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1. Abstract in English 

The activated sludge process for biological wastewater treatment is the most widespread wastewater 

treatment process in the world. The by-product of this process, the surplus activated sludge, usually 

contains more than 98% water, which implies a dewatering step so that transportation and handling 

of sludge are economically feasible. Dewatering and disposal of activated sludge is generally  

a problematic issue, and there is no simple solution. 

Reed beds for sludge dewatering and mineralization offer an economically attractive alternative  

to pressure dewatering. The simplicity, low man-power and supervision requirements,  

and the possibility of applying the sludge residues in agriculture make this technology an attractive 

choice, especially for small wastewater treatment plants. However, frequent operational problems 

consisting of poor dewatering and mineralization performance, vegetation loss, and odor limit  

the widespread use of reed beds and give this technology a general reputation of being unreliable. 

The objective of this PhD project was to carry out a comprehensive investigation  

of the water-binding properties of activated sludge in relation to drainage and mineralization  

of sludge on reed beds. The particular aim was to solve the operational problems with handling 

sludge from two wastewater treatment plants in Esbjerg reed bed facility and to formulate some 

more general guidelines for reed bed design and operation. 

A novel technique for the assessment of sludge drainability was developed and used  

for a comprehensive investigation of the process of gravitational sludge drainage. The specific cake 

resistance was used as the parameter describing sludge equality in terms of gravitational drainage. 

Sludge volumetric loading and sludge suspended solids concentration were found to be the two 

critical parameters deciding the efficiency of the drainage process. Sludge deflocculation due  

to shear and anaerobic conditions was found to strongly influence the quality of sludge and to be the 

reason behind the operational problems in Esbjerg reed bed facility. These problems were solved  

by upgrading the sludge quality by nitrate and calcium carbonate dosing, and by improving  

the basin loading schemes. 

Extracellular polymers are important for floc strength and therefore determine many sludge 

properties. In this project focus was on extracellular DNA (eDNA) and its importance for floc 

strength. A new approach to quantification of extracellular DNA in mixed biofilms at microscale 

resolution was developed and combined with other staining techniques to assess the origin, 

abundance and role of eDNA in activated sludge biofilms. Most eDNA was found in close 

proximity to living cells in microcolonies, suggesting that most of it originated from active 

production. When the staining was combined with fluorescence in situ hybridization for 

identification of the microorganisms, it was found that the eDNA content varied among the 

different probe-defined species. The highest amount of eDNA was found in and around the 

microcolonies of denitrifiers belonging to the genera Curvibacter and Thauera, the ammonium-

oxidizing Nitrosomonas and the nitrite-oxidizing Nitrospira. Other floc-formers also produced 

eDNA, although in lower amounts. The total eDNA content in activated sludge varied from  

4 to 52 mg per gram volatile suspended solids in different wastewater treatment plants. Very high 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
8 

 
  

local concentrations within some microcolonies were found with up to approx. 300 mg of eDNA  

per g of organic matter. DNase digestion of activated sludge led to general floc disintegration  

and disruption of the microcolonies with high eDNA content, implying that eDNA was  

an important structural component in activated sludge biofilms. 

In conclusion, this PhD project significantly increased our understanding of  sludge gravitational 

drainage on reed beds. The detailed mechanism of drainage was demonstrated, and the factors 

deciding the drainage rate and sludge quality in terms of drainage were identified. Guidelines for 

reed bed operation and design were proposed, taking into account the regular monitoring of sludge 

quality with a novel technique, capable of fast and easy sample evaluation directly after sampling. 

The role of extracellular DNA as an important floc- and microcolony-strengthening EPS component 

was demonstrated, and confirmed the intimate relationship between the microbiological 

composition of activated sludge, the resulting floc characteristics, and the overall sludge water-

binding properties. Overall, this PhD project threw new light onto the drainage properties  

of activated sludge and their controlling factors, which brings in a new possibility of improving  

the design and operating reed bed facilities, thereby increasing the competitiveness of this simple 

and effective technology of surplus sludge disposal. 
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2. Abstract in Danish 

Brug af aktiv slam til biologisk spildevandsrensning er den mest udbredte renseproces af spildevand 

i verden. Biproduktet af denne proces er overskudslam og det indeholder normalt mere end 98% 

vand, hvorfor et afvandingstrin er nødvendig for  at videre transport og håndtering af slammet  

er økonomisk forsvarligt. Afvanding og anbringelse af overskudslam er en relativ problematisk sag 

og der er ingen simple løsninger. 

Slambede til slamafvanding og mineralisering er et økonomisk attraktivt alternativ til traditionel 

afvanding ved højt tryk. Den simple proces, lille behov for mandskab og instruktion samt 

muligheden for at anvende slamrester indenfor jordbruget gør denne teknologi til et attraktivt valg, 

især for små renseanlæg. Der er imidlertid en række forhold som tyder på at denne proces kan være 

upålidelig, fx dårlig afvanding og mineralisering, hendøen af vegetation og lugtproblemer, hvilket 

forhindrer en større udbredelse af teknologien. Formålet med dette PhD-projekt var at udføre et 

omfattende studie af de vandbindende egenskaber ved aktivt slam i forbindelse med dræning og 

mineralisering af slam på slambede. Herved skabes dels et grundlag til at kunne løse 

driftsproblemer på to renseanlæg i Esbjerg i forbindelse med slamhåndtering af slam og dels  

at udvikle mere generelle guidelines til design og drift af slambede.   

Der blev udviklet en ny teknik til måling og vurdering af slams dræningsegenskaber og den blev 

brugt til omfattende undersøgelser af afvanding ved dræning uden brug af tryk. Den specifikke 

kagemodstand blev brugt som parameter til at beskrive slamkvaliteten i forbindelse med dræning. 

Den volumetriske belastning og koncentrationen af suspenderet materiale blev fundet til at være  

de to mest kritiske parametre til at bestemme dræningsprocessen. Deflokkulering af slam på grund 

af shear og anaerobe forhold havde en kraftig effekt på slamkvaliteten og det var hovedårsagen  

til de driftsmæssige problemer man har haft med Esbjergs slambede. Problemerne blev løst ved  

at forbedre slamkvaliteten med tilsætning af nitrat og kalcium karbonat samt ved at justere selve 

udbringningen på bedene.  

Ekstracellulære polymerer er vigtige for slamflokkenes egenskaber (fx flokstyrke) og her blev 

specielt tilstedeværelsen af ekstracellulært DNA (eDNA) undersøgt. En ny tilgang til at kvantificere 

eDNA i blandede biofilm med en mikroskala opløsning blev udviklet og kombineret med andre 

farvemetoder til at vurdere oprindelse, mængde, og betydning i aktivt slamflokke. Mest eDNA blev 

fundet tæt på levende bakterier i mikrokolonier, hvilket indikerer at det stammer fra en aktiv 

sekretion. Når farven blev kombineret med fluorescende in situ hybridisering med genprober  

til identifikation af mikroorganismerne kunne det ses, at eDNA indholdet varierede mellem  

de forskellige probe-definerede bakterier. Den største mængde blev fundet omkring mikrokolonier 

fra denitrificerende bakterier tilhørende slægterne Curvibacter og Thauera,  

de ammoniumoxiderende Nitrosomonas og the nitritoxiderende Nitrospira. Andre flokdannere 

producerede også eDNA omend i mindre mængde. Den totale mængde eDNA i aktivt slam 

varierede mellem 4-52 mg per gram organisk stof i forskellige renseanlæg. Meget høje lokale 

koncentrationer kunne ses med op til ca. 300 mg eDNA per gram organisk stof. Nedbrydning  

af eDNA i det aktive slam med DNase forårsagede en general disintegration af flokkene og specielt 
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mikrokolonier med højt eDNA indhold. Dette indikerede at eDNA var en vigtig struktural 

komponent i slamflokkene. 

Sammenfattende kan det siges, at dette phd-projekt i væsentlig grad har forøget vor viden om 

dræning af slam på slambede. Detaljerede mekanismer blev demonstreret og faktorer, som bestemte 

dræningshastigheden og slamkvalitet blev identificeret. På denne baggrund blev der foreslået 

guidelines til design og drift af slambede inkluderende jævnlig monitering af slamkvalitet med den 

nyudviklede teknik, som tillader hurtig og nem undersøgelse lige efter prøvetagning. eDNA’s rolle 

som vigtig for styrken af mikrokolonier og flokke blev vist og det understreger det tætte forhold 

mellem den mikrobiologiske sammensætning af slammet, de resulterende flokkarakteristika og de 

samlede afvandingsegenskaber. Phd-projektet har således kastet nyt lys på det aktive slams 

dræningsegenskaber og vigtige faktorer der påvirker disse således der åbnes nye muligheder for  

at forbedre design og drift af slambede hvorved konkurrenceevnen øges for denne simple  

og effektive teknologi til håndtering af overskudsslam. 
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3. Objectives of the PhD project 

The objective of this PhD project was to carry out a comprehensive investigation of the water-

binding properties of activated sludge in relation to drainage and mineralization of sludge on reed 

beds and to establish a link between the microbial composition of activated sludge, the floc 

properties implied by this composition, and the resulting macroscopic physico-chemical sludge 

characteristics, gravity drainage in particular. Formulation of this aim was inspired by the desire  

to help the operators of Esbjerg reed bed facility solve the operational problems they were facing 

when handling sludge from two local wastewater treatment plants.  

A novel experimental technique for the assessment of drainage properties of activated sludge  

was devised and applied to unveil the factors of importance for fast and effective drainage of sludge 

on reed beds, and to mark new guidelines for the design and operation of safe and efficient full-

scale reed bed facilities. A link between the microbial composition of activated sludge  

and the resulting floc properties was established through a detailed investigation of an EPS 

(extracellular polymeric substances) component that has so far received little attention, namely  

the extracellular DNA (eDNA). A method for the in situ detection and quantification of eDNA  

was developed and used to reveal the importance of this exopolymer for the floc strength  

and integrity in the mixed microbial community of activated sludge. 

This thesis gives an introduction to the activated sludge process with special focus on the 

dewatering of surplus sludge, a review of the state of the art in reed bed sludge handling,  

an outline of methodologies used for sludge characterization in respect to dewatering, a review  

of floc properties with respect to dewatering and their controlling factors, an overview of gravity 

drainage of activated sludge and factors controlling this phenomenon, and four supporting papers. 

Three of these papers investigate the phenomenon of sludge gravity drainage and factors controlling 

this process, and one paper describes eDNA as an important component of EPS in relation to floc 

strength and integrity. 

 

 

 

 

 

 

 

 

 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
12 

 
  

4. List of supporting papers 

Papers included 

Christensen, M.L., Dominiak, D.M., Nielsen, P.H., Sedin, M., Keiding, K. (2010) Gravitational 

drainage of compressible organic materials. Journal of the American Institute of Chemical 

Engineers, DOI: 10.1002/aic.12222. 

Dominiak, D.M., Christensen, M.L., Keiding, K., Nielsen, P.H. (2010) Gravity drainage  

of activated sludge: new experimental method and considerations of settling velocity, specific cake 

resistance and cake compressibility. Water Research (submitted). 

Dominiak, D.M., Christensen, M.L., Keiding, K., Nielsen, P.H. (2010) Sludge quality aspects  

of full-scale reed bed drainage. Water Research (submitted). 

Dominiak, D.M., Nielsen, J.L., Nielsen, P.H. (2010) Extracellular DNA is abundant and important 

for microcolony strength of bacteria in mixed microbial biofilms. Environmental Microbiology 

(accepted). 

Papers not included 

Christensen, M.L., Dominiak, D.M., Adrian, L., Hansen, R.B., Keiding, K., Nielsen, P.H. (2010) 

Slambede – hvordan håndterer vi dem? Vand og Jord, February 2010 

Dominiak, D.M., Larsen, P., Givskov, M., Nielsen, P.H., Nielsen, J.L. (2010) Influence  

of the quorum sensing inhibitor furanone C-30 on the integrity of complex microbial consortia. 

Biofouling (submitted) 

 

 

 

 

 

 

 

 

 

 

 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
13 

 
  

5. The activated sludge process 

 

5.1. Overview of biological wastewater treatment with the activated sludge process 

The activated sludge process for biological wastewater treatment is the most common means  

of water treatment and is the most widespread wastewater treatment process in the world (Lindrea 

and Seviour, 2002). Although many varieties of the process exist, it is essentially composed of three 

basic steps: pre-treatment, the actual biological step, and the solid-liquid separation (Fig. 1). 

 

Figure 1. General layout of a wastewater treatment plant applying the activated sludge process. 

The primary treatment is designed to remove large objects by means of sieving, and both floating 

(oils, fats) and sinking (sand, etc.) materials by flotation and settling inside the primary clarifier. 

Wastewater treated by these means is directed to the process tanks, where the biological removal  

of carbon, nitrogen, and phosphorus takes place. Depending on the actual plant design  

and configuration, the process tanks can be compartmented and selectively aerated in order to take 

advantage of certain biological phenomena, e.g. enhanced biological phosphorus removal (Fuhs  

and Chen, 1975). In the process tanks the bacterial biomass, referred to as the mixed liquor 

suspended solids (MLSS), is kept at the concentration range of 3 to 5 g of suspended solids per liter 

(Henze et al., 2002). This mixture is then directed to the secondary clarifier, where the separation  

of sludge and clear, treated water occurs thanks to sludge gravity settling. Treated water is either 

directly discharged to receiving waters or directed to tertiary treatment (the so-called effluent 

polishing), depending on the actual quality and local regulations. The settled sludge is recycled  

to the process tanks. 

Since activated sludge microorganisms feed on carbon and nutrients in the influent wastewater, 

biomass accumulation would take place in the system if a constant stream of sludge was not taken 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
14 

 
  

away from the secondary clarifier. This stream, called the surplus activated sludge and comprising  

3 to 20% of the settled sludge, needs to be removed from the plant and handled (Nielsen, 2002). 

5.2. Dewatering, surplus sludge treatment and disposal strategies 

The water content of the surplus activated sludge usually exceeds 98%, which implies a dewatering 

step so that transportation and handling of sludge are economically feasible. Since the dewatering  

is usually performed by mechanical devices like filter presses, belt presses, or centrifuges  

(Chu et al., 2005), this unit operation is the most expensive one, constituting 30-50%  

of the annual operating costs of a wastewater treatment plant (Sørensen, 1996). The disposal  

of dewatered sludge is another expensive problem, where no fixed strategy exists. Some of the 

solutions are incineration, landfill disposal, and application to fields as a fertilizer, but the latter  

is rarely used in Denmark due to regulations (Lundin et al., 2004). These high costs inspire  

the search for inexpensive alternatives to mechanical dewatering. One such alternative  

is the application of surplus sludge to reed beds, or constructed wetlands, which depend  

on gravitational drainage and mineralization of sludge in specially designed ditches planted with 

vegetation. It is especially attractive to small wastewater treatment plants, because it requires 

smaller investment and operating costs than incineration plants, especially in small scale. 
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6. Sludge dewatering and mineralization on reed beds 

Reed beds for sludge dewatering and mineralization offer an economically attractive alternative  

to pressure dewatering and centrifugation. Many reed bed facilities have been built in Denmark 

(approx. 95 until 2002), and most of our experience comes from the Danish systems, but this 

technology is also successfully applied in many European countries (Haberl et al., 1995; Cooper  

et al., 2004) and in the USA (Kim and Cardenas, 1990). Their primary advantage is that they are 

simple in design and operation, require low manpower (Cooper et al., 2004), and since processed 

sludge residue complies with agricultural standards, they are suitable for field or forest application 

as a fertilizer (Nielsen and Willoughby, 2007). Sludge volume reduction occurs due to the 

combination of water gravity drainage, evapotranspiration through the leaves of the reeds, and 

mineralization of sludge residues (Aagot et al., 2000). An additional advantage, justifying the field 

application of sludge residues, is the high pathogen removal rate and the mineralization  

of hazardous organic compounds typically omitted by the activated sludge process (Nielsen, 2005). 

6.1. Design and operation of reed beds 

Reed bed facilities typically consist of several basins (often 8-10) and additional infrastructure  

for sludge storage and handling (Fig. 2). Sludge is pumped to the facility by a pipeline and stored  

in a storage tank, which allows mixing, aeration, and adjustments of sludge suspended solids 

(Nielsen, 2003).  

 

Figure 2. Reed bed facility located in Esbjerg, Denmark. It is composed of 24 basins, each  

of approx. 2200 m
2
. Storage tanks are visible left of the basins. 

A basin is typically a rectangular ditch, approx. 2 m deep, with a special multi-layer design  

for efficient water flow (Fig. 3). 
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Figure 3. Multi-layer design of a reed bed basin. Water from the sludge residues poured from  

the top drains down through the sand and gravel filter layers and is collected by a pipeline system. 

The bottom of the ditch is sealed by a plastic membrane, which is covered by a gravel layer with  

a water collection system. This system, composed of drilled piping, collects water draining down 

and transports it back to the treatment plant. It also contributes to aeration of the sludge layer from 

the bottom. Gravel layer is typically covered by a sand layer, onto which sludge is applied,  

and the total filter layer thickness is usually 0.55 to 0.6 m. Vegetation (typically Phragmites 

australis) grows out of the sludge layer and contributes to sludge volume reduction through 

evapotranspiration as well as to sludge layer aeration by creating tortuous cracks in the sludge cover 

(Nielsen and Willoughby, 2007). The depth of the basin usually exceeds 1.8 m from the filter  

to the top, allowing for a build-up of sludge of at least 1.5 m. 

Reed bed systems are usually designed to operate for at least 30 years with at least 3 operational 

cycles of 10 years (Nielsen, 2003). Each operation cycle begins with a 2-year commissioning phase 

following the planting of the reeds. It is designed to create good growing conditions  

for the reeds and to gradually increase sludge loading until the maximum loading is achieved  

at the beginning of the next phase. In year 3, the phase of normal operation begins, where periods  

of loading and resting alternate, and the beds are operated at design capacity. The loading/rest 

period ratio length depends on sludge concentration, sludge layer thickness, and the age  

of a particular basin. The emptying phase typically begins in year 8 and includes several basins, 

while the other basins continue normal operation. After emptying, basins are re-established  

and subjected to similar loadings as in the initial commissioning phase. Each basin follows  

the 10-year cycles, and the phases alternate between basins such that the overall performance  

of the reed bed facility remains constant. 
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Reed bed facilities are usually designed for loading with approx. 60 kg dry matter/m
2
/year. 

Guidelines formulated by Steen Nielsen (Nielsen 2002; 2003) prescribe a maximum  

of 60 kg DM/m
2
/year for surplus activated sludge and a maximum of 50 kg DM/m

2
/year  

for digested sludge, sludge with high fat content or low sludge age (Nielsen and Willoughby, 2007). 

The final dry matter content of the residues is expected to reach 30 to 40%, but a typical value  

for Danish systems is approx. 20% (Nielsen 2002; 2003). However, experience shows that these 

figures are rarely attained, and reed bed sludge treatment has a general reputation of being 

unpredictable (De Maeseneer, 1997).  

6.2. Common problems and shortcomings of reed bed sludge treatment 

Many reed bed facilities, especially when this technology was first applied, suffered from 

operational problems such as poor dewatering performance and mineralization, vegetation loss,  

and odor (Nielsen, 2005b). According to Steen Nielsen, this was most often caused by overloading, 

insufficiently long resting periods and improper construction of the filter layer. The latter was most 

often caused by poor capillary connections between the layers of the filter, which created obstacles 

for water drainage. Overloading and insufficiently long resting periods are, however, an operational 

issue, most often caused by under-dimensioning of the systems. If too few basins were constructed, 

but the facility operates at design loading, the loading periods are too long with respect  

to the resting periods, which can cause water accumulation in the basins, leading to anaerobic 

conditions and methane generation. These conditions tend to lower the basins’ performance  

in the long term, causing the overall loss of facility’s performance (Nielsen, 2005b). 

Under-dimensioning and overloading of reed beds during their operation are, to some extent, caused 

by the lack of a good and reliable means of assessing the drainability of activated sludge. Although 

Steen Nielsen recommends dimensioning the facilities based on sludge quality assessed  

by the capillary suction time (CST), it would be an oversimplification to believe that the sludge 

dewatering properties remain constant in the long term. Reed bed operators generally only follow 

instructions given by the plant designer, rather than monitor the sludge quality and re-adjust 

loadings according to the current needs. The accurate determination of sludge characteristics with 

respect to dewatering and drainage is difficult and often requires sophisticated equipment  

or training, which prevents its everyday use. A simple and reliable test of sludge drainability, 

supported by a set of simple-to-follow guidelines, could help maintain the high performance of reed 

bed facilities and improve the performance of this attractive technology. 
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7. Sludge characterization in relation to dewatering and drainage 

The dewatering characteristics of activated sludge can be assessed with several techniques. Some 

were developed for the general determination of compound dewatering characteristics, others 

specifically for activated sludge. Since most wastewater treatment plants employ mechanical sludge 

dewatering with pressure devices, e.g. belt presses and filter presses, most research focused  

on pressure dewatering of sludge with the aim of increasing the performance of these technologies. 

Even though gravitational sludge dewatering is economically much more attractive, it has received 

little attention in the literature, most probably because pressure dewatering tends to produce drier 

cakes (Novak et al., 1999), and extensive literature is available on pressure dewatering of inorganic 

suspensions. 

Two techniques have gained the most popularity for the characterization of sludge dewaterability, 

the specific resistance to filtration (SRF) and the capillary suction time (CST). During the course  

of this PhD project, a new technique was developed so as to account for phenomena and sludge 

characteristics omitted by the SRF and CST. Besides these direct estimates of dewaterability  

and drainability, other sludge characteristics are widely used to determine sludge quality in relation 

to solid-liquid separation processes in wastewater treatment plants. The most common one  

is the sludge volume index (SVI), which is measured daily in most facilities. The particle size 

distribution (PSD) and floc strength determination are limited to laboratory use, but they provide 

valuable information allowing the predictions of sludge dewatering performance. 

7.1. Specific Resistance to Filtration (SRF) 

The specific resistance to filtration (SRF) has been developed by Carman (1938) and Ruth (1946)  

as a general measure of filterability of slurries for industrial use. This technique employs pressure 

filtration under high, constant pressure applied by a specialized apparatus. The apparatus measures 

the filtrate expression rate and uses this information, along with the pressure information and solid 

and liquid phase characteristics, to estimate the specific cake resistance. The method, traditionally 

criticized for being difficult to perform and time-consuming, was improved and automated  

by Christensen and Dick (1985).  

The application of SRF to activated sludge was challenged by Sorensen et al. (1996), because SRF 

results are pressure-dependent for compressible materials, and SRF devices operate with pressures 

far above the critical pressure for activated sludge. Expression of water from activated sludge 

produces compressible cakes (Underwood et al., 1928) which collapse and decrease their porosity 

under pressures far below those found in mechanical dewatering devices (Tiller et al., 1998; 

Sørensen et al., 1997), hence the SRF cannot be used to describe the drainability of sludge under 

gravity drainage conditions correctly, where pressures on the cake are orders of magnitude lower 

than those found in SRF tests and usually lower than the critical pressure for activated sludge. 
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7.2. Capillary Suction Time (CST) 

The CST test is a commonly used alternative to SRF, especially because it is much easier  

and cheaper to perform. It was developed by Baskerville and Gale (1968) and is nowadays one  

of the most widely used compound dewatering characteristics. This technique depends  

on the measurements of the speed of wetting front travelling between two points on a filter paper 

under suction of approx. 50 cm H2O (Tiller et al., 1983). 

The CST method was used by Steen Nielsen as a measure of sludge dewaterability for the purpose 

of reed bed dimensioning and design (Nielsen, 2003). Although the CST employs much lower 

pressures than SRF, it has a weak point with regard to sludge gravity drainage characterization, 

namely it does not take sludge compressibility into account. For this reason, it cannot be used  

to describe the gravity drainage process and the behavior of sludge under gravity drainage 

conditions correctly. 

7.3. Specific Resistance to Drainage (SRD) 

The SRD technique, developed during this PhD project, aimed at describing the gravity drainage 

taking all the important phenomena into account. It was originally developed with dextran-MnO2 

particles, as a representation of a compressible organic slurry (Christensen et al., 2010), and then 

successfully applied to describe the gravity drainage of activated sludge (Dominiak et al., 2010a). 

The method revealed the importance of settling velocity of particles, low pressure filtrate 

expression, cake compressibility and cake collapse due to capillary forces (Bierck et al., 1988). 

