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Preface

This thesis has been funded by the Danish Agency for Science,Technology and Innovation,
grant 645-06-0528,International PhD student. The thesis is the result of work carried out
at Aalborg University and during two long term visits to the University of Chicago and the
University of Western Australia.

Chapter 1 gives a short introduction to some well known partsof the statistical theory for
spatial data, which is the topic of this thesis. This material is the background for the subsequent
Chapters 2-4 presenting the three journal papers constituting the main part of this PhD thesis:

Baddeley, A., E. Rubak and J. Møller (2010). Score, pseudo-score and residual diagnostics
for goodness-of-fit of spatial point process models. Submitted toStatistical Science.

Møller, J. and E. Rubak (2010). A model for positively correlated count variables.Interna-
tional Statistical Review78, 65-80.

Rubak, E., J. Møller and P. McCullagh (2010). Statistical Inference for a Class of Multivariate
Negative Binomial Distributions. Submitted toBernoulli.

The papers are presented in their journal form, and as a consequence the notation is not nec-
essarily consistent between chapters and some material is presented in several chapters. How-
ever, this allows each chapter to be read independently of the others. Chapter 5 presents some
work that has been initiated during the PhD study, but is not yet finished. The last pages of the
thesis contain a complete list of all references used in the thesis.
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Summary in English

The topic of this thesis is spatial statistics, which deals with data originating from different
spatial locations. Spatial data are collected in many fieldsof science such as agriculture,
astronomy, biology, epidemiology, and physics. There is a natural interest in statistical models
and methodology for dealing with such diverse data. The thesis focuses on general models
and methodology, which can potentially be applied in a rangeof different scientific settings
rather than analysis of specific datasets.

As a preliminary a short review of spatial statistics is given. Spatial data discussed in the thesis
are of two distinct types:spatial point pattern datacomposed of the random locations of an
event of interest are analyzed using point process models, and lattice datacomposed of the
values of a random quantity at fixed locations are analysed using random field models.

The fundamental point process model is the Poisson point process which is a model allowing
for spatial variation in the abundance of points, but not forinteraction between points. In
the thesis it is reviewed how the score test has been applied to Poisson process models in
the literature to test for a significant spatially varying abundance of points explained by a
spatially varying covariate. In many applications the Poisson process is a too simple and
unrealistic model, and in the thesis it is described how the score test can be applied in the case
of much more general point processes with interactions between points. In classical statistics
the score test is commonly used for model selection and for model validation. In the point
process literature model validation is often based on comparing a functional summary statistic
of the data with its expectation under the model. The thesis lends theoretical support to this
procedure by showing it corresponds to a score test for goodness-of-fit of the model. Further
goodness-of-fit diagnostics are derived based on the score test and score test approximations
related to the point process residuals recently developed in the literature.

Lattice data can in general be of any type, but in this thesis only non-negative integer valued
data are considered. This is a prominent example of lattice data, which e.g. appears when
data correspond to counting something of interest at the fixed spatial locations. This could
be cases of a disease counted within a number of administrative regions. Such data can be
analyzed using theα-permanental random fields studied in this thesis. These provide a flexible
model class for lattice data with positive associations between sites, meaning that sites close
to each other tend to be alike. The probabilistic propertiesof α-permanental random fields
are reviewed and some new results are given. In particular itis detailed how simulations from
an α-permanental random field can be generated using a so-calledPoisson-randomisation.
While the likelihood of anα-permanental random field model can be expressed on closed
form, it is usually very computer intensive to evaluate. To accommodate this problem it is
shown how inference can be based either on approximate evaluation of the likelihood or on
computationally simpler quantities such as the quasi-likelihood or composite likelihood.

The last part of the thesis describes two works in progress. First, a class of point process
models which can be used to model the location and size of trees is introduced, and it is
described how likelihood inference can be conducted. Second, so-called determinantal point
processes are briefly reviewed and a scheme for Bayesian inference is discussed.
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Summary in Danish

Denne afhandling omhandler rumlig statistik, hvilket er den gren af den statistiske teori, der
omhandler data fra forskellige lokationer. Rumlige data kan stamme fra adskillige grene af
videnskaben som f.eks. astronomi, biologi, epidemiologi,fysik og landbrugsvidenskab. Dette
har skabt en naturlig interesse for statistiske modeller ogmetoder, der kan behandle sådanne
forskelligartede data. Afhandlingen fokuserer på generelle modeller og metoder, der kan an-
vendes i mange forskellige videnskabelige sammenhænge, fremfor at analysere specifikke
data.

Indledningsvis gennemgås nogle grundlæggende dele af den statistiske teori, der omhandler
rumlige data. Afhandlingen beskæftiger sig med to forskellige typer rumlige data, hvor de
rumlige punktmønstre, bestående af de stokastiske placeringer af en rumlig begivenhed, bliver
analyseret ved hjælp af rumlige punktprocesmodeller, og derumlige gitter-data, bestående af
målingerne af en stokastisk størrelse på faste rumlige placeringer, bliver analyseret ved hjælp
af modeller for såkaldte random fields.

Den grundlæggende punktprocesmodel er Poisson-punktprocessen, som er en model, der
tillader rumlig variation i antallet af punkter, men som ikke tillader vekselvirkninger mellem
punkterne. På baggrund af en litteraturgennemgang beskrives den såkaldte score-test, som
bruges til at undersøge, om et punktmønster har en signifikant rumlig variation, der kan fork-
lares ved hjælp af en rumlig kovariat. Dette har tidligere været baseret på, at punkterne
antages at stamme fra en Poisson-punktproces, men dette er imange tilfælde en urealistisk
og for simpel model. I afhandlingen beskrives det, hvordan score-testet kan anvendes un-
der mere generelle betingelser, hvor punktprocesmodelleninkluderer vekselvirkninger mellem
punkterne. I klassisk statistik bliver score-testet ofte brugt til modelselektion og modelkon-
trol. I punktproceslitteraturen bliver modelkontrol ofteudført ved at sammenligne en funk-
tionel statistisk observator for data med dens forventede værdi under modellen. Afhandlingen
giver teoretisk støtte til denne fremgangsmåde, ved at visehvordan det svarer til et score-
test for modellens goodness-of-fit. Yderligere redskaber til undersøgelse af goodness-of-fit
bliver udledt med udgangspunkt i score-testet og approksimationer til score-testet relateret til
punktproces-residualerne, der for nyligt er beskrevet i litteraturen.

Gitter-data behandlet i denne afhandling består af ikke-negative heltal, også kaldt tælledata.
Dette er et typisk eksempel på gitter-data, som f.eks. forekommer, når data svarer til en op-
tælling af en given hændelse på fastsatte rumlige placeringer. Dette kunne være antallet af syg-
domstilfælde inden for bestemte geografiske regioner. Sådanne data kan analyseres ved hjælp
af deα-permanentale random fields beskrevet i afhandlingen. De udgør en fleksibel klasse af
modeller for gitter-data med positive associationer mellem gitterplaceringerne, hvilket betyder
at data fra nærtliggende placeringer har en tendens til at ligne hinanden. De sandsynligheds-
teoretiske aspekter afα-permanente random fields gennemgås, og nogle nye resultater bliver
udledt. Specielt udledes detaljerne for, hvordan simulationer fra etα-permanentalt random
field kan genereres ved hjælp af en såkaldt Poisson-randomisering. Selvom likelihooden for et
α-permanentalt random field kan udtrykkes på lukket form, kræver det normalt store mængder
computer-beregninger at evaluere den. For at kompensere for dette problem bliver det vist,
hvordan statistisk inferens enten kan baseres på approksimativ beregning af likelihooden eller
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på beregningsmæssigt enklere størrelser som quasi-likelihood eller composite likelihood.

Afslutningsvis præsenteres to igangværende projekter. Først introduceres en klasse af punkt-
procesmodeller, som kan bruges til at beskrive placeringenog størrelsen af træer, og det
beskrives, hvordan likelihood-baseret inferens kan håndteres for disse modeller. Dernæst
gives en kort gennemgang af såkaldte determinante punktprocesser, og det diskuteres, hvordan
bayesiansk inferens kan udføres.
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CHAPTER 1

Introduction

Spatial data are collected in a wide range of scientific areasas e.g. agriculture, astronomy,
biology, epidemiology, and physics. Naturally, this givesrise to a great interest in the devel-
opment of statistical models and methodology for this type of data. A thorough account of
statistics for spatial data can be found in Cressie (1993) whereas the following only serves as a
short introduction to the area of spatial statistics and some of its terminology. The introduction
is by no means exhaustive and it should not be considered a summary of the most important
topics in spatial statistics. Rather, the material is selected to allow a concise motivation of the
subsequent development of models and methodology.

This thesis studies two important types of spatial data, which require separate methods of anal-
ysis:point pattern dataconsisting of the random locations of some event of interest, andlattice
dataconsisting of measurements of some random quantity at fixed locations. The probabilis-
tic and statistical frameworks treating these data types are respectivelyspatial point processes
andrandom fields on lattices, as detailed further in Sections 1.1 and 1.2 below.

1.1 Spatial point processes

This thesis takes a non-technical approach to the theory of spatial point processes, and readers
interested in the full mathematical generality and measuretheoretical details are referred to
Møller and Waagepetersen (2004) and Daley and Vere-Jones (2003, 2008), where most of the
material presented below is discussed in further detail.

1



2 Introduction

A spatial point pattern is a finite setx = {x1, . . . , xn} of pointsxi ∈ W, where the observation
window W ⊂ Rd has finite positive volume|W|. In all that followsd = 2 is assumed, but
generalization to otherd is possible. The notion of an observation window attached tothe set
of observed points is crucial, since the absence of points also conveys information about the
process generating the point pattern.

In this non-technical approach a point processX in W is simply considered to be a random
finite subset ofW and the point patternx is considered a realization ofX. More generally, a
point processY in a possibly unbounded spaceS ⊆ R2 is a locally finite random subset ofS.
That is, for any bounded setA ⊆ S the restriction ofY to A denotedYA = Y ∩ A has finite
cardinalityn(YA) = |YA|. In some cases it is natural to assume that the point processX in W
is the restrictionX = Y ∩W of a point processY in a larger spaceS ⊃W. The most typical
example of this is thatY is a stationary process inR2, meaning that the distribution ofY is
invariant under translation.

The most common first order characteristic of a point processY in S is the intensity function,
which is a non-negative functionρ : S → [0,∞) that determines the expected number of
points ofYA for any boundedA ⊆ S by

E[n(YA)] =
∫

A
ρ(u) du. (1.1)

A point process with constant intensityρ(x) ≡ ρ is called homogeneous (or first order homo-
geneous).

A particularly important spatial point process model is thePoisson process, which is fully
characterized by the intensity function, and Poisson(S, ρ) denotes a Poisson process inS with
intensity functionρ. An important characterization is that ifY ∼ Poisson(S, ρ) thenn(YA)
is Poisson distributed with mean given by (1.1) for any bounded A ⊆ S, and conditional
on n(YA) = n the points are independently distributed onA with density proportional toρ.
Furthermore,n(YA) andn(YB) are independent for disjoint subsetsA, B ⊆ S. A first order
homogeneous Poisson process is sometimes referred to as complete spatial randomness (CSR)
due to the aforementioned properties.

It is often the case that a point patternx in W is not well modeled by a Poisson process on
W, and more complicated spatial point process models allowing for interactions between the
points are needed. A useful way of specifying a new model is byspecifying a densityf for X
with respect to Poisson(W,1). The density is characterized by the property

E[h(X)] = E[h(Y ) f (Y )]

for all non-negative measurable functionalsh, whereY ∼ Poisson(W,1). Usually the density
is only specified to be proportional to some non-negative integrable function, and evaluation
of the normalizing constant is typically very difficult. In all that follows it is assumed that the
density is hereditary such that

f (x) > 0⇒ f (x′) > 0 whenx′ ⊂ x.
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The density can be used to introduce the Papangelou conditional intensity forx ⊂ W and
u ∈W \ x

λ(u,x) =

{
0 when f (x) = 0
f (x ∪ {u})/ f (x) otherwise.

A point process is called attractive or clustered if

λ(u,x′) ≤ λ(u,x) whenx′ ⊂ x

and regular, repulsive or inhibited if

λ(u,x′) ≥ λ(u,x) whenx′ ⊂ x.

When a parametric point process model is proposed for a given dataset the first step of an anal-
ysis is usually to estimate the parameters of the model. BothBayesian and likelihood based
inference can in many cases be intractable analytically dueto unknown normalizing constants.
Therefore, computer intensive Markov Chain Monte Carlo (MCMC) methods are typically
needed to estimate parameters in point process models. Thisfact severely hampers routine es-
timation of parameters by non-experts, since programming skills, theoretical knowledge and
practical experience with MCMC methods are often needed. A less efficient approach than
maximum likelihood estimation is to base the estimation on the pseudo-likelihood (Besag,
1978):

PL(θ) =


∏

i

λθ(xi ,x)

 exp

(
−

∫

W
λθ(u,x) du

)
,

whereθ is the vector of model parameters andλθ(u,x) is the Papangelou conditional intensity.
The maximum pseudo-likelihood estimate (MPLE) can be foundfor a wide range of point
process models using thespatstat package (Baddeley and Turner, 2005) for the statistical
softwareR (R Development Core Team, 2009).

Once a point process model has been fitted to a dataset using Bayesian, likelihood, pseudo-
likelihood or some other type of inference, it is important to be able to asses the goodness-of-fit
of the model. A common procedure is to check that certain summaries of the data agree with
what could be expected under the fitted model. A very simple example is that the observed
number of points in the dataset should not be an extreme observation under the fitted model,
but more generally functional summary statistics are used to capture certain characteristics of
a point pattern. For example, given the point pattenx in the observation windowW, one may
consider a functional summary statistic based on a weightedsum of inter-point distances

K̂(r) =
∑

i, j

w(xi , x j)I{‖xi − x j‖ ≤ r},

where the weight for a specific pair of pointsw(xi , x j) is allowed to depend on the total num-
ber of pointsn and the area of the observation window|W|. For appropriately chosen weights,
K̂ provides an unbiased estimate of Ripley’sK-function (Ripley, 1976, 1977) for a stationary
point process with intensityρ. Informally, theK-function is defined such that the expected
number of additional points of the process falling within distancer of a typical point of the
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process isρK(r).To asses the goodness-of-fit of a model using a functional summary statistic,
an empirical estimate such asK̂ is compared with its expected value under the model. How-
ever, apart from the case of a Poisson point process, evaluation of the expected value of most
functional summary statistics is analytically intractable, and simulation methods are needed,
which can be both time consuming and complex. In Chapter 2 it is suggested to use a com-
putationally simple unbiased estimate of the mean value under the fitted model for informal
model validation. The proposed method is closely related tothe residuals of Baddeley et al.
(2005), and it does not depend on the assumption of stationarity making it valid also for inho-
mogeneous models. It is also discussed how goodness-of-fit diagnostics based on functional
summary statistics can be formally interpreted as a score test. Furthermore, Chapter 2 dis-
cusses the traditional use of score tests for Poisson point process models and shows how the
score test is applicable to a wider class of models.

1.2 Random fields

Generally, a random field is a collection of random variablesX = {Xi : i ∈ S}, where the
index setS is allowed to be uncountable. However, in this thesis we onlyconsider random
fields whereS is a finite spatial lattice, meaning thatS indexes a finite collection of spatial
sites with associated neighbourhood information. The neighbourhood information may be a
detailed geographical map giving the location of each site,or it may simply be a mathematical
graph with a set of vertices representing the sites and a set of edges specifying which sites that
are neighbours. This section only gives a short introduction to lattice data and random fields
on lattices, and readers interested in a more detailed account are referred to Cressie (1993),
where most of the material presented below can be found.

An example of lattice data is a digital image where each pixelmay be taken as a spatial site,
and the neighbourhood structure is given by a graph with edges between neighbouring pixels
in the image. In this case the lattice is said to be regular.

Data on an irregular lattice are also common and often they appear as the result of spatially
aggregated data. The areas of aggregation typically correspond to administrative regions for
which the aggregated data are known, but where the spatial distribution of data within the
region is unknown. In particular such data may originate from aggregation of a point pattern,
which yields an aggregated dataset consisting of counts of events within each administrative
region. In Chapter 4 this situation is exemplified by a dataset of aggregated counts of disease
cases in 19 Danish municipalities. Ideally, a model for thisdata should be derived from a
model for the underlying point process. Assuming an underlying Poisson point process model
it is straightforward to derive the model for the aggregatedcounts. Due to the properties of the
Poisson process detailed in Section 1.1, the counts will be independent and Poisson distributed.
However, for non-Poisson models the distribution of the counts is typically intractable. An
alternative approach is to ignore the underlying point process and directly specify a model for
the lattice data, which is the approach considered in Chapter 4, and some further remarks on
the aggregation problem are given therein (see also Richardson, 2003; Møller, 2003).

A common way of specifying a random field model is via the individual conditional distri-
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butionsPi(Xi |X−i), i ∈ S, whereX−i = {X j : j ∈ S\{i}}. For i ∈ S, let Ni ⊆ S\{i}, be the
neighbours of thei’th site based on the neighbourhood information associatedwith S, and let
XNi = {X j : j ∈ Ni}. Then, from a modeling viewpoint, it may be natural to assumea Markov
property such that the conditional distribution ofXi only depends onXNi , i.e.

Pi(Xi |X−i) = Pi(Xi |XNi ). (1.2)

It is emphasized that the set of neighboursNi is not predetermined by the neighbourhood in-
formation attached toS, but rather it is a modeling choice based on this information. For
example, if there is a map associated withS, a natural choice would be to defineNi as the
sites within a certain distance of sitei. Alternatively, if there is only a graph associated with
S it would be natural to letNi be the sites connected toi by no more thand edges, whered
is another modeling choice. An important requirement of thechoice ofNi is that it should be
symmetric in the sense that ifj is a neighbour ofi, j ∈ Ni then i must also be a neighbour
of j, i ∈ N j . A random field satisfying (1.2) above is called a Markov random field. This
specification of a probability model in terms of individual conditional distributions is called a
local characterization of the model, and care must be taken to ensure the existence of a joint
distribution ofX which is consistent with the specified conditional distributions. The admis-
sible functional forms of thePi ’s are completely characterized by the Hammersley-Clifford
theorem (see e.g. Besag, 1974), which makes it possible to verify that a given local speci-
fication corresponds to a well-defined distribution. While the Hammersley-Clifford theorem
details how a consistent joint distribution is obtained from the conditional distributions it turns
out that the joint distribution involves an unknown normalizing constant which is usually not
available on closed form. Since the likelihood of a Markov random field model depends on
the unknown normalizing constant, likelihood inference isoften intractable for these models,
and alternative methods must be used.

A well-known example of a locally specified model is the auto-Poisson model which assumes
that the conditional distribution ofXi |XNi is Poisson with mean

µi = exp(αi +
∑

j∈Ni

βi j x j),

whereαi andβi j are parameters (Besag, 1974). A major drawback of the auto-Poisson model
is that it is only well-defined forβi j ≤ 0. This implies that only non-positive associations
between sites are allowed.

The discussion above clarifies that the locally specified auto-Poisson model cannot be applied
to count data with positive associations between sites, which is a commonly expected feature in
many applications. An entirely different approach to modeling is given by directly specifying
the joint distribution ofX. In this approach, the modeling is still based on neighbourhood
information. However, rather than specifying a conditional distribution one may for example
model the joint mean and covariance structure of the random field taking the neighbourhood
information into account. Chapter 3 provides a review of andsome new results for a class
of multivariate negative binomial distributions calledα-permanental random fields. These are
flexible models for count data with positive associations between sites, which are specified
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directly in terms of the joint distribution of the counts. InChapter 4 various approaches to
statistical inference for these models are considered and exemplified.
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Abstract:
We develop new tools for formal inference and informal modelvalidation in the analysis of
spatial point pattern data. The score test is generalised toa ‘pseudo-score’ test derived from
Besag’s pseudo-likelihood, and to a class of diagnostics based on point process residuals.
The results lend theoretical support to the established practice of using functional summary
statistics such as Ripley’sK-function, when testing for complete spatial randomness; and they
provide new tools such as thecompensatorof the K-function for testing other fitted models.
The results also support localisation methods such as the scan statistic and smoothed residual
plots. Software for computing the diagnostics is provided.

Keywords:
compensator; functional summary statistics; model validation; point process residuals; pseudo-
likelihood.

2.1 Introduction

This paper develops new tools for formal inference and informal model validation in the anal-
ysis of spatial point pattern data. The score test statistic, based on the point process likelihood,
is generalised to a ‘pseudo-score’ test statistic derived from Besag’s pseudo-likelihood. The
score and pseudo-score can be viewed as residuals, and further generalised to a class of resid-
ual diagnostics.

The likelihood score and the score test (Wald, 1941; Rao, 1948; Cox and Hinkley, 1974, pp
315 and 324) are used frequently in applied statistics to provide diagnostics for model selec-
tion and model validation (Atkinson, 1982; Cook and Weisberg, 1983; Pregibon, 1982; Chen,
1983; Wang, 1985). In spatial statistics, the score test is used mainly to support formal infer-
ence about covariate effects (Berman, 1986; Lawson, 1993; Waller et al., 1992) assuming the
underlying point process is Poisson under both the null and alternative hypotheses. Our ap-
proach extends this to a much wider class of point processes,making it possible (for example)
to check for covariate effects or localised hot-spots in a clustered point pattern.

Figure 2.1 shows three example datasets studied in the paper. Our techniques make it pos-
sible to check separately for ‘inhomogeneity’ (spatial variation in abundance of points) and
‘interaction’ (localised dependence between points) in these data.

Our approach also provides theoretical support for the established practice of using functional
summary statistics such as Ripley’sK-function (Ripley, 1976, 1977) to study clustering and
inhibition between points. In one class of models, the scoretest statistic is equivalent to
the empiricalK-function, and the score test procedure is closely related to the customary
goodness-of-fit procedure based on comparing the empiricalK-function with its null expected
value. Similar statements apply to the nearest neighbour distance distribution functionG and
the empty space functionF.

For computational efficiency, especially in large datasets, the point process likelihood is of-
ten replaced by Besag’s pseudo-likelihood (Besag, 1978). The resulting ‘pseudo-score’ is a
possible surrogate for the likelihood score. In one model, the pseudo-score test statistic is
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(a) (b) (c)

Figure 2.1: Point pattern datasets. (a) Japanese black pineseedlings and saplings in a 10× 10
metre quadrat (Numata, 1961, 1964). Reprinted by kind permission of Professors M. Numata
and Y. Ogata. (b) Simulated realisation of inhomogeneous Strauss process showing strong
inhibition and spatial trend (Baddeley et al., 2005, Fig. 4b). (c) Simulated realisation of ho-
mogeneous Geyer saturation process showing moderately strong clustering without spatial
trend (Baddeley et al., 2005, Fig. 4c).

equivalent to aresidualversion of the empiricalK-function, yielding a new, efficient diagnos-
tic for goodness-of-fit. However, in general, the interpretation of the pseudo-score test statistic
is conceptually more complicated than that of the likelihood score test statistic, and hence
difficult to employ as a diagnostic.

In classical settings the score test statistic is a weightedsum of residuals. Here the pseudo-
score test statistic is a weighted point process residual inthe sense of Baddeley et al. (2005,
2008). This suggests a simplification, in which the pseudo-score test statistic is replaced by
another residual diagnostic that is easier to interpret andto compute.

In special cases this diagnostic is a residual version of oneof the classical functional summary
statisticsK, G or F obtained by subtracting a‘compensator’from the functional summary
statistic. The compensator depends on the observed data andon the fitted model. For example,
if the fitted model is the homogeneous Poisson process, then the compensator ofG(r) is F(r),
and the compensator ofK(r) is πr2. This approach provides a new class of residual summary
statistics that can be used as informal diagnostics for goodness-of-fit, for a wide range of
point process models, in close analogy with current practice. The diagnostics apply under
very general conditions, including the case of inhomogeneous point process models, where
exploratory methods are underdeveloped or inapplicable. For instance, the compensator of
K(r) for an inhomogeneous non-Poisson model is illustrated in Figure 2.2.

Section 2.2 introduces basic definitions and assumptions. Section 2.3 describes the score test
for a general point process model, and Section 2.4 develops the important case of Poisson point
process models. Section 2.5 gives examples and technical tools for non-Poisson point process
models. Section 2.6 develops the general theory for our diagnostic tools. Section 2.7 applies
these tools to tests for first order trend and hotspots. Sections 2.8–2.11 develop diagnostics
for interaction between points, based on pairwise distances, nearest neighbour distances and
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Figure 2.2: EmpiricalK-function (thick grey line) for the point pattern data in Figure 2.1b,
compensator of theK-function (solid black line) for a model of the correct form,and expected
K-function for a homogeneous Poisson process (dashed line).

empty space distances respectively. The tools are demonstrated on data in Sections 2.12–2.15.
Further examples of diagnostics are given in Appendix 2.A. Appendices 2.B–2.E provide
technical details.

2.2 Assumptions

2.2.1 Fundamentals

A spatial point pattern dataset is a finite setx = {x1, . . . , xn} of points xi ∈ W, where the
number of pointsn(x) = n ≥ 0 is not fixed in advance, and the domain of observationW ⊂ Rd

is a fixed, known region ofd-dimensional space with finite positive volume|W|. We taked = 2
but the results generalise easily to all dimensions.

A point process model assumes thatx is a realisation of a finite point processX in W without
multiple points. We can equivalently viewX as a random finite subset ofW. Much of the
literature on spatial statistics assumes thatX is the restrictionX = Y ∩W of a stationary
point processY on the entire spaceR2. We do not assume this; there is no assumption of
stationarity, and some of the models considered here are intrinsically confined to the domain
W. For further background material including measure theoretical details, see e.g. Møller and
Waagepetersen (2004, Appendix B).

Write X ∼ Poisson(W, ρ) if X follows the Poisson process onW with intensity functionρ,
where we assumeν =

∫
W
ρ(u) du is finite. Thenn(X) is Poisson distributed with meanν, and

conditional onn(X), the points inX are i.i.d. with densityρ(u)/ν.
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Every point process model considered here is assumed to havea probability density with
respect to Poisson(W,1), the unit rate Poisson process, under one of the followingscenarios.

2.2.2 Unconditional case

In theunconditional casewe assumeX has a densityf with respect to Poisson(W,1). Then
the density is characterised by the property

E[h(X)] = E[h(Y ) f (Y )] (2.1)

for all non-negative measurable functionalsh, whereY ∼ Poisson(W,1). In particular the
density of Poisson(W, ρ) is

f (x) = exp

(∫

W
(1− ρ(u)) du

)∏

i

ρ(xi). (2.2)

We assume thatf is hereditary, i.e.f (x) > 0 implies f (y) > 0 for all finitey ⊂ x ⊂W.

2.2.3 Conditional case

In theconditional case, we assumeX = Y ∩W whereY is a point process. ThusX may
depend on unobserved points ofY lying outsideW. The density ofX may be unknown or
intractable. Under suitable conditions (explained in Section 2.5.4) modelling and inference
can be based on the conditional distribution ofX◦ = X ∩W◦ givenX+ = X ∩W+ = x+,
whereW+ ⊂ W is a subregion, typically a region near the boundary ofW, and only the
points inW◦ = W \W+ are treated as random. We assume that the conditional distribution of
X◦ = X ∩W◦ givenX+ = X ∩W+ = x+ has an hereditary densityf (x◦ | x+) with respect
to Poisson(W◦,1).

For ease of exposition, we focus mainly on the unconditionalcase, with occasional comments
on the conditional case. For Poisson point process models, we always takeW = W◦ so that
the two cases agree.

2.3 Score test for point processes

In principle, any technique for likelihood-based inference is applicable to point process like-
lihoods. In practice, many likelihood-based computationsrequire extensive Monte Carlo sim-
ulation (Geyer, 1999; Møller and Waagepetersen, 2004, 2007). To minimise such difficulties,
when assessing the goodness-of-fit of a fitted point process model, it is natural to choose the
score test which only requires computations for the null hypothesis (Wald, 1941; Rao, 1948).

