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Preface

This thesis has been funded by the Danish Agency for Scidiemnology and Innovation,
grant 645-06-0528International PhD studentThe thesis is the result of work carried out
at Aalborg University and during two long term visits to thaitersity of Chicago and the
University of Western Australia.

Chapter 1 gives a short introduction to some well known pafthe statistical theory for
spatial data, which is the topic of this thesis. This matésitne background for the subsequent
Chapters 2-4 presenting the three journal papers comsgjttite main part of this PhD thesis:

Baddeley, A., E. Rubak and J. Mgller (2010). Score, psegdoesand residual diagnostics
for goodness-of-fit of spatial point process models. Sufeahito Statistical Science

Mgller, J. and E. Rubak (2010). A model for positively coateld count variablesinterna-
tional Statistical Review 8, 65-80.

Rubak, E., J. Mgller and P. McCullagh (2010). Statisticétlence for a Class of Multivariate
Negative Binomial Distributions. Submitted Bernoulli

The papers are presented in their journal form, and as a goesee the notation is not nec-
essarily consistent between chapters and some materiglssmied in several chapters. How-
ever, this allows each chapter to be read independentlyeddttiers. Chapter 5 presents some
work that has been initiated during the PhD study, but is Bbfipished. The last pages of the
thesis contain a complete list of all references used inttbsis.
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Summary in English

The topic of this thesis is spatial statistics, which dealth wata originating from dferent
spatial locations. Spatial data are collected in many fiefdscience such as agriculture,
astronomy, biology, epidemiology, and physics. There igtanal interest in statistical models
and methodology for dealing with such diverse data. TheigHesuses on general models
and methodology, which can potentially be applied in a rapigdifferent scientific settings
rather than analysis of specific datasets.

As a preliminary a short review of spatial statistics is givBpatial data discussed in the thesis
are of two distinct typesspatial point pattern dateomposed of the random locations of an
event of interest are analyzed using point process modedsla#tice datacomposed of the
values of a random quantity at fixed locations are analysidjuandom field models.

The fundamental point process model is the Poisson poicegeowhich is a model allowing
for spatial variation in the abundance of points, but notifderaction between points. In
the thesis it is reviewed how the score test has been apmi€wbisson process models in
the literature to test for a significant spatially varyinguatlance of points explained by a
spatially varying covariate. In many applications the Bois process is a too simple and
unrealistic model, and in the thesis it is described how tloeestest can be applied in the case
of much more general point processes with interactions datvpoints. In classical statistics
the score test is commonly used for model selection and fatetnealidation. In the point
process literature model validation is often based on coimga functional summary statistic
of the data with its expectation under the model. The thesidd theoretical support to this
procedure by showing it corresponds to a score test for gegsdaf-fit of the model. Further
goodness-of-fit diagnostics are derived based on the sestraind score test approximations
related to the point process residuals recently develap#tkiliterature.

Lattice data can in general be of any type, but in this thesig mon-negative integer valued
data are considered. This is a prominent example of latiate, dvhich e.g. appears when
data correspond to counting something of interest at thel fgatial locations. This could
be cases of a disease counted within a number of admingtnagions. Such data can be
analyzed using the-permanental random fields studied in this thesis. Theségea flexible
model class for lattice data with positive associationsveen sites, meaning that sites close
to each other tend to be alike. The probabilistic propenies-permanental random fields
are reviewed and some new results are given. In particugdgtailed how simulations from
an a-permanental random field can be generated using a so-dadisgon-randomisation.
While the likelihood of ana-permanental random field model can be expressed on closed
form, it is usually very computer intensive to evaluate. Toammodate this problem it is
shown how inference can be based either on approximateagiaiwf the likelihood or on
computationally simpler quantities such as the quasiiliked or composite likelihood.

The last part of the thesis describes two works in progressst, B class of point process
models which can be used to model the location and size of ieetroduced, and it is
described how likelihood inference can be conducted. Skcmcalled determinantal point
processes are briefly reviewed and a scheme for Bayesiaemaieis discussed.
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Summary in Danish

Denne afhandling omhandler rumlig statistik, hvilket endgen af den statistiske teori, der
omhandler data fra forskellige lokationer. Rumlige data keamme fra adskillige grene af
videnskaben som f.eks. astronomi, biologi, epidemiolfygik og landbrugsvidenskab. Dette
har skabt en naturlig interesse for statistiske modellemetpder, der kan behandle sddanne
forskelligartede data. Afhandlingen fokuserer p& geteerabdeller og metoder, der kan an-
vendes i mange forskellige videnskabelige sammenheeng@fdr at analysere specifikke
data.

Indledningsvis gennemgas nogle grundleeggende dele aftagstiske teori, der omhandler
rumlige data. Afhandlingen beskaeftiger sig med to forggeltyper rumlige data, hvor de
rumlige punktmgnstrdestaende af de stokastiske placeringer af en rumlig éelgad, bliver
analyseret ved hjeelp af rumlige punktprocesmodeller, oqiddige gitter-databestdende af
malingerne af en stokastisk starrelse pa faste rumligeeptager, bliver analyseret ved hjeelp
af modeller for sakaldte random fields.

Den grundleeggende punktprocesmodel er Poisson-punkgsen, som er en model, der
tillader rumlig variation i antallet af punkter, men som ék#llader vekselvirkninger mellem
punkterne. P& baggrund af en litteraturgennemgang beskden sakaldte score-test, som
bruges til at undersgge, om et punktmgnster har en signifikanlig variation, der kan fork-
lares ved hjeelp af en rumlig kovariat. Dette har tidligereratabaseret pa, at punkterne
antages at stamme fra en Poisson-punktproces, men dettaage tilfeelde en urealistisk
og for simpel model. | afhandlingen beskrives det, hvordeorestestet kan anvendes un-
der mere generelle betingelser, hvor punktprocesmodeldunderer vekselvirkninger mellem
punkterne. | klassisk statistik bliver score-testet oftiegh til modelselektion og modelkon-
trol. | punktproceslitteraturen bliver modelkontrol oftefgrt ved at sammenligne en funk-
tionel statistisk observator for data med dens forventededivunder modellen. Afhandlingen
giver teoretisk stgtte til denne fremgangsmade, ved athisedan det svarer til et score-
test for modellens goodness-of-fit. Yderligere redskatbemtersggelse af goodness-of-fit
bliver udledt med udgangspunkt i score-testet og appraksamer til score-testet relateret til
punktproces-residualerne, der for nyligt er beskrevetartturen.

Gitter-data behandlet i denne afhandling bestar af iklgatiee heltal, ogséa kaldt teelledata.
Dette er et typisk eksempel pa gitter-data, som f.eks. toreker, nar data svarer til en op-
teelling af en given haendelse pa fastsatte rumlige placerifgtte kunne veere antallet af syg-
domstilfeelde inden for bestemte geografiske regioner. i@ddata kan analyseres ved hjzelp
af dea-permanentale random fields beskrevet i athandlingen. Qetuen fleksibel klasse af
modeller for gitter-data med positive associationer nmelgtterplaceringerne, hvilket betyder
at data fra naertliggende placeringer har en tendens tijia¢ Ininanden. De sandsynligheds-
teoretiske aspekter atpermanente random fields gennemgas, og nogle nye resiliat
udledt. Specielt udledes detaljerne for, hvordan simoati fra eta-permanentalt random
field kan genereres ved hjeelp af en sakaldt Poisson-randdngs Selvom likelihooden for et
a-permanentalt random field kan udtrykkes pa lukket formMeredet normalt store maengder
computer-beregninger at evaluere den. For at kompensedefte problem bliver det vist,
hvordan statistisk inferens enten kan baseres pa appratigiberegning af likelihooden eller
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pa beregningsmaessigt enklere stgrrelser som quashlikelieller composite likelihood.

Afslutningsvis praesenteres to igangveerende projektest Faroduceres en klasse af punkt-
procesmodeller, som kan bruges til at beskrive placerimageistarrelsen af treeer, og det
beskrives, hvordan likelihood-baseret inferens kan teredtfor disse modeller. Dernaest
gives en kort gennemgang af sakaldte determinante purdetgser, og det diskuteres, hvordan
bayesiansk inferens kan udfgres.
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CHAPTER 1

Introduction

Spatial data are collected in a wide range of scientific aasas.g. agriculture, astronomy,
biology, epidemiology, and physics. Naturally, this givise to a great interest in the devel-
opment of statistical models and methodology for this typdaia. A thorough account of
statistics for spatial data can be found in Cressie (1998&yeds the following only serves as a
short introduction to the area of spatial statistics andesohits terminology. The introduction
is by no means exhaustive and it should not be considered magnof the most important
topics in spatial statistics. Rather, the material is getéto allow a concise motivation of the
subsequent development of models and methodology.

This thesis studies two important types of spatial dataciwhequire separate methods of anal-
ysis: point pattern dataonsisting of the random locations of some event of inteegst/attice
dataconsisting of measurements of some random quantity at foeatibns. The probabilis-
tic and statistical frameworks treating these data typesespectivelyspatial point processes
andrandom fields on latticess detailed further in Sections 1.1 and 1.2 below.

1.1 Spatial point processes

This thesis takes a non-technical approach to the theonyadied point processes, and readers
interested in the full mathematical generality and meagueeretical details are referred to
Mgller and Waagepetersen (2004) and Daley and Vere-Jofi68,(2008), where most of the
material presented below is discussed in further detail.
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A spatial point pattern is a finite set= {Xy, ..., Xy} of pointsx, € W, where the observation
window W c RY has finite positive voluméw|. In all that followsd = 2 is assumed, but
generalization to othet is possible. The notion of an observation window attachetecet
of observed points is crucial, since the absence of poists @nveys information about the
process generating the point pattern.

In this non-technical approach a point procéssn W is simply considered to be a random
finite subset ofV and the point patters is considered a realization . More generally, a
point proces¥” in a possibly unbounded spasec R? is a locally finite random subset &t
That is, for any bounded sét C S the restriction ofY” to A denotedY, = Y N A has finite
cardinalityn(Ya) = |Yal. In some cases it is natural to assume that the point pra€esswW

is the restrictionX = Y Nn'W of a point proces¥” in a larger spac& > W. The most typical
example of this is thal” is a stationary process &%, meaning that the distribution &f is
invariant under translation.

The most common first order characteristic of a point pro&€#s S is the intensity function,
which is a non-negative functiom : S — [0, ) that determines the expected number of
points of Y, for any bounded? C S by

E[n(Ya)] = fA p(U) du (1.1)

A point process with constant intensjpyx) = p is called homogeneous (or first order homo-
geneous).

A particularly important spatial point process model is B@sson process, which is fully
characterized by the intensity function, and PoisSgn)Y denotes a Poisson processSinvith
intensity functiono. An important characterization is that¥f ~ Poissong, p) thenn(Ya)

is Poisson distributed with mean given by (1.1) for any bathd C S, and conditional
onn(Ya) = nthe points are independently distributed Amwith density proportional te.
Furthermoren(Ya) andn(Yg) are independent for disjoint subs&sB C S. A first order
homogeneous Poisson process is sometimes referred to ptetespatial randomness (CSR)
due to the aforementioned properties.

It is often the case that a point patteerin W is not well modeled by a Poisson process on
W, and more complicated spatial point process models allpfdninteractions between the
points are needed. A useful way of specifying a new model isgegifying a densityf for X
with respect to Poissow{ 1). The density is characterized by the property

E[h(X)] = E[h(Y) f(Y)]

for all non-negative measurable functionbjsvhereY ~ Poisson{V 1). Usually the density
is only specified to be proportional to some non-negativegrable function, and evaluation
of the normalizing constant is typically veryfiicult. In all that follows it is assumed that the
density is hereditary such that

f(x) >0= f(z') >0 whenz' C .
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The density can be used to introduce the Papangelou comalitiotensity forez ¢ W and
ueW\x

/0 whenf(x) =0
AU, z) ‘{ fz Uu)/f(z) otherwise.

A point process is called attractive or clustered if
Au,2’) < A(u,xz) whenz' C x
and regular, repulsive or inhibited if

A(u,z’) > A(u,z) whenx' C x.

When a parametric point process model is proposed for a gatset the first step of an anal-
ysis is usually to estimate the parameters of the model. Bafgfesian and likelihood based
inference can in many cases be intractable analytically@uaknown normalizing constants.
Therefore, computer intensive Markov Chain Monte Carlo (M) methods are typically
needed to estimate parameters in point process modelsfathseverely hampers routine es-
timation of parameters by non-experts, since programmkiis stheoretical knowledge and
practical experience with MCMC methods are often neededesA #icient approach than
maximum likelihood estimation is to base the estimation fu pseudo-likelihood (Besag,

1978):
PL(0)=[H/19(><;,:¢)] exp(—fwﬂg(u,w)du),

whereg is the vector of model parameters abdu, ) is the Papangelou conditional intensity.
The maximum pseudo-likelihood estimate (MPLE) can be fofardh wide range of point
process models using tlpatstat package (Baddeley and Turner, 2005) for the statistical
softwareR (R Development Core Team, 2009).