The test itself is an accurate simulation of the actual gravity drainage process. A sample of mixed 

liquor activated sludge is introduced into a transparent glass tube and drained through a filter 

closing the bottom of the tube (Fig. 4). The process is recorded by a web camera acquiring images 

at a specified frame rate, and the data are recorded by a personal computer. The latest evolution  

of the test setup employs only a digital camera, capable of taking pictures at pre-defined time 

intervals, the glass tube with a filter-closed bottom, and a beaker for filtrate collection.  

The simplicity of this technique and the portability of the apparatus allows for easy determination  

of sludge drainage properties directly after sampling in wastewater treatment plants or in reed bed 

facilities.  

The raw data from the experiment are the level of sludge-water interface and the level of water-air 

interface. The difference between these two, i.e. the thickness of the clear water phase, produces  

a specific pattern when plotted against time and allows for the calculation of the settling velocity  

of particles, the specific cake resistance and cake compressibility. A detailed description  

of the gravity drainage phenomenon and the method itself is given in Chapter 9. 
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Figure 4. The experimental setup used for the determination of sludge drainage properties with  

the SRD method. The raw data curve is presented in Chapter 9, Figure 10. 

To my knowledge, the SRD methodology is the most accurate description of sludge gravity 

drainage and the phenomena involved in this complicated process. It emphasizes the importance  

of settling and particle settling velocity, the compressibility of the cake and its final collapse due  

to capillary drag forces. It appeared to be very precise and sensitive and was used in this project  

to determine the factors of greatest importance to fast and efficient drainage of activated sludge  

in reed bed basins. These findings allowed for the formulation of a set of advice and guidelines  

for reed bed operators with the hope of substantial improvement of the overall performance of these 

facilities. 

7.4. Sludge Volume Index (SVI) 

Sludge volume index (SVI) is the most common measure of sludge settleability and compactability 

used by wastewater treatment plant operators, both because it is very easy to perform and because  

it gives an immediate idea of the performance of secondary clarifiers. The method consists  

of settling a 1 L sample of sludge in a graduated cylinder and reading the volume of settled sludge 

after 30 min. The final volume of the settled sludge, divided by the sludge suspended solids (SS) 

concentration, gives the SVI value in ml/g SS. This method is sometimes complemented  

by the initial settling rate (ISR) measurements, which describe the maximum velocity of particle 

settling at the beginning of the process. 

The characteristics of both the solid and liquid phase of activated sludge, like density difference, 

liquid viscosity, or solid phase characteristics, are not directly measured or considered, but they 

obviously influence the process. The mathematical description of sludge settling including these 

characteristics was given by Canale and Borchardt (1972), who used Stoke’s law to describe  

the free settling of sludge particles, and by Tiller (1981), who described the thickening process  

of compressible sludge sediment. Due to the high concentration of particles in sludge,  
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the consolidation thickening, proposed by Tiller, is a closer approximation of the actual 

phenomenon, and it can be used to calculate the final sludge sediment volume.  

Although the SVI measurement illustrates and, to some extent, quantifies sludge settleability  

and consolidation, it cannot be directly used to describe the drainage characteristics of sludge 

during gravity drainage because the sole driving force in an SVI experiment is gravity,  

and there is no liquid movement. However, sludge exhibiting a low SVI value can be expected  

to offer less resistance to filtration due to larger particles and smaller degree of deflocculation  

(Karr and Keinath, 1978; Barber and Veenstra, 1986; Mikkelsen et al., 1996). 

7.5. Particle Size Distribution (PSD) 

Particle size distribution (PSD) does not directly measure the quality of sludge in terms  

of dewatering or drainage, but it can provide valuable information and help predict the behavior  

of sludge during drainage or dewatering. PSD can be determined by light scattering techniques, 

employing lasers and visible light, or by direct microscopic observation and measurements of flocs. 

Many trials have been made to correlate the PSD with other dewatering characteristics of sludge, 

especially the CST and SRF (Karr, 1976; Sørensen et al., 1996; Friedrich et al., 1993), but direct 

and general correlations were not very strong. However, the PSD is a measure of the degree  

of sludge flocculation, and it can therefore be useful in linking the loss of drainability  

to the deflocculation of sludge, which seem to follow each other closely (Dominiak et al., 2010b). 

7.6. Floc strength determination 

Floc strength is not a measure of dewatering characteristics of sludge, but its determination is useful 

when describing the stability of activated sludge floc under the action of shear forces. Many 

approaches have been developed to measure the floc strength, both at the macroscopic and 

microscopic (single floc) levels (Jarvis et al., 2005). One of the most popular macroscopic methods 

is the standardized shear reactor test. It is performed by stirring a sludge sample in a baffled reactor, 

and the level of shear is controlled by changing the agitation speed. The measured parameter can  

be the floc (particle) size distribution (Biggs and Lant, 2000) or turbidity of the supernatant 

produced by controlled centrifugation of mixed liquor (Mikkelsen and Keiding, 1999). Although 

floc strength data from experiments performed with different techniques cannot be directly 

compared, these measurements can be used to assess the effect of different conditions on activated 

sludge floc strength and integrity (Jarvis et al., 2005). Higher floc strength can be linked to larger 

and more stable flocs, and this can be related to lower resistance during sludge gravity drainage  

(Karr, 1976; Dominiak et al., 2010b). 

Floc size and strength, two important floc properties influencing the drainability and dewaterability 

of sludge in full-scale situations, are a consequence of floc composition and architecture, decided  

by microorganisms living inside the flocs. This link was of particular interest in this PhD project 

and the reason for the choice of research directions. In the next chapter, the influence  

of bacteria and their activity on the microscopic floc properties and the resulting large-scale sludge 

characteristics will be unveiled. 
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8. Floc properties in relation to dewatering and drainage 

 

8.1. Floc morphology and composition 

Activated sludge is a complex mixture of flocs, smaller cell aggregates, and both organic  

and inorganic particles suspended in water. The activated sludge floc is a complicated structure 

composed of biotic and abiotic components. The general structure of a floc is a result  

of the selective pressure in the wastewater treatment plant, favoring dense aggregates with good 

settling properties. The biotic community of an activated sludge floc is composed of both 

prokaryotes – Bacteria and some Archaea – and eukaryotes – protozoan and often metazoan 

organisms (Eikelboom, 2000). The actual community composition is dynamic and is a net result  

of the influent wastewater composition and the conditions inside the treatment plant. 

 

Figure 5. Morphology of a typical activated sludge floc. 

A typical activated sludge floc is presented in Fig. 5. It is composed of bacterial cells growing  

in dense, grape-shaped microcolonies, as filaments or as single cells embedded in the matrix  

of extracellular polymeric substances (EPS) or attached to filamentous organisms  

(Jorand et al., 1995; Snidaro et al., 1997; Jenkins et al., 2003). Filamentous bacteria are generally 

recognized as ‘backbones’ of a floc, responsible for its mechanical strength, as well as settling 

properties (Ekama et al., 1997). The EPS matrix, composed of several fractions, is a dense and 

sticky, glue-like material, responsible to a large degree for floc and microcolony integrity. In the 

EPS matrix many holes, cavities and channels are present, which make up for the large surface area 

of flocs and facilitate water and nutrient transport to the cells growing deep in the floc structure 
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(Liss et al., 1996; Daims et al., 2001; Chu and Lee, 2004). The EPS matrix can be regarded  

as a typical gel because of its swelling/deswelling properties and divalent cation bridging  

(Keiding et al., 2001). This is extremely important for the floc properties, which determine  

the behavior of activated sludge in full-scale processes like settling, dewatering and gravity 

drainage. 

The EPS matrix, which constitutes approx. 40 to 60% of the total organic matter of activated 

sludge, is composed of several groups of polymers. The most important are the proteins (40-60%  

of EPS), humic compounds (20-30%), polysaccharides (10-20%), extracellular nucleic acids  

(2-5%), as well as lipids and other compounds (5-10%) (Nielsen, 2002; Watnick and Kotler, 2002). 

Since the EPS matrix is the largest organic fraction of activated sludge, possessing many 

characteristics influencing sludge physico-chemical properties, it has been the object of many 

research studies focusing on its effect on settling and dewaterability (see Section 8.3.1). 

The size of activated sludge flocs is typically 40 to 125 μm, but values down to 25 μm and  

up to 1000 μm have been reported (Frølund et al., 1996; Ekama et al., 1997; Eikelboom, 2000; 

Jenkins et al., 2003). The floc size is a net result of the floc strength and the mechanical stresses that 

the floc is subjected to, whereas the floc strength results from a range of chemical and biological 

factors. All in all, the floc size is a very dynamic floc characteristic with many implications  

on sludge macroscopic properties and sludge behavior in large-scale processes. 

8.2. Floc size and strength as important parameters for sludge drainage and dewatering 

The effective dewatering of activated sludge by gravity drainage depends on a number of physico-

chemical and microbiological factors, the most important of which seems to be the particle size 

distribution, similarly to the case of dead-end filtration of abiotic suspensions. The advantage  

of larger particles over smaller particles during gravity water drainage can be easily demonstrated  

if one imagines a cake composed of particles of two different sizes (Fig. 6). Larger particles would 

form a cake with larger voids, i.e. larger porosity, and would therefore offer less resistance to water 

flow than smaller particles forming a more compacted cake with narrower channels and smaller 

porosity. Moreover, the presence of smaller particles results in the increased internal surface area  

of the cake, which also translates into higher hydraulic resistance. These simple considerations can  

be directly projected to activated sludge flocs, however particle compressibility has to be kept  

in mind in the case of sludge. Larger flocs are more beneficial to gravity drainage due to the fact 

that they impose lower specific cake resistance values and promote faster drainage. Deflocculation, 

a process of floc disruption into smaller fragments, is especially damaging to the drainage process. 

Small floc fragments can easily penetrate the cake voids and close the pores (process known  

as blinding), which leads to increased drag, slower drainage and progressing cake compression  

(Fig. 6). This example illustrates the importance of floc strength, which determines the floc size 

distribution under a certain set of conditions and therefore defines the drainage properties on a large 

scale. 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
24 

 
  

 

Figure 6. Illustration of water flow through a cake composed of larger and smaller particles,  

and a cake blocked by small particles. 

The presence of small particles in the activated sludge suspension has been shown to decrease 

dewaterability many times (Karr and Keinath, 1978; Barber and Veenstra, 1986;  

Mikkelsen et al., 1996). Since deflocculation of activated sludge flocs is a direct result of reduced 

floc strength (Mikkelsen and Keiding, 1999), the knowledge of floc strength and factors affecting  

it can be effectively used to investigate the phenomena behind the quality of sludge in terms  

of gravity drainage.  

Floc strength can be regarded as a sum of all the interactions that bind bacteria and floc constituents 

together. The four most commonly cited floc-binding interactions are the DLVO-type interactions 

(Hermansson, 1999), bridging of EPS with divalent (Eriksson and Alm., 1991) and trivalent cations 

(Nielsen and Keiding, 1998), hydrophobic interactions (Urbain et al., 1993), and physical 

entanglement of floc entities (Rijnaarts et al., 1995). All these interactions can be affected by both 

physico-chemical properties of bulk liquid and biological activity of bacteria inhabiting the flocs, 

which makes the floc strength a continuously changing parameter, the magnitude of which  

can be managed with a number of strategies.  

According to the DLVO theory, bacterial adhesion to floc surface can be increased by increasing 

the ionic strength of the solution. This effect is expected to result from decreasing the double layer 

thickness and decreasing the surface potential, which would eventually act against the electrostatic 

repulsive forces (Hermansson, 1999). EPS bridging mechanisms are facilitated by the presence  

of di- and tri-valent cations, especially calcium, iron and aluminum. However, the reduction  

of Fe(III) to Fe(II) by anaerobic bacteria (Nielsen, 1996; Nielsen et al., 1997), or Fe(III) 

precipitation as iron sulphide (Nielsen and Keiding, 1998), results in immediate decrease in floc 

strength leading to deflocculation and, subsequently, to problems with sludge settling  

and dewaterability. Hydrophobicity of cells and floc surfaces has been shown to be a very important 

selective force in a wastewater treatment plant, capable of leaving the hydrophilic species 

unattached and, as a consequence, removing these species with effluent (Zita and Hermansson, 

1997). All these mechanisms are a combination of chemical and microbiological processes  

and stand between these two worlds. It is therefore very important to remember that any action, 
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designed to interact with one process, will most probably affect other processes, and the overall 

effect can be different than initially assumed. 

8.3. Factors controlling the floc size and strength 

 

8.3.1. Extracellular Polymeric Substances (EPS) and cations 

EPS matrix of activated sludge flocs constitutes 80 to 90% of organic matter in activated sludge  

and therefore determines the integrity of flocs to a very high extent (Frølund et al., 1996; Münch  

and Pollard, 1997; Liu and Fang, 2002). The work of Novak and Park resulted in the fractionation 

of activated sludge extracellular polymers into three major groups according to the distinct cations 

responsible for attachment of these polymers: (1) polymers composed of lectin-like proteins bound 

to polysaccharides, bridged by Ca
2+

 and Mg
2+

 and extractable by a sodium-rich cation exchange 

resin (CER), (2) protein-rich biopolymers bound to Fe cations and extractable by sulfide,  

and (3) biopolymers bound to Al cations, extractable with bases (Novak et al., 2003; Park  

and Novak, 2007; Park et al., 2008; Park and Novak, 2009). Each EPS fraction was found to impart 

different characteristics on the activated sludge floc, including different digestion characteristics 

and different dewatering properties. The amount of CER-extractable EPS was found to correlate 

negatively to sludge settling properties (Liao et al., 2001; Wilén et al., 2003), but simultaneously  

to improve the dewaterability (Mikkelsen and Keiding, 2002; Jin et al., 2004), while the EDTA-

extractable EPS was shown to correlate negatively with both settling and dewatering properties 

(Eriksson and Alm, 1991). Furthermore, the role of lectins, the carbohydrate-binding proteins, has 

recently been recognized as an important mechanism for activated sludge bioflocculation  

(Park and Novak, 2009). These differing influences of EPS on floc overall characteristics are most 

often attributed to EPS proteins, which have been reported to be a predominant organic component  

of EPS (Urbain et al., 1993; Frølund et al., 1996). Park and Novak found that each cation-bound 

fraction of EPS produced a unique SDS-PAGE protein fingerprint, suggesting a different protein 

composition and therefore accounting for different characteristics conveyed by each fraction (Park  

et al., 2008). As the pool of EPS proteins is augmented by incoming proteins from influent stream, 

by proteins originating from sludge cell lysis, and by proteins actively secreted by sludge 

microorganisms (Park et al., 2008), the actual role of EPS proteins is most probably very 

significant, but also very complex. Extracellular DNA is another EPS component of potential 

significance to the floc strength, if one takes into account the fact that it is a long-chained, 

negatively-charged polymer resembling commercial polymers used for sludge conditioning  

and potentially capable of taking part in cation bridging. 

Di- and tri-valent cations are important to the floc strength and size because the surface charge  

of activated sludge flocs is negative at neutral pH (Mikkelsen, 2003). This  

is caused by the ionization of functional groups of different EPS components (Rijnaarts et al., 

1995), especially important of which seem to be the proteins and humics (Wilen et al., 2003),  

but also eDNA. Cation bridging is therefore an important mechanism responsible for the floc 

strength and size as well as for the dynamics of sludge flocculation and deflocculation. 
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8.3.2. Extracellular DNA (eDNA) 

Extracellular DNA (eDNA) is an EPS component traditionally regarded as a product of cell lysis 

and decay and therefore a short-lived remnant of dead cells. However, as eDNA was discovered  

in many pure cultures in significant amounts, far exceeding those expected from cell lysis (Hara  

et al., 1981; Dillard and Seifert, 2001; Qin et al., 2007; Lorenz et al., 1991), the research of its 

origin and suspected functions started. The presence and abundance of this polymer in activated 

sludge was first reported by Palmgren and Nielsen (1996), and the amount detected in that study  

(20 mg/g of organic matter) created a suspicion that it might be purposefully excreted by sludge 

microorganisms. 

The research on extracellular DNA in various pure cultures and natural environments provided  

the hints of various roles assigned to eDNA by different bacteria. The extensive investigation  

of Pseudomonas aeruginosa documented the importance of this polymer for cell surface attachment 

and biofilm strengthening. Steinberger (2002) and Whitchurch (2002) have reported large eDNA 

production by P. aeruginosa during the alginate biosynthesis, which suggests its important role  

in cell attachment and the early stages of biofilm formation. Similar discoveries have been made  

for Staphylococcus epidermidis (Qin et al., 2007) and Streptococcus (Petersen 2004; 2005). 

Flocculating properties of marine photosynthetic bacterium Rhodovulum sp. are ascribed  

to the extracellular DNA produced by this organism (Watanabe et al., 1998). The importance  

of eDNA for the establishment of biofilms, and as a biofilm structural component, appears huge 

since it has been reported that most bacterial species are capable of binding to free DNA (Dubnau, 

1999) and that many bacterial biofilms can be disrupted by a DNase. The structural role of eDNA  

in activated sludge flocs appeared likely, since DNA is composed of long, negatively-charged 

molecules theoretically capable of bridging the EPS components in a fashion similar to that of the 

commercial conditioning polymers. The investigation of the origin and role of eDNA in activated 

sludge is presented in the supporting paper entitled ‘Extracellular DNA is abundant and important 

for microcolony strength of bacteria in mixed microbial biofilms’ (Dominiak et al., 2010c). 

In this project, a new method for the detection and quantification of eDNA at a microscale 

resolution was developed and, combined with other techniques, used to investigate the abundance 

and function of this exopolymer in the EPS matrix of activated sludge. Extracellular DNA was 

mostly found around living cells and inside microcolonies, suggesting the active and purposeful 

secretion (Fig. 7). Especially certain types of microcolony-forming bacteria, such as the denitrifiers 

Curvibacter and Thauera, the ammonium-oxidizing Nitrosomonas, and the nitrite-oxidizing 

Nitrospira, were found to exhibit very high concentrations inside the microcolonies  

(up to 300 mg eDNA/g of organic matter).  
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Figure 7. Activated sludge floc with eDNA stained blue with DDAO and microcolonies  

of Curvibacter stained red by FISH. Blue and red colors overlap, suggesting the presence of eDNA 

in the microcolonies of Curvibacter. 

Digestion of eDNA with DNase I affected the integrity of both the microcolonies and the whole 

flocs. Disruption of certain eDNA-rich microcolonies, as well as entire flocs, was revealed  

by particle size distribution analysis before and after the digestion. This discovery confirmed  

an important structural role of eDNA in activated sludge flocs and suggested the importance of this 

exopolymer for floc size and strength, the floc characteristics critical to dewatering and drainage  

of sludge. 

8.3.3. Microbial composition and activity 

Behind the macroscopic physico-chemical properties of activated sludge flocs, and the EPS matrix 

composition and function, stand the sludge microorganisms. Even though bacterial cells only make  

up from 10-20% of the total sludge organic matter (Nielsen and Nielsen, 2002),  

the composition of sludge microbiota determines the amount and composition of EPS  

and therefore influences the overall floc characteristics. It has been shown that different groups  

of bacteria influence the floc strength to a different extent, i.e. that Beta-, Gamma-, and 

Deltaproteobacteria form relatively strong microcolonies, while colonies of other bacteria like 

Alphaproteobacteria and Firmicutes are rather weak (Klausen et al., 2004). This claim is supported  

by the findings that sludge supernatant and the settled floc differ in microbial composition (Morgan-

Sagastume et al., 2008) and that sludge flocs generally have loosely and strongly attached fractions 

of cells and EPS (Keiding and Nielsen, 1997; Liao et al., 2002; Sheng et al., 2006). The easily 

detachable fraction of approximately 5-15% of cells can be removed from flocs by shear forces 

alone, the strongly attached fraction of further 15-40% of cells requires certain physico-chemical 
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treatments in addition to shear forces in order to deflocculate, and the remaining  

50-75% of cells cannot be removed from flocs (Larsen et al., 2008). Therefore,  

it becomes clear that the bacterial community composition determines how a given sludge reacts  

to a given set of factors and therefore how a given treatment influences floc strength, floc size 

distribution and, as a consequence, sludge dewaterability and draining characteristics  

(Klausen et al., 2004). 

There is a huge body of evidence that microbial activity is in fact determining the floc strength  

to the highest degree. The general rule of thumb states that anaerobic conditions, inhibiting aerobic 

microbial metabolism, lead to reduced floc strength and deflocculation (Wilén et al., 2000a, Wilén 

et al., 2000b), which can be reverted to some extent by aeration (Mikkelsen and Keiding, 1999; 

Wahlberg et al., 1994; Biggs and Lant, 2000). The degree of deflocculation can be increased  

if shear forces are present (Wilén et al., 2000a). The reasons behind the anaerobic deflocculation 

can be the reduction of Fe(III) to Fe(II) by anaerobic bacteria (Nielsen et al., 1997) mentioned 

above, the anaerobic hydrolysis of EPS floc matrix by bacterial exoenzymes  

(Rasmussen et al., 1994; Nielsen et al., 1996), or simply the lack of aerobic microbial activity, 

responsible for EPS formation and floc strengthening. Some of the strategies applied to prevent  

the deflocculation due to microbial activity loss are the nitrate addition in order to supply  

an electron acceptor (Wilén et al., 2000a) and the addition of an organic substrate (like ethanol)  

to stimulate microbial activity (Wilén et al., 2000b; Wilén et al., 2004). 

8.4. The link between microscopic floc properties and macroscopic effects on drainage  

and dewatering 

The objective of this PhD project was to carry out a comprehensive investigation of the water-

binding properties of activated sludge in relation to drainage and mineralization of sludge on reed 

beds, and to establish a link between the microbial composition of activated sludge, the floc 

properties implied by this composition, and the resulting macroscopic physico-chemical properties, 

gravity drainage in particular. Sections 8.2 and 8.3 present a top-down approach to the problem  

by first describing the floc properties of importance for drainage and subsequently demonstrating 

the importance of EPS, chemical interactions, and revealing the role of sludge microbial population. 

These interactions can be shown by a flow chart (Fig. 8). 

 

Figure 8. The influence of microbial composition and activity on floc properties, which determine 

the large-scale physico-chemical sludge characteristics. 
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Understanding how particular microorganisms shape their environment under different conditions, 

how these changes influence the floc properties, and how these properties manifest themselves  

in real-life engineering applications is an important environmental engineering  

and biotechnological challenge - and the object of interest in this PhD project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PhD thesis – ‘Drainage properties of activated sludge’ – Dominik Dominiak 

  

 

  
30 

 
  

9. Gravity drainage of activated sludge on reed beds 

The very high water content of activated sludge (over 90% by weight) imposes a dewatering step  

in order to reduce the volume and weight of sludge and thus make transportation and handling more 

economical. Sludge gravity drainage is a widely spread technique due to its simplicity and low 

costs. Besides, all the mechanical sludge dewatering technologies employ pressures far greater than 

the critical pressure for activated sludge. The critical pressure values for biological sludge range 

from 5-50 kPa (Novak et al., 1999), and exceeding this value does not increase the filtrate 

production rate. Operating above the critical pressure compresses the filtration cake, and the only 

advantage associated with this is the lower final water content of the cake, which is the reason why 

belt and filter presses are often used to remove most water at low pressures and then compress the 

sludge to decrease its final water content. Gravity drainage of activated sludge is therefore  

an attractive and economical process which is, however, very poorly covered in scientific literature. 

Gravity drainage of inorganic materials (Nenniger et al., 1958; Wakeman and Vince, 1986) and 

activated sludge (Severin and Grethlein, 1996; Severin et al., 1999) were investigated in the context 

of industrial belt presses, but the models omitted cake compressibility, which is expected to appear 

even at the very low pressures found in gravity drainage. This knowledge gap inspired the need for 

comprehensive characterization of activated sludge gravity drainage, with a specific goal  

of applying this knowledge to improve the performance of sludge drying reed beds. 

9.1. Overview of activated sludge gravity drainage phenomenon 

When activated sludge is drained by gravity, sludge particles settle forming a cake, water is filtered 

through the cake and cake becomes compressed. All these processes occur simultaneously,  

so in order to understand and correctly describe this process, all these phenomena need  

to be observed, recorded, and included in calculations. Figure 9 illustrates the three stages that can 

be identified during sludge gravity drainage. 

