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PREFACE 

 

This Ph.D. thesis is the result of a research project conducted at the Section for Sustainable 

Biotechnology, Aalborg University Copenhagen, Denmark from August 2009 to August 

2012. Associate Professor Hinrich Uellendahl was the main supervisor and Professor 

Birgitte K. Ahring was the co-supervisor. The Ph.D. research was financially supported by 

the Energy Technology Development and Demonstration Program of the Danish Energy 

Council, grant no.: 64009-0010. 

 

The thesis is organized as a short summary in the beginning followed by a collection of 

journal manuscript, consisting of a review paper and four original research papers, ending 

with brief concluding remarks and future research. The individual manuscripts are 

presented with the journal for which the individual manuscripts are submitted to or 

intended as presented below. 

 

I Biofuels and biomaterials production in a biorefinery – key features for sustainable 

and economically viable concepts. 

Njoku, S. I. Uellendahl, H. Ahring, B. K.  

Intended for submission to Sustainable Bioenergy Systems 

 

II Pretreatment as the crucial step for a cellulosic ethanol biorefinery: Testing the 

efficiency of wet explosion on different types of biomass. 

Njoku, S. I. Ahring, B. K. Uellendahl, H.  

Published in Bioresource Technology. 

 

III Tailoring wet explosion process parameters for the pretreatment of Cocksfoot grass 

for high sugar production. 

Njoku, S. I. Ahring, B. K. Uellendahl, H. 

In press in Applied Biochemistry and Biotechnology 

 



IV Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass 

at high dry matter concentration for cellulosic ethanol production. 

Njoku, S. I. Uellendahl, H. Ahring, B. K.  

Submitted to Energy Science and Engineering  

 

V Production of ethanol from the hemicellulose fraction of cocksfoot grass using 

Pichia stipitis. 

Njoku, S. I. Iversen, J. A. Uellendahl, H. Ahring, B. K.  
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SUMMARY 

 

The negative impacts of fossil fuel consumption on the environment, rising prices for 

fossil fuels and progressive demand for energy have renewed the interest of society in 

searching for alternative renewable and sustainable forms of energy. Hence, the alternative 

energy supply must confirm with some basic requirements including substantial reduction 

of greenhouse gas emission, strengthening rural and agricultural economies, increasing 

sustainability of the world transportations system, and capability of being produced from 

renewable and sustainable sources. Production of biofuels especially bioethanol from 

lignocellulosic plant biomass seems to be an interesting replacement for conventional fossil 

fuels. Bioethanol can be applied in many ways; however, today the major use of ethanol is 

as an oxygenated fuel additive. Blending bioethanol and gasoline has several advantages, 

like the higher octane number of bioethanol (96-113) increases the octane number of the 

blended, reducing the need for toxic, octane-enhancing additives. Bioethanol also provides 

oxygen for the fuel, which will lead to the reduced emission of CO2 and un-combusted 

hydrocarbons. 

At present, bioethanol is mostly produced from cereals (corn or grain) and sugarcane 

juice (so called – 1st generation). However, the use of these agricultural crops for bioethanol 

production is unsustainable in near future scenarios since it is conflicting with food and 

feed production and perhaps very expensive. Thus, lignocellulosic biomass such as 

agricultural residues, forestry waste and municipal solid waste present a sustainable source 

for the production of liquid biofuels and other high valuable biomaterials (2nd generation) 

because they are abundant and inexpensive. These facts have motivated extensive research 

toward making an efficient conversion of lignocellulosic materials into sugar monomers for 

subsequent fermentation to bioproducts. 

The complex structure of native lignocellulosic biomass makes it however, difficult for 

microorganisms to access; it is mainly composed of cellulose, hemicelluloses, and lignin. 

Therefore, production of liquid biofuels from lignocellulosic biomass creates technical 

challenges, such as the need for pretreatment to make sugars available for the subsequent 

fermentation steps.  
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The main goal of this research was to optimize the wet explosion (WEx) pretreatment 

process parameters of lignocellulosic biomass for bioethanol production in parallel to a 

demonstration plant (BornBioFuel) concept. Several lignocellulosic biomasses (Lucerne, 

Medicago sativa (Marshal), ryegrass, Lolium (Mathilde), fescue grass, Festuca 

arundinacea (Hykor), cocksfoot grass, Dactylis glomerata, (Amba), rye fescue, 

Festulolium (Perun), forage grass - a mixture of 10% red clover grass (Rajah), 10% white 

clover grass (Klondike), 40% rye fescue (Perun), 20% ryegrass (Indiana), 20% ryegrass 

(Mikado), and wheat straw) from the island of Bornholm, Denmark, was initially screened 

for their potential of bioethanol production by employing wet explosion as a modified 

dilute acid pretreatment and subsequent enzymatic hydrolysis of cellulose fractions. 

Wheat straw and cocksfoot grass were identified as the two most promising biomass 

resources with the highest potential for further optimization of process parameters of the 

different steps of the whole concept. However, the research focus was finally directed to 

cocksfoot grass, while wheat straw was used as a reference biomass sample. This is due to 

the fact that wheat straw has been extensively investigated by many studies dealing with 

cellulosic bioethanol production especially in Denmark. Wet explosion pretreatment was 

applied to cocksfoot grass and pretreatment process parameters were optimized using 

response surface analysis for increasing the production of fermentable sugars. WEx 

pretreatment temperature (160-210 oC), retention time (5-20 min) and dilute sulfuric acid 

(0.2-0.5%) were the investigated process parameters. It was observed that higher 

pretreatment temperature had major increasing effect on the glucose yield regardless of acid 

concentration. On the other hand, increasing the acid concentration and process temperature 

shows a negative effect on the pentose sugars yield together with longer retention time, and 

facilitated high formation of degradation products. From the overall sugar yields, it was 

found that higher pretreatment temperature with moderate acid concentration and lower 

retention time was best for achieving higher total sugars yield. Moreover, when looking at 

the individual sugar yields from cellulose or hemicellulose fractions, it was obvious that the 

release of hexose and pentose sugars needs different pretreatment severity, as the 

conditions where the highest hexose sugars were obtained is detrimental to the release of 

pentose sugars.  
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Further pretreatment of cocksfoot grass was carried at high dry matter concentration 

(25%) together with addition of dilute sulfuric acid or oxygen pressure. The resulting solid 

fraction was fermented to ethanol by the yeast Saccharomyces cerevisiae and liquid 

hydrolysate was fermented to ethanol by the yeast Pichia stipitis CBS 6054 with a higher 

yields.  

This present investigation showed, however, that wet explosion pretreatment of 

lignocellulosic biomass is an effective pretreatment method that can easily be adapted to 

the input of different type of biomass materials at high dry matter concentration and can 

accommodate several types of additives, e.g. (O2/dilute acid) enabling the production of 

bioethanol both from hexose and pentose sugars at higher yields.  
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DANSK SAMMENFATNING 

 

Den stadig stigende negative indflydelse fra afbrænding af fossile brændsler, stigende priser på 

fossil olie og voksende efterspørgsel efter energi har genskabt en samfundsinteresse for at finde 

alternative, bæredygtige energiformer. Derfor er det nødvendigt, at alternative energiformer både 

indebærer en betydelig reduktion af drivhusgasser, og samtidig styrker lokale økonomier og 

landbrug. Alternativerne bør desuden øge bæredygtigheden af verdens transportsystemer baseret på 

fornybare ressourcer. Produktion af biobrændstoffer, særlig bioethanol fremstillet på basis af 

lignocelluloseholdig plantebiomasse, synes at være et interessant alternativ til konventionelle fossile 

brændsler.  

Dette skyldes, at bioethanol kan anvendes på flere måder. I dag er den hyppigste anvendelse som 

tilsætning til konventionelle brændstoffer, hvor f.eks. tilsætning af bioethanol til benzin øger 

oktanindholdet og på denne måde overflødiggør brug af giftige, oktanforstærkende kemikalier. 

Iltindholdet i bioethanol medfører desuden renere forbrænding, som reducerer udledning af både 

CO2 og uforbrændte kulbrinter. 

I dag fremstilles bioethanol overvejende af majs og saft fra rørsukker (såkaldt 1. generation 

biobrændstoffer). Imidlertid er anvendelsen af afgrøder til fremstilling af bioethanol ikke 

bæredygtig, da den er i konflikt med både fødevare- og foderforsyning og desuden er meget dyr. 

Derimod er lignocelluloseholdig markaffald, affald fra skovbrug samt brændbart affald fra byerne 

eksempler på bæredygtige ressourcer til produktion af flydende brændstoffer og andre værdifulde 

biomaterialer (såkaldt 2. generation) fordi de er både talrige og billige. Derfor foregår der 

omfattende forskning i nedbrydning af lignocelluloser til sukkermonomerer som derefter omdannes 

til bioprodukter ved fermentering. Mikroorganismer har imidlertid problemer med at omsætte den 

komplekse struktur af rå, lignocelluloseholdig biomasse, som hovedsagelig består af 

komponenterne cellulose, hemicellulose og lignin. For at frigøre sukrerne, er det derfor nødvendigt 

at ubehandlet biomasse udsættes for en forbehandling forud for mikroorganismernes fermentering.  

Hovedmålsætningen for nærværende forskningsarbejde var et forbedre vådeksplosion (WEx) 

forbehandlingen af lignocelluloseholdig biomasse til bioethanolproduktion og benytte resultaterne i 

et demonstrationsanlæg (BornBioFuel) lokaliseret på Bornholm. Til at begynde med blev en række, 

forskellige biomasser fra Bornholm undersøgt for deres potentiale i biothanolproduktion ved at 

benytte en forbehandling som bestod af vådeksplosion og mild syrebehandling, efterfulgt af 

enzymatisk hydrolyse af cellulosefraktionen. Arterne omfattede: Lucerne (Medicago sativa), 

Rajgræs (Lolium), Svingel (Festuca arundinacea), Hundegræs (Dactylis glomerata), Rajsvingel 
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(Festulolium), fodergræs – en blanding af 10% Rødkløver, 10% Hvidkløver, 40% Rajsvingel, 40% 

Rajgræs (2 sorter) – samt hvedehalm. Hvedehalm og Hundegræs viste sig at være de mest lovende 

arter med hensyn til optimering af forbehandling og sukkerekstraktion. Til yderligere undersøgelser 

faldt valget imidlertid på Hundegræs, mens hvedehalm blev benyttet som reference. Baggrunden for 

dette valg var, at forskning i hvedehalm til bioethanolproduktion allerede var omfattende, i 

særdeleshed i Danmark. 

For at maksimere produktion af mikrobiel omsættelige sukrer, blev Hundegræs udsat for 

forbehandling med vådeksplosion, og øvrige processparametre blev optimeret vha. “Response 

Surface Analysis”. Processparametrene var følgende: WEx temperatur (160-210°C), retentionstid 

(5-20 min.) og syrebehandling blev gennemført med 0,2-0,5% svovlsyre. Det blev konstateret, at jo 

højere forbehandlingstemperatur desto højere glukoseudbytte; uanset syrekoncentrationen. Derimod 

havde høj syrekoncentration, høj temperatur og lang retentionstid en negativ indflydelse på 

sukkerudbyttet mht. pentosesukrer, og der blev i stedet dannet mange nedbrydningsprodukter som 

hæmmer fermentering. Generelt var høj temperatur i kombination med moderat syrekoncentration 

og kort retentionstid, den mest effekive metode til at opnå et højt udbytte af sukrer. Dog viste det 

sig ved nærmere undersøgelse, at forbehandling som var optimal for ekstraktion af hexosesukrer var 

skadelig for ekstraktion af pentosesukrer. 

Yderligere forbehandling af Hundegræs blev foretaget ved tilsætning af fortyndet svovlsyre eller 

ved iltbehandling i forbehandlinger med højt tørstofindhold (25%). Resultatet blev hhv. en tør og en 

vandig fraktion. Den tørre blev fermenteret til ethanol af bagegær Saccharomyces cerevisae og den 

vandige fraktion blev fermenteret med et højere udbytte af gæren Pichia stiptis CBS6054. 

Nærværende studier viste, at forbehandling af lignocelluloseholdig biomasse vha. vådeksplosion 

er effektiv da metoden kan behandle en række forskellige biomasser med højt tørstofindhold. 

Desuden rummer metoden mulighed for at justere processen med både ilt-og syrebehandling som 

muliggør produktion af bioethanol med højt udbytte på grundlag af både pentose- og hexosesukrer. 
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INTRODUCTION AND AIM OF THE PhD STUDY 

 

Nowadays both energy crisis and climate change are key issues all over the world. 

There will be severe energy shortage in the coming 50 years. According to current research 

and future predictions, the crude oil will run out within 40 to 70 years, and natural gas will 

be finished within 50 years (Courtney and Dorman, 2003). Global average temperature is 

predicted to increase 1.4 to 5.8 °C by year 2100 and continue to rise long after that (Dow 

and Downing, 2006). Several investigations point out that this will inevitably lead to 

drought, flooding, increases in hurricanes and tornadoes and possibly widespread crop 

failures (Sen, 2009; Mills, 2009). Global warming as the result of climate change is an 

established fact. It is now widely accepted that it is caused by the rapidly increasing 

concentrations of greenhouse gas (CO2 and others) in the atmosphere, which is emitted 

mainly by the combustion of fossil fuels containing carbon like coal, oil, and natural gas 

(Jaynes, 2010). Security of energy supply, especially sustainable energy, and reduction of 

CO2 emission are priorities on agenda worldwide. Renewable energy is politically 

demanded. The European Community has agreed targets for 2020 on renewable energy, 

which established a high standard for all Member States, aiming a 20% share of renewable 

energy sources by the year 2020 and a 10% share of renewable energy specifically in the 

transport sector (European Commission Energy, 2010).  

The use of renewable biomass resources to produce liquid biofuels such as bioethanol 

offer attractive solutions to reducing greenhouse gas (GHG) emissions, decreasing reliance 

on foreign oils, addressing energy security concerns, strengthening rural and agricultural 

economies, and increasing sustainability of the world transportations system (Demirbas, 

2007). Apart from biofuels, many other valuable products for chemical and pharmaceutical 

industry can be produced from organic byproducts through microbial fermentation 

(Thomsen, 2005). Most current bioethanol production processes (1st generation) utilize 

more easily degradable biomass feedstocks such as cereals (corn or grain) and sugarcane 

juice. However, the utilization of these agricultural crops exclusively for energy production 

is heavily conflicting with food and feed production (Pimental et al., 2009; Wheals et al., 
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1999). Great effort is enforced on advancing a cellulosic bioethanol concept (2nd 

generation) that utilizers lignocellulosic biomass.  

Lignocellulosic plant biomass such as agricultural waste (wheat straw, corn stalks, and 

sugarcane bagasse), industrial waste (pulp and paper), and municipal solid waste and 

forestry residues are promising resources because they are the most abundant and 

inexpensive natural renewable organic material that exist on earth (Zaldivar et al., 2001). 

As most often being a byproduct from food and feed production, lignocellulosic biomass 

does not compete with the production of edible crops (Chen and Qiu, 2010 and Petersson et 

al., 2007) and has the potential to be the feedstock for the production of a considerable 

proportion of transport fuels if cost effective conversion processes are available (Kristensen 

et al., 2008). From the economical point of view, lignocellulose has an advantage over 

other agriculturally important biofuels feedstocks such as cornstarch, potatoes and 

sugarcane juice because it can be easily produced at significantly lower cost than food 

crops. The economically viable utilization of lignocellulosic plant biomass for the 

production of biofuels and other biobased products is, however, still a challenge. The 

lignocellulosic biomass structure is highly complex, mainly composed of cellulose, 

hemicelluloses, and lignin that are not directly accessible for microbial degradation (Chen 

and Qiu, 2010). Therefore, pretreatment is a key process to break the lignocellulosic 

structure and to make it available for hydrolyzing enzymes to release the sugar monomers 

that can finally be converted into ethanol or any other valuable bioproducts (Georgieva et 

al., 2008). 

The goal of pretreatment is to increase the biomass surface area and break the lignin seal 

in order to release cellulose and hemicellulose, and decrease the crystallinity of the 

cellulose. Pretreatment is among the most costly steps in biochemical conversion of 

lignocellulosic biomass, accounting for up to 40% of the total processing cost (Eggeman 

and Elander, 2005; Wyman et al., 2005; Lynd, 1996; Percival Zhang et al., 2009). Thus, 

cost-effective pretreatment of lignocellulosic biomass is a major challenge of cellulosic 

biofuels and bioproducts technology research and development in recent years (Hamelinck 

et al., 2005). The choice of a suitable pretreatment method and the adjustment of the 
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pretreatment parameters are crucial for the efficiency of the subsequent conversion of any 

biomass in a biorefinery concept.  

Various pretreatment methods have been proposed to make lignocellulosic biomass 

susceptible to enzymatic and microbial conversion (Galbe and Zacchi, 2002; Hendriks and 

Zeeman, 2009), wet oxidation (Schmidt and Thomsen, 1998), dilute acid hydrolysis (Saha 

et al., 2005), and steam explosion (Ballesteros et al., 2006). Wet oxidation pretreatment 

method has been applied in laboratory and pilot-scale process for fractionation of several 

lignocellulosic biomass such as wheat straw, sugarcane bagasse, softwood, corn stover, 

clover-ryegrass mixtures and rice husk (Ahring and Westermann, 2007; Westermann and 

Ahring, 2005; Varga et al., 2003; Martin et al., 2008; Banerjee et al., 2009; Palonen et al., 

2004). Wet oxidation make use of oxidizing agent such as H2O2, water and air or oxygen at 

pretreatment temperatures around 180-200oC for 5-30 min (McGinnis, 1983). Dilute acid 

pretreatment is widely recognized in the field of biofuels production for pretreatment of 

lignocellulosic biomass. High yields of sugars from lignocellulosic biomass can be 

achieved from dilute acid pretreatment. The mode of action is hemicellulose removal and 

thus, enhances the digestibility of cellulose in the residual solids. The process is mainly 

carried out under high temperature and low acid concentration and the most widely used 

acid under this process is sulfuric acid (Kim et al., 2011; Saha and Bothast, 1999; Foston 

and Ragauskas, 2010). Steam explosion is the most commonly used method for 

pretreatment of lignocellulosic biomass because it does not require the addition of 

chemicals (uncatalyzed steam explosion). The mode of action involves treatment of 

chipped biomass with high-pressure saturated steam, followed by a sudden drop in 

pressure, which makes the materials undergo an explosive decompression. This sudden 

pressure release reduces the temperature and quenches the reaction at the end of the 

pretreatment. Steam explosion is typically initiated at temperatures around 160-260oC 

(corresponding pressure, 0.69-4.83 MPa) for several seconds to a few minutes before the 

material is exposed to atmospheric pressure (Boussaid et al., 1999; Kurabi et al., 2005; 

Varge et al., 2004; Ruiz et al., 2006; Carrasco et al., 1994; Josefsson et al., 2002; 

Ballesteros et al., 2004; Mes-Hartree and Saddler, 1983; Sun et al., 2004; Laser et al., 2002; 

Cullis et al., 2004). 
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The focus of the present PhD thesis was the optimization of key processes of an 

integrated concept for cost efficient cellulosic biofuels production that was the basis for a 

projected demonstration plant (BornBioFuel concept). The concept integrates biomass 

pretreatment, enzymatic hydrolysis of the cellulose, fermentation of both C6 and C5 

monomers and the conversion of residual organic matter into valuable products. Residual 

salts are separated to be utilized as organic fertilizer while the residual water stream is 

recirculated as process water (see Fig. 1).  

 

 
Fig. 1. The BornBioFuel concept – basis for the optimization of different steps of cellulosic 

biofuels processes. 

 

The optimization of the concept included the most efficient combination of pretreatment, 

solid-liquid separation, enzymatic hydrolysis of sugar polymers, fermentation of both C6 

and C5 sugar monomers and the separation of residual organic matter for further 

processing. The key processes for the PhD were to adapt the concept to potential types of 
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biomass other than wheat straw, to tailor the pretreatment method for a highly efficient C6 

and C5 sugar fermentation into ethanol with the target to reduce the costs of cellulosic 

ethanol production significantly.   

The PhD thesis consists of four parts: (Review paper – paper I) the general overview of 

biorefinery concepts with existing technologies for biofuels production and applications in 

parallel to the BornBioFuel concept; the second part (Paper II-III) presents the original 

contribution of the thesis with an insight into different biomass resources from the island of 

Bornholm, Denmark for their potential of bioethanol production and the identification of 

the most promising types of biomass which can be used for the BornBioFuel plant; the third 

part (Paper IV) presents the pretreatment at high dry matter concentration of w/w 25% with 

addition of oxygen or acid and fermentation of hexose sugars (C6) to ethanol by the yeast 

Saccharomyces cerevisiae, with quantifying the effect of wet explosion process parameters 

on the ethanol yield; the fourth part (Paper V): presents the possibility of complete 

utilization of the hemicellulose hydrolysate to ethanol by the yeast Pichia stipitis. The 

effect of potential inhibitors produced during the pretreatment on the Pichia fermentation 

was investigated.  
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Abstract 

 

Depleting fossil fuels and the increasing demand for energy has necessitated the move to 

alternative renewable forms of energy. Lignocellulosic biomass presents a sustainable and 

renewable source for the production of high valuable biobased products in a biorefinery 

system. This current paper reviews the concept of biorefinery system in relation with 

different process steps in conversion of lignocellulosic biomass. Biorefinery similar to 

petroleum refinery has the capabilities to convert several types of biomass into a wide range 

of bioproducts such as energy, fuels, chemicals, food, feed, and etc. through jointly applied 

conversion technologies. However, there still the needs for the development and 

implementation of integrated biorefinery system which can significantly handle all the 

fractions of biomass to produce varieties of products on single platform at a continuous 

process system in a diversify scenario. Such a system should be able to utilize different 

kinds of technologies for conversion of the raw materials and be flexible in processing 

which will greatly reduce market and technical risk, and extensively lower the process 

costs. Therefore, the main focus should be directed towards the optimization and validation 

of different process steps involves in biorefinery system. In this way, the cost of production 

of energy and fuels as the driving force for the development of biorefinery as well as high-

value chemicals will be significantly reduced to be more cost-competitive with fossil fuels 

for their commercial scaling-up.  

 

Keywords: Biorefinery concept; biomass plants; lignocellulosic feedstock; biofuels & 

bioproducts; pretreatment; development & applications.    
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INTRODUCTION 

 

The global energy supply is dominated by fossil fuels (petroleum, natural gas, coal, 

minerals). Currently, fossil energy resources account for about 79% of the global energy 

consumption (European Commission, 2005) and its use is unsustainable at current and 

future rates consumption. The combustion of the above-mentioned fossil fuels also 

contributes significantly to environmental pollution and greenhouse gas (GHG) 

accumulation on the biosphere. Furthermore, the depletion of fossil resources and the 

increasing demand for energy has necessitated the search for alternative renewable forms of 

energy. Biomass (organic materials of biological origin) present a sustainable and 

renewable source for the production of multiple products, including higher-value chemicals 

for industrial purposes, as well as liquid fuels for transportation sector and power (Sauer et 

al., 2008).  

The use of renewable biomass resources to produce liquid biofuels such as bioethanol 

offer attractive solutions to reducing GHG emissions, decreasing reliance on foreign oils, 

addressing energy security concerns, strengthening rural and agricultural economies, and 

increasing sustainability of the world transportations system (Demirbas, 2007). Biomass 

can be sustainably utilized for the production of clean and environmental-friendly energy 

and biobased products in several ways. One main approach that has gained much attention 

in the recent years is by integrated processing in biorefinery system (Holm-Nielsen et al., 

2007). The term “biorefinery” was initially established by National Renewable Energy 

Laboratory (NREL) during 1990, for the utilization of biomass for production of fuels and 

other biobased products. This term refers to a facility for achieving large-scale integrated 

production of fuels, power, chemicals, food, and feed from biomass (fig. 1). It is analogous 

to petroleum refinery producing a wide variety of products from crude oil, the same 

principles can also be applied to a biomass based refinery (biorefinery) to produce a 

sustainable and clean biobased products (Kamm et al., 2006).  

A wide range of products is delivered with multiple end uses, including: low-volume 

and high-value specialty chemicals that have niche uses in the food and other industries; 

high-volume and low-value liquid fuels for wide-spread use in the transport industry; heat, 
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electricity, and etc. (Fernando et al., 2006). The diversity in products gives a high degree of 

flexibility to changing market demands and allows such a system many options for gaining 

revenues and maintaining high profitability (Lasure and Zhang, 2004). This paper conveys 

the different concept in biorefinery systems and the integrated production process scheme 

of valuable biobased products. The overview of various process steps of the processing of 

lignocellulosic biomass in biorefinery systems are presented and discussed. The raw 

materials for biorefinery processes and applications and use of its various end-products 

were reviewed to a large extend.  

 
Fig. 1. Overview of an integrated biorefinery system, similar to petroleum refinery 

producing a wide range of high valuable biobased products from biomass feedstock. 

 

Biorefinery systems 

 

Basic principles of biorefinery system 

The first generation biofuels concept are the current biofuels produced primarily from 

agricultural crops such as corn ethanol in US, sugarcane ethanol in Brazil, palm oil 

biodiesel in Malaysia, and oilseed rape biodiesel in Germany (Sims et al., 2008). The 

technologies for first generation biofuels are matured to its commercial markets phase. The 

technology utilizes more easily degradable biomass feedstocks such as cereals (corn or 

grain) and sugarcane juice as input raw materials producing fixed amount or wide variety of 

bioproducts including ethanol and distillers dried grains with protein (DDG) as an animal 

feed (Bothast and Schlicher, 2005). However, the utilization of these agricultural crops 

exclusively for energy production is heavily conflicting with food and feed production 

(Pimental et al., 2009; Wheals et al., 1999), which sets limits in the increasing production 
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of biofuels of 1st generation. But, as biofuels offer a potentially attractive solution to 

reducing the use of fossil fuels, the demand for first generation biofuels will continue to 

grow especially, sugarcane ethanol that will continue to be produced sustainable in many 

countries around the world. Great effort is enforced on advancing a biorefinery technology, 

called the “lignocellulose feedstock (LCF) refinery” – 2nd generation biofuels concept 

(Kamm and Kamm, 2007), a system which is further characterized as “the carbon 

slaughterhouse” as described by Ahring and Langvad, (2008). It allows a mix of input 

lignocellulosic biomass, has the ability to use various types of processing technologies that 

can process almost 100% of input raw materials, and has the capability to produce a mix of 

higher-value chemicals while coproducing biofuels (Fernando et al., 2006). But the process 

technology of this system is complex and still in research and development phase with quite 

number of commercial, demonstration and pilot-scale plants around the world. Therefore, 

lignocellulosic materials can offer the potential to provide novel biofuels in the coming 

years. Hence, the need for research and development of this technology is essential in order 

to meet the demand of ever dream greener society and biobased products. Following, 

commercialization and policy support is needed for current and near-term opportunities to 

quickly grow the lignocellulosic biorefinery industry from its present phase. 

