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Abstract
The Compressed Sensing (CS) approach allows sampling of signals below the conven-
tional Nyquist rate, if signals are sparse in some basis. Basically, the CS framework
comprises of two stages: a sub-Nyquist sampling and a signal reconstruction. The sig-
nal reconstruction is formulated as an underdetermined inverse problem, which can be
solved by a variety of methods. Therefore in CS, the lack of signal samples is compen-
sated by a more complicated reconstruction procedure in comparison to the Nyquist
rate sampling.

The CS approach can improve characteristics of some acquisition instruments, for
example Signal Analyzers (SA). SA is a measurement tool that can replace a spectrum
and a vector analyzer. With the development of wireless communications, the demand
for SA with better characteristics also increases. For example, the LTE specification uses
high frequency and wide-band signals. However, the complexity and price of the analog
front-end and ADCs that operate at such frequencies is high. Hence, it is beneficial to
improve the SA capability by better utilizing the existing hardware, and CS may be a
means for doing it.

In this thesis, we focused on two CS architectures that can be used for SA ap-
plications. These architectures are Single-channel Nonuniform Sampling (SNS) and
Multi-Coset Sampling (MCS). One of their advantages is a relatively simple front-end
that can be implemented with minimum modification of the SA hardware. The consid-
ered aspects include the performance and the reconstruction complexity of the various
reconstruction methods. As the main scenario, we assume the acquisition of multi-band
frequency sparse signals corrupted with additive white Gaussian noise. This scenario
reflects the tendency of the modern wireless communication specifications, like LTE, to
utilize a number of narrow bands distributed over a wide bandwidth.

With extensive numerical simulations, we highlight the performance of the vari-
ous reconstruction methods under the different sampling conditions and provide the
recommendations for the most appropriate reconstruction methods. We propose the
multi-coset emulation as a means to reduce the reconstruction complexity for the SNS
acquisition. Depending on the acquisition scenario, the multi-coset emulation may re-
tain, improve or degrade the reconstruction quality. However, for all scenarios, this
emulation reduces the reconstruction complexity by at least an order of magnitude.
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Resumé
Det såkaldte Compressed Sensing (CS)-princip tillader opsamling af signaler under den
konventionelle Nyquist-rate, hvis signalerne er såkaldt sparsomt repræsenteret i en given
basis. Grundlæggende består princippet af to trin: Signalopsamling under Nyquist-
raten og efterfølgende signalrekonstruktion. Signalrekonstruktionen formuleres som et
underdetermineret inverst problem, som kan løses med forskellige metoder. Således kom-
penseres de færre signal-samples i CS af en mere kompliceret rekonstruktionsprocedure
sammenlignet med Nyquist-rate signalopsamling.

CS-tilgangen kan forbedre visse karakteristika ved nogle måleinstrumenter - for ek-
sempel signalanalysatorer (SA). SA er måleværktøjer, der kan erstatte spektrum- og vek-
toranalysatorer. I takt med udviklingen inden for trådløs kommunikation stiger kravet
om SA med bedre karakteristika også. For eksempel benytter LTE-specifikationen
højfrekvente og bredbåndede signaler. Dog er kompleksiteten og prisen for den analoge
"front-end" og analog-til-digital convertere, som arbejder ved så høje frekvenser, høj.
Det er således fordelagtigt at forbedre SA ved bedre at udnytte eksisterende hardware,
og her kan CS være et middel til at opnå dette.

I denne afhandling undersøger vi praktiske aspekter ved to CS-arkitekturer, der kan
bruges til SA-applikationer. Disse arkitekturer er Single-channel Nonuniform Sampling
(SNS) og Multi-Coset Sampling (MCS). En af fordelene ved disse er den relativt simple
front-end, der kan implementeres med et minimum af modifikation af SA-hardwaren.
De undersøgte aspekter inkluderer præstationsevne og rekonstruktionskompleksitet af
forskellige rekonstruktionsmetoder. Som hovedscenariet betragter vi opsamling af fler-
båndede signaler, der er sparsomt repræsenteret i frekvensdomænet og påvirket af ad-
ditiv hvid Gaussisk støj. Dette scenarie reflekterer tendensen i moderne specifikationer
for trådløs kommunikation - som LTE - ved at benytte et antal smalle frekvensbånd
distribueret over en stor båndbredde.

Ved hjælp af omfattende numeriske simulationer sætter vi fokus på præstationerne
for forskellige rekonstruktionsmetoder under forskellige signalopsamlingsforhold og ud-
drager heraf anbefalinger i forhold til de mest egnede metoder. Vi foreslår emulering af
multi-coset som et middel til reduktion af beregningskompleksiteten i SNS signalopsam-
ling. Afhængig af opsamlings-scenariet kan emulering af multi-coset bevare, forbedre
eller forringe rekonstruktionskvaliteten. Under alle omstændigheder kan denne emuler-
ing dog nedbringe beregningskompleksiteten med en størrelsesorden.
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List of Notations

Notation Description
s(t) continuous time-domain signal
s[n] discrete time-domain signal
X(f) Fourier transform of s(t)
x column vector
x[n] nth element of x
xK vector formed by vertical concatenation of el-

ements of x with indices in a set K
A matrix
A−1 inverse of A
AT transpose of A
AH Hermitian transpose of A
AK matrix formed by horizontal concatenation of

columns of A with indices in a set K
Aj jth column A
Aj jth row of A
Ai,p element of A on ith row and pth column
F DFT matrix
F−1 IDFT matrix
K support of a sparse signal
k number of non-zero (dominant) elements in

the sparse representation of a signal, k equal
to the size of K

N number of Nyquist rate samples of a signal
M number of acquired samples/measurements of

a signal, M ≤ N
fC central band frequency
fS sampling rate
Hk(·) thresholding operator that preserves k largest

elements (in the `2-norm) of a vector and set
other to zero
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1 Background
This chapter describes an evolution of approaches towards converting analog signals to
digital representations – from Nyquist rate sampling to Compressed Sensing (CS). We
also describe how CS approach may extend the capabilities of Signal Analyzers (SA)
and what issues has to be resolved to make it possible. This motivated the conducted
research.

1.1 Overview of Analog-to-Digital Acquisition Approaches
Signals in the real word have an analog nature, meaning that they are represented as
a continuous function of time, space etc. However, the most of the modern telecom-
munication and computational platforms are digital. Therefore, analog signals have to
be converted into a digital form prior to processing. This process is called an Analog-
to-Digital (AD) conversion. A correct conversion implies that any analog signal has an
unique digital representation and thus can be correctly reconstructed. The most com-
mon way of the digital representation of analog signals is a time discretization followed
by a quantization [38]. This operation is done by a device called Analog-to-Digital Con-
verter (ADC). A perfect ADC estimates values of a signal at the predefined moments.
This procedure is called sampling. The precision of the estimation of signal value is
defined by the resolution of ADC. If ADC samples are taken correctly, an input analog
signal can be uniquely interpolated from the signal’s samples up to some mismatch due
to the quantization. In this sense, the process of AD conversion can be called a signal
acquisition process. So, the key questions are: 1) how the samples should be taken; and
2) which interpolation method should be used to recover an analog signal based on the
acquired samples.

Since the 1930s, several AD approaches have been developed. The evolution of
these approaches is illustrated in Fig. 1. The classical Nyquist Rate Sampling (NRS)
corresponds to uniform sampling at a rate higher than twice the highest frequency
component in a signal. This sampling rate is called the Nyquist Rate (NR). For example,
Fig. 2a illustrates a baseband signal with all the frequency components below the fH.
In this case, uniform sampling at a rate larger or equal to 2fH is a sufficient condition
for a proper AD conversion. A reconstruction of the original signal is performed using
low-pass filtering.

In telecommunication applications, RF signals are mostly multi-band rather than
baseband (see Fig. 2b). Each band can for example be used to establish an independent
data link. Multi-band signals can of course be sampled at NR. However, in some cases
it is redundant as discussed in Section 3. NR sampling can be too costly for wide-band
signals. In this case, sub-Nyquist bandpass sampling can be used [66]. Reconstruction
in bandpass sampling is performed with one or more filters. The Bandpass sampling is
a “non-blind” approach as it requires prior information about positions and widths of
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Nyquist
Rate Sam-
pling

Bandpass
Sampling

Compressed
Sensing

• Baseband approach, the
highest frequency
component is known.

• Uniform sampling at the
Nyquist rate.

• Reconstruction with a
low-pass filter.

• Multi-band signals,
positions and widths of
bands are known.

• Uniform or nonuniform
sampling below the
Nyquist rate.

• Reconstruction with a
low-pass filter or a bank of
filters.

• Multi-band signals, only
partial information about a
sparse spectrum is
available.

• Nonuniform sampling
below the Nyquist rate.

• Reconstruction with
complicated algorithms.

Fig. 1: Evolution of the AD approaches.

bands. This information is used to design the reconstruction filters.
In turn, CS allows “blind” sub-Nyquist sampling of sparse multi-band signals. This is

achieved by formulating a signal reconstruction process as an underdetermined problem
solved by complicated reconstruction algorithms. There are several different CS archi-
tectures for acquiring frequency sparse signals, but all of them obtain samples according
to some pseudo-random time-domain sampling patterns. Due to this randomness, by
sampling rate in CS we often talk about an average sampling rate. The CS approach
has advantages compared to the both NR sampling and bandpass sampling [25, 26]:

• CS acquires signals at rates that may be significantly lower than the NR [13]. This
reduction in sampling rate may simplify the hardware front-end of an acquisition
device or extend the capabilities of the existing devices by introducing the CS
mode.

• CS requires only partial prior information about the spectrum of a signal. In
particular for multi-band signals, information on exact position of bands is not
necessary. For example, the same device may acquire signals with different position
of carriers without additional tuning [47].

However, CS also has some disadvantages [25, 26]:

• Only signals that are sparse in some basis can be acquired with CS [13]. There are
two common definitions of sparsity: 1) signal’s expansion in some basis contains
only few non-zeros, 2) few of the expansion coordinates comprise the most of the
signal’s energy. For bandpass signals, sub-Nyquist sampling is impossible.

• CS requires non-trivial reconstruction procedures [13, 14] which compensate for
the lack of measurements. In contrast, in NR sampling, the transition between



1. Background 7

fH

|X(f)|

f [Hz]
0

(a) A baseband signal.
|X(f)|

f1 f2 f3 f4

fH

f [Hz]
0

(b) A multi-band signal with 4 carriers.

Fig. 2: Frequency domain representation, X(f), of a bandpass and multi-band signals.

the frequency and time domain representations of a signal is performed with a
pair of Fourier and inverse Fourier transformations [50]. As we show in subsection
4.3, the inverse Fourier transformation cannot be directly applied in CS. So there
is a need for a complicated reconstruction algorithm that for example transform
sub-Nyquist samples taken at the time domain to the full representation of a signal
in the frequency domain.

In the following subsection, we describe how CS approach may extend capabilities of
SA.

1.2 Compressed Sensing Acquisition in Signal Analyzers
The theory of CS has been developing since the mid 2000s [13]. CS is a universal math-
ematical framework that can be used in many digital signal processing fields: image
processing [25], parameter estimation [30], telecommunications [67] etc. CS can also be
embedded into existing applications in order to improve their technical characteristics.
For example, in SA applications. SA is a measurement tool that is used to acquire vari-
ous information about signals : amplitude, phase, modulated symbols etc. The demand
for a wide-band SA increases with the development of modern telecommunication spec-
ifications like Long Term Evolution (LTE) operating at an ultra-high frequency range
(0.8 – 3.0 GHz) [31]. Consider the following example of SA. Assume that a signal’s
bandwidth is within the analysed bandwidth of the SA. Then, the SA operates in a
conventional NR sampling with an analog down-conversion. If, however, the signal’s
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|X(f)|

fH

fH < fS/2

f [Hz]
0

NR mode
CS mode

Signal Analyzer

(a) If the signal’s bandwidth < fS/2,
the SA operates in the NR mode.

|X(f)|

fH

fH ≥ fS/2

f [Hz]
0

NR mode
CS mode

Signal Analyzer

(b) If the signal’s bandwidth ≥ fS/2,
the SA switches to the CS mode.

Fig. 3: Illustration of using CS acquisition in the SA.

bandwidth exceeds the default SA specifications, the SA switches to a CS mode (see
Fig. 3). Therefore, a CS approach may improve the capabilities of the SA.

Two conditions must be fulfilled for the successful implementation of CS acquisition
in real-life applications:

1. The CS acquisition can be only used with signals having sparse or approximately
sparse representations in some basis. The sufficient level of sparsity depends on
the application and cannot be specified explicitly for all cases. The general rule
is that less sparse signals require higher average sampling rates. If signals are not
“sufficient” sparse the necessary CS sampling rate can rise up to the NR. In this
case, CS turns into NR sampling.

2. Sufficient computational resources have to be provided. As mentioned above, CS
reconstructs undersampled signals by means of solving an underdetermined sys-
tems of equations. Various reconstruction algorithms exist which are based on
different principles [25], [26]. Mathematical operations as Fast Fourier Transform
(FFT), QR factorization, eigenvalues decomposition etc. are underlying the re-
construction algorithms. The complexity of the CS reconstruction depends on the
specific algorithm and length of the acquired signals. If CS is used in real-time
applications, the computational cost becomes a key issue, as a part of the signal
has to be reconstructed before the next part is acquired.

We now try to see how this conditions are met for the CS acquisition in the SA.
A typical measurement setup consists of a Device Under Test (DUT) connected with
a cable to the SA, see Fig. 4. Assume that a signal from DUT is sparse. The cable
has a wave impedance equal to the output impedance of the DUT and input impedance
of SA. The typical value of this impedance is 50 Ω. Cables used with the SA for
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NR mode
CS mode

Signal Analyzer

DUT

Shielded cable

Interference

Noise

Fig. 4: Illustration of DUT measuring with the SA. The shielded cable prevents noise and interference
from affecting the measurements.

RF measurements are usually coaxial, meaning that they have one central signal wire
surrounded by a ground wire. The ground wire also acts as a shield that prevents
external interference and noise signals from affecting the signal from the DUT. Therefore,
a sparse signal from DUT remains sparse at the SA input even in an environment with
wide-band noise.

An increase of computational resources comes with the increase of physical space
and weight. SAs are produced mainly in three types: stationary, portable and handled.
Additional space and weight is less crucial for stationary SA than for portable and
handled versions. Nevertheless, an extension of the analysed bandwidth can bring more
benefits than disadvantages related to the additional space and weight.

Summarizing, CS can be successfully implemented as an acquisition technique in a
SA:

1. Sparsity of analysed signals is not affected by external noise. If the DUT outputs
sparse signals, CS can be used to acquire them.

2. Additional space and weight related to the additional computational resources can
be allocated in the SA.

Knowing the aspects of the CS acquisition in SA, we can formulate the research aims
and the main hypothesis of this PhD thesis.

1.3 Research Aims and Hypothesis
The aim of this PhD thesis is to investigate the quality and computational complexity
issues of the CS acquisition. These issues are interrelated and depend on many factors:
specific CS architectures and their parameters, reconstruction algorithms, parameters
of the acquired signals (length, types, level of noise etc), computational platform etc.

CS-based acquisition has already proved its efficiency in some image applications
like Magnetic Resonance Imaging (MRI) [44] and single-pixel imaging [17, 24]. How-
ever, these application are non–real–time, meaning that the computational costs of
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signal reconstruction is not critical. At the same time, for real–time applications, for
example a SA, the complexity of reconstruction is significant. In a worst case scenario,
computational costs maybe high enough to depreciate advantages of low sampling rates
making a CS approach meaningless.

The main hypothesis of this thesis is that the the computational complexity of the CS
acquisition can be reduced without degrading the reconstruction quality. This efficient
reduction of complexity is achieved by reformulating the signal reconstruction problem.

This PhD research comprises the versatile analysis of the proposed hypothesis ap-
plied to acquisition of multi-band frequency-sparse signals.
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2 Nyquist Rate Sampling
This chapter describes the well-known Nyquist sampling theorem and the practical
aspects of Nyquist rate acquisition.

2.1 Nyquist Sampling Theorem
Many researches have worked independently on the topic of the unique interpolation of
a signal from uniformly taken samples [36]. The result of this research can be stated as
the Nyquist sampling theorem – if a signal has all frequency components below fH, it is
completely determined by its uniform samples taken at the rate 2fH or higher [50, 56].
This rate is called Nyquist Rate (NR). The analog signal can be perfectly reconstructed
from samples with a low-pass filter.

The Nyquist theorem is illustrated in Fig. 5. Suppose that a signal s(t) is sampled

t

s(t)

0

s[0]

T

s[T ]

2T

s[2T ]

3T 4T 5T
(a) Sampling of the analog signal.

f

X(f)

0−fH fH

(b) The Fourier transform X(f) is ban-
dlimited to fH.

f

XS(f)

0−fR fR

HR(f)

fS−fS

(c) Alias-free sampling, T < 1/(2fH).

f

XS(f)

0−fR fR

HR(f)

fS−fS

(d) Sampling with aliasing distortions,
T ≥ 1/(2fH)

Fig. 5: Illustration of the Nyquist-Shannon theorem.

with some period T as in Fig. 5a and the Fourier transform X(f) is bandlimited to fH
(see Fig. 5b). In turn, XS(f), which is the Fourier transform of the sequence of samples
s[0], s[T ], s[2T ], . . ., is a sum of the infinite numbers of the copies of X(f) shifted by
integer multipliers of the sampling rate fS = 1/T [50]. If fS > 2fH, the shifted copies of
X(f) do not overlap (see Fig. 5c). In this case, s(t) is successfully obtained by passing
the acquired samples through a recovery low-pass filter HR(f) with a cut-off frequency
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fR such that fH < fR < fS − fH. However, if the sampling rate is not sufficiently high,
the replicas of X(f) overlap resulting in aliasing distortions (see Fig. 5d). Because of
the aliasing, all the replicas of X(f) in XS(f) are distorted, and it is no longer possible
to reconstruct (t) by a low-pass filter.

In digital systems, signals are often represented by finite-length sequences of samples.
In this case, the Discrete Fourier Transform (DFT) substitutes the Fourier transform
[50]. DFT is given by:

x[p] =
N−1∑
n=0

s[n]exp
(
−j 2πnp

N

)
, (1)

s[p] = 1
N

N−1∑
n=0

x[k]exp
(
j

2πnp
N

)
, (2)

where s ∈ CN×1 is a vector comprising the time domain samples of s(t), x ∈ CN×1 is
the DFT of s and N is the number of acquired samples, i.e. the length of s. For fast
computation of DFT, methods have been developed under the general title Fast Fourier
Transform (FFT) [50]. Alternatively, the DFT can be described in a matrix form:

x = Fs, (3)

where the matrix F ∈ CN×N is called the DFT matrix. Its elements are given by:

Fn,p = exp
(
−j 2π

N
(n− 1)(p− 1)

)
, (4)

where n, p ∈ {1, . . . , N}.