During stage A (cake formation stage) sludge particles settle until a filtration cake of constant 

thickness is formed. As the particles settle, they leave a clear water phase behind, which allows the 

estimation of sludge settling velocity. Stage B (pure filtration stage) begins when the cake is fully 

formed (time t1) and lasts until no more free water is present above the cake (time t2). This stage 

provides the data used for the calculation of the specific cake resistance. When the air-water 

interface touches the cake’s surface, stage C begins (cake collapse stage). During this stage,  

the cake collapses slightly due to capillary forces in the cake’s pores, and the data from this stage 

allow the calculation of the cake compressibility. 
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Figure 9. The three stages in gravity drainage of activated sludge and description of the symbols 

used in calculations, referring to water, sludge suspension, and cake levels. 
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Eq. 1 (Severin and Grethlein, 1996) describes the drainage rate through a filter cake. 

 mcake

d
Rωαη

ΔΡ
ν


      (1) 

Notice that the term ‘specific cake resistance’ is used to describe the average specific cake 

resistance of the entire cake and not the local values. It is assumed that the average specific cake 

resistance is constant throughout the drainage experiment. In fact, resistance decreases during the 

initial part of the drainage process because the pressure difference across the cake decreases with 

sample level. However, this hardly influences the average specific cake resistance and can therefore 

be neglected (Christensen et al., 2010). 

The pressure difference, defined as stress on medium surface, is given in Eq. 2. 
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Settling velocity influences the drainage rate because it regulates the deposited amount of solids 

(ω). The amount of deposited cake has a direct influence on the drainage rate and can be calculated 

according to Equation 3. 

   


 
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0

st0

ch

tcv)hh(c
  (3) 

where vs is the settling rate. 

Cake compression has an equally important indirect influence on the drainage rate, as the specific 

cake resistance increases with the cake solid volume fraction. 

Cake formation stage (A) 

During the initial phase of drainage, when filtration cake develops, three phases can  

be distinguished, i.e. the cake itself, the sludge particle suspension, and the clear liquid above  

the suspension. The total level of the sample in the cylinder is given as ht = hw + hs + hc. Since  

the particles settle, the clear water phase above the suspension develops, and the height of this water 

phase at any given time depends on settling velocity (Eq. 4). 

tvh sw       (4) 

The height of the clear water phase, which is the difference between the total level of the sample 

and the level of the sludge blanket, is measured during the experiment and can be used to determine 

the settling velocity by revealing the speed at which the particles move away from the liquid 

surface. 
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Pure filtration stage (B) 

At the time described as t1, settling stops since all sludge particles are deposited on the filter 

medium forming a cake, the thickness of which remains constant during stage B. The amount, and 

consequently the height, of deposited solids depend on the feed concentration and the volume of the 

sample used (as well as the filter area). Assuming that the weight of the dry cake is low compared  

to the sample, and that the density of particles is equal to the density of the filtrate, it is possible  

to derive an equation describing the level of the sample during the entire stage of pure filtration,  

as in Christensen et al. (2010). 

)tt(

1tt
1e)t(hh        (5) 

where 

)Rch(

g

m0 


      (6) 

Once t1 and t2 are identified from Figure 10, and Eq. 5 is fitted to experimental data from stage B,  

 can be determined from Eq. 5, providing  - the specific cake resistance – according to Eq. 6.  

The resistance of the filtration medium itself is neglected since it was found that it accounts for less 

than 1% of total resistance (Dominiak et al., 2010a). The compression of the cake, which takes 

place at the beginning of stage B when the pressure is the highest, is irreversible. This has been 

shown by recording the cake height throughout the drainage experiments and experiments 

employing settling followed by drainage, as well as in analytical centrifugation experiments 

(Dominiak et al., 2010a). 

Cake collapse stage (C) 

At the time described as t2, the liquid level reaches the cake surface, and the cake collapse stage 

begins. Since air enters into contact with the cake surface, liquid menisci form between solid 

particles, and the cake starts to collapse due to the capillary pressure (Barr and White, 2006).  

Eq. 7 was used to describe the cake compression of sludge at low pressure (Curvers et al., 2009). 
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The compressive pressure ps is a function of wet cake weight and thus a function of initial solids 

concentration and volume of the sample. Hence for practical use, Eq. 8 can be used. 
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The final dry matter content is expected to increase with initial solids concentration and initial load, 

as the wet cake weight increases with solids concentration and load. 

The actual calculations of the settling velocity and specific cake resistance are based upon  

the changes of clear water phase height (hw) throughout the drainage process, which initially 

increases linearly until time t1, and then decreases exponentially until time t2 (Fig. 10). The settling 

velocity is determined as the slope of the line fitted to data from stage A, according to Eq. 4, and the 

specific cake resistance is calculated based on data from stage B and Eq. 5. 

 

Figure 10. Water phase height (hw) as a function of time in a typical sludge gravity drainage 

experiment. 

The typical values of the specific cake resistance for activated sludge, determined by the SRF 

methodology employing piston pressure filtration, are of the order of 10
12

 m/kg (Rasmussen  

et al., 1994). The technique described in this thesis allows the determination of specific cake 

resistance during low pressure gravity drainage. In a representative experiment, the specific cake 

resistance during gravity drainage was 4.2 
.
 10

10
 m/kg (Dominiak et al., 2010a), which is much 

lower than usually found in SRF experiments. This means that for activated sludge, which  

is a highly compressible material, it is not possible to increase the dewatering rate by applying 

higher pressures, because the specific cake resistance increases almost proportionally with pressure. 

9.2. Physical, chemical, and biological factors influencing sludge gravity drainage 

The highlights of a successful gravity drainage process for activated sludge are the fast water 

drainage and the low water content of the final filtration cake. Many factors are responsible for the 

actual outcome of this complex process, including physical, chemical, and biological factors.  
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A thorough knowledge of these factors is indispensable for the successful operation of gravity 

drainage-based processes, like reed bed drainage. 

9.2.1. Physical factors 

The physical factors of importance for sludge gravity drainage are, according to Eq. 1,  

the differential pressure running the process (ΔP), the amount of solids deposited in the cake  

(), and the specific cake resistance (). The driving pressure of this process is the hydrostatic 

pressure of the liquid, which practically means that it depends on the volumetric sludge loading and 

the resulting liquid height. The amount of solids forming the cake depends on the concentration  

of the feed, i.e. the suspended solids content of the sludge being drained. The magnitude of the 

specific cake resistance, due to the highly compressible nature of activated sludge solid fraction, 

depends on many factors, including the above-mentioned volumetric loading, but also the floc 

properties, such as floc size and floc strength. The importance of these physical factors was 

investigated in the study described in the supporting paper entitled ‘Gravity drainage of activated 

sludge: new experimental method and considerations of settling velocity, specific cake resistance, 

and cake compressibility’ (Dominiak et al., 2010a). 

Volumetric loading 

The effect of sludge loading on the gravity drainage process is very strong, and this factor appears 

to be critical to the outcome of the process. Increasing load causes the increase in the total drainage 

time, and the relationship between these two parameters is exponential (Fig. 11 A). The specific 

cake resistance increases linearly with increasing pressure (Fig. 11 B), which is a clear 

manifestation of cake’s compressibility. The more pressure acts on the filtration cake, the more 

compressed it will become and the more resistance to flow will appear in the cake’s pores, which 

translates to increased values of specific cake resistance. Since increased loading causes the cake  

to become thicker (as more solids are added), the relationship between the loading and the total 

drainage time is exponential. 

 

Figure 11. The effect of volumetric sludge loading on the time of drainage (A) and the specific 

cake resistance (B). 
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Due to the cake compressibility, the final dry matter content of the cake increases with solids load.  

A more compact cake has smaller water-filled voids, which translates to a drier cake. 

Sludge concentration 

The concentration of suspended solids in activated sludge also has a strong effect on the overall 

process outcome, yet this effect is not as strong as that of volumetric loading. As the concentration 

of sludge increases (at constant loading), the total drainage time also increases, but the increase  

is linear rather than exponential (Fig. 12 A). The specific cake resistance is independent of sludge 

SS concentration (Fig. 12 B). The increase in the total drainage time is solely caused by the 

increasing cake thickness causing increasing cake total resistance. The fact that the specific cake 

resistance remains constant as the SS content of sludge increases is caused by the constant pressure 

drop across the cake during the drainage. In other words, even though the amount of solids 

increases as SS increases, the pressure on the cake is constant, and the cake is compacted to the 

same extent in each case. 

 

Figure 12. The effect of sludge suspended solids concentration on the time of drainage (A) and the 

specific cake resistance (B). 

The dry matter content of the cake can be increased by increasing the SS concentration of sludge. 

The compaction of cake under its own weight takes place in the final stage of drainage (stage C), 

when the pure water phase above the cake disappears. As the SS concentration increases, the cake 

weight also increases and thus the cake final dry matter content raises. 

The drainage process of sludge is successful when the drainage is fast and the final residue is dry. 

The final dry matter content of the cake can be increased by increasing both the sludge loading  

and the sludge concentration, but increasing these two parameters increases the total drainage time.  

Proper adjustment of these two parameters is therefore critical in order to achieve sufficient 

drainage rate and the satisfactory final dry matter content of the residues. 
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Sludge condition 

Floc size distribution plays an important role in the determination of the drainage rate, and sludge 

deflocculation can lower the drainage rate considerably. Anaerobic conditions and mechanical shear 

are some of the well-described deflocculating factors (Wilen et al., 2000), and the impact of these 

factors on the drainability of sludge was investigated (Dominiak et al., 2010b). 

Anaerobic sludge storage and mechanical shear at different shear rates all lower the drainage rate  

by increasing the specific cake resistance due to deflocculation. The relationship between the sludge 

loading and the specific cake resistance is linear (as indicated in Fig. 11 B), and the slope of this 

relationship will be defined as sludge drainability. The drainability depends on the condition  

of sludge after a certain treatment (Fig. 13). 

 

Figure 13. Results of the drainage experiments comparing the effect of 24h anaerobic storage  

of activated sludge, shearing at 300 rpm and shearing at 800 rpm on the drainage properties  

of activated sludge from a single sample batch. 

Shearing at the rate of 300 rpm for 6 hours caused a mild effect, consisting of the decrease  

in drainability. A stronger effect was brought about by 24 hours of anaerobic storage, but the most 

significant drop in drainability was, as predicted, a result of shearing at 800 rpm. The most probable 

reason for these phenomena is that both shear and anaerobic conditions have a deflocculating effect 

on activated sludge, resulting in floc fragmentation and liberation of small cell aggregates  

and single cells (Rasmussen et al., 1994). These small particles would then clog the pores inside  

the cake, causing slower water flow and more significant cake compression due to liquid pressure. 

From our work a general relationship between the sludge load and specific cake resistance  

can be derived, as depicted in Figure 13: 
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A

kV
  (11) 

where V is volume of sludge, A is area of the filter, and k is a proportionality coefficient, whose size 

depends on sludge quality, and which can be influenced by various treatments applied to sludge. 

The harsher the treatment the sludge was subjected to, the higher the k value, and the more difficult 

the sludge drainage process. 

9.2.2. Chemical factors 

The role of chemical factors in the process of gravitational drainage of activated sludge consists  

in their influence on floc strength and floc size. As demonstrated in Section 8.2 the floc strength, 

which directly determines the floc size, is a combination of several mechanisms such as the DLVO 

interactions, bridging with di- and tri-valent cations, and hydrophobic interactions (Larsen et al., 

2008). For this reason, addition of chemicals can have either a stabilizing or destabilizing effect. 

The mechanism that is most commonly targeted with the goal of increasing the floc strength and 

promoting flocculation is the cation bridging. The importance of this mechanism for floc stability 

was demonstrated many times by the removal of cations (Bruus et al., 1992; Liao et al., 2002) and 

by showing the beneficial effect of cations on floc characteristics like the floc settling velocity  

(Jin et al., 2003). Addition of calcium, magnesium, aluminum, and iron salts as well as positively 

charged polyelectrolytes is a common practice in wastewater treatment plants aiming at improving 

the sludge settleability and dewaterability. The effect of sludge flocculation with calcium carbonate 

prior to its application on reed beds was demonstrated in the supporting paper entitled ‘Sludge 

quality aspects of full-scale reed bed drainage’ (Dominiak et al., 2010b). 

9.2.3. Biological factors 

Microbial composition of activated sludge and the activity of microorganisms were described  

in Section 8.3.3 as factors of great importance for floc strength and the resulting floc size, so they 

also strongly affect the drainage properties of activated sludge (Klausen et al., 2004). The control  

of microbial composition of sludge is now possible to a certain extent, especially in relation  

to filamentous bacteria (Eikelboom, 2000). The general objectives of population control  

in wastewater treatment plants, aiming at good settling properties of sludge, agree with the desires 

of reed bed operators, who need large and strong flocs with just the right amount of filamentous 

organisms. The freedom of full sludge population control and design is still beyond our reach,  

but the knowledge of microbial activity and the related sludge behavior is sufficient to successfully 

control the outcome of solid-liquid separations by the adjustments of microbial activity. 

As stated in Section 8.3.3, the general rule of thumb states that anaerobic conditions, inhibiting 

aerobic microbial metabolism, lead to reduced floc strength and deflocculation (Wilén et al., 2000a; 

Wilén et al., 2000b), which can be reverted to some extent by aeration (Mikkelsen and Keiding, 

1999; Wahlberg et al., 1994; Biggs and Lant, 2000). Figure 13 illustrates the damaging effect  

of anaerobic conditions on sludge drainability. More evidence is supplied in the supporting paper 
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entitled ‘Sludge quality aspects of full-scale reed bed drainage’ (Dominiak et al., 2010b) which, 

based on a case study, describes the operational problems on reed beds caused by the development 

of anaerobic conditions during sludge pumping. The way to solve the operational problems caused 

by decreased aerobic microbial activity is to try to maintain that activity or regain it once it has been 

lost. Maintaining the aerobic microbial activity can be achieved by aeration or, if aeration  

is impossible, by nitrate dosing to ensure anoxic conditions, which tend to conserve  

a substantial part of floc strength in the absence of oxygen and in the presence of shear  

(Wilen et al., 2004; Dominiak et al., 2010b). 

9.3. Recommendations for the design and operation of reed beds for sludge drying  

and mineralization 

Traditionally, the design and operation of sludge drying reed beds have been based on fixed 

guidelines describing the average yearly sludge loading per unit area of basins, such as those 

proposed by Nielsen (Nielsen, 2002; 2003; 2005b). He prescribes 60 kg dry matter/m
2
/year  

for surplus activated sludge and 50 kg dry matter/m
2
/year for surplus sludge blended with 

anaerobically digested sludge. However, as revealed in one of the supporting papers, entitled 

‘Sludge quality aspects of full-scale reed bed drainage’ (Dominiak et al., 2010b), the quality  

of sludge in relation to gravity drainage differs substantially between different wastewater treatment 

plants. This finding illustrates the importance of regular sludge quality monitoring and operating 

the reed bed basins based on the current sludge characteristics. 

The novel SRD method for the accurate determination of sludge characteristics in relation to gravity 

drainage is described in Section 9. It assures fast and easy assessment of any sludge on site, 

immediately after sampling, and therefore the precise determination of drainability, which can  

be directly projected to full-scale drainage process. The value of the specific cake resistance, 

obtained with the SRD technique, and a basic sludge parameter – SS concentration – are sufficient  

to successfully operate the reed beds and minimize the risk of operational problems, based on the 

guidelines presented in the supporting papers. The importance of the operating parameters – sludge 

loading and sludge SS concentration – is presented in Section 9.2.1. Since these parameters are 

critical to the effective drainage of activated sludge, their adjustments, based on the current sludge 

characteristics, should be made regularly if the performance of the reed beds is to be kept constant 

and high. 

The determination of sludge drainage characteristics by means of the specific cake resistance 

measurement with the SRD technique should always be the starting point. This value allows  

for the estimation of sludge condition and permeability, based on Fig. 14. 

One measurement of the specific cake resistance is enough to determine the slope  

of the relationship presented in Fig. 14, hence to predict the specific cake resistance  

for any loading. This information, coupled with the knowledge of the SS content of sludge, enables 

the prediction of the drainage time, according to Fig. 15. 
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Figure 14. The relationship between the specific cake resistance and the sludge loading for sludge 

samples of different permeability caused by different deflocculating conditions. 

 

Figure 15. The relationship between the specific cake resistance and the time of drainage  

at different sludge SS concentrations. Points show the measured values for seven Danish 

wastewater treatment plants. 

Knowledge of the drainage time is highly beneficial because it helps select the sludge dosing 

program so that a new portion of sludge is not applied before the previous one drains completely.  
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It can therefore help to find a balance between the loading and resting period so that both complete 

drainage of sludge and air penetration take place. 

Generally, it is always better to apply smaller sludge portions more frequently than to flood the 

basins with one large portion and wait for the water to drain. This remark is based on the fact that 

activated sludge forms very compressible cakes, and the specific cake resistance increases 

proportionally to the pressure. Therefore, keeping the load low assures faster drainage and 

minimizes the risk of anaerobic layer formation. Anaerobic conditions lead to sludge deflocculation 

and formation of the so-called ‘skins’, which are dark and dense sludge layers of very low water 

permeability. Since the residues in reed bed basins keep accumulating as the basin is exploited, such 

skins persist in the residues and have a strong negative effect on the overall basin permeability for 

the rest of the basin’s life cycle. It is especially important not to overload the bed during the 

commissioning period, because the impermeable skin may remain at the bottom of the basins for the 

entire operation of the bed, i.e. up to ten years. 

The findings of this PhD project were applied on a large scale by Esbjerg reed bed facility 

operators. The SS concentration in the aeration tanks of both plants has been lowered from  

4-6 to 3.5-4 g/L. Nitrate is continuously dosed to the sludge transportation pipeline, and calcium 

carbonate is continuously used to flocculate sludge prior to its application to the basins. Finally, the 

sludge application program has been changed for all basins, and sludge is now applied in smaller 

portions, but with higher frequency. It is now 2000 m
3
/basin every 6

th
 week, and this volume  

is divided into 5 batches on each basin. Each batch is pumped out for 1 hour with 25 hours to drain 

before the next batch is added. In this way, the problems with the operation of basins handling 

sludge from plant Esbjerg West have been eliminated, and the overall performance of the reed bed 

facilities has been significantly improved after 1 year. 

Some general guidelines for reed bed design can be formulated. The most important operational 

parameter for a reed bed is the average yearly sludge loading per unit area of a basin.  

The benchmark value for the design of reed beds is the 60 kg DM/m
2
/year proposed by Nielsen 

(Nielsen 2002; 2003). However, the drainability of sludge differs strongly between wastewater 

treatment plants (points in Fig. 15), and designing a reed bed to receive 60 kg DM/m
2
/year in a case 

where sludge quality is actually poor would most probably lead to overloading if the presumed 

amount of solids was indeed loaded. 

The starting point in the design process should be an assay of sludge drainability with the SRD 

methodology (Fig. 16). The obtained value of the specific cake resistance should then be compared 

to the range presented in Fig. 15. If the value appears high compared to those for other wastewater 

treatment plants, it is reasonable to try to improve the drainability by sustaining the microbial 

aerobic metabolism during transportation or by flocculating the sludge by aeration  

or cation/polymer conditioning. The final specific cake resistance value could then be compared  

to that for plant Esbjerg East (2.4 
.
 10

10
 m/kg - point 4 in Fig. 15), which reports consistent and 

predictable operation at 40 kg DM/m
2
/year without significant problems. The results of this 
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comparison should help choose a reasonable value of the average yearly sludge loading so that the 

operation of the reed bed is flawless in the long term. 

 

Figure 16. Flow chart for the reed bed design process. 
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10. Conclusions and perspectives 

The objective of this PhD project was to carry out a comprehensive investigation of the water-

binding properties of activated sludge in relation to drainage and mineralization of sludge on reed 

beds and to establish a link between the microbial composition of activated sludge, the floc 

properties implied by this composition, and the resulting macroscopic physico-chemical properties, 

gravity drainage in particular. Understanding how particular microorganisms shape their 

environment under different conditions, how these actions influence the floc properties, and how 

these properties manifest themselves in real-life engineering applications is an important 

environmental engineering and biotechnological challenge. 

The link between sludge microbial population, the resulting floc properties, and the overall sludge 

drainage characteristics was established by demonstrating the important role played by eDNA for 

floc and microcolony strength and integrity and, further, by showing the importance of floc size  

and durability for the drainage process. 

A new method for the detection and quantification of eDNA at microscale resolution was developed 

and, combined with other techniques, used to investigate the abundance and function  

of this exopolymer in the EPS matrix of activated sludge. Extracellular DNA was mostly found 

around living cells and inside microcolonies, suggesting the active and purposeful secretion. 

Especially certain types of microcolony-forming bacteria, such as the denitrifiers Curvibacter  

and Thauera, the ammonium-oxidizing Nitrosomonas, and the nitrite-oxidizing Nitrospira, were 

found to exhibit very high concentrations inside the microcolonies (up to 300 mg eDNA/g  

of organic matter). Digestion of eDNA with DNase I affected the integrity of both  

the microcolonies and the whole flocs. Disruption of certain eDNA-rich microcolonies, as well  

as entire flocs, was revealed by particle size distribution analysis before and after the digestion. This 

discovery confirmed an important structural role of eDNA in activated sludge flocs and suggested 

the importance of this exopolymer for floc size and strength, the floc characteristics critical  

to dewatering and drainage of sludge. 

The importance of strong, big flocs for sludge drainage properties was demonstrated in a case study 

of two wastewater treatment plants in Esbjerg, sharing a reed bed facility. Deflocculation due  

to shear forces and anaerobic conditions was shown to be responsible for increased specific cake 

resistance, which is a direct demonstration of sludge quality in terms of gravity drainage.  

Re-flocculation of activated sludge by aeration, calcium carbonate and nitrate dosing proved  

to be an effective strategy for improving the drainability of sludge.  

A novel technique for quick and easy sludge quality determination on site, immediately after 

sampling and at low pressure, was developed and used to investigate the process of sludge 

gravitational drainage. Sludge volumetric loading and suspended solids concentration were 

identified as the factors of greatest importance for the effective operation of reed bed basins.  

A method for the determination of reed bed loading schemes, based on direct and regular sludge 

quality monitoring, was proposed along with a new approach to reed bed facility design.  
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The findings of this project were used in full scale and improved the operation of reed bed facility 

in Esbjerg, previously suffering from frequent operational problems and process failures. 

This PhD project significantly increased the understanding of phenomena taking place during 

sludge gravitational drainage on reed beds and revealed the link between sludge microbiology, floc 

properties, and macroscopic sludge characteristics. These findings were successfully transferred  

to full-scale and used to improve the operation of an existing reed bed facility. The perspectives  

for further research may assume the application of the guidelines formulated in this project  

for the construction and subsequent operation of a full-scale reed bed facility with the aim  

of achieving a high and sustainable performance and improving the competitiveness of sludge reed 

bed disposal. 
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11. Nomenclature 

List of symbols 

A  cross-sectional area of the cylinder (m
2
) 

c  particle concentration in the feed (kg/m
3
)  

h0  initial level of the suspension (m) 

hc height of the cake (m) 

hs distance between cake surface and sample-water interface (m) 

ht  actual level of the suspension (m) 

hw height of the clear water phase (m) 

m final mass of the wet filtration cake (kg) 

M  mass of the sample (kg)  

P  applied pressure (Pa) 

pa fitting parameter in Eq. 7 

ps solids pressure (Pa) 

Rm   media resistance (m
-1

) 

V volumetric load of the sample (m
3
) 

k treatment-dependent proportionality factor (1/kg) 

Greek symbols 

  specific filter cake resistance (m/kg) 

 fitting parameter in Eq. 7 and 8 

  density of the filtrate (kg/m
3
)  

s  density of the particles (kg/m
3
) 

d     drainage rate (m/s)  

s     settling velocity (m/s)  

µ  filtrate viscosity (Pa s) 

φ solids volume fraction 

φ 0 solids volume fraction for ps equal to 0 

  amount of deposited material per unit area of media (kg/m
2
) 
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Abbreviations 

CER cation exchange resin 

CST capillary suction time 

DDAO 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) 

DM dry matter 

DLVO Derjaguin Landau Verwey Overbeek (theory) 

eDNA extracellular deoxyribonucleic acid 

EPS extracellular polymeric substances 

ISR initial settling rate 

MLSS mixed liquor suspended solids 

PSD particle size distribution 

SDS-PAGE sodium dodecyl sulphate – polyacrylamide gel electrophoresis 

SRD specific resistance to drainage 

SRF specific resistance to filtration 

SS suspended solids 

SVI sludge volume index 
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A model was developed to simulate drainage of compressible particle suspensions,
and study how cake compression and volumetric load influence the process. The input
parameters were settling velocity, cake resistance and compressibility. These parame-
ters were found using a new experimental method. Dextran-MnO2 particle suspensions
were drained as these resemble organic waste slurries with respect to settling and
compressibility. It was demonstrated that cake compressibility must be taken into
account to obtain adequate simulations. This implies that pressurized filtration resis-
tances cannot be used for drainage simulations. In the filtration step, a distinct
increase of dry matter from top to bottom of the cake was observed. During the subse-
quent consolidation, the cake compressed and a uniform dry matter profile was found.
The final dry matter content of the cake increased with feed concentration and volu-
metric load. The drainage time increased proportionally with feed concentration
and, more importantly, proportionally with squared volumetric load. VVC 2010 American

Institute of Chemical Engineers AIChE J, 00: 000–000, 2010

Keywords: dewatering, settling, manure, sludge, specific cake resistance

Introduction

Organic waste products such as biological sludge and ani-
mal manure can be used for heat and power generation, used
as fertilizer in agricultural systems, or converted to transpor-
tation biofuels.1,2 Furthermore, it is possible to convert or-
ganic waste into substances that can be used in various
industrial products.2 As the concentration of dry material is
low in sludge and manure, solid-liquid separation is an im-
portant part of pretreatment in order to lower transportation
costs, minimize the need for storage capacity, or increase the
energy output from incineration. There are several methods
for solid-liquid separation, including gravity drainage; for

example, organic slurries can be drained using belt filter
presses3 or sludge drying reed beds.4 The critical pressure
above which the dewatering rate is constant has been deter-
mined to be in the range of 5–50 kPa for biological sludge.5

Operation at pressures above the critical pressure have only
a limited effect on separation performance, because cake po-
rosity decreases and hydraulic resistance, therefore, increases
with pressure. Gravity drainage, is, thus, an energy-efficient
means of dewatering organic waste products as the pressure
is close to the critical pressure, so little energy is wasted on
cake compression.