Like petroleum, lignocellulosic biomass has a complex composition. The goal of 

petroleum-based refinery is separation of main fractions of the substrate and its processing 

in order to obtain wide range of simple to handle and well defined chemically pure products 

from hydrocarbons. This principle of petroleum refineries must be transferred to 

biorefineries in order to create a healthier and efficient working biobased refinery (Kamm 

et al., 2006). The renewable and non-renewable refinery concepts are presented in Figure 2.  
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Fig. 2. Comparison of the basic principles of conventional refinery and biorefinery (Kamm 

et al., 2006). 

 

Choice of raw materials for biorefinery processes 

The choice of raw materials for biorefinery processes largely depends on its cost and 

availability, and it can also incorporate the conversion process cost. It is well documented 

that lignocellulosic biomass has great potentials over agricultural crops because it is 

available at large quantities, it is cheap and it has no controversy cause over feed and food 

production. Claassen et al. (1999) reported that the costs of agricultural crops such as 

cereals (corn and grain) usually account for 40-70% of the production costs of ethanol, and 

thus, the competitive production of ethanol on the basis of these materials is not realistic in 

near-future. On the other hand, lignocellulosic biomass has more complex structure; and 

therefore, effective utilization of all the components to produce high-value biobased 

products would play a significant role in economic viability process.  

Lignocellulosic plant biomass such as agricultural waste (wheat straw, corn stalks, and 

sugarcane bagasse), industrial waste (pulp and paper), and municipal solid waste and 

forestry residues are a promising resources because they are the most abundant and 
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inexpensive natural renewable organic material that exist on earth (Zaldivar et al., 2001). 

As most often being a byproduct from food and feed production, lignocellulosic biomass 

does not compete with the production of edible crops (Chen and Qiu, 2010 and Petersson et 

al., 2007) and has the potential to be the feedstock for the production of a considerable 

proportion of transport fuels if cost effective conversion processes are available (Kristensen 

et al., 2008). From the economical point of view, lignocellulose has an advantage over 

other agriculturally important biofuels feedstocks such as cornstarch, potatoes and 

sugarcane juice because it can be easily produced at significantly lower cost than food 

crops. The utilization of lignocellulosic plant biomass for production of biofuels and other 

biobased products is a challenge for economical viable because there are a number of 

technical barriers that need to be overcome before their potential can be realized. The 

lignocellulosic biomass structure is highly complex, mainly composed of cellulose, 

hemicelluloses, and lignin that are not directly accessible for microbial degradation (Chen 

and Qiu, 2010). Therefore, pretreatment is normally needed to break the lignocellulosic 

structure and to make it available for hydrolyzing enzymes to release the sugar monomers 

that can finally be converted into ethanol or any other valuable products (Georgieva et al., 

2008).  

 

Different types of biorefinery system 

 

Phase I biorefinery 

The biorefinery system has been categorized into three different types (Kamm et al., 

2006; van Dyne et al., 1999; Fernando et al., 2006). The Phase I biorefinery plant has fixed 

processing capabilities and uses grain as an input feedstock. A dry mill ethanol plant is an 

example of phase I biorefinery which produces a fixed amount of ethanol, feed co-products, 

and carbon dioxide (Fernando et al., 2006). It has almost no flexibility in processing and, 

thus, this type of plant can be used for comparable purposes only (Kamm et al., 2006).  
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Phase II biorefinery 

A Phase II biorefinery is the current wet milling technology that uses grain feedstock as 

input materials similar to dry milling. Contrary to Phase I, it has the capability to produce a 

wide variety of end products depending on product demand, market prices, and contract 

obligations. These products can includes but not limited to starch, high-fructose corn syrup, 

ethanol, corn oil, corn gluten feed and meal. This type of plant shares the opportunity to 

integrate industrial product lines with existing agricultural production units (Kamm et al., 

2006).  

 

Phase III biorefinery  

Phase III biorefinery is the most advanced biorefinery that uses a combination of 

biomass feedstock to produce multiple products by integration of various technologies. It 

has the ability to use various types of processing technologies and has the capability to 

produce a mix of higher-value chemicals while coproducing ethanol, which is mainly based 

on high-value low-volume and low-value high-volume principles (Fernando et al., 2006). 

However, the so-called Phase III biorefineries are mainly four complex biorefinery systems 

(whole-crop, green, biorefinery two platforms concept – the sugar platform and the syngas 

platform, and lignocellulose feedstock – LCF) and they are still in research and developing 

phase (Kamm and Kamm, 2004b). The four complex phase III biorefinery systems, which 

will be discussed in more detail in this chapter, are listed below:   

 Whole-crop biorefinery 

 Green Biorefinry 

 Two platform concept biorefinery 

 Lignocellulose feedstock (LCF) biorefinery  

Whole-crop biorefinery: The input raw materials for the whole-crop biorefinery are cereals, 

such as wheat, rye, maize. The starting point of the process is the mechanical separation of 

material into straw and grains, and then each fraction can be utilized in different unit 

operations. The straw fractions, such as chaff, nodes, leaves, and stems can be further 

processed as a lignocellulosic feedstock in a lignocellulose feedstock biorefinery system 

(LCF). Besides, there is possibility of separation of straw into cellulose, hemicellulose, and 
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lignin and further processed them in a separate product lines. The straw is the main input 

raw material for the production of wide range of chemicals, fuels and pharmaceutical 

products. It can also be subjected to pyrolysis process with the aim of producing syngas 

where syngas is the basic material for synthesis of fuels and methanol. The grains can be 

easily converted into starch or used directly after grinding to meal, fructose, syrup, and 

fuels or feed (Kamm and Kamm, 2007).     

Green biorefinery: A green biorefinery is said to be a multi-product system which handle 

their refinery cuts, fractions and products in accordance with the physiology of the 

corresponding plant material, which is maintenance and utilization of diversity of syntheses 

achieved by nature (Kamm and Kamm, 2004a). A green biorefinery uses natural wet 

biomass generated from untreated products, e.g. grass, clover, alfalfa or immature cereal. 

As they are mostly herbaceous crops, they contain relatively low percent of lignin, which 

makes their carbohydrate fractions more accessible for processing in green plants. The 

green biomass substrate is firstly treated in their natural form by wet-fractionation to 

produce a fiber-rich press cake (solid fraction) and a nutrient-rich green juice (liquid 

fraction). The solid fraction contains cellulose, valuable dyes and pigments, crude drugs, 

and other organics. The solid fraction can be also used for the production of green feed 

pellets, as a raw material for the production of chemicals, such as levulinic acid, and for 

conversion to syngas and synthetic biofuels. The liquid fraction is a basis for production of 

proteins, free amino acids, organic acids, dyes, enzymes, hormones, other organic 

substances, and minerals (Fernando et al., 2006).  

Two-platform concept biorefinery: The two platform concept is made of two steps of 

biomass conversion to gain valuable end products (fig. 3), where biomass rich in 

carbohydrates on average of 75 percent can be standardized over a “intermediate sugar 

platform”, as a basis for further conversion, but it can also be converted thermochemically 

into synthesis gas (Kamm et al., 2006). The “sugar platform” is based on biochemical 

conversion processes and mainly focuses on fermentation of sugars extracted from the 

biomass. The “syngas platform” is based on thermochemical conversion processes with 

application of gasification of biomass feedstocks and by-products. Other technologies are 

being used under this process other than biomass gasification, which include 
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hydrothermolysis, pyrolysis, thermolysis, and combustion. These processes mainly focus 

only on the utilization of carbohydrates content of the biomass together with the available 

carbon and hydrogen of the biomass. Other component of the biomass, such as proteins, 

lignin, oils, amino acids, and fats are not utilized (Kamm and Kamm, 2007). The main 

advantage of this complex system is the low-tech technology used in biomass conversion 

with the aim of producing a wide variety of biobased products.  

 

 
Fig. 3. Two platform biorefinery concept (Kamm et al., 2006). 

 

Lignocellulose feedstock (LCF) biorefinery: The lignocellulose feedstock biorefinery 

operates on naturally dry raw material, which contains three chemical fractions, cellulose, 

hemicellulose, and lignin. The cellulose and hemicellulose can be converted to their sugar 

fractions through the hydrolysis process (Van Dyne et al., 1999). LCF biorefinery system 

has advantage over the above-mentioned biorefinery systems because of the availability 

and low cost of its raw materials, it also has the ability to utilize varieties of feedstock 

(lignocellulosic biomass). However, there is still the need for further development and 

optimization of this technology in order fully commercialize its products, for example, in 

the area of lignocellulose fractionation into cellulose, hemicellulose, and lignin at the same 
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time, to utilize lignin in the chemical industry for production of phenolic compounds 

(Kamm and Kamm, 2007).  

The LCF biorefinery uses biomass feedstocks with complex structures, such as straw, 

reed, grass, wood, paper-waste, and municipal solid waste as an input raw material to 

generated wide range of renewable and sustainable biobased products. The basic chemical 

reactions of lignocellulose conversions that occur in a LCF biorefinery are shown below 

(Kamm et al., 2006).  

 
Biofuels, chemical solvents, polymers, adhesives and etc. are the basic products from 

lignocellulose. Hemicellulose sugars are vital part of lignocellulose because it can be 

converted to furfural which is one of the starting points for synthesis of numerous products, 

which includes Nylon 6 and Nylon 6.6 that are currently produced from petroleum based 

material because its market size is huge (Van Dyne et al., 1999). Additionally, furfural has 

many applications: it can be applied in the refining of motor oils and as cleaning agents in 

liquid fuels. The hydrolysis of cellulose to glucose in order to produce varieties of valuable 

biobased products, such as organic acids, biofuels, and other fermentation products can be 

carried out via enzymatic processing or chemical processing. On the other hand, the 

utilization of lignin fractions as an adhesive, or binder and a fuel for direct combustion is 

limited when compare with cellulose and hemicellulose fractions (Fernando et al., 2006). 

A crucial step in making this system a healthier working biobased refinery is to establish 

integrated production processes capable of efficiently converting a broad range of 

lignocellulosic biomass into affordable high-value products such as pharma, food and feed, 

bioplastics and polymers, bulk chemicals, and biofuels, biopower, and heat. As an 

integrated biorefinery, it should employ novel technologies and diverse lignocellulosic 

biomass which will need significant investments in research, development, and deployment 

projects to reduce costs and thus, improve competitiveness with fossil products. 

Furthermore, it must also optimize the use of raw materials (lignocellulosic biomass) to 



13 
 

create a product mix that can match to market demand and compete with the current 

products from fossil oil.  

Those requirements can be achieved by applying the principles of diversity, as it’s 

known from studying natural ecosystems that a diversity of organisms brings stability to the 

ecosystem. When a system is dominated by a single crop, organism or species, the whole 

structure becomes vulnerable to complete collapse. Such scenarios can be avoided if high 

value multiple products are targeted in biorefinery systems and when all the parts of 

biomass is fully converted to products. This means that any byproducts generated in one 

part of biorefinery can serve as substrates in another, for example, when integrating the 

production of liquid biofuels with biogas. The residual organic matter in the effluent from 

ethanol fermentation process can be converted into biogas and the residual substrate can be 

separated into a liquid, high value organic fertilizer and a solid fraction suitable for high 

value chemicals production. Thus, the term waste product is more or less non-existing in 

the context of LCF biorefinery (Thomsen, 2005).  

LCF biorefinery is recognized as the future biorefinery system because its raw materials 

are huge and available at low costs, contrary to other existing biorefinery system where a 

material and product diversity is non-existence. So they are highly sensitive to rising prices 

for raw materials such as corn or grain (Lyko et al., 2009). This is apparent as biorefinery 

of the future needs a large biomass infrastructural piece in front which will enable a 

continuous production process of its products to meet the market demands. Such a system 

has been implemented in commercial and demonstration phase around the world (Bacovsky 

et al., 2010).  

 

Raw material for LCF biorefinery  

 

Lignocellulosic plant biomass  

Lignocellulose is made up of three-dimensional polymeric composite formed by plant 

biomass as structural complex material. It composed primarily of cellulose, hemicelluloses, 

and lignin and smaller fractions of proteins, oil, wax, and ash. Cellulose fraction is often the 

most abundant part of lignocellulose plant biomass with hemicellulose and lignin in diverse 
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proportions depending on the plant/crop type. Those three main constituents of 

lignocellulose are closely interconnected to form the structural framework of plant cell wall 

(Jørgensen et al., 2007). The structural architecture and chemical composition of 

lignocellulose play a significant role in its resistance to decomposition and degradation by 

microorganisms (Kuhad et al., 1997). Thus, it is important to clearly understand the nature, 

structure and composition of the polymeric composite of lignocellulose plant biomass in 

order to efficiently convert them into valuable biobased products. Chemical compositional 

contents of some lignocellulosic biomass are depicted in Table 1.  

 

Cellulose 

Cellulose is the primary structural polysaccharide of plant cell walls, and often being the 

most abundant biological molecule on earth. Cellulose fraction of lignocellulose plant 

biomass is a homogenous polymer of D-glucose units linked together by β-1, 4-glucosidic 

bonds. The degree of polymerization (DP) of native cellulose is in the range of 7.000-

15.000 (Berg et al., 2002; Ward and Moo-Young, 1989).  

 

unitecosgluoneofweightMolecular
celluloseofweightMolecularDP

 
 

Cellulose molecules are totally linear and have a strong tendency to form intra and 

intermolecular hydrogen bonds. Bundles of cellulose molecules are thus aggregated 

together in the form of microfibrils, in which highly ordered crystalline domains alternate 

with less ordered amorphous regions (Sjöström, 1981). The cellulose molecules form 

extremely ordered crystalline regions through parallel orientation, but are well-connected 

with amorphous regions of more disordered structure (Lynd et al., 2002). The cellulose 

structure laterally with the intermolecular hydrogen bonds gives cellulose high tensile 

strength, makes it insoluble in most solvents and is partly responsible for the resistance of 

native cellulose against microbial attack (Jørgensen et al., 2007). The act of resistant to 

depolymerization makes it rather difficult for hydrolyzing enzymes to access its fractions. 

Therefore, release of glucose from cellulose faces significant technical challenges. 
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Hemicellulose 

Hemicelluloses, the second most abundant biopolymers on earth and its conversion to 

ethanol could provide an alternative liquid fuel source for the future (Jeffries, 2006). It 

involves a group of biopolymers that are closely linked with cellulose and are usually a 

mixture of heterogeneous polysaccharides that have a complex composition and structure 

(Stepan et al., 2012). The content of hemicelluloses varies widely, depending on plant 

genus, cell type, growth conditions, method of extraction and storage. Like plant belonging 

to grass family (Poales), have the branched polymer of glucuronoarabinoxylan (GAX) as 

the most common hemicelluloses (Carpita, 1996). Hemicelluloses were originally believed 

to be intermediates in the biosynthesis of cellulose. The main components of its 

heteropolysaccharides are pentoses (xylose, arabinose) as the dominant sugars, hexoses 

(mannose, glucose, galactose) and small amounts of organic acids such as uronic acid, 

which occurs in following forms: glucuronic acid (and its 4-O-methyl ether), and 

galacturonic acid (Saha and Bothast, 1997). Xylose is the predominant pentose sugars 

available from the hemicellulose of most hardwood materials, whereas arabinose can 

constitute a significant amount of the pentose sugars available from various agricultural 

residues and other herbaceous crops (Balat et al., 2008).  

Hemicelluloses usually have an average of degree of polymerization 100 to 200 

depending on their type and origin (Kuhad et al., 1997). In contrast to cellulose, which is 

crystalline and strong , hemicelluloses have a random, amorphous, branched structure with 

little resistance to depolymerization, and are relatively easy to hydrolyze to their sugar 

monomers by dilute acids (Hamelinck et al., 2005). 

 

Lignin 

Lignin is a complex polymer of phenylpropane units and methoxy groups, linked in a 

tri-dimensional structure which is particularly difficult to biodegrade. It constitutes the most 

abundant non-carbohydrate fraction in lignocellulose. It is made-up of three aromatic 

monomers, which are trans-p-coumaryl alcohol, trans-p-coniferyl alcohol and trans-p-

sinapyl alcohol and are joined via alkyl-aryl, alkyl-alkyl and aryl-aryl ether bonds (Zaldivar 
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et al., 2001). Lignin is most recalcitrance component of plant cell wall and protects the 

plant from physical and microbial degradation (Hendriks and Zeeman, 2009).  

 

Table 1. Cellulose, hemicellulose and lignin content in most common lignocellulosic 

materials. 

 (% of total dry weight) 

Lignocellulosic materials Cellulose  Hemicellulose Lignin  

Hardwoods stems 40-50 24-40 18-25 

Softwood stems 45-50 25-35 25-35 

Wheat straw 33-40 20-25 15-20 

Grasses 25-40 35-50 10-30 

Corn cobs 45 35 15 

Nut shells 25-30 25-30 30-40 

Paper 85-99 0 15 

Switch grass 30-50 10-40 5-20 

Sorted refuse 60 20 20 

Leaves 15-20 80-85 0 

Waste papers from chemical pulps 60-70 10-20 5-10 

Cotton seed hairs 80-95 5-20 0 

Primary wastewater solids 8-15 NAa NAa 

Solid cattle manure 1.6-4.7 1.4-3.3 2.7-5.7 

Sugarcane bagasse 25-45 28-32 15-25 

Rice straw 29.2-34.7 23-25.9 17-19 

Corn stover 35.1-39.5 20.7-24.6 11.0-19.1 

Bamboo 49-50 18-20 23 

Sources: Kumar et al. (2009); McKendry, (2002); Menon and Rao, (2012); Sun and Cheng, 

(2002). aNA – not available.  
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The lignin content of biomass largely depends on the plant type, for example, grasses in 

general have the lowest lignin content in comparison to softwoods where the lignin content 

is the highest (Jørgensen et al., 2007). Therefore, the higher proportion of lignin in the 

lignocellulosic biomass, the higher is its resistance to chemical and enzymatic degradation. 

It restricts hydrolysis by shielding cellulose surfaces and inactivating enzymes (Taherzadeh 

and Karimi, 2008). Lignin is insoluble in water and most often resistant in acidic 

conditions, but can be altered under alkali condition. 

 

Conversion process routes for LCF biorefinery 

 

Background of biomass pretreatment methods  

The characteristic of native lignocellulosic biomass such as its crystallinity, presence of 

lignin and hemicellulose, inaccessible surface area, degree of cellulose polymerization, and 

degree of acetylation of hemicelluloses makes it resistant to enzymatic degradation. 

Therefore, to economically convert carbohydrates in lignocellulosic biomass into 

fermentable sugars, a pretreatment step is necessary to render the cellulose fraction 

accessible to hydrolyzing enzymes (Wyman, 1996). The goal of pretreatment is to decrease 

the crystallinity of cellulose, increase biomass surface area, remove hemicellulose, and 

break the lignin seal (Taherzadeh and Niklasson, 2004) as illustrated in Figure 4. This 

process changes the biomass structure and improves downstream processing.  

Various pretreatment methods have been proposed to make lignocellulosic biomass 

susceptible to enzymatic and microbial conversion (Galbe and Zacchi, 2002; Hendriks and 

Zeeman, 2009), such as wet oxidation (Schmidt and Thomsen, 1998), dilute acid hydrolysis 

(Saha et al., 2005a), and steam explosion (Ballesteros et al., 2006), and many more. 

However, for comprehensive review of all the available pretreatment methods, the reader is 

kindly advised to see other review articles (Mosier et al., 2005; Taherzadeh and Karimi, 

2008; Zheng et al., 2009; Kumar et al., 2009). Pretreatment is among the most costly steps 

in biochemical conversion of lignocellulosic biomass, accounting for up to 40% of the total 

processing cost (Eggeman and Elander, 2005; Wyman et al., 2005b; Lynd, 1996; Zhang et 

al., 2009). Thus, cost-effective pretreatment of lignocellulosic biomass is a major challenge 
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of cellulosic biofuels and bioproducts technology research and development in recent years 

(Hamelinck et al., 2005).  

 

 
Fig. 4. Schematic overview of the matrix of lignocellulosic polymers in which the 

pretreatment separated hemicellulose and lignin from cellulose enabling effective 

enzymatic digestibility (Mosier et al., 2005). 

 

The choice of a suitable pretreatment method and the adjustment of the pretreatment 

parameters are crucial for the efficiency of the subsequent conversion of any biomass in a 

biorefinery concept. Hence, an effective pretreatment should meet the following conditions: 

(1) maximize the enzymatic convertibility of cellulose fractions (2) avoids the need for 

reducing the size of biomass particles (3) avoid the formation of fermentative inhibitor (4) 

minimizes energy demands and limits cost (5) avoid destruction of hemicellulose and 

cellulose fractions of biomass (6) minimizes waste generation (7) should facilitate recovery 

of lignin and other constituents for conversion to valuable co-products and simplify 

downstream processing (8) utilize little or no chemical and using low cost chemicals (9) 

minimizes the need for detoxification of subsequent enzymatic hydrolysis and fermentation 
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and above all, pretreatment results must be weighed against their impact on the ease of 

operation and cost of the downstream processing steps and the trade-off between several 

costs, including operating costs, capital costs, and biomass costs (Mosier et al., 2005; 

Zheng et al., 2009). Till date, no pretreatment method has been identified as the most 

efficient because their mode of action often varies, but they all pursue one goal; to produce 

higher fermentable sugars irrespective of biomass type. Therefore, the above-mentioned 

conditions should be comprehensively considered as a basis when comparing various 

pretreatment methods. On the other hand, pretreatment process parameters should be 

tailored to the specific biomass compositional structures and with a view to all the potential 

sugars which can be produced.  

 

Wet oxidation pretreatment 

Wet oxidation pretreatment method has been applied in laboratory and pilot-scale 

process for fractionation of several lignocellulosic biomass such as wheat straw, sugarcane 

bagasse, softwood, corn stover, clover-ryegrass mixtures and rice husk (Ahring and 

Westermann, 2007; Westermann and Ahring, 2005; Varga et al., 2003; Martin et al., 2008; 

Banerjee et al., 2009; Palonen et al., 2004). Wet oxidation make use of oxidizing agent such 

as H2O2, water and air or oxygen at pretreatment temperatures around 180-200oC for 5-30 

min (McGinnis, 1983). The process is normally carried out at 5-20% dry matter. Wet 

oxidation is an exothermic process, and thus, it becomes self-supporting with respect to 

heat while the reaction is initiated (Taherzadeh and Karimi, 2008, Schmidt and Thomsen, 

1998). It has been documented that the most crucial parameters in wet oxidation process is 

the temperature followed by residence time and oxygen pressure (Schmidt and Thomsen, 

1998). Wet oxidation is an effective pretreatment method in breaking the lignin seal and 

separating hemicellulose from cellulose thereby facilitate the solubilization of 

hemicellulose fractions while the lignin is mainly oxidized and cellulose is made 

susceptible to hydrolyzing enzymes. However, under this process, some of the lignin 

together with hemicelluloses is partially oxidized to low molecular weight carboxylic acids, 

CO2, and water (Klinke et al., 2002), as the main reactions are the formation of acids from 

hydrolytic processes, as well as oxidative reactions (Taherzadeh and Karimi, 2008). The 
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combination of alkaline and wet oxidation has been proven to prevent the formation of 

degradation products such as furfural and hydroxymethylfurfural (HMF) as reported by 

Bjerre et al. (1996). Wet explosion similar to wet oxidation is a novel pretreatment method 

recently developed to fractionate lignocellulosic biomass at high dry matter concentration 

(Rana et al., 2012; Sørensen et al., 2008; Georgieva et al., 2008). This method uses a 

combination of physical and chemical pretreatment methods and the operating condition is 

around 170oC and 20 bars. It is also flexible in additives (H2O2, oxygen and air) and 

biomass input such as wheat straw and sugarcane bagasse. The main principles are the 

injection of oxidizing agents at a desired temperature while the residence time is initiated 

and the termination of the pretreatment by flashing the biomass into a flash tank, called 

“explosion” which usually results in a sudden drop in temperature and pressure. Finally, 

wet oxidation and wet explosion can easily be carried out as a continuous process providing 

the path to scale-up at commercial level.  

 

Dilute acid pretreatment  

Dilute acid pretreatment is widely recognized in the field of biofuels production for 

pretreatment of lignocellulosic biomass. High yields of sugars from lignocellulosic biomass 

can be achieved from dilute acid pretreatment. The mode of action is hemicellulose 

removal and thus, enhances the digestibility of cellulose in the residual solids. The process 

is mainly carried out under high temperature and low acid concentration and the most 

widely used acid under this process is sulfuric acid (Kim et al., 2011; Saha and Bothast, 

1999; Foston and Ragauskas, 2010). However, other acids such as hydrochloric acid, 

phosphoric acid and nitric acid have been extensively applied (Herrerat, et al., 2003; 

Vazquez et al., 2007; Taherzadeh and Karimi, 2007a). High pretreatment temperature with 

dilute sulfuric acid can achieve high reaction rates and significantly improve cellulose 

hydrolysis (Esteghlalian et al., 1997), but moderate temperature is more desirable to release 

hemicellulose sugars, because hemicellulose is amorphous. The acid catalyzes the 

breakdown of hemicellulose long chains to form shorter chain oligomers and then to sugar 

monomers and it can further degrade the monomeric sugars to furfurals and other 

degradation products (Wyman et al., 2005a). Normally, the acid is mixed or contacted with 
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biomass and held at temperatures of 160-220°C for periods ranging from minutes to 

seconds (Mosier et al., 2005). However, this process has its own drawback, such as the 

corrosion that mandates expensive materials of construction, formation of degradation 

products, and acidic prehydrolyzates that must be neutralized before the sugars proceed to 

fermentation (Zheng et al., 2009; Sun and Cheng, 2002; Kumar et al., 2009).  

