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Abstract 

 

In this dissertation, the characteristics of a distribution system under a dynamic 

electricity-pricing, load management system and under a large number of power electronic 

interfaced distributed generation units are investigated. The operation characteristics of a 

power system with wind turbines, DG units, loads and electricity price are studied.  Further, 

the effect of energy storage systems will be considered, and an optimal operation strategy for 

energy storage devices in a large scale wind power system in the electricity market is 

proposed.  

The western Danish power system, which has large penetrations of variable wind 

power production and may represent the future electricity markets in some ways, is chosen as 

the studied power system. 10 year actual data from the Danish competitive electricity market 

are collected and analyzed. The relationship among the electricity price, the consumption and 

the wind power generation in an electricity market is investigated. The formulation of an 

imbalance cost minimization problem for trading wind power in the Danish short-term 

electricity market is then described. Stochastic optimization and a Monte Carlo method are 

proposed to find the optimal bidding strategy for trading wind power in the Danish short-term 

electricity market in order to minimize the imbalance costs for regulation. 

A load optimization method based on spot price for demand side management in 

Denmark is proposed in order to save the energy costs for 3 types of typical Danish 

consumers as much as possible. The load optimization to spot price generates different load 

profiles and reduces the load peaks. These kinds of load patterns have significant effects on 

power system constraints. A method of achieving power loss minimization in distribution 

systems by using optimal load response to the electricity price is proposed. A fuzzy adaptive 

particle swarm optimization (FAPSO) is presented as a tool for the power loss minimization 

study. Simulation results show that the proposed approach is an effective measure to achieve 

power loss minimization in distribution systems. Then, three different cases are studied to 

solve power system constraints, improve power system small signal stability and power 

system transient stability by deciding an appropriate electricity price. 

An optimal operation strategy for a battery energy storage system (BESS) in relation 

to the electricity price in order to achieve maximum profit of the BESS is proposed. Two 

kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery 

technologies, are studied. Optimal operation strategies of PEV in the spot market are then 

proposed in order to decrease the energy cost for PEV owners. Furthermore, the application 
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of battery storage based on aggregated PEVs is analyzed as a regulation service provider in 

power systems with high wind power penetrations. The economic benefits of PEVs in both 

spot market and regulating market are also estimated. Finally, the impacts of different PEV 

charging/discharging strategies on the spot market price and the interaction between the 

electricity price and the system demand are presented and discussed. 
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Dansk Abstrakt 

 

I denne afhandling, er kendetegnene for en distributionssystem under en dynamisk el-

pricing, load management system og under en lang række effektelektroniske interface 

distribuerede produktionsanlæg undersøgt. Drifts karakteristika for en elsystem med 

vindmøller, GD enheder, belastninger og elprisen er undersøgt. Endvidere vil effekten af 

energilagringssystemer overvejes, og en optimal drift strategi for energi lagringsenheder i en 

stor skala vindkraft-system på elmarkedet er foreslået. 

Den vestlige danske elsystem, som har store gennembrydninger af variabel 

vindkraftproduktion og kan repræsentere de fremtidige elmarkeder på nogle måder, er valgt 

som den studerede elsystemet. 10 år faktiske data fra det danske konkurrencedygtigt elmarked 

er indsamlet og analyseret. Forholdet mellem elprisen, forbrug og vindproduktion i et 

elmarked er undersøgt. Formuleringen af en ubalance omkostningsminimering problem for 

handel vindkraft i det danske kort sigt elmarked derefter beskrevet. Stokastisk optimering og 

en Monte Carlo metode foreslås at finde den optimale budstrategi for handel vindkraft i det 

danske kortsigtede elmarked for at minimere ubalancen udgifter til regulering. 

En belastning optimering metode baseret på spotprisen for efterspørgselsstyring i 

Danmark foreslås for at gemme energiomkostningerne for 3 typer af typiske danske 

forbrugere så meget som muligt. Belastningen optimering til spotpris genererer forskellige 

belastningsprofiler og reducerer spidsbelastninger. Disse former for belastning mønstre have 

betydelige virkninger på el-systemet begrænsninger. En metode til at opnå effekttab 

minimering i distributionssystemer ved hjælp af optimal belastning reaktion på elprisen er 

foreslået. En fuzzy adaptive partikel sværm optimering (FAPSO) præsenteres som et redskab 

for effekttab minimering undersøgelse. Simulation resultater viser, at den foreslåede tilgang er 

en effektiv foranstaltning til at opnå effekttab minimering i distributionssystemer. Derefter tre 

forskellige undersøgte tilfælde at løse systemadskillelse begrænsninger, forbedre elsystemet 

lille signal stabilitet og elsystem forbigående stabilitet ved at beslutte en passende elpris. 

En optimal drift strategi for et batteri energilager system (BESS) i forhold til elprisen 

for at opnå størst mulig profit af BESS foreslås. To slags BESS, baseret på polysulfid-brom 

(PSB) og vanadium redox (VRB) batteriteknologier, er undersøgt. Optimal drift strategier 

PEV i spotmarkedet derefter foreslået for at reducere energi-omkostninger for PEV ejere. 

Endvidere er anvendelsen af batteriets storage baseret på aggregerede PEVs analyseret som 

en forordning tjenesteyder i elsystemer med høje vindkraft gennemføringer. De økonomiske 

fordele ved PEVs i både spotmarkedet og regulere markedet er også skøn. Endelig er 
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konsekvenserne af forskellig PEV opladning / afladning strategier på spotmarkedsprisen og 

samspillet mellem elprisen og systemet efterspørgsel præsenteret og diskuteret. 
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Abbreviations 

 

BESS   Battery Energy Storage System 

CCT   Critical Clearing Time 

DCHP   Decentralized Combined Heat and Power Plant 

DG    Distributed Generation 

DSM   Demand Side Management 

Elbas   Balancing Market 

Elspot   Spot Market 
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PEV    Plug-in Electric Vehicle 
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Chapter 1 

 

Introduction 

 

1.1   Background and Motivation 

 

Conventional power systems are dominantly based on large central power plants 

which supply the energy to the consumers through high voltage transmission systems and low 

voltage distribution systems. Significant changes are happening in the traditional power 

systems due to the deregulation of the power system and the integration of distributed 

generation (DG). 

Because of energy shortage and environment pollution, the renewable energy, 

especially wind energy has attracted more and more attentions all over the world. The wind 

energy has been widely considered as one of the most rapidly increasing resources among 

other distributed generation resources [1-5]. By 2020, it is expected that the total wind power 

generation will supply around 12% of the total world electricity demands [6]. 20% energy 

should be from renewable sources by 2020 according to the goal of the European Union. The 

share of electricity from renewable energy sources has to be more than 30% to achieve this 

target [7]. In Denmark, the wind energy supplies around 20% of the annual electricity demand 

in 2009, which is the highest among other countries in the world [8]. Wind power is currently 

the most important renewable energy source in Denmark. The total installed capacity of wind 

power in Denmark was 3730 MW at the end of September 2010, in which 868 MW was 

offshore wind power [9]. However, integration of such a lot of wind energy into power grids 

presents a major challenge to power system operators because of the high uncertainty and 

variability in the wind power characteristic nature [10].  

As the distributed generation is normally placed close to the consumers, the total 

energy loss through the transmission system and distribution system is significantly reduced. 

The deployment of DG normally defers the need for grid renewal and DGs could also 

increase the grid reliability and power quality, such as harmonics and unbalance state [11], 

[12]. Fig. 1.1 illustrates the evolvement of the Danish power system during the past 20 years. 

The Danish power system has evolved from a classical centralized power system to a 

decentralized system of power generation [13], [14]. It can be seen that the number of DG 
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units has increased significantly in Denmark. In 2008, the installed capacity of small power 

plants and wind turbines was 1829 MW and 3166 MW, respectively [15]. 

 

Fig. 1.1. Maps of Denmark showing interconnectors and growth of dispersed generation [13], [14]. 

 

Electric power systems are developing towards a market structure from transmission 

to distribution worldwide, where the economic issue is a main consideration. While the global 

demand in electrical energy is increasing steadily, the upgrading of national and international 

power grids is progressing slowly due to the high economic risks of establishing new power 

stations [16]. The liberalization of the electricity markets has led to the replacement of tariffs 

by hourly or half-hourly prices in many parts of the world. Economists argue that real-time 

electricity prices are a powerful way to encourage consumers to behave in an economically 

optimal way [17-19]. In the deregulated and dynamic electricity markets, there is a strong 

variability in electricity prices. Load peaks and lacks of generation due to maintenance of 

generators, power fluctuations from DGs and unexpected outages result in high spot market 

prices in some periods [20]. Now many consumers in Denmark, especially small businesses 

and private households, operate on fixed electricity prices contracts. Since the hourly spot 

market price is available one day ahead, the price could be transferred to the consumers and 

they may have some motivations to shift their loads from high price periods to the low price 

periods in order to save their energy costs. This kind of optimal load patterns may have 

significant effects on the power system normal operation. 
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The EU's energy policy addresses the transportation sector, requiring a mandatory 

limit of 120 grams of CO2/km for new cars by 2012 to reduce the greenhouse gas emissions 

[21], [22]. Recent developments and advances in battery energy storage systems and power 

electronics technologies are making the Plug-In Electric Vehicles (PEV) a possible solution in 

the future. The battery storage of electric vehicles is one of the emerging concepts, which can 

act as a controllable load or as a generator in the distribution power system. It may allow the 

power system to be operated in a more flexible, controllable manner [23-30]. Consumers may 

have some motivations to optimally use their PEVs in order to save energy costs. Therefore, 

how the PEVs will be operated in relation to the hourly electricity price in competitive 

electricity markets needs to be studied. The impact of the optimal operation strategy for PEVs 

together with the optimal load response to spot market price for demand side management on 

the distribution power system with high penetration of wind power needs to be analyzed and 

discussed. The aggregated battery based PEVs may also provide power system regulation 

services in order to get more economic benefits. The application of PEVs as a regulation 

power provider is investigated by utilizing an aggregated battery storage model in load 

frequency control (LFC) simulations. The economic benefits of PEVs in both spot market and 

regulating market should be estimated.  

This PhD project is to study the characteristics of a distribution system under a 

dynamic electricity-pricing, load management system and under a large number of power 

electronic interfaced distributed generation units. The interactions between the power market 

and the system operation and control strategies will be fully explored. The operation 

characteristics of a power system with wind turbines, DG units, loads and electricity price 

will be studied. Further, the effect of energy storage systems will be considered, and a system 

optimization for a system with energy storage devices in a large scale wind power system 

acting in the electricity market will be performed.  The western Danish power system, which 

has large penetrations of variable wind power production and may represent the future 

electricity markets in some ways, is chosen as the studied power system. The significance of 

this project includes development of the optimal electricity price for the Danish consumers 

and development of the optimal operation strategies for Danish power systems with large 

scale of wind power and energy storage systems. 
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1.2   Research Objective 

 

This three-year PhD research project “Operation of Modern Distribution Power 

Systems in Competitive Electricity Markets” was initiated by Department of Energy 

Technology at Aalborg University in collaboration with Danish Energy Association and the 

two Danish distribution companies Himmerlands Elforsyning and SEA-VNVE. 

This project comprehensively investigates the characteristics of a distribution system 

under a dynamic electricity-pricing, load management system and a large number of power 

electronic interfaced DG units. The interactions between the electricity market and the system 

operation and control strategies will be fully explored. Further, the effect of energy storage 

systems will be considered, and a system optimization for a system with energy storage 

devices in a large scale wind power system acting in the electricity market will be performed. 

Specifically, the objectives of this research study are as follows: 

1) To develop models to represent the relationship between a dynamic electricity 

price and the load characteristics controlled by a load management system. 

2) To develop probabilistic models to represent the relation between a dynamic 

electricity pricing and fuel-free renewable energy based dispersed generation 

units. 

3) To improve the power system operation, such as power loss minimization, power 

system constraints solving, power system small signal stability improvement and 

power system transient stability improvement, using demand side management by 

deciding an appropriate electricity price. 

4) To propose an optimal operation strategy for a battery energy storage system and 

estimate the economic benefits for its owners. 

5) To analyze the interaction among electricity price, system load and battery based 

PEVs. 

 

1.3   Technical Contribution of the Thesis 

 

The main technical contribution of the thesis is summarized as follows: 

1) The relationship among the electricity price, the consumption and the wind power 

generation in an electricity market is investigated. Stochastic optimization and a 
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Monte Carlo method are proposed to find the optimal bidding strategy for trading 

wind power in the Danish short-term electricity market in order to minimize the 

imbalance costs for regulation. 

2) A load optimization method based on spot price for demand side management is 

proposed in order to save the energy costs as much as possible. 

3) A method for achieving power loss minimization in distribution systems by using 

optimal load response to the electricity price is proposed. A fuzzy adaptive 

particle swarm optimization is adopted as a tool for the power loss minimization 

study. 

4) A method for power system operation improvement, which includes solving 

power system constraints, improving power system small signal stability and 

power system transient stability, using demand side management by deciding an 

appropriate electricity price is proposed. 

5) An optimal operation strategy of a battery energy storage system in relation to the 

electricity price is proposed in order to achieve the maximum profits for its 

owners. The application of a battery storage based on aggregated PEVs is used as 

a regulation service provider in the power system. 

6) The interaction among electricity price, system load and battery based PEVs are 

proposed and discussed. 

 

1.4   Project Limitations 

 

The limitations of this research are as follows: 

1) This research focuses on the spot market and regulating market, due to the facts 

that the intraday balancing market is not very active and only small amounts of 

energy are traded there. 

2) For the time being, these consumers will not have the spot market price as their 

price, their real expected fluctuation in the price will be much lower due to tax 

and other tariffs.  Therefore, the real consumer behaviors may be different from 

the optimal ones as discussed in this thesis. 

3) The consumers are assumed very sensitive to the electricity price and smart 

enough to make the optimal decisions in the research.  

4) The spot prices are assumed not to change due to the optimal load response and 

the optimal charge/discharge schedule for PEVs. 
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5) The operating and maintenance cost of the battery energy storage system (BESS) 

and its effects on the optimal operation strategy of the BESS are not considered in 

the research. 

6) The other economic benefits of the BESS by providing spinning reserve, 

frequency regulation and renewable energy support are not evaluated in the 

research. 

 

1.5   Outline of the Thesis 

 

The PhD dissertation contains eight chapters and appendixes. It is organized as 

follows: 

Chapter 1 Introduction 

This chapter gives the background and objective of this thesis. Also the technical 

contributions and the limitations in the project are discussed. 

Chapter 2 Analysis of Danish Electricity Market 

In this chapter, the Danish power system, which may represent the future of 

competitive electricity markets in some ways, is chosen as the studied power system. 10 year 

actual data from the Danish competitive electricity market are collected and analyzed. The 

relationship among the electricity price, the consumption and the wind power generation in an 

electricity market is investigated. The formulation of an imbalance cost minimization problem 

for trading wind power in the Danish short-term electricity market is then described in the 

chapter. Stochastic optimization and a Monte Carlo method are proposed in this chapter to 

find the optimal bidding strategy for trading wind power in the Danish short-term electricity 

market in order to minimize the imbalance costs for regulation. 

Chapter 3 Optimal Load Response to Spot Price and Its Impact on Distribution Systems 

In this chapter, a load optimization method based on spot price for demand side 

management in Denmark is proposed in order to save the energy costs for 3 types of typical 

Danish consumers as much as possible. The load optimization to spot price generates 

different load profiles and reduces the load peaks. These kinds of load patterns have 

significant effects on power system constraints. 

Chapter 4 Power loss minimization Using Demand Side Management 
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The optimal load response to an hourly electricity price for demand side management 

generates different load profiles and provides an opportunity to achieve power loss 

minimization in distribution systems. In this chapter, the idea of achieving power loss 

minimization in distribution systems by using optimal load response to the electricity price is 

proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is presented as a tool for 

the power loss minimization study. Simulation results show that the proposed approach is an 

effective measure to achieve power loss minimization in distribution systems. 

Chapter 5 Power System Operation Improvement Using Demand Side Management 

The optimal load response to an hourly electricity price for demand side management 

provides an opportunity to improve the power system operations by adjusting the system 

loads. Improving power system operation could be achieved by deciding an appropriate 

electricity price. In this chapter, three different cases are studied to solve power system 

constraints, improve power system small signal stability and power system transient stability. 

Chapter 6 Optimal Operation Strategies for Battery Energy Storage Systems 

This chapter presents an optimal operation strategy for a battery energy storage 

system (BESS) in relation to the electricity price in order to achieve maximum profit of the 

BESS. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) 

battery technologies, are studied in the chapter. Optimal operation strategies of PEV in the 

spot market are then proposed in order to decrease the energy cost for PEV owners. 

Furthermore, the application of battery storage based on aggregated PEVs is analyzed as a 

regulation service provider in power systems with high wind power penetrations. The 

economic benefits of PEVs in both spot market and regulating market are also estimated in 

this chapter. 

Chapter 7 Interaction between Electricity Price and System Demand 

The previous chapters analyze the optimal load response and optimal 

charge/discharge schedule for PEVs in relation to the electricity price in order to save energy 

costs for PEV owners as much as possible. However, those optimal behaviors affect the 

electricity price as well. In this chapter, the interaction between the electricity price and the 

system demand are presented and discussed. 

Chapter 8 Conclusions and Future Work 

This chapter presents the summary and main findings and conclusions of this thesis. 

The topics for future work are also discussed in the end. 
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Chapter 2 

 

Analysis of Danish Electricity Market 

 

The Danish power system is currently the grid area in the world that has the largest 

share of wind power in its generation profiles, with around 20% of its annual consumption 

generated by wind turbines. The Danish power system, which may represent the future of 

competitive electricity markets in some ways, is chosen as the studied power system. 10 year 

actual data from the Danish competitive electricity market are collected and analyzed. The 

relationship among the electricity price (both the spot price and the regulation price), the 

consumption and the wind power generation in an electricity market is investigated in this 

chapter. A short overview of the Nordic electricity market is presented in Section 2.1. The 

spot market prices are analyzed together with the consumption and the wind power generation 

in Section 2.2. Section 2.3 presents the relationship among the regulation price, the 

consumption and the wind power generation. A stochastic optimal wind power bidding 

strategy is proposed in Section 2.4. Section 2.5 summarizes the main conclusions. 

 

2.1   Nordic Electricity Market 

 

The Nordic countries, i.e. Denmark, Finland, Norway and Sweden, are small in terms 

of population but the electricity consumption is quite high. In 2001 the total consumption of 

electricity in the Nordic countries was 393 TWh, which is less than Germany (550 TWh) and 

France (450 TWh) and slightly higher than the electricity consumption in UK (360 TWh) [31]. 

The electricity industry of the Nordic countries went through a major restructuring during the 

1990s. Norway was the first Nordic country introducing market competition in 1991. Sweden 

joined the market in 1996, Finland joined the common market in 1998, western Denmark 

joined in 1999, and in 2000 eastern Denmark also joined the common Nordic market [32], 

[33]. The Nordic electricity market is a international electricity market. There is one market 

operator: Nord Pool, and there are currently four transmission system operators (TSOs): 

Svenska Kraftnat in Sweden, Fingrid in Finland, Statnett in Norway, and Energinet.dk in 

Denmark [33]. 
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From a technical point of view, the power generation system is fairly mixed in the 

Nordic countries as a whole, but at the national level the power generation differs 

significantly. In Norway, almost all power is generated by hydropower, while the share of 

hydropower generation is around 45% in Sweden, 20% in Finland and zero in Denmark. The 

share of nuclear power is around 45% in Sweden, 33% in Finland and zero in Denmark and 

Norway. Power generation based on fossil fuels is quite significant in Denmark and Finland, 

but close to zero in Norway and Sweden. Wind power generation is very significant in 

Denmark, but not significant in the other Nordic countries [8]. There are three electricity 

markets in Denmark, namely the spot market, balancing market and regulating market. 

 

2.1.1  Spot Market (Elspot) 

The Nord Pool spot market is the world’s first international spot power exchange 

market, which exchanges the power of Norway, Sweden, Finland and Denmark [34]. The 

Nord Pool spot market is a day-ahead market where power contracts of a minimum of one-

hour duration are traded for delivery in the following day [35]. Purchasing and selling curves 

are constructed, and the point where they cross determines the spot market price and the 

volumes being traded during each hour of the next day. The interval between the time when 

the bids are made and the time when the actual trades take place is at least 12 hours. 

 

2.1.2  Balancing Market (Elbas) 

Due to the lengthy time span of up to 36 hours between spot market price-fixing and 

delivery, participants need market access in the intervening hours to improve their physical 

electricity balance. The balancing market enables continuous trading with contracts that lead 

to the physical delivery of the electricity. The balancing market closes one hour before the 

physical delivery. Its function is in other words to be an aftermarket to the spot market [36]. 

However, currently, the balancing market is not very active, and only small amounts of 

energy are traded there [37]. So this chapter focuses on the spot market and regulating market. 

 

2.1.3  Regulating Market 

The transmission system operator (TSO) is responsible for the physical balance 

between production and consumption. The main objective of the regulating market is to serve 

as a tool for system operators to balance the power generation to the load at any time during 
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real-time operations [38]. There are 2 kinds of bids in the regulating market. The up 

regulation is for increased generation or reduced consumption and the down regulation is for 

decreased generation or increased consumption. 

 

2.2   Spot Market 

 

The hourly spot price, the consumption and the wind power generation of Denmark 

from the year 2001 to the year 2010 can be obtained from Energinet.dk [39], which is the 

transmission system operator of Denmark. The mean values of the spot price, the 

consumption and the wind power generation of both western and eastern Denmark for each 

year are shown in Fig. 2.1. It can be observed that the spot price and wind power generation 

generally increase during the past 10 years, while the consumption keeps almost the same. 

