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Abstract

Listening to speech under adverse conditions such as background noise and
competing talkers can demand higher effort and be challenging for hearing-
impaired individuals. The higher effort can lead to adverse effects such as
fatigue. The cognitive factors related to the higher demand are not consid-
ered in the traditional measurements of the performance of a listening task.
Therefore, the concept of listening effort was defined and highly studied to
improve the evaluation of hearing disability.

Several methods and tools have been used to estimate correlates of listen-
ing effort, among which electroencephalography (EEG) has gained attraction
due to being non-invasive and having high temporal resolution. EEG is a
method to record the brain’s electrical activity by electrodes placed on the
scalp. The relationship between and within different regions of the brain can
be measured by assessing the statistical dependencies between and within
EEG signals through the functional connectivity (FC) analysis, which can
provide insights into the cognitive functions of the listening effort.

The objective of this thesis was to utilize FC analysis in the EEG to esti-
mate correlates of listening effort. We divided our FC analysis into global-
and local-scale analyses based on the distance between EEG electrodes. A
directional measure, conditional transfer entropy (TE), was selected regard-
ing global-scale connectivity assessment in EEG signals. We proposed a new
estimator for conditional TE estimation and a new directed dependency mea-
sure based on conditional TE by which we could get higher accuracy in sim-
ulated data and real-world intracranial EEG data recorded during seizures.
However, the estimation of correlates of listening effort by using global-scale
connectivity analysis in real-world EEG data led to negative results.

Regarding local connectivity assessment in response to speech in adverse
conditions, an existing multivariate phase synchrony measure called circular
omega complexity (COC) was selected. The local connectivity was shown
in this thesis to have the capability to estimate correlates of listening effort
during a continuous long speech in noise task. Finally, we studied the effect
of noise reduction (NR) schemes in hearing aid (HA) on local connectivity in
EEG signals.
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Resumé

Danish Abstract At lytte til tale mens der er baggrundsstøj eller hvor der er
andre personer, som taler samtidigt - kan være en stor udfordring for høre-
hæmmede personer, som ofte skal anstrenge sig for at forstå hvad der bliver
sagt. Det fører til en øget kognitiv indsats, som kan føre til træthed og an-
dre uønskede effekter. Traditionelle målinger i forbindelse med udførelsen af
en lytteopgave tager ikke de kognitive faktorer relateret til en øget anstren-
gelse i betragtning. For at imødekomme dette er begrebet lytteindsats blevet
defineret og benyttet til i bl.a. evalueringer af et hørehandikap.

Adskillige metoder og værktøjer er blevet brugt til at estimere korrelater
af lytteindsatsen, blandt hvilke elektroencefalografi (EEG) ofte foretrækkes
da det ikke er invasivt og da det har en høj tidsmæssig opløsning. EEG er en
metode til at registrere hjernens elektriske aktivitet ved hjælp af elektroder
placeret på hovedbunden. EEG-signaler i forskellige områder af hjernen kan
måles og deres statistiske afhængigheder kan kvantificeres ved en funktionel
koblingsanalyse (functional connectivity (FC)), som giver indsigt i lytteind-
satsens kognitive relationer.

Formålet med denne ph.d.-afhandling var at bruge FC-analyser af EEG-
signaler til at estimere korrelater af lytteindsatsen. Vi opdelte vores FC-
analyser i global- og lokalskala analyser baseret på afstanden mellem EEG
elektroderne. En analysemetode baseret på retningsbestemt betinget over-
førselsentropi (TE) blev benyttet til global-skala analysen af EEG-signaler. Vi
foreslog her en ny estimator til betinget TE-estimering og et nyt retnings-
bestemt afhængighedsmål baseret på den betingede TE, hvorved vi kunne
opnå en højere nøjagtighed på simuleret data samt på intrakranielle EEG-
signaler målt på en person som havde et epilepsi anfald. Korrelaterne for
lytteindsatsen fundet i forbindelse med global-skala forbindelsesanalysen af
EEG-signaler, hvor en person udsættes for akustiske stimuli, førte til negative
resultater.

Til lokal-skala forbindelsesanalysen af EEG-signaler blev et multivariat
fasesynkroniseringsmål benyttet. Det blev påvist at lokal-skala forbindelseanal-
ysen muliggjorde en kontinuerlig estimering af korrelater af lytteindsatsen i
et studie med kontinuerlig tale i støj. Lokal-skalaforbindelsesanalysen blev
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også brugt til at undersøge effekten af støjreduktionsmetoder i høreapparater.



Contents

Abstract iii

Resumé v

List of Publicatione ix

Preface xi

I Introduction 1

Introduction 3

1 EEG and Listening Effort . . . . . . . . . . . . . . . . . . . . . . 5
1.1 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Functional Connectivity . . . . . . . . . . . . . . . . . . . 10
1.3 Listening Effort . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Global-scale Connectivity . . . . . . . . . . . . . . . . . . . . . . 14
2.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Information Theory . . . . . . . . . . . . . . . . . . . . . 16
2.3 Directed Information Theory . . . . . . . . . . . . . . . . 18
2.4 Estimation of Correlates of Listening Effort using Trans-

fer Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Local Scale Connectivity . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Phase Synchrony . . . . . . . . . . . . . . . . . . . . . . . 22

4 Summary of the Contributions . . . . . . . . . . . . . . . . . . . 24
4.1 Paper A- Estimating Conditional Transfer Entropy in

Time Series Using Mutual Information and Nonlinear
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Paper B- A Stimuli-Relevant Directed Dependency In-
dex for Time Series . . . . . . . . . . . . . . . . . . . . . . 26

vii



Contents

4.3 Paper C- EEG Phase Synchrony Reflects SNR Levels
During Continuous Speech-in-Noise Tasks . . . . . . . . 26

4.4 Paper D- Speech to Noise Ratio Improvement Induces
Nonlinear Parietal Phase Synchrony in Hearing Aid Users 26

5 Conclusion and Future Directions . . . . . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

II Papers 37

A Estimating Conditional Transfer Entropy in Time Series Using Mu-

tual Information and Nonlinear Prediction 39

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.1 Conditional Transfer Entropy . . . . . . . . . . . . . . . . 44
1.2 Existing Non-Uniform Embedding Algorithm . . . . . . 44

2 Proposed Termination Criterion . . . . . . . . . . . . . . . . . . 48
3 Proposed Non-Uniform Embedding Algorithm . . . . . . . . . 50
4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Henon Map Model . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Autoregressive Model . . . . . . . . . . . . . . . . . . . . 55

5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . 60
A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Kraskov–Grassberger–Stögbauer Estimator . . . . . . . . 65
A.2 Kernel Density Estimation-Based Prediction . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B A Stimuli-Relevant Directed Dependency Index for Time Series 71

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.1 Conditioning can increase the mutual information . . . 74
2.2 Synergistic, intrinsic, and shared information . . . . . . 75
2.3 Transfer Entropy . . . . . . . . . . . . . . . . . . . . . . . 76

3 Quantifying Stimuli-Relevant directed dependency (SRDD) In-
dex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Computing Stimuli-Relevant directed dependency (SRDD) Index 79
5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Conclusions and future works . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



Contents

C EEG Phase Synchrony Reflects SNR Levels During Continuous Speech-

in-Noise Tasks 85

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . 88

2.1 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2 Circular Omega Complexity . . . . . . . . . . . . . . . . 90
2.3 Local Connectivity Assessment in EEG . . . . . . . . . . 90

3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D Speech to noise ratio improvement induces nonlinear parietal phase

synchrony in hearing aid users 97

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Material and Method . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.1 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.2 Circular Omega Complexity (COC) . . . . . . . . . . . . 105
2.3 Local Connectivity Assessment . . . . . . . . . . . . . . . 106
2.4 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 NR Schemes in HAs Reduce the Listening Effort . . . . 111
4.3 Local Connectivity is Modulated by Top-down Cogni-

tive Functions or Changes of Brain Networks . . . . . . 113
4.4 Significant Change at Parietal Alpha Local Connectivity 114
4.5 Top-down Cognitive Functions in Listening Effort . . . . 115
4.6 Parietal Alpha Local Connectivity is Modulated by Lis-

tening Effort . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



Contents

x



List of Publications

Thesis Title: From Global to local Functional Connectivity: Application to
Listening Effort

Ph.D. Student: Payam Shahsavari Baboukani
Supervisor: Professor Jan Østergaard, Aalborg University

Assistant Professor Dr. Carina Graversen, Aalborg Uni-
versity

The main body of this dissertation is based on the following papers:

[A ]:P. S. Baboukani, C. Graversen, , E. Alickovic, and J. Østergaard, Es-
timating conditional transfer entropy in timeseries using mutual information
and nonlinear prediction. Entropy 22, 11–24, 2020.

[B ]: P. S. Baboukani, S. Theodoridis, and J. Østergaard, A stimuli-relevant
directed dependency index for time series, IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5812–5816,
2022.

[C ]: P. S. Baboukani, C. Graversen, , E. Alickovic, and J. Østergaard,
EEG phase synchrony reflects snr levels during ncontinuous speech-in-noise
tasks, 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), 531–534, 2021.

[D ]: P. S. Baboukani, C. Graversen, , E. Alickovic, and J. Østergaard, Speech
to noise ratio improvement induces nonlinear parietal phase synchrony in hear-
ing aid users, Frontiers in Neuroscience, p. 1173, 2022.

In addition to the aforementioned papers, one more paper was also pub-
lished:

[1] P. S. Baboukani, C. Graversen , and J. Østergaard, Estimation of directed
dependencies in time series using conditional mutual information and non-linear pre-
diction, 28th European Signal Processing Conference (EUSIPCO), 2388–2392,
2020.

xi



List of Publications

xii



Preface

This thesis documents the scientific work conducted as part of the PhD
project "From Global to local Functional Connectivity: Application to Lis-
tening Effort". The thesis is submitted to the Technical Doctoral School of IT
and Design at Aalborg University in partial fulfillment of the requirements
for the degree of Doctor of Philosophy. The project was carried out within the
Centre for Acoustic Signal Processing Research (CASPR), at the Section for
Artificial Intelligence and Sound, Department of Electronic Systems, Aalborg
University, Aalborg, Denmark. Parts of the work were conducted during a
research stay at the Eriksholm research center, part of Oticon, Denmark.

The thesis includes introduction and a collection of scientific papers. The
purpose of the introduction is to provide the reader with some basic con-
cepts to understand the research area, objectives and the contributions of the
project. The papers elaborate more in details on the methods and discussing
the results.
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Introduction

Listening to speech under adverse conditions such as the presence of back-
ground noise and competing talkers can demand higher effort and be chal-
lenging for both hearing-impaired (HI) and normal-hearing individuals. A
higher effort can lead to negative effects such as fatigue. An example of ad-
verse listening conditions and their possible negative effects are shown in
Figure 1, where the listener faces music in the background and a competing
talker at a dining table. The cognitive factors related to the higher demand are
not considered in the traditional measurements of the performance of a lis-
tening task. The concept of listening effort was therefore defined and highly
studied to improve the evaluation of hearing disability [1] and enhance the
rehabilitation strategy [2].

Several methods and tools have been used to estimate correlates of listen-
ing effort, among which electroencephalography (EEG) has gained attraction
due to being non-invasive and having high temporal resolution [3]. Most
studies in which correlates of listening effort were estimated by EEG have
focused on spectral power analysis. The objective of this Ph.D. was to utilize
functional connectivity (FC) analysis in EEG signals to estimate correlates
of listening effort. The relationship between and within different regions of
the brain can be measured by assessing the statistical dependencies between

Fig. 1: An example of adverse listening conditions such as competing talkers and background
noise (music in this example) and its possible negative effects such as fatigue.
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Fig. 2: Schematic presentation of the considered analysis in this thesis. The listening effort’s
cognitive functions can be assessed using FC analysis of EEG signals. The FC analysis can be
divided into global- and local-scale based on the distance between EEG electrodes. The last
right column of pictures shows examples of local- and global-scale connectivity. The FC within
a region of interest (ROI) near the auditory cortex is considered as an example of local connec-
tivity (top picture). The FC between the temporal, parietal, and frontal ROIs are considered an
examples of global-scale connectivity (bottom picture).

neural data through the FC analysis [4]. Considering the brain as a complex
system, characterization of the dependency between and within time-varying
subsystems (different regions of the brain) can provide insights about the cog-
nitive functions of the listening effort. In summary, as shown in Figure 2 , the
cognitive functions related to listening to speech in noisy environments can
lead to interaction between and within different areas of the brain, which can
be assessed through a FC analysis of EEG signals.

We divided our FC analysis based on the distance between the electrodes
recording neural data into global- and local-scale analysis, where the local-
scale connectivity is FC within an ROI and the global-scale connectivity is
FC between two ROIs (cf. figure 2). Regarding global-scale connectivity
assessment in EEG signals, conditional transfer entropy (TE) was initially
selected [5]. The conditional TE is able to assess the direction in addi-
tion to strength of the dependency between EEG electrodes [5]. This is an
information-theoretic measure that is based on conditional mutual informa-
tion. An estimator is therefore required before applying that to the EEG
signals to assess global-scale connectivity. After implementing the existing
estimators of conditional TE on the EEG signals, we found that reliable esti-
mation of global-scale connectivity has limitations such as:

1. Low accuracy in detection of global-scale connectivity.

2. No guarantee that the estimated value is due to the change in external
stimuli.

We addressed the above limitations in this thesis. First, we improved esti-
mators’ accuracy using a weighted combination of nonlinear prediction and

4



1. EEG and Listening Effort

mutual information estimation, see Paper A. It was shown on synthetic data
that the accuracy was significantly improved compared to existing methods.
We could also get higher performance for the proposed algorithm when the
volume conduction effect was higher in the synthetic data. Moreover, im-
provements were also demonstrated on real-world intracranial EEG signals
recorded during seizures.

To take external stimuli into account, we developed a stimuli-relevant di-
rected dependency metric based on the difference between two conditional
TEs, See Paper B. We showed in a simulation study that the proposed metric
more accurately predicts the true dependencies than for traditional condi-
tional TE. However, estimation of correlates of listening effort using global-
scale connectivity analysis of EEG signals led to negative results (as exem-
plified and explained the possible reasons for the negative results in Section
2.4).

As far as assessing the local connectivity in response to speech in adverse
conditions is concerned, we found that:

1. Currently, there is no reliable estimate of correlates of listening effort
based on the local connectivity assessed by phase synchrony.

2. Traditional power analysis failed to detect effects of noise reduction
(NR) processing at different SNR values during a continuous speech in
noise (SiN) task on correlates of listening effort [6].

An existing multivariate phase synchrony metric, called circular omega com-
plexity (COC) [7], was chosen to assess the local connectivity. We showed that
local connectivity estimated by the COC has the possibility to estimate corre-
lates of listening effort. First, we demonstrated that the change of correlates
of listening effort induced by the change in SNR value in a continuous SiN
task could be detected by the local connectivity analysis, See Paper C. Then,
we demonstrated the nonlinear trend (i.e. inverted U-shape) of local connec-
tivity due to NR processing at different SNR values during a continuous long
SiN task, See Paper D.

The rest of the introduction is organized as follows: we review basic con-
cepts about EEG and listening effort in Section 1. Then, Sections 2 and 3
explain basic concepts related to the global- and local-scale connectivity, re-
spectively. Finally, we provide a summary of the contributions and future
work directions.

1 EEG and Listening Effort

5



Fig. 3: Electrode location, amplitude, and frequency range of ECOG and LFP. The figure is
modified version of Figure 1 in [8]

1.1 EEG

EEG is a method to record the brain’s electrical activity by electrodes placed
on the scalp [3]. The EEG history dates back to 1875, when Richard Keaton
first recorded it. The first existing EEG recording on humans was made in
1924 by Hans Berger [3]. The amplitude and frequency ranges are 5-300 mV
and 0-100 Hz, respectively [3].

There are other ways to record the electrical activity of the brain. The
main difference between these methods is the location of the electrodes, as
shown in Figure 3. Two examples include:

• Electrocorticography (ECOG): In this method, electrodes are placed on
the brain’s surface. The ECOG signal amplitude and frequency ranges
are 0.01-5 microvolts (μV) and 0-200 Hz, respectively [8].

• Local field potential (LFP): In this method, electrodes are placed inside
the brain. The amplitude and frequency ranges of the LPF signals are
0-1 millivolts (MV) and 0-200 Hz, respectively [8].

Although ECOG and LPF provide more accurate local information about
brain activity, EEG has two significant advantages over the other two meth-
ods, which are [3]:

1. Non-invasiveness: In medical methods, a crucial factor is that the used
method causes the least harm to the person [3]. It is known that ECOG
and LPF require surgery to record, but EEG does not require surgery
[3].

2. High temporal resolution.

6



1. EEG and Listening Effort

Anatomy and Physiology of Neurons

Every neuron in the brain contains axons, dendrites, and cell body [3]. Per-
haps a straightforward description of the functions of different parts of a
neuron is as follows [3]:

1. The cell body is responsible for generating an action potential [3].

2. The axon is responsible for transmitting the action potential [3].

3. The dendrites are responsible for receiving the action potential [3].

The action potential is created by the displacement and change of ions
in neurons [3]. The action potential is a temporary change in potential that
spreads to all parts of the axon, usually starting in the cell body and moving
in one direction [3].

The junction of two neurons is called a synapse [3]. At the site of synapses,
the axon terminals do not attach to dendrites or cell bodies of other neurons,
but there is a small space called the synaptic space [3]. Neural communica-
tion refers to the transmission of messages at the site of synapses [3]. The
transmission of neural messages is mediated by specific chemicals. These
chemicals are made in the cell body of neurons and stored in sacs at the
axon terminals [3]. When a neural message reaches the axon terminals, these
sacs reach the axon membrane and rupture, releasing chemicals inside the
synaptic space [3]. The chemicals stimulate other neurons.

EEG Recording

To record multichannel EEG, caps are used on which all the electrodes are
placed [3]. The material of the electrodes is usually aluminum or aluminum
chloride [3]. Conductor gel is usually used to reduce the impedance between
the head’s skin and the electrodes resulting in a better recording [3].

A standard EEG method is needed to compare different EEG recordings.
The International Federation of EEG and Clinical Neurophysiology, there-
fore, has developed a standard method called the 10-20 system for electrodes
positions [3]. The reason behind the name of 10-20 system is the distance of
10% and 20% of the electrodes from each other, As shown in Figure 4. The
distance between the nasion and inion is divided into two parts of 10% and
four parts of 20%. The same procedure applies to the distance between two
ears for which specific anatomical locations of the ears, such as mastoids, are
used [3].

The electrode names consist of two parts: letters and numbers. The letters
indicate the lobe (or the area) on which the electrodes are located [3]. The
human brain consists of 4 lobes: frontal lobe, parietal lobe, occipital lobe, and
temporal lobe, as shown in Figure 5. For example, F represents the parietal

7



Fig. 4: Schematic presentation of the electrode position in 10-20 EEG system.

Fig. 5: Different lobes of the brain, which include frontal, temporal, parietal and occipital lobes.
The figure is modified version of the figure 728 in [9].

lobe. The letter C says the electrode is located on the central area of the
brain (note that there is no central lobe in the brain). Numbers are divided
into three categories: even and odd numbers and the letter z. The even and
odd numbers indicate that the electrode is in the right and left hemispheres,
respectively. The letter z shows that the electrode is on the central part of the
brain.

Three referencing methods are used to record EEG signals:

1. Mono-polar reference recording: The potential of all electrodes is mea-
sured relative to one reference electrode [3]. We normally assume that
the reference electrode does not have any electrical activity [3]. The ref-
erence electrode is typically considered as the left , right, or the average
of both earlobes.

2. Bipolar reference recording: The potential difference between the two

8



1. EEG and Listening Effort

desired electrodes is measured [3].

3. Mean average reference recording: The potential of electrodes is mea-
sured relative to the mean of all electrodes at each moment [3].

EEG Frequency Bands

Brain frequency bands refer to the frequency components in the EEG. It has
been shown that the frequency bands are related to particular states of the
individuals [3]. It should be noted that the characteristics of brain rhythms
can vary from person to person and also for a person at different ages [3].
Many brain disorders and cognitive functions are also characterized by the
frequency analysis. There are four well-known brain frequency bands, which
from low to high frequency are, as shown in Figure 6, [3]:

• Delta (δ) wave: The delta wave is in the frequency range of 0 to 4 Hz.
The delta wave is the most observed wave in the EEG during deep
sleep [3].

• Theta (θ) wave: This wave is in the frequency range of 4 to 8 Hz. It
usually occurs between sleep and wakefulness [3].

• Alpha (α) wave: The frequency range of this wave is between 8 and 13
Hz and is usually present in the back of the brain. Alpha waves are
involved in brain activities such as language learning and analysis [3].

• Beta (β) wave: The frequency range of this wave is between 13 and 39
Hz. This wave is related to the state of awakening, such as thinking and
being alert. The beta wave tends to appear in the brain’s central and
frontal areas [3].

EEG artifacts and pre-processing

EEG signals can be affected by two types of artifacts. The first category of
the artifacts is those internally originated from the subject [3]. Some ex-
amples include eye movements, breathing, heart-related, and muscle-related
artifacts [3]. The second type of artifact is system-based such as 50/60 Hz
electricity power supply interference and impedance fluctuation [3]. Figure 7
demonstrates two examples of the artifacts in the EEG signals.

A pre-processing step is typically applied to the EEG signals to reduce the
artifacts’ effect. This step tends to include a 0.5 Hz high-pass filter to reduce
the effect of the disturbing very low frequency components such as those of
breathing [3]. Furthermore, low-pass filters with a cut-off frequency of ap-
proximately 50 − 100 Hz are applied to mitigate the high-frequency noise,
such as muscle activity [3]. A 50/60 Hz notch filter is often applied to reduce
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Fig. 6: Frequency bands in EEG signals. A) Delta, B) Theta, C) Alpha, and D) Beta frequency
bands. It should be noted that this example is not from real EEG data.

Fig. 7: Two examples of EEG artifacts. A) Eye blinking which is considered to have very low
frequency specification and B) Muscle activity which is considered to have very high frequency.

the power supply noise [3]. Finally, an independent component analysis al-
gorithm is often applied to decrease artifacts caused by eye movements, eye
blinks, muscle activity, heartbeats, and single-channel noise [10, 11]. The in-
dependent component analysis usually decomposes the EEG signals to their
constituent components [10, 11]. The noise component is then visually identi-
fied. The noise components usually have specific features identified by time,
frequency, and space projections. An example of the time, frequency, and
space projections of an eye movement component are shown in Figure 8.

1.2 Functional Connectivity

After the pre-processing step, the main analysis is applied to extract the
relevant information from the EEG signals. Several signal processing and
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1. EEG and Listening Effort

Fig. 8: Eye movement component of the independent component analysis decomposition. As
shown in the figure, the projection of the component to the sensor level is only active in the
frontal area. The time component show activity like an eye blink. The activity power spectrum
also shows a smooth decrease, which tends to be related to the eye blink activity.

information theory approaches have been used toward this end. Some ex-
amples include time analysis such as event-related potential (ERP) [12], fre-
quency analysis such as power analysis in the conventional EEG frequency
bands [13], and connectivity analysis [14]. After the main analysis, a statisti-
cal test [15], or a classifier is applied to evaluate the extracted information.

Connectivity analysis tends to determine the relationship between and
within different areas of the brain, which can be divided into functional
and effective analysis in the EEG signals1. Functional connectivity can be
referred to the statistical dependencies between neural data [17]. The neu-
ral data can be recorded by electrodes located on the scalp in EEG signals.
The information extracted by this analysis can provide insights into how the
brain functions. Cognitive functions related to auditory processing in the
brain have been studied through functional connectivity analysis of EEG sig-
nals [4, 14, 17, 18].

The term effective connectivity can stem from the cause and effect prop-
erty in causal measures [19, 20]. The measures used in the EEG process-
ing literature to extract effective connectivity can sometimes over- or under-
estimate the causal effect [19, 20]. Two popular approaches, Granger causality
and TE, are based on Wiener’s definition, which is based on prediction [21].
Wiener’s definition states that a causal effect exists from X to Y when the
prediction of the future value of a time series Y from its own past can be im-
proved by incorporating the past value of another time series X [21]. Despite

1It should be noted that there is another type of connectivity in the brain called structural
connectivity. This connectivity refers to the existence of white matter tracts physically intercon-
necting brain regions, which are generally investigated by diffusion magnetic resonance imaging
(MRI) [16]. We will not investigate structural connectivity in this dissertation.
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the use of the term "causal" in Wiener’s definition, it has been demonstrated
that measures quantifying it under- or over-estimate the causal effect in cer-
tain cases [19, 20]. The term "directed dependencies" is therefore used in
this dissertation to describe the property of time series or processes meeting
Wiener’s definition.