Taherzadeh and Karimi, (2008) reported that dilute acid pretreatment is not effective in 

dissolving lignin, but it can disrupt lignin and enhance digestibility of cellulose and that 

around 100% hemicellulose removal is possible under this method. Furthermore, Lavarack 

et al. (2002) investigated sugarcane bagasse subjected to dilute sulfuric acid or hydrochloric 

acid pretreatment at temperatures around 80-200oC for 10-2000 min. It observed that 

hydrochloric acid was less active for the degradation of xylose compared to sulfuric acid 

and that almost 80% of theoretical xylose was achieved from bagasse. In a similar manner, 

Saha et al. (2005b) found 60% yield of total sugars based on total carbohydrate content of 

rice hulls pretreated with 1.0%, v/v dilute sulfuric acid and subsequent enzymatic 

hydrolysis. They further mentioned that no furfural and HMF were produced, which are 

normally considered as inhibitory compounds to fermentative microbes.  

 

Steam explosion pretreatment  

Steam explosion is the most commonly used method for pretreatment of lignocellulosic 

biomass because it does not require the addition of chemicals (uncatalyzed steam 

explosion). The mode of action involves treatment of chipped biomass with high-pressure 

saturated steam, followed by a sudden drop in pressure, which makes the materials undergo 

an explosive decompression. This sudden pressure release reduces the temperature and 

quenches the reaction at the end of the pretreatment. Steam explosion is typically initiated 

at temperatures around 160-260oC (corresponding pressure, 0.69-4.83 MPa) for several 

seconds to a few minutes before the material is exposed to atmospheric pressure (Boussaid 

et al., 1999; Kurabi et al., 2005; Varge et al., 2004; Ruiz et al., 2006; Carrasco et al., 1994; 

Josefsson et al., 2002; Ballesteros et al., 2004; Mes-Hartree and Saddler, 1983; Sun et al., 

2004; Laser et al., 2002; Cullis et al., 2004). 
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The conversion rate of carbohydrates can be effectively increased during steam 

explosion (Varge et al., 2004), thereby enhances the potential of cellulose hydrolysis and 

extensively hydrolyzed hemicellulose to fermentable sugars (Mosier et al., 2005; 

Fernandez-Bolaños et al., 2001). The moisture in the biomass hydrolyzes the acetyl groups 

of the hemicellulose fractions, forming organic acids such as acetic and others. The acids, 

in turn catalyze the depolymerization of hemicellulose, releasing xylose and small amounts 

of glucose. Under severe conditions, the amorphous regions of cellulose may be hydrolyzed 

to some degrees. Applying high temperatures and pressures, however, can enable the 

degradation of xylose to furfural and glucose to HMF, and transformation of lignin. These 

degradation products are considered inhibitory to microbial growth during ethanol 

fermentation (Menon and Rao, 2012; Mok and Antal Jr., 1992; Mackie et al., 1985; 

Bobleter et al., 1981). Cantarella et al., (2004a) reported that steam explosion pretreatment 

of poplar wood at 214oC for 6 min was efficient to achieve approximately 91% theoretical 

yield of ethanol, although, some lag phases were observed as a result of the associated 

inhibitory compounds produced during the pretreatment. Generally, steam explosion is a 

unique pretreatment method because it requires low energy input and can operate with or 

without chemicals.  

 

Separation process 

Separation of pretreated biomass into solid and liquid fractions is necessary in order to 

obtain high valuable fractions of the biomass slurry depending on the process configuration 

and the end products choice of interest. Different kinds of separation methods and 

technologies exist such as filtration and membrane separation (Huang et al., 2008; Vane, 

2005; Peng et al., 2012). Biomass separation after pretreatment enables products removal 

and purifications. The resulting biomass slurry contains all the fractions of lignocellulosic 

biomass (cellulose, hemicellulose, and lignin) both in form of polymeric and monomeric 

including different types of degradation products. These materials are therefore removed 

from each other to some degree by separation method.  

Usually, about 80-90% of dissolved organic matter is transferred to the liquid, which 

mainly contains the hemicellulose sugars and small fractions of glucose, lignin products, 
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and furans. On other hand, the solid fraction normally contains at least 25% dry matter, 

where the most part of cellulose and lignin fraction is deposited depending on the 

pretreatment method applied. Obtaining high valuable materials via separation can go a 

long way to reduce the process costs in biorefinery systems. It also enables process 

flexibility and diversifications, meaning that such a system can integrate different 

production processes and be able to utilize all the fractions of pretreated biomass to produce 

a wide range of biobased products in order to meet the market demand and supply.  

 

Formation of by-products during biomass pretreatment 

Depending on process severity, carboxylic acids, furan derivatives (furfural and 5-

hydroxymethyl furfural-HMF), and phenolic compounds were generated during 

pretreatment of lignocellulosic biomass. These products are considered potential 

fermentation inhibitors (Saha, 2004; Klinke et al., 2004). The most investigated inhibitors 

towards microbial growth includes furfural, HMF, acetic acid, formic acid, levulinic acid, 

vanillic acid, and phenol (Bellido et al., 2011; Martin et al., 2006; Luo et al., 2002; Xiros et 

al., 2010; Weil et al., 2002). Those inhibitory compounds significantly affect the overall 

cell physiology and when in high concentrations, it can result in decreased viability, ethanol 

yields, and productivity. At more severe pretreatment conditions, xylose is degraded to 

furfural while HMF is formed from hexose degradation, and phenolic compounds are 

generated from partial breakdown of lignin (fig. 5). Furfural is further degraded to formic 

acid likewise HMF to levulinic (Palmqvist and Hahn-Hägerdal, 2000).  

The formation of these compounds during pretreatment of biomass has been reported 

elsewhere in literatures to be associated with high pretreatment temperature and acid 

concentrations (McGinnis et al., 1983; Rivard et al., 1996; Jacobsen and Wyman, 2000; 

Agbor et al., 2011; Mosier et al., 2005). Dehydration of hexose and pentose sugars under 

thermal and acidic conditions enhances the formation of furfural and HMF in the liquid 

fraction of the pretreated biomass (Martin et al., 2007). It has been reported that these 

compounds not only reduces the sugar yield, but pose a serious threat to fermentative 

microorganism (Pedersen and Meyer, 2010; Buchert et al., 1990; Clark and Mackie, 1984). 

The inhibitory effect of furans (Palmqvist et al., 1999a; Taherzadeh et al., 2000; Palmqvist 
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et al., 1999b), aliphatic acids (Taherzadeh et al., 1997) and aromatic compounds (Larsson et 

al., 2000; Ando et al., 1986) during fermentation with Saccharomyces cerevisiae has been 

investigated with respect to sugar consumptions.  

 

 
Fig. 5. Reactions occurring during hydrolysis of lignocellulosic materials (Palmqvist and 

Hahn-Hägerdal, 2000). 

 

However, these inhibitory compounds can be detoxified in order to adapt the 

microorganisms to utilize the available sugars to ethanol. Overliming and neutralization are 

some of the proposed methods to carryout hydrolysate detoxification (Cantarella et al., 

2004b; Chandel et al., 2007a). But, performing hydrolysate detoxification is often energy 

demanding and can elevate the process cost of the ethanol production process. In order to 

make lignocellulosic ethanol production more economically feasible, the hydrolysates 

arising from the pretreated lignocellulosic biomass should be able to ferment to ethanol 

without the need for further detoxification. 
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Enzymatic hydrolysis 

Enzymatic convertibility of cellulose is one of the most important factors to evaluate the 

efficiency of a specific pretreatment method for production of biofuels, mostly ethanol 

(Varge et al., 2003) as it reveals the efficiency of enzymatic hydrolysis specifically for a 

certain enzyme mixture on the specific hydrolysate. It is the second step after pretreatment 

for a cellulosic bioconversion processes and it hydrolyzed the polymers of cellulose and 

hemicellulose fractions into fermentable sugars, such as glucose, xylose, arabinose and etc. 

as its end-products (Taherzadeh and Niklasson, 2004). There are several commercial 

cellulases producers around the world, such as Novozymes, Genencor (DuPont) and 

Codexis, and most of them are produced from Trichoderma spp., with small produced by 

Aspergillus niger. The major factors affecting enzymatic hydrolysis of cellulose includes 

among others pretreatment method, substrate concentration, hydrolysis condition 

(temperature, pH, and mass transfer), and enzyme activity. However, several studies have 

shown that the optimum temperatures and pH for cellulases are usually in the range of 40-

50oC and pH 4-5 (Taherzadeh and Karimi, 2007b).  

The lignin content of biomass is also one of the most important factors hindering 

hydrolysis of biomass by cellulases and hemicellulases (Van Dyk and Pletschke, 2012). It 

is known that the enzymatic convertibility of cellulose into glucose monomers is mostly 

accomplished by synergistic action of three groups of cellulases: exo-1,4-β-D-glucanases, 

EC 3.2.1.91 and EC 3.2.1.176 (cellobiohydrolase), which move processively along the 

cellulose chain and cleave off cellobiose units from the reducing ends, endo-1,4-β-D-

glucanases, EC 3.2.1.4, which hydrolyze internal β-1,4-glucosidic bonds randomly in the 

cellulose chain and β-glucosidases, EC 3.2.1.21, which hydrolyze cellobiose to produce 

glucose. In addition, β-glucosidases not only produce glucose from cellobiose but also 

reduce cellobiose inhibition, thereby permitting the cellulolytic enzymes to perform more 

efficiently. Therefore, it is required that the enzyme mixtures must include all the three 

classes of cellulolytic enzymes in order to obtain a complete hydrolysis and better yield of 

end products (Demain et al., 2005; Jørgensen et al., 2007; Bayer et al., 1998; Wilson, 2009; 

Schwarz, 2001; Wilson, 2011).  
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Regardless of enzyme mixtures, the dosage in hydrolysis media should be at a minimal 

range to achieve the economic viability of the process. Although, hemicellulose contain 

reasonable amount of fermentable sugars, its enzymatic convertibility is more complex to 

that of cellulose. It is mainly composed of a mixture of five and six sugar units which 

requires several different enzymes to hydrolyze it. The hemicellulytic enzymes that can 

degrade hemicellulose includes but not limited to endo-1,4-β-D-xylanases, EC 3.2.1.8, 

which cleave the xylan backbone into shorter oligosaccharides, β-D-xylosidase, EC 

3.2.1.37, which cleave xylooligosaccharides from the non-reducing end and produce 

xylose, endo-β-D-mannanase, which attack internal bonds in mannan and β-D-

mannosidase, which clave mannooligosaccharides to mannose and many ancillary enzymes 

such as α-L-arabinofuranosidases, α-glucuronidase, α-galactosidase, feruroyl esterase, 

acetyl xylan esterase, which removes the side groups in the substrate (Jørgensen et al., 

2003; Beg et al., 2001; Shallom et al., 2003; Meyer et al., 2009). Therefore, it is crucial to 

modify the pretreatment process parameters to the specific biomass compositional structure 

to produce fermentable sugars which will evict subsequent enzymatic hydrolysis of 

hemicellulose fractions and at the same, reduce the costs of the process.  

 

Ethanol fermentations 

The fermentation of lignocellulosic materials is carried out after pretreatment and 

subsequent enzymatic hydrolysis of either the separated solid fractions or liquid fractions 

and can also be the whole hydrolysate to fermentable sugars. This hydrolysate normally 

contains various hexoses, mainly glucose, and pentoses, mainly xylose, and various 

inhibitory compounds depending on the substrate and the applied pretreatment method. 

Both hexose and pentose sugars are fermented to ethanol and other valuable biobased 

products under anaerobic/aerobic conditions. At present, the ethanol fermentation is mostly 

performed with the yeast Saccharomyces cerevisiae because of its well-known 

characteristics, high tolerant, robustness and high ethanol yield. However, this yeast have 

ability to metabolize only hexose sugars, while the pentose sugars can be fermented by 

other organisms such as Pichia stipitis and Candida shehatae (Parekh and Wayman, 1986; 

Taniguchi et al., 1997; Moniruzzaman, 1995; Zhu et al., 2009). On the other hand, S. 
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cerevisiae can be genetically engineered to ferment pentoses (Kim, et al., 2005; Schneider 

et al., 1981; Slininger et al., 1982; Jeffries et al., 1982; Van Zyl et al., 2007). Currently, 

there are several process routes to ferment pretreated lignocellulosic materials to ethanol by 

employing different kinds of ethanologenic strains. This includes among others separate 

hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), 

simultaneous saccharifictaion and co-fermentation (SSCF), and consolidated bioprocessing 

(CBP) see Figure 6 (Lynd, 1996; Lynd et al., 2002).  

 

 
Fig. 6. Different processing routes that can be employed during biomass conversion to 

valuable products (Lynd, 1996; Lynd et al., 2002). 

 

Separate hydrolysis and fermentation: SHF involves four separate process steps that make 

use of separate bioreactors. Under this configuration, cellulose or hemicellulose is first 

hydrolyzed enzymatically into sugar monomers, and subsequently fermented to ethanol and 

chemicals. The advantage of this process is that each step can be individually optimized to 

reach their optimal conditions and improve its process performance. The major 

disadvantage of this process is that the generated cellobiose can significantly inhibit the 
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performance of cellulase (Reese, 1963), and β-glucosidase can be also inhibited by glucose 

(Holtzapple et al., 1990), as a result, it requires the use of lower solids concentrations at 

higher enzyme loadings to achieve high ethanol yields. Low solids concentrations, 

however, will result in low ethanol yield, thus, increasing the cost of downstream process 

(Wyman, 1996).  

Simultaneous saccharification and fermentation: SSF consolidates hydrolysis and 

fermentation of hexose sugars in a single step, which means that the sugars that is released 

is simultaneously consumed by the fermenting organisms and inhibition of cellulytic 

enzymes is therefore prevented. This configuration reduces the number of steps in the 

process, and is thus, a promising route for conversion of cellulosic materials to ethanol and 

chemicals (Lynd et al., 2005; Wyman, 1994; Erdei et al., 2010), since all the process steps 

is integrated in one reactor, and therefore, making the process of SSF more cost effective in 

comparison to SHF process (Olofsson et al., 2008). The major drawback of this 

configuration is the optimal working condition (temperature). The optimal temperatures for 

cellulases and the fermenting organisms are not the same, therefore, the chosen temperature 

is a compromise, normally the temperature is selected to fervor the fermenting organisms, 

since a liquefication step is usually done during hydrolysis for some hours in order to 

ensure a proper substrates mixing (Eklund and Zacchi, 1995; Demain et al., 2005).  

Simultaneous saccharifictaion and co-fermentation: A configuration which is seen as more 

SSCF where the hydrolysis and the fermentation of hexoses and pentoses take place in one 

process step. This configuration is normally performed by using microorganisms capable of 

utilizing both hexoses and pentoses to ethanol and chemicals. The ethanologenic strains 

such as S. cerevisiae and P. stipitis are by far the most used, where the yeast P. stipitis is 

first added to the substrates and the S. cerevisiae is used to complete the fermentation in 

one reactor (sequential fermentation). It can also applied genetically engineered organisms 

capable of utilizing both hexoses and pentoses to ethanol (Sanchez and Cardona, 2008; 

Cardona and Sanchez, 2007). This process is more advance to SSF and SHF process with 

respect to better ethanol yields, cost effectiveness, and high rates conversion (Joshi et al., 

2011; Chandel et al., 2007b; De Bari et al., 2004; Grootjen et al., 1991).  
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Consolidated bioprocessing: The concept of consolidated bioprocessing CBP is aimed at 

consolidating cellulase production, hydrolysis and fermentation in one process step, which 

means that all the four process steps as seen in SHF is integrated in a single step. Lynd, 

(1996) pointed out that no capital or operation expenditures are required for enzyme 

production within this concept. The objective is to create a single microorganism that is 

capable of performing these steps simultaneously (Lynd et al., 2005; Van Zyl et al., 2007; 

Cardona and Sanchez, 2007). The development of bioconversion technologies has recently 

been shifted towards CBP because it is believed that CBP has the largest potential of 

reducing process materials, production costs and higher conversion efficiencies than SSF or 

SSCF based processes. There are two strategies to create CBP microorganisms; (1) 

naturally occurring cellulytic microorganisms can be genetically engineered to enhance 

product-related properties such as high ethanol yield and titer, and (2) a non-cellulytic 

microorganism that gives high yields can be altered by genetic engineering to express 

heterologous cellulase system enabling cellulose utilization (Lynd et al., 2005). CBP offers 

the opportunity of producing low cost bioproducts, but the right microorganisms that 

possess all the needed features in CBP configuration are not readily available, on the other 

hand, a number of bacteria and fungi that exhibits some of the needed features have been 

identified (Van Zyl et al., 2007; Lynd et al., 2002). Wyman, (1994) reported that most of 

the studies shows that bacterium Clostridium themocellum is used for enzyme production, 

cellulose hydrolysis, and its conversion to ethanol, however, the co-fermentation applying 

Clostridium thermosaccharolyticum permits the simultaneous conversion of monomeric 

hemicellulose sugars to ethanol after hydrolysis. This shows that the right candidate 

(microorganism) that exhibit the whole combination of features required for the 

development of a CBP is still under investigation (Cardona Sanchez, 2007). 

 

Anaerobic digestion 

In the context of biorefinery concept, implementing an integrated production process 

will to large extent reduce the process costs and make it more economically feasible. This 

will enable the process of biorefinery to be more flexible, by this reduce market and 

technical risk that might arise when focuses in one particular product. Co-products, 
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however, will in long-term support biorefinery economics when the principle of diversity is 

maintained. With regards to ethanol production, the effluent from the process normally 

contains high-value organic fractions, which can be further converted to valuable biobased 

products and energy. They are many efficient ways to convert these effluent materials into 

bioproducts, one way that has gain much attention over the years is by anaerobic digestion 

(AD) to produce methane biogas and organic fertilizer. The integration of bioethanol and 

biogas production in one process plant has been demonstrated both in pilot and lab-scale 

around Europe (Mohammad Karimi, 2008; Lissens et al., 2004; Uellendahl and Ahring, 

2010; Oleskowicz-Popiel et al., 2012; Jeihanipour et al., 2010). Anaerobic digestion (AD) 

process is said to be a complex microbiological process, during which organic substrates 

are decomposed into biogas and microbial biomass in the absence of oxygen (biogas, a 

mixture of carbon dioxide and methane, a renewable energy source) (Chen et al., 2008). It’s 

a complex process that involves interaction between many consortia of microorganisms and 

each consortium thrives optimally at a given set of chemical and physical conditions. AD 

occur in a divers environments, such as marine and fresh water sediments, and in the 

intestinal tract of ruminants or sewage sludge. The degradation processes can be 

categorized into four major steps; hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis as represented in Figure 7. 

Hydrolysis is the first step in AD process, during which complex organic matter is 

broken down into shorter chain mono and oligomers by exoenzymes (cellulases, lipases and 

proteases) excreted by fermentative bacteria into various compounds, which can be 

transported through the cell membrane. However, degrading complex lignocellulosic 

materials has been recognized as the rate-limiting step during hydrolysis, since exoenzymes 

are not able to degrade native lignocellulosic biomass into its monomers (Boe, 2006).  

A process where acidic bacteria degraded the decomposed compounds into fermentation 

products (volatile fatty acids (VFA), ethanol, hydrogen, lactic acid and carbon dioxide) is 

termed acidogenesis. In acetogenesis step, the fermentation products are oxidized to 

acetate, carbon dioxide and hydrogen, which are with no doubt the substrates for 

methanogenic bacteria. Methanogenesis is very crucial during the AD process, since this is 

where the end products are derived. Methane and carbon dioxide production from 
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intermediate products is accomplished by methanogenic bacteria. Almost 30% of the 

methane is generated from the conversion of hydrogen and carbon dioxide 

(hydrogenotrophic process), and around 70% of the methane is produced from the 

conversion of acetate (acetoclastic) (Boe, 2006).  

 

 
Fig. 7. Carbon flow diagram of the biogas production processes (Angelidaki et al., 2002). 

 

Anaerobic digestion conditions are important to achieve high biogas yields and to run 

the process accurately and efficiently. Therefore, a number of process parameters that affect 

AD process should be monitored and maintained in the optimal range to gain economically 

feasible process. Some of the crucial process parameters are: pH, temperature, volatile fatty 

acids (VFA), macro and micro nutrients, and etc. 

The pH is considered as one of the crucial parameter for microbial growth. The 

methanogenic bacteria exert the highest intolerance towards fluctuations in the pH and the 

optimum pH for hydrolytic and acidogenic bacteria is normally at 6, but to that of 
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methanogenic bacteria, their optimum pH is usually in the range of 7-8 (Chen and 

Hasimoto, 1996), hence, the process is inhibited if the pH is below 6 and above 8.3. 

Further, pH can also affect the dissociation of other compounds such as ammonia, sulfide 

and organic acids. Ammonia produced during protein degradation results in an increase of 

the pH while VFA and carbon dioxide production during the acidogenesis phase might 

reduce the pH (Angelidaki and Ahring, 1993). However, monitoring pH alone can give a 

false impression of the process condition, as the pH is mainly controlled by the bicarbonate 

buffer system in AD process. Thus, pH should not be used as a stand-alone monitoring 

parameter.  

Anaerobic digestion can be performed in a wide range of temperatures from 

psychrophilic, mesophilic, and thermophilic. However, because of the strong reliance of 

temperature on the digestion rate, temperature is perhaps the most essential parameter to 

maintain in a desired range. Anaerobic microbes can survive in a wide range of 

temperatures, from (12 ºC to18 ºC) the psychrophilic range, (25 ºC to 40 ºC) the mesophilic 

range, and (55 ºC to 65 ºC) the thermophilic range. The optimum temperature for 

mesophilic digestion is 35ºC and a digester must be maintained between 30ºC and 35ºC for 

most favorable functioning. Thermophilic anaerobic digestion thrives most at temperature 

of 60 oC and is normally considered as more efficient process with respect to organic matter 

removal and gas production. It is highly recognized as a process where the pathogen 

content is extensively reduced to that of mesophilic process. The rate of anaerobic digestion 

process is measured by gas production rates, growth rates, and substrate degradation 

performance. Thermophilic process allows higher loading rates and achieves a higher rate 

of pathogen destruction as well as higher degradation of the substrate. This growth rate is 

mainly dependent on temperature and the rate increases with increasing temperature (Van 

Lier, 1995), which is why thermophilic condition is more desirable. Though, most of the 

biogas producing plants operates at mesophilic conditions, because the process is more 

vigorous and can tolerate greater changes in the environmental conditions including 

temperature.  

Volatile fatty acids (VFA) concentrations have been recommended as a parameter to 

monitor AD process because they are the main intermediate products. It also provides a fast 
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indication for upcoming process instability as the elevated VFA concentration can indicate 

instability of the process. Normally, under acidogenesis around 30% of its compounds are 

volatile fatty acids (fatty acids with a carbon chain of six carbons or fewer, e.g. acetate, 

propionate, butyrate). These intermediate products may have inhibitory effect on the 

process, if they found in higher concentrations. Acetate is the main intermediate and its 

accumulation reduces the metabolic activity of butyrate and propionate degrading bacteria. 

However, every biogas plant operates differently, the concentration of VFA maybe optimal 

for one plant and it may not be the case for the other. Therefore, VFA concentrations 

should be integrated with other process parameters in order to gain a full control of AD 

process (Pind et al., 2003). 

The maintenance of optimal microbiological activity in the digester is crucial to gas 

production, consequently is related to nutrient availability. Therefore, some nutrients 

should be present and available in the medium for bacterial growth. Oxygen, nitrogen, 

carbon, and hydrogen are main constituents in organic material. Ammonia and sulfide are 

the sulfur and nitrogen sources for the microorganisms in the anaerobic reactor. Phosphorus 

is mainly seen in nucleic acids, phospholipids, ATP, GTP, NAD, AND FAD, while sulfur 

is necessary for synthesis of amino acids, cysteine and methionine. Calcium, magnesium, 

potassium, and iron are required as fraction of metal complexes and also as cofactors for 

enzymes activity. The C/N ratio, i.e. the connection between carbon and nitrogen has to be 

in equilibrium to secure a stable process. The C/N ratio can be judiciously manipulated by 

combining materials low in carbon with those that are high in nitrogen, and vice versa 

(Angelidaki et al., 2002; Al Seadi, 2001). 

 

LCF biorefinery products, application and utilization  

 

Bioethanol 

Biorefinery products are mainly classified into two main groups: energy products and 

material products. The choice of its product portfolio should depend on the market 

demands. Therefore, the biorefinery system should be able to integrate different process 

line that can produce high-value products on a continuous process basis to meet the market 
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demands. There should be at least one large-scale main products, for example fuel or bulk 

chemical, for cost recovery and several high value coupled products, like fine chemicals, 

for diversity and returns. Changes that bring improved flexibility and diversification by 

capturing the benefits of economies of scale can add new value to such a system and help 

establish a competitive advantage over fossil products. We therefore, highlight some of 

such biobased products and their potential applications. 