 

Fig. 2.1. The mean values of the spot price, the consumption and the wind power generation of both 

western Denmark (red line) and eastern Denmark (blue line) for each year. 
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Fig. 2.2 illustrates the spot price, consumption and wind power generation of western 

Demark in the year 2008. The spot price for electricity is volatile, showing unpredictable 

variations and spikes due to the changes of the generations and demands in the deregulated 

and dynamic power markets. From this figure, it can also be seen that both the consumption 

and wind power is higher in winter time and lower in summer time, because the wind speed is 

higher in winter and a lot of extra light is needed in winter. 

 

Fig. 2.2. The spot price, consumption and wind power generation of western Demark in the year 2008. 

 

The relationship between the consumption and the spot price is shown in Fig. 2.3 and 

the relationship between the wind power and the spot price is shown in Fig. 2.4. Each blue 

circle in the figures represents the consumption and spot price, or the wind power and spot 

price at each hour. From the linear fitting curve (red line) in the figures, it can be seen that the 

spot price increases when the consumption increases, and the spot price decreases when the 

wind power increases. But the relationship among the consumption, the wind power and the 

spot price is not very clear in these figures. 
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Fig. 2.3. The relationship between the consumption and the spot price (blue circle: consumption and 

spot price for each hour, red line: linear fitting of the data). 

 

 

Fig. 2.4. The relationship between the wind power and the spot price (blue circle: wind power and spot 

price for each hour, red line: linear fitting of the data). 

 

A detailed analysis is done by dividing both the consumption and the wind power into 

certain intervals. The variation of average spot price with the consumption is shown in Fig. 

2.5 and the variation of average spot price with the wind power generation is shown in Fig. 

2.6. The 100% wind power generation means that all the installed wind turbines are operated 
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at full capacity. It can be observed that the average spot price generally increases when the 

consumption of the power system increases, and the average spot price generally decreases 

when the wind power generation in the power system increases. But the relationship among 

the consumption, the wind power and the spot price is quite nonlinear. The spot price 

increases slowly at high consumption periods and the spot price increases rapidly at low 

consumption periods. Similarly, the spot price decreases slowly at low wind power generation 

periods and the spot price decreases rapidly at high wind power generation periods. 

 

Fig. 2.5. The variation of spot price with the consumption. 

 

 

Fig. 2.6. The variation of spot price with the wind power generation. 
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The statistical analysis is then adopted in order to obtain a more detailed relationship 

among the consumption, the wind power and the spot price in Denmark. Fig. 2.7 illustrates 

the probability density of the spot price for different consumption percentages. It can be 

observed that the figure moves to the right side when the consumption increases, which also 

indicates that the mean value of the spot price increases when the consumption increases. 

Furthermore, when the consumption is higher, the probability density of the high spot price is 

higher. It can also be noticed that when the consumption is lower, the probability density of 

the zero price is higher due to the total generation may be higher than the total consumption 

during the periods. 

  

(a) 0%~40% (b) 40%~60% 

  

(c) 60%~80% (d) 80%~100% 

Fig. 2.7. The probability density of the spot price for different consumption percentages. 

 

Fig. 2.8 illustrates the probability density of the spot price for different wind power 

generation. It can be also seen that the mean value of the spot price decreases when the wind 

power generation increases. When the wind power generation is higher, the probability 

density of the high spot price is lower. It can be noticed that when the wind power generation 



16 

is higher, the probability density of the zero price is much higher due to the very low marginal 

prices of the wind power generation.  Furthermore, from 30th, November, 2009, the Nord Pool 

decides to lower the minimum price from 0 to -200 EUR/MWh in order to increase the 

effectiveness of the market by forcing power generators to consider reducing their generation 

or having to pay for generating electricity [40]. Danish wind power owners are normally 

trading their energy in the spot market purely using the wind conditions. With the negative 

prices, wind turbine owners may be forced to monitor the electricity price as well [40]. 

  

(a) 0%~20% (b) 20%~40% 

  

(c) 40%~60% (d) 60%~80% 

 

(e) 80%~100% 

Fig. 2.8. The probability density of the spot price for different wind power generation. 
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2.3   Regulating Market 

 

The regulating market is a tool for system operators to balance the power generation 

and the consumption at any time during real-time operations. The up regulation is for 

increased generation or reduced consumption and the down regulation is for decreased 

generation or increased consumption. Both the up regulation price and the down regulation 

price of Denmark from year 2001 to year 2010 can be obtained from Energinet.dk [39]. The 

mean values of the spot price, the up regulation price and the down regulation price of both 

western Denmark (upper figure) and eastern Denmark (bottom figure) for each year are 

shown in Fig. 2.9. It can be observed that the spot price, the up regulation price and the down 

regulation price generally increase during the past 10 years. The up regulation price is always 

higher than the spot price in order to encourage the generators to generate more power and the 

loads to consume less power.  The down regulation price is always lower than the spot price 

in order to encourage the loads to consume more power and the generators to generate less 

power. 

 

Fig. 2.9. The mean values of the spot price, the up regulation price and the down regulation price of 

both western Denmark (upper figure) and eastern Denmark (bottom figure) for each year. 
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Fig. 2.10 illustrates the spot price and the regulation price of western Demark in some 

periods of year 2008. It can be noticed that the fluctuation range of the regulation price is 

bigger than the range of the spot price. The deviation of the regulation price to the spot price 

may be written as 

                                                           (2.1)down down spotp p p    

                                                               (2.2)up up spotp p p    

where downp , upp  are the deviation of the down regulation price to the spot price and the 

deviation of the up regulation price to the spot price, respectively, downp , upp  are the down 

regulation price and the up regulation price, respectively, spotp  is the spot price. The deviation 

of the down regulation price and the up regulation price is shown in Fig. 2.11. 

 

Fig. 2.10. The regulation price of western Demark in some periods of year 2008 (black line: spot price, 

blue line: down regulation price, red line: up regulation price). 

 

Fig. 2.12 illustrates the variation of the down regulation price and the up regulation 

price with the consumption. It is indicated that the regulation price generally increases when 

the consumption of the power system increases. The deviation of the down regulation price 

and the up regulation price with the consumption is also shown in Fig. 2.12 (bottom one). At 

low consumption periods, downp  is higher than upp , because the power system needs less 

generation and more demand in this period. At high consumption periods, upp  is higher than 

downp , because the power system needs more generation and less demand in this period. 
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Fig. 2.11. The deviation of the regulation price (blue line: deviation of the down regulation price, red 

line: deviation of the up regulation price). 

 

 

Fig. 2.12. The variation of regulation price with the consumptions (upper figure) and the variation of 

deviation of the regulation price with the consumptions (bottom figure). 

 

Fig. 2.13 illustrates the variation of the down regulation price and the up regulation 

price with the wind power generation. It can be seen that the regulation price generally 

decreases when the wind power generation in the power system increases. The deviation of 

the down regulation price and the up regulation price with the wind power generation is also 
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shown in Fig. 2.13 (bottom one). At low wind power generation periods, upp  is high and 

downp  is low, because the power system needs more generation and less demand in this 

period. At high wind power generation periods, upp  is low and downp  is high, because the 

power system needs less generation and more demand in this period. 

 

Fig. 2.13. The variation of regulation price with the wind power generation (upper figure) and the 

variation of deviation of the regulation price with the wind power generation (bottom figure). 

 

The probability density of the deviation of the up regulation price upp  and the 

deviation of the down regulation price downp  for different wind power generation are shown 

in Fig. 2.14 and Fig. 2.15. It can be observed that upp
 
decreases when the wind power 

generation increases and downp  increases when the wind power generation increases. This is 

due to the fact that the power system is more likely to need more loads and less generations 

when the wind power generation increases. Furthermore, when the wind power generation is 

lower, the probability density of the very high up regulation price is higher. When the wind 

power generation is higher, the probability density of the very low down regulation price is 

higher. 
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(a) 0%~20% (b) 20%~40% 

  

(c) 40%~60% (d) 60%~80% 

 

(e) 80%~100% 

Fig. 2.14. The probability density of the deviation of the up regulation price upp  for different wind 

power generation. 

  

(a) 0%~20% (b) 20%~40% 



22 

  

(c) 40%~60% (d) 60%~80% 

 

(e) 80%~100% 

Fig. 2.15. The probability density of the deviation of the down regulation price downp  for different 

wind power generation. 

 

Fig. 2.16 illustrates the probability of the activated regulation with the wind power 

generation. It can be seen that at low wind power generation, the probability of up regulation 

is high and the probability of down regulation is low, which means that the power system is 

more likely to need more generation and less loads. At high wind power generation, the 

probability of up regulation is low and the probability of down regulation is high, which 

means that the power system is more likely to need less generation and more loads. 

In the regulation market of Denmark, the wind power owners pay an imbalance cost 

if the actual wind power generation deviates from the bidding amount. The imbalance cost is 

calculated based on the regulation price and the imbalance wind power between the bid wind 

power and the actual wind power generation. If up regulation is activated, the up regulation 

price is paid by the wind power owners for negative imbalance wind power, which means the 

bid wind power is higher than the actual wind power generation, while the wind power 

owners with positive imbalance wind power are paid according to the spot price. If down 

regulation is activated, the down regulation price is paid by the wind power owners for 

positive imbalance wind power, which means the bid wind power is lower than the actual 
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wind power generation, while the wind power owners with negative imbalance wind power 

are paid according to the spot price [35], [38]. Generally speaking, when the actual wind 

power generation helps the regulation process of the power system, the wind power owners 

are paid according to the spot price. Otherwise, the wind power owners are penalized with the 

regulation price. The imbalance cost paid by the wind power owners is shown in Table 2.1. 

 

Fig. 2.16. The probability of the activated regulation with wind power generation (blue asterisk line: 

down regulation, red diamond line: up regulation). 

 

Table 2.1. The imbalance cost paid by the wind power owners. 

Wind power 
imbalance 

The regulation process of the power 
system 

Up regulation Down regulation 

Positive 
spotp  downp  

Negative 
upp  spotp  

 

These relationships between the electricity price and the wind power generation may 

be useful for the wind power generation company to make a better bidding strategy so that the 

imbalance cost of trading wind power in the electricity market can be reduced. For example, 

at low wind power generation periods, the wind power generation company may bid less wind 

power than the forecasted value in the spot market so that a high up regulation price is 

avoided. A 20 MW wind farm in western Denmark is used as a study case in the section. A 
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low wind speed day (1st, July, 2008) is chosen as the first study case. The forecasted wind 

energy and the actual wind energy are shown in Fig. 2.17. The persistence forecast method, 

which is one of the most simple wind forecast methods [41], is adopted in this case. In the 

persistence wind forecast method, the forecasted wind energy for hour t equals to the actual 

wind energy at hour (t-1).  

 

Fig. 2.17. The forecasted wind energy (red line) and the actual wind energy (blue) in a low wind speed 

day. 

 

Conventionally, the wind power generation companies choose the forecasted wind 

energy as the bid wind energy in the short-term electricity market. This case is referred as the 

original case in the section. In the low wind speed day, the deviation of the up regulation price 

upp  is higher than the deviation of the down regulation price downp  (see Fig. 2.13-2.15). If 

the wind power generation companies are aware of these relationships between the electricity 

price and the wind power generation discussed in the previous sections, they may choose to 

bid 10% less than the forecasted wind energy in order to avoid to be penalized with a high up 

regulation price. This case is referred as the new case in the following parts. Fig. 2.18 

illustrates the imbalance costs for the original case and the new case. It can be observed that 

the imbalance cost for the regulation decreases when the new bidding strategy is used for 

trading the wind power in the short-term electricity market. The total imbalance cost in the 

studied day decreases from 208 DKK for the original case to 101 DKK for the new case, 

which corresponds to 51.4 % imbalance cost reduction in the low wind speed day. Similarly, 

the total imbalance cost decreases for about 76.2% in a high wind speed day (15th, January, 
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2008), when the wind power generation companies choose to bid 10% more than the 

forecasted wind energy in order to avoid to be penalized with a high down regulation price. 

So it may be concluded from the simulation results that the findings of this chapter may help 

wind power generation companies to make a better bidding strategy so that the imbalance cost 

of trading wind power in the electricity market could be reduced. 

 

Fig. 2.18. The imbalance cost for the regulation for the original case (blue line) and the new case (red 

line) in a low wind speed day. 

 

2.4   Stochastic Optimal Wind Power Bidding Strategy 

 

Due to the fluctuating nature and non-perfect forecast of the wind power, the wind 

power owners are penalized for the imbalance costs of the regulation as discussed in the 

previous section, when they trade wind power in the short-term liberalized electricity market. 

Therefore, in this section a formulation of an imbalance cost minimization problem for 

trading wind power in the short-term electricity market is described, to help the wind power 

owners optimize their bidding strategy. Stochastic optimization and a Monte Carlo method 

are adopted to find the optimal bidding strategy for trading wind power in the short-term 

electricity market in order to deal with the uncertainty of the regulation price, the activated 

regulation of the power system and the forecasted wind power generation. The Danish short-

term electricity market and a wind farm in western Denmark are chosen as study cases due to 
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the high wind power penetration here. Simulation results show that the stochastic optimal 

bidding strategy for trading wind power in the Danish short-term electricity market is an 

effective measure to maximize the revenue of the wind power owners. 

 

2.4.1  Problem Formulation of Wind Power Bidding Strategy 

The revenue of a wind power owner in an hour can be formulated as 

, ,                                                (2.3)spot b spot bal b bal reg imR p E p E p E    

where R is the revenue of a wind power owner, spotp , balp  are the spot price and the 

balancing market price, respectively, ,b spotE , ,b balE  are the amount of bid wind energy in the 

spot market and the balancing market, respectively, regp  is the regulation price and imE  is the 

amount of imbalance wind energy. Due to the fact that only small amounts of energy are 

traded in the balancing market and the balancing market price equals to the spot market price 

for around 80% of the time in the year, the revenue of a wind power owner in an hour can be 

approximated as 

                                                            (2.4)spot b reg imR p E p E   

where bE  is the sum of bid wind energy in the spot market and the balancing market. The 

imbalance wind energy in an hour is defined as 

                                                                     (2.5)im a bE E E   

where aE  is the actual wind power generation. 

As discussed in Section 2.3, if up regulation is activated and the wind power owner 

has negative imbalance wind energy, the wind power owner is penalized with the up 

regulation price. In this case, the revenue of the wind power owner in an hour may be given 

by 

                       (2.( ) 6) )(spot a im up im spot a up spot imR p E E p E p E p p E       

With the definition of the deviation of the up regulation price to the spot price (Eq. 

(2.1)), the revenue of the wind power owner in an hour can be rewritten as 

                                                     (2.( ) 7)spot a up imR p E p E    
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If down regulation is activated and the wind power owner has a positive imbalance 

wind energy, the wind power owner is penalized with the down regulation price. In this case, 

the revenue of the wind power owner in an hour may be given by 

                                                 (2( ) .8)spot a down imR p E p E    

If up regulation is activated and the wind power owner has a positive imbalance wind 

energy, or down regulation is activated and the wind power owner has a negative imbalance 

wind energy, the wind power owners are paid according to the spot price. In these 2 cases, the 

revenue of the wind power owner in an hour may be given by 

                                                                   (2.9)spot aR p E  

So Eq. (2.4) can be reformulated such that the revenue R of a wind power owner 

results from the combination of the income from selling the actual wind power generation aE  

at the spot price, minus the imbalance cost for the regulation. It may be rewritten as 

                                                          (2.10)spot a imR p E C   

The imbalance cost for the regulation imC  is given by 

                    

    (up regulation) & ( 0) 
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            (2.11)  

In Eq. (2.10) the first component spot ap E  of the revenue for the wind power owner is 

the dominating component, which corresponds to the income received by the wind power 

owner if the wind power is forecasted perfectly. Furthermore, since the bid wind energy bE  

only appears in the second component of the revenue for the wind power owner, maximizing 

the revenue may be translated to minimizing the imbalance cost for the regulation imC  for the 

wind power owner. So the objective of the wind power owner is to achieve a minimum 

imbalance cost for the regulation by deciding the optimal bid wind energy. 

Because the power consumption and generation in Denmark is relatively small in the 

Nordic electricity market and the variation range of the optimal bid value of wind energy are 

small [37], it is assumed that the spot price and the regulation price are not changed by the 

optimal bidding strategy for trading wind power in the short-term electricity market of 

Denmark. 
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2.4.2  Stochastic Optimization 

 

Stochastic optimization is adopted to find the optimal bidding strategy for trading 

wind power in the Danish short-term electricity market in order to deal with the uncertainty of 

the regulation price, the activated regulation of the power system and the forecasted wind 

power generation. The flow chart of the stochastic optimization algorithm for the imbalance 

cost minimization is shown in Fig. 2.19. In this section, the wind energy is forecasted using 

the persistence forecast method [41]. The probability density of the forecasted error for the 

wind power generation will be obtained in the next sub-session. Then the bid wind energy is 

initialized based on the forecasted wind energy. In order to deal with the uncertainty of the 

regulation price, the activated regulation of the power system and the forecasted wind power 

generation, the Monte Carlo (MC) method is used in the stochastic optimization. The 

regulation price and the activated regulation of the power system are generated based on the 

probability densities of the regulation price and the activated regulation in the Danish 

electricity market, which have been discussed in Section 2.3. The actual wind energy is also 

generated based on the probability density of the forecasted error for the wind power 

generation, which will be discussed in the next section. In the MC method, 1000 sets of data 

of the regulation price, the activated regulation and the actual wind energy are generated 

based on the zone of the wind power generation. The imbalance cost for the regulation for 

each hour can then be calculated according to Eq. (2.11). 

The sequential quadratic programming method represents the state of the art in 

nonlinear programming methods [42]. This method makes a lot of iterations in order to find 

the optimization results under the constraints. At each iteration an approximation is made of 

the Hessian matrix of the Lagrangian function using a Quasi-Newton updating method [43]. 

This is then used to generate a quadratic programming sub-problem whose solution is used to 

form a search direction for a line search procedure [44]. At each iteration 1000 sets of data, 

which include the regulation price, the activated regulation and the actual wind energy, are 

generated based on their probability density in order to deal with their uncertainties. The 

sequential quadratic programming method makes a lot of iterations until the stop criterion is 

satisfied, the stop criterion is no significant improvement in the solution or a maximum 

number of iterations have been reached. 
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Fig. 2.19. The flow chart of the stochastic optimization algorithm. 

 

2.4.3  Persistence Wind Forecast Method 

The wind power owners use the advanced wind forecast model based on real time 

weather information in practice. However, the forecast wind power is normally confidential. 

Due to the lack of forecast data, the persistence forecast method is here used to obtain a 

forecasted wind power. The persistence forecast method is one of the most simple wind 

forecast methods in which the forecasted wind energy for hour t equals to the actual wind 

energy at hour (t-1) [41]. It can be written as 
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                                                        ( ) ( 1  (2) .12)f aE t E t   

where ( )fE t  is the forecasted wind energy for hour t, ( 1)aE t   is actual wind energy at hour 

(t-1). The forecasted error errorE  of the persistence wind forecast method may be defined as 

                                                     (2.13100% )a f
error

f

E E
E

E


   

A 20 MW wind farm is investigated in the section and the actual wind power 

generation in the year 2008 is collected. The forecasted wind energy can be obtained by the 

persistence wind forecast method and the forecasted error can be calculated using Eq. (2.13). 

Fig. 2.20 and Table 2.2 illustrate the probability density of the forecasted error for different 

wind power generation. It can be seen that the average value of the forecasted error is around 

0% and the standard deviation of the forecasted error decreases when the wind power 

generation increases. At low wind power generation periods, the probability of a large 

forecast error is high and at high wind power generation periods, the probability of a large 

forecast error is low. The probability density of the forecasted error is used to generate the 

actual wind energy in the stochastic optimization in order to find the optimal bidding strategy 

for trading wind power in the Danish short-term electricity market. 

  

(a) 0%~20% (b) 20%~40% 

  

(c) 40%~60% (d) 60%~80% 
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(e) 80%~100% 

Fig. 2.20. The probability density of the forecasted error for different wind power generation. 

 

Table 2.2. The mean value and standard deviation of the forecasted error. 

Wind power generation Mean value (%) Standard deviation (%) 

0%~20% 2.6 29.0 

20%~40% 1.8 15.0 

40%~60% 1.6 10.5 

60%~80% 0.9 7.5 

80%~100% 0.8 3.7 

 

 

2.4.4  Numerical Results and Discussions 

Again the 20 MW wind farm in western Denmark is used as a study case in the 

section and the actual wind power generation in the year 2008 is collected. The stochastic 

optimization is performed in order to find the optimal bidding strategy for trading wind power 

in the short-term electricity market. The imbalance cost for the regulation is calculated when 

the forecasted wind energy is chosen as the bid wind energy. This case is referred as the 

original case and the imbalance cost for regulation is referred as the original imbalance cost 

for comparison purpose. It is assumed that the optimal bid wind energy is in the range of -20% 

~ +20% around the forecasted wind energy in the stochastic optimization. 

A low wind speed day (1st, July, 2008) is chosen as the first study case. The 

forecasted wind energy, the actual wind energy, the optimal bid wind energy, the original 

imbalance cost for the regulation with forecasted bid wind energy and the optimal imbalance 
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cost for the regulation with the optimal bid wind energy are shown in Fig. 2.21. It can be seen 

that the imbalance cost for the regulation decreases when the optimal bidding strategy is used 

for trading the wind power in the short-term electricity market. In the low wind speed day, the 

deviation of the up regulation price upp  is higher than the deviation of the down regulation 

price downp  (see Fig. 2.13) and the probability of the activated up regulation is higher than 

the probability of the activated down regulation (see Fig. 2.16) in the low wind generation 

periods. The optimal bid wind energy is lower than the forecasted wind energy in order to 

avoid to be penalized with a high up regulation price. The total imbalance cost for the 

regulation in the studied day decreases about 61%. Compared with the case that the wind 

power owner bids 10% less than the forecasted wind energy (see Fig. 2.18), the total 

imbalance cost reduction has been increased from 51.4 % to 61%. 