In designing and optimizing gravity drainage processes, a
mathematical model and laboratory-scale measurements of
settling velocities, cake compressibility and cake resistance
would be helpful. In the case of cake resistance, most meth-
ods described in the literature measure the resistance at pres-
sures higher than 100 kPa.6 These pressures are higher than
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the critical pressure of organic materials and higher than the
pressures usually observed during gravity drainage. Applying
such high pressures leads to the problem of transforming and
applying the obtained cake resistances to the low-pressure
conditions encountered in gravity drainage experiments. Fur-
thermore, studies that describe the gravity drainage processes
of inorganic particles7,8 and biological sludge,3,9 for exam-
ple, do not include cake compression in the model. Cake
compression may influence the drainage processes, but it is
not known whether cakes are compressible at the low pres-
sure achieved during drainage. However, most organic cakes
are highly compressible at high pressure ([100 kPa), so it
might be expected that organic cakes are compressible at
lower pressures as well. In that case, existing drainage mod-
els must be modified before application to organic slurries.

The settling velocity is usually determined from sedimen-
tation experiments and decreases with particle concentra-
tion.10 However, it is not known whether the settling veloc-
ity changes with drainage rate or to what extent settling
influences the drainage process. Thus, to predict how, for
example, feed concentration, load, and media resistance
influence the drainage process, it is necessary to know
whether or not settling is important for the drainage process
and, if so, how the settling velocity can be determined.

Several experiments are required to find out how cake re-
sistance, cake compressibility and settling influence the grav-
ity drainage of organic slurries. However, organic slurries
are often complex mixtures, so it is difficult to use organic
slurries for such studies. Alternatively, simpler model com-
pounds can be used; for example, dextran-MnO2 particles
have been used in pressure filtration studies.11 The compres-
sibility of dextran-MnO2 particles is comparable to that of
other organic materials, such as biological sludge.11 More-
over, it is easy to measure the porosity profile through dex-
tran-MnO2 cakes due to the higher c-ray attenuation of
MnO2 than of water or ethanol. For that reason, dextran-
MnO2 particles are a good candidate for studying separation
processes in organic compounds.

This study aims (1) to develop an experimental method
for measuring settling velocity, cake resistance and cake
compressibility, (2) to clarify how media resistance, cake
compression and settling influence the drainage process, and
(3) to simulate the drainage process to determine how load
influence the final dry matter content of the drained cake.
Dextran-MnO2 particles will be synthesized and drained;
local cake porosity will be monitored online at high-spatial
resolution to investigate cake inhomogeneity and cake com-
pression during the experiments.

Experimental

Dextran-MnO2 particles

Dextran-MnO2 particles were synthesized according to
Hwang et al.11 Before particle production, 0, 1, 2, and 3 g of
400–500 kDa Leuconostoc mesenteroides dextran (Sigma-
Aldrich, St. Louis, MO) were suspended in 100 mL of
99.9% v/v ethanol. Particles were then prepared by adding
100 mL of the dextran suspension to 100 mL of 1.5% w/w
KMnO4 solution. The dextran suspension was added gradu-
ally (5 mL of dextran suspension per addition), and after

each addition, the mixture was stirred at 600 rpm for 20 s
and then at 400 rpm for 40 s. An overhead stirrer (RZR
2041; Heidolph Instruments, Schwabach, Germany), and an
impeller (BR 13; Heidolph) were used. After preparing the
dextran-MnO2 particles, the suspension was analyzed using a
LSM510 confocal scanning laser microscope (CLSM; Carl
Zeiss, Oberkochen, Germany) at 10� magnification. Large
dextran-MnO2 particles (up to 500 lm) were formed, but the
suspension also contained nonflocculated MnO2 particles (1–
10 lm). The produced particles settled overnight at room-
temperature and supernatant was withdrawn until the desired
concentration was achieved (8–45 g/L). The suspension was
then gently mixed and used in the dewatering experiments.

Gravity drainage and sedimentation

A series of gravity drainage experiments was performed.
During drainage, a cake was formed on the filter media. It
was observed that the particles settled during drainage. For
that reason, a sedimentation experiment was setup, as well
as to compare the settling velocity determined during the
gravity drainage and sedimentation experiments.

Samples of 100 or 200 mL were drained using a 40-cm-
high-transparent glass cylinder fitted with a Whatman no. 41,
20–22 lm cut-off, filter article (Whatman, Maidstone, U.K.)
placed at the bottom of the cylinder (Figure F11). The internal
diameter of the cylinder was 6 cm, more than 1,000 times
larger than the dextran-MnO2 particles. If the dextran-MnO2

particles behaved like individual particles, the reduction in
settling velocity due to wall effects would then be less than
5%.12 A digital camera was placed roughly 10 cm away
from the cylinder and used to monitor the drainage process.
The images were analyzed to determine the distance between
(1) the filter media and the interface between the suspension
and the clear liquid phase (heightI), as well as (2) the filter
media and the interface between the clear liquid and the sur-
rounding air (heightII). Sedimentation experiments were per-
formed using the same setup, but with an impermeable
media at the bottom of the glass cylinder. Hence, datasets of
time, heightI, and heightII were obtained.

The local solid-mass fraction was measured at different
positions in the cake using a 241Am source that emits c-rays
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Figure 1. Sketch of drainage equipment used.
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at 59.54 keV. The attenuation was measured using an
NaI(T1) scintillation detector and integrating the number of
counts between 58 and 83 keV. The calibration curve was
acquired by measuring the attenuation of the feed suspen-
sion, as well as the attenuation of the final cake, the solid-
mass fraction of which was known.13 It was found that
lc,filtrate ¼ 17.7 m�1 and lc,particles ¼ 56.0 m�1.

The filtrate viscosity was measured to be 2.4 � 10�3 Pa s
using a KPG no. 100 capillary viscometer (Cannon-Fenske,
State College, PA), and the filtrate density was measured to
be 940 g/L by weighting the filtrate volume during the
experiments. The measured values were similar to the vis-
cosity and density of 50% v/v ethanol. The resistance of the
media was found by filtering 200 mL of 50% v/v ethanol
through a clean Whatman no. 41 filter paper and was calcu-
lated to be 9.7 � 107 m�1. After one of the experiments,
50% v/v ethanol was filtered through the used filter paper,
and no increase in Rmem was observed afterwards. The cakes
were easily removed from the filter media.

Analysis of cake

The dry matter content of the cake was measured by
weight loss after drying at 104�C overnight. The amount of
organic material was determined by measuring the loss on
ignition after 4 h at 500�C. The determined ratio between or-
ganic and inorganic materials nicely fit the ratio between
added dextran and MnO2, assuming that all KMnO4 was
reduced to MnO2 (slope 0.99 � 0.06, intercept 0.0 � 0.1).
The suspension changed color from purple to brown when
dextran was added to KMnO4, which confirmed the reduc-
tion of MnO�4 to MnO2.

The solid-volume fraction of the filter cake was calculated
from the measured dry matter content, as follows

/ ¼ u
uþ 1� uð Þ qs

qL

(1)

The particle density was measured by producing 25 g of the
particles. The particles were filtered and dried overnight at
104�C. The dried cake was crushed and dissolved in 200 mL
of demineralized water in a 500-mL pycnometer. Air bubbles
were removed by placing the pycnometer in vacuo for 1 h. The
pycnometer was then filled with degassed demineralized water
and weighted. After that, the dry content of the sample was
found by drying the sample at 104�C overnight. The density of
dextran-MnO2 particles (dextran/MnO2 ¼ 2.7 g/g) was
determined to be 1950 � 10 g/L.

Theory of the Drainage Process

The drainage process can be simulated if average specific
cake resistance, cake compressibility, and settling velocity
are known. To do this, the drainage rate md, must be calcu-
lated, which can be done using Eq. 23

md ¼
DP

g acakexþ Rmð Þ (2)

where the pressure difference is given as

DP ¼ Mg

A
¼ qght þ cgh0 1� q

qs

� �
� xg (3)

As can be seen in Eq. 2, the drainage rate is directly related to
the average specific cake resistance. Furthermore, the drainage
rate is indirectly related to cake compressibility and settling
velocity. Cake compressibility describes how the solid-volume
fraction of the cake changes with pressure; the compressibility
influences the drainage rate indirectly because the average
specific cake resistance increases with solid-volume fraction.
Settling is important because the cake grows faster if the
settling velocity is high. This affects the drainage process
because the drainage rate decreases with cake thickness.

Average specific cake resistance, settling velocity, and
cake compressibility can be determined from the introduced
laboratory experiments discussed here. To estimate the three
parameters, it is practical to divide the drainage process into
three stages: (A) cake formation, (B) pure filtration, and (C)
cake collapse (Figure F22). Settling velocity can only be deter-
mined using data obtained during cake formation (stage A).
Average specific cake resistance is most easily determined
using data obtained during pure filtration (stage B), and cake
compressibility is most easily determined using data
obtained after final cake compression (stage C). The proce-
dure used will be described in the following sections. When
all parameters are determined, the level of the sample, i.e.,
the drainage rate, can be simulated numerically using Eq. 2,
and Euler’s method as dht/dt ¼ ud. Such simulation can be
used to study the impact of different input parameters on the
drainage process.

Cake formation (Stage A)

During the initial part of the process when t \ t1, a cake
builds up on the media (stage A), and the cylinder consists
of cake, suspension, and clear liquid phases (Figure 2); the
total level of the sample is ht ¼ hw þ hs þ hc. Furthermore,
cake height is a function of the amount of cake deposited on
the media and of the dry matter content of the cake

hc ¼
x

/qs

(4)

and

x ¼ S h0 � htð Þ þ cvst (5)

where S is given as6

S ¼ 1
1
qs

qs

c � 1
� �

� m�1
q

(6)

If the settling velocity is zero, x increases proportionally with
the specific filtrate volume (h0 � ht). If particles settle, the
cake builds up faster and a clear liquid phase develops above
the suspension. The height of clear water can be calculated
using Eq. 7

hw ¼ vs � t (7)

As hw is measured during the drainage experiments, it is
possible to calculate the settling velocity by plotting hw as a
function of time and using linear regression. The same method
can be used to estimate the settling velocity from the results of
the settling experiment.
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Pure filtration (Stage B)

All particles are deposited on the media and the liquid
above the cake is filtered through the cake when t1 � t \ t2
(Figure 2). The amount of deposited cake is constant and
equals x ¼ ch0. It is possible to derive an equation for the
sample level ht, throughout the stage. Equation 8 has been
derived assuming that qht � c(1 � q/qs)ho � x, inserting
x ¼ Sh0 into Eq. 2 and integrating

ht tð Þ ¼ ht t1ð Þ � e�vðt�t1Þ (8)

where

v ¼ qg

g ach0 þ Rmð Þ (9)

Furthermore, hw is given as the level of the sample minus the
cake height

hw ¼ ht � hc ¼ ht t1ð Þ � e�v t�t1ð Þ � ch0

/qs

(10)

It, is, therefore, possible to estimate v by fitting Eqs. 8 or 10 to
experimental data. When v is known, Eq. 9 can be used to
calculate the average specific cake resistance.

Cake collapse (Stage C)

All liquid has been drained through the cake when t � t2.
Thus, air reaches the cake surface and menisci are formed
between the solid particles (Figure 2). This generates a capil-
lary pressure, and, thereby, a drag on the cake structure.14

Organic materials form highly compressible cakes, so the
cake porosity is higher at the top of the cake than at the bot-
tom. Thus, the cake will collapse because the cake cannot

withstand the drag on the cake structure.14 The compression
starts at the cake surface, while the underlying cake com-
presses when the capillary pressure exceeds the local com-
pressible yield stress. The compressible yield stress increases
with the solid-volume fraction; hence, cake collapse and
final dry matter content are derived from the relationship
between the solid-volume fraction and the compressible
yield stress. An often used constitutive equation for the com-
pressible yield stress is given in Eq. 1115,16

py ¼ pa

/
/0

� �1=b

�1

 !
(11)

The process stops when the liquid pressure at the sample-
media interface is zero. The liquid pressure can be calculated
using Eq. 12

pmem
l ¼ qght þ gx 1� q

qs

� �
� pmem

s (12)

and is zero when

pmem
s ¼ qghc þ Dqghc/ (13)

as hc ¼ ht at the end of the drainage experiment, and x ¼
hc/qs according to Eq. 4. The drag at the top of the cake,
which results from the capillary forces, then equals qghc, and
the effective pressure increases from qghc at the top of the
cake to qghc þ Dqghc/ at the bottom. If Dq /	 q, it can be
assumed that the effective pressure and solid-volume fraction
are constant throughout the thickness of the cake. The final
cake height can then be obtained by combining Eqs. 11 and 13
setting pmem

s ¼ py
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Figure 2. Principle of drainage experiment.
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hc;1 ¼
pa

qg
f /ð Þ (14)

where

f /ð Þ ¼ ð/=/0Þ1=b � 1

1þ / Dq
q

(15)

Both the cake height and the solid-volume fraction can be
measured at the end of the experiment. From a series of
experiments in which different amounts of solid materials are
drained it is, therefore, possible to determine pa, b, and /0 by
fitting Eq. 14 to the experimental data. To lower the number of
adjustable parameters /0 has been determined separately; /0 is
the solid-volume fraction where particles just form a
continuous network—the so-called gel point. An estimate of
/0 can therefore be made from the results of settling
experiments in which the effective pressure is low, i.e., pmem

s

¼ xg(1 � q/qs), and the solid-volume fraction of the formed
cake is close to, but greater than /0.

Results and Discussion

Description of gravity drainage setup

FigureF3 3 shows data from a typical gravity drainage pro-
cess. Three different stages (cf. Figure 2) can be identified:
stage A in which particles settle and the cake builds up,
stage B in which liquid is filtered through the nongrowing
cake, and stage C in which the liquid-air interface reaches
the cake surface and the cake collapses. The transition
between stages A and B is the time at which hs ¼ 0, i.e.,
when the suspension vanishes. Furthermore, the transition
between stages B and C is found at the time at which hw ¼
0, i.e., when the pure water vanishes. The pressure at the
sample-media interface was calculated from the sample
level, and from these calculations it was found that the pres-
sure decreased from roughly 650 Pa at the onset of the
experiment to 90 Pa at its end.

Determination of specific cake resistance
and settling velocity

The data presented in Figure 3 were used to estimate the
specific cake resistance and the settling velocity. This was
done by measuring the height of the clear water phase,
which increased during cake formation (stage A) and disap-
peared again during the pure filtration stage (stage B). Figure

F44a shows the calculated values of hw.
The settling velocity was determined during cake forma-

tion (stage A), and the result was compared with the settling
velocity determined from a simple sedimentation experiment.
For the gravity drainage experiment, the settling velocity
was determined from the initial increase in hw (Figure 4a). It
was observed that hw increased linearly until t1 ¼ 2 min and
20 s. Equation 7 was fitted to the measured data obtained
during stage A (Figure 4b), and the settling velocity was cal-
culated to be 1.6 � 10�4 m/s. Data from the sedimentation
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Figure 3. Drainage of a suspension of 12 g/L dextran-
MnO2 particles.

The actual level of the suspension is shown (ht), as well as
the level of the water-suspension interface (hc þ hs).

Figure 4. The height of the clear liquid phase (hw) in
the gravity drainage experiment shown in
Figure 3, i.e., a suspension of 12 g/L dextran-
MnO2 particles.

(a) Data from the drainage experiment, as well as a sedi-
mentation experiment, and (b) data from the drainage
experiment and simulated data for stage A (solid line), and
stage B (dotted lines).
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experiment are included in Figure 4a. The settling velocity
was almost identical during both drainage and sedimentation.
Thus, simple sedimentation experiments can be performed to
determine the settling velocity relevant to drainage experi-
ments. Settling can influence the drainage process, because
settling affects cake buildup. The impact of settling on the
drainage rate will be discussed in section ‘‘Simulation of
Gravity Drainage Processes.’’

Specific cake resistance is a parameter that describes how
difficult it is to dewater a given material. Using the method
presented here, it is possible to calculate the specific cake re-
sistance obtained during gravity drainage processes and com-
pare this value with the resistance determined during pressure
filtration processes. The specific cake resistance was deter-
mined during pure filtration (stage B). The total resistance
was calculated to be 1.2 � 109 m�1 by fitting Eq. 8 to the
measured values of hw obtained during stage B (Figure 4b).
The total resistance was given as the sum of the cake resist-
ance and the media resistance. Using the measured media re-
sistance of the clean filter paper, the average specific cake re-
sistance was calculated to be 1.2 � 109 m/kg. This resistance
was lower than the resistance obtained from piston filtration
experiments (approximately 4 � 1012 m/kg at 1 bar).11 Thus,
the cake was more loosely packed after the drainage experi-
ment than were cakes formed during piston filtration. The
measured resistance indicates that it is impossible to increase
the dewatering rate using higher pressure because the specific
cake resistance increases almost proportionally with pressure.
Drainage is, therefore, a good method for initially dewatering
organic material. If high-dry matter content is needed, drain-
age must be combined with cake consolidation.

The settling velocity and specific cake resistance were cal-
culated from four drainage experiments in which the feed
concentration of dextran-MnO2 particles in the sample was
varied between 8 and 45 g/L (TableT1 1). The settling velocity
decreased with particle concentration. This has often been
observed and explained as a result of hindered settling, i.e.,
hydrodynamic interaction between particles.17 Different
mathematical expressions exist for estimating the relative
settling velocity from the volume fraction of the particles,
i.e., us(relative) ¼ (1 � /p)4.65.10 However, the particles are
water swollen in this case, and if the volume fraction is cal-
culated from the mass and the density of the dry materials,
the relative settling velocity is underestimated. At 45 g/L,
the estimated relative settling velocity has been calculated to
be 0.9, whereas it has been measured to be \0.2. The con-
clusion is that the settling velocity must be determined
experimentally as a function of concentration, i.e., from sim-
ple sedimentation experiments or drainage experiments.

The apparent average specific cake resistance has been
estimated as well (Table 1). The resistance was highest for

the sample with the lowest particle concentration. This could
be because the filter media resistance was underestimated
and the average specific cake resistance, therefore, overesti-
mated. This had a considerable impact on the calculated re-
sistance when the formed cake was thin and the total cake
resistance low. At higher particle concentrations, the resist-
ance was constant and independent of concentration. This
was reasonable because the initial height of the suspension,
and, therefore, the pressure drop across the cake, was the
same in all four experiments.

Cake compressibility

The dextran-MnO2 cakes were highly compressible. This
was, for example, observed from the data shown in Figure 3,
where the cake collapsed during the final stage of the drain-
age process. During this part of the process, the dry matter
content of the cake increased from 6.4% g/g to 9.0% g/g.
Moreover, the dry matter content of the cake formed during
the sedimentation experiment was estimated to be 4.6% g/g
(i.e., /0 ¼ 0.023). This dry matter content was lower than
that of the cake formed during drainage. Thus, the extra
drag on the cake structure from the liquid flow contributed
to the cake compression. The effective pressure at the bot-
tom of the cake was calculated to be pmem

s ¼ xg(1 � q/qs)
¼ 4 Pa during sedimentation, compared with 90–650 Pa dur-
ing drainage. The effective pressure at the bottom of the
cake is a function of both feed concentration and load.
As cake compression increases both cake porosity and spe-
cific cake resistance, both the drainage rate and the final dry
matter content increases with load and feed concentration.

To study cake compressibility in more detail, the local
solid-mass fractions were measured online. Figure F55 shows
the local solid-mass fractions measured at four different
positions in the cake, i.e., 2, 3, 5, and 7 mm from the top of
the filter media. Notice that after 28 min, the cake height was
lower than 7 mm, which is why no more measurements were
made at this depth. The data measured 3 mm above the filter
media will now be discussed. During initial cake buildup
(stage A), the solid-mass fraction increased to 8% g/g; during
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Table 1. Experimental data for drainage of dextran-MnO2

suspensions of varying feed concentrations

Concentration
[g/L]

Settling
velocity [m/s]

Resistance
[m/kg]

Cake height
[mm]

Dry matter
content

8 1.9 � 10�4 3.2 � 109 15.5 0.084
19 1.2 � 10�4 1.7 � 109 19.7 0.10
29 1.2 � 10�4 1.5 � 109 31.3 0.11
45 3.1 � 10�5 1.5 � 109 42.6 0.12

Figure 5. Local solid-mass fraction of the cake formed
when draining dextran-MnO2 particles.

The solid-mass fraction was measured online at different
positions above the filter media.
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stage B, the mass fraction was constant. The solid-mass frac-
tion remained constant during stage C, until the solid-mass
fraction of the cake exceeded 8% g/g; the solid-mass fraction
then increased to 9.5% g/g. Thus, during stage A, a cake first
formed and then became compressed. The solid-mass fraction
was higher at the bottom of the cake than at the top, which is
as expected for compressible cakes. During stage B, when
water was filtered through the cake, the cake neither became
compressed nor swelled. Finally, during stage C, the cake
became compressed from the top until a constant solid-vol-
ume fraction was obtained throughout the cake. After roughly
40 min, the drainage process ended and the solid-mass frac-
tion became constant and was measured to be 9.5% g/g.
Hence, the final collapse resulted in a cake with a constant
structural pressure throughout its thickness, indicating a cake
with homogeneous water distribution. If the cake is consoli-
dated after drainage, the best analytical models of the consoli-
dation will, thus, be one in which it is assumed that the initial
structural pressure is constant throughout the cake. Such a
model has been derived in Shirato et al.18

The static compressibility of the dextran-MnO2 cake was
determined from drainage experiments in which the feed
concentration was varied. As the solid-mass fraction was
constant throughout the cake at the end of the experiment, it
was possible to determine the cake compressibility by meas-
uring the dry matter content at the end of the drainage
experiment and compare it with the cake weight. Using data
from the experiments shown in Table 1, it was found that
the dry matter content increased with feed concentration.
The sample volume was the same in all four experiments,
and the increase in dry matter content was due to the higher
weight of the formed cake. Equation 15 was used to calcu-
late f(/), setting /0 ¼ 0.023 as found in the previous pre-
sented sedimentation experiment. FigureF6 6 shows the final
structural pressure throughout the cake as a function of f(/).
Equation 14 was fitted to the experimental data using linear
regression; b was thereby estimated to be 0.33, and Pa esti-

mated to be 24 Pa. In the literature, b is regarded as a com-
pressibility coefficient and a cake is termed highly compress-
ible if b [ 0.25.19 Furthermore, Pa was found to be lower
than the pressure drop across the cake, i.e., 90–650 Pa.
Thus, the estimated parameters indicate that the dextran-
MnO2 particles formed highly compressible cakes even at
very low structural pressure. This has also been demon-
strated in the case of biological sludge,20 although the situa-
tion is very different from that observed for minerals. Hence,
organic particles are also highly compressible at low pres-
sure, and this must be incorporated into the drainage model
as cake compression affects both drainage time and final dry
matter content. Cake compression is a function of media re-
sistance, feed concentration, and load.

Simulation of gravity drainage processes

The determined settling velocity, specific cake resistance
and cake compressibility were then used as input parameters
in simulating the entire drainage process. The simulations
were performed numerically using Eqs. 2 and 3.