Ethanol or ethyl alcohol, has been identified as one of the most interesting synthetic 

oxygen-containing organic chemical because of its unique combination of properties as a 

solvent, a beverage, an antifreeze, and more especially due to its versatility as a chemical 

intermediate for other chemicals. Ethanol is an industrial chemical which has high 

significant utilization. It can be used in the transportation sectors as well as in production of 

pharmaceutical products, dyestuffs, perfumes and numerous products. Ethanol under 

ordinary condition is a volatile, flammable, clear, colorless chemical compound. The 

largest bioethanol producers in the world are the USA and Brazil, though they utilize 

cornstarch and sugarcane juice as the main substrate for bioethanol production, which is 

globally seen as unsustainable because of energy, food and feed controversy (Pimental et 

al., 2009; Wheals et al., 1999). Bioethanol can be blended with normal gasoline in various 

forms: low-level blends (E10), high-level blends (E85 or E95) (Lynd, 1996). E10 (10% 

ethanol and 90% gasoline) is the most common ethanol blend in USA, and this can be used 

in new vehicle engines with non-modified. Most new cars sold in Brazil are flexible-fuel 

vehicles (FFV) that can run on pure 100% hydrous ethanol as well as blends with up to 

80% of gasoline. In Europe, a large volume of bioethanol is used in blends with gasoline 

(5% ethanol and 95% gasoline) (Wheals et al., 1999). However, the market potential for 

bioethanol is not just limited to transport fuel or energy production but has a great potential 

to supply the existing chemical industry. Ethanol is also used as an oxygenate additive for 

conventional gasoline, as a replacement for methyl tertiary buthyl ether (MTBE), which is 

normally mixed with gasoline as additive to improve the octane number. Due to toxic 

properties associated with MTBE, which is also responsible for groundwater 

contamination, it is therefore more frequently replaced by ethyl tertiary butyl ether (ETBE) 

that is normally produced from bioethanol (Rutz and Janssen, 2007; Twidell and Weir, 
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2006). Ethanol is therefore an excellent additive for preventing engine knock and 

overheating of the engine valves (Wyman, 1996). Ethanol has higher octane number (96-

113) than conventional gasoline (86-87) (Wyman, 2004) and thus, when blended the octane 

number increases, thereby reducing the need for toxic, octane enhancing additives 

(Mielenz, 2001). It enables combustion engines to run at a higher compression ratio and 

therefore provides a net performance gain of nearly 15% w/w (Wheals et al., 1999; Knapp 

et al., 1998). As earlier mentioned, the main chemical industries that patronize ethanol 

industry are: solvents and alcoholic for beverages. 

 

Biogas 

Biogas, a mixture of gases that is combustible when blended with air can be utilized in 

many ways as a source of energy (thermal, electrical or mechanical). It can also be 

converted to methanol and used as fuel in internal combustion engines. Biogas is mainly 

composed of methane (about 60% of its total content), which is colorless and odorless, 

flammable and lighter than air (Price and Cheremisinoff, 1981). Biogas as a combination of 

methane, carbon dioxide, traces of hydrogen sulfide and other elements must be purified 

before it can be utilized as energy source. It has many applications depending on the nature 

of the source and its market demand for specified energy form.  

Biogas is generally used in a combined heat and power generation (CHP) plant. The 

utilization is mainly made up of a simultaneous production of electricity and heat for the 

houses. For this process, the biogas has to be drained and dried before it can be applied in a 

combined heat and power generation. Also, part of the heat and energy produced can be 

directly utilized as an internal power source in the biogas plant, thereby reducing process 

costs (Sommer, 2007). Along with heat, certain amount of electricity can be generated in 

CHP conversion and is considered as more efficient available energy extraction. Because 

biogas is considered as environmental-friendly and clean renewable energy, it can be 

upgraded and use as a vehicle fuel if purified from hydrogen sulfide. This process is needed 

to avoid corrosion and mechanical wear and to meet quality requirements of gas 

applications (Darrell, 2001).  
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At present, biogas is mostly used as a vehicle fuel to run the public transport in Sweden. 

It is also extensively utilized in other part of the world mainly in South America (Brazil) 

and Asia (Sommer, 2007). However, the biogas quality demands in case of vehicle engines 

are very strict and therefore, appropriate gas upgrading and purifying technologies must be 

implemented to meet the demands. These measures required that the upgraded biogas to be 

used in vehicle engines should contain more than 95% of pure methane without any content 

of carbon dioxide, water, and all the trace elements associated with biogas.  

Biogas can be injected and distributed through the natural gas grid since biogas like 

natural gas mainly consists of methane. There are several advantages for using the gas grid 

to distribute biogas. One important advantage is that the grid connects the production site 

with more densely populated areas which enables the gas to reach new customers. It is also 

possible to increase the production at a remote site and still use 100% of the gas. 

Furthermore injecting biogas into the gas grid improves the local energy security of supply; 

this is an important factor for the countries that consume more gas than they produce. 

However, some countries in Europe like Sweden, Denmark, Germany and France have 

standard measures for injecting biogas into the natural gas grid. The standards have been 

set to avoid contamination of the gas grid or end uses. In the standards there are limits on 

certain components for instance sulfur, oxygen, particles and water dew point. Moreover, 

the electricity generated from the upgraded biogas which has been purified is usually 

occurring through the application of converters connected to gas generators. These 

converters can be in form of electrochemical cells (fuel cells) or gas turbine engines for 

example micro-turbine (da Costa Gomez et al., 2001; Darrell, 2001).  

 

Biodiesel  

Apart from bioethanol, other valuable liquid biofuel such as biodiesel can be integrated 

with production of high valuable chemicals. Clean burning mono-alkyl ester-based 

oxygenated fuel produced from vegetable oils, animal fats and etc. is termed biodiesel. The 

main substrate for biodiesel production in Europe is rapeseed oil, whereas palm oil is used 

for biodiesel production in Asia and Africa (Crabbe et al., 2001; Saka and Kusdiana, 2001). 

The extracted oil is esterified with methanol or propanol (Kiss and Bildea, 2012) generating 
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glycerol as its byproducts, which can be further utilized in many ways, for example to boost 

the biogas production or applied in chemical industry.  

Because biodiesel is compatible with conventional diesel, it can be blended in any 

proportion with or without engine modifications. Biodiesel viscosity comes very close to 

that of conventional diesel and thus has no problems in the existing fuel handling system. 

Flash point of the biodiesel gets lowered after esterification and the octane number gets 

improved. Even lower concentrations of biodiesel act as octane number improver for 

biodiesel blends (Agarwal, 2007). More so, biodiesel blends above 20% content on vehicle 

engines will require some modification. Biodiesel is the main biofuel for road transport 

used in Europe and accounted for almost 80% percent of the biofuels market on energy 

basis in 2010 and Europe still the world’s largest biodiesel producer, consumer, and 

importer (Flach et al., 2011).  

 

High-value added chemicals 

Integrated products production processes in biorefinery systems will significantly 

enhance its economics thereby reducing the technical and market risk. Coproducts are 

pillars that support biorefinery economics and increase its diversity and independency. 

Apart from energy products (transportation fuels, power and/or heat) from biorefinery 

system, other valuable material products (chemicals, food, feed etc.), which are not used for 

energy generation purpose can be gained from a well-designed and healthy working 

biorefinery system. It is therefore essential to standardize the quality requirements of 

biorefinery products at the starting point of this technology which will enable the system to 

minimize variability, as such standardization will aid focus future investigation to achieve 

products with specific quality (Fernando et al., 2006). In this way, products of biorefinery 

will be able to replace fossil materials coming from conventional oil refinery. These 

represent real examples of ways that a self-contained and truly integrated biorefinery 

system can help create a more sustainable business and enhance market value. Some 

important value-added chemicals have been investigated by a team from PNNL and NREL. 

A list of top 12 potential biobased chemicals (fig. 8) was identified through extensive 

evaluating the potential markets for the building blocks and their derivatives and the 
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technical complexity of the synthesis pathways. These top building block chemicals and 

their derivatives as reported by the PNNL and NREL can be produced from monomeric 

sugars of lignocellulosic biomass through biological and chemical conversions, where the 

building blocks can be subsequently converted to a wide range of high-value biobased 

chemicals or materials.  

 

 
Fig. 8. Top 12 potential biobased chemicals that can be produced from biomass (Aden et 

al., 2004). 

 

Building block chemicals, as considered for this analysis are molecules with multiple 

functional groups that possess the potential to be transformed into new families of useful 

molecules. The PNNL and NREL studied the synthesis for each of the top building blocks 

and their derivatives as a two-part pathway, where the first part is the transformation of 

sugars to the building blocks and the second part is the conversion of the building blocks to 

secondary chemicals or families of derivatives. Biological transformations account for the 

majority of routes from plant feedstocks to building blocks, but chemical transformations 

predominate in the conversion of building blocks to molecular derivatives and 

intermediates. The challenges and complexity of these pathways, as they relate to the use of 
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biomass derived sugars and chemicals, were briefly examined by a term from PNNL and 

NREL in order to highlight R&D needs that could help improve the economics of 

producing these building blocks and derivatives (Aden et al., 2004).  

The use and application of these building block chemicals are huge for example, C4 

dicarboxylic acids can be transformed and use as a solvents, fibers and water soluble 

polymers for water treatment, polyesters and nylons with new properties potentially for 

fiber applications can be generated from 2,5-furan dicarboxylic acid, contact lenses, diapers 

can be produced from 3-hydroxypropionic acid, aspartic acid can be transformed to 

produce salts for chelating agent and sweeteners, solvents and nylons can be generated 

from transformation of glucaric acid, glutamic acid can be transformed into monomers for 

polyesters and polyamides, products like nitrile latex or solvents can be produced from 

itaconic acid, levulinic acid can be transformed into fuel oxygenates and solvents, 

intermediate for high value pharm compounds can generated from transformation of 3-

hydroxybutyrolactone, pharmaceutical and beverage products, and antifreeze etc. can be 

produced from glycerol transformation, sorbitol can be transformed into antifreeze and 

water soluble polymers, while, xylitol/arabinitol can be transformed into non-nutritive 

sweeteners, anhydrosugars and antifreeze. However, these products are sugar derived 

materials, other potential products like aromatics have a very large commodity market for 

polymers and surfactants, therefore, lignin a component of lignocellulosic biomass can 

afford the entire family of aromatic compounds that are difficult to produce through sugars 

(Aden et al., 2004). Carefully understanding the potential pathways and all the technical 

barriers associated with the transformation of these high-value marketable biobased 

products would lead to a better definition of which products hold the most promise as 

economic derivers for an integrated biorefinery system.  

 

LCF biorefinery process economics  

The conversion platform of cellulosic biomass to produce biofuels involves a complex 

process system, in which the production process steps takes the most of the total processing 

costs especially the pretreatment step, while the share of feedstock in the total costs is lower 

compared with the case of corn biofuels. Therefore, significant cost reductions are needed 
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for cellulosic biofuels production in order to make it more cost-competitive with fossil fuels 

for their commercial scaling-up (Carriquiry et al., 2011). It is estimated that ethanol yields 

from the bio-conversion of cellulosic biomass range between 110 and 300 l/t dry matter 

(see Table 2) (Mabee et al., 2006).  Common cereal straw collectable yields of 3-5 dry t/ha 

and for corn stover, 4-6 dry t/ha, would result in ethanol yields per hectare varying widely 

between 350 to 1600 l/yr. Considering that most crop residues only have low economic 

value e.g. when used for animal feed, bedding, composting or heating and also often 

produce a problem of disposal with associated costs, cereal crops have been bred 

historically to reduce the straw and stover yields. Once there is a value for cellulosic 

biomass however, these yields per hectare could be easily increased (Sims et al., 2008). 

Collectable forest residue yields vary widely with tree species, age at harvest, growing 

conditions and many more, but when calculated on a dry t/ha per year basis, would be in a 

similar range to crop residues (Wright and Brown, 2007). 

 

Table 2. Typical ethanol and energy yields recoverable from agricultural (straw, stover) or 

forest (wood) residues. 

Biomass 

Ethanol yield (liters/dry t) Energy yields* (GJ ethanol/dry t) 

Low High Low High 

Agricultural residues 110 270 2.3 5.7 

Forest residues 125 300 2.6 6.3 
*Based on 21.1 MJ/l ethanol lower heating value (23.6 MJ/l higher heating value). Source: 

Sims et al. (2008). 

 

Considering that the energy content of cellulosic biomass is around 20 GJ/dry t, the 

process conversion efficiency of 1 tonne of biomass to give an energy yield of 2.3-2.6 GJ of 

liquid biofuels at the low end of the range is only around 12-15%. At the high end of the 

range, 5.7-6.3 GJ of biofuels is achievable, being closer to 35% efficiency. This reflects the 

theoretical maximum conversion efficiency possible based on a cellulosic biomass 

containing 70% carbohydrates and possibly having complete conversion of carbohydrate to 

ethanol with up to 51% efficiency (Sims et al., 2008; Wright and Brown, 2007). High 
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efficiency conversion has been successfully obtained under laboratory conditions, but it still 

under investigations if it will be possible under industrial conditions (Melin and Hurme, 

2011). One way to improve the overall conversion process economy and to achieve the 

overall energy efficiency is to combust the lignin component to provide process heat, or 

possibly by using some of the pentose sugars to produce high value biochemical or other 

biomaterials. 

 

CONCLUSIONS 

 

The biorefinery industry is today rapidly moving forward and is favourable with 

increasing prices and depleting fossil oil coupled with relatively stable prices of biomass. A 

key driver for the development and implementation of today’s biorefineries is the rapid 

growth in demand for renewable and sustainable biofuels and the precursor’s chemicals. 

However, a crucial step in developing this industry is to ultimately establish integrated 

biorefineries capable of efficiently converting a broad range of lignocellulosic biomass into 

marketable and affordable products for both short- and long-term sustainability. The raw 

materials for the biorefineries is available in large quantities and at low costs, but the novel 

technologies for processing these materials at low costs in order to be more economical 

viable and penetrate the market are still in research and development phases. It is therefore 

paramount important to implement efficient technologies that can convert these raw 

materials at cheaper rates enabling cost effective processes in biorefinery systems. 

Nevertheless, the existing biorefinery technologies needs to be developed further and 

validated to commercial scale level, therefore, commercialization and policy support is 

needed for current- and near-term opportunities to quickly grow this industry from its 

present base. Notwithstanding, the cost of different process steps (from biomass handling to 

products) in biorefinery system needs to be reduced especially the pretreatment costs, 

which till-date accounts for almost 40% of the whole process costs. The pretreatment 

method of choice should for example maximize the enzymatic convertibility of cellulose 

fractions and preserve the hemicellulose sugars, should be flexible in raw materials and be 

able to accommodate higher biomass concentration of up to 25% dry weight to ensure a 
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suitable ethanol concentration for the subsequent distillation process. Such a pretreatment 

method (wet explosion) has been tested both in lab- and pilot-scale facility. It has the 

potential to be applied in an integrated biorefinery industry because it combines the 

mechanisms of steam-explosion, wet oxidation, and dilute acid as its mode of action. It is 

flexible in biomass feedstocks and can operate at high dry matter concentrations. 

Development of more efficient cellulases that has higher activities and stability to enable 

the conversion of pretreated biomass to higher yield at lower costs will significantly reduce 

the process costs in biorefinery industry. To that end, consolidated bioprocessing would be 

a method of choice, since the cellulase production, hydrolysis and fermentation is carried 

out in a single step, thereby reducing the operation and material expenditures that are 

usually required for acquisition of enzyme mixtures. Thus, this concept has the largest 

potential of reducing process materials, production costs, and has higher conversion 

efficiencies. On the other hand, the integrated biorefinery must comply with the term 

“carbon slaughterhouse’’ where the term “waste’’ does not exist, meaning that it should be 

able to convert almost 100% input raw material to high-value biobased products. Therefore, 

the production of biofuels from cellulosic materials can only be commercially viable if co-

production of high-value products is established, as coproducts would help reduce market 

and technical risk and brings stability enabling economically viable process in biorefinery 

industry. 
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Abstract 

 

The efficiency of wet explosion applied as modified dilute acid pretreatment at 

previously identified reference conditions (150 °C, 0.3% H2SO4, 15 min) was investigated 

on lucerne, ryegrass, fescue grass, cocksfoot grass, rye fescue, forage grass, and wheat 

straw in order to identify their potential as feedstock for cellulosic bioethanol production. 

After pretreatment, cellulose recovery was more than 95% for all biomass while 

enzymatic convertibility of cellulose ranged from 40% to 80%. Lower enzymatic 

conversion of cellulose was correlated with higher lignin content of the biomass. 

Hemicellulose recovery was 81-91% with a final pentose yield of 65-85%. Cocksfoot grass 

and wheat straw had the highest bioethanol potential of 292 and 308 L/ton DM, 

respectively. Overall efficiencies were higher than 68% for cocksfoot grass harvested in 

August, fescue grass, wheat straw, and forage grass while efficiencies were lower than 61% 

for the other tested biomass resources, making further adjustment of the process parameters 

necessary. 

 

 

Keywords: Wet explosion; Lignocellulosic biomass; Pretreatment; Enzymatic hydrolysis; 

Bioethanol   
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1. INTRODUCTION 

 

Lignocellulosic plant biomass is regarded as potential feedstock for sustainable 

production of biobased products including biofuels. However, due to the resistant of 

lignocellulosic structure, the utilization of cellulosic sugars to produce valuable biobased 

products faces significant technical challenges and its success depends largely upon the 

physical and chemical properties of the biomass type and pretreatment methods applied to 

it (Himmel et al., 1997). Pretreatment is among the most costly steps in the biochemical 

conversion of lignocellulosic biomass, accounting for up to 40% of the total processing cost 

(Lynd, 1996; Percival Zhang et al., 2009). Various thermal and chemical pretreatment 

methods as well as combinations of both have been proposed to make lignocellulosic 

biomass susceptible to enzymatic and microbial conversion (Galbe and Zacchi, 2002, 

Hendriks and Zeeman, 2009). Effective pretreatment of lignocellulosic biomass is 

characterized by a reduction in particle size, increase in surface area (porosity), disruption 

of cellulose crystallinity, hemicellulose disruption, and lignin redistribution without the 

formation of degradation products that inhibit the microbial activities during ethanol 

fermentation (Mosier et al., 2005; Karimi et al., 2006).  

Wet explosion (WEx) has previously been shown to be very effective for the 

pretreatment of wheat straw and Miscanthus (Georgieva et al., 2008; Sørensen et al., 2008) 

and has been applied in pilot-scale as part of the so-called MaxiFuel concept (Westermann 

et al., 2005; Ahring and Westermann, 2007) for bioethanol production from lignocellulosic 

biomass. This biorefinery concept includes the conversion of both C6 and C5 sugars into 

ethanol, the production of biogas from the fermentation effluent, and the separation of a 

lignin fraction that can be pelletized for combustion or converted into other valuable 

products.  

The aim of the current study was to screen different types of local biomass from the 

island of Bornholm, Denmark, for their potential of bioethanol production in a projected 

demonstration plant for this concept. The results of the screening will form the basis for the 

selection of two types of biomass with the highest potential for further optimization of 

process parameters of the different steps of the whole concept. The previously developed 
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reference parameter set for the modified WEx pretreatment of wheat straw with dilute acid 

addition was used for the screening of the pretreatment on the local biomass resources 

lucerne, ryegrass, fescue grass, cocksfoot grass, rye fescue, forage grass, and wheat straw. 

Subsequent enzymatic hydrolysis of cellulose was performed to investigate the efficiency 

of wet explosion for the final sugar release from the selected biomass as basis for their 

theoretical ethanol production.  

 

2. MATERIAL AND METHODS 

 

2.1. Biomass samples  

Ten different samples of seven different grass and straw species, Lucerne, Medicago 

sativa (Marshal), ryegrass, Lolium (Mathilde), fescue grass, Festuca arundinacea (Hykor), 

cocksfoot grass, Dactylis glomerata, (Amba), rye fescue, Festulolium (Perun), forage grass 

- a mixture of 10% red clover grass (Rajah), 10% white clover grass (Klondike), 40% rye 

fescue (Perun), 20% ryegrass (Indiana), 20% ryegrass (Mikado), and wheat straw were 

collected from Bornholm, Denmark. The biomass samples represented the main species 

available on Bornholm and were collected according to their typical harvest times in order 

to evaluate their potential in the current agricultural practice on Bornholm. Forage grass 

was collected in July and November, fescue grass in October, wheat straw in August, 

cocksfoot grass in August and November, lucerne in October and November, and ryegrass 

and rye fescue in November. All samples were air-dried and hammer milled to a particle 

size of 2-3 mm and stored in plastic bags at room temperature prior to pretreatment. Dry 

matter content for all dried biomass samples ranged from 84 to 93 g DM/100 g material. 

For chemical composition analysis, a portion of each raw biomass sample was ground in 

a coffee grinder to a particle size of 1 mm. The content of total carbohydrates (cellulose and 

hemicellulose), and Klason lignin in the raw biomass was determined by strong acid 

hydrolysis according to the procedure developed by the National Renewable Energy 

Laboratory (Sluiter et al., 2008a). 

Sugar analysis (glucose and xylose) was performed by high performance liquid 

chromatography (HPLC) with refractive index (RI) detection (Shimadzu Corp., Japan) on 
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an Aminex HPX-87H column (Bio-Rad Laboratories, CA, USA) using 4 mM H2SO4 as 

eluent and a flow rate of 0.6 mL/min at 60 oC. Prior to HPLC analysis, samples were 

centrifuged at 4000 g for 10 min, and filtered through a 0.45 μm syringe filter.  

Dry matter content (DM), volatile solid content (VS), and ash were determined 

according to the procedure described by the American Public Health Association (APHA, 

1992). 

 

2.2. Wet explosion pretreatment 

The wet explosion pretreatment was performed in a 5 L WEx reactor, equipped with a 

high-pressure cylinder, a gas/liquid inlet for injection of dilute sulfuric acid, and a 

continuous stirrer (990 rpm). The reactor was heated by a water jacket connected to a heat 

exchanger controlled by an oil heater. The temperature inside the reactor was monitored by 

a temperature sensor mounted in the headspace. The pretreatment of all biomass samples 

was performed at previously identified reference conditions (150 oC, 15 min retention time) 

by suspending 150 g dried biomass in 820 g of tap water. A final acid concentration of 

0.3% and a dry matter content of 12-13% was reached by injection of 30 g of 10% sulfuric 

acid into the WEx reactor after reaching the desired temperature.  

After the treatment, the biomass was flashed into a 20 L flash tank connected to the 

reactor, resulting in a sudden drop in temperature and pressure.  

The resulting biomass slurry from the pretreatment was separated into liquid and solid 

fractions. The separation was performed in a commercial filtration unit (Larox Buchner 

unit) with a filtering cloth pore size of 20 μm and a constant vacuum pressure of -0.7 psi. 

The solid fraction was washed thoroughly with water and stored in a freezer (-18oC) prior 

to compositional analysis and further processing. The separated liquid fraction was stored 

at 4 oC before further analyses.  

 

2.3. Analysis of the solid fraction  

A part of the solid fraction (washed filter cake) of the WEx slurry was dried in an 

incubator at 38 oC for 12 h and ground in a coffee grinder to a 1 mm particle size before 

composition analysis. The content of total carbohydrates (cellulose, hemicellulose), and 
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Klason lignin in the separated solid fractions, Cell SF, Hemicell SF and Lignin SF was 

determined by strong acid hydrolysis as previously described (Sluiter et al., 2008a).  

The recovery of cellulose and hemicellulose during the WEx process was calculated by 

using Eq. (A.1) and (A.2): 

 

 
 

 
where Glucose LF is the glucose in the liquid fraction, Cell SF and Cell RB are the 

cellulose, and Hemicell SF and Hemicell RB are the hemicellulose found in the solid fraction, 

and in the raw biomass, respectively, while Xylose LF and Arabinose LF are the xylose and 

arabinose in the liquid fraction, respectively; 1.11, and 1.14 are the stoichiometric 

conversion factors of polysaccharides to sugar monomers.   

 

2.4. Enzymatic hydrolysis of solid fraction  

The release of hydrolysable cellulose by the wet explosion pretreatment was analyzed by 

the sugars released after enzymatic hydrolysis using a commercial enzyme mixture (Cellic 

CTec), kindly provided by Novozymes A/S (Bagsværd, Denmark). The enzymatic 

conversion of the separated wet exploded solid fraction was carried out at 5% DM with 

0.05 M succinate buffer (pH 5.0). The experiments were performed in duplicates in 2 mL 

Eppendorf tubes filled with 1.5 mL of hydrolysis media and at an enzyme dosage of 20 mg-

EP/g-VS (EP = enzyme protein) for all samples. The hydrolysis mixture was incubated for 

72 h at 50 oC in a thermomixer shaker at 1400 rpm. The reaction was stopped by heating 

the solution to 100 oC for 10 min, mixed by vortexing, and centrifuged for 8 min at 3600 g. 

The concentration of glucose, xylose, and arabinose in the hydrolyzate was quantified by 

HPLC as described in Section 2.1. 

The glucose yield after enzymatic hydrolysis was calculated according to Eq. (B.1):  
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where Glucose EH is the mass of glucose released after enzymatic hydrolysis of cellulose 

in the solid fraction.  

 

2.5. Analysis of the liquid fraction  

The concentration of sugar monomers (glucose, xylose, arabinose), 2-furfural, 

hydroxymethylfurfural (HMF), and carboxylic acids (acetic acid and glycolic acid) present 

in the liquid fraction (filtrate) after WEx pretreatment were directly quantified by HPLC 

analysis as described in Section 2.1 without further treatment. While the total soluble 

sugars present as oligomers in the liquid fractions were hydrolyzed with 4% w/w sulfuric 

acid at 121 oC for 10 min, and determined according to the National Renewable Energy 

Laboratory protocol (Sluiter et al., 2008b). The yield of pentose sugars after WEx 

pretreatment was calculated according to Eq. (B.2):  

 

)2.B(100
Hemicell

14.1/Pentoses(%)yieldHydrolysis
RB

LF
pentoses

 
where Pentoses LF is the mass of the pentose sugars xylose and arabinose released after 

WEx pretreatment in the liquid fraction.  

The theoretical ethanol production was calculated based on the total yield of C6 and C5 

sugars after WEx pretreatment and enzymatic hydrolysis of cellulose fraction according to 

Eq. (C.1): 

 

Yield EtOH,tot = Glucosetot × 0.51 + Pentosetot × 0.50                                                (C.1) 

where Glucose tot is the total glucose released after pretreatment and enzymatic 

hydrolysis and Pentoses tot is the total pentoses released from hemicellulose after WEx 

pretreatment and 0.51 and 0.50 are the maximal achievable ethanol fermentation yields (in 

g-EtOH/g-sugar) from glucose and xylose, respectively (Hatzis et al., 1996).  