Functional connectivity can be divided into global- and local-scale con-
nectivity based on the distance between the regions of the brain from which
neural data is recorded. Global-scale connectivity describes the statistical
dependency between the two regions. Functional connectivity within a local-
ized region is described by local-scale connectivity.

1.3 Listening Effort

Listening to speech in an environment with competing talkers and back-
ground noise can be challenging for hearing-impaired people, which can
lead to negative effects like fatigue [22–24], disengagement from conversa-
tions [25], and social withdrawal [26]. However, the cognitive factors related
to effortful listening are not necessarily taken into account in current listening
tests such as speech reception threshold [27, 28].

The concept of listening effort was defined in [29] as "the deliberate allo-
cation of mental resources to overcome obstacles in goal pursuit when car-
rying out a task, with listening effort applying more specifically when tasks
involve listening." The listener faces acoustic challenges as a combination of
cognitive factors, such as linguistic ability and memory capacity, and acoustic
characteristics, such as level of background noise and competing talker [30],
as shown in Figure 9.

The listener’s motivation might also modulate the listening effort [29, 30].
Figures 10A and B illustrate a relationship between acoustic challenge and lis-
tening effort and accuracy, respectively. At low levels of acoustic challenge,
the cognitive demand is not high as the speech comprehension is mostly au-
tomatic [30]. As acoustic challenges increase, the cognitive processing needed
to comprehend speech increases [30]. The figures illustrate that accuracy re-
mains high when the acoustic challenge is moderate but requires additional
effort. Listeners might lose the motivation to spend cognitive resources at
very high levels of acoustic challenge when they understand that they will
not be able to comprehend successfully (dotted line in Figure 10A), which
can lead to nonlinear relationship between correlates of the listening effort
and acoustic challenge levels [30].

Through advanced signal processing techniques, modern hearing aids
(HA) can help individuals with hearing loss [31–33]. Particularly, noise re-
duction (NR) processing reduces the effect of background noise and improves
the SNR. It has been shown that NR processing has the capability to reduce
the listening effort [28, 34]. The activation of NR processing can improve
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1. EEG and Listening Effort

Fig. 9: A schematic presentation of acoustic challenges including cognitive factors and acoustic
characteristics. Different estimators of the listening effort are also schematically demonstrated.

speech ineligibility at low SNRs. The activation of the NR processing in HAs
can provide an additional effect in addition to improved speech ineligibil-
ity when it comes to listening effort [34]. Furthermore, when HA users are
asked to perform a selective attention task, NR schemes can improve their
performances [35, 36].

The purpose of researching listening effort is to provide a reliable mea-
surement tool, which can be simultaneously used with speech recognition
tests and improve the evaluation of hearing disability and enhance the reha-
bilitation strategy [1, 2].

A wide variety of methods and tools have been used to estimate correlates
of listening effort. These include:

• Subjective rating such as scales [37] and questioner [38].

• Dual tasks which are based on the limited cognitive capacity hypoth-
esis. The effort spent on the primary task (such as understanding the
speech in noise) can be measured by the performance of the secondary
task (such as recalling the words in the speech) [39].

• Physiological measures such as pupillometry [40, 41] and neuroimaging
[41].

Figure 9 shows a schematic presentation of the acoustic challenges and
different approaches to estimating correlates of listening effort.

EEG Estimates of Correlates of Listening Effort

EEG is a neuroimaging method that has gained particular attraction to es-
timate correlates of listening effort due to its advantages(c.f. Section 1.1).
A wide variety of signal processing and information theory methods have
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Fig. 10: Relationship between acoustic challenge and A) listening effort and B) accuracy. Listen-
ing effort is low at low levels of acoustic challenge as speech comprehension is mostly automatic.
At moderate levels of acoustic challenges, the accuracy remains high, but the listening effort in-
creases as speech comprehension demands higher effort. Listeners lose motivation at very high
levels of listening effort (the dotted line) and both listening effort and accuracy decrease. This
would lead to nonlinear relationship between acoustic challenges and listening effort. It should
be noted that figure A is generated from the real correlates of listening effort obtained by the
local connectivity analysis of EEG signals. Figure B is the replicated version of figure 2C in [30].

been used to analyze the EEG and estimate the correlate of listening effort.
Power analysis on conventional EEG frequency bands is the most studied
signal processing approach in the literature. Pwelch [42], wavelet [43] and
short-time Fourier transform [44] were used in the literature to extract event-
related spectral perturbation. Other analyzing methods can include phase
synchrony, speech tracking, and functional connectivity. In addition, we can
also categorize the EEG estimates of correlates of listening effort based on
the conventional EEG frequency bands and the location of the electrodes on
which the analysis is performed. The alpha frequency band in the parietal re-
gion and theta frequency band in the frontal region are the most investigated
bands and regions. Finally, EEG estimates of listening can be divided de-
pending on whether the analysis is performed on the sensor or source level.
Table 1 summarizes the state-of-the-art of EEG estimates of correlates of lis-
tening effort based on the analyzing methodology, frequency band, location
of the electrode on which the analysis was performed, and if the analysis was
performed on source level or sensor level.

2 Global-scale Connectivity

An information theoretic-based metric was selected regarding global-scale
connectivity assessment in EEG signals. This section reviews some basic con-
cepts of information theory, such as entropy and mutual information. Then,
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2. Global-scale Connectivity

Table 1: State of the art of EEG estimates of correlates of listening effort. N.A is the abbreviation
of not applicable in the table, which means that in the papers, they did not filter the data to
the conventional EEG frequency bands. All regions in the last column of the table means that
authors of the articles performed a comprehensive analysis on the all electrodes located at all
regions.

Refere–

–nces

Analyzing

Methodology

Frequency

Band

Source/

Sensor

Location of

the electrodes

[1, 6, 45]

[41, 46, 47]

[48–50]

[2, 51, 52]

Power Alpha Sensor Parietal

[13, 48] Power All Bands Source All Regions

[47, 53, 54] Power Alpha Source All Regions

[41, 48, 52, 55] Power Theta Sensor Frontal

[56] Power Theta Source Frontal

[12] ERP N.A Sensor Parietal

[57]
Functional

Connectivity
N.A Sensor All Regions

[4, 18]
Functional

Connectivity
N.A Source All Regions

[45, 58, 59]

[32, 33]
Phase Synchrony Theta Sensor Right Mastoid

[60] Phase Synchrony Theta Sensor All Regions

[53]

[54]
Speech tracking

Delta

Theta
Source

Frontal

Temporal

we provide an example of negative results obtained by applying conditional
TE on EEG signals to estimate correlates of listening effort. Finally, we dis-
cuss the possible reasons for the negative results.

2.1 State-of-the-art

Several signal processing and information theoretic-based approaches have
been proposed to quantify functional connectivity. The first subdivision of
these methods can be based on whether the metrics quantify the direction of
the interaction [61]. One limitation of non-directional approaches is that they
are not able to distinguish the direction of the interaction. On the other hand,
directional metrics are able to assess the direction in addition to strength of
the dependency between the neural data. Coherence coefficient, Pearson cor-
relation coefficient [4], phase locking value [62], and mutual information [63]
are the measures that have been used to quantify non-directional depen-
dency. Granger causality [64] and TE [5] are the two popular approaches
in the literature to assess directional functional connectivity. These measures
are based on Wiener’s definition, which is based on the concept of predic-
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Fig. 11: Schematic presentation of the metrics used in the literature to assess functional connec-
tivity.

tion [21]. Wiener’s definition states that a causal effect exists from X to Y
when the prediction of the future value of a time series Y from its own past
can be improved by incorporating the past value of another time series X [21].

The functional connectivity metrics can also be divided based on if they
depend on a model or linearity assumption [61]. The model-based measures
include Pearson correlation coefficient, Coherence coefficient, phase locking
value, and Granger causality. These measures are only capable of assess-
ing linear interaction between neural data, while the model-free measures
such as mutual information and TE tend to be able to capture the nonlinear
dependencies. Figure 11 illustrates the state-of-the-art measures utilized to
quantify functional connectivity, which includes the described subdivisions
and mentioned metrics. We note that although there are several metrics in
the literature that we did not mention in this section (see for example [65]
where 42 methods were described for functional connectivity quantification),
the state-of-the-art described in this section provides a general point of view
and mentions the most widely used measures.

2.2 Information Theory

The field of information theory originally began by Claud Shannon in 1948
[63]. Although addressing the problems in communication was the original
motivation for the development of the information theory, Shannon’s mea-
sures and their extensions have been extensively used in many fields, such as
signal processing and neuroscience. One example is TE, an extended form of
mutual information widely used in neuroscience and economics to quantify
directed dependency. In this section, we review basic concepts in information
theory, which can help better understand TE that is used to assess global-scale
connectivity in this dissertation.
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2. Global-scale Connectivity

Fig. 12: Venn diagram showing the area associated with H(X), H(Y), H(Y|X), H(X|Y), H(X, Y)
and I(X; Y)

Entropy

Consider a random variable X with probability mass function (PMS) p(x),
the entropy of X is noted by H(X) and defined as follows [63]:

H(X) = − ∑
x∈X

p(x)log2 p(x), (1)

where X is the alphabet of X. An entropy value measures the average degree
of uncertainty associated with a random variable. The logarithms base is
2. The entropy is then measured in bits. Therefore, entropy is the average
number of bits needed to describe the random variable [63]. It shoulb be note
that we consider discrete random variables here but similar concept exists for
continuous random variables.

The amount of remaining uncertainty in the random variable X condi-
tioned on the knowledge of another random variable Y is defined by condi-
tional entropy H(X|Y) as [63]:

H(X|Y) = − ∑
x∈X,y∈Y

p(x, y)log2
p(x, y)
p(y)

, (2)

where p(x, y) is the joint PMS of x and y. The alphabet of Y is noted by Y.
The uncertainty associated with both random variables X and Y is de-

scribed by their joint entropy H(X, Y) as [63]:

H(X, Y) = − ∑
x∈X

∑
x∈Y

p(x, y) log2 p(x, y). (3)
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Mutual Information

The information that a random variable X has about another random variable
Y is described by mutual information I(X; Y) as [63]:

I(X; Y) = ∑
x∈Xy∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
. (4)

Relative entropy (or Kullback–Leibler distance) describes the distance be-
tween two probability mass functions [63]. The relative entropy D(P||Q) is
defined as [63]:

D(P||Q) = ∑
x∈X

p(x)log2
p(x)
q(x)

. (5)

The mutual information I(X; Y) can be written as the relative entropy
between joint distribution p(x, y) and product distribution p(x)p(y) [63]. We
should note that two random variables X and Y are mutually independent if
p(x, y) = p(x)p(y). Therefore, mutual information can describe the distance
between the joint entropy of two random variables and the condition that
they are independent. Mutual information is also a non-directional measure
of linear and nonlinear dependencies between two time series.

Figure 12 shows a Venn diagram in which the relationship between vari-
ous information measures related to two random variables X and Y are ex-
pressed.

Next measure is conditional mutual information I(X; Y|Z), which is the
information that X and Y have in common when Z is given [63]. The condi-
tional mutual information is described as:

I(X; Y) = ∑
x∈Xy∈Yz∈Z

p(x, y, z) log2
p(x, y|z)

p(x|z)p(y|z)

= ∑
z∈Z

p(z) ∑
x∈Xy∈Y

p(x, y|z) log2
p(x, y|z)

p(x|z)p(y|z) ,
(6)

where Z is the alphabet of random variable Z.
The mutual information and its conditional version can be described by

the entropy as [63]:

I(X; Y) = H(X)− H(X|Y) = H(X) + H(Y)− H(X, Y)

I(X; Y|Z) = H(X|Z)− H(X|Z, Y).
(7)

2.3 Directed Information Theory

Unlike mutual information, TE is a directional measure that is able to assess
the direction in addition to the strength of dependencies between two time
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series [5]. TE is based on Wiener’s definition, which states that a causal effect
exists from X to Y when the prediction of the future value of a time series Y
from its own past can be improved by incorporating the past value of another
time series X [21]. Schreiber proposed TE which can also be considered as
the reformulation of Wiener’s definition based on information theory [66]. A
different approach based on Wiener’s definition relies on works by Granger
on causality [64, 67], referred to as Granger causality. Time series are modeled
as autoregressive models and their interactions as linear. Granger causality is,
therefore, only capable of assessing linear dependencies, while TE is a model-
free measure that can assess both linear and nonlinear interactions [68]. It was
shown in [57, 69] that linear implementation of TE and Granger causality are
equivalent in the Gaussian case.

Another information theoretic-based framework to assess directed depen-
dencies relies on the works by Marko [70] and Massey [71]. A bidirectional
channel’s information flow can be calculated by using conditional probabil-
ities based on Markovian dependencies, as proposed by Marko [70]. The
directed information flow from the input to the output of a channel with feed-
back was formally defined by Massey based on Marko’s initial work [71]. In
fact, TE is part of the directed information flow proposed by Massey, except
that Schreiber did not take into account the possible instantaneous causal de-
pendencies of a time series on another [69]. Directed information flow has
been used to infer neural networks in neural spike training recording [72, 73].

Transfer Entropy

TE, and its extensions such as phase TE [74], lag specific TE [75, 76] and
compensated TE [77], have been used to infer the directed dependencies
in physiological systems [78, 79]. Let the stationary stochastic processes
X = (X1, X2, . . . , XN) describe the time series X[n], n ∈ 1, 2, . . . , N over time,
similar notation applies to Y = (Y1, Y2, . . . , YN). Let Xn and Yn be stochastic
variables obtained by sampling the processes X and Y at the present time n,
respectively. Additionally, let the past of X up until Xn−1 be described by
a random vector X−

n = [Xn−1, Xn−2, . . . ], similar notation applies to Y−
n and

Z−
n . TE from X to Y is then defined as [5]:

I(X → Y) � I(Yn; X−
n | Y−

n ). (8)

It was proposed in [66] that Taken’s delay embedding (which is referred to
as uniform embedding in [80]) and Kraskov–Stögbauer–Grassberger (KSG)
estimator can be used to estimate of the past of the processes and the condi-
tional mutual information in Eq. 8, respectively. In a complex network, there
could be a third process, say Z = (Z1, Z2, . . . , ZN), through which shared
information or indirect dependencies are mediated. In this case, conditional

19



TE from an individual source X to the target Y conditioned on Z is defined
as [80]:

I(X → Y|Z) � I(Yn; X−
n | Y−

n , Z−
n ). (9)

2.4 Estimation of Correlates of Listening Effort using Trans-
fer Entropy

In this thesis, conditional TE was chosen to assess global-scale connectivity
in EEG signals to estimate correlates of listening effort. Reliable estimation
of the conditional TE in networks, including high number of nodes such as
EEG signals, is limited by the so-called "curse of dimensionality" problem
since we only have access to a limited number of realizations. Non-uniform
embedding algorithms are proposed to reduce this effect and improve the
reliability of the conditional TE estimators [80, 81]. In this section, we will
report the negative results of applying existing and proposed non-uniform
embedding algorithms to estimate correlates of listening effort. The EEG
data used in this section were utilized in [82, 83], where more details can be
found. Briefly, Twenty-two native HI Danish speakers listened to 40 Dan-
ish news clips with two levels of SNR (3 dB and 8dB). We are interested in
the change of correlates of listening effort induced by the change in SNR
value, which the global-scale connectivity can estimate. The EEG data were
recorded using 64 channels BioSemi ActiveTwo amplifier system (Biosemi,
Amsterdam, Netherlands). As we were interested in assessing global-scale
connectivity in this analysis, we selected 19 electrodes that were used in the
international 10-20 system, which are shown in Figure 4.

The existing non-uniform embedding algorithm proposed in [80] was ini-
tially utilized to calculate conditional TE in EEG in response to acoustic stim-
uli with two different SNR values. Next, Two sample t-test was applied to the
obtained values to check the significant different global-scale connectivity. As
demonstrated in Figure 13A, a high number of connectivities are statistically
different, some of which are higher for the easier condition (3 dB) and some
others are higher for the more difficult condition (8 dB). We could not find
any neuroscience-based hypothesis which can explain the obtained results.

One possible explanation for the obtained results could be that the ex-
isting non-uniform embedding algorithm cannot reliably detect global-scale
connectivity. We, therefore, proposed a new non-uniform embedding algo-
rithm by which we could get higher accuracy than that of state-of-the-art
ones in simulated data, specifically when the data are highly directly inter-
acted [84]. We could also get better performance for the proposed algorithm
when the volume conduction effect was higher in the simulated data [84].
The highly coupled data and volume conduction effect could be the possible
reasons for the negative results of the existing algorithm [85].
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2. Global-scale Connectivity

Fig. 13: significantly different global-scale connectivity in response speech with two different
SNR values. The red arrows show that the connectivity has higher values at 8 dB and the blue
color demonstrates otherwise. A) Existing non-uniform embedding algorithm. B) Proposed
non-uniform embedding algorithm.

The proposed algorithm was utilized to calculate conditional TE in EEG
in response to acoustic stimuli with two different SNR values. Figure 13B
shows statistically significant different global-scale connectivity. As shown
in 13B, a lower number of connectivities are found to be different due to the
change in SNR value. However, we could not find any neuroscience-based
hypothesis that can explain the obtained results.

It should be noted that we also employed graph theory measures to an-
alyze the results shown in Figure 13, but the results were again not in line
with any neuroscience-based hypothesis.

Another contradictory global-scale connectivity result obtained by con-
ditional TE can be found in [85, 86]. Both papers analyzed the global-scale
connectivity in resting state EEG data using conditional TE and the same non-
uniform embedding algorithm. A statistically different front-to-back propa-
gation was found during eye-closed situation [85] while a back-to-front infor-
mation flow was found in [86].

Altogether, we got negative results regarding estimating correlates of the
listening effort using global-scale connectivity. The possible reasons could be
low accuracy in the detection of the large-scale connectivity due to the vol-
ume conduction effect and no guarantee that estimated connectivity is due
to the change of acoustic stimuli. The effect of the volume conduction can
be reduced by applying source localization techniques. Regarding the lat-
ter, we proposed a metric that quantifies an external stimulus’s effect on the
coupling strength between other time series, which is called stimuli-relevant
directed dependency index [87]. Applying source localization and stimuli-
relevant directed dependency index to assess the global-scale connectivity
for estimating correlates of listening effort are considered as future directions
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of this thesis.

3 Local Scale Connectivity

A phase synchrony-based measure was selected for local-scale connectivity
assessment in EEG signals. In this section, we review some concepts related
to phase synchrony.

3.1 State-of-the-art

Local connectivity is defined as functional connectivity within localized re-
gions of the brain. Local connectivity assessment in EEG signals has been
used to classify motor imagery movements [88], estimate cognitive work-
load [89], investigate schizophrenia [90] and Alzheimer [91].

Generally, there are two approaches to estimating local connectivity. The
first approach is to calculate the functional connectivity within the electrodes
located in a localized region of the brain using a metric by which the inter-
action can be assessed. An example can be the assessment of the functional
connectivity within cluster of locations defined by the electrode itself and
the surrounding electrodes that belong to its first neighbor [90]. The second
approach is to calculate the interaction between all pair-wise electrodes and
recruit the graph theory measures such as local efficiency, which can assess
the local connectivity [18]. In this thesis, we will use the first approach.

All the metrics mentioned in Section 2.1 can also be used to estimate the
local connectivity. A phase synchrony measure was chosen to estimate local
connectivity. Phase synchrony analysis has also been utilized to estimate
correlates of the listening effort. In particular, wavelet phase synchronization
stability was reported to be higher for more effortful listening conditions [58].
The same index of listening effort has shown sensitivity to the effect of age
and hearing loss [59]. The distribution of the mapped phase mean vector
on the unit circle was also used as an index of phase synchrony, and higher
effort corresponded to higher phase synchrony. Noise reduction schemes in
hearing aids decreased the listening effort, and phase synchrony [32]. The
entropy of the instantaneous phase of EEG signals has also been used to
estimate correlates of listening effort [33, 60].

3.2 Phase Synchrony

The timing of neural activity can be reflected by the phase of neural data and
phase synchrony can be used to describe the interaction between or within
brain regions in neural networks [92]. Extracting the instantaneous phase
is the first step in calculating phase synchrony. Several approaches, such as
Hilbert-based and wavelet-based, have been proposed in the literature [93,

22
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94]. Each approach has its advantages and disadvantages. We will use a
Hilbert-based approach to extract the instantaneous phase in this thesis due
to advantages mentioned in [93], such as simplicity. The required assumption
to recruit the Hilbert-based approach is that the signal is mono-component,
i.e., in the time-frequency domain, its distribution represents a single time-
varying ridge [7]. It is possible to reduce the multi-component nature of
non-stationary signals such as EEG signals by filtering to narrow frequency
bands. This procedure will improve the estimation of the instantaneous phase
signals by filtering to narrow frequency bands.

Consider a discrete signal X[n], the analytical signal Z[n] is defined as
[44]:

Z[n] = X[n] + X̂[n] = a[n]eiφX [n], (10)

where X̂[n] is the Hilbert transform of X[n] and i =
√−1. The instanta-

neous amplitude and phase are denoted by a[n] and φX [n], respectively. The
instantaneous phase signal φX [n] is then defined as [44]:

φX [n] = tan−1(
X̂[n]
X[n]

). (11)

Bivariate Phase Synchrony

The signals X[n] and Y[n] with the corresponding instantaneous phases of
φX [n] and φY[n] are said to be phase locked of order m : n (where m and n
are integers) if their IP signals satisfy the equation below [62]:

mφX [n]− φY[n] < α (12)

where α is a constant integer. A statistical metric is typically used to quantify
the degree of phase locking in these methods, whereby phase synchrony can
be measured. Some examples include recruiting Shannon entropy to quantify
the uncertainty of IP differences [95] and mutual information to measure the
interaction between the instantaneous phases [96]. Considering the particular
case where m = n = 1, the degree of phase locking can be quantified using
the phase locking value (PLV) metric, which is defined as [62]:

PLV =
1
N

N

∑
n=1

ei(φX [n]−φY [n]), (13)

where N is the length signals X and Y.
Another widely utilized phase synchrony metric is the coherence coef-

ficient which is equivalent to the time domain cross-correlation in the fre-
quency domain [61]. The coherence coefficient is defined as [61]:

Coherence =
| 1

N ∑N
n=1 aX(ω, n)aY(ω, n)ei(φX(ω,n)−φY(ω,n))|√

( 1
N ∑N

n=1 a2
X(ω, n))

√
( 1

N ∑N
n=1 a2

Y(ω, n))
, (14)
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where aX(ω, n) and φX(ω, n) are the instantaneous amplitude and phase at
frequency ω, respectively. The PLV can also be written as the special case of
the coherence coefficient if replace aX(ω, n) = 1 and aY(ω, n) = 1 [61]. The
PLV is, therefore, a linear metric.

Multivariate Phase Synchrony

The phase synchrony ratio within several electrodes located in a brain’s area
needs to be calculated to extract local connectivity. Phase synchrony within
a multivariate signal is traditionally quantified by first assessing all pair-wise
phase synchrony between channels and then averaging them. The averaging
over bivariate values may not be sufficient to provide global phase synchrony
[7, 97–100]. For example, suppose we have three nodes network with the
corresponding mutually independent phase signals φA, φB and φC. Further-
more, let φB = φC ⊕ φA where ⊕ denotes XOR operator. Then, all the bivari-
ate mutual information values are zero (such as I(φA; φB) = 0), which leads
to zero average value. However, considering the information of the third
node can lead to a non-zero value, as is the case for I(φA; φB|φc) = H(φA).

The multivariate phase synchrony metrics are alternatives to bivariate
ones, which generalize the pair-wise phase synchrony concept to multivari-
ate signals. An example can be a co-integration-based phase synchrony mea-
sure [98]. This metric is based on the ratio of the number of linear combi-
nations of instantaneous phases that results in a stationary process and the
maximum possible number, which is the number of channels [98]. Another
example is Hyper-Torus phase synchrony (HTS) which is based on a hyper-
dimensional coordinate system [100].

More recently, a multivariate phase synchrony metric was proposed based
on the concept of circular statistics and state space. This metric, circular
omega complexity (COC), quantifies the dimensionality of the state space
formed by the instantaneous phases, which showed sensitivity to the degree
of multivariate phase synchrony [7]. The COC metric has been shown to
be more effective than conventional multivariate phase synchrony metrics
in some specific applications [7]. Therefore, the COC metric was chosen to
extract local connectivity in this thesis.