As the cake was compressible, the structural pressure in
the cake was of particular interest because it influences the
solid-mass fraction and, subsequently, the specific cake re-
sistance. From the model, it is possible to simulate the struc-
tural pressure at the membrane-cake interface as ps ¼
gRmemuf A�1. Figure F77 shows the simulated data. Different
values for the media resistance have been used to demon-
strate that the maximum structural pressure is strongly de-
pendent on the media resistance. Consequently, the cake
compression at the membrane is also expected to be strongly
dependent on the media resistance. The initial pressure drop
across the membrane is 650 Pa, and the calculated maximum
structural pressure is shown in Table T22 at different membrane
resistance values. For example, if Rmem is set to 8.1 � 108

m�1, the pressure at the bottom of the cake never exceeds the
pressure throughout cake at the end of the experiment. The re-
sistance of the media used was 9.7 � 107 m�1 and the
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Figure 6. Cake compressibility. Data from four different
drainage experiments (Table 1), and a sedi-
mentation experiment.

The final dry matter content was measured at the end of the
experiments and Eq. 15 was used to calculate f(/). The final
structural pressure was calculated and plotted as a function
of f(/).

Figure 7. Simulated structural pressure at the sample-
media interface for different media resistances.

Feed concentration has been set to 12 g/L. The specific
cake resistance and compressibility data measured for cakes
consisting of dextran-MnO2 particles were been used in the
simulation model.
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structural pressure at the bottom of the cake declined during
drainage. Consequently, (1) the solid-mass fraction at the bot-
tom should be higher than throughout the rest of the cake, or
(2) cake compression should be reversible, so that the solid-
mass fraction at the bottom of the cake decreases during the
final part of the drainage process. This was not observed when
the local solid-mass fraction was measured (Figure 5). Accord-
ing to the theory of highly compressible cakes, most of the
pressure drop happens toward the very bottom of the cake.21

The resolution of the solid-mass fraction measurements was
roughly 1 mm, so it was impossible to measure the solid-mass
fraction just above the filter media. This could explain why it
was impossible either to detect a solid-mass fraction gradient
at the end of the process or to measure a decreasing solid-
mass fraction near the cake bottom.

FigureF8 8 shows simulated values of the actual level of the
suspension, ht, together with the experimental data from Fig-
ure 3. The following input data were used in the model
(solid line): a ¼ 1.2 � 109 m/kg, ms ¼ 1.6 � 10�4 m/s, hc,1
¼ 10.7 mm, and Rmem ¼ 9.7 � 107 m�1. The drainage rate
is overestimated during the initial part of the experiment, so
ht decreases more rapidly than was observed during the
experiment. This could be because the average specific cake
resistance decreased during the drainage experiment due
to cake compressibility and decreasing pressure across the
cake. Initially, the structural pressure at the bottom of the
cake was high, and the average specific cake resistance was
high as well. After a while, the structural pressure declined

and the newly formed cake structure was more loosely
packed than it would have been if the pressure difference
across the cake were constant during the experiment. This
resulted in a decreasing average specific cake resistance. An
apparent media resistance (R*mem) can be used to obtain a
better fit (Figure 8). During the final cake collapse, a small
deviation between the simulated and experimental data was
observed, because the drag in the cake from the increasing
capillary pressure was not incorporated into the model. To
do so, it would be necessary to know the empirical parame-
ters in Eq. 11, and model the local resistance and solid-mass
fractions in the cake using a more complicated model. How-
ever, the error is small and the model is useful for evaluating
how different input parameters influence drainage.

The model is used to study how the settling velocity influen-
ces the process. The largest difference between the simulated
curves of ht with and without settling is observed when
approximately half the sample is drained. Thus, in Figure F99,
the time required to drain 100 mL of the sample is plotted as
a function of settling velocity. The required drainage time is
short at a low-settling velocity, but increases when the settling
velocity becomes comparable to the drainage rate. The time
required to drain 100 mL increases by a maximum of 40% if
the particles settle. As seen in Figure 9, settling becomes im-
portant for the drainage process if usht is of the same order of
magnitude or more than udhc. Hence, the settling velocity us

can be determined from a simple sedimentation experiment,
and if usht 	 udhc, settling does not influence the drainage
model. In this situation, the settling velocity can be omitted
from the simulation model, i.e., it can be assumed that cake
height growth is proportional to filtrate volume. If the settling
velocity is unknown, the maximum drainage rate can be calcu-
lated, assuming that the cake height grows proportionally with
filtrate volume (us ¼ 0), i.e., stage B will not appear. The min-
imum drainage rate can be calculated, assuming that the cake
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Table 2. Simulated maximum structural pressure at
the sample–media interface at different media resistances.

The relative cake thickness at time of maximum
pressure is also shown

Media resistance
[m�1]

Max pressure
[Pa]

Relative cake
thickness

9.7 � 107 397 31%
2.9 � 108 234 66%
5.8 � 108 170 86%
8.1 � 108 98 100%

Figure 8. Experimental and simulated data for drainage
of a suspension of 12 g/L dextran-MnO2 par-
ticles (cf. Figure 3).

Figure 9. Impact of settling on the drainage process.

Nine simulations were carried out in which only the settling
velocity was varied. The required time for draining 100 mL
of the sample was found as a function of settling velocity.
The vertical line indicates the actual measured settling ve-
locity of dextran-MnO2 particles.
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is fully builtup when the drainage process is started (us ! 1),
i.e., stage A will not appear.

The model simulation indicates that the required drainage
time increases almost linearly with feed concentration; fur-
thermore, the impact of the load has been studied as well.
FigureF10 10 shows simulated data assuming a constant average
specific cake resistance and a resistance that increases line-
arly with pressure. All input parameters are the same as used
in Figure 8 where the load was 7.07 cm; at this load, the av-
erage specific cake resistance was set to 1.2 � 109 m/kg. It
can be seen from Figure 10 that the required drainage time
increases proportionally with load if the resistance is con-
stant (i.e., in the case of noncompressible cakes); however,
for highly compressible material, the required drainage time
increases with load raised to the second power (highly com-
pressible cakes). Thus, for highly compressible materials
such as organic slurries, the load is very important for the
drainage result. If the load is doubled, the drainage time
increases by a factor of four assuming that the media resist-
ance is negligible. At the end of the drainage process, a
higher dry matter content of the cake will be observed if the
load is doubled. Thus, there exists an optimum load, for
example, on a filter press depending on drainage time (i.e.,
belt length and velocity) and media resistance. The feed con-
centration also influences the drainage rate and final dry mat-
ter content. The drainage rate increases proportionally with
feed concentration, because a thicker cake is formed at a
higher feed concentration. For the same reason, a higher dry
matter content is obtained at the end of the drainage process
if the feed concentration is increased. Now two alternative
methods exist for increasing the final dry matter content of
the cake: (1) increase the load, or (2) concentrate the feed. If
possible, the best solution is to concentrate the feed before
drainage, because the drainage time only increased by a fac-
tor of two when the feed concentration is doubled, not by a
factor of four as observed when the load is doubled.
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Figure 10. Impact of sample load on the drainage
process.

Two series of six simulations were performed in which
the load was varied. In series 1, it is assumed that the resist-
ance was constant; in series 2, it is assumed that the resist-
ance increases proportionally with pressure. The required
time for draining 90% of the maximum possible drainage
volume was then calculated as a function of load.

Conclusion

A mathematical model was developed to simulate drainage
processes, and a new experimental method was used to deter-
mine needed input parameters: settling velocity, cake resist-
ance and cake compressibility. Dextran-MnO2 particle sus-
pensions were drained, and it was found that the mathemati-
cal model fitted the experimental data well. Dextran-MnO2

particles settled during drainage. However, settling only had a
small impact on the drainage process. The drainage time was
underestimated with less than 10% if settling was neglected
during the simulation. The cake resistance was 1,000 times
lower during drainage than during pressure filtrations. Thus,
pressurized filtration resistances cannot be used for drainage
simulations. Moreover, the formed cake was highly compress-
ible also at the low pressure obtained during drainage. In the
filtration step of the drainage process, a distinct increase of
dry matter from top to bottom of the cake was observed. Dur-
ing the subsequent consolidation step, the cake compressed
and a uniform dry matter profile was found. This is impor-
tant. Due to cake compression, the dry matter content of a
fully drained cake increases with both feed concentration and
volumetric load. Furthermore, for highly compressible cake,
the drainage time increased proportionally with squared volu-
metric load and not only linearly with load as for noncom-
pressible materials. Thus, the effect of volumetric load on
drainage time will be greatly underestimated if it is incor-
rectly assumed that the material is noncompressible.
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Notation

A ¼ cross-sectional area of cylinder, m2

c ¼ solid concentration in feed, kg/m3

h0 ¼ initial suspension level, m
hc ¼ cake height, m
hs ¼ distance between cake surface and sample-water interface, m
ht ¼ actual suspension level, m

hw ¼ height of clear water phase, m
L ¼ sample volume divided by cross-sectional area of cell, m

M ¼ sample mass, kg
m ¼ ratio of wet and dry cake mass, kg/kg
P ¼ applied pressure, Pa

Rm ¼ media resistance, m�1

S ¼ ratio between dry mass of cake and total filtrate volume, kg/m3

Vf ¼ filtrate volume; equals A(ht � h0), m3

Greek letters

a ¼ specific filter cake resistance, m/kg
q ¼ filtrate density, kg/m3

qs ¼ particle density, kg/m3

Dq ¼ density difference between solid particle and liquid, kg/m3

u ¼ cake solid-mass fraction, kg/kg
/ ¼ cake solid-volume fraction, m3/m3

g ¼ filtrate viscosity, Pa s
md ¼ drainage rate, m/s
ms ¼ settling velocity, m/s
l ¼ attenuation coefficient, m�1

x ¼ amount of disposed material per unit media area, kg/m2
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a b s t r a c t

A laboratory scale setup was used for characterization of gravitational drainage of waste

activated sludge. The aim of the study was to assess how time of drainage and cake dry

matter depended on volumetric load, SS content and sludge floc properties. It was

demonstrated that activated sludge forms compressible cakes, even at the low pressures

found in gravitational drainage. The values of specific cake resistance were two to three

orders of magnitude lower than those obtained in pressure filtration. Despite the

compressible nature of sludge, key macroscopic parameters such as time of drainage and

cake solid content showed simple functional dependency of the volumetric load and SS of

a given sludge. This suggests that the proposed method may be applied for design purposes

without the use of extensive numerical modeling. The possibilities for application of this

new technique are, among others, the estimation of sludge drainability prior to mechanical

dewatering on a belt filter, or the application of surplus sludge on reed beds, as well as

adjustments of sludge loading, concentration or sludge pre-treatment in order to optimize

the drainage process.

ª 2010 Published by Elsevier Ltd.

1. Introduction

Theactivatedsludgeprocess is themostwidespread technology

of biological wastewater treatment. One of the most important

challenges is the handling of surplus activated sludge, which is

a side product of the process. The water content of this sludge

exceeds 90%byweight,which requires dewatering it in order to

make the handling and transportation of sludge physically and

economically feasible. Several techniques of activated sludge

dewatering exist, some employ mechanical devices like filter

presses or centrifuges, others, like reed beds or belt presses,

depend on gravitational water drainage. Although the gravita-

tional drainage of sludge is an economically attractive

alternative to sludge pressure dewatering, it has received little

attention from researchers so far. Most research has been

conducted on pressure dewatering of activated sludge in

devices such as filter presses (Novak et al., 1999).

The works of Severin et al. (Severin and Grethlein, 1996;

Severin et al., 1999), and of Olivier et al. (2004) lead to the

development of models describing the gravity drainage of

activated sludge on belt presses, aiming at improved design of

these devices. However, in both cases the cake compressibility

was omitted. Most of the work carried out on sludge drying

reed beds has been purely empirical and based on indirect

sludge quality estimation using a capillary suction time (CST)

method (Nielsen, 2003). It is the claim of the present authors,

* Corresponding author. Departmentof Biotechnology, Chemistry andEnvironmental Engineering,AalborgUniversity, Sohngaardsholmsvej 57,
DK-9000 Aalborg, Denmark. Tel.: þ45 99408464.
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that designmodels for reed beds are insufficient, hence amore

fundamental modeling approach has been taken. In a recent

report (Christensen et al., 2010) we presented a comprehensive

characterization of gravity drainage of compressible organic

materials with a novel technique, revealing the importance of

settling velocity of particles, low pressure filtrate expression,

cake compressibility and cake collapse due to capillary forces.

The model system used in that study was a suspension of

dextraneMnO2 particles, which had been reported as a good

representative of compressible organic slurries and resembles

physico-chemical properties of activated sludge (Hwang et al.,

2006). A novel technique for the assessment of drainage

properties of compressible organic materials was created. It

was reported that pressures exceeding the critical pressure do

not accelerate drainage, and load and feed concentration were

identified as the key parameters deciding the drainage time

and the final dry matter content of the cake.

The aim of this study was to adapt this new test method to

the assessment of drainability of full-scale activated sludge in

an easy, fast and repetitive manner and to assess the rela-

tionship between macroscopic variables such as the volu-

metric load and suspended solids on the parameters

characterizing the drainability of the sludge, namely the time

of drainage and cake dry matter content.

2. Theory of the drainage process

Gravity drainage process differs from constant pressure

filtration in that the pressure decreases as the filtrate is

expressed and that the cake is partly built up due to the

settling process, so the rate of cake formation is not propor-

tional to filtrate volume. In order to correctly describe the

gravity drainage process, knowledge of settling velocity,

specific cake resistance and cake compressibility is necessary.

Eq. (1) (Severin and Grethlein, 1996) describes the drainage

rate through a filter cake.

vd ¼ DP
mðacakeuþ RmÞ (1)

It is important to remember that throughout this paper the

term ‘specific cake resistance’ is used to describe the average

specific resistance of the entire cake, and not its local values.

Cake resistance values differ across a compressible cake and

are the highest at the cake/filter interface. This inhomoge-

neity problem was solved by the introduction of the average

specific cake resistance term defined as in the pressure

filtration literature (Tiller and Yeh, 1987; Teoh et al., 2002).

When filtering activated sludge in a constant pressure appa-

ratus, the average specific cake resistance is denoted specific

resistance to filtration (SRF) (Sørensen et al., 1996). In this

study it is assumed that the average specific cake resistance is

constant throughout the drainage experiment. In fact, resis-

tance decreases during the initial part of the drainage process

because the pressure difference across the cake decreases

with sample level. In our previous report (Christensen et al.,

2010), the compression of the MnO2edextran cake exerted

by the high hydrostatic pressure present at the beginning of

the drainage process was however demonstrated to be irre-

versible and, for this reason, changes in the average specific

cake resistance as drainage takes proceeds can be neglected

(Christensen et al., 2010).

The pressure difference, defined as stress on the medium

surface, is given in Eq. (2).

DP ¼ Mg

A
¼ cgh0

�
1� r

rs

�
þ rght þ ug (2)

Settling velocity is not included in Eq. (2), but it still influ-

ences the drainage rate, because it regulates the deposited

amount of solids (u), and thereby the drainage rate. In order to

determine the settling velocity and the specific cake resis-

tance in the easiest way, the drainage process was divided

into three stages, i.e., cake formation, pure filtration and cake

collapse (Fig. 1). During the first stage, sludge particles settle

and form a cake on the filtermedium surface, leaving the clear

watereair interface behind (stage A). This provides informa-

tion on the settling velocity. When the settling is complete

(time described as t1), the sludge blanket level remains

constant and the level of pure water decreases as filtrate is

expressed (stage B), which reveals the data necessary to

calculate the specific cake resistance as described below. At

t2 e denoted as the time of drainagee all the free water above the

cake disappears, the cake starts to collapse slightly (stage C). It

is important to remember that Eq. (2) can only be used to

describe drainage until time t2, when the drag forces not

included in Eq. (2) start to rise to the cake surface.

The amount of deposited cake has a direct influence on the

drainage rate and can be calculated according to Eq. (3).

u ¼
�
cðh0 � htÞ þ cvst stage A
ch0 stage B

(3)

As indicated in Eq. (3), the settling velocity influences cake

buildup and therefore indirectly influences the drainage

process.

2.1. Cake formation

During the initial phase of drainage, when filtration cake

develops, three phases can be distinguished, i.e., the cake

itself, the sludge particle suspension and the clear liquid

above the suspension. The total level of the sample in the

cylinder is given as ht ¼ hw þ hs þ hc. Since the particles settle,

the clear water phase above the suspension develops, and the

height of this water phase at a given time depends on settling

velocity (Eq. (4)).

hw ¼ vst (4)

The height of the clear water phase, which is the difference

between the total level of the sample ht, and the level of the

sludge blanket hs, is measured during the experiment and can

be used to determine the settling velocity by revealing the

speed at which the particles move away from the liquid

surface. The settling velocity turned out to be constant during

stage A in every experiment performed in this study.

2.2. Pure filtration

At the time described as t1, settling is over and all sludge

particles have formed a cake, the thickness of which remains
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constant during stage B. This is a highlight of irreversible

compression which took place in the beginning of stage A,

when the pressure was the highest. The amount and conse-

quently the height of deposited solids depend on the feed

concentration and the volume of the sample used. Assuming

that the pressure on the medium/cake interface is primarily

an effect of the hydrostatic pressure component (simplified

Eq. (2)), and that rht >> ch0(1 � r/rs)�u, it is possible to derive

an equation describing the level of the sample during the

entire stage of pure filtration, as in Christensen et al. (2010).

Fig. 1 e The three stages in gravitational drainage of activated sludge and other compressible organic slurries: cake

formation (A), pure filtration (B), and cake collapse (C).
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ht ¼ htðt1Þe�sðt�t1Þ (5)

where

s ¼ rg
mðach0 þ RmÞ (6)

Once t1 and t2 are identified from Fig. 2, and Eq. (5) is fitted to

experimental data from stage B, s can be determined from

Eq. (5), providing a e the specific cake resistance e according

to Eq. (6). The resistance of the filtration medium itself was

neglected, since it was found that it accounted for less than 1%

of total resistance in a separate experiment with pure water

running through a clean filter medium (data not shown).

2.3. Cake collapse

At the time described as t2, the air reaches the cake surface.

Menisci are formedat thecakesurface,which results inadragon

the cake surface, and the cake starts to collapse (Barr andWhite,

2006). This behavior has been documented by using dex-

traneMnO2 particles instead of sludge whereby it is possible to

measure the porosity profile through the cake during drainage

(Christensen et al., 2010). Eq. (7) has been used previously to

describe the cake compression of sludge at low pressure (Curves

et al., 2009).

4 ¼ 40

�
1þ ps

pa

�b

(7)

The compressive pressure ps is a function of wet cake

weight and thus a function of initial solids concentration and

volume of the sample. At the end of the drainage process, the

structure pressure ( ps) is mainly a function of the drag at the

cake surface because the cake dry weight is low compared

with weight of the wet cake. For that reason, the porosity is

constant through the cake as also shown experimentally

(Christensen et al., 2010). The structure pressure is propor-

tional with the wet mass of the cake because the drag at the

surface arises from the weight of the liquid within the cake.

Hence for practical use Eq. (8) can be used.

4 ¼ 40

�
1þ M

Ak

�b

(8)

The final dry matter content is expected to increase with

initial solids concentration and initial load, as the wet cake

weight increases with solids concentration and load.

3. Materials and methods

3.1. Samples of activated sludge

All the experiments were performed on samples of mixed

liquor activated sludge from the aeration tank of the Aalborg

East Wastewater Treatment Plant in Aalborg, Denmark. It is

a Biodenipho plant with biological N and P removal. The sus-

pended solids (SS) contents of the samples were adjusted by

dilution with supernatant originating from the same batch of

activated sludge, or by the removal of supernatant after 30min

of settling.Thedrymatter contents (SS) of activated sludgeand

filtration cakes were determined according to standard

methods (APHA, 2005) by overnight weight loss at 104 �C.

3.2. Filter medium choice

Four different filtration media of different cut-off values were

tested in drainage experiments in order to assess the influ-

ence of filtration medium on the experimental outcome. The

media used were the following: Kemira cloth (Kemira,

Denmark, cut-off e 200 mm), polyester fabric (cut-off e 40 mm),

Whatman 41 paper (Whatman, UK, cut-off e 20e22 mm) and

Whatman 40 paper (Whatman, UK, cut-off e 8 mm). In each

case a 200 ml sample of activated sludge originating from the

same batch was used (source e Aalborg East WWTP, SS e

4.9 g/L). Due to its high cut-off value, Kemira cloth turned out

to let sludge particles through in the initial phase of the

experiment (9e10 s) until the cake buildup was complete. For

this reason the filtration cake was thinner and comprised

larger particles. This resulted in lower resistance values as

compared to other media, for which this phenomenon was

not observed. The other three media behaved very similarly

and yielded cakes of similar resistance values. Whatman 41

paper was chosen for further experiments, due to the fact that

it is routinely used for the examination of activated sludge in

SRF experiments (Christensen and Dick, 1985), Q1and that it is

capable of retaining nearly all particles, thus creating

a complete cake.

3.3. Gravity drainage and sedimentation

The experimental setup (Fig. 2) was the same as described in

Christensen et al. (2010) and consisted of a transparent glass

cylinder (inner diameter of 60mm), a filtermedium closing one

end of the pipe and supported by a funnel located inside the

tube, and a laptop computer connected to a web camera. The

filter wasmounted on one end of the cylinder, which was then

mounted vertically above a beaker. A sludge sample of a given

Fig. 2 e Experimental setup used in drainage experiments.

Beaker collects the filtrate drained from the tube through

the filtration medium. A web camera records a film

illustrating the drainage and settling processes. Data from

the web camera is recorded by a laptop computer.
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volume was introduced into the cylinder and gravitationally

drained ofwater into a beaker,while thewebcamerafilmed the

process at a specified frame rate. After completion of the

experiment, the film sequence was divided into single frames,

and each frame was analyzed separately with ImageJ software

(http://rsbweb.nih.gov/ij). The positions of sludge blanket and

liquid surface (Fig. 3) as functions of time were recorded and

imported to a spreadsheet for further data handling.

Evaluation of the repetitiveness of the results provided by

the experimental technique was carried out by measuring the

specific cake resistance (a) five times on the same sample of

untreated activated sludge from Aalborg East WWTP (SS of

5.1 g/l). The mean specific cake resistance turned out to be

4Q2 .8 � 1010 m/kg, with a standard deviation equal to 5% of the

mean value, showing that the experimental technique is

repetitive and reliable.

3.4. Analytical centrifugation

Analytical centrifugation was used to study compressibility

of sludge cakes (Lumiziser 613 Dispersion Analyser from

L.U.M. GmbH, Berlin, Germany). For each test, 2 ml of acti-

vated sludge were added to rectangular cuvettes (10 mm).

Five samples with varying amounts of dry matter content

were analyzed. The raw sludge sample was diluted by

filtering the sludge e the filtrate was used to vary the dry

matter content of the samples from 5 to 25 g/L. The experi-

ment was operated at 1000 rpm for 2000 s, 4000 rpm for

2000 s and then lowering the rotation speed to 1000 rpm for

2000 s. The height of the formed cake was measured during

the experiment and the structure pressure within the cake

was calculated using the method described in Sobisch et al.

(2006). The cake height depended on both the rotation

speed and the dry matter content of sludge.

3.5. Determination of settling velocity and specific cake
resistance

Calculations of the settling velocity and specific cake resis-

tance were based upon the changes of clear water phase

height (hw) over the drainage process, which initially increases

linearly until time t1, and then decreases until time t2 (Fig. 4).

The settling velocity was determined as the slope of the line

fitted to data from stage A, according to Eq. (4), and it turned

out to be 1.8 � 10�5 m/s for a representative experiment. This

value was identical in a comparative settling experiment on

the same sample of sludge, when draining was absent, and

therefore the concept of zone settling, assuming the equal

settling velocity of all particles, was applied.

Cake compression was irreversible, no cake swelling was

observed during the drainage experiment even through the

pressure declines during stage B as confirmed from the

analytical centrifugation experiment. Further, two drainage

experimentswereperformed, onewith simultaneously settling

and drainage, and one where all particles were settled before

the drainage was started. No significant difference in the

determined average specific cake resistance was found. Thus,

cake compression was irreversible and the average specific

cake resistance was constant during stage B. This implies that

the assumption hitherto stated was validated, and changes in

the average specific cake resistance as drainage takes proceeds

can be neglected.