 

 



67 
 

3. RESULTS AND DISCUSSION 

 

3.1. Raw biomass composition 

The composition of the raw biomass is shown in Fig. 1. Cellulose content of the raw 

biomass was highest in wheat straw (collected in August), lucerne harvested in October, 

and cocksfoot grass harvested in August (35.6–36.5 g/100 g DM). For all other biomass 

samples, the cellulose content was below 32 g/100 g DM. The highest hemicellulose 

content (23.4 g/100 g DM) was found in cocksfoot grass harvested in August followed by 

wheat straw with similar hemicellulose content (23.3 g/100 g DM. Accordingly, the sum of 

cellulose and hemicellulose was highest for wheat straw and cocksfoot grass harvested in 

August. These values are higher than the values found for wheat straw by Thomsen et al. 

(2006) (30.4 g/100 g DM for cellulose and 21.3 g/100 g DM for hemicellulose).  

 

 
Fig. 1. Chemical composition of the different biomass samples. 
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The lignin content ranged between 17.2 and 24.6 g/100g DM with the highest value for 

forage grass harvested in July. Comparing the composition of the biomass for the different 

harvest times reveals a general pattern that the cellulose content decreases and the content 

of inorganics increases with later harvest of the biomass. For lignin and hemicellulose, 

however, there was no clear correlation. For lucerne, the lignin content was higher for the 

biomass harvested later, while it is lower for forage grass and about the same for cocksfoot 

grass. The hemicellulose content remained about the same for lucerne and forage grass 

while it was significantly lower for cocksfoot grass harvested in November (Fig. 1). The 

content of other organic matter, which is the sum of non-analyzed organic matter like 

pentoses other than xylose and arabinose, proteins and fats, was also not clearly correlated 

with harvest time as it was higher for lucerne and cocksfoot grass at a later harvest time and 

remained the same for forage grass harvested in November (Fig. 1). 

 

3.2.WEx pretreatment and recovery of carbohydrates and lignin 

WEx pretreatment with dilute acid addition was expected to fractionate the 

lignocellulosic biomass into a solid fraction containing mainly cellulose and lignin, and a 

liquid fraction enriched with solubilized hemicelluloses, mainly present as C5 monomers, 

and low molecular lignin fragments in dissolved form.  

The recovery of cellulose in the solid fraction was high for all biomass samples, and 

ranged from 95 to 99%, while the recovery of hemicellulose was within the range of 81-

91% (Fig. 2). The highest cellulose recovery of approximately 99% was achieved with 

ryegrass harvested in November and forage grass harvested in July. The recoveries of 

hemicellulose were generally above 89%, except for wheat straw and cocksfoot grass 

harvested in August that gave hemicellulose recoveries of 81 and 82%, respectively. 
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Fig. 2. Recovery of polysaccharides (cellulose and hemicellulose) and lignin after modified 

WEx pretreatment at reference conditions for the different biomass samples. (error bars 

represent standard deviations of duplicates). 

 

The recoveries for wheat straw (96% cellulose and 81% hemicellulose) are in good 

agreement with those of Georgieva et al. (2008), who reported that 93% of cellulose and 

72% of hemicellulose were found after wet explosion of wheat straw at 185 oC for 15 min 

and 35% (v/v) hydrogen peroxide. In comparison, Martin et al. (2007) achieved 70% 

cellulose recovery after treating sugarcane bagasse by wet oxidation at 195 oC, 15 min and 

alkaline pH. The high recovery of cellulose among the biomass samples at the lower 

temperature applied in the current study reveals an efficient separation of the cellulose from 

lignin and low degradation of cellulose to other products such as HMF during the WEx 

process. The relatively high hemicellulose recoveries compared to those from other studies 

indicate relatively low sugar degradation during the dilute acid WEx pretreatment at the 

applied lower temperature. 

Lignin recoveries in the solid fraction were more than 89% for all treated biomass 

samples (Fig. 2). High lignin recoveries above 97% were found in lucerne harvested in 
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October, fescue grass, cocksfoot grass harvested in August, and wheat straw, while 

recoveries of around 90% were found for forage grass harvested in July and rye fescue. As 

lignin recovery in the solid fraction after pretreatment is affected by solubilization and 

depolymerization of sugars (Sassner et al., 2008), and lignin may be degraded to low 

molecular lignin compounds i.e. phenolic compounds under harsh pretreatment conditions 

(Petersen et al., 2009), the high recoveries of lignin in the solid fraction indicate that only a 

small part of the lignin was solubilized and, hence, the formation of low molecular lignin 

compounds was low. 

 

3.3. Enzymatic hydrolysis of cellulose in the solid fraction and yield sugars in the liquid 

fraction after pretreatment 

The enzymatic convertibility of cellulose under the tested WEx conditions is one of the 

most important factors to evaluate the efficiency of the pretreatment for the production of 

bioethanol from C6 sugars (Varga et al., 2003) as it reveals the efficiency of enzymatic 

hydrolysis specifically for a certain enzyme mixture on the specific hydrolyzate.  

Fig. 3A depicts the yields of glucose and pentoses after enzymatic hydrolysis of the wet-

exploded solid fraction (filter cake). Wheat straw and cocksfoot grass harvested in August 

gave the highest glucose yields of 80% and 74%, respectively. In comparison, Thomsen et 

al. (2006) reported only 67-68% glucose yield from the solid fraction after hydrothermal 

pretreatment of wheat straw at 190 oC to 200 oC. The lowest glucose yield of 40-54% was 

found with lucerne although this biomass gave a good cellulose recovery. These results 

indicate that enzymatic convertibility of cellulose to sugar monomers was the main 

bottleneck for biomass like forage grass harvested in July and lucerne, which is obviously 

correlated to the higher lignin content found in these biomass samples (24.6 and 23.4 g/100 

g DM, respectively). These findings are in agreement with the proposition that high lignin 

content of biomass blocks enzyme accessibility, causes end-product inhibition, and reduces 

the rate and yield of enzymatic hydrolysis (Knauf and Moniruzzaman, 2004; Yang et al., 

2009). The solubilized pentose sugars (xylose and arabinose) were mainly dissolved in the 

liquid fraction and only 10-19% was found in the solid fraction (Fig. 3A). The pentose 

yields in the liquid fraction were above 70% for most of the biomass samples apart from 
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lucerne, cocksfoot grass and wheat straw harvested in November and August, with a 

pentose yield slightly below 70% (Fig. 3B).  

 

 
Fig. 3(A). Yield of glucose and pentoses after enzymatic hydrolysis of solid fractions. (B). 

Yield of glucose and pentoses in liquid fraction after modified WEx pretreatment. Average 

values and standard deviations reported for duplicates.  
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The highest pentose yield of approximately 85% was achieved with forage grass 

harvested in July. In comparison, Lu et al. (2009) found a xylose yield of 70% for 0.5-2% 

sulfuric acid-catalyzed hydrothermal pretreatment (180 oC, 5-20 min) of rapeseed straw. 

These results show that hemicellulose sugars were, for the most part, extracted and released 

into the liquid fraction during the dilute acid pretreatment. The total pentose yields in the 

liquid and solid fraction after WEx pretreatment and enzymatic hydrolysis were generally 

above 80%, except for cocksfoot grass harvested in August, lucerne harvested in October, 

and rye fescue harvested in November. The glucose yield in the liquid fraction was low 

compared to the pentose yields for all treated biomass types, indicating that only a very 

small fraction of glucose monomers originating from cellulose was solubilized during 

pretreatment. 

Overall, these results show that the severity of the applied WEx treatment at 150 oC with 

a low acid dosage was for most of the tested biomass high enough to release a high amount 

of glucose from the cellulose and mild enough not to convert the pentose sugars released 

from the hemicellulose into undesired degradation products. 

 

3.4. Formation of degradation products during WEx pretreatment  

The concentration of carboxylic acids, furfural and HMF in the liquid fraction after 

pretreatment is presented in Table 1. Depending on process severity, carboxylic acids, furan 

derivatives (furfural and 5-hydroxymethyl furfural-HMF), and phenolic compounds were 

generated during pretreatment of lignocellulosic biomass. These products are considered 

potential fermentation inhibitors (Saha, 2004; Klinke et al., 2004). At more severe 

pretreatment conditions, xylose is degraded to furfural while HMF is formed from hexose 

degradation, and phenolic compounds are generated from partial breakdown of lignin 

(Palmqvist and Hahn-Hägerdal, 2000). Carboxylic acids were analyzed as the sum of acetic 

and glycolic acids. The highest by-product formation was found with cocksfoot grass 

(August harvest) and wheat straw at levels of 0.9 and 1.5 g/100 g DM for carboxylic acids, 

0.2 and 0.3 g/100 g DM for furfural, and below 0.1 g/100 g DM for HMF, respectively. For 

all other biomass samples, the concentrations were significantly lower. In comparison, Lu 

et al. (2009), performing sulfuric acid-catalyzed hydrothermal pretreatment at 0.5-2% acid 
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concentration, 5-20 min, and 180 oC, found 4.1 g/100 g DM for acetic acid and 1.1 g/100 g 

DM for furfural and HMF. 

 

Table 1. Formation of by-products (g/100g DM) in the liquid fraction after WEx 

pretreatment of the different biomass samples. 

Biomass Carboxylic acidsa Furfural HMF 

 g/100g DM g/100g DM g/100g DM 

Wheat straw (Aug.) 1.53 (0.04) 0.25 (0.02) 0.03 (0.00) 

Cocksfoot (Aug.) 0.93 (0.01) 0.14 (0.00) 0.10 (0.00) 

Rye grass (Nov.) 0.15 (0.02) 0.07 (0.00) 0.03 (0.00) 

Rye fescue (Nov.) 0.08 (0.03) 0.05 (0.02) 0.02 (0.00) 

Forage grass (July) 0.10 (0.01) 0.05 (0.01) 0.02 (0.00) 

Forage grass (Nov.) 0.09 (0.02) 0.06 (0.03) 0.02 (0.00) 

Fescue grass (Oct.) 0.08 (0.00) 0.02 (0.00) 0.01 (0.00) 

Cocksfoot (Nov.) 0.18 (0.05) 0.01 (0.00) 0.00 (0.00) 

Lucerne (Nov.) 0.09 (0.01) 0.03 (0.00) 0.01 (0.00) 

Lucerne (Oct.) 0.15 (0.03) 0.01 (0.00) 0.00 (0.00) 

Average of duplicates. Standard deviation shown in parentheses. aSum of acetic and 

glycolic acids. 

 

The formation of by-products in the current study was also lower compared to that found 

by Martin et al. (2007) who found 9.21 g/100 g material for carboxylic acids, 0.53 g/100 g 

material for furfural, and 0.07 g/100 g material for HMF after wet oxidation pretreatment of 

sugarcane bagasse at 195 oC, 15 min at alkaline pH. The lower by-product formation in the 

current study indicates that the severity of the pretreatment used in the current study is 

significantly lower compared to the abovementioned studies, mainly due to the lower 

temperature.  
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3.5. Theoretical ethanol production 

The maximum achievable ethanol yield was calculated for the different biomass samples 

based on the total yields of C6 and C5 sugars after WEx pretreatment and enzymatic 

hydrolysis of cellulose. Since the current study should not be committed to a certain 

fermentation design, the calculated ethanol yield was based on the maximum yield of 0.51 

g-EtOH/g-glucose and 0.50 g-EtOH/g-xylose, as reported by Hatzis et al. (1996). Due to 

the same pretreatment conditions used and the relatively low production of furfural and 

HMF, it was expected that the efficiency of the fermentation would not vary significantly 

for the different pretreated biomass resources. 

Using the sugar yields achieved after WEx pretreatment and enzymatic hydrolysis, the 

calculated ethanol yields among the different pretreated types of biomass ranged from 177 

to 308 L/ton DM (Fig. 4). The ratio of ethanol yield based on the sugar release after WEx 

pretreatment and enzymatic hydrolysis and the potential ethanol yield based on the 

composition of the raw biomass is an expression for the efficiency of the applied WEx 

treatment. As can be seen in Fig. 4, this ratio, i.e. the pretreatment efficiency, was quite 

different for the different biomass samples, with values higher than 68% for cocksfoot grass 

harvested in August, fescue grass, wheat straw, and forage grass and lower than 61% for 

the other tested biomass resources. However, no correlation was found between biomass 

composition (content of cellulose, hemicellulose or lignin) and efficiency of the 

pretreatment (data not shown). The highest achievable ethanol yields of 292 and 308 L/ton 

DM could be obtained from cocksfoot grass harvested in August and wheat straw, 

respectively, corresponding to a yield of 74% and 80% of the potential based on the 

cellulose content of the biomass, and a yield of 59% and 61% of the potential based on the 

hemicellulose content.  

For all other biomass samples, the potential and maximum achievable ethanol yields 

were significantly lower. For forage grass harvested in July and fescue grass, the 

pretreatment efficiency under the tested conditions was, however, the highest among all 

samples, leading to ethanol yields of up to 250 L/ton DM. For all other samples the 

maximum achievable ethanol yield was around 200 L/ton DM with the lowest for lucerne 

harvested in October. For this biomass the efficiency of the pretreatment was less than 
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50%, which was mainly due to the low enzymatic convertibility of its cellulose fraction, 

which is associated with a lower pretreatment efficiency on this biomass.  

 

 
Fig. 4. Potential ethanol yield based on the composition of the raw biomass (left column for 

each biomass) and achievable ethanol yield based on C6 and C5 sugar yields after WEx 

pretreatment and enzymatic hydrolysis (right column for each biomass). 

 

4. CONCLUSIONS 

 

Among the biomasses studied, wheat straw and cocksfoot grass exhibited the highest 

bioethanol potential. The ethanol yield depended on biomass composition and pretreatment 

efficiency. Cellulose content of biomass harvested later in the year was generally lower. 

Hemicellulose and lignin contents and time of harvest were not correlated. Wet explosion 

with relatively low severity and dilute acid addition was effective for cocksfoot grass 

harvested in August, fescue grass, wheat straw, and forage grass. For the other biomass 
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resources, the severity of the pretreatment was too low, making further adjustment of the 

pretreatment parameters advisable.  
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Abstract 

 

The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic 

hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was 

applied to cocksfoot grass, based on WEx pretreatment of wheat straw as reference, and 

pretreatment conditions were tailored for maximizing the sugar yields after WEx 

pretreatment and enzymatic hydrolysis using response methodology (RSM). The WEx 

process parameters studied were temperature (160-210 oC), retention time (5-20 min), and 

dilute sulfuric acid concentration (0.2-0.5%). The pretreatment parameter set (E) 210 oC, 5 

min, and 0.5% dilute sulfuric acid was found most suitable for achieving a high glucose 

release with low formation of byproducts. Under these conditions, a cellulose and 

hemicellulose sugar recovery was 94 and 70%, respectively. The efficiency of the 

enzymatic hydrolysis of cellulose under these conditions was 91% resulting in a calculated 

ethanol yield of approximately 330 L/ton DM based on total sugar yields from hexoses and 

pentoses. On the other hand, the released of pentose sugars was more pronounced under 

less severe pretreatment condition C (160 oC, 5 min, 0.2% dilute sulfuric acid). Therefore, 

pretreatment conditions should be tailored depending on the choice of products. 

 

 

Keywords: Wet explosion; Lignocellulosic biomass; Cocksfoot grass; Pretreatment; 

Bioethanol yield; Response Surface Analysis.   
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1. INTRODUCTION 

 

The utilization of agricultural residues, forestry, and organic waste materials for 

cellulosic biofuels production is a challenge for economical bioenergy production. These 

biomass resources are characterized by their lignocellulosic structure, that is highly 

complex, mainly composed of cellulose, hemicellulose, and lignin that are not directly 

accessible for microbial degradation (Chen and Qiu, 2010).  

Lignin is a complex polymer of phenylpropane units and methoxy groups, linked in a 

three-dimensional structure which is particularly difficult to biodegrade. Lignin is the most 

recalcitrant component of the plant cell wall and protects the plant from physical and 

microbial degradation (Hendriks and Zeeman, 2009). The higher the proportion of lignin in 

the lignocellulosic biomass, the higher is its resistance to chemical and enzymatic 

degradation. It restricts hydrolysis by shielding cellulose surfaces and inactivating enzymes 

(Taherzadeh and Karimi, 2008). Cellulose, on the other hand, is extremely crystalline, 

water insoluble, and highly resistant to depolymerization, which makes it rather difficult for 

hydrolyzing enzymes to access (Sørensen et al., 2008). Therefore, release of glucose from 

cellulose faces significant technical challenges. Hemicelluloses are heterogeneous polymers 

of pentoses (xylose and arabinose) as the dominant sugars and small amounts of non-sugars 

such as acetyl groups. In contrast to cellulose, which is crystalline and strong, 

hemicelluloses have a random, amorphous, branched structure with little resistance to 

hydrolysis, and are relatively easy to hydrolyze to their sugar monomers by dilute acids 

(Hamelinck et al., 2005). 

The biochemical conversion of lignocellulose into valuable products largely depends on 

an effective pretreatment technology (Himmel et al., 1997). Under the pretreatment, 

lignocellulosic biomass is converted from its native form, in which it is recalcitrant to 

cellulose enzyme systems, into a form for which cellulose hydrolysis is effective (Hendriks 

and Zeeman, 2009). The main purpose of the pretreatment is to break the lignocellulosic 

structure (Kumar et al., 2009), and to reduce the cellulose crystallinity with low loss of 

sugar compounds (Karimi et al., 2006). At the same time, the formation of degradation 



83 
 

products that inhibit the microbial activities during ethanol fermentation should be kept low 

(Mosier et al., 2005).  

Lignin, on the other hand, is a valuable by-product which can be burned to provide heat 

and electricity, or utilized as raw material for the conversion into various polymeric 

compounds (Saha and Bothast, 1997). For improving the economy of the ethanol 

production process it is therefore, essential to recover the lignin fraction after pretreatment.  

The current study is part of an optimization of the so-called BornBioFuel concept for 

cellulosic bioethanol production that is going to be implemented in a demonstration plant 

on the island of Bornholm, Denmark (Bacovsky et al., 2010). In the BornBioFuel concept, 

the previously developed wet explosion (WEx) pretreatment method (Westermann et al., 

2005; Ahring and Westermann, 2007; Georgieva et al., 2008; Sørensen et al., 2008) was 

modified by addition of dilute sulfuric acid.  

In a previous screening of different biomass resources available on the island of 

Bornholm, cocksfoot grass revealed a high potential as feedstock for the BornBioFuel 

demonstration plant (Njoku et al., 2012). Cocksfoot grass is an abundant biomass, widely 

distributed in Europe and United States. It is a hardy deep-rooted perennial grass, well 

suited to dry conditions and acid soils. Starting its growth in early spring, it can reach 

heights up to 140 cm; with the leaves reaching the lengths of 50 cm (Moore et al., 2006; Xu 

et al., 2006).  

The overall objective of this study was to evaluate and increase the efficiency of the 

modified WEx pretreatment method with dilute sulfuric acid addition. The evaluation of the 

WEx pretreatment of cocksfoot grass was performed by adjusting the WEx process 

parameters for maximizing the sugar yields after WEx pretreatment and enzymatic 

hydrolysis. 

 

2. MATERIAL AND METHODS 

 

2.1. Raw material  

Cocksfoot grass and wheat straw from the island of Bornholm, Denmark, were harvested 

in August. The biomass samples were air-dried and hammer milled to a particle size of 2-3 
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mm and stored in plastic bags at room temperature prior to pretreatment. A portion of the 

raw biomass was ground in a coffee grinder to a particle size of 1 mm and used for 

chemical composition analysis.  

Dry matter content (DM), volatile solid content (VS), and ash were determined 

according to the procedure described by the American Public Health Association (APHA, 

1992). The content of total carbohydrates (cellulose and hemicellulose), and Klason lignin 

in the raw biomass was determined by strong acid hydrolysis according to the procedure 

developed by the National Renewable Energy Laboratory (Sluiter et al., 2008a). 

Sugar analysis (glucose and xylose) was performed by high performance liquid 

chromatography (HPLC) with refractive index (RI) detection (Shimadzu Corp., Japan) on 

an Aminex HPX-87H column (Bio-Rad Laboratories, CA, USA) using 4 mM H2SO4 as 

eluent and a flow rate of 0.6 mL/min at 60 oC. Prior to HPLC analysis, samples were 

centrifuged at 4000g for 10 min, and filtered through a 0.45 μm syringe filter. 

The VS content of the raw biomass found as difference between the total VS value and 

the sum of the carbohydrate fractions analyzed in the raw biomass was referred to as “other 

organic matter”, which is the sum of proteins, fats and volatile compounds.  

 

2.2. Wet explosion pretreatment 

The wet explosion pretreatment was performed in batches in a 5 L WEx reactor (Njoku 

et al., 2012), equipped with a high-pressure cylinder, a gas/liquid inlet for injection of dilute 

sulfuric acid, and a continuous stirrer (990 rpm). The reactor was heated by a water jacket 

connected to a heat exchanger controlled by an oil heater. The temperature inside the 

reactor was monitored by a temperature sensor mounted in the headspace. The pretreatment 

was performed by suspending 300 g raw biomass in 1600 g of tap water. The sulfuric acid 

was injected into the WEx reactor after reaching the desired temperature.  

After the treatment, the biomass slurry was flashed into a 20 L flash tank connected to 

the reactor, resulting in an immediate drop in temperature and pressure. 

The resulting biomass slurry from the pretreatment was separated into liquid and solid 

fractions. The separation was performed in a commercial filtration unit (Larox Buchner 

unit) with a filtering cloth pore size of 20 μm and a constant vacuum pressure of -0.7 psi. 
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The solid fraction was washed thoroughly with water and stored in a freezer (-18 oC) prior 

to compositional analysis and further processing. The separated liquid fraction was stored 

at 4 oC before further analyses.  

 

2.3. Analysis of the solid fraction   

A part of the solid fraction (washed filter cake) of the WEx slurry was dried in an 

incubator at 38 oC for 12 h before composition analysis. The dried solid fractions were 

ground in a coffee grinder to a 1 mm particle size before composition analysis. The content 

of total carbohydrates (cellulose and hemicellulose), and Klason lignin in the separated 

solid fractions, Cell SF, Hemicell SF, and Lignin SF was determined by strong acid hydrolysis 

as previously described (Sluiter., 2008a).  

The recovery of cellulose and hemicelluloses was calculated by using Eq. (A.1) and 

(A.2): 
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where Glucose LF is the glucose in the liquid fraction, Cell SF and Cell RB are the 

cellulose, and Hemicell SF and Hemicell RB is the hemicellulose found in the solid fraction, 

and in the raw biomass, respectively, while Xylose LF and Arabinose LF are the xylose and 

arabinose in the liquid fraction, respectively; and 1.11, and 1.14 are the stoichiometric 

conversion factors of polysaccharides to sugar monomers. 

 

2.4. Enzymatic hydrolysis of solid fraction  

The release of hydrolysable cellulose by the wet explosion pretreatment was analyzed by 

the sugars released after enzymatic hydrolysis using a commercial enzyme mixture (Cellic 

CTec2), kindly provided by Novozymes A/S (Bagsværd, Denmark). The enzymatic 
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conversion of the separated wet exploded solid fraction was carried out at 5% DM with 

0.05 M succinate buffer (pH 5.0). The experiments were performed in duplicates in 2 mL 

Eppendorf tubes filled with 1.5 mL of hydrolysis media, and at an enzyme dosage of 20 

mg-EP/g-VS (EP = enzyme protein) for all the samples. The hydrolysis mixture was 

incubated for 72 h at 50 oC in a thermomixer shaker at 1400 rpm. The reaction was stopped 

by heating the solution to 100 oC for 10 min, mixed by vortexing, and centrifuged for 8 min 

at 3600g. The concentration of glucose, xylose, and arabinose in the hydrolyzate was 

quantified by HPLC as described in Section 2.1. 

The efficiency of cellulose hydrolysis was calculated according to (Eq. B.1): where 

Glucose EH is the mass of glucose released after enzymatic hydrolysis of cellulose in the 

solid fraction. 
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2.5. Analysis of the liquid fraction  

Carbohydrates in the liquid fractions (filtrate) after WEx pretreatment were both 

polymers and oligomers together with small amounts of monomers, thus the samples were 

hydrolyzed using 4% (w/w) sulfuric acid at 121 oC for 10 min to determine the total xylose, 

arabinose, and glucose concentration in the filtrate. The analysis was determined according 

to the National Renewable Energy Laboratory protocol (Sluiter et al., 2008b). Glucose, 

xylose, arabinose, 2-furfural, hydroxymethylfurfural (HMF), and carboxylic acids (acetic 

acid and glycolic acid) were quantified by HPLC as described in Section 2.1. The yield of 

pentose sugars after WEx pretreatment was calculated according to (Eq. B.2): where 

Pentoses LF is the mass of the pentose sugars xylose and arabinose released after wet 

explosion pretreatment in the liquid fraction.  
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The maximum achievable ethanol yield was calculated for the different pretreatment 

conditions based on full conversion of glucose and pentose sugars released after WEx 

pretreatment and enzymatic hydrolysis of the cellulose fraction according to (Eq. C):  

Yield EtOH,tot  = Glucosetot × 0.51 + Pentosestot × 0.50                                                (C) 

where Glucose tot is the total glucose released after pretreatment and enzymatic 

hydrolysis and Pentoses tot is the total pentoses released from hemicelluloses after WEx 

pretreatment, and 0.51 and 0.50 are the maximal achievable ethanol fermentation yields (in 

g-EtOH/g-sugar) from glucose and xylose, respectively, (Hatzis et al., 1996).   

 

2.6. Response Surface Analysis   

The adjustment of the WEx pretreatment parameters was based on response surface 

methodology (RSM); it was employed to reduce the total number of experiments needed to 

determine the most efficient combination of WEx process parameters for the pretreatment 

of cocksfoot grass. Three independent variables, temperature (X1), retention time (X2) and 

dilute acid concentration (X3) were studied. Table 1 depicts the experimental design and the 

process parameters tested.  

 

Table 1. Process conditions used for modified WEx pretreatment of cocksfoot grass. 