4 Summary of the Contributions

This thesis aims to derive an EEG-based reliable estimation of the correlates
of listening effort. Toward this end, an FC analysis in the EEG signals was
chosen. We divided our FC analysis based on the distance between neural
data into global- and local-scale analysis. The conditional TE metric was se-
lected to assess global-scale connectivity. After implementing the existing
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4. Summary of the Contributions

estimators of conditional TE on the EEG signals, we found that reliable es-
timation of large-scale connectivity has limitations and needs improvement.
Regarding local-connectivity analysis, the COC metric was selected.

Following this introduction, we formed five research questions:

Q1: Can the combination of nonlinear prediction and transfer entropy im-
prove the estimation of directed functional connectivity?

Q2: Can the change in functional connectivity induced by external stimuli
be estimated using transfer entropy?

Q3: Can global-scale connectivity assessed by transfer entropy estimate the
correlates of listening effort?

Q4: Can local-scale connectivity assessed by phase information estimate the
correlates of listening effort?

Q5: Is local-scale connectivity assessed by phase information depending
upon the noise reduction processing in hearing aids?

Except research question 3, where we found negative results (cf. Section 2.4),
our investigations on the rest of the research questions led to positive results
(See Papers A-D). The main contributions are as follows:

1. Global-scale connectivity estimator that significantly mitigates the effect
of volume conduction.

2. Global-scale connectivity estimator that outperforms when the data is
highly directly interacted.

3. Global-scale connectivity metric that can detect effects due to a partic-
ular stimuli.

4. New neural estimate of correlates of listening effort based on local con-
nectivity assessed by phase information.

5. Providing further evidence that noise reduction processing help hearing
aids users in their everyday natural listening environments.

Four papers that constitute the main body of this thesis are introduced
below. In addition to those, one conference paper [101] was also published,
which is not included in this thesis.

4.1 Paper A- Estimating Conditional Transfer Entropy in Time
Series Using Mutual Information and Nonlinear Predic-
tion

In this paper, we propose a new non-uniform embedding algorithm. Each
variable is ranked based on its contribution to providing new information
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and improving prediction accuracy. In an iterative process, the most infor-
mative subsets are then selected using a greedy approach. In cases where the
highest ranked variable does not significantly increase the prediction accu-
racy over that obtained with the existing subsets, the algorithm terminates.
The proposed algorithm demonstrated higher accuracy than state-of-the-art
ones in a simulation study, especially when the data are highly directly in-
teracted. Furthermore, the volume conduction effect in neuro-physiological
time series like EEG can be considered as an instantaneous coupling. We
showed that the proposed algorithm has lower false detection of directed de-
pendencies compared to existing ones due to zero-lag coupling. Finally, we
showed an application of the proposed algorithm in real-world intracranial
EEG data recorded during seizures.

4.2 Paper B- A Stimuli-Relevant Directed Dependency Index
for Time Series

In this paper, we proposed a metric that quantifies the effect a given time
series (e.g., external stimuli) has on the coupling strength between other time
series. This is accomplished by defining a directed dependency index based
on the difference between two causally conditioned TEs. A lower bound for
the proposed dependency index is then provided, and its efficient computa-
tion is demonstrated on synthetic data. Finally, we showed that the proposed
index more accurately predicts the true dependencies in a simulation study
than for traditional conditional TE.

4.3 Paper C- EEG Phase Synchrony Reflects SNR Levels Dur-
ing Continuous Speech-in-Noise Tasks

In this paper, we investigated how local-scale FC, i.e., functional connectivity
within a localized region of the brain, is affected by two levels of SNR of
the speech stimuli. A continuous speech in noise task was performed by
22 participants at two different SNRs (+3 dB and +8 dB). The COC metric
estimated the local connectivity within eight regions of interest on EEG data.
The results showed that the correlates of listening effort, as estimated by
local connectivity in the parietal and frontal area, increased by increasing
SNR value.

4.4 Paper D- Speech to Noise Ratio Improvement Induces
Nonlinear Parietal Phase Synchrony in Hearing Aid Users

An assessment of NR processing (inactive, where NR was turned off, vs. ac-
tive, where NR was turned on) effect on listening effort across two different
background noise levels [+3 dB signal-to-noise ratio (SNR) and +8 dB SNR]
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5. Conclusion and Future Directions

is the goal of this study. Toward this goal, a new estimate of the correlate of
listening effort, local connectivity analysis, was used to evaluate listening ef-
fort. During continuous speech in noise (SiN) tasks, 22 HI participants fitted
with hearing aids recorded their electroencephalograms (EEGs). A multivari-
ate phase synchrony measure was used to quantify local connectivity within
eight regions of interest (ROIs) and four conventional EEG bands. The results
showed that the activation of NR in HAs affects the EEG local connectivity
in parietal ROI at low SNR value, differently than high SNR value. The
results also demonstrated that there was a nonlinear relationship between
conditions of the listening task and phase synchrony in the parietal ROI. We
contend that the effects of HAs in HI individuals under ecological listening
conditions can be observed by studying the local connectivity as estimated
by phase synchrony.

5 Conclusion and Future Directions

We studied the feasibility of FC analysis in EEG signals for estimating the
correlates of listening effort. We were interested in changes in correlates of
listening effort induced by the change in SNR value and NR schemes in HAs.
We divided our FC analysis based on the distance between EEG electrodes
recording neural data into global- and local-scale analysis.

Conditional TE which is able to assess the direction in addition to the
strength of dependencies was selected to assess global-scale connectivity in
EEG signals. Although estimation of correlates of listening effort using this
analysis led to negative results, we could improve the methodology and esti-
mators related to existing conditional TE metric and get higher performance
in simulation data, particularly, when the simulation data were highly di-
rectly interacted and in the presence of volume conduction effect (instanta-
neous coupling).

Altogether, we got negative results regarding estimation of the correlates
of the listening effort using global-scale connectivity. The possible reasons
could be low accuracy in detection of the global-scale connectivity due to vol-
ume conduction effect and no guarantee that estimated connectivity is due
to the change of acoustic stimuli. The effect of the volume conduction can be
reduced by applying source localization techniques. Regarding the latter, the
stimuli-relevant directed dependency index can improve the estimation of
true connectivity. Applying source localization and stimuli-relevant directed
dependency index to assess the global-scale connectivity for estimating cor-
relates of listening effort are considered as future directions of this thesis.

The local-scale connectivity estimated using COC metric which is multi-
variate phase synchrony. This analysis showed that increase in SNR value
during a continuous long speech in noise task leads to increase in EEG-based
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phase synchrony. The same analysis demonstrated that activation of the NR
processing in HAs non-linearly affects the local connectivity as estimated
by phase synchrony. These results provided evidence that EEG-based phase
synchrony quantified by COC within localized regions of brain contains in-
formative features which can be used as an estimate of correlate of listening
effort.

We also considered a more comprehensive study including more SNR
values of the acoustic stimuli as the future works of this study, which can
lead us to observe a complete inverted U-shape of the relationship of the
estimate of the correlates of listening effort and listening conditions.
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1. Introduction

Abstract

We propose a new estimator to measure directed dependencies in time series. The di-
mensionality of data is first reduced using a new non-uniform embedding technique,
where the variables are ranked according to a weighted sum of the amount of new
information and improvement of the prediction accuracy provided by the variables.
Then, using a greedy approach, the most informative subsets are selected in an itera-
tive way. The algorithm terminates, when the highest ranked variable is not able to
significantly improve the accuracy of the prediction as compared to that obtained us-
ing the existing selected subsets. In a simulation study, we compare our estimator to
existing state-of-the-art methods at different data lengths and directed dependencies
strengths. It is demonstrated that the proposed estimator has a significantly higher
accuracy than that of existing methods, especially for the difficult case, where the data
are highly correlated and coupled. Moreover, we show its false detection of directed
dependencies due to instantaneous couplings effect is lower than that of existing
measures. We also show applicability of the proposed estimator on real intracranial
electroencephalography data.

Keywords

directed dependency; conditional transfer entropy; non-uniform embed-
ding; nonlinear prediction; mutual information

1 Introduction

Real-world interconnected technological systems such as car traffic and dis-
tributed power grids as well as biological systems such as the human brain
can be represented in terms of complex dynamical systems that contain sub-
systems. Characterizing the subsystems and their interdependencies can help
understanding the overall system behavior on a local and global scale. For
example, different regions of the brain such as the cortices can be consid-
ered as subsystems. An assessment of the interaction between the cortices
may provide insights into how the brain functions [1]. In order to identify
the interactions, several time series analyses methods ranging from informa-
tion theoretical to signal processing approaches have been proposed in the
literature [2–4]. In particular, the directional methods have gained increasing
attention because, unlike symmetric measures such as mutual information [2]
and phase synchronization [3, 5], directional measures are generally able to
assess the direction in addition to the strength of the interactions between
subsystems [4, 6–9].

A popular approach used in the literature to assess directed dependencies
uses Wiener’s definition, which is based on the concept of prediction [10].
According to the Wiener’s definition, if the prediction of the future value of
a time series Xt from its own past values can be improved by incorporating
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past values of another time series Yt, then there are causal dependencies from
Yt to Xt [10]. Although the term “causal” was used in Wiener’s definition,
it has been shown that measures quantifying the Wiener’s definition over- or
under-estimate the causal effect in certain cases [11, 12]. In this paper, we use
the term “directed dependencies” to refer to the property of time series or
processes satisfying Wiener’s definition.

Schreiber [4] formalized directed dependencies by using the concept of
conditional mutual information (CMI) and proposed a new measure called
transfer entropy (TE). TE does not depend on any model in its formulation,
which makes this method able to assess both linear and nonlinear interactions
[13]. Additionally, estimating TE by using the combination of data-efficient
and model-free estimators like Kraskov–Stögbauer–Grassberger (KSG) [14],
and uniform embedding state space reconstruction schemes [15, 16] has in-
creased the popularity of TE. TE has been used for quantifying directed de-
pendencies between joint processes in neuro-physiological [15, 16] and eco-
nomical [17] applications.

As an example, assume that we are interested in measuring TE between
processes which, for example, represent sensor measurement data from dif-
ferent regions of the brain, e.g., multi-channel electroencephalography (EEG)
data. The recorded EEG data are spatially auto-correlated due to the phe-
nomenon known as the volume conduction effect in neuro-physiological time
series [18]. The spatial auto-correlation in such data can lead to overestimate
in the estimated TE and eventually lead to false positives detection of TE.
A possible approach to reduce such effect is to use a conditional version of
TE [19, 20], which is referred to as conditional transfer entropy (CTE).

It is preferred to condition out all other variables in the network to ensure
that the obtained CTE values reflect the true directed dependencies from
an individual source to the target. On the other hand, the more variables we
include in the conditioning, the higher the dimension of the problem becomes
and the less accurate CTE estimators are, since we only have access to a
limited number of realizations. Considering the fact that we are interested in
estimating directed dependencies and we need to condition out past variables
related to the remaining variables, the dimension of the conditioning process
increases even more and reliable estimation of CTE in multi-channel data
(such as EEG data) by using the classical uniform embedding technique is
limited by the so-called “curse of dimensionality” problem [13, 21–23].

Non-uniform embedding (NUE) approaches reconstruct the past of the
system with respect to a target variable by selecting the most relevant past
and thereby decreases the
dimensionality [13, 19, 22, 24–26]. The information theoretical-based NUE
algorithm proposed in [13] is a greedy strategy, which uses CMI for selecting
the most informative candidates. The authors in [13] showed a significant im-
provement of NUE over uniform embedding. The author in [21] stated that,
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as the iteration of the NUE algorithm increases and more variables are se-
lected, estimation of the higher dimensional CMI may become less accurate.
The author in [21] then suggested to use a low-dimensional approximation
(LA) of the CMI, and proposed a new NUE algorithm.

Adding more variables in the conditioning process decreases accuracy of
the CTE estimator. The key problem is therefore how to decide whether
we should include more variables, or terminate the algorithm. The existing
NUE algorithms terminate if they fulfill a termination criterion defined by
a bootstrap statistical-based test [13, 21, 23, 26]. The bootstrap test is used
to approximate a confidence bound (or a critical value) by which the NUE
algorithm is terminated. A higher bootstrap size, up to a threshold, gener-
ally leads to better approximation of the confidence bound [27], which can
further influence the accuracy of the NUE algorithms. A bootstrap size of at
most 100 is generally used in the literature [13, 19, 21, 22] due to computa-
tional complexity reasons. It has been shown that using an alternative to the
bootstrap-based termination criterion can improve the accuracy and compu-
tational efficiency of the greedy algorithms [27, 28]. For example, the Akaike
information criterion (AIC) and kernel density estimation (KDE)-based re-
gression were proposed in [27] as an alternative to bootstrap methods for
input variable selection techniques

In the present study, inspired by [27] and originated from our initial work
in [29], we propose an alternative approach to the bootstrap-based termina-
tion criterion used in the existing NUE algorithms. Specifically, to aid in
making the decision of whether to include a variable or terminate the algo-
rithm, we propose to measure the relevance of the new candidate variable
by assessing the effect of it on the accuracy of the nonlinear prediction of
the target variable. The nonlinear prediction is based on nearest neighbor
(NN)-based regression [30]. We show that it is also advantageous to use the
nonlinear prediction strategy for selecting the pool of candidates in the first
place. We then introduce a new NUE algorithm which uses a weighted com-
bination of CMI and the accuracy of the nonlinear prediction for selection of
candidates and present the new termination criterion for stopping the algo-
rithm. Finally, we demonstrate that our proposed NUE procedure is more
accurate than the existing NUE algorithms on both synthetic and real-world
data.

The effect of instantaneous coupling (IC) on the NUE algorithms will also
be investigated. IC can occur due to simultaneous (zero lag) information
sharing like source mixing as a result of volume conduction in EEG signals
[19, 31] and may lead to spurious detection of TE or CTE.

The remainder of this paper is structured as follows. In Section 1, the nec-
essary background on CTE and the existing NUE algorithms will be briefly
reviewed. Then, the proposed termination criterion and NUE procedure will
be introduced in Sections 2 and 3, respectively. This is followed by the de-
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scription of our simulation study in Section 4, which is based on Henon maps
and nonlinear autoregressive (AR) models. The results of applying the pro-
posed NUE algorithm on real EEG data will be reported in Section 5. Section
6 will discuss the results. The same section will also conclude the paper.

sectionBackground

1.1 Conditional Transfer Entropy

Let us consider a complex system which consists of L interacting subsys-
tems. We assume that we are interested in assessing the directed depen-
dencies between subsystems X and Y. Let stationary stochastic processes
X = (X1, X2, . . . , XN) and Y = (Y1, Y2, . . . , YN) describe the state visited by
the subsystem X and Y over time, respectively. We denote Xn ∈ R and
Yn ∈ R as stochastic variables obtained by sampling the processes X and Y
at the present time n, respectively. Furthermore, we denote the past of X up
until Xn−1 by a random vector X−

n = [Xn−1, Xn−2, . . . ]. TE from X to Y is
then defined as [4].

TE(X → Y) � I(Yn; X−
n | Y−

n ), (A.1)

where I( . ; . | .) is CMI. However, in a complex network, it is not guaranteed
that (A.1) only describes the directed dependencies from X to Y. For example,
there could be a third process, say Z, through which shared information is
mediated to X and Y. In this case, the shared information will lead to an
increase in TE. To reduce the effect of common information being shared
through other process, it has been suggested to use CTE [13, 19]. Let us
consider the L = 6 nodes network in Figure A.1, where we are interested
in assessing the directed dependencies from node X to Y and which is not
due to indirect paths through the remaining nodes Z = {Z1,Z2,Z3,Z4}.
We denote Zi = (Zi

1, Zi
2, . . . , Zi

N) as a stochastic process describes the state
visited by Zi and Z = [Z1, Z2, . . . , Z4] as a 4-variate stochastic process which
describes state visited by Z over time. CTE from an individual source X to
the target Y excluding information from Z is then defined as

CTE(X → Y|Z) � I(Yn; X−
n | Y−

n , Z−
n ), (A.2)

where Z−
n = [Zn−1, Zn−2, . . . ] denotes the past of up Z until but not including

Zn.

1.2 Existing Non-Uniform Embedding Algorithm

Prior to estimating CTE in (A.2), it is mandatory to approximate the pos-
sibly infinite-dimensional random vectors which represent the past of the
processes. Let us denote the approximated past vector variable X−

n by VX
n .
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Z
Z3 Z4

Z2Z2

YX
?

Fig. A.1: An example of L = 6 nodes network where indirect paths through the remaining
channels Z may cause a falsely (dashed line) detected directed dependency (solid line) from X
to Y.

The same notation applies to VY
n and VZ

n . The basic idea behind reconstruct-
ing the past of the processes X, Y, and Z by assuming Y as the target process
is to form a low dimensional embedding vector S comprising the most infor-
mative past variables about the present state of the target Y. Traditionally, the
past of the system is reconstructed by using the uniform embedding scheme
in which each component of S is approximated separately. For example, VY

n
is approximated as VY

n = [Yn−m, Yn−2m, . . . , Yn−dm], where m and d are the
embedding delay and embedding dimension, respectively [13, 15]. Then, the
VX

n and VZ
n are estimated using the same approach and the final embedding

vector S = [VX
n , VY

n , VZ
n ] is formed and utilized to estimated CTE in (A.2).

The uniform embedding scheme may lead to selection of redundant past
variables and ignore relevant variables, as a result decrease the accuracy of
the CTE estimation. This can limit applications in high dimensional data [13,
21, 23]. Alternatively, the NUE schemes try to select the most relevant and
least redundant past variables and form a new embedding vector [13, 21, 23].

Bootstrap-Based Non-Uniform Embedding Algorithm

The NUE algorithm, as suggested in [13], can be described as follows:

1. Choose embedding delay d and embedding dimension m and construct
the candidate set C = [Xn−m, . . . , Xn−md, Yn−m, ..Yn−md, Zn−m, . . . ,
Zn−md].

2. Initialize the algorithms by an empty set of the selected candidates S0
n =

∅.

3. Run a forward search to find the most informative candidate among
the candidate set C. This can be achieved by quantifying the amount of
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information that each candidate Wn has about Yn which is not provided
by the selected candidates from the last iteration Sk−1

n . To formalize
this, at each iteration k ≥ 1, select the candidate Wk

n, such that CMI
between Wn and Yn conditioned on Sk−1

n is maximized

Wk
n = argmax

Wn∈C\Sk−1
n

I
(

Yn; Wn | Sk−1
n

)
, (A.3)

where Sk−1
n =

k−1⋃
i=0

Wi
n denotes the set of the selected candidates up till

iteration k − 1 and C \Sk−1
n denotes the remaining candidates in C. We

estimate the CMI given in (A.3) by using the KSG approach [13, 14, 32]
in this study (cf. Appendix A.1).

4. Stop the iteration if the termination criterion is fulfilled and return Sk−1
n

as the desired embedding vector.

The flow chart of the NUE algorithm is shown in Figure A.2. After obtain-
ing the embedding vector Sk−1

n , CTE is estimated by using (A.2) in which case
[X−

n , Y−
n , Z−

n ] is replaced by Sk−1
n and [Y−

n , Z−
n ] is replaced by Sk−1

n excluding
the past of Xn. CTE is written as the sum/difference of four differential en-
tropies and is estimated by using KSG approach (In this paper, we use the
KSG approach to estimate CTE and CMI. The KSG estimator is designed to
estimates differential entropies. Therefore, we assumed that variables used
in this paper are continuous.) [13, 14, 32] (cf. Appendix A.1).

The existing NUE algorithm proposed in [13] utilizes a bootstrap-based
termination criterion. The goal of the bootstrap test in the NUE algorithm
is to estimate an upper bound on the CMI between independently selected
candidate Ŵk

n and the target variable Ŷn given Sk−1
n , I(Ŵk

n; Ŷn|Sk−1
n ). The es-

timation is accomplished by drawing 100 independent randomly shuffled
realizations of Yn and Wk

n, estimating the CMI between the randomized Wk
n

and the randomized Yn given the original Sk−1
n , and then finding the 95th

percentile I95 of the generated distribution. The obtained value I95 can be
used as a critical value (at 5% confidence level) of I(Wk

n; Yn|Sk−1
n ) so that if

I(Wk
n; Yn|Sk−1

n ) > I95 then the candidate is included in the embedding vector
and the algorithm continues to search for more candidates in iteration k + 1.
Otherwise, the termination criterion is fulfilled and the algorithm is ended
and Sk−1

n is returned as the embedding vector.

Low-Dimensional Approximation-Based Non-Uniform Embedding Algo-

rithm

The LA-based strategy follows the same flow chart as the existing NUE al-
gorithm, shown in Figure A.2, except that the CMI in (A.3) is substituted
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by its LA [21]. It is suggested in [21, 23] that using LA of the CMI in (A.3)
can increase the accuracy of estimation of the CMI and may outperform the
accuracy of the NUE algorithm. The author in [21] proposed two LA alter-
natives to the CMI and concluded based on a simulation study that the LA
of the CMI used in this study for the sake of comparison with our proposed
NUE algorithm, outperforms another LA of the CMI. The criterion for find-
ing the most informative candidates (i.e., Equation (A.3)) in the LA-based
NUE algorithm is then given by

Wk
n = argmax

Wn∈C\Sk−1
n

{I (Wn; Yn)− 2
|Sk−1

n |∑ I
(
Wn; Wj

)
Wj∈Sk−1

n

+
2

|Sk−1
n |∑ I

(
Wn; Wj|Yn

)
Wj∈Sk−1

n

},

(A.4)
where |.| denotes the cardinality of a set. The mutual information and CMI
are estimated using the KSG approach [13, 14, 32] (cf. Appendix A.1). The
LA-based NUE algorithm also uses the bootstrap-based termination criterion.
It should be noted that the LA of the CMI (i.e., Equation (A.4)) is used to
estimate I95.

Akaike Information Criterion-Based Non-Uniform Embedding Algorithm

AIC is used to assess the trade-off between accuracy and complexity of a
model. It was adapted to quantify the trade-off between accuracy and com-
plexity of a KDE-based prediction as an alternative to the bootstrap termina-
tion criterion in an input variable selection approach in [27, 28]. AIC can also
be adapted to act as a termination criterion for stopping the NUE algorithm.
Therefore, an AIC-based NUE algorithm could follow the same flow chart as
the existing NUE algorithm, shown in Figure A.2, except that the the termi-
nation criterion will be replaced with the AIC-based termination criterion as
is described below.

After selecting the most informative candidate Wk
n by using (A.3), the

target variable Yn is predicted given Uk
n = [Wk

n,Sk−1
n ] ∈ Rk, by using KDE-

based prediction (cf. Appendix A.2). Let yn = (yn(1), yn(1), . . . , yn(N)) be N
realizations of Yn. The AIC at iteration k is then given as:

AICk = N log

(
1
N

N

∑
i=1

(yn(i)− ŷn(i|Uk
n))

2

)
+ 2p, (A.5)

where the ith realization of Yn is denoted by yn(i) and ŷn(i|Un) is an estimator
for the prediction of yn(i) given Un. The total number of realization of Yn is
N and p is the measure of complexity and for KDE-based regression, it is
given as [27, 33]:

p =
N

∑
n=1

Kh(u
k
n(i),uk

n(i))

∑N
j=1 Kh(uk

n(i),uk
n(j))

, (A.6)
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Yes

No

Choose to m and d

Set S0
n = ∅ and k = 1

Find the best candidate
using (3)

Is the termination criterion
fulfilled ?

k = k + 1

Stop the algorithm and
return Sk−1

n

define
Sk

n = Wk
n ∪Sk−1

n

Fig. A.2: The flow chart of the NUE algorithm.

where uk
n(i) is ith realization of Uk

n (see equation (7) for more details) and
Kh is a Gaussian kernel with Mahalonobis distance and Gaussian reference
kernel bandwidth (cf. Appendix A.2). During the NUE algorithm, if AICk >
AICk−1 then, Wk

n is included in the embedding vector Sk
n . Otherwise, the

algorithm stops and Sk−1
n will be considered as the desired reconstructed

past state of the system.

2 Proposed Termination Criterion

In this section, inspired by [27], we present a new termination criterion. Our
proposed criterion is based on nonlinear prediction of the target variable,
similar to the AIC approach. We modify NN-based regression [30] in order
to be able to assess the effect of the selected candidate Wk

n on the accuracy of
the prediction of Yn.

We are interested in nonlinear prediction of the random variable Yn given
the random vector Uk

n = [Wk
n,Sk−1

n ] ∈ Rk. We denote the set of N realizations
of Wk

n by wk
n = (wk

n(1), wk
n(2) . . . , wk

n(N)) and set of N realizations of Uk
n be
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the N × k matrix

uk
n =

⎡⎢⎢⎢⎣
wk

n(1) wk−1
n (1) · · · w1

n(1)
wk

n(2) wk−1
n (2) · · · w1

n(2)
...