Consider any parametric family of point process models forX with density fθ indexed by a
k-dimensional vector parameterθ ∈ Θ ⊆ Rk. For asimplenull hypothesisH0 : θ = θ0 where
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θ0 ∈ Θ is fixed, the score test against any alternativeH1 : θ ∈ Θ1, whereΘ1 ⊆ Θ\ {θ0}, is based
on the score test statistic (Cox and Hinkley, 1974, p. 315)

T2 = U(θ0)tI (θ0)−1U(θ0). (2.3)

HereU(θ) = ∂
∂θ

log fθ(x) andI (θ) = Eθ
[
U(θ)U(θ)t

]
are the score function and Fisher informa-

tion respectively, and the expectation is with respect tofθ. Here and throughout, we assume
that the order of integration and differentationwith respect toθ can be interchanged. Under
suitable conditions, the null distribution ofT2 is χ2 with k degrees of freedom. In the case
k = 1 it may be informative to evaluate the signed square root

T = U(θ0)/
√

I (θ0) (2.4)

which is asymptotically standard normally distributed under the same conditions.

For acompositenull hypothesisH0 : θ ∈ Θ0 whereΘ0 ⊂ Θ is anm-dimensional submanifold
with 0 < m< k, the score test statistic is defined in Cox and Hinkley (1974,p. 324). However,
we shall not use this version of the score test, as it assumes differentiability of the likelihood
with respect to nuisance parameters, which is not necessarily applicable here (as exemplified
in Section 2.4.2).

In the sequel we often consider models of the form

f(α,β)(x) = c(α, β)hα(x) exp(βS(x)) (2.5)

where the parameterβ and the statisticS(x) are one dimensional, and the null hypothesis is
H0 : β = 0. For fixedα, this is a linear exponential family and (2.4) becomes

T(α) =
(
S(x) − E(α,0)[S(x)]

)
/
√
Var(α,0)[S(x)].

In practice, whenα is unknown, we replaceα by its MLE underH0 so that, with a slight abuse
of notation, the signed square root of the score test statistic is approximated by

T = T(α̂) =
(
S(x) − E(α̂,0)[S(x)]

)
/
√
Var(α̂,0)[S(x)]. (2.6)

Under suitable conditions,T in (2.6) is asymptotically equivalent toT in (2.4), and so a stan-
dard Normal approximation may still apply.

2.4 Score test for Poisson processes

Application of the score test to Poisson point process models appears to originate with Cox
(1972). Consider a parametric family of Poisson processes,Poisson(W, ρθ), where the intensity
function is indexed byθ ∈ Θ. The score test statistic is (2.3) where

U(θ) =
∑

i

κθ(xi) −
∫

W
κθ(u)ρθ(u) du

I (θ) =

∫

W
κθ(u) κθ(u)tρθ(u) du

with κθ(u) = ∂
∂θ

logρθ(u). Asymptotic results are given in Kutoyants (1998); Rathbun and
Cressie (1994).
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2.4.1 Log-linear alternative

The score test is commonly used in spatial epidemiology to assess whether disease incidence
depends on environmental exposure. As a particular case of (2.5), suppose the Poisson model
has a log-linear intensity function

ρ(α,β)(u) = exp(α + βZ(u)) (2.7)

whereZ(u),u ∈ W is a known, real-valued and non-constant covariate function, andα andβ
are real parameters. Cox (1972) noted that the uniformly most powerful test ofH0 : β = 0 (the
homogeneous Poisson process) againstH1 : β > 0 is based on the statistic

S(x) =
∑

i

Z(xi). (2.8)

Recall that, for a point processX onW with intensity functionρ,

E


∑

xi∈X
h(xi)

 =
∫

W
h(u)ρ(u) du (2.9)

for any Borel functionhsuch that the integral on the right hand side exists, and for Poisson(W, ρ),

Var


∑

xi∈X
h(xi)

 =
∫

W
h(u)2ρ(u) du (2.10)

for any Borel functionh such that the integral on the right hand side exists (Daley and Vere-
Jones, 1988, p. 188). Hence the standardised version of (2.8) is

T =

(
S(x) − κ̂

∫

W
Z(u) du

) /√
κ̂

∫

W
Z(u)2 du (2.11)

whereκ̂ = n/|W| is the MLE of the intensityκ = exp(α) under the null hypothesis. This is a
direct application of the approximation (2.6) of the signedsquare root of the score test statistic.

Berman (1986) proposed several tests and diagnostics for spatial association between a point
processX and a covariate functionZ(u). Berman’sZ1 test is equivalent to the Cox score test
described above. Waller et al. (1992) and Lawson (1993) proposed tests for the dependence of
disease incidence on environmental exposure, based on datagiving point locations of disease
cases. These are also applications of the score test. Bermanconditioned on the number of
points when making inference. This is in accordance with theobservation that the statistic
n(x) is S-ancillary forβ, while S(x) is S-sufficient forβ.

2.4.2 Threshold alternative and nuisance parameters

Consider the Poisson process with an intensity function of ‘threshold’ form,

ρz,κ,φ(u) =

{
κ exp(φ) if Z(u) ≤ z
κ if Z(u) > z
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wherez is the threshold level. Ifz is fixed, this model is a special case of (2.7) withZ(u)
replaced byI{Z(u) ≤ z}, and so (2.8) is replaced by

S(x) = S(x, z) =
∑

i

I{Z(xi) ≤ z}

whereI{·} denotes the indicator function. By (2.11) the (approximate) score test ofH0 : φ = 0
againstH1 : φ , 0 is based on

T = T(z) = (S(x, z) − κ̂A(z)) /
√
κ̂A(z)

whereA(z) = |{u ∈W : Z(u) ≤ z}| is the area of the corresponding level set ofZ.

If z is not fixed, then it plays the role of a nuisance parameter in the score test: the value ofz
affects inference about the canonical parameterφ, which is the parameter of primary interest
in the score test. Note that the likelihood is not differentiable with respect toz.

In most applications of the score test, a nuisance parameterwould be replaced by its MLE
under the null hypothesis. However in this context,z is not identifiable under the null hypoth-
esis. Several approaches to this problem have been proposed, including: replacingz by its
MLE under the alternative (Conniffe, 2001), maximisingT(z) or |T(z)| overz (Davies, 1977,
1987), and finding the maximump-value ofT(z) or |T(z)| over a confidence region forzunder
the alternative (Silvapulle, 1996).

These approaches appear to be inapplicable to the current context. While the null distribution
of T(z) is asymptoticallyN(0,1) for each fixedzasκ → ∞, this convergence is not uniform in
z. The null distribution ofS(x, z) is Poisson with parameterκA(z); sample paths ofT(z) will
be governed by Poisson behaviour whereA(z) is small.

In this paper, our approach is simply to plot the score test statistic as a function of the nuisance
parameter. This turns the score test into a graphical exploratory tool, following the approach
adopted in many other areas (Atkinson, 1982; Cook and Weisberg, 1983; Pregibon, 1982;
Chen, 1983; Wang, 1985). A second style of plot based onS(x, z) − κ̂A(z) againstz may be
more appropriate visually. Such a plot is the lurking variable plot of Baddeley et al. (2005).
Berman (1986) also proposed a plot ofS(x, z) againstz, together with a plot of ˆκA(z) against
z, as a diagnostic for dependence onZ. This is related to the Kolmogorov-Smirnov test since,
underH0, the valuesYi = Z(xi) are i.i.d. with distribution functionP(Y ≤ y) = A(y)/|W|.

2.4.3 Hot spot alternative

Consider the Poisson process with intensity

ρκ,φ,v(u) = κ exp(φk(u− v)) (2.12)

wherek is a kernel (a probability density onR2), κ > 0 andφ are real parameters, andv ∈ R2

is a nuisance parameter. This process has a ‘hot spot’ of elevated intensity in the vicinity of
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the locationv. By (2.11) and (2.9)–(2.10) the score test ofH0 : φ = 0 againstH1 : φ , 0 is
based on

T = T(v) = (S(x, v) − κ̂M1(v))/
√
κ̂M2(v)

where
S(x, v) =

∑

i

k(xi − v)

is the usual nonparametric kernel estimate of point processintensity (Diggle, 1985) evaluated
atv without edge correction, and

Mi(v) =
∫

W
k(u− v)i du, i = 1,2.

The numeratorS(x, v) − κ̂M1(v) is thesmoothed residual field(Baddeley et al., 2005) of the
null model. In the special case wherek(u) ∝ I{‖u‖ ≤ h} is the uniform density on a disc of
radiush, the maximum maxv T(v) is closely related to thescan statistic(Alm, 1988; Kulldorff,
1999).

2.5 Non-Poisson models

The remainder of the paper deals with the case where the alternative (and perhaps also the null)
is not a Poisson process. Key examples are stated in Section 2.5.1. Non-Poisson models re-
quire additional tools including the conditional intensity (Section 2.5.2) and pseudo-likelihood
(Section 2.5.3).

2.5.1 Point process models with interaction

We shall frequently consider densities of the form

f (x) = c


∏

i

λ(xi)

 exp(φV(x)) (2.13)

wherec is a normalising constant, the first order termλ is a non-negative function,φ is a real
interaction parameter, andV(x) is a real non-additive function which specifies the interaction
between the points. We refer toV as the interaction potential. In general, apart from the Pois-
son density (2.2) corresponding to the caseφ = 0, the normalising constant is not expressible
in closed form.

Often the definition ofV can be extended to all finite point patterns inR2 so as to be in-
variant under rigid motions (translations and rotations).Then the model forX is said to be
homogeneous ifλ is constant onW, and inhomogeneous otherwise.

Let
d(u,x) = min

j
‖u− x j‖
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denote the distance from a locationu to its nearest neighbour in the point configurationx. For
n(x) = n ≥ 1 andi = 1, . . . ,n, define

x−i = x \ {xi}.

In many places in this paper we consider the following three motion-invariant interaction po-
tentialsV(x) = V(x, r) depending on a parameterr > 0 which specifies the range of interac-
tion. TheStrauss process(Strauss, 1975) has interaction potential

VS(x, r) =
∑

i< j

I{‖xi − x j‖ ≤ r} (2.14)

the number ofr-close pairs of points inx; the Geyer saturation model(Geyer, 1999) with
saturation threshold 1 has interaction potential

VG(x, r) =
∑

i

I{d(xi ,x−i) ≤ r} (2.15)

the number of points inx whose nearest neighbour is closer thanr units; and the Widom-
Rowlinson penetrable sphere model (Widom and Rowlinson, 1970) or area-interaction pro-
cess(Baddeley and van Lieshout, 1995) has interaction potential

VA(x, r) = −|W∩
⋃

i

B(xi , r)| (2.16)

the negative area ofW intersected with the union of ballsB(xi , r) of radiusr centred at the
points ofx. Each of these densities favours spatial clustering (positive association) when
φ > 0 and spatial inhibition (negative association) whenφ < 0. The Geyer and area-interaction
models are well-defined point processes for any value ofφ (Baddeley and van Lieshout, 1995;
Geyer, 1999), but the Strauss density is integrable only when φ ≤ 0 (Kelly and Ripley, 1976).

2.5.2 Conditional intensity

Consider a parametric model for a point processX in R2, with parameterθ ∈ Θ. Papangelou
(1974) defined theconditional intensityof X as a non-negative stochastic processλθ(u,X)
indexed by locationsu ∈ R2 and characterised by the property that

Eθ


∑

xi∈X
h(xi ,X \ {xi})

 = Eθ
[∫

R2
h(u,X)λθ(u,X) du

]
(2.17)

for all measurable functionsh such that the left or right hand side exists. Equation (2.17)
is known as theGeorgii-Nguyen-Zessin (GNZ) formula(Georgii, 1976; Kallenberg, 1978,
1984; Nguyen and Zessin, 1979); see also Section 6.4.1 in Møller and Waagepetersen (2004).
Adapting a term from stochastic process theory, we will callthe random integral on the right
side of (2.17) the(Papangelou) compensatorof the random sum on the left side.
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Consider a finite point processX in W. In the unconditional case (Section 2.2.2) we assume
X has densityfθ(x) which is hereditary for allθ ∈ Θ. We may simply define

λθ(u,x) = fθ(x ∪ {u})/ fθ(x) (2.18)

for all locationsu ∈ W and point configurationsx ⊂ W such thatu < x. Here we take
0/0 = 0. For xi ∈ x we setλθ(xi ,x) = λθ(xi ,x−i), and foru < W we setλθ(u,x) = 0.
Then it may be verified directly from (2.1) that (2.17) holds,so that (2.18) is the Papangelou
conditional intensity ofX. Note that the normalising constant offθ cancels in (2.18). For a
Poisson process, it follows from (2.2) and (2.18) that the conditional intensity is equivalent to
the intensity function of the process.

In the conditional case (Section 2.2.3) we assume that the conditional distribution of
X◦ =X ∩W◦ givenX+ = X ∩ W+ = x+ has an hereditary densityfθ(x◦ | x+) with re-
spect to Poisson(W◦,1), for all θ ∈ Θ. Then define

λθ(u,x
◦ | x+) = fθ(x

◦ ∪ {u} | x+)/ fθ(x
◦ \ {u} | x+) (2.19)

if u ∈ W◦, and zero otherwise. It can similarly be verified that this isthe Papangelou condi-
tional intensity of the conditional distribution ofX◦ givenX+ = x+.

It is convenient to rewrite (2.18) in the form

λθ(u,x) = exp(∆u log f (x))

where∆ is the one-point difference operator

∆uh(x) = h(x ∪ {u}) − h(x \ {u}). (2.20)

Note the Poincaré inequality for the Poisson processX

Var[h(X)] ≤ E
∫

W
[∆u h(X)]2 ρ(u) du (2.21)

holding for all measurable functionalsh such that the right hand side is finite; see Last and
Penrose (2010); Wu (2000).

2.5.3 Pseudo-likelihood and pseudo-score

To avoid computational problems with point process likelihoods, Besag (1978) introduced the
pseudo-likelihoodfunction

PL(θ) =


∏

i

λθ(xi ,x)

 exp

(
−

∫

W
λθ(u,x) du

)
. (2.22)

This is of the same functional form as the likelihood function of a Poisson process (2.2), but
has the conditional intensity in place of the Poisson intensity. The correspondingpseudo-score

PU(θ) =
∂

∂θ
logPL(θ) =

∑

i

∂

∂θ
logλθ(xi ,x) −

∫

W

∂

∂θ
λθ(u,x) du (2.23)
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is an unbiased estimating function (i.e.PU(θ) has zero-mean) by virtue of (2.17).

The pseudo-likelihood function can also be defined in the conditional case (Jensen and Møller,
1991). In (2.22) the product is instead over pointsxi ∈ x◦ and the integral is instead overW◦;
in (2.23) the sum is instead over pointsxi ∈ x◦ and the integral is instead overW◦; and in both
placesx = x◦∪x+. The conditional intensityλθ(u,x) must also be replaced byλθ(u,x◦ | x+).

2.5.4 Markov point processes

For a point processX constructed asX = Y ∩ W whereY is a point process inR2, the
density and conditional intensity ofX may not be available in simple form. Progress can be
made ifY is aMarkov point processof interaction rangeR< ∞, see Georgii (1976); Nguyen
and Zessin (1979); Ripley and Kelly (1977); van Lieshout (2000); Møller and Waagepetersen
(2004, Sect. 6.4.1). Briefly, this means that the conditional intensityλθ(u,Y ) of Y satisfies
λθ(u,Y ) = λθ(u,Y ∩ B(u,R)) whereB(u,R) is the ball of radiusR centred atu. Define the
erosion ofW by distanceR

W⊖R = {u ∈W : B(u,R) ⊂W}
and assume this has non-zero area. LetB =W\W⊖R be the border region. The process satisfies
a spatial Markov property: the processesY ∩W⊖R andY ∩Wc are conditionally independent
givenY ∩ B.

In this situation we shall invoke the conditional case withW◦ = W⊖R andW+ = W \W◦. The
conditional distribution ofX ∩W◦ givenX ∩W+ = x+ has Papangelou conditional intensity

λθ(u,x
◦ | x+) =

{
λθ(u,x◦ ∪ x+) if u ∈W◦

0 otherwise.
(2.24)

Thus the unconditional and conditional versions of a Markov point process have the same
Papangelou conditional intensityat locations inW◦.

Forx◦ = {x1, . . . , xn◦ }, the conditional probability density becomes

fθ(x
◦ | x+) = cθ(x

+)λθ(x1,x
◦)

n◦∏

i=2

λθ(xi , {x1, . . . , xi−1} ∪ x+)

if n◦ > 0, and fθ(∅ | x+) = cθ(x+), where∅ denotes the empty configuration, and the inverse
normalising constantcθ(x+) depends only onx+.

For example, instead of (2.13) we now consider

f (x◦ | x+) = c(x+)


n◦∏

i=1

λ(xi)

 exp
(
φV(x◦ ∪ x+)

)

assumingV(y) is defined for all finitey ⊂ R2 such that for anyu ∈ R2 \ y, ∆uV(y) depends
only on u andy ∩ B(u,R). This condition is satisfied by the interaction potentials(2.14)-
(2.16); note that the range of interaction isR = r for the Strauss process, andR = 2r for both
the Geyer and the area-interaction models.
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2.6 Score, pseudoscore and residual diagnostics

This section develops the general theory for our diagnostictools.

By (2.6) in Section 2.3 it is clear that comparison of a summary statisticS(x) to its predicted
valueES(X) under a null model, is effectively equivalent to the score test under an exponential
family model whereS(x) is the canonical sufficient statistic. Similarly, the use of afunctional
summary statisticS(x, z), depending on a function argumentz, is related to the score test under
an exponential family modelwhere z is a nuisance parameterandS(x, z) is the canonical
sufficient statistic for fixedz. In this section we construct the corresponding exponential family
models, apply the score test, and propose surrogates for thescore test statistic.

2.6.1 Models

Let fθ(x) be the density of any point processX on W governed by a parameterθ. Let S(x, z)
be a functional summary statistic of the point pattern dataset x, with function argumentz
belonging to any space.

Consider theextended modelwith density

fθ,φ,z(x) = cθ,φ,z fθ(x) exp(φS(x, z)) (2.25)

whereφ is a real parameter, andcθ,φ,z is the normalising constant. The density is well-defined
provided

M(θ, φ, z) = E
[
fθ(Y ) exp(φS(Y , z))

]
< ∞

whereY ∼ Poisson(W,1). The extended model is constructed by ‘exponential tilting’ of the
original model by the statisticS. By (2.6), for fixedθ andz, assuming differentiability ofM
with respect toφ in a neighbourhood ofφ = 0, the signed root of the score test statistic is
approximated by

T =
(
S(x, z) − Eθ̂[S(X , z)]

)
/
√
Varθ̂[S(X , z)] (2.26)

whereθ̂ is the MLE under the null model, and the expectation and variance are with respect to
the null model with densityfθ̂.

Insight into the qualitative behaviour of the extended model (2.25) can be obtained by studying
theperturbing model

gφ,z(x) = kφ,z exp(φS(x, z)), (2.27)

provided this is a well-defined density with respect to Poisson(W,1), wherekφ,z is the normal-
ising constant. When the null hypothesis is a homogeneous Poisson process, the extended
model is identical to the perturbing model, up to a change in the first order term. In general,
the extended model is a qualitative hybrid between the null and perturbing models.

In this context the score test is equivalent to naive comparison of the observed and null-
expected values of the functional summary statisticS. The test statisticT in (2.26) may
be difficult to evaluate; typically, apart from Poisson models, themoments (particularly the
variance) ofS would not be available in closed form. The null distributionof T would also
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typically be unknown. Hence, implementation of the score test would typically require mo-
ment approximation and simulation from the null model, which in both cases may be com-
putationally expensive. Various approximations for the score or the score test statistic can be
constructed, as discussed in the sequel.

2.6.2 Pseudo-score of extended model

The extended model (2.25) is an exponential family with respect toφ, having conditional
intensity

κθ,φ,z(u,x) = λθ(u,x) exp(φ∆uS(x, z))

whereλθ(u,x) is the conditional intensity of the null model. The pseudo-score function with
respect toφ, evaluated atφ = 0, is

PU(θ, z) =
∑

i

∆xi S(x, z) −
∫

W
∆uS(x, z)λθ(u,x) du

where the first term
Σ∆S(x, z) =

∑

i

∆xi S(x, z) (2.28)

will be called thepseudo-sumof S. If θ̂ is the maximum pseudo-likelihood estimate (MPLE)
underH0, the second term withθ replaced bŷθ becomes

C∆S(x, z) =
∫

W
∆uS(x, z)λθ̂(u,x) du (2.29)

and will be called the(estimated) pseudo-compensatorof S. We call

R∆S(x, z) = PU(θ̂, z) = Σ∆S(x, z) − C∆S(x, z) (2.30)

thepseudo-residualsince it is a weighted residual in the sense of Baddeley et al.(2005).

The pseudo-residual serves as a surrogate for the numeratorin the score test statistic (2.26).
For the denominator, we need the variance of the pseudo-residual. Appendix 2.B gives an
exact formula (2.65) for the variance of the pseudo-scorePU(θ, z), which can serve as an
approximation to the variance of the pseudo-residual R∆S(x, z). The leading term in this
approximation is

C2∆S(x, z) =
∫

W
[∆uS(x, z)]2λθ̂(u,x) du (2.31)

which we shall call thePoincaré pseudo-variancebecause of its similarity to the Poincaré
upper bound in (2.21). We propose to use the square root of (2.31) as a surrogate for the
denominator in (2.26). This yields a‘standardised’ pseudo-residual

T∆S(x, z) = R∆S(x, z)/
√

C2∆S(x, z). (2.32)
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We emphasise that this quantity is not guaranteed to have zero mean and unit variance (even
approximately) under the null hypothesis. It is a computationally efficient surrogate for the
score test statistic; its null distribution must be investigated by other means.

The pseudo-sum (2.28) can be regarded as a functional summary statistic for the data in its
own right. Its definition depends only on the choice of the statistic S, and it may have a
meaningful interpretation as a non-parametric estimator of a property of the point process. The
pseudo-compensator (2.29) might also be regarded as a functional summary statistic, but its
definition involves the null model. If the null model is true we may expect the pseudo-residual
to be approximately zero. Sections 2.9-2.11 and Appendix 2.A study particular instances of
pseudo-residual diagnostics based on (2.28)-(2.30).

In the conditional case, the Papangelou conditional intensity λθ̂(u,x) must be replaced by
λθ̂(u,x

◦ | x+) given in (2.19) or (2.24). The integral in the definition of the pseudo-
compensator (2.29) must be restricted to the domainW◦, and the summation over data points
in (2.28) must be restricted to pointsxi ∈W◦, i.e. to summation over points ofx◦.

2.6.3 Residuals

A simpler surrogate for the score test is available when the canonical sufficient statisticS of
the perturbing model is naturally expressible as a sum of local contributions

S(x, z) =
∑

i

s(xi ,x−i , z). (2.33)

Note that any statistic can be decomposed in this way unless some restriction is imposed on
s; such a decomposition is not necessarily unique. We call thedecomposition ‘natural’ if
s(u,x, z) only depends on points ofx that are close tou, as demonstrated in the examples in
Sections 2.9, 2.10 and 2.11 and in Appendix 2.A.

Consider a null model with conditional intensityλθ(u,x). Following Baddeley et al. (2005)
define the (s-weighted) innovation by

I S(x, r) = S(x, z) −
∫

W
s(u,x, z)λθ(u,x) du (2.34)

which by the GNZ formula (2.17) has mean zero under the null model. In practice we replace
θ by an estimatêθ (e.g. the MPLE) and consider the(s-weighted) residual

RS(x, z) = S(x, z) −
∫

W
s(u,x, z)λθ̂(u,x) du. (2.35)

The residual shares many properties of the score function and can serve as a computationally
efficient surrogate for the score. The data-dependent integral

CS(x, z) =
∫

W
s(u,x, z)λθ̂(u,x) du (2.36)
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is the(estimated) Papangelou compensatorof S. By the general variance formula (2.64) and
by analogy with (2.31) we propose to use thePoincaré variance

C2 S(x, z) =
∫

W
s(u,x, z)2λθ̂(u,x) du (2.37)

as a surrogate for the variance of RS(x, z), and thereby obtain a ‘standardised’ residual

T S(x, z) = RS(x, z)/
√

C2 S(x, z).

Once again TS(x, z) is not exactly standardised, and its null distribution must be investigated
by other means.

In the conditional case, the integral in the definition of thecompensator (2.36) must be re-
stricted to the domainW◦, and the summation over data points in (2.33) must be restricted to
pointsxi ∈W◦, i.e. to summation over points ofx◦.

2.7 Diagnostics for first order trend

Consider any null model with densityfθ(x) and conditional intensityλθ(u,x). By analogy
with Section 2.4 we consider alternatives of the form (2.25)where

S(x, z) =
∑

i

s(xi , z)

for some functions. The perturbing model (2.27) is a Poisson process with intensity
exp(φs(·, z)) wherez is a nuisance parameter. The score test is a test for the presence of
an (extra) first order trend. The pseudo-score and residual diagnostics are both equal to

RS(x, z) =
∑

i

s(xi , z) −
∫

W
s(u, z)λθ̂(u,x) du. (2.38)

This is thes-weighted residual described in Baddeley et al. (2005). Thevariance of (2.38) can
be estimated by simulation, or approximated by the Poincaré variance (2.37).

If Z is a real-valued covariate function onW then we may takes(u, z) = I{Z(u) ≤ z} for z ∈ R,
corresponding to a threshold effect (cf. Section 2.4.2). A plot of (2.38) againstz was called a
lurking variable plotin Baddeley et al. (2005).

If s(u, z) = k(u− z) for z ∈ R2, wherek is a density function onR2, then

RS(x, z) =
∑

i

k(xi − z) −
∫

W
k(u− z)λθ̂(u,x) du

which was dubbed thesmoothed residual fieldin Baddeley et al. (2005). Examples of appli-
cation of these techniques have been discussed extensivelyin Baddeley et al. (2005).
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2.8 Interpoint interaction

In the remainder of the paper we concentrate on diagnostics for interpoint interaction.

2.8.1 Classical summary statistics

Following Ripley’s influential paper (Ripley, 1977) it is standard practice, when investigating
association or dependence between points in a spatial pointpattern, to evaluate functional sum-
mary statistics such as theK-function, and to compare graphically the empirical summaries
and theoretical predicted values under a suitable model, often a stationary Poisson process
(‘Complete Spatial Randomness’, CSR) (Ripley, 1977; Cressie, 1991; Diggle, 2003).

The three most popular functional summary statistics for spatial point processes are Rip-
ley’s K-function, the nearest neighbour distance distribution functionG, and the empty space
function (spherical contact distance distribution function) F. Definitions ofK, G andF and
their estimators can be seen in Baddeley (1999); Cressie (1991); Diggle (2003); Møller and
Waagepetersen (2004). Simple empirical estimators of these functions are of the form

K̂(r) = K̂x(r) =
1

ρ̂2(x)|W|

∑

i, j

eK(xi , x j)I{‖xi − x j‖ ≤ r} (2.39)

Ĝ(r) = Ĝx(r) =
1

n(x)

∑

i

eG(xi ,x−i , r)I{d(xi ,x−i) ≤ r} (2.40)

F̂(r) = F̂x(r) =
1
|W|

∫

W
eF(u, r)I{d(u,x) ≤ r}du (2.41)

where eK(u, v), eG(u,x, r) and eF(u, r) are edge correction weights, and typically
ρ̂2(x) = n(x)(n(x) − 1)/|W|2.

2.8.2 Score test approach

The classical approach fits naturally into the scheme of Section 2.6. In order to test for depen-
dence between points, we choose a perturbing model that exhibits dependence. Three inter-
esting examples of perturbing models are the Strauss process, the Geyer saturation model with
saturation threshold 1 and the area-interaction process, with interaction potentialsVS(x, r),
VG(x, r) andVA(x, r) given in (2.14)-(2.16). The nuisance parameterr ≥ 0 determines the
range of interaction. Although the Strauss density is integrable only whenφ ≤ 0, a Strauss
hybrid (betweenfθ and the Strauss density) may be well-defined for someφ > 0 so that the
extended model may support alternatives that are clusteredrelative to the null, as originally
intended by Strauss (Strauss, 1975).

The potentials of these three models are closely related to the summary statisticŝK, Ĝ andF̂
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in (2.39)–(2.41). Ignoring the edge correction weightse(·) we have

K̂x(r) ≈ 2|W|
n(x) (n(x) − 1)

VS(x, r) (2.42)

Ĝx(r) ≈ 1
n(x)

VG(x, r) (2.43)

F̂x(r) ≈ − 1
|W|VA(x, r). (2.44)

To draw the closest possible connection with the score test,instead of choosing the Strauss,
Geyer or area-interaction process as the perturbing model,we shall take the perturbing model
to be defined through (2.27) whereS is one of the statisticŝK, Ĝ or F̂. We call these the
(perturbing) K̂-model, Ĝ-modeland F̂-modelrespectively. The score test is then precisely
equivalent to comparinĝK, Ĝ or F̂ with its predicted expectation using (2.6).