Once a point process model has been fitted to a dataset usymgiBa, likelihood, pseudo-
likelihood or some other type of inference, it is importambe able to asses the goodness-of-fit
of the model. A common procedure is to check that certain sar@® of the data agree with
what could be expected under the fitted model. A very simp&rpte is that the observed
number of points in the dataset should not be an extreme \@ig®r under the fitted model,
but more generally functional summary statistics are usa@pture certain characteristics of
a point pattern. For example, given the point pattein the observation windowv, one may
consider a functional summary statistic based on a weightadof inter-point distances

R(r) = " wix, )X = Xl < 1),

i#]

where the weight for a specific pair of poivigx;, x;) is allowed to depend on the total num-
ber of pointsn and the area of the observation windp. For appropriately chosen weights,
K provides an unbiased estimate of Riplelfunction (Ripley, 1976, 1977) for a stationary
point process with intensity. Informally, the K-function is defined such that the expected
number of additional points of the process falling withistdincer of a typical point of the
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process i9K(r).To asses the goodness-of-fit of a model using a functiamahsary statistic,
an empirical estimate such &sis compared with its expected value under the model. How-
ever, apart from the case of a Poisson point process, el@aiuztthe expected value of most
functional summary statistics is analytically intrac&bdnd simulation methods are needed,
which can be both time consuming and complex. In Chapter®suggested to use a com-
putationally simple unbiased estimate of the mean valuewtiek fitted model for informal
model validation. The proposed method is closely relatethéaresiduals of Baddeley et al.
(2005), and it does not depend on the assumption of statipmaaking it valid also for inho-
mogeneous models. It is also discussed how goodness-@&dihasstics based on functional
summary statistics can be formally interpreted as a scate teurthermore, Chapter 2 dis-
cusses the traditional use of score tests for Poisson pmoeps models and shows how the
score test is applicable to a wider class of models.

1.2 Random fields

Generally, a random field is a collection of random variab¥s= {X; : i € S}, where the
index setS is allowed to be uncountable. However, in this thesis we aolysider random
fields whereS is a finite spatial lattice, meaning th&tindexes a finite collection of spatial
sites with associated neighbourhood information. Thehimgrhood information may be a
detailed geographical map giving the location of each eité,may simply be a mathematical
graph with a set of vertices representing the sites and d sdges specifying which sites that
are neighbours. This section only gives a short introdadiiolattice data and random fields
on lattices, and readers interested in a more detailed ateoe referred to Cressie (1993),
where most of the material presented below can be found.

An example of lattice data is a digital image where each pix@y be taken as a spatial site,
and the neighbourhood structure is given by a graph withetgeveen neighbouring pixels
in the image. In this case the lattice is said to be regular.

Data on an irregular lattice are also common and often thpgapas the result of spatially
aggregated data. The areas of aggregation typically qguonesto administrative regions for
which the aggregated data are known, but where the spasilbdition of data within the
region is unknown. In particular such data may originatenfe;ggregation of a point pattern,
which yields an aggregated dataset consisting of countgesfte within each administrative
region. In Chapter 4 this situation is exemplified by a datafaggregated counts of disease
cases in 19 Danish municipalities. Ideally, a model for ttasa should be derived from a
model for the underlying point process. Assuming an undeggli?oisson point process model
it is straightforward to derive the model for the aggregatednts. Due to the properties of the
Poisson process detailed in Section 1.1, the counts willdedendent and Poisson distributed.
However, for non-Poisson models the distribution of thentsus typically intractable. An
alternative approach is to ignore the underlying point psscand directly specify a model for
the lattice data, which is the approach considered in Chdptend some further remarks on
the aggregation problem are given therein (see also Risbar@003; Mgller, 2003).

A common way of specifying a random field model is via the imdlial conditional distri-
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butionsPi(X; | X)), i € S, whereX_j = {Xj: jeS\{i}}. Fori € S, letN; € S\{i}, be the
neighbours of thé&th site based on the neighbourhood information associattdS, and let
Xy, = {Xj : ] € Ni}. Then, from a modeling viewpoint, it may be natural to assanarkov
property such that the conditional distributionXfonly depends oiXy,, i.e.

Pi(Xi | X5) = Pi(Xi | Xny)- (1.2)

It is emphasized that the set of neighbolrss not predetermined by the neighbourhood in-
formation attached t&, but rather it is a modeling choice based on this informatiéor
example, if there is a map associated witha natural choice would be to defiig as the
sites within a certain distance of siteAlternatively, if there is only a graph associated with
S it would be natural to leN; be the sites connected itdoy no more thard edges, where

is another modeling choice. An important requirement ofdheice ofN; is that it should be
symmetric in the sense that jfis a neighbour of, j € N; theni must also be a neighbour
of j, i € Nj. Arandom field satisfying (1.2) above is called a Markov ramdfield. This
specification of a probability model in terms of individuanditional distributions is called a
local characterization of the model, and care must be takems$ure the existence of a joint
distribution of X which is consistent with the specified conditional disttibns. The admis-
sible functional forms of thd®’s are completely characterized by the Hammersleyrali
theorem (see e.g. Besag, 1974), which makes it possiblerify Weat a given local speci-
fication corresponds to a well-defined distribution. While thlammersley-Cfford theorem
details how a consistent joint distribution is obtainedhirthe conditional distributions it turns
out that the joint distribution involves an unknown normadg constant which is usually not
available on closed form. Since the likelihood of a Markordam field model depends on
the unknown normalizing constant, likelihood inferencefign intractable for these models,
and alternative methods must be used.

A well-known example of a locally specified model is the aB@wisson model which assumes
that the conditional distribution of; | Xy, is Poisson with mean

Hi = expl + Zﬁijxi)’

jENi

whereq; andg;; are parameters (Besag, 1974). A major drawback of the apigséh model
is that it is only well-defined fog;; < 0. This implies that only non-positive associations
between sites are allowed.

The discussion above clarifies that the locally specified-®aisson model cannot be applied
to count data with positive associations between sitegsimisia commonly expected feature in
many applications. An entirely fierent approach to modeling is given by directly specifying
the joint distribution ofX. In this approach, the modeling is still based on neighboodh
information. However, rather than specifying a conditiadiatribution one may for example
model the joint mean and covariance structure of the randeloh tihkking the neighbourhood
information into account. Chapter 3 provides a review of anthe new results for a class
of multivariate negative binomial distributions calleebermanental random fields. These are
flexible models for count data with positive associationsveen sites, which are specified
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directly in terms of the joint distribution of the counts. Ghapter 4 various approaches to
statistical inference for these models are considered eem@ified.
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8  Score, pseudo-score and residual diagnostics for goodness-of-fit of spatial point process models

Abstract:

We develop new tools for formal inference and informal modsidation in the analysis of
spatial point pattern data. The score test is generalisadfseudo-score’ test derived from
Besag's pseudo-likelihood, and to a class of diagnostisedan point process residuals.
The results lend theoretical support to the establishectipeaof using functional summary
statistics such as Ripleyts-function, when testing for complete spatial randomnesd;they
provide new tools such as tltempensatoof the K-function for testing other fitted models.
The results also support localisation methods such as #restatistic and smoothed residual
plots. Software for computing the diagnostics is provided.

Keywords:
compensator; functional summary statistics; model vébdapoint process residuals; pseudo-
likelihood.

2.1 Introduction

This paper develops new tools for formal inference and medmmodel validation in the anal-
ysis of spatial point pattern data. The score test statisised on the point process likelihood,
is generalised to a ‘pseudo-score’ test statistic derivech Besag’s pseudo-likelihood. The
score and pseudo-score can be viewed as residuals, anerfgetheralised to a class of resid-
ual diagnostics.

The likelihood score and the score test (Wald, 1941; Rao8;184x and Hinkley, 1974, pp
315 and 324) are used frequently in applied statistics taigeadiagnostics for model selec-
tion and model validation (Atkinson, 1982; Cook and Weigh&©083; Pregibon, 1982; Chen,
1983; Wang, 1985). In spatial statistics, the score testésiunainly to support formal infer-
ence about covariatdfects (Berman, 1986; Lawson, 1993; Waller et al., 1992) asmyuthe
underlying point process is Poisson under both the null dednative hypotheses. Our ap-
proach extends this to a much wider class of point processsdng it possible (for example)
to check for covariatefiects or localised hot-spots in a clustered point pattern.

Figure 2.1 shows three example datasets studied in the.p@pertechniques make it pos-
sible to check separately for ‘inhomogeneity’ (spatialiaton in abundance of points) and
‘interaction’ (localised dependence between points) @séhdata.

Our approach also provides theoretical support for theobiskeed practice of using functional
summary statistics such as Ripleysfunction (Ripley, 1976, 1977) to study clustering and
inhibition between points. In one class of models, the stesé statistic is equivalent to
the empiricalK-function, and the score test procedure is closely relatethé customary
goodness-of-fit procedure based on comparing the empi€i¢ahction with its null expected
value. Similar statements apply to the nearest neighbatamte distribution functio® and
the empty space function.

For computational fciency, especially in large datasets, the point procesditicod is of-
ten replaced by Besag'’s pseudo-likelihood (Besag, 197Bg résulting ‘pseudo-score’ is a
possible surrogate for the likelihood score. In one modw, fseudo-score test statistic is
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Figure 2.1: Point pattern datasets. (a) Japanese blaclsgattings and saplings in a ¥0.0
metre quadrat (Numata, 1961, 1964). Reprinted by kind psion of Professors M. Numata
and Y. Ogata. (b) Simulated realisation of inhomogeneousuS$ process showing strong
inhibition and spatial trend (Baddeley et al., 2005, Fig). 4lc) Simulated realisation of ho-
mogeneous Geyer saturation process showing moderatelygstiustering without spatial
trend (Baddeley et al., 2005, Fig. 4c).

equivalent to aesidualversion of the empiricaK-function, yielding a new, féicient diagnos-
tic for goodness-of-fit. However, in general, the interatien of the pseudo-score test statistic
is conceptually more complicated than that of the likelith@zore test statistic, and hence
difficult to employ as a diagnostic.

In classical settings the score test statistic is a weighted of residuals. Here the pseudo-
score test statistic is a weighted point process residutldrsense of Baddeley et al. (2005,
2008). This suggests a simplification, in which the pseudestest statistic is replaced by
another residual diagnostic that is easier to interpretamcdmpute.

In special cases this diagnostic is a residual version obbttee classical functional summary
statisticskK, G or F obtained by subtracting ‘@ompensator’from the functional summary
statistic. The compensator depends on the observed datadhd fitted model. For example,

if the fitted model is the homogeneous Poisson process, lieetoimpensator a@(r) is F(r),

and the compensator &f(r) is 7r. This approach provides a new class of residual summary
statistics that can be used as informal diagnostics for gesstof-fit, for a wide range of
point process models, in close analogy with current practithe diagnostics apply under
very general conditions, including the case of inhomogasgmint process models, where
exploratory methods are underdeveloped or inapplicabt®. ifstance, the compensator of
K(r) for an inhomogeneous non-Poisson model is illustratedgare 2.2.

Section 2.2 introduces basic definitions and assumptioastid® 2.3 describes the score test
for a general point process model, and Section 2.4 devdlegaiportant case of Poisson point
process models. Section 2.5 gives examples and technatalfto non-Poisson point process
models. Section 2.6 develops the general theory for oundistic tools. Section 2.7 applies
these tools to tests for first order trend and hotspots. @ec®.8—-2.11 develop diagnostics
for interaction between points, based on pairwise distgnoearest neighbour distances and
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Figure 2.2: EmpiricaK-function (thick grey line) for the point pattern data in &ig 2.1b,
compensator of thE-function (solid black line) for a model of the correct foremd expected
K-function for a homogeneous Poisson process (dashed line).

empty space distances respectively. The tools are deratetvn data in Sections 2.12-2.15.
Further examples of diagnostics are given in Appendix 2.Apéndices 2.B-2.E provide
technical details.

2.2 Assumptions

2.2.1 Fundamentals

A spatial point pattern dataset is a finite aet= {Xy,..., Xy} of pointsx; € W, where the
number of points(z) = n > 0 is not fixed in advance, and the domain of observafiba R
is a fixed, known region al-dimensional space with finite positive volunvé. We taked = 2
but the results generalise easily to all dimensions.

A point process model assumes thés a realisation of a finite point proce3s in W without
multiple points. We can equivalently vieX as a random finite subset @f. Much of the
literature on spatial statistics assumes tKafs the restrictionX = Y n W of a stationary
point processY” on the entire spack?. We do not assume this; there is no assumption of
stationarity, and some of the models considered here aigditially confined to the domain
W. For further background material including measure thigzakdetails, see e.g. Mgller and
Waagepetersen (2004, Appendix B).

Write X ~ Poisson{\,p) if X follows the Poisson process & with intensity functionp,
where we assume = pr(u) du is finite. Thenn(X) is Poisson distributed with meanand
conditional om(X), the points inX are i.i.d. with density(u)/v.



2.3 Score test for point processes 11

Every point process model considered here is assumed toahavebability density with
respect to PoissoW{ 1), the unit rate Poisson process, under one of the followaaparios.

2.2.2 Unconditional case

In the unconditional caseve assumeX has a densityf with respect to PoissoW{ 1). Then
the density is characterised by the property

E[h(X)] = E[h(Y) f(Y)] (2.1)

for all non-negative measurable functionalswhereY ~ Poisson{V.1). In particular the
density of Poissot. p) is

f(a) = exp( [[a-pw du) [Tr00. (2.2)

We assume thdtt is hereditary, i.ef(x) > 0 implies f(y) > O for all finitey c & c W.

