved
along the edge and pushed in, falling in without exterior help, being thrown
in, being kicked in, etc. Example frames from the people and doll tests can
be seen in Fig. H.7(a) and (b), with the volunteer and the doll shown with a
red arrow.

First, the number of frames from the person starting falling to hitting the
water was measured. The average number of frames of the recorded par-
ticipants was 23. This was compared with the average number of frames of
the doll falls, which in our case was 29 frames. The longer fall time can be
explained as the doll was pushed close to the harbor wall, while the volun-
teers were required to jump farther away from the wall for safety reasons.
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The doll was also affected more by the strong wind than the volunteers, be-
cause of its weight. To compare the motion of falling for the doll and the
volunteers, optical flow was used as it is widely seen in the literature.

We first calculated the optical flow from the videos and calculated the
maximum vector magnitude in a square area on the edge of the harbor, where
volunteers and the doll were falling for each frame. This area was manually
selected and annotated to minimize the change of errors. This gave us a
time-wise signal of the maximum detected position change and simplified
the comparison, by eliminating variations in their orientation. Examples of
the changes of the optical flow magnitude for the five volunteers can be seen
in Fig. H.7(c) and for the first five doll experiments in Fig. H.7(d). Clear peaks
can be seen with a cutoff when hitting the water, showing that a fall can be
detected in both cases.

(a) Volunteer Frame (b) Doll Frame

(c) Volunteer Falls (d) Doll Falls

Fig. H.7: Examples of frames from a volunteer (a) and a doll (b) falling, shown with a red arrow,
together with the maximum magnitudes of the optical flow vectors of five videos from the falling
person and the doll (c)(d). The clear spike when they fall can be seen. The spike is in different
positions as it took different durations of time before the fall.

For an easier comparison, the peaks were detected, and the signals were
registered so that all the peaks overlap. To compare the volunteer and the
doll results, we padded them to have the same length and calculated their
average. The mean signal for each can be visually compared in Fig. H.8.
The maximum peaks of each, which were 12.54 pixels/frame for the people
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and 10.48 pixels/frame for the doll show that the captured movement was
comparable between the two.

Fig. H.8: The averaged maximum optical flow magnitudes of the different people and the doll
falls. Before averaging the fall data, the peaks were registered.

To further compare the captured optical flow magnitude signals, we used
dynamic time warping (DTW) [69]. The technique is useful for compar-
ing time series signals which are not perfectly aligned and with different
lengths, when simply calculating an Euclidean distance between them would
not work. DTW can be used in this case as both magnitude signals have the
same indexing and the same sampling. Dynamic time warping calculates
the difference between the current, previous and next points in both signals
and uses these as costs, selecting the minimum ones. In this way, even if the
two signals change with different speeds, the correct indices can be used for
comparing them.

As we did not have a ground truth, we used the average volunteer optical
flow time signal as one. We calculated the DTW distance between the average
volunteer ground truth and each of the 22 doll optical flow signals. For com-
parison, we also calculated the DTW distance from the average ground truth
to each of the volunteer signals. This will give an idea of how the doll fall
behavior compares to variations of the captured volunteer fall behavior.

The average DTW distance between the ground truth and the doll tests
was 60.16, while the average DTW between the ground truth and the vol-
unteer tests was 33.84. This shows that, even though the peak values of the
volunteer and the doll falls were quite similar, the overall trajectories dif-
fered. This can also be explained with the difference in weight and the safety
requirement that the participants jumped farther away from the harbor wall,
while the doll was both thrown farther and pushed close to the wall.
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7 Doll Detection Comparison

To show how the doll fall videos compare to real human ones from the point
of view of a real computer vision application, we used an object detector
trained to detect pedestrians. For this, we chose the YOLOv5 model [70] as it
provides state-of-the-art performance and has been proven robust on thermal
data [71, 72]. The model was trained on data from the multi-seasonal LTD
dataset [73] so that it had the best possible chance of detection. The model
was trained for 200 epochs with a learning rate of 0.00075 on a NVIDIA
RTX2080Ti graphics card.

Both the volunteer and the doll videos were separated into frames, and
only the ones between jumping off the harbor edge and hitting the water were
selected. This was done to limit the test to only specific instances connected
to falling in the water and the behavior leading to the fall. The frames after
hitting the water were also skipped. In the case of the volunteer videos,
people stayed mostly submerged and then swam out of the field of view of
the camera. The doll lost heat very fast after hitting the cold water, making it
hard to distinguish the doll from the background.

The detection confidence score for the doll and the volunteers for each
frame was saved, and an average confidence score was calculated for each of
the videos. From these scores, an overall average score was calculated for all
the doll and the volunteer videos. In addition, the percentage of frames in
which the volunteers and the doll were detected in each video was also calcu-
lated. The third calculated value shows how many frames the object detector
loses track before the person or the doll hits the water. This is important as
both the volunteers and the doll change their orientation and shape in the air
by bending their limbs, thus, making it harder for YOLOv5 to detect them.

All the three are given in Table H.2. The average detection confidence
scores of the volunteers and the doll videos are very similar as well as the
number of detected frames. On the other hand, in 3 of the 22 doll videos,
the YOLOv5 model could not detect the doll. Upon further inspection, two
of these videos show the doll being thrown at an angle that is close to hori-
zontal to the camera view, while in the third video the doll has not been suf-
ficiently warmed up, making it difficult to distinguish. Problem frames with
a horizontal view and the doll not warm enough are shown in Fig. H.9(a)
and (b).