2.2 Practical Aspects of the Analog-to-Digital Conversion
An actual sampling of a signal is performed by device called Analog-to-Digital Converter
(ADC). There are many types of ADC [38]: flash, successive-approximation, pipeline,
sigma-delta etc. Each of these types has its own advantages and drawbacks, but all of
them consist of two main parts: a Sample and Hold (S/H) circuit and quantizer (see
Fig. 6). The S/H circuit holds the actual value of the analog input signal s(t) at the
specific moments of time denoted by tsamp, so that sSH(tsamp) = s(tsamp + τ), τ ∈ [0, T ),
where T is a time period between two consecutive samples. The purpose of the S/H
circuit is to provide a constant signal level for some time, which is necessary for correct
quantization. A quantizer maps the value of sSH(tS) to some digital code resulting in
the output of the ADC – a sequence of samples s[n]. The ADC sampling rate equals
fsamp = 1/T .

In a NR acquisition, an input signal is filtered with a low-pass anti-aliasing filter prior
to sampling. This ensures that s(t) contains only frequency components below fsamp/2.
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S/H circuit

Timing

Quantizer
s(t) sSH(tS) s[n]

Fig. 6: A simplified ADC diagram [50].

In practice, signals are sampled at rates higher than NR [5]. This oversampling allows
use of low-pass filters with a wider transition band and decrease of noise in samples [5].

The power consumption and the cost of the ADC depends on the input bandwidth,
sampling rate, resolution, quantization noise, linearity etc. Table 1 provides information

Part’s name Sampling
rate, GSPS

Full Power
BW, GHz

Resolution,
Bits

Power Con-
sumption, W

Price,
USD

ADC12D800RF1 1.6 2.7 12 2.5 2000
ADC12D16001 3.2 2.8 12 3.8 3000
LM976001 5 1.3 8 3 3300
AD66412 0.5 0.25 12 0.7 130
AD96832 0.25 1 14 0.45 70

Table 1: Specifications of some of the state-of-the-art high speed ADCs. Data from 1www.ti.com and
2www.analog.com.

about some of the state-of-the-art high speed ADCs. Though, high speed and wide input
bandwidth ADCs are available (the first three items in Table 1), there are obstacles in
the direct use of the NR sampling in telecommunication applications:

• Commercial off-the shelf available ADCs do not cover the entire range up to 3GHz.

• High speed ADCs provide output data at high rates. For example, if
ADC12D800RF operates at the highest sampling rate, a control unit (MCU/FPGA
etc) has to handle and store the ADC’s data at the rate 12 · 1.6 · 109 = 19.2 Gb/s.
This introduces additional requirements to control units.

• High speed ADCs have a high cost and high power consumption.

Baseband signals can be acquired without aliasing distortion only at a NR. At the same
time, telecommunication signals are bandpass or multi-band rather than baseband. In
this case, down-conversion is used.

A typical example of NR sampling with the superheterodyne down-conversion tech-
nique is illustrated in Fig. 7. An input signal consequently passes an amplifier A1,
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BPF A1

LO

LPF A2 ADC
s(t) IF s[n]

Fig. 7: Acquisition of a bandpass signal with the super-heterodyne technique [55].

a Band-Pass Filter (BPF), a frequency mixer, where it is shifted down to the Inter-
mediate Frequency (IF) by a Local Oscillator (LO), an anti-aliasing Low-Pass Filter
(LPF), another amplifier A2 and finally enters an ADC. The ADC outputs samples s[n]
corresponding to s(t) down-shifted to IF.

The superheterodyne technique has been used in many of the radio receivers and
acquisition devices like SA [2, 63]. Despite its popularity, the superheterodyne architec-
ture has several drawbacks: a high power consumption, leakage of LO and IF signals
and theirs harmonics, difficulties in implementing filters in an integrated circuit and an
overall large number of components etc.
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3 Bandpass Sampling
Assume that a bandpass signal with the central frequency fC and the bandwidth B =
fH−fL is sampled uniformly at the rate fsamp < 2fH. Then, an aliasing occurs. However,
depending on the position of the band, its width and the sampling rate, aliasing may
not result in distortion. In this case, aliasing down-converts the band. This approach
is called bandpass sampling and is illustrated in Fig. 8 [41, 43, 66].

f

XS(f)

0−fH −fL−fC fL fHfC−fC + fsamp fC − fsamp

Down-conversion
by undersam-
pling/aliasing

Fig. 8: Illustration of the down-conversion undersampling [53]. Original bands – blue, aliased – green.

In a bandpass signal, the position of a band can be specified by its width. A so-called
integer band positioning means that the band is shifted from the origin by a value cB,
c ∈ Z [66]. If c = 0, a signal is baseband.

We can now geometrically derive the minimum uniform sampling rate for a bandpass
signal. As can be seen in Fig. 9, fS = 2B is the minimum theoretical sampling rate which
does not cause distortions in case of an integer band position [41]. In practice, signals are
always sampled at a rate higher than the theoretical minimum, as any imperfections of
the acquisition device result in corruption [66]. If a signal does not possesses an integer
band position, it is impossible to correctly acquire a signal with uniform sampling at
the rate fsamp = 2B.

In [41], the authors introduced a second-order (nonuniform) sampling (see Fig. 10).
In this sampling approach, an input signal is sampled with two ADCs. The ADCs output
two streams of samples, s1[n] and s2[n]. These streams of samples are obtained uniformly

f

XS(f)

0−fC +B fC −B−2B
−B

−fC

B

2BfC

Fig. 9: Illustration of the uniform band-pass sampling at the rate fS = 2B. The sampled signal
possesses an integer band position.
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(a) Illustration of the second-order sampling.

ADC 1
s1[n] = s

[
n

fS/2

]
= s

[
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B

]
s(t)

ADC 2
s2[n] = s

[
n

fS/2 + c
]

= s
[
n
B + c

]
Z−c

(b) Architecture of the second-order sampler, an average rate fS = 2B.

Fig. 10: Second-order sampling at the average rate fS = 2B.

at the rate fsamp/2, but one of them have a time offset denoted by c. Kohlenberg showed
in [41] that a second-order approach with the average sampling rate fsamp = 2B can
acquire a signal correctly with an arbitrary band position. However, in this case, a
signal reconstruction is performed with two synthesis filters which is more complicated
than a reconstruction in uniform sampling. An original signal is interpolated by [66]:

s(t) =
∑
n

s
[ n
B

]
I
(
t− n

B

)
+ s

[ n
B

+ c
]
I
(
−t+ n

B
+ c
)
, (5)

where n ∈ N is an index of a sample, I(t) = I0(t) + I1(t),

I0(t) = cos[2π(rb− fL)t− rπBc]− cos[2πfLt− rπBc]
2πBt sin(rπBc) , (6)

I1(t) = cos[2π(fL +B)t− (r + 1)πBc]− cos[2π(rB − fL)t− (r + 1)πBc]
2πBt sin((r + 1)πBc) , (7)

r is an integer value specifying which replicas of X(f) overlap in the region (fL, fH).
In (6) and (7), denominators cannot be equal to zero. This observation restricts the
possible value of the delay c, i.e.

c 6= z

rB
, c 6= z

(r + 1)B , z = 1, 2, . . . (8)
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In [43], an idea of nonuniform sampling was generalized for the Lth order sampling
and two-dimensional signals. Some of the practical bandpass sampling issues were dis-
cussed in [66]. It was also pointed out that SNR is not preserved in bandpass sampling
due to the aliasing of out-of-band noise.

In [42], Landau investigated an interpolation of a function with the aggregated width
of its non-zero Fourier transform equal to B. Landau showed that for correct interpola-
tion, the minimum sampling rate for such a function, equals to 2B. Therefore, bandpass
sampling allows acquisition of signals at the lowest possible sampling rates, however,
requires information about positions and widths of bands prior to sampling.

Examples of the bandpass sampling RF receivers are presented in [8, 9].

4 Compressed Sensing Primer
CS is the mathematical approach which allows to reconstruct a signal from less sam-
ples/measurements than is needed according to the Nyquist-Shannon theorem. In this
section, we present various CS approaches for multi-band signals acquisition. We may
say that for this application, CS can be seen as a further development of Bandpass
sampling with the difference that CS requires only partial information regarding the
signal’s bands.

The CS theory is built upon describing a signal recovery process as estimation of a
sparse solution to an underdetermined linear system. To understand this process, we
first elaborate on what we mean by taking measurements of a signal and how do these
measurement compose a corresponding underdetermined system. Then, we describe a
general CS framework. Conditions for a unique signal recovery and popular CS recon-
struction methods are discussed in Section 5. Finally, we present CS architectures that
can be used to acquire multi-band signals.

4.1 Signals as Vectors
Usually, signals can be presented as vectors in a vector space [58]. This allows us to
describe signal processing systems using linear algebra. Three continuous real-valued
signals existing in some time interval (0, T ) are illustrated in Fig. 11. Denote by
S = {s1(t), s2(t), . . .} an infinite set of such signals. A set S is a vector space over
a field of R as it obeys necessary axioms [29]:

• ∀ si(t), sk(t) ∈ S, si(t) + sk(t) ∈ S

• ∀ α ∈ R, si(t) ∈ S, αsi(t) ∈ S

• ∃ 0 ∈ S : ∀ si(t) ∈ S, si(t) + 0 = si(t)

• ∃ 1 ∈ S : ∀ si(t) ∈ S, 1si(t) = si(t)
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t

s(t)

0 T

s1(t)

s2(t)

s3(t)

Fig. 11: Illustration of three vectors from a linear space of continuous real valued functions existing
on (0, T ).

• commutativity and associativity of addition, distributivity and compatibility of
multiplication, and the existence of additive inverse vectors are obvious.

Suppose, a continuous signal is replaced by its discretized versions in a form of a column
vector, i.e. s(t) 7→ s ∈ RN×1 (or CN×1 in case of complex-valued signals). According to
the axioms above, a set of discretized signals is also a vector space. The introduction
of a vector space allows the use of various linear algebra tools to describe, compare and
manipulate signals. For example:
• signals can be measured in terms of various vector norms. In general, a `p vector
norm is given by:

‖s‖p =
(

N∑
n=1
|s[n]|p

)1/p

, p ≥ 1. (9)

Some of the popular norms are `2 and `1. The `2 norm corresponds to the energy
of a signal; the `1 norm plays a central role in the CS theory. Norms with 0 <
p < 1 are called pseudo-norms as the absolute scalability and triangle inequality
properties do not hold for them. For p = 0 triangular inequality holds but absolute
scalability does not.

• an inner product of two vectors is defined as:

〈s,y〉 =
N∑
n=1

s[n]y[n]. (10)

• a signal can be represented as a unique linear combination of the basis vectors.
By definition, a basis is a set of linearly independent vectors that span the whole
vector space [29]. Usually, the basis is selected to be orthonormal. In this case,
the expansion of a signal in the basis is performed by taking consecutive scalar
products of the signal and the basis vectors:

s = 〈s, e1〉e1 + 〈s, e2〉e2 + . . .+ 〈s, eN 〉eN (11)
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Fig. 12: Illustration of the first four Walsh functions, wali, i = {0, 1, 2, 3}.

The Walsh basis is an example of an orthonormal basis used in signal processing. The
first four Walsh functions are illustrated in Fig. 12. Another, and one of the most used
basis, is the DFT basis. It is given by the rows of the DFT matrix which are defined
by (4). The rows and columns of F are orthogonal. Fig. 13 illustrates the 2nd and the
9th row of the DFT matrix of an order 64. Note that the elements of a DFT matrix are
complex-valued.

1 16 32 48 64
−1
−0.5

0
0.5

1

n

F
2

Real part Imaginary part

(a) 2nd DFT basis vector.

1 16 32 48 64
−1
−0.5

0
0.5

1

n

F
9

Real part Imaginary part

(b) 9th DFT basis vector.

Fig. 13: Illustration of the rows of the DFT matrix for N = 64.

As we show in the next subsection, linear algebra tools allow to present the sampling
process as a linear transformation.
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4.2 Sampling as a Linear Transformation
Let us consider the relation between the DFT of a sequence of samples and the DFT
basis. Assume that you acquire N samples out of the ADC. The samples are taken at
the NR and the DFT is without aliasing. From now on, by a vector y ∈ CN×1, we
denote a vector of the acquired samples in the time domain. Based on (3), the DFT
coefficients can be found by:

x = Fy, (12)

where F ∈ CN×N is the DFT matrix. As F−1 = FH (up to scalar coefficient), the
transition between the frequency and time domain is described by:

y[1]
y[2]
...

y[N ]

 =


F−1

1,1 F−1
1,2 . . . F−1

1,N
F−1

2,1 F−1
2,2 . . . F−1

2,N
...

...
. . .

...
FN,1−1 F−1

N,2 . . . F−1
N,N




x[1]
x[2]
...

x[N ]

 . (13)

Matrix F−1 ∈ CN×N is called the Inverse DFT (IDFT) matrix. Note that the elements
of y are given by:

y[p] =
N∑
n=1

F−1
p,nx[n], (14)

which is a scalar product between the signal x and F−1
p , the pth IDFT basis vector. F−1

is a matrix of linear transformation mapping the frequency domain to the time domain.
The IDFTmatrix is unitary upon scaling on 1/

√
N , which implies an important property

of isometry [29]. This means that the IDFT preserves lengths and distances (in `2 sence).
Thus, any time domain vector yi has a unique image xi in the frequency domain. This

Time
domain

Frequency
domainy1 x1

F

F−1

y2 F−1Never
happens

Fig. 14: Illustration of the isometric transformation F.

is illustrated in Fig. 14, where y1
F→ x1 and the inverse transformation F−1 never maps

y1 to any other vector than x1.
But what happens if a signal is undersampled? Assume that a signal x is sampled

at a rate twice below the NR. Therefore, only N/2 samples are acquired. Applying an
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Fig. 15: Illustration of the non-isometric transformation A.

IDFT operation on such an undersampled data is equivalent to:

y = DF−1x = Ax, (15)

where y ∈ CN/2×1 is a vector of decimated time-domain samples, D ∈ {0, 1}N/2×N is a
decimation matrix:

D =


1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...
...
...
...
. . .

...
...

0 0 0 0 . . . 1 0

 . (16)

Here, the decimation selects every second sample. The linear transformation A is no
longer isometric, so the inverse transformation A−1 is not defined. In this case, two
different signals x1 and x2 may have the same y1 (see Fig. 15) and it is impossible to
determine an input signal based on its image. A system (15) is called an underdeter-
mined linear system [61]. In general, such a system does not have a unique solution.
However in case of sparse signals, the CS theory provides conditions and methods for
unique signal recovery (see Section 5).

4.3 Signal Acquisition with Compressed Sensing
Denote by k−sparse signal x ∈ CN×1 that have at the most k non-zero elements, i.e.
‖x‖0 = k [13]. Note that it is not feasible and not necessary to define a specific value of
k/N that indicates whether a signal is sparse or non-sparse.

Many signals in the real world may have a sparse representation in some basis. For
example, a multi-tone signal can be sparse in the DFT basis, an image can be sparse
in wavelets bases [13] etc. Observe that, if such signals are sampled at NR, the number
of measurements exceeds the actual “information” the signals contain. This gives the
indication that the number of measurements can be reduced.

Assume that a k−sparse signal x is acquired via the following system:

y = Ax = RΦΨx, (17)
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where A ∈ CM×N is called a sensing matrix, R ∈ RM×N is an extracting matrix,
Φ ∈ CN×N is a measurement matrix, Ψ ∈ CN×N is a dictionary matrix, M is a number
of measurements, N is a length of a signal and M < N [13]. As the number of rows
of A is always lower than the number of columns, (17) may have an infinite number of
solutions.

Summarizing, in order to develop a CS acquisition system, we have to answer the
following questions [13, 25]:

1. What conditions are necessary for a unique solution x?

2. How does noise and other real-world imperfections affect a signal acquisition?

3. Which methods can recover x from the undersampled measurements y?

In the following subsections, we describe how these questions are considered in CS.

Spark of a Sensing Matrix

In CS, it is common to describe a uniqueness condition with the use of spark or mutual
coherence [25]. We use the following definition

Definition 1 (Reproduced from Definition 2.2 of [25]). The spark of a given ma-
trix A is the smallest number of columns from A that are linearly dependent.

In other words, all possible combinations of (spark(A)-1) columns of A are linearly in-
dependent. This is an important property that allows to derive the following uniqueness
condition

Theorem 1 ([25, 32]). A system y = Ax has only one solution x such that ‖x‖0 <
spark(A)/2.

Proof. Assume ∃ x1,x2: x1 6= x2, ‖x1‖0 < spark(A)/2, ‖x2‖0 < spark(A)/2 and
y = Ax1 = Ax2 ⇒ Ax1 −Ax2 = A(x1 − x2) = 0 ⇒ (x1 − x2) ∈ Null(A)
⇒ ‖x1 − x2‖0 ≥ spark(A). At the same time, according to the triangular inequality,
‖x1 − x2‖0 ≤ ‖x1‖0 + ‖x2‖0 < spark(A). This is a contradiction. Thus, either x1, or
x2 has more than spark(A)/2 non-zero elements.

Therefore, if we found a solution x with less than spark(A)/2 non-zero elements, we are
sure that this solution is unique.

By definition, spark(A) ∈ [2,M + 1] [25]. For some types of sensing matrices there
is an analytically derived value of spark. For example, if A is a random matrix with
elements from Gaussian (N (µ, σ2)) or Bernoulli (±1s) distribution, then spark(A) =
M + 1 with probability 1. Another example is a so-called two-ortho case with Φ = I
– an identity matrix, and Ψ = F the inverse DFT basis. We have considered a similar
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Fig. 16: Illustration of the impact of mutual incoherence on CS acquisition.

combination in (15), but R can represent any selection of rows, not strictly a uniform
decimation. So, in case of A = RF, spark(A) = 2

√
M , and if M is prime, spark(A) =

M + 1.
For arbitrary and large size Φ and Ψ, it can be infeasible to find spark(A) as it

requires a brute-force search. In this approach, one have to check linear dependency
of
(
M
p

)
combinations of the columns of A, while increasing p from 2 to M . Therefore,

there is a need for alternative, probably less strong, condition on uniqueness of a sparse
solution.

Incoherence

Consider Fig. 16 in order to understand the impact of incoherence between the dictionary
and measurement matrices on the CS acquisition. Assume all the rows of a sensing
matrix A have `2 norms equal to 1. Then, the lower the value of the largest elements in
any rows, the more “flat” the rows are. If, for instance, a matrix A is used to acquire x
with two non-zero elements, the contribution of different sensing vectors (rows of A) is
different. For example, the first row “transfers” x[2] to y well, but x[5] is suppressed as
its contribution to 〈A1,x〉 is small due to the small value of A1,5. The same is true for
A2 and x[5]. In contrast, more flat 3rd and 4th rows are more universal and preserve
information about both x[2] and x[5]. Therefore intuitively, it is preferable to have A
with as “flat” rows as possible. The maximum element of the sensing matrix describes
the overall “flatness”. Recall that A = RΦΨ. A value

µ(A) = max
1≤i,k≤N

|〈Φi,Ψk〉| (18)

is called a mutual coherence between the measurement and dictionary bases [15]. Con-
sequently, max(A) ≤ µ(A). Therefore in CS, the lower the coherence between Φ and Ψ,
the lower the necessary sampling rate is. An alternative definition of mutual coherence
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is given in [25]:

µ(A) = max
1≤i,k≤N,i6=k

|(Ai)TAk|
‖Ai‖2‖Ak‖2

. (19)

With this definition, a low µ(A) implies that A is close to isometric, which is also
intuitively favours the acquisition process.