2.2.3 Conditional case

In the conditional casewe assumeX = Y N W whereY is a point process. ThuX may
depend on unobserved points Bflying outsideW. The density ofX may be unknown or
intractable. Under suitable conditions (explained in BacR.5.4) modelling and inference
can be based on the conditional distributionXf = X N W° given X* = X N W* = x™,
whereW* c W is a subregion, typically a region near the boundary\gfand only the
points inW° = W\ W* are treated as random. We assume that the conditionabdisom of
X°=XnNnW°givenX* =X nW* =z* has an hereditary densiffz° | *) with respect
to Poissoriv°, 1).

For ease of exposition, we focus mainly on the unconditicaak, with occasional comments
on the conditional case. For Poisson point process modelslways takaV = W° so that
the two cases agree.

2.3 Score test for point processes

In principle, any technique for likelihood-based infererig applicable to point process like-
lihoods. In practice, many likelihood-based computati@tgiire extensive Monte Carlo sim-
ulation (Geyer, 1999; Mgller and Waagepetersen, 2004,)20@/minimise such diiculties,

when assessing the goodness-of-fit of a fitted point proceskeinit is natural to choose the
score test which only requires computations for the nulldtipsis (Wald, 1941; Rao, 1948).

Consider any parametric family of point process modelsXowith density fy indexed by a
k-dimensional vector parametére ® C RX. For asimplenull hypothesisHy : 6 = 6, where
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0o € O is fixed, the score test against any alternaktiye 6 € ©1, where®; C ©\ {0}, is based
on the score test statistic (Cox and Hinkley, 1974, p. 315)

T2 = U(60)"1 (60) U (6o)- (2.3)

HereU(9) = 6% log fe(x) andl (0) = E, [U(O)U(6)"] are the score function and Fisher informa-
tion respectively, and the expectation is with respedhtaHere and throughout, we assume
that the order of integration andffirentatiorwith respect ta can be interchanged. Under
suitable conditions, the null distribution @® is y? with k degrees of freedom. In the case
k = 1 it may be informative to evaluate the signed square root

T = U(60)/ V1(6o) (2.4)
which is asymptotically standard normally distributed enthe same conditions.
For acompositenull hypothesidHy : 6 € @y where®, c © is anm-dimensional submanifold
with 0 < m < k, the score test statistic is defined in Cox and Hinkley (197324). However,
we shall not use this version of the score test, as it assuifiesathtiability of the likelihood

with respect to nuisance parameters, which is not necésagplicable here (as exemplified
in Section 2.4.2).

In the sequel we often consider models of the form

fap (@) = cla, B)ha(x) expBS(x)) (2.5)
where the paramet@ and the statistiS(x) are one dimensional, and the null hypothesis is
Ho : B = 0. For fixedq, this is a linear exponential family and (2.4) becomes

T(a) = (S(z) - E@o)lS(2)]) / v Vareo[S(z)].
In practice, when is unknown, we replace by its MLE underHg so that, with a slight abuse
of notation, the signed square root of the score test staishpproximated by

T =T(a) = (S(x) - EqolS(@)]) / VVarsolS(z)]. (2.6)

Under suitable conditiond; in (2.6) is asymptotically equivalent {bin (2.4), and so a stan-
dard Normal approximation may still apply.

2.4 Score test for Poisson processes

Application of the score test to Poisson point process nsodgpears to originate with Cox
(1972). Consider a parametric family of Poisson procegzasson{\, o), where the intensity
function is indexed by € @. The score test statistic is (2.3) where

P wal) = [ ra0pute)

u(®)

1(6) fw kg(U) kg(U)"pg(u) du

with ky(u) = % logps(u). Asymptotic results are given in Kutoyants (1998); Rathbuod a
Cressie (1994).
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2.4.1 Log-linear alternative

The score test is commonly used in spatial epidemiology $esswhether disease incidence
depends on environmental exposure. As a particular cas2®)f 6uppose the Poisson model
has a log-linear intensity function

Pp)(U) = expl + BZ(u)) (2.7)

whereZ(u),u € W is a known, real-valued and non-constant covariate funcaada andg
are real parameters. Cox (1972) noted that the uniformlyt pmserful test ofHg : 8 = 0 (the
homogeneous Poisson process) agaiists > 0 is based on the statistic

S(@) = ) Z(x). (2.8)

Recall that, for a point proces¥ on W with intensity functiorp,

E{Z h(m)]= | bt 29)

xieX

for any Borel functiorh such that the integral on the right hand side exists, anddimsen{\, p),

Z h(xi)]z fw h(u)?o(u) du (2.10)

xeX

Var

for any Borel functiorh such that the integral on the right hand side exists (Dalel\&me-
Jones, 1988, p. 188). Hence the standardised version §fi§2.8

T=(S(a:)—/“< fw Z(u)du) [\[f fw Z(u)2 du (2.11)

wherex = n/|W| is the MLE of the intensitx = exp() under the null hypothesis. This is a
direct application of the approximation (2.6) of the sigsgdare root of the score test statistic.

Berman (1986) proposed several tests and diagnostics dtinkpssociation between a point
processX and a covariate functiod(u). Berman’'sZ; test is equivalent to the Cox score test
described above. Waller et al. (1992) and Lawson (1993)qseq tests for the dependence of
disease incidence on environmental exposure, based ogidatg point locations of disease
cases. These are also applications of the score test. Beromalitioned on the number of
points when making inference. This is in accordance withabservation that the statistic
n(x) is S-ancillary forg, while S(x) is S-suficient forp.

2.4.2 Threshold alternative and nuisance parameters

Consider the Poisson process with an intensity functiomhméshold’ form,

{ kexp@) if Z(u) <z

Prca(l) = if Z(u) > z
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wherez is the threshold level. It is fixed, this model is a special case of (2.7) watfu)
replaced byi{Z(u) < z}, and so (2.8) is replaced by

S(z) = S(x.2) = ), HZ(x) <2

wherel{-} denotes the indicator function. By (2.11) the (approximatere test oHg : ¢ = 0
againstH; : ¢ # 0 is based on

T =T = (S(z,2) - kA®) / VRA@2)
whereA(2) = {ue W : Z(u) < z}| is the area of the corresponding level seZof

If zis not fixed, then it plays the role of a nuisance parametdnerstore test: the value of
affects inference about the canonical parameterhich is the parameter of primary interest
in the score test. Note that the likelihood is ndfelientiable with respect to

In most applications of the score test, a nuisance parameteld be replaced by its MLE
under the null hypothesis. However in this conteis not identifiable under the null hypoth-
esis. Several approaches to this problem have been prgopostdiing: replacing by its
MLE under the alternative (Confié, 2001), maximising (2) or |T(2)| overz (Davies, 1977,
1987), and finding the maximumvalue ofT(2) or |T(2)| over a confidence region famunder
the alternative (Silvapulle, 1996).

These approaches appear to be inapplicable to the curnetextoWhile the null distribution
of T(2) is asymptoticallyN(0, 1) for each fixedz ask — oo, this convergence is not uniform in
z. The null distribution ofS(x, ) is Poisson with paramete/A(z); sample paths of (2) will
be governed by Poisson behaviour wha(g) is small.

In this paper, our approach is simply to plot the score tesiss$ic as a function of the nuisance
parameter. This turns the score test into a graphical exjgor tool, following the approach
adopted in many other areas (Atkinson, 1982; Cook and Wejsid®©83; Pregibon, 1982;
Chen, 1983; Wang, 1985). A second style of plot base&©0z) — kA(2) againstz may be
more appropriate visually. Such a plot is the lurking vaegtiot of Baddeley et al. (2005).
Berman (1986) also proposed a plotS{fe, 2) againstz, together with a plot 0kA(2) against

z, as a diagnostic for dependenceanrhis is related to the Kolmogorov-Smirnov test since,
underHy, the valuesy; = Z(x) are i.i.d. with distribution functiofP(Y < y) = A(y)/|W|.

2.4.3 Hot spot alternative

Consider the Poisson process with intensity

Pronl) = KEXPK(U ~ V) (2.12)

wherek is a kernel (a probability density &), « > 0 and¢ are real parameters, and: R?
is a nuisance parameter. This process has a ‘hot spot’ diteldintensity in the vicinity of
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the locationv. By (2.11) and (2.9)—(2.10) the score testif : ¢ = 0 againstH; : ¢ # O is
based on

T =T(V) = (S(, V) — kM1(V))/ vVkM2(v)
where

S(x,V) = Z k(X — V)

is the usual nonparametric kernel estimate of point proicgsssity (Diggle, 1985) evaluated
atv without edge correction, and

Mi(v)szk(u—v)‘du, i=12

The numeratoB(z, v) — kM1 (V) is thesmoothed residual fiel(Baddeley et al., 2005) of the
null model. In the special case whét@l) o« I{||ul| < h} is the uniform density on a disc of
radiush, the maximum maxT (V) is closely related to thecan statisti¢Alm, 1988; Kulldoft,
1999).

2.5 Non-Poisson models

The remainder of the paper deals with the case where theaities (and perhaps also the null)
is not a Poisson process. Key examples are stated in Sectidn ANon-Poisson models re-
quire additional tools including the conditional integgiBection 2.5.2) and pseudo-likelihood
(Section 2.5.3).

2.5.1 Point process models with interaction

We shall frequently consider densities of the form
fz)=c []‘[ A(m} exp(¢V(x)) (2.13)
i

wherec is a normalising constant, the first order teiris a non-negative functior, is a real
interaction parameter, an{x) is a real non-additive function which specifies the int&oac
between the points. We referYbas the interaction potential. In general, apart from thaPoi
son density (2.2) corresponding to the case 0, the normalising constant is not expressible
in closed form.

Often the definition ofV can be extended to all finite point patternskfa so as to be in-
variant under rigid motions (translations and rotationf)en the model foX is said to be
homogeneous it is constant oW, and inhomogeneous otherwise.

Let
d(u, =) = min|ju - x|l
i
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denote the distance from a locatioto its nearest neighbour in the point configuratiar-or
n(xz) =nx>2landi =1,...,n, define

T =x\{X}

In many places in this paper we consider the following thredion-invariant interaction po-
tentialsV(x) = V(«, r) depending on a parameter- 0 which specifies the range of interac-
tion. TheStrauss procesStrauss, 1975) has interaction potential

Vs(@,r) = > Tiix = xjll <) (2.14)

i<j

the number ofr-close pairs of points ir; the Geyer saturation mod€iGeyer, 1999) with
saturation threshold 1 has interaction potential

Vo(z,1) = Zl[{d(xi,w,i) <r} (2.15)

the number of points iz whose nearest neighbour is closer thmamnits; and the Widom-
Rowlinson penetrable sphere model (Widom and RowlinsodQ)L8r area-interaction pro-
cesgBaddeley and van Lieshout, 1995) has interaction potentia

Va(z,r) = —[WN U B(x;, 1) (2.16)

the negative area AV intersected with the union of balB(x;, r) of radiusr centred at the
points of xz. Each of these densities favours spatial clustering (peséssociation) when
¢ > 0 and spatial inhibition (negative association) wiken 0. The Geyer and area-interaction
models are well-defined point processes for any valug(8addeley and van Lieshout, 1995;
Geyer, 1999), but the Strauss density is integrable onlywhe 0 (Kelly and Ripley, 1976).

2.5.2 Conditional intensity

Consider a parametric model for a point procéSsn R?, with paramete# € ®. Papangelou
(1974) defined theonditional intensityof X as a non-negative stochastic procggsl, X)
indexed by locations € R? and characterised by the property that

B | Y hix, X\ (%))

= E, [ f h(u, X)Ae(u, X) du (2.17)
xeX R?

for all measurable functionis such that the left or right hand side exists. Equation (2.17)
is known as theGeorgii-Nguyen-Zessin (GNZ) formu(&eorgii, 1976; Kallenberg, 1978,
1984; Nguyen and Zessin, 1979); see also Section 6.4.1 iteMarld Waagepetersen (2004).
Adapting a term from stochastic process theory, we will ta&l random integral on the right
side of (2.17) th€Papangelou) compensatof the random sum on the left side.
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Consider a finite point process in W. In the unconditional case (Section 2.2.2) we assume
X has densityfs(x) which is hereditary for ald € ®. We may simply define

Ag(U, ) = fo(x U {u})/ fo(x) (2.18)

for all locationsu € W and point configurationg ¢ W such thatu ¢ . Here we take
0/0 = 0. Forx € x we setlg(X,x) = Ag(X, i), and foru ¢ W we setiy(u,x) = 0.
Then it may be verified directly from (2.1) that (2.17) holds,that (2.18) is the Papangelou
conditional intensity ofX. Note that the normalising constant fafcancels in (2.18). For a
Poisson process, it follows from (2.2) and (2.18) that thed@tonal intensity is equivalent to
the intensity function of the process.

In the conditional case (Section 2.2.3) we assume that tmmelittonal distribution of
X°=XnW°given X* = X N W' = " has an hereditary densitfy(z° | ™) with re-
spect to Poissol{°, 1), for all @ € ®. Then define

Ao(u,z® | ™) = fo(z® U {u} [ =)/ fp(x® \ {u} | =) (2.19)

if ue We°, and zero otherwise. It can similarly be verified that thithis Papangelou condi-
tional intensity of the conditional distribution d€° given X* = x*.