EssentiallyK̂, Ĝ, F̂ are re-normalised versions ofVS,VG,VA as shown in (2.42)–(2.44). In
the case ofF̂ the renormalisation is not data-dependent, so theF̂-model is virtually an area-
interaction model, ignoring edge correction. ForK̂, the renormalisation depends only onn(x),
and so conditionally onn(x) = n, the K̂-model and the Strauss process are approximately
equivalent. Similarly forĜ, the normalisation also depends only onn(x), so conditionally
on n(x) = n, theĜ-model and Geyer saturation process are approximately equivalent. If we
follow the recommendation of Ripley (1977) to condition onn when testing for interaction,
this implies that the use of theK, G or F-function is approximately equivalent to the score test
of CSR against a Strauss, Geyer or area-interaction alternative, respectively.

When the null hypothesis is CSR, we saw that the extended model(2.25) is identical to the
perturbing model, up to a change in intensity, so that the useof theK̂-function is equivalent to
testing the null hypothesis of CSR against the alternative of a K̂-model. Similarly forĜ and
F̂. For a more general null hypothesis, the use of theK̂-function, for example, corresponds to
adopting an alternative hypothesis that is a hybrid betweenthe fitted model and âK-model.

Note that if the edge correction weighteK(u, v) is uniformly bounded, thêK-model is inte-
grable for all values ofφ, avoiding a difficulty with the Strauss process (Kelly and Ripley,
1976).

Computation of the score test statistic (2.26) requires estimation or approximation of the null
variance ofK̂(r), Ĝ(r) or F̂(r). A wide variety of approximations is available when the null
hypothesis is CSR (Ripley, 1988; Diggle, 2003). For other null hypotheses, simulation esti-
mates would typically be used. A central limit theorem is available for K̂(r), Ĝ(r) and F̂(r),
see e.g. Baddeley (1980); Heinrich (1988b,a); Jolivet (1980); Ripley (1988). However, con-
vergence is not uniform inr, and the normal approximation will be poor for small values of
r. Instead Ripley (1976) developed an exact Monte Carlo test (Barnard, 1963; Hope, 1968)
based on simulation envelopes of the summary statistic under the null hypothesis.

In the following sections we develop the residual and pseudo-residual diagnostics correspond-
ing to this approach.
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2.9 Residual diagnostics for interaction using pairwise
distances

This section develops residual (2.35) and pseudo-residual(2.30) diagnostics derived from a
summary statisticS which is a sum of contributions depending on pairwise distances.

2.9.1 Residual based on perturbing Strauss model

General derivation

Consider any statistic of the general ‘pairwise interaction’ form

S(x, r) =
∑

i< j

q({xi , x j}, r). (2.45)

This can be decomposed in the local form (2.33) with

s(u,x, r) =
1
2

∑

i

q({xi ,u}, r), u < x.

Hence
∆xi S(x, r) = 2s(xi ,x−i , r) and ∆uS(x, r) = 2s(u,x, r), u < x.

Consequently the pseudo-residual and the pseudo-compensator are just twice the residual and
the Papangelou compensator:

Σ∆S(x, r) = 2S(x, r) =
∑

i, j

q({xi , x j}, r) (2.46)

C∆S(x, r) = 2 CS(x, r) =
∫

W

∑

i

q({xi ,u}, r)λθ̂(u,x) du (2.47)

R∆S(x, z) = 2 RS(x, r) = 2S(x, r) − 2 CS(x, r). (2.48)

Residual of Strauss potential

The Strauss interaction potentialVS of (2.14) is of the general form (2.45) with
q({xi , x j}, r) = I{‖xi − x j‖ ≤ r}. Hence VS can be decomposed in the form (2.33) with
s(u,x, r) = 1

2t(u,x, r) where

t(u,x, r) =
∑

i

I{‖u− xi‖ ≤ r}, u < x.

Hence the Papangelou compensator ofVS is

CVS(x, r) =
1
2

∫

W
t(u,x, r)λθ̂(u,x) du. (2.49)
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Case of CSR

If the null model is CSR with intensityρ estimated by ˆρ = n(x)/|W| (the MLE, which agrees
with the MPLE in this case), the Papangelou compensator (2.49) becomes

CVS(x, r) =
ρ̂

2

∫

W

∑

i

I{‖u− xi‖ ≤ r}du =
ρ̂

2

∑

i

|W∩ B(xi , r)|.

Ignoring edge effects we have|W∩B(xi , r)| ≈ πr2 and, applying (2.42), the residual is approx-
imately

RVS(x, r) ≈ n(x)2

2|W|
[
K̂x(r) − πr2

]
. (2.50)

The term in brackets is a commonly-used measure of departurefrom CSR, and is a sensible
diagnostic becauseK(r) = πr2 under CSR. The Poincaré variance (2.37) is

C2 VS(x, r) =
n(x)
4|W|

∫

W
t(u,x, r)2 du

while the exact variance formula (2.64) yields

Var[RVS(X , r)] ≈ Var[I VS(X , r)]

=
ρ

4

∫

W
E

[
t(u,X , r)2

]
du+

ρ2

4

∫

W

∫

W
I{‖u− v‖ ≤ r}dudv.

Now Y = t(u,X , r) is Poisson distributed with meanµ = ρ|B(u, r)∩W| so thatE(Y2) = µ+µ2.
For u ∈W⊖r we haveµ = ρπr2, so ignoring edge effects

Var[RVS(X , r)] ≈ ρ2

2
|W|πr2 +

ρ3

4
|W|π2r4.

This has similar functional form to expressions for the variance ofK̂ under CSR obtained
using the methods ofU-statistics (Lotwick and Silverman, 1982; Chetwynd and Diggle, 1998;
Ripley, 1988), summarised in Diggle (2003, p. 51ff.). For smallr, we havet(u,x, r) ∈ {0,1}
so that

C2 VS(x, r) ≈ n(x)2

4|W| πr2

Var[RVS(X , r)] ≈ ρ2

2
|W|πr2

so that C2 VS(x, r) is a substantial underestimate (by a factor of approximately 2) of the true
variance. Thus a test based on referring TVS(x, r) to a standard normal distribution may be
expected to be conservative for smallr.
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2.9.2 Residual based on perturbing K̂-model

Assumingρ̂2(x) = ρ̂2(n(x)) depends only onn(x), the empiricalK-function (2.39) can also
be expressed as a sum of local contributionsK̂x(r) =

∑
i k(xi ,x−i , r) with

k(u,x, r) =
tw(u,x, r)

ρ̂2(n(x) + 1)|W|
, u < x

where
tw(u,x, r) =

∑

j

eK(u, x j)I{‖u− x j‖ ≤ r}

is a weighted count of the points ofx that arer-close to the locationu. Hence the compensator
of the K̂-function is

C K̂x(r) =
1

ρ̂2(n(x) + 1)|W|

∫

W
tw(u,x, r)λθ̂(u,x) du. (2.51)

Assume the edge correction weighteK(u, v) = eK(v,u) is symmetric; e.g. this is satisfied by
the Ohser-Stoyan edge correction weight (Ohser and Stoyan,1981; Ohser, 1983) given by
eK(u, v) = 1/|Wu ∩ Wv| whereWu = {u + v : v ∈ W}, but not by Ripley’s (Ripley, 1976)
isotropic correction weight. Then the increment is, foru < x,

∆uK̂x(r) =
ρ̂2(x) − ρ̂2(x ∪ {u})

ρ̂2(x ∪ {u})
K̂x(r) +

2tw(u,x, r)

ρ̂2(x ∪ {u})|W|

and whenxi ∈ x

∆xi K̂x(r) =
ρ̂2(x−i) − ρ̂2(x)

ρ̂2(x−i)
K̂x(r) +

2tw(xi ,x−i , r)

ρ̂2(x−i)|W|
.

Assuming the standard estimator̂ρ2(x) = n(n − 1)/|W|2 with n = n(x), the pseudo-sum is
seen to be zero, so the pseudo-residual is apart from the signequal to the pseudo-compensator,
which becomes

C∆ K̂x(r) = 2 CK̂x(r) −
[

2
n− 2

∫

W
λθ̂(u,x) du

]
K̂x(r)

where CK̂x(r) is given by (2.51). So if the null model is CSR and the intensity is estimated
by n/|W|, the pseudo-residual is approximately 2[K̂x(r) − C K̂x(r)], and hence it is equivalent
to the residual approximated by (2.50). This is also the conclusion in the more general case of
a null model with an activity parameterκ, i.e. where the conditional intensity factorises as

λθ(u,x) = κξβ(u,x)

whereθ = (κ, β) andξβ(·) is a conditional intensity, since the pseudo-likelihood equations then
imply thatn =

∫
W
λθ̂(u,x) du.
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In conclusion, the residual diagnostics obtained from the perturbing Strauss and̂K-models are
very similar, the major difference being the data-dependent normalisation of theK̂-function;
similarly for pseudo-residual diagnostics which may be effectively equivalent to the residual
diagnostics. In practice, the popularity of theK-function seems to justify using the resid-
ual diagnostics based on the perturbingK̂-model. Furthermore, due to the familarity of the
K-function we often choose to plot the compensator(s) of the fitted model(s) in a plot with the
empiricalK-function rather than the residual(s) for the fitted model.

2.9.3 Edge correction in conditional case

In the conditional case, the conditional intensityλθ̂(u,x) is known only at locationsu ∈ W◦.
The diagnostics must be modified accordingly, by restricting the domain of summation and
integration toW◦. Appropriate modifications are discussed in Appendices 2.C–2.E.

2.10 Residual diagnostics for interaction using nearest
neighbour distances

This section develops residual and pseudo-residual diagnostics derived from summary statis-
tics based on nearest neighbour distances.

2.10.1 Residual based on perturbing Geyer model

The Geyer interaction potentialVG(x, r) given by (2.15) is clearly a sum of local statistics
(2.33), and its compensator is

CVG(x, r) =
∫

W
I{d(u,x) ≤ r}λθ̂(u,x) du.

The Poincaŕe variance is equal to the compensator in this case. Ignoringedge effects,VG(x, r)
is approximatelyn(x)Ĝx(r), cf. (2.40).

If the null model is CSR with estimated intensity ˆκ = n(x)/|W|, then

CVG(x, r) = κ̂|W∩
⋃

i

B(xi , r)|;

ignoring edge effects, this is approximately ˆκ|W|F̂(r), cf. (2.41). Thus the residual diagnostic
is approximatelyn(x)(Ĝ(r) − F̂(r)). This is a reasonable diagnostic for departure from CSR,
sinceF ≡ G under CSR. This argument lends support to Diggle’s (Diggle,1979, eq. (5.7))
proposal to judge departure from CSR using the quantity sup|Ĝ − F̂|.

This example illustrates the important point that the compensator of a functional summary
statisticS should not be regarded as an alternative parametric estimator of the same quantity
thatS is intended to estimate. In the example just given, under CSRthe compensator of̂G is
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approximatelyF̂, a qualitatively different and in some sense ‘opposite’ summary of the point
pattern.

We have observed that the interaction potentialVG of the Geyer saturation model is closely
related toĜ. However, the pseudo-residual associated toVG is a more complicated statistic,
since a straightforward calculation shows that the pseudo-sum is

Σ∆VG(x, r) = VG(x, r) +
∑

i

∑

j: j,i

I{‖xi − x j‖ ≤ r andd(x j ,x−i) > r},

and the pseudo-compensator is

C∆VG(x, r) =
∫

W
I{d(u,x) ≤ r}λθ̂(u,x) du+

∑

i

I{d(xi ,x−i) > r}
∫

W
I{‖u− xi‖ ≤ r}λθ̂(u,x) du.

2.10.2 Residual based on perturbing Ĝ-model

The empiricalG-function (2.40) can be written

Ĝx(r) =
∑

i

g(xi ,x−i , r) (2.52)

where

g(u,x, r) =
1

n(x) + 1
eG(u,x, r)I{d(u,x) ≤ r}, u < x (2.53)

so that the Papangelou compensator of the empiricalG-function is

CĜx(r) =
∫

W
g(u,x, r)λθ̂(u,x) du =

1
n(x) + 1

∫

W∩⋃i B(xi ,r)
eG(u,x, r)λθ̂(u,x) du.

The residual diagnostics obtained from the Geyer andĜ-models are very similar, and we
choose to use the diagnostic based on the popularĜ-function. As with theK-function we
typically use the compensator(s) of the fitted model(s) rather than the residual(s), to visually
maintain the close connection to the empiricalG-function.

The expressions for the pseudo-sum and pseudo-compensatorof Ĝ are not of simple form,
and we refrain from explicitly writing out these expressions. For both theĜ- and Geyer mod-
els, the pseudo-sum and pseudo-compensator are not directly related to a well-known sum-
mary statistic. We prefer to plot the pseudo-residual rather than the pseudo-sum and pseudo-
compensator(s).
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2.11 Diagnostics for interaction based on empty space
distances

2.11.1 Pseudo-residual based on perturbing area-interaction model

When the perturbing model is the area-interaction process, it is convenient to re-parametrise
the density, such that the canonical sufficient statisticVA given in (2.16) is re-defined as

VA(x, r) =
1
|W| |W∩

⋃

i

B(xi , r)|.

This summary statistic is not naturally expressed as a sum ofcontributions from each point as
in (2.33), so we shall only construct the pseudo-residual. Let

U(x, r) =W∩
⋃

i

B(xi , r).

The increment

∆uVA(x, r) =
1
|W| (|U(x ∪ {u}, r)| − |U(x, r)|) , u < x

can be thought of as ‘unclaimed space’ — the proportion of space around the locationu that
is not “claimed” by the points ofx. The pseudo-sum

Σ∆VA(x, r) =
∑

i

∆xi VA(x, r)

is the proportion of the window that has ‘single coverage’ — the proportion of locations in
W that are covered by exactly one of the ballsB(xi , r). This can be used in its own right as
a functional summary statistic, and it corresponds to a raw (i.e. not edge corrected) empirical
estimate of a summary functionF1(r) defined by

F1(r) = P (#{x ∈X |d(u, x) ≤ r} = 1) ,

for any stationary point processX, whereu ∈ R2 is arbitrary. Under CSR with intensityρ we
have

EF1(r) = ρπr2 exp(−ρπr2).

This summary statistic does not appear to be treated in the literature, and it may be of interest
to study it separately, but we refrain from a more detailed study here.

The pseudo-compensator corresponding to this pseudo-sum is

C∆VA(x, r) =
∫

W
∆uVA(x, r)λθ̂(u,x) du.

This integral does not have a particularly simple interpretation even when the null model is
CSR.
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2.11.2 Pseudo-residual based on perturbing F̂-model

Alternatively one could use a standard empirical estimatorF̂ of the empty space functionF as
the summary statistic in the pseudo-residual. The pseudo-sum associated with the perturbing
F̂-model is

Σ∆ F̂x(r) = n(x)F̂x(r) −
∑

i

F̂x−i (r),

with pseudo-compensator

C∆ F̂x(r) =
∫

W
(F̂x∪{u}(r) − F̂x(r))λθ̂(u,x) du.

Ignoring edge correction weights,̂Fx∪{u}(r) − F̂x(r) is approximately equal to∆uVA(x, r),
so the pseudo-sum and pseudo-compensator associated with the perturbingF̂-model are ap-
proximately equal to the pseudo-sum and pseudo-compensator associated with the perturbing
area-interaction model. Here, we usually prefer graphics using the pseudo-compensator(s) and
the pseudo-sum since this has an intuitive interpretation as explained above.

2.12 Test case: Trend with inhibition

In Sections 2.12–2.14 we demonstrate the diagnostics on thepoint pattern datasets shown in
Figure 2.1. This section concerns the synthetic point pattern in Figure 2.1b.

2.12.1 Data and models

Figure 2.1b shows a simulated realisation of the inhomogeneous Strauss process with first
order termλ(x, y) = 200 exp(2x+ 2y+ 3x2), interaction rangeR= 0.05, interaction parameter
γ = exp(φ) = 0.1 andW equal to the unit square, see (2.13) and (2.14). This is an example
of extremely strong inhibition (negative association) between neighbouring points, combined
with a spatial trend. Since it is easy to recognise spatial trend in the data, (either visually or
using existing tools such as kernel smoothing (Diggle, 1985)) the main challenge here is to
detect the inhibition after accounting for the trend.

We fitted four point process models to the data in Figure 2.1b.They were(A) a homogeneous
Poisson process (CSR);(B) an inhomogeneous Poisson process with the correct form of the
first order term, i.e. with intensity

ρ(x, y) = exp(β0 + β1x+ β2y+ β3x2) (2.54)

whereβ0, . . . , β3 are real parameters;(C) a homogeneous Strauss process with the correct
interaction rangeR= 0.05; and(D) a process of the correct form, i.e. inhomogeneous Strauss
with the correct interaction rangeR = 0.05 and the correct form of the first order potential
(2.54).
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2.12.2 Software implementation

The diagnostics defined in Sections 2.9–2.11 were implemented in theR language, and will
be publicly available in thespatstat library (Baddeley and Turner, 2005). Unless otherwise
stated, models were fitted by approximate maximum pseudo-likelihood using the algorithm
of Baddeley and Turner (2000) with the default quadrature scheme inspatstat, having an
m× m grid of dummy points wherem = max(25,10[1+ 2

√
n(x)/10]) was equal to 40 for

most of our examples. Integrals over the domainW were approximated by finite sums over
the quadrature points.

Some models were refitted using a finer grid of dummy points, usually 80× 80. The soft-
ware also supports Huang-Ogata (Huang and Ogata, 1999) one-step approximate maximum
likelihood.

2.12.3 Application of K̂ diagnostics

Diagnostics for correct model

First we fitted a point process model of the correct form(D). The fitted parameter values
wereβ̂ = (5.6,−0.46,3.35,2.05) andγ̂ = 0.217 using the coarse grid of dummy points, and
β̂ = (5.6,−0.64,4.06,2.44) andγ̂ = 0.170 using the finer grid of dummy points, as against the
true valuesβ = (5.29,2,2,3) andγ = 0.1.
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Figure 2.3: Residual diagnostics based on pairwise distances, for a model of the correct form
fitted to the data in Figure 2.1b. (a) residualK̂-function and two-standard-deviation limits
under the fitted model of the correct form. (b) standardised residualK̂-function under the
fitted model of the correct form.
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Figure 2.2 in Section 2.1 showŝK along with its compensator for the fitted model, together
with the theoreticalK-function under CSR. The empiricalK-function and its compensator co-
incide very closely, suggesting correctly that the model isa good fit. Figure 2.3a shows the
residualK̂-function and the two-standard-deviation limits, where the surrogate standard devi-
ation is the square root of (2.37). Figure 2.3b shows the corresponding standardised residual
K̂-function obtained by dividing by the surrogate standard deviation.

Although this model is of the correct form, the standardisedresidual exceeds 2 for small values
of r. This is consistent with the prediction in Section 2.9.1 that the test would be conservative
for smallr. For very smallr there are small-sample effects so that a normal approximation to
the null distribution of the standardised residual is inappropriate.

Formal significance interpretation of the critical bands islimited, because the null distribution
of the standardised residual is not known exactly, and the values±2 are approximatepointwise
critical values, i.e. critical values for the score test based on fixedr. The usual problems of
multiple testing arise when the test statistic is considered as a function ofr: see Diggle (2003,
p. 14).

Comparison of competing models

Figure 2.4a shows the empiricalK-function and its compensator for each of the models(A)–(D)
in Section 2.12.1. Figure 2.4b shows the corresponding residual plots, and Figure 2.4c the
standardised residuals. A positive or negative value of theresidual suggests that the data are
more clustered or more inhibited, respectively, than the model. The clear inference is that the
Poisson models(A) and(B) fail to capture interpoint inhibition at ranger ≈ 0.05, while the
homogeneous Strauss model(C) is less clustered than the data at very large scales, suggesting
that it fails to capture spatial trend. The correct model(D) is judged to be a good fit.

The interpretation of this example requires some caution, because the residual̂K-function of
the fitted Strauss models(C) and(D) is constrained to be approximately zero atr = R= 0.05.
The maximum pseudo-likelihood fitting algorithm solves an estimating equation that is ap-
proximately equivalent to this constraint, because of (2.42).

It is debatable which of the presentations in Figure 2.4 is more effective at revealing lack-
of-fit. A compensator plot such as Figure 2.4a seems best at capturing the main differences
between competing models. It is particularly useful for recognising a gross lack-of-fit. A
residual plot such as Figure 2.4b seems better for making finer comparisons of goodness-of-
fit, for example, assessing models with slightly different ranges of interaction. A standardised
residual plot such as Figure 2.4c tends to be highly irregular for small values ofr, due to
discretisation effects in the computation and the inherent nondifferentiability of the empirical
statistic. In difficult cases we may apply smoothing to the standardised residual.
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Figure 2.4: Goodness-of-fit diagnostics based on pairwise distances, for each of the models
(A)–(D) fitted to the data in Figure 2.1b. (a)̂K and its compensator under each model. (b)
residualK̂-function (empirical minus compensator) under each model.(c) standardised resid-
ual K̂-function under each model.
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2.12.4 Application of Ĝ diagnostics

Diagnostics for correct model

Consider again the model of the correct form(D). The residual and compensator of the empiri-
cal nearest neighbour function̂G for the fitted model are shown in Figure 2.5. The residual plot
suggests a marginal lack-of-fit forr < 0.025. This may be correct, since the fitted model pa-
rameters (Section 2.12.3) are marginally poor estimates ofthe true values, in particular of the
interaction parameter. This was not reflected so strongly inthe K̂ diagnostics. This suggests
that the residual of̂G may be particularly sensitive to lack-of-fit of interaction.
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Figure 2.5: Residual diagnostics obtained from the perturbing Ĝ-model when the data pattern
is a realisation of an inhomogeneous Strauss process. (a)Ĝ and its compensator under a
fitted model of the correct form, and theoreticalG-function for a Poisson process. (b) residual
Ĝ-function and two-standard-deviation limits under the fitted model of the correct form.

Comparison of competing models

For each of the four models, Figure 2.6a showsĜ and its Papangelou compensator. This
clearly shows that the Poisson models(A) and(B) fail to capture interpoint inhibition in the
data. The Strauss models(C) and(D) appear virtually equivalent in Figure 2.6a.

Figure 2.6b shows the standardised residual ofĜ, and Figure 2.6c the pseudo-residual ofVG

(i.e. the pseudo-residual based on the pertubing Geyer model), with spline smoothing applied
to both plots. The Strauss models(C) and(D) appear virtually equivalent in Figure 2.6c. The
standardised residual plot Figure 2.6b correctly suggestsa slight lack of fit for model(C) while
model(D) is judged to be a reasonable fit.



36 Score, pseudo-score and residual diagnostics for goodness-of-fit of spatial point process models

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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(B): CĜ(r)
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Figure 2.6: Diagnostics based on nearest neighbour distances, for the models(A)–(D) fitted
to the data in Figure 2.1b. (a) compensator forĜ. (b) smoothed standardised residual ofĜ.
(c) smoothed pseudo-residual derived from a perturbing Geyer model.
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2.12.5 Application of F̂ diagnostics

Figure 2.7 shows the pseudo-residual diagnostics based on empty space distances. Both diag-
nostics clearly show models(A)–(B) are poor fits to data. However, in Figure 2.7a it is hard
to decide which of the models(C)–(D) provide a better fit. Despite the close connection be-
tween the area-interaction process and theF̂-model, the diagnostic in Figure 2.7b based on
the F̂-model performs better in this particular example and correctly shows(D) is the best
fit to data. In both cases it is noticed that the pseudo-sum hasa much higher peak than the
pseudo-compensators for the Poisson models(A)–(B), correctly suggesting that these models
do not capture the strength of inhibition present in the data.
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Figure 2.7: Pseudo-sum and pseudo-compensators for the models(A)–(D) fitted to the data in
Figure 2.1b when the perturbing model is (a) the area-interaction process (null fitted on a fine
grid) and (b) theF̂-model (null fitted on a coarse grid).

2.13 Test case: Clustering without trend

2.13.1 Data and models

Figure 2.1c is a realisation of a homogeneous Geyer saturation process (Geyer, 1999) on the
unit square, with first order termλ = exp(4), saturation thresholds = 4.5 and interaction
parametersr = 0.05 andγ = exp(0.4) ≈ 1.5, i.e. the density is

f (x) ∝ exp(n(x) logλ + VG,s(x, r) logγ) (2.55)
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where

VG,s(x, r) =
∑

i

min


s,

∑

j: j,i

I{‖xi − x j‖ ≤ r}


.

This is an example of moderately strong clustering (with interaction rangeR= 2r = 0.1) with-
out trend. The main challenge here is to correctly identify the range and type of interaction.

We fitted three point process models to the data:(E) a homogeneous Poisson process (CSR);
(F) a homogeneous area-interaction process with disc radiusr = 0.05; (G) a homogeneous
Geyer saturation process of the correct form, with interaction parameterr = 0.05 and satura-
tion thresholds = 4.5 while the parametersλ andγ in (2.55) are unknown. The parameter
estimates for(G) were logλ̂ = 4.12 and log ˆγ = 0.38.

2.13.2 Application of K̂ diagnostics

A plot (not shown) of theK̂-function and its compensator, under each of the three models
(E)–(G), demonstrates clearly that the homogeneous Poisson model(E) is a poor fit, but does
not discriminate between the other models.

Figure 2.8 shows the residualK̂ and the smoothed standardised residualK̂ for the three models.
These diagnostics show that the homogeneous Poisson model(E) is a poor fit, with a positive
residual suggesting correctly that the data are more clustered than the Poisson process. The
plots suggests that both models(F) and (G) are considerably better fits to the data than a
Poisson model. They show that(G) is a better fit than(F) over a range ofr values, and suggest
that(G) captures the correct form of the interaction.
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Figure 2.8: Goodness-of-fit diagnostics based on pairwise distances for each of the models
(E)–(G) fitted to the data in Figure 2.1c. (a) residualK̂; (b) smoothed standardised residualK̂.
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2.13.3 Application of Ĝ diagnostics
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Figure 2.9: Goodness-of-fit diagnostics based on nearest neighbour distances for each of the
models(E)–(G) fitted to the data in Figure 2.1c. (a)Ĝ and its compensator under each model;
(b) smoothed standardised residualĜ.

Figure 2.9 showsĜ and its compensator, and the corresponding residuals and standardised
residuals, for each of the models(E)–(G) fitted to the clustered point pattern in Figure 2.1c.
The conclusions obtained from Figure 2.9a are the same as those in Section 2.13.2 based on
K̂ and its compensator. Figure 2.10 shows the smoothed pseudo-residual diagnostics based on
the nearest neighbour distances. The message from these diagnostics is very similar to that
from Figure 2.9.

Models(F) and(G) have the same range of interactionR = 0.1. Comparing Figures 2.8 and
2.9 we might conclude that thêG-compensator appears less sensitive to theform of interac-
tion than theK̂-compensator. Other experiments suggest thatĜ is more sensitive than̂K to
discrepancies in therangeof interaction.

2.13.4 Application of F̂ diagnostics

Figure 2.11 shows the pseudo-residual diagnostics based onthe empty space distances, for
the three models fitted to the clustered point pattern in Figure 2.1c. In this case diagnostics
based on the area-interaction process and theF̂-model are very similar, as expected due to
the close connection between the two diagnostics. Here it isvery noticeable that the pseudo-
compensator for the Poisson model has a higher peak than the pseudo-sum, which correctly
indicates that the data is more clustered than a Poisson process.



40 Score, pseudo-score and residual diagnostics for goodness-of-fit of spatial point process models

0.00 0.02 0.04 0.06 0.08 0.10

0
50

10
0

15
0

Perfect fit
(E): R∆VG(r)
(F): R∆VG(r)
(G): R∆VG(r)

(a)

0.00 0.02 0.04 0.06 0.08 0.10

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Perfect fit

(E): R∆Ĝ(r)
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(G): R∆Ĝ(r)
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Figure 2.10: Smoothed pseudo-residuals for each of the models (E)–(G) fitted to the clustered
point pattern in Figure 2.1c when the perturbing model is (a)Geyer saturation model with
saturation 1, and (b) thêG-model.
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Figure 2.11: Pseudo-sum and pseudo-compensators for the models(E)–(G) fitted to the clus-
tered point pattern in Figure 2.1c when the perturbing modelis (a) area-interaction process
and (b) theF̂-model.
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2.14 Test case: Japanese pines

2.14.1 Data and models

Figure 2.1a shows the locations of seedlings and saplings ofJapanese black pine, studied
by Numata (1961, 1964) and analysed extensively by Ogata andTanemura (1981, 1986). In
their definitive analysis (Ogata and Tanemura, 1986) the fitted model was an inhomogeneous
‘soft core’ pairwise interaction process with log-cubic first order termλβ(x, y) = exp(Pβ(x, y)),
wherePβ is a cubic polynomial inx andy with coefficient vectorβ, and density

f(β,σ2)(x) = c(β,σ2) exp


∑

i

Pβ(xi) −
∑

i< j

(
σ4/‖xi − x j‖4

)
 (2.56)

whereσ2 is a positive parameter.