Next a high wind speed day (15th, January, 2008) and a medium wind speed day (19th, 

June, 2008) are chosen as the study cases. Fig. 2.22 and Fig. 2.23 illustrate the forecasted 

wind energy, the actual wind energy, the optimal bid wind energy, the original imbalance cost 

for the regulation with forecasted bid wind energy and the optimal imbalance cost for the 

regulation with the optimal bid wind energy. In the high wind speed day, the optimal bid wind 

energy is higher than the forecasted wind energy in order to avoid to be penalized with a high 

down regulation price downp  due to the high downp  and the high probability of the activated 

down regulation in the high wind generation periods. The wind power owners will not pay the 

imbalance cost for the regulation when the optimal bidding strategy is used in the studied high 

wind speed day. 

However, the imbalance cost for the regulation increases when the optimal bidding 

strategy is used in the studied medium wind speed day. The deviation of the up regulation 

price upp  and the deviation of the down regulation price downp  are almost the same, and the 

probability of an activated up regulation and the probability of an activated down regulation 

are almost the same in the medium wind generation periods. So the stochastic optimization 

for trading wind power in the Danish short-term electricity market has difficulties to deal with 

the uncertainty of the regulation price and the activated regulation of the power system in the 

studied medium wind speed day. 
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(a) 

 

 
(b) 

 

Fig. 2.21(a). The forecasted wind energy (blue asterisk), the actual wind energy (black diamond) and 

the optimal bid wind energy (red circle) in a low wind speed day. (b). The original imbalance cost for 

the regulation (blue asterisk) with forecasted bid wind energy and the optimal imbalance cost for the 

regulation (red circle) with the optimal bid wind energy in a low wind speed day. 
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(a) 

 

 
(b) 

 

Fig. 2.22(a). The forecasted wind energy (blue asterisk), the actual wind energy (black diamond) and 

the optimal bid wind energy (red circle) in a high wind speed day. (b). The original imbalance cost for 

the regulation (blue asterisk) with forecasted bid wind energy and the optimal imbalance cost for the 

regulation (red circle) with the optimal bid wind energy in a high wind speed day. 
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(a) 

 

 
(b) 

 

Fig. 2.23(a). The forecasted wind energy (blue asterisk), the actual wind energy (black diamond) and 

the optimal bid wind energy (red circle) in a medium wind speed day. (b). The original imbalance cost 

for the regulation (blue asterisk) with forecasted bid wind energy and the optimal imbalance cost for 

the regulation (red circle) with the optimal bid wind energy in a medium wind speed day. 
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The stochastic optimization for trading wind power in the Danish short-term 

electricity market can be performed for each day of year 2008. The original imbalance cost 

for the regulation with forecasted bid wind energy, the optimal imbalance cost for the 

regulation with the optimal bid wind energy and the saving costs percentage (SCP) of each 

month in the year 2008 are shown in Table 2.3. The saving costs percentage (SCP) is defined 

as 

                                               100  (2.14)%
org opt
im im

org
im

C C
SCP

C


   

where org
imC  is the original imbalance cost for the regulation with forecasted bid wind energy 

and opt
imC  is the optimal imbalance cost for the regulation with the optimal bid wind energy. 

From Table 2.3, it can be seen that the imbalance cost for the regulation is reduced 

9.4% in total in year 2008 when the stochastic optimal bidding strategy for trading wind 

power in the Danish short-term electricity market is used. In some months, the SCP is 

negative, which means the optimal imbalance cost for the regulation with the optimal bid 

wind energy is higher than the original imbalance cost for the regulation with forecasted bid 

wind energy. This is as shown in Fig. 2.23 due to a medium wind situation where the 

stochastic optimization for trading wind power in the Danish short-term electricity market has 

difficulties to deal with the uncertainty of the regulation price and the activated regulation of 

the power system. Therefore, the proposed optimal wind power strategy should be skipped in 

the medium wind situation and the wind power owner should bid using the forecasted wind 

power instead. 

Fig. 2.24 illustrates the saving costs percentage as a function of the wind power 

generation in the year 2008 (blue line). As it is shown, in both low and high wind power 

generation periods, the SCP is high, which means the imbalance cost for regulation decreases 

when the stochastic optimal bidding strategy for trading wind power in the Danish short-term 

electricity market is used. In medium wind power generation periods, the SCP is negative, 

which means the optimal bidding strategy cannot save imbalance costs for regulation. As in 

the case of medium wind speed day above, this is due to the fact that the deviation of the up 

regulation price upp  and the deviation of the down regulation price downp  are almost the 

same, and the probability of the activated up regulation and the probability of the activated 

down regulation are almost the same in the medium wind generation periods. 

From the figure, it can be concluded that the stochastic optimal bidding strategy for 

trading wind power in the Danish short-term electricity market is an effective measure to 
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maximize the revenue of the wind power owners in high or low wind speed periods over the 

total year. However, since the stochastic optimization has difficulties to deal with the 

uncertainty of the regulation price and the activated regulation of the power system in the 

medium wind generation periods, the forecasted wind energy can be chosen as the bid wind 

energy for medium wind speed days, which means that the stochastic optimization is only 

adopted in low and high wind speed days. Then the SCP increases from 9.4% (when the 

stochastic optimal bidding strategy is used in all days) to 13.6% (when the stochastic optimal 

bidding strategy is only used in both low and high wind speed days) in the year 2008. 

 

Table 2.3. Imbalance costs and SCP of each month in the year 2008. 

Month Original Imbalance 
Cost (DKK) 

Optimal Imbalance 
Cost (DKK) 

SCP 

Jan. 23739 26388 -11.2% 

Feb. 13005 13099 -0.7% 

Mar. 24518 24816 -1.2% 

Apr. 22847 24576 -7.6% 

May 14535 8268 43.1% 

Jun. 15051 13976 7.1% 

Jul. 10130 9629 4.9% 

Aug. 5426 4603 15.2% 

Sep. 21899 16726 23.6% 

Oct. 11750 12144 -3.4% 

Nov. 17151 9671 43.6% 

Dec. 9263 7598 18.0% 

Total 189310 171490 9.4% 
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Fig. 2.24. The saving costs percentage (SCP) with the wind power generation (blue line: the stochastic 

optimal bidding strategy is used in all days, red line: the stochastic optimal bidding strategy is only 

used in both low and high wind speed days). 

 

2.5   Summary 

 

The Danish power system is currently the grid area in the world that has the largest 

share of wind power in its generation profiles, with around 20% of its annual consumption 

generated by wind turbines. In this chapter, the Danish power system, which may represent 

the future of competitive electricity markets in some ways, is chosen as the studied power 

system. 10 year actual data from the Danish competitive electricity market are collected and 

analyzed. The relationship among the electricity price (both the spot price and the regulation 

price), the consumption and the wind power generation in an electricity market is investigated. 

The spot price and the regulation price generally decrease when the wind power generation in 

the power system increases or the consumption of the power system decreases. The statistical 

characteristics of the spot price and the regulation price for different consumption periods and 

wind power generation are analyzed. These findings are useful for wind power generation 

companies to make the optimal bidding strategy so that the imbalance cost of trading wind 

power on the electricity market could be reduced.  

The formulation of an imbalance cost minimization problem for trading wind power 

in the Danish short-term electricity market is then described in the chapter. Because of the 

uncertainty of the regulation price, the activated regulation of the power system and the 



39 

forecasted wind power generation, stochastic optimization and a Monte Carlo method are 

adopted to find an optimal bidding strategy for trading wind power in the Danish short-term 

electricity market in order to minimize the imbalance costs for regulation. Simulation results 

show that the stochastic optimal bidding strategy for trading wind power in the Danish short-

term electricity market is an effective measure to maximize the revenue of the wind power 

owners. 

The main work of this chapter has also been reported in the author’s previous 

publications [P1-P3]. 
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Chapter 3 

 

Optimal Load Response to Spot Price and Its Impact on 
Distribution Systems 

 

3.1   Introduction 

 

While the global demand in electrical energy is increasing steadily, the upgrading of 

national and international power grids is progressing slowly due to the high economic risks of 

establishing new power stations [16]. In the deregulated and dynamic power markets, there is 

a strong variability in electricity prices. Load peaks and lacks of generation due to 

maintenance of generators, power fluctuations from DGs and unexpected outages result in 

high spot market prices in some periods [20].  

Time-of-use (TOU) power price is widely applied in many countries and is 

considered as one of important approaches of demand side management (DSM) [45]. The 

conventional approach is to persuade large industrial consumers to shift theirs loads by means 

of three-section TOU tariffs [46-48]. This kind of tariff provides three different power prices 

based on the time in a day, which are peak period, flat period and off-peak period. Now many 

consumers in Denmark, especially small businesses and private households, operate on fixed 

power price contracts. But the small load peaks could add up very easily to one significant 

peak that leads to efficiency drawbacks and may cause power system constraints problems, 

such as over-voltage of buses and over-capacity of branches. Some of these consumers also 

have the ability to reduce or reschedule their demand in response to a spot market electricity 

price. 

Since the hourly spot market price is available one day ahead in Denmark, if a spot 

market price could be available for consumers, they may decide to modify the profile of their 

demand to reduce their electricity costs as much as possible. An optimal load response to a 

spot market electricity price for demand side management generates different load profiles 

and has some impacts on power system constraints, such as voltage limits and capacity limits.  

In this chapter, a load optimization method to spot market electricity price for 

demand side management in Denmark is proposed in order to save the energy costs as much 
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as possible. 3 typical different kinds of loads (industrial load, residential load and commercial 

load) in Denmark are chosen as study cases. The load optimization to spot market price 

generates different load profiles and reduces the load peaks. These kinds of load patterns have 

significant effects on power system constraints. The 3 typical different kinds of loads, the 

optimization methods and the assumptions are presented in Section 3.2. A distribution system 

where wind power capacity is 126% of maximum loads is chosen as the study case. The 

impact of the optimal load response on the distribution system is presented in Section 3.3. 

Section 3.4 summarizes the main conclusions. 

 

3.2   Optimal Load Response to Spot Price 

 

The spot price for electricity is volatile, and this volatility is non-stationary, showing 

unpredictable variations and spikes due to the changes of the generations and demands in the 

deregulated and dynamic power markets. The spot price of west Denmark in the year 2007 

can be obtained from Energinet.dk [39], which is the transmission system operator of 

Denmark, and is shown in Fig. 3.1. If the consumers do not have a fixed price contract and 

could get the spot price one day in advance, they may have some motivations to shift some of 

their loads from high price periods to low price periods in order to pay minimum energy costs 

in that day. 

 

Fig. 3.1. The spot price of west Demark in the year 2007 [39]. 
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Mathematical models are built to analyze how the consumers may shift their loads to 

achieve minimum energy costs as well as to consider the impacts of optimal load response to 

the electricity price on power system constraints. The Sequential Quadratic Programming 

(SQP) method is adopted as the optimization methods. The mathematical model and the 

needed assumptions are described in the following. 

 

3.2.1  Mathematical Models 

The energy costs (EC) paid by the consumers in a day may be calculated with the 

following equation 

24

1

                                              ( ) ( )          (3.1)
t

EC sp t L t


  

where sp(t) is the spot price at hour t, L(t) is the load at hour t. Since the spot price is available 

one day ahead, the consumers may reschedule their loads in order to save energy costs. Then 

the energy cost could be written as 

24
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                                                       (3( ) )( .2)x x
t

EC sp t L t


  

where Lx(t) is the rescheduled load at hour t, ECx is the energy cost of that day under the 

rescheduled load. 

The objective of consumers is to achieve the minimum energy cost by load shifting. 

The optimization objective function could be chosen as 

24

1

                         min( ) min         ( ( ) ( ))              (3.3)x x
t

EC sp t L t


   

 

3.2.2  Assumptions 

Some necessary assumptions have to be made to this problem. 

1) The total consumption in a day is kept the same in the case of original loads and 

the case of rescheduled loads. The consumers may only change some of their loads from the 

high price periods to the low price periods. But the total consumption may not be changed due 

to the similar behaviors in their daily life or production. The assumptions could be written as 
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2) Only some of the loads could be shifted according to the time-of-use power price 

by the consumers. Some of loads are fixed, that means the customer consumes the power no 

matter how much the price is. It is here assumed that 20% of the total load is the flexible load 

and could be shifted according to the time-of-use power price by the consumers. 

The 24 hours in a day are divided into three load periods based on the different daily 

load profiles, shown as the following equation 

                                                   24       (3.5)p f opT T T    

where Tp is the peak load period, Tf is the flat load period and Top is the off-peak load period. 

Different category of loads has different load curves and different load periods. The load 

periods of different loads are decided according to the original daily consumption behaviors 

of different consumers (see original loads in Fig. 3.3). The specific data of the 3 load periods 

are shown in Table 3.1. 

 

Table 3.1. The time periods. 

 Industrial Load Residential Load Commercial Load 

Peak Load Period 07:00~16:00 06:00~14:00 09:00~20:00 

Flat Load Period 05:00~07:00 

16:00~20:00 

04:00~06:00 

14:00~22:00 

05:00~09:00 

20:00~23:00 

Off-peak Load Period 00:00~05:00 

20:00~24:00 

00:00~04:00 

22:00~24:00 

00:00~05:00 

23:00~24:00 

 

It is assumed that the allowed shifting load ranges are (-20%~0%), (-10%~10%) and 

(0%~20%) in the peak load period, flat load period and off-peak load period, respectively. 

3) Because the power consumption of Denmark is relatively small in the Nord Pool 

power market and the load variations are small, the spot prices are not changed after the load 

response to time-of-use power prices.  
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3.2.3  Optimization Methods 

The consumers may try to find the minimum value of the objective function (see Eq. 

(3.3)) under the assumptions mentioned. This kind of problem is an optimization problem 

under constraints, mathematically. 

The sequential quadratic programming method represents the state of the art in 

nonlinear programming methods [42]. This method makes a lot of iterations in order to find 

the optimization results under the constraints. At each major iteration an approximation is 

made of the Hessian matrix using a Quasi-Newton updating method [43]. This is then used to 

generate a quadratic programming sub-problem whose solution is used to form a search 

direction for a line search procedure [44]. The optimization method is implemented using 

Matlab optimization toolbox. 

 

3.2.4  Simulation Results 

A winter weekday of year 2007 is chosen as the study case. The spot prices and the 3 

typical loads of west Denmark are collected for the study. Fig. 3.2 illustrates the spot price of 

that day. There are two price peaks at about 09:00 and 18:00, respectively. The consumer may 

reduce the consumption near the price peaks in order to reduce the energy costs. 

 

Fig. 3.2. The spot price of west Denmark in a winter weekday [39]. 
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Optimal load responses of typical loads in west Denmark to time-of-use power price 

for demand side management are shown in Fig. 3.3. The consumers shift some of the loads 

from the high price periods to the low price periods in order to achieve the minimum energy 

costs in the day. All loads is reduced about 20% at the price peak 1 (about 09:00) and only the 

commercial load can be reduced about 20% at the price peak 2 (about 18:00), because only 

the commercial load is in the peak load period at the price peak 2, as shown in table 3.1. 

 

Fig. 3.3. Original load (asterisk) and optimal load (diamond) of typical Dainsh loads in a winter 

weekday. 

 

The energy costs of typical consumers in this day are shown in table 3.2. The saving 

costs percentage (SCP) is defined as 

                                                       (3.6)xEC EC
SCP

EC


  



47 

Table 3.2. The energy costs. 

 Industrial Load Residential Load Commercial Load 

EC (EUR) 5291.6 109.5 448.6 

ECx (EUR) 5172.2 107.2 436.4 

Saving Costs Percentage 
(SCP) 

2.3% 2.1% 2.7% 

 

The method could be adopted at each day of year 2007. The SCP of different loads at 

January, 2007 is shown in Fig. 3.4. The energy costs decrease up to 9.6% due to optimal load 

responses to time-of-use power price for industrial load. The industrial consumers are more 

likely to shift their loads than the residential and commercial consumers due to the more 

energy costs saving by shifting loads. When more loads are flexible loads and could be 

shifted according to the time-of-use power price by the consumers, the more energy costs 

saving could be achieved. 

 

Fig. 3.4. The SCP of different loads at January, 2007. 
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The optimal load response to time-of-use power price for demand side management 

generates different load profiles of each day in year 2007. The original load duration curve 

and the optimal load duration curve of residential load in year 2007 are shown in Fig. 3.5. It is 

indicated that the peak electricity consumption is reduced and the off-peak electricity 

consumption is increased significantly. This kind of load patterns may also have significant 

effects on the power system normal operation. 

The actual price paid by the private costumers consists of spot price, tax and other 

fees. In this chapter, only the spot price is taken into consideration. It is likely that the future 

price for the private costumers could be proportional to the spot price to give an incitement 

for shifting their consumption.  

 

 

Fig. 3.5. The original load duration curve (dot line) and the optimal load duration curve (solid line) of 

residential load in year 2007. 
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3.3   Impact on Power System Constraints 

 

As discussed in the previous section, the optimal load response to the spot market 

price generates different load profiles and reduces the load peaks. These kinds of load patterns 

have significant effects on power system constraints. 

In order to investigate the impact of optimal load response to the electricity price on 

power system constraints, power flow calculation is adopted. The two basic equations that 

govern the flow of power in power system networks are written as follows [49] 

, ,                                             (3.cos( ) 7)i i i j i j i j j i
j

P L V V Y        

, ,                    sin                        ( )   (3.8)i i i j i j i j j i
j

Q QL V V Y         

where Vi and δi are the voltage magnitude and angle at bus i, respectively, Yi,j and θi,j are the 

bus admittance matrix element and its associated angle, respectively, Pi and Li are active 

power generation and demand at bus i, respectively, and Qi and QLi are reactive power 

generation and demand at bus i, respectively. 

An 18-bus distribution system configuration as shown in Fig. 3.6 is used as a study 

case and the network parameters are given in Table 3.3. It is a simplified and modified 

network configuration based on the 20 kV Størvring distribution system in Denmark, which is 

operated by Himmerlands Elforsyning. The modified distribution system includes eight 2 

MW modern variable speed wind turbines and the three typical kinds of loads. The wind 

power data and different kinds of load data are obtained from Danish Energy Association. 

Variable speed operation of the wind turbine can be realized by appropriate adjustment of the 

rotor speed and pitch angle [50]. The reactive power of the wind turbine is controlled to zero 

to ensure unity power factor operation and reduce currents of the power electronic converters. 

An industrial load is assumed at bus 5, commercial loads are assumed at bus 11 and bus 13, a 

residential load is assumed at bus 14, which are the typical loads in the distribution system. 

The generation and load data of the distribution system are in Table 3.4. The studied 

distribution system is with high wind power penetrations, where the wind power capacity is 

126% of maximum loads. Wind generation is variable in nature due to the variability of the 

incident wind speed at the wind turbine site. The wind power of each wind turbine and the 

typical loads of the distribution system in the year 2007 are shown in Fig. 3.7. 
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Fig. 3.6. Distribution system configuration under investigation. 

 

 



51 

 
(a) 

 
(b) 

Fig. 3.7. (a) The wind power of each wind turbine in the year 2007. (b) The 3 typical loads of the 

distribution system in the year 2007. 
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Table 3.3. The network parameters. 

Buses Resistance (p.u.) Reactance (p.u.) Line charging (p.u.) 

1-2 0.01250 0.12437 0 

2-3 0.01187 0.01826 0.01301 

3-4 0.07661 0.10637 0.00121 

4-5 0.02530 0.44730 0 

5-7 0.00336 0.00158 0 

7-8 0.04784 0.02242 0.000085 

8-9 0.12184 0.05711 0.00022 

9-10 0.03365 0.02264 0 

10-11 10.05036 39.79559 0 

10-12 0.18194 0.13912 0 

12-13 10.00038 39.96833 0 

12-14 0.08182 0.02043 0.000115 

14-15 0.10000 0.57741 0 

14-16 0.01810 0.00453 0 

16-17 0.10000 0.57741 0 

16-18 0.10183 0.57786 0 

 

Table 3.4. The generation and load data. 

Bus Plmax 
(MW) 

Plmin 
(MW) 

cos l  Pwtmax 

(MW) 
Pwtmin 

(MW) 
cos wt  

5 10.2  1.5  0.9 10 0.5 1 

11 0.2  0.05  0.8 NA NA NA 

13 0.2  0.05  0.8 NA NA NA 

14 2.1  0.5  0.85 NA NA NA 

15 NA NA NA 2  0.1  1 

17 NA NA NA 2  0.1  1 

18 NA NA NA 2  0.1  1 

where Plmax and Plmin are the maximum and minimum active power of the load, respectively, cos l  
is 

the power factor of the load, Pwtmax and Pwtmin are the maximum and minimum active power of the wind 

turbine, respectively, cos wt  is the power factor of the wind turbine. 
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In order to investigate the impact of optimal load response to spot market electricity 

price on power system constraints in the distribution system, power flow calculation based on 

eq. (3.7) and eq. (3.8) is used for each hour of year 2007 in the simulation. Fig. 3.8 illustrates 

the apparent power of the transformer between bus 1 and bus 2 based on the original load and 

the optimal load. The probability density and cumulative probability of the apparent power of 

the transformer are shown in Fig. 3.9. It can be seen that the relatively high parts of apparent 

power is reduced due to the optimal load response to the electricity price. Table 3.5 shows the 

average value and the standard deviation of the apparent power based on the original load and 

the optimal load. The average value of the apparent power is almost the same with the 

original load and the optimal load due to the assumption that the total consumption in a day is 

kept the same in the case of original loads and the case of optimal loads. The standard 

deviation of the apparent power is decreased with the optimal load response to the electricity 

price. The transformer capacity is 12 MVA in this case. Because the relatively high parts of 

the apparent power is reduced due to the optimal load response to the electricity price, the 

overloading percentage of the transformer decreases from 3.23% to 1.69%. The overloading 

percentage is defined as the transformer overloading hours over the total hours in a year. The 

total power loss in the distribution system of year 2007 is also reduced with the optimal load 

response. 