It is convenient to rewrite (2.18) in the form
Ag(u, ) = exp@ylog f(x))
whereA is the one-point dierence operator
Auh(z) = h(x U {u}) — h(z \ {u}). (2.20)
Note the Poincar inequality for the Poisson proceXs

Var[h(X)] < E f [Auh(X)]2p(u) du (2.21)
W

holding for all measurable functionalssuch that the right hand side is finite; see Last and
Penrose (2010); Wu (2000).

2.5.3 Pseudo-likelihood and pseudo-score

To avoid computational problems with point process liketitls, Besag (1978) introduced the
pseudo-likelihoodunction

PL(O):[H /lg(xi,a:)] exp(— fw /lg(u,m)du). (2.22)

This is of the same functional form as the likelihood funeotaf a Poisson process (2.2), but
has the conditional intensity in place of the Poisson intgn§he correspondingseudo-score

PU(6) = %Iog PL(6) = Z % log Ao(%, ) — fw a%/lg(u, ) du (2.23)
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is an unbiased estimating function (iRU(0) has zero-mean) by virtue of (2.17).

The pseudo-likelihood function can also be defined in thelitmmal case (Jensen and Mgller,
1991). In (2.22) the product is instead over poixte x° and the integral is instead ovér’;

in (2.23) the sum is instead over poinss «° and the integral is instead oV&°; and in both
placesr = z°Ux*. The conditional intensity,(u, ) must also be replaced Ry(u, z° | =*).

2.5.4 Markov point processes

For a point procesX constructed ask = Y n'W whereY is a point process iiR?, the
density and conditional intensity &X may not be available in simple form. Progress can be
made ifY is aMarkov point processf interaction rang® < co, see Georgii (1976); Nguyen
and Zessin (1979); Ripley and Kelly (1977); van LieshoutO@0 Mgller and Waagepetersen
(2004, Sect. 6.4.1). Briefly, this means that the conditiamansity 1,(u, Y) of Y satisfies
A9(U,Y) = 24(u, Y N B(u, R)) whereB(u, R) is the ball of radiuRR centred au. Define the
erosion ofW by distanceR

Wer={ueW: B(u,R) c W}

and assume this has non-zero area.B.etW\W_gg be the border region. The process satisfies
a spatial Markov property: the proces3s$ Wgg andY n We are conditionally independent
givenY N B.

In this situation we shall invoke the conditional case With = Wogr andW*™ = W\ W°. The
conditional distribution ofX N W° given X N W* = x* has Papangelou conditional intensity

ol | duzumt) ifuew
(U, | )—{ 0 otherwise.

Thusthe unconditional and conditional versions of a Markov pgirocess have the same
Papangelou conditional intensigt locations inWe.

(2.24)

Forx°® = {Xy,..., X}, the conditional probability density becomes

fo(@® | @) = (@) A0, 2°) | | (%, (30, X0} U )
i=2

if n° > 0, andfy(0 | %) = cy(x™), where® denotes the empty configuration, and the inverse
normalising constartd,(z*) depends only or:™*.

For example, instead of (2.13) we now consider

[ [
i=1

assumingV(y) is defined for all finitey ¢ R? such that for any € R? \ y, A V(y) depends
only onu andy n B(u,R). This condition is satisfied by the interaction potentigdsl4)-
(2.16); note that the range of interactiorRs= r for the Strauss process, aRd= 2r for both
the Geyer and the area-interaction models.

f(x° | ") = c(z") exp(¢V(x° U x*))
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2.6 Score, pseudoscore and residual diagnostics

This section develops the general theory for our diagnostits.

By (2.6) in Section 2.3 it is clear that comparison of a sunynsaatisticS(x) to its predicted
valueES(X) under a null model, isféectively equivalent to the score test under an exponential
family model whereS(x) is the canonical dticient statistic. Similarly, the use offanctional
summary statisti§(x, z), depending on a function argumemis related to the score test under
an exponential family modekhere z is a nuisance parametend S(x, 2) is the canonical
suficient statistic for fixe@. In this section we construct the corresponding exponiatizily
models, apply the score test, and propose surrogates fectie test statistic.

2.6.1 Models

Let fy(x) be the density of any point proce3s on W governed by a parametér Let S(x, 2)
be a functional summary statistic of the point pattern dtas with function argumeng
belonging to any space.

Consider theextended modetith density

fo.p2(x) = Cop.2fo(x) EXPPS(2, 2)) (2.25)

whereg¢ is a real parameter, arg, ; is the normalising constant. The density is well-defined
provided
M(6,4.2) = E[fo(Y) exp@S(Y', 2)] <

whereY ~ Poisson{\ 1). The extended model is constructed by ‘exponentiahgltdf the
original model by the statisti§. By (2.6), for fixedd andz, assuming dferentiability of M
with respect top in a neighbourhood of = 0, the signed root of the score test statistic is

approximated by
T = (S(x,2) - Ej[S(X,2)]) / VVan[S(X, 2)] (2.26)

whered is the MLE under the null model, and the expectation and wagare with respect to
the null model with densityf;.

Insight into the qualitative behaviour of the extended ni@2l@5) can be obtained by studying
the perturbing model
Us.o(x) = Ky €XPPS(, 2)), (2.27)

provided this is a well-defined density with respect to Rwiga/ 1), wherek, , is the normal-
ising constant. When the null hypothesis is a homogeneouss®oiprocess, the extended
model is identical to the perturbing model, up to a changéénfirst order term. In general,
the extended model is a qualitative hybrid between the mdlgerturbing models.

In this context the score test is equivalent to naive corspariof the observed and null-
expected values of the functional summary statitic The test statistid in (2.26) may
be dificult to evaluate; typically, apart from Poisson models, ii@ments (particularly the
variance) ofS would not be available in closed form. The null distributioihT would also
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typically be unknown. Hence, implementation of the scoet teould typically require mo-
ment approximation and simulation from the null model, whic both cases may be com-
putationally expensive. Various approximations for therer the score test statistic can be
constructed, as discussed in the sequel.

2.6.2 Pseudo-score of extended model

The extended model (2.25) is an exponential family with eespo ¢, having conditional
intensity

Ké),dz,Z(u’ .’13) = /]-H(u’ CC) exp(¢AUS(m’ Z))

wherely(u, x) is the conditional intensity of the null model. The psewore function with
respect tap, evaluated ap = 0, is

PU(H,Z):ZANS(a:,z)— f AuS(z, 2) (U, ) du
i W

where the first term
SAS(z,2) = Z A S(z,2) (2.28)
i

will be called thepseudo-surof S. If 8 is the maximum pseudo-likelihood estimate (MPLE)
underHo, the second term with replaced by becomes

CAS(:c,z):fAUS(:c,z)/lg,(u,:c)du (2.29)
w

and will be called th€estimated) pseudo-compensabtdiS. We call
RA S(z, 2) = PU(0,2) = ZA S(z, 2) - CA S(x, 2) (2.30)

thepseudo-residuadince it is a weighted residual in the sense of Baddeley €2@05).

The pseudo-residual serves as a surrogate for the numerdter score test statistic (2.26).
For the denominator, we need the variance of the pseudduadsi Appendix 2.B gives an

exact formula (2.65) for the variance of the pseudo-s¢du€s, z), which can serve as an
approximation to the variance of the pseudo-residualSRe, z2). The leading term in this

approximation is

C?AS(x,2) = f [AuS(z, 2)]%25(u, ) du (2.31)
w

which we shall call thePoincaré pseudo-varianceecause of its similarity to the Poinéar
upper bound in (2.21). We propose to use the square root 81)2s a surrogate for the
denominator in (2.26). This yields'standardised’ pseudo-residual

TAS(z,2) = RA S(z,2)/ \/C?A S(, 2). (2.32)
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We emphasise that this quantity is not guaranteed to haveraean and unit variance (even
approximately) under the null hypothesis. It is a compaotally dficient surrogate for the
score test statistic; its null distribution must be invgated by other means.

The pseudo-sum (2.28) can be regarded as a functional synstedistic for the data in its
own right. Its definition depends only on the choice of thdistia S, and it may have a
meaningful interpretation as a non-parametric estimdtapooperty of the point process. The
pseudo-compensator (2.29) might also be regarded as adinalcsummary statistic, but its
definition involves the null model. If the null model is tru@wnay expect the pseudo-residual
to be approximately zero. Sections 2.9-2.11 and Appendisfudy particular instances of
pseudo-residual diagnostics based on (2.28)-(2.30).

In the conditional case, the Papangelou conditional irttems(u, ) must be replaced by
Ap(u,z° | x*) given in (2.19) or (2.24). The integral in the definition dfet pseudo-
compensator (2.29) must be restricted to the doriiéinand the summation over data points
in (2.28) must be restricted to poirntse W°, i.e. to summation over points af’.

2.6.3 Residuals

A simpler surrogate for the score test is available when #@mougical stficient statisticS of
the perturbing model is naturally expressible as a sum @fl loentributions

S(z,2) = Z (X, z_i, 2). (2.33)

Note that any statistic can be decomposed in this way un@ase sestriction is imposed on
s, such a decomposition is not necessarily unique. We calddwmposition ‘natural’ if
s(u, x, 2) only depends on points af that are close to, as demonstrated in the examples in
Sections 2.9, 2.10 and 2.11 and in Appendix 2.A.

Consider a null model with conditional intensity(u, ). Following Baddeley et al. (2005)
define the §-weighted) innovation by

| S(x,r) = S(a:,z)—f S(u, x, 2)Ay(u, ) du (2.34)
W

which by the GNZ formula (2.17) has mean zero under the nullehdn practice we replace
0 by an estimat® (e.g. the MPLE) and consider tlis-weighted) residual

RS(x,2) = S(x, 2) —f S(u, , 2)4;(u, ) du. (2.35)
W

The residual shares many properties of the score functidrcan serve as a computationally
efficient surrogate for the score. The data-dependent integral

CS(x,2) = f S(u, z, 2)2;(u, ) du (2.36)
W
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is the (estimated) Papangelou compensabdiS. By the general variance formula (2.64) and
by analogy with (2.31) we propose to use Ba@ncaré variance

C?S(z,2) = f s(u, z, 225U, ) du (2.37)
W

as a surrogate for the variance o8Re, 2), and thereby obtain a ‘standardised’ residual

TS(x,2) = RS(x, 2)/ \/C? S(z, 2).

Once again B(x, 2) is not exactly standardised, and its null distribution trhesinvestigated
by other means.

In the conditional case, the integral in the definition of twenpensator (2.36) must be re-
stricted to the domaikv°, and the summation over data points in (2.33) must be resdrio
pointsx; € We, i.e. to summation over points af°.

2.7 Diagnostics for first order trend

Consider any null model with densitfy(x) and conditional intensityly(u, ). By analogy
with Section 2.4 we consider alternatives of the form (2\2Bgre

S(z.2)= ) (%2

for some functions. The perturbing model (2.27) is a Poisson process with gitgn
exp@s(-,2)) wherez is a nuisance parameter. The score test is a test for thengesd
an (extra) first order trend. The pseudo-score and residaghdstics are both equal to

RS(z,2) = Zsoq,z) - f (U, 25(u, ) du. (2.38)
: w

This is thes-weighted residual described in Baddeley et al. (2005). vEm&nce of (2.38) can
be estimated by simulation, or approximated by the Poieariance (2.37).

If Zis a real-valued covariate function 9vithen we may takea(u, 2) = I{Z(u) < z} for ze R,
corresponding to a thresholdtect (cf. Section 2.4.2). A plot of (2.38) agairmsivas called a
lurking variable plotin Baddeley et al. (2005).

If s(u,2) = k(u - 2) for ze R?, wherek is a density function oi?, then
RS(z,2) = Z k(X — 2) — f k(u — 2)(u, ) du
i W

which was dubbed themoothed residual fielth Baddeley et al. (2005). Examples of appli-
cation of these techniques have been discussed extensiighddeley et al. (2005).
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2.8 Interpoint interaction

In the remainder of the paper we concentrate on diagnostigaterpoint interaction.

2.8.1 Classical summary statistics

Following Ripley’s influential paper (Ripley, 1977) it isssidard practice, when investigating
association or dependence between points in a spatialptietn, to evaluate functional sum-
mary statistics such as thé-function, and to compare graphically the empirical sumesar
and theoretical predicted values under a suitable modtdn @t stationary Poisson process
(‘Complete Spatial Randomness’, CSR) (Ripley, 1977; Geed991; Diggle, 2003).

The three most popular functional summary statistics fatiap point processes are Rip-
ley’s K-function, the nearest neighbour distance distributiorcfionG, and the empty space
function (spherical contact distance distribution fuaijiF. Definitions ofK, G andF and
their estimators can be seen in Baddeley (1999); Cress#LJ1®iggle (2003); Mgller and
Waagepetersen (2004). Simple empirical estimators oéthextions are of the form

R(r) = Ra(r) = D e )% = i1l < 1) (2.39)
2(5C)|W| i#]

G(r) = Ga(r) = n(m) Z es (X, -, DId(x, 1) <7} (2.40)

F(r) = Fp(r) = Wi f er(u, NI{d(u, z) < r} (2.41)

\iv\here ex(u,v), es(u,x,r) and es(u,r) are edge correction weights, and typically
p(x) = n(z)(n(x) - 1)/IWP>.