Here we evaluate the goodness-of-fit of three models:(H) an inhomogeneous Poisson pro-
cess with log-cubic intensity;(I) a homogeneous soft core pairwise interaction process, i.e.
whenPβ(x, y) in (2.56) is replaced by a real parameter;(J) the Ogata-Tanemura model (2.56).
For more detail on the dataset and the fitted inhomogeneous soft core model, see Ogata and
Tanemura (1986); Baddeley et al. (2005).

A complication in this case is that the soft core process (2.56) is not Markov, since the pair
potentialc(u, v) = exp(−σ4/‖u − v‖4) is always positive. Nevertheless, since this function
decays rapidly, it seems reasonable to apply the residual and pseudo-residual diagnostics,
using a cutoff distanceRsuch that| logc(u, v)| ≤ ǫ when‖u− v‖ ≤ R, for a specified tolerance
ǫ. The cutoff depends on the fitted parameter valueσ2. We choseǫ = 0.0002 yieldingR = 1.
Estimated interaction parameters were ˆσ2 = 0.11 for model(I) andσ̂2 = 0.12 for model(J).

2.14.2 Application of K̂ diagnostics

A plot (not shown) ofK̂ and its compensator for each of the models(H)–(J) suggests that the
homogeneous soft core model(I) is inadequate, while the inhomogeneous models(H) and(J)
are reasonably good fits to the data. However it does not discriminate between the models(H)
and(J).

Figure 2.12 shows smoothed version of the residual and standardised residual of̂K for each
model. The Ogata-Tanemura model(J) is judged to be the best fit.

2.14.3 Application of Ĝ diagnostics

Finally, for each of the models(H)–(J) fitted to the Japanese pines data in Figure 2.1a, Fig-
ure 2.13a showŝG and its compensator. The conclusions are the same as those based onK̂
shown in Figure 2.12. Figure 2.14 shows the pseudo-residuals when using either a perturbing
Geyer model (Figure 2.14a) or a perturbingĜ-model (Figure 2.14b). Figures 2.14a-2.14b tell
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Figure 2.12: Goodness-of-fit diagnostics based on pairwisedistances for each of the models
(H)–(J) fitted to the Japanese pines data in Figure 2.1a. (a) smoothedresidualK̂; (b) smoothed
standardised residualK̂.

almost the same story: the inhomogeneous Poisson model(H) provides the worst fit, while it
is difficult to discriminate between the fit for the soft core models(I) and(J). In conclusion,
considering Figures 2.12, 2.13 and 2.14, the Ogata-Tanemura model(J) provides the best fit.

2.14.4 Application of F̂ diagnostics

Finally, the empty space pseudo-residual diagnostics are shown in Figure 2.15 for the Japanese
Pines data in Figure 2.1a. This gives a clear indication thatthe Ogata-Tanemura model(J) is
the best fit to the data, and the data pattern appears to be too regular compared to the Poisson
model(H) and not regular enough for the homogeneous softcore model(I).

2.15 Summary of test cases

In this section we discuss which of the diagnostics we preferto use based on their behaviour
for the three test cases in Sections 2.12-2.14.

Typically the various diagnostics supplement each other well, and it is recommended to use
more than one diagnostic when judging goodness-of-fit. Compensator and pseudo-
compensator plots are informative for gaining an overall picture of goodness-of-fit, and tend
to make it easy to recognize a poor fit when comparing competing models. To compare mod-
els which fit closely, it may be more informative to use (standardised) residuals or pseudo-
residuals. We prefer to use the standardised residuals, butit is important not to over-interpret
the significance of departure from zero.
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Figure 2.13: Goodness-of-fit diagnostics based on nearest neighbour distances for each of the
models(H)–(J) fitted to the Japanese pines data in Figure 2.1a. (a)Ĝ and its compensator; (b)
smoothed residual̂G; (c) smoothed standardised residualĜ.
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Figure 2.14: Smoothed pseudo-residuals for each of the models (H)–(J) fitted to the Japanese
pines data in Figure 2.1a when the perturbing model is (a) Geyer saturation model with satu-
ration 1 (null fitted on a fine grid) and (b) thêG-model.
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Figure 2.15: Pseudo-sum and pseudo-compensators for the models (H)–(J) fitted to the real
data pattern in Figure 2.1a when the perturbing model is (a) area-interaction process and
(b) theF̂-model.
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Based on the test cases here, it is not clear whether diagnostics based on pairwise distances,
nearest neighbour distances, or empty space distances are preferable. However, for each of
these we prefer to work with compensators and residuals rather than pseudo-compensators and
pseudo-residuals when possible (i.e. it is only necessary to use pseudo-versions for diagnostics
based on empty space distances). For instance, for the first test case (Section 2.12) the best
compensator plot is that in Figure 2.4a based on pairwise distances (̂K and CK̂) which makes
it easy to identify the correct model. On the other hand in this test case the best residual type
plot is that in Figure 2.6b based on nearest neighbour distances (TĜ) where the correct model
is the only one within the critical bands. However, in the third test case (Section 2.14) the best
compensator plot is one of the plots in Figure 2.15 with pseudo-compensators based on empty
space distances (Σ∆VA and C∆VA respectivelyΣ∆ F̂ and C∆ F̂) which clearly indicates which
model is correct.

In the first and third test cases (Sections 2.12 and 2.14), which both involve inhomogeneous
models, it is clear that̂K and its compensator are more sensitive to lack of fit in the first order
term thanĜ and its compensator (compare e.g. the results for the homogeneous model(C) in
Figures 2.4a and 2.6a). It is our general experience that diagnostics based on̂K are particularly
well suited to assess the presence of interaction and to identify the general form of interaction.
Diagnostics based on̂K and in particular onĜ seem to be good for assessing the range of
interaction.

Finally, it is worth mentioning the computational difference between the various diagnostics
(timed on a 2.5 GHz laptop). The calculations forK̂ and CK̂ used in Figure 2.2 are carried
out in approximately five seconds whereas the correspondingcalculations forĜ and CĜ only
take a fraction of a second. For e.g.Σ∆ F̂ and C∆ F̂ the calculations take about 45 seconds.
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2.A Further diagnostics

In this appendix we present other diagnostics which we have not implemented in software.
The examples are therefore not accompanied by experimentalresults.

2.A.1 Third and higher order functional summary statistics

While the intensity andK-function are frequently-used summaries for the first and second
order moment properties of a spatial point process, third and higher order summaries have
been less used, though various such summaries have been suggested in e.g. Schladitz and
Baddeley (2000); Møller et al. (1998); Stillinger et al. (2000); Stoyan and Stoyan (1995).

Statistic of order k

For a functional summary statistic ofk-th order, say

S(x, r) =
∑

{xi1 ,...,xik }⊆x
q({xi1, . . . , xik}, r) (2.57)

we obtain
Σ∆S(x, r) = k!S(x, r) = k!

∑

{xi1 ,...,xik }⊆x
q({xi1, . . . , xik}, r) (2.58)

C∆S(x, r) = k! C S(x, r) = (k− 1)!
∫

W
λθ̂(u,x)

∑

{xi1 ,...,xik−1 }⊆x
q({xi1, . . . , xik−1,u}, r) du (2.59)

PU(θ̂, r) = k! R S(x, r) = k!S(x, r) − k! C S(x, r) (2.60)

wherei1, i2, . . . are pairwise distinct in the sums in (2.58)-(2.59). So in this case again, pseudo-
residual diagnostics are equivalent to those based on residuals.

Third order example

For a stationary and isotropic point process (i.e., when thedistribution ofX is invariant under
translations and rotations), the intensity andK-function of the process completely determine
its first and second order moment properties. However, even in this case, the simplest de-
scription of third order moments depends on a three-dimensional vector specified from triplets
(xi , x j , xk) of points fromX such as the lengths and angle between the vectorsxi − x j and
x j − xk. This is often considered too complex, and instead one considers a certain one-
dimensional property of the triangleT(xi , x j , xk) as exemplified below, whereL(xi , x j , xk) de-
notes the largest side inT(xi , x j , xk).

Let the canonical sufficient statistic of the perturbing density (2.27) be

S(x, r) = VT(x, r) =
∑

i< j<k

I(L(xi , x j , xk) ≤ r). (2.61)
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The perturbing model is a special case of thetriplet interaction point processstudied in Geyer
(1999). It is also a special case of (2.57) with

q({xi , x j , xk}, r) = I(L(xi , x j , xk) ≤ r)

and so residual and pseudo-residual diagnostics are equivalent and given by (2.58)-(2.60).

2.A.2 Tessellation functional summary statistics

Some authors have suggested the use of tessellation methodsfor characterizing spatial point
processes; see Illian et al. (2008) and the references therein. A planar tessellation is a subdivi-
sion of planar region such asW or the entire planeR2.

For example, consider the Dirichlet tessellation ofW generated byx, that is, the tessellation
with cells

C(xi |x) = {u ∈W| ‖u− xi‖ ≤ ‖u− x j‖ for all x j in x}, i = 1, . . . ,n.

Suppose the canonical sufficient statistic of the perturbing density (2.27) is

S(x, r) = VO(x, r) =
∑

i

I(|C(xi |x)| ≤ r). (2.62)

This is a sum of local contributions as in (2.33), although not of local statistics in the sense
mentioned in Section 2.6.3, sinceI(|C(xi |x)| ≤ r) depends on those points inx−i which are
Dirichlet neighbours toxi and such points may of course not ber-close toxi (unlessr is larger
than the diameter ofW). We call this perturbing model for asoft Ord’s process; Ord’s process
as defined in Baddeley and Møller (1989) is the limiting caseφ→ −∞ in (2.27), i.e. whenr is
the lower bound on the size of cells. SinceVO(x) ≤ n(x), the perturbing model is well-defined
for all φ ∈ R.

Let ∼x denote the Dirichlet neighbour relation for the points inx, that is, xi ∼x x j if
C(xi |x) ∩C(x j |x) , ∅. Note thatxi ∼x xi . Now,

∆uS(x, r) = I(|C(u|x∪{u})| ≤ r) +
∑

v,u: v∼x∪{u}u
[I(|C(v|x ∪ {u})| ≤ r) − I(|C(v|x \ {u})| ≤ r)] (2.63)

depends not only on the points inx which are Dirichlet neighbours tou (with respect to∼x∪{u})
but also on the Dirichlet neighbours to those points (with respect to∼x∪{u} or with respect to
∼x\{u}). In other words, if we define the iterated Dirichlet neighbour relation by thatxi ∼2

x
x j

if there exists somexk such thatxi ∼x xk andx j ∼x xk, thent(u,x) depends on those points in
x which are iterated Dirichlet neighbours tou with respect to∼x∪{u} or with respect to∼x\{u}.
The pseudo-sum associated to the soft Ord’s process is

Σ∆VO(x, r) = VO(x, r) +
∑

i

∑

j,i: x j∼xxi

[
I(|C(x j |x)| ≤ r) − I(|C(x j |x−i)| ≤ r))

]
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and from (2.29) and (2.63) we obtain the pseudo-compensator. From (2.36) and (2.62), we
obtain the Papangelou compensator

CVO(x, r) =
∫

W
I(|C(u|x ∪ {u})| ≤ r)λθ̂(u,x) du.

Many other examples of tessellation characteristics may beof interest. For example, often the
Delaunay tessellation is used instead of the Dirichlet tessellation. This is the dual tessellation
to the Dirichlet tessellation, where the Delaunay cells generated byx are given by those tri-
anglesT(xi , x j , xk) such that the disc containingxi , x j , xk in its boundary does not contain any
further points fromx (strictly speaking we need to assume a regularity condition, namely that
x has to be in general quadratic position; for such details, see Baddeley and Møller (1989).
For instance, the summary statistict(x, r) given by the number of Delaunay cellsT(xi , x j , xk)
with L(xi , x j , xk) ≤ r is related to (2.61) but concerns only the maximal cliques ofDirich-
let neighbours (assuming again the general quadratic position condition). The corresponding
perturbing model has to the best of our knowledge not been studied in the literature.

2.B Variance formulae

This Appendix concerns the variance of diagnostic quantities of the form

I =
∑

i

h(xi ,X−i) −
∫

W
h(u,x)λθ(u,X) du

R =
∑

i

h(xi ,X−i) −
∫

W
h(u,x)λθ̂(u,X) du

whereh(·) is a functional for which these quantities are almost surely finite, X is a point
process onW with conditional intensityλθ(u,X) andθ̂ is an estimate ofθ (e.g. the MPLE).

2.B.1 General identity

Exact formulae for the variance of the innovationI and residualR are given in Baddeley
et al. (2008). Expressions forVar[R] are unwieldy (Baddeley et al., 2008, Sect. 6), but to a
first approximation we may ignore the effect of estimatingθ and consider the variance ofI .
Suppressing the dependence onθ, this is (Baddeley et al., 2008, Prop. 4)

Var[I ] =
∫

W
E

[
h(u,X)2λ(u,X)

]
du+

∫

W

∫

W
E [A(u, v,X) + B(u, v,X)] dudv (2.64)

where

A(u, v,X) = ∆uh(v,X)∆vh(u,X)λ2(u, v,X)

B(u, v,X) = h(u,X)h(v,X) {λ2(u, v,X) − λ(u,X)λ(v,X)}

whereλ2(u, v,x) = λ(u,x)λ(v,x∪ {u}) is the second order conditional intensity. Note that for
a Poisson processB(u, v,X) is identically zero sinceλ(u,X) = λ(u).
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2.B.2 Pseudo-score

Let S(x, z) be a functional summary statistic with function argumentz, and take
h(u,X) = ∆uS(x, z). Then the innovationI is the pseudo-score (2.23), and the variance for-
mula (2.64) becomes

Var[PU(θ)] =
∫

W
E

[
(∆uS(X , z))2 λ(u,X)

]
du

+

∫

W

∫

W
E

[
(∆u∆vS(X , z))2 λ2(u, v,X)

]
dudv

+

∫

W

∫

W
E [∆uS(x, z)∆vS(x, z) {λ2(u, v,X) − λ(u,X)λ(v,X)}] dudv (2.65)

where foru , v and{u, v} ∩ x = ∅,

∆u∆vS(x, z) = ∆v∆uS(x, z) = S(x ∪ {u, v}, z) − S(x ∪ {u}, z) − S(x ∪ {v}, z) + S(x, z).

2.C Modified edge corrections

Appendices 2.C–2.E describe modifications to the standard edge corrected estimators ofK(r)
andG(r) that are required in the conditional case (Section 2.2.3) because the Papangelou con-
ditional intensityλ(u,x) can or should only be evaluated at locationsu ∈ W◦ whereW◦ ⊂W.
The corresponding compensators are also given.

Assume the point process is Markov and we are in the conditional case as described in Sec-
tion 2.5.4. Consider an empirical functional statistic of the form

SW(x, r) =
∑

xi∈x
sW(xi ,x \ {xi}, r) (2.66)

with compensator (in the unconditional case)

CSW(x, r) =
∫

W
sW(u,x, r)λθ̂(u,x) du.

We explore two different strategies for modifying the edge correction.

In therestriction approach, we replaceW by W◦ andx by x◦ = x ∩W◦ yielding

SW◦(x, r) =
∑

xi∈x◦
sW◦ (xi ,x

◦ \ {xi}, r) (2.67)

CSW◦(x, r) =

∫

W◦
sW◦ (u,x

◦, r)λθ̂(u,x
◦ | x+) du.

In this approach, data points in the boundary regionW+ are ignored in the calculation of
the empirical statisticS. The boundary configurationx+ = x ∩W+ contributes only to the
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estimation ofθ and the calculation of the conditional intensityλθ̂(·, · | x+). This has the
advantage that the modified empirical statistic (2.67) is identical to the standard statisticS
computed on the subdomainW◦; it can be computed using existing software, and requires no
new theoretical justification.

The disadvantage of the restriction approach is that we loseinformation by discarding some
of the data. In thereweighting approachwe retain the boundary points and compute

SW◦,W(x, r) =
∑

xi∈x◦
sW◦,W(xi ,x \ {xi}, r)

CSW◦,W(x, r) =

∫

W◦
sW◦,W(u,x, r)λθ̂(u,x

◦ | x+) du

wheresW◦,W(·) is a modified version ofsW(·). Thus, boundary points contribute to the com-
putation of the modified summary statisticSW◦,W and its compensator. The modification is
designed so thatSW◦,W has properties analogous toSW.

The K-function andG-function of a point processY in R2 is defined (Ripley, 1976, 1977)
under the assumption thatY is second-order stationary. The standard estimatorsK̂W(r) re-
spectivelyĜx(r) of theK-function andG-function are designed to be approximately pointwise
unbiased estimators ofK(r) respectivelyG(r) when applied toX = Y ∩W.

We do not necessarily assume stationarity, but when constructing modified summary statistics
K̂W◦,W(r) andĜW◦,W(r), we shall require that they are also approximately pointwise unbiased
estimators ofK(r) respectivelyG(r) whenY is stationary. This greatly simplifies the interpre-
tation of plots ofK̂W◦,W(r) andĜW◦,W(r) and their compensators.

2.D Modified edge corrections for the K-function

2.D.1 Horvitz-Thompson estimators

The most common nonparametric estimators of theK-function (Ripley, 1976; Ohser, 1983;
Baddeley, 1999) are continuous Horvitz-Thompson type estimators (Baddeley, 1993; Cordy,
1993) of the form

K̂(r) = K̂W(r) =
1

ρ̂2(x)|W|

∑

i, j

eW(xi , x j)I{‖xi − x j‖ ≤ r}. (2.68)

Here ρ̂2 = ρ̂2(x) should be an approximately unbiased estimator of the squared intensityρ2

for stationary processes. Usuallŷρ2(x) = n(n− 1)/|W|2 wheren = n(x).

The termeW(u, v) is an edge correction weight, depending on the geometry ofW, designed so
that the double sum in (2.68), saŷY(r) = ρ̂2(x)|W|K̂(r), is an unbiased estimator of
Y(r) = ρ2|W|K(r). Popular examples are the Ohser-Stoyan translation edge correction with

eW(u, v) = etrans
W (u, v) =

|W|
|W∩ (W+ (u− v))| (2.69)
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and Ripley’s isotropic correction with

eW(u, v) = eiso
W (u, v) =

2π||u− v||
length(∂B(u, ||u− v||) ∩W)

. (2.70)

Estimators of the form (2.68) satisfy the local decomposition (2.66) where

sW(u,x, r) =
1

ρ̂2(x ∪ {u})|W|

∑

j

eW(u, x j)I{||u− x j || ≤ r}, u < x.

Now we wish to modify (2.68) so that the outer summation is restricted to data pointsxi

in W◦ ⊂ W, while retaining the property of unbiasedness for stationary and isotropic point
processes.

Therestriction estimatoris

K̂W◦ (r) =
1

ρ̂2(x◦)|W◦|

∑

xi∈x◦

∑

x j∈x◦−i

eW◦ (xi , x j)I{‖xi − x j‖ ≤ r} (2.71)

where the edge correction weight is given by (2.69) or (2.70)with W replaced byW◦.

A more efficient alternative is to replace (2.68) by thereweighting estimator

K̂W◦,W(r) =
1

ρ̂2(x)|W◦|

∑

xi∈x◦

∑

x j∈x−i

eW◦,W(xi , x j)I{||xi − x j || ≤ r} (2.72)

whereeW◦,W(u, v) is a modified version ofeW(·) constructed so that the double sum in (2.72)
is unbiased forY(r). Compared to the restriction estimator (2.71), the reweighting estimator
(2.72) contains additional contributions from point pairs(xi , x j) wherexi ∈ x◦ andx j ∈ x+.

The modified edge correction factoreW◦,W(·) for (2.72) is the Horvitz-Thompson weight (Bad-
deley, 1999) in an appropriate sampling context. Ripley’s (Ripley, 1976, 1977) isotropic cor-
rection (2.70) is derived assuming isotropy, by Palm conditioning on the location of the first
point xi , and determining the probability thatx j would be observed insideW after a random
rotation aboutxi . Since the constraint onx j is unchanged, no modification of the edge cor-
rection weight is required, and we takeeW◦,W(·) = eW(·) as in (2.70). Note however that the
denominator in (2.72) is changed from|W| to |W◦|.

The Ohser-Stoyan (Ohser and Stoyan, 1981) translation correction (2.69) is derived by con-
sidering two-point sets (xi , x j) sampled under the constraint that bothxi andx j are insideW.
Under the modified constraint thatxi ∈W◦ andx j ∈W, the appropriate edge correction weight
is

eW◦,W(u, v) = eW◦,W(u− v) =
|W∩ (W◦ + (u− v))|

|W◦|

so that 1/eW◦,W(z) is the fraction of locationsu in W◦ such thatu+ z ∈W.
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2.D.2 Border correction

A slightly different creature is the border corrected estimator (using usual intensity estimator
ρ̂ = n(x)/|W|)

K̂W(r) =
|W|

n(x)n(x ∩W⊖r )

∑

xi∈x

∑

x j∈x−i

I{xi ∈W⊖r }I{||xi − x j || ≤ r}

with compensator (in the unconditional case)

C K̂W(r) =
∫

W⊖r

|W|∑x j∈x I{||u− x j || ≤ r}
(n(x) + 1)(n(x ∩W⊖r ) + 1)

λθ̂(u,x
◦ | x+) du.

The restriction estimator is

K̂W◦ (r) =
|W◦|

n(x◦)n(x ∩W◦⊖r )

∑

xi∈x◦

∑

x j∈x◦−i

I{xi ∈W◦⊖r }I{||xi − x j || ≤ r}

and the compensator is

C K̂W◦(r) =
∫

W◦⊖r

|W◦|∑x j∈x◦ I{||u− x j || ≤ r}
(n(x◦) + 1)(n(x ∩W◦⊖r ) + 1)

λθ̂(u,x
◦ | x+) du.

Typically, W◦ =W⊖R, soW◦⊖r is equal toW⊖(R+r).

Thereweighting estimatoris

K̂W◦,W(r) =
|W|

n(x)n(x◦ ∩W⊖r )

∑

xi∈x◦

∑

x j∈x−i

I{xi ∈W⊖r }I{||xi − x j || ≤ r}

and the compensator is

C K̂W◦,W(r) =
∫

W◦∩W⊖r

|W|∑x j∈x I{||u− x j || ≤ r}
(n(x) + 1)(n(x◦ ∩W⊖r ) + 1)

λθ̂(u,x
◦ | x+) du.

Usually W◦ = W⊖R, soW◦ ∩W⊖r is equal toW⊖max(R,r). From this we conclude that when
using border correction we should always use the reweighting estimator since the restriction
estimator discards additional information and neither theimplementation nor the interpretation
is easier.

2.E Modified edge corrections for nearest neighbour functionG

2.E.1 Hanisch estimators

Hanisch (1984) considered estimators forG(r) of the formĜW(r) = D̂x(r)/ρ̂, whereρ̂ is some
estimator of the intensityρ, and

D̂x(r) =
∑

xi∈x

I{xi ∈W⊖di }I{di ≤ r}
|W⊖di |

(2.73)
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wheredi = d(xi ,x \ {xi}) is the nearest neighbour distance forxi . If ρ̂ were replaced byρ then
ĜW(r) would be an unbiased, Horvitz-Thompson estimator ofG(r). See Stoyan et al. (1987,
pp. 128–129); Baddeley (1999).

Hanisch’s recommended estimatorD4 is the one in which ˆρ is taken to be

D̂x(∞) =
∑

xi∈x

I{xi ∈W⊖di }
|W⊖di |.

This is sensible becausêDx(∞) is an unbiased estimator ofρ and is positively correlated with
D̂x(r). The resulting estimator̂GW(r) can be decomposed in the form (2.66) where

sW(u,x, r) =
I{u ∈W⊖d(u,x)}I{d(u,x) ≤ r}

D̂x∪{u}(∞)|W⊖d(u,x)|

for u < x, whered(u,x) is the (‘empty space’) distance from locationu to the nearest point of
x. Hence the corresponding compensator is

CĜW(r) =
∫

W

I{u ∈W⊖d(u,x)}I{d(u,x) ≤ r}
D̂x∪{u}(∞)|W⊖d(u,x)|

λθ̂(u,x) du

This is difficult to evaluate, since the denominator of the integrand involves a summation over
all data points:Dx∪{u}(∞) is not related in a simple way toDx(∞).

Instead, we choose ˆρ to be the conventional estimator ˆρ = n(x)/|W|. Then

ĜW(r) =
|W|
n(x)

D̂x(r)

which can be decomposed in the form (2.66) with

sW(u,x, r) =
|W|

n(x) + 1

I{u ∈W⊖d(u,x)}I{d(u,x) ≤ r}
|W⊖d(u,x)|

for u < x, so that the compensator is

CĜW(r) =
|W|

n(x) + 1

∫

W

I{u ∈W⊖d(u,x)}I{d(u,x) ≤ r}
|W⊖d(u,x)|

λθ̂(u,x) du. (2.74)

In the restriction estimatorwe exclude the boundary points and takedi
◦ = d(xi ,x

◦
−i), effec-

tively replacing the datasetx by its restrictionx◦ = x ∩W◦.

ĜW◦ (r) =
|W◦|
n(x◦)

∑

xi∈x◦

I{xi ∈W◦⊖di
◦ }I{di

◦ ≤ r}
|W◦⊖di

◦ |

The compensator is (2.74) but computed for the point patternx◦ in the windowW◦:

CĜW◦ (r) =
|W◦|

n(x◦) + 1

∫

W◦

I{u ∈W◦⊖d(u,x◦)}I{d(u,x◦) ≤ r}
|W◦⊖d(u,x◦)|

λθ̂(u,x
◦ | x+) du.
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In the usual caseW◦ =W⊖R, we haveW◦⊖d =W⊖(R+d).

In the reweighting estimatorwe takedi = d(xi ,x \ {xi}). To retain the Horvitz-Thompson
property we must replace the weights 1/|W⊖di | in (2.73) by 1/|W◦ ∩W⊖di |. Thus the modified
statistics are

ĜW◦,W(r) =
|W|
n(x)

∑

xi∈x◦

I{xi ∈W⊖di }I{di ≤ r}
|W◦ ∩W⊖di |

(2.75)

and

CĜW◦,W(r) =
|W|

n(x) + 1

∫

W◦

I{u ∈W⊖d(u,x)}I{d(u,x) ≤ r}
|W◦ ∩W⊖d(u,x)|

λθ̂(u,x
◦ | x+) du. (2.76)

In the usual case whereW◦ =W⊖R we haveW◦ ∩W⊖di =W⊖max(R,di ).

Optionally we may also replace|W|/n(x) in (2.75) by|W◦|/n(x ∩W◦), and correspondingly
replace|W|/(n(x) + 1) in (2.76) by|W◦|/(n(x ∩W◦) + 1).

2.E.2 Border correction

The classical border correction estimate ofG is

ĜW(r) =
1

n(x ∩W⊖r )

∑

xi∈x
I{xi ∈W⊖r }I{d(xi ,x−i) ≤ r} (2.77)

with compensator (in the unconditional case)

CĜW(r) =
1

1+ n(x ∩W⊖r )

∫

W⊖r

I{d(u,x) ≤ r}λθ̂(u,x) du. (2.78)

In the conditional case, the Papangelou conditional intensity λθ̂(u,x) must be replaced by
λθ̂(u,x

◦ | x+) given in (2.24). Therestriction estimatoris obtained by replacingW by W◦ and
x by x◦ in (2.77)–(2.78) yielding

ĜW◦ (r) =
1

n(x ∩W◦⊖r )

∑

xi∈x◦
I{xi ∈W◦⊖r }I{d(xi ,x

◦
−i) ≤ r}

CĜW◦ (r) =
1

1+ n(x ∩W◦⊖r )

∫

W◦⊖r

I{d(u,x◦) ≤ r}λθ̂(u,x◦ | x+) du

Typically W◦ =W⊖R so thatW◦⊖r =W⊖(R+r). Thereweighting estimatoris obtained by restrict-
ing xi andu in (2.77)–(2.78) to lie inW◦, yielding

ĜW◦,W(r) =
1

n(x◦ ∩W⊖r )

∑

xi∈x◦
I{xi ∈W⊖r }I{d(xi ,x−i) ≤ r}

CĜW◦,W(r) =
1

1+ n(x◦ ∩W⊖r )

∫

W◦∩W⊖r

I{d(u,x) ≤ r}λθ̂(u,x◦ | x+) du.
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In the usual case whereW◦ =W⊖R we haveW◦ ∩W⊖r =W⊖max(R,r).