 

Fig. 3.8. The apparent power of the transformer between bus 1 and bus 2 based on the original load 

(upper one) and the optimal load (bottom one). 
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(a) 

 
(b) 

Fig. 3.9. (a) The probability density of the apparent power of the transformer between bus 1 and bus 2 

based on the original load (blue) and the optimal load (red). (b) The cumulative probability of the 

apparent power of the transformer between bus 1 and bus 2 based on the original load (blue) and the 

optimal load (red). 
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Table 3.5. The apparent power of the transformer. 

 Original Load Optimal Load 

Average value (MWA) 4.93 4.84 

Standard deviation (MVA) 3.25 2.94 

Overloading percentage 3.23% 1.69% 

Total power loss (MW) 672.4 635.7 

 

3.4   Summary 

 

The hourly spot market price is available one day ahead in Denmark. Consumers may 

shift their loads from high price periods to the low price periods during a day in order to save 

their energy costs. This chapter presents a load optimization method to the spot price in order 

to save the consumers’ energy costs as much as possible. Optimal load responses of 3 typical 

loads (industrial load, residential load and commercial load) in Denmark are studied. A 

distribution system where wind power capacity is 126% of maximum loads is chosen as the 

study case. The optimal load response to the spot price generates different load profiles. 

Simulation results show that these kinds of load patterns have good impacts on the power 

system constrains in the distribution system with high wind power penetrations. The 

overloading percentage of the transformer in the distribution system decreases from 3.23% to 

1.69% with the optimal load response to the spot price. 

The main work of this chapter has also been reported in the author’s previous 

publications [P4, P5]. 
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Chapter 4 

 

Power Loss Minimization Using Demand Side Management 

 

4.1   Introduction 

 

The liberalization of the electricity markets has led to replacement of daily tariffs to 

hourly or half-hourly changing prices at least for industry and decentralized power generation 

in many parts of the world [17]. Economists argue that time-of-use electricity prices are a 

powerful way to encourage consumers to behave in an economically optimal way [17], [18]. 

Consumers may have some motivations to shift their loads from high price periods to low 

price periods in order to save their energy costs, if an hourly electricity price is available one 

day ahead. 

The use of demand response in power systems has attracted a great deal of attention 

to the smart grid due to its feasibility and quick action [51]. Significant progress has been 

made in the research on and implementation of demand response programs during the past 

decade [52-55]. Two demand response programs (a participating load program and a demand 

relief program) have been implemented by the California ISO [52]. In Pennsylvania, a 

voluntary emergency load response and a mandatory interruptible load are used for reliability 

programs [53]. Recently, an event-driven demand response scheme is proposed to enhance 

the power system security [54]. Another important benefit of demand response is to avoid 

construction of expensive power plants to serve the peaks that occur for just a few hours per 

year [55]. 

The optimal load response to an hourly electricity price for demand side management 

generates new load profiles and provides also an opportunity to achieve power loss 

minimization in distribution systems. Power loss minimization in distribution systems could 

be achieved by deciding an optimal hourly electricity price. This issue can be formulated as a 

nonlinear optimization problem. 

The particle swarm optimization (PSO) method is recently described in the literature 

[56]-[60] and the applications of PSO in power systems are very wide. Reference [61] focuses 

on problems of fuel cost minimization, voltage profile improvement and voltage stability 

enhancement. PSO is also employed to calculate the amount of shunt reactive power 
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compensation in power loss minimization problems [62]. Fuzzy adaptive particle swarm 

optimization (FAPSO) has a better dynamic balance between global and local search abilities 

due to a nonlinear and a dynamic change in the inertia weight in the fuzzy evaluation during 

the iterations [63]. FAPSO is also employed for bidding strategy optimization in uniform 

price spot markets [64].  

In this chapter, a new method of achieving power loss minimization in distribution 

systems by using price signal to guide the demand side management is proposed. The FAPSO 

algorithm is used as the optimization tool to solve the power loss minimization problem. The 

chapter is organized as follows. Section 4.2 and Section 4.3 provides modeling of the power 

loss minimization procedure for distribution systems, such as load optimization to electricity 

prices and power loss minimization with optimal electricity prices. The FAPSO algorithm for 

power loss minimization in distribution systems is presented in Section 4.4. The power loss 

minimization in the distribution system is realized by deciding appropriate electricity prices. 

Simulation results and discussions are presented in Section 4.5. Section 4.6 summarizes the 

main conclusions of the chapter. 

 

4.2   Load Optimization to Electricity Price 

 

Conventionally, many consumers in distribution systems, especially small industries 

and private households, operate on fixed electricity price contracts no matter when they 

consume the electricity. If different electricity prices for different times are available for 

consumers, they may have some motivations to shift their loads from high price periods to 

low price periods in order to achieve minimal electricity costs. 

The demand for most commodities decreases when the price of the commodity 

increases. Fig. 4.1 illustrates the demand curve Fig. 4.1 [22]. It is defined that the price 

elasticity coefficient of demand is the relative slope of this demand curve [22]: 

0

0

                                                               (4
/

/
.1)

l l

p p






 

where Δp, Δl are the deviations of the electricity price and electricity demand, respectively, 

p0, l0 are the original equilibrium point of the electricity price and electricity demand, 

respectively. An increase in the price of the commodity will reduce the demand of the 

commodity. The elasticity coefficient is negative for most commodities. 
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Fig. 4.1. Typical demand curve. 

 

The deviation of the electricity price and the deviation of the electricity demand at 

hour t are given by: 

*                                                          (4.2)t t fixedp p p    

*                                                                 (4.3)
tt tl l l    

where pfixed is the original fixed electricity price, pt
* is the new electricity price, Δpt is the 

deviation of the electricity price at hour t, lt is the original electricity demand, lt
* is the new 

electricity demand, Δlt is the deviation of the electricity demand at hour t. Since the 

consumers operate on fixed electricity price contracts conventionally, the original electricity 

prices pfixed are equal for all hours. 

With the definition of equation (4.1), (4.3) can be rewritten as: 

*                                                            (4.4)t
t t t t

fixed

p
l l l

p



   

where t  is the elasticity coefficient at hour t. As shown in (4.4), when a larger deviation of 

the electricity price is given to consumers at one hour, the deviation of the electricity demand 

at the same hour is larger. 



60 

As mentioned earlier, if different electricity prices for different times are available, 

they might shift their loads from high price periods to low price periods in order to achieve 

minimal electricity costs. In the following a mathematical model and basic assumptions are 

set up to analyze how the consumers may shift their loads to achieve minimal electricity costs. 

The sequential quadratic programming (SQP) method is adopted as optimization method [42]. 

 

4.2.1  Mathematical Models 

The electricity cost paid by a consumer in a day can be calculated using the following 

equation 

24

1

                                                           (4.5)fixed t
t

EC p l


   

where pfixed is the fixed electricity price, lt is the load at hour t, EC is the electricity cost paid 

by the consumer in a day. When different electricity prices pt
* for different times are available, 

the consumers may reschedule their loads as lt
* in order to save electricity costs. The new 

electricity cost EC* under the rescheduled load can be written as 

24
* * *

1

                                                           (4.6)t t
t

EC p l


  

The objective of consumers is to achieve minimum electricity cost by load shifting. 

The optimization objective function could be chosen as 

24
* * *

1

                                     min( ) mi               (4.7)n( )t t
t

EC p l


   

The result is that the consumers shift some of the loads from high price periods to low 

price periods in order to achieve the minimum electricity costs in the day. 

 

4.2.2  Assumptions and Constraints 

Some necessary assumptions and constraints have to be made related to this problem. 

1) The total consumption of the rescheduled load in a day is kept the same as 

described in the previous chapter. This assumption can be written as 
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24 24
*

1 1

                                                              (4.8)t t
t t

l l
 

   

2) Only some of the loads can be shifted by the consumers according to the hourly 

electricity price. Some loads are fixed, that means the customer consumes the power no 

matter the price. The amount of shifted load is decided by the demand-price elasticity curve, 

which is shown in Fig. 4.1. It is here assumed that the consumers are able to shift their loads 

in a range of (-10%~10%) around lt
* in equation (4.4). It is also assumed that the power 

factors of the loads keep the same after the shifting. 

 

4.2.3  Optimization Methods 

The consumers may try to find the minimum value of the objective function (see Eq. 

(4.7)) under the set up assumptions. This kind of problem is, mathematically, an optimization 

problem under constraints. 

A number of methods can be used for the above optimization problem, for instance, 

dynamic programming [66], sequential quadratic programming [42], genetic algorithm [67] or 

particle swarm optimization [56]-[58]. The sequential quadratic programming method is 

chosen as the optimization method for this problem, because it is faster than the population-

based methods, such as genetic algorithm and particle swarm optimization. This method can 

provide the reasonable accurate results and it is also easy to implement in MATLAB [43-44]. 

 

4.3   Power Loss Minimization with Optimal Price 

 

The optimal load response to an hourly electricity price for demand side management 

generates new load profiles and provides at the same time an opportunity to achieve power 

loss minimization in distribution systems by choosing an optimal hourly electricity price. 

The total power loss minimization problem in a distribution system in a day can be 

written as: 

24
2
,

1 1

                         min( ) mi                       (4.9n )( )
rN

loss b t b
t b

P I R
 

   
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where Ploss is the total loss of the distribution system in a day, Rb is the resistance of branch b, 

Ib,t is the current of branch b at hour t, Nr is the number of total branches. 

 The two basic equations (Eq. (3.7) and Eq. (3.8)) that govern the power flow in power 

system networks are used to calculate the power flow of the system for a particular hour. The 

total power loss function is minimized subject to the following constraints: 

Voltage limits are introduced to the formulation to ensure that the voltages at each 

bus are within acceptable level. These limits are formulated as follows 

min max                                                         (4.10)i i iV V V   

where Vi
min and Vi

max are the minimum and the maximum voltage limits at bus i, which are set 

to -5% ~ +5% in this study. 

Current limits are also introduced to the formulation to ensure that the currents 

through each branch are within acceptable levels. These limits are formulated as follows 

max                                                                (4.11)b bI I  

where Ib
max is the maximum current limits of branch b. 

Different sets of electricity prices may generate different loads and different loads 

may generate different power losses in the distribution system. As a consequence, the power 

loss minimization could be realized by choosing an appropriate set of electricity prices. Fig. 

4.2 illustrates an overview of the optimization model. The power loss minimization problem 

is modeled in two layers. In the outer layer the total power loss in the distribution system is 

minimized by deciding an electricity price. In the inner layer the electricity cost is minimized 

by deciding the actual load based on the electricity price generated in the outer layer. The 

optimization model will be discussed in detail in the next section. 

Choosing the optimal hourly electricity price to achieve power loss minimization in a 

distribution system is formulated as a nonlinear optimization problem. FAPSO is here 

proposed as the tool for the power loss minimization study for distribution systems. 
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Fig. 4.2. The overview of the optimization model. 

 

4.4   Fuzzy Adaptive Particle Swarm Optimization Algorithm 

 

A modern population-based algorithm, known as FAPSO, has been adopted in this 

chapter to choose an optimal electricity price in order to achieve power loss minimization. 

The PSO approach introduced by Kennedy and Eberhart [68] is a self-educating stochastic 

optimization algorithm that can be applied to any nonlinear optimization problem. In PSO, 

each potential solution, which is called a particle, flies in the dimensional problem space with 

a velocity, which is dynamically adjusted according to the flying experiences of its own and 

its colleagues. The following equations are used to update the particles [56], [68]: 

1
1 1 2 2                 (  (4.12) ( ))k k k k k k

i i i i iv v a rand pbest x a rand gbest x            

1 1                                                              (4.13)k k k
i i ix x v    

where k is the number of iterations, i is the number of particles, vi
k and vi

k+1 are the velocities 

of particle i at iteration k and k+1, respectively, xi
k and xi

k+1 are the positions of particle i at 

iteration k and k+1, respectively, pbesti
k  is the best previous position of particle i at iteration 

k, gbestk  is the best previous position of all particles at iteration k, ω is the inertia weight, a1 

and a2 are learning factors, rand1 and rand2 are stochastic numbers. They are randomly 

generated from a standard uniform distribution function within the range [0, 1]. The position 

of particle i at iteration k, xi
k, is set to the vector of the new electricity price pt

* in the day. 



64 

* * * *
1 2 3 24                                    [ , , ,     ...,         (4.14)]k k

i ix p p p p  

The velocity of each particle is calculated based on the velocity update equation 

(4.12), which has 3 terms. The first term k
iv   is the momentum part which is based on its 

previous velocity. The second term 1 1 ( )k k
i ia rand pbest x    only takes into account the 

particle’s own experiences. The third term 2 2 ( )k k
ia rand gbest x    represents the 

interaction between all the particles. Then the new velocity is added to the current position of 

the particle to obtain its next position according to (4.13). The value of each dimension of 

every velocity vi
k is clamped to the range [-vmax, vmax] to reduce the likelihood of the particle 

leaving the search space. The value of vmax is usually chosen to be 

max max min                                                  (4.1( ) 5)v m x x    

where xmax, xmin are the maximal and minimal tolerable limits of the electricity price, 

respectively, m is a coefficient in [0, 1]. 

In PSO, the inertia weight ω is used to balance the global and the local searching 

abilities. A large inertia weight facilitates a global search while a small inertia weight 

facilitates a local search. The inertia weight should be nonlinearly, dynamically changed to 

achieve better balance between global and local search abilities in order to achieve better 

performance [59]. The PSO searching process is a nonlinear and complicated process, and a 

constant or linear decreasing inertia weight approach does not truly reflect the actual 

searching process required to find the optimal solutions [69]. The fuzzy system, which has 

nonlinear and dynamic evaluation performances, is a good candidate for deciding the inertia 

weight to solve the power loss minimization problem in distribution systems. 

The fuzzy system maps sets of input variables into fuzzy sets using membership 

functions. The output is assigned based on these fuzzy input sets according to the predefined 

logic [70]. As in [64] and [71], the variables selected as input to the fuzzy system are the 

normalized total power loss and current inertia weight, whereas the output variable is the 

deviation of the inertia weight. The normalized total power loss is used as an input variable in 

the range of [0, 1], and is defined as 

min

max min

                                                        (4.16)loss
norm

P P
P

P P





 

where Ploss is the total power loss in each iteration calculated by (4.9), Pmax is a large value 

which is greater than or equal to any feasible power loss, Pmin is a small value which is less 

than any feasible power loss. The inertia weight value is normally chosen between 0.5 and 
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1.0. The deviation of the inertia weight is chosen in the range of [-0.1, 0.1]. Three fuzzy sets 

for input fuzzy variables are S (small), M (medium) and L (large). The associated 

membership functions are shown in Fig. 4.3(a) and 4.3(b), respectively. Three fuzzy sets for 

output variables are NE (negative), ZE (zero) and PE (positive). The associated membership 

functions are shown in Fig. 4.3(c). 
normP ,   and   are the truth values of the normalized 

total power loss, the inertia weight and the deviation of the inertia weight, respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.3. (a) The membership of the normalized total power loss in the fuzzy system. (b) The 

membership of the inertia weight in the fuzzy system. (c) The membership of the deviation of the 

inertia weight in the fuzzy system. 



66 

The degrees of membership of normalized total power loss Pnorm and inertia weight 

are calculated using their membership functions, respectively. Input linguistic variables are 

connected using the “AND” operator in the fuzzy rules. Simple IF/THEN rules are shown in 

Table 4.1, because it is good enough to change the inertia weight in the PSO algorithm. It has 

9 possible rules for the 2 input variables and 3 linguistic values of each variable. The Larsen 

product has been used as the fuzzy implication operator for the individual rules [64]. The 

overall fuzzy output is being obtained by combining all the clipped fuzzy sets. The aggregated 

fuzzy output is converted into a single value using centroid defuzzification method [64]. 

 

Table 4.1. The fuzzy rules for the deviation of the inertia weight. 

 

Rule No. 

Antecedent Consequent 

Pnorm     

1 S S ZE 

2 S M NE 

3 S L NE 

4 M S PE 

5 M M ZE 

6 M L NE 

7 L S PE 

8 L M ZE 

9 L L NE 

 

Once the deviation of the inertia weight is calculated based on the fuzzy system, the 

inertia weight of the next iteration can be updated as follows: 

1                                                         (4.17)k k k       

The flow chart of the proposed FAPSO algorithm for the power loss minimization in 

distribution systems is shown in Fig. 4.4. The parameters of the FAPSO, such as the velocity 

and position of each particle, are initialized in the first step. Then consumers shift their loads 

according to the position of each particle (electricity price) in order to achieve the minimum 

electricity costs in the day as discussed in Section 4.2, which is the inner layer in this figure. 
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The inner layer tries to minimize the electricity cost by deciding the load based on the 

electricity price generated in the outer layer. The inner layer iterates many times in each 

iteration of the outer layer. When the inner layer converges, the new loads are generated. 

Then the total power loss of each particle in the distribution system in the day can be 

calculated according to (4.9). The velocity and the position of each particle are updated 

according to (4.12) and (4.13). Finally, the inertia weight of the PSO will be updated using 

the fuzzy system. The outer layer tries to minimize the total power loss in the distribution 

system by deciding the electricity price, with respect to the shifted load computed in the inner 

layer. The FAPSO algorithm makes a lot of iterations in order to find the best solution until 

the stopping criterion is satisfied. The stopping criterion is that no significant improvement in 

the solution is made anymore or that the maximum number of iterations is reached. 

 

Fig. 4.4. The flow chart of FAPSO algorithm. 
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4.5   Simulation Results and Discussions 

 

A modified 18-bus distribution system configuration as shown in Fig. 4.5 is used as a 

study case and the network parameters are the same as the networks in the previous chapter, 

which has been given in Table 3.3. The distribution system includes three 2 MW modern 

variable speed wind turbines and three typical kinds of loads. Variable speed operation of the 

wind turbines can be realized by appropriate adjustment of the rotor speed and pitch angle 

[50]. Different types of loads, such as industrial load, residential load and commercial load, 

which are the typical loads in the distribution system, are assumed at the buses of the studied 

system. The load data of the distribution system is in Table 4.2. Wind generation is variable in 

nature due to the variability of the incident wind speed at the wind turbine site. A medium 

wind speed day is chosen as the first study case. The wind power of each wind turbine in the 

distribution system is shown in Fig. 4.6. It is assumed that all wind turbines in the system are 

subject to the same wind speed. 

 

Table 4.2. The load data. 

Bus Plmax (MW) Plmin (MW) IL  

(%) 
RI  

(%) 
CL1 

(%) 
CL2 

 (%) 

5 7.86 2.98 62.5 25.0 6.3 6.2 

7 1.19 0.45 41.7 41.7 0 16.6 

8 0.37 0.15 0 50 50 0 

9 0.48 0.21 0 0 40 60 

10 0.76 0.31 62.5 0 37.5 0 

11 0.20 0.08 0 0 100 0 

12 0.47 0.19 0 60 40 0 

13 0.20 0.08 0 0 0 100 

14 1.61 0.65 0 58.8 29.4 11.8 

16 0.20 0.07 0 100 0 0 

where IL is industrial load, RL is residential load, CL1 is commercial load type 1 and CL2 is 

commercial load type 2. Plmax and Plmin are the maximum and minimum active power of the load, 

respectively. 
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Fig. 4.5. Distribution system configuration under investigation. 

 

 

Fig. 4.6. The wind power of each wind turbine at different hours. 
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The price elasticity coefficient   of the loads is set to -0.5 in this case, which means 

that a 10% increase in electricity price compared to the original fixed electricity price result in 

a 5% decrease of the loads. As electricity price for verifying the method spot market prices 

from the Nordic system is used, and the average value of the spot market price in a day (32.75 

EUR/MWh) is chosen as the original fixed electricity price in the study. The electricity price 

is to be set within tolerable limits [xmin, xmax], which are set to -20% ~ +20% in this study, in 

order to minimize the total power loss in the distribution system. It is also assumed that the 

power factor of each load is the same after the load response. The other simulation parameters 

used in the FAPSO algorithm are shown in Table 4.3. 

 

Table 4.3. The parameters used in the FAPSO algorithm. 

Parameter Value 

Initial inertia weight (ω) 0.8 

Learning factor (a1) 2 

Learning factor (a2) 2 

Particle number 40 

Maximum iteration number 500 

 

Figs. 4.7-4.9 illustrate the optimal electricity price and the original fixed electricity 

price, the optimal response of the loads under the new electricity price and the original loads 

under the fixed electricity price, and finally the total power losses in the distribution system 

under the new electricity price and the fixed electricity price. When different electricity prices 

for different hours are given to consumers, they shift their loads from the high price periods to 

low price periods in order to achieve minimal electricity costs. The curve of optimal response 

for the load at bus 5 under the new electricity price, which is the dominant load in the 

distribution system, becomes flatter compared to the curve of the original load at bus 5 under 

the fixed electricity price. As a consequence, the curve of the power loss in the distribution 

system under the new electricity price is also flatter. The total daily power loss in the 

distribution system decreases from 1957.7 kWh (under the original fixed electricity price) to 

1728.5 kWh (under the new optimal electricity price), which means around 12% power loss 

reduction in the distribution system. It can be also observed that the peak load of the 

distribution system is reduced which is good for the distribution company. 
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Fig. 4.7. The original fixed electricity price (asterisk) and the optimal electricity price (diamond). 

 

  

(a) 

 

(b) 

 

  

(c) 

 

(d) 
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(e) 

Fig. 4.8. (a) The original industrial load at bus 5 under the fixed electricity price (asterisk) and the 

optimal response load under the new electricity price (diamond). (b) The original residential load at bus 

5 under the fixed electricity price (asterisk) and the optimal response load under the new electricity 

price (diamond). (c) The original commercial load 1 at bus 5 under the fixed electricity price (asterisk) 

and the optimal response load under the new electricity price (diamond). (d) The original commercial 

load 2 at bus 5 under the fixed electricity price (asterisk) and the optimal response loads under the new 

electricity price (diamond). (e) The original total load at bus 5 under the fixed electricity price (asterisk) 

and the optimal response loads under the new electricity price (diamond). 