...
. . .

...
wk

n(N) wk−1
n (N) · · · w1

n(N)

⎤⎥⎥⎥⎦ . (A.7)

The ith row of the matrix uk
n is a realization of the random vector Uk

n.
Let t(i) be the set of indices of the T nearest neighbors of the ith realization
of Uk

n. For example, t(i) = {3, 7, 9} shows that 3rd, 7th, and 9th rows of
uk

n are the T = 3 nearest neighbors of its ith row. The Euclidean distance
is used as the distance metric for finding the nearest neighbors in the NN-
based prediction. The prediction of the ith realization of Yn (i.e., yn(i)) given
Uk

n is then calculated as an average of the realizations of Yn whose indices are
specified by the neighbor search in uk

n. The average of the y-values having
the same conditioned past is not an optimal estimator. However, it is simple,
works well in the cases that we have considered, and has also been used
in previous work on non-conditional NN-based prediction. The ŷn(i|Uk

n) is
given as:

ŷn(i|Uk
n) �

1
T ∑

v∈t(i)
yn(v). (A.8)

For example, if t(i) = {3, 7, 9} then ŷ(i|Uk
n) is equal to the mean of

{yn(3), yn(7), yn(9)}. The residual r(i|Uk
n) can be computed as:

r(i|Uk
n) = yn(i)− ŷn(i|Uk

n). (A.9)

In the NUE algorithm, the most informative candidate at iteration k, Wk
n,

will be included in the embedding vector, if it significantly improves the
accuracy of the prediction of the target variable Yn given Uk

n compared to the
prediction accuracy from the iteration k − 1. The accuracy of the prediction
can be calculated as the mean of the squared prediction residual (MSR):

MSR(Yn | Uk
n) =

1
N

N

∑
i=1

r(i|Uk
n)

2, (A.10)

where the smaller MSR, the better prediction.
We first assume that the NUE algorithm contains at least k = 2 iterations

and the termination test is performed from the second iteration. Accordingly,
at each iteration k ≥ 2, if MSR(Yn|Uk−1

n ) − MSR(Yn|Uk
n) > γ, then Wk

n is
included in Sk

n and the algorithm proceeds to search for more candidates
at iteration k + 1. Otherwise, the algorithm ends and Sk−1

n is considered as
the desired embedding vector. The non-negative parameter γ defines how
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much the accuracy of the prediction needs to be improved before a variable
is selected. Basically, by increasing the non-negative parameter γ which we
have introduced, our proposed algorithm terminates sooner, and hence less
variables are selected. In other words, the parameter γ controls the balance
between true positives and true negatives, which can be useful, for example,
in taking care of the confounder effects like IC. We will show in Section 5.2.2
that, by choosing a proper γ value, the number of true negatives significantly
increases while the number of true positives does not decrease significantly in
data in which the IC may cause spurious detection of directed dependencies.

3 Proposed Non-Uniform Embedding Algorithm

Our proposed NUE algorithm (referred to as MSR-based) uses a weighted
combination of the CMI and MSR for selecting the most informative candi-
date and our proposed termination criterion for ending the algorithm. The
details of the proposed NUE algorithm are as follows:

1. Choose γ, λ, embedding delay d and embedding dimension m and con-
struct the candidate set C = [Xn−m, . . . , Xn−md, Yn−m, ..Yn−md, Zn−m, . . . ,
Zn−md].

2. Initialize by setting S0
n = ∅,

3. At first iteration k = 1, find the first most relevant candidate W1
n by

using a weighted combination of MSR and mutual information as:
W1

n = argmax
Wn∈C

[(1 − λ) I (Yn; Wn)− λ MSR(Yn | Wn)], (A.11)

where 0 ≤ λ ≤ 1 is the weight. Then, set S1
n = [W1

n ].

4. At each iteration k ≥ 2, run a search procedure to select the candidate
which leads to the highest amount of new information about target
variable Yn and the best prediction of Yn given the random vector Uk

n =
[Wn,Sk−1

n ]. It can be formalized by:

Wk
n = argmax

Wn∈C\Sk−1
n

[
(1 − λ) I

(
Yn; Wn | Sk−1

n

)
− λ MSR

(
Yn | Uk

n

)]
,

(A.12)

where Sk−1
n =

k−1⋃
i=0

Wi
n denotes the set of selected candidates up till itera-

tion k− 1 and C \Sk−1
n refers to all elements of C except the elements of

Sk−1
n . Similar to the existing NUE algorithms, mutual information and

CMI are estimated using the KSG approach [13, 14, 32] (cf. Appendix
A.1).
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Yes

No

Choose m, d, γ and λ

Set S0
n = ∅ and k = 1

Find W1
n using (11)

Find the best candidate
using (12)

MSR(Yn|Uk
n)− MSR(Yn|Uk−1

n ) < γ
define

Sk
n = Wk

n ∪Sk−1
n

k = k + 1

Stop the algorithm and
return Sk−1

n

Fig. A.3: The flow chart of our proposed NUE algorithm.

5. Include the candidate Wk
n in the embedding vector Sk

n if MSR(Yn|Uk−1
n )−

MSR(Yn|Uk
n) > γ and continue the algorithm to find more candidate.

Otherwise, terminate the algorithm and return Sk−1
n as the desired em-

bedding vector.

The flow chart of the proposed algorithm is shown in Figure A.3. CTE is
then estimated by replacing [X−

n , Y−
n , Z−

n ] and [Y−
n , Z−

n ] with Sk−1
n and Sk−1

n
excluding the past of Xn, respectively. The CTE is finally estimated using the
KSG approach [13, 14, 32] (cf. Appendix A.1).

4 Simulation Study

In this section, we use simulated data in order to compare the performance
of our proposed NUE algorithm with the existing algorithms described in
Section 1.2. We investigate the effect of the data length, strength of directed
dependency and instantaneous coupling effect on the NUE algorithms. The
execution time of the NUE algorithms are also investigated. The main reason
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for using simulated data are to be able to obtain well-defined ground truth.
Therefore, it is possible to compare the NUE algorithms by computing their
accuracies. The termination criterion of the NUE algorithms is also utilized
for testing the significance of the estimated CTE in the simulation study: if the
embedding vector Sn of the target variable Yn does not include any lagged
component of the node X, then CTE from X to Y is zero and, otherwise
its CTE is positive. The results are used to calculate true positive (TP), i.e.,
number of truly detected directed coupled nodes, true negative (TN), false
positive (FP), and false negative (FN). The accuracy (ACC), true positive rate
(TPR), and true negative rate (TPR) of the NUE algorithms are then defined
as:

ACC = 100 × TP+TN
TP+TN+FP+FN

TNR = 100 × TN
TN+FP

TPR = 100 × TP
TP+FN .

(A.13)

The TPR shows the ability of NUE algorithms to include the candidates
in the embedding vector related to correctly coupled nodes, and TNR repre-
sents the ability to exclude the candidates related to uncoupled nodes. The
ACC, TPR and TNR are computed as an average over 100 generated realiza-
tions because the simulated data depends on the random initial condition.
The embedding delay m and dimension d are chosen as 1 and 5 samples,
respectively. For estimation of the CMI and MSR, T = 10 nearest neighbors
are considered.

4.1 Henon Map Model

The Henon map model has been frequently utilized in the literature to gen-
erate multivariate data with a controlled amount of directed interaction [13,
21, 22]. A 5 nodes Henon map can be defined as [13, 21, 22]:

Yl,n = 1.4 − Y2
l,n−1 + 0.3Yl,n−2, for l = 1, 5

Yl,n = 1.4 − [0.5Q(Yl−1,n−1 + Yl+1,n−1) + (1 − Q)Yl,n−1]
2 + 0.3Yl,n−2,

for l = 2, 3, 4,
(A.14)

where Q is the coupling strength and it varies between 0.2 to 0.8 in this
study; it is guaranteed that the complete synchronization between any pair
nodes is avoided [34]. The first and last nodes (Y1 and Y5) depend only
on their own past (first row of (A.14)) and therefore they do not depend on
other nodes. On the other hand, nodes l = 2, 3, 4 depend on the past of nodes
Yl−1 and Yl+1. Consequently, there are nonlinear directed dependencies with
strength Q from nodes Yl−1 and Yl+1 to node Yl for l = 2, 3, 4 (second row of
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Fig. A.4: (a) true positive rates, (b) true negative rates and (c) accuracies of MSR-based,
bootstrap-based, AIC-based, and LA-based NUE algorithms for the Henon map model at mod-
erate fixed coupling strength Q = 0.6 and data length ranging from 32 to 1024. The results are
shown as an average over 100 realizations.

(A.14)). The aforementioned connectivity is considered as the ground truth
when comparing the performance of the NUE algorithms.

Data Length Effect

Henon map data sequences were generated at a fixed normal strength Q =
0.6 and different lengths, N = 2h, h = 5, 6, . . . , 10, in order to evaluate the
effect of the data length on the performance of the NUE algorithms. The pro-
posed NUE algorithm were used with five different weights,
λ = 0, 0.25, 0.5, 0.75, 1, to demonstrate the effect of the weight. According
to the fact that in this simulation there is no unobserved confounder effect
like IC, we set the parameter γ = 0. Figure A.4 shows TPRs, TNRs and accu-
racies of the MSR-based NUE algorithm with five different λ’s. In addition,
shown in the figure, are the performances of the existing NUE algorithms.
As Figure A.4c demonstrates, the accuracy of our proposed NUE algorithm
(for any λ) increases as the data length increases up to 256 samples where the
accuracy is nearly 100%. The proposed algorithm with higher λ attains bet-
ter performance at data length under 128 samples. Figure A.4a,b show that
the improvement of the accuracy by changing λ is mostly due to the better
TPRs. As we can see in Figure A.4b, TNRs of bootstrap-based and LA-based
algorithms decreases for data lengths greater than 256 and 64, respectively.
The accuracy, TPR and TNR of the AIC-based algorithm increases by increas-
ing the data length. Overall, the proposed algorithm with λ = 1 attains the
greatest accuracy and the LA-based algorithm has the worst accuracy for all
data lengths.
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Fig. A.5: (a) true positive rates, (b) true negative rates and (c) accuracies of MSR-based,
bootstrap-based, AIC-based, and LA-based NUE algorithms for the Henon map model at fixed
data length N = 512 and coupling strength ranging from 0.2 to 0.8. The results are shown as an
average over 100 realizations.

Coupling Strength Effect

The Henon map model at 512 data length was generated with different cou-
pling strengths ranging from 0.2 to 0.8 in step of 0.2 in order to evaluate the
NUE algorithms as a function of the strength of the directed dependencies.
As Figure A.5b shows TNRs of the MSR-based algorithm (for any λ) is al-
most 100 % while the TNRs of the existing NUE algorithms tend to decrease
as the strength of the directed dependency increase, which also causes a de-
crease in the accuracy. TPRs of the NUE algorithms are nearly equal except
that at very low coupling strength the bootstrap-based algorithm has higher
TPR. Changing λ at Q = 0.2 leads to slightly better TPR and accuracy. Over-
all, our proposed MSR-based algorithm has better accuracy compared to that
of the existing NUE algorithms, except for Q = 0.2 where bootstrap-based
algorithms yields better performance.

Execution Time

In this section the execution time of the proposed MSR-based algorithm with
λ = 1 and λ = 0 (at fixed γ = 0) is compared with that of the existing
NUE algorithms. The Henon Map data at length 512 samples and coupling
strength Q = 0.6 was generated and execution time of the NUE algorithms
are reported as an average over 100 realizations. The execution time was
calculated in a single block-wise code where each NUE algorithms has a
block. The function tic of MATLAB was set before each block and the function
toc was used to calculate the execution time of the blocks related to the NUE
algorithms. The code was run by a Intel(R) core(TM) i7-7600 CPU@2.10 GHz.
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We use the ITS toolbox (available at http://www.lucafaes.net/its.html) for
implementation of bootstrap-based NUE algorithm. The ITS toolbox was also
modified for implementation of the LA-based algorithm by using a MATLAB
code provided in [21]. We also modified ITS toolbox in order to implement
the AIC-based and MSR-based NUE algorithms. The results are reported in
Table A.1. In addition to execution time, the total number of iterations k that
the algorithms were performed before they terminated, are reported.

Table A.1: The execution time and and total iterations before termination of the proposed MSR-
based with λ = 0, 1 (at fixed γ = 0) as well as existing NUE algorithms for the Henon map data
at data length 512. The results are reported as an average over 100 realizations.

NUE Algorithm Bootstrap-Based LA-Based AIC-Based MSR-Based, λ = 1 MSR-Based, λ = 0

Execution Time (second) 40.59 117.23 11.29 2.26 5.34
Total Number of Iterations 19.18 16.94 24.08 16.19 16.64

As Table A.1 indicates, the execution time of MSR-based with the known
parameters λ = 1 and λ = 0, and AIC-based NUE algorithms are signifi-
cantly less than that of the bootstrap-based and LA-based ones. However,
the total number of iterations of the AIC-based algorithm before termination
is on average higher in comparison with that of the MSR-based algorithm.
The higher total number of iterations of the AIC-based algorithm increases
its execution time. It is important to note that the execution time of the MSR-
based with λ = 1 is less than that of with λ = 0. Overall, our proposed
MSR-based NUE algorithm with λ = 1 and γ = 0 attains the best and the
LA-based has the worst execution time.

4.2 Autoregressive Model

AR models have been widely used to generate multivariate data with con-
trolled directed dependencies among them [13, 21, 22]. The considered non-
linear AR model is given as:

Y1,n = 0.95
√

2Y1,n−1 − 0.9125Y1,n−2 + ε1

Y2,n = 0.5Y2
1,n−2 + ε2

Y3,n = −0.4Y1,n−3 + 0.4Y2,n−1 + ε3

Y4,n = −0.5Y2
1,n−1 + 0.25

√
2Y4,n−1 + ε4

Y5,n = −0.25
√

2Y4,n−1 + 0.25
√

2Y5,n−2 + ε5,

(A.15)

where ε1, . . . , ε5 are mutually independent zero mean and unit variance white
Gaussian noise processes. In accordance with (A.15), node 1 only depends on
its own past and therefore there is no directed dependency from other nodes
to node 1 (first row of (A.15)). On the other hand, nodes 2, 3 and 4 depend on
the past of node 1 and therefore there are nonlinear directed dependencies
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Fig. A.6: (a) true positive rates, (b) true negative rates and (c) accuracies of MSR-based,
bootstrap-based, AIC-based, and LA-based NUE algorithms for the AR at data length ranging
from 32 to 1024. The results are shown as an average over 100 realizations.

from node 1 and to nodes 2 and 4 (second and fourth rows of (A.15)) and
linear directed dependencies from node 1 to node 3 (third row of (A.15)).
There are also linear directed dependencies from nodes 2 and 4 to nodes
3 and 5, respectively (third and fifth rows of (A.15)). These dependencies
describe the ground truth couplings when comparing TPR, TNR, and ACC
of the NUE algorithms.

Data Length Effect

Nonlinear AR data series were first generated for 100 realizations at different
lengths, N = 2h, h = 5, 6, . . . , 10, in order to evaluate the effect of data length
on the performance of the NUE algorithms using AR data. We set the pa-
rameter γ = 0 since in this simulation there is no IC effect. Figure A.6 shows
TPRs, TNRs and accuracies of the NUE algorithms for the AR model as a
function of data lengths. As Figure A.6a illustrates, the LA-based NUE algo-
rithm has significantly lower TPR compared to that of the other algorithms.
It is also noteworthy that the TNR of the bootstrap-based algorithm tends to
decrease as the data length increases. The MSR-based algorithm, for all λ
except λ = 1, presents higher accuracy than that of the bootstrap-based and
LA-based algorithms at all data lengths and higher accuracy than that of the
AIC-based algorithms at data length smaller than 128.

Instantaneous Coupling Effect

IC can happen due to sharing information at same lag. In other words,
it can occur due to fast sharing information [31]. For example, in neuro-
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physiological time series like EEG, the recorded electrical activity at each
electrode located at the scalp, is considered to be a mixture of the source
generators because the sources pass through the volume conductor [18]. The
volume conduction can be considered as the zero lag coupling which may
lead to detection of false directed dependency by the NUE algorithms.

Let us consider the AR model defined in (A.15) at length N as the sources,
which are instantly mixed to simulate the effect of IC. The considered mixing
matrix is given as

A =

⎡⎢⎢⎢⎢⎣
(1 − α) α α α α

α (1 − α) α α α
α α (1 − α) α α
α α α (1 − α) α
α α α α (1 − α)

⎤⎥⎥⎥⎥⎦ . (A.16)

where α varies between 0.1 and 0.3 in step of 0.1 in this paper. The greater α,
the greater IC between the sources. Let Y = [Y1, Y2, . . . , Y5]

T be N × 5 matrix
which includes all sequences (they are considered to simulate sources in the
brain) generated by the AR model (A.15). The mixed matrix (it is considered
to simulate the EEG signals recorded at the scalp level which is the mixture
of all sources) is then defined as the matrix product between Y and A that is

Ymixed = YA. (A.17)

Each column of A defines how the sources Y1, . . . Y5 are mixed. As ex-
pected, for the nth mixed data sequence Ymixed

n , the most important term is
Yn. This is more clear by looking at the main diagonal of the A.

The nonlinear AR data series were first generated for 100 realization at
data lengths 512 using (A.15) and then mixed using (A.17) in order to eval-
uate the effect of IC on the performance of the NUE algorithms. As it was
mentioned in Section 2, selecting a decent γ can control the balance between
true positives and true negatives which can be useful, for example, to in-
crease the accuracy of our proposed MSR-based NUE algorithm when there
is an unobserved confounder effect like IC effect. Therefore, the proposed
algorithm was implemented using six γs. We set a fixed λ = 0.5 since in
this section the goal is to investigate effect of γ on the performance of the
MSR-based algorithm. Figure A.7 demonstrates the TPRs, TNRs and accu-
racies of the MSR-based with six γ when they are applied on the data with
three instantaneous couplings, i.e., α = 0.1, 0.2, 0.3. As we can see in Figure
A.7, the TNR of the MSR-based algorithm increases by increasing γ while the
TPR gradually decreases up to a certain γ (e.g., γ = 0.04 for α = 0.1) and
then it significantly declines. Accordingly, the accuracy increases up to a cer-
tain γ due to the increasing of the TNR compensating for the slight decrease
of the TPR. Table A.2 illustrates accuracies of the existing NUE algorithms
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Fig. A.7: (a) true positive rates, (b) true negative rates and (c) accuracies of the MSR-based
algorithm with different γ ranging from 0 to 0.2 in step of 0.04 when applied to the mixed AR
data sequences at length 512 with different instantaneous coupling strength α = 0.1, 0.2, 0.3. The
results are shown as an average over 100 realizations.

as well as the best accuracy of the MSR-based algorithm which is obtained
by a reported γ in the table. As Table A.2 demonstrates, accuracies of the
NUE algorithms decrease by increasing instantaneous effect strength. Our
proposed MSR-based NUE algorithm attains the greatest accuracy compared
to the existing algorithms for all αs.

Table A.2: Accuracies of the bootstrap-based, LA-based and AIC-based algorithms as well as the
proposed MSR-based algorithm. The γ leads to the best accuracies of the MSR-based algorithm
are also reported in parenthesis after the accuraies. The results are reported as an average over
100 realizations.

NUE Algorithm Bootstrap-Based LA-Based AIC-Based MSR-Based (Best γ)

α = 0.1 71.10 86.30 88.65 94.20(γ = 0.04)
α = 0.2 71.80 77.75 73.20 86.90(γ = 0.12)
α = 0.3 63.55 75.10 60.55 82.60(γ = 0.08)

Execution Time

In this section the AR model data at length 512 was generated and execution
time of the NUE algorithms is reported as an average over 100 realizations in
Table A.3. Similar to the results reported in Section 4.1, the MSR-based algo-
rithm with λ = 1 (at fixed γ = 0) is the fastest algorithm and LA-based one
is the slowest one. Although the total number of iterations of the AIC-based
and MSR-based algorithms with λ = 0 before termination are almost the
same (around 10 iterations), the execution time of the AIC-based is slightly
higher. It can be due to the fact that we did not have access to optimal code
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for calculating the KDE-based regression while for the NN-based prediction
we have used a mex file for the neighbor search which is provided by the ITS
toolbox [19].

Table A.3: The execution time of our proposed MSR-based with λ = 0, 1 (at fixed γ = 0) as well
as existing NUE algorithms for the AR data at length 512. The results are reported as an average
over 100 realizations.

NUE Algorithm Bootstrap-Based LA-Based AIC-Based MSR-Based, λ = 1 MSR-Based, λ = 0

Execution Time 28.96 38.02 5.09 1.62 3.64
Total Number of Iterations 14.13 7.65 10.15 10.61 10.12

5 Application

In this section, we demonstrate the applicability of our proposed MSR-based
algorithm on a real-world data. We consider a publicly available high dimen-
sional intracranial EEG data from an epileptic patient. While our proposed
estimator is defined for stationary stochastic processes, at least for this partic-
ular case of real world EEG data, our estimator is also able to provide good
results when applied on non-stationary signals. The overall goal here is to
apply NUE algorithms to estimate CTE and find patterns related to the onset
and spread of the seizure. A total of 76 implanted electrodes was recorded,
resulting in 76 time series. Electrodes 1–64 are cortical electrode grid and elec-
trodes 65–76 are in-depth electrodes (six electrodes on each side). The data
comprises 8 epileptic seizures (Ictal) and 8 periods just before the seizure on-
set (Pre-ictal) segments. Each segment is 10 seconds intracranial EEG data
recorded at 400 Hz sampling frequency (more details about this data can
be found in [35]). In this work, an anti-aliasing low-pass filter with a cut-
off frequency of 50 Hz was applied prior to downsampling the signals to
100 Hz (Slow temporal auto-correlation of signals can induce a bias in the
estimated conditional TE , nonlinear prediction and CMI in the NUE algo-
rithms [36]. An approach used to correct this bias is called Theiler correction
based on which too close observations in time should be discarded from the
NN searches included in the estimation of TE, CMI and MSR [36]. In this
paper, we down-sample the EEG data to avoid slow auto-correlation bias. In
other words, the Theiler window is 4 samples.). The embedding delay and
dimension were chosen as 1 and 8, respectively.

Epileptologists recognized the regions corresponding to one of the depth
strips (electrodes 70 to 76) and the lower left corner of the grid (electrodes 1–4,
9–11 and 17) were resected during anterior temporal lobectomy as the seizure
onset zone, which means synchronous activity of neurons in the specific re-
gions of the brain becomes so strong, so that it can propagate its own activity
to other distant regions [7, 13, 21, 23]. From an information theory point of
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view, these nodes send information to other nodes, resulting in seizure onset.
The amount of information each node sends to other nodes can be computed
by the summation over each row of the directed dependencies matrix.

We applied our proposed in addition to bootstrap-based and LA-based
NUE algorithms to estimate CTE in real high dimensional and redundant
intracranial EEG data. The overall goal here is to compare advantages of
our proposed NUE algorithms over the other algorithms reported in the lit-
erature. The MSR-based NUE algorithm was implemented with λ = 1 and
γ = 0.005. The directed dependencies matrices obtained by our proposed
algorithm as well as the existing algorithms are shown in Figure A.8. The
directed dependencies matrices obtained by the bootstrap-based NUE algo-
rithm (Figure A.8b,e) contain many connections in both pre-ictal and ictal
conditions. Specifically, the diagonal pattern observed in the matrices ob-
tained by the bootstrap-based NUE algorithm can be due to the volume con-
duction and conduction effect of the grid. On the other hand, our proposed
(Figure A.8a,d) and LA-based NUE algorithms (Figure A.8c,f) are less sensi-
tive to the volume conduction effect in comparison to that of the bootstrap-
based algorithm.

Figure A.9 represents the total amount of information each electrode sends
to other electrodes. As Figure A.9b demonstrates, due to the volume conduc-
tion effect there are some peaks even in the pre-ictal condition. On the other
hand, the amount of information each electrode sends in the pre-ictal con-
dition obtained by the MSR-based (Figure A.9a) and LA-based (Figure A.9c)
NUE algorithms is approximately zero except for electrode 73. This elec-
trode can be associated with the seizure onset although it is not yet clinically
observable.