Some interesting observations can be made from the last row of Table H.2.
For the doll videos, the model loses track of an average of two frames before
the doll hits the water and a maximum of four frames. For the volunteer
videos, the model loses track of an average of one frame before the volunteers
hit the water and a maximum of two. This can be attributed to the fact that
once the doll was thrown or pushed, its hands and legs moved very little
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Table H.2: Average YOLOv5 detection results for the volunteers and the doll videos. These
consist of confidence scores for the detected instances in the frames, percentage of frames in
which the volunteer or the doll have been detected and the number of frames before hitting the
water where the volunteers or the doll were not detected.

Results Volunteers Doll
Avg. Confidence Score 0.761 0.730

Avg. Detected Frames [%] 77.7 62.1
Avg. Lost Frames before Water Hit 1 2

(a) Horizontal View (b) Not Warm Enough

(c) Not Enough Movement (d) Occlusion

Fig. H.9: Problems seen with the doll clips. The object detection can fail before the doll is thrown
if it is not warm enough (b) or is occluded by a person or object (d). After the doll is pushed
or thrown, the object detection can fail if the doll body is horizontal and cannot be seen by the
camera (a) or not enough movement is present in the limbs (c).

even with the added weights, making the overall shape less human-like (Fig.
H.9(c)).

Finally, the lower percentage of frames that the doll was detected com-
pared to the volunteers can be explained with the fact that the doll was car-
ried or propped up on objects before falling in the water, which can result
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in occlusions and failed detection (Fig. H.9(d)). Examples of successfully
detected doll frames from different clips, together with confidence scores can
be seen in Fig. H.10. It can be seen that the doll was detected with similar
confidences as the other people present in the image.

(a) (b) (c)

Fig. H.10: Examples of successful doll detection from the YOLOv5 model together with the
confidence scores. In both scenarios where there are few people (a) and many other people
(b)(c), the doll is detected before it hits the water.

The major strength of the proposed work is the straightforward and eas-
ily replicable pipeline for developing and verification. We show that, even
though the physical measurements of the doll are not directly comparable
to a human, the captured thermal data and movement trajectories are suf-
ficiently convincing that they can be used as the data for a deep-learning
system. The proposed doll can be also easily deployed in “in-the-wild” sce-
narios, with minimal logistical overhead. Having demonstrated that thermal
data can be captured from the doll extends its usability beyond only RGB
data capture that most of the reviewed related work was using mannequins
for.

8 Conclusions and Future Work

Detecting falls into water is an important step for preventing drowning acci-
dents. Drowning is a major public health problem that can occur at any point
of time. This makes it necessary for automated surveillance to be able to de-
tect and signal accidents as soon as they happen. Footage of fall accidents
like these is captured rarely, making it necessary to synthetically generate
enough diverse data for the successful training and testing of automatic sys-
tems. Involving real people can pose a health and safety risk, and this brings
ethical concerns about preserving anonymity. On the other hand, generat-
ing data using simulation and deep-learning methods can provide imperfect
results with the necessity of post-processing steps.

This is why, in this paper, we demonstrated that a rubber air-filled doll can
be used for generating thermal image fall data in outdoor scenarios. By using
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off-the-shelf clothes and hot water, the doll can achieve human-like thermal
properties and maintain them for an extended period of time in different
weather conditions. Throwing and pushing the doll off a ledge also achieved
similar movement vectors to real people jumping.

Finally, we showed that a YOLOv5 object detection algorithm trained on
people can detect the thermal signature of the doll with confidence close
to the one for detecting real people. As this is the first dataset focused on
generated thermal fall data and the detection of such accidents is crucial for
automatic surveillance systems, we made the dataset available online so that
others can benefit from our data.

The proposed solution can be also applicable to other domains, such as
generating traffic accident data, as well as indoor anomaly detection use
cases, such as generating fall data for the elderly and children.

We encountered certain limitations in the proposed work. The rubber
doll, even with the added supports and weights, had an overall weight of 9.5
kg, which is far from a regular human weight. This helped with making the
system more easily transportable but lowered the precision of the captured
fall movement data. The simple method of raising the temperature of the
doll can also be viewed as a positive feature and a limitation. The inability
to maintain a stable temperature for long periods of time would require ad-
ditional equipment for performing repeated experiments that need precise
temperatures.

Potential improvements for the proposed solution can be done by ad-
dressing the difference in the weight and articulation between the doll and
a real human. To address this, adding a weighted vest is proposed, together
with 3D printed joints for the arms and legs of the doll. This would give the
possibility to add more weight—up to 15 more kilograms, making the full
weight of the doll up to 25 kg and matching other off-the-shelf doll solutions
but with the added benefit of flexibility. This would also make the additional
burden on transportation and setup less problematic.

For maintaining the thermal signature of the doll across time, we propose
adding heating thermal pads to the clothing. These pads would be connected
to isolated thermal sensor pads and an Arduino or Raspberry-Pi in a water-
tight case. In this way, data of the clothes temperature of the doll can be sent
through a low-power Bluetooth or radio signal to a monitoring station, and
when necessary the pads can be changed or more heating can be applied.
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