Theorem 2 (Reproduced from Theorem 2.5 of [25]). If a system of linear equa-
tions y = Ax has a solution x obeying ‖x‖0 <

1
2 (1+1/µ(A)), this solution is necessarily

the sparsest possible.

Examples of the pairs of bases that have low mutual coherence are identity with DFT
bases, wavelet bases with noiselets, random matrices with any fixed dictionary [13].

Stability of Reconstruction

Up to now, we have been considering noise-free acquisition of purely sparse signals.
However in real-life applications, signals can be compressible rather than sparse, maybe
corrupted by wide-band noise and affected by imperfections of measurement hardware:

y = Ax + e (20)

where e ∈ CM×1 denotes a noise/imperfection vector. In this case, it is impossible to
recover the exact x. Instead, an estimated sparse solution x̂ have to be found such that

‖y−Ax̂‖2 ≤ ε, (21)

for some error tolerance ε > 0 [25]. The error tolerance implies the stability of the
CS acquisition that can be established with the notion of Restricted Isometry Property
(RIP) [14].

Definition 2 (Reproduced from Definition 2 of [13]). For each integer k = 1, 2, . . .
define the isometry constant δk of a matrix A as the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (22)

holds for all k-sparse vectors x.

If δk is close to zero, then A preserves distances between k-sparse signals. Consequently,
A acts similar to an isometric transformation (see Fig. 14).

Suppose that an approximate k-sparse solution x̂ satisfying (21) can be obtained
by means of some reconstruction procedure. Then, it is needed to assess the distance
‖x − x̂‖2 between the approximate and true solutions. Assume that A obeys 2k-RIP
with δ2k < 1. According to [25]:

(1− δ2k)‖x− x̂‖2
2 ≤ ‖A(x− x̂)‖2

2 ≤ 4ε2 ⇒
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‖x− x̂‖2
2 ≤

4ε2

1− δ2k
. (23)

The above inequality puts the upper bound on the error between the real and recon-
structed signals if A has a proper isometry constant.

It is computational infeasible to find δ2k for a relatively large A and k. However, as
in case of spark and mutual coherence, analytical assessment of isometry constants are
available for random matrices [13, 14].

Reconstruction of signal in CS is described in details in Section 5.

4.4 CS architectures for acquiring multi-band signals
As discussed in Section 1, acquisition of multi-band signals is an application where CS
can be used to extend the capabilities of SA. So, this subsection presents CS architectures
designed for acquiring this type of signals.

Single-Channel Nonuniform Sampler

Single-Channel Nonuniform Sampler (SNS) consists of one input channel (see Fig. 17a)
[45, 60, 67]. SNS pseudo-randomly acquires M samples out of N NR samples such that
the average sampling rate is below the Nyquist sampling rate, M < N (see Fig. 17b).
A sampling pattern ΛSNS ⊂ NN−1

0 , |ΛSNS| = M specifies the acquired samples, where
Nkj denotes a set of the integer numbers {j, j + 1, . . . , k}.

SNS acquisition is described by the Single Measurement Vector (SMV) model [67]:

y = Ax + e = RFx + e, (24)

where y ∈ CM×1 is a vector of time domain measurements, A ∈ CM×N is a sensing ma-
trix, x ∈ CN×1 is an input sparse signal in frequency domain, e ∈ CM×1 corresponds to
noise in measurements, R ∈ RM×N is a selection matrix corresponding to the sampling
pattern ΛSNS and F ∈ CN×N is the DFT matrix.

An advantage of SNS is its relative simplicity. However, it requires obtaining samples
from the Nyquist grid.

Multi-Coset Sampler

Multi-Coset Sampler (MCS) consists of P parallel channels that sample an input signal
at the same rate but with different time offsets (see Fig. 18a) [12, 27, 47]. The MCS
sampling pattern time ΛMCS ⊂ NL−1

0 , |ΛMCS| = P defines these time offsets. If the
number of sampling channels is L, then MCS turns to be a time-interleaved NR sampler.
An integer value L is called a multi-coset sampling period. Each ADC acquires W
samples. The MCS mathematical model is described in Paper A. In short, MCS is
defined by:

Y = BX + E, (25)
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(a) Simplified SNS diagram.
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(b) An example of SNS acquisition, M = 6, N = 10,
ΛSNS = {0, 2, 5, 6, 8, 10}.

Fig. 17: Illustration of SNS architecture and acquisition process.

where Y ∈ CP×W is the matrix of known measurements, B ∈ CP×L is a sensing matrix,
L ∈ CL×W denotes a matrix of an input signal in frequency domain and E ∈ CP×W
corresponds to noise. The matrix X is formed by slicing the spectrum of an input signal
on L equal frequency slices and rearranging the slices (see Fig. 18b). In this case, the
support of a sparse X is a set of indices of non-zero rows. Reconstruction of X from
(25) is called a Multiple-Measurement Vectors (MMV) problem [21].

In [6], the authors proposed to use the MCS scheme for power spectrum blind sam-
pling by computing the cross spectral densities between the outputs of sampling chan-
nels. The power spectrum directly provides the support of a signal and, thus, allowing
signal reconstruction with the least squares approximation. The cross spectral densities
approach reconstructs the power spectrum even of non-sparse signals. However, this
method is based on minimal sparse ruler problem which limits the possible values of P
and L and makes it less universal than the general MCS acquisition.

An advantage of MCS related to the advantage of time-interleaved ADCs – one fast
ADC is replaced by several with a lower sampling rate. However, MCS requires to have
precise time shifts between ADCs’ sampling moments.
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s(t)

ADC 1
x((wL+ λ1)T ) = z1[w]

ADC 2
x((wL+ λ2)T ) = z2[w]

ADC P
x((wL+ λP)T ) = zP[w]

(a) Simplified MCS diagram.
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(b) MCS slicing of DFT of an input signal.

Fig. 18: Illustration of the MCS acquisition.
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Random Demodulator

In a Random Demodulator (RD) scheme, an input signal is multiplied by a pseudo-
random chipping sequence pc(t) ∈ {±1}N , then passed through an anti-aliasing low-pass
filter and sampled uniformly at low sampling rate (see Fig. 19) [39, 62]. Multiplying a

s(t)
ADC

y[n]
LPF

pc(t) ∈ {±1}N
Uniform sampling
at a low rate

Fig. 19: Simplified RD diagram.

chipping sequence with an input signal is a direct-sequence spread-spectrum technique
[52]. This implies that the information from the input signal is distributed over a wider
band and an input signal can be reconstructed only from the part of spread spectrum.
LPF cuts the baseband part of a spectrum and ADC acquires the selected part of the
spectrum. RD acquisition is described by the SMV model [62]:

y = HDF−1x, (26)

where y ∈ CM×1 is a vector of the ADC’s samples, H ∈ RM×N represents a low-pass
filtering operation, D ∈ RN×N corresponds to the multiplication by a chipping sequence
pc(t) and x ∈ CN×1 is the unknown sparse signal in the frequency domain. Matrices H
and D have the following form for example with N=6 and M=3

H =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 D = diag([1,−1,−1, 1,−, 1, 1]T).

The main advantage of the RD is that the ADC samples not a wide-band signal but a
signal from the LPF. This allows to use ADCs which do not have high input bandwidths.
However, imperfections of LPF degrade the acquisition quality [51].

Modulated Wideband Converter

Modulated Wideband Converter (MWC) can be seen as a hybrid of MCS and RD (see
Fig. 20) [48]. An input signal falls into P channels where it is mixed with different
periodic signals pi(t), i ∈ {1, . . . , P}. These operations spread the spectrum of an input
signal. The resulting signals are sampled synchronously by P ADCs. MWC acquisition
is described by row-sparse MMV.

The MWC architecture has two main advantages: (i) ADCs operates synchronously
– there is no need for preserving accurate time-shifts as in MWC, (ii) ADCs sample
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Fig. 20: Simplified MWC diagram.

baseband signals – no need for wide-band devices. However, the disadvantage is a
complicated hardware.

4.5 Compressed Sensing Architectures for Signal Analyzers
Above we described four CS architectures that can be used for signal acquisition in SA
applications. As can be seen from [2], a modern SA has sophisticated analog front-
end and sampling parts. This hardware allows SA to perform in a frequency range up
to 50 GHz [3]. However, further complication of hardware is undesirable due to the
increasing costs and it is beneficial to simplify analog front-end. MCS and SNS are two
architectures that have relative simple hardware.

An MCS acquisition device can be built by removing or adding some parallel channels
of a full time-interleaved ADC [47]. An SA with 80 channels time-interleaved ADCs has
been used for measurement applications for more than 10 years [54]. Therefore, there
are no technological obstacles in implementing the MCS acquisition. The same is true
for SNS.
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Fig. 21: Illustration of types of solution obtained with different norms as various functions. The green
line denotes the constraint linear system.

5 Compressed Sensing Reconstruction
Knowing the requirements for unique and stable sparse solutions, we now turn to recon-
struction approaches that find these solutions. These approaches can be classified in two
groups: optimization and greedy methods. The first methods reconstruct a signal by
solving optimization problems with various objective and constraints functions. Greedy
methods either consequently find the columns of A that constitute y, or follow the logic
of thresholding non-zero elements and updating the solution.

5.1 Reconstruction Methods
Optimization methods

An intuitive way of CS reconstruction is to solve an optimization problem that directly
promotes sparsity via the `0-norm [25]:

(P0) : minimize
x

‖x‖0 subject to y = Ax. (27)

Apart from its straightforward formulation, (P0) is a NP-hard problem [25]. Solving a
NP-hard problem requires a combinatorial search and tests for feasibility of solution that
makes (P0) unreal candidate for practical reconstruction procedure [25]. Therefore, it is
beneficial to use other objective functions that promote sparsity. For example, `p-norms
with p ≤ 1. Consider Fig. 21 where the green line denotes the CS acquisition systems,
y = Ax. Clearly, minimization of `1- and `0.4-norms leads to a sparse solution with only
x2 6= 0. Minimization of `2-norm (squared `2-norm is an energy) results in a solution
vector that have many non-zeros with small values, i.e. non-sparse. Therefore, it is not
used in CS.

Minimization of the `1-norm, as oppose to `p-norms with p < 1, is a convex problem
which implies that local minimum is necessary a global minimum [11]. Considering a
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non-ideal CS acquisition (20), the reconstruction problem can be written as

(P ε1 ) : minimize
x

‖x‖1 subject to ‖y−Ax‖2 ≤ ε. (28)

(P ε1 ) is known by name of Basis Pursuit DeNoising (BPDN) [19]. Interestingly, the
reconstruction error via (P ε1 ) can be theoretically bounded.

Theorem 3 (Based on Theorem 1.2 of [16]). Denote by x̂k the best k-sparse ap-
proximation of x, assume that δ2k <

√
2− 1 and ‖e‖2 ≤ ε. Then the solution x̂ to (P ε1 )

obeys

‖x̂− x‖2 ≤ C0k
−1/2‖x̂k − x‖1 + C1ε

for some constants C0 and C1.

This theorem establishes `1-minimization as a method that recovers k-sparse signals
from non-ideal sub-Nyquist measurements. In general, `1-minimization has a high re-
construction performance [10].

There are several open source software packages that can be used for for solving (P ε1 )
problems: CVX [33, 34], SPGL1 [64, 65], YALL1 [68], GPSR [28] etc.

As mentioned above, the `p-minimization for p < 1 is not a convex problem and thus
there is no guaranties for convergence to a global minimum. However, such methods
are used due to the simplicity of implementation [25]. For example, FOCUSS [32].

Greedy methods

The problem of recovering x from an underdetermined system y = Ax (or y = Ax+e)
can be solved with other approaches. If x is sparse, then

y = Ax = [A1 A2 . . . AN ]


x[1]
x[2]
...

x[N ]

 = AKxK , (29)

where a set K is called a support of x – a set comprising indices of non-zero elements of
x; a matrix AK ∈ CM×k, k ≤ M , consists of columns of A with indices from K and a
vector xK ∈ Ck×1 consists of non-zero elements of x. In general, a system y = AKxK
is overdetermined and does not have a solution. However, if y ∈ range(AK), which is
a case in CS, the unique solution exists. The easiest way to find this unique solution is
to use a least squares method [61].

The question is how to find the support of x, K, i.e. the indices of columns of
A that form y. One of the popular algorithms is an Orthogonal Matching Pursuit
(OMP) [18, 21, 49]. OMP finds one element from K per iteration as in Fig. 22. OMP
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(a) First OMP iteration,
r1 = y,
‖PA2 r1‖2 > {‖PA1 r1‖2, ‖PA3 r1‖2} ⇒
K = {2}.
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(b) Second OMP iteration,
r2 = r1 −PAK r1,
‖PA3 r2‖2 > ‖PA1 r2‖2 ⇒
K = K ∪ {3} = {2, 3}.

Fig. 22: Illustration of the two OMP iterations.

starts by setting the residual vector r1 = y. Then, r1 is orthogonally projected on
the columns of Ai, i ∈ {1, 2, . . . , N} by PAir1 and the `2-norms of the projection are
evaluated. The largest projection corresponds to the index of a column that becomes
the first element of K. In case of Fig. 22a, K = {2}. At the beginning of the second
iteration, the residual is updated by projecting r1 to the space orthogonal complement
to AK , i.e. r2 = r1 −PAK r1, and the projection of r2 are computed. Then, the second
iteration follows the first one. The process continues until a termination criteria is met.
The criteria can be the number of selected columns, the Frobenius norm of the residual
etc [21].

Thresholding methods

Thresholding algorithms are another reconstruction approaches in CS [26]. In these
methods, some of the non-zero elements of an estimated solution are thresholded at
each iteration meaning that they are forced to zero. An example of such a method is
an Iterative Hard Thresholding (IHT) [10]. The basic IHT iteration is given by:

x̂i+1 = Hk(x̂i + µAH(y−Ax̂i)), (30)

x̂i ∈ CN×1 is an estimated solution at ith iteration, i = 0, 1, . . . , x̂0 = 0, Hk(·) ∈ CN×1

is a thresholding operator that preserves k largest elements of a vector and set other to
zero, µ ∈ R is a step size. IHT can be seen as the gradient projection method applied
to the problem:

minimize
x̂

‖Ax̂− y‖2
2 subject to card(x̂) ≤ k. (31)
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(a) e = 0.16, a signal x̂ is formed from x
by adding AWGN such that SNR= 16 dB.
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(b) e = 0.27, a signal x̂ is formed from x
by adding AWGN such that SNR= 16 dB
plus three random spike errors.

Fig. 23: Illustration of the RRMS errors, blue line – original signal, green line – reconstructed signal.

Notice that the gradient of the objective function is 2AH(Ax̂−y). IHT consequently ap-
proaches x̂ that minimizes the objective function by “stepping” to the direction opposite
to gradient and preserving sparsity of the solution with Hk(·) ∈ CN×1. Thresholding
algorithms possess both low complexity and high reconstruction performance [26].

Reconstruction algorithms based on Bayesian statistics and graphical models are
also used in CS [37]. For example, Approximate Message Passing which is reported to
have almost the same performance as `1-minimization [23].

The comparison of several reconstruction methods (OMP, `1-minimization, M-FOCUSS
[21], MUSIC [21] etc) applied to acquisition of multi-band signals are presented in Pub-
lications A and C.

5.2 Quality of Reconstruction
The aim of CS is to reconstruct a signal with only undersampled measurements. Various
performance metrics can be used for evaluating the quality of CS acquisition. For
example, Relative Root Mean Squre error (RRMS):

e = ‖x− x̂‖2

‖x‖2
, e ∈ [0,+∞), (32)

where x ∈ CN×1 and x̂ ∈ CN×1, are the original and reconstructed signals in some
domain, respectively. RRMS describes well both rare and frequent errors. Assume that
x̂ is obtained with some reconstruction procedures. Consider examples in Fig. 23 that
illustrates RRMS for two cases for time domain real-valued signals. In the first case,
signal x̂ is basically a signal x polluted by Additive White Gaussian Noise (AWGN) such
that the resulting Signal-to-Noise Ratio (SNR) is 16 dB. In the second case, a signal x̂
was additionally corrupted with three random spikes.
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The average RRMS, E = 1
Q

∑N
i=1 ei, can be used to assess an average quality of

reconstruction of Q signals.
E can be used to compare quality of different acquisition approaches and recon-

struction algorithms. For example, a bunch of test signals is acquired and reconstructed
under various conditions and E is evaluated. The lower the value of E, the better is CS
approach/reconstruction algorithm.

Recall that CS aims to acquire signals that are sparse or compressible in some basis.
Thus, a quality of reconstruction can also be evaluated with the Support Reconstruction
Ratio (SRR):

G = number of correctly reconstructed supports
number of test signals , G ∈ [0, 1]. (33)

In some CS architectures, a support of a signal can be less sensitive to noise. For
example in MCS, the support is the set of indices of frequency slices containing bands.
Therefore, it is unlikely that the support of a noise free signal differs from the support
of a signal with AWGN, unless the power of noise equals to the power of a clean signal.
In contrast in SNS, support comprises non-zero DFT bins. AWGN can mask some of
these bins. Thus, the support of noise-free and noisy signals can be different.
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Fig. 24: Illustration of SRR and average RRMS vs. the average sampling rate in the MCS acquisition
of two-band signals with SNR= 10 dB. Theoretical minimum RRMS is 0.27.

Fig. 24 illustrates the empirical relations between SRR and average RRMS vs. the
average sampling rate in MCS acquisition of 100 instances of test two-band signals with
SNR= 10 dB. The reconstruction is performed with the M-FOC-COR algorithm (see
PaperC). SRR equals to 1 when at the point 0.42. This clear indicates the sampling rate
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sufficient for correct detection of supports of all the test signals. The correct support
reconstruction implies the successful signal reconstruction. However, it is problematic to
detect this sampling rate with average RRMS as it requires to know a specific threshold.
In its turn, the thresholds depends on SNR. Therefore, in MCS it is more beneficial to
evaluate the quality of reconstruction with SRR despite of the fact that average RRMS
is more universal.

5.3 Complexity of Reconstruction
CS reconstruction can be performed on various computational platforms: ASIC, FPGA,
CPU/GPU unit. In general, the analysis of an algorithm’s complexity allows to evaluate
its applicability given constraints on computational resources and execution time.