Pretreatment 
condition # 

Factor X1 Factor X2 Factor X3 

 Temperature 
[oC] 

Retention time 
[min] 

Acid concentration 
[%] 

A 210 20 0.5 
B 160 20 0.35 
C 160 5 0.2 
D 210 5 0.2 
E 210 5 0.5 
F 160 20 0.5 
G 210 20 0.35 
H 185 13 0.2 
I 160 11 0.5 
J 180 5 0.35 
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The content of glucose Y1 (% of theoretical yield), pentoses Y2 (% of theoretical yield), 

furfural Y3 (g/100 g DM), HMF Y4 (g/100 g DM), and carboxylic acids Y5 (g/100 g DM) 

after pretreatment of cocksfoot grass were chosen as the dependent variables or response of 

the experimental design. StatGraphics Plus (SGWIN Version 5.0) was used for regression 

and graphical analyses of the data obtained. The fitness of the polynomial model equation 

was expressed by the coefficient of determination R2, and its statistical significance was 

checked by F-test at a probability value (p < 0.01 and < 0.05). The significances of the 

regression coefficient were also tested by F-test.  

 

3. RESULTS AND DISCUSSION 

 

3.1. Raw material composition  

The chemical composition of cocksfoot grass and wheat straw were quite similar with a 

slightly lower content of cellulose and lignin, but a slightly higher content of 

hemicelluloses and other organic matter for cocksfoot grass (Table 2).  

 

Table 2. Composition analysis of raw biomass. 

 Samples of raw biomass 
 Wheat straw Cocksfoot grass 
g-DM/100 g biomass 92.7 92.9 
 aComposition biomass [g/100g-DM] 
Cellulose 36.5 (0.09) 35.6 (0.31) 
Hemicelluloses 23.3 (0.65) 23.4 (0.06) 
Klason lignin 19.5 (0.03) 18.8 (0.04) 
Ash  5.2 (0.02)  5.2 (0.04) 
Other organic matter 15.5 (0.00) 17.0 (0.00) 
aAll values are averages of two replicates. Standard deviation shown in parentheses. 

3.2. WEx pretreatment and recovery of carbohydrates and lignin 

The wet explosion (WEx) pretreatment with dilute acid addition fractionated the 

lignocellulosic materials into a solid fraction containing mainly cellulose and lignin, and a 

liquid fraction enriched with solubilized hemicelluloses, mainly present as pentose sugars 

and low molecular lignin fragments in dissolved form.  
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The recovery of cellulose in the solid fraction after WEx pretreatment varied between 

94% for pretreatment condition A (210 oC, 20 min, 0.5% acid) and 97% for condition C 

(160 oC, 5 min, 0.2% acid) (Fig. 1). The variation of the hemicellulose recovery was much 

higher, between 67% for condition A (210 oC, 20 min, 0.5% acid) and 96% % for condition 

C (160 oC, 5 min, 0.2% acid). The lower recoveries under the pretreatment with the highest 

severity (A, D, E, and G) indicate a significant sugar conversion to other products, such as 

furfural and HMF during the WEx process. This makes dilute acid WEx pretreatment at 

lower severity, specifically condition C (160 oC, 5 min, 0.2% acid), more suitable for 

achieving high recoveries of both cellulose and hemicellulose from cocksfoot grass. In 

comparison, Georgieva et al. (2008) achieved 93 and 72% recovery of cellulose and 

hemicellulose from wheat straw with wet explosion pretreatment at 185 oC for 15 min and 

35% (v/v) hydrogen peroxide. Martin et al. (2007) achieved cellulose and hemicellulose 

recovery of 70 and 93% respectively, after treating sugarcane bagasse by wet oxidation at 

195 oC, 15 min, at alkaline pH. 

 

 
Fig. 1. Recovery of polysaccharides (cellulose and hemicellulose) and lignin after modified 

WEx pretreatment at different process conditions (error bars represent standard deviations 

of duplicates).  
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The lignin recovery in the solid fraction was more than 88% for all WEx pretreatment 

conditions (Fig. 1). Lignin recoveries above 95% were found for WEx conditions (B, C, F, 

and I), while recoveries below 90% were found for condition A (210 oC, 20 min, 0.5% 

acid) and G (210 oC, 20 min, 0.35% acid). This revealed that at more severe pretreatment 

conditions some of the lignin dissolved and degraded to low molecular lignin compounds. 

The highest degree of lignin solubilization was achieved after pretreatment at those 

conditions with high temperature and long retention time (A and G).  

 

3.3. Enzymatic hydrolysis of cellulose in the solid fraction and yield of sugars in the liquid 

fraction after pretreatment 

The enzymatic convertibility of cellulose under the different WEx conditions is one of 

the most important factors to evaluate the efficiency of the pretreatment for the production 

of bioethanol from C6 sugars (Varga et al., 2003) as it reveals the efficiency of enzymatic 

hydrolysis specifically for a certain enzyme mixture on a specific hydrolyzate.  

Fig. 2A depicts the yields of glucose and pentoses after enzymatic hydrolysis of the wet-

exploded solid fraction (filter cake). WEx pretreatment at 160 oC was not effective for 

improving the enzymatic hydrolysis of the cellulose fraction, as evident by low enzymatic 

convertibility of the cellulose released under the pretreatment conditions (B, C, F, and I). 

For the most severe tested pretreatment condition A (210 oC, 20 min, 0.5% acid), enzymatic 

convertibility of cellulose was 92 and 94% for cocksfoot grass and wheat straw, 

respectively. This is significantly higher than what Sørensen et al. (2008) reported for wet 

explosion pretreatment of miscanthus at 170 oC, 5 min, and 35% hydrogen peroxide 

achieving 58.5% glucose yield after enzymatic hydrolysis of the pre-soaked and wet 

exploded samples. Thomsen et al. (2006) reported 67-68% glucose yield from the solid 

fraction after hydrothermal pretreatment of wheat straw at 190 oC to 200 oC.  

It has been previously demonstrated that a high pretreatment temperature and prolonged 

retention time could maximize glucose yields from cellulose materials (Taherzadeh and 

Niklasson, 2004); while it is more advantageous to apply a lower pretreatment temperature 

with regard to higher xylose yields from the hemicellulose fraction (Sørensen et al., 2008). 

The increase of the enzymatic convertibility of cellulose under pretreatment with high 
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severity is mostly linked to the high solubilization of hemicelluloses and removal of lignin 

fractions during pretreatment (Lee et al., 2008; Bjerre and Schmidt, 1997; Brodeur et al., 

2011).  

 

 
Fig. 2(A). Yield of glucose and pentoses after enzymatic hydrolysis of solid fractions. (B). 

Yield of glucose and pentoses in liquid fraction after modified WEx pretreatment. Average 

values and standard deviation reported for duplicates.  
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The lowest glucose yield was obtained at WEx pretreatment condition C, although this 

condition achieved the highest cellulose and hemicellulose recovery. These findings are in 

agreement with the proposition that the optimum conditions for the highest sugar recovery 

do not necessary mean the most effective conditions for enzymatic conversion of cellulose 

fractions to sugars monomers (Taherzadeh and Karimi, 2008). 

The yields of solubilized pentoses (xylose, and arabinose), and glucose in the liquid 

fractions after WEx pretreatment are shown in Fig. 2B. Pentose yields above 85% can be 

found with pretreatment conditions B, C, F, H, I, and J, with the highest of 93% for 

condition C (160 oC, 5 min, and 0.2% acid). In comparison, Lu et al. (2009) found a xylose 

yield of 70% for 0.5-2% sulfuric acid-catalyzed hydrothermal pretreatment (180 oC, 5-20 

min) of rapeseed straw. The most severe pretreatment conditions (A, D, E, and G) showed 

high degrees of hemicellulose solubilization, and about 30% of the solubilized 

hemicellulose sugars were degraded during the pretreatment, hence, resulted in the lowest 

yields of pentose sugars ranging from 62 to 70%.  

 

3.4. Formation of degradation products during WEx pretreatment 

Table 3 presents the concentration of carboxylic acids, furfural, and HMF in the liquid 

fraction after WEx pretreatment. Carboxylic acids were analyzed as the sum of acetic and 

glycolic acid. Depending on process severity, carboxylic acids, furan derivatives (furfural 

and 5-hydroxymethyl furfural-HMF), and phenolic compounds were generated during 

pretreatment of lignocellulosic biomass. These products are considered potential 

fermentation inhibitors (Saha, 2004; Klinke et al., 2004; Mosier et al., 2005). At more 

severe pretreatment conditions, xylose is degraded to furfural while HMF is formed from 

hexose degradation, and phenolic compounds are generated from partial breakdown of 

lignin. However, up to a certain limit, microorganisms can survive the stress of these 

compounds, but cell death would occur if the stress exceeds the limit that the cell can bear 

(Palmqvist and Hahn-Hägerdal, 2000). Accordingly, the highest by-products formation was 

found with the most severe pretreatment condition (A) at levels of 3.3 g/100 g DM for 

carboxylic acids, 2.3 g/100 g DM for furfural, and 0.48 g/100 g DM for HMF, respectively. 

These concentrations were higher after pretreatment of cocksfoot grass than of wheat straw. 
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For all pretreatment conditions of cocksfoot grass the concentration of carboxylic acids was 

generally higher than of the two by-products (furfural and HMF).  

 

Table 3. Formation of by-products (g/100 g DM) in liquid fraction after modified WEx 

pretreatment. 

Conditions Carboxylic acidsa Furfural HMF 
 g/100g DM g/100g DM g/100g DM 

CG-A 3.29 (0.06) 2.31 (0.03) 0.48 (0.01) 
CG-B 1.62 (0.03) 0.05 (0.00) 0.03 (0.02) 

CG-C 1.60 (0.04) 0.04 (0.01) 0.02 (0.00) 

CG-D 2.69 (0.07) 0.61 (0.04) 0.09 (0.01) 

CG-E 2.96 (0.03) 1.04 (0.01) 0.10 (0.00) 

CG-F 1.86 (0.06) 0.09 (0.03) 0.05 (0.02) 

CG-G 2.13 (0.00) 1.13 (0.01) 0.59 (0.00) 

CG-H 1.97 (0.05) 0.18 (0.04) 0.04 (0.01) 

CG-I 1.67 (0.08) 0.07 (0.02) 0.05 (0.04) 
CG-J 1.85 (0.00) 0.10 (0.03) 0.06 (0.00) 
WS-A 2.90 (0.02) 1.76 (0.08) 0.80 (0.00) 
Average of duplicates. Standard deviation shown in parentheses. aSum of acetic acid and 

glycolic acid. 

 

High concentration of carboxylic acids was also pronounced under pretreatment 

conditions (D, E, and G), with more than 2 g/100 g DM. On the other hand, the 

concentrations of the by-products were significantly lower for conditions with lower 

pretreatment severity (B, C, F, and I).  

For all pretreatments at 160 oC (B, C, F, and I), the concentration was 0.1 g/100 g DM 

and lower for furfural and 0.05 g/100 g DM and lower for HMF. In comparison, Martin et 

al. (2007) found 9.21 g/100 g material of carboxylic acids, 0.53 g /100 g material for 

furfural, and 0.07 g/100 g material for HMF after wet oxidation pretreatment of sugarcane 

bagasse at 195 oC, 15 min, at alkaline pH.  
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3.5. Theoretical ethanol production and overall mass balance for WEx process 

The maximum achievable ethanol yields for the different pretreatment conditions are 

presented in Fig. 3. The total ethanol yield from both glucose and pentose sugars after WEx 

pretreatment and enzymatic hydrolysis ranged for cocksfoot grass from 275 L/ton DM at 

condition B to 330 L/ton DM at condition A, compared to 341 L/ton DM for wheat straw at 

condition A. For the highest total yield, the ethanol yield from glucose was corresponding 

to 92% and 94% of the theoretical maximum for cocksfoot grass and wheat straw, 

respectively, while the ethanol yields from pentose sugars was 56% of the potential.  

For pretreatment with lower severity the contribution of ethanol from the pentose sugars 

in the liquid fraction does not increase as much as the ethanol yield from glucose after 

enzymatic hydrolysis of the solid fraction decreases, resulting in a lower total ethanol yield, 

with the lowest values of 276 L/ton DM and 275 L/ton DM for pretreatment conditions B 

and C.  

 

 
Fig. 3. Achievable ethanol yield based on the yield of glucose and pentose sugar yields 

after modified WEx pretreatment and enzymatic hydrolysis at different conditions. 
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overall sugar recoveries and yields can then be quickly gained from the mass balance 

calculations over the different conversion process steps. The WEx pretreatment performed 

at 210 oC with 0.5% acid concentration for 5 min, was the best pretreatment parameters for 

maximizing the glucose production due to its low production of degradation products and 

relatively high pentose sugars released in the liquid fraction compared with relatively lower 

yield with pretreatment condition at 210 oC for 20 min with 0.5% acid concentration. For 

this pretreatment condition, 336.4 g cellulose was recovered from 356.2 g cellulose input to 

the WEx pretreatment process; also, about 135.6 g xylose and 15.2 g glucose were released 

in the liquid fraction during the WEx process (Fig. 4).  

 

 
Fig. 4. Mass balance for the pretreatment, hydrolysis, and achievable ethanol yield for 

modified WEx pretreatment. 
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pretreatment and about 90% of the cellulose was hydrolyzed to monomeric glucose. 

Following the sugars released from the pretreatment and subsequent enzymatic hydrolysis, 

183.2 g ethanol from the released glucose could be potentially achieved and 77.0 g ethanol 

from the released pentose sugars can be potentially gained if fermented to ethanol by 

ethanologenic strains (Saccharomyces cerevisiae or Pichia stipitis). However, the highest 

solubilized hemicellulose sugars were achieved with pretreatment condition at 160 oC with 

0.2% acid concentration for 5 min. A total of 194.4 g hemicellulose sugars were recovered 

from 234.1 g hemicellulose input to the WEx pretreatment process for this condition (see 

Fig. 4), the values in brackets. It is obvious that the release of hexose and pentose sugars 

needs different pretreatment severity, as the conditions where the best hexose sugars were 

obtained is detrimental to the release of pentose sugars. It is therefore, important to find a 

meeting point in the pretreatment parameters where both hexose and pentose sugars can be 

achieved at higher yields depending on the product choice of interest.  

 

3.6. Influence of pretreatment parameters combinations 

The significant of the different WEx pretreatment parameters and their interaction 

effects was determined by analysis of variance (ANOVA), which tests the statistical 

significance of each effect by comparing the mean square against an estimate of the 

experimental error. The results of ANOVA confirmed the effects suggested by direct data 

analysis. A regression analysis was performed to attain a mathematical model that better 

describes the relation between independent variables and the studied responses (glucose, 

pentose, furfural, HMF, carboxylic acids). ANOVA for glucose yield after WEx 

pretreatment and enzymatic hydrolysis is presented in Table 4. The ANOVA of the 

regression model proves that the model is highly significant as is evident by the calculated 

F-value (61.61) and a very low p-value (p < 0.0002). The high value obtained in F-value 

indicates that most of the variation in glucose yield can be explained by the regression 

model equation. The model presented a good determination coefficient (R2 = 0.98). The 

determination coefficient model for other response variables are: (R2 = 0.93) for Y2, (R2 = 

0.94) for Y3, (R2 = 0.90) for Y4, and (R2 = 0.95) for Y5, showing a close agreement between 

experimental and the theoretical values predicted by the first-order polynomial results. The 
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statistical analysis demonstrate that the variation of the glucose yield was strongly 

dependent on pretreatment temperature (X1) with a high F-value (196.7) and less dependent 

on retention time (X2) and acid concentration (X3) (see Table 4).  

 

Table 4. Analysis of variance (ANOVA) table for the significant effects on glucose yield. 

Sources 
of 
variation 

Sum of 
squares 

Degrees 
of 

freedom 

Mean 
squares F-Value P-Value 

Model 1339.68 4 331.67 61.61 < 0.0002 
X1 1018.76 1 1018.76 196.66** < 0.0000 
X2 180.92 1 180.92 41.04* < 0.0014 
X3 45.51 1 45.51 8.45 < 0.0335 
X1X2 94.49 1 94.49 14.28 < 0.0218 
Error 13.92 5 5.38   
Total 1353.60 9    

 

The first-order polynomial equations representing the model in terms of actual units for 

the different response variables are depicted in Eq. (D.1, D.2, D.3, D.4, and D.5):  

 

Y1 (%) = – 36.1021 + 0.504332X1 + 0.805353X2 + 31.1867 X3 – 0.00248139X1X2         (D.1) 

 

Y2 (%) = 118.15 – 0.210873X1 – 0.0517493X2 + 29.761X3 – 0.195634X1X3                   (D.2) 

 

Y3 (g/100g DM) = 0.775175 – 0.0059607X1 – 0.162983X2 – 8.56962X3 + 0.00109896X1X2 + 

0.0531185X1X3                                                                                                                 (D.3) 

 

Y4 (g/100g DM) = 0.0282526 – 0.00017042X1 – 0.0845465X2 + 0.000526598X1X2      (D.4) 

 

Y5 (g/100g DM) = 1.96965 + 0.00523907X1 – 0.0798705X2 – 12.238X3 + 0.0573047X1X3 + 

0.211431X2X3                                                                                                                   (D.5)   

                                                                                                               

The three-dimensional response surface plot described by the above-mentioned first-

order polynomial equation was fitted to the experimental data points for glucose yields as 
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represented in Fig. 5A. The shapes of response surfaces indicate the nature and extent of 

the interaction between different independent variables (Prakash et al., 2008). The surface 

plots for the glucose yields in Fig. 5 A1 and A2 show that the pretreatment temperature had 

the major increasing effect on the glucose yield. As shown in Fig. 5A1, higher acid 

concentration lead to a higher glucose yield only for the pretreatment at lower temperatures, 

while the effect of higher acid addition was negligible for higher treatment temperatures. At 

lower treatment temperatures prolonging the retention time up to 12 minutes increased the 

glucose yield while a longer retention time had a negative effect (Fig. 5 A2). At 

temperatures above 180 oC the effect of prolonging the retention time to more than 5 

minutes on the glucose yield was negligible. Overall, the glucose yield was highest at 210 
oC with only a small further increase with increasing the acid concentration to more than 

0.2% and the retention time to more than 5 min.  

Regarding the response surface plots for the pentose yield (Fig. 5 B1 and B2), the 

response surface showed that temperature has again the major influence, but now the yield 

is decreasing with higher temperatures. Increasing the acid concentration does have no or 

rather a negative effect on the pentose yield at higher temperatures. Also the increase of the 

retention time has a negative effect on the pentose yield. Accordingly, the best pretreatment 

conditions for achieving the highest pentose yield are 160 oC, 0.2%, and 5 min retention 

time. The effect of temperature, acid concentration and retention time on the furfural and 

HMF production is shown in Fig. 6 A1, A2 and Fig. 6 B1, B2, respectively. Furfural and 

HMF production was significantly increasing at temperatures above 180oC (Fig. 6 A1, A2, 

B1, and B2). An increasing acid concentration only led to higher furfural concentrations at 

temperatures above 180 oC. Prolonging the retention time had no significant effect at 160 
oC, but was leading to higher furfural and HMF concentrations at higher pretreatment 

temperatures (Fig. 6 A2 and B2). Overall, pretreatment at 180 oC and 5 min retention time 

was leading to low furfural and HMF production, independent of the applied acid 

concentration. The production of carboxylic acids was mainly affected by an increase in 

treatment temperature, while acid concentration and retention time had only a significant 

effect for pretreatment at temperatures higher than 180 oC (Fig. 6 C1 and C2).  
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Fig. 5(A). Response surface plot on glucose yield in the solid fraction. A1 – Effect of acid 

concentration and treatment temperature at retention time of 20 min. A2 – Effect of 

retention time and treatment temperature at acid concentration of 0.5%. (B). Response 

surface plot on pentose yield in the liquid fraction. B1 – Effect of acid concentration and 

treatment temperature at retention time of 5 min. B2 – Effect of retention time and 

treatment temperature at acid concentration of 0.2%.  
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Fig. 6(A). Response surface plot on furfural production. A1 – Effect of acid concentration 

and treatment temperature at retention time of 20 min. A2 – Effect of retention time and 
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treatment temperature at acid concentration of 0.5%. (B). Response surface plot on HMF 

formation. B1 – Effect of acid concentration and treatment temperature at retention time of 

20 min. B2 – Effect of retention time and treatment temperature at acid concentration of 

0.5%. (C). Response surface plot on carboxylic acids production. C1 – Effect of acid 

concentration and treatment temperature at retention time of 20 min. C2 – Effect of 

retention time and treatment temperature at acid concentration of 0.5%. 

 

4. CONCLUSIONS 

 

The most suitable conditions for the WEx pretreatment of cocksfoot grass with respect 

to achieving reasonable ethanol yield from both glucose and pentose sugars were 210 oC, 

0.5% acid concentration and 5 min retention time. This condition resulted in approximately 

91% glucose yield for cocksfoot grass. The highest pentose yield (93%) was found at lower 

pretreatment severity (160 oC, 0.2% acids, 5 min), while at most severe WEx conditions 

this value significantly decreased to around 60%. Apparently, the release of hexose and 

pentose sugars needs different pretreatment conditions, as the conditions where the best 

hexose sugars were obtained is unfavorable to the release of pentose sugars. It is therefore, 

crucial to find a middle pretreatment severity in order to maximize the release of 

fermentable sugars for production of high-value biobased products both for hexose and 

pentose sugars. From our findings, it is suggested that pretreatment process parameters 

should be tailored to the specific biomass compositional structures and with a view to all 

the potential sugars which can be produced enabling economic feasible process. 
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Abstract 

 

The choice of a suitable pretreatment method and the adjustment of the pretreatment 

parameters for efficient conversion of biomass are crucial for a successful biorefinery 

concept. In this study, cocksfoot grass, a suitable lignocellulosic biomass with a potential 

for large scale production was investigated for cellulosic ethanol production. The biomass 

raw materials was pretreated using wet explosion (WEx) at 25% dry matter concentration 

with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was 

significantly improved after pretreatment. The highest conversion into cellulose monomeric 

C6 sugars was achieved for WEx condition AC-E (180 oC, 15 min, and 0.2% sulfuric acid). 

For that condition, the highest ethanol yield of 250 mL/kg DM (97% of theoretical 

maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, 

the highest concentration of hemicellulose C5 sugars was found for WEx pretreatment 

condition O2-A (160 oC, 15 min, and 6 bar O2) which means that the highest potential 

ethanol yield was found at these moderate pretreatment condition with oxygen added. 

Increasing the pretreatment temperature to 180-190 oC with addition of oxygen or dilute 

sulfuric acid significantly degrades the solubilized hemicellulose sugars and thus, achieved 

the highest formation of byproducts, such as acetic acid and furfural with a lower potential 

ethanol yield.  

 

Keywords: Wet explosion; Lignocellulosic biomass; Cocksfoot grass; Pretreatment; 

Saccharification; Ethanol fermentation.   
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1. INTRODUCTION 

 

Lignocellulosic biomass, such as cocksfoot grass and wheat straw, is attractive 

feedstocks that have potential to produce considerable amounts of bioethanol as a 

promising alternative fuel for transportation sector. The bioethanol produced from these 

biomass resources are clean and renewable and thus, present a sustainable form of energy 

alternatives to fossil fuels (Nutawan et al., 2010). The lignocellulosic biomass is the most 

abundant biomass on earth, and its sources range from trees to agricultural residues 

(Agbogbo and Wenger, 2007). These lignocellulosic biomass resources are highly complex, 

mainly comprised of cellulose, hemicellulose, and lignin that are not directly accessible for 

microbial degradation (Chen and Qiu, 2010). Cellulose and hemicelluloses are both 

carbohydrates polymers build-up by long chains of sugar monomers, which can be 

fermented into ethanol after pretreatment and hydrolysis by microbial action (Petersson et 

al., 2007). 

Production of bioethanol as a liquid fuel from lignocellulosic biomass creates technical 

challenges, such as a need for pretreatment (Petersson et al., 2007). Since lignocellulosic 

biomass are only partially degradable in their native form, various techniques of 

mechanical, chemical and biological means have been developed to disrupt the 

lignocellulose structure and make it susceptible to enzymatic and microbial action (Xuejun 

and Yoshihiro, 2005), such as wet explosion (Rana et al., 2012), wet oxidation (Schmidt 

and Thomsen, 1998), dilute acid hydrolysis (Saha et al., 2005a), and steam explosion 

(Ballesteros et al., 2006). To achieve high overall ethanol yields, the pretreatment should 

maximize the down-stream enzymatic hydrolysis, and be effective for treatment of biomass 

at high dry matter concentrations (Georgieva et al., 2008). Wet oxidation and dilute acid as 

a pretreatment method has been successfully implemented in laboratory and pilot scale 

plants for treating several lignocellulosic biomass resources for the production of 

bioethanol and bio-based products (McGinnis et al., 1983; Saha et al., 2005a). Martin et al. 

(2008) reported approximately 94% conversion efficiency of cellulose to monomeric 

glucose after enzymatic hydrolysis of cellulose fraction of clover-ryegrass subjected to wet 

oxidation, showing effective removal of lignin and hemicellulose from cellulose. This study 
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was, however, done with 6% dry matter concentrations making the results of limited 

interest for industrial implementation. Taherzadeh and Karimi (2008) further reported that 

almost 100% hemicellulose removal is possible by dilute acid pretreatment. This method 

does, however, still need some improvements in order to make it economically interesting 

for biorefinery processes as the concentration of hexose sugars coming from the 

pretreatment stream needs to be increased as well as the current need for detoxification 

(Kuhad et al., 2010). Furthermore, the pretreatment process cost should be reduced by 

operating at high dry matter concentrations, which will increase the final ethanol 

concentrations and, at the same time, reduce the reactor volume and minimize wastewater 

generation (Georgieva et al., 2008).  

Under pretreatment, lignocellulosic biomass is converted from its native form, in which 

it is highly recalcitrant to cellulose enzyme systems, into a form for which cellulose 

hydrolysis is effective (Hendriks and Zeeman, 2009). The main purpose of pretreatment is 

to break the lignocellulosic structure (Kumar et al., 2009), and to reduce the cellulose 

crystallinity with low loss of sugar compounds (Karimi et al., 2006; Zheng et al., 2009). At 

the same time, the formation of degradation products that inhibit the microbial activities 

during ethanol fermentation should be kept low (Mosier et al., 2005).  

In this present study, wet explosion (WEx) was applied to cocksfoot grass at high dry 

matter concentration w/w of 25% based on previous investigations on wet explosion with 

addition of dilute sulfuric acid at a lower dry matter concentration w/w of 14% (Njoku et 

al., 2012). The effects of different combinations of WEx pretreatment parameters on the 

biomass composition and enzymatic hydrolysis of the treated substrate was evaluated. 