In the same way as for the border corrected estimate for theK-function we always choose to
use the reweighting estimator rather than the restriction estimator since there are no disadvan-
tages connected with this.

The border corrected estimatorĜ(r) is well known for having relatively poor performance and
sample properties. It is not guaranteed to be a monotonically increasing function ofr, and its
bias and variance are generally greater than those of the Horvitz-Thompson style estimators.
The main reason for choosing the border corrected estimatoris its computational efficiency in
large datasets. We may expect similar considerations to apply to its compensator.
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Abstract:
An α-permanental random field is briefly speaking a model for a collection of non-negative in-
teger valued random variables with positive associations.Though such models possess many
appealing probabilistic properties, many statisticians seem unaware ofα-permanental random
fields and their potential applications. The purpose of thispaper is to summarize useful prob-
abilistic results, study stochastic constructions and simulation techniques, and discuss some
examples ofα-permanental random fields. This should provide a useful basis for discussing
the statistical aspects in future work.

Keywords:
α-determinant;α-permanent; covariance; doubly stochastic construction;negative binomial
distribution; simulation; Poisson randomization.

3.1 Introduction

For any real numberα and anyn×n matrixA with entriesAi, j , theα-determinant ofA is defined
as (Shirai, 2007)

detαA =
∑

σ∈Sn

αn−c(σ)A1,σ(1)A2,σ(2) · · ·An,σ(n), (3.1)

whereSn is the set of all permutations of 1, . . . ,n, andc(σ) denotes the number of cycles in
σ. If α = −1 we obtain the usual determinant, which can be easily calculated, and forα = 1,
(3.1) is called the permanent ofA. For α , −1 the computation of detαA is believed to be
intractable (forα = 1, the computation is know to be intractable in the sense it is#P-complete,
see Valiant (1979)). However, in Kou and McCullagh (2009) analgorithm for approximating
theα-determinant forα > 0 is given, which may help overcome the difficulties of calculating
theα-determinant in applied work. Notice that some authors prefer to work with the related
α-permanent|A|α = αn det1/α A, but in the present paper theα-determinant is used.

Theα-determinant plays an important role in the study of permanental (or boson) point pro-
cesses (whereα = 1) and determinantal (or fermion) point processes (whereα = −1) as
introduced by (Macchi, 1971, 1975) and their extensions toα-permanental (α > 0) andα-
determinantal (α < 0) point processes, which have received much research interest in prob-
ability theory in recent years (Shirai and Takahashi, 2003a,b; Georgii and Yoo, 2005; Hough
et al., 2006; McCullagh and Møller, 2006). The focus of the present paper is onα-permanental
point process models, i.e. whenα > 0. We consider the simplest setting, namely when such
point processes can be identified by a collection of of discrete non-negative random variables
N = (Ns; s ∈ S), which are indexed by a finite setS = {s1, . . . , sm}. In applications the
indicessi typically correspond to distinct spatial locations inR or R2 referred to as sites. In
the terminology of spatial statistics (see, e.g., Cressie (1993)),N is then arandom field, and
thereforeα-permanental point processes in this setup are calledα-permanental random fields.

Such random fields are used to model multivariate count data,with spatial dependence be-
tween the counts. A simple example of anα-permanental random fields is obtained by a
doubly stochastic construction as follows. First, introduce auxiliary real random variablesYs
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associated with the sitess ∈ S, and assume thatY = (Ys1, . . . ,Ysm) follows a zero-mean mul-
tivariate Gaussian distribution with covariance matrixC. Second, conditional onY , indepen-
dently for each sites ∈ S, let Ns be Poisson distributed with meanY2

s . ThenN = (Ns; s ∈ S)
is anα-permanental random field withα = 2, as will be described in more detail in Sec-
tion 3.4.1. The class ofα-permanental random fields is much more general and cannot be
constructed in such a simple way, but this example illustrates which type of data the model
class can be used for.

To the best of our knowledge, the statistical and computational aspects of these models have
so far mainly been unexplored, and many statisticians may beunaware of the models many
appealing properties and potential applications. The present paper should provide a useful
basis for discussing the statistical aspects ofα-permanental random fields, and it is based
partly on the above-mentioned references and the seminal work by Griffiths (1984), Griffiths
and Milne (1987), and in particular Vere-Jones (1997), and partly on some new results of our
own.

The remainder of this paper is organized as follows. Section3.2 introduces some notation, dis-
cusses the definition and existence ofα-permanental random fields, and presents three specific
examples of model types, which are also discussed in the subsequent sections. Section 3.3 re-
views various useful properties ofα-permanental random fields. Section 3.4 considers stochas-
tic constructions and simulation ofα-permanental random fields.

3.2 Preliminaries

3.2.1 Definition and notation

Let S = {s1, . . . , sm} be an arbitrary finite set andN = (Ns, s ∈ S) a collection of non-negative
integer-valued random variables. This will be anα-permanental random field with parameter
(α,C) if for all z = (zs; s ∈ S) with |zs| ≤ 1, s ∈ S, the probability generating function forN ,

ϕ(z) = ϕ(zs; s ∈ S) = E
∏

s∈S
zNs

s

is of a particular form specified below. Hereα is a positive number andC : S × S → R is
a function which satisfy certain conditions such the randomfield exists; these conditions are
also discussed below.

SinceS is finite, the functionC can be identified with a realm×m matrix, also denoted
C. WhetherC is considered a function or a matrix will be clear from the context, and the
two representations are used interchangeably throughout the paper. Notationally we write
Ci, j = C(si , sj). Furthermore,I denotes the identity matrix,|A| is the determinant of a square
matrix A, and we take 00 = 1.

Definition 1. We say thatN = (Ns, s ∈ S) is anα-permanental random field with parameter
(α,C) if

ϕ(z) = |I + α(I−Z)C|−1/α (3.2)
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where Z denotes the diagonal matrix with (zs; s ∈ S) on the diagonal. We then write
N ∼ per(α,C).

In accordance with the references given at the very beginning of Section 3.1, we call it anα-
permanental random field, while a so-calledα-determinantal random field appears ifα is neg-
ative. The reason for the names of these models are partly explained by the close connection
betweenα-determinants andα-permanents and the fact that density and moment expressions
are given in terms ofα-determinants orα-permanents, see Section 3.3.

If N ∼ per(α,C) thenI + αC is necessarily non-singular (otherwise (3.2) would not be well-
defined forz = 0), and we can define the matrix

C̃ = αC(I + αC)−1 = I − (I + αC)−1. (3.3)

Using this parametrization we can write (3.2) as

ϕ(z) =
[
|I−C̃|/|I−ZC̃|

]1/α
. (3.4)

On the other hand, if (3.4) is a probability generating function thenI−C̃ is necessarily non-
singular, and setting

C =
1
α

C̃(I − C̃)−1 (3.5)

we obtain (3.2). Consequently, we can equally well parametrize per(α,C) by (α, C̃).

For notational convenience we sometimes writei for si . Using the Schur decomposition ofC
(Golub and Van Loan, 1996), the relation between the eigenvaluesλi of C and the eigenvalues
λ̃i of C̃ is seen to be

λi =
λ̃i

α − αλ̃i
, λ̃i =

αλi

1+ αλi
, i = 1, . . . ,m. (3.6)

We let‖λi‖ denote the modulus ofλi and define the spectral norm ofC as

‖C‖ = max{‖λ1‖, . . . , ‖λm‖} (and similarly forC̃).

Finally, a useful expansion for‖zs‖ ≤ 1, s ∈ S, is

− log |I − ZC̃| =
∞∑

n=1

tr
{(

ZC̃
)n}

/n if ‖C̃‖ < 1. (3.7)

See e.g. Goulden and Jackson (1983).

3.2.2 Existence of the α-permanental random field

By Definition 1, per(α,C) exists if and only if (3.2) (or equivalently (3.4)) is a proper prob-
ability generating function. It is clear that this is not thecase for all (α,C). The problem of
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characterizing the set of (α,C) such that (3.2) is a proper probability generating function is
treated in detail in Vere-Jones (1997), but no easily verifiable necessary and sufficient condi-
tion is known. There are however some known sufficient conditions expressed either through
(α,C) or (α, C̃), and the two most important sufficient conditions for the present exposition are
the following.

Condition I: C is a covariance matrix andα ∈
(
0, 2

m−1

)
∪

{
2

m−1 ,
2

m−2 , . . . ,1,2
}
.

Condition II: C̃ has non-negative entries and‖C̃‖ < 1.

Condition I is a minor extension of the corresponding resultin Vere-Jones (1997), and it
can be found in e.g. Shirai (2007). It is related to the doublestochastic construction of the
α-permanental random field described in Section 1 and Section3.4.1. The sufficiency of
Condition II is an immediate consequence of (3.19) in Section 3.3.3, where the density of
theα-permanental random field is expressed usingα-determinants ofC̃. Note thatα can be
any positive number under Condition II.

One important necessary conditionC must satisfy is

C(s, s) ≥ 0 for all s ∈ S. (3.8)

This follows later from equation (3.10).

3.2.3 Examples

In this section, our running examples ofα-permanental random field models are introduced.

Example I

Let C = κQ, whereκ > 0 andQ is a projection of rankr > 0. In this special caseN
satisfies many striking and unusual properties, and we refertherefore to it as the specialα-
permanental random field. In this case it turns out thatC and C̃ are proportional. More
specificallyC̃ = ακ

1+ακQ, which is verified in the following. From (3.3) we need only verify
that

ακ

1+ ακ
Q = ακQ(I + ακQ)−1.

This is equivalent to

ακQ+ (ακQ)2 = ακQ+ α2κ2Q,

which clearly is true sinceQ is a projection and consequently idempotent.
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Example II

If C has rank one it can be written on the form,Ci, j = aib j , i, j = 1, . . . ,m, for some real
vectors (a1, . . . ,am) and (b1, . . . ,bm). Assume thatC is of this form with

∑m
i=1 Ci,i > 0. The

matrix A := (I−Z)C appearing in (3.2) has (i, j)’th entry (1−zi)aib j . If A is a non-zero ma-
trix, i.e. zi , 1 for all i = 1, . . . ,m, thenA has rank one and eigenvalue

∑m
i=1(1−zi)Ci,i with

corresponding eigenvector ((1− z1)a1, . . . , (1− zm)am)⊤. Consequently, by (3.2),

ϕ(z) =

1+ α


m∑

i=1

(1− zi)Ci,i



−1/α

.

It follows that the distribution ofN depends only onC through the diagonal elements. Conse-
quently, we may without loss of generality assumeC to be a positive definite symmetric matrix
with non-negative entries of the formCi, j =

√
cic j for some non-zero vectorc = (c1, . . . , cm),

ci ≥ 0, i = 1, . . . ,m. Then the only non-zero eigenvalue ofC is κ :=
∑m

i=1 ci =
∑m

i=1 Ci,i , and it
is a specialα-permanental random field as discussed in Example I withQ = 1

κ
C.

Remark. In Example II it was sufficient to let C be symmetric, but this is not in general
possible for anα-permanental random field where C has rank higher than one. Take e.g.
N ∼ per(α,C) with C a non-symmetric matrix such that theα-permanental random field is
well-defined. Then a corresponding random field parametrized by a symmetric matrix C′

would have to be given by C′i, j =
√

Ci, jC j,i for the covariances to be the same, but the distri-
bution is in general not the same using C and C′ since the correspondingα-determinants (and
thereby the factorial moments as considered in Section 3.3.2) differ when the rank is higher
than one.

Example III

In this example, we consider a model for anα-permanental random field in the case where
S = {s1, . . . , sm} is a finite number of sites on the real line withs1 < · · · < sm. First a slight
modification of the double stochastic construction ofN = (Ns; s ∈ S) as described in Sec-
tion 1 and Section 3.4.1 (Method II) is considered, where we require thatα = 2/k for some
k ∈ N. Furthermore, for eachs ∈ S, let z(s) = (z0(s), z1(s), . . . , zp(s)) be given covariates for
Ns, where we letz0(s) = 1 for all s ∈ S such thatβ0 introduced below has the interpretation
of an intercept on the log-scale. Let a random mean fieldM = (Ms; s ∈ S) be modeled as
Ms = exp(β⊤z(s))(Y2

1,s + · · · + Y2
k,s), whereY1 = (Y1,s; s ∈ S), . . . ,Yk = (Yk,s; s ∈ S) are inde-

pendent zero-mean Gaussian random fields with the exponential covariance matrix
Cov(Yi,s,Yi,t) = ρ|s−t|, 0 < ρ < 1. Suppose thatN conditioned onM consists of mutually
independent Poisson random variablesNs with meanMs, s ∈ S. ThenN ∼ per(α,C), where

Ci, j = C(si , sj) = exp
(
β⊤(z(si) + z(sj))/2

)
ρ|si−sj |. (3.9)

Using this construction the model is at least well-defined for α = 2/k, k ∈ N, but the following
proposition extends the model to allα > 0.
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Proposition 1. Let S = {s1, . . . , sm}, s1 < · · · < sm, 0 < ρ < 1, andα > 0. If C is given by
(3.9) then all entries of̃C = αC(I +αC)−1 are non-negative and per(α,C) is thus well-defined.

Proof. We haveC = DBD, where D is a diagonal matrix withDi,i = exp
(
β⊤z(si)/2

)
,

i = 1, . . . ,m, andB is the matrix with entriesBi, j = ρ
|si−sj |. Using a notation as in Appendix,

B is a Green’s matrix withai = ρ
−|si−s1| andbi = ρ

|si−s1|. Thus, if the inverseB−1 = T exists,
T is tridiagonal, and it is straightforward to verify that thematrix T given in the following is
indeed the inverse ofB. The diagonal elements are

Ti,i =
1− ρ2|si+1−si−1|

(1− ρ2|si+1−si |)(1− ρ2|si−si−1|)
, i = 1, . . . ,m

where we defines0 = sm+1 = ∞, such thatρ2|s1−s0| = ρ2|s2−s0| = ρ2|sm+1−sm| = ρ2|sm+1−sm−1| = 0.
The non-zero off-diagonal elements are

Ti,i+1 = Ti+1,i =
−ρ|si+1−si |

1− ρ2|si+1−si |
, i = 1, . . . ,m−1.

Now,
C̃ = (I + (αC)−1)−1 = (I + α−1D−1B−1D−1)−1 = αD(αD2 + T)−1D,

where the first equality follows by the Woodbury formula (Golub and Van Loan, 1996) since
C is non-singular. Clearly the matrixαD2 is diagonal and positive definite. The sum of
positive definite matrices is positive definite, so (αD2 + T) is a symmetric positive definite
tridiagonal matrix with non-positive off-diagonal elements. Lemma 1 in Appendix implies
that all elements of (αD2 + T)−1 are non-negative, and the result follows. �

Remark. Condition II also requires‖C̃‖ < 1 for theα-permanental random field to be well-
defined. However, from(3.6)this is clearly true in the present example where C is a covariance
matrix and hence has non-negative real eigenvalues.

Figure 3.1 is inspired by a dataset that fits into this setup (counts of clover leaves in 200 squares
of size 5× 5 cm along a 10 m transect line, see Augustin et al. (2006) ), where the data can be
viewed as a one-dimensional random field consisting of 200 sites on the real line with positive
association expected between the counts due to clustering of clovers in patches. Figure 3.1
shows four different simulated datasets of this type using different values ofα andρ. Since
no covariates are available the only other parameter in the model isβ0, which controls the
mean value EN1 = · · · = EN200 = exp(β0) (as shown in Section 3.3.2 the mean is given by
the diagonal elements ofC). For different values of (α, ρ), permanental random fields were
simulated using the Poisson randomization described in Section 3.4.2, whereβ0 = log(1.28)
is fixed so that the random fields have the same mean as the data from Augustin et al. (2006).

3.3 Properties of α-permanental random fields

This section reviews various useful properties ofα-permanental random fields. We will need
various matrices formed fromC andC̃. We introduce these forC in the following, while the
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Figure 3.1: Realizations of the random field of Example III for different values ofα andρ.

analogous definitions for̃C simply are obtained by replacingC with C̃. For any multi-set
T = {t1, . . . , tn}, ti ∈ S we letCT denote then×n matrix with (i, j)’th entryC(ti , t j). If T is of
the special form

T = {s1, . . . , s1︸     ︷︷     ︸
ns1

, . . . , si , . . . , si︸    ︷︷    ︸
nsi

, . . . , sm, . . . , sm︸      ︷︷      ︸
nsm

},

for non-negative integersn = (ns; s ∈ S) with n⋆ =
∑

s∈S ns > 0 we also writeCT = C[n],
and we define detαC[0] = 1.

3.3.1 Relation to the negative binomial distribution

Let N ∼ per(α,C). From the form of (3.2) it is clear that for anyS′ ⊂ S the subfield
NS′ = (Ns; s ∈ S′) is also aα-permanental random field;NS′ ∼ per(α,CS′ ). Particularly,
the probability generating functions of the one dimensional marginalsNs, s ∈ S are of the
form (1+α(1−z)C(s, s))−1/α. Hence, ifb−(κ, π) denotes the negative binomial distribution with
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parametersκ > 0 and 0≤ π < 1, and probability density function

Γ(n+ κ)
n!Γ(κ)

πn(1− π)κ, n = 0,1, . . . ,

we see that

Ns ∼ b−
(
1
α
,

αC(s, s)
1+ αC(s, s)

)
. (3.10)

Consider the sumN⋆ =
∑

s∈S Ns. By (3.2), the probability generating function ofN⋆ is

ϕ⋆(z) = |I + α(1− z)C|−1/α. (3.11)

Rewriting in terms of the eigenvalues ofC, (3.11) yields

ϕ⋆(z) =
∏

i: λi∈R
(1+ α(1− z)λi)

−1/α

×
∏

i: λi<R

(
1+ 2α(1− z)Re(λi) + α

2(1− z)2‖λi‖2
)−1/(2α)

. (3.12)

Hence, if 1/α is an integer, the distribution ofN⋆ is of matrix geometrical form, see Asmussen
and O’Cinneide (1998) and the references therein. IfC only has real eigenvaluesλi ≥ 0,
i = 1, . . . ,m, then (3.12) implies that

N⋆ ∼ b−
(
1
α
,

αλ1

1+ αλ1

)
⋆ . . . ⋆ b−

(
1
α
,

αλm

1+ αλm

)
. (3.13)

A well-known property for ‘zero-states’ of the negative binomial distribution can be general-
ized as follows concerning the probability

ϕ⋆(0) = P(Ns = 0 for all s ∈ S).

From (3.12) follows that

d
dα

logϕ⋆(0) =
2m1 +m2

2α2
− 1

2

∑

i: λi<R

‖λi‖2

where m1 respectivem2 denote the number of real respective non-real eigenvaluesλi ,
i = 1, . . . ,m. Thus, ifC has only real eigenvalues,ϕ⋆(0) is an increasing function ofα, and
ϕ⋆(0)→ 1 for α→ ∞.

3.3.2 Moments

For non-negative integersa andb, let a(0) = 1, anda(b) = a!/(a− b)! = a(a− 1) · · · (a− b+ 1)
if a ≥ b > 0. The factorial moments are given by

E
∏

s∈S
N(ns)

s = detαC[n] (3.14)
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for non-negative integers (ns; s ∈ S). This can be obtained by expanding out the powers of
(zs − 1) in (3.2), cf. Vere-Jones (1997) and Shirai and Takahashi (2003a). Note that (3.14)
implies that (α,C) is such that detαC[n] ≥ 0 for all non-negative integers (ns; s ∈ S).

In general, only the lower dimensional moments are computationally tractable. The first and
second order moments are given by

ENs=C(s, s), VarNs=C(s, s)+αC(s, s)2, Cov(Ns,Nt)=αC(s, t)C(t, s), if s, t. (3.15)

By (3.15) it is clear that

Ns = 0 (almost surely) if and only if C(s, s) = 0. (3.16)

If C(s, s) > 0, we obtain from (3.15) the well-known property of the negative binomial distri-
bution thatNs is over-dispersed. Moreover, (3.15) implies that Cov(Ns,Nt) ≥ 0, cf. Vere-Jones
(1997). Note that ifC is symmetric and non-negative, there is a one-to-one correspondence
between (α,C) and the moments given by (3.15).

If C is a covariance function, consider its correlation function

R(s, t) = C(s, t)/ [C(s, s)C(t, t)]1/2 , s, t ∈ S (3.17)

where we takeR(s, t) = 0 if C(s, s) = 0 orC(t, t) = 0. Then by (3.15), the correlation between
Ns andNt is

Corr(Ns,Nt) = αR(s, t)2

[
C(s, s)C(t, t)

(1+ αC(s, s))(1+ αC(t, t))

]1/2

, s, t ∈ S. (3.18)

The right hand side in (3.18) is an increasing function ofα, and it tends toR(s, t)2 asα→ ∞.

3.3.3 Probability density function

The probability density function of anα-permanental random field can be expressed us-
ing α-determinants ofC̃ as follows, see Vere-Jones (1997). For any non-negative integers
n = (ns; s ∈ S) with n⋆ =

∑
s∈S ns,

P(N = n) = |I − C̃|1/αα−n⋆detαC̃[n]
/∏

s∈S
ns! . (3.19)

This can be obtained by expanding out the powers ofzs in (3.4).

As described in Section 3.3.1 the marginal distribution of any Ns and possibly also of the ‘mar-
gin’ N⋆ are related to the negative binomial distribution. However, even the joint distribution
of two random variablesNs andNt is in general complicated, cf. the discussion in Griffiths
and Milne (1987).
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3.3.4 Independence

Independence properties of infinite divisibleα-permanental random fields have been studied in
Griffiths and Milne (1987), and their results are summarized here with slight generalizations.

Suppose thatS = T ∪ U whereT andU are disjoint and non-empty. Recall that the subfields
NT andNU are independent if and only if the probability generating functionϕ(zs; s ∈ S) of
N is a product of two functions, one of (zs; s ∈ T) and one of (zs; s ∈ U).

It follows immediately from (3.2) thatNT andNU are independent

if C(t,u) = C(u, t) = 0 whenevert ∈ T andu ∈ U. (3.20)

If C is symmetric, then by (3.15), Cov(Nt,Nu) = αC(t,u)2, and soNT andNU are independent

if and only if C(t,u) = 0 whenevert ∈T andu ∈ U. (3.21)

The property ofC in (3.20)-(3.21) means that if we order the elements inS so that the elements
of T come before those ofU, thenC restricted toT ∪ U is block-diagonal with respect to the
partition given byT andU. If C is not symmetric, it is possible that Cov(Ns,Nt) = C(t,u)C(u, t)
is zero even ifNt andNu are not independent, and we can not in general replace ‘if’ in(3.20)
by ‘if and only if’.

Furthermore, we can replaceC by C̃ everywhere in (3.20)-(3.21). This follows by similar
arguments as above but using (3.4). In addition, assume thatthe eigenvalues of̃C are bounded
strictly in modulus by one, and define a directed graphG(C̃) with vertex setS and edges〈si , sj〉
if si , sj andC̃(si , sj) , 0. ThenNT andNU are independent

if and only if every directed circuit inG(C̃) contains vertices of eitherT or U,

but not both. (3.22)

This follows by combining (3.4) and (3.7), using similar arguments as in the proof of Theo-
rem 3 in Griffiths and Milne (1987).

3.3.5 Thinning

Let 0 ≤ πs ≤ 1, s ∈ S, be given numbers, and consider a random fieldN th = (Nth
s ; s ∈ S) so

that conditional onN , theNth
s are mutually independent andNth

s ∼ b(Ns, πs). We say thatN th

is obtained by an independent thinning ofN with retention probabilitiesπs, s ∈ S. Define

Cth
s,t =

√
πsπtCs,t, s, t ∈ S. (3.23)

It follows immediately from (3.2) that

N th ∼ per(α,Cth). (3.24)

Suppose thatC is a covariance matrix. ThenCth given by (3.23) is also a covariance matrix,
andN andN th share the same correlation matrixR given by (3.17). By (3.18) we have
0 ≤ Corr(Nth

s ,N
th
t ) ≤ Corr(Ns,Nt), where Corr(Nth

s ,N
th
t ) is an increasing function ofπs and of

πt.
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3.3.6 Convolution

By (3.2), for anyα1 > 0 andα2 > 0,

per

(
α1,

α2

α1 + α2
C

)
⋆ per

(
α2,

α1

α1 + α2
C

)
= per


(

1
α1
+

1
α2

)−1

,C



provided of course that the two firstα-permanental random fields exist. In particular,

per(α,C) = per(αn,C/n)⋆n

for anyn ∈ N such that per(αn,C/n) exists, where⋆n denotes convolutionn times.

3.3.7 Examples

Example I (continued)

Let the situation be as in Section 3.2.3. SinceC hasr non-zero eigenvalues which are all equal
to κ, (3.13) reduces to

N⋆ ∼ b− (r/α, ακ/(1+ ακ)) .

Further,C̃ = (ακ/(1+ακ))Q, and we obtain from (3.14) and (3.19) that the expressions for the
factorial moments and the probability density function areclosely related, since

E
∏

s∈S
N(ns)

s = κn⋆detαQ[n], P(N = n) =
κn⋆detαQ[n]

(1+ ακ)n⋆+r/α
∏

s∈S ns!
(3.25)

wheren⋆ =
∑

s∈S ns.

Example II (continued)

Let the situation be as in Section 3.2.3. From (3.13) we have

N⋆ ∼ b−
(
1
α
,

ακ

1+ ακ

)
. (3.26)

By differentiation of the probability generating function it is straightforward to find the prob-
ability of N = n for any vector of non-negative integersn = (n1, . . . ,nm) with

∑m
i=1 ni = n⋆

p(n) =
Γ( 1

α
+ n⋆)

Γ( 1
α
)

(
1+ ακ

)−n⋆− 1
α

m∏

i=1

cni
i

ni !
.

Combining this with (3.26) yields

p(n|n⋆) = n⋆!
m∏

i=1

1
ni !

(ci

κ

)ni (3.27)
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such thatN |n⋆ is multinomial with event probabilitiesc1
κ
, . . . ,

cm

κ
.

In this setup the random field is parametrized by the mean (EN1, . . . ,ENm) = (c1, . . . , cm), and
using the fact thatN⋆ follows a negative binomial distribution and thatN |N⋆ is multinomial
makes a two step simulation scheme straightforward. The correlation betweenNi andN j is

Corr(Ni ,N j) =
√

ci

1/α + ci

c j

1/α + c j

so sites with a large mean is more strongly correlated to all other sites than a site with a smaller
mean. IfN is homogeneous in the sense that c1 = · · · = cm = c the correlation between the
counts at any two sites is Corr(Ni ,N j) = αc/(1 + αc). Furthermore, as is the case forα-
permanental random fields in general, correlation grows with α as well.

Figure 3.2 shows four realizations of such a homogeneous random field withc = 100 and
α = 1. The figure exemplifies how the correlation in this model effectively results in very
little variation within a realization of the random field compared to the large variation between
realizations. Based on 1000 simulations the average of the empirical variance within each
realization was 15.4 compared to the marginal variance Var(Ni) = 110,i = 1, . . . ,2500. While
this model is mathematically tractable it seems to be of lessinterest in applications due to low
flexibility, and in spatial applications the model is unaffected by usual neighborhood relations
based on distances since correlation structures only depend on the mean values at any given
given pair of sites.

3.4 Stochastic constructions and simulation

In this section we discuss stochastic constructions and simulation algorithms for the
α-permanental random fieldN . To exclude the trivial case whereNs = 0 for all s ∈ S,
we assume thatC has rankr > 0. Furthermore, we assumem > 1, sinceN just follows a
negative binomial distribution ifm= 1.