 

 

Fig. 4.9. The total power loss under the fixed electricity price (asterisk) and the total power loss under 

the new electricity price (diamond) in the distribution system. 
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Power loss minimization in the distribution system by choosing optimal electricity 

prices using the FAPSO algorithm are tested in many cases. Fig. 4.10 illustrates the variation 

of power loss reduction with the price elasticity coefficient of the loads under the optimal 

electricity price, normalized based on the original power loss in the distribution system. The 

power loss reduction increases as the elasticity coefficient increases, which means more loads 

may be shifted according to the same electricity price. From the figure, it can be concluded 

that the power loss reduction in the distribution system are higher, when the loads in the 

distribution system are more flexible. Fig. 4.11 demonstrates the variation of power loss 

reduction with the tolerable limits [xmin, xmax] of the electricity price under the optimal 

electricity price, normalized based on the original power loss in the distribution system. From 

the figure, it can be seen that the power loss reduction in the distribution system increases, 

when the tolerable limits of the electricity price increases, which means the optimal electricity 

price may be chosen in a wide range. 

Power loss minimization in the distribution system by choosing optimal electricity 

prices using the FAPSO algorithm is also tested in many cases of different wind power 

penetrations. The wind power of each wind turbine is calculated by the following formula: 

*                                                             (4.18)wt wtP P SF   

where Pwt is the wind power of the basic case (see Fig. 4.6), SF is the scaling factor of the 

wind power, P*
wt is the new wind power for different cases. The relative power loss reduction 

RPloss in the distribution system may be defined as: 

*

                                                       (4.19)loss loss
loss

loss

P P
RP

P


  

where Ploss is the power loss in the distribution system under the fixed electricity price, P*
loss 

is the power loss in the distribution system under the optimal electricity price. 

Fig. 4.12 illustrates the variation of the relative power loss reduction in the 

distribution system with the scaling factor of the wind power. As it is shown, in medium wind 

power cases, where the local load at bus 14 and bus 16 may be supplied by the nearest wind 

turbines, the relative power loss reduction RPloss is high because the total power loss Ploss is 

low in this case. In the low and high wind power cases, the sub-distribution system 

(distribution system at bus 14) may consume or generate power from/to the outside of the 

sub-distribution system, which causes additional power loss in the distribution system. From 

the figure, it can be concluded that the optimal choosing of electricity prices using the FAPSO 

algorithm is an effective measure to minimize the power loss in a distribution system. 
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Fig. 4.10. The variation of power loss reduction with the price elasticity coefficient of loads under 

optimal electricity price. 

 

 

 

Fig. 4.11. The variation of power loss reduction with the tolerable limits of the electricity price under 

optimal electricity price. 
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Fig. 4.12. The variation of relative power loss reduction in the distribution system with the scaling 

factor of the wind power. 

 

Due to privacy issues, it is not allowed to give individual consumer data to third 

parties. The data used in the chapter are the aggregation of data from several Danish 

consumers in the same category. So it is hard to consider individual consumers 

geographically located at different locations in the feeder. However, the basic idea and 

algorithm may be equally used in the system with individual consumer data. 

If the deviation in the electricity price tp  or the deviation in the electricity demand   

tl  is large, use of the linearized demand curve will give a large error. However, the 

electricity price was set within tolerable limits -20% ~ +20% in this chapter, which may not 

give very large errors in equation (4.4). If there is a large deviation in the electricity price  

tp , detailed information about the demand response behavior is needed, either as a function 

or as a table. 

The combination of reactive power control and the proposed optimal load response to 

electricity price may give a lower total daily power loss. However, the focus of this chapter is 

to show the effectiveness of power loss minimization using optimal load response to 

electricity price and keep it as simple as possible. Therefore, the extra reactive power 

compensation devices and the reactive power control of wind turbines are not considered in 

the chapter. 



76 

The effectiveness of the FAPSO approach is demonstrated through comparison of 

simulation results with the PSO approach. Owing to the randomness in these two approaches, 

the algorithms were executed 10 times when applied to the test system. The average value of 

total daily power loss is 1728.5 kWh for the FAPSO approach and 1737.1 kWh for the PSO 

approach. The average computational time for the test system is 17 minutes for the FAPSO 

approach and 25 minutes for the PSO approach, which indicates the computational efficiency 

increases around 32%. The configuration of the computer is Intel T9400 2.6GHz CPU, 4GB 

RAM, MATLAB 2011a version. Therefore, it can be concluded that the PSO is not as 

efficient as the FAPSO, though similar results have been obtained. 

The proposed algorithm may be equally used in a much larger distribution system. 

However, the computational time becomes long, when the system is very large, because the 

power flow is calculated at each iteration of the optimization. When the system is very large 

and probably the information regarding all the loads is not available, some simplifications are 

needed in order to model the aggregated load at each feeder. For example, in a 20 kV 

distribution system, the 400 V network could be simplified with an aggregated load and the 

loss associated with the low voltage network at 20/0.4 kV transformers. In the future, on-line 

measurement and calculation will be implemented in the smart grid. All loads and load 

variations can be easily included in the proposed method. 

The inaccurate forecast of the electricity price will cause economic losses, which can 

be considered as a risk for the distribution company [72-74]. The risk management for the 

distribution company is quite complicated and not considered in the chapter. 

 

4.6   Summary 

 

Power loss minimization in a distribution system may be realized by shifting some of 

the loads from the peak load periods to the off-peak load periods. This chapter describes an 

idea of power loss minimization in a distribution system by choosing an optimal hourly 

electricity price. The power loss minimization problem in distribution systems is modeled into 

two layers: load optimization to electricity prices (the inner layer) and power loss 

minimization with optimal electricity prices (the outer layer). The objective functions and the 

necessary assumptions of each optimization layer are described in this chapter. On the basis 

of the developed 2 layers model of the optimization problem, a fuzzy adaptive particle swarm 

optimization algorithm is presented as a tool for power loss minimization in distribution 
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systems. Around 12% power loss reduction in studied distribution system can be achieved 

when the proposed idea and algorithm are employed. It can be concluded from the simulation 

results that optimal choosing of electricity prices using the FAPSO algorithm is an effective 

measure to minimize the power loss in the distribution system. 

The main work of this chapter has also been reported in the author’s previous 

publications [P6]. 
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Chapter 5 

 

Power System Operation Improvement Using Demand Side 
Management 

 

5.1   Introduction 

 

The demand side management has been used to respond to the deficiency of operation 

reserves or some major emergencies in power systems due to its feasibility and quick action 

[75]. When the power system operates near its physical boundaries, a different electricity 

price for different hours may be given to consumers in order to motivate them to reduce or 

reschedule their demands. In this way, the power flow may be changed and the power systems 

will be operated in a good condition consequently, when an appropriate electricity price is 

given to consumers. Although, the load response is normally considered in distribution 

systems, the new aggregated load profiles in distribution systems will also have some impacts 

on the transmission system operation. The transmission system operator may use this kind of 

load characteristics to improve the operation of transmission systems. 

In this chapter, three different cases are studied to solve power system constraints, 

improve power system small signal stability and power system transient stability using 

demand side management, respectively. The chapter is organized as follows. Section 5.2 

presents case one including the method and simulation results of solving power system 

constraints in distribution systems with high wind power penetrations by deciding an 

appropriate electricity price. Then two different cases of improving power system small signal 

stability and power system transient stability in transmission systems with high wind power 

penetrations using demand side management are discussed in Section 5.3 and Section 5.4, 

respectively. Section 5.5 summarizes the main conclusions of the chapter. 

 

5.2   Solving Power System Constraints 
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5.2.1  Problem Formulation and Algorithms 

The consumers may have some motivations to modify the profile of their demand 

from high price periods to low price periods, when different electricity prices for different 

hours are available for them. The consumer behavior may provide an opportunity to solve 

power system constraints such as transformer loadings, voltage drops/fluctuations, max 

current through lines etc. in distribution systems with high wind power penetrations. Here a 

procedure for setting up an appropriate electricity price, for a distribution network grid 

connected to a higher voltage network via a transformer, is calculated based on the 

transformer loading. 

Fig. 5.1 illustrates a flow chart of the proposed algorithm. The parameters of the 

algorithm, such as network parameters, wind generation data and load data are initialized in 

the first step. A standard Newton-Raphason power flow algorithm is used to calculate the 

apparent power of the transformer between the distribution network and the transmission grid. 

When the transformer is overloaded, the electricity price is updated according to the power 

flow direction through the transformer, and the difference ΔS between the apparent power S 

through the transformer and the maximum capacity of the transformer Smax. The sensitivity 

factor dp/dS is calculated in each iteration. Then a price signal is generated based on the 

sensitivity factor. Finally, the optimal load response program based on the electricity price 

signal is executed as described in Chapter 3. The algorithm makes many iterations in order to 

find the appropriate electricity prices for different hours until the stopping criterion is satisfied. 

The stopping criterion is that the transformer is no longer overloaded or the maximum 

number of iterations is reached. 



81 

maxS S S  

dp
p S

dS
   

dp
p S

dS
  

1i ip p p  

 

Fig. 5.1.  Flow chart of proposed algorithm to counteract transformer overloading. 

 

5.2.2  Case Study of Counteracting Transformer Overloading 

The 18-bus distribution system with high wind power penetrations, which is the same 

as the system in Chapter 3 (see Fig. 3.6), is used as a study case for verification of the 

proposed algorithm. The load and wind power generation data are also the same. The price 

elasticity coefficient of the loads is set to -1.0 in this case, which means that a 10% increase in 

electricity price compared to the original fixed electricity price result in a 10% decrease of the 

loads. The average value of the spot market price in a day (32.4 EUR/MWh) is chosen as the 

original fixed electricity price in the study. The electricity price is to be set within tolerable 
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limits, which are set to -20% ~ +20% in this study. The transformer capacity is 12 MVA in 

this case. 

A winter week is chosen as the first study case. Figs. 5.2-5.5 illustrate the original 

fixed electricity price and the new electricity price, the load responses to the new electricity 

price and the original loads, the wind power generation, the apparent power of the transformer 

between bus 1 and bus 2 based on the original fixed electricity price and the new electricity 

price in the distribution system, respectively. When different electricity prices for different 

hours are given to consumers, they shift their loads from the high price periods to the low 

price periods in order to achieve lower electricity costs. When the wind power generations are 

very low and the loads are relatively high (Thursday in this case), a higher electricity price is 

given to consumers in order to encourage them to reduce their load in some periods. When the 

wind power generations are very high and the loads are relatively low (Sunday in this case), a 

lower electricity price is given to consumers in order to encourage them to increase their load 

in some periods. From Fig. 5.5, it can be seen that the apparent power of the transformer 

between bus 1 and bus 2 can be limited to less than the transformer capacity using the new 

electricity price in order not to overload the transformer. 

 

Fig. 5.2. The decided electricity prices. 
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(a) The original and new industrial load. 

 

(b) The original and new residential load. 

 

(c) The original and new commercial load. 

Fig. 5.3. The original and new loads in the distribution system. 
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Fig. 5.4. The wind power generation. 

 

Fig. 5.5. The apparent power through the transformer. 

 

The proposed algorithm is also used at each day of the whole year. Fig. 5.6 shows the 

apparent power through the transformer based on the original fixed electricity price and the 

new electricity price. The probability density of the apparent power of the transformer is 

illustrated in Fig. 5.7. It can be seen that the relatively high parts of apparent power is reduced 

due to the load response to the electricity price. Most of the time, the transformer is not 

operated overloaded with the new electricity price. Table 5.1 shows the average value and the 

standard deviation of the apparent power. The average value of the apparent power is almost 

the same due to the assumption that the total consumption in a day is kept the same in the 

cases of the original electricity price and the new electricity price. Because the high parts of 

the apparent power is reduced due to the load response to the new electricity price, the 

overloading percentage of the transformer decreases from 3.23% to 0.25%. 
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Fig. 5.6. The apparent power through the transformer for the original fixed electricity price (upper one) 

and the new electricity price (bottom one). 

 

Fig. 5.7. The probability density of the apparent power through the transformer. 

 

Table 5.1. The apparent power through the transformer. 

 Original electricity price New electricity price 

Average value (MVA) 4.940 4.937 

Standard deviation (MVA) 3.273 3.231 

Overloading percentage 3.23% 0.25% 
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The overloading percentage of the transformer in the studied power system will be 

further reduced when the proposed algorithm and the optimal load response according to the 

spot market (see Figs. 3.8 and 3.9), which has been discussed in Chapter 3, are combined 

together.  

 

5.3   Small Signal Stability Improvement 

 

As discussed in Section 5.2, optimal load response to electricity prices for demand 

side management will generate different load profiles in distribution systems. However, the 

new aggregated load profiles in distribution systems will also have some impacts on the 

transmission system operation. The transmission system operator may use this kind of load 

characteristics to improve the operation of transmission systems. Section 5.3 and Section 5.4 

provide two examples of improving small signal stability and transient stability of 

transmission power systems using the optimal load response to electricity prices for demand 

side management. 

 

5.3.1  Small Signal Stability 

Small signal stability relates to the ability of a power system to maintain synchronism 

among generators under small disturbances. It characterizes the nature of a power system at a 

certain operating point [76]. 

A state equation in the form of Eq. (5.1) can be used to describe a power system [76]. 

                                                                (5.1)
dX

f X
dt

  

where X is the state vector of the power system, t is the time and f is normally a set of 

nonlinear functions. 

Taylor’s series expansion is used to linearize the state equation at this operating point 

in order to analyze the small signal stability of the power system at an operating point. The 

linearized state equation is shown as Eq. (5.2) [76]. 

                                                             (5 2  . )
d X

A X
dt


   
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In Eq. (5.2), the prefix Δ is a small deviation and A is the state matrix. The small 

signal stability is given by the eigenvalues of matrix A. Eigenvalues are shown as Eq. (5.3) 

[76]. 

                                                              (5. ) 3j      

Each eigenvalue represents an oscillation mode of the power system at the given 

operating point. The real component σ represents the damping and the imaginary component 

ω gives the frequency of the corresponding mode.  

The decay rate of the oscillation can also be drawn from eigenvalues by calculating 

the damping ratio which is defined as Eq. (5.4) [76]. 

2 2
                                                          5. )  ( 4


 





 

The damping ratio   is a common index for small signal stability analysis. The 

larger   means that the power system has wider stability margin. 

A participation factor is used to measure the participation of one state variable in one 

oscillation mode. The participation factor is defined as Eq. (5.5) [76]. 

                                                             (5. 5)i
ik

kk

p
a





 

In Eq. (5.5), ikp  is the participation factor of the kth state variable in the ith mode and 

kka  is the element in the kth line and kth column of matrix A. 

 

5.3.2  Problem Formulation and Algorithms 

Improving the power system small signal stability may be achieved by deciding an 

appropriate electricity price for different hours for the costumers. 

The objective of the power system small signal stability improvement is that the 

damping ratio of the power system should be larger than a setting value to ensure that the 

power system has enough stability margins. This objective can be written as 

                                                               (5.6)t setting   
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where setting  is the setting damping ratio value, which is set to 10% in this study to make sure 

that the power system has enough stability margins. t  is the minimum damping ratio for all 

the oscillation modes in the power system at hour t. t  can be written as  

1, 2, ,                                                    (min( , ,... .) 5, 7)t t t i t     

where 1,t , 2,t  and ,i t  are the damping ratio of the corresponding oscillation modes with the 

oscillation frequency range between 0.1 Hz and 2.0 Hz. It is because oscillation modes within 

this frequency range are considered most harmful for the power system operation [77]. 

All eigenvalues of the corresponding oscillation modes for the power system must 

have negative real parts in order to make sure that the power system is stable as described in 

Section 5.3.1. It can be expressed as 

 ,                                                            Rea    l 0 (5.8)j t   

where ,j t  is the real part of jth eigenvalue at hour t. 

 Voltage and current limits are also needed in the formulation to make sure that the 

voltages at each bus and the currents through each branch are within acceptable level. These 

limits can be formulated as follows 

min max                                                           (5.9)n n nV V V   

max                                                               (5.10)b bI I  

where Vn
min and Vn

max are the minimum and the maximum voltage limits at bus n, Ib
max  is the 

maximum current limits of branch b. 

 Fig. 5.8 illustrates the flow chart of the proposed algorithm for power system small 

signal stability improvement by choosing the electricity price for different hours in power 

systems with high wind power penetrations. The parameters used in the algorithm, such as the 

network parameters, the wind generation data and the load data are initialized in the first step. 

The damping ratio of the power system is then calculated using the DIgSILENT 

PowerFactory software. If the damping ratio of the power system is smaller than the setting 

value, the electricity price is calculated based on the sign of   and p . If both   and p  

are positive or negative in the previous iteration, the electricity price should be increased in 

order to achieve a higher damping ratio. On the other hand, if   is positive and p  is 

negative, or   is negative and p  is positive in the previous iteration, the electricity price 
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should be decreased in order to achieve a higher damping ratio. Consumers may then shift 

their loads from the high price period to the low price period in order to achieve minimum 

electricity costs in the day as discussed in Chapter 3, which is shown in the dashed box in this 

figure. The algorithm makes a lot of iterations in order to find the appropriate electricity price 

until the stopping criterion is satisfied. The stopping criterion in the algorithm is that the 

damping ratio is larger than the setting value or the maximum number of iterations is reached. 

1i ip p p  

setting 

( ) ( ) stepp sign sign p p   

and p  

 

Fig. 5.8. The flow chart of the algorithm to achieve small signal stability. 

 

5.3.3  Case Study of Achieving Small Signal Stability 

A 17-bus transmission power system configuration with high wind power penetration 

is chosen as a study case. Fig. 5.9 illustrates the configuration of the system. This model 

resembles a simplified model of the Eastern Danish power system. It has the same generation 

capacity, load capacity and wind power integration level to the Eastern Danish power system 

[78]. There are four central power plants (modeled as synchronous generators), load centers, 

wind power, decentralized combined heat and power plants (DCHP), interconnections to 

other power grids, reactors and reactive power compensators in the studied power system. 
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Fig. 5.9. The studied power system configuration. 

 

The price elasticity coefficient of the loads in the power system is set to -0.5 in this 

case, which means that a 10% increase in electricity price will result in a 5% decrease of the 

loads. A winter weekday is chosen as the first study case. The average value of the spot 

market price in this day (32.75 EUR/MWh) is chosen as the original fixed electricity price in 

the study. The new chosen electricity price and the original fixed electricity price are shown 

in Fig. 5.10. The optimal load response under the new electricity price and the original load 

under the original fixed electricity price, the damping ratio of the power system under the new 

electricity price and the original fixed electricity price are shown in Fig. 5.11 and Fig. 5.12, 

respectively. From Fig. 5.12, it can be seen that the damping ratio of the power system under 

the original fixed electricity price is less than the setting value (10%) in the hour 18:00 and 

19:00. So the proposed algorithm is executed to choose a new electricity price in order to 

increase the damping ratio of the power system during the two hours. 

From these figures, it can be seen that the electricity price is shifted during the two 

hours. Consequently, the consumers shift some of their loads from the high price periods 

(hour 18:00 and hour 19:00) to the low price periods (other hours) in order to reduce their 

electricity costs. It can be also seen from Fig. 5.12 that the damping ratio of the power system 
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is larger than the setting value by using the different electricity prices for different hours. In 

this way the power system signal stability is improved. 

 

Fig. 5.10. The new chosen electricity price (red diamond line) and the original fixed electricity price 

(blue asterisk line). 

 

 

Fig. 5.11. The optimal response load under the new electricity price (red diamond line) and the original 

load under the original fixed electricity price (blue asterisk line). 
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Fig. 5.12. The damping ratio of the power system under the new electricity price (red diamond line) 

and the original fixed electricity price (blue asterisk line). 

 

A time domain simulation with a 3 phase fault at bus 8 is then conducted using the 

DIgSILENT PowerFactory software under the original fixed electricity price and the new 

electricity price at hour 18:00 in this day. The generator speed of the generator at bus 10 is 

shown in Fig. 5.13. It shows that the maximum oscillation magnitude of the rotation speed 

decreases about 7.5% when the new electricity price is used in the power system. It indicates 

that the power system small signal stability has been improved by deciding the appropriate 

electricity prices for different hours. 

 

Fig. 5.13. The generator speed of the generator at bus 10 under the original fixed electricity price (the 

upper figure) and the new electricity price (the bottom figure). 
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Finally, the algorithm is adopted on each day of the year 2007. Fig. 5.14 illustrates 

the damping ratio of the power system under the original fixed electricity price and the new 

electricity price in the year 2007. It can be observed that the damping ratio of the power 

system is larger than 10% by using the appropriate electricity prices. It can be concluded that 

the proposed idea and algorithm is an effective measure to improve the small signal stability 

of power systems with high wind power penetrations. 

 

Fig. 5.14. The damping ratio of the power system under the original fixed electricity price (the upper 

figure) and the new electricity price (the bottom figure) in the year 2007. 

 

5.4   Transient Stability Improvement 

 

As discussed in previous sections, the optimal load response to electricity prices may 

be used to solve power system constraints and improve the small signal stability of power 

systems. In this section, a similar idea and algorithm are proposed in order to improve the 

power system transient stability under some large disturbances. 

 

5.4.1  Power System Transient Stability 

Power system transient stability is defined as the ability of the power system to re-

establish the initial steady state or come into a new steady state after large disturbances, such 

as a fault on transmission facilities, loss of generation, or loss of a large load [76]. The system 

response to such disturbances involves large excursions of generator rotor angles, power 



94 

flows, bus voltage, and other system variables. If the resulting angular separation between the 

machines in the system remains within certain bounds, the system maintains synchronism 

[76]. 