Specific cake resistance is a parameter describing the

difficulty in dewatering a given sample. Typical values of

specific cake resistance for activated sludge, determined by

constant pressure filtration with pressure of 1e2 bar, are of

the order of 1012 m/kg (Rasmussen et al., 1994). The technique

described in this study allows for the determination of specific

cake resistance during low pressure gravity drainage. In

a representative experiment, the specific cake resistance

during gravity drainage was 4.2 � 1010 m/kg, which is much

lower than those usually found in SRF experiments. Themuch

lower values of average specific cake resistance originate from

much lower pressures encountered in gravity drainage

resulting in lower cake compression and lower cake perme-

ability loss.

Fig. 3 e Settling and draining curves for a typical drainage

experiment. Sludge sampled in Aalborg East WWTP,

SS e 4.8 g/L.

Fig. 4 e Example of a relationship between the time and

the difference between liquid level and sludge blanket

level. The slope of the ascending part provides the settling

velocity of sludge, and the function fitted to the descending

part provides information on the specific resistance of the

filtration cake.
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3.6. Shear experiments

Shear experiments were performed in order to investigate the

influence of different treatments on the quality of activated

sludge in terms of drainability, as described by the specific

cake resistance. A batch of fresh activated sludge from Aal-

borg East WWTP was divided into four samples. One sample

was used directly for measurements of specific cake resis-

tance in fresh sludge, the second was stored anaerobically at

room temperature for 24 h, the thirdwas sheared for 6 h at the

rate of 300 rpm in an aerated reactor and the fourth sample

was sheared for 6 h in an identical reactor, but at the rate of

800 rpm. Shear experiments were performed according to

Klausen et al. (2004).

4. Results

4.1. The effect of volumetric load on drainage

Five different volumes (100e400 ml) of mixed liquor activated

sludge, originating from the same sample batch, were tested

for their drainage properties. The settling velocity, the specific

cake resistance, water content of the filtration cake and the

time necessary for the liquid above the cake to drain were

determined for each sample (Fig. 5). The relationship between

the volumetric load of the sample and the time of drainage

showed that tD depends on the volumetric load squared.

(Fig. 5a). Specific cake resistance, given by the a value,

increased linearly with the volume of sample drained (Fig. 5b).

Settling velocity was independent of the volumetric load

(Fig. 5c). The total solids content of the cake increased when

the volumetric load increased, which is discussed below.

4.2. The effect of sludge concentration on drainage

The influence of sludge SS concentration on drainage

dynamics was assessed in an experiment with five different

SS contents (2.7e6.7 g/L). The specific cake resistance, settling

velocity, water content of the filtration cake and the time

necessary for the liquid above the cake to drain were deter-

mined for each sample (Fig. 6). The relationship between the

SS content and the resulting time of drainage appeared clearly

linear (Fig. 6a). The values of the specific cake resistance (a)

tended to remain constant as SS was changed (Fig. 6b). An

interesting behavior could be noticed in the case of settling

velocity values, which significantly dropped as the SS

concentration was increased (Fig. 6c). This was attributed to

the hindered settling effect. The Vesilind equation (Vesilind,

1968) was fitted to the relationship between the SS concen-

tration and the settling velocity, providing the Vesilind

maximum settling velocity of 1.75 m/h and the Vesilind

parameter of 0.58 m3/kg.

4.3. The effect of various sludge treatments on drainage
characteristics

Specific cake resistance is a parameter which describes the

quality of sludge with respect to dewaterability. In pressure

filtration studies, the average specific cake resistance

correlates with floc size and strength. The objective of this

investigation was to determine whether the same effect can

be observed in gravity drainage. Some of the well-described

deflocculating factors are shear and anaerobic conditions

Fig. 5 e Results of the drainage experiments with five

different volumes of activated sludge (source e Aalborg

East WWTP, SS e 4.7 g/L). (a) Relationship between volume

of sludge sample tested and the time of drainage. (b)

Relationship between the volume of sludge sample tested

and the specific cake resistance. (c) Relationship between

the volume of sludge sample tested and the settling

velocity of sludge particles.

wat e r r e s e a r c h x x x ( 2 0 1 1 ) 1e1 06

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

WR8413_proof ■ 6 January 2011 ■ 6/10

Please cite this article in press as: Dominiak, D., et al., Gravity drainage of activated sludge: New experimental method and
considerations of settling velocity, specific cake resistance and cake compressibility, Water Research (2011), doi:10.1016/
j.watres.2010.12.029



(Wilen et al., 2000; Nielsen et al., 2004). In order to assess the

effect of shear and anaerobic conditions on the quality of

sludge in terms of drainability, which is reflected by the

specific cake resistance, a series of experiments was run. A

batch of fresh activated sludge from Aalborg East WWTP (SS

content e 5.1 g/L) was divided into four samples. For each of

the samples three volumes were drained, which resulted in

four distinct linear relationships between volumetric load and

specific cake resistance, one for each sample subjected to

different treatments (Fig. 7).

Shearing at the rate of 300 rpm caused a mild effect, con-

sisting in the decrease in drainability, described as the slope of

load vs. specific cake resistance relationship. A stronger effect

was observed by a 24 h anaerobic storage, but the most signif-

icant drop in drainage speeds resulted from vigorous shearing

at 800 rpm. The most probable reason for these phenomena is

that both shear and anaerobic conditions have a deflocculating

effect on activated sludge, resulting in floc fragmentation and

liberation of small cell aggregates and single cells (Rasmussen

et al., 1994). Higher resistances observed with deflocculated

sludge can be attributed to small particles clogging, or blinding,

the pores inside the cake, causing slower water flow and more

significant cake compression due to liquid pressure.

4.4. Effects on cake dry matter content

The cake volume as well as the cake dry matter increases

when the volumetric load and/or the suspended solid

concentrations are increased. These observations might by

merged according to Eq. (8). By expressing the mass of solids

(M ) as the volumetric load multiplied by the suspended solids

concentration, and by substituting the solid volume fraction

by cake dry matter content of the cake, the results of both

experimentsmay be presented as shown in Fig. 8. The data are

fitted by the rewritten version of Eq. (8), shown as Eq. (9).

DMcake ¼ DMcake;0$

�
1þ Vload$SS

A$k

�b

(9)

From Fig. 8 it can be seen that the cake solids are

compressed as the dry matter load is increased. It may

however also be noted that the solids compression has not

reached a maximum (a plateau).

Cake compression was further studied by using analytical

centrifugation. A cake was formed at low rotation speed;

Fig. 6 e Results of the drainage experiments with five

samples of sludge with different SS contents (source e

Aalborg East WWTP). (a) Relationship between the SS

content of the sludge sample tested and the time of

drainage. (b) Relationship between the SS content of the

sludge sample tested and the specific cake resistance. (c)

Relationship between the SS content of the sludge sample

tested and the settling velocity.

Fig. 7 e Results of the drainage experiments comparing the

effect of 24 h anaerobic storage of activated sludge,

shearing at 300 rpm and shearing at 800 rpm to the

drainage properties of activated sludge from a single

sample batch.
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hence, the compression pressure through the cake was low.

The rotation speed was then increased and it was observed

that the cake collapses. By lowering the rotation speed after

the collapse, it was possible to measure the degree of the cake

reswelling. Fig. 9 shows data from the experiment. The cake

height did not increase proportional with dry matter load

because the cake was compressible cf. Fig. 8. Further,

reswelling of the cake was below 20% of the compression and

the assumption that cake compression was irreversible is

found reasonable. Hence, if a sludge cake is compressed, it is

not possible to reestablish the permeability of the cake by

lowering the pressure.

5. Discussion

The present work demonstrates an experimental device

for characterizing the drainage process by identifying the

sedimentation and filtration features in one experimental run.

It was found the drainage process may by described by 3

stages: A e the initial sedimentation stage, B e the filtration

step and C e the consolidation stage. The interpretation of the

experimental datawasmadeaccording to themodeldevisedby

Christensen et al. (2010).

It was found that the model, which originally was devel-

oped on MnO2edextran particles, adequately described the

sludge data produced in thiswork (Fig. 2) An implication of this

is that even at the low pressures encountered in drainage

(0e2000 Pa), the compressibility of the sludge has to be

included in the model. The compressible nature of sludge is

reflected in the cake resistance. In the drainage experiments

the specific cake resistance was found in the order of 1010m/kg,

whereas this value is in the order of 1012e1013 m/kg in pres-

surized filtrations of unconditioned sludge. Indeed, the lower

cake resistance makes drainage less costly than pressurized

dewatering in terms of energy consumption, however at the

expense of the cake drymatter, which for drainage is typically

4e6% compared to 13e17% for pressure dewatering.

When compressibility is a dominant feature, the dew-

atering is a non-uniform process rendering higher solid

content in the bottom than in the top of the filter cake. This

implies that a full description of the process requires

a description of local properties such as flow, resistance, solid

content. This in turn requires the use of numerical modeling

of the process, which most often is a cumbersome affair. The

authors set out to investigate how macroscopic process vari-

ables such as volumetric load, suspended solid content and

sludge quality influenced the result of the drainage process

expressed by time of drainage and cake dry matter.

It was found that the time of drainage depended on the

volumetric load square ðtDfV2
loadÞ. This experimental result

was confirmed by themodel of Christensen et al. (2010). As the

load increases, the hydrostatic pressure on the formed cake

increases, hence due to cake compression the cake resistance

increases. This was confirmed by the linear increase in the

specific cake resistance as a function of the volumetric load

(Fig. 5b). When the sludge physical structure was deteriorated

by e.g., intensive shearing or exposure to anaerobic condi-

tions, the state of flocculation was altered. This implies an

increased compressibility. The simple relations between

drainage time and specific cake resistance versus volumetric

load were however maintained, but the proportionality

constants changed with the change of sludge structure: the

more deflocculated the sludge, the higher the specific cake

resistance and subsequently the longer the drainage time.

As the solids content is increased, maintaining the same

volumetric load, the filtration properties expressed as the

specific cake resistance are not altered, which results from the

same hydrostatic pressure. However, a linear dependency of

the drainage time on the solid contentwas found. The increase

in solid content will increase the cake height, which again will

increase the time of drainage. The formation of the cake is an

increasingly slower process as the solid content is increased.

This is seen on Fig. 6c, where vs is depicted as function of solid

content. As predicted by Vesilind, vs decreases as solid content

is increased. The impact of settling was discussed in

Christensen et al. (2010). The cake drymatter (the solid volume

fraction of the filter cake) was in Fig. 8 shown to depend on the

Fig. 9 e Results of analytical centrifugation experiment

where the cake height is measured at different rotation

speed (1000 rpm and 4000 rpm) and feed concentration.

Fig. 8 e Relationship between the load dry matter content

and cake dry matter content for combined data from

experiments with varying loads and varying

concentrations. Curve is fitted according to Eq. (9).
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dry matter load. As the dry matter load is proportional to the

structure pressure in the cake, the fitting parameters obtained

in Fig. 8 correspond to those obtained by the use of Eq. (7),

namely: 40, pa and b values at 0.012, 0.15 and 0.25, respectively.

This corresponds very well to the findings of Curves et al.

(2009), who found the parameters to be equal to 0.0095, 0.3

and 0.25, respectively. This means that the compression of

activated sludge filtration cakes at low pressures can be

accurately predicted by Eq. (7) and that this equation can be

effectively used to describe data obtained with the experi-

mental technique presented in this study, which in practice is

easier to perform and requires much simpler equipment than

the technique presented in Curves et al. (2009).

It is also important to note that in contrast to Sørensen and

Sørensen (1997) the compression did not reach a steady state

(plateau). They studied dead end filtration at low pressures,

yet still pressures vastly exceeding those encountered in this

study. This implies that the sludge is not completely collapsed

in the gravity drainage and thus a filter skin, as known from

pressure filtration, has not been formed. This explains why

average values of resistances and cake dry matter are mean-

ingful in this context, whereas they hardly are so in pressur-

ized dewatering of compressible sludges.

6. Conclusions

� For gravity drainage, the specific resistance of the cake

depends directly and linearly on the volumetric load of the

sample, due to the compressible nature of activated sludge

flocs which tend to produce more compact cakes when

pressure of the liquid is higher.

� The final drymatter content of the cake is a function of both

feed load and concentration (Eq. (9)). It is therefore of

primary importance to choose the drainage conditions (feed

volumetric load and concentration) carefully, so that the

effect of the gravity drainage process is satisfactory, both in

terms of the total drainage time and the final cake water

content.

� The experimental technique is very simple, but very well

capable of determining the settling velocity, average specific

cake resistance and cake compressibility, and it provides

a very good understanding of the process of gravitational

drainage of activated sludge. Due to the compactness of the

setup and the ease of operation, this technique could be

applied to rapidly assess the quality of sludge in terms of

drainability prior to its application to dewatering devices

such as belt presses, or on sludge dewatering reed beds.

Especially in the case of reed beds, the benefits would be

immense, since the operational failures due to sludge

overdosing could be avoided.

Nomenclature

List of symbols

A cross-sectional area of the cylinder (m2)

c particle concentration in the feed (kg/m3)

DMcake dry matter content in cake (e)

DMcake,0 dry matter content in cake before compression (e)

g gravitational acceleration (m/s2)

h0 initial level of the suspension (m)

hc height of the cake (m)

hs distance between cake surface and sampleewater

interface (m)

ht actual level of the suspension (m)

hw height of the clear water phase (m)

k constant (m2/kg)

M mass of the sample (kg)

P pressure (Pa)

pa fitting parameter in Eq. (7)

ps solids pressure (Pa)

Rm media resistance (m�1)

SS suspended solids (kg/m3)

tD time of drainage (s)

Vload volumetric load of the sample (m3)

Greek symbols

a specific resistance to filtration (m/kg)

b fitting parameter in Eqs. (7) and (8)

r density of the filtrate (kg/m3)

rs density of the particles (kg/m3)

s characteristic drainage time defined in Eq. (6) (s)

nd drainage rate (m/s)

ns settling velocity (m/s)

m filtrate viscosity (Pa s)

4 solids volume fraction

40 solids volume fraction for ps equal to 0

u amount of deposited material per unit area of media

(kg/m2)

Parameter values

A 0.002827 m2

pa 0.15

b 0.25

m 0.001 Pa s

g 9.81 m/s2

r 987 kg/m3
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Abstract 24 

Sludge drying reed beds can be a cost-effective and sustainable solution to surplus activated sludge 25 

dewatering and mineralization, especially for small wastewater treatment plants. However, the 26 

simplicity as well as low energy and monitoring requirements of this technology are often 27 

counterbalanced by frequent operational problems consisting of slow and insufficient dewatering, 28 

poor vegetation growth, odor, and overall poor mineralization of the sludge residues. The main 29 

reason is that the general rules for facility design and operation are based on empirical experience 30 

rather than on the actual and current sludge parameters. In this study a new method for the 31 

assessment of activated sludge drainage properties has been applied to determine the reasons behind 32 

operational problems faced by the operators of reed bed facility accepting surplus activated sludge 33 

from two wastewater treatment plants in Esbjerg, Denmark. The importance of sludge quality 34 

monitoring as well as the damaging effect of shear forces, oxygen depletion, and long-distance 35 

sludge transportation were demonstrated. Finally, more general guidelines for reed bed facility 36 

design and operation are given, based on experimental data from seven full-scale plants. 37 

 38 

1. Introduction 39 

Sludge drying reed beds can be a cost-effective and sustainable solution to surplus activated sludge 40 

dewatering and mineralization (Maeseneer, 1997). They have been widely applied in Denmark 41 

since 1988, where approx. 95 systems existed in 2002 (Nielsen and Willoughby, 2007). They have 42 

also become widespread in most of Europe (Haberl et al., 1995). Sludge volume reduction takes 43 

place due to both water drainage and plant-driven evapotranspiration, and mineralization of organic 44 

matter (Aagot et al., 2000). Simultaneous degradation of hazardous organic compounds and 45 

pathogen reduction occurs, which allows for the application of sludge residues in agriculture 46 

(Nielsen, 2005a).  47 

However, the simplicity as well as low energy and monitoring requirements of this technology are 48 

often counterbalanced by frequent operational problems, consisting of slow and insufficient 49 

dewatering, poor vegetation growth, odor, and overall poor mineralization of the sludge residues 50 

(Nielsen, 2005b). Studies by Nielsen (Nielsen, 2002, 2003, 2005b) have led to the definition of 51 

certain guidelines for facility design and operation, all based on the capillary suction time (CST) as 52 

a measure of sludge dewatering characteristics at low pressures normally found on reed beds. 53 



However, the operation of reed beds is generally only based on empirical experience and prescribed 54 

guidelines such as the dry matter loading limit of 60 kg dry matter/m
2
/year, rather than on any 55 

sludge characteristics. For this reason, operational failures in reed bed facilities occur quite often 56 

and account for this technology’s reputation of being unpredictable (Maeseneer, 1997). Although 57 

Nielsen’s choice of the CST technique was correct from the viewpoint of low pressure 58 

compressibility of sludge, this method does not directly take into account the solids content of 59 

sludge, which has been shown to be one of the critical factors that decide the drainage rate and final 60 

cake water content (Dominiak et al., 2011). Furthermore, the measurement of cake compressibility 61 

with CST is impossible, so the actual hydraulic resistance cannot be calculated, and the drainage 62 

process cannot be correctly assessed or modeled.  63 

In a recent study, we presented a novel technique for the determination of drainage properties of 64 

activated sludge during gravity dewatering (Dominiak et al., 2011), which we named the Specific 65 

Resistance to Drainage (SRD) method. This technique considers the settling velocity of sludge 66 

particles, the SRD value and compressibility at low pressure. It was found that the volumetric 67 

loading of sludge was most critical to the drainage rate as cake compressibility caused SRD to 68 

increase proportionally to increasing load (i.e. increasing pressure). It was also found that the 69 

compressibility depends on sludge properties and conditions and that treatments promoting sludge 70 

deflocculation, such as anaerobic storage and shear, worsen the drainage properties by increasing 71 

SRD under constant load.  It is well known that anaerobic conditions, changes in microbial aerobic 72 

metabolism, and shear stresses all can cause deflocculation of activated sludge floc (Morgan-73 

Sagastume et al., 2003; Wilen et al., 2000; Bruus et al., 1993) and eventually lead to changes in the 74 

normal high pressure dewatering (Bruus et al., 1992) These phenomena are expected to be even 75 

more pronounced in drainage of activated sludge, where both floc-settling velocity and drainability 76 

may be affected. Since the most common reason for poor dewatering in vertical flow reed beds is 77 

substrate clogging, believed to originate from the accumulation of suspended solids and their 78 

compaction (Platzer and Mauch, 1997; Langergraber et al., 2003), sludge handling prior to its 79 

application to reed beds appears to be critical to fast, efficient, and reliable operation of these 80 

facilities. Understanding the mechanisms behind reed bed operating problems and application of the 81 

SRD methodology presented in this paper should lead to improvements in the operation of sludge-82 

drying reed bed facilities and, eventually, increase the reliability and competitiveness of this simple, 83 

sustainable, and cost-efficient technology. 84 



In this study, a case story of two Danish wastewater treatment plants sharing a reed bed facility is 85 

presented. One treatment plant is located next to the reed beds, whereas the other is required to 86 

pump surplus sludge to the facility through a long pipeline. The initial observation that sludge from 87 

the distant treatment plant caused frequent dewatering problems in the reed beds, while sludge from 88 

the nearby plant did not, inspired the investigation of the reasons behind the dewatering problems 89 

and the factors of importance to effective and reliable operation of reed bed facilities.  90 

The aims of this study were to investigate the reasons behind the operational problems faced by 91 

Esbjerg reed bed facility, and to test the hypothesis that the sludge gravity drainage characteristics 92 

depend on floc properties, and that deflocculation of activated sludge is responsible for the 93 

deterioration of these properties in both lab scale and full scale. Furthermore, by studying sludge 94 

quality variations in a number of full-scale activated sludge treatment plants, we wanted to find 95 

more general guidelines for reed bed facility design and operation. 96 

 97 

2. Materials and methods 98 

 99 

2.1. Site presentation 100 

Two wastewater treatment plants located in Esbjerg in south-west Denmark by the North Sea were 101 

studied, Esbjerg East (design persons equivalents (PE) of 125,000) and Esbjerg West (PE of 102 

290,000). Both plants perform nitrification and denitrification, as well as both biological and 103 

chemical phosphorus removal. The fraction of industrial wastewater in the influents of both plants 104 

is approx. 66% (by COD).  105 

The reed bed facility, used for handling surplus sludge from the two treatment plants, is composed 106 

of 24 basins, each with an approximate area of 2,200 m
2
 (Fig. 1). All basins are covered by 107 

vegetation of common reeds. Activated sludge from the aeration tank of each treatment plant (SS of 108 

3 to 5 g/L) is pumped into a separate storage tank equipped with an aeration system and allowing 109 

calcium carbonate dosing. The distance between plant Esbjerg East and the reed bed facility is 110 

approx. 1,400 m, whereas plant Esbjerg West is located approx. 6,300 m away with a transportation 111 

time of about 6.5 hours. Table 1 presents the loading schemes for the reed bed basins. The lower 112 

loadings of sludge from Esbjerg West were implied by frequent operational failures consisting of 113 

sludge overflows and odor problems, but even with smaller portions, drainage takes much longer 114 



than for sludge from Esbjerg East. Examination of reed bed residues in basins treating sludge from 115 

Esbjerg West revealed the presence of dark, dense, and sticky residue layers.  116 

 117 

2.2. Samples of activated sludge 118 

Samples of activated sludge for SRD determination were taken from aeration tanks from both 119 

Esbjerg wastewater treatment plants, the pipeline transporting sludge from Esbjerg West, and from 120 

the storage tank. Samples of mixed-liquor-activated sludge for SRD determination were also taken 121 

from aeration tanks of five other Danish wastewater treatment plants. The suspended solids (SS) 122 

and dry matter contents (DM) of activated sludge and filtration cakes were determined according to 123 

standard methods (APHA, 2005) by overnight weight loss at 104°C. Microscopic analysis of floc 124 

morphology and filament index (0-5 scale) was carried out with a light microscope and 125 

Eikelboom’s manual for microscopic investigation of activated sludge (Eikelboom, 2000). SVI 126 

measurements were made by 30 min sludge settling in a 1L graded cylinder. 127 

 128 

2.3. Gravity drainage experiments 129 

Measurements of SRD and settling velocity were performed as previously described (Dominiak et 130 

al., 2011). A sample of activated sludge was introduced into a vertical transparent tube with a paper 131 

filter as a plug. The drainage process was recorded by a camera at a specified frame rate. The 132 

images were analyzed to determine the height of the clear liquid phase (h) that developed above the 133 

suspension during drainage. Initially, h increases due to particle settling and the settling velocity 134 

was determined from this increase i.e. vsed = dh/dt. After the cake was fully developed at time t*, h 135 

started to decline again. The following equation derived in Christensen et al (2010) was then fitted 136 

to experimental data and used to calculate SRD: 137 

 138 

where  is the liquid density, g the gravity coefficient, c the dry matter content of the feed, h* the 139 

initial height of the suspension, and µ is the viscosity. Time of drainage was determined as the point 140 

where 90% of the sample was drained. All the experiments were performed on site, immediately 141 



after sampling, because it had been determined earlier that sludge transportation affects SRD 142 

negatively (data not shown). In each case, 200 ml of sludge were drained, and the dry matter 143 

content of filtration cakes was determined by measuring weight loss after drying at 104C 144 

overnight. 145 

 146 

2.4. Shear experiments 147 

Shear experiments under aerobic, anoxic, and anaerobic conditions were performed on samples of 148 

activated sludge from Esbjerg East and West in order to simulate the effect of pumping and oxygen 149 

availability on the drainage properties of sludges. In each case, a 1-liter baffled reactor containing 150 

600 ml of activated sludge was used, the shear rate was set to 300 rpm, and the experiment lasted 151 

for 6 hours (Klausen et al., 2004). Anaerobic and anoxic conditions during shear experiments were 152 

assured by seal-closed reactors and nitrogen gas bubbling, with addition of sodium nitrate (final 153 

concentration 15-20 mgN/L) and regular nitrate and nitrite monitoring with paper tests in case of 154 

anoxic trials. 155 

 156 

3. Results and discussion 157 

 158 

3.1. Esbjerg case study 159 

 160 

3.1.1. Determination of SRD in Esbjerg treatment plants 161 

The problems with sludge draining and mineralization were only noticed in reed bed basins 162 

handling sludge from Esbjerg West, but were not reported in basins handling sludge from Esbjerg 163 