3.4.1 Doubly stochastic construction

Assume thatG = (Gs; s ∈ S) is a random field of non-negative real random variables with
Laplace transform (or moment generating function) of the form

E exp


∑

s∈S
Gszs

 = |I − αZC|−1/α (3.28)

for zs ∈ [−1,1], s ∈ S, whereZ is the diagonal matrix with diagonal (zs; s ∈ S). This is
a multivariate extension of the gamma distribution, where all one-dimensional marginals are
gamma-distributed, but it is an open question to establish necessary and sufficient conditions
on (α,C) for (3.28) to be a Laplace transform of some distribution on[0,∞)m, see Krish-
namoorthy and Parthasarathy (1951) and Vere-Jones (1997).Suppose thatN conditioned on
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Figure 3.2: Four independent realizations of the random field of Example II on a 50× 50 grid
with c1 = · · · = c2500= 10 andα = 1.

G consists of mutually independent Poisson random variablesNs with meanGs, s ∈ S. It is
immediately verified that (3.2) is satisfied, soN ∼ per(α,C), cf. Vere-Jones (1997).

By this doubly stochastic construction, if we can generateG, we can straightforwardly gener-
ateN . Below two different constructions ofG are described.

Method I: Assume Condition I (Section 3.2.2) is satisfied. Generate am×m Wishart matrix
K with 2/α degrees of freedom and meanC. If Gsi = Ki,i thenG has moment generating
function (3.28). Simulation of Wishart distributed matrices is described in e.g. Johnson
(1987).

Method II: Assume Condition I is satisfied andα = 2/k for somek ∈ N. Generate inde-
pendent zero-mean Gaussian random fieldsY1 = (Y1,s; s ∈ S), . . . ,Yk = (Yk,s; s ∈ S)
with covariance functionC/k. If Gs = Y2

1,s + · · · + Y2
k,s, s ∈ S, thenG has moment

generating function (3.28). Various simulation methods for Gaussian random fields are
implemented in theR packageRandomFields by Martin Schlather. See also Lantuejoul
(2002), and the references therein.
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Method I corresponds to the extension given in Shirai (2007), and the simpler Method II has
also been considered in Vere-Jones (1997).

3.4.2 Poisson randomization

In the sequel, it seems more natural to work withC̃ rather thanC, where we assume that
Condition II (Section 3.2.2) is satisfied. The assumption that C̃ ≥ 0 ensures that the right
hand sides in the density expressions (3.29)-(3.30) and (3.32) below are non-negative. The
α-permanental fieldN can then be constructed by the following five steps of a Poisson ran-
domization (a similar construction for spatial point processes was introduced in McCullagh
and Møller (2006)).

1. Forn ∈ N, define a probability density function by

pn(t1, . . . , tn) =
1

tr(C̃n)

n∏

i=1

C̃(ti , ti+1), (t1, . . . , tn) ∈ Sn, (3.29)

wheretn+1 = t1. Using the Schur decomposition ofC̃ (Golub and Van Loan, 1996), we
obtain the normalizing constant tr(C̃n) =

∑m
i=1 λ̃

n
i of this density. It can be viewed as

a Markov random field defined on the graph with vertices 1, . . . ,n and edges〈i, i + 1〉,
i = 1, . . . ,n, with the turn-around edge〈n,n+ 1〉 = {n,1}. It reduces to the “Ising model
on the ring” ifS = {s, t} andC̃(s, s) = C̃(t, t).

2. Define a random variableW with probability density function

pW(n) =
tr(C̃n)

Dn
, n ∈ N, (3.30)

where
D = − log |I − C̃|. (3.31)

If the eigenvalues of̃C are real with 0≤ λ̃i < 1, thenD = −∑m
i=1 log(1− λ̃i) andW

follows a mixture of logarithmic distributions with parameters λ̃i , i = 1, . . . ,m, where
the i’th logarithmic distribution has weight− log(1− λ̃i)/D in the mixture distribution.

3. Consider an ordered point process (R1, . . . ,RW), where conditioned onW = n,
(R1, . . . ,Rn) follows (3.29). Thus (R1, . . . ,RW) takes values in the countable set∪∞n=1Sn,
and its probability density functionp(t1, . . . , tn) = pW(n)pn(t1, . . . , tn) is

p(t1, . . . , tn) =
1

nD

n∏

i=1

C̃(ti , ti+1), (t1, . . . , tn) ∈ Sn, n ≥ 1. (3.32)

Moreover, define a random fieldM = (Ms; s ∈ S) with Ms =
∑W

j=1 I[Rj = s]. We call
M a cluster and eachRi , i = 1, . . . ,W, a point of the cluster, i.e.Ms counts how many
points in the cluster are equal tos.
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4. LetV be a Poisson random variable with meanD/α, and conditioned onV = n, if n > 0,
let M (1), . . . ,M (n) be mutually independent copies ofM . These clusters are gener-
ated by corresponding mutually independent ordered point processes (R(1)

1 , . . . ,R(1)
W1

),

(R(2)
1, . . . ,R

(2)
W2

), . . ., which are independent ofV.

5. The Poisson randomization is given by the random fieldN = (Ns; s ∈ S) with

Ns =

V∑

i=1

M(i)
s

counting how many points in all theV clusters are equal tos (settingNs = 0 if V = 0).

The validity of this Poisson randomization is stated and proven below.

Proposition 2. Let Condition II be satisfied. Then the random fieldN given by the Poisson
randomization 1.−5. has a probability generating function of the form (3.4), i.e.N ∼ per(α,C).

Proof. The proof in McCullagh and Møller (2006) of the validation ofthe Poisson random-
ization is based on density calculations. Below we give an alternative, short, and simple proof
based on the probability generating function.

Let zs ∈ [−1,1], s ∈ S. By the construction ofN in the Poisson randomization, and by first
conditioning onV, and next using thatV is Poisson distributed with meanD/α, we obtain

E
∏

s∈S
zNs

s = E
[(

E
∏

s∈S
zMs

s

)V
]
= exp

[D
α

(
E

∏

s∈S
zMs

s − 1
)]
. (3.33)

By the construction ofM and (3.32),

E
∏

s∈S
zMs

s =

∞∑

n=1

∑

(t1,...,tn)∈Sn

∏

s∈S
z
∑n

j=1 I[t j=s]
s p(t1, . . . , tn)

=
1
D

∞∑

n=1

∑

(t1,...,tn)∈Sn

1
n

n∏

j=1

zt jC̃(t j , t j+1)

=
1
D

(− log |I − ZC̃|) (3.34)

where the last identity follows from (3.7). Combining (3.31) and (3.33)-(3.34) yields

E
∏

s∈S
zNs

s = exp
[ 1
α

(
− log |I − ZC̃| + log |I − C̃|

)]
=

(
|I − C̃|/|I − ZC̃|

)1/α

which agrees with the probability generating function (3.2). �

Incidentally, ifC′ = αC is fixed, thenN |(NS⋆ > 0) can be seen to converge in distribution to
M asα→ ∞, cf. McCullagh and Møller (2006).
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Remark. The requirement of Condition II to be satisfied can be replaced by only requiring the
permanental random field to be infinitely divisible (which isimplied by Condition II). Infinite
divisibility has been characterized by Griffiths and Milne (1987). It implies both‖C̃‖ < 1
and that all cyclic products formed using̃C are non-negative. The latter property ensures the
density(3.32)is well-defined.

3.4.3 Simulation of the Poisson randomization

Let the situation be as in Section 3.4.2. Simulation of a realization from the Poisson random-
ization is straightforward if we know how to make a simulation of a cluster as given in steps
1.-2. This can be done by first generating a realizationW = n from (3.30), and then use the
following sequential simulation scheme. From (3.29) follows by induction that for anyn ∈ N,

pn−i(t1, . . . , tn−i) =
1

tr(C̃n)
C̃i+1(tn−i , t1)

n−i−1∏

j=1

C̃(t j , t j+1), i = 0,1, . . . ,n− 1,

where we set
∏n−i−1

j=1 · · · = 1 if i = n− 1. Hence, first we drawt1 from the probability density
function

p1(t1) ∝ C̃n(t1, t1)

and second, successively fori = 2, . . . ,n, sinceti |(t1, . . . , ti−1) ∼ ti |(t1, ti−1), we drawti from
the conditional probability density function

pi|1,i−1(ti |t1, ti−1) ∝ C̃n−i+1(ti , t1)C̃(ti−1, ti).

3.4.4 Examples

Example I (continued)

Let the situation be as in Section 3.2.3. IfQ has non-negative entries, the procedure for
simulation of a cluster (Section 3.4.3) simplifies, sinceC̃i = (ακ/(1 + ακ))iQ for any i ∈ N,
and the conditional probability density functions

pi|1,i−1(ti |t1, ti−1) ∝ Q(ti , t1)Q(ti−1, ti), i = 2, . . . ,n,

are of the same form.

Example III (continued)

Let the situation be as in Section 3.2.3. Table 3.1 summarizes some characteristics for each
of the simulated models in Figure 3.1. Here the correlation between neighboring sites is
straightforward to calculate, and for the real data the empirical estimate is reported. Further,V
is the number of clusters in a simulation, and from both its mean and its four simulated values
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Table 3.1: Parameter values and characteristics of the foursimulated random fields consid-
ered in Example III. The bottom two rows are observed quantities for the specific simulation
whereas the other values are calculated theoretically. Theright most column shows the empir-
ical mean and lag 1 autocorrelation of one of the real data sets from Augustin et al. (2006).

Simulation 1 2 3 4 Real data

(α, ρ) (1,0.75) (1,0.95) (10,0.75) (10,0.95) -
E(Ns) 1.28 1.28 1.28 1.28 1.28
Corr(Nsi ,Nsi+1) 0.316 0.507 0.522 0.837 0.508
E(V) 119 63 39 21 -
P(W = 1) 0.627 0.563 0.408 0.475 -
P(W ≤ 2) 0.793 0.706 0.575 0.623 -
P(W ≤ 10) 0.980 0.919 0.869 0.849 -
P(W ≤ 100) 1.000 0.999 0.994 0.975 -

V 130 62 45 20 -
W 2.29 5.85 8.18 34.9 -

it is clear that realizations ofV tend to be higher for smaller values ofα andρ. On the other
hand, realizations ofW, which denotes the size of a cluster, tends to be larger for larger values
of α andρ. This gives an intuitive understanding of how the dependence structure is created in
the Poisson randomization: Large values ofα lead to a small number of very large clusters, and
large values ofρ makes the correlation within the cluster high, such that a few close sites are
sampled many times in a cluster. Simulations 1 and 2 (α = 1) were also done using the double
stochastic construction of Section 3.4.1 to compare simulation time of the two algorithms. In
the Poisson randomization the most computer intensive partis calculating all the necessary
powers ofC̃ used both to simulate the cluster lengthW and in the simulation of a cluster, cf.
Sections 3.4.2-3.4.3. After this initialization repeatedsimulations of the random field are faster
and 1,000 simulations only take about 20 times longer to generate as the first simulation alone.
It is however much faster to use the double stochastic scheme, which for 1,000 simulations
took only 1/30 of the corresponding simulation time for the Poisson randomization.
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3.A Green’s matrices and tridiagonal matrices

We will need some results on Green’s matrices and tridiagonal matrices (sometimes called Ja-
cobi matrices). The results presented here are either from Karlin (1968) or direct consequences
of results herein.

A Green’s matrix is a symmetricn× n matrix G with Gi j = amin(i, j)bmax(i, j) for some
a1, . . . ,an,b1, . . . ,bn ∈ R. If G is invertible, then it is a Green’s matrix if and only if the
inverseT = G−1 is symmetric and tridiagonal.

For any n×n matrix A and any {i1, . . . , im} ⊆ {1, . . . ,n} we introduce the minor ofA,
mA(i1, . . . , im), as the determinant of the matrix obtained fromA by deleting all other rows
and columns thani1, . . . , im. If a symmetric tridiagonal matrixT is positive definite, any mi-
nor ofT is positive.

The (i, j)’th element of the inverseT−1 is given as the following (due to symmetry we only
need to specify the elements withi ≤ j). If i = j, then

T−1
i,i =

1
|T |mT(1, . . . , i−1, i+1, . . . ,n).

If i < j, then

T−1
i, j =

(−1) j+i

|T | mT(1, . . . , i−1)Ti,i+1Ti+1,i+2 · · ·T j−1, jmT( j+1, . . . ,n).

Consequently, a sufficient condition for all elements ofT−1 to be non-negative is that the off-
diagonal elements are non-positive andT is positive definite. This result is summarized in the
following lemma.

Lemma 1. Let T be a symmetric tridiagonal matrix. IfT is positive definite andTi, j ≤ 0 for
all i, j, thenT−1

i, j ≥ 0 for all i, j.
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Abstract:
This paper considers statistical inference procedures fora class of models for positively corre-
lated count variables calledα-permanental random fields, and which can be viewed as a family
of multivariate negative binomial distributions. Their appealing probabilistic properties have
earlier been studied in the literature, while this is the first statistical paper onα-permanental
random fields. The focus is on maximum likelihood estimation, maximum quasi-likelihood
estimation and on maximum composite likelihood estimationbased on uni- and bivariate dis-
tributions. Furthermore, new results forα-permanents and for a bivariateα-permanental ran-
dom field are presented.

Keywords:
α-permanent;α-permanental random field; composite likelihood; doubly stochastic construc-
tion; maximum likelihood; quasi-likelihood.

4.1 Introduction

Møller and Rubak (2010) provided a review of a class of modelsfor positively correlated
count variablesN = (N1, . . . ,Nm), which possess a number of appealing properties. This
model class was referred to asα-permanental random fields, since it is a special case of the
class of generalα-permanental point processes which have been the subject ofmuch research
interest in recent years, see Macchi (1971, 1975), Shirai and Takahashi (2003a,b), Georgii and
Yoo (2005), and McCullagh and Møller (2006). As each count variableNi follows a negative
binomial distribution, anα-permanental random field may be referred to as a multivariate
negative binomial distribution. The probabilistic properties of these multivariate distributions
have been studied in detail in Griffiths and Milne (1987), Vere-Jones (1997), and Møller and
Rubak (2010), but to the best of our knowledge no statisticalinference based on the models
have been conducted. In this paper we develop statistical inference procedures using the full
likelihood, quasi-likelihood or composite likelihoods.

Section 4.2 introduces the notation and provides the necessary background material. Sec-
tion 4.3 describes the inferential procedures, and Section4.4 illustrates their use for analyz-
ing two different data sets. Technicalities are deferred to Appendix 4.A, which, among other
things, establishes a new result concerning the joint density of any two count variables (Ni ,N j).

4.2 The α-permanental random field

This section contains a very brief introduction to the necessary background material about the
α-permanental random field. We mainly follow the notation andterminology of Møller and
Rubak (2010), and further details can be found therein.

We start by recalling the definition of theα-permanent of ann× n matrix A with entriesAi, j ,

perα(A) =
∑

σ∈Sn

αc(σ)A1,σ(1)A2,σ(2) · · ·An,σ(n),
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whereSn is the set of all permutations of 1, . . . ,n, andc(σ) denotes the number of cycles
in σ. In a more general setup, it may be convenient to work with therelatedα-determinant
detα(A) = αnper1/α(A) as in Møller and Rubak (2010), but it is not necessary here. In general
theα-permanent is very expensive computationally, and apart from a few special cases it can
only be approximated (see Appendix 4.A for details).

The distribution of anα-permanental random fieldN = (N1, . . . ,Nm) is specified by a positive
real parameterα and a realm× m matrix C, and we writeN ∼ per(α,C). Throughout this
paper we assume that the matrix

C̃ = αC(I + αC)−1 (4.1)

exists. As discussed below, further restrictions need to besatisfied by (α,C) or by (α, C̃) to
ensure the existence of the distribution per(α,C). Then, for

n = (n1, . . . ,nm) ∈ {0,1, . . .}m, n⋆ =
m∑

i=1

ni ,

the probability function is given by

p(n) =
|I − C̃|1/α∏m

i=1 ni !
per1/α(C̃[n]), (4.2)

whereC̃[n] is then⋆ × n⋆ block matrix obtained fromC̃ by repeating thei’th index ni times
(cf. Section 4.A.2 for further details). Marginally eachNi follows a negative binomial dis-
tribution with mean ENi = Ci,i and variance VarNi = Ci,i + αC2

i,i , i = 1, . . . ,m. Furthermore,
Cov(Ni ,N j) = αCi, jC j,i ≥ 0 for i , j, so all correlations are non-negative. The parameterα in-
fluences both the amount of over-dispersion and the strengthof correlation between variables.
In particular these decrease asα tends to zero and the limiting distribution is Poisson with
independent components regardless of the matrixC. No combination of parameters (α,C) ex-
ists such that the components ofN are Poisson variables with positive correlation. However,
over-dispersion without correlation is possible, in whichcase the components are independent
negative binomial variables. In other words, theα-permanental model is such that, if there is
correlation among the counts, over-dispersion will also bepresent. The over-dispersion factor
for eachNi is 1+ αE(Ni).

In this paper we mainly consider the case where the followingdoubly stochastic construction
applies: First, letX = (X1, . . . ,Xm) follow a certain multivariate gamma distribution denoted
Γm(α,C), where Proposition 4.5 in Vere-Jones (1997) gives a sufficient and necessary con-
dition for the existence of this multivariate gamma distribution, but the following sufficient
condition (C1) is simpler to use:

(C1) C is a covariance matrix andα ∈
(
0, 2

m−1

]
∪

{
2

m−2 ,
2

m−3 , . . . ,1,2
}
.

Under (C1),X is distributed as the diagonal of a Wishart matrix with 2/α degrees of freedom
and meanC, soXi is gamma distributed with EXi = Ci,i and Cov(Xi ,X j) = αCi, jC j,i (Møller
and Rubak, 2010, Section 4.1). Second, conditionally onX, let the Ni ’s be independent
Poisson random variables with E(Ni |Xi) = Xi .
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Under the doubly stochastic scheme, fork = 1,2, . . . and given an observation ofN = n, the
Bayes estimate of thek’th moment of the unknown meanXi is

E(Xk
i |n) =

1
p(n)

∫

R
m
+

xk
i p(n |x)p(x) dx

= (ni + 1) · · · (ni + k)
1

p(n)

∫

R
m
+

xni+k
i

(ni + k)!
e−xi

∏

j,i

[ x
n j

j

n j !
e−x j

]
p(x) dx

= (ni + 1) · · · (ni + k)
p(nk

i )

p(n)

=
per1/α(C̃[nk

i ])

per1/α(C̃[n])
, (4.3)

wheren = (n1, . . . ,nm) andnk
i = (n1, . . . ,ni−1,ni + k,ni+1, . . . ,nm). Furthermore, ifD is a

diagonal matrix with diagonal entriesDi,i =
√

ai whereai ≥ 0, then

(X1, . . . ,Xm) ∼ Γm(α,C) ⇒ (a1X1, . . . ,amXm) ∼ Γm(α,DCD). (4.4)

As noted in Vere-Jones (1997) the doubly stochastic construction is not necessary for the
existence of theα-permanental random field: there are (α,C) such that per(α,C) exists, but a
corresponding gamma random fieldΓm(α,C) does not exist. Another sufficient condition for
the existence of per(α,C) is

(C2) C̃ has non-negative entries and all eigenvalues have modulus less than 1

(Vere-Jones (1997); Møller and Rubak (2010)). When (C1) is satisfied, simulation of first
X and secondN is easily done by the doubly stochastic construction. If (C2) but not (C1)
is satisfied, a Poisson randomization can be used for simulation (Møller and Rubak, 2010,
Section 4.2).

4.3 Inference

4.3.1 Full likelihood

Given a realizationn of anα-permanental random field with a parametric model for the matrix
C = Cψ, whereψ is a reald-dimensional parameter, note thatC̃ = C̃θ depends onθ = (α, ψ),
cf. (4.1). In principle, we can evaluate the log-likelihood

ℓ(α, ψ;n) =
1
α

log |I − C̃θ | + log per1/α(C̃θ[n]) (4.5)

on a grid of (α, ψ) in order to obtain the maximum likelihood estimate (MLE) ( ˆα, ψ̂) (pro-
vided it exists). Further, for each grid point (α, ψ), we have access to the log-likelihood ratio
λ(α, ψ) = 2(ℓ(α̂, ψ̂) − ℓ(α, ψ)), which may be compared with quantiles of theχ2

d+1 distribution
to find approximate confidence regions.
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However, as mentioned previously and discussed in Appendix4.A, exact calculation of the
α-permanent is usually not tractable, and in fact even approximate calculation may be compu-
tationally expensive. Furthermore, the grid evaluation requires some knowledge of the range
of (α, ψ) values to include in the grid. Therefore we study compositelikelihoods which both
serve as a computationally simple method for inference in its own right and can be used for
initializing the grid evaluation of the full likelihood.

4.3.2 Composite likelihood

Composite likelihoods have been extensively studied in many connections, see e.g. Lindsay
(1988) and Cox and Reid (2004). Here we outline how compositelikelihood methods can be
used for theα-permanental random field model, using either the univariate or the bivariate
distributions.

Given an observationn and a parametric model as in Section 4.3.1, we define thefirst-order
composite log-likelihoodby

ℓ1(θ) =
m∑

i=1

log pi(ni | θ), (4.6)

wherepi is the marginal probability function forNi . It corresponds to the log-likelihood for
m independent negative binomial random variables. In this case likelihood inference can be
done using an iterative Newton-Raphson procedure and efficient software implementations
are readily available (Venables and Ripley, 2002, Section 7.4). Depending on the parametric
model for C, some parameters may be unidentifiable using this procedure, since only the
diagonal elements ofC enter in the first-order composite log-likelihood, as exemplified in
Section 4.4.1. Due to the computational simplicity of this composite log-likelihood, it is well
suited for initialization of the parameters in more complicated methods.

In a similar manner as above, we define thepairwise composite log-likelihoodby

ℓ2(θ) =
m−1∑

i=1

m∑

j=i+1

log pi, j(ni ,n j | θ), (4.7)

wherepi, j denotes the bivariate probability function for (Ni ,N j). These bivariate distributions
have been thought to be quite complicated, cf. the discussion in Griffiths and Milne (1987),
and previously it was not possible to use these bivariate distributions in practice. However,
in Appendix 4.A.2 we give a computationally simple formula for calculation of the relevant
α-permanent. The resulting bivariate probability functionis

pi, j(ni ,n j) =

(
ai

b

)ni
( a j

b

)n j
Γ( 1

α
+ ni)Γ( 1

α
+ n j)

b
1
α ni !n j !Γ( 1

α
)Γ( 1

α
)

ni∧n j∑

k=0

(
ni

k

)(
n j

k

)
k!Γ( 1

α
)

Γ( 1
α
+ k)

c2k, (4.8)



88 Statistical Inference for a Class of Multivariate Negative Binomial Distributions

where

ai = α
2(Ci,iC j, j −C2

i, j) + αCi,i , a j = α
2(Ci,iC j, j −C2

i, j) + αC j, j ,

b = α2(Ci,iC j, j −C2
i, j) + α(Ci,i +C j, j) + 1, c =

αCi, j√
aia j

.

This makes it practically feasible to implement the pairwise composite log-likelihood for sta-
tistical inference.

In many applications there is a distance function or neighbourhood structure attached to the
domain, or index set, of the field. For example, when modelingspatial regions some regions
will share a boundary and will be called neighbours. In this way there will also be a natural
notion of higher order neighbours, such that regions not sharing a boundary but with a common
neighbour are second order neighbours etc. The part of the pairwise composite log-likelihood
(4.7) corresponding to contributions fromk’th order neighbours is denoted

ℓ2
k(θ) =

∑

(i, j)∈P(k)

log pi, j(ni ,n j | θ),

whereP(k) denotes the set of distinct pairs (i, j) that arek’th order neighbours. It may then be
interesting to use thek’th order pairwise composite log-likelihood

ℓ2
<k(θ) =

k∑

l=1

ℓ2
l (θ).

Note that the pairwise composite log-likelihood defined in (4.7) corresponds to including
neighbours of all orders and we may writeℓ2(θ) = ℓ2

<∞(θ).

4.3.3 Quasi-likelihood

As an alternative to composite likelihood inference based on low dimensional marginal dis-
tributions as above we may consider inference based on low order moments. For anα-
permanental random field the factorial moments are given byα-permanents and are especially
tractable for low orders (see Vere-Jones, 1997; Møller and Rubak, 2010).

The quasi-likelihood as introduced by Wedderburn (1974) has been widely used in the liter-
ature and has a well developed asymptotic theory (cf. McCullagh, 1983). In the following
we detail how to apply quasi-likelihood methods forα-permanental random fields, and only
briefly recall the necessary general results.

As an initial step we construct a vector

Y = (Ni ,Ni(Ni − 1),Ni j ){i=1,...,m; i< j≤m},

and denote the length ofY by n. We do not necessarily include products of all pairs of counts
NiN j with j > i; we may only consider a subset based on neighbour relations.Note, that the
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meanµ = µ(θ) = Eθ(Y ) and the covariance matrixΣ = Σθ = Covθ(Y ) can be expressed in
terms of factorial moments of order at most 4, which are easily evaluated analytically.

Let D = Dθ be then×d derivative matrix with entriesDir = ∂µi/∂θr . Then the quasi-likelihood
estimating function forθ is

U (θ;Y ) = D⊤θ Σ
−1
θ (Y − µ(θ)),

which has zero expectation and covariance matrixV = Vθ = Cov(U ) = D⊤Σ−1D. The quasi-
likelihood estimator̂θ ≡ θ̂(Y ) is the root of the vector equationU (θ̂) = 0, which can be found
iteratively. Using a modified Newton-Raphson scheme the current estimatêθ(i) is updated to

θ̂(i+1) = θ̂(i) + V−1
θ̂(i)U (θ̂(i);Y ).

The iterative procedure is stopped once the estimate has converged within a specified toler-
ance. Under regularity conditions the quasi-likelihood estimator is asymptotically Gaussian
with covariance matrixV−1, which is calculated in each step of the iterative procedure. This
allows us to attach an asymptotic varianceV−1

θ
to the quasi-likelihood estimate.

4.4 Examples

4.4.1 One dimensional example

Figure 4.1 shows counts of clover leaves in 200 squares of size 5× 5 cm along a 10 m tran-
sect line as detailed in Augustin et al. (2006). This data canbe viewed as a realization of a
one-dimensional random field consisting of 200 sites on the real line, with positive association
expected between the counts due to the multiplicity of leaves per plant and the clustering of
plants in patches. We model the leaf countsN = (N1, . . . ,N200) asN ∼ per(α,C), where
Ci, j = κρ

|i− j| with 0 ≤ ρ ≤ 1 andκ ≥ 0. Then condition (C2) is satisfied (Møller and Rubak,
2010, Proposition 1). Furthermore, by arguments similar tothose used in the proof of Propo-
sition 1 in Møller and Rubak (2010), it can be shown that for all α > 0,C satisfies a regularity
condition (Vere-Jones, 1997, Proposition 4.5) implying the existence ofX ∼ Γm(α,C) so that
per(α,C) has a doubly stochastic construction, cf. Section 4.2. Therefore, it makes sense to
calculate the Bayes estimate Eθ(X |n) of the conditional intensity for all positiveα. The
Bayes estimate for the model using the MLE as found below is superimposed as a line in
Figure 4.1.