At the time being, the most practical available method of transient stability analysis is 

time-domain simulation in which the nonlinear differential equations are solved by using 

step-by-step numerical integration techniques [76]. Critical Clearing Time (CCT) is normally 

considered as a principal criterion for transient stability assessment. CCT is defined as 

maximal fault duration from which the system can return to steady state [76]. The longer CCT 

means that the power system is more stable. The power system should at least have CCT 

longer than the operational time of relay protection in power systems. CCT depends on 

system conditions, such as operating points, grid topologies, system parameters and system 

demands. 

Fig. 5.15 illustrates a 102-bus power system configuration with high wind power 

penetration. This configuration resembles a simplified model of the Western Danish power 

system and is chosen as the studied power system. It has the same generation capacity, load 

capacity, wind power integration level and also interconnection capacity compared with the 

Western Danish power system. There are eight central power plants (modeled as synchronous 

generators), load centers, wind power, decentralized combined heat and power plants (DCHP), 

interconnections to other power grids, reactors and reactive power compensators in the 

studied power system. The power system is modeled and built using the DIgSILENT 

PowerFactory software. The load and wind power of the power system in a studied winter 

weekday of the year 2008 are shown in Fig. 5.16. It can be observed that the load is high in 

the morning between 09:00 and 12:00, and in the evening between 18:00 and 19:00. 
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Fig. 5.15. The studied power system configuration. 

 

Fig. 5.16. The load and wind power of the power system in a studied winter weekday of the year 2008. 
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A time domain simulation with a 3 phase fault at the main transmission line (see Fig. 

5.15) is conducted in order to evaluate the transient stability of this power system at hour 

18:00 in the studied day. It is assumed that the power system protection devices work 

properly and the fault can be cleared after 120 ms in the first study case. The voltage of the 

transmission system and the maximum differences of synchronous generator rotor angle in 

the studied system after the fault are shown in Fig. 5.17 and Fig. 5.18, respectively. It can be 

observed from these figures that the studied power system is stable after the 3 phase fault at 

the main transmission line. 

 

Fig. 5.17. The dynamic voltage response of 2 buses in the system. 

 

 

Fig. 5.18. The  maximum differences of synchronous generator rotor angle in the system. 

 

However, the system may become unstable if the protection system fails to clear the 

fault after some time. Two cases are conducted with the different fault clearing time. The fault 

10,008,006,004,002,000,00 [s]

1,20

1,00

0,80

0,60

0,40

0,20

0,00

ASK 400: Voltage, Magnitude in p.u.
REV 400: Voltage, Magnitude in p.u.

D
Ig

S
IL

E
N

T

10,008,006,004,002,000,00 [s]

100,00

90,00

80,00

70,00

60,00

Power Grid: Maximum Rotor Angle in Degree

D
Ig

S
IL

E
N

T



97 

clearing time is 400 ms for one case and 410 ms for another case. Fig. 5.19 illustrates the 

comparison of the maximum differences of the synchronous generator rotor angle in the 

system for the 2 different cases. It indicates the maximum differences of synchronous 

generator rotor angle excesses 180 degrees when the fault is cleared after 410 ms, which 

suggests that the system is unstable in the case. Therefore, the CCT value is 400 ms in this 

case, which is maximal fault duration from which the system can return to steady state. 

The same procedures can be repeated in order to calculate the CCT of different hours 

in the studied day using the same 3 phase fault. The CCT value of different hours in the day is 

shown in Fig. 5.20. It can be observed that the CCT is lower, which suggests the power 

system is less stable, when the system demand is lower in the studied transmission system. If 

the Transmission System Operator (TSO) is not satisfied with CCT value in the day, the 

optimal load response to an electricity price for demand side management may be then 

adopted to improve the transient stability. 

 

Fig. 5.19. The  maximum differences of synchronous generator rotor angle for the different cases. 

 

Fig. 5.20. The CCT value of different hours in the studied day. 
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5.4.2  Problem Formulation and Algorithms 

Improving the power system transient stability could also be achieved by deciding 

appropriate electricity prices for different hours in a day. For example, if the CCT is lower 

than an accepted value in a specific hour, an appropriate electricity price will be given in the 

hour. Then the consumers may optimally respond to the electricity price in order to save their 

energy costs. This behavior will generate a new load for the specific hour. Consequently, the 

CCT may be improved by this optimal load response behavior. The flow chart of the 

proposed algorithm for power system transient stability improvement by choosing the 

electricity prices for different hours in power systems is shown in Fig. 5.21. 

1i ip p p  

( ) ( ) stepp sign CCT sign p p   

and CCTp

 

Fig. 5.21. The flow chart of the algorithm for optimizing CCT using elastic prices. 
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The parameters of the algorithm, such as the network parameters, the generation data 

and the load data are initialized in the first step. The time domain simulation with a 3 phase 

fault at the main transmission line is conducted in order to calculate the CCT value using the 

DIgSILENT PowerFactory software. If the CCT is smaller than the accepted value, which is 

assumed and set as 330 ms in this paper, the electricity price is calculated based on the sign of 

the CCT  and the p . The principle is similar to the small signal stability improvement, 

which has been discussed in the previous section. If both CCT  and p  are positive or 

negative in the previous iteration, the electricity price should be increased in order to achieve 

a bigger CCT value. On the other hand, if CCT  is positive and p  is negative, or CCT  is 

negative and p  is positive in the previous iteration, the electricity price should be decreased 

in order to achieve a bigger CCT value. Consumers then shift their loads based on the 

electricity prices for different hours in order to save their energy costs as discussed in Chapter 

3, which is shown in the dashed box in this figure. The algorithm makes a lot of iterations in 

order to find the appropriate electricity prices until the stopping criterion is satisfied. The 

stopping criterion is that the CCT is larger than the accepted value or the maximum number 

of iterations is reached. 

 

5.4.3  Case Study For Optimizing CCT  

The average value of the spot market price in the studied day (32.75 EUR/MWh) is 

chosen as the original fixed electricity price in the study. The new electricity price and the 

original fixed electricity price, the optimal load response under the 2 different cases are 

shown in Fig. 5.22 and Fig. 5.23, respectively. The CCT values of the power system under the 

2 different cases are shown in Fig. 5.24. It can be seen from Fig. 5.22 that the electricity price 

is shifted during the hours in the early morning, because the CCT is less than the accepted 

value (330 ms) in these time periods. The customers then reschedule some of their loads from 

the high price periods to the low price periods in order to save their energy costs. Fig. 5.24 

indicates that CCT value increases by using optimal load response according to the electricity 

prices for different hours, which suggests that the transient stability of the power system is 

improved. 
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Fig. 5.22. The new electricity price (red diamond line) and the original fixed electricity price (blue 

asterisk line). 

 

 

 

Fig. 5.23. The optimal response load under the new electricity price (red diamond line) and the original 

load under the original fixed electricity price (blue asterisk line). 
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Fig. 5.24. The CCT value of the power system under the new electricity price (red diamond line) and 

the original fixed electricity price (blue asterisk line). 

 

 

 

Fig. 5.25. The comparison of the maximum differences of synchronous generator rotor angle in the 

system for the case of original load (red) and optimal load (blue), when the fault is cleared after 120 ms. 
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Fig. 5.26. The comparison of the maximum differences of synchronous generator rotor angle in the 

system for the case of original load (red) and optimal load (blue), when the fault is cleared after 320 ms. 

 

When the CCT value is very low, which indicates that the power system may operate 

near its physical stability boundaries, the TSO may choose the proposed algorithm to improve 

the power system transient stability. The system costs will of course not be minimized from 

the electricity market point of view in this way. But it will eventually save a huge amount of 

money by preventing the power system collapse and blackout. 

 

5.5   Summary 

 

As discussed in the previous chapters, the optimal load response to electricity prices 

for different hours for demand side management may generate different load profiles. When 

the power system operates near its physical boundaries, a different electricity price for 

different hours may be given to consumers in order to motivate them to reschedule their 

demands. Consequently, the power flow may be changed and the power systems will be 

operated in a good condition, when appropriate electricity prices are given to consumers. This 

chapter describes the ideas and algorithms of power system operation improvement using 

demand side management. In this chapter, three different cases are studied to solve power 

system constraints, improve power system small signal stability and power system transient 

stability by deciding appropriate electricity prices for different hours. Three different power 

systems with high wind power penetrations are chosen as study cases in this chapter. It can be 

concluded from the simulation results that optimal choosing of electricity prices is an 
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effective measure to improve operation conditions of power systems with high wind power 

penetrations. 

However, there may be some conflicts when the previous three cases are taken into 

consideration at the same time. The system operators may only care the most serious problem 

at this situation or a multi-objective optimization is required to combine the previous three 

cases together. 

The main work of this chapter has also been reported in the author’s previous 

publications [P7-P9]. 
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Chapter 6 

 

Optimal Operation Strategies for Battery Energy Storage 
Systems 

 

6.1   Introduction 

 

EU's energy policy addresses the transportation sector, requiring a mandatory limit of 

120 grams of CO2/km for new cars by 2012 to reduce the greenhouse gas emissions [21], [22]. 

Recent developments and advances in battery energy storage systems and power electronics 

technologies are making Plug-In Electric Vehicles (PEV) a possible solution in the future. 

PEVs have attracted more attentions all over the world. Germany plans to have 1 million 

PEVs deployed by 2020 [79]. Japan plans to have 50% market share of next generation PEVs 

by 2020 [80]. The battery storage of electric vehicles is one of the emerging concepts, which 

can act as a controllable load or as a generator in the distribution power system. It may allow 

the power system to be operated in a more flexible, controllable manner [23-30]. 

Conventionally, PEVs start charging immediately after plugging in and keep charging 

until their batteries are full. A new peak in electricity demand during the late afternoon may 

be caused due to this. This way of charging is normally referred to as dumb charging PEVs. 

Tariffs by hourly prices have been adapted in many parts of the world due to the liberalization 

of the electricity markets. The hourly spot market price is available one day ahead in 

Denmark and the consumers may make some optimal charge and discharge schedules for 

their PEVs in order to minimize their energy costs [81]. 

The battery of a PEV can act as a source of stored energy to provide a number of 

ancillary services [82-86]. The possible ancillary services for PEV are supply of primary and 

secondary control, and voltage regulation. Reference [82] proposed a primary control method 

for PEVs and verified that the proposed method can reduce the frequency deviation 

significantly. PEVs could also provide secondary control in order to balance the demand and 

generation in power systems [83, 84]. The voltage regulation ability may be embedded in the 

charger of PEVs. The charger can control the charge/discharge power automatically 

according to the voltage of the connecting point. The chargers may be able provide some 

reactive power to support the voltage, when advanced power electronic converters are 
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employed in the chargers [85, 86]. The secondary control possibility of PEVs is very 

important to some countries like Denmark with high wind power penetration. 

In this chapter, different cases are studied to investigate the technical and economic 

benefits for both the power system operators and the battery energy storage system (BESS) 

owners when such energy storage system is installed in the power system. The chapter is 

organized as follows. An optimal operation strategy for two kinds of BESS, based on 

polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, is proposed in 

Section 6.2 in order to achieve maximum profits of the BESS.  Section 6.3 presents an 

optimal operation strategy for PEVs in relation to the hourly electricity price in order to 

achieve minimum energy costs of the PEV. Furthermore, the application of battery storage 

based aggregated PEV is analyzed as a regulation services provider in Section 6.4. The 

economic benefits of PEVs in both spot market and regulation market are estimated in this 

section. Finally, Section 6.5 summarizes the main conclusions. 

 

6.2   Optimal Operation of Battery in Spot Market 

 

6.2.1  Problem Formulation and Algorithms 

The mathematical models are built to analyze how to optimally operate the battery 

energy storage system to achieve maximum profits in the spot market. The sequential 

quadratic programming (SQP) method, which has been discussed in Chapter 3, is adopted as 

the optimization methods. 

The power output of the BESS is chosen as state variable in the problem formulation 

and the energy stored in the BESS can be calculated from the sum of the power output of the 

BESS [87]. Energy stored in the BESS is expressed as follows. 

When the BESS is charging at hour t (Pt > 0), 

1 (1 hour)                                                (6.1)t t tE E P     

and when the BESS is discharging at hour t (Pt < 0), 

1 (1 hour)                                               (6.2)t t tE E P     

where Et, Et+1 are the energy stored in the BESS at hour t and hour t+1, respectively, Pt is the 

power output of the BESS at hour t,   is the efficiency of the BESS. 
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 Since the hourly spot market price is available one day ahead, the decision variable 

vector of operation for this optimization problem is chosen as 24 values of the power output 

Pt of the BESS. 

 The BESS capital cost must be considered in order to establish an economic analysis. 

The BESS capital cost is a function of the storage device power and energy capacities and 

their specific costs depending on the chosen technology. The BESS capital cost is defined as a 

function of two main parts. One is related to the storable energy and the other depends on the 

peak power that the storage can deliver. Therefore, the BESS capital cost will be expressed as 

[24], [88]. 

max max                                              (6.3)capital P WC C P C E   

where capitalC  is the BESS capital cost, maxP , maxE  are BESS power and energy capacities, 

respectively, PC  is the power cost coefficient, WC  is the energy cost coefficient. 

 Energy storage technologies presented in this chapter are redox-flow batteries. The 

discharge time is from minutes to hours and charge/discharge power rating is several MW 

[89], [90]. The present work uses the following technologies: polysulfide-bromine (PSB) and 

vanadium redox (VRB) battery technologies [89], [90]. Technical and economic 

characteristics of the BESS considered in this study are presented in Table 6.1 [24], [89]. 

 

Table 6.1. Technical and Economic Data of the BESS. 

Technologies PSB VRB 

CP (USD/kW) 150 426 

CW (USD/kWh) 65 100 

Efficiency (%) 65 70 

Lifespan (years) 15 15 

 

Since the spot price is available one day ahead, the owners of the BESS may decide 

the charge/discharge schedule in order to achieve maximum profits. The revenue of the BESS 

in a day can be written as 

24

1

                                                              (6.4)t t
t

R P SP


   
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where R is the revenue of the BESS, tP  is the charge/discharge power at hour t, tSP  is the 

spot price at hour t. 

The objective of owners of the BESS is to achieve the maximum revenue by deciding 

the charge/discharge power. The optimization objective function can be expressed as 

24

1

                                  max(     ) max( )            (6.5)t t
t

R P SP


   

Some necessary limitations and assumptions have to be made to this problem. 

1) The charge/discharge power of the BESS and the energy stored in the BESS 

should be less than the BESS power and energy capacities in order not to overload the system. 

This limitation can be expressed as 

max max                                                         (6.6)tP P P    

max0                                                         (6.7)tE E   

2) Since the spot price is only available one day ahead, it is assumed that all the 

energy stored in the BESS is discharged in the same day. Because the optimization is starting 

at mid-night and normally the electricity price is low at the early morning, it could be 

assumed that the energy stored in the BESS is zero at 00:00 hour. There may be few days 

when the price is lower before the mid-night than after the mid-night. However, the BESS is 

assumed not charging before the mid-night in order to simplify the problem. 

3) Because the power consumption of Denmark is relatively small in the Nordic 

power market and the charge/discharge power of the BESS are small, it is assumed that the 

spot prices are not changed by the operation of the BESS. 

The consumers may try to find the maximum value of objective function under the 

assumptions mentioned. The sequential quadratic programming method, which was discussed 

in Chapter 3, is used as the optimization method for this problem.  

 

 

 

 

 



109 

6.2.2  Case Study of BESS Optimal Operation 

A winter weekday of year 2007 is chosen as the first study case. Fig. 6.1 illustrates 

the spot price  of west Denmark in the studied day. The owners of the BESS may decide to 

discharge the BESS near the price peaks in order to achieve the maximum profits. It is 

assumed that the BESS power capacity maxP  is 1 MW and the BESS energy capacity maxE  is 5 

MWh in the basic study case.  

 

Fig. 6.1. The spot price of west Denmark in a winter weekday. 

 

The optimal charge/discharge power of the BESS and the stored energy in the BESS 

in the winter weekday are shown in Fig. 6.2 and Fig. 6.3. The BESS is charged when the 

electricity price is low in the early morning and discharged near the two price peaks at about 

09:00 and 18:00. Although the charge/discharge curves are almost the same for both batteries, 

the energy stored in the VRB battery is higher than the PSB battery due to higher efficiency 

of the VRB battery. The revenue of the BESS in the winter weekday is 34.2 EUR for the PSB 

battery and 43 EUR for the VRB battery. 

A special summer weekday of year 2007 when the spot price variations are small is 

chosen as another study case. Fig. 6.4 shows the spot price of that day. The variation of the 

electricity price in the summer weekday is smaller than the variation of the electricity price in 

the winter weekday. The optimal charge/discharge power of the BESS and the stored energy 

in the BESS in the summer weekday are shown in Fig. 6.5 and Fig. 6.6. It can be seen that the 

PSB battery cannot make any profits in the summer weekday, but the VRB battery can still 

make some profits in the same day due to higher efficiency of the VRB battery. 
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Fig. 6.2. The optimal charge/discharge power of the BESS in a winter weekday (blue asterisk line: PSB 

battery technology, red diamond line: VRB battery technology). 

 

 

Fig. 6.3. The stored energy in the BESS in a winter weekday (blue asterisk line: PSB battery 

technology, red diamond line: VRB battery technology). 

 

The BESS can make more profits when the variation of the electricity price is higher. 

It could be easily concluded that the BESS can make some profits only when the following 

inequality is satisfied. 

max min                                                         (6.8)SP SP   

where maxSP  and minSP  are the maximum and minimum electricity price in a day, 

respectively. 
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The method could be adopted at each day of year 2007. The revenue of the BESS at 

January and October, 2007 is illustrated in Fig. 6.7. It can be observed that the revenue of the 

VRB battery is always higher than the revenue of the PSB battery due to higher efficiency of 

the VRB battery. The revenue of the BESS at each month in the year 2007 is shown in Table 

6.2. It is indicated that the revenue of both batteries is higher in October, November and 

December due to the bigger variations of the electricity price in these months. 

 

Fig. 6.4. The spot price of west Denmark in a summer weekday. 

 

 

Fig. 6.5. The optimal charge/discharge power of the BESS in a summer weekday (blue asterisk line: 

PSB battery technology, red diamond line: VRB battery technology). 
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Fig. 6.6. The stored energy in the BESS in a summer weekday (blue asterisk line: PSB battery 

technology, red diamond line: VRB battery technology). 

 

 

 

(a) 
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(b) 

Fig. 6.7. (a) The revenue of the BESS at January, 2007. (b) The revenue of the BESS at October, 2007 

(blue asterisk line: PSB battery technology, red diamond line: VRB battery technology). 

 

Table 6.2. The Revenue of the BESS in the Year 2007. 

Month Revenue of PSB(EUR) Revenue of VRB(EUR) 

Jan. 1448 1625 

Feb. 751 1064 

Mar. 372 513 

Apr. 374 494 

May 969 1169 

Jun. 2562 2920 

Jul. 1132 1368 

Aug. 1848 2199 

Sep. 1761 2160 

Oct. 5654 6332 

Nov. 4615 5081 

Dec. 4512 5027 

Total 25996 29953 

 

Payback period is an important guideline in the economic analysis. It is the period of 

time required for the return on an investment to re-pay the sum of the original investment. It 

can be expressed as the following equation, if operational and maintenance costs are 

neglected. 
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1

                                                  (6.9)
(1 )

PP
annual

capitaln
n

R
C

r


  

where PP is the payback period, which is the minimum value that satisfies the inequality, 

annualR  is the annual revenue of the BESS, capitalC  is the BESS capital cost, r is the annual 

bank interest rate. It means that after the payback period, the total revenue is more than the 

BESS capital cost with the consideration of the annual bank interest rate, which is assumed 

4% in the study. 

The annual revenue, capital cost and payback period of the BESS are shown in Table 

6.3. Although the annual revenue of the VRB battery is higher than the annual revenue of the 

PSB battery, it will take longer time to return the original investment of the VRB battery. So 

the PSB battery is the better investment choice for the time being. 

 

Table 6.3. The Annual Revenue, Capital Cost and Payback Period of the BESS. 

Technologies PSB VRB 

Rannual (EUR) 25996 29953 

Ccapital (USD) 475000 926000 

PP (years) 18 45 

 

Since the PSB battery is the better investment choice for the time being, the further 

studies only focus on the PSB battery. When the PSB battery is invested for the power system, 

another question is to decide the power capacity maxP  and the energy capacity maxE  of the 

PSB. Table 6.4 illustrates the annual revenue, capital cost and payback period of the PSB, 

when the power capacity maxP  is 1 MW and the energy capacity maxE  of the PSB changes 

from 1 MWh to 10 MWh. It can be seen that the annual revenue of the PSB increases with the 

energy capacity of the PSB and the payback period first decreases with the energy capacity 

and then increases with the energy capacity. 
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Table 6.4. The Annual Revenue, Capital Cost and Payback Period of the PSB. 

Wmax (MWh) Rannual (EUR) Ccapital (USD) PP (years) 

1 10919 215000 19 

2 18063 280000 14 

3 22390 345000 14 

4 25072 410000 15 

5 25996 475000 18 

6 26181 540000 21 

7 26220 605000 25 

8 26249 670000 29 

9 26296 735000 36 

10 26334 800000 43 

 

The variations of the annual revenue, the capital cost and the payback period of the 

PSB battery with the energy capacity are shown in Figs. 6.8-6.10. It can be seen that the 

annual revenue of the PSB battery increases quickly at the lower energy capacity and 

becomes flat at the higher energy capacity. The capital cost of the PSB battery increases as a 

linear relationship with the energy capacity of the PSB battery. At the lower energy capacity, 

the payback period of the PSB battery decreases with the energy capacity because the 

increase in the speed of the annual revenue is higher than the increase in the speed of the 

capital cost of the BESS. At the higher energy capacity, the payback period of the PSB 

battery increases with the energy capacity because the increase in the speed of the annual 

revenue is lower than the increase in the speed of the capital cost of the BESS. 