In CS, complicated reconstruction algorithms are the means that allow to decrease
sampling rates below NR. Different algorithms have different reconstruction perfor-
mance and complexity. In case of real-time applications like SA, the complexity of
reconstruction becomes an important issue. The selection of a specific algorithm for CS
application is based on quality/complexity tradeoffs. The quality of reconstruction can
be assessed with SRR and average RRMS. In its turn, complexity of an algorithm can
also be evaluated in different ways [1]:

• number of floating point operations – arithmetic complexity [1, 20, 40]. This
complexity metric is widely used to evaluate the total amount of computations
performed by an algorithm.

• necessary memory space – memory complexity [1, 20].

The execution time of an algorithm is also depends on degree of parallelism [59] and
memory bandwidth and latency [46]. Modern CPU/GPU perform arithmetic operations
on data faster than this data is transferred between CPU/GPU and memory [4]. In
multi-cores systems, the data access further complicates as some cores have to wait for
their time for memory access. To cope with this queuing, some companies introduce
technologies that allow a core to have an independent memory access, for example Intel
Quickpath Interconnect [35]. Another issue is inter-process communication. With the
increasing number of cores, data transferring between them becomes more complicated.
Summarizing, the execution time of an algorithm depends not only on the amount of
computations but also on the specific implementation.

In order to obtain more general results, we propose to evaluate computational costs
of CS reconstruction algorithms with the number of floating point operations. Usu-
ally, arithmetic complexity of an algorithm is described with asymptotic notations, for
example the big O notation.

Definition 3 (Big O notation [40]). Assume that f(n) ∈ R and g(n) ∈ R are func-
tions of the positive integer n. Then, f(n) = O(g(n)) ⇔ ∃M ∈ R and positive integer
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n0 such that
|f(n)| ≤M |g(n)| for n > n0. (34)

the Big O notation is very useful for comparison of complexities of algorithms if
problem’s size increasing towards infinity. Asymptotic complexities of many compu-
tational algorithms like eigenvalue decomposition, QR factorization etc. are already
available [61]. At the same time, these notations can be misleading if argument is not
“sufficient” large. For example, assume that arithmetic complexities of two algorithms
is described with functions f1(n) = 105n2 and f2(n) = n3. Then, f1(n) = O(n2) and
f2(n) = O(n3), which implies that asymptotically second algorithm has larger compu-
tational cost. However, for n = 10 f1(10) = 107 > f2(10) = 103. For this reason, in this
thesis we do not directly use asymptotic notations but rather count all the arithmetic
operations that are performed by an algorithm. This allows to compare computational
costs for the specific problem sizes.

6 Research Contributions
In this research, we were aiming at investigating issues related to the reconstruction qual-
ity and complexity of the CS acquisition. In particular, to investigate the performance–
complexity tradeoffs and methods decreasing computational complexity. Acquisition of
multi-band signals in SA has been chosen as one the potential CS application.

6.1 Publication A
We started our research by comparing the existing reconstruction approaches in MCS.
The results of this part of the research are presented in Publication A. The comparison
is performed with extensive numerical simulations. Similar research is performed in [57].
However in this article, the acquisition scenarios are limited to signals having a fixed,
N = 3, number of bands. This limits the investigation of the behaviour of reconstruction
algorithms. In particular as we show in Publication A, the necessary average sampling
rates for some of the reconstruction algorithms scales non-linearly with the number of
bands. The necessary sampling rates also depend on the level of noise in the signals. As
the main outcome, the article provides recommendations on which algorithms result in
better reconstruction performance depending on the number of bands and the level of
noise in the signals. Apart from this, the article also studies how different approaches
of sampling patterns selection impact the reconstruction quality.

This paper developed the framework allowing to compare quality of different recon-
struction methods. The framework was used for Publication B and C.
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6.2 Publication B
In this publication, we introduced multi-coset emulation in SNS as a means to reduce
computational complexity of reconstruction. Previously, the computational costs of sig-
nal reconstruction in RD (SMV reconstruction model) and MWC (MMV reconstruction
model) were compared in [26] and the advantage of MWC was pointed out. However,
an idea of replacing the SMV reconstruction with MMV was not elaborated. We filled
this gap in Publication B, where the proposed multi-coset emulation reformulates the
reconstruction in SNS as a MMV problem (MCS reconstruction). As a result, a num-
ber of floating point operations in the SNS acquisition is decreased by several orders of
magnitude without degradation of reconstruction performance. This confirms the main
hypothesis of the thesis applied to CS acquisition of noise-free signals.

6.3 Publication C
This publication contains more thorough elaboration of the multi-coset emulation for
the SNS acquisition. This article is motivated by several reasons.

Publication B considered scenarios with noise-free signals. In addition, frequency
bands in these scenarios were aligned within the boundaries of multi-coset frequency
slices. These simplifications do not fully comply with real-life conditions and require-
ments, so, they were eliminated in Publication C, where noisy signals with different
bands’ width and position were used in the numerical simulations. Such a broad variety
of test signals allowed to point out the simulation scenarios where multi-coset emulation
degrades or improves the reconstruction performance while the reduction of computa-
tional complexity is preserved. Therefore, multi-coset emulation in SNS introduces
performance-complexity tradeoffs which were studied in this part of the research.

One more motivating factor for Publication C was that in Publication B only the
OMP algorithm and its MMV version, M-OMP, were used for signal reconstruction.
These methods were widely used in CS [25] until the appearance of iterative thresh-
olding algorithms, like IHT [26]. From the computational point of view, one of the
prominent feature of IHT is that its implementation based on FFT is possible while
reconstructing signals from the Fourier basis. Thus, if IHT is not considered for the
direct SNS acquisition, then the advantage is given to multi-coset emulation. This is
why, IHT was used in the SNS reconstruction in Publication C in order to increase
objectivity of the research.

This publication confirms the main hypothesis of the thesis applied to more realistic
CS acquisition of noisy signals and CS reconstruction with prominent algorithms.
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7 Conclusions
CS can be used to acquire frequency-sparse multi-band signals. With this approach,
sampling rate can be decreased below NR. In CS, reconstruction quality and complexity
are the crucial issues especially for real-time applications.

In this thesis, we studied these two CS issues applied to acquisition of frequency
sparse multi-band signals. Sensing of multi-band signals is required, for example in
SA applications. With the CS approach, SA may therefore acquire signals that are
not possible to acquire with the classical NR sampling. We were focusing on scenarios
comprising signals with different number, widths and position of bands and level of noise
in signals.

The quality of SNS and MCS acquisition with different reconstruction algorithms
has been evaluated. In addition, the impact of the different MCS sampling patterns on
the reconstruction quality has been investigated.

This thesis confirms that the computational complexity of the CS acquisition can be
reduced by an order of magnitude without degrading the reconstruction quality. This
reduction is achieved by multi-coset emulation which corresponds to the reformulation
of reconstruction problem. This emulation introduces performance-complexity tradeoffs
that has been also studied. In some cases, the multi-coset emulation degrades the
reconstruction quality while in other the emulation improves it. However, the reduction
of computational complexity of signal reconstruction by orders of magnitude is preserved
for the all considered acquisition scenarios. Thus, the multi-coset emulation may bring
CS acquisition closer to real-life real-time applications.

The MATLAB code used for this PhD thesis is available only at http://dx.doi.org/
10.5278/VBN/MISC/MSS.AMBSCS, DOI 10.5278/VBN/MISC/MSS.AMBSCS.

Future Perspectives

The conducted research can be further developed:

• The multi-coset emulation described in this thesis allows to reduce the number
of floating point operations in the CS reconstruction by orders of magnitude. In
this thesis, we considered signals that are sparse in the Fourier basis. However,
the multi-coset emulation is universal and can be used with other CS applications.
Therefore, it is of great interest to use this method for acquisition of signals that
are sparse in basis aside from the Fourier basis.

• One more issue in CS is noise folding [7, 22], which is basically the aliasing of
wideband noise due to sub-Nyquist sampling. Unfortunately, noise folding cannot
be avoided in CS, so it is important to find the ways that mitigate noise folding.
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Abstract
This paper investigates the performance of different reconstruction algorithms in dis-
crete blind multi-coset sampling. Multi-coset scheme is a promising compressed sensing
architecture that can replace traditional Nyquist-rate sampling in the applications with
multi-band frequency sparse signals. The performance of the existing compressed sens-
ing reconstruction algorithms have not been investigated yet for the discrete multi-coset
sampling. We compare the following algorithms – orthogonal matching pursuit, multi-
ple signal classification, subspace-augmented multiple signal classification, focal under-
determined system solver and basis pursuit denoising. The comparison is performed via
numerical simulations for different sampling conditions. According to the simulations,
focal under-determined system solver outperforms all other algorithms for signals with
low signal-to-noise ratio. In other cases, the multiple signal classification algorithm is
more beneficial.

1 Introduction
Bandpass and multi-band signals can be successfully sampled at frequencies below the
Nyquist-Shannon limit, so called sub-Nyquist sampling [1]. For this type of signals
the minimum sampling rate depends on the accumulated bandwidth rather than the
highest frequency component as in the classical Nyquist-Shannon-Kotelnikov theorem.
Nonuniform periodic sampling is one of the method for sub-Nyquist sampling. This
strategy can be implemented with parallel sampling channels each of them containing
an analog-to-digital converter (ADC). The ADCs perform measurements at different
moments of time. Such a scheme is called a multi-coset sampling scheme (see Fig. A.1)
[2]. The problem of sub-Nyquist sampling of non-baseband signals has been discussed
in a number of papers [2–6].

Consider multi-band signals. When the positions of bands in a signal are known
in advance (non-blind sampling) the reconstruction can be performed with specially
designed filters [3, 4]. In [2] Feng and Bresler introduced blind sampling where the
positions of bands are unknown prior to sampling. Blind sampling can be seen as a
compressed sensing problem for multiple-measurement vectors (MMV) [6].

The method proposed by Feng and Bresler allows to directly reconstruct a continuous
input signal without discretization. This approach avoids the negative discretization is-
sues such as the need for block processing, windowing and spectrum leakage. The same
idea was used in [5, 7]. However, the purpose of some applications, e.g. spectrum
analyzers, is to evaluate the frequency spectrum rather than to reconstruct the contin-
uous input signal in time domain. For these applications the discrete Fourier transform
(DFT) of a sequence of the samples of an input signal is computed. Thereby, discretiza-
tion is introduced. From this perspective it is interesting to investigate the quality of the



50 Paper A.

ADC 1

x(t)

x((m·L+c1)·T) = y1[m]

ADC 2

ADC P

x((m·L+c2)·T) = y2[m]

x((m·L+cP)·T) = yP[m]

Fig. A.1: Multi-coset sampling scheme [2].

DFT evaluation when the traditional Nyquist-rate sampling is replaced by compressed
sensing with the multi-coset scheme. i.e. the discrete multi-coset sampling. To date,
such a discrete approach has not been considered. Throughout the paper, by signal re-
construction we mean the evaluation of the DFT of a sequence of samples. We wish to
determine in which cases the multi-coset sampling can replace traditional Nyquist-rate
sampling and extend the functionality of the existing sampling applications. For that
purpose the performance of different reconstruction algorithms should be evaluated.

In multi-coset sampling the bandwidth of a single ADC should be higher than the
bandwidth of the input signal. In [7] the modified multi-coset sampling scheme, named
modulated-wideband converter, was presented. Modulated-wideband converter has a
premixing stage before analog-to-digital conversions which allows using ADCs with a
relatively low input bandwidth. The price for that is a more complicated front-end.
However, an 80 channels time-interleaved ADC implemented as a single integrated cir-
cuit already exists [8]. The multi-coset scheme can be made from the time-interleaved
scheme by simply removing some of the parallel channels. So, there are no technological
obstacles in implementing multi-coset sampling.

In order to make one more step toward implementation of compressed sensing ac-
quisition systems for real-life applications, we numerically investigate the quality of the
DFT evaluation when the Nyquist-rate sampling is replaced by the sub-Nyquist multi-
coset sampling. The objective is to investigate the relations between the number of
sampling channels (an average sampling rate), the number of bands in signals, widths
of bands, power of noise in signals on one side and reconstruction distortion on an-
other. The reconstruction quality is evaluated by comparing the two DFT sequences.
One is obtained with the Nyquist-rate sampling and is used as a reference. The second
is obtained with the multi-coset sampling. We consider the following reconstruction
algorithms: orthogonal matching pursuit for MMV (M-OMP) [9], multiple signal clas-
sification (MUSIC) [6], subspace-augmented MUSIC (SA-MUSIC) [10], basis pursuit
denoising for MMV (M-BPDN) [11, 12] and focal underdetermined system solver for
MMV (M-FOCUSS) [9]. To date these algorithms have not been compared in the ap-
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plication of discrete multi-coset sampling. M-OMP and M-FOCUSS were described and
compared in [9] but BPDN, MUSIC and SA-MUSIC were not considered. In [13] the
authors proposed a new way of finding the solution to the MMV equation by solving
a set of randomly formed singular-measurement vector problems. However, the suc-
cess of this method depends on whether the number of random sub-problems is large
enough. All the cases considered in [13] were noiseless and MUSIC-like algorithms were
not considered.

The main contribution of this paper is that we formulate the discrete multi-coset
approach and compare the performance of different reconstruction algorithms for the
evaluation of the DFT. Our discrete multi-coset approach links together the unknown
DFT of the sequence of samples of an input signal and the known DFTs of samples from
sensing channels.

The outline is as follows. In Section II we review a multi-coset sampling scheme,
describe discrete multi-coset sampling, test signals and performance measures. Algo-
rithms that are used for the reconstruction are specified in Section III. In Section IV
we present the complete simulation setup and the simulation results. Conclusions are
stated in Section V.

2 Multi-coset scheme, test signals and performance
measures

2.1 Multi-coset scheme
The main idea of the multi-coset scheme is to use multiple ADCs with a low sampling
frequency rather than one that operates at a high frequency. As can be seen on Fig. A.1,
a multi-coset scheme consists of P parallel sampling channels. The ADCs in these
channels perform sampling of an input signal x(t) at different moments of time specified
by the set of time shifts C = {c1, . . . , cP }, cp ∈ {0, 1, . . . , L − 1}, for channel p =
{1, . . . , P}. The positive integer L is called the multi-coset sampling period, 1 ≤ P < L.
The combination of L and C denoted by (L,C) is called a multi-coset sampling pattern
[6]. The time period T = 1/(2 · fmax) is the Nyquist sampling period and all the
frequency components in an input signal are less than fmax. In this paper we do not
consider quantization effects.

Assume that X (f), f ∈ (−fmax, fmax), is the unknown discrete-time Fourier trans-
form of an input signal x(t) (see Fig. A.2a). In the multi-coset scheme the relation
between the input and the outputs is as follows [5, 6]:

y(f) = A · x(f) (A.1)

y(f) = [y1(f), . . . , yP (f)]T, x(f) = [x1(f), . . . , xL(f)]T
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f, Hz

fmax

0

|X( f )|

-fmax

(a) Absolute values of the discrete-time Fourier transform of the three-band signal x(t).

0

L spectrum slices

Xℓ Xℓ+1

|X( f ̂ )|

f ̂, Hz

(b) Absolute values of the DFT coefficients of the three-band signal x(t) sampled at the rate
1/T , f̂ denotes the discrete frequency.

Fig. A.2: Illustration of the Fourier transform and the discrete Fourier transform of the sequence of
samples of the three-band signal x(t).

f ∈ F0 = [0, 1
L·T ), yi(f) ∈ C is the known discrete time Fourier transform of yi[m],

m ∈ Z+, x`(f) = X (f + `
LT ) ∈ C is the `th slice upon slicing X (f) into L equal-sized

parts. The measurement matrix A ∈ CP×L is given by:

Ai,` = 1
L · T

exp
[
j

2π
L
· ci · (`− 1)

]
. (A.2)

In (A.1) f is a continuous variable. Therefore this equation describes an infinite
dimensional problem [6, 13]. In [2] the authors proposed a method that reduces the
infinite dimensional problem to the finite dimensional MMV by computing the corre-
lation matrix of the interpolated ADCs’ output sequences. This allows to reconstruct
the continuous input signal without discretization. However, there are practical appli-
cations where the DFT of the sequence of samples of an input signal is computed rather
than the time-domain reconstruction, e.g. spectrum analyzers. From this perspective
it is interesting to evaluate how the DFT of a multi-band frequency sparse signal can
be estimated with the multi-coset sampling scheme. Denote by X(f̂) ∈ CK the DFT
of the sequence of length K obtained by uniform sampling x(t) with the sampling rate
1/T . The discrete multi-coset problem can be formulated as follows:

Ŷ = AX (A.3)
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Ŷ =

Y1
...
YP

 ◦
α1,1 . . . α1,M

...
. . .

...
αP,1 . . . αP,M


αp,m = exp

[
−2πj·cp·(m−1)

K

]
, p∈{1, . . . , P}, m∈{1, . . . ,M}

X =

X1
...
XL

 =

 X(1) . . . X(M)
...

. . .
...

X((L− 1)·M + 1) . . . X(L·M)



where Ŷ ∈ CP×M and X ∈ CL×M , ◦ denotes Hadamard product (element-wise mul-
tiplication). YP ∈ CM is the known DFT of the output sequence of the pth channel,
i.e Yp = FDFT(yp[1, 2, . . . ,M ]), FDFT denotes DFT. X(j) is the jth element of X(f̂).
Then the matrix X ∈ CL×M is formed by slicing and rearranging the unknown DFT
transform X(f̂), X` ∈ CL is the `th slice of X(f̂) (see Fig. A.2b). We assume that the
total number of the observed samples of x(t) equals to K = L ·M . The coefficients αi,m
are introduced to compensate the time shift of the mth DFT bin in the pth sampling
channel. The multi-coset sampling for discrete signals can be done in three steps:

1. Take M samples from each ADC;

2. Take DFTs of the obtained sequences;

3. Multiply each DFT bin by the corresponding time shift multiplier;

Equation (C.3) establishes the relation between the DFT transforms of the sequences
of samples of an individual channel and the DFT transform of the input signal. This
interpretation of the multi-coset sampling differs from the original idea that is to recon-
struct a continuous input signal [2, 5, 6]. If X can be uniquely defined from (C.3) given
Ŷ, the traditional Nyquist-rate sampling can be replaced by the sub-Nyquist multi-coset
sampling in applications where DFT is needed. To our best knowledge, this discrete
approach has not been used in the existing publications. Discretization introduces some
undesirable features such as spectrum leakage, the need for block processing, window-
ing effects etc. At the same time, all these negative effects appears in the Nyquist-rate
sampling as well.

Each column of the unknown matrix X, a source vector, has the corresponding
column of the known matrix Ŷ, the measurement vector. This is why (C.3) is named the
multiple-measurement vectors problem [9]. The task of a reconstruction algorithm is to
find the unknownX based on the known Ŷ andA. Recall that P < L. Therefore, in the
general case of arbitraryX the system of linear equations (C.3) is under-determined, so it
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does not have a unique solution. For the signal measurement application this means that
the sampled signal can not be uniquely reconstructed. However, the rows X` ∈ CL of X
are slices of the X(f̂) (see Fig. A.2b ). If X(f̂) only has few non-zero bands, the matrix
X only has few non-zero (whole or partly) rows. Under this assumption, blind multi-
coset sampling for discrete multi-band signals becomes the compressed sensing problem.
It was proven that a unique solution to (C.3) exists under certain conditions. Various
theoretical aspects of compressed sensing, such as requirements for the measurement
matrix, the necessary number of measurements, robustness to noise etc. are discussed
in [14] and its references.