As mentioned earlier, electrodes 2–4, 9–11 and 17 are the seizure onset
zones. Figure A.9d,f show that the magnitude of the peaks at electrodes 2–4
and 9–11 for the MSR-based algorithm is higher than the one of the LA-based
procedure. It is also important to mention that the existing LA-based and
bootstrap-based NUE algorithms are not able to detect the peak at electrode
17 as opposed to that of our proposed MSR-based NUE algorithm.

6 Discussion and Conclusions

Reliable estimation of the directed dependencies in conditional high dimen-
sional data are limited by the so-called ´´curse of dimensionality” problem. A
greedy approach called non-uniform embedding (NUE) algorithm was pro-
posed in [13] to select the most relevant variables and reduce the dimension
of the reconstructed state-space of the data. Then, the model-free directed
dependencies measure, conditional transfer entropy (CTE) is estimated using
the reconstructed state-space. The NUE strategy based on sequentially
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(b) Pre-Ictal (Bootstrap-based)
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(c) Pre-Ictal (LA-based)
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(d) Ictal (MSR-based)
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(e) Ictal (Bootstrap-based)
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(f) Ictal (LA-based)
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Fig. A.8: directed dependency Matrices obtained by applying NUE algorithms on intracranial
EEG data at epileptic seizures (Ictal) and just before the seizure onset (Pre-ictal) conditions. The
directed dependency is shown from rows (driver) to the colomns (Targets). The darker color of
an element, the higher the directed dependency is. The results are shown as an average over 8
segments.

selecting the best candidates in a greedy way will generally not lead to
the same performance as would be obtained by using a brute-force combina-
torial approach, where the performance is maximized over all possible sets
of candidates. It has, however, been shown that NUE approaches often lead
to an improved accuracy of the CTE compared to that of uniform embedding
approaches [13, 19]. The NUE algorithm has been widely utilized to estimate
the directed dependencies in neuro-physiological [15, 16] and economical [17]
applications. It still has some obstacles like using a bootstrap-based termina-
tion criterion which highly depends on the bootstrap size [27]. It has been
shown in [9, 28] that using an alternative to the bootstrap statistical test can
be more accurate and computationally efficient.

In this paper, we proposed a new modification for the NUE algorithm
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(b) Pre-Ictal (Bootstrap-based)
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(c) Pre-Ictal (LA-based)
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(d) Ictal (MSR-based)
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(e) Ictal (Bootstrap-based)
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(f) Ictal (LA-based)
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Fig. A.9: Total Information each electrode sends to other contacts at ictal and pre-ictal conditions.

which uses a weighted sum of conditional mutual information (CMI) and
nearest neighbor(NN)-based prediction for ranking the candidates and the al-
gorithm is terminated if the highest ranked candidate is not relevant enough
to significantly improve the accuracy of the prediction of the target variable.
It should be noted that while our simulations on synthetic and real world
data indicate that using prediction accuracy can lead to better assessment of
directed dependency, we have not been able to prove this from an estimation
theoretic point of view. It should also be noted that for the linear Gaussian
processes, accuracy of the prediction of the target variable given selected can-
didates MSR(Yn|Un), is monotonically equivalent to the conditional entropy
H(Yn|Un) [37].

The proposed NUE procedure was compared with the original bootstrap-
based NUE algorithm in [13], low-dimensional approximation(LA)-based [21]
and Akaike information criterion (AIC)-based [27]. Performance analysis us-
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ing simulation data generated by Henon map and autoregressive (AR) mod-
els at different lengths and coupling strengths revealed that the proposed
mean of the squared (MSR)-based NUE algorithm tends to outperform the
existing ones for detecting the directed dependencies. Specifically, the higher
true negative rate (TNR) of the proposed MSR-based NUE compared to that
of the existing ones may represent better ability of the proposed algorithm
to terminate at the correct iteration and, as a result, better functionality of
the proposed termination criterion. The poor selectivity (or TNR) of the
bootstrap-based is in line with the results observed in [21], where they also
found higher false positives for the bootstrap-based procedure compared to
that of the LA-based one. The proposed algorithm also attains less false
positive in comparison to that of the LA-based approach. The greater true
positive rate (TPR) of the MSR-based algorithm with higher λ for small sim-
ulated data length and low coupling strength can justify using the weighted
sum for ranking candidates. However, the limitation of the proposed NUE al-
gorithm is that, for very low coupling strength, the accuracy of the proposed
estimator was not as good as for the the bootstrap-based one.

The applicability of the NUE algorithms in real-word data can be affected
by unobserved confounder effects like instantaneous information sharing
which can be falsely detected as directed dependencies [31]. The data se-
quences generated by the AR model were instantly mixed at different mixing
strengths in order to simulate an instantaneous coupling (IC) effect. The
results showed that, by choosing a proper parameter γ, the proposed MSR-
based measure attains significantly better performance than the existing ones.
The simulated data results were consistent with the real-data used in this pa-
per where the best results also were obtained for positive γ. The better perfor-
mance can be of particular importance for such real-world applications like
electroencephalography (EEG) and magnetoencephalography in which the
volume conduction effect can cause IC [18]. There are also other frameworks
like compensated transfer entropy [31], which tries to improve the estima-
tion of the TE in the presence of IC. This measure modified the definition of
the transfer entropy to compensate the effect of IC. The NUE algorithms are
defined to find the embedding vector for estimating transfer entropy. There-
fore, comparison or even modification of the proposed NUE algorithm for
restructuring the state-space to estimate compensated transfer entropy de-
serves an independent and comprehensive study and will be considered in
future works.

The proposed MSR-based algorithm with known parameter γ achieved a
significant improvement in the computational efficiency. This can be due to
the elimination of the computation effort of the bootstrap test which is not
included in the proposed MSR-based algorithm. If we consider that the esti-
mation of the CMI dominates the computation of the NUE algorithms (except
for the MSR-based with λ = 1), then the overall computational requirement
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of the NUE algorithms which uses bootstrap-based test in the worst case will
be k|C|+ 100k, where k is the number iterations reported in Tables A.1 and
A.2 and |C| is the cardinality of C. On the other hand, the computational
requirement of the proposed NUE algorithm with known parameter γ can
be expressed as k|C|. The computational effort of the MSR-based NUE al-
gorithm with λ = 1 can be considered to be dominated by the estimation of
MSR. It is computationally less complex than that of the CMI since it only
includes a neighbor search while CMI estimation contains a neighbor search
and range searches. Therefore, in very high-dimensional data (like the in-
tracranial EEG data used in the application part where |C| = 608), where
execution of the NUE algorithm can be very time-consuming, it is suggested
to use λ = 1, since it will be significantly faster. The proposed NUE algo-
rithm with λ = 1 also achieved better execution times than that of with λ = 0
in the simulation data used this paper. As already mentioned in [21, 23], the
LA-based approximation of the CMI used in the LA-based NUE algorithm
is computationally more expensive, and this is consistent with the execution
time reported in this paper where LA-based procedure attains the worst ex-
ecution time. Better execution time can be especially important for such ap-
plications like a scalp EEG-based brain-computer interface where faster time
series analyses methods are required. We also consider testing the perfor-
mance our proposed estimator on high dimensional scalp EEG data in future
works.

Another parameter of our proposed NUE algorithm over which one needs
to scan is the positive parameter γ. The parameter γ and MSR(Yn|Un) have
the same units, and it defines the required amount of improvement in the
accuracy of prediction prior to selecting a variable. Intuitively, the predic-
tion accuracy MSR(Yn|Uk

n) can vary between 0 and var(yn), where 0 shows
that one can perfectly predict Yn by incorporating Uk

n. The intuition of the
worst case of the accuracy of the prediction MSR(Yn|Uk

n) can be the case that
incorporating Uk

n does not help the prediction at all and the indices speci-
fied by neighbor search in un will be uniformly distributed. The obtained
ŷn(i|U) will be an approximation of mean of yn and as a result MSR will
be approximately var(yn). In this paper, we normalize time series related to
the realizations of the target processes to have zero mean and unit variance.
We therefore scan the parameter γ in the interval between 0 and 1 to tune
the algorithm. Therefore, another limitation of our proposed NUE algorithm
is that it needs to be tuned by scanning over the parameter γ. The optimal
choice of γ will be data dependent. The more accurate investigation of the
criterion with which the parameter γ can be selected will be considered in
the future works. Moreover, scanning over γ can increase execution time of
our proposed algorithm. We suggest tuning the algorithm by using small
subset of segments and use the tuned algorithm for the rest of segments. The
reason is that the parameter γ can take care of confounder effects found in
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the data and will not vary during the segments such as volume conduction
effect in neuro-physiological time series [18].

In this paper, TE has been used to assess the directed dependencies. Es-
timated TE in networks consisting of more than two nodes can be affected
by other nodes through, for example, an indirect path or common shared
information. One possible approach to reduce such effects is to condition out
information coming from other nodes. However, this approach can present
bias in the estimated directed dependencies in data in which there is the
collider condition [38]. There are other approaches to assess directed depen-
dencies in the network like decomposing TE into unique, synergistic, and
redundant information [39]. However, comparison of the estimated condi-
tional TE and decomposing TE deserves an independent and comprehensive
study and it is out of the scope of this paper.

A Appendix

A.1 Kraskov–Grassberger–Stögbauer Estimator

Conditional Mutual Information Estimation

The Kraskov–Grassberger–Stögbauer approach [14] is an NN-based estimator
which was originally developed in order to estimate mutual information. It
was adapted to estimate CMI in the NUE algorithm in [13, 19, 32]. The CMI
in (A.3) can be rewritten as the sum/difference of four joint entropies [13, 32]

I
(

Yn; Wn | Sk−1
n

)
= h(Yn,Sk−1

n )− h(Sk−1
n )− h(Yn, Wn,Sk−1

n ) + h(Wn,Sk−1
n ).

(A.18)
Then, the CMI is estimated by using a NN approach in which the en-

tropy of the higher dimension h(Yn, Wn,Sk−1
n ) is estimated through a neigh-

bor search as [13, 32]

h(Yn, Wn,Sk−1
n ) ≈ −ψ(T) + ψ(N) + (d + 1)〈ln(εn(i)〉), (A.19)

where ψ is the digamma function, and N is the total number of observations
of the vector variable [Yn, Wn,Sk−1

n ]. Twice the amount of distance (maximum
norm) of ith observation of [Yn, Wn,Sk−1

n ] from its Tth neighbor is denoted by
εn(i) and 〈.〉 is the average over all observations. The rest of entropies in
(A.18) are estimated by using a range search as

h(Wn,Sk−1
n ) ≈ −ψ(T) + d

〈
ψ
(

N
[Wn ,Sk−1

n ]
+ 1

)〉
h(Yn,Sk−1

n ) ≈ −ψ(T) + d
〈

ψ
(

N
[Yn ,Sk−1

n ]
+ 1

)〉
h(Sk−1

n ) ≈ −ψ(T) + (d − 1)
〈

ψ
(

N
Sk−1

n
+ 1

)〉
.

(A.20)
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The number of realizations of [Wn,Sk−1
n ] whose maximum norm from the

ith realization of [Wn,Sk−1
n ] is strictly less than εn/2, which is denoted by

N
[Wn ,Sk−1

n ]
. A similar notation applies to N

[Yn ,Sk−1
n ]

and N
Sk−1

n
. The CMI is

finally estimated by replacing (A.19) and (A.20) in (A.18)

I
(

Yn; Wn | Sk−1
n

)
= ψ(T)+

〈
ψ
(

N
Sk−1

n
+ 1

)
− ψ

(
N
[Wn ,Sk−1

n ]
+ 1

)
− ψ

(
N
[Yn ,Sk−1

n ]
+ 1

)〉
.

(A.21)

Conditional Transfer Entropy Estimation

After selecting the most informative candidates and forming the embedding
vector Sk

n using the NUE algorithms, the CTE in (A.2) can be estimated us-
ing the same approach explained in Appendix A.1. The CTE can also be
expressed as the sum of four joint entropies as

CTE(X →Y|Z) = h(Yn, Y−
n , Z−

n )− h(Y−
n , Z−

n )− h(Yn, Y−
n , X−

n , Z−
n )+ h(Y−

n , X−
n , Z−

n ),
(A.22)

where [X−
n , Y−

n , Z−
n ] is replaced by Sk−1

n and [Y−
n , Z−

n ] is substituted by Sk−1
n

without any past variables of Xn. Then, by using range search in the higher
dimension [Yn, Y−

n , Z−
n ] and range search in the rest of dimensions, the CTE

can be estimated as

CTE(X →Y|Z) = ψ(T)+
〈

ψ
(

N[Y−
n ,Z−

n ] + 1
)
− ψ

(
N[Yn ,Y−

n ,Z−
n ] + 1

)
− ψ

(
N[X−

n ,Y−
n ,Z−

n ] + 1
)〉

,
(A.23)

where N[Y−
n ,Z−

n ] denotes the number of realizations of whose maximum norm

from its ith realization of is strictly less than εn/2. The same notation applies
to N[Yn ,Y−

n ,Z−
n ] and N[X−

n ,Y−
n ,Z−

n ].

A.2 Kernel Density Estimation-Based Prediction

In the Akaike information criterion-based termination criterion which is adapted
in this paper to stop the NUE algorithm, one needs to predict the target vari-
able Yn given Uk

n = [Wk
n,Sk−1

n ] by using the kernel density estimation (KDE)
approach. The KDE-based prediction is performed as:

ŷn(i|Uk
n) =

N

∑
i=1

yn(i)Kh(u
k
n,uk

n(i))

∑M
i=1 Kh(uk

n,uk
n(i))

, (A.24)

where ŷn(i|Uk
n) denotes for estimated ith observation of Yn and Kh is the

Gaussian kernel with Mahalonobis distance (Equation (A.26)) [27]:

Kh(u
k
n,uk

n(i)) =
1

(
√

2πh)d
exp

(
−‖ uk

n −uk
n(i)‖

2h2

)
, (A.25)
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‖uk
n −uk

n(i)‖ = (uk
n −uk

n(i))
TΣ−1(uk

n −uk
n(i)), (A.26)

where d and Σ are dimension (number of columns) and covariance of uk
n, re-

spectively. The bandwidth of the kernel function h is chosen for unit variance
data as [27, 28]:

h = 1.5
(

1
d + 2

)1/(d+4)
N−1/(d+4). (A.27)
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1. Introduction

Abstract

Transfer entropy can to a certain degree assess the direction in addition to the strength
of the couplings within dynamic time series. The greater the transfer entropy, the
greater the strength of the dependency between time series. In this work, we are
interested in quantifying the effect that a given time series (e.g., an external stimuli)
has upon the coupling strength between other time series. Towards that end, we
define a directed dependency index based on the difference of two causally conditioned
transfer entropies. We then provide a lower bound for the dependency index, and
demonstrate on synthetic data that this lower bound can be efficiently computed.

Keywords

Transfer entropy, directed dependecy, mutual information, intrinsic mu-
tual information

1 Introduction

In time-series analysis, it is often desirable to assess the directed dependency
between time series [1]. For example, the time series could be observations
of physical or biological systems, where any possible directed dependencies
in the data would mean that the systems are interacting with each other.
One common application is the case of functional connectivity analysis of
electroencephalography (EEG) signals [2, 3] where the observations obtained
at different scalp electrodes are highly coupled.

Several time series analysis methods such as Granger causality [4, 5] and
transfer entropy (TE) [1] have been proposed in order to quantify directed
dependencies. While Granger causality is mainly used for analysing linear
dependencies, TE is capable of determining both linear and non-linear in-
teractions. In some cases, it is possible to distinguish between direct and
indirect (implicit) couplings, where part of the information that two nodes
share between them have been conveyed via a third node, see for example
Fig. 1. By causally conditioning the estimation of TE between two nodes (say
X and Y) on the third node (Z), it is possible to at least partially take the
effect of indirect couplings into account [2]. In Fig. B.1, nodes X and Y are
directly coupled with the direction from X to Y, and they are also indirectly
coupled via Z and S.

In this paper, we are interested in the general problem of quantifying to
what degree a given time series is directly influencing the directed dependen-
cies between other time series. Thus, referring to Fig. B.1, we are interested in
quantifying and computing a specific part of the information that describes
the coupling between nodes X and Y. Specifically, we are only interested in
the amount of information that exists within the directed coupling between
X and Y and which is due to S but not due to Z. For example, consider
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the case, where a human subject is exposed to acoustic stimuli and the EEG
response is being measured on the scalp. One might then be interested in
observing possible changes in the directed dependency from data from one
EEG electrode X to another electrode Y, and which is due to changes in the
external acoustic stimuli S. However, it is not straight-forward to distinguish
whether the changes in the couplings are due to the desired external stimuli,
or whether it is due to another stimuli such as other EEG electrodes, visual
stimuli or due to artefacts caused by muscle or eye movements or noise.

In [6], the information flow in the human auditory system due to external
acoustic stimuli was quantified. In this case, the external stimuli A was first
processed by the noisy acoustic environment yielding the output B, which
then entered the human auditory system via the human eardrum. The output
C of the human auditory system as a response to the stimuli A was then
obtained through listening tests. The authors of [6] were then interested in
how much information about the stimuli was lost in the human auditory
system, and it was shown that this could be quantified via the difference
I(A; B)− I(A; C).

We note that [6] considered unidirectional measures and did not need to
condition the mutual information. In our case, we consider directed infor-
mation measures that are causally conditioned. This greatly complicates the
problem. Specifically, we introduce a directed coupling index, which is de-
fined as a difference between two causally conditional directed informations
and which is on the form I(X → Y‖Z) − min f (ŝ|s) I(X → Y‖Z, Ŝ), where
the latter term includes a minimization over distributions. As was pointed
out in [7], it is not known how to compute such a minimization for the case
of continuous alphabet sources as is the case here. To circumvent this diffi-
culty, we provide a lower bound to the dependency index, which involves a
simpler minimization problem which can be directly computed using recent
estimators for causally conditioned transfer entropy [8, 9].

2 Background

2.1 Conditioning can increase the mutual information

It is well known that conditioning cannot increase entropy, i.e., H(X|Y) ≤
H(X). This is, however, not always the case for mutual information, where
we could have that I(X; Y|Z) ≥ I(X; Y), as the following simple example
shows. Let Y = Z ⊕ X, where Z and X are mutually independent binary
random variables, and where ⊕ denotes XOR. Clearly X and Y are mutually
independent and I(X; Y) = 0. On the other hand, when conditioning upon
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YZ

X S

Fig. B.1: The nodes X and Y are directly coupled with each other and indirectly via Z and S.

Z, we obtain:

I(X; Y) ∑
x∈Xy∈Yz∈Z

p(x, y, z) log2
p(x, y|z)

p(x|z)p(y|z)

= sumz∈Z ∑
x∈Xy∈Y

p(x, y|z) log2
p(x, y|z)

p(x|z)p(y|z) .
(B.1)

Conditioning cannot increase the mutual information if X − Z − Y forms
a Markov chain, in that order [10]. To see this, we note that in this case
I(X; Y|Z) = 0, whereas I(X; Y) ≥ 0.

2.2 Synergistic, intrinsic, and shared information

As pointed out in e.g. [7], the information measured by the directed informa-
tion methods and its conditional versions, can be interpreted1 as consisting
of intrinsic information and in addition there could potentially be shared
and synergistic information. Thus, the directed information might overes-
timate the amount of information being conveyed between systems (or sig-
nals). Specifically, let Y0 denote the current sample of the process Y and let
X−1 denote the past sample of the process X. Then, I(X−1; Y0) quantifies the
intrinsic information from the past of X to the current Y in addition to the
shared information, which already exist between the variables. Let us now
assume that the shared information between X−1 and Y0 is also contained in
Y−1. Then, we can simply remove the shared information by conditioning,
i.e.: I(X−1; Y0|Y−1). Whilst the shared information has been removed, we
have now potentially introduced synergistic information, as shown in (??).

In [7, 15], the intrinsic mutual information Ĩ(X; Y|Z) between between two
random variables X and Y given another random variable Z was identified
as an upper bound to the secret key agreement rate which is given as:

Ĩ(X; Y|Z) � min
fẐ|Z(Ẑ|Z)

I(X; Y|Ẑ), (B.2)

1There exists a wealth of interpretations and decompositions of the conditional mutual infor-
mation, cf. [11–14]
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which can be interpreted as the minimum conditional mutual information
between X and Y given any possible (probabilistic or deterministic) function
of Z. In [7], the intrinsic directed dependency between X and Y was defined
based on (B.2) as Ĩ(X−1; Y0|Y−1).

For the case where Z has a discrete and finite alphabet, it was shown
in [7] that the minimization in (B.2) can easily be computed. For the case
where Z has a continuous alphabet, it is not clear how to compute (B.2). If
fẐ|Z is constant, then it can be shown that Ĩ(X; Y|Z) ≤ I(X; Y) [7]. On the
other hand, since one of the possible mappings from Z to Ẑ is the identity
function, it clearly follows that Ĩ(X; Y|Z) ≤ I(X; Y|Z).

2.3 Transfer Entropy

We are interested in determining the directed dependency from X to Y in
the network of Fig. B.1. We denote by Xi the random variable obtained by
sampling the process X at the present time i. Furthermore, let X−

i be the past
of the process X up to but not including Xi. A similar notation applies to Y−

i
and Z−

i . The transfer entropy from X to Y causally conditioned on Z is then
defined as [1, 16]:

TE(X → Y||Z) � I(X−
i ; Yi|Y−

i , Z−
i ). (B.3)

3 Quantifying Stimuli-Relevant directed dependency

(SRDD) Index

Let X and Y in Fig. B.1 be the nodes of interest, let S be the external stimuli,
and let Z be a (super) node that describes the consensus of the remaining
nodes in a potentially complex network. Both S and Z could potentially
affect both X and Y.

Let I(X; Y|Z) be the conditional mutual information between X and Y
given Z. Due to potential synergistic information, we might have that I(X; Y|Z) >
I(X; Y). Thus, I(X; Y|Z) does not necessarily mean that we "remove" the in-
formation about Z, which is in either X or Y. However, consider now the
difference:

I(X; Y|Z)− I(X; Y|Z, S). (B.4)

In (B.4), any potential synergistic information, which is only due to condi-
tioning upon Z, will vanish. In addition, new synergistic information due to
conditioning upon S, and jointly upon S, Z could occur. To remove this effect,
one can minimize over all possible functions of S as in (B.2). The intuition
is now that by using the difference in (B.4), we remove the effect of Z, while
at the same time avoiding overestimating the effect of S. Turning this into a

76



3. Quantifying Stimuli-Relevant directed dependency (SRDD) Index

problem that involves dynamic time series, we replace the conditional mu-
tual information expressions in (B.4) with their causally conditioned transfer
entropy counterparts [16].

Definition 1 (Stimuli-relevant Directed Dependency (SRDD) Index): We define
the stimuli-relevant directed dependency index for (XN → YN) given ZN

and with stimuli SN as:

ISN (XN → YN |ZN) �
N

∑
i=1

IS(Xi−1; Yi|Yi−1, Zi−1)

ISN (Xi−1; Yi|Yi−1, Zi−1) � I(Xi−1; Yi|Yi−1, Zi−1)

− min
f (ŝN |sN)

I(Xi−1; Yi|Yi−1, Zi−1, ŜN).

(B.5)

where Xi−1 = (X1, X2, . . . , Xi−1).
When the processes X, Y, Z, and S are all jointly stationary but otherwise

arbitrarily distributed, we ignore the sum in (B.5), and with a slight abuse of
notation, we simply define the SRDD index to be given by:

IS(X → Y|Z) � I(X−
i ; Yi|Y−

i , Z−
i )

− min
f (ŝ|s)

I(X−
i ; Yi|Z−

i , Y−
i Ŝ), (B.6)

where the minimization is over all jointly stationary distributions f (ŝ, s) satis-
fying f (ŝ, s) = f (ŝ|s) f (s).

Lemma 1: Let X, Y, Z, S be jointly stationary but otherwise arbitrarily dis-
tributed random processes. Then, the SRDD index given in (B.6) can be lower
bounded by:

IS(X → Y|Z) ≥ I(X−
i ; Yi|Y−

i , Z−
i )

− min
φ⊆S−

i

I(X−
i ; Yi|Y−

i , Z−
i , φ), (B.7)

where the minimization is over all subsets of the past of S.
Proof : The proof follows immediately since the minimization in (B.7) is

over a subset of the set from (B.6). �
We note that (B.7) forms a tighter bound than if the minimization is simply

replaced by the full amount of information, φ = S−
i . Moreover, the motiva-

tion for restricting the minimization to be over subsets of the sequence S−
i is

to provide the means for efficient estimation of a non-trivial lower bound.
It is possible to move the stimuli away from the conditioning, which can

be useful depending upon the choice of estimator. In this case, one needs to
minimize over a difference of mutual information terms as is shown below:
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Lemma 2: The lower bound in Lemma 1 can be equivalently expressed as:

I(X−
i ; Yi|Y−

i , Z−
i )− min

φ⊆S−
i

I(X−
i ; Yi|Y−

i , Z−
i , φ)

= min
φ⊆S−

i

[
I(φ; yi|Y−

i , Z−
i , X−

i )− I(φ; yi|Z−
i , y−i )

]
.