2.8.2 Score test approach

The classical approach fits naturally into the scheme ofi@e2t6. In order to test for depen-
dence between points, we choose a perturbing model thatiesxdependence. Three inter-
esting examples of perturbing models are the Strauss @abesGeyer saturation model with
saturation threshold 1 and the area-interaction proceidis,imteraction potential&/s(x,r),
Ve(x,r) andVa(z, r) given in (2.14)-(2.16). The nuisance parametet 0 determines the
range of interaction. Although the Strauss density is irgklg only whenp < 0, a Strauss
hybrid (betweenf, and the Strauss density) may be well-defined for sgme0 so that the
extended model may support alternatives that are clustetative to the null, as originally
intended by Strauss (Strauss, 1975).

The potentials of these three models are closely relatduetsummary statistid, G andF
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in (2.39)—(2.41). Ignoring the edge correction weig{tswe have

N N 2|W|

Km(r) =~ WVS(w, I’) (242)
G.(r) = %ve(w,r) (2.43)
Fa(r) —l—vlwvA(m, r). (2.44)

To draw the closest possible connection with the score itestead of choosing the Strauss,
Geyer or area-interaction process as the perturbing mageshall take the perturbing model
to be defined through (2.27) whegeis one of the statistic&, G or F. We call these the
(perturbing) K-mode] G-modeland F-modelrespectively. The score test is then precisely
equivalent to comparing, G or F with its predicted expectation using (2.6).

EssentlaIIyK G, F are re-normalised versions W, Vg, Va as shown in (2.42)—(2.44).

the case of the renormalisation is not data- -dependent, softieodel is virtually an area-
interaction model, ignoring edge correction. Karthe renormalisation depends only mfa:),

and so conditionally om(z) = n, the K-model and the Strauss process are approximately
equivalent. Similarly forG, the normalisation also depends only ), so conditionally
onn(z) = n, theG-model and Geyer saturation process are approximatelyagut. If we
follow the recommendation of Ripley (1977) to condition mmvhen testing for interaction,
this implies that the use of th€, G or F-function is approximately equivalent to the score test
of CSR against a Strauss, Geyer or area-interaction aliegneespectively.

When the null hypothesis is CSR, we saw that the extended n{2@8) is identical to the
perturbing model, up to a change in intensity, so that theofifee K-function is equivalent to
testing the null hypothesis of CSR against the alternatfvee -model. Similarly forG and
F. For a more general null hypothesis, the use of€hiinction, for example, corresponds to
adopting an alternative hypothesis that is a hybrid betwieefitted model and K-model.

Note that if the edge correction weigt(u, v) is uniformly bounded, th&-model is inte-
grable for all values o®, avoiding a dificulty with the Strauss process (Kelly and Ripley,
1976).

Computation of the score test statistic (2.26) requireisnesion or approximation of the null
variance ofK(r), G(r) or F(r). A wide variety of approximations is available when thelnul
hypothesis is CSR (Ripley, 1988; Diggle, 2003). For othdl Imgpotheses, simulation esti-
mates would typically be used. A central limit theorem isilame for K(r), G(r) andF(r),
see e.g. Baddeley (1980); Heinrich (1988b,a); Jolivet Q)9Ripley (1988). However, con-
vergence is not uniform in, and the normal approximation will be poor for small valués o
r. Instead Ripley (1976) developed an exact Monte Carlo Bstnard, 1963; Hope, 1968)
based on simulation envelopes of the summary statisticruhdeanull hypothesis.

In the following sections we develop the residual and pseedaual diagnostics correspond-
ing to this approach.
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2.9 Residual diagnostics for interaction using pairwise
distances

This section develops residual (2.35) and pseudo-resi@.@0) diagnostics derived from a
summary statisti§ which is a sum of contributions depending on pairwise distan

2.9.1 Residual based on perturbing Strauss model
General derivation

Consider any statistic of the general ‘pairwise interactform

SCHEDW (RN (2.45)

i<j

This can be decomposed in the local form (2.33) with
1

Hence
Ay S(x,r) =29(%, z_,r) and A S(z,r) =2s(u,z,r), u¢wx.

Consequently the pseudo-residual and the pseudo-conipeasajust twice the residual and
the Papangelou compensator:

TAS(z,r) = 2S(z.r) =Zq({xi,xj},r) (2.46)
i#]
CAS(x,r) = ZCS(:B,I’)ZfZQ({Xi,U},r)/lg,(u,w)du (2.47)
W
RAS(z,2) = 2RS(z,r)=2S(z,r)-2CS(z,r). (2.48)

Residual of Strauss potential

The Strauss interaction potentidls of (2.14) is of the general form (2.45) with
a(txi, xj5,r) =LlIx — xjll <r}. HenceVs can be decomposed in the form (2.33) with
s(u, z,r) = 3t(u, z,r) where

tuz.r)= ) Hu-xl<r)., ug¢z.

Hence the Papangelou compensatovgfs

CVs(z,r) = %jv‘vt(u,:c,r)d(;(u, x) du. (2.49)
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Case of CSR

If the null model is CSR with intensity estimated by = n(x)/|W| (the MLE, which agrees
with the MPLE in this case), the Papangelou compensato®)bdcomes

CVs(a.r) = fz filu—xll <r}d Z'W” B(x. 1)l

Ignoring edge ffects we havéWV N B(x;, r)| ~ zr? and, applying (2.42), the residual is approx-
imately

RVS(iL', I’) = 2W]

[Ka(r) - r?]. (2.50)
The term in brackets is a commonly-used measure of depdrameCSR, and is a sensible
diagnostic becaudé(r) = nr? under CSR. The Poindavariance (2.37) is

n(zx)

2
V.
C“Vs(z,r) = AW

t(u, x,r)%du

while the exact variance formula (2.64) yields

Q

Var[l Vs(X, )]

2
P 2 pff
~ | Elt(u, X,n)*| du+ = Ifjlu— v|| < r}dudv.
4[/\/ [( )] 4 JwJdw

Now Y = t(u, X, r) is Poisson distributed with mean= p|B(u, r) " W| so thatE(Y?) = u + p°.
Foru e Wy, we haveu = pnr?, so ignoring edgeféects

Var[RVs(X,n)]

P P
Var[RVs(X,r)] =~ E|W|Nr2+Z|W|7r2r4

This has similar functional form to expressions for the amce ofK under CSR obtained
using the methods &f -statistics (Lotwick and Silverman, 1982; Chetwynd anddheg1998;
Ripley, 1988), summarised in Diggle (2003, p.f6). For smallr, we havet(u, z,r) € {0, 1}
so that

2 N n(e’B)2
C Vs(:B,I’) & 4|W|
2
Var[RVs(X,r)] =~ 7|W|7rr2

so that G Vs(x, r) is a substantial underestimate (by a factor of approxip&gof the true
variance. Thus a test based on referrings{z, r) to a standard normal distribution may be
expected to be conservative for small
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2.9.2 Residual based on perturbing K-model

Assuming;;i(a:) = ;’)\Z(n(:c)) depends only om(z), the empiricalK-function (2.39) can also
be expressed as a sum of local contributigngr) = >; k(x, x_j, r) with
W,
k(u’w’r):/\t(u’—w’r)’ uiw
pA(n(x) + L)W

where
(U a,1) = ) e (U xpIllu - i)l < 1)
j
is a weighted count of the points afthat arer-close to the location. Hence the compensator
of the K-function is
N 1
CKg(r) = A—f t"(u, z, r)4;(u, z) du. (2.51)
p*(n(z) + L)W Jw

Assume the edge correction weight(u, v) = ex (v, U) is symmetric; e.g. this is satisfied by
the Ohser-Stoyan edge correction weight (Ohser and Std@81,; Ohser, 1983) given by
ex(u,v) = 1/][W, N W,| whereW, = {u+ Vv : v € W}, but not by Ripley’s (Ripley, 1976)

isotropic correction weight. Then the increment is, tiat x,

MRo() = B @O g g A wr)
P2 U {ul) P U{u)IW]
and whenx; € x
AxKa(r) = Mm) L Az
p2(-) ()W

Assuming the standard estima@(m) = n(n - 1)/|W|? with n = n(x), the pseudo-sum is
seen to be zero, so the pseudo-residual is apart from thegigal to the pseudo-compensator,
which becomes

CAKg(r) = 2CKy(r) - [i f 25(u, x) du] Ka(r)
n-2Jw
where CK,(r) is given by (2.51). So if the null model is CSR and the intgnisi estimated
by n/|W|, the pseudo-residual is approximatel)K2[r) — C K (r)], and hence it is equivalent
to the residual approximated by (2.50). This is also the lemnan in the more general case of
a null model with an activity parameteyi.e. where the conditional intensity factorises as

/lg(u, a:) = Kfﬂ(u, .’IZ)

whered = (k, 8) andés(-) is a conditional intensity, since the pseudo-likelihogdations then
imply thatn = [ A5(u, ) du.
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In conclusion, the residual diagnostics obtained from #méupbing Strauss and-models are
very similar, the major dierence being the data-dependent normalisation oKtfignction;
similarly for pseudo-residual diagnostics which may eaively equivalent to the residual
diagnostics. In practice, the popularity of tKefunction seems to justify using the resid-
ual diagnostics based on the perturbiignodel. Furthermore, due to the familarity of the
K-function we often choose to plot the compensator(s) of ttexdfinodel(s) in a plot with the
empiricalK-function rather than the residual(s) for the fitted model.

2.9.3 Edge correction in conditional case

In the conditional case, the conditional intensigfu, ) is known only at locationsi € W°.
The diagnostics must be modified accordingly, by restrictime domain of summation and
integration tow°. Appropriate modifications are discussed in Appendices2.E.

2.10 Residual diagnostics for interaction using nearest
neighbour distances

This section develops residual and pseudo-residual d&tigsalerived from summary statis-
tics based on nearest neighbour distances.

2.10.1 Residual based on perturbing Geyer model

The Geyer interaction potentigds(x, r) given by (2.15) is clearly a sum of local statistics
(2.33), and its compensator is

CVg(x,r) = f I{d(u, ) < r}ay(u, ) du.
w
The Poincak variance is equal to the compensator in this case. Ignedgg &ects,V(x, )

is approximatelyn(z)G.(r), cf. (2.40).
If the null model is CSR with estimated intensity="n(x)/|W|, then

CVs(z,r) = {Wn U B(x.T)l;

ignoring edge fects, this is approximatekfW|F(r), cf. (2.41). Thus the residual diagnostic
is approximatelyn(z)(G(r) — F(r)). This is a reasonable diagnostic for departure from CSR,
sinceF = G under CSR. This argument lends support to Diggle's (Digh8,9, eq. (5.7))
proposal to judge departure from CSR using the quantityGupF|.

This example illustrates the important point that the conspéor of a functional summary
statisticS should not be regarded as an alternative parametric estiofthe same quantity
thatS is intended to estimate. In the example just given, under @8Rompensator @b is
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approximatelyF, a qualitatively diferent and in some sense ‘opposite’ summary of the point
pattern.

We have observed that the interaction poteralof the Geyer saturation model is closely
related toG. However, the pseudo-residual associateddas a more complicated statistic,
since a straightforward calculation shows that the pseauho-is

2AV¢@LO=A@cmry+§:zzﬂmm-—musrandehm4)>rL

(LS

and the pseudo-compensator is

CAVg(z,r) =f H{d(u, ) < r};(u, ) du + Zﬂ{d(x;,w_i) >r f I{{ju = x|l < r}Az(u, =) du.
W i

}
w

2.10.2 Residual based on perturbing G-model
The empiricalG-function (2.40) can be written

Galr) = ) 9% -i.1) (2.52)

where

g(u, z,r) = es(U,z, N{d(u,z) <r}, ué¢wx (2.53)

n(x) + 1

so that the Papangelou compensator of the empi@eainction is

——— | es(u,x,r)A5(u, =) du.
n(z) + 1 Jwnl ) Boes) ¢

c@m:fmwwmm@w:
w

The residual diagnostics obtained from the Geyer @nahodels are very similar, and we
choose to use the diagnostic based on the poggfamction. As with theK-function we
typically use the compensator(s) of the fitted model(s)aathan the residual(s), to visually
maintain the close connection to the empiriGafunction.

The expressions for the pseudo-sum and pseudo-compens$adoare not of simple form,
and we refrain from explicitly writing out these expressiofor both the&s- and Geyer mod-
els, the pseudo-sum and pseudo-compensator are not direletied to a well-known sum-
mary statistic. We prefer to plot the pseudo-residual ratien the pseudo-sum and pseudo-
compensator(s).
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2.11 Diagnostics for interaction based on empty space
distances

2.11.1 Pseudo-residual based on perturbing area-interaction model

When the perturbing model is the area-interaction processconvenient to re-parametrise
the density, such that the canonicaffstient statisticVa given in (2.16) is re-defined as

1

VA(SL’, r) = |W|

W N U B(X;, ).

This summary statistic is not naturally expressed as a swurdfibutions from each point as
in (2.33), so we shall only construct the pseudo-residual. L

Uz,r)=Wn U B(x;, I).

The increment

1
AVa(z,T) = Wi (U ufuln)|-U(x,r)), u¢x

can be thought of as ‘unclaimed space’ — the proportion ofs@aound the location that
is not “claimed” by the points ak. The pseudo-sum

A VA(:D, r) = Z A)QVA(w’ r)

is the proportion of the window that has ‘single coverage’ ke proportion of locations in
W that are covered by exactly one of the ba&lsq, r). This can be used in its own right as
a functional summary statistic, and it corresponds to a rawvr{ot edge corrected) empirical
estimate of a summary functidsy (r) defined by

Fi(r) =P(#{xe X|d(u,x) <r}=1),

for any stationary point process, whereu € R? is arbitrary. Under CSR with intensifywe
have
EF1(r) = par? exp(pnr?).