Denote by S a set of indices of non-zero rows of X. This set is called the support
of X and indicates the non-zero frequency slices. The matrix XS is formed by selecting
the rows of X with indices S and AS is formed by selecting the columns of A with the
same indices S. Then (C.3) is reduced to [5]:

Ŷ = ASXS (A.4)

The properties of the matrix AS affect the performance of the sampling system. The
reconstruction fails if AS does not have full column rank. In the presence of noise a high
condition number of AS will also lead to the reconstruction failure. It is of particular
interest to select the sampling pattern (L,C) that yields a well-conditioned AS for all
possible variations of the support S. For our simulation we select the sampling pattern
for each number of the sampling channels by searching over the all possible combinations
and analysis of the condition numbers [6].

2.2 Test signals and performance measures
The level of frequency sparsity of a signal can be quantified by the spectral occupancy
ratio Ω:

Ω = λ(supp〈(X(f̂)〉)
λ([0, fmax]) , Ω ∈ [0, 1] (A.5)

supp〈·〉 is the support of X(f̂), which is the set of frequency points where X(f̂) is
nonzero, λ(·) denotes the Lebesgue measure. In our case the Lebesgue measure is equal
to the joint length of frequency bands. We assume that X(f̂) does not contain noise
when we calculate the value of Ω, so that broadband noise does not affect it. Denote by
N the number of bands in a signal. Then Ω and N describe the structure of the signal
(see Fig. A.3).

To evaluate the performance of the reconstruction algorithms we use multi-band test
signals with different parameters. We vary occupancy ratio, number and positions of
bands and power of noise in signals. Frequency bands are formed via sinc(·) functions in
the time domain and always centered at the middle of the frequency slices. Signals are
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Fig. A.3: Illustration of the test signals. Black line – the signal with N=3, Ω = 0.1, SNR = 20dB, grey
line – the signal with N=2, Ω = 0.12, SNR=10 dB, fmax =5MHz. Test signals consist of K = L ·M
samples. Dashed lines show the positions of the frequency slices.

real-valued. We use the support reconstruction ratio as one of the performance measure:

R = Number of correctly found support sets
Number of test signals . (A.6)

Support reconstruction ratio shows how well a reconstruction algorithm identifies the
positions of bands in a signal.

As for the second performance measure we use relative root mean square (RRMS)
value:

RRMS =

√√√√∑K
i=1(X̂(i)−X(i))2∑K

i=1 X
2(i)

≥ 0 (A.7)

where X(i) and X̂(i) are original and estimated DFT coefficients of the test signal,
K = L ·M is the total number of DFT coefficients. In case of Nyquist-rate sampling
RRMS is always equal to 0.

To simulate noisy environment we add white Gaussian noise to the test signals. The
power of noise corresponds to the specified Signal-to-Noise Ratio (SNR) as illustrated
in Fig. 3.

SNR = 10 · log10

(
Psignal

Pnoise

)
(A.8)

where Psignal is power of a clean signal, Pnoise is power of noise. Thus, we introduce
noise folding:

ŶN = A (X + N) (A.9)
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where ŶN ∈ CP×M is the matrix of measurements of a noisy signal andN ∈ CL×M is the
matrix that corresponds to broadband noise. Elements of N ∈ CL×M are independent
and identically distributed from the Gaussian distribution.

3 Reconstruction algorithms
We consider the following algorithms that are used in compressed sensing applications:
1) Orthogonal Matching Pursuit for MMV – M-OMP [9], 2) MUltiple Signal Classifi-
cation – MUSIC [6], 3) Subspace Augmented-MUSIC [10], 4) FOCal Underdetermined
System Solver for MMV – M-FOCUSS [9], 5) Basis Pursuit Denoising for MMV – M-
BPDN [11, 12]. The MUSIC algorithm was used by Feng and Bresler in [2] when they
proposed multi-coset blind sampling. SA-MUSIC is further development of MUSIC.
The other three algorithms are used to solve general MMV problems. The detailed de-
scription of the reconstruction algorithms can be found in the corresponding references.

Algorithms 1–3 show the best performance when the number of non-zero rows of
X is known prior to the reconstruction. Otherwise we have to estimate the number of
non-zeros. However, the precision of this estimation is based on many factors: level
of noise in a signal, width of bands in a signal, dynamic range of the input signal
etc. In our simulation we assume that the number of non-zeros is known prior to
the reconstruction, otherwise the performance of the reconstruction algorithm will be
limited by the algorithm estimating this number.

In additional to the general regularized M-FOCUSS we implement a modification
M-FOCUSS∗ that takes the number of non-zero rows of X as an input parameter and
returns the indices of non-zero frequency slices. That allows to compare M-FOCUSS∗
to algorithms 1–3 in terms of the support reconstruction ratio.

We use our own implementations of the reconstruction algorithms except M-BPDN
[11, 12]. Signal subspace estimation in SA-MUSIC is performed by thresholding eigenval-
ues. M-FOCUSS was implemented with Tikhonov regularization [9], the regularization
parameter was picked empirically. The internal parameter of M-FOCUSS was set to
0.8 as it gives good tradeoffs between the sparsity of the solution and the convergence
speed [9].

Signal reconstruction with M-OMP, MUSIC, SA-MUSIC and M-FOCUSS∗ is done
in two steps. The first step is to find the frequency support S. Different algorithms do it
in different ways. The second step is to solve the determined system (A.4). This step is
the same for all these algorithms. So, the performance of M-OMP, MUSIC, SA-MUSIC
and M-FOCUSS∗ can be compared in terms of the support reconstruction ratio R. M-
FOCUSS and M-BPDN algorithms reconstruct a signal directly. Theirs performance is
compared in terms of the RRMS values.

M-FOCUSS∗ and M-FOCUSS are initialized with the least square solution. For the
algorithms 1, 2 the correlation matrix Q = ŶNŶ

H

N is computed. Algorithms 3–5 are
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applied directly to (A.9).

4 Simulation

4.1 Simulation setup
For our simulations we use the multi-coset scheme with L = 19. Sampling patterns with
a prime L yields to full column rank matrices AS [5]. We vary the number of sampling
channels from 1 to 19. Three types of sampling patterns are used: 1) optimal sampling
patterns – patterns that are selected by exhaustive search for the lowest condition num-
bers, 2) random generated patterns, 3) bunched sampling patterns – C = {1, 2, . . . , P}.

We created signals with different parameters. For one set of parameters we cre-
ate 1000 random signal instances. Variation of parameters: N = {1, 2, 3, 4},
Ω = {0.05, 0.10, 0.15, 0.2}, SNR = {30, 16, 13, 10, 6} dB. Positions of bands are
picked randomly but always in the middle of frequency slices.

This gives control over the support of X. Amplitudes of bands are picked within
the 20 dB dynamic range. All bands have the same width. Bands do not overlap. Test
signals are stored in files. This allows to run simulations for different reconstruction
algorithms independently. M-OMP, MUSIC, SA-MUSIC and M-FOCUSS∗ take the
number of non-zero frequency slices as an input parameter. M-BPDN and M-FOCUSS
run without any prior information about the signals. The algorithms are validated by
sampling and reconstructing test signals without noise. The source code used for the
simulation is available at http://www.sparsesampling.com/discretemulticoset.

4.2 Simulation results
Some of the simulation results are presented in Fig. 4–6. We do not include all the
simulation results because of the limited paper space. However, the presented plots
allow to make the correct conclusions as they preserve the tendency of behaviors of
the reconstruction algorithms. Convergence analysis has shown the stability of the
obtained data. For signals with a high SNR, MUSIC has the highest reconstruction
rate (see Fig. A.4a) – reconstruction rate 1 is obtained with the 7 channels while other
algorithms require more sampling channels. However, M-FOCUSS∗ outperforms the
MUSIC algorithm in case of a low SNR. As can be seen in Fig. A.4b the reconstruction
rate 1 for M-FOCUSS∗ is achieved with 10 sampling channel and for MUSIC with
12 channels. SA-MUSIC is a further development of MUSIC that overcomes some
restrictions of the original algorithm. But on Fig. 4 we see that the performance of SA-
MUSIC is lower than the performance of MUSIC. The reason for this is the thresholding
approach for the estimation of the signal subspace in SA-MUSIC [10]. If the signal
subspace is not correctly estimated then the whole reconstruction fails. The thresholding
parameter should be picked for each set of signal’s parameters.
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The M-OMP algorithm has the lowest reconstruction rate. However, the reconstruc-
tion performance of OMP is less sensitive to SNR. Reconstruction rate 1 for signals
with N = 3, Ω = 0.15 and different SNR (30 dB and 10 dB) is achieved with the same
number of the sampling channels (see Fig. A.4a and A.4b). In case of 1- and 2-band
signals the reconstruction performance of other algorithms decrease to the M-OMP level
when the signals have a low SNR (SNR≤ 13 dB) (see Fig. A.4c). In this case, in order
to have the reconstruction rate equal to 1 with M-OMP, MUSIC and M-FOCUSS∗ the
multi-coset scheme should have 9 channels.

We compare the reconstruction rates for the sampling patterns of different types.
Plots on Fig. 5 shows that the reconstruction rate for the random and bunched sampling
patterns is lower than for the sampling patterns obtained by the analysis of the condition
numbers. Moreover, as can be seen on Fig. A.5a the random sampling pattern for 12
sampling channels results in lower than expected reconstruction rate. This shows that
relying on random selection of sampling patterns may lead to undesirable results.
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(a) N = 3, Ω = 0.15, SNR=30 dB.
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(b) N = 3, Ω = 0.15, SNR=10 dB.
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(c) N = 2, Ω = 0.10, SNR=13 dB.

Fig. A.4: Empirical reconstruction rate with M-OMP, MUSIC, SA-MUSIC and M-FOCUSS∗ vs the
no. of sampling channels. Optimal sampling patterns are used.
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(a) M-OMP, N = 2, Ω = 0.10, SNR=16 dB.
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(b) MUSIC, N = 3, Ω = 0.15, SNR=13 dB.

Fig. A.5: Empirical reconstruction rate with the selected algorithms for different types of the sampling
patterns vs the no. of sampling channels.
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Fig. A.6: RRMS error with M-BPDN and M-FOCUSS vs the no. of sampling channels, N = 4,
Ω = 0.16, SNR=20 dB. Optimal sampling patterns are used.
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Comparison of M-FOCUSS and M-BPDN is presented on Fig. A.6. Reconstruction
with M-BPDN results in lower RRMS error when P < 6, but in this case RRMS
≥ 0.8. This is a high reconstruction error that makes useless the reconstructed signal
because it significantly differs from the input signal. Although the exact value of the
acceptable RRMS error is defined by the specific application, we may assume that we
are aiming to get RRMS not higher that 0.5. From this perspective M-FOCUSS has
better reconstruction performance for all the test signals considered in this research.

5 Conclusions
This paper investigates the performance of commonly used reconstruction algorithms in
discrete blind multi-coset sampling. Discrete multi-coset sampling can replace Nyquist-
rate sampling in applications with frequency sparse signals.

Simulation results show that use of optimal sampling patterns results in the best
reconstruction performance. Bunched and random sampling patterns may lead to the
undesirable decrease of the reconstruction performance.

When the number of non-zero slices is known prior to reconstruction, the modifica-
tion of M-FOCUSS outperforms all other algorithms except for the low noise signals. In
that case MUSIC is more beneficial. In order to use SA-MUSIC with the thresholding
for the subspace estimation, the thresholding parameter should be picked for each type
of a signal (number of bands, dynamic range, level of noise etc). M-OMP is a simple
algorithm that can be successfully applied in case of signals with the small number of
bands even with relatively high level of noise.

M-FOCUSS and M-BPDN can be used when the number of non-zero slices of the
DFT of the sequence of the samples of an input signal is not known prior to the recon-
struction. In this case the M-FOCUSS algorithm also shows better performance.
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Abstract
This paper proposes a method that reduces the computational complexity of signal re-
construction in single-channel nonuniform sampling while acquiring frequency sparse
multi-band signals. Generally, this compressed sensing based signal acquisition allows a
decrease in the sampling rate of frequency sparse signals, but requires computationally
expensive reconstruction algorithms. This can be an obstacle for real-time applications.
The reduction of complexity is achieved by applying a multi-coset sampling procedure.
This proposed method reduces the size of the dictionary matrix, the size of the measure-
ment matrix and the number of iterations of the reconstruction algorithm in comparison
to the direct single-channel approach. We consider an orthogonal matching pursuit re-
construction algorithm for single-channel sampling and its modification for multi-coset
sampling. Theoretical as well as numerical analyses demonstrate order of magnitude
reduction in execution time for typical problem sizes without degradation of the signal
reconstruction quality.

1 Introduction
Signals generally must be sampled at the Nyquist rate, otherwise aliasing will prevent
correct reconstruction of the signal. However, if we narrow the scope of signals to fre-
quency sparse signals, we can successfully apply sub-Nyquist rate sampling [1, 2]. This
type of signal acquisition assumes that the number of the obtained samples (measure-
ments) is lower than the number of Nyquist rate samples. Frequency sparsity implies
that the energy of a signal is concentrated in small joint or disjoint parts (i.e. bands
or individual tones) of the spectrum. If sub-Nyquist rate sampling is possible, then
cheaper analog front ends may be used, or signal acquisition can be accelerated. Sub-
Nyquist sampling has evolved from bandpass sampling to various compressed sensing
(CS) architectures such as the random demodulator [3], the nonuniform sampler [?], the
multi-coset sampler [2, 4, 5] and the modulated wideband converter [6].

The key idea of CS is to use advanced reconstruction procedures to compensate for
the lack of measurements. In the language of linear algebra, the process of the CS
signal reconstruction is the process of solving an under-determined linear system with
fewer equations than unknowns. The concept of sparsity is used to establish the rules
under which a unique signal reconstruction is possible [7]. By contrast to CS, traditional
Nyquist rate sampling corresponds to a system with the isometric matrix that can be
easily solved.

An obstacle for real-time CS applications is the high complexity of reconstruction [?].
Therefore, it is important to find ways to reduce the computational costs of signal recov-
ery. There are two main groups of reconstruction algorithms [8]: 1) greedy algorithms
which find the dominant components of the solution; and 2) relaxation methods which
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solve convex (such as `1-minimization) and non-convex problems.
In this paper, we propose a method that reduces computational complexity of signal

reconstruction in single-channel nonuniform sampling (SC-NUS). SC-NUS is one of the
CS approaches that can be used for acquisition of frequency sparse signals. SC-NUS
selects samples from a Nyquist grid and uses them to recover the whole Discrete Fourier
Transform (DFT) of the Nyquist rate samples. Frequency sparse signals that can be
acquired with SC-NUS may have both individual tones and bands. However, in some
applications such as telecommunications, the energy of a signal is concentrated in a small
number of bands rather than in a large number of independent tones. In this case, a
multi-coset sampler (MCS) architecture is beneficial [2, 4, 5]. MCS also selects samples
from a Nyquist grid, but does it periodically. Assume that a real-valued multi-band
signal has to be sensed with SC-NUS with the predefined undersampling ratio. That
can be done in two ways: 1) in the direct SC-NUS manner; and 2) in the MCS manner.
We show that the computational complexity of the signal reconstruction in MCS is lower
than in direct SC-NUS. This reduction of complexity is the result of two factors. First,
the size of the measurement and the dictionary matrices in MCS is smaller than the size
of the corresponding matrices in SC-NUS. Secondly, the number of iterations performed
by the reconstruction algorithms in MCS is lower than the number of iterations in SC-
NUS reconstruction. On the whole, we reduce the number of arithmetical operations
that are performed at the reconstruction stage. Numerical simulations show that this
reduction of computational complexity does not decrease the reconstruction quality. In
this paper, we consider the Orthogonal Matching Pursuit (OMP) algorithm for SC-NUS
and its modification for MCS. A noise free scenario is assumed for simplicity, but the
method can also be applied to the noisy case.

A related method is presented in [?], where the authors propose to jointly reconstruct
a set of sequentially sampled signals. However, this method works well only if the
positions of tones and bands do not change significantly. In [9], the authors pointed out
that reconstruction in the modulated wideband converter requires fewer FLoating-point
OPerations (FLOP) than reconstruction in the random demodulator. Our proposed
method extends this observation.

The outline of the paper is as follows. In Section 2, we describe single-channel nonuni-
form and multi-coset sampling, and present the main idea of the paper. Analytical and
simulation results are shown in Section 3. We conclude the paper in Section 4.

2 Sampling Schemes

2.1 Single-channel nonuniform sampling
SC-NUS acquires only some of the Nyquist rate samples. In the reconstruction proce-
dure, these measurements are used to recover the DFT of samples as they would be
acquired at the full Nyquist rate. Therefore, we decrease the average sampling rate be-
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(a) Direct single-channel nonuniform sampling, the SC-NUS pattern Λ = {0, 3, 4, 6, 7, 8, 10, 13}.

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13=N-1
=LW-1

z1,1 z4,2

MCS sampling period

z2,1 z3,1
z4,1
z1,2

z2,2

z3,2

λ1 λ2 λ3 λ4

L+λ1

L+λ2 L+λ3

L+λ4

MCS sampling period

x(t)
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number of sampling channels P =4, the MCS pattern Λ = {0, 1, 4, 6}.

Fig. B.1: Illustration of SC-NUS and MCS, the Nyquist grid is marked with the dotted lines.

low the Nyquist rate. The process of sampling is illustrated in Fig. B.1a. In total, there
are N = 14 Nyquist rate samples, and only M = 8 of them are acquired by SC-NUS.
The so-called sampling pattern Λ defines which samples are obtained. In SC-NUS, the
relation between the measurements and the unknown DFT is

y = A·x = D·FN ·x; (B.1)

where y ∈ RM×1 is a vector of the acquired samples, D ∈ ZM×N is the decimation
(measurement) matrix that corresponds to the sampling pattern, FN ∈ CN×N is the
DFT (dictionary) matrix of order N , and x ∈ CN×1 is the unknown DFT of the Nyquist
rate samples. The vector x is assumed to be sparse with K1 <M non-zero elements.
The support S is the set of indices of these non-zero elements.