 

Fig. 6.8. The variations of the annual revenue of the PSB battery with the energy capacity (blue asterisk 

line: Pmax = 1 MW, green circle line: Pmax = 2 MW, red diamond line: asterisk Pmax = 3 MW). 
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Fig. 6.9. The variations of the capital cost of the PSB battery with the energy capacity (blue asterisk 

line: Pmax = 1 MW, green circle line: Pmax = 2 MW, red diamond line: Pmax = 3 MW). 

 

 

Fig. 6.10. The variations of the payback period of the PSB battery with the energy capacity (blue 

asterisk line: Pmax = 1 MW, green circle line: Pmax = 2 MW, red diamond line: Pmax = 3 MW). 

 

It can be seen from Fig. 6.10 that the payback period of the PSB battery is around 14 

years if the power capacity and energy capacity of the PSB battery are chosen appropriately. 

However, since the lifetime of the battery is only 15 years, so both the PSB battery and the 

VRB battery are not good solutions in the spot market today. Therefore, the performance of 

the plug-in electric vehicle will be investigated in the next section. 
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6.3   Optimal Operation of Plug-in Electric Vehicles in Spot Market 

 

6.3.1  Problem Formulation and Algorithms 

Since the hourly spot market price is available one day ahead, the plug-in electric 

vehicle (PEV) owners may make some optimal charge and discharge schedules for their PEVs 

in order to minimize their energy costs. The problem formulation of PEV optimal operation in 

the spot market is similar with the normal BESS optimal operation, which has been discussed 

in Section 6.2. When the PEV is charging at hour t (Pt > 0), 

1 (1 hour)                                               (6.10)t t c tE E P     

when the PEV is discharging at hour t (Pt < 0), 

1 (1 hour)                                                  (6.11)t
t t

d

P
E E

     

and when the PEV is being driven at hour t, 

1                                                       (6.12)t t tE E C D     

where Et, Et+1 are the energy stored in the battery of the PEV at hour t and hour t+1, 

respectively, Pt is the charge/discharge power of the PEV at hour t, , c d   is the 

charging/discharging efficiency of the PEV, C is the driving energy consumption per 

kilometer, Dt is the driving distance at hour t. 

Since the spot market price is an hourly price and available one day ahead, the 

optimization variable is defined as the hourly values of the power output Pt of the PEV. 

Electric characteristics of the PEV are needed in order to establish an economic analysis. The 

electric characteristics are based on the existing and operating electric vehicle Toyata RAV4 

EV shown in Table 6.5 [91], [92]. 

Since the spot price is available one day ahead, the owners of the PEV may decide the 

charge/discharge schedule in order to achieve minimum energy costs. The energy costs of the 

PEV can be written as 

                                                     ( 6.13)
b

a

t

t t
t t

EC P SP


   
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where EC is the energy costs of the PEV, Pt  is the charge/discharge power at hour t, SPt  is 

the spot price at hour t, ta is the starting hour of the charge/discharge for the PEV, tb is the 

ending hour of the charge/discharge for the PEV. 

 

Table 6.5. The Electric Characteristics of Toyata RAV4 EV 

Description Value 

Battery Capacity (kWh) 27 

Battery Weight (kg) 551 

System Voltage (V) 288 

Maximum Range (km) 190 

Driving Energy 
Consumption (kWh/km) 

0.139 

Charging Efficiency (%) 90 

Discharging Efficiency (%) 90 

Maximum Charging Power 
(kW) 

10 

 

The objective of owners of the PEV is to achieve the minimum energy costs by 

deciding the charge/discharge power Pt, while the PEV still can satisfy the owner’s daily 

usage. The optimization objective function can be chosen as 

                                             min( ) mi (6n .14)( )  
b

a

t

t t
t t

EC P SP


   

Some necessary limitations and assumptions have to be made as follows. 

1) The charge/discharge power of the PEV should be less than the power capacity of 

the PEV in order not to overload the system. This limitation can be written as 

max max                                                          (6.15)tP P P    

where Pmax is the maximum charge/discharge power. It is assumed that the energy stored in 

the battery of the PEV is within the range 20%~80% of maximum energy in order to leave 

some energy for PEV to provide regulation service, except the hour when PEV is just about to 

be driven. 

max max0.2 0.8                                                    (6.16)tE E E   
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where Emax is the maximum energy stored in the PEV. This equation is only valid for making 

the optimal charge/discharge schedule in the spot market. It is also assumed that the battery of 

the PEV is fully charged before the use of the PEV in order to ensure the best performance of 

the PEV. The assumption can be written as 

max                                                               (6.17)
ct

E E  

where tc is the time before the driving of PEV. 

2) The daily behavior of the PEV owners is important in this study. Since the number 

of vehicles is very large, statistical behavior is rather predictable, though individual drivers 

might behave erratically. The driving behavior data used in the chapter is from the Danish 

National Transport Survey data [93], [94]. The daily average driving distance is 29.48 km and 

about 75% of the car users drive equal or less than 40 km. The overall vehicle hour 

availability of one day is also obtained and analyzed. The vehicle availability is quite high if 

only the driving time periods are considered as the unavailability time periods. The vehicle 

availability is 100 percent or very close to 100 percent during the early morning and the late 

night. More than 94% of the vehicles are idle even during the peak hours of transport demand 

and most of the cars are driven some time during 06:00 to 17:00. Therefore, it is reasonable to 

assume that 50% of PEVs are always idle and connected to the grid. Another 50% of PEVs 

are driven in the period from 06:00 to 17:00 and connected to the grid immediately after the 

driving. 

3) It is also assumed that the spot prices are not changed by the operation of the PEV. 

The reason has been discussed in the previous section. 

The PEV owners may try to find the minimum value of objective function under the 

assumptions mentioned. Sequential quadratic programming method, which was discussed in 

the previous section, is used as the optimization method for this problem. 

 

6.3.2  Case Study of PEV Optimal Operation in Spot Market 

The same winter weekday is chosen as the study case. The spot price is illustrates in 

Fig. 6.1. There are two price peaks at about 09:00 and 18:00, respectively. It is assumed that 

the owner of the PEV drives 45 km in the study case. 

The case that the battery of the PEV is charged immediately when it connects to the 

grid is chosen as the reference case (dumb charging) in the study. In the reference case, the 

battery of the PEV is charged immediately when it connects to the grid at 18:00. However, in 
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the optimal case, the PEV is charged when the electricity price is low in the early morning. 

The PEV is discharged when the price is high at 18:00 in order to minimize its energy costs. 

The charge/discharge power of the PEV and the stored energy in the battery of the PEV in the 

winter weekday for both the reference case and the optimal case are shown in Fig. 6.11. From 

Fig. 6.11(b), it can be seen that the battery of the PEV is fully charged at 06:00 when the PEV 

is to be used by its owner. It is also assumed that the battery of PEV is discharged from 07:00 

to 17:00 evenly due to driving in this figure. In the real life, the PEV may be only driven for 

half an hour in the morning and in the afternoon. But this will not affect the simulation results, 

because the driving time is not in the optimization algorithm. The net energy cost of the PEV 

in the winter weekday is 0.8 EUR for the reference case and 0.07 EUR for the optimal case, 

which means 91.6% of energy cost saving. 

 

(a) 

 

(b) 

Fig. 6.11. (a) The charge/discharge power of the PEV in a winter weekday. (b) The stored energy in the 

battery of the PEV in a winter weekday (blue asterisk line: the reference case, red diamond line: the 

optimal case). 

 

It is assumed that there are 100,000 PEVs in western Denmark, which corresponds 

about 10% of the total vehicles in Denmark. The statistical driving behaviors of the PEVs are 

assumed the same as for traditional vehicles, which has been investigated by the Danish 
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National Transport Survey. The assumptions and simplifications of the PEV hour availability 

is presented in Section 6.3.1. Fig. 6.12 illustrates the aggregated charge/discharge power and 

the stored energy of all the PEVs in western Denmark for both the reference case and the 

optimal case. In the optimal case, the PEV is charged when the electricity price is relatively 

low in the early morning and between 13:00 and 15:00 (due to the idle cars). The PEV is 

discharged near the two price peaks at about 09:00 and 18:00 in order to achieve the 

minimum energy costs. 

 

(a) 

 

(b) 

Fig. 6.12. (a) The charge/discharge power of the aggregated PEVs in the western Denmark. (b) The 

stored energy in the aggregated PEVs in the western Denmark (blue asterisk line: the reference case, 

red diamond line: the optimal case). 

 

The overall PEV energy costs of each hour are shown in Fig. 6.13. It can be seen that 

the PEVs pay the lower energy costs when spot price is relatively low in the early morning, 

and earn a lot of money when the price is high at about 09:00 and 18:00 in the optimal case 

by selling the energy to grid. The overall PEV energy costs in the studied winter weekday 

decrease from 23.1 kEUR of the reference case to -26.2 kEUR (negative means PEV owners 

earn money) of the optimal case, which means that the owners of PEVs may earn money if 

they let their cars optimally participate in the spot market. 
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Fig. 6.13. The overall energy costs of the aggregated PEVs in the western Denmark (blue bar: the 

reference case, red bar: the optimal case). 

 

Then a summer weekday is chosen as another study case. Fig. 6.14 illustrates the spot 

price, the charge/discharge power of the aggregated PEVs and overall energy costs for the 

PEV owners in western Denmark for both reference case and optimal case. The spot price is 

low in the early morning and high in the rest of the day. There are no significant price peaks 

compared with the spot price in the winter weekday. In the optimal case, the PEV is charged 

when the electricity price is relatively low in the early morning and discharged when the 

electricity price is relatively high in the day from 09:00 to 13:00 and from 17:00 to 20:00. The 

overall PEV energy costs in the studied summer weekday decrease from 12.1 kEUR of the 

reference case to -27.2 kEUR of the optimal case. 

 

(a) 

 

(b) 
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(c) 

Fig. 6.14. (a) The spot price of west Denmark in a summer weekday. (b) The charge/discharge power 

of the aggregated PEVs in western Denmark.  (c) The overall energy costs of the aggregated PEVs in 

western Denmark (blue bar: the reference case, red bar: the optimal case). 

 

6.4   Plug-in Electric Vehicles as Regulation Service Provider 

 

The secondary control possibility of PEVs is very important to some countries like 

Denmark with high wind power penetration. The battery of a PEV can act as a source of 

stored energy to provide the secondary control and make some money in the regulating 

market. 

The larger power plants are either coal or gas based thermal units in the western 

Danish power system. More than 50% of the installed power capacities for electricity 

generation are land-based wind turbines and decentralized combined heat and power (CHP) 

units, which has been illustrated in Fig. 1.1. On average, the wind power supplies around 27% 

of the annual electricity consumption in West Denmark. Therefore, the western Danish power 

system with high wind power penetrations is chosen as the study case. The wind profile, 

fluctuating features of western Danish power system has been discussed in detail in [95]. The 

West Denmark transmission system is interconnected to the Union for the Coordination of 

Electricity Transmission (UCTE) system through Germany, where the generation capacity is 

dominated by thermal and nuclear power plants and fast growing wind power production. To 

the north, West Denmark is connected to Nordic synchronous area through HVDC links to 

Norway and Sweden [95], [96].  

The western Danish power system operates as a single control area which is 

interconnected to the larger UCTE synchronous area. The total power deviations from the 

planned value of the power exchange between west Denmark and the UCTE control areas are 
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the results of deviations from the planned electricity production, demand, and the power 

exchanges to the Nordic area. The LFC operation is accomplished through a tie-line control 

where the transferred power must be maintained at the scheduled values. The controller 

generates regulation power demand in order to minimize the power exchange deviations 

between the two control areas. The acceptable deviation is approximately 50  MW from the 

planned power exchange [97]. The secondary reserve power is normally provided by central 

power plants and large local CHP units now. This power balancing issue becomes more 

critical when more and more wind power plants replace the central power stations in the 

future. Therefore, the battery storage based PEVs with vehicle-to-grid (V2G) functions may 

be a possible solution to provide a flexible and fast regulation power in the near future. 

The digital simulations are performed using the DIgSILENT Power Factory software. 

The model integrating the battery storage based PEVs, tries to minimize the power deviations 

from the planned value of the power exchange between west Denmark and the UCTE control 

areas. The aggregated PEV models and load frequency control strategies are similar to the 

models in [95]. The detailed models and parameters are presented in Appendix. 

Time series data for simulations from the western Danish SCADA system are 

obtained from Energinet.dk, the TSO in Denmark. The data available is of 5-min resolution. 

The electricity profile of the western Danish power system obtained from the SCADA system 

for a winter weekday is shown in Fig. 6.15, where the wind power meets an average of 40% 

of the total daily electricity consumption and the total production exceeds the demand in West 

Denmark. 

The power exchange deviation between West Denmark and UCTE control area from 

the simulation without PEV providing regulation power is shown in Fig. 6.16. In this case, 

only the thermal generators provide the regulation power. A positive power exchange 

deviation indicates that the actual transfer power is less than planned value and a negative 

deviation means that the actual transfer power is more than planned value. It can be observed 

that the power deviations exceed the acceptable levels of 50  MW due to the power 

imbalance caused by the inaccuracy of the estimated wind power and load demand. 

According to the Danish National Transport Survey data [93, 94], more than 94% of 

the vehicles are idle and could be connected to the grid even during the peak hours of 

transport demand. Therefore, it is reasonable to assume that all the 100,000 PEVs in western 

Denmark are connected to grid all the time and only provide regulation power in this study 

case. The initial battery state of charge is assumed as 50% for all PEVs. Fig. 6.17 illustrates 

the power exchange deviation between West Denmark and UCTE control area from the 
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simulation when PEVs only provide regulation power. Comparing the case with and without 

PEV providing regulation power, it can be seen that the power exchange deviation between 

West Denmark and UCTE is reduced significantly when the battery based PEVs provide 

regulation power. The regulation power provided by the battery of aggregated PEV and the 

battery state of charge are shown in Fig. 6.18. The negative power exchange deviation means 

that more power is transferred than the planned power, the battery is charged in order to 

decrease the transfer power between West Denmark and UCTE. It can be observed that the 

battery is operated at charging mode most of time. This is because the production exceeds the 

demand due to the high wind power generation in this case and it requires the PEVs to 

provide the down regulation power. The total regulation power provided by PEVs is 517.3 

MWh in the studied winter weekday. 

 

Fig. 6.15. The electricity profile of the western Danish power system obtained from the SCADA 

system for a winter weekday. 

 

 

Fig. 6.16. The power exchange deviation between West Denmark and UCTE control area from the 

simulation without PEV providing regulation power. 
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Fig. 6.17. The power exchange deviation between West Denmark and UCTE control area from the 

simulation when PEVs only provide regulation power. 

 

 

(a) 

 

(b) 

Fig. 6.18. (a) The regulation power provided by the battery based aggregated PEVs. (b) The battery 

state of charge. 
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Then a summer weekday is chosen as another study case. The wind speed is quite low 

in that day. Fig. 6.19(a) illustrates the power exchange deviation between West Denmark and 

UCTE control area without PEV (dash line) and with PEV (solid line). It can be seen that the 

power exchange deviation is reduced significantly when the battery based PEVs provide 

regulation power. The regulation power provided by the battery of aggregated PEV and the 

battery state of charge are shown in Fig. 6.19(b) and 6.19(c). When power exchange deviation 

is positive which means that less power is transferred than the planned power, the battery is 

discharged in order to increase the transfer power between West Denmark and UCTE. It can 

be observed that the battery is operated at discharging mode most of time, because the wind 

speed is quite low and it requires the PEVs to provide the down regulation power. The total 

regulation power provided by PEVs is 411.6 MWh in the studied summer weekday. It can be 

concluded that the battery storage based aggregated PEV is a possible regulation services 

provider in the western Danish power system. The economic benefits in this case will be 

discussed in the next section. 

 

(a) 

 

(b) 
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(c) 

Fig. 6.19. (a) The power exchange deviation between West Denmark and UCTE control area in the 

summer weekday (dash line: without PEV, solid line: with PEV). (b) The regulation power provided by 

the battery based aggregated PEVs. (c) The battery state of charge. 

 

6.5   PEV Operation in Both Spot Market and Regulation Market 

 

The regulation power provided by the battery based aggregated PEVs is relatively 

small compared with the charge/discharge schedule in the spot market. So it may be possible 

to operate the PEVs in both the spot market and the regulation market at the same time. It is 

assumed that the PEVs have the same driving behavior as traditional vehicles. The optimal 

charge/discharge strategies are adopted in order to achieve minimum energy costs in the spot 

market, which has been discussed in Section 6.2. The PEVs are charged/discharged based on 

the optimal strategies but they also provide regulation power based on LFC at the same time. 

The power exchange deviation between West Denmark and UCTE control area in the 

winter weekday from the new simulation is shown in Fig. 6.20, where PEVs optimally 

charge/discharge and provide the regulation power at the same time. The spot market price is 

available to PEV owners one-day ahead of the actual operation hour and the optimal 

charge/discharge schedule may also be made one-day ahead. The optimal charge/discharge 

schedule can then be taken care of by adjusting the generator output power. So the optimal 

charge/discharge schedule will not affect the power exchange deviation and the power 

exchange deviation is almost the same with the case that PEV only provide the regulation 

power (see Fig. 6.17). 

Fig. 6.21 illustrates the aggregated battery power and battery state of charge from the 

simulation when PEVs optimally charge/discharge in the spot market and provide regulation 
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power at the same time. It can be observed that the battery power is a combination of the 

optimal charge/discharge power in the spot market (see Fig. 6.12(a)) and the relatively small 

regulation power (see Fig. 6.18(a)). The battery state of charge is almost the same with the 

case that PEV optimal charge/discharge in the spot market (see Fig. 6.12(b)) except that the 

total energy in the battery increases about 14% by participating in the regulation market. 

Then a summer weekday, when the wind speed is quite low, is chosen as another 

study case. The simulation results are shown in Fig. 6.22. It can be then concluded that the 

PEVs  not only optimally charge/discharge in the spot market to minimize their energy costs, 

but also provide regulation power at the same time for both high and low wind speed days. 

 

Fig. 6.20. The power exchange deviation between West Denmark and UCTE control area in the winter 

weekday when PEVs optimally charge/discharge in the spot market and provide the regulation power 

at the same time. 

 

 

(a) 
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(b) 

Fig. 6.21. (a) The aggregated battery power when PEVs optimally charge/discharge in the spot market 

and provide regulation power at the same time. (b) The battery state of charge. 

 

 

 

(a) 

 

(b) 
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(c) 

Fig. 6.22. (a) The power exchange deviation in the summer weekday when PEVs optimally 

charge/discharge and provide the regulation power at the same time. (b) The aggregated battery power. 

(c) The battery state of charge. 

 

Regulation reserves are normally purchased by TSO from selected central power 

plants to ensure stable and reliable operation of the electricity systems. Regulation power in 

Denmark is usually paid both as a reservation price (fixed capacity price) and an activation 

price (energy price). The energy price is the same as the regulation price in Denmark, which 

is set as bidding price of the last activated unit. The current fixed capacity price is 10 million 

DKK per Month for all the regulation sources, which is equivalent to 44.4 kEUR per Day, and 

the regulation price is 100-125 DKK/MWh, which is equivalent to 13.3-16.7 EUR/MWh [34]. 

It is assumed that the energy price for PEVs is the average value of the regulation price (15 

EUR/MWh) in order to simplify the calculation. If we assume that PEVs provide half of the 

regulation capacity and central power plants provide the other half, the revenue of PEV 

owners is 30.0 kEUR for providing regulation power in the studied winter weekday and 28.4 

kEUR for providing regulation power in the studied summer weekday. Fig. 6.23 summaries 

the daily energy costs for different operation strategies. The positive value indicate that the 

owners of PEVs pay for using energy and the negative value indicate the owners of PEVs get 

money for providing services. The annual revenue is estimated to be 204 EUR per PEV, if all 

the PEV owners would optimally charge/discharge in the spot market and provide regulation 

power at the same time. 
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Fig. 6.23. The daily energy costs for different operation strategies. 

 

Now many consumers in Denmark, especially small businesses and private 

households, operate on fixed electricity price contracts and they may not get paid by 

providing the regulation service. Therefore, now the PEV owners will not earn as much 

money as the calculated value in this chapter. In the future, when the private households could 

also participate in the competitive electricity market, the PEV owners may earn more money 

by making optimal charge/discharge schedule and providing regulation service, as reflected in 

the chapter. And also for the time being, these consumers will not have the spot market price 

as their price, their real expected fluctuation in the price will be lower due to tax and other 

tariffs. However, it is likely that the future price for the private costumers could be 

proportional to the spot price to give an incitement for shifting their consumption. The 

charge/discharge behaviors of PEVs would be similar with the simulation results in the 

chapter. 

However, the optimal charge/discharge of PEVs will reduce the lifetime of the 

batteries in PEVs. The battery lifetime is a very complicated issue. Many factors contribute to 

the cycle life of a PEV battery in a given application. These include depth of discharge, 

ambient temperature, discharge rate, charging regime and battery maintenance procedures 

[98]. It can be seen that the depth of discharge is much smaller in the case of PEVs only 

providing regulation power (see Fig. 6.18), compared with the case of PEVs optimally 

charging/discharging in the spot market (see Fig. 6.12). So the PEV owner may be more 

willing to provide regulation service so that they can make some money and at the same time 

the lifetime of their PEVs will not reduce much. Another important factor is ambient 

temperature. It is reported that the lifetime of PEV is much longer in UK than in China for the 
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same application, because the average temperature is lower in UK [99]. So the proposed 

operation and control strategies for PEV are more suitable for Denmark. In the end, it is also 

important that some development happens with the lifetime of the batteries, but this is not the 

scope of this chapter. 

 

6.6   Summary 

 

This chapter first presents an optimal operation strategy of battery energy storage 

systems to the spot market electricity price in order to achieve maximum profits of the BESS. 