This summary statistic does not appear to be treated intdratiure, and it may be of interest
to study it separately, but we refrain from a more detailedghere.

The pseudo-compensator corresponding to this pseudossum i
CAVa(z,r) = f AuVa(z, 1) 25(u, ) du.
w

This integral does not have a particularly simple interqien even when the null model is
CSR.
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2.11.2 Pseudo-residual based on perturbing F-model

Alternatively one could use a standard empirical estimatof the empty space functidf as
the summary statistic in the pseudo-residual. The pseudoassociated with the perturbing
F-model is

SAFL(1) = n@)Fa(r) - > Fa (1),

with pseudo-compensator
CAF,(r) = f (Fao(r) — F2(r)25(u, ) du.
w

Ignoring edge correction weightému{u](r) — F,(r) is approximately equal ta,Va(z,r),

so the pseudo-sum and pseudo-compensator associatedeviplerturbing=-model are ap-
proximately equal to the pseudo-sum and pseudo-comperasstociated with the perturbing
area-interaction model. Here, we usually prefer graprsasgthe pseudo-compensator(s) and
the pseudo-sum since this has an intuitive interpretatsoexalained above.

2.12 Test case: Trend with inhibition

In Sections 2.12-2.14 we demonstrate the diagnostics opdin¢ pattern datasets shown in
Figure 2.1. This section concerns the synthetic point patteFigure 2.1b.

2.12.1 Data and models

Figure 2.1b shows a simulated realisation of the inhomogené&trauss process with first
order termi(x, y) = 200 exp(X + 2y + 3x?), interaction rang® = 0.05, interaction parameter
v = expl) = 0.1 andW equal to the unit square, see (2.13) and (2.14). This is amgbea
of extremely strong inhibition (negative associationwmtn neighbouring points, combined
with a spatial trend. Since it is easy to recognise spagadiin the data, (either visually or
using existing tools such as kernel smoothing (Diggle, }P8% main challenge here is to
detect the inhibition after accounting for the trend.

We fitted four point process models to the data in Figure ZThiey were(A) a homogeneous
Poisson process (CSRB) an inhomogeneous Poisson process with the correct formeof th
first order term, i.e. with intensity

p(X.Y) = expBo + B1X + By + B3X°) (2.54)

wherepy, ..., 3 are real parametergC) a homogeneous Strauss process with the correct
interaction rang& = 0.05; and(D) a process of the correct form, i.e. inhomogeneous Strauss
with the correct interaction rang® = 0.05 and the correct form of the first order potential
(2.54).
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2.12.2 Software implementation

The diagnostics defined in Sections 2.9-2.11 were implezdenttheR language, and will
be publicly available in thepatstat library (Baddeley and Turner, 2005). Unless otherwise
stated, models were fitted by approximate maximum psek@tiHood using the algorithm
of Baddeley and Turner (2000) with the default quadratuheste inspatstat, having an

m x m grid of dummy points wheren = max(2510[1 + 2+/n(z)/10]) was equal to 40 for
most of our examples. Integrals over the dom@&liwere approximated by finite sums over
the quadrature points.

Some models were refitted using a finer grid of dummy pointsallys 80 x 80. The soft-
ware also supports Huang-Ogata (Huang and Ogata, 199%tepeapproximate maximum
likelihood.

2.12.3 Application of K diagnostics
Diagnostics for correct model

First we fitted a point process model of the correct fqi). The fitted parameter values
weref = (5.6,-0.46, 3.35,2.05) andy” = 0.217 using the coarse grid of dummy points, and
B = (5.6,—0.64, 4.06,2.44) andy"= 0.170 using the finer grid of dummy points, as against the
true valueg = (5.29,2,2,3) andy = 0.1.
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Figure 2.3: Residual diagnostics based on pairwise disgrior a model of the correct form
fitted to the data in Figure 2.1b. (a) residu@ifunction and two-standard-deviation limits
under the fitted model of the correct form. (b) standardissidualK-function under the
fitted model of the correct form.
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Figure 2.2 in Section 2.1 showé along with its compensator for the fitted model, together
with the theoreticaK-function under CSR. The empiricklHunction and its compensator co-
incide very closely, suggesting correctly that the model good fit. Figure 2.3a shows the
residualK-function and the two-standard-deviation limits, where shirrogate standard devi-
ation is the square root of (2.37). Figure 2.3b shows theesponding standardised residual
K-function obtained by dividing by the surrogate standandati®n.

Although this model is of the correct form, the standardigsidual exceeds 2 for small values
of r. This is consistent with the prediction in Section 2.9.1 tha test would be conservative
for smallr. For very small there are small-samplétfects so that a normal approximation to
the null distribution of the standardised residual is imappiate.

Formal significance interpretation of the critical bandsnisted, because the null distribution
of the standardised residual is not known exactly, and theega2 are approximatpointwise
critical values, i.e. critical values for the score testdahen fixedr. The usual problems of
multiple testing arise when the test statistic is consideea function of : see Diggle (2003,
p. 14).

Comparison of competing models

Figure 2.4a shows the empiridatfunction and its compensator for each of the mo¢&)s(D)

in Section 2.12.1. Figure 2.4b shows the correspondingluasiplots, and Figure 2.4c the
standardised residuals. A positive or negative value ofdés&lual suggests that the data are
more clustered or more inhibited, respectively, than theehoThe clear inference is that the
Poisson modelgA) and(B) fail to capture interpoint inhibition at range~ 0.05, while the
homogeneous Strauss mode) is less clustered than the data at very large scales, suggest
that it fails to capture spatial trend. The correct mg@®lis judged to be a good fit.

The interpretation of this example requires some cautienabse the residu#l-function of
the fitted Strauss mode(€) and(D) is constrained to be approximately zera at R = 0.05.
The maximum pseudo-likelihood fitting algorithm solves atireating equation that is ap-
proximately equivalent to this constraint, because of3R.4

It is debatable which of the presentations in Figure 2.4 isemdfective at revealing lack-
of-fit. A compensator plot such as Figure 2.4a seems bespéairoag the main dierences
between competing models. It is particularly useful forogruising a gross lack-of-fit. A
residual plot such as Figure 2.4b seems better for making doraparisons of goodness-of-
fit, for example, assessing models with slightlffelient ranges of interaction. A standardised
residual plot such as Figure 2.4c tends to be highly irregidasmall values ofr, due to
discretisation ffects in the computation and the inherent ndiedéntiability of the empirical
statistic. In dificult cases we may apply smoothing to the standardised @sidu
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2.12.4 Application of G diagnostics
Diagnostics for correct model

Consider again the model of the correct foi). The residual and compensator of the empiri-
cal nearest neighbour functi@hfor the fitted model are shown in Figure 2.5. The residual plot
suggests a marginal lack-of-fit for< 0.025. This may be correct, since the fitted model pa-
rameters (Section 2.12.3) are marginally poor estimatéiseofrue values, in particular of the
interaction parameter. This was not reflected so strongtiiérk diagnostics. This suggests
that the residual o may be particularly sensitive to lack-of-fit of interaction
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Figure 2.5: Residual diagnostics obtained from the peirigrs-model when the data pattern

is a realisation of an inhomogeneous Strauss processG @ad its compensator under a
fitted model of the correct form, and theoretiGfunction for a Poisson process. (b) residual
G-function and two-standard-deviation limits under thesfitmodel of the correct form.

Comparison of competing models

For each of the four models, Figure 2.6a shasnd its Papangelou compensator. This
clearly shows that the Poisson mod@3 and (B) fail to capture interpoint inhibition in the
data. The Strauss mod€{3) and(D) appear virtually equivalent in Figure 2.6a.

Figure 2.6b shows the standardised residugboind Figure 2.6c the pseudo-residuaMef
(i.e. the pseudo-residual based on the pertubing Geyerlinadin spline smoothing applied
to both plots. The Strauss modé) and(D) appear virtually equivalent in Figure 2.6c. The
standardised residual plot Figure 2.6b correctly suggestight lack of fit for mode{C) while
model(D) is judged to be a reasonable fit.
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2.12.5 Application of F diagnostics

Figure 2.7 shows the pseudo-residual diagnostics basethpty space distances. Both diag-
nostics clearly show mode(#)—B) are poor fits to data. However, in Figure 2.7a it is hard
to decide which of the model€)—(D) provide a better fit. Despite the close connection be-
tween the area-interaction process andRheodel, the diagnostic in Figure 2.7b based on
the F-model performs better in this particular example and ailyeshows(D) is the best

fit to data. In both cases it is noticed that the pseudo-sunmatlraach higher peak than the
pseudo-compensators for the Poisson mo@els(B), correctly suggesting that these models
do not capture the strength of inhibition present in the .data
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Figure 2.7: Pseudo-sum and pseudo-compensators for thelsigap+D) fitted to the data in
Figure 2.1b when the perturbing model is (a) the area-intinaprocess (null fitted on a fine
grid) and (b) the=-model (null fitted on a coarse grid).

2.13 Test case: Clustering without trend

2.13.1 Data and models

Figure 2.1c is a realisation of a homogeneous Geyer saiarptocess (Geyer, 1999) on the
unit square, with first order term = exp(4), saturation thresholsl = 4.5 and interaction
parameters = 0.05 andy = exp(Q4) ~ 1.5, i.e. the density is

f(x) o exp((x)log A + Ve s(x,r)logy) (2.55)
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where

Vos(@,r)= Y minis > Tlix - xll <r}.
i joj#
This is an example of moderately strong clustering (witkiiattion rang® = 2r = 0.1) with-
out trend. The main challenge here is to correctly identig/tange and type of interaction.

We fitted three point process models to the dé:a homogeneous Poisson process (CSR);
(F) a homogeneous area-interaction process with disc radii9.05; (G) a homogeneous
Geyer saturation process of the correct form, with intésagbarameter = 0.05 and satura-
tion thresholds = 4.5 while the parameter$ andy in (2.55) are unknown. The parameter
estimates fo(G) were logl = 4.12 and logy"= 0.38.

2.13.2 Application of K diagnostics

A plot (not shown) of theK-function and its compensator, under each of the three model
(E)<G), demonstrates clearly that the homogeneous Poisson ri)dsla poor fit, but does
not discriminate between the other models.

Figure 2.8 shows the residudland the smoothed standardised residufdr the three models.
These diagnostics show that the homogeneous Poisson (E)dela poor fit, with a positive
residual suggesting correctly that the data are more ckethan the Poisson process. The
plots suggests that both mod€r) and (G) are considerably better fits to the data than a
Poisson model. They show th@&) is a better fit thariF) over a range of values, and suggest
that(G) captures the correct form of the interaction.
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Figure 2.8: Goodness-of-fit diagnostics based on pairvistantes for each of the models
(E)~G) fitted to the data in Figure 2.1c. (a) residial(b) smoothed standardised residKal
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2.13.3 Application of G diagnostics

1.0
1

- o Perfect fit

! . Critical bands
. AN

! \ = (BT

< ! \ —- (TGO

1 \ - (G): TG(n)

0.8
1

0.6
1

0.4
1

0.2
1

A
om
T (B): C%(r)
== (P CGM
— (©):ccm 9
T T T T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

@ (b)

0.0

Figure 2.9: Goodness-of-fit diagnostics based on nearegftlmeur distances for each of the
models(E)—G) fitted to the data in Figure 2.1c. (&and its compensator under each model;
(b) smoothed standardised residGal

Figure 2.9 shows5 and its compensator, and the corresponding residuals andastlised
residuals, for each of the moddE)—(G) fitted to the clustered point pattern in Figure 2.1c.
The conclusions obtained from Figure 2.9a are the same as thd&ection 2.13.2 based on
K and its compensator. Figure 2.10 shows the smoothed psesithral diagnostics based on
the nearest neighbour distances. The message from theg®sli@s is very similar to that
from Figure 2.9.

Models(F) and(G) have the same range of interacti@n= 0.1. Comparing Figures 2.8 and
2.9 we might conclude that th&-compensator appears less sensitive tofdne of interac-
tion than theK-compensator. Other experiments suggest i more sensitive thak to
discrepancies in theingeof interaction.

2.13.4 Application of F diagnostics

Figure 2.11 shows the pseudo-residual diagnostics baséideommpty space distances, for
the three models fitted to the clustered point pattern inrfei@ulc. In this case diagnostics
based on the area-interaction process and-timeodel are very similar, as expected due to
the close connection between the two diagnostics. Herevérig noticeable that the pseudo-
compensator for the Poisson model has a higher peak thars¢uel@-sum, which correctly
indicates that the data is more clustered than a Poissoegsoc
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2.14 Test case: Japanese pines

2.14.1 Data and models

Figure 2.1a shows the locations of seedlings and saplinglméinese black pine, studied
by Numata (1961, 1964) and analysed extensively by Ogatdaneimura (1981, 1986). In
their definitive analysis (Ogata and Tanemura, 1986) tredfittodel was an inhomogeneous
‘soft core’ pairwise interaction process with log-cubisfiorder termig(x, y) = expPs(X. y)),
whereP; is a cubic polynomial irx andy with codficient vecto, and density

floon (@) = Gt x| D Pa(x) = > (/I = xil) (2.56)

i<j
whereo? is a positive parameter.