The OMP algorithm [8] can be used to recover the unknown input signal in SC-
NUS. A reconstruction with OMP is performed in two steps: 1) OMP finds the support
S of x (see Algorithm 1); 2) the actual values of x in the support are obtained with
the least squares method applied to y ≈ AS·xS . The symbol S in the superscript
and in the subscript denotes the column and the row restriction of the matrix and the
vector, respectively. In Algorithm 1, we utilize the fact that real-valued signals have
conjugate-symmetric DFT [5].
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2.2 Multi-coset sampling
MCS also selects the Nyquist rate samples but does it periodically [2, 4, 5]. The principle
behind MCS is to use several parallel uniform samplers. These samplers acquire signal’s
values at the same rate but with different time offsets. The offsets are defined by the
MCS pattern Λ = {λ1, . . . , λP } ⊂ {0, 1, . . . , L − 1}}. MCS can be seen as a time-
interleaved sampler with P out of L channels. Accordingly, only P samples are selected
from every bunch of L consecutive Nyquist-rate samples. L is called the MCS period.
The process of MCS is illustrated in Fig. C.3b where W = 2 MCS periods are shown.
Denote by zp,w ∈ R, p ∈ {1, 2, . . . , P}, w ∈ {1, 2, . . . ,W} the wth output sample of the
pth sampling channel. In discrete MCS, the relation between the measurements and the
unknown DFT is described with the following equation [2, 4, 5]:

Y = B·X (B.2)

where Y ∈ CP×W is the known measurements,

Y =

FW ([z1,1 · · · z1,W ]T)
...

FW ([zP,1 · · · zP,W ]T)

 ◦
δ1,1 . . . δ1,W

...
. . .

...
δP,1 . . . δP,W

 (B.3)

δp,w = exp
[
−2πj · λp · (w − 1)

LW

]
, (B.4)

the matrix B ∈ CP×L is the known matrix that comprises both the measurement and
the dictionary matrices. The elements of B are given by:

Bp,` = 1
L·T

exp
[
j

2π
L
· λp · (`− 1)

]
(B.5)

andX ∈ CL×W represents the unknown input signal, p∈{1, 2, . . . , P}, w∈{1, 2, . . . ,W},
` ∈ {1, 2, . . . , L}. The matrix X is assumed to be sparse with K2 < P non-zero rows.
In (C.4), FW ([zp,1 · · · zp,W ]T) is DFT of the samples obtained from the pth sampling
channel, ◦ denotes the Hadamard product and δp,w represents the delay of the wth DFT
bin in the pth sampling channel. The Nyquist sampling period T depends on the highest
frequency component in the input signal. In total, the duration of the observed signal
equals to LWT . Consider the matrix X. If the unknown DFT of the input signal is
sliced into L equal parts, then each row of X is one of these consecutive slices [2, 4, 5].
Signals with a few bands in the spectrum may result in a highly sparse X.

Reconstruction with a greedy method for MCS is similar to the reconstruction for
SC-NUS. We use the M-OMP algorithm that is the modification of OMP for multiple-
measurement vectors problem [10]. M-OMP finds the support S, the indices of non-zero
rows, of X (see Algorithm 2). Knowing the support, we can reconstruct the unknown
signal with the least squares method similar to the SC-NUS case.
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Algorithm 1 Find the support S of x with OMP [8]

Input: y ∈ RM×1,A ∈ CM×N ,K1 ∈ N1
Output: S ∈ NK1

1
1: S ← ∅, r← y, k ← 0
2: for k = 1 to dK1/2e do
3: imax ← argmaxi∈{1,...,N}\S〈a∗i , r〉
4: isym ← N − imax + 1
5: S ← S ∪ {imax, isym}
6: Q← Gram-Schmidt(AS)
7: r← r−Q·Q∗ ·r
8: end for

2.3 Multi-coset reconstruction in single-channel nonuniform sam-
pling

Consider the sampling scenario where SC-NUS acquires multi-band signals. This can be
done in two ways: 1) by the direct single-channel sampling that is described by (B.1);
and 2) SC-NUS can select samples from the Nyquist grid in the same way as MCS.
Therefore, SC-NUS can emulate MCS. In this case, the reconstruction problem (B.1) is
replaced by (C.3).

The notable thing is that the reconstruction in MCS has lower computational com-
plexity than the reconstruction in the direct SC-NUS. This reduction of the complexity
is the result of two factors:

(1) in MCS, measurement and dictionary matrices are smaller than the corresponding
matrices in SC-NUS; in other words, A ∈ CM×N is replaced by B ∈ CP×L where
P �M and N � L.

(2) in MCS reconstruction, the number of iterations performed by the reconstruction
algorithm is lower than the number of iterations in the SC-NUS reconstruction.
This happens due to the fact that usually K2 � K1.

The drawback of the proposed method is a decrease in the frequency support resolu-
tion. SC-NUS can reconstruct an individual DFT bin, whereas MCS can reconstruct
only the whole frequency slice. This trade-off between the support resolution and the
reconstruction complexity is out of the scope of the current paper and will be considered
in our future research.

2.4 Complexity analysis
By computational complexity of a procedure we assume the number of FLOPs per-

formed in this procedure, and by one FLOP we assume an arithmetic operation per-
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Algorithm 2 Find the support S of X with M-OMP [10]

Input: Y ∈ CP×W ,B ∈ CP×L,K2 ∈ N1
Output: S ∈ NK2

1
1: S ← ∅, R← Y, k ← 0
2: for k = 1 to dK2/2e do
3: imax ← argmaxi∈{1,...,L}\S ‖b

∗
i ·R‖2

2
4: isym ← L− imax + 1
5: S ← S ∪ {imax, isym}
6: Q← Gram-Schmidt(BS)
7: R← R−Q·Q∗ ·R
8: end for

formed on two real floating-point numbers. Then, the complexity of the reconstruction
in SC-NUS is

CSC-NUS = CSC-NUS
OMP + CSC-NUS

Least Squares, (B.6)

and the complexity of the MCS reconstruction is described with

CMCS = CMCS
(3) + CMCS

M-OMP + CMCS
Least Squares, (B.7)

where CMCS
(3) denotes the complexity of the calculations (C.4). Assume that we use SC-

NUS and MCS to recover the DFT of the Nyquist rate samples of a multi-band signal.
The number of the samples is equal to N = LW with W ∈ N1, SC-NUS and MCS are
used with the same undersampling ratio M/N = PW/(MW ) = P/L and the frequency
bands in a signal are aligned with the MCS frequency slices. We say that a band is
aligned with a frequency slice if it occupies the whole slice (see Fig. B.2). One MCS slice
comprises W DFT bins. If F is the number of bands in the signal, then the number of
non-zero elements of x in (B.1) is equal to K1 = 2FW , where the factor 2 appears due
to the symmetry of DFT. At the same time, F bands result only in K2 = 2F non-zero
rows of the matrix X in (C.3). Knowing the values of M,N,P, L,W,K1 and K2, we
can compute the complexity of the reconstruction in SC-NUS and MCS. For example,
consider the complexity of the stage 3 in Algorithm 1 and Algorithm 2. For OMP, this
number is

COMP
Stage 3 ' (8M − 2)

K1/2∑
i=1

(N − 2(i− 1))

' 8PF (L− F + 1/W )W 3, (B.8)
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and for M-OMP

CM-OMP
Stage 3 ' (8PW − 2)

K2/2∑
i=1

(L− 2(i− 1))

' 8PF (L− F + 1)W, (B.9)

The ratio between these two numbers is

COMP
Stage 3/C

M-OMP
Stage 3 'W 2, (B.10)

K1 and K2 are even due to the fact that we consider real-valued signals. So, for this
stage, the reduction in complexity is the quadratic function of the number W . In MCS,
the additional computations (C.4) have to be made prior to reconstruction. However,
they have only O(W log(W )) cost. On the whole, the direct counting shows that the
MCS reconstruction requires fewer arithmetic operations than the SC-NUS reconstruc-
tion (see Section 3). This counting done using the code that computes the complexity
according to (B.6) and (B.7). The parts of the code that calculate the costs of the stan-
dard operations, such as a matrix multiplication, a QR factorization and a backward
substitution, are validated by comparison with the theoretical complexity available in
the literature. The least squares solutions are obtained via QR factorization.

In (B.10), we assume that SC-NUS and MCS operates with the same undersampling
ratioM/N = P/L. That is, we assume that the same sampling ratio results in the same
reconstruction quality for both MCS and SC-NUS. We check this assumption with the
numerical simulations.

3 Numerical Simulations
The two analyzed signal acquisition methods were implemented and benchmarked in
MATLAB.1 In order to have a well defined number of arithmetic operations, a standard
and naïve implementation of QR factorization and a least squares solver have been
made [11]. Benchmarking is performed to make an overall numerical evaluation of the
potential reconstruction speed-up in MCS compared to the direct SC-NUS.

3.1 Simulation setup
We consider simulation scenarios with multi-band frequency sparse signals. The signals
are noise-free, real valued and generated in the time domain as N samples such that
N = LW . The highest frequency component of a signal does not exceed fmax. All bands
in a signal have the same bandwidth, B. The average sampling rate fsamp is varied from

1The source code is available online at http://www.sparsesampling.com/discretemulticoset/.
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Fig. B.2: Absolute DFT values versus frequency for an illustrative test signal with F = 2, L = 19,
N = 494, K1 = 104 and K2 = 4. The vertical grid lines correspond to the MCS frequency slices.

2fmax/L to the Nyquist rate fNyq = 2fmax in steps of 2fmax/L. This shows how the
reconstruction quality depends on the sampling rate. The reconstruction quality of one
test signal is measured with the relative root mean squared error:

E =


√
‖ x̂− x‖2

2/‖x‖2
2,

√
‖ x̂− x‖2

2/‖x‖2
2 < 1

1, otherwise
(B.11)

where x and x̂ denote the original and recovered DFT coefficients, respectively. It
is useless to consider the values of E greater than 1. Due to the possible spectrum
leakage effect, the vector x is not completely sparse but rather compressible. Therefore,
we cannot necessarily expect the error E to converge to zero in our simulations. An
example of a test signal with F = 2 bands is illustrated in Fig. B.2. The maximum
frequency component is less than fmax = 5 MHz and the Nyquist rate is fNyq = 10 MHz.
The duration of the signal corresponds to N = 494 Nyquist rate samples which is 49.4µs.
The bands are placed randomly but always in the centers of the frequency slices. We
choose L to be a prime number according to [8]; we use L = 19. The width of a
frequency slice is thus 2fmax/L ' 526 kHz. The bandwidth of the individual bands of a
test signal is set to B = 486kHz. Such a bandwidth together with the spectrum leakage
effect results in full occupation of the spectrum slice. The power of the individual bands
are picked randomly over a dynamic range of 20 dB. It is assumed that the numbers
K1 and K2 in Algorithm 1 and Algorithm 2 are known prior to the reconstruction of
every signal. Otherwise, the performance of OMP and M-OMP are limited by methods
chosen to evaluate the number of non-zero elements in the solution. This can distort the
assessment. Simulations were performed for F = {1, . . . , 6} bands in the test signals.
For every number of bands, we generate 1000 signal instances which was shown to ensure
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Fig. B.3: Simulated average reconstruction error in SC-NUS and MCS versus average sampling rate.
The number of bands is F = 4.

convergence of the results.
Selection of proper sampling patterns is itself a nontrivial problem. However, in case

of noise free signals random sampling patterns work well for both SC-NUS and MCS
[5]. The benchmarks were performed on a computer with an Intel X5670 2.93 GHz CPU
running MATLAB R2012a.

3.2 Reconstruction speed-up
As can be seen in Fig. B.3, the proper reconstruction quality is achieved with the same
sampling rate for both SC-NUS and MCS. By the proper quality, we mean the error-
floor value of E resulting from spectrum leakage which does not depend on the sampling
rate. This holds true for all F and ensures that the replacing SC-NUS by MCS does
not degrade the recovery quality.

The theoretical and the benchmarked reconstruction speed-up are presented in Fig. B.4.
The benchmarked speed-up is the average value of the ratio of the benchmarked sig-
nal recovery time in SC-NUS to that in MCS. The theoretical speed-up is the ratio
CSC-NUS/CMCS. As can be seen from the figure, the benchmarked speed-up is 4 − 7
times lower than the theoretical speed-up. This can be explained by the fact that in the
theoretical analysis, we disregard some practical issues such as the memory organiza-
tion, the processor architecture and the cost of the auxiliary operations. Nevertheless,
we do see the same behaviour of the theoretical and benchmark speed-up.

4 Conclusions
This paper proposed a method that decreases the computational complexity of the
reconstruction procedure in compressed sensing single-channel nonuniform sampling.
We consider sampling of multi-band real-valued signals in noise free environment. The
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Fig. B.4: Theoretical and benchmarked reconstruction speed-up versus number of bands, F .

core idea of the proposed method is to use the multi-coset sampling approach. The
drawback of the proposed method is the reduced frequency support resolution which
may be acceptable in many applications. Depending on the number of bands in a signal,
the number of arithmetic operations in the signal reconstruction stage is observed to
decrease by the orders of magnitudes of 103 to 104. In addition, the proposed method
does not degrade the reconstruction quality in the tested cases.
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Abstract
Single-channel Nonuniform Sampling (SNS) is a Compressed Sensing (CS) approach
that allows sub-Nyquist sampling of frequency sparse signals. The relatively simple ar-
chitecture, comprising one wide-band sampling channel, makes it an attractive solution
for applications such as signal analyzers and telecommunications. However, a high com-
putational cost of the SNS signal reconstruction is an obstacle for real-time applications.
This paper proposes to emulate Multi-Coset Sampling (MCS) in SNS acquisition as a
means to decrease the computational costs. Such an emulation introduces performance-
complexity tradeoffs due to the difference of the SNS and MCS models. We investigate
these tradeoffs with numerical simulations and theoretical assessments of the reconstruc-
tion complexity in multi-band signals scenarios. These scenarios include different num-
bers, different widths and positions of the frequency bands and different levels of noise in
the signals. For the SNS reconstruction, we consider the accelerated iterative hard thresh-
olding algorithm; for the MCS reconstruction, the multiple signal classification and focal
underdetermined system solver algorithms are used. The proposed emulation reduces
the computational complexity up to an order of magnitude. For one of the scenarios,
the reconstruction quality slightly decreases. For the other scenarios, the reconstruction
quality is ether preserved or improved.

1 Introduction
The Nyquist sampling rate is a sufficient but not a necessary condition for an acquisition
of sparse signals (see Fig. C.1a) [1, 2]. These signals can be successfully sampled at
lower, sub-Nyquist, rates. Today, this approach is called Compressed Sensing (CS)
[3–5]. In CS, an acquisition process is described by an underdetermined system of linear
equations, where the signal of interest is represented by a sparse or approximately
sparse solution [6]. Consequently, a reconstruction in CS is the process of estimating
this solution. The CS approach is universal and can be applied in many fields such as
in telecommunications [7], image processing [6] and time-delay estimation [8].

Several CS methods have been developed to acquire frequency sparse signals: 1)
single-channel nonuniform sampling (SNS) [7, 9, 10]; 2) multi-coset sampling (MCS) [11–
13]; 3) random demodulator (RD) [14]; and 4) modulated wideband converter (MWC)
[15]. The SNS architecture comprises one wideband sampling channel (see Fig. C.1c).
RD and MWC requires premixing of the input signal prior to sampling and a low noise
amplifier depending on the power of the input signal. The MCS architecture can be
obtained by removing some of the parallel channels of the interleaved Analog-to-Digital
Converter (ADC) [11].

With the SNS approach, some applications like signal analyzer and telecommunica-
tion can acquire signals with a wider accumulated bandwidth. In most of the modern
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f [Hz]

X(f)
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(a) Frequency sparse wide-band signal.

ADCx(t) x[n]
Sample-and-hold

(b) Uniform Nyquist rate sampling.

ADCx(t) y[n]
Sample-and-hold

(c) Single-channel Nonuniform Sampling.

Fig. C.1: Illustration of the different single-channel acquisition approaches. Pulse signals represent
the moments of sampling.
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(a) Multi-band signal

x(t)

ADC 1
x((wL+ λ1)T ) = y1[w]

ADC 2
x((wL+ λ2)T ) = y2[w]

ADC P
x((wL+ λP )T ) = yP [w]

(b) Multi-Coset Sampling architecture.

ADCx(t) y[n]
Sample-and-hold

Period 1 Period 2

(c) SNS emulates MCS.

Fig. C.2: Illustration of MCS acquisition. L is the multi-coset sampling period in samples and T is
the Nyquist sampling period.

sampling devices, the input bandwidth exceeds the maximum sampling rate [16]. The
input bandwidth can also be increased by combining an existing ADC with a specially
designed sample-and-hold circuit [7]. Therefore, a device can operate at Nyquist rate
up to some limit and then it may switch to CS mode. With the uniform Nyquist rate
sampling, a signal with the highest frequency component fBW has to be sampled at a
rate greater than 2fBW (see Fig. C.1b). However, with the SNS approach, the average
sampling rate can be lower (see Fig. C.1c). As shown in [7], obstacles in using SNS
in real-time applications are related to high complexity of the reconstruction (approxi-
mately 71 · 109 floating point operations per second to reconstruct a signal comprised of
65536 Nyquist rate samples) and not to the design of the analog front-end. Therefore,
it is necessary to decrease the complexity of the SNS reconstruction in order to use CS
in real-time applications.



84 Paper C.

The various signal reconstruction methods can be classified into two groups: op-
timization methods and greedy methods [17]. The optimization methods, such as `1
minimization, show a high reconstruction capability, but unfortunately they are com-
putationally expensive and slow [18]. An Orthogonal Matching Pursuit (OMP) is one
of the popular greedy algorithms [6, 17]. It is faster than convex optimization but has
a lower signal reconstruction performance [6]. The Accelerated Iterative Hard Thresh-
olding (AIHT) [19] and the Approximate Message Passing (AMP) [20] algorithms are
greedy methods that both have low computational costs and a high reconstruction capa-
bility. However, although the complexity of the reconstruction is reduced, for real-time
applications and large problem sizes (for example, length of signals 103 – 105 samples)
it still may be too high.

In many applications, such as telecommunication, the signals contain several fre-
quency bands (see Fig. C.2a) rather than a large number of independent tones spread
over the entire bandwidth. In this case, the MCS acquisition (see Fig. C.2b) is more
beneficial from a computational point of view as it operates with a smaller sensing ma-
trix [13]. The architecture in Fig. C.2c is similar to the standard SNS shown in Fig. C.1c
with the only difference that the SNS sampling is split into periods similar to what is
used in MCS. Hence, the modified architecture in Fig. C.2c is SNS with MCS emulation.
The modified architecture allows us to work on substantially smaller sub-problems than
the standard SNS thus leading to a lower reconstruction complexity.

Sparsity of a signal in the SNS model equals to accumulated width of tones and
bands relative to the total bandwidth. At the same time, sparsity of a signal in the
MCS model equals to the ratio of non-zero frequency slices and the total number of
slices [12, 13]. Therefore, the same signal may have an MCS representation with higher
sparsity than in the SNS representation. At the same time, the performance of the CS
reconstruction algorithms depends on the sparsity of the recovered signal [21]. Conse-
quently, the reconstruction performance in these two approaches may also be different
even for the same input signals. So, MCS emulation in the SNS acquisition introduces
performance-complexity tradeoffs, as on one hand, emulation decreases the computa-
tional complexity, but on another hand, it changes sparsity. We investigate these trade-
offs with numerical simulations and theoretical assessments of the reconstruction com-
plexity assuming multi-band signal scenarios. These scenarios include different numbers
(from 1 to 4), different widths (4% or 8% of bandwidth) and positions of the bands (at
the centers of frequency slices or at the edges) and different levels of noise in signals
(SNR∈ {100, 20, 10} dB). In [22], the authors presented the potential reconstruction
speed-up of the MCS emulation in SNS. However, these sampling scenarios were limited
to the noise-free signals with bands aligning with the multi-coset frequency slices, and
the impact of the emulation on the reconstruction quality was not evaluated in case of
other positions and widths of bands. The present paper fills this gap and investigates
tradeoffs in detail.