Subsequently, the conversion of hexose sugars of cocksfoot grass into ethanol by 

Saccharomyces cerevisiae was investigated.  

 

2. MATERIAL AND METHODS 

 

2.1. Raw material  

Cocksfoot grass from the island of Bornholm, Denmark, was harvested in August. The 

biomass sample was air-dried and hammer milled to a particle size of 2-3 mm and stored in 
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plastic bags at room temperature prior to pretreatment. A portion of the raw biomass was 

ground in a coffee grinder (Butler UGS, China) to pass a 1 mm screen and used for 

chemical composition analysis. Dry matter contents (DM), volatile solid contents (VS), and 

ash were determined according to the procedure described by the American Public Health 

Association (APHA, 1992). 

The content of total carbohydrates (cellulose and hemicellulose), and Klason lignin in 

the raw biomass was determined by strong acid hydrolysis according to the procedure 

developed by the National Renewable Energy Laboratory (Sluiter et al. 2008a). 

Subsequently, sugar analysis (glucose and xylose) was performed by high performance 

liquid chromatography (HPLC) refractive index (RI) equipped with an Aminex HPX-87P 

column (Bio-Rad Laboratories, CA, USA) at 83 oC with deionized water (Thermo 

Scientific, Barnstead Nanopure, IA, USA) as an eluent with a flow rate of 1.0 mL/min. 

Prior to HPLC analysis, samples were centrifuged at 4000 g for 10 min, and filtered 

through a 0.45 μm syringe filter.  

The VS content of the raw biomass found as the difference between the total VS value 

and the sum of the carbohydrate fractions analyzed in the raw biomass was referred to as 

“other organic matter”, which is the sum of proteins, fats and volatile compounds.  

 

2.2. Wet explosion pretreatment 

The wet explosion (WEx) pretreatment was performed batch-wise by suspending the 

raw cocksfoot grass with tap water to reach a dry matter concentration w/w of 25% in a 10 

L high-pressure reactor constructed at the Center for Bioproducts and Bioenergy, 

Washington State University, USA (Rana et al., 2012). The reactor was equipped with a 

gas/liquid inlet for injection of dilute sulfuric acid or oxygen pressure, and a continuous 

stirrer (2000 rpm). The reactor was heated by a water jacket connected to a heat exchanger 

controlled by an oil heater. The temperature and pressure inside the reactor were monitored 

by two temperature sensors and one pressure sensor both mounted in the headspace and in 

the bottom of the reactor. The pretreatment was carried out at different temperatures based 

on the previous optimization trials with the following conditions: temperature (160-190 oC), 

oxygen pressure O2 (6 bars) and dilute sulfuric acid concentration (0.2%) at a retention time 
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of (15 min). The conditions of pretreatment trials are presented in Table 1. The acid 

concentration or oxygen pressure was injected into the pretreatment reactor after the desired 

temperature was reached. After the treatment, the biomass was flashed into a 100 L flash 

tank connected to the reactor, resulting in a sudden drop in temperature and pressure. 

The resulting biomass slurry from the pretreatment was separated into liquid and solid 

fractions by vacuum filtration. The solid fraction was washed thoroughly with milliQ water 

and stored in a freezer (-16 oC) prior to compositional analysis and further processing. The 

separated liquid fraction was stored at 5 oC for further analyses.  

 

Table 1. Process conditions used for WEx pretreatment of cocksfoot grass. 

Condition Temp. (oC) R/Ta 
(min) 

Oxygen  
(bar)  

Acid concen.b 
[%] 

O2-A 160 15 6 - 
O2-B 170 15 6 - 
O2-C 180 15 6 - 
AC-D 170 15 - 0.2 
AC-E 180 15 - 0.2 
AC-F 190 15 - 0.2 

aRetention time. bAcid concentration. 

2.3. Analysis of the solid and liquid fraction    

The washed solid fraction (portion) obtained after separation of the WEx slurry was 

dried in an incubator at 38 oC for 12 h before compositional analysis. The dried solids were 

ground in a coffee grinder (Butler UGS, China) to pass a 1 mm screen before chemical 

compositional analysis. The content of total carbohydrates (cellulose and hemicelluloses), 

and Klason lignin in the separated solid fractions was determined by strong acid hydrolysis 

as previously described (Sluiter et al., 2008a).  

Carbohydrates in the liquid fractions (filtrate) after WEx pretreatment were both 

polymers and oligomers together with small amounts of monomers, and hence the samples 

were hydrolyzed using 4% (w/w) sulfuric acid at 121 oC for 10 min to determine the total 

xylose, arabinose, and glucose concentration in the filtrate. The analysis was determined 

according to the National Renewable Energy Laboratory protocol (Sluiter et al., 2008b). 

Glucose, xylose, arabinose present in the liquid fractions were quantified by HPLC as 
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described in Section 2.1, and furfural, hydroxymethylfurfural (HMF), and acetic acid also 

present in the liquid fractions were measured by HPLC refractive index (RI) equipped with 

an Aminex HPX-87H column (Bio-Rad Laboratories, CA, USA) at 60 oC with 4 mM 

H2SO4 as an eluent with a flow rate of 0.6 mL/min. 

 

2.4. Enzymatic convertibility of cellulose in the solid fraction    

The release of hydrolysable cellulose by wet explosion pretreatment was analyzed by the 

sugars released after enzymatic hydrolysis using a commercial enzyme mixture (Cellic 

CTec2), kindly provided by Novozymes North America (Franklinton, USA). The 

enzymatic convertibility of the separated WEx solid fraction was carried out at 10% DM 

with 0.05 M succinate buffer (pH 5.0). The experiments were performed in duplicates in 2 

mL Eppendorf tubes filled with 1.5 mL of hydrolysis media and an enzyme dosage of 20 

mg-EP/g-VS (EP = enzyme protein) for all samples. The hydrolysis mixture was incubated 

for 72 h at 50 oC in a thermomixer shaker at 1400 rpm. The reaction was stopped by 

heating the solution to 100 oC for 10 min, mixed by vortexing, and centrifuged for 8 min at 

3600 g. The concentration of glucose, xylose, and arabinose in the hydrolyzate was 

quantified by HPLC as previously described in Section 2.1. 

 

2.5. Ethanol fermentation process  

The hexose sugars from the WEx separated solid fraction was fermented to ethanol 

through simultaneous saccharification and fermentation (SSF) by Saccharomyces 

cerevisiae (Thermosacc®, USA). The S. cerevisiae inoculum culture medium was prepared 

aseptically in 250-mL shaking flask covered with cotton stopper with 100 mL medium 

containing 10 g/L yeast extract, 20 g/L peptone and 20 g/L D-glucose, and incubated on a 

rotary shaker at 160 rpm and 32 oC for 24 h. All media were sterilized by autoclaving at 

121 oC for 30 min. The cells were harvested by centrifugation, and the pellet was collected 

for SSF fermentation to a final optical density (OD) of 0.5 measured at (600 nm), 

corresponding to a cell concentration of around 0.9 g/L. Presaccharification (liquefaction) 

and SSF was performed under anaerobic condition in sterile 250 mL shaking flasks with 

100 mL fermentation media as the working volume.  
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Presaccharification of the material was performed at 50 oC for 6 h at an enzyme dosage 

of 10 mg-EP/g-VS using Cellic CTec2, adjusted to pH 4.8 with 1 M citrate buffer in order 

to liquefy the solid fractions and ensure a proper substrates mixing. After 

presaccharification, the shaking flasks were then cooled to room temperature and 

supplemented with second batch of enzyme mixture (Cellic CTec2) at an enzyme dosage of 

10 mg-EP/g-VS, inoculated with the yeast cells under aseptic condition and the pH was 

maintained at 4.8 by addition of 0.05 M citrate buffer solution. The shaking flasks were 

sealed with bubbler airlocks filled with water and incubated on a rotary shaker at 150 rpm 

and 32 oC for 168 h. Samples were withdraw at regular intervals for sugar and ethanol 

concentrations and were determined by HPLC as described previously in Section 2.1. All 

the experiments were performed in duplicates at the same initial cell concentration.  

 

2.6. Calculations  

The recovery of sugars in the solid or filtrate during the WEx pretreatment process was 

calculated according to Eq. (1). The yields after WEx and enzymatic hydrolysis of the solid 

fractions were calculated according to Eq. (2) for glucose released and (3) for pentoses 

released (xylose and arabinose): where glucoseEH is the mass of glucose released after 

enzymatic hydrolysis of cellulose in the solid fraction and pentosesLF is the mass of pentose 

sugars (xylose and arabinose) released after WEx pretreatment in the liquid fraction. The 

ethanol yield (YEtOH) was calculated by dividing the total amount of ethanol produced by 

the initial dry weight of treated cocksfoot grass. The percent theoretical (stoichiometric) 

ethanol yield (%YEtOH) was calculated according to Eq. (4): where 1.11 is the stoichiometric 

conversion factor of cellulose to equivalent glucose and 0.51 is the theoretical ethanol yield 

(in grams) generated per 1 g of glucose, Hatzis et al. (1996). This yield is always less than 

100% as part of the sugars is converted to cell mass and by-products by the organisms.   
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3. RESULTS AND DISCUSSION 

 

3.1. Raw material composition  

The chemical composition of raw material shows that it has a high concentration of 

cellulose and contains a fair amount of hemicelluloses (36 and 24 g per 100 g DM, 

respectively), which is comparable or higher than the amounts found in wheat straw (33.9 g 

and 23.0 g per 100 g DM for cellulose and hemicellulose, respectively) by Thomsen et al. 

(2006). The dry matter content is approximately 93%, which makes it attractive as ethanol 

feedstock. The lignin content is relatively higher than the content of other organic matter, 

which is the sum of non-analyzed organic matter like pentoses other than xylose and 

arabinose, proteins and fats in biomass. 

 

3.2. WEx pretreatment and recovery of carbohydrates and lignin 

As shown in (Fig. 1), the recovery of cellulose, hemicellulose and lignin varied with the 

conditions of the WEx pretreatment process. The WEx pretreatment was expected to 

fractionate the lignocellulosic material into a solid fraction containing mainly cellulose and 

lignin, and a liquid fraction enriched with solubilized hemicelluloses mainly present as C5 

monomers, and low molecular lignin fragments in dissolved form.  

The most efficient cellulose and hemicelluloses recovery of 99 and 97%, respectively, 

was found for WEx pretreatment condition O2-A (160 oC, 15 min, 6 bar O2), higher than 

previously reported for high dry matter concentrations. The lowest recovery of cellulose at 
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94% was found for WEx pretreatment conditions AC-F and O2-C (190 oC, 15 min, 0.2% 

sulfuric acid and 180 oC, 15 min and 6 bar O2). The same conditions (O2-C and AC-F) 

achieved the lowest hemicelluloses recovery at 55 and 61%, respectively, (Fig. 1). 

Generally, we found high recovery of cellulose and hemicelluloses under WEx 

pretreatment at temperature below 180 oC, whereas, applying the process temperature 

above 170 oC significantly degraded significant parts of the hemicellulose sugars, 

especially, WEx pretreatment temperature at 180 oC and 6 bars O2 resulting in loss of 45% 

of the hemicellulose sugars and thus, gave the lowest recovery of the hemicellulose 

fractions.  

 

 
Fig. 1. Recovery of polysaccharides (cellulose and hemicellulose) and lignin after WEx 

pretreatment at different conditions (error bars represent standard deviations of duplicates 

measurements).  

 

The recovery of cellulose and hemicelluloses found for WEx pretreatment with the 

lowest severe condition (O2-A) is higher than what has been previously reported with 

lignocellulosic biomass subjected to various pretreatment methods. Petersson et al. (2007) 

achieved 92 and 69% recovery of cellulose and hemicellulose sugars from faba bean straw 

under wet oxidation pretreatment at 195 oC for 15 min, 2 g/L Na2CO3 and 12 bar O2. WEx 
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pretreatment condition (AC-D) achieved cellulose and hemicellulose recovery of 97% and 

93%, respectively; which is higher than the recovery of 93 and 72% for cellulose and 

hemicellulose, respectively, reported by Georgieva et al. (2008) after subjecting wheat 

straw to wet explosion pretreatment at 180 oC, 35% (v/v) hydrogen peroxide for 15 min. 

Operational parameters for pretreatment must be tailored to the specific biomass structural 

composition. It was evident in this study that the combination of pretreatment temperature, 

dilute acid and/or oxygen pressure was the most crucial factors for gaining high recovery of 

sugars for cocksfoot grass biomass. 

The high recovery of cellulose among the tested pretreatment conditions reveals an 

efficient separation of the cellulose from lignin and low degradation of cellulose to other 

products, such as HMF during the WEx pretreatment process. On the other hand, 

hemicellulose recovery varied in a wider range among the pretreatment conditions than 

cellulose, and the conditions with higher pretreatment severity significantly degraded 

hemicellulose sugars, and accordingly achieved below 90% hemicellulose recovery.  

The highest degree of lignin solubilization was achieved in pretreatment condition O2-

C, due to the combination of high pretreatment temperature and oxygen pressure as an 

oxidizing agent. This is in agreement with the fact that lignin tends to undergo both 

cleavage and oxidation during wet oxidation which facilitates the solubilization of lignin 

during pretreatment with oxidizing agent (Taherzadeh and Karimi, 2008). Generally, the 

lignin recovery in the solid fraction among the pretreatment conditions was above 70% 

(Fig. 1). The highest recovery of lignin in the solid fraction was obtained under WEx 

pretreatment condition AC-D showing approximately 96% lignin recoveries. As lignin 

recovery in the solid fraction after pretreatment is affected by solubilization and 

depolymerization of sugars (Sassner et al., 2008), lignin may be degraded to low molecular 

lignin compounds i.e. phenolic compounds under harsh pretreatment conditions (Petersen et 

al., 2009). The high recovery of lignin in the solid fraction indicate that only a small part of 

lignin was solubilized under the WEx conditions with low pretreatment temperatures and, 

hence, the formation of low molecular lignin compounds was low.  
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3.3. Enzymatic hydrolysis of cellulose in the solid fraction and yield of sugars in the liquid 

fraction after pretreatment 

The enzymatic accessibility of the cellulose was investigated for all the pretreated solid 

fractions under WEx conditions as this is one of the most important factors to evaluate the 

efficiency of the pretreatment for the production of bioethanol from hexose sugars (Varga 

et al., 2003).  

Enzymatic convertibility of cellulose in solid fraction pretreated at high dry matter 

concentration (25%) varied between 88 and 98% for the different pretreatment conditions 

(Fig. 2A). The highest convertibility of cellulose in the solid fraction, 98%, was achieved 

for the WEx condition AC-E (180 oC, 15 min, 0.2% sulfuric acid), and this is in accordance 

with that dilute acid pretreatment is not effective in lignin solubilization, but it can disrupt 

lignin and increase the cellulose susceptibility to enzymatic action (Taherzadeh and Karimi, 

2008). However, good results were also achieved for WEx pretreatment conditions O2-C 

and AC-F (180 oC, 15 min, 6 bar O2 and 190 oC, 15 min, 0.2% sulfuric acid) resulting in a 

93% glucose yield. The lowest glucose yield was obtained at WEx condition O2-A, 

although, this condition gave the highest overall cellulose and hemicellulose recovery. This 

result support the idea that the optimum conditions for the highest sugar recovery do not 

necessary mean the most effective conditions for enzymatic conversion of cellulose 

fractions to sugar monomers (Taherzadeh and Karimi, 2008). It has been previously 

reported that combining high pretreatment temperature and prolonging the treatment time 

could increase the efficiency of hydrolysis of cellulose materials (Taherzaden and 

Niklasson, 2004), and a high pretreatment temperature is more suitable for achieving high 

glucose yields (Sørensen et al., 2008). In comparison, Martin et al. (2008) reported 93.6% 

cellulose conversion of the solid fraction after wet oxidation pretreatment of clover-

ryegrass mixtures at 195 oC, 10 min, and 1.2 MPa. It has been previously demonstrated that 

pretreatment of lignocellulosic biomass at high dry matter concentration is an ideal method 

to improve ethanol yields; Lu et al. (2009) found 63.7% glucose yield after enzymatic 

hydrolysis of pretreated rapeseed straw under sulfuric acid-catalyzed hydrothermal 

pretreatment at 180 oC, 1% sulfuric acid, 20% solids content for 10 min. Generally, all the 

pretreatment conditions tested in our study achieved good glucose yields above 88%, which 
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is higher than previously reported for biomass pretreatment at high dry matter 

concentrations as used in our study.  

 

 
Fig. 2A. Yield of glucose and pentoses after enzymatic hydrolysis of solid fractions. (B). 

Yield of glucose and pentoses in the liquid fraction after WEx pretreatment. Average values 

and standard deviation reported for duplicates analysis.  

 

The pentose sugars yield (xylose and arabinose) are presented in (Fig. 2B). The highest 

solubilized pentoses was found under the less severe conditions; pretreatment condition 
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O2-A (160 oC, 15 min, 6 bar O2) gave approximately 96% yield of pentose sugars. 

Furthermore, pretreatment conditions O2-B and AC-D (170 oC, 15 min, 6 bar O2 and 170 
oC, 15 min, 0.2% sulfuric acid) achieved a yield of 93 and 92%, respectively, which is 

higher than 68% total pentoses yield achieved by Thomsen et al. (2008) for wet oxidation 

pretreatment of wheat straw at 190 oC, H2O2 and 6 min. The pretreatment conditions (O2-C 

and AC-F) significantly degraded a large fraction of the pentose sugars and thus, achieved 

the lowest yield of around 33 and 56%, respectively, showing that lower pretreatment 

temperature is more advantageous for maximizing pentose yields. The extraction of 

hemicellulose sugars in the liquid fraction were more pronounced in lower pretreatment 

severity, especially, the pretreatment at temperature of 160 oC. It is obvious that the release 

of hexose and pentose sugars needs different pretreatment severity, as the conditions where 

the best hexose sugars were obtained will convert free pentose sugars found in the solution. 

The total yield of sugars (hexose and pentose) is presented in Table 2. Total yield of 

sugars was 526.3-542.0 g/kg DM, corresponding to 88-91% of theoretical in most of the 

WEx pretreatment conditions, but was lower (475 g/kg DM, corresponding to 80% of total 

yield of sugars) for the most severe tested pretreatment conditions O2-C and AC-F (180 oC, 

15 min, 6 bar O2 and 190 oC, 15 min, 0.2% sulfuric acid) owing to the high degree of sugar 

degradation to other products such as HMF and furfural in these conditions. For an 

economically viable process, the best condition was identified as O2-B with respect to low 

formation of by-products and yield of both C5 and C6 sugars. Considering the overall 

process economy with regards to process temperature (energy consumption), condition O2-

A can be identified as the best WEx pretreatment condition for achieving both high total 

yield of sugars (526 g/kg DM, which amounts to 89%) with moderate energy input. 

Pretreatment conditions AC-D, O2-B and AC-E gave slightly higher total sugars yields (1-

2%) (528, 533, and 542 g/kg DM, respectively) as shown in Table 2, but here the 

temperature was increased 10 and 20 oC, respectively. It is therefore, crucial to consider all 

parameters before the pretreatment conditions are selected. Pretreatment reactors for dilute 

acid pretreatment will need to be made of acid-resistant materials which will add extra cost 

compared to reactors operated with oxygen addition. 
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Table 2. Total yield of sugars among the WEx conditions based on sugar release from C6 

and C5 fractions after WEx pretreatment and enzymatic hydrolysis.  

WEx conditions Total Yield of Sugars 
 (g/kg DM) (%) 

O2-A 526.3 ± 0.14 88.54 
O2-B 533.2 ± 0.17 89.70 
O2-C 474.7 ± 0.11 79.86 
AC-D 528.3 ± 0.08 88.88 
AC-E 542.0 ± 0.15 91.18 
AC-F 475.7 ± 0.06 80.03 

Errors presented here were standard deviation of duplicate experiments. 

 

3.4. Formation of degradation products 

The formation of acetic acid was higher among the WEx pretreatment conditions (Fig. 

3), as this was the main degradation products measured in the liquid fraction of the 

pretreated material. The highest formation of acetic acid (4.59 g/100 g DM) was found for 

pretreatment condition O2-C, followed by pretreatment condition AC-F, with a level of 

2.77 g/100 g DM. The formation of acetic acid during pretreatment has been reported 

elsewhere in the literature to be associated with high pretreatment temperature and longer 

treatment time (McGinnis et al., 1983). This is evident as the pretreatment conditions (O2-

C and AC-F) for oxygen and dilute sulfuric acid, respectively, gave the highest formation of 

acetic acid, which is further confirmed by the lower yield of hemicellulose sugars 

associated with the above-mentioned conditions. Depending on the process severity, 

carboxylic acids (mainly acetic acid), furan derivatives (furfural and 5-hydroxymethyl 

furfural-HMF), and phenolic compounds are generated during pretreatment of 

lignocellulosic biomass, and are considered potential fermentation inhibitors (Saha, 2004; 

Klinke et al., 2004). At more severe pretreatment conditions, hemicellulose sugar 

monomers are degraded to furfural while HMF is formed from hexose degradation, and 

phenolic compounds are liberated from partial breakdown of lignin (Palmqvist and Hahn-

Hägerdal, 2000).  

Furfural and HMF formation was low in most of the pretreatment conditions. The 

highest concentration of furfural was found under condition (O2-C), around 2 g/100 g DM 
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(Fig. 3). HMF formation was the lowest among the two by-products. The formation of 

furfural and HMF in the liquid fraction during pretreatment is a result of the dehydration of 

pentose and hexose sugars, respectively, under thermal and acidic conditions (Martin et al., 

2007). The results presented in (Fig. 3) shows that the most severe pretreatment conditions 

achieved the highest concentrations of the measured by-products in the WEx liquid 

fraction. This is in agreement with previous investigations where the production of these 

compounds increases with higher pretreatment temperatures (Mosier et al., 2005), and these 

compounds not only reduces the sugar yield, but can also inhibit the fermentation process. 

The formation of the byproducts found in the current study is in good agreement with 

Martin et al. (2007), who reported relatively the same amounts of these byproducts for 

sugarcane bagasse subjected to wet oxidation with pretreatment conditions (195 oC, 15 min, 

and alkaline pH) gave 9.21 g/100 g material for carboxylic acids (acetic acid and glycolic 

acid), 0.53 g/100 g material for furfural, and 0.07 g/100 g material for HMF, respectively, 

compared to our highest found values of (g/100 g DM): acetic acid, 4.59; furfural, 2.26; and 

HMF, 0.53. 

 

 
Fig. 3. Formation of by-products in liquid fraction after WEx pretreatment. Results are 

average of duplicates and error bars represent standard deviations.  
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3.5. Simultaneous saccharification and fermentation (SSF)  

The separated solid fractions enriched in cellulosic sugars after pretreatment were 

subjected to an SSF process with simultaneous hydrolysis and fermentation to ethanol using 

S. cerevisiae. Prior to the SSF process, the substrate was liquefied for 6 h enabling 

sufficient mass transfer in the fermentation broth and, thus decrease the viscosity of the 

material inside the fermentation medium. The yeast S. cerevisiae exhibit high tolerance 

towards fermentation inhibitors and is the most efficient organism for glucose fermentation 

(Georgieva et al., 2008). The ethanol and glucose concentration profiles during the 

fermentation are presented in (Fig. 4A and B), as the concentration of glucose decreased to 

nearly 2 g/L, the ethanol concentrations rapidly increased from zero to around 27 g/L 

during the first 72 h of fermentation (Fig. 4A). This is comparable with what have been 

reported elsewhere in the literature (Bertilsson et al., 2009). After 72 h, glucose was still 

released from the cellulose fraction at a very low rate (Fig. 4B); this was observed by a 

slight increase in ethanol concentration which was kept stable after 120 h. A lag phase was 

not observed during the course of fermentation, probably due to subsequent washing of the 

solid fractions prior to SSF process, thereby reduces the risk of containing fermentation 

inhibitors at inhibitory level.  

An ethanol concentration of about 33.14 g/L was achieved under the pretreatment 

condition AC-E, corresponding to a yield of 250.1 mL/kg DM (97% of the theoretical 

maximum yield), and this is the highest achieved ethanol yield in our study for C6 

conversion by S. cerevisiae (Table 3).  

Surprisingly, condition AC-F (190 oC, 15 min, 0.2% sulfuric acid) achieved ethanol 

yield of 237.3 mL/kg DM (92% of the theoretical maximum value) lower than condition 

AC-E (180 oC, 15 min, 0.2% sulfuric acid), showing that this pretreatment condition has 

partially degraded some of the cellulose sugars, presumably due to the severely destruction 

of the cellulose crystalline structure. On the other hand, condition O2-C (180 oC, 15 min, 6 

bar O2) also gave a lower ethanol yield compared to condition (AC-E) at the same 

pretreatment temperature. It has been previously documented that pretreatment at elevated 

temperature combined with oxygen pressure can partly degrade cellulose fractions to other 

byproducts due to oxidation reaction that associated with oxygen (Taherzadeh and Karimi, 
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2008). The 97% yield of the theoretical maximum value found in this study is in good 

agreement with previous study on SSF process with S. cerevisiae (Thomsen et al., 2006).  

 

 
Fig. 4A. Time course of ethanol formation during simultaneous saccharification and 

fermentation (SSF) process of cellulose fraction by S. cerevisiae incubated over 168 h, 150 

rpm at 32 oC and pH 4.8. (B) Time course of glucose utilization during ethanol 

fermentation over 168 h. Values are means of duplicate experiments. 
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The lowest achieved ethanol yield of 179.7 mL/kg DM (70% of the theoretical 

maximum) was found under the less severe condition (O2-A). The reason could be that the 

cellulose structure had not been significantly altered under this condition and, hence, could 

not easily be hydrolyzed to cellulose for simultaneously conversion into ethanol by S. 

cerevisiae. However, good results were also obtained from other conditions (O2-B and AC-

D), around 80% of the theoretical maximum possible yield. This result is higher or 

comparable to ethanol yields reported for wheat straw and clover-ryegrass mixtures solid 

fractions fermented to ethanol by S. cerevisiae (Petersen et al., 2009; Martin et al., 2008).  