Proof : We omit super- and subscripts when it is clear from context to sim-
plify the notation. Assuming that the differential entropies are well defined,
we establish the following equivalence by expanding the mutual information
in terms of entropies:

I(X; Yi|Y−
i , Z, S) = h(Yi|Y−

i , Z, S)− h(Yi|Y−
i , Z, S, X)

= h(Yi, Y−
i , Z, S)− h(Y−

i , Z, S)

− h(Yi, Y−
i , Z, S, X) + h(Y−

i , Z, S, X)

= h(S|Yi, Yi
i , Z) + h(S, Yi, Y−

i )− h(S|Y−
i , Z)− h(Y−

i , Z)

− h(S|Yi, Y−
i , X, Z)− h(Yi, Y−

i , X, Z)

+ h(S|Y−
i , Z, X) + h(Y−

i , X, Z)

= I(S; Yi|Z, Y−
i , X)− I(S; Yi|Y−

i , Z)

+ h(Yi|Y−
i , Z)− h(Yi|Y−

i , Z, X)

= I(S; Yi|Z, Y−
i , X)− I(S; Yi|Y−

i , Z) + I(X; Yi|Y−
i , Z−

i ).

The last term does not include S in the conditioning and is identical to the
first term on the right hand side of (B.7), which proves the first equality in
the lemma. The second equality follows by symmetry in X−

i and Yi−1. �
We will also define a relative SRDD index, which does not depend on

the absolute strength of the couplings. We denote this the normalized SRDD
index:

ÎS(X → Y|Z) � 1 −
minφ⊆S−

i
I(X−

i ; Yi|Y−
i , Z−

i , φ)

I(X−
i ; Yi|Y−

i , Z−
i )

. (B.8)

It can easily be seen that ÎS(X → Y|Z) ∈ [0, 1], where values close to 1 indi-
cate that the external stimuli S has a great effect upon the coupling strength
between X and Y, and a value close to 0 indicates that S has no effect.

3.1 Examples

The following examples show that as long as (partial) information about the
stimuli S is shared between the sensors’ data, the lower bound is (7) is non-
trivially bounded away from zero. In these examples, we let X, Y, Z, and S
be mutually independent standard Normal random variables.
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Example 1

Assume that a sensor is measuring ξ1 = X +Y and another sensor is measur-
ing ξ2 = X + Z + S. We are interested in comparing the mutual information
between the two sensor measurements conditioned upon knowledge of Z or
(Z, S). We therefore obtain:

I(ξ1; ξ2|Z) = I(X + Y; X + Z + S|Z)
= I(X + Y; X + S) = h(X + Y)− h(X + Y|X + S),

I(ξ1; ξ2|Z, S) = I(X + Y; X + Z + S|Z, S)

= I(X + Y; X) = h(X + Y)− h(Y).

Since X, Y, and S are jointly Gaussian, the conditional variance of X +Y given
X + S is:

var(X + Y|X + S) = var((X + Y)− α(X + S)) (B.9)

= var(Y) + (1 − α)2var(X) + α2var(S) > var(Y), (B.10)

where α ≥ 0 denotes a linear estimator.
Thus, h(Y) < h(X + Y|X + S), which implies that I(ξ1; ξ2|Z) is less than

I(ξ1; ξ2|Z, S) and conditioning upon S therefore leads to an increase of mu-
tual information. If the two sensor measurements represents ξ1 = X−

i and
ξ2 = Yi−1 in (B.7), and Z and S represent Z−

i , S−
i , respectively, then the mini-

mum in (B.7) is zero, and it is achieved by letting φ = ∅.

Example 2

Let us now assume that ξ1 = X + Y + S and ξ2 = X + Z + S so that the
external stimuli S is affecting the information captured by both sensors. Then
we get

I(ξ1; ξ2|Z) = h(X + Y + S)− h(Y), (B.11)

I(ξ1; ξ2|Z, S) = h(X + Y)− h(Y), (B.12)

where clearly h(X + Y + S) ≥ h(X + Y), which implies that I(ξ1; ξ2|Z, S) ≤
I(ξ1; ξ2|Z).

4 Computing Stimuli-Relevant directed dependency

(SRDD) Index

Let us consider the M = 4 nodes network shown in Fig. B.1. Let node S be
the stimuli and we are interested in estimating the SRDD between nodes X, Y
and Z. It is generally infeasible to take the infinite past of the processes into
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account, when estimating the directed dependencies. In this work, we sug-
gest to use Takens’ delay embedding approach [17, 18] whereby the infinite
past X−

i is approximated by:

X−
i ≈ [Xi−m, Xi−2m, . . . , Xi−dm],

where m and d are the embedding delay and dimension, respectively. Simi-
larly for Y−

i , S−
i and Z−

i .
After replacing the approximated past states of the processes in (B.7) or

(B.8), two conditional mutual informations (or transfer entropies) are esti-
mated by using the nearest neighbor-based approach proposed in [9] (which
is referred to Kraskov–Stögbauer–Grassberger (KSG) estimator in the litera-
ture). The combination of the uniform embedding approach and the KSG
estimator has been widely used in the literature to estimate transfer en-
tropy [3, 18, 19].

The conditional mutual informations in (B.7) can be expressed as the
sum/difference of four differential joint entropies. The entropy of the set of
variables with the highest dimensionality is estimated via a neighbor search
and the other three entropies are estimated using range searches [3, 8, 18].
The conditional mutual information is finally estimated as [3, 8, 18]:

I(X−
i ; Yi|Y−

i , Z−
i ) ≈ ψ(K) +

1
N

N

∑
i=1

ψ
(

N[Y−
i ,Z−

i ] + 1
)

−ψ
(

N[Yi ,Y
−
i ,Z−

i ] + 1
)
− ψ

(
N[X−

i ,Y−
i ,Z−

i ] + 1
)

,

where N[Y−
i ,Z−

i ] denotes the number of realizations (or points) whose maxi-

mum norm from [Y−
i , Z−

i ] is strictly less than twice the maximum norm of
[Yi, Y−

i , X−
i , Z−

i ] from its Kth neighbor. Similarly for N[Yi ,Y
−
i ,Z−

i ] and N[X−
i ,Y−

i ,Z−
i ].

To solve the minimization in (B.7), we search over all possible subsets
(including the empty and the full sets) of φ ⊆ [Si−m, Si−2m, . . . , Si−dm].

5 Simulation Study

We use simulated data in order to evaluate our proposed SRDD index in a
controlled way. A non-linear autoregressive (AR) model is used to generate
multivariate data with controlled directed dependency strengths and stimuli
effect. The model reflects the network of Fig. B.1 and is given as:

Xi = 0.35Xi−1 + 0.5Zi−2 + 0.6Si−1 + εX

Yi = 0.35Yi−1 + 0.5X2
i−2 + 0.5Zi−2 + 0.6Si−1 + εY

Zi = 0.35Zi−1 + εZ

Si = 0.25
√

2Si−1 − 0.2025Si−2 + εS,
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Table B.1: Dependency matrices: a) conditioned transfer entropy on Z , b) on Z, S and c) SRDD
index. The direction of dependencies are from columns to the rows. The reported numbers are
rounded to two decimal places.

To
From

X Y Z

X 0.00 0.00 0.04
Y 0.09 0.00 0.02
Z 0.00 0.00 0.00

a I(X → Y||Z)

To
From

X Y Z

X 0.00 0.00 0.04
Y 0.05 0.00 0.02
Z 0.00 0.00 0.00

b I(X → Y||Z, S)

To
From

X Y Z

X 0.00 0.00 0.00
Y 0.04 0.00 0.00
Z 0.00 0.00 0.00

c SRDD index

where εX , εY, εZ and εS are mutually independent zero mean and unit vari-
ance white Gaussian processes. We assume that S is the (external) stimuli,
which is affecting nodes X and Y. Node X is non-linearly and causally cou-
pled to node Y. There are also directed dependencies from Z to both X and
Y.

The SRDD index and the transfer entropy causally conditioned on Z and
Z, S (for the sake of comparison) averaged over 50 realizations of the AR
model at length N = 5000 are reported in Table B.1. The embedding delay
m and dimension d were chosen as 1 and 5, respectively. For estimating the
transfer entropy and the SRDD index, K = 10 neighbors were considered.

As expected, there are non-zero transfer entropies from node X to Y, Z
to X and Z to Y in both tables B.1a and B.1b. Adding the external stimuli
S to the conditioning process decreases the directed dependency only from
node X to Y and it does not affect other couplings. On the other hand, the
stimuli can only affect the directed dependency between nodes X and Y,
which should lead to a non-zero SRDD index only from node X to Y. This is
confirmed in Table B.1c, where only between nodes X and Y there is detected
a non-zero directed dependency due to the effect of the stimuli.

6 Conclusions and future works

In this paper, we introduced a new directed dependency index based on
the difference of two transfer entropies for quantifying the amount of the
directed dependency which is due to a given time series (e.g. stimuli). We
provided a lower bound for the proposed index and showed that the lower
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bound could be calculated using existing transfer entropy estimators. In a
simulation study, we utilized the KSG estimator and demonstrated that the
dependency index could be efficiently computed and it was quite accurately
able to predict the true dependencies in the data. Other estimators based on
binning technique [19] and linear estimators [19] could potentielly also be
used to compute the stimuli-relevant directed dependency index.

As an example, we considered a small network containing only a few
nodes. However, our proposed index does not depend upon the size of the
network, and can therefore be applied to more complex networks. The diffi-
culty is to reliably estimate the transfer entropy for high dimensional prob-
lems. A possible solution in the literature to overcome the problem of entropy
estimation of high-dimensional data is to select only the most informative
subset of candidates among the full set of variables [19]. For the problems
considered in this paper, we could potentially use the greedy selection tech-
nique of [3, 8, 20, 21] to approximately solve the minimization problem in
(B.8), and at the same time reduce the dimensionality of the problem.
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1. Introduction

Abstract

Comprehension of speech in noise is a challenge for hearing-impaired (HI) individu-
als. Electroencephalography (EEG) provides a tool to investigate the effect of different
levels of signal-to-noise ratio (SNR) of the speech. Most studies with EEG have fo-
cused on spectral power in well-defined frequency bands such as alpha band. In this
study, we investigate how local functional connectivity, i.e. functional connectivity
within a localized region of the brain, is affected by two levels of SNR. Twenty-two
HI participants performed a continuous speech in noise task at two different SNRs
(+3 dB and +8 dB). The local connectivity within eight regions of interest was com-
puted by using a multivariate phase synchrony measure on EEG data. The results
showed that phase synchrony increased in the parietal and frontal area as a response
to increasing SNR. We contend that local connectivity measures can be used to dis-
criminate between speech-evoked EEG responses at different SNRs.

Index Terms

Hearing impairment, speech in noise, multivariate phase synchrony, local
connectivity, EEG

1 Introduction

Background noise and competing talkers lead to increased listening effort for
both normal-hearing (NH) and hearing-impaired (HI) individuals [1]. Previ-
ous studies have shown that the presence of background noise can negatively
affect a subject’s ability to perform a task. Houben et. al. [2] reported that
the response time decreased significantly by increasing signal-to-noise ratio
(SNR) of an audio signal. In addition, Sarampalis et. al. [3] reported that
noise reduction (NR) algorithms in hearing aids (HAs) may reduce listening
effort and free up cognitive resources for other tasks. Furthermore, NR al-
gorithms in HAs can improve the performance of listeners during a selective
attention task by enhancing the neural representation of speech and reduc-
ing the neural representation of background noise [4]. In this paper, we are
interested in the change of the listening effort induced by the change SNR
value.

A wide variety of methods have been used to assess the performances of
subjects during different listening tasks (e.g., see [5]). This include behavioral
[2, 3] and physiological measures such as pupillometry [6] and neuroimaging
[7]. Neuroimaging measures tend to reflect changes in neural activity during
the listening task [7]. Electroencephalography (EEG) has been widely used
to measure the neural activity in response to audio stimuli due to its non-
invasiveness and high temporal resolution [4, 6, 7].

Various advanced signal processing and information theory techniques
have been applied to EEG signals in order to determine the effect of the dif-
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ferent SNR values. For example, functional connectivity [8], time-frequency
analysis [6], and neural speech tracking [4]. Functional connectivity describes
statistical dependencies between neural data and can provide insights about
how the brain functions. Transfer entropy [9] and phase synchrony [10, 11]
have been proposed in the literature to assess functional connectivity.

Multivariate phase synchrony (MPS) is a standard approach to character-
ize the interaction within multichannel data and it has been used to assess
functional connectivity in multichannel EEG data [10, 11]. Recently, a new
MPS measure called circular omega complexity (COC) was proposed, which
led to better performance than conventional MPS techniques in some specific
cases [11].

Functional connectivity within a small region (for example a cortex) of the
brain is called local connectivity. It has been shown that the local connectivity
in the frontal cortex changes as the cognitive work load changes [12]. Simi-
larly, The change of the local connectivity was used to classify left and right
hand movement motor imagery in [10]. In the present study, we will use
COC to assess local connectivity within 8 different regions of interest (ROIs).

Most studies (exceptions include [4, 6, 13]) investigate the effect of SNR
when the stimuli is single words or short sentences. However, HI individuals
in real-life encounter continuous speech and long sentences.

In this paper, we investigate changes in the local connectivity within EEG
signals recorded on HI individuals in response to continuous speech at two
different SNRs. Our results show that the phase synchrony reflects significant
changes in the parietal and frontal areas as a response to changing SNRs.

2 MATERIALS AND METHODS

In this section we briefly describe the EEG data used in this study. This is
followed by the review of the multivariate phase synchrony measure called
COC. Finally, steps needed to calculate the local connectivity in the EEG
signal to assess the effect of SNR will be explained.

2.1 EEG data

EEG data used in this study is explained in detail in [4], which focused on
neural tracking of the speech signals. In the sequel we briefly describe the
data and refer to [4] for further details

Participants

Twenty-two native HI Danish speakers (11 males, audiometric threshold = 45
dB HL) aged between 40 and 80 (mean = 67, SD = 11.2) years were recruited
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(a) Trial design (b) Experimental setup

Fig. C.1: Schematic demonstration of the a) trial design and b) experimental setup.

from the Eriksholm Research Centre database. The experimental procedures
were approved by the ethics committee for the capital region of Denmark [4].

Experiment Design

All target streams consisted of Danish news clips of neutral content read
by the same male and female talker and were presented from two different
loudspeakers in the front of the participant ( ±22◦ azimuth). The background
noise was delivered from the four loudspeakers in the back (±90◦ and ±150◦
azimuth), each playing a different four-talker babble, leading to an overall ef-
fect of 16-talker surrounding babble (see Fig C.1b). Participants were asked to
attend to one of the two target talkers (target) while ignoring the contralateral
talker (masker) and the background noise.

The SNR was defined as the ratio between signal power of the attended
talker and the total signal power of the background noise [4]. The sound
pressure level (SPL) of the target talker and background noise was set in a
way to generate two different SNR values, +3 dB and +8 dB.

In total 20 trials for each SNR (+3 dB and +8 dB) were used for the analysis
per subject. Each trial comprised a short period of silence, 5 s of background
noise followed by 33 s of simultaneous target, masker and babble stimuli
from all speakers (see Fig C.1a).

EEG data acquisition and preprocessing

The BioSemi ActiveTwo amplifier system (Biosemi, Amsterdam, Netherlands)
were utilized to record the EEG data . The international 10–20 system was
used to apply the location of 64 scalp electrodes. The EEG signals were sam-
pled at 1,024 Hz.

The preprocessed EEG data used in this study is the same as data used
in [4], where all preprocessing procedures are described in detail

Due to technical issues, only data from 19 subjects are included in this
study.
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2.2 Circular Omega Complexity

In this study, we use the COC phase synchrony measure [11] to assess the
local connectivity. The COC measure determines the level of MPS within
signals by quantifying the dimensionality of the state-space which is formed
based on the instantaneous phase (IP) of the signals [11]. The first step to
calculate the COC is to estimate the IP of the signal by using the Hilbert
transform [11]. The IP of a mono-component real valued discrete signal X[n]
is estimated as:

φX = tan−1
(

X̂[n]
X[n]

)
(C.1)

where X̂[n] is the Hilbert transform of X[n]. Considering a K-dimensional
signal X[n] and its corresponding K-dimensional IP signal ŒX, the circular
correlation matrix CX is defined as [11]:

CX = [CA,B]K∗K, (C.2)

where CA,B is the circular correlation between N time points signal φA and
φB which is given by [11]:

CA,B =
∑N−1

n=0 sin (φA[n]− φ̄A) sin (φB[n]− φ̄B)√
∑N−1

n=0 sin2 (φA[n]− φ̄A) (φB[n]− φ̄B)
, (C.3)

where φ̄A is the circular mean of φA given by:

φ̄A = arg

(
N−1

∑
n=0

expiφA [n]

)
. (C.4)

The COC is then defined as [11]:

COC = 1 +
∑K−1

m=0 λ̄m log λ̄m

log K
, (C.5)

where λ̄m = λm
∑K−1

i=0 λi
and λm; m = 0, . . . , K − 1 are the eigenvalues of CX. The

COC value varies between 0 and 1 where higher values show that more chan-
nels are pair-wise phase correlated, which means that only fewer eigenvalues
of the CX are significant [11].

2.3 Local Connectivity Assessment in EEG

The effect of SNR in continuous speech on local connectivity will be investi-
gated in this study. Accordingly, the COC of 8 different ROIs will be calcu-
lated and compared during two SNR values. The ROIs include left frontal,
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frontal, right frontal, left temporal, central, right temporal, parietal and oc-
cipital. Table I shows EEG electrodes corresponding to ROIs.

The EEG channels were common average re-referenced to minimize the
effect of volume conduction. Additionally, due to the multi-component na-
ture of EEG signals, the analysis was performed on conventional EEG bands;
Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12.5 Hz) and Beta (12.5-25 Hz).
Window-based FIR band-pass filters were utilized to filter the EEG channels.
Following the analysis done in [11, 14], we also calculate the mean of all band-
specific MPS values, which will be referred to average-band MPS value. It
can describe the MPS within a ROI over all bands with a single index.

The analysis was performed at the time interval of 32 second duration
from 1 to 33 second relative to the onset of the target speaker. The 32 second
time interval was divided into 16 non-overlapping 2 second windows and
the COC value was extracted for each time window. The local connectivity
for each trial and band was then computed by averaging all 16 time windows
COC values. In summary, the following steps were performed to assess local
connectivity:

• Filter the data to four different bands.

• Estimate the IP of each channel at each band using Eq. (1).

• Extract the COC value at 16 time windows for each band using Eq. (5).

• Compute the local connectivity by averaging all 16 time window COC
values for each band.

The aforementioned four steps were repeated for 19 subjects and 40 trials,
20 trials for each SNR value.

Two sample t-test was applied on the obtained values (380 values for
each SNR value) to check the significant different local connectivity. The

Table C.1: Mapping EEG electrodes to ROIs

ROI Electrodes ROI Electrodes

Left Frontal AF7, AF3, F3 Frontal Fp1, Fp2, AF4

F5, F7, Fp1 AF3, F1, F2

Right Frontal AF4, AF8, F8 Central FC1, FC2, C1

F6, F4, Fp2 CP1, C2, CP2

Left Temporal FT7, T7, TP7 Parietal CP1, CP2, P1

CP5, FC5, C5 P2, PO4, PO3

Right Temporal FT8, T8, TP8 Occipital O1, O2, PO3

CP6, FC6, C6 PO4
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Fig. C.2: The mean values of statistically different local connectivity at two different SNR values,
3dB and 8dB.

null hypothesis is that the mean value of the local connectivity at two SNR
values are equal. Since a series (8 ROIs and 5 bands leading to 40 tests) of
t-tests were performed, we applied the Bonferroni correction to compensate
the multiple comparisons effect. The significance level was therefore chosen
as α = 0.05

40 = 0.0013.

3 RESULTS

Table II summarizes the p-values obtained from a two sample t-test applied
on the results from all trials. The p-values that are less than the significance
level are shown in boldface. As shown in Table II, the parietal ROI shows
a significant difference over all the bands, except the theta band. The local
connectivity in the left and the right frontal ROIs in the delta band are also
statistically different for the two SNR levels.

The mean values over all trials of the statistically different local connectiv-
ities are shown in Fig. 2. As illustrated in Fig. 2, all significant local connec-
tivities increase as the SNR level increases. The increase in local connectivity
is consistent over subjects; i.e. the mean over all trials for each subject tend to
increase when the SNR level increases. As an example, Fig. 3 shows the pari-
etal (averaged over all frequency bands) results averaged over trials for each
subject. The blue lines show the increase in local connectivity by increasing
the SNR level for each subject while the red line shows otherwise. As shown
in Fig. 3, the parietal average-band connectivity attains generally a higher
value at 8 dB, except for three subjects (red line).
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Table C.2: The p-value of the two sample t-test. The bold face numbers shows the rejection of
the null hypothesis. The significance level was α = 0.05

40 = 0.0013.

Left Frontal Frontal Right Frontal Central Left Temporal Parietal Right Temporal Occipital

Delta 3.31e-6 0.34 7.66e-7 0.13 0.002 2.01e-5 0.07 0.65
Theta 0.36 0.16 0.12 0.57 0.06 0.007 0.73 0.52
Alpha 0.37 0.68 0.11 0.02 0.04 7.88e-4 0.09 0.03
Beta 0.40 0.02 0.65 0.28 0.35 2.36e-5 0.55 0.37

Average-Band 0.23 0.20 0.06 0.09 0.02 4.68e-5 0.31 0.23

4 DISCUSSION

In this study, we investigated whether a change of SNR level would result in
a significant change of the local connectivity in the EEG signal. The target
group was hearing impaired subjects and the stimuli was continuous speech
in noise. The local connectivity at five frequency bands and 8 ROIs were
estimated at two SNR levels of the speech stimuli. The two sample t-test was
used to check if the changes were statistically different.

Table II and Fig. 2 show that local connectivity values in parietal, left
frontal and right frontal ROIs were significantly higher at +8 dB in compari-
son to that at +3 dB (harder condition). The increase of connectivity observed
in the alpha band in the parietal region when decreasing the difficulty of the
task is in line with the results of [6]. In [6], the influence on the EEG power
distribution of the SNR level was investigated, and it was concluded that the
power in the alpha band in the parietal region was inversely related to the
background noise level. It was argued that the reason might be that sustained
attention is required over long speech presentation [6] and optimal sustained
attention performance is linked to greater alpha oscillation [15]. [16].

The decrease in the local connectivity in the frontal ROIs within the delta
band, when the listening situation is more difficult, might be due to the in-
crease in working memory load induced by the SNR level. The decrease in
frontal local connectivity within the delta band is consistent with the results
reported in [17] in which they also found lower energy near the frontal lobe,
when the difficulty of the working memory task increases.

5 FUTURE WORK

The feasibility to discriminate two SNR levels based on local connectivity
measures provides future perspectives for hearing care rehabilitation. First,
the methodology may be used to gain further understanding of brain pro-
cesses in realistic listening scenarious for hearing impaired individuals using
HAs. Such new understanding may be used to support the development of
new signal processing algorithms in HAs. Secondly, further research may be
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Fig. C.3: The mean over all trials for each subject in the parietal average-band. Blue lines show
the increase and red lines a decrease of local connectivity by increasing SNR level.

focused on classification of single-sweep EEG segments to assess the possi-
bility to use local connectivity to control future HAs.
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1. Introduction

Abstract

Objectives: Comprehension of speech in adverse listening conditions is challenging
for hearing-impaired (HI) individuals. Noise reduction (NR) schemes in hearing aids
(HAs) have demonstrated the capability to help HI to overcome these challenges. The
objective of this study was to investigate the effect of NR processing (inactive, where
the NR feature was switched off, vs. active, where the NR feature was switched on)
on correlates of listening effort across two different background noise levels [+3 dB
signal-to-noise ratio (SNR) and +8 dB SNR] by using a phase synchrony analysis of
electroencephalogram (EEG) signals.

Design: The EEG was recorded while 22 HI participants fitted with HAs per-
formed a continuous speech in noise (SiN) task in the presence of background noise
and competing talker. The phase synchrony within eight regions of interest (ROIs)
and four conventional EEG bands was computed by using a multivariate phase syn-
chrony measure.