The article is organized as follows. In Section 2, we describe the models of SNS
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and MCS. We present the reconstruction algorithms in Section 3. Complexities of the
algorithms are assessed in Section 4. The simulation framework is described in Section
5. In Section 6, we present the simulation results and Section 7 concludes the paper.

2 Sampling Approaches and Signal Reconstruction

x(t)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 =N-1

y1 y2 y3 y4 y5
y6 y7

y8=yM

t

(a) General SNS acquisition, M = 8, ΛSNS = {0, 2, 4, 5, 7, 9, 11, 12}.

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 =N-1
=LW-1

z1,1
z4,2

MCS sampling period

z2,1 z4,1 z1,2
z2,2 z3,2

λ1 λ2 λ3 λ4 L+λ1 L+λ2 L+λ3 L+λ4

MCS sampling period

x(t)

z3,1

(b) MCS acquisition, L = 7, W = 2, P = 4, ΛMCS = {0, 2, 3, 5}.

Fig. C.3: Illustration of SNS and MCS. The dotted lines correspond to the Nyquist rate sampling.

2.1 Single-channel nonuniform sampling
SNS consists of one input sampling channel that selects Nyquist rate samples according
to a specific nonuniform (but not random) sampling pattern. Then, a reconstruction
procedure uses the selected samples to recover all the Nyquist rate samples. Therefore,
SNS operates at an average rate below the Nyquist rate. The SNS acquisition process
is illustrated in Fig. C.3a. In total, there are N Nyquist rate samples, but SNS acquires
M < N of them. Denote by Nkj = {z ∈ N : 0 ≤ j ≤ z ≤ k}. The position of the acquired
samples is specified by the sampling pattern ΛSNS ⊂ NN−1

0 with cardinality |ΛSNS| =
M < N . The model of SNS is [7]:

y = A(x + e) = DFINV(x + e), (C.1)

where y ∈ RM×1 is a measurement vector, a vector of the the acquired samples,
A ∈ CM×N is called a sensing matrix, x ∈ CN×1 is a vector containing the Discrete
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Fourier Transform (DFT) coefficients of the unknown Nyquist rate samples, e ∈ CN×1

represents AWGN in the DFT domain, D ∈ ZM×N is a selection matrix that corre-
sponds to ΛSNS and FINV ∈ CN×N is the Inverse DFT (dictionary) matrix of order
N .

The unknown vector x is assumed to be compressible with K1 < N dominant ele-
ments, which implies that K1 elements are enough to represent the most information
in the signal. There is no universal way on how to define K1. This paper evaluates the
number of the dominant DFT bins as:

K1 = ΩN, (C.2)

where K1, N ∈ N and Ω ∈ R is a total occupancy ratio. We call the value N/K1 the
sparsity of a signal in the SNS acquisition. The support of x, the set of the indices of
the dominant elements, is denoted by S1.

2.2 Multi-coset sampling
The main idea of MCS is to use several parallel input channels operating at lower rates
rather than one operating at a higher rate (see Fig. C.2b) [11–13]. The samples are
acquired periodically with different time offsets. The offsets are defined by the MCS
pattern ΛMCS = {λ1, λ2, . . . , λP } ⊂ NL−1

0 , where P < L is the number of the sampling
channels and L is called the MCS period. MCS can be seen as a time-interleaved sampler
with P out of L channels. Therefore, only P samples are selected from every bunch
of L consecutive Nyquist-rate samples. The process of MCS is illustrated in Fig. C.3b,
where W sampling periods are shown. Denote by zp,w ∈ R, p ∈ ZP1 , w ∈ ZW1 the wth
output sample of the pth sampling channel. The discrete model of the MCS acquisition
is [11–13]:

Y = B(X + E), (C.3)
where Y ∈ CP×W is a matrix of the known measurements,

Y =

F([z1,1, . . . , z1,W ])
...

F([zP,1, . . . , zP,W ])

 ◦
δ1,1, . . . , δ1,W

...
. . .

...
δP,1, . . . , δP,W

 (C.4)

δp,w = exp
[
−j2πλp(w − 1)

LW

]
, p ∈ NP1 , w ∈ NW1 , (C.5)

where F([zp,1, . . . , zp,W ]) ∈ C1×W denotes DFT of the samples obtained from the pth
sampling channel, ◦ denotes the Hadamard product and δp,w represents the delay of
the wth DFT bin in the pth sampling channel. The matrix B ∈ CP×L combines the
measurement and the dictionary matrices. The elements of B are given by:

Bp,` = 1
LT

exp
[
j

2π
L
λp(`− 1)

]
. (C.6)
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where ` ∈ NL1 . The Nyquist sampling period T depends on the highest frequency
component in the input signal. In total, the duration of the observed signal equals
LWT . The matrices X ∈ CL×W and E ∈ CL×W represent the unknown input signal
and AWGN, respectively. If the unknown DFT of the input signal is sliced into L equal
parts, then each row of X is one of these consecutive slices [11–13]. It is assumed that
X has K2 < L dominant (in the `2 sense) rows. The value of K2 equals to the number
of the slices partly or fully occupied by the frequency bands. The ratio K2/L is a
sparsity of a signal in the MCS acquisition. The set of these rows, the support of X,
is denoted by S2. Signals with few bands in the spectrum may result in X having only
few dominant rows.

2.3 MCS emulation in SNS acquisition of multi-band signals
Recovering x from (C.1) is called a Single-Measurement Vector (SMV) problem and
recoveringX from (C.4) is called a Multiple-Measurement Vectors (MMV) problem [23].
In a MMV problem, W solution vectors (columns of X) have to be found. Assume
without loss of generality that a frequency sparse multi-band signal is acquired by SNS
and MCS with the same average sampling ratio fsamp = M/N = P/L, which implies
N = LW and M = PW . In SNS, signal reconstruction corresponds to estimating a
single vector of length LW by A ∈ CPW×LW , while in MCS, reconstruction corresponds
to estimating W vectors of length L by B ∈ CP×L. Therefore, the complexity of the
reconstruction of the same signal in SNS and MCS is different. Moreover, we can expect
that reconstruction in MCS has lower costs for two reasons:

1. Complexity of most of the numerical algorithms depends nonlinearly on the size
[24]. For example, matrix multiplication and inversion requires O(N3) arithmeti-
cal operations, QR factorization – O(MN2), fast Fourier transform – O(N log2N)
etc (see [25] for definition of the O(·) notation). This suggests that recovery of
W vectors of length L has a lower computational complexity than the recovery of
one vector of length LW .

2. for MCS, there are reconstruction methods reducing the dimension of the MMV
problem. This reduction is based on the correlation matrix of the acquired samples
[11–13].

Therefore, the MCS emulation in the SNS acquisition can reduce the computational
cost of signal reconstruction by replacing problem (C.1) with (C.3). The rest of the
paper is dedicated to study of this potential computational saving with respect to the
reconstruction quality.
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2.4 Considerations on the impact of the MCS emulation in the
SNS acquisition

According to (C.1) and (C.3), the SNS model represents DFT bins individually, while
in the MCS model, a signal x is represented by frequency slices (the rows of X). In
other words, the MCS acquisition has a lower frequency resolution. As a result, the
sparsity of a signal in the SNS model depends only on the total width of bands while
the sparsity of a signal in the MCS model depends not only on the width of bands
but also on their positions. Therefore, the same signal may have a MCS representation
with lower sparsity than in the SNS representation. At the same time, the performance
of the CS reconstruction algorithms depends on sparsity of the recovered signal [21].
Consequently, the reconstruction performance in these two approaches may also be dif-
ferent even for the same input signal. So, the MCS emulation in the SNS acquisition
introduces performance-complexity tradeoffs, as on one hand, emulation decreases the
computational complexity, but on another hand, it changes sparsity. We investigate
these tradeoffs with numerical simulations and theoretical assessments of the recon-
struction complexity assuming multi-band signal scenarios. These scenarios include
different numbers, different widths and positions of the frequency bands and different
levels of noise in the signals.

2.5 Reconstruction Performance Metrics
In order to evaluate the reconstruction quality, we have to choose quality metrics. An
average relative root mean squared error is a direct way to evaluate a quality of recon-
struction of several signals

E =
Q∑
i=1

‖xi − x̂i‖2

‖xi‖2
, (C.7)

where xi and x̂i denote the ith input signal and the recovered signal in the time domain
respectively. The number of signals is equal to Q. We can also evaluate the standard
deviation of E which shows how reconstruction errors variate from the average value:

σ =

√√√√ 1
Q

Q∑
i=1

(
‖xi − x̂i‖2

‖xi‖2
− E

)2
. (C.8)

To give insight on lower bound of E, it is possible to evaluate an “ideal” reconstruction
error, Eideal. This error is derived by replacing x̂i with a signal formed by forcing all
the elements to zero outside the support S1 of xi.

Another metric is a Support Reconstruction Ratio (SRR):

SRR = no. of the correct reconstructed supports (S1 or S2)
no. of the test signal ∈ [0, 1] (C.9)
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If SRR=1, reconstruction is successful for all the test signals.

3 Complexity Analysis

3.1 Complexity Metric
In this paper, we want to compare how computational cost of reconstruction in SNS
is changed if applying MCS emulation. We define complexity of an algorithm as a to-
tal number of floating point operations. This is not the only possible metric of the
complexity. The memory bandwidth is a bottleneck of modern CPU and GPU based
systems [26]. In other words, it can take more time to transfer data between CPU/GPU
and memory than to perform computations on this data. However, there is no straight-
forward way to evaluate a memory complexity as it depends on the implementation for
the specific platform (CPU/GPU/FPGA etc). At the same time, the number of float-
ing operations is widely used as it gives insight how many computational resources are
required to run an algorithm [25, 27, 28].

3.2 Reconstruction Algorithms
Several algorithms which can be used in the SNS acquisition exist [6, 17]. The Algo-
rithms based on `1 minimization have high reconstruction capability [17]. However, they
are computationally expensive and slow [18]. The normalized IHT algorithm [29] (and
its accelerated version – AIHT [19]) is known to outperform the well-known OMP in
terms of reconstruction capability. In its turn, Compressive Sampling Matching Pursuit
(CoSaMP) [30] slightly outperforms normalized IHT in noisy scenarios [18]. However,
CoSaMP computes a least squares estimate of the solution which for large N andK1 can
be computationally demanding. The AMP algorithm has a reconstruction performance
almost equal to CoSaMP [20] and finds the solution with almost the same procedures as
in IHT. The difference is in the additional message passing stage. Thus, the complexity
of the AMP iterations exceeds the complexity of IHT iterations. Therefore, IHT is an
algorithm that has both low computational complexity and high reconstruction quality.
In addition, the assessment of the IHT complexity can serve as the lower bound for an
assessment of the AMP complexity. We also use the Block sparsity AIHT (B-AIHT).
This algorithm is a modification of AIHT that takes into account a fact that non-zero
elements may be grouped in blocks.

Iterative algorithms like IHT and M-FOCUSS estimate the solution until the con-
vergence criteria is met. The reconstruction capability of an algorithm can be evaluated
with a convergence rate, i.e. a number of iterations which are required to run until some
reconstruction quality is met. Alternatively, the number of iterations can be predefined
and the reconstruction error is observed. In this article, we use the second approach as
it simplifies the complexity analysis.
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Algorithm 3 Reconstruct x with AIHT [19]

Input: y ∈ RM×1, A ∈ CM×N , K1 ∈ N1, TAIHT ∈ N1
Output: x ∈ CN×1

1: µ← N, r← y, x[0] ← 0
2: for i = 1 to TAIHT do
3: x[i] ← x[i−1] + µAHr
4: x[i] ← PK1〈x[i]〉
5: r← y−Ax[i]

6: if i > 2 then
7: α1 ← (Ax[i]−Ax[i−1])Hr

‖Ax[i]−Ax[i−1]‖2
2

8: x̃1 ← x[i] + α1(x[i] − x[i−1])
9: r̃1 ← y−Ax̃1

10: α2 ← (Ax̃1−Ax[i−2])Hr̃1

‖Ax̃1−Ax[i−2]‖2
2

11: x̃2 ← x̃1 + α2(x̃1 − x[i−2])
12: x̃2 ← PK1〈x̃2〉
13: r̃2 ← y−Ax̃2
14: if ‖r̃2‖2

2 < ‖r‖2
2 then

15: x[i] ← x̃2
16: r← r̃2
17: end if
18: end if
19: end for

IHT recovers a sparse signal by performing TAIHT iterations that update an approxi-
mate solution, preserve only the K1 largest elements and set other elements to zero [29].
The last operation (thresholding) is denoted by PK1〈·〉 in Algorithm 3. Knowing that
A is a product of the selection matrix and the Inverse DFT matrix, multiplications by
A and AH can be performed with IFFT and FFT operations respectively. For the same
reason, there is no need to compute a step of the gradient descend at each iteration [19].
AIHT uses a double overrelaxation approach to accelerate the convergence of the algo-
rithm [19]. In this paper, we use the AIHT (see Algorithm 3) and B-AIHT algorithms,
which differs from AIHT only in the selection operator PK1〈·〉. In B-AIHT, blocks of
the solution vectors that have the highest energy are preserved while other blocks are
set to zero.

For the MCS reconstruction, we use the MUSIC algorithm [12] and two modifications
of the M-FOCUSS algorithm [23]. These algorithms find the support S2 of X. Knowing
S2 the actual signal recovery is performed using the least-squares estimation [13].

The MUSIC algorithm finds the support S2 by estimating the signal and noise sub-
spaces [11]. The general form of this reconstruction method is presented in Algorithm 4.
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Algorithm 4 Find the support S of X with MUSIC [12]

Input: Y ∈ CP×W , B ∈ CP×L, K2 ∈ N1, TQR ∈ N1
Output: S ∈ NK2

1
1: S ← ∅
2: R ← YYH

3: U← Eigenvalue decomposition(R, TQR)
4: US ← U{1,...,K2}

5: pi ← ‖USUH
Sbi‖2

2, i ∈ {1, . . . , L}
6: S ← Indices of K2 largest elements of pi

Algorithm 5 Find the support S of X with M-FOCUSS-R [23, 31]

Input: Y ∈ CP×W , B ∈ CP×L, λ ∈ R, p ∈ R, TFOC ∈ N1
Output: S ∈ NK2

1
1: Xpr ← 0, Q← 0, W← 0
2: X← B†Y
3: for c = 1 to TFOC do
4: Wi,i ← ‖X(i, :)‖1−p/2

2 , i ∈ {1, . . . , L}
5: BW ← BW
6: Q← BH

W(BWBH
W + λI)−1Y

7: X←WQ, Xpr ← X
8: end for
9: qi ← ‖Q(i, :)‖2, i ∈ {1, . . . , L}
10: S ← Indices of K2 largest elements of qi

The span of the signal subspace US is equal to the span of the eigenvectors that corre-
spond to K2 largest eigenvalues of the so-called correlation matrix R. The correlation
matrix should be a full rank matrix. At first glance, the eigenvalue decomposition at
Step 3 of Algorithm 4 can be considered as the most computationally costly operation.
One of the common ways to compute the eigenvalue decomposition of the Hermitian
matrix R is to transform a matrix into the tridiagonal form and then apply QR itera-
tions converging diagonal elements of the tridiagonal matrix to the eigenvalues [24]. It
is not feasible to obtain a closed form expression that gives the sufficient number of QR
iterations , TQR, which is sufficient to correctly estimate the signal subspace. Therefore,
we obtain TQR empirically by running MUSIC with different number (1, 2 . . .) of the QR
iterations. Then, TQR is set to the smallest value that results in the best reconstruction
performance. The fixed TQR significantly decreases the complexity of applying MUSIC.

The M-FOCUSS-R algorithm (see Algorithm 5; in line 4 the MATLAB notation
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is used to denote a row of X) [31] (R refers to “Restricted”) is a modification of M-
FOCUSS. In M-FOCUSS-R, K2 indices of the rows of Q are assumed to comprise S2
if they have the largest `2 norms after TFOC iterations [31]. In [32], the authors sug-
gested that any practical implementation of FOCUSS-like algorithms should comprise
thresholding of decaying elements to zero. This motivated M-FOCUSS-R.

Note that the correlation matrix R in Algorithm 4 can be factorized as:

R = VVH = BXXHBH, (C.10)

where V has P orthogonal columns. As shown in [13], the support of X equals the
support of the matrix U ∈ CP×L for:

V = BU. (C.11)

The factorization R = VVH is performed with the eigenvalue decomposition. Similar
to the MUSIC case, we denote by TQR the number of the QR iteration in this decom-
position. Equation (C.11) can be solved by any algorithm for sparse MMV problems.
In this paper, we use M-FOCUSS-R and denote the overall reconstruction method as
M-FOC-COR.

4 Complexity Analysis
For AIHT, B-AIHT, MUSIC, M-FOCUSS-R and M-FOC-COR algorithms, we derive
an analytical expression that calculates a number of floating point operations given the
size of the problem, average sampling rate, number of non-zero elements and number of
iterations.

To simplify the analysis, we assume that N = 2n for some positive integer n. Then
the complexity of the signal reconstruction with AIHT (see Algorithm 3) is assessed to
be:

CSNS
AIHT ' TAIHTC

AIHT
Step 3–5 + (TAIHT − 2)CAIHT

Step 7–14

' TAIHT [3N +M + 3N log2N ]
+ (TAIHT − 2) [7N + 10M + 3N log2N ]

' (10TAIHT − 14)N + (11TAIHT − 20)M
+ (6TAIHT − 6)N log2N. (C.12)

The complexity of B-AIHT is approximately to be equal to the complexity of AIHT,
as the cost of the selection steps 4 and 12 (selection operator PK1〈·〉) in Algorithm 3 is
neglectable in comparison to the cost of FFT and IFFT.