East. In order to unveil the reason behind these differences, sludge quality in terms of drainage was 164 

measured by SRD on activated sludge from the aeration tanks of both treatment plants. The SRD of 165 

sludge from Esbjerg West was 1.4 
.
 10

10
 m/kg, and was lower than in Esbjerg East with a value of 166 

2.5 
.
 10

10
 m/kg (Fig. 2). Lower SRD implies faster drainage, so the measured values for both plants 167 

contradicted the reports on operational failures.  168 

 169 

SRD was also measured at the end of the transportation pipeline connecting Esbjerg West and the 170 

reed bed facility and in the storage tank with sludge from Esbjerg West after calcium carbonate 171 



addition and prior to basin application (Fig. 2, black bars). Pumping of sludge over 6.3 km and 172 

lasting approx. 6.5 hours more than tripled the initial SRD value found in Esbjerg West. Addition of 173 

calcium carbonate (a common flocculant) to the sludge restored its drainability significantly, 174 

leaving the SRD value at approx. double the initial value found in the plant. The improvement 175 

caused by calcium carbonate indicated that the loss of drainability could originate from sludge 176 

deflocculation caused by shear due to pumping and extended anaerobic conditions. This assumption 177 

led to the hypothesis that sludge gravity drainage characteristics depend on floc properties in a 178 

similar way as does pressure dewaterability (Bruus et al., 1992), and that deflocculation of activated 179 

sludge during transportation was responsible for the deterioration of the drainage properties. 180 

 181 

3.1.2. Simulation of pumping and oxygen depletion 182 

In order to test the hypothesis that the combination of shear and anaerobic conditions was 183 

responsible for sludge deflocculation and the resulting increase of SRD, drainage experiments were 184 

performed on sludge sample subjected to simulated pumping. In order to estimate the contribution 185 

of oxygen depletion to the overall loss of drainability, shear experiments under aerobic and anoxic 186 

conditions were performed at the same shear rate (Fig. 2, gray bars). In each case, shear caused a 187 

significant deterioration of sludge draining properties. Although the initial values of SRD of sludges 188 

from both plants were almost identical, sludge from Esbjerg East appeared to be much more 189 

susceptible to quality loss. In both cases, shear combined with anaerobic conditions caused the most 190 

damage to sludge drainability, whereas anoxic and aerobic conditions, respectively, limited the 191 

severity of SRD loss due to shear. It is interesting to note that the simulated pumping, which 192 

consisted of shearing under anaerobic conditions, raised the SRD value to almost that found at the 193 

end of the transportation pipeline (10% difference). This suggests that the set of conditions chosen 194 

for simulation of pumping reflected the actual situation quite accurately and that, most probably, 195 

shear and anaerobic conditions were responsible for sludge quality loss during its transportation in 196 

Esbjerg. Shear and anaerobic conditions had earlier been shown to worsen activated sludge quality, 197 

presumably through the lack of aerobic microbial activity, or by anaerobic respiration and reduction 198 

of trivalent iron (Bruus et al., 1992; Wilen et al., 2000). These experiments clearly show that such 199 

deflocculation has a substantial worsening effect on low-pressure drainage of activated sludge.  200 

 201 

3.1.3. Remedies for sludge quality loss due to pumping 202 



Several strategies for overcoming the difficulties with sludge dewatering on reed beds have been 203 

proposed to Esbjerg facility operators. The positive effect of calcium carbonate addition was 204 

verified, and this strategy is continuously applied. Furthermore, as in this study nitrate was shown 205 

to minimize the negative effects of anaerobic conditions, addition of nitrate to the pumped stream of 206 

surplus sludge from Esbjerg West was tested over a period of several months. Addition of approx. 207 

15 mgN/L ensured that nitrate was still present after 6-7 hours pumping (5-7 mgN/L), and this 208 

combined treatment (calcium carbonate to pH 8 and nitrate addition) significantly improved the 209 

drainage situation by reducing the operational failures on reed beds, as indicated by the empirical 210 

experience of facility operators. These findings confirm the experimental evidence that shear and 211 

anoxic conditions cause less damage than the same shear imposed on sludge under anaerobic 212 

regime. A laboratory trial of anaerobic sludge deflocculation and subsequent aerobic reflocculation 213 

was performed on sludge samples from both Esbjerg plants (data not shown). The positive effect of 214 

extended aeration (6 hours) was only noted in connection with sludge from Esbjerg East, whereas 215 

the same treatment caused further drainability loss in sludge from Esbjerg West.  216 

 217 

3.2. Survey of sludge drainage properties in Danish wastewater treatment plants 218 

A number of SRD measurements on activated sludge from Aalborg East, Esbjerg East, and Esbjerg 219 

West wastewater treatment plants during a period of approx. two years showed a fairly constant 220 

level over time for each treatment plant (data not shown). In order to find out more about the 221 

variation in activated sludge drainage properties among different treatment plants, we performed a 222 

survey in seven Danish wastewater treatment plants representing different design types. The SRD 223 

value of samples in the aeration tanks analyzed on site turned out to be very different and ranged 224 

from 0.5 
.
 10

10
 to 4.2 

.
 10

10
 m/kg (Fig. 3). These differences are significant and clearly show that the 225 

drainage properties - thus the potential for using reed beds for dewatering – vary greatly among 226 

different wastewater treatment plants. 227 

So far it is unknown why the drainage properties were so different among the 7 sludges 228 

investigated. Microscopic observation of each sludge sample revealed some potential factors (Table 229 

2). The treatment plants presented in Table 2 are arranged according to increasing values of SRD, 230 

from left to right, i.e. sludge quality in terms of drainability decreases from left to right. It is easy to 231 

see that the SVI values, traditionally used to describe the quality of sludge in terms of its 232 



settleability, also increase from left to right (with one exception in the case of Esbjerg West plant), 233 

following the SRD. High SVI values typically indicate many filamentous bacteria or deflocculated 234 

sludge with irregular floc structure and many small particles, which would naturally render filtering 235 

more difficult (Karr and Keinath, 1978; Barber and Veenstra, 1986; Mikkelsen et al., 1996). This is 236 

largely what was recorded during the microscopic investigation of sludge samples. The trend of 237 

increasing SRD of sludge is followed by a transition from large, compact, and regular flocs through 238 

medium-sized, slightly irregular ones, to small, irregular flocs of open structure, which resembles a 239 

decrease of floc strength and progression of deflocculation. Interestingly, sludges of good quality in 240 

terms of drainage tend to have a filament index of 1 to 2 (few to moderate filamentous bacteria), 241 

whereas those harder to drain exhibit values of 2-3.5. Filamentous bacteria could be part of the 242 

explanation, if one imagines that small particles could be entrapped by filaments protruding from 243 

flocs in the filtration cake, which would eventually lead to more resistance to water flow.  244 

Usually a general correlation between number of filamentous bacteria and settling velocity exist in 245 

activated sludge (Eikelboom, 2000). Such connection also seemed to be present in the plants 246 

investigated. Flocs with the lowest filament index and with the most compact structure (Bramming 247 

South) settled most quickly, whereas those with the highest FI and with the most irregular structure 248 

(Bramming North) settled most slowly. The hydraulic drag posed by filaments and irregular floc 249 

structure as the floc settles may be responsible for higher flow resistance inside the cake, and thus 250 

for higher SRD of the entire cake.  251 

All floc properties of importance to gravity drainage have not been revealed by this study, but it is 252 

clear that the morphology, size, and amount of filaments are important. Other factors known to be 253 

of importance for pressure dewatering may also be of interest, e.g. the amount and composition of 254 

extracellular polymers (and thus microbial composition producing these), cations, and the inorganic 255 

fraction (Frølund et al., 1996; Park and Novak, 2007). Future studies should investigate these 256 

factors better. 257 

 258 

3.3. Recommendations for sludge handling and application to reed beds 259 

The general guidelines for reed bed operation proposed by Nielsen (Nielsen, 2002, 2003, 2005b) 260 

distinguish between the maximum loading rates of 60 kg dry matter/m
2
/year for surplus activated 261 

sludge and 50 kg dry matter/m
2
/year for surplus sludge mixed with anaerobically digested sludge, 262 



but do not include the actual sludge quality monitoring. The survey of seven Danish wastewater 263 

treatment plants revealed that the inherent quality of activated sludge in terms of gravity drainage 264 

can be very different for different treatment plants. Findings of this, and our previous study, indicate 265 

that regular sludge quality monitoring by means of SRD measurements are necessary and would 266 

make sludge treatment on reed beds much more predictable and efficient. The methodology is very 267 

simple and requires no sophisticated equipment. In the simplest approach, only a cylinder, a filter, 268 

scales, and a timer are needed. Plant performance optimization by ‘trial and error’ approach is not 269 

recommended, since the sludge residues, once formed, remain in the basin and determine its further 270 

hydraulic performance for the entire basin life cycle. 271 

In our previous study describing gravity drainage of activated sludge, we presented some 272 

relationships between drainage and sludge loading (Dominiak et al., 2011), which can be used 273 

together with the results obtained in this study to establish some improved guidelines for sludge 274 

handling on reed beds. Fig. 4 presents the relationships between SRD and the time of drainage at 275 

different concentrations of suspended solids. The actual points, representing the values measured in 276 

the survey presented in this study, are mapped into the graph. The slope of SRD versus time of 277 

drainage increases with increasing SS concentration, which can be translated into longer drainage of 278 

the same sludge at constant load if it gets thicker. Fig. 5 illustrates the effect of sludge permeability, 279 

which depends on its condition and previous treatments. The harsher the treatment of sludge prior to 280 

its drainage, the higher the SRD at a given load, which translates to longer drainage time according 281 

to Fig. 4. A practical way of using these two graphs is to set a limit of time for drainage, which 282 

should not be too long if anaerobic conditions are to be avoided in the sludge layer on reed bed. 283 

Having decided about the time of drainage (e.g. 60 min), and knowing the SS content of sludge (e.g. 284 

4 g/L), the desired SRD can be determined according to Fig. 4. It is only necessary to take one 285 

measurement of SRD of a certain activated sludge sample at one load value (one sample volume, 286 

e.g. 200 ml), and the slope of the relationship depicted in Fig. 5 can easily be determined, since it 287 

always transects point (0, 0). This reveals the permeability of sludge, which allows choosing a 288 

proper load in order to attain a desired SRD (read from Fig. 4) and, eventually, a desired time of 289 

drainage. 290 

In the alternative case, when loading rate adjustments are impossible, the SRD should be measured 291 

for a given load, the relationship as shown in Fig. 5 should thus be determined, and the SRD 292 

corresponding to the present loading of the reed bed can be established. Fig. 4 would then help to 293 



select the proper SS concentration (adjustable through dilution of sludge in the storage tank with 294 

effluent or thickening it by settling) in order to achieve sufficiently fast drainage. Generally, it 295 

might always be better to apply smaller portions of sludge more frequently than to overload the 296 

basins with large portions of sludge. Due to the compressible nature of activated sludge, loading is 297 

the most critical factor when deciding on the drainage rate (Dominiak et al., 2010). If a large 298 

volume of sludge is applied to a bed, drainage will proceed very slowly or even stop in extreme 299 

cases, which can lead to the development of anaerobic layers in the sludge sediment. Since 300 

anaerobic conditions lead to reduced floc strength and deflocculation (Mikkelsen and Keiding, 301 

1999; Wilen et al., 2000), such anaerobic layers can turn into compacted, impenetrable skins 302 

creating a barrier to downward water flow. This can in the long run lead to a temporary or 303 

permanent loss of bed permeability. It is especially important not to overload the bed in the initial 304 

phase of its exploitation because a layer of high resistance present at the bottom of the bed would 305 

remain there for a long time and, in the worst case, the entire period of bed exploitation, which 306 

could be up to ten years. An alternative solution is to dilute the sludge with effluent, which would 307 

accelerate the drainage, but then the pressure would also be increased due to higher liquid levels, 308 

the risk of higher cake compaction also having to be taken into account. It is also necessary to 309 

evaluate all the possibilities of sludge quality improvement by flocculation through aeration or 310 

calcium carbonate addition so that the final effect is significant, but also economically acceptable. 311 

Some general guidelines for the design of reed bed facilities can be formulated, based on the 312 

findings of this study. The most important operational parameter for a reed bed is the yearly average 313 

solids loading, hence the design process should start with the estimation of this value. Esbjerg East 314 

operates its basins at approx. 40 kg DM/m
2
/year (Table 1) and reports consistently predictable 315 

operation with no significant problems. Whether this could be slightly increased is presently 316 

unknown. According to Fig. 3, the SRD of sludge in this plant is approx. 2.4
 . 

10
10

 m/kg, which is an 317 

average value among the plants tested in this study. If a reed bed facility is to be designed, the first 318 

thing to do is to check the sludge- SRD as a measure of sludge quality in terms of drainability, 319 

taking into account the possible sludge transportation. If this value turns out to be high in the range 320 

presented in Fig. 3, it is worth running a series of tests, similar to those described in section 3.1.2., 321 

in order to check whether nitrate dosing, flocculation with calcium, or aeration can improve the 322 

drainage properties, and if so, to what extent. Having established the attainable value of SRD for a 323 

given sludge, it needs to be compared to that of Esbjerg East so that the annual average solids 324 

loading can be selected through comparison with the benchmark value of 40 kg DM/m
2
/year 325 



reported by that plant. The exact deviation from the benchmark value cannot, however, be given at 326 

the moment and requires more full-scale trials. Once the design yearly average solids load is 327 

known, the number of basins can be calculated based on the average sludge production for a given 328 

plant. Finally, Fig. 4 and 5 can be used to select the proper operational parameters for the facility 329 

(loading, sludge SS concentration). After the commencement of the facility operation, the sludge 330 

quality needs to be regularly monitored by means of the SRD technique so that the overall 331 

performance of the reed beds is consistent and high. 332 

Experiments presented in this study and in our previous reports show the effect of sludge handling 333 

on its subsequent drainage properties and how these can be handled. The reed bed operators from 334 

Esbjerg introduced changes according to the recommendations presented in this paper. The SS 335 

concentration in the aeration tanks of both plants was lowered from 4-6 to 3.5-4 g/L. Nitrate was 336 

continuously dosed to the sludge transportation pipeline, and calcium carbonate was continuously 337 

used to flocculate sludge prior to its application to the basins. Finally, the sludge application 338 

program was changed for all basins, and sludge is now applied in smaller portions, but with higher 339 

frequency. It is now 2000 m
3
/basin every 6 weeks, and this volume is divided into 5 batches on each 340 

basin. Each batch is pumped out during 1 hour with 25 hours to drain before the next batch is 341 

added. Thus, the problems with the operation of basins handling sludge from Esbjerg West were 342 

eliminated, and the overall performance of the reed bed facilities was significantly improved after 1 343 

year. 344 

 345 

4. Conclusions 346 

The method for measuring the sludge specific resistance to drainage (SRD) allows quick assessment 347 

of sludge quality prior to its application to reed beds, and the guidelines given in this report help to 348 

select the proper load and concentration of sludge, so that efficient and predictable operation of reed 349 

beds is assured. 350 

Drainage properties in two Esbjerg plants were followed over two years, showing significant 351 

differences in sludge drainability, even though the two plants are very similar in terms of design and 352 

inflowing wastewater composition. The long-distance transportation of sludge was revealed to be 353 

responsible for the poor performance of reed beds.  354 



It is of utmost importance to keep the sludge aerobic and flocculated so that drainage proceeds fast 355 

and risk of flooding the beds is minimized. It is especially important to avoid operational failures in 356 

the initial phase of reed bed operation, since every failure leaves behind a compacted layer of 357 

sludge residue of high resistance, which negatively affects the bed performance for a long time and, 358 

in the worst case, throughout its entire operational period. 359 

Seven full-scale wastewater treatment plants showed very significant differences in sludge-SRD 360 

values, which highlights the importance of direct and regular sludge quality measurements if a 361 

sustainable and high performance of reed beds is to be achieved. 362 

The new approach to assess sludge quality opens the possibility of formulating new guidelines for 363 

reed bed designers and operators, based on direct measurements. This could lead to increased 364 

competitiveness of reed bed sludge handling by making this technique more efficient and reliable. 365 

 366 
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Fig. 5 

 

Table 1 

 Plant Esbjerg East basins Plant Esbjerg West basins 

Design loading  

[kg DM/m
2
/year] 

55 55 

Actual loading  

[kg DM/m
2
/year] 

38 – 42 27 – 32 

Portion volume [m
3
] 400 - 500 375 - 400 

Drainage time [h] 20 – 25 30 – 36 



Table 2 

Wastewater 

treatment plant 

Bramming 

South 

Esbjerg 

West 
Hjorring Esbjerg East Aalborg East 

Bramming 

North 
Aalborg West 

Treatment plant 

information 

PE 6000 

C, N, DN, CP 

PE 290000 

C, N, DN, 

CP, BP 

PE 160000 

C, N, DN, CP, 

BP 

PE 125000 

C, N, DN, CP, 

BP 

PE 125000 

C, N, CP, BP 

PE 6000 

C, N, DN, CP 

PE 330000 

C, N, DN, CP, 

BP 

Specific cake 

resistance [m/kg] 
0.5 

.
 10

10
 1.3 

.
 10

10
 2.1 

.
 10

10
 2.4 

.
 10

10
 3.2 

.
 10

10
 4.1 

.
 10

10
 4.2 

. 
10

10
 

Settling velocity 

[m/s] 
90 

.
 10

-5
 1.2 

.
 10

-5
 1.7 

.
 10

-5
 1.3 

.
 10

-5
 2.4 

.
 10

-5
 0.54 

.
 10

-5
 1.5 

.
 10

-5
 

Dry matter content 

of cake [%] 
4.3 4.3 4.4 4.7 5.2 4.1 4.1 

SVI [ml/g] 31 167 93 99 111 121 211 

SS [g/l] 3.5 5.3 4.4 5.9 4.7 6.3 3.9 

VS [g/l] 2.6 3.9 3.7 3.9 2.9 4.9 3.3 

Microscopic floc 

observations 

Large, 

compact, 

round, dark 

flocs 

Large, 

regular, 

compact 

flocs 

Medium-sized 

flocs, both 

round, regular 

and open, 

irregular 

Open, 

irregular, 

medium-sized 

flocs, 

significant 

amount of 

inorganics 

Medium sized 

flocs, both 

compact and 

open 

Very small, 

irregular, 

disintegrated 

flocs, many 

branched 

filamentous 

bacteria 

Small, 

irregular flocs 

of open 

structure 

Filament index  

(0-5) 
1 2 1 2.5 2 3.5 2 

C – carbon removal;   N – nitrification;   DN – denitrification;   CP – chemical phosphorus removal;   BP – biological phosphorus removal 
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Denmark.

Summary

A new approach for quantification of extracellular
DNA (eDNA) in mixed biofilms at microscale resolu-
tion was developed and combined with other staining
techniques to assess the origin, abundance and role
of eDNA in activated sludge biofilms. Most eDNA was
found in close proximity to living cells in microcolo-
nies, suggesting that most of it originated from an
active secretion or alternatively, by lysis of a sub-
population of cells. When the staining was combined
with fluorescence in situ hybridization for identifica-
tion of the microorganisms, it was found that the
eDNA content varied among the different probe-
defined species. The highest amount of eDNA was
found in and around the microcolonies of denitrifiers
belonging to the genera Curvibacter and Thauera, the
ammonium-oxidizing Nitrosomonas and the nitrite-
oxidizing Nitrospira. Other floc-formers also pro-
duced eDNA, although in lower amounts. The total
eDNA content in activated sludge varied from 4 to
52 mg per gram volatile suspended solids in different
wastewater treatment plants. Very high local concen-
trations within some microcolonies were found with
up to approximately 300 mg of eDNA per g of organic
matter. DNase digestion of activated sludge led to
general floc disintegration and disruption of the
microcolonies with high eDNA content, implying that
eDNA was an important structural component in acti-
vated sludge biofilms.

Introduction

The predominant lifestyle exhibited by bacteria in natural
environments and engineered systems is growth on sur-
faces forming biofilms or bioaggregates. These microbial

structures are held together by extracellular polymeric
substances (EPS), which consist of a complex mixture of
bacterial polymers forming a hydrated environment. The
advantages of biofilm growth include protection against
desiccation, mechanical shear and chemical toxins (e.g.
Roberson and Firestone, 1992; Wolfaardt et al., 1994),
and increased resistance to antibiotics (Mah and O’Toole,
2001). The composition of EPS is complex and depends
greatly on the bacterial species and the growth conditions,
but the compounds are often categorized to various
polysaccharides, proteins and extracellular DNA (Watnick
and Kolter, 2002).

Extracellular DNA (eDNA) has recently been shown to
be an abundant component of many single- and multi-
species cultured biofilms. Since the discovery of large
quantities of eDNA in Pseudomonas aeruginosa (Hara
et al., 1981), its mode of production, suspected roles
and arrangement in P. aeruginosa biofilms in particular
have been investigated. Also several other pure cultures
have been studied, e.g. Neisseria gonorrhoeae (Dillard
and Seifert, 2001), Staphylococcus epidermidis (Qin
et al., 2007), Shewanella sp. (Pinchuk et al., 2008),
Acinetobacter calcoaceticus and Bacillus subtilis (Lorenz
et al., 1991). Extracellular DNA is also present in natural
environments and engineered systems in considerable
amounts. In marine sediments, the concentration can be
2 mg g-1 dry soil (Niemeyer and Gessler, 2002), and
eDNA can comprise more than 70% of the total DNA
pool (Dell’Anno et al., 2002). In activated sludge from
wastewater treatment plants eDNA has been reported
up to 20 mg g-1 organic matter (Palmgren and Nielsen,
1996).

The source of eDNA is yet to be established. Some
authors have concluded that eDNA in Staphylococcus
biofilms primarily originated from cell lysis, and was thus a
natural and inevitable part of biofilm development (Qin
et al., 2007). Recent experiments furthermore demon-
strated that cidA-controlled cell lysis plays a significant
role during development of Staphylococcus aureus bio-
films and that released genomic DNA is an important
structural component (Rice et al., 2007). However, the
discovery of eDNA in young Pseudomonas biofilms
(Whitchurch et al., 2002), where lysis is not a dominant
process, suggests that lysis is most probably only part of
the answer. In P. aeruginosa several biochemical path-
ways leading to eDNA production have been reported,
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such as the excretion of double-stranded DNA from living
cells (Hara et al., 1981), release of vesicles containing
DNA from living cells (Kadurugamuwa and Beveridge,
1996), and prophage-mediated lysis of a sub-population
of cells (Webb et al., 2003). The production of eDNA in P.
aeruginosa and other bacteria has also been linked to
quorum sensing signals (Allesen-Holm et al., 2006; Spo-
ering and Gilmore, 2006). The structure of this eDNA is
reported to be double-stranded and largely similar to chro-
mosomal DNA of the organism (Steinberger and Holden,
2005; Allesen-Holm et al., 2006; Böckelmann et al., 2006;
Qin et al., 2007).

The role of eDNA in biofilms appears to be many.
Studies of P. aeruginosa have documented the impor-
tance of eDNA for surface attachment and biofilm
strengthening (Steinberger et al., 2002; Whitchurch et al.,
2002). Similar discoveries have been made for other bac-
teria, e.g. Staphylococcus epidermidis (Qin et al., 2007),
Streptococcus (Petersen et al., 2005), Bacillus cereus
(Vilain et al., 2009) and marine photosynthetic bacterium
Rhodovulum sp. (Watanabe et al., 1998). Extracellular
DNA can also act as a nutrient source during starvation
periods (Finkel and Kolter, 2001), indispensable link in
phosphorus cycling in sea sediments (Dell’Anno and Cori-
naldesi, 2004; Dell’Anno and Danovaro, 2005) and in
natural DNA transformation in single-species biofilms of
Acinetobacter calcoaceticus and Bacillus subtilis (Lorenz
et al., 1991). Extracellular DNA may also be a source of
genes in the horizontal gene transfer (Molin and Tolker-
Nielsen, 2003).

The abundance and importance of eDNA among uncul-
tured bacteria in complex mixed biofilms is not well inves-
tigated, primarily due to lack of suitable methods for
quantitative in situ studies. There are various methods for
quantification of DNA, such as fluorescence staining,
qPCR or spectrophotometric detection (Haque et al.,
2003), but none of these methods has so far been used
for assessment of distribution of eDNA in mixed microbial
communities. A range of stains targets DNA, e.g. DAPI
(4′,6-diamidino-2-phenylindole) or SYTO stains, but only
certain stains such as DDAO (7-hydroxy-9H-(1,3-dichloro-
9,9-dimethylacridin-2-one) and propidium iodide (PI) are
capable of selectively targeting eDNA due to their molecu-
lar size, which does not allow the stains to penetrate intact
cell membranes (Allesen-Holm et al., 2006). Both PI and
DDAO were used in this study, but DDAO was chosen for
quantitative analyses due to its better fluorescent proper-
ties and lack of interference with Cy3-labelled oligonucle-
otide probes.