Results The results demonstrated that the activation of NR in HAs affects the
EEG phase synchrony in the parietal ROI at low SNR differently than that of at high
SNR. The relationship between conditions of the listening task and phase synchrony
in the parietal ROI was nonlinear.

Conclusion: We showed that the activation of NR schemes in HAs can non-
linearly reduce correlates of listening effort as estimated by EEG-based phase syn-
chrony. We contend that investigation of the phase synchrony within ROIs can
reflect the effects of HAs in HI individuals in ecological listening conditions.

Keywords

istening effort, electroencephalography, noise reduction, phase synchrony,
local connectivity, hearing impaired

1 Introduction

Hearing impaired (HI) individuals often report that listening to speech in
noisy environments such as competing talkers and background noise de-
mands greater effort, which can lead to negative effects such as increased inci-
dence of fatigue ( [Kramer et al.(2006), Wang et al.(2018), Mattys et al.(2012)]),
disengagement from conversations ( [Jaworski and Stephens(1998)]) and so-
cial withdrawal ( [Weinstein and Ventry(1982)]). However, current measure-
ments which are used to examine the performance of a listening task (e.g.,
speech reception threshold) do not typically consider the cognitive factors
related to effortful listening ( [Houben et al.(2013), Sarampalis et al.(2009)]).

[Pichora-Fuller et al.(2016)] defined the concept of listening effort in a
conceptual model as "the deliberate allocation of mental resources to over-
come obstacles in goal pursuit when carrying out a task, with listening ef-
fort applying more specifically when tasks involve listening." The obstacles
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include acoustic challenges experienced by the listener, which is the combi-
nation of cognitive factors (e.g., linguistic ability and memory capacity) and
acoustic characteristics (e.g., level of background noise and competing talker)
( [Peelle(2018)]). Listening effort can also be modulated by the listener’s
motivation ( [Peelle(2018), Pichora-Fuller et al.(2016)]). The goal of study-
ing listening effort is to develop a reliable measurement tool, which can be
simultaneously utilized with speech recognition tests and improve the assess-
ment of hearing disability ( [Paul et al.(2021)]) and enhance the rehabilitation
strategy ( [Miles et al.(2017)]).

A wide variety of methods and tools have been used to find correlates
of listening effort. This includes subjective rating such as scales ( [Krueger
et al.(2017)]) and questioners ( [Hart and Staveland(1988)]), dual tasks ( [Gagne
et al.(2017)]), and physiological measures such as pupillometry ( [Zekveld
et al.(2018)]), skin conductance ( [Mackersie and Calderon-Moultrie(2016)]),
heart rate ( [Mackersie and Calderon-Moultrie(2016)]) and neuroimaging (
[Paul et al.(2021)]). Neuroimaging measures tend to reflect changes in the
brain activity underlying listening effort. In particular, electroencephalog-
raphy (EEG) is becoming popular for measuring correlates of listening effort
due to its non-invasiveness and high temporal resolution ( [Fiedler et al.(2021),
Wisniewski et al.(2021), Dimitrijevic et al.(2019), Seifi Ala et al.(2020)]).

A diverse range of signal processing and information theoretic meth-
ods have been used to analyze the EEG and extract correlates of listen-
ing effort. Some examples include time-frequency analysis, speech tracking
and functional connectivity. The change in power in the alpha (8-12 Hz)
frequency band at the parietal region ( [Dimitrijevic et al.(2017), Petersen
et al.(2015)]) and theta (4-8 Hz) frequency band at the frontal region ( [Wis-
niewski et al.(2018), Wisniewski et al.(2015)]) have been reported by using a
time-frequency analysis. The coherence between the speech envelope and the
corresponding brain signal at the left frontal cortex in the 2-5 Hz frequency
range has also been demonstrated that it can be used for predicting correlates
of listening effort in speech tracking analysis ( [Dimitrijevic et al.(2019)]).

Functional connectivity describes the statistical dependencies between neu-
ral data and can give some information about how the brain functions (
[Bidelman et al.(2018)]). Functional connectivity analysis in EEG signals
has been extensively used to investigate cognitive functions of auditory pro-
cessing in the brain. Some examples include perceived audio quality as-
sessment ( [Mehta and Kliewer(2017)]) and semantic processing ( [Zhang
et al.(2019)Z]). The effect of acoustic challenges, age-related hearing loss and
comprehension of speech on functional connectivity were also investigated
in ( [Bidelman et al.(2018)], [Bidelman et al.(2019)] and [Zhu et al.(2020)]),
respectively.

Functional connectivity can be extracted by using several approaches such
as phase synchrony ( [Bernarding et al.(2013)]), transfer entropy ( [Mehta and
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Kliewer(2017), Baboukani et al.(2020), Baboukani et al.(2021b)]) and Pear-
son correlation ( [Bidelman et al.(2019)]). The phase of neural data tends
to reflect the timing of neural activity, and phase synchrony describes the
interaction between or within brain regions in the neural networks ( [Wöst-
mann et al.(2017a)]). Correlates of listening effort have been estimated us-
ing the phase synchrony analysis. Several methods have been used to ex-
tract the phase synchrony, such as wavelet phase synchronization stability
( [Bernarding et al.(2010), Bernarding et al.(2013)]), the distribution of the
mapped phase mean vector on the unit circle ( [Bernarding et al.(2014)]) and
the entropy of instantaneous phase of EEG signals ( [Bernarding et al.(2012),
Bernarding et al.(2017)]).

The functional connectivity within a localized region of the brain is called
local connectivity. It has been utilized to classify different motor imagery
movements [Baboukani et al.(2017)], estimate the cognitive workload ( [Zar-
jam et al.(2013)], investigate schizophrenia [Jalili et al.(2007)] and Alzheimer’s
disease [Jalili et al.(2013)]). Phase synchrony has also been used to assess the
local connectivity. Phase synchrony assessment across multivariate signals
(or channels of EEG) in a localized region of the brain by averaging over all
possible traditional bi-variate phase synchrony values (e.g. phase coherence,
phase locking value) may not provide a full picture of the global synchrony
within the signals ( [Baboukani et al.(2019), Canolty et al.(2011), Omidvarnia
et al.(2013), Oshima et al.(2006), Al-Khassaweneh et al.(2016)]). Alternatively,
multivariate measures generalized the traditional bi-variate ones to evaluate
phase synchrony within multichannel data ( [Baboukani et al.(2019), Omid-
varnia et al.(2013), Al-Khassaweneh et al.(2016)]). Local connectivity esti-
mated by multivariate phase synchrony has been used in several works (
[Baboukani et al.(2017), Jalili et al.(2013), Al-Khassaweneh et al.(2016)]). A
new multivariate phase synchrony measure called circular omega complexity
(COC) was recently proposed and shown better performance than conven-
tional multivariate phase synchrony techniques in simulated and real EEG
data ( [Baboukani et al.(2019)]). Recently, we showed that local connectiv-
ity estimated by the COC measure can be used to estimate the correlates of
listening effort ( [Baboukani et al.(2021)a)]).

Although HI individuals in real-life encounter listening situations which
involve continuous speech and long sentences, most of the studies (some
exceptions include ( [Alickovic et al.(2020), Alickovic et al.(2021), Fiedler
et al.(2021)])) investigate the effect of NR processing and SNR when the
stimuli is single words or short sentences. ( [Dimitrijevic et al.(2017), Miles
et al.(2017), Bernarding et al.(2014)]). However, in this study, continuous long
stimuli is used in a speech in noise (SiN) task.

Modern hearing aid (HA) devices can help HI individuals through vari-
ous advanced signal processing approaches ( [Winneke et al.(2018), Bernard-
ing et al.(2014), Bernarding et al.(2017)]). In particular, noise reduction (NR)

101



Paper D.

processing intends to reduce the effect of background noise and enhance
the signal-to-noise ratio (SNR). It has shown capability to free up cogni-
tive resources for other tasks during listening and reduce the listening effort
( [Sarampalis et al.(2009), Ohlenforst et al.(2018)]). The activation of NR pro-
cessing can improve speech understanding at low SNRs. Furthermore, it has
been also shown that activation of the NR schemes in HAs provides a listen-
ing effort enhancement in addition to any effect associated with improved
intelligibility ( [Ohlenforst et al.(2018)]). In addition to that, NR schemes can
improve the performance of the HA users during a selective attention task
( [Alickovic et al.(2020), Alickovic et al.(2021)]). [Alickovic et al.(2020)] also
showed that the improvement of selective attention task due to NR was dif-
ferent at low SNR than that of at high SNR. Another study on the same data
showed that NR changed correlates of listening effort estimated by pupil size
differently at the two SNR values, while a time-frequency analysis of EEG sig-
nals showed no statistical change due to SNR, NR and the interaction between
them ( [Fiedler et al.(2021)]). This inspired us to replace conventional power
analysis in the time-frequency domain by local connectivity estimates based
on multivariate phase synchrony to investigate the effect of NR processing at
two SNR values. Inspired by the results in ( [Alickovic et al.(2020), Fiedler
et al.(2021)]), we hypothesized:

H1: The use of NR in hearing aids affects the EEG phase synchrony within
localized regions of the brain (i.e. local connectivity) at low SNR differ-
ently than that of at high SNR.

H2: The effect of NR scheme on EEG phase synchrony within localized re-
gions of the brain at different SNR values shows a nonlinear (inverted
U-shape) trend.

2 Material and Method

In this section, the EEG data utilized in this study will be briefly explained.
It will be followed by the description of the COC measure and steps required
to assess local connectivity. Finally, the statistical test used in this study will
be described.

2.1 EEG data

The EEG data of this study has been utilized for other analyses in ( [Alickovic
et al.(2020)] and [Fiedler et al.(2021)]), which focused on neural tracking and
pupil dilation, respectively. The EEG analysis of listening effort recruited in
( [Fiedler et al.(2021)]) was based on alpha power and did not show significant
results.
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Participants

We recruited 22 (11 males) native Danish-speaking participants with hearing
loss. The stimuli used in this study were based on participants-centered lan-
guage ( [Nicks et al.(2022)]), and consisted of Danish news clips of neutral
content. They aged between 40 and 80 years with the mean and standard
deviation (SD) age of 69 and 11.2, respectively. The participants were experi-
enced HA users with more than three months of HA usage. Participants had
mild-to-moderate sensorineural hearing loss. The audiometric thresholds at
500, 1,000, 2,000, and 4,000 Hz ranged from 33 to 58 dB hearing level, with
an average threshold of 45 dB hearing level. The maximum difference be-
tween the left and the right ear’ averaged audiometric thresholds was less
than 8 dB. The experimental procedure was approved by the ethics commit-
tee for the capital region of Denmark (journal number H-1-2011-033) and all
participants signed a written consent before the experiment.

Hearing Aid Fitting and Signal Processing

All participants were fitted with identical HA models during the experiment.
Two pairs of HAs were adapted for each participant: NR inactive and NR
active. Rather than NR, all other signal processing settings did not change
between the conditions. The Voice Aligned Compression (VAC) rationale
( [Le Goff(2015)]) based on each individual’s hearing threshold was applied
to amplify the sound in both pairs of HAs. In the NR inactive condition, the
omnidirectional setting was applied with an added natural slight forward
effect of the pinna. In the other pairs, NR active, the combination of minimum
variance distortionless response beamformer and a single channel Wiener
post filter was applied before the VAC. The articulation-index-weighted SNR
improvements ( [Ohlenforst et al.(2018)]) were 6.24 dB and 5.17 dB at +3 dB
SNR and +8 dB SNR, respectively, for NR active than that for NR inactive
( [Alickovic et al.(2020), Fiedler et al.(2021)]).

Experimental Design

The experiment took place in an acoustically shielded listening booth with
controlled light conditions. Participants were seated on a chair positioned
in the middle of six loudspeakers (Genelec 8040A; Genelec Oy, Iisalmi, Fin-
land) with a distance of 1.2 meter from each loudspeaker (see Figure D.1A),
two loudspeakers in the front (at ±22◦ azimuth) and four loudspeakers in
the back (at ±90◦ and ±150◦ azimuth). Each of the background loudspeak-
ers (B1-B4 in Figure D.1A) played four-talker babble. The two foreground
speakers played the target streams which were spoken by talkers of different
gender. Participants were asked to gaze at the screen positioned between the
two frontal loudspeakers and were instructed to attend to one of the talkers
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in the foreground speakers while ignoring the other talker on the contralat-
eral side and background noise. To-be-attended talkers (either the right or
the left side) was indicated by an arrow on the screen (see Figure D.1A).

Fig. D.1: Schematic illustration of A) experiment design including six loudspeakers. The target
streams (colored as purple and orange) and background noise (colored as blue) were delivered
by the two foreground and four background loudspeakers, respectively. The screen located in
the middle of the two foreground speakers shows the to-be-attended talker (colored as orange).
B) trial design in which five seconds of only background noise and 33 seconds of simultaneous
target, masker and background noise stimuli were delivered in each trial.

Stimuli

Continuous 33 seconds long Danish news clips of neutral content were uti-
lized for talker streams. The organization of the location (left or right) and
gender (male or female) of the target stream was randomized. Each of the
four-talker babble noises delivered by the background loudspeakers con-
sisted of four unique single talkers, two females and two males, speaking
different news giving the impression of the 16 talkers active in the back-
ground.

The experiment was 2 × 2 design: the first factor was NR (active vs. in-
active) and the second factor was the SNR level (+3 dB vs. + 8 dB). The
SNR in our setup was defined as the ratio between the signal power of the
attended talker and the total signal power of the background noise, similar
to that in ( [Das et al.(2018), Alickovic et al.(2020)]). In order to create real-life
listening conditions at two levels of difficulty (SNR values of +3 dB and +8
dB), the maskers were set at either 53 or 48 dB, leading to a total of 59 or
54 dB background Sound Pressure Level (SPL). Each of the two foreground
loudspeakers was always set at a fixed level of 62 dB SPL, leading to a fixed
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level of 65 dB for the foreground talkers.

Procedure

A total of 84 trials were recorded for each participant, organized in a block
design. For each of the four blocks (experimental conditions including +3 dB
NR inactive, +3 dB NR active, +8 dB NR inactive and +8 dB NR active), 20
trials were conducted. The remaining four trials were used for training. Each
trial consisted of a short period of silence, 5 seconds of only background noise
(delivered by background loudspeakers) and 33 seconds of simultaneous tar-
get, masker and background noise stimuli (see Figure D.1B). After each trial,
participants were asked to answer a two-choice question about the content of
the attended speech which was displayed on the screen. The HAs were al-
ways removed and replaced again between the blocks. The participants were
given a rest period after five trials.

EEG Data Acquisition and Pre-processing

The BioSemi ActiveTwo amplifier system (Biosemi, Amsterdam, Netherlands)
was used to record EEG data. A total of 64 electrodes on a cap were mounted
on the scalp according to the 10-20 international system. The driven right
leg and common mode sense electrode were used as a reference for all other
recording electrodes. The EEG data were sampled at 1024 Hz. All electrodes
were mounted by applying conductive gel to obtain a stable connection and
below 50 mv offset voltage.

The pre-processing includes a 0.5 Hz high-pass filter, 95 Hz low-pass filter
and downsampling to 512 Hz. Then, The EEG channels with excessive noise
were visually identified (on average, 3.1 ± 0.8 channels were rejected) and
interpolated from the surrounding clean EEG channels by using the nearest
neighbor method in Fieldtrip ( [Oostenveld et al.(2011)]). The logistic Infomax
independent component analysis algorithm was applied to reduce artifacts
caused by eye movements, eye blinks, muscle activity, heartbeats, and single-
channel noise, as implemented in Fieldtrip ( [Delorme and Makeig(2004), Bell
and Sejnowski(1995)]). The components were visually inspected and rejected
if clearly reflected as artifacts, on average, 7.9 ± 3.6 of the components were
rejected. Finally, the EEG data were epoched from 8 seconds before to 33
seconds after the onset of the target loudspeakers. The EEG data for one
subject was removed from further analysis due to being excessively noisy. In
addition to that, no data for one block of one participant was recorded due
to technical problems.
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2.2 Circular Omega Complexity (COC)

The COC measure is used in this study to extract local connectivity. This
is a multivariate phase synchrony measure that was recently proposed in
( [Baboukani et al.(2019)]) and was shown to perform better than the conven-
tional measures in a particular setup. The COC assesses the level of phase
dependency within multivariate signals through quantifying the dimension-
ality of the state-space formed by their corresponding instantaneous phases
( [Baboukani et al.(2019)]).

Estimating the instantaneous phase of a real valued mono-component
discrete signal X ∈ R1×N is the first step to calculate the COC. A Hilbert
transform-based approach is commonly used whereby the instantaneous phase
is estimated as ( [Baboukani et al.(2019)]):

φX [n] = tan−1
(

X̂[n]
X[n]

)
, (D.1)

where X̂[n] and φX [n] are the Hilbert transform and instantaneous phase
of X[n], respectively. The next step is calculating the circular correlation
matrix. Considering a K-channels signal X ∈ RK×N and its corresponding
instantaneous phase signal ŒX ∈ RK×N , the circular correlation matrix CX ∈
RK×K is defined as ( [Baboukani et al.(2019)]):

CX = [C(m,l)], (D.2)

where m, l ∈ {1, 2, . . . K}. The circular correlation between the instantaneous
phase φm and φl is noted by C(m,l) where φm and φl are the mth and lth rows
of ŒX, respectively. The circular correlation C(m,l) is given as ( [Baboukani
et al.(2019)]):

C(m,l) =
∑N

n=1 sin (φm[n]− φ̄m) sin (φl [n]− φ̄l)√
∑N

n=1 sin2 (φn[n]− φ̄m) sin2 (φl [n]− φ̄l)
, (D.3)

where the circular mean φ̄m is given by ( [Baboukani et al.(2019)]):

φ̄m = arg

(
N

∑
n=1

expiφm [n]

)
. (D.4)

It was shown in ( [Baboukani et al.(2019)]) that the eigenvalues of CX can
be used as an index for the dimensionality of the state-space formed by ŒX

whereby the level of phase synchronization can be determined. The COC
was then defined as ( [Baboukani et al.(2019)]):

COC = 1 +
∑K

i=1 λ̄i log λ̄i

log K
, (D.5)
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where λ̄i =
λm

∑K
j=1 λj

and λi; i = 1, . . . , K are the eigenvalues of CX. The COC

varies between 0 and 1 where higher values show that the channels within
CX are more phase synchronized, which means that only fewer eigenvalues
of the CX are significant ( [Baboukani et al.(2019)]).

2.3 Local Connectivity Assessment

The effect of NR at two SNR values on local connectivity will be explored
in this paper. Listening in adverse conditions can possibly engage multi-
ple cognitive processes such as working memory and distractor inhibition
( [Wisniewski et al.(2021)]), which can possibly change the local connectivity
within different brain regions and frequency bands. We, therefore, did not
restrict our analysis to one specific band or ROI and local connectivity within
eight ROIs and four conventional EEG bands will be examined. The ROIs in-
clude left frontal, frontal, right frontal, left temporal, central, right temporal,
parietal and occipital, similar to that in ( [Mehta and Kliewer(2017)]). Table
D.1 and Figure D.2 show the electrodes and their corresponding positions
of different ROIs, respectively 1. The EEG bands consist of Delta (0.5-4 Hz),
Theta (4-8 Hz), Alpha (8-12.5 Hz) and Beta (12.5-25 Hz). The EEG channels
were filtered by using Window-based FIR band-pass filters. Filtering to nar-
row frequency bands can also reduce the multi-component nature of EEG
signals and can improve the estimation of the instantaneous phase signals by
using the Hilbert transform technique ( [Boashash and Aïssa-El-Bey(2018)]).
The EEG channels were common average re-referenced to reduce the effect
of volume conduction.

The local connectivity of each trial of the experiment was estimated dur-
ing the time interval that frontal loudspeakers were presenting the target
streams (33 seconds). We also omitted the first second of the delivering tar-
get streams to minimize the effects of event-related potential which led to a 32
seconds time period (1 to 33 second relative to the onset of the target streams).
The 32 seconds time span was then divided into 16 non-overlapping 2 sec-
onds windows 2. The COC was then quantified for each of the windows and
the average over all windows was considered as an indicator of the strength of
local connectivity. The higher the average of COC values over time windows
is, the more channels within the ROI are phase synchronized. The higher
phase synchrony is considered as higher local connectivity in this study. The
steps required to assess local connectivity in a specific band and ROI can be

1An alternative groups of electrodes for frontal, central, parietal and occipital ROIs, which
include the midline electrodes located in the regions, such as Fz, Pz, Cz and Oz, produced the
same trend of results.

2An alternative longer length (such as 10 seconds) of time windows leads to better estimation
of COC. However, the results produced by longer or equal to 2 seconds time windows were
following the same trend.
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summarized as follows:

S1) Band-pass filter the EEG channels in the ROI to a conventional EEG
band.

S2) Estimate the instantaneous phase of the filtered channels.

S3) Extract the COC value for each of the 2 seconds time windows.

S4) Average the COC values corresponding to time windows.

The aforementioned steps were repeated for eight ROIs and four EEG
bands leading to 32 local connectivity values for each trial.
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Fig. D.2: The electrode position of ROIs, different colors show different ROIs. The lines in
the figure show schematic presentations of the ROIs. The ROIs include left frontal (dark blue),
frontal (aqua), right frontal (light blue), left temporal (yellow), central (green), right temporal
(red), parietal (orange) and occipital (brown)

2.4 Statistical Test

All the statistical analysis was performed in RStudio ( [RStudio Team(2021)].
In order to investigate the effect of NR at two SNR values on local connec-
tivity (our first hypothesis H1), two-way Linear mixed effect (LMM) ANOVA
was applied by using lme4 ( [Bates et al.(2014)]) and lmerTest ( [Kuznetsova
et al.(2017)]) packages. We fitted separate LMM ANOVA models for lo-
cal connectivity values estimated at each ROI and band. Local connectiv-
ity values were treated as a continuous variable and normalized by using
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Table D.1: Mapping EEG electrodes to ROIs

ROI Electrodes ROI Electrodes

Left Frontal AF7, AF3, F3 Frontal Fp1, Fp2, AF4

F5, F7, Fp1 AF3, F1, F2

Right Frontal AF4, AF8, F8 Central FC1, FC2, C1

F6, F4, Fp2 CP1, C2, CP2

Left Temporal FT7, T7, TP7 Parietal CP1, CP2, P1

CP5, FC5, C5 P2, PO4, PO3

Right Temporal FT8, T8, TP8 Occipital O1, O2, PO3

CP6, FC6, C6 PO4

COCnormalized = COC−M
S , where the M and S are the mean and standard devi-

ation of the local connectivity values at specific band and ROI calculated over
all experimental conditions and all subjects. The experiment factor NR was
treated as a factor variable with two levels, inactive and active. The experi-
ment factor SNR was also treated as a factor variable with two levels, high
(+8 dB) and low (+3 dB). The local connectivity was modeled as a function of
fixed factors NR, SNR and their interaction, and the participants were treated
as a random effect. The analysis was conducted based on subject-averaged
local connectivity values. We will also report the results based on single trial
models for the statistically significant local connectivity, in which the interac-
tion between participants and trials was treated as a random effect.

In order to investigate our second hypothesis which is about the rela-
tionship between local connectivity and the four experimental conditions- +3
dB active, +3 dB inactive, +8 dB active and +8 dB inactive, we applied the
measured SNR improvement of the NR processing, see Section 2.1 for more
details. The SNR improvements of the active NR scheme were 6.24 dB and
5.17 dB at 3 dB SNR and 8 dB SNR, respectively. This process reduces the
two factors SNR and NR of the experiment to only one factor SNR, with val-
ues of 3 dB, 8 dB, 9.24 dB and 13.17 dB. Then, one-way LMM ANOVA was
applied to model local connectivity as a function of fixed factor SNR which
was treated as a continuous variable. Two models were used for each local
connectivity: the first model included the quadratic (nonlinear) term along-
side with the linear term for the fixed factor SNR and the second model only
consisted of the linear term. The participants were treated as a random ef-
fect. Similar to the two-way LMM ANOVA, the results based on single trial
models for the statistically significant trends will be reported.

Since a series (eight ROIs and four bands leading to 32 models) of LMM
ANOVA models were applied, we used the Bonferroni correction to com-
pensate for the multiple comparisons effect. The significance levels for all
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the two-way and one-way LMM ANOVA models were therefore chosen as
α = 0.05

32 = 0.0016.

3 Results

Participants were prompted with a two-choice question related to the content
of the attended speech after each trial. They correctly answered 86% of the
questions. This indicates that the participants followed the task as instructed.
However, after applying a two-way LMM ANOVA on the behavioral perfor-
mances, there was no statistical effect of NR, SNR, and their interaction, with
the p-values of 0.25, 0.06, and 0.37, respectively.