Here we evaluate the goodness-of-fit of three mod@ty:an inhomogeneous Poisson pro-
cess with log-cubic intensity(l) a homogeneous soft core pairwise interaction process, i.e.
whenPg(x,y) in (2.56) is replaced by a real paramei{@y;the Ogata-Tanemura model (2.56).
For more detail on the dataset and the fitted inhomogenedusme model, see Ogata and
Tanemura (1986); Baddeley et al. (2005).

A complication in this case is that the soft core processgj2i$not Markov, since the pair
potentialc(u,v) = expo?/|lu — V||*) is always positive. Nevertheless, since this function
decays rapidly, it seems reasonable to apply the residwhlpaaudo-residual diagnostics,
using a cutff distanceR such thatlogc(u, v)| < e when|lu - V|| < R, for a specified tolerance
€. The cutdf depends on the fitted parameter vadtfe We chose: = O 0002 yieldingR = 1.
Estimated interaction parameters wete="0.11 for model(l) and#? = 0.12 for model(J).

2.14.2 Application of K diagnostics

A plot (not shown) ofK and its compensator for each of the modef$-(J) suggests that the
homogeneous soft core modglis inadequate, while the inhomogeneous mogdjsand(J)
are reasonably good fits to the data. However it does notichisate between the modgd)
and(J).

Figure 2.12 shows smoothed version of the residual and atdised residual oK for each
model. The Ogata-Tanemura mod@#lis judged to be the best fit.

2.14.3 Application of G diagnostics

Finally, for each of the model@i)—J) fitted to the Japanese pines data in Figure 2.1a, Fig-
ure 2.13a show§ and its compensator. The conclusions are the same as these daK
shown in Figure 2.12. Figure 2.14 shows the pseudo-residulan using either a perturbing
Geyer model (Figure 2.14a) or a perturbi@gnodel (Figure 2.14b). Figures 2.14a-2.14b tell
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Figure 2.12: Goodness-of-fit diagnostics based on pairdistances for each of the models
(H)Q) fitted to the Japanese pines data in Figure 2.1a. (a) smombiedialK; (b) smoothed
standardised residuil.

almost the same story: the inhomogeneous Poisson nigiiplovides the worst fit, while it
is difficult to discriminate between the fit for the soft core modgland(J). In conclusion,
considering Figures 2.12, 2.13 and 2.14, the Ogata-Tareemadel(J) provides the best fit.

2.14.4 Application of F diagnostics

Finally, the empty space pseudo-residual diagnosticdanersin Figure 2.15 for the Japanese
Pines data in Figure 2.1a. This gives a clear indicationtti@tOgata-Tanemura modg) is
the best fit to the data, and the data pattern appears to begatar compared to the Poisson
model(H) and not regular enough for the homogeneous softcore ngpdel

2.15 Summary of test cases

In this section we discuss which of the diagnostics we priefeise based on their behaviour
for the three test cases in Sections 2.12-2.14.

Typically the various diagnostics supplement each othe, aed it is recommended to use
more than one diagnostic when judging goodness-of-fit. ~ Gorsator and pseudo-
compensator plots are informative for gaining an overaltype of goodness-of-fit, and tend
to make it easy to recognize a poor fit when comparing competiodels. To compare mod-
els which fit closely, it may be more informative to use (stdised) residuals or pseudo-
residuals. We prefer to use the standardised residualg,ibuinportant not to over-interpret

the significance of departure from zero.
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Based on the test cases here, it is not clear whether diaghbsised on pairwise distances,
nearest neighbour distances, or empty space distancesedeeable. However, for each of
these we prefer to work with compensators and residualsrrétan pseudo-compensators and
pseudo-residuals when possible (i.e. itis only necessargd pseudo-versions for diagnostics
based on empty space distances). For instance, for theefitstdse (Section 2.12) the best
compensator plot is that in Figure 2.4a based on pairwisardies K and CK) which makes

it easy to identify the correct model. On the other hand is test case the best residual type
plot is that in Figure 2.6b based on nearest neighbour dis&fTG) where the correct model
is the only one within the critical bands. However, in thedhest case (Section 2.14) the best
compensator plot is one of the plots in Figure 2.15 with psetmmpensators based on empty
space distanceZf V and Q\ V4 respectivelyEA F and G\ F) which clearly indicates which
model is correct.

In the first and third test cases (Sections 2.12 and 2.14hwhdth involve inhomogeneous
models, it is clear tha and its compensator are more sensitive to lack of it in thedider
term thanG and its compensator (compare e.g. the results for the hameogs mode{C) in
Figures 2.4a and 2.6a). It is our general experience thghditics based ok are particularly
well suited to assess the presence of interaction and ttifgléme general form of interaction.
Diagnostics based oK and in particular orc seem to be good for assessing the range of
interaction.

Finally, it is worth mentioning the computationalfidirence between the various diagnostics
(timed on a 2.5 GHz laptop). The calculations forand CK used in Figure 2.2 are carried
out in approximately five seconds whereas the corresporiloglations foiG and CG only
take a fraction of a second. For exp F and QA F the calculations take about 45 seconds.
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2.A Further diagnostics

In this appendix we present other diagnostics which we hatémplemented in software.
The examples are therefore not accompanied by experintestats.

2.A.1 Third and higher order functional summary statistics
While the intensity anK-function are frequently-used summaries for the first arabise
order moment properties of a spatial point process, thiditagher order summaries have

been less used, though various such summaries have beessgdyin e.g. Schladitz and
Baddeley (2000); Mgller et al. (1998); Stillinger et al. (®); Stoyan and Stoyan (1995).

Statistic of order k

For a functional summary statistic kfth order, say

S(@.1) = > A%y X b 1) (2.57)
{Xig oeensXiy JCT
we obtain
TAS(z,r) = KIS(z,1) = k!Zq({xil, X hT) (2.58)
{Xig Xy JC

CAS(z,r) =K CS(x,r) = (k- 1)!f A;(u, ) Z q({Xigs - - -5 Xi_gs Uk, r)du (2.59)
w

{X41 sssss Xlk_l}gw
PU(, 1) = kI RS(, 1) = KIS(, 1) — Kl C S(z, 1) (2.60)

whereiy, iy, ... are pairwise distinct in the sums in (2.58)-(2.59). So is tfd@se again, pseudo-
residual diagnostics are equivalent to those based oruedsid

Third order example

For a stationary and isotropic point process (i.e., whemlisigibution of X is invariant under
translations and rotations), the intensity d&dunction of the process completely determine
its first and second order moment properties. However, avehis case, the simplest de-
scription of third order moments depends on a three-dinoeasivector specified from triplets
(%, X}, X) of points fromX such as the lengths and angle between the veaforsx; and

Xj — X. This is often considered too complex, and instead one dersia certain one-
dimensional property of the triangle(x;, X, x) as exemplified below, wheig(x;, X;, x) de-
notes the largest side T(x;, X;, Xi).

Let the canonical dficient statistic of the perturbing density (2.27) be

S(z,r) = Vi (z,1) = Z T(L(X, X}, %) < T). (2.61)

i<j<k
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The perturbing model is a special case ofttfijget interaction point processtudied in Geyer
(1999). Itis also a special case of (2.57) with

q({xi, Xj, %}, 1) = I(L(X, X}, %) < 1)

and so residual and pseudo-residual diagnostics are éeptizand given by (2.58)-(2.60).

2.A.2 Tessellation functional summary statistics

Some authors have suggested the use of tessellation mdthnadwracterizing spatial point
processes; see lllian et al. (2008) and the referencesnhérglanar tessellation is a subdivi-
sion of planar region such &% or the entire plan&2.

For example, consider the Dirichlet tessellationyenerated by, that is, the tessellation
with cells

C(xilx) ={ue W[lu=xl < lu=xjllforall xjinx}, i=1...,n

Suppose the canonicalfigient statistic of the perturbing density (2.27) is

S(z.r) = Vo(z, 1) = Z I(IC(x|z)| < ). (2.62)

This is a sum of local contributions as in (2.33), althoughafdocal statistics in the sense
mentioned in Section 2.6.3, sin€@C(xj|x)| < r) depends on those points in; which are
Dirichlet neighbours tog and such points may of course notrbelose tox; (unless is larger
than the diameter aV). We call this perturbing model forsoft Ord’s processOrd’s process
as defined in Baddeley and Mgller (1989) is the limiting aase —o in (2.27), i.e. whem is
the lower bound on the size of cells. Sindg(x) < n(x), the perturbing model is well-defined
forall ¢ € R.

Let ~, denote the Dirichlet neighbour relation for the pointsan that is, X ~5 X; if
C(xilx) N C(xjlz) # 0. Note thatg; ~ X;. Now,

AS(@, 1) = I(CUzuu) < 1) + > [IICMa U {up)] < 1) - I(C(vz \ {up)| < 1)] (2.63)

VU V~ gy U

depends not only on the pointsdnwhich are Dirichlet neighbours to(with respect to-,u;)
but also on the Dirichlet neighbours to those points (wispeet to~ .y Or with respect to
~z\u)- In other words, if we define the iterated Dirichlet neighboelation by thatx; ~§ X

if there exists someg such that; ~, X« andx; ~ X, thent(u, ) depends on those points in
x which are iterated Dirichlet neighbourstavith respect to~ ., or with respect to- -
The pseudo-sum associated to the soft Ord’s process is

EAVo(®,1) = Vo(@, 1+ Y Y. [lICKla) < 1) = (C(xjla-)l < 1))

i A X~ X
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and from (2.29) and (2.63) we obtain the pseudo-compensktom (2.36) and (2.62), we
obtain the Papangelou compensator

CVo(z,r) = IAII(|C(u|w U {u})] < r)A;(u, z) du.

Many other examples of tessellation characteristics mayf bgerest. For example, often the
Delaunay tessellation is used instead of the Dirichleteléestion. This is the dual tessellation
to the Dirichlet tessellation, where the Delaunay cellsegated byx are given by those tri-
anglesT (x;, X;, Xk) such that the disc containing, x;, X in its boundary does not contain any
further points frome (strictly speaking we need to assume a regularity conditiamely that
x has to be in general quadratic position; for such details,Baddeley and Mgller (1989).
For instance, the summary statisti, r) given by the number of Delaunay celli$x;, X;, x)
with L(x;, Xj, X) < r is related to (2.61) but concerns only the maximal clique®iich-
let neighbours (assuming again the general quadraticiposibndition). The corresponding
perturbing model has to the best of our knowledge not beetiestin the literature.

2.B Variance formulae
This Appendix concerns the variance of diagnostic quastitf the form

| Zh(xi,X_i)— fw h(u, z)(u, X) du

R

Zh(xi,X,i)— fw h(u, ) 4;(u, X) du

whereh(:) is a functional for which these quantities are almost sufieiite, X is a point
process oW with conditional intensityly(u, X) andé is an estimate of (e.g. the MPLE).

2.B.1 General identity

Exact formulae for the variance of the innovatibrand residuaR are given in Baddeley
et al. (2008). Expressions féfar[R] are unwieldy (Baddeley et al., 2008, Sect. 6), but to a
first approximation we may ignore théfect of estimating and consider the variance bf
Suppressing the dependencefpthis is (Baddeley et al., 2008, Prop. 4)

Var[l] = fw E [h(u, X)?A(u, X)| du+ fw fw E[AU,V, X) + B(u,v, X)] dudv  (2.64)

where
A(u,v, X) Agh(v, X) Ayh(u, X)A2(u, v, X)
B(u,v, X) = h(u, X)h(v, X){22(u,v, X) — A(u, X)A(v, X)}

wherelz(u,v, ) = A(u, 2)A(v, z U {u}) is the second order conditional intensity. Note that for
a Poisson proce®¥(u, v, X) is identically zero sinca(u, X) = A(u).
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2.B.2 Pseudo-score

Let S(x,2 be a functional summary statistic with function argument and take
h(u, X) = AyS(x, 2). Then the innovation is the pseudo-score (2.23), and the variance for-
mula (2.64) becomes

Var[PU(0)] = f E [(AuS(X.2))* A(u, X)| du
W
+ fw fw E [(AuAS(X, 2)) 22(u, v, X)| dudv
+ffE[AuS(m,z)AVS(a:,z) {22(u, v, X) — A(u, X)A(v, X)}] dudv (2.65)
W JW

where foru # vand{u,vinx = 0,

AuAS(x,2) = AVAS(x,2) = S(x U {U,V},2) — S(x U {u}, 2) — S(x U {V},2) + S(x, 2).

2.C Modified edge corrections

Appendices 2.C-2.E describe modifications to the standigd eorrected estimators Kfr)
andG(r) that are required in the conditional case (Section 2.28abse the Papangelou con-
ditional intensityA(u, =) can or should only be evaluated at locations W° whereW° c W.
The corresponding compensators are also given.

Assume the point process is Markov and we are in the conditicase as described in Sec-
tion 2.5.4. Consider an empirical functional statisticlod form

Swi@,1) = > swix, @\ {x}1) (2.66)

X Ex

with compensator (in the unconditional case)

CSw(x,r) = j\;v sw(u, z, r)4;(u, =) du.

We explore two dierent strategies for modifying the edge correction.