As an initial step in the parameter estimation we use the first-order composite log-likelihood.
Notice, sinceℓ1(α, κ, ρ) is independent ofρ, it is not possible to estimate this parameter using
ℓ1. Using the iterative Newton-Raphson procedure of Venablesand Ripley (2002), the estimate
of log(κ) is 0.247± 0.257 and the estimate of 1/α is 0.396± 0.141, where both estimates
are quoted plus/minus two standard errors. The point estimates correspond to κ̂ = 1.28 and
α̂ = 2.5. For a grid of parameter values evaluation of the full log-likelihood yielded the MLE
(α̂, κ̂, ρ̂) = (2.3,1.28,0.860). A three dimensional approximate 95% confidence regioncan
be found by calculating the likelihood ratioλ(α, κ, ρ) = 2(ℓ(α̂, κ̂, ρ̂) − ℓ(α, κ, ρ)) for all points



90 Statistical Inference for a Class of Multivariate Negative Binomial Distributions

0 50 100 150 200

0
2

4
6

8
10

Site

C
ou

nt

Figure 4.1: Counts of clover leaves in 200 square patches with Bayes estimate of the random
mean field superimposed as a line.

of the parameter grid and compare with the 95th percentile oftheχ2
3-distribution. Marginal

confidence intervals are (1.4,4.4) for α, (0.7,4.7) for κ, and (0.8,0.95) for ρ. To visualize
the confidence region in two dimensions Figure 4.2a shows a contour plot ofλ(α, κ̂, ρ) as a
function of (α, ρ) with κ fixed at the MLE ˆκ = 1.28. The contours are based on the 50th,
95th, and 99th percentile of theχ2

3-distribution. Figures 4.2b-4.2d are similar contour plots
based onℓ2

1, ℓ2
9 andℓ2

<∞ with κ fixed at κ̂ = 1.28. In these plots the contours are no longer
related to any confidence regions. It is clear thatℓ2

1 in Figure 4.2b determinesρ quite well,
and the higher order neighbour pairs do not contain much information aboutρ. A plot of
the empirical autocorrelation function (not shown) reveals that it is negative for neighbours
of order 9, which explains the shape of the contour plot in Figure 4.2c, where the maximum
is at ρ = 0. The pairwise composite log-likelihood with neighbours of all orders is a sum
of many composite log-likelihoods, whereρ is poorly determined for the majority of them,
which causes the shape of the contour plot in Figure 4.2d. However, the point estimates of
the parameters other thanρ do not change much when inference is based onℓ2

<k for growing
k. Based onℓ2

<2 the estimates are ( ˆα, κ̂, ρ̂) = (2.5,1.28,0.860) whereasℓ2
<∞ yields the point

estimates ( ˆα, κ̂, ρ̂) = (2.5,1.28,0.855).

Using the modified Newton-Raphson scheme described in Section 4.3.3 the quasi-likelihood
estimates (with corresponding two standard errors) are found to beα̂ = 2.2±1.5, κ̂ = 1.35±0.7
andρ̂ = 0.85±0.16 when only first order neighbours are used. The quasi-likelihood estimates
only change slightly when higher order neighbours are used,and they are not quoted here.

The full likelihood calculations have been carried out using the Monte Carlo (MC) importance
sampling algorithm of Kou and McCullagh (2009), which provides an estimate of both the
α-permanent in (4.5) and the standard error of this estimate.We used 105 samples, giving
an average relative error (ratio of the standard error and the estimate) of 0.077. As noted in
Kou and McCullagh (2009), their algorithm is especially well suited for estimating ratios of
α-permanents as required in the Bayes estimate (4.3). For thecalculation used for obtaining
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Figure 4.2: Contour plot of (a) the full log-likelihood,ℓ(θ), compared with contour plots of the
pairwise composite log-likelihood with (b) first order neighbours only,ℓ2

1(θ); (c) ninth order
neighbours only,ℓ2

9(θ); (d) neighbours of all orders,ℓ2
<∞(θ). For all the plotsκ is fixed at the

MLE κ̂ = 1.28.
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Figure 4.1, 104 MC samples were sufficient.

It is possible to perform model validation based on simulation using the Poisson randomiza-
tion (Møller and Rubak, 2010, Section 4.2). We simulated 100realizations from the model
using the MLE, and checked some properties of the data against the simulated realizations. A
characteristic feature for the data is the large number of zeros overall and the apparent cluster-
ing of the zeros. For example, the average total number of zeros in the simulated realizations
was 111 with the first and third quartile at 103 respectively 119, while data has 114 zeros.
The largest cluster of zeros in data is 13 where the simulatedrealizations have an average of
12 with the first and third quartile at 10 respectively 15. Besides the simulation based vali-
dation we also checked empirical first and second order moments of data with the theoretical
moments of the fitted model, and they also revealed a very goodfit.

In conclusion any of the proposed estimation methods provide good point estimates, but in
particular the composite likelihood based approach including neighbours of all orders has a
big information loss about the correlation parameterρ. When it is computationally feasible,
as it was the case here, using the full likelihood is preferred.

4.4.2 Disease mapping

Choo and Walker (2008) presented a so-called multivariate Poisson-Gamma (MPG) model to
investigate the spatial variations of casesn = (n1, . . . ,nm) of testis cancer in them= 19 mu-
nicipalities of the county of Frederiksborg in Denmark, where corresponding expected values
e = (e1, . . . ,em) based on the population and age structures are treated as covariates. For illus-
trative purposes, we present another approach usingα-permanental random fields and leading
to the perhaps surprising conclusion that there is little evidence in these data of either over-
dispersion or spatial correlation.

The parameters of interest are the incidence ratiosγi , i = 1, . . . ,m, which indicate whether
municipality i has an over-representation of testis cancer (γi > 1) or not (0< γi ≤ 1). Specif-
ically, conditional onΓ = (γ1, . . . , γm), we assume the data is a realization of independently
Poisson distributed countsNi with E(Ni |Γ) = γiei , i = 1, . . . ,m. The raw estimates are given
by γ̂i = ni/ei , which agree with the MLE ifΓ is a deterministic parameter vector. However,
typically Γ would be treated as a random field with spatial dependence, cf. Choo and Walker
(2008) and the references therein.

Before proceeding any further, some general remarks about modeling of this type of spatial
epidemiological data are needed. In principle, each countNi can be viewed as the aggregation
over an areaAi of an underlying point process specifying the domestic location of each indi-
vidual diagnosed with the disease. It would be natural to specify a Cox point process model
for this underlying data process, where the random intensity at locationx, γ(x) has meane(x),
which is the known age-adjusted population density atx. Then, conditional onγ the countsNi

are independent Poisson variables with mean
∫

Ai
γ(x) dx. The distributional properties of this

integral are usually intractable, and it is a well-known unsolved problem in the literature to
specify a point process model where inference based on aggregated count data is tractable (see
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Richardson, 2003; Møller, 2003). A common approach, which we follow here, is simply to
specify a model directly in terms of the aggregated data without considering a consistent un-
derlying point process model. However, an important point to be derived from this discussion
is that the model should respect geographic integrity, namely that the marginal distribution for
a subset of the aggregated data should belong to the same class.

We assumeΓ∼Γm(α,R) whereR is a correlation matrix. This ensures that E(Ni) = E(γiei) = ei ,
as one may naturally require. LetC = DRD with D diagonal andDi,i =

√
ei . We consider a

doubly stochastic construction as in Section 4.2 withX = DΓD ∼ Γm(α,C) andN ∼ per(α,C),
cf. (4.4). Moreover, assuming thatα ∈

(
0, 2

m

]
∪

{
2

m−1 ,
2

m−2 , . . . ,2
}
, condition (C1) is satisfied,

and so the model is well defined.

The final stage of the model is to specify the off diagonal entries ofR which determine the
correlation structure of the model. A natural approach is touse a neighbourhood relation
when specifyingR, and we assume that

Ri, j =

{
ρ if i ∼ j
0 otherwise,

(4.9)

where for the present data,i ∼ j indicates that municipalitiesi and j share a border. Care
must be taken to ensureR is indeed semi-definite; we realized empirically thatR is only semi-
definite if 0 ≤ ρ ≤ ρc, whereρc ≤ 1 is a critical value depending on the neighbourhood
structure. The critical value can be approximated before any inference is carried out, e.g. by
using a spectral decomposition, which for the data at hand revealedρc ≈ 0.416.

In the special caseρ = 0, the model reduces tom independent negative binomial random vari-
ables, and so the full log-likelihood is equivalent to the first-order composite log-likelihood.
For this modelα is the only parameter, and it is straightforward to find the Bayes estimates

E(γi |n) =
1+ α̂ni

1+ α̂ei
i = 1, . . . ,m.

The MLE of 1/α is 36.2 ± 69.2 leading to the point estimate ˆα = 0.0277. The large value
of twice the standard error indicates that a negative binomial model is not necessary and a
likelihood ratio test against the simpler Poisson null model is performed. The negative bino-
mial model has−2ℓ(α̂) = 107.66 whereas the Poisson model (corresponding toα = 0) has
−2ℓ(0) = 105.44, and the likelihood ratio test yields ap-value of about 14%. Similarly, the
standard Pearsonχ2 test for over-dispersion yields the test statistic of

∑
(ni − ei)2/ei = 25.5 on

18 degrees of freedom, for ap-value of about 11%. In other words, there is little evidenceof
either over-dispersion or spatial correlation.

If ρ is included as a parameter in the model, either full, quasi- or pairwise composite likelihood
inference can be used. However, in this example the MC importance sampling algorithm of
Kou and McCullagh (2009) used to estimate theα-permanent performs poorly; even for a very
large number of MC samples (108) the standard error of the estimate is relatively large. On
the other hand, both quasi- and pairwise composite likelihood inference is fast and does not
require any approximation (apart from the inherent surrogate nature of these methods).
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For the quasi-likelihood iterative schemeρ quickly approaches zero at which point the covari-
ance matrixV becomes singular, so no standard errors can be given. However, α stabilizes at
0.027± 0.064 making it clear thatα = 0 is well within two standard errors of the estimate.
Figure 4.3a shows a contour plot of the pairwise composite log-likelihood based on first order
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Figure 4.3: Contour plots based on pairwise composite log-likelihood using (a) first order
neighbours only (b) neighbours of all orders.

neighbours only, whereas the contour plot in Figure 4.3b is based on neighbours of all orders.
Notice that in both cases the correlation parameterρ is poorly determined and the maximal
composite likelihood value is attained atρ = 0 confirming the findings of the quasi-likelihood
method. Furthermore, it appears that Figure 4.3b contains less information aboutρ than Fig-
ure 4.3a. This is explained by the fact thatρ only enters in bivariate distributions of directly
neighbouring sites, and all the terms ofℓ2

<∞ not appearing inℓ2
1 are independent ofρ. The esti-

mate ofα is respectively 0.0165 and 0.0268 when usingℓ2
1 andℓ2

<∞. Thus, it seems preferable
to useℓ2

<∞ to estimateα since it yields an estimate close to the MLE forρ = 0.

For this dataset the main interest is in estimating the incidence ratiosγi , which is done by
calculating the Bayes estimates Eθ̂(γi |n) under the fitted model. Table 4.1 lists these estimates
for each model as well as the estimates for the MPG model in Choo and Walker (2008).
The model withρ = ρc is included for illustrative purposes and for both this model and the
independent negative binomial model withρ = 0 the value ofα is fixed at 0.0277. The
table reveals that estimates based on the MPG model are closeto estimates based on the the
independent negative binomial model lending further support to the findings that a complex
model is unnecessary for this particular dataset. In conclusion, it appears that it suffices to use
the model with no spatial dependence between incidence ratios, which was not touched upon
by Choo and Walker (2008).
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Table 4.1: Bayes estimates of the incidence ratios for the two α-permanental models with
ρ = ρc andρ = 0 compared with raw Poisson estimates and MPG estimates of Choo and
Walker (2008).

ni ei raw ρ = 0 ρ = ρc MPG
Allerød 18 17.61 1.02 1.01 0.97 1.01

Birkerød 17 18.20 0.93 0.98 1.01 1.00
Farum 14 13.65 1.03 1.01 1.02 0.99

Fredensborg-Humlebæk 14 14.29 0.98 0.99 0.97 0.93
Frederikssund 21 13.17 1.59 1.16 1.17 1.14
Frederiksværk 14 14.63 0.96 0.99 0.99 0.98

Græsted-Gilleleje 13 12.38 1.05 1.01 0.98 0.93
Helsinge 8 13.66 0.59 0.89 0.89 0.86

Helsingør 31 47.18 0.66 0.81 0.81 0.73
Hillerød 28 27.23 1.03 1.01 1.00 0.98

Hundested 8 6.44 1.24 1.04 1.22 1.03
Hørsholm 28 17.04 1.64 1.21 1.03 1.23
Jægerspris 4 6.05 0.66 0.95 0.98 0.97

Karlebo 12 13.78 0.87 0.96 1.01 0.99
Skibby 6 4.57 1.31 1.03 1.10 1.09

Skævinge 6 4.28 1.40 1.04 0.98 1.02
Slangerup 3 6.44 0.47 0.92 1.05 0.95

Stenløse 13 10.47 1.24 1.05 0.95 1.05
Ølstykke 14 10.93 1.28 1.06 1.06 1.11

To calculate the Bayes estimates for the model withρ = ρc, ratios ofα-permanents are again
needed, but this poses no significant problem, since the MC importance sampling algorithm
estimates these well even though the individualα-permanents are difficult to estimate.

4.5 Discussion

For the dataset of counts of clover leaves in Section 4.4.1 the α-permanental random field
model with an exponential covariance matrix provides a goodfit. Estimation based on both
the full, quasi- and pairwise composite likelihood gives similar point estimates, but the shape
of the pairwise composite likelihood is sensitive to the choice of neighbourhood order included
in the model. This adds the disadvantage of having to choose the neighbourhood order when
using the pairwise composite likelihood, while the quasi-likelihood appears to be less sensi-
tive to this choice. In the analysis of this dataset, it is noticeable that the Bayes estimate of
the random mean field in Figure 4.1 is spiky, which may be caused by the choice of covari-
ance model. An immediate advantage of using the exponentialcovariance model is that the
α-permanental model is well defined for all values ofα ≥ 0. For a general covariance model
the largest generally admissible value ofα is 2. However, it may be possible to find covariance
models allowing forα > 2 as it was the case for the exponential covariance model. Alterna-
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tively, it may be possible to obtain a good fit withα fixed at 2 using an alternative covariance
model of e.g. polynomial type, which would be expected to yield a smoother Bayes estimate
of the random mean field.

The dataset of testis cancer cases in Section 4.4.2 illustrates a simple yet important fact: There
is little point in using a complicated model with over-dispersion and spatial dependence if the
data shows evidence of neither. However, the example still allows us to illustrate the potential
use of theα-permanental model for disease mapping.
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4.A Evaluating α-permanents

In this appendix we both present some general results forα-permanents (Appendix 4.A.1)
and some results on simple patterned matrices (Appendices 4.A.2-4.A.3) as well as illustrate
how an existing algorithm for approximatingα-permanents in some cases may be improved
(Appendix 4.A.4).

4.A.1 Preliminary results

Here we give a few general results forα-permanents, which we will need later.

Expansion by sums of cyclic products

For any positive integern let In = (1, . . . ,n), and let I0 denote the “empty subsequence”.
Given a positive integerm ≤ n, let I = (i1, . . . , im) be an ordered subsequence ofIn meaning
that 1≤ i1 < · · · < im ≤ n, and letI c = ( j1, . . . , jn−m) denote the complementary subsequence
so that{i1, . . . , im} and{ j1, . . . , jn−m} are disjoint with union{1, . . . ,n}. For any suchI we let
I(r, I ) denote the class of ordered subsequences ofI of length r ≥ 0 using the convention
I(0, I ) = {I0}.

For anyn × n matrix A, we defineAI as them× m submatrix ofA with (k, l)’th entry Aik,i l .
Furthermore, we let cyp(AI ) denote the sum of cyclic products of length|I | = m formed from
AI . Thus, cyp(AI ) is a sum over (m− 1)! terms, and if e.g.m= 3 we have

cyp(AI ) = Ai1,i2Ai2,i3Ai3,i1 + Ai1,i3Ai3,i2Ai2,i1.

Maybee and Quirk (1969) provides the following formula for calculating the determinant of a
n× n matrix A.

Theorem 1. For n > 1 and any fixedI ∈ I(n−1, {1, . . . ,n}),

|A| = AIc,Ic |AI | +
n−2∑

r=0

(−1)n−1−r
∑

J∈I(r,I )

|AJ|cyp(AJc),

where we define|A∅| = 1.

This result extends straightforwardly toα-permanents.

Corollary 1. For allα ∈ R, n > 1 and any fixedI ∈ I(n−1, {1, . . . ,n}),

perα(A) = αAIc,Icperα(AI ) +
n−2∑

r=0

∑

J∈I(r,I )

αperα(AJ)cyp(AJc). (4.10)

where we define perα(A∅) = 1.
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Proof. From Theorem 1 we know that the right hand side of (4.10) has all the n! terms of the
form A1,σ(1) · · ·An,σ(n) and we only need to verify each term is weighted correctly. The first
term on the right hand side of (4.10) is

αAIc,Icperα(AI ) = αAIc,Ic

∑

σ∈Sn−1

αc(σ)
n−1∏

i=1

(AI )i,σ(i),

and sinceAIc,Ic introduces a new cycle to all terms the weighting withαc(σ)+1 is correct. The
rest of the terms are

n−2∑

r=0

∑

J∈I(r,I )

αperα(AJ)cyp(AJc) =
n−2∑

r=0

∑

J∈I(r,I )

α
∑

σ∈Sr

αc(σ)
r∏

i=1

(AJ)i,σ(i)cyp(AJc)

and since again exactly one new cycle is introduced by the cyclic product the weight is correct.
�

Expansion by cofactors

Let A be an × n matrix. By isolating a given elementAr,s of perα(A) it is obvious that the
coefficient of Ar,s depends only on the elements of the reduced matrix of ordern − 1 with
row r and columns deleted. However, the coefficient is in general not theα-permanent of the
reduced matrix, and Vere-Jones (1997) remarks that no simple cofactor expansion of perα(A)
is known. However, in the following we give a cofactor expansion by a slight modification of
the recipe for determinants. The (r, s) minor is a square matrixAr,s of ordern − 1 obtained
from A in two steps as follows: First switch rowsr and s; then delete columns and rows
(row r from the original matrix). The switching of rows is not a partof the standard definition
of a minor, but it is needed forα , ±1 to maintain the cycle structure, and is done prior to
deletion to avoid ambiguity about labelling. Ifr = s, the first step is nugatory; otherwise if
r , s the symmetrically opposed componentAs,r occurs on the diagonal ofAr,s, and every
other element on the diagonal of the minor also occurs on the diagonal ofA. The components
of the cofactor matrix cofα(A) are defined as

cofα(A)r,s =

{
αperα(Ar,s) r = s
perα(Ar,s) otherwise.

On rowr, the cofactor expansion of theα-permanent is

perα(A) = αAr,rperα(Ar,r ) +
∑

s,r

Ar,sperα(Ar,s)

=

n∑

s=1

Ar,s cofα(A)r,s. (4.11)

Although the definition of a minor has been modified to suit thegeneral case, forα = −1 this
reduces to the standard cofactor expansion of a determinant.
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4.A.2 Block matrices

Evaluating multivariate negative binomial probabilitiesinvolves theα-permanent of a block
matrix, which are studied in this appendix. For anym×mmatrix A and non-negative integers
n = (n1, . . . ,nm), let n⋆ =

∑m
i=1 ni and define the block matrixA[n] as then⋆ × n⋆ matrix

obtained fromA by repeating indexi ni times. For example, ifm= 4 andn = (2,0,1,3)

A[n] = A[(2,0,1,3)] =



A1,1 A1,1 A1,3 A1,4 A1,4 A1,4

A1,1 A1,1 A1,3 A1,4 A1,4 A1,4

A3,1 A3,1 A3,3 A3,4 A3,4 A3,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4

A4,1 A4,1 A4,3 A4,4 A4,4 A4,4



.

We callA the generating matrix,n the block sizes, andA[n] a m-dimensional block matrix.

One-dimensional block matrices

WhenA is a 1× 1 matrix with elementa and the block size isn we haveA[n] = a1n, where1n

is then× n matrix whose elements are all one. This matrix hasα-permanent

perα(1n) = α↑n = α(α + 1) · · · (α + n− 1),

called the ascending factorial function. Furthermore, perα(A[n]) = anα↑n.

Block-diagonal matrices

For a general block-diagonal matrix it is easy to verify thattheα-permanent is the product of
theα-permanent of the blocks. The special block diagonal matrixwith constant blocks can be
written asA[n], where the generatorA is a diagonal matrix with diagonal (a1, . . . ,am), and in
this case we have

perα(A[n]) =
m∏

i=1

perα(ai1ni ) =
m∏

i=1

ani
i α
↑ni .

Two-dimensional block matrix

For two-dimensional block matrices we have the following result allowing efficient calculation
of theα-permanent.

Proposition 1. Let A be a 2× 2 matrix and define

ρ =
A1,2A2,1

A1,1A2,2
.
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Then

perα(A[n1,n2]) = An1
1,1An2

2,2α
↑n1α↑n2

n1∧n2∑

j=0

n↓ j
1 n↓ j

2 ρ j

j! α↑ j
, (4.12)

where we defineα↑n1α↑n2/α↑ j = 0 when both the numerator and denominator is zero,
n↓ j = n(n− 1) · · · (n− j + 1), n↓0 = 1 andα↑0 = 1. Thus,n↓n = 1↑n = n! and perα(A[0,0]) = 1.

Proof. As a preliminary, we note the following property of the ascending factorial function:

n∑

r=0

α↑(k+r)/r! =
α↑(n+k+1)

n! (α + k)
(4.13)

for non-negative integerk such thatα+k , 0. If k = 0 the sum is (α+1)↑n/n!, which is readily
established by induction onn. The result for generalk then follows fromα↑(k+r) = α↑k(α+k)↑r .

Any 2× 2 matrixA can be factorized as

A = DRD=

[
d1 0
0 d2

] [
1 ρ1

ρ2 1

] [
d1 0
0 d2

]
,

where d1,d2, ρ1, ρ2 are the (possibly complex) numbers satisfyingd2
1 = A1,1, d2

2 = A2,2,
ρ1 = A1,2/(d1d2), andρ2 = A2,1/(d1d2). Then it can be verified that

perα(A[n1,n2]) = An1
1,1An2

2,2perα(R[n1,n2]), (4.14)

and therefore to prove (4.12) it is sufficient to show that

perα(R[n1,n2]) = α↑n1α↑n2

n1∧n2∑

j=0

n↓ j
1 n↓ j

2 ρ j

j! α↑ j
(4.15)

with ρ = ρ1ρ2.

For n2 > 0, let S[n1,n2] be the matrix obtained fromR[n1,n2] by replacing the first row by
the last row. ThenS is square but asymmetric, and the cofactor expansion gives the bivariate
permanental recurrence relation

perα(R[n1 + 1,n2]) = (α + n1)perα(R[n1,n2]) + n2ρ12perα(S[n1 + 1,n2 − 1]),

perα(S[n1 + 1,n2]) = (α + n1)ρ21perα(R[n1,n2]) + n2perα(S[n1 + 1,n2 − 1]).

For successively smaller values ofn2, repeated substitution of the second expression into the
first eliminates perα(S[...]), giving the linear recurrence relations

perα(R[n1 + 1,n2]) = (α + n1)perα(R[n1,n2]) + ρ(α + n1)
n2∑

i=1

n↓i2 perα(R[n1,n2 − i]), (4.16)

one equation for eachn1,n2 ≥ 0. These equations are linearly independent of full rank, and
have a unique solution for any given boundary value perα(R[0,0]). It follows immediately that
perα(R[n,0]) = α↑nperα(R[0,0]), so the desired boundary value is one.
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On the assumption thatn2 ≤ n1, we now show that (4.15) is a solution of the system of linear
equations (4.16). We start by noticing from (4.16) thatα↑n1 is a common factor in all terms of
perα(R[n1,n2]) implying perα(R[n1,n2]) = 0 whenα is a non-positive integer bigger than−n2.
This proves the claim for these values ofα and in what follows we consider all other values of
α. After substituting (4.15), the right side of (4.16) becomes

α↑n1+1α↑n2

n2∑

j=0

n↓ j
1 n↓ j

2

j!
ρ j

α↑ j
+ ρα↑n1+1

n2∑

i=1

n↓i2 α
↑n2−i

n2−i∑

j=0

n↓ j
1 (n2 − i)↓ j

j!
ρ j

α↑ j

= α↑n1+1α↑n2

n2∑

j=0

n↓ j
1 n↓ j

2

j!
ρ j

α↑ j
+ ρα↑n1+1

n2−1∑

j=0

(
n1

j

)
ρ j

α↑ j

n2− j∑

i=1

n↓i2 α
↑n2−i(n2 − i)↓ j .

On account of the ascending factorial identity (4.13), the final sum reduces to

n2− j∑

i=1

n↓i2 α
↑n2−i(n2 − i)↓ j = α↑n2n2!/((α + j)(n2 − j − 1)!) = α↑n2n↓ j+1

2 /(α + j),

which simplifies the preceding expression to

α↑n1+1α↑n2

n2∑

j=0

(
n1

j

)
n↓ j

2 ρ j

α↑ j
+ ρα↑n1+1α↑n2

n2−1∑

j=0

(
n1

j

)
n↓ j+1

2 ρ j

(α + j)α↑ j

= α↑n1+1α↑n2

n2∑

j=0

(
n1

j

)
n↓ j

2 ρ j

α↑ j
+ α↑n1+1α↑n2

n2−1∑

j=0

(
n1

j

)
n↓ j+1

2 ρ j+1

α↑ j+1

= α↑n1+1α↑n2

n2∑

j=0

(
n1

j

)
n↓ j

2 ρ j

α↑ j
+ α↑n1+1α↑n2

n2∑

j=1

(
n1

j − 1

)
n↓ j

2 ρ j

α↑ j

= α↑n1+1α↑n2

n2∑

j=0

(
n1 + 1

j

)
n↓ j

2 ρ j

α↑ j
,

showing that (4.15) satisfies the permanental recurrence equations (4.16). Since the recurrence
equations are linear, any solution satisfying the desired boundary condition perα(A[0,0]) = 1
is necessarily unique. �

Proposition 1 can be combined with the result on block-diagonal matrices (Section 4.A.2) to
calculate theα-permanent of a block-diagonal matrix where each block possibly is a two-
dimensional block matrix.

The ordinary permanent (α = 1)

For a generalm-dimensional block matrix we have the following result in the special case
α = 1, for which theα-permanent reduces to the ordinary permanent (Minc, 1978).
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Proposition 2. Let A[n] be am-dimensional block matrix with block sizesn = (n1, . . . ,nm).
Further, letTn denote the set of all two way tablesk = {ki j }i, j=1,...,m, ki j ∈ N0 with row and
column totalsn1, . . . ,nm. Then

per1(A[n]) =
∑

Tn

m∏

i=1

(ni !)
2

m∏

i, j=1

A
ki j

i, j

ki j !

Proof. By definition,

per1(A[n]) =
∑

σ∈Sn⋆

A[n]1,σ(1) · · ·A[n]n⋆,σ(n⋆).

In each term of the sum thei’th row index must occur exactlyni times and thej’th column
index must occur exactlyn j times. This makes it clear that each term in the sum is of the form

m∏

i=1

m∏

j=1

A
ki j

i, j , where
m∑

j=1

ki j = ni and
m∑

i=1

ki j = n j . (4.17)

The question is how many times each term of this form occurs inthe sum over all permutations.
First k11 A1,1’s must be chosen fromA[n], which can be done in

n1n1 · (n1 − 1)(n1 − 1) · · · (n1 − k11+1)(n1 − k11 + 1)
k11!

ways. When these are chosen we must choosek12 A1,2’s, which can be done in

(n1 − k11)n2 · (n1 − k11 − 1)(n2 − 1) · · · (n1 − k11 − k12 + 1)(n2−k12 + 1)
k12!

ways. We can continue in this fashion and finally find the number of ways to choose thek1m

A1,m’s. Then we can start a new row and find that thek21 A2,1’s can be chosen in

n2(n1 − k11) · (n2 − 1)(n1 − k11 − 1) · · · (n2 − k21 + 1)(n1 − k11 − k21 + 1)
k21!

ways. Continuing in this fashion we see that fori, j = 1, . . . ,m the number of ways to choose
theki j Ai j ’s is

(ni−ki1−· · ·−ki, j−1)(n j−k1 j−· · ·−ki−1, j)· · ·(ni−ki1−· · ·−ki j+1)(n j−k1 j−· · ·−ki j+1)

ki j !
. (4.18)

To find the coefficient for the term in (4.17) we need to take the product overi, j = 1, . . . ,mof
(4.18). The product of the numerators simplifies considerably and we end up with

∏m
i=1(ni !)2

∏m
i=1

∏m
j=1 ki j !

,

and so the result follows. �
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In the two-dimensional case Proposition 2 extends toα > 0 as detailed in Section 4.A.2. It is
plausible that this is also the case in them-dimensional case. More precisely, if we as in the
proof of Proposition 1 consider am×m matrixRwith unit diagonal we conjecture

perα(R[n]) =
m∏

i=1

(ni !α
↑ni )

∑

Tn

m∏

i, j=1

R
ki j

i, j

ki j !
P(k, α)

whereP is a (hopefully simple) rational function ink andα necessarily satisfyingP(k,1) = 1.
However, we have not yet been able to establish the correct form for P even though some
promising patterns have been found in low dimensional examples.