To test the hypothesis H1, two-way LMM ANOVA was applied to local
connectivity at each ROI and band, which modeled the normalized local con-
nectivity as a function of fixed factors NR and SNR. Table D.2a, D.2b and D.2c
summarized the p-values obtained from applying two-way LMM ANOVA on
the average over trials for each subject local connectivity. As shown in able
D.2a, we found a significant interaction of SNR and NR on local connectivity
at the parietal region alpha frequency band (will be referred to as parietal
alpha hereinafter), F59.02 = 12.28, p = 0.0009. Note that, as mentioned in sec-
tion 2.1, the EEG data of one block for one subject was not recorded. There-
fore, our data is unbalanced and the denominator degree of freedom (DF) is
estimated by using Satterthwaite’s method. As there is no p-value less than
0.0016 in Table D.2b and Table D.2c, no significant main effect was found for
SNR and NR. The results of applying LMM ANOVA on single trial data were
in line with the average trial analysis. The interaction between SNR and NR
was statistically significant at parietal alpha, F1228.5 = 83.59, p < 0.0001.

The one-way LMM ANOVA was applied to average trial data after apply-
ing the SNR improvement of the NR processing to investigate the hypothesis
H2. The normalized local connectivity was modeled as a function of con-
tinuous fixed factor SNR by using two separate one-way LMM ANOVA to
study the relationship between the normalized local connectivity and experi-
ment conditions. The first model was based on including the quadratic term
for the fixed factor SNR and the second model only consisted of the linear
term. Table D.3a shows the results of the first model in which quadratic
term alongside with linear term were included. As shown in Table D.3a, the
nonlinear trend between local connectivity and SNR at parietal alpha was
statistically significant, F60.22 = 11.92, p = 0.0010. We found no linear rela-
tionship between the experimental conditions and local connectivity, as there
is no p-value less than the significant level in Table D.3b. The nonlinear trend
between local connectivity and SNR at parietal alpha was also significant by
single trial analysis, F1229.5 = 76.36, p < 0.0001.

For the purposes of visualization, Figure D.3 and Figure D.4 plot regres-
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sion line and 95% confidence interval for the nonlinear trend between nor-
malized local connectivity and experimental conditions at both individual
and average trial analysis, respectively. The inverted U-shaped relationship
shows that local connectivity at parietal alpha is higher for +3 dB active and
+8 dB inactive and lower for +3 dB inactive and +8 dB active. The figures
also show that NR processing at lower SNR (+3 dB) leads to an increase in
the local connectivity at parietal alpha while NR processing at higher SNR
(+8 dB) leads to a decrease.

Fig. D.3: Parietal alpha local connectivity is regressed based on different listening conditions.
The analysis is performed by single trial data and the red points show the average over all trials
and all subjects for different listening conditions.

Fig. D.4: Parietal alpha local connectivity is regressed based on different listening conditions.
The analysis is performed by average over trials data. The black points in the figure show the
average over trials for subjects and the red points show the average over black points for different
listening conditions.
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Table D.2: P-values of the two-way LMM ANOVA. (A) P-values for interaction between two
factors SNR and NR. (B) P-values of the main factor SNR. (C) P-values of the main factor NR. The
two factors are SNR values, +3 dB and +8 dB, and NR schemes, on and off. The boldface numbers
show the rejection of the null hypothesis. The significance level was Bonferroni corrected, α =
0.05
32 = 0.0016.

a A

Left

Frontal
Frontal

Right

Frontal
Central

Left

Temporal
Parietal

Right

Temporal
Occipital

Delta 0.3083 0.9577 0.9004 0.2891 0.7109 0.0086 0.5054 0.6982
Theta 0.5986 0.9038 0.8941 0.2419 0.8460 0.0098 0.1991 0.8890
Alpha 0.5811 0.7302 0.6898 0.1370 0.5116 0.0009 0.04 0.6041
Beta 0.6868 0.3757 0.5041 0.2295 0.8981 0.0033 0.1544 0.7814

b B

Left

Frontal
Frontal

Right

Frontal
Central

Left

Temporal
Parietal

Right

Temporal
Occipital

Delta 0.6430 0.1143 0.0535 0.6862 0.4565 0.7421 0.9075 0.7022
Theta 0.4882 0.0497 0.5245 0.3467 0.8811 0.4504 0.1736 0.9586
Alpha 0.6072 0.1096 0.6841 0.8241 0.8235 0.6635 0.0981 0.1719
Beta 0.2794 0.0757 0.9245 0.4805 0.6725 0.9951 0.0260 0.3742

c C

Left

Frontal
Frontal

Right

Frontal
Central

Left

Temporal
Parietal

Right

Temporal
Occipital

Delta 0.5015 0.8633 0.7418 0.4164 0.8241 0.6195 0.6881 0.5722
Theta 0.7668 0.9642 0.5383 0.4872 0.6733 0.3703 0.8001 0.8816
Alpha 0.6963 0.7806 0.2371 0.7766 0.6075 0.4634 0.5812 0.2326
Beta 0.7135 0.5241 0.2805 0.8134 0.7648 0.7150 0.8649 0.4089

4 Discussion

4.1 Summary

In a sample of 22 HIs, we studied the effect of NR processing in HAs on
the EEG local connectivity during a continuous SiN task. Inspired by the
results reported in ( [Alickovic et al.(2020), Fiedler et al.(2021)]), we hypoth-
esized that the effect of NR schemes on local connectivity differs at the two
SNR values, +3 dB and +8 dB, of the experiment. Consistent with our hy-
pothesis (H1), we found a significant interaction between the factors of the
experiment, SNR and NR, at parietal alpha by using both average-trial and
single-trial analysis, which would suggest that NR processing affects the lo-
cal connectivity at low SNR differently than that of at high SNR. It should be
noted that the p-values corresponded to the interaction at the parietal and all
frequency bands are small. However, the dominant significant change due to
the interaction between SNR and NR appears to be at the alpha band as only
the parietal alpha band survives a correction for multiple comparisons.

The articulation-index-weighted SNR improvements ( [Ohlenforst et al.(2018)])
of the NR processing was applied, which reduces the two factors of the exper-
iment to only one factor SNR with values +3 dB, +8 dB, +9.24 and +13.17
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dB. We then investigated the relationship between the experimental condi-
tions and local connectivity. We found a significant inverted U-shaped func-
tion at parietal alpha by both single and average trial analysis, which was in
line with our second hypothesis H2. Since this study is the first work, to our
knowledge, that investigates the effect of different levels of listening effort
and NR schemes in HA on local connectivity, the results will be discussed in
terms of hypothesized functions in the following sections.

4.2 NR Schemes in HAs Reduce the Listening Effort

Recent studies have shown that the activation of advanced signal processing
algorithms in HAs provides hearing benefits for HIs, particularly in adverse
listening conditions ( [Ohlenforst et al.(2018), Sarampalis et al.(2009), Win-
neke et al.(2018)]). Studies focusing on changes or benefits in speech intelligi-
bility may not provide a complete picture of the processes involved in speech
recognition ( [Sarampalis et al.(2009), Dillon and Lovegrove(1993), Ohlen-
forst et al.(2018)]). In particular, NR processing, which is the main focus
of this study, can reduce listening effort and free up cognitive resources
for other tasks while it may not have positive effects on speech reception
threshold ( [Sarampalis et al.(2009)]). The effects of NR schemes have been
investigated when the stimuli is a single word or sentence ( [Dimitrijevic
et al.(2017), Miles et al.(2017), Ohlenforst et al.(2018)]). However, HI indi-
viduals encounter long speech in real ecological situations. For this reason,
long continuous news clips were presented at different SNR levels. Our first
finding based on speech tracking analysis of the EEG data published in ( [Al-
ickovic et al.(2020)]) showed that NR processing can improve the performance
of HAs during a selective auditory attention task. Then, [Fiedler et al.(2021)]
showed that the NR schemes can also reduce the listening effort estimated
by pupillometry. However, the neural index of listening effort estimated by
spectral power analysis of the EEG data did not show any statistical change.
It inspired us to recruit a new correlate of listening effort estimated by local
connectivity in EEG data to investigate the effect of NR schemes during a
long continuous SiN task.

As shown in Table D.2a, the interaction between SNR and NR on local
connectivity is statistically significant. This suggests that NR processing
affects the local connectivity differently at the two SNR values of the ex-
periment, which is in line with pupillometry results reported in ( [Fiedler
et al.(2021), Ohlenforst et al.(2018)]) where they also found a different effect
of NR schemes at different SNR values. This result is also consistent with
results published in ( [Alickovic et al.(2020)]) in which they found that NR
processing improved the performance of the selective attention task differ-
ently at the two SNR values. We also investigated the relationship between
correlates of listening effort and the experimental conditions by applying the
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SNR-improvement of NR processing. As demonstrated in Table D.3a and
Figure D.3 and Figure D.4, we found inverted U-shaped trend. We believe
that this study is the first work that showed the nonlinear trend of neural
estimation of correlates of listening effort as a result of NR processing at dif-
ferent SNR values during a continuous long SiN task. This result is consistent
with pupil dilation analysis in ( [Ohlenforst et al.(2018)]) and EEG analysis
in ( [Paul et al.(2021), Decruy et al.(2020), Wisniewski et al.(2017), Marsella
et al.(2017)]) where nonlinear relationship due to NR processing at different
SNR values and different levels of listening difficulty were found, respec-
tively.

4.3 Local Connectivity is Modulated by Top-down Cognitive
Functions or Changes of Brain Networks

Most of the existing studies in the literature which investigated the listening
effort by using EEG signals tend to focus on spectral power features and par-
ticularly event-related spectral perturbation (ERSP) (c.f Section 4.5). Finding
a relationship between local connectivity estimated at scalp level, which is the
case in this study, and power change can be controversial and even two fea-
tures can be significantly uncorrelated, as it is the case in ( [Jalili et al.(2007)])
study where no significant correlation was found between power change
and local connectivity in Schizophrenia EEG data analysis. There might be
possibilities to discuss the relationship based on Firefly model presented in
( [Burgess(2012)]) or the model presented in ( [Jirsa(2009)]). However, we
believe that the local connectivity estimated in this study can violate the re-
quired assumptions of these models. Nonetheless, the studies which investi-
gate spectral power changes during effortful listening described the possible
top-down cognitive functions or brain networks that can lead to the change
in the power features. There are two theories which can connect top-down
cognitive function or brain networks and local connectivity.

The first theory is based on the phase reset model in which phase locking
of ongoing EEG activity can be a modulatory effect of top-down functions
of the brain ( [Bernarding et al.(2017)]). [Peelle et al.(2013)] found that neural
data and the envelope of the external acoustic stimuli become more phase-
locked when linguistic information is available. They concluded that the
phase-locking of the neural oscillations does not rely only on the sensory cues
and top-down cognitive function can also modulate phase locking. [Dimitri-
jevic et al.(2019)] also found that the phase-locked cortical representation can
be modulated by top-down cognitive function related to different levels of
listening effort. [Bernarding et al.(2017)] demonstrated that the distribution
of the phase of the ongoing EEG signal can be modulated by the top-down
cognitive functions related to different listening effort. Considering these as-
pects, one interpretation can be that local connectivity estimated by multivari-
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Table D.3: P-values of the one-way LMM ANOVA. (A) P-values for the quadratic term. (B)
P-values for the linear term. The local connectivity at different ROIs and bands is independently
modeled by different listening conditions. The conditions are +3 dB inactive (+3 dB), +8 dB
inactive (+8 dB), +3 dB active (9.24 dB), and +8 dB active (13.17 dB). The boldface numbers show
the rejection of the null hypothesis. The significance level was Bonferroni corrected, α = 0.05

32 =
0.0016.

a A

Left

Frontal
Frontal

Right

Frontal
Central

Left

Temporal
Parietal

Right

Temporal
Occipital

Delta 0.3358 0.9458 0.9256 0.3253 0.6948 0.0094 0.4790 0.6577
Theta 0.6181 0.9998 0.9405 0.2151 0.8761 0.0129 0.2118 0.8773
Alpha 0.6061 0.7128 0.6102 0.1282 0.5417 0.0010 0.0593 0.5358
Beta 0.7114 0.4093 0.5719 0.2195 0.9201 0.0035 0.1618 0.8435

b B

Left

Frontal
Frontal

Right

Frontal
Central

Left

Temporal
Parietal

Right

Temporal
Occipital

Delta 0.3699 0.2595 0.3415 0.6413 0.7490 0.4511 0.7277 0.5054
Theta 0.8699 0.2342 0.9215 0.2923 0.65551 0.6869 0.5770 0.8868
Alpha 0.9773 0.2288 0.5105 0.7980 0.7522 0.3106 0.6534 0.9599
Beta 0.3135 0.0942 0.3961 0.5875 0.9849 0.6326 0.2555 0.9071

ate phase synchrony is also modulated by the top-down cognitive functions
related to the listening effort.

The second theory explains that change of local connectivity estimated
by phase synchronization can be one of the mechanisms for coordinating
the information transfer in brain networks ( [Olejarczyk et al.(2017), Helfrich
et al.(2016)]). For example, [Helfrich et al.(2016)] showed that local parieto-
occipital phase coupling at the alpha band controls the inter-hemispheric in-
formation transfer. Additionally, [Olejarczyk et al.(2017)] reported the in-
crease in local phase coupling in closed eyes compared to open eyes in a
resting-state EEG analysis and they concluded that fronto-parietal informa-
tion transfer can be regulated by local phase synchrony. Regarding these
aspects, it can be interpreted that local connectivity estimated by phase syn-
chrony also coordinates the information transfer related to effortful listening
and NR schemes in HAs.

4.4 Significant Change at Parietal Alpha Local Connectivity

Most prior studies that investigated EEG correlates of listening effort have
tended to restrict their analysis to a single EEG band and region ( [Wisniewski
et al.(2015), Dimitrijevic et al.(2019), Seifi Ala et al.(2020)]). However, [Wis-
niewski et al.(2021)] conducted a comprehensive study in which they inves-
tigated a fuller range of the EEG power spectrum and independent source
activities. They found several significant changes in different regions and
bands. They concluded that listening in adverse conditions can possibly en-
gage multiple cognitive processes. Consistent with [Wisniewski et al.(2021)],
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NR processing can also engage multiple cognitive processes which can pos-
sibly change the local connectivity. As the effect of NR processing in HAs
on local connectivity in ecologically adverse conditions was investigated for
the first time in this paper, we did not restrict our analysis to one specific
EEG band and region. Local connectivity at a total of eight ROIs and four
conventional EEG bands were therefore examined.

Frontal theta and parietal alpha activity at the sensor level have been
mainly reported in the literature as the regions and bands that can be used to
estimate correlates of listening effort ( [Wisniewski et al.(2018), Wisniewski
et al.(2017), Fiedler et al.(2021), Dimitrijevic et al.(2019)]). The change in
the frontal theta activity is mostly observed in experiments in which non-
speech stimuli were used ( [Wisniewski et al.(2018), Wisniewski et al.(2017)]).
This tends to reflect the internal attention and it does not show general en-
dogenously exerted effort related to externally generated object representa-
tions (e.g., competing speech streams and background noise) ( [Wisniewski
et al.(2018)]). As the change of listening effort in this study is mostly due
to changes in externally represented speech stimuli, we did not observe any
significant change in frontal theta local connectivity, which is in line with the
results reported in ( [Seifi Ala et al.(2020)]) that significant change of frontal
theta change was not observed as a results changes in the speech stimuli char-
acteristics. On the other hand, the change of parietal alpha activity has been
widely observed when listening effort was examined in experiments with
speech stimuli ( [Fiedler et al.(2021), Dimitrijevic et al.(2017), Dimitrijevic
et al.(2019), Paul et al.(2021), Seifi Ala et al.(2020), Petersen et al.(2015), McMa-
hon et al.(2016), Wöstmann et al.(2017b)Wöstmann, Lim, and Obleser, Wöst-
mann et al.(2015), Miles et al.(2017), Marsella et al.(2017)]), which is line with
our results where we only found significant change at the parietal alpha ac-
tivity.

4.5 Top-down Cognitive Functions in Listening Effort

The direction (i.e. increase, decrease or inverted U-shape) of the parietal al-
pha activity modulation found in the literature has been controversial. Some
studies reported that higher listening effort leads to increase in parietal al-
pha power (relative to the baseline) arguing that it reflects the inhibition
of neural activity in task-irrelevant brain area ( [Dimitrijevic et al.(2017),
Dimitrijevic et al.(2019), Paul et al.(2021), Petersen et al.(2015), McMahon
et al.(2016), Wöstmann et al.(2017b)Wöstmann, Lim, and Obleser, Wöstmann
et al.(2015), Miles et al.(2017), Marsella et al.(2017)]). In contrast, other studies
showed that more demanding conditions lead to decrease in parietal alpha
power ( [Seifi Ala et al.(2020), Fiedler et al.(2021)]). The first explanation for
the contradictory results is that multiple sources of alpha power contribute to
parietal alpha power and the balance between suppression and enhancement
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can be determined by the stimuli and task design ( [Fiedler et al.(2021), Wis-
niewski et al.(2021), Seifi Ala et al.(2020), Dimitrijevic et al.(2017)]). [Seifi Ala
et al.(2020)] observed lower parietal alpha power related to more difficult
conditions during long speech listening. It was discussed in ( [Seifi Ala
et al.(2020)]) that sustained attention and constant update of information in
working memory is required when the stimuli is long, which would lead
to contradictory results. Another explanation for the opposite direction can
be related to the inverted U-shape relationship. Depending on the level of
difficulties of the experiment, estimated correlates of listening effort can be
on one or the other side of the inverted U’s maximum, which would result
in an increase or decrease in parietal alpha power, respectively ( [Fiedler
et al.(2021)]).

The last relationship between listening conditions and parietal alpha power
reported in the literature is an inverted U-shape ( [Paul et al.(2021), Decruy
et al.(2020), Wisniewski et al.(2017), Marsella et al.(2017)]). There are two
explanations for the observed nonlinear trend. One theory is that during dif-
ficult conditions subjects disengaged and gave up to perform the task, which
can influence the parietal alpha changes ( [Marsella et al.(2017)]). The second
explanation is that at very high levels of difficulty, other sensory networks
might be activated to help speech understanding which leads to an inverse
direction of parietal alpha modulation compared to that of at lower difficulty
levels ( [Paul et al.(2021)]). The supportive sensory networks under very hard
conditions can be related to sustained attention and constant update of infor-
mation in working memory as reported in ( [Seifi Ala et al.(2020)]).

4.6 Parietal Alpha Local Connectivity is Modulated by Lis-
tening Effort

Referring to Figure D.3 and Table D.3a, we also found a significant non-
linear trend in local connectivity at parietal alpha. As shown in Figure
D.3, an increase in levels of difficulty in listening (decrease in SNR val-
ues) from the condition +8 dB ON (NR: active) to +8 dB off (NR: inactive)
leads to an increase in local connectivity. Consistent with results reported in
( [Dimitrijevic et al.(2017), Dimitrijevic et al.(2019), Paul et al.(2021), Petersen
et al.(2015), McMahon et al.(2016), Wöstmann et al.(2017b)Wöstmann, Lim,
and Obleser, Wöstmann et al.(2015), Miles et al.(2017), Marsella et al.(2017)]),
the increase of the parietal alpha power can be due to inhibition cognitive
function. Considering the first theory mentioned in Section 4.3, the inhibition
top-down cognitive function can lead to the modulation of local connectivity.
This interpretation is in line with the results of ( [Mathewson et al.(2009), Paul
et al.(2021)]) where the authors also found that phase synchronization in pari-
etal alpha increases due to inhibition cognitive function. The change of local
connectivity due to inhibition function can also be supported by the second
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theory mentioned in Section 4.3. The inhibition function mostly engages the
fronto-parietal network. We interpreted that the local connectivity at parietal
alpha can also coordinate the fronto-parietal information transfer. This in-
terpretation is in line with the results reported in ( [Olejarczyk et al.(2017)])
where the authors also found that phase synchrony in parietal alpha coordi-
nates the fronto-parietal information transfer in rest-state EEG analysis.

As shown in Figure D.3, in the more difficult condition (i.e., at +3 dB)
the local connectivity decreases, whereas in the easier condition (i.e., at +
8dB) the local connectivity increases. In line with EEG band power analysis
results, this change can be due to either giving up during more difficult con-
ditions ( [Marsella et al.(2017)]) or other sensory networks that might be acti-
vated to help speech understanding during such listening conditions ( [Paul
et al.(2021)]). Our findings provide evidence that the change from increase to
decrease in local connectivity under more difficult conditions could be due
to the activation of other networks at the lowest SNR value. Considering the
second theory mentioned in Section 4.3 which describes that local connectiv-
ity estimated by phase synchrony can coordinate the information transfer in
brain networks, the change of direction in local connectivity modulation at
+3 dB OFF condition can also be due to activation of other sensory networks
which can be coordinated by local connectivity at parietal alpha. One possi-
ble sensory network can be due to sustained attention and constant update of
information in working memory which is in line with the results reported in
( [Seifi Ala et al.(2020)]). It was discussed in ( [Seifi Ala et al.(2020)]) that sus-
tained attention and constant update of information in working memory is
required when the stimuli is long. This was also observed during a Stenberg
task in which encoding and retention phases were entangled and a contra-
dictory increase in parietal alpha power was reported as a result of higher
working memory loads ( [Jensen et al.(2002), Hjortkjær et al.(2020), Seifi Ala
et al.(2020)]). Kim et al. found that the brain network involved in updating
function engaged in an n-back level experimental paradigm mostly includes
the parietal cortex which is served as a main hub for the cognitive network
( [Kim et al.(2017)]). They also found a substantially different pattern during
the most demanding condition compared to easier conditions. Considering
the second theory in Section 4.3, the change of direction of the local connec-
tivity modulation at the hardest condition in our experiment can also be due
to substantially different networks involved in updating function.

4.7 Limitations

The local connectivity at eight ROIs and four EEG frequency bands were
investigated in this study. The selection of the ROIs was similar to that in
( [Mehta and Kliewer(2017)]) where they used 128 electrodes and we adapted
their ROI selections with 64 electrodes setup. However, there might be a
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better selection of ROIs, which can lead to different results. Additionally,
considering that we had two states of NR processing and two SNR values,
our experiment had four listening conditions. We checked the relationship
between local connectivity and listening conditions and we found a nonlin-
ear trend. Examination with more SNR values is required and it can provide
more insights and we expect to observe a complete inverted U-shape rela-
tionship with more SNR values.

[Obleser and Kayser(2019)] showed that the phase locking between neu-
ral data and the envelope of the speech can be modulated by the behavioral
performance of the task. There is a possibility that local connectivity is also
modulated by the performance of the task or subjective rating of listening
effort (often refereed to as self-report or experienced listening effort) ( [Paul
et al.(2021)]), similar to the first theory in Section 4.3. The behavioral perfor-
mance evaluation was accomplished by asking a two-choice question about
the to-be-attended speech stream at the end of each trial in our experiment.
Our investigation of the effect of the experimental factors on the behavioral
performance published in ( [Fiedler et al.(2021)]) did not show any signifi-
cant effect of NR, SNR or their interactions on the behavioral performance.
The behavioral performance was though well above the chance level (50%)
and the participants followed the task as instructed. However, the lack of
valuable behavioral performance or subjective ratings of listening effort pre-
vented us from checking the possibility that local connectivity is modulated
by them.

The second theory in Section 4.3 explained that local connectivity can co-
ordinate the information transfer in brain networks. We interpreted that local
connectivity at parietal alpha can also coordinate the large-scale connectivity
engaged in inhibition function and constant update of the working memory
and referred to the studies in which these information transfers were studied.
There is a possibility that other brain networks are also engaged during a con-
tinuous long SiN task, which could be provided by a large-scale connectivity
investigation.

5 Conclusion

We investigated the effect of activation of NR processing on EEG-based phase
synchrony measure within localized regions of the brain at eight regions of
interest and four conventional EEG frequency bands during a longer contin-
uous speech in noise (SiN) task with two SNR levels. We demonstrated that
the effect of noise reduction (NR) processing algorithms on EEG-based phase
synchrony has a non-linear trend in the parietal region of interest, specifically
in the alpha band. The interpretation of the phase synchrony modulation is
in line with the literature. These results confirmed that the EEG-based phase
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synchrony within localized regions of the brain contains informative features
which can reflect the effects of HA signal processing algorithms in HA users.
Taken together, our study provided further evidence that the NR process-
ing algorithms in HAs positively affect HA users in their everyday natural
listening environments.
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