In therestriction approachwe replacéV by W° andx by x° = « N W° yielding

Sw(@.r) = > sw(z°\ (X)) (2.67)
Xjex®

CSwe(z,r) = fsWo(u,a:",r)/l;)(u,:c"lm*)du.
Wo

In this approach, data points in the boundary regigh are ignored in the calculation of
the empirical statistiS. The boundary configuratiom* = « N W* contributes only to the
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estimation ofé and the calculation of the conditional intensity(,- | *). This has the
advantage that the modified empirical statistic (2.67) entital to the standard statist®&
computed on the subdomaiki’; it can be computed using existing software, and requires no
new theoretical justification.

The disadvantage of the restriction approach is that weildeemation by discarding some
of the data. In theeweighting approachwve retain the boundary points and compute

D7 swew(6, @\ {x),1)

X ex®

f swew(U, x,r);(u, z° | *) du
Wo

Swew(z, 1)

CSwewl(z,r)

where sy w(-) is @ modified version o$y(-). Thus, boundary points contribute to the com-
putation of the modified summary statis@g-w and its compensator. The modification is
designed so th&w- w has properties analogous$g.

The K-function andG-function of a point proces¥” in R? is defined (Ripley, 1976, 1977)
under the assumption thaf is second-order stationary. The standard estimatog) re-
spectivelyG,(r) of theK-function andG-function are designed to be approximately pointwise
unbiased estimators &f(r) respectivelyG(r) when applied toX = Y n'W.

We do not necessarily assume stationarity, but when carstgumodified summary statistics
Kwew(r) andGy- w(r), we shall require that they are also approximately poiséwinbiased
estimators oK (r) respectivelyG(r) whenY is stationary. This greatly simplifies the interpre-
tation of plots oﬂZWo,W(r) andéwo,w(r) and their compensators.

2.D Modified edge corrections for the K-function

2.D.1 Horvitz-Thompson estimators

The most common nonparametric estimators ofKhiinction (Ripley, 1976; Ohser, 1983;
Baddeley, 1999) are continuous Horvitz-Thompson typeregtirs (Baddeley, 1993; Cordy,
1993) of the form
N - 1
K(r) = Kw(r) = = Z ew (X, X))I{IIx — x|l < r}. (2.68)
P(x)IW 7

Herep’5 = ;z(w) should be an approximately unbiased estimator of the sguatensityp?
for stationary processes. Usuati§(x) = n(n — 1)/|WJ?2 wheren = n(x).

The termew(u, V) is an edge correction weighL depending on the geometvy,afesigned so
that the double sum in (2.68), sa¥(r) = p2(z)WIK(r), is an unbiased estimator of
Y(r) = p?|W|K(r). Popular examples are the Ohser-Stoyan translation extgection with

[W]|
W (W+ (u-v))

ew(u,v) = el2™u,v) = (2.69)
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and Ripley’s isotropic correction with

2n|ju - vl
length(8B(u, |lu — Vi) " W) "

ew(u,v) = ei(u,V) = (2.70)

Estimators of the form (2.68) satisfy the local decompogi(2.66) where

1
sw(U, ¢, 1) = ———— ZaN(u XpHllu=xjll <1}, ué¢x.
p?(x U {u})IW|

Now we wish to modify (2.68) so that the outer summation idrigted to data pointsg
in W° c W, while retaining the property of unbiasedness for statip@d isotropic point
processes.

Therestriction estimatois

R ()= =——— 37 3" w6, )l ~ % < 1) (2.71)

2(-'13 W[ xeze Xjex?,

where the edge correction weight is given by (2.69) or (2with W replaced bywe.

A more dficient alternative is to replace (2.68) by ttesveighting estimator

Kwew(r) = DD e w6 X)X = Xl <) (2.72)
2(15)|W | X €L XX

whereey- w(u, V) is a modified version oy (-) constructed so that the double sum in (2.72)
is unbiased foiy(r). Compared to the restriction estimator (2.71), the reting estimator
(2.72) contains additional contributions from point pdixs x;) wherex; € ° andx; € ™.

The modified edge correction factag. w(-) for (2.72) is the Horvitz-Thompson weight (Bad-
deley, 1999) in an appropriate sampling context. RipleRipley, 1976, 1977) isotropic cor-
rection (2.70) is derived assuming isotropy, by Palm caowlihg on the location of the first
point x;, and determining the probability thaf would be observed insidé/ after a random
rotation aboutx. Since the constraint ox; is unchanged, no modification of the edge cor-
rection weight is required, and we takg- w(-) = ew(:) as in (2.70). Note however that the
denominator in (2.72) is changed frgwi| to [W°|.

The Ohser-Stoyan (Ohser and Stoyan, 1981) translatioeat@n (2.69) is derived by con-
sidering two-point setsx(, xj) sampled under the constraint that bafand x; are insidew.
Under the modified constraint thate W° andx; € W, the appropriate edge correction weight
is
W N (W° + (u-V))

IWe|

ewew(U, V) = ew- w(u—V) =

so that Yew- w(2) is the fraction of locations in W° such thau + ze W.
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2.D.2 Border correction

A slightly different creature is the border corrected estimator (usingl irstiensity estimator
p =n(x)/IW)

- W,
Ru) =~ S S 11 € Wl - x4l < 1)

n(wn(@ W) 42 o

with compensator (in the unconditional case)

oo [ W Deellu-xlizn)
W“)‘fwe, (@) + D@ 1 W) + D 24 & 1 Z) A

The restriction estimator is
5 [W°|
Kwe(r) =

n(a°)n(a N W) D D, T € WETIX - xjll <)

XEX® XjET?;
and the compensator is

CR _ |WO|ZxJem {llu— XJ”<r} 1 o d
W““‘fwg, (&) + DG 1 W) 1y 02 T2

Typically, W° = Wzg, SOWS, is equal toWgr.r).
Thereweighting estimatois

W
S S T € Wil - gl < 1)

2 I M
We W(r) n(m)n(w N Wer) XET® Xj€T i

and the compensator is
., W Xxee U= Xjll < 1}
C Kwew(r) =f = 5 :
weews, (N(x) + 1)(n(z° N W) + 1)
Usually W°® = Wggr, SOW° N W, is equal toWsmaxgr). From this we conclude that when
using border correction we should always use the reweigtggtimator since the restriction

estimator discards additional information and neitheiitif@ementation nor the interpretation
is easier.

A3(u, z° | *) du.

2.E Modified edge corrections for nearest neighbour function G

2.E.1 Hanisch estimators

Hanisch (1984) considered estimators@gr) of the formGw(r) = D, (r)/p, wheregs'is some
estimator of the intensity, and

~ I{x € Wgg JI{d; <
B = Y E Ne\;’e';'{ =0 2.73)
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whered; = d(x, z \ {x}) is the nearest neighbour distance %orlf p were replaced by then
Gw(r) would be an unbiased, Horvitz-Thompson estimatoG(f). See Stoyan et al. (1987,
pp. 128-129); Baddeley (1999).

Hanisch’s recommended estimafdy is the one in whichp s taken to be

~ _ I{x € Wag, }
Do) = 2 iy

Xiex

This is sensible becausg, () Is an unbiased estimator pfand is positively correlated with
D.(r). The resulting estimatdsy(r) can be decomposed in the form (2.66) where

[{ue Wed(u «)}{d(u, ) <1}

sw(u, z,r) =
Dot (20) Wodqua|

for u ¢ x, whered(u, x) is the (‘empty space’) distance from locatioto the nearest point of
x. Hence the corresponding compensator is

~ I Wid(uz) H{d(u, <
CBulr) = f {u GA ed(u.z) I{d(U, ) < r}/l@(u, ) du
w D zu(uy (00)IWad(u,a)|

This is dificult to evaluate, since the denominator of the integrandivies a summation over
all data pointsD,, (o) is not related in a simple way 0, ().

Instead, we choosetd be the conventional estimator:‘n(m)/|W|. Then

GW()_ m()

( )
which can be decomposed in the form (2.66) with

W I{u € Wegqz) H{d(u, ) <1}
n(x) + 1 (Wad(uz)l

sw(U, z,r) =

for u ¢ x, so that the compensator is

W f I{u € Wog(u ) {d(u, @) <}
n(z) + 1 Wed(u)|

CGw(r) = A5(u, ) du. (2.74)

In the restriction estimatowe exclude the boundary points and take = d(x;, z°;), effec-
tively replacing the dataset by its restrictionz® = x N W°.

N [W°| I{x € W2, {d| <rj}
GW°(r) = n( ) Z |Wo

X €x®

The compensator is (2.74) but computed for the point pattérin the windowWe:

[We| f H{u € Wy oy} {d(u,z°) <r}

Cow) = o+ W2

(U, z° | =) du.
dua)!
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In the usual cas®/° = Weg, we haveW;; = We(r:a)-

In the reweighting estimatowe taked, = d(x,« \ {X}). To retain the Horvitz-Thompson
property we must replace the weight§\Wlsq | in (2.73) by %/|W° N W4 |. Thus the modified

statistics are IWI oo JI(G }
A I{x € Weg, } <r

(e = E ' 2.75

wew(r) = We A Wag | ( )

and

CGwewl(r) =

W) f Ifue Wed(u,m)}]l{d(u’ .’13) < r}/lg)(u, z° | m*) du. (276)

n(x) + 1 IWe N Wogu,a)l
In the usual case wheW® = Wog we haveW® N Weg, = W maxrad,)-

Optionally we may also replad@V|/n(x) in (2.75) by|W°|/n(x N W°), and correspondingly
replacgW|/(n(x) + 1) in (2.76) by|W°|/(n(x N W°) + 1).

2.E.2 Border correction

The classical border correction estimatezois

Gulr) = 7= mwe,)z % € Werllid(x, 1) <) (277)

X Ex
with compensator (in the unconditional case)

1

cu(r)= ——
w(r) 1+ n(x N Wer) Jw,

{d(u, ) < rjay(u, =) du. (2.78)

In the conditional case, the Papangelou conditional inttems(u, ) must be replaced by
A;(u, z° | *) given in (2.24). Theestriction estimatois obtained by replacing/ by W° and
x by x° in (2.77)—(2.78) yielding

) 1
Gw-(1) W; % € WEJId(x, 2°)) < 1)
CGu(r) m[ I{d(u, z°) < r}dy(u,z° | ™) du

Typically W° = Wig so thatWg, = Wer.r). Thereweighting estimatois obtained by restrict-
ing x; andu in (2.77)—(2.78) to lie in\°, yielding

Cuww(d = o mwer)z (% & WorlT(d(x, i) <)

X €Ex°®
1

CGwew(r) 1+ n(z° N War) We Wy

H{d(u, z) < r}ds(u, =° | =*) du.
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In the usual case wheW® = Wer we haveW® N W = W max®r)-

In the same way as for the border corrected estimate foKthenction we always choose to
use the reweighting estimator rather than the restrictsimator since there are no disadvan-
tages connected with this.

The border corrected estimatd(r) is well known for having relatively poor performance and
sample properties. It is not guaranteed to be a monotoyicedieasing function of, and its
bias and variance are generally greater than those of théteidihompson style estimators.
The main reason for choosing the border corrected estinsitsrcomputational fciency in
large datasets. We may expect similar considerations tly &pfis compensator.
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Abstract:

An a-permanental random field is briefly speaking a model for Bectibn of non-negative in-
teger valued random variables with positive associati@heugh such models possess many
appealing probabilistic properties, many statisticiagens unaware af-permanental random
fields and their potential applications. The purpose ofplhiger is to summarize useful prob-
abilistic results, study stochastic constructions ancufation techniques, and discuss some
examples ofr-permanental random fields. This should provide a usefuslas discussing
the statistical aspects in future work.

Keywords:
a-determinanta-permanent; covariance; doubly stochastic constructiegative binomial
distribution; simulation; Poisson randomization.

3.1 Introduction

For any real number and anynxn matrix Awith entriesA, j, thea-determinant oA is defined
as (Shirai, 2007)

det,A= Z "N P22 Pro), (3.1)

€Sy

whereSy, is the set of all permutations of 1., n, andc(o?) denotes the number of cycles in
o. If @ = =1 we obtain the usual determinant, which can be easily ctled) and forr = 1,
(3.1) is called the permanent & Fora # —1 the computation of dgh is believed to be
intractable (forr = 1, the computation is know to be intractable in the sensefitisomplete,
see Valiant (1979)). However, in Kou and McCullagh (2009pkgorithm for approximating
the a-determinant forr > 0 is given, which may help overcome thefidiulties of calculating
the a-determinant in applied work. Notice that some authorseguref work with the related
a-permanentAl, = o"det,, A, but in the present paper thedeterminant is used.

The a-determinant plays an important role in the study of permgai€or boson) point pro-
cesses (where = 1) and determinantal (or fermion) point processes (where -1) as
introduced by (Macchi, 1971, 1975) and their extensions-fzermanentald > 0) anda-
determinantal¢ < 0) point processes, which have received much researclesttier prob-
ability theory in recent years (Shirai and Takahashi, 208)3@eorgii and Yoo, 2005; Hough
et al., 2006; McCullagh and Mgller, 2006). The focus of thesgnt paper is om-permanental
point process models, i.e. when> 0. We consider the simplest setting, namely when such
point processes can be identified by a collection of of disanen-negative random variables
N = (Ng; s € S), which are indexed by a finite s& = {sy,..., Sn}. In applications the
indicess typically correspond to distinct spatial locationsHror R? referred to as sites. In
the terminology of spatial statistics (see, e.g., Cres93)), NV is then arandom field and
thereforea-permanental point processes in this setup are calpdrmanental random fields.

Such random fields are used to model multivariate count déth,spatial