Two kinds of BESS based on PSB battery and VRB battery technologies are studied in the 

chapter. Although the annual revenue of the VRB battery is higher than the annual revenue of 

the PSB battery, the payback period of the PSB battery is shorter than the payback period of 

the VRB battery. So the PSB battery is the best investment choice for the time being. The 

payback period of the PSB battery is around 14 years if the power capacity and energy 

capacity of the PSB battery are chosen appropriately. 

This chapter then describes a study of integration of plug-in electric vehicles in the 

power systems with high wind power penetrations. An optimal operation strategy of PEVs in 

relation to the hourly spot price in competitive electricity markets is proposed in order to 

achieve minimum energy costs for the PEV owners. The total daily energy costs of all PEVs 

are decreased from 23.1 kEUR to -26.2 kEUR (negative means PEV owners earn money) in 

the studied winter weekday, if the proposed optimal operation strategy is used. The 

application of battery storage based aggregated PEV is then analyzed as a regulation services 

provider in the western Danish power system with high wind power penetrations using LFC. 

It can be concluded from the simulation results that the power exchange deviations are 

significantly reduced between West Denmark-UCTE interconnections with the use of PEV 

regulation power. The PEVs not only optimally charge/discharge in the spot market to 

minimize their energy costs, but also provide regulation power at the same time for both high 

and low wind speed days. The daily revenue for PEV owners is 30.0 kEUR for providing 

regulation power in the studied winter weekday. The annual revenue is estimated to 204 EUR 

per PEV, if the PEV owners would optimally charge/discharge in the spot market and provide 

regulation power at the same time. 

The main work of this chapter has also been reported in the author’s previous 

publications [P10-P13]. 
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Chapter 7 

 

Interaction between Electricity Price and System Demand 

 

7.1   Introduction 

 

The demand-side response is widely considered as an effective method to increase the 

economic efficiency in electricity markets and improve the power system operations [100]. It 

can bring many benefits to consumers and power system operators, such as electricity bill 

saving [101, 102] and peak load reduction [103], as discussed in the previous chapters. 

Furthermore, the demand-side response can be also used to allow system demand to respond 

to the wind power generation in a power system with high wind power penetrations and 

therefore increase the utilization of wind power plants [104]. However, the spot market price 

is normally assumed not changed after the demand-side response, which will not be the case 

when a large proportion of the system demand responds to the spot price. 

In this chapter, the interaction between electricity price and system demand is studied 

when PEVs are optimally charged/discharged and consumers optimally shift their loads 

according to the spot market price. The chapter is organized as follows. The impact of 

different PEV charging/discharging strategies on the spot market price is presented in Section 

7.2. Then Section 7.3 studies the interaction between the electricity price and the system 

demand. Finally, Section 7.4 summarizes the main conclusions. 

 

7.2   Impact of PEV on the Spot Price 

 

7.2.1  Problem Formulation  

The Nord Pool spot market exchanges the power of Norway, Sweden, Finland and 

Denmark [34]. The Nord Pool receives bids from generation companies, big consumers and 

representative companies of small consumers for each hour one day ahead. The purchasing 

and selling curves are constructed by aggregating all the bids from generator side and demand 
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side, respectively. The point where they cross determines the spot market price of each hour 

in the next day. Fig. 7.1 illustrates the principle for spot price calculation. 

 

Fig. 7.1. The principle for spot price calculation. 

 

When a lot of PEVs are integrated into the power system, it may also have some 

impacts on the spot market price. Fig. 7.2 shows the principle for spot price calculation after 

the PEV integration. The consumers will bid higher than their original bids, when many PEVs 

charge at this specific hour. Therefore, the aggregated demand curve will move to the right 

side, which is shown as the blue line in the figure. A higher spot price will then be calculated 

when the PEVs charges at this hour. 

 

Fig. 7.2. The principle for spot price calculation after the PEV integration. 
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Some necessary limitations and assumptions have to be made as follows. 

1) Because the spot market price is calculated in the Nord Pool market, all Nordic 

countries have to be taken into consideration. It is also assumed that there is no congestion 

between these countries in this study in order to simplify the problem, which means that there 

is only one spot price for all countries. 

2) It is assumed that there are 500,000 PEVs in the Nordic countries, which 

corresponds about 5% of the total vehicles in these countries. The statistical driving behaviors 

of the PEVs are assumed the same as for traditional vehicles, which has been investigated by 

the Danish National Transport Survey and discussed in details in Chapter 6 [93], [94].  

3) It is assumed that the generation curve is not changed and the demand curve only 

moves according to the amount of PEVs aggregated charge/discharge energy at the specific 

hour, as illustrated in Fig. 7.2. 

 

7.2.2  Case Study of PEV Impact on the Spot Price 

A winter weekday in the year 2010 is chosen as the study case. The spot price, the 

system demand, the generation curve and the demand curve are collected from the Nord Pool 

market [34]. Fig. 7.3 illustrates the spot price and the system demand of the winter weekday.  

 

(a) 
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(b) 

Fig. 7.3. (a) The spot price of the winter weekday. (b) The system demand of the winter weekday. 

 

The case that the PEV is charged immediately when it connects to the grid is chosen 

as the reference case (dumb charging) in the study, which is the same as the previous chapter. 

The optimal operation strategy of PEVs and assumptions are also the same as the previous 

chapter. Fig. 7.4 illustrates the aggregated charge/discharge power of all the PEVs in Nordic 

countries for both the reference case and the optimal case. In the reference case, the battery of 

the PEVs is charged immediately when it connects to the grid at 18:00. However, in the 

optimal case, the PEVs is charged when the electricity price is low in the early morning and 

discharged when the price is high at around 18:00 in order to minimize its energy costs, as 

discussed in the previous chapter. The total energy cost of all the PEVs  in Nordic countries in 

the studied winter weekday is 145.6 kEUR for the reference case and 83.3 kEUR for the 

optimal case, which means 42.8% of energy cost saving. 

The total system demand in Nordic countries after the PEV integration can be 

calculated by adding the system demand (see Fig. 7.3. (b)) and the aggregated 

charge/discharge power of all the PEVs (see Fig. 7.4). Fig. 7.5 illustrates the total system 

demand in Nordic countries after the PEV integration in the winter weekday for the different 

cases. In the reference case, the total system demand increases at around 18:00 when all PEVs 

charge at that time. In the optimal case, the total system demand increases in the early 

morning and decreases at around 18:00 due to the optimal charge/discharge of the PEVs. 
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Fig. 7.4. The aggregated charge/discharge power of all the PEVs in Nordic countries (blue asterisk line: 

the reference case, red diamond line: the optimal case). 

 

 

Fig. 7.5. The total system demand in Nordic countries after the PEV integration in the winter weekday 

for different case (black line: original system demand, blue asterisk line: the reference case, red 

diamond line: the optimal case). 

 

The total system demand in Nordic countries after the PEV integration is different 

from the original system demand and it will naturally lead to the different electricity price. 

Fig. 7.6 shows the bidding curve at 18:00 and 03:00 of the studied winter weekday for 

different cases. The demand curve in the reference case moves to the right and the demand 

curve in the optimal case moves to the left at 18:00, because the total system demand in 

Nordic countries increases in the reference case and decreases in the optimal case at this hour. 

From this figure, it can be observed that the spot price increases in the reference case and 
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decreases in the optimal case at 18:00. The spot price increases in the optimal case at 03:00, 

because the total system demand in Nordic countries increases in the optimal case at this hour. 

 

(a) 

 

(b) 

Fig. 7.6. (a) The bidding curve at 18:00 of the studied winter weekday. (b) The bidding curve at 03:00 

of the studied winter weekday (yellow line: generation curve, black line: original demand curve, blue 

line: demand curve in the reference case, red line: demand curve in the optimal case). 

 

The bidding curve can be drawn for each hour in the studied day and the new spot 

price for both the reference case and the optimal case can be calculated. Finally, Fig. 7.7 

illustrates the original spot price, the spot price for the reference case and the spot price for 

the optimal case in the studied day. There is a higher peak in the spot price for the reference 
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case at around 18:00 due to all PEVs charging at this time. The spot price for the optimal case 

increases in the early morning and decreases at around 18:00 due to the PEV optimal 

charge/discharge operations. However, the PEV charging/discharging behavior will change 

again according to these new electricity prices. This issue will be discussed in the next section. 

 

Fig. 7.7. The original spot price, the spot price for the reference case and the spot price for the optimal 

case in the studied day (black line: original price, blue asterisk line: the reference case, red diamond 

line: the optimal case). 

 

7.3   The Interaction between Electricity Price and System Demand 

 

7.3.1  Problem Formulation  

The charging/discharging behaviors of PEVs have some impacts on the spot price as 

discussed in the Section 7.2. However, the new spot price will also affect the 

charging/discharging behaviors of PEVs again. So it can be formulated as an interaction 

problem. In this section, the interaction  between electricity price and system demand will be 

studied. 

Fig. 7.8 illustrates the flow chart of the proposed algorithm to this interaction problem. 

The parameters of the algorithm, such as the original system demand, the spot price and 

original bidding curve from both generation side and demand side, are initialized in the first 

step. Then the PEVs charge/discharge optimally according to the electricity price in order to 

achieve the minimum electricity costs in the day as discussed in Chapter 6. The consumers 

also shift their other loads according to the electricity price in order to achieve the minimum 
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electricity costs in the same day as discussed in Chapter 3. The total system demand in Nordic 

countries is then calculated based on the PEV optimal charging/discharging energy and 

shifted load by consumers. Finally, the new price will be calculated according to the total 

system demand as discussed in Section 7.2. The algorithm makes a lot of iterations in order to 

find the final solution until the stopping criterion is satisfied. The stopping criterion is no 

further energy cost saving can be achieved for both PEV owners and consumers or that the 

maximum number of iterations is reached. 

 

Fig. 7.8. The flow chart of the proposed algorithm to this interaction problem. 
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7.3.2  Case Study of The Interaction between Electricity Price and System 

Demand 

The same winter weekday in the year 2010 is chosen as the study case. The spot price 

and the system demand of the winter weekday have been shown in Fig 7.3. It is assumed that 

the consumers can shift their other loads in the range (-5%~5%) of their original demand at 

each hour according to the electricity price. Fig. 7.9 shows the optimal load response without 

PEVs according to the electricity price and the total system demand in Nordic countries with 

PEV integration after the first iteration. It can be seen that the consumers shift their loads 

from high price periods to the low price periods in order to save their energy costs.  The total 

system demand increases a lot in the early morning and late night when the electricity price is 

lower during these periods. The total system demand generally decreases in the day time due 

to the optimal load response to the electricity price and optimal charge/discharge of the PEVs. 

The total system demand increases at 16:00 and 17:00 during the day time, because the 

electricity price is relatively low at the 2 hours during the day time. 

 Then the bidding curve can be drawn for each hour using the new total system 

demand in the studied day and the new spot price can be calculated. Fig. 7.10 illustrates the 

original spot price and the spot price for each hour in the studied day after the first iteration. It 

can be observed that the new electricity price increases in the early morning and late night, 

and generally decreases in the day time. The new electricity price has similar pattern as the 

new total system demand in Nordic countries. It can be also observed that the new electricity 

price becomes flatter compared with the original electricity price. 

 

(a) 
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(b) 

Fig. 7.9. (a) The optimal load response without PEVs according to the electricity price after the first 

iteration (blue asterisk line: original load, red diamond line: optimal load). (b) The total system demand 

in Nordic countries with PEV integration after the first iteration (blue asterisk line: original system 

demand, red diamond line: new system demand). 

 

 

Fig. 7.10. The original spot price and the spot price for each hour in the studied day after the first 

iteration (blue asterisk line: the original price, red diamond line: the new calculated price). 

 

The consumers may then shift their load optimally and charge/discharge their PEVs 

optimally according to the new electricity price again, which has been illustrated in Fig. 7.10. 

The same procedures can be adopted at each iteration, as shown in Fig. 7.8. Fig. 7.11 
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illustrates the original electricity price and the final new electricity price for each hour in the 

studied day. It can be observed that the final new electricity price becomes even flatter 

through the whole studied day compared with the electricity price after the first iteration. The 

original system demand and the final new system demand for Nordic countries for each hour 

in the studied day are shown in Fig. 7.12. It can be concluded that both the electricity price 

and the system demand will become flat in a long run, when the PEVs can be optimally 

charged/discharged and the load can be optimally shifted to other time periods.  

 

Fig. 7.11. The original electricity price and the final new electricity price for each hour in the studied 

day (blue asterisk line: the original price, red diamond line: the final new calculated price). 

 

 

Fig. 7.12. The original system demand and the final new system demand for Nordic countries for each 

hour in the studied day (blue asterisk line: the original system demand, red diamond line: the final new 

system demand). 
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7.4   Summary 

 

This chapter first presents the impact of different PEV charging/discharging strategies 

on the spot market price. When the dumb charging is adopted for all PEVs in Nordic 

countries, there is a high spot price peak in the late afternoon. When the optimal 

charging/discharging strategy is adopted for all PEVs in Nordic countries, the spot price 

increases in the early morning and decreases in the late afternoon. 

In this chapter, the interaction between the electricity price and the system demand is 

also studied. Both the optimal PEV charging/discharging strategy and the optimal load 

response according to the electricity price, which have been proposed in the previous chapter, 

are adopted in this chapter. It can be concluded from the simulation results that both the 

electricity price and the system demand will become flat in a long run, when the PEVs can be 

optimally charged/discharged and the load can be optimally shifted to other time periods 

according to the electricity price.  
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Chapter 8 

 

Conclusions and Future Work 

 

8.1   Conclusions 

 

This dissertation has investigated the characteristics of a distribution system under a 

dynamic electricity-pricing, load management system and under a large number of distributed 

generation units. The characteristics of a power system with wind turbines, DG units, loads 

and electricity prices have been studied.  Further, the effects of energy storage systems have 

been considered, and an optimal operation strategy for energy storage devices in a large scale 

wind power system in the Danish competitive electricity market is proposed. Finally, the 

interactions between the electricity market and the system operation and control strategies 

have been explored. 

The Danish power system is currently the grid area in the world that has the largest 

share of wind power in its generation profiles, with around 20% of its annual consumption 

generated by wind turbines. In this thesis, the Danish power system, which may represent the 

future of competitive electricity markets in some ways, is chosen as the studied power system. 

10 year actual data from the Danish competitive electricity market are collected and analyzed. 

The relationship among the electricity price, the consumption and the wind power generation 

in the electricity market is investigated. The spot price and the regulation price generally 

decrease when the wind power generation in the power system increases or the consumption 

of the power system decreases. The statistical characteristics of the spot price and the 

regulation price for different consumption periods and wind power generation are analyzed. 

These findings are useful for wind power generation companies to make an optimal bidding 

strategy so that the imbalance cost of trading wind power on the electricity market can be 

reduced. 

The formulation of an imbalance cost minimization problem for trading wind power 

in the Danish short-term electricity market is presented in the thesis. Because of the 

uncertainty of the regulation price, the activated regulation of the power system and the 

forecasted wind power generation, stochastic optimization and a Monte Carlo method are 

adopted to find the optimal bidding strategy for trading wind power in the Danish short-term 
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electricity market in order to minimize the imbalance costs for regulation. Simulation results 

show that the stochastic optimal bidding strategy for trading wind power in the Danish short-

term electricity market is an effective measure to maximize the revenue of the wind power 

owners. 

Then the load response to electricity price using demand side management is studied 

in the thesis. Consumers may shift their loads from high price periods to the low price periods 

in a day in order to save their energy costs. A load optimization method to save the consumers’ 

energy costs as much as possible is proposed. Optimal load responses of 3 typical loads in 

Denmark are studied. A distribution system where wind power capacity is 126% of maximum 

loads is chosen as the study case. The optimal load response to the electricity price generates 

different load profiles. Simulation results show that these kinds of load patterns have some 

good impacts on the power system constrains in the distribution system with high wind power 

penetrations. The overloading percentage of the transformer in the distribution system 

decreases from 3.23% to 1.69% with the optimal load response to the electricity price. 

Power loss minimization in a distribution system may be realized by using the 

optimal load response according to the electricity price. In this thesis, an idea of power loss 

minimization in a distribution system by choosing an optimal hourly electricity price is 

proposed. The power loss minimization problem in distribution systems is modeled into two 

layers: load optimization to electricity prices (the inner layer) and power loss minimization 

with optimal electricity prices (the outer layer). The objective functions and the necessary 

assumptions of each optimization layer are presented. On the basis of the developed 2 layer 

model of the optimization problem, a fuzzy adaptive particle swarm optimization algorithm is 

presented as a tool for power loss minimization in distribution systems. Around 12% power 

loss reduction in the studied distribution system can be achieved when the proposed idea and 

algorithm are employed. It can be concluded from the simulation results that optimal 

choosing of electricity prices using the FAPSO algorithm is an effective measure to minimize 

the power loss in the distribution system. 

The optimal load response according to electricity prices for different hours for 

demand side management will generate different load profiles. When the power system 

operates near its physical boundaries, a different electricity price for different hours may be 

given to consumers in order to motivate them to reduce or reschedule their demands. 

Consequently, the power flow may be changed and the power systems will be operated in a 

good condition, when appropriate electricity prices are given to consumers. The ideas and 

algorithms of power system operation improvement using demand side management are 

proposed in this thesis. Three different cases are studied to solve power system constraints, 
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improve power system small signal stability and power system transient stability by deciding 

appropriate electricity prices for different hours. It can be concluded from the simulation 

results that optimal choosing of electricity prices is an effective measure to improve operation 

conditions of power systems with high wind power penetrations. 

Then the benefits of using energy storage systems in the Danish competitive 

electricity market are researched in the thesis. An optimal operation strategy of battery energy 

storage systems to the spot market electricity price in order to achieve maximum profits of the 

BESS is proposed in this thesis. Two kinds of BESS based on PSB battery and VRB battery 

technologies are studied. Although the annual revenue of the VRB battery is higher than the 

annual revenue of the PSB battery, the payback period of the PSB battery is shorter than the 

payback period of the VRB battery. So the PSB battery is the better investment choice for the 

time being. The payback period of the PSB battery is around 14 years if the power capacity 

and energy capacity of the PSB battery are chosen appropriately. 

This thesis also describes a study of integration of plug-in electric vehicles in the 

power systems with high wind power penetrations. An optimal operation strategy of PEVs in 

relation to the hourly spot price in competitive electricity markets is proposed in order to 

achieve minimum energy costs for the PEV owners. The total daily energy costs of all PEVs 

are decreased from 23.1 kEUR to -26.2 kEUR in the studied winter weekday, if the proposed 

optimal operation strategy is used. The application of battery storage based aggregated PEV is 

then analyzed as a regulation service provider in the western Danish power system with high 

wind power penetrations using LFC. It can be concluded from the simulation results that the 

power exchange deviations are significantly reduced between West Denmark-UCTE 

interconnections with the use of PEV regulation power. The PEVs can not only optimally 

charge/discharge in the spot market to minimize their energy costs, but also provide 

regulation power at the same time for both high and low wind speed days. The daily revenue 

for PEV owners is 30.0 kEUR for providing regulation power in the studied winter weekday. 

The annual revenue is estimated to 204 EUR per PEV, if the PEV owners would optimally 

charge/discharge in the spot market and provide regulation power at the same time. 

Finally, the impacts of different PEV charging/discharging strategies on the spot 

market price are studied in this thesis. When the dumb charging is adopted for all PEVs in 

Nordic countries, there is a high spot price peak in the late afternoon. When the optimal 

charging/discharging strategy is adopted for all PEVs in Nordic countries, the spot price 

increases in the early morning and decreases in the late afternoon. The interaction between the 

electricity price and the system demand is also researched. It can be concluded from the 

simulation results that both the electricity price and the system demand will become flat in a 
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long run, when the PEVs can be optimally charged/discharged and the load can be optimally 

shifted to other time periods according to the electricity price. 

The consumers are assumed very sensitive to the electricity price and smart enough to 

make the optimal decisions, which have been illustrated in the research project. And also for 

the time being, private consumers will not have the spot market price as their price, their real 

expected fluctuation in the price will be much lower due to tax and other tariffs.  Therefore, 

the real consumer behaviors may be different from the optimal ones as discussed in this thesis. 

However, the results presented in the thesis can be considered as the best performance from 

the private consumers, if they are subject to the variable spot market prices. 

 

8.2   Future Work 

 

Some other interesting and relevant topics are identified during the process of the 

research work. The important research topics that could be considered for further 

investigation in the future are listed as follows. 

1) The relationship among the electricity price, the consumption and the wind power 

generation in the Nordic intra-day balancing market (Elbas) needs to be 

investigated. A better market structure and mechanism for the Elbas needs to be 

designed in order activate this market. 

2) The other economic benefits of the battery energy storage system (BESS) by 

providing spinning reserve, frequency regulation and renewable energy support 

needs to be studied. 

3) The operating and maintenance cost of the BESS and its effects on the optimal 

operation strategy of the BESS needs to be researched. 

4) The lifetime of the batteries in PEVs needs to be evaluated when the PEVs are 

optimal charged/discharged and provide regulation power to the power systems. 

5) The customers’ responding characteristics, such as attitudes towards the new 

technology, sensitivity to electricity price, needs to be further studied. The effects 

of tax issue in the customers’ energy costs also need to be addressed. 

6) The proposed optimal operation and control strategies needs to be further 

validated in a much larger power system. Other physical constraints which affect 

the possibilities to implement the proposed control strategies, such as information 

and communications technology (ICT) and automatic control system, etc., need 
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to be researched. A Real Time Digital Simulator (RTDS) will be used to test and 

verify the proposed algorithms. 
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Appendix 

Detailed Models of PEV in DIgSILENT 

 

 

Fig. A.1. The single bus bar model for Western Danish power system. 

 

 

Fig. A.2. The model of load frequency control in DIgSILENT PowerFactory.



 
 
 

 

Fig. A.3. The detailed model of the aggregated PEV battery in DIgSILENT PowerFactory. 