The aim of this study was to develop an in situ tech-
nique for quantitative analysis of eDNA in mixed biofilms
and to investigate the origin, and potential role of eDNA in
complex biofilms, as exemplified by activated sludge
flocs.

Results

Detection of eDNA in activated sludge flocs

DDAO was used to stain eDNA in the EPS matrix of
activated sludge flocs and to reveal its abundance and
distribution (Fig. 1A and B). Clear signals and a very
uneven distribution were observed. To test the specificity
of the DDAO stain for eDNA, the signal was compared
before and after digestion with DNase I, which resulted in
an almost complete removal of DDAO signal (Fig. 1C and
D). SYTO 13 was simultaneously used to visualize intra-
cellular DNA, and a distribution of both stains was
observed. The incubation with DNase I digested eDNA,
leaving intracellular DNA almost intact, thus indicating that
DDAO only targeted DNA localized outside the cells
(Fig. 1). This was also confirmed by simultaneous staining
of eDNA with DDAO and PI, which both are unable to
pass through intact cell membranes. DDAO-stained and
PI-stained patches predominantly colocalized, as deter-
mined by image analysis (Fig. 2).

Origin of eDNA

A combination of SYTO 13, PI and DDAO staining was
carried out in order to test the hypothesis that eDNA
originates from the lysis of dead cells. Patches of eDNA,
stained with DDAO, were checked for colocalization with
membrane compromised cells, as evaluated with the
SYTO 13 and PI stain combination (Fig. 2). The fraction of
living cells (those with intact cell membranes – SYTO
13-positive and PI-negative) was approximately 85% of all
cells, as indicated by direct counting. Most of the eDNA
was found around living cells, and it was especially abun-
dant in and around certain, but not all, bacterial microcolo-
nies, which suggests that specific bacteria could be
particularly involved in eDNA production. Only a small
fraction of the eDNA was distinctly cell-shaped due to
staining of intracellular DNA of cells with impaired cell
membranes (as determined by visual microscopic inves-
tigation). Outside the microcolonies, eDNA was present
as clouds in lower concentrations, and these covered
most of the flocs’ volume. Also, some protozoa appeared
positive with DDAO stain, which seemed to have pen-
etrated the protozoan cell membranes and targeted their
intracellular DNA. Figure 2B shows some eDNA-rich
microcolonies which were not detected by PI staining. In
order to avoid such inconsistency, only DDAO was used
as stain for visualization and quantification of eDNA in the
rest of this study.

Abundance of eDNA in activated sludge flocs

Samples of activated sludge from aeration tanks of five
Danish wastewater treatment plants were taken and
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assayed for the overall average concentration of eDNA
(Table 1). Extracellular DNA was found in all plants and
the concentrations ranged from 4 to 52 mg eDNA g-1

VSS, which corresponds to a range from approximately
21–134 mg eDNA l-1.

Short-term variations of eDNA concentration were
investigated for Aalborg East treatment plant, where sam-
pling took place every hour for 7 h in the aerobic nitrifica-
tion tank and the anaerobic tank for biological P removal/
release. No differences in the tanks were observed
although some fluctuations of the average eDNA concen-
tration were observed (approximately 30% deviations

from the mean value). The content in the treatment plant
remained at a relatively constant level of 10–30 mg g-1

VSS in both tanks over a time scale of 1 year (data not
shown).

The eDNA appeared to be clustered around
microcolony-forming cells. Local concentrations of eDNA
in particularly eDNA-positive microcolonies were approxi-
mately 10 times higher than the average concentration
found for a given sample, ranging from 200 to 770 mg eD-
NA l-1. The background concentration in the cloud-like
eDNA patches could be as low as approximately 5% of
the average concentration in a sample, ranging from
approximately 1 to 7 mg eDNA l-1. Around 95% of eDNA
was localized into recognizable structures (primarily
microcolonies) fluorescing with an intensity higher than
the average background intensity in the floc EPS. An
example of eDNA distribution inside activated sludge flocs
is given in Fig. 3. Figure 3A and B shows the distribution
of eDNA in flocs with average amount of 15 mg eDNA g-1

VSS. They show that most eDNA was found in close
proximity to its presumed origin (microcolonies), but a
detectable concentration could be found in almost any
part of each floc. The area with eDNA concentrations
below or equal to the average background concentration
occupied approximately 95% of the floc area (Fig. 3C).

Fig. 1. Extracellular DNA in activated sludge
floc before (A and B) and after (C and D) a
60 min incubation with DNase I. Extracellular
DNA was stained with DDAO stain (A and C).
Intracellular DNA was stained with SYTO 13
(B and D). Both images show the same
microscopic field of view, relocated after
DNase digestion. Some inevitable loss of
SYTO 13 signal took place during DNase
digestion. Scale bars correspond to 20 mm.

Table 1. The amount of extracellular DNA in activated sludge
samples from five Danish wastewater treatment plants.

Wastewater treatment plant
Concentration of eDNA
(mg eDNA g-1 VSS � SE; n = 3)

Aalborg East 16.6 (0.8)
Aalborg West 52.2 (2.5)
Hjørring 42.9 (2.2)
Aabybro 6.5 (0.3)
Aars 4.2 (0.2)

Parentheses give standard errors.
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The total eDNA pool consisted primarily of microcolonies
containing 17–50 mg eDNA g-1 VSS.

Identity of bacteria with high levels of eDNA

The identity of bacteria with high amounts of eDNA was
investigated by combining DDAO staining and FISH
(Fig. 4) in samples from three wastewater treatment
plants (Table 2). All probe-defined bacteria were present
in an abundance of 2–8% of the total number of bacteria
as measured by EUBmix. Most floc-forming bacteria
tested were surrounded by eDNA. Some probe-defined
species were surrounded by particularly high amounts of
eDNA (up to 300 mg g-1 VSS) in and around the micro-
colonies. These were denitrifiers from the genera Curvi-
bacter and Thauera and the nitrite oxidizer Nitrospira.
Also Accumulibacter and Competibacter, two groups
involved in enhanced biological phosphorus removal, and
the ammonium oxidizer N. oligotropha were also consis-
tently surrounded by eDNA, but at a lower concentration
(60–140 mg g-1 VSS). Filamentous bacteria did not show
any detectable eDNA production. The common denitrifier
Azoarcus exhibited some eDNA production in one treat-
ment plant, but none in another plant.

Fig. 2. Combination of SYTO 13 (A, green),
DDAO (B, blue) and propidium iodide (C, red)
staining. Image D is a merge of the three
channels. Arrows in (D) show places in the
floc which are especially rich in eDNA, as
indicated by both DDAO and propidium
iodide. Scale bars correspond to 20 mm.

Table 2. Probe-defined major microbial producers of extracellular
DNA in activated sludge samples from three Danish wastewater treat-
ment plants.

Identity

eDNA production

Aalborg
East

Aalborg
West Aars

Nitrifiers
Nitrosomonas oligotropha + +
Nitrospira ++ +

Denitrifiers
Thauera + ++
Azoarcus - +
Curvibacter ++ ++

Polyphosphate Accumulating Organisms
Accumulibacter + +
Tetrasphaera - -

Glycogen Accumulating Organisms
Competibacter + +

Filamentous bacteria (Gram -)
Saprospiraceae - -
Chloroflexi - -
Some Flavobacteria - -

Filamentous bacteria (Gram +)
Candidate division TM7 - -
Microthrix parvicella - - -
Skermania -
Gordonia -

++, most positive; +, some positive; -, all negative.
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Importance of eDNA for floc and microcolony strength

The importance of eDNA for floc strength was assessed
in a series of deflocculation experiments with DNase I
treatment of activated sludge from Aalborg East WWTP
and Aalborg West WWTP. Addition of DNase I (100 U in
each case) caused a significant deflocculation effect in
both treatment plants. Figure 5 shows that activated
sludge flocs deflocculated due to shear forces (stirring)
and that DNase treatment promoted faster and larger
deflocculation. The concentration of eDNA was approxi-
mately three times greater in activated sludge from
Aalborg West than from Aalborg East, which may explain
the difference in deflocculation patterns caused by the
DNase treatments.

The general effect of deflocculation of activated sludge
flocs, observed by turbidity measurements during the
shear experiment, was confirmed by size distribution
analysis before and after the shear treatment on a
sample from Aalborg East WWTP, both with and without
DNase I addition (Fig. 6). The largest fraction (in terms
of bioarea) of particles in an untreated sludge sample
were the large flocs and floc assemblies with diameters

Fig. 3. Example of a distribution of eDNA
inside an activated sludge floc. Nomarski
microscopy (A) and DDAO staining (B).
Certain microcolonies contained up to
100 mg g-1 VSS of eDNA, whereas the
average concentration of eDNA in this floc
was around 15 mg g-1 VSS. The colour code
at right illustrates the eDNA content. The
graph presents the distribution of eDNA given
as area of the floc (grey bars) and as
percentage contribution to the total eDNA
amount in the floc (black dots). Scale bar
corresponds to 20 mm.

Fig. 4. FISH-defined Curvibacter microcolonies in activated sludge
(red), contained high concentrations of eDNA (blue). They appear
pink in the figure. Scale bar corresponds to 20 mm.
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above 200 mm, the rest were flocs with diameters of
42–200 mm with a very small share of particles with
lower diameters. Shear alone produced sludge with an
increased fraction of smaller particles. DNase I addition
caused an almost complete dissociation of the large
flocs and floc assemblies (Fig. 6A), resulting in a pro-
duction of smaller cell aggregates (from 6 to 24 mm) and
especially single cells, which were found to constitute
almost 80% of the particles.

Since many microcolonies contained large amounts of
eDNA, the size distribution was also analysed for three of
these bacterial groups, Curvibacter (Fig. 6B), N. oligotro-
pha cluster 6A (Fig. 6C) and Nitrospira (data not shown).
Most Curvibacter cells in the untreated sludge sample
were aggregated into microcolonies ranging from 30 to
100 mm in diameter with a small share of low-diameter cell
assemblies (Fig. 6B). Shear alone caused a pronounced
fragmentation of the largest fractions (36–100 mm) into
pieces of sizes of 18–24 mm in particular. A combination of
shear and DNase I digestion almost completely dissoci-
ated the particles larger than 18 mm and produced small
fragments of microcolonies ranging from 6 to 18 mm in
diameter. Erosion of single cells from the surface of micro-
colonies hardly took place.

The size distribution of N. oligotropha microcolonies in
the untreated sample of activated sludge was more
diverse than in the case of Curvibacter (Fig. 6C). Forty-
four per cent of the aggregates ranged in diameter of
12–18 mm but larger aggregates were also abundant
(over 35%), and single cells accounted for less than 1.5%.
Shear alone caused a fragmentation effect, disrupting the
larger microcolonies into smaller pieces, ranging from 6 to
24 mm. Digestion with DNase I combined with shear
forces had a clear effect of reducing the larger fragments
into very small aggregates of up to 12 mm (52%) and

single cells or very small cell assemblies of up to 6 mm
(48%). This reduction was most probably a combination of
microcolony fragmentation and surface cell erosion. All
the larger aggregates present in the untreated sample
were replaced by single cells or very small fragments of
microcolonies, with an almost equal share of particles
smaller than 6 mm and particles ranging from 6 to 12 mm in
diameter. The change in size distribution after DNase
treatment for Nitrospira very much resembled that of N.
oligotropha (data not shown).

Discussion

Abundance of eDNA in activated sludge

Only few studies have tried to quantify the amount of
eDNA in complex biofilms such as activated sludge.
Based on a cation-based extraction procedure, levels of
10–20 mg eDNA g-1 VSS have been found in a number of
WWTPs (Frølund et al., 1996; Palmgren and Nielsen,
1996). It was estimated to be significantly more than
present inside the cells (up to 10 times). The level was in
the same range as measured in this study, proving the
importance of DNA as a constituent of the EPS matrix in
mixed biofilms, although the actual content differed sig-
nificantly between different treatment plants. The eDNA
concentration at a certain time point in a treatment plant is
the net result of inflow with wastewater and microbial
production and removal. However, variations in eDNA
concentration during one day in one plant were small, and
the levels turned out to be constant in both aerobic and
anaerobic tanks over long time periods. Therefore, the
different contents of eDNA in activated sludge of different
treatment plants are most probably due to different micro-
bial populations and operational conditions affecting their
activity.

Fig. 5. Deflocculation curves obtained in shear experiments with and without addition of DNase I to activated sludge from Aalborg East
WWTP (A) and Aalborg West WWTP (B).
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The DDAO staining has been used for qualitative visu-
alization of eDNA in pure culture studies (Allesen-Holm
et al., 2006; Qin et al., 2007), and this was also a fast
and reliable method for visualization of eDNA in acti-

vated sludge. Colocalization of signal with the other
well-known DNA stain PI and the disappearance of
signal after DNase treatment demonstrated the specific-
ity of this stain towards the double-stranded DNA

Fig. 6. Size distributions in terms of bioarea
fractions measured for all bacteria in activated
sludge (A), Curvibacter microcolonies (B) and
microcolonies of Nitrosomonas oligotropha
cluster 6a (C), before and after shear
treatment both with and without the addition
of DNase I.
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located outside living bacterial cells. Furthermore, the
development of this method as a quantitative measure-
ment of eDNA using internal standards will be useful for
future studies of eDNA, particularly in mixed microbial
environments.

Producers of eDNA and importance for
structural integrity

Most eDNA was found around living single cells
and microcolonies, as determined by SYTO 13 and PI
staining, suggesting active production of this polymer.
However, we cannot exclude the possibility of lysis from a
subpopulation of bacteria in the microcolonies (by autoly-
sis or phages attack) not detected by the PI staining.
Some membrane-compromised cells were also positive
with DDAO stain, probably on the way to becoming extra-
cellular material. Diffusion of eDNA into the EPS matrix
could be an explanation for the presence of low concen-
tration of this substance all around the flocs.

The FISH identification revealed that many microcolo-
nies and particularly those of Curvibacter, Thauera and
Nitrospira almost always had very high levels of eDNA.
Concentrations within these microcolonies were found
to be up to 300 mg g-1 organic matter. It is a very high
amount which must strongly affect or define the microen-
vironment. Interestingly, these bacteria are also reported
to form very strong microcolonies that are extremely dif-
ficult to shear apart (Larsen et al., 2008), indicating that a
possible major function of eDNA is related to structural
integrity. Such function has also been suggested by
several other authors with regard to biofilm formation and
stability in pure culture studies (Steinberger et al., 2002;
Whitchurch et al., 2002; Petersen et al., 2004; Böckel-
mann et al., 2006). The deflocculation studies by adding
DNase I support a structural role for eDNA, although
some differences between the probe-defined species
investigated were found. The deflocculation pattern for
Curvibacter suggested fragmentation of microcolonies
into larger pieces, while the pattern for N. oligotropha
rather suggested erosion of single cells and small aggre-
gates. Furthermore, DNase I also had a substantial
deflocculating effect on the entire flocs, strongly indicating
that even the low levels of DNA in the overall EPS matrix
distant from the cells may be of importance to the floc
strength.

Interestingly, not all microorganisms in activated
sludge were surrounded by eDNA, and there were some
variations for the same probe-defined species from plant
to plant implying that the eDNA level was dynamic and
the content may depend on both the species composition
and the actual growth conditions. High abundance of
certain potential eDNA producers could lead to higher
eDNA contents in the overall EPS, but possibly also

larger variations in the eDNA concentrations due to
changing growth conditions.

The structural role of eDNA may affect the overall treat-
ment plant performance. Various EPS components affect
floc formation and floc strength influencing the settling
properties as well as drainage and dewatering properties
(Mikkelsen and Keiding, 2002a; Novak et al., 2003; Park
and Novak, 2007; 2009; Park et al., 2008). The structural
role of eDNA in activated sludge flocs has not been dem-
onstrated so far, but as shown in this study eDNA seems
to be an important component involved in forming strong
flocs, resistant to shear forces present in wastewater
treatment plants. Stronger flocs mean better settleability
and better performance in pressure dewatering and
gravity drainage (Christensen et al., 2010). As also shown
in this study, the highly variable content of eDNA in differ-
ent bacterial species means that the species composition
in the wastewater treatment plants must affect the floc
properties and thus also drainage and dewatering. The
same is most likely the case in biofilms in any natural or
engineered environment, where the species composition
and their EPS production (and among these the eDNA)
will affect biofilm properties.

Experimental procedures

Activated sludge samples

Samples of activated sludge were collected from the aeration
tank in five wastewater treatment plants (WWTPs) in
Denmark. Three plants have biological N removal (nitrifica-
tion and denitrification) and enhanced biological phosphorus
removal (Aalborg East, Aalborg West and Hjørring), whereas
Aabybro and Aars only have biological N removal. All experi-
ments were initiated within 1 h after sampling. Suspended
solids (SS) contents for all plants were between 3 and
5 gSS l-1, and volatile suspended solids (VSS) were 55–70%
of SS. Values were determined according to Standard
Methods (APHA, AWWA and WEF, 2005).

Staining techniques and microscopy

Extracellular DNA was stained with the fluorescent
dye 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one
(DDAO) (Invitrogen). It was chosen for its affinity to double-
stranded DNA, good fluorescence properties, molecular size
preventing it from penetrating intact cell membranes, and
therefore targeting only eDNA (Allesen-Holm et al., 2006),
and also the fact that its emission wavelength does not inter-
fere with Cy3-labelled oligonucleotide probes. Verification of
DDAO target was performed by simultaneously staining with
PI (Invitrogen) having similar properties and also by obser-
vation of signal disappearance after digestion with DNase I
(Sigma-Aldrich). Intracellular DNA was stained with SYTO 13
stain (Invitrogen), capable of penetrating intact cell mem-
branes. Distinction between living and dead cells was made
with a Live/Dead stain combination (Invitrogen). The working
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concentrations of all stains were determined by preparation
of saturation curves and by choosing the concentrations that
were sufficient to saturate the target.

Staining was carried out on glass slides. Biomass was
distributed on the glass surface and dried at 46°C. It was
covered with a drop of working solution (10 mM in case of
each stain, see below) and incubated at room temperature in
the dark for 30 min. Slides were then washed by submersion
in cold, sterile-filtered tap water and dried, before investiga-
tion with fluorescence microscopy. In some experiments, the
eDNA was removed from the sample by digestion with DNase
I (0.5 U mg-1 VSS) on slide-attached biomass for 60 min
at 37°C.

A confocal laser scanning microscope (LSM 510 META,
Zeiss) was used. Oligonucleotide probes labelled with Cy3
and PI stain were excited with a HeNe laser (543 nm), probes
labelled with FLUOS and SYTO stains were excited with an
Ar laser (488 nm), and DDAO stain was excited with a HeNe
laser (633 nm). Digital image analysis was performed with
ImageJ software (http://rsbweb.nih.gov/ij/) using self-written
macros. In case of FISH combination, DDAO-stained sample
was investigated microscopically with a 40 ¥ objective, posi-
tions of interest were recorded with use of an automatic stage
controller, FISH procedure was conducted, and the positions
were relocated for final investigation.

FISH analysis

The FISH oligonucleotide probing was performed according
to Amann (1995). The identity of bacteria in biofilms was
investigated with the following oligonucleotide probes:
PAOmix (mixture of PAO462, PAO651 and PAO846) for
Accumulibacter (Crocetti et al., 2000); GAOmix (mixture of
GAOQ989 and GB_G2) for Competibacter (Crocetti et al.,
2002; Kong et al., 2002); Aqs997 + competitor for Curvi-
bacter (Thomsen et al., 2004); Cluster6a-192 for Nitrosomo-
nas oligotropha (Adamczyk et al., 2003); NTSPA662 +
competitor for genus Nitrospira (Daims et al., 2000); Thau-
646 for Thauera (Lajoie et al., 2000); Azo644 for most
members of Azoarcus cluster (Hess et al., 1997); Nso190 for
betaproteobacterial ammonia-oxidizing bacteria (Mobarry
et al., 1996); SAP-309 for Saprospiraceae (Schauer and
Hahn, 2005); CFXmix (mixture of GNSB941 and CFX1223)
for Chloroflexi (Gich et al., 2001; Bjornsson et al., 2002);
TM7-905 for candidate division TM7 (Hugenholtz et al.,
2001), Actino-221 and Actino-658 for Tetrasphaera (Kong
et al., 2005); MPA_all_1410 for Microthrix parvicella
(Levantesi et al., 2006); Spin1449 for Skermania (Eales
et al., 2006); and GOR-596 for Gordonia (de los Reyes
et al., 1997). The gene probes were labelled with 5(6)-
carboxyfluorescein-N-hydroxy-succinimide ester (FLUOS) or
with sulfoindocyanine dye (Cy3). Hybridization conditions
and probe details can be found at probeBase (Loy et al.,
2007).

Quantification of eDNA

Quantification of eDNA was carried out by the application of
internal standards. Increasing amounts of pure DNA (Salmon
sperm DNA, 10 mg ml-1, Invitrogen) were added to gently

homogenized activated sludge samples. A sample in which
eDNA was removed by digestion with DNase I served as
control. An even distribution of salmon sperm DNA and its
proper adhesion to activated sludge flocs were assured by
gentle shaking of sludge/DNA mixture for 30 min at 4°C, and
good adherence of DNA to flocs was confirmed by DNA
concentrations of < 1 ng ml-1 left in the liquid phase, deter-
mined spectrophotometrically (NanoDrop Technologies).
Extracellular DNA was stained with DDAO according to the
protocol described above. Flocs were visualized with Nor-
marski microscope without any fluorescent markers,
because numerous trials aiming at obtaining a linear stan-
dard curve with fluorescent dyes targeting intracellular DNA
were unsuccessful, possibly due to stain competition with
DDAO over the DNA target. Finally, the average ratio of
DDAO fluorescence intensity to cells biovolume (factor
referred to as the ‘relative intensity’) was measured for each
sample, and a standard curve was prepared describing the
relationship between the content of eDNA in the sample and
DDAO relative intensity. The linear nature of this relationship
(Fig. S1) allowed for the estimation of eDNA concentration in
the original sample (where no external DNA was added) and
finally, estimation of eDNA concentration in any activated
sludge sample, based on the intensity of DDAO signal, pro-
vided that the same settings of the microscope were used
every time. Determination of eDNA concentration around
single cells and microcolonies was possible by comparing
the intensity of DDAO fluorescence around a particular target
with the average DDAO intensity for a given specimen. The
range of eDNA concentrations covered by the standard
curve was chosen so as to include the highest concentra-
tions found in some microcolonies.

Shear experiments

The impact of DNase I (Sigma Aldrich) treatment on the
microcolony strength was determined with shear tests in 1 l
baffled shear reactors with 600 ml of activated sludge under
defined shear conditions as described elsewhere (Klausen
et al., 2004). Each experiment was divided into two stages
and 30 U of enzyme were added at the very beginning of
each trial. The first stage consisted in gentle mixing of acti-
vated sludge at 60 r.p.m. for 60 min, in order to assure thor-
ough mixing and allow its action. In the second stage the
stirring rate was increased to 800 r.p.m. Samples were taken
from both reactors at certain time intervals, centrifuged for
3 min at 426 g and the deflocculation evaluated by optical
density of the resulting supernatant measured at 650 nm. The
experiment was continued until the optical density measure-
ments reached a plateau. Numerical fitting of the defloccula-
tion curves was performed according to Mikkelsen and
Keiding (2002b). The effect of DNase I treatment on the
overall floc strength was assessed in 300 ml baffled reactors
with 100 ml of activated sludge, and the concentration of
DNase I was increased to 100 U. This concentration was
determined experimentally as the threshold DNase I concen-
tration above which no more DNase-based deflocculation
took place (data not shown).

Microcolony size distribution upon DNase treatment was
measured in paraformaldehyde fixed samples after quanti-
tative FISH. Another set of slides was used for SYTO 13
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staining, which stained all the cells in the sample. Finally,
images were recorded with a confocal laser scanning micro-
scope, and the particle size distributions (referred to as
bioarea) were manually acquired with ImageJ software for
at least 100 microcolonies, cell aggregates and single cells
of Curvibacter, Nitrosomonas oligotropha cluster 6A, and
Nitrospira.
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Standard curve for quantification of eDNA concen-
tration (mg g-1 VSS) in activated sludge. Relative intensity,
describing the average ratio of DDAO fluorescence intensity
to the biovolume of cells in a batch of at least 30 images, can
be translated to the concentration of extracellular DNA in a
given sample. The first point without eDNA concentration was
obtained by digestion of eDNA with DNase I. The curve
presented is an average of four consecutive experiments
which provided very repetitive data. Error bars represent the
standard error of the mean.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the
article.
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