Recall that the least-squares estimation is performed in a MCS acquisition when the
support S2 is found out by a reconstruction algorithm. In this article, the least-norm
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and least-squares solutions are obtained via QR factorization. The complexity of the
MCS reconstruction with MUSIC is assessed to be:

CMCS
MUSIC ' C

S2
MUSIC + CS2

Least Squares

' 4
3P

3 + TQR

(
2P 3 + P − P 2

2

)
+ P 2

(
2W + 2K2 + 2L− 3

2

)
+ P (2K2

2 +K2(W + 1))

+K2
2W +K2

(1
2 −W

)
. (C.13)

Complexity of the MCS reconstruction with M-FOCUSS-R is assessed to be:

CMCS
M-FOCUSS-R ' CM-FOCUSS-R

Step 2 + TFOCC
M-FOCUSS-R
Step 6 + CS2

Least Squares

' P 2
(

2L+W − 1
2

)
+ P

(
2LW + L+ 1

2

)
− LW

+TFOC

(
2P 3+P 2

(
2L+W+ 1

2

)
+M

(
2LW+L+ 1

2

)
−LW

)
+K2

2

(
2P +W − 1

2

)
+K2

(
2PW + P −W + 1

2

)
' 2TFOCP

3 + P 2
(

(2L+W )(TFOC + 1) + TFOC

2 − 1
2

)
+ (TFOC + 1)

(
2PLW + PL+ P

2 − LW
)

+K2
2

(
2P +W − 1

2

)
+K2

(
2PW + P −W + 1

2

)
. (C.14)

In MCS, additional computations (C.4) have to be done prior to reconstruction. The
complexity of these computations equals the complexity of the P DFT operations and
Hadamard product of two P by W matrices. Considering that output samples of ADC
are real-valued, the complexity of (C.4) is assessed to be:

CMCS
(3) ' P

(3
2Ŵ log2Ŵ +W

)
, (C.15)

where Ŵ is a positive integer equal to the next power of two of W .
Equations (C.12)–(C.13) and (C.15) have to be validated before the comparison of

complexity of algorithms. Ideally, the validation for the specific implementation has to
be performed with the time benchmarking of the actual execution time. However, it is
unfeasible to assess the execution time of supplementary operations like function calls,
access to memory etc. which causes execution time overhead. Instead, we perform this
validation with the relative running time. In particular, we evaluate how the recon-
struction time and the number of operations varies as we vary the sampling conditions.



94 Paper C.

Such a relative comparison removes “biasing” and allows to evaluate the behavior of
complexity of algorithms.

While varying the number of bands from 1 to 4, the number of iterations from 1 to
15 and the length of the input signal from 16384 to 32768 samples in the simulation
scenario 2) (see Section III), the difference between the benchmarked and the assessed
results does not exceed 30%. For example for AIHT, the reconstruction time with
15 iterations is 1.6 times larger than the reconstruction time with 10 iterations, while
according to (C.12), the number of the arithmetic operations is increased by a factor
of 1.55. This results in the difference of (1.60 − 1.55)/1.55 · 100% = 3.2%. This is the
smallest difference observed.

We can now preliminary and asymptotically compare the computational complexity
of different reconstruction procedures. Assume that the length of the acquired signal is
N = LW , and therefore, M = PW . L is the MCS sampling period and specifies the
number of frequency slices in the MCS model, W is a number of samples acquired from
a single ADC (see Fig. C.2b).

Assume that the problem size N is increasing. For the fixed MCS configuration, this
means that L is fixed while W is increasing. Then the ratio of the complexity of AIHT
and M-FOCUSS-R asymptotically is:

lim
W→∞

CSNS
AIHT

CMCS
M-FOCUSS-R

= lim
W→∞

(6TAIHT − 6)LW log2(LW )
C1W + 1.5PW log2W

= lim
W→∞

(
(6TAIHT − 6)LW log2L

C1 + 1.5PW log2W
+ (6TAIHT − 6)LW log2W

C1 + 1.5PW log2W

)

= lim
W→∞

(6TAIHT − 6)LW log2W

1.5PW log2W
= (6TAIHT − 6)L

1.5P ≥ 6L
1.5P = 4L

P
.

The previous inequality is true as L > P and TAIHT > 1 for sub-Nyquist sampling; C1 is
a constant depending on P , TFOC and K2. Therefore, complexity of the reconstruction
with AIHT is asymptotically higher than with M-FOCUSS-R.

Following the same idea, the ratio of the complexity of AIHT and MUSIC asymp-
totically equals to:

lim
W→∞

CSNS
AIHT

CMCS
MUSIC

= lim
W→∞

(6TAIHT − 6)LW log2(LW )
C3W + 1.5PW log2W

= lim
W→∞

(6TAIHT − 6)Llog2W

C3 + 1.5P log2W
= (6TAIHT − 6)L

1.5P ≥ 6L
1.5P = 4L

P
,
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where C3 depends on P , TQR and K2. Therefore, the complexity of AIHT is also
asymptotically higher than the complexity of MUSIC.

This preliminary comparison supports the idea that the MCS emulation reduces the
reconstruction complexity.

5 Simulation Framework
This section describes the simulation framework that is used to evaluate the impact of
the MCS emulation to reconstruction quality and computational complexity.

5.1 Sampling Scenarios and Test Signal Description
As mentioned in 2.4, the MCS emulation introduces performance-complexity tradeoffs
related to changes of sparsity in the SNS and MCS representations of input signals. In
order to investigate these tradeoffs, we consider three simulation scenarios with real-
valued multi-band signals. These scenarios highlight how reconstruction performance
and complexity are affected by the MCS emulation. Three simulation scenarios are:

1. Narrow bands placed at the centers of the frequency slices (see example on Fig. C.4a).
Each band occupies 4% of the whole bandwidth. In this case, N/K1 > L/K2, i.e.
the sparsity of a test signal in SNS is higher that the sparsity in MCS. We may
expect a better reconstruction performance in the SNS acquisition.

2. Wide bands occupy the whole multi-coset frequency slices (see example on Fig. C.4b).
Each band occupies 8% of the whole bandwidth. Sparsity of the SNS and MCS
representation is approximately equal, N/K1 ≈ L/K2.

3. Wide bands intersect the boundaries of the frequency slices (see example on
Fig. C.4c). Each band occupies 8% of the whole bandwidth. Sparsity in SNS
is higher than in MCS, N/K1 > L/K2, but both sparsities are less than in the
previous scenarios.

The difference between the first and the second scenario is that K1 is increased while
K2 remains unchanged. In the third scenario, K1 is fixed while K2 is changed.

For each type of the test signals, 100 random instances were created and sampled.
For each random instance, K2 is known and K1 is estimated prior to reconstruction.
Otherwise, the performance of the reconstruction algorithms would be affected by the
performance of the methods finding the number of the dominant DFT bins and frequency
slices. The reconstruction time was benchmarked with 10 times averaging.
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(a) Narrow bands are placed at the centers of the frequency slices,
F = 3, Ω = 0.12, K1 = 3934, K2 = 6, SNR = 100 dB.

0.5 1.6 2.6 3.7 4.7 5.8 6.8 7.9 8.9 100

1

2

3

·104

f [MHz]

A
bs
ol
ut
e
va
lu
es

of
D
FT

(b) Wide bands occupy the whole frequency slices, F = 3,
Ω = 0.24, K1 = 7866, K2 = 6, SNR = 10 dB.
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(c) Wide bands intersect the boundaries of the frequency slices,
F = 3, Ω = 0.24, K1 = 7866, K2 = 12, SNR = 20 dB.

Fig. C.4: Frequency domain illustration of examples of input test signals, L = 19. The vertical grid
lines mark the frequency slices.
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5.2 Signal and Sampling Parameters
According to [6], a prime value of the multi-coset sampling period L results in the largest
value of the spark of B, which is spark(B) = P + 1. We set the multi-coset sampling
period to L = 19. Recall that according to (C.3), the overall number of the frequency
slices in test signals equals L.

The AIHT algorithm uses IFFT and FFT operations which in MATLAB are fastest
for input vectors with the length equal to a power of two. In order not to artificially
increase the reconstruction time for the SNS acquisition, we use N = 215 = 32768. For
the MCS acquisition, we use N = LW = 19·1725 = 32775, as the number of samples
should be divisible by L.

Samples are taken at the rate fNYQ = 10 MHz. Consequently, in test signals, there
are no components with frequencies equal or higher than fmax < fNYQ/2 = 5 MHz. The
width of a frequency slice equals fNYQ/L ' 526 kHz.

We used test signals with a different number of bands, F ∈ {1, 2, 3, 4}. As L = 19,
one frequency slice has a width of 1/L·100% = 0.05% of the bandwidth fmax. Recall that
a real-valued signal have a symmetrical spectrum. Then, the corresponding occupancy
ratio for scenario (1) is Ω = {0.04, 0.08, 0.12, 0.16} and for the scenario (2) and (3)
Ω = {0.08, 0.16, 0.24, 0.32}. The average powers of the bands are picked randomly from
the uniform distribution over the dynamic range of 20 dB.

Additive white Gaussian noise was added to the signals in order to evaluate the
behavior of the reconstruction algorithms in a noisy environment. We consider three
levels of noise corresponding to SNR ∈ {100, 20, 10} dB.

5.3 Sampling patterns
The sampling patterns for MCS were selected by brute force search for the lowest con-
dition numbers for all combinations of P from L [11]. For the SNS patterns, the brute
force search is not applicable due to the large value of N . Instead, we use the approach
presented in [7]. Basically, this approach is a random search for patterns Λ having the
most smooth distribution of the absolute values of the DFT coefficients.

5.4 Reconstruction Considerations
One of the simulation objectives is to compare the reconstruction quality in SNS and
MCS. In other words, to find out what minimum sampling rates are sufficient to recon-
struct a signal with an acceptable quality for different test cases. We run simulations,
where we increase the average sampling rate fsamp from fsamp/L to fNYQ and recon-
struct a set of test signals with SNS and MCS.

For the MCS acquisition, we assume that the lowest sufficient sampling rate is
achieved if SRR equals to 1, i.e. when the slice support S2 is found correctly for all
the signal instances. In the presence of noise, we do not expect to recover the support



98 Paper C.

S1 absolutely correctly due to the fact that noise is masking some of the DFT bins.
Therefore, we cannot use SRR in SNS for the reconstruction criteria as we do in MCS.
Instead, we evaluate a reconstruction quality with E and σ. We assume that in SNS an
acceptable reconstruction quality is achieved when the average value of E does not ex-
ceed the corresponding value in the MCS acquisition with the lowest sufficient sampling
rate.

6 Simulation Results
The simulations were performed on Intel Xeon X5670 2.93 GHz CPU, MATLAB R2012a
and Ubuntu 12.04 LTS1. The simulation framework generates test signals with different
parameters (number of bands, position of bands, occupancy ratio, SNR, length of signals
etc) and then, simulate the SNS and MCS acquisition with different reconstruction
algorithms and sampling rates. The software also plots the simulation results including
the reconstruction performance, the benchmarked execution time and the theoretical
computational complexity. For each combination of parameters, 100 test signal were
used. According to our observations, this number is sufficient to get reproducible and
converged results. Due to the limited paper space, we cannot present all the simulation
results. However, the presented results describe the difference in the behavior of the
SNS and MCS acquisition in terms of complexity and performance.

6.1 Reconstruction performance
In Fig. C.5, examples of the empirical dependency of E, σ and the support reconstruction
ratio versus the average sampling rates are illustrated. A number that follows the name
of an algorithm denotes the number of iterations in the corresponding reconstruction
method. Eideal is provided for reference.

As can be seen in Fig. C.5a, a five times increase of the number of iterations in AIHT
results in significant reconstruction improvements. However, B-AIHT-25 does not per-
form as well as AIHT-25 because it tries to reconstruct more dominant values than are
actually presented in the test signals with narrow bands placed at the centers of the
frequency slices. This example illustrates that AIHT outperforms its block version for
simulation scenario (1). For simulation scenario (2), AIHT-5, AIHT-25 and B-AIHT-5
perform similarly (see Fig. C.5b). The fact that B-AIHT-5 has a slightly better recon-
struction performance than AIHT-25 indicates a slight inaccuracy of the K1 estimation
with (C.2) due to the spectrum leakage. A universal correction factor cannot be in-
troduced to (C.2) as an impact of the spectral leakage on K1 depends on the number
of bands and the spectral occupancy ratio. For all the algorithms, the reconstruction

1The source code is available online at http://dx.doi.org/10.5278/VBN/MISC/CRSNS, DOI:
10.5278/VBN/MISC/CRSNS.
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(a) The simulation scenario 1) with SNS, Eideal = 0.01, F = 3, Ω = 0.12,
SNR = 100 dB.
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(b) The simulation scenario 2) with SNS, Eideal = 0.27, F = 2, Ω = 0.16,
SNR = 10 dB.
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(c) The simulation scenario 2) with MCS, Eideal = 0.09, F = 1, Ω = 0.08,
SNR = 20 dB.

Fig. C.5: Simulated reconstruction error, E (solid lines), computed standard deviation, σ (dash-dotted
lines) and SRR (dotted lines) versus the sampling ratio fsamp/fNYQ = M/N = P/L.
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Table C.1: The lowest sufficient fsamp/fNYQ for the scenario (1)

F SNR A
IH

T
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A
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T
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A
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T
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IH
T
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B
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T
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5

M
U
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M
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O
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U
SS

-R
-4

M
-F
O
C
-C

O
R
-6

1
100 0.26 0.26 0.26 0.32 0.26 0.21 0.16 0.32 0.32
20 0.26 0.26 0.26 0.32 0.26 0.21 0.21 0.32 0.32
10 0.26 0.26 0.26 0.32 0.26 0.26 0.21 0.32 0.32

3
100 0.58 0.47 0.42 0.63 0.63 0.63 0.42 0.53 0.53
20 0.58 0.47 0.42 0.63 0.63 0.63 0.42 0.53 0.53
10 0.63 0.53 0.53 0.63 0.63 0.63 0.63 0.53 0.53

Table C.2: The lowest sufficient fsamp/fNYQ for the scenario (2)
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2
100 0.58 0.53 0.53 0.53 0.53 0.53 0.32 0.47 0.42
20 0.58 0.53 0.53 0.53 0.53 0.53 0.32 0.47 0.42
10 0.63 0.63 0.58 0.53 0.53 0.53 0.63 0.47 0.42

4
100 0.74 0.68 0.68 0.74 0.68 0.63 0.53 0.58 0.58
20 0.74 0.68 0.68 0.74 0.68 0.63 0.58 0.63 0.63
10 0.84 0.74 0.74 0.74 0.68 0.63 0.95 0.63 0.63

errors converge to Eideal = 0.27 but do not reach it due to noise folding, which is a
known problem in CS [?, 12]. Fig. C.5c presents the MCS simulation results for test
scenario (1). The MUSIC-5 algorithm has the highest reconstruction performance: it
reconstructs signals that occupy 8% of the bandwidth only with 16% of the Nyquist
rate samples. This result agrees with [12]. The reconstruction errors E converge to
Eideal = 0.95. It is also notable that M-FOCUSS-R and M-FOC-COR-2 have the same
reconstruction quality for all the sampling rates.

Tables I–III contain the sufficient sampling rates for the three simulation scenarios.
As can be seen in Table I, the AIHT algorithm in scenario (1) does not have an absolute
advantage over B-AINT and the MCS reconstruction algorithms. MUSIC outperforms
AIHT in all the cases except when F = 3.

For scenario (2) (see Table II), the MCS approach outperforms the SNS acquisition.
However, the MUSIC algorithm has a low reconstruction capability and requires almost
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Table C.3: The lowest sufficient fsamp/fNYQ for the scenario (3)
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10 0.37 0.32 0.32 0.47 0.42 0.42 0.58 0.32 0.32

3
100 0.68 0.63 0.63 0.74 0.74 0.74 0.68 0.58 0.58
20 0.68 0.63 0.63 0.74 0.74 0.74 0.79 0.63 0.63
10 0.74 0.68 0.68 0.79 0.79 0.79 – 0.68 0.68
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Fig. C.6: Theoretical and benchmarked reconstruction speed-up vs. number of bands for the scenario
(1), SNR=100 dB. For all F , the sampling rates for MUSIC-5 are lower than the sampling rates for
AIHT-15.

the Nyquist rate sampling in case of F = 4 (a relative large number of non-zero slices
K2 = 14–16) and low SNR=10 dB.

The MCS approach also outperforms SNS in case of the simulation scenario (3)
(see Table III). While MUSIC fails to converge to the stable recovery for F=3 and
SNR=10 dB, M-FOCUSS-R and M-FOC-COR perform as good as the SNS methods.

In general, M-FOCUSS-R and M-FOC-COR are robust to noise, while MUSIC has
the best performance in low noise cases.

6.2 Reconstruction complexity
The theoretical and the benchmarked speed-ups that have been achieved with the MCS
emulation are illustrated in Fig. C.6–C.8. The benchmarked speed-up is the ratio of
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Fig. C.7: Theoretical and benchmarked reconstruction speed-up vs. number of bands for the scenario
(2), SNR=20 dB. For all F , the sampling rates for M-FOCUSS-R-1 are less or equal than the sampling
rates for AIHT-15.

1 2 3 4100

101

102

Number of bands, F

R
ec
on

st
ru
ct
io
n
sp
ee
d-
up

AIHT-15/M-FOCUSS-R-2 theoretical
AIHT-15/M-FOCUSS-R-2 benchmarked

Fig. C.8: Theoretical and benchmarked reconstruction speed-up vs. number of bands for the scenario
(3), SNR=10 dB. For all F , the sampling rates for M-FOCUSS-R-4 are less or equal than the sampling
rates for AIHT-15
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the SNS and MCS reconstruction time. For example in scenario (2), AIHT-15 in av-
erage reconstructs a signal with F=2, Ω=0.08 and SNR=10 dB in 100 ms, while the
reconstruction time for MUSIC-5 is 4 ms. Therefore, the benchmarked reconstruction
speed-up is 100/4=25 times. The theoretical speed-ups of the SNS reconstruction with
the MCS emulation are computed with (C.12)–(C.13) and (C.15). For the same ex-
ample, AIHT-15 performs 47 · 106 operations, while MUSIC-5 performs 0.53 · 106. So,
the theoretical speed-up is 47/0.53 ≈ 90 times. The difference between the theoretical
and the benchmarked speed-up can be explained by the fact that in the theoretical
assessment we do not consider some practical issues such as the time needed for data
transferring, function calls etc. The speed-up illustrated in Fig. C.6–C.8.

7 Conclusion
This paper proposed a MCS emulation as a means to reduce the computational com-
plexity in a SNS acquisition of frequency sparse multi-band signals. We investigated the
performance-complexity tradeoffs of this emulation for three sampling scenarios which
include variable number of bands (from 1 to 4), different relative widths of bands (4%
or 8% of the total signal bandwidth per band), positions of the frequency bands (at
the centers or at the boarders of the frequency slices) and different level of noise in
signals (SNR ∈ {100, 20, 10} dB). Numerical simulations showed that the conventional
SNS approach has a slightly better performance than the proposed SNS with the MCS
emulation in two cases: i) signals with two narrow bands placed at the centers of fre-
quency slices and SNR = 10 dB; and ii) signals with two wide bands that intersect the
frequency slices and SNR = 10 dB. In other cases, the MCS sampling rates are less
of equal to the SNS sampling rates, so that the MCS emulation preserves or improves
the reconstruction quality. Numerical simulations and the theoretical assessments show
that the MCS emulation reduces the reconstruction complexity by orders of 10 for all
the considered sampling scenarios.
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