4.A.3 Penta-diagonal matrices

This section generalizes the efficient algorithm of Sweet (1969) for computing the determinant
of a penta-diagonal matrix to the more general case of theα-permanent. The development
follows the same lines as Sweet (1969).

Let A be an× n penta-diagonal matrix (i.e.Ai, j = 0 for |i − j| > 2) and letn > 3. By applying
Corollary 1 withI = In−1 = (1, . . . ,n− 1) we have

perα(A) = αAn,nperα(AIn−1) +
n−2∑

r=0

∑

J∈I(r,In−1)

αperα(AJ)cyp(AJc).

Note that forJ ∈ I(r, In−1) the subsequenceJc always containsn. If |Jc| ≥ 3 (i.e.r ≤ n− 3) the
only subsequencesJc giving rise to non-zero cyclic products are of the form
Jc = I c

r = (r + 1, . . . ,n). This can be seen by considering a subsequence of the form
J̃ = (r, . . . , r + j − 1, r + j + 1, . . . ,n). In order to make a cyclic productAi1,i2 · · ·Air ,i1 non-
zero usingJ̃ as index set, we have to choose the elementAr+ j−1,r+ j+1, but then we have no way
of connecting the upper and lower end of the index set withouthaving a difference of more
than two in the indices leading to one of the elements being zero.

Whenr = n−2 such that|Jc| = 2 the only non-zero two-cycles clearly arise whenJc = (n−1,n)
andJc = (n− 2,n). Consequently we have

n−2∑

r=0

∑

J∈I(r,In−1)

αperα(AJ)cyp(AJc)

= αAn−1,nAn,n−1perα(AIn−2) + αAn−2,nAn,n−2perα(A(1,...,n−3,n−1))

+

n−3∑

r=0

αperα(AIr )cyp(AIc
r
).

If we consider perα(A(1,...,n−3,n−1)) similar arguments as above yield

perα(A(1,...,n−3,n−1)) = αAn−1,n−1perα(AIn−3) + αAn−3,n−1An−1,n−3perα(AIn−4).
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Finally we need to analyze the sum of cyclic products cyp(AIc
r
) when 0≤ r ≤ n − 3. In this

case whenn− r is even the only two non-zero terms in the sum are

cyp(r,n) = Ar+1,r+2Ar+2,r+4 · · ·An−2,nAn,n−1An−1,n−3 · · ·Ar+5,r+3Ar+3,r+1,

cypt(r,n) = Ar+1,r+3Ar+3,r+5 · · ·An−3,n−1An−1,nAn,n−2 · · ·Ar+4,r+2Ar+2,r+1,

and whenn− r is odd

cyp(r,n) = Ar+1,r+2Ar+2,r+4 · · ·An−3,n−1An−1,nAn,n−2 · · ·Ar+5,r+3Ar+3,r+1,

cypt(r,n) = Ar+1,r+3Ar+3,r+5 · · ·An−2,nAn,n−1An−1,n−3 · · ·Ar+4,r+2Ar+2,r+1.

To ease the notation we let

ai = Ai,i , i = 1, . . . ,n

bi = Ai,i+1Ai+1,i , i = 1, . . . ,n−1

βi = Ai,i+2Ai+2,i , i = 1, . . . ,n−2

pαi = perα(AI i ), i = 0, . . . ,n,

when stating the formula in the following corollary.

Corollary 2. Let A be an × n penta-diagonal matrix withn > 3. Then, using the notation
from above,

pαn = αanpαn−1+αbn−1pαn−2+α
2βn−2an−1pαn−3+α

2βn−2βn−3pαn−4+

n−3∑

r=0

αpαr (cyp(r,n)+cypt(r,n)).

This gives an easy way to recursively calculate theα-permanent of a penta-diagonal matrix,
and if we also assume thatbi , 0, i = 1, . . . ,n − 1, we can simplify the calculations further.
This follows the exact same lines as for the regular determinant in Sweet (1969), and we leave
out the details in the following. The key idea is that the cyclic products of length greater than
three can be written in terms of shorter cyclic products. Using the notation

ci = Ai,i+1Ai+1,i+2Ai+2,i ,

ct
i = Ai,i+2Ai+2,i+1Ai+1,i ,

for i = 1, . . . ,n−2 we have that

cyp(r,n) =



cr+1ct
r+2···cn−3ct

n−2
b2b3···bn−2

for n− r even
cr+1ct

r+2···cn−4ct
n−3cn−2

b2b3···bn−2
for n− r odd.

The recursive algorithm for calculating theα-permanent is then:
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Setp−1 = 0, p0 = 1, p1 = αa1,1, p2 = α
2a1,1a2,2 + αb1, ǫ−1 = e−1 = 0, and compute

ρk−2 = ak−1pk−3 + βk−3pk−4,

ǫk−3 = pk−3 +
ct

k−3

bk−2
ek−4,

ek−3 = pk−3 +
ck−3

bk−2
ǫk−4,

pk = αakpk−1 + αbk−1pk−2 + α
2βk−2ρk−2 + αck−2ǫk−3 + αct

k−2ek−3.

4.A.4 Approximating the α-permanent

As mentioned previously, the exact calculation of theα-permanent is in general computa-
tionally intractable apart from the special cases treated in the previous sections, but it can be
approximated using the importance sampling scheme of Kou and McCullagh (2009). Using
this method approximation of theα-permanent in e.g. the log-likelihood (4.5) is feasible for
datasets with a moderate total number of countsn⋆ (of the order a couple of hundreds). In
the following we will discuss how the introduction of a control variate (see Hammersley and
Handscomb (1964)) potentially can improve the performanceof the algorithm.

To approximate perα(A) for a given n× n matrix A the algorithm uses permutations
σ1, . . . , σN ∈ Sn independently sampled from a certain probability distribution f (σ) on Sn

as detailed in Kou and McCullagh (2009). The unbiased estimate is then

X = g(σ1, . . . , σN; A, α) =
1
N

N∑

i=1

1
f (σi)

αn−c(σi )A1,σi (1)A2,σi (2) · · ·An,σi (n).

Now let A′ approximateA in some sense and have a form such that perα(A′) can be calcu-
lated efficiently (e.g. a block-diagonal or penta-diagonal approximation as detailed in Sec-
tions 4.A.2-4.A.3). Then we use the same set of permutationsto form the zero mean random
variableY = g(σ1, . . . , σN; A′, α) − perα(A′), and introduce the control variate corrected unbi-
ased estimate of perα(A) asZ = X − βY. Notice that

σ2
Z = σ

2
X + β

2σ2
Y − 2βρσXσY,

whereσ2
X = Var(X),σ2

Y = Var(Y),σ2
Z = Var(Z) andρ = Corr(X,Y). Hereby, the optimal value

of β minimizing the variance ofZ is

β̂ = ρ
σX

σY
, (4.19)

which changes the variation in the estimate of perα(A) by a factorσ2
Z/σ

2
X = 1− ρ2. In Ham-

mersley and Handscomb (1964) the suboptimal fixed value ofβ = 1 is used, but we prefer the
optimal value (4.19), which only requires the additional calculation of an estimate ofρ. We
exemplify the use of control variates in what follows below.
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Example using control variates

Consider a multivariate negative binomial distribution ofdimensionm = 10 parametrized by
α = 1 andC with entriesCi, j = κρ

|i− j|, whereκ = 2 andρ = 0.5. The probability of observing
any given outcomen is given by (4.2), which depends on theα-permanent of the block matrix
C̃[n]. We have approximated thisα-permanent for different outcomesn using either a penta-
diagonal control variate or a block-diagonal control variate. The penta-diagonal matrix is
obtained simply by truncating̃C[n] to be penta-diagonal (i.e. all entries not on the diagonal
or the two first super- or sub-diagonals are set to zero). The block-diagonal matrix is obtained
by only retaining the five two-dimensional block matrices ofsizesn2i−1 + n2i , i = 1, . . . ,5
along the diagonal of̃C[n] and setting all other entries to zero. Table 4.2 shows the estimated
probability for three different outcomes plus/minus two standard errors. Results are shown for
both types of control variates as well as with no control variate using 500 MC samples.

(1,1,1,1,1,1,1,1,1,1) (1,3,1,3,1,3,1,3,1,3) (3,3,3,3,3,3,3,3,3,3)
none β = 0 37.31± 1.34× 10−8 38.85± 3.87× 10−10 13.88± 2.21× 10−11

block
β = 1 37.70± 1.04× 10−8 40.19± 2.40× 10−10 14.48± 1.94× 10−11

β = β̂ 37.55± 0.75× 10−8 39.93± 2.28× 10−10 14.39± 1.93× 10−11

penta
β = 1 38.16± 0.02× 10−8 40.81± 2.45× 10−10 13.29± 2.00× 10−11

β = β̂ 38.16± 0.02× 10−8 40.41± 2.32× 10−10 13.37± 1.99× 10−11

Table 4.2: Comparison of control variates





CHAPTER 5

Work in progress

This chapter contains joint work with Jesper Møller and Adrian Baddeley, which has been
initiated during the PhD study, but at this time is not developed enough to be published.

5.1 A model class for spatial point patterns with real marks

This section contains work on a model class for spatial pointpatterns with real marks, which
we mainly have studied for their possible use in the modelingof forest stands. A typical forest
stand dataset consists of the location of trees in a given observation area and usually also a
list of marks associated with each tree. Examples of such marks are the height of the tree,
the diameter at breast height (DBH) of the tree, the species of the tree, etc. Here we focus on
datasets with one non-negative real mark which can be taken to express the size of the tree,
whether it be the height, the DBH, or some other measure of tree size. For such a dataset we
model the distribution of trees conditionally on the location and size of all bigger trees using
a modification of theconditional intensity function, which is commonly used when the marks
correspond to time.

5.1.1 Conditionally specified models

In this section we firstly review some theory for specifying apoint process model through the
conditional intensity functionλ∗, which can be found in more detail in Daley and Vere-Jones

109
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(2003). Secondly, we study how this theory can be used for modeling forest stand data with
marks corresponding to tree size.

We consider a general setting of a finite marked point processY with locations in a planar
Borel setW ⊂ R2 of finite area|W| > 0 and non-negative real marks. A realization ofY is
denotedy = {y1, . . . , yn} = {(x1,m1), . . . , (xn,mn)}, wherexi andmi respectively denote the
location and mark of the marked pointyi , i = 1, . . . ,n. At first we assume a classical setup
where the markmi correspond to the time of observation of the locationxi .

The conditional intensity function forY is a functionλ∗ : W×R+, which heuristically has the
meaning

λ∗(x,m) dxdm= E(N( dx× dm)|Hm(y)),

whereHm(y) = {(yi) ∈ y : mi < m} is the history of the process, andN(·) counts the number
of points of the process falling in the specified space-time region. If we need to stress the his-
tory of the process in the conditional intensity we may also write λ∗(x,m) = λ∗(x,m|Hm(y)).
The conditional intensity function determines the point process completely and therefore a
parametric point process model can be constructed by specifying a parametric model for the
conditional intensity function. The essential assumptionfor this type of model to be reason-
able is that the distribution of new points is determined from the distribution of the points in
the history. When the marks correspond to time, the causal direction of time makes the valid-
ity of this model type obvious. However, this conditioning may also be appropriate in other
circumstances. Here we exemplify this situation by modeling the position and size (DBH) of
trees. In this setup it may be a reasonable approximation to model the distribution of trees
with a given DBH conditional on all trees with a larger DBH. This implies the history should
be modified toHm(y) = {yi ∈ y : mi > m} and corresponding minor changes have to be made
to the theoretical development of models specified via the conditional intensity, which we will
not detail here.

The process is typically only observed for marks in a boundedinterval M = (Mmin,Mmax),
0 < Mmin < Mmax < ∞. E.g. for marks corresponding to time we only observe the point
process over some finite period of time. The likelihood of a model with conditional intensity
λ∗
θ

parametrized viaθ given a realizationy ⊂W× M is

L(θ|y) = exp

(
−

∫

M×W
λ∗(x,m) dx dm

) n∏

i=1

λ∗(xi ,mi).

However, for some datasets we do not have information aboutM, and the endpoints are
then parameters that have to be estimated from data. The parameter space forM is denoted
Π = {(a,b) : 0 < a < b < ∞} and the parameter space forθ is denotedΘ. We assume the pa-
rameters are variation independent such that the combined parameter space is the product
space andΘ × Π. The highest likelihood is then obtained by minimizing the size of the inter-
val M, i.e. we estimate the endpoints by the minimal and maximal observed mark.

To conduct statistical inference for conditionally specified models we need a parametric model
for the conditional intensity. We consider a log-linear model of the form

λ∗(x,m) = exp[ξ f (x) + ηg(m) + θh∗(x,m)],
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where the functionsf ,g,h∗ (and their corresponding parameters) are allowed to be multidi-
mensional. The functionsf andg respectively model the effect of location and mark inde-
pendently of the history, whereash∗ is allowed to depend on the history of the process, and
models the effect of the history on the current location and mark. The structure of the like-
lihood and the log-linear form ofλ∗ for known f ,g,h∗ allows us to use the Berman-Turner
device (Berman and Turner, 1992; Baddeley and Turner, 2000)to find the maximum likeli-
hood estimate (̂ξ, η̂, θ̂).

5.1.2 Example

Here we study pairwise interaction processes, meaning thath∗(x,m) = (h∗1(x,m), . . . ,h∗k(x,m))
is assumed to be of the form

h∗j (x,m) =
∑

i:mi≺m

φ j(‖x− xi‖,m,mi)

for all j = 1, . . . , k, wherek is the dimension ofh∗.

For forest stand data with the DBH as marks we consider a pairwise interaction model where
h∗ is 3 dimensional with

φ1(‖x− xi‖,m,mi) = ‖x− xi‖α

φ2(‖x− xi‖,m,mi) = (mi −m)β

φ3(‖x− xi‖,m,mi) = ‖x− xi‖α(mi −m)β,

whereα, β ∈ R are parameters to be estimated. In this example we will assume a spatially
homogeneous model by settingξ = 0, and we assumeg(m) = (g1(m), . . . ,gng(m)) is of the
form

g j(m) = I(M j ≤ m< M j+1),

whereM1, . . . ,Mng+1 is a set of break points covering the mark range. Furthermore, we in-
troduce the hardcore conditionI[m + mi < 2‖xi − x‖ for all i : mi > m] to avoid physical
impossibilities meaning that the discsb(xi ,mi/2) are not allowed to overlap. That is we use
the model

λ∗(x,m;Hm(y)) = I[m+mi < 2‖xi − x‖ for all i : mi > m] ×

exp

ηg(m) − θ1

∑

i:mi≺m

‖x− xi‖α − θ2

∑

i:mi≺m

(mi −m)β − θ3

∑

i:mi≺m

‖x− xi‖α(mi −m)β


It is noted that the Berman-Turner device only can find MLEs for η, θ for fixed α, β, which
can be viewed as nuisance parameters in this context. These must estimated by some other
method.
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5.1.3 Future work

Simulation from the model suggest that it is possible to produce marked point patterns, which
resemble forest stand data well, and inference based on the Berman-Turner device appears
to work well for simulated datasets. However, it still remains to investigate how the model
works on real datasets, and possibly come up with other interaction functions allowing for
more complicated interactions between trees.

5.2 Determinantal point processes

This section contains work on determinantal point processes, which have been extensively
studied from a purely probabilistic point of view, but to ourknowledge the literature contains
no treatment of the statistical aspects of these processes.An excellent survey of the probabilis-
tic properties can be found in Hough et al. (2006), and in the following we only give a short
introduction to the processes, and outline how Markov ChainMonte Carlo (MCMC) based
Bayesian inference can be carried out.

5.2.1 Definitions and some basic properties

Let S ⊂ Rd be a Borel set with Lebesgue measure|S| ∈ (0,∞). AssumeC : S × S → C is
given by

C(x, y) =
∞∑

k=1

λkφk(x)φk(y)

for real λk ∈ [0,1] such that
∑
λk < ∞ and orthonormalized functionsφk : S × S → C,

meaning ∫

S
φk(x)φl(x) dx =

{
1 if k = l
0 if k , l,

for k = 1,2, . . . .

Let [C](x1, . . . , xn) denote then× n matrix with (i, j)’th entryC(xi , x j). Then a point process
X on S is called adeterminantal point processwith kernelC if the n’th order product density
function forX is given by

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), (x1, . . . , xn) ∈ Sn, (5.1)

for all n ∈ N. This is denotedX ∼ determinantal(C).

Note that the intensity function for a determinantal point process is

ρ(x) = C(x, x) =
∞∑

k=1

λk|φk(x)|2, x ∈ S.



5.2 Determinantal point processes 113

Hence, if |φk(x)| ≡ 1 as e.g. for the Fourier basis on a rectangular region, the intensity is
constantρ(x) ≡ ∑∞

k=1 λk. Furthermore, the pair-correlation function is

g(x, y) = 1− |C(x, y)|2
C(x, x)C(y, y)

,

making it clear that a determinantal point process models repulsive interactions.

It follows immediately from (5.1) that ifX0 ∼ determinantal(C0) and X is obtained as an
independent thinning ofX0 with retention probabilitiesp(x), x ∈ S, thenX ∼ determinantal(C)
with C(x, y) =

√
p(x)C0(x, y)

√
p(y).

For k = 1,2, . . . , let Bk be independent Bernoulli variables with meanλk. Define the random
orthogonal projection kernelK : S × S→ C by

K(x, y) =
∞∑

k=1

Bkφk(x)φk(y).

Then
determinantal(K) ∼ determinantal(C), (5.2)

in the sense that if we first generate the independent Bernoulli variables, and second indepen-
dently generate a determinantal point process with kernelK, then the resulting point process
is determinantal with kernelC. Note that

∑
λk < ∞ implies

∑
Bk < ∞ with probability

one. Thus, to simulate an arbitrary determinantal point process it is sufficient to be able to
simulate a determinantal point process where the kernel defines an orthogonal projection of
finite rankn ∈ N. An algorithm for producing such a simulation and a proof of its validity is
given in Hough et al. (2006) in a very general setup. In the following we explain and prove
the algorithm using mainly linear algebra, which may make itaccessible for a wider range of
statisticians.

A projection kernel is of the form

K(x, y) =
n∑

k=1

φk(x)φk(y) = v(x)v(y)∗

where we letv(x) = (φ1(x), . . . , φn(x)) for all x ∈ S and∗ denotes the conjugate transpose of a
vector or matrix. A realization of determinantal(K) is generated by the following procedure.

Algorithm 1. For i = n, . . . ,1:

• Let Vi be the (n−i)×n matrix with rowsv(xn), . . . ,v(xi+1) and define the orthogonal
projection matrices

Qi = V∗i (ViV
∗
i )−1Vi and Pi = In − Qi ,

where we takeQn as then×n zero matrix.
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• Generatexi from the distribution onS with density

pi(x) =
1
i
v(x)Piv(x)∗. (5.3)

Note that for i < n, we suppress in the notation thatpi(x) = pi(x|xn, . . . , xi+1),
Qi = Qi(xn, . . . , xi+1), and Pi = Pi(xn, . . . , xi+1) depend on the previously generated points
xn, . . . , xi+1.

Proposition 1. The random vector (x1, . . . , xn) generated by Algorithm 1 is distributed as a
random numbering of the points of determinantal(K).

Proof. First, we show that ifPi is an orthogonal projection of ranki, then

pi(x) =
1
i
v(x)Piv(x)∗

is indeed a proper probability density. SincePi is an orthogonal projection of ranki, we have
Pi = UΛiU∗, whereU is unitary with row vectorsu1, . . . ,un andΛi is diagonal with the first
i diagonal elements equal to one and the rest zero. Then

pi(x) =
1
i
v(x)UΛiU

∗v(x)∗ =
1
i

i∑

j=1

v(x)u∗ju jv(x)∗ =
1
i

i∑

j=1

|v(x)u∗j |2,

which is non-negative for allx ∈ S. For each term in the last sum we have
∫

S
|v(x)u∗j |2 dx =

∫

S

n∑

k=1

n∑

l=1

uk jφk(x)ul jφl(x) dx =
n∑

k=1

n∑

l=1

uk jul j

∫

S
φk(x)φl(x) dx

=

n∑

k=1

|uk j|2
∫

S
|φk(x)|2 dx = ‖u j‖2 = 1.

Thereby
∫

S
pi(x) dx = 1, and so the assertion is verified.

Next, we show thatPi is almost surely an orthogonal projection of ranki. Clearly, this is
true for Pn = In. For i = n − 1, . . . ,1, it is clear from the definition thatQi is the orthogonal
projection ontoHi = span{v(xi+1), . . . ,v(xn)}, andPi is the orthogonal projection ontoH⊥i ;
for later use, letHn = {0} andH⊥n = R

n. Since rank(Pi) = dim(H⊥i ) = n− dim(Hi), we need to
show fori < n that then−i vectors spanningHi are linearly independent. Linear dependence
would only be introduced if we at thei’th step generatex′ ∈ {x|v(x) ∈ Hi}, but then

pi(x
′) =

1
i
v(x′)Piv(x′)∗ = 0,

sincePi is the orthogonal projection ontoH⊥i . Thus dim(Hi) = n− i with probability one.

The density of the random vector (X1, . . . ,Xn) which the algorithm produces a realization of
is derived in the following. Note that

pi(xi) =
1
i
‖v(xi)Pi‖2,
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and therefore

p(x1, . . . , xn) =
n∏

i=1

pi(xi) =
1
n!

n∏

i=1

‖v(xi)Pi‖2.

The i’th term in the last product is the squared length ofv(xi)’s projection ontoH⊥i . This
product is exactly the square of the volume of the parallelepiped determined by the vectors
v(x1), . . . ,v(xn). It is well known that the squared volume of the parallelepiped can be calcu-
lated as the determinant of the Gram matrixG with entries

Gi j = v(xi)v(x j)
∗ = K(xi , x j).

Thus,

p(x1, . . . , xn) =
1
n!

det[K](x1, . . . , xn). (5.4)

Viewed as a point process{X1, . . . ,Xn}, the number of points is fixed and equal ton, and hence
by definition ofρ(n),

ρ(n)(x1, . . . , xn) = n!p(x1, . . . , xn) = det[K](x1, . . . , xn).

Consequently, the point process is determinantal with kernel K. �

As noticed this simulation procedure always producesn (the rank of the projection) points.
This implies that

n(X) ∼
∞∑

k=1

Bk,

for independent Bernoulli variablesBk as defined above. In particular,

E[n(X)] =
∞∑

k=1

λk, Var[n(X)] =
∞∑

k=1

λk(1− λk).

5.2.2 Modeling and inference

Let φk : S × S → C, k = 1,2, . . . be orthonormalized functions as in Section 5.2.1, and let
λk = λ(k; θ) be determined by a (possibly multidimensional) parameterθ. These choices are
of course of great importance in regards to which types of determinantal point processes that
can be modeled with this approach. Once these have been chosen the main interest is to make
inference about the parameterθ, since it completely determines the process.

In the following, we assumex = {x1, . . . , xn} is an observed point pattern, and use a Bayesian
approach based on MCMC, where the unobserved Bernoulli variablesB = {Bk}k∈N are in-
cluded in the posterior density

p(θ,B|x) ∝ p(x1, . . . , xn|θ,B)p(B|θ)p(θ).

Note that the ordering of then points plays no role. Furthermore, we make the natural as-
sumption thatp(x1, . . . , xn|θ,B) = p(x1, . . . , xn|B) does not depend onθ.
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The posterior density in only non-zero when
∑

Bk = n. We introducek = {k1, . . . , kn} to
denote theBk’s that are non-zero. Then the posterior density becomes

p(θ,k|x) ∝ p(x|k)p(k|θ)p(θ).

By (5.2),

p(k|θ) =
∏

k∈k
λk

∏

k<k

(1− λk),

and by (5.4),
p(x1, . . . , xn|k) = det[Kk](x1, . . . , xn),

where
Kk(x, y) =

∑

k∈k
φk(k)φk(y).

From a computational point of view it is worth noting that

det[Kk](x1, . . . , xn) = |detAk(x1, . . . , xn)|2 ,

whereAk(x1, . . . , xn) is then×n matrix with (i, j)’th entryφki (x j).

To sample from the posterior we construct a Metropolis-within-Gibbs (or hybrid Metropolis-
Hastings) algorithm with equilibrium distributionp(θ,k|x). The scheme for proposing up-
dates ofθ andk must be decided based on the specific choice of parametric model λ(k; θ) and
orthonormal functionsφk, k = 1,2, . . . .

In the following, we assume an update ofk is proposed with probabilitypk and an update
of θ is proposed with probability 1− pk. For the update ofk we assume an update of each
ki , i = 1, . . . ,n is proposed sequentially. The Hastings ratioHi related to a proposed update
ki → k′i from the proposal densityqk(k′i ; ki) is

Hi =
|detAk′(x1, . . . , xn)|2

|detAk(x1, . . . , xn)|2
λ(k′i ; θ)(1− λ(ki ; θ))

λ(ki ; θ)(1− λ(k′i ; θ))

q(ki ; k′i )

q(k′i ; ki)
,

wherek′ = ki ∪ {k′i } with ki = k \ {ki}.The Hastings ratioHθ related to a proposed update
θ → θ′ from the proposal densityqθ(θ′; θ) is

Hθ =
p(k|θ′)
p(k|θ)

p(θ′)
p(θ)

q(θ; θ′)
q(θ′; θ)

.

5.2.3 Example

SupposeS = [0,A] × [0, B]. For φk we will use the Fourier functions onS, i.e., all places
above we replace the indexk = 1,2, . . . by the indexk = (k1, k2) ∈ {0,1, . . . }2, and for all
x = (x1, x2) ∈ S,

φk1,k2(x) = 1√
AB

exp[2πi(k1
x1
A + k2

x2
B )].
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For any parametric modelλ(k; θ) = λ(k1, k2; θ) such that

∞∑

k1=0

∞∑

k2=0

λ(k1, k2; θ) < ∞,

the processX ∼ determinantal(Cθ), with

Cθ(x, y) =
∞∑

k1=0

∞∑

k2=0

λ(k1, k2; θ)φk1,k2(x)φk1,k2(y)

is well-defined.

For practical reasons we would often consider a truncated model such thatλ(k1, k2; θ) = 0 for
(k1, k2) ∈ {(k1, k2)|k1 ≥ N1 ∨ k2 ≥ N2} whereN1 andN2 are fixed. To simulate such a process
we first generateBk1,k2 ∼ Bernoulli(λ(k1, k2; θ)) for k1 = 0, . . . ,N1−1 andk2 = 0, . . . ,N2−1
and then generate the point patternx using Algorithm 1.

The algorithm requires that we can generatexi ∈ S with density (5.3). In the present example
we havev(x)v(x)∗ = ‖v(x)‖2 = n

AB for all x ∈ S, and the density is given by

pi(x) =
1
i

( n
AB
− ‖v(x)Qi‖2

)
.

Consequently, firstxn is drawn from the uniform distribution onS. Then fori = n−1, . . . ,1,
xi is drawn from a non-uniform distribution with a density thatattains the maximal value
pi(x) = n

i
1

AB on the set{x|v(x) ∈ H⊥i } and the minimal valuepi(x) = 0 on the set{x|v(x) ∈ Hi},
where as in the proof of Proposition 1 we letHi = span{v(xi+1), . . . ,v(xn)}.
Since we havepi(x) ≤ n

i
1

AB for all x ∈ S, we can use rejection sampling to generate a realiza-
tion xi with densitypi is the following way. First generateu from the uniform distribution on
(0,1) andx from the uniform distribution onS. If u < AB i

n pi(x) thenx is retained as a realiza-
tion xi = x from pi otherwise new realizationsu, x are generated until a proposal is accepted.
Notice that the acceptance probability isi/n, making it clear that it becomes progressively
harder to generate a realization frompi asi decreases fromn to 1. This is very much in line
with the inhibited nature of the determinantal point process.

A simple example of a parametric model is

λ(k1, k2; θ) = ρk1
1 ρ

k2
2 ,

whereθ = (ρ1, ρ2) ∈ (0,1)2, and to make the inference likelihood driven the priorp(θ) = 1 can
be used.

5.2.4 Future work

Initial experiments with inference for data simulated fromthe model described in 5.2.3 sug-
gests that the Bayesian MCMC approach works, but much more thorough investigations are
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needed to evaluate the method properly. A main issue that needs to be addressed is the prob-
lem of slow mixing of the MCMC scheme, which has been observedin some of the initial
experiments. Furthermore, it remains to investigate both the flexibility of determinantal point
process models and which type of real data sets they are appropriate models for.
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