 

Table 3. Summary of the fermentation results from SSF process among the WEx 

conditions. 

WEx 
conditions 

Final ethanol 
concentration (g/L) 

Ethanol yield 
(mL/kg-DM) 

% of theoretical 
Yield 

O2-A 24.12 ± 0.05 179.70 ± 0.09 69.9 
O2-B 27.89 ± 0.07 201.00 ± 0.03 78.2 
O2-C 29.80  ± 0.02 225.50 ± 0.13 87.7 
AC-D 28.02 ± 0.04 211.30 ± 0.16 82.2 
AC-E 33.14 ± 0.17 250.10 ± 0.06 97.3 
AC-F 31.49 ± 0.14 237.30 ± 0.04 92.3 

Errors presented here were standard deviation of duplicate experiments. Fermentations 

were performed at 32 oC in a rotary shaker incubator at 150 rpm over 168 h at pH 4.8. 

 

4. CONCLUSIONS 

 

Our present investigation on cocksfoot grass revealed that wet explosion is a promising 

pretreatment method for producing high sugar and ethanol yields. The highest monomeric 

C6 sugars release from the cellulose fraction after WEx pretreatment and enzymatic 

hydrolysis was attributed to condition AC-E (180 oC, 15 min, 0.2% sulfuric acid), on the 

other hand, the release of hemicellulose sugars in the liquid fraction was more pronounced 

under WEx condition O2-A (160 oC, 15 min, 6 bar O2) where a significant higher yield was 

achieved. From these results, we found that disrupting the biomass complex structures 

using oxygen pressure combined with temperatures around 180 oC results in destruction of 
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both hexose and pentose sugars, where significant amount of sugars were degraded to by-

products such as acetic acids. This is evident as the main reactions for oxidative 

pretreatment at high temperatures are the formation of acids. The wet explosion 

pretreatment condition (AC-E) at 180 oC achieved the highest ethanol yield of 250 mL/kg 

DM (97% of theoretical) from the cellulose fraction subjected to SSF process, whereas, the 

WEx condition (O2-C) at 180 oC gave slightly lower ethanol yield of 226 mL/kg DM.  It is 

quite obvious from this present study that the release of hexose and pentose sugars have 

very different dynamics and, therefore, pretreatment process parameters should be tailored 

to the specific biomass compositional structures and with a view to all the potential sugars 

which can be produced.  
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Abstract 

 

In this study, cocksfoot grass (Dactylis glomerata), an abundant lignocellulosic biomass 

was pretreated using different operational parameters using wet explosion (WEx) 

pretreatment for accessing the bioethanol potential of hemicellulose fraction. Utilization of 

the hemicellulose liquid hydrolysate to ethanol is essential for economical feasible in 

cellulosic ethanol processes. Fermentation of the separated hemicellulose liquid 

hydrolysates obtained after the WEx pretreatment was done with Pichia stipitis CBS 6054. 

The fermentation of WEx liquid hydrolysates from the higher pretreatment severity (180 
oC, 15 min, 87 psi oxygen and 190 oC, 15 min, 0.2% sulfuric acid) was fully inhibited 

probable by the presence of higher concentrations of inhibitory compounds such as furfural, 

HMF and acetic acid. The ethanol yield among other WEx conditions was ranged from 89-

158 mL/kg DM, with the highest yield (92% of theoretical maximum value) found for the 

lower pretreatment severity at 160 oC, 15 min, 87 psi oxygen. 

 

 

Keywords: Wet explosion; Lignocellulosic biomass; Cocksfoot grass; Pretreatment; 

Ethanol fermentation; Inhibitors; Pichia stipitis.   
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1. INTRODUCTION 

 

Increasing global energy requirements and greater environmental awareness have 

resulted in increasing focus on alternatives to fossil fuels as energy sources. Lignocellulosic 

biomass such as agricultural residues, forestry waste and municipal solid waste presents a 

sustainable and renewable source for the production of liquid biofuels such as bioethanol 

(Taherzadeh and Karimi, 2008). As most often being a by-product from food and feed 

production, lignocellulosic biomass does not compete with the production of edible crops 

(Chen and Qiu, 2010; Petersson et al., 2007) and has the potential to be the feedstock for 

the production of a considerable proportion of transport fuels if cost effective conversion 

processes are available (Kristensen et al., 2008). The major components in lignocellulosic 

biomass are cellulose, hemicellulose and lignin. Hemicellulose sugars are the second most 

abundant carbohydrates in nature and its conversion to ethanol could provide an alternative 

liquid fuel source for the future (Jeffries, 2006).  

Because of the recalcitrance of the lignocellulosic structure to enzymatic attack, 

pretreatment of the material is necessary to enhance the accessibility of the enzymes to the 

substrate (Sassner et al., 2008). Various thermal and chemical pretreatment methods as well 

as combinations of both have been proposed to make lignocellulosic biomass susceptible to 

enzymatic and microbial conversion (Galbe and Zacchi, 2002; Hendriks and Zeeman, 

2009). The resulting slurry from the pretreatment of lignocellulosic biomass contains liquid 

and solid fractions; the solid fraction mostly contains cellulose and lignin as the major 

components, while the liquid fraction contains xylose as the main sugar, and small 

concentrations of other sugars such as glucose and arabinose mainly from hemicellulose 

liquid hydrolysates. Hence, the optimum utilization of the liquid fractions to ethanol is 

essential for an economical feasible in biorefinery processes (Agbogbo and Wenger, 2007). 

However, the liquid fractions often contains inhibitors such as furfural from xylose 

degradation, hydroxymethylfurfural (HMF) from glucose degradation, carboxylic acids 

mainly acetic acid from the acetyl group in hemicellulose decomposition, and phenolic 

compounds from lignin degradation (Agbogbo and Wenger, 2007) and these are considered 
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to be potential fermentation inhibitors that affect the growth rate of microbes during ethanol 

fermentations (Zhu et al., 2009).  

Microbes such as yeasts and bacteria are essential for the conversion of hemicellulose 

sugars to ethanol (Jeffries, 2006). Pichia stipitis among others is one of the robust xylose-

fermenting yeast that has been investigated in many laboratories around the world because 

of its capability for using pentose sugars beside hexoses with a high ethanol yield 

(Taniguchi et al., 1997). Moniruzzaman, (1995) reported ethanol yield of 78% theoretical 

maximum from exploded rice straw hydrolysate fermented to ethanol by Pichia stipitis Y-

7124. In a similar manner, Zhu et al. (2009) found ethanol yield of around 80% theoretical 

from steam exploded corn stover acid hydrolyzate fermented to ethanol using Pichia stipitis 

CBS 5776. 

The present study investigated ethanol production from hemicellulose hydrolysate of 

cocksfoot grass using Pichia stipitis CBS 6054 after wet explosion pretreatment. The effect 

of wet explosion process parameters on the production of fermentation inhibitors such as 

acetic acid and furfural in the liquid fraction was evaluated. 

 

2. MATERIAL AND METHODS 

 

2.1. Wet explosion prepreatment 

The Air-dried cocksfoot grass (Dactylis glomerata) was hammer milled to a particle size 

of 2-3 mm, and stored in plastic bags at room temperature prior to pretreatment. A portion 

of the raw material was ground in a coffee grinder to pass a 1 mm screen and used for 

chemical composition analysis. 

The wet explosion (WEx) pretreatment was performed batch-wise with the following 

conditions: 160 oC-190 oC adding (at) 87 psi oxygen pressure (and) or at 0.2% dilute 

sulfuric acid concentration for 15 min (Table 1), by suspending the raw cocksfoot grass in 

tap water to reach a dry matter concentration w/w of 25% in a 10 L high-pressure reactor 

constructed at the Center for Bioproducts and Bioenergy, Washington State University, 

USA (Rana et al., 2012). The reactor was equipped with a gas/liquid inlet for injection of 

dilute sulfuric acid or oxygen pressure, and a continuous stirrer (2000 rpm). The reactor 
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was heated by a water jacket connected to a heat exchanger controlled by an oil heater. The 

temperature and pressure inside the reactor were monitored by two temperature sensors and 

one pressure sensor both mounted in the headspace and in the bottom of the reactor. The 

acid concentration or oxygen pressure was added into the pretreatment reactor after the 

desired temperature was reached. After the treatment, the biomass was flashed into a 100 L 

flash tank connected to the reactor, resulting in a sudden drop in temperature and pressure. 

The resulting slurry from the pretreatment was separated into liquid and solid fractions 

by vacuum filtration. The solid fraction was stored in a freezer (-16 oC) for further 

processing and the filtrated liquid fraction was stored under refrigeration (5 oC) and used 

for ethanol fermentation by P. stipitis. 

 

Table 1. Process conditions used for WEx pretreatment of cocksfoot grass.  

Treatment Temp. (oC) T/R* 
(min) 

Oxygen  
(psi)  

Acid concen.** 

(%) 
A 160 15 87 - 
B 170 15 87 - 
C 180 15 87 - 
D 170 15 - 0.2 
E 180 15 - 0.2 
F 190 15 - 0.2 

*Retention time. **Acid concentration. 

 

2.2. Preparation of WEx hydrolysate and fermentation 

The hemicellulose hydrolysates used for all the fermentations were the liquid fraction 

obtained after separating the pretreated samples after WEx pretreatment from the solids, 

and were directly fermented to ethanol without enzymatic hydrolysis and detoxification. 

Fermentation was performed under semi-aerobic conditions in sterile 250 mL Erlenmeyer 

baffled flasks without any nutrient supplementation, covered with an aerobic stopper, and 

incubated on a rotary shaker at 125 rpm and 30 oC for 96 h as reported by Agbogbo and 

Coward-Kelly, (2008). The pH of the hydrolysates was adjusted to 6.0 with 1 M phosphate 

buffer solution.  
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2.3. Microorganism and media 

Pichia stipitis CBS 6054 (ATCC 58785) was conserved and maintained on 20% glycerol 

at 4 oC at the Center for Bioproducts and Bioenergy, Washington State University, USA. P. 

stipitis inoculum medium contained 20 g/L D-xylose, 20 g/L peptone and 10 g/L yeast 

extract and was prepared aseptically in 250-mL shaking flask as previously described by 

Agbogbo and Wenger, (2007) with 100 mL medium and incubated on rotary shaker at 30 
oC and 170 rpm for 24 h. All the media were sterilized by autoclaving at 121 oC for 30 min. 

The cells were harvested by centrifugation, and the pellet was collected for the hydrolysate 

fermentation to a final optical density (OD) of 1.0 measured at OD600 nm corresponding to a 

cell concentration of approximately 1.7 g/L.  

 

2.4. Analytical methods 

The fermentation was performed in duplicates and monitored by withdrawing 2 mL of 

samples for analyses. The initial chemical composition of the raw material was determined 

according to the procedure developed by the National Energy Laboratory (Sluiter et al., 

2008), and the dry matter content (DM), volatile solid contents (VS), and ash were 

determined according to the procedure described by the American Public Health 

Association (APHA, 1992). The concentration of sugars, acetic acid and ethanol were 

determined by high performance liquid chromatography (HPLC) refractive index (RI) 

equipped with an Aminex HPX-87P column (Bio-Rad Laboratories, CA, USA) at 83 oC 

with deionized water (Thermo Scientific, Barnstead Nanopure, IA, USA) as an eluent with 

a flow rate of 1.0 mL/min. The optical density (OD) of the yeast cell was measured 

spectrophotometrically at 600nm. The ethanol yield (YEtOH) was calculated by dividing the 

total amount of ethanol produced by the initial dry weight of treated cocksfoot grass. The 

percent theoretical (stoichiometric) ethanol yield (%YEtOH) was calculated according to Eq. 

(1): where 0.51 are the theoretical ethanol yield (in grams) generated per 1 g of sugar, 

Hatzis et al. (1996). This yield is always less than 100% as part of the sugars is converted to 

cell mass and by-products by the organisms. 
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3. RESULTS AND DISCUSSION 

 

3.1. Composition of WEx hydrolysates 

The main chemical composition of raw material was (g/100 g DM): cellulose, 35.73; 

hemicelluloses, 23.71; and lignin, 18.74. The hydrolysates containing monomeric sugars 

and fermentative inhibitors used for the fermentations were prepared from the WEx liquid 

fractions and their compositions are depicted in Table 2.  

 

Table 2. Composition of the WEx hemicellulose hydrolysates from wet exploded cocksfoot 

grass. 

Compounds (g/L) 
WEx process conditions 

A B C D E F 

Hexose sugars 1.83 
(0.01) 

2.07 
(0.04) 

1.03 
(0.03) 

0.78 
(0.02) 

0.79 
(0.01) 

2.13 
(0.03) 

Pentose sugars 35.16 
(0.07) 

25.86 
(0.04) 

14.59 
(0.05) 

27.33 
(0.16) 

22.96 
(0.17) 

13.93 
(0.13) 

Furfural 0.44 
(0.02) 

0.50 
(0.14) 

2.90 
(0.00) 

0.17 
(0.12) 

0.51 
(0.03) 

1.00 
(0.06) 

Hydroxymethyfurfural 0.19 
(0.00) 

0.21 
(0.08) 

0.58 
(0.15) 

0.02 
(0.00) 

0.09 
(0.05) 

0.38 
(0.11) 

Acetic acid 1.72 
(0.11) 

2.13 
(0.04) 

5.21 
(0.06) 

1.32 
(0.07) 

2.04 
(0.13) 

3.06 
(0.03) 

Average of duplicates. Standard deviation shown in parentheses.  

 

3.2. Fermentation of WEx liquid hydrolysates 

The wet explosion liquid hydrolysates or fractions obtained from all the pretreatment 

conditions were fermented to ethanol by Pichia stipitis CBS 6054. Figure 1A and B shows 

the changes in ethanol and sugar concentrations among the WEx pretreatment conditions. 

Based on previous studies on hemicellulose hydrolysate fermentation by the yeast Pichia 

stipitis (Agbogbo and Coward-Kelly, 2008; Parekh et al., 1988), the aeration rate was kept 
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constant at 125 rpm throughout the fermentation, since oxygen is one of the crucial 

parameters for yeast P. stipitis during ethanol fermentation. Oxygen plays an important role 

in cell growth and generation of energy for xylose transport in P. stipitis (Agbogbo and 

Coward-Kelly, 2008). However, some studies on liquid hydrolysate fermentation by P. 

stipitis shows that genetically modified P. stipitis produces ethanol under anaerobic 

condition (Shi and Jeffries, 1998; Delgenes et al., 1986), but microaerobic conditions are 

optimal for ethanol production (Agbogbo and Coward-Kelly, 2008).  

A rapid consumption of sugars was observed in most of the WEx conditions within the 

24 h fermentation time. It is noteworthy that the available glucose in the fermentation broth 

was first consumed by P. stipitis before it started to utilize xylose and its complete uptake 

occurred in 96 h. The amount of ethanol produced steadily increased within 48 h 

fermentation time and leveled out after 72 h (Fig. 1A). A lag phase was not observed during 

the course of fermentation in most of the pretreatment conditions (Fig. 1B), except 

conditions (C and F) where metabolic activities was not detected due to high concentrations 

of fermentation inhibitors especially high contents of acetic acid associated with the above-

mentioned conditions. The highest ethanol concentration obtained at the end of the 

fermentation (17.98 g/L) was achieved for the lower pretreatment severity, A (160 oC, 15 

min, 87 psi oxygen), and it was in accordance with the utilization of sugars which amount 

to ethanol yield of 157.5 mL/kg DM, corresponding to 92% of theoretical maximum value 

(Table 3). This is comparable to ethanol yield of 85-90% of the theoretical maximum found 

for Pichia stipitis CSIR-Y633 fermenting xylose sugar (du Preez et al., 1986).  

For the pretreatment conditions (B and D), the ethanol concentration was around 12 g/L, 

which is not comparable to the ethanol concentration found under condition A, but higher 

than the concentration achieved for condition E, which gave only approximately 10 g/L. 

This shows that the hemicellulose sugars under pretreatment condition E (170oC, 15 min, 

0.2% sulfuric acid) has to large extend been degraded to other products other than sugars, 

like furfural during the WEx pretreatment. However, the sugars found under the above-

mentioned condition was able to ferment to ethanol, showing that the concentrations of 

inhibitors under this condition was not a limiting factor for the yeast P. stipitis, unlike 

conditions C and F (180 oC, 15 min, 87 psi oxygen and 190 oC, 15 min, 0.2% sulfuric acid) 
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where the yeast P. stipitis could not assimilate the sugars probable due to high content of 

inhibitors. 

 

 
Fig. 1A. Time course of ethanol production from hemicellulose hydrolysates by P. stipitis 

CBS 6054 over 96h, 125 rpm at 30 oC and pH 6.0. (B) Time course of glucose and xylose 

consumption during ethanol fermentation over 96h. Values are means of duplicate 

experiments. aGlucose concentrations among the WEx pretreatment conditions. bXylose 

concentrations among the WEx pretreatment conditions.  
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Pretreatment conditions B and D (170 oC, 15 min, 87 psi oxygen and 170 oC, 15 min, 

0.2% sulfuric acid), shows a similar ethanol yield, but, was slightly higher in pretreatment 

condition D (Table 3), around 10% higher. The only difference in the above-mentioned 

conditions was the addition of pure oxygen and sulfuric acid. This is in agreement that 

pretreatment with addition of dilute acid at a moderate temperature can release up to 100% 

fermentable hemicellulose sugars and that a balance between solubilization and degradation 

of hemicellulose sugars is a mechanism in pretreatment with addition of both oxygen and 

sulfuric acid (Taherzadeh and Karimi, 2008). The above-mentioned WEx pretreatment 

conditions achieved ethanol yield of 112.3 and 123.7 mL/kg-DM, which corresponds to 

65.8% and 72.4% of theoretical, respectively, (Table 3). In comparison, Zhong et al. (2009) 

reported ethanol yield of 72 and 68% of theoretical maximum, respectively, with Pichia 

stipitis FPL-061 and DX-26 fermenting AFEX-treated rice straw hydrolysates. 

 

Table 3. Summary of fermentation results among the WEx conditions.  

Treatment Final ethanol 
concentration (g/L) 

Ethanol yield 
(mL/kg-DM) 

% of theoretical 
yield 

Final pH 

A 17.98 (0.02) 157.50 (0.05) 92.22 6.98 (0.02) 
B 12.24 (0.04) 112.30 (0.03) 65.78 6.94 (0.05) 
C 0.00 (0.00) 0.00 (0.00) 0.00 6.23 (0.03) 
D 12.88 (0.04) 123.70 (0.06) 72.42 7.02 (0.04) 
E 9.75 (0.01) 88.50 (0.02) 51.85 6.86 (0.08) 
F 0.00 (0.00) 0.00 (0.00) 0.00 6.21 (0.07) 

Standard deviation shown in parentheses. Fermentations were performed at 30oC in a 

shaker incubator at 125 rpm over 96h. 

 

The fermentability of WEx hydrolysates under pretreatment conditions C and F (180 oC, 

15 min, 87 psi oxygen and 190 oC, 15 min, 0.2% sulfuric acid) was fully inhibited, because 

they contain high concentration of fermentation inhibitors. This demonstrates that lower 

pretreatment severity is more advantageous for maximizing the production of fermentable 

hemicellulose sugars thereby reducing the production of inhibitory compounds during 
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pretreatment. The above-mentioned conditions were the most severe pretreatment 

conditions tested in this study for WEx pretreatment with addition of oxygen or dilute 

sulfuric acid.  

 

3.3. Effect of fermentative inhibitors 

The inhibitory effects observed on the fermentation of WEx hydrolysates under 

pretreatment conditions (C and F) could be attributed to the presence of furfural at high 

concentration of about 2 g/L, but the complete inhibition of the fermentation could further 

be due to the higher concentrations of acetic acid (5.2 and 3.1 g/L, respectively) in the 

above-mentioned conditions (Table 2). It has been reported elsewhere in the literature 

(Roberto et al., 1991) that furfural concentration should be at a level of 1.0 g/L in order to 

present problems for yeast. The formation of acetic acid was more pronounced in the 

pretreatment condition with high temperature and addition of oxygen pressure. Palmqvist, 

(2000) and his co-worker reported in their recent review paper that microorganisms can up 

to a certain limit survive the stress of these compounds, but cell death would occur if the 

stress exceeds the limit that cell can bear. The effects of these fermentation inhibitors on 

ethanol fermentation by P. stipitis has been demonstrated in the literature, Bellido et al. 

(2011) found that ethanol yield from hemicellulose hydrolysates decreased with increasing 

acetic acid concentrations and uptake of xylose was more affected than glucose. This paper 

further mentioned that cell growth and ethanol yield was considerably affected at 2.5 g/L of 

acetic acid in synthetic media and complete inhibition of growth and ethanol production 

occurred at 3.5 g/L. Progressively, HMF and furfural caused delay of sugar consumption, 

but was eventually assimilated by P. stipitis below 2 g/L where inhibition was less 

profound than with acetic acid. Scordia et al. (2010) further reported that fermentation of 

hemicellulose liquid hydrolysates by P. stipitis is mainly inhibited by acetic acid and to 

lesser extent by the presence of furfural.  

However, the liquid hydrolysates originating from any pretreatment of lignocellulosic 

biomass can be detoxified by removal of inhibitory compounds in order to adapt the yeast 

to utilize the available sugars to ethanol. Overliming and neutralization are some of the 

proposed methods to carryout hemicellulose hydrolysate detoxification (Cantarella et al., 
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2004; Chandel et al., 2007). Performing hemicellulose hydrolysate detoxification is often 

energy demanding and can elevate the process cost of the ethanol production of 

hemicellulose sugars. In order to make lignocellulosic ethanol production more 

economically feasible, the hydrolysates arising from the separated liquid fractions after 

pretreatment should be able to ferment to ethanol without the need for further 

detoxification. Therefore, the hemicellulose hydrolysates obtained after the WEx 

pretreatment was not detoxified.  

 

 
Fig. 2. Time course of acetic acid concentrations in the hemicellulose liquid hydrolysates 

during ethanol fermentation over 96h using P. stipitis CBS 6054. 
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increase in pH was observed in most of the pretreatment conditions which can be attributed 

to the consumption of acetic acid by P. stipitis (Fig. 2). The acetic acid concentrations in 
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hydrolysates. Table 3 shows the final pH range at the end of the fermentation among the 

pretreatment conditions. A pH range of approximately 7.0 was observed in most the 

pretreatment conditions, while the acetic acid was significantly consumed, however, the 

end products generated by P. stipitis from the acetic acid consumption was not determined. 

This is in accordance with the previous investigations on hemicellulose hydrolysate 

fermentation by P. stipitis where the increase in pH was attributed to acetic acid 

consumption (Agbogbo and Wenger, 2007; Scordia et al., 2010; Palmqvist and Hahn-

Hägerdal, 2000). 

 

4. CONCLUSIONS 

 

This study has demonstrated that wet explosion (WEx) pretreatment with additives 

(dilute sulfuric acid or oxygen) facilitates the production of fermentable hemicellulose 

sugars that was optimally fermented to ethanol by Pichia stipitis CBS 6054 without further 

detoxification or use of costly enzyme mixtures. It further shows that lower pretreatment 

severity is an ideal combination of WEx pretreatment parameters for achieving higher 

ethanol yields from hemicellulose sugars, and at the time, reduces the formation of 

fermentation inhibitory compounds. This is evident as the highest ethanol yield of 158 

mL/kg DM (92.2% of theoretical) was found under the lower pretreatment severity A (160 
oC, 15 min, 87 psi oxygen). WEx hydrolysates obtained under higher pretreatment severity 

could, however, not be fermented to ethanol as it contains higher concentrations of 

inhibitory compounds.  
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CONCLUDING REMARKS AND FUTURE RESEARCH 

 

The choice of a suitable pretreatment method and the adjustment of the pretreatment 

parameters are crucial for the efficiency of the subsequent conversion of any biomass in a 

biorefinery concept. The efficiency of the wet explosion pretreatment of different types of 

lignocellulosic biomass was successfully evaluated in terms of higher fermentable sugars 

production, ethanol conversion, and formation of degradation products as presented in the 

four research papers associated with the present PhD thesis. 

High recovery of carbohydrates was achieved after the wet explosion pretreatment with 

addition of dilute sulfuric acid or oxygen pressure at 25% dry matter concentration. High 

sugar yields were obtained after enzymatic convertibility of the cellulose fractions up to 

98% of theoretical maximum yield. Higher release of hemicellulose sugars in the liquid 

fractions was achieved with low formation of degradation products following pretreatment 

with oxygen at lower pretreatment temperature. Subsequently high ethanol yields were 

achieved with cellulose and hemicellulose conversion by Saccharomyces cerevisiae and 

Pichia stipitis, respectively, enabling economically viable bioethanol production in 

industrial scale. These findings clearly revealed that the adjustment of pretreatment 

parameters is dependent on the choice of end-products. High pretreatment severity – high 

production of hexose sugars and high formation of degradation products, and low 

pretreatment severity – high production of pentose sugars, lower production of hexose 

sugars and lower formation of degradation products. Therefore, pretreatment process 

parameters should be tailored to the specific biomass compositional structures and with a 

view to all the potential sugars and by-products which are aimed at.  

This present study has demonstrated that wet explosion is an effective pretreatment 

method because it is flexible in feedstock handling and can operate with or without addition 

of chemicals. Its mode-of-action is divers because it consolidated the mechanisms of dilute 

acid, steam-explosion, and wet oxidation pretreatment. On the other hand, cocksfoot grass 

is a favorable feedstock for a cellulosic bioethanol production because of its high sugar 

content and is proven to be suitable for the BornBioFuel demonstration plant as tested in 

this present study.  
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Although the work presented in this PhD thesis addresses some features of biomass 

pretreatment and its conversion to ethanol, there is still the need for further investigation 

and validation of different process steps for the production of cellulosic bioproducts. In 

addition, the integrated production of biofuels together with other valuable coproducts will 

significantly enhance the cellulosic biofuels economics thereby reducing the technical and 

market risk in the context of biorefinery systems. The present process configurations should 

be further investigated on how to integrate the resulting materials after pretreatment into 

one single process line. The purpose would be to examine ways of optimum conversion of 

both hexose and pentose sugars in a continuous process configuration to reach a high 

ethanol concentration enabling economically feasible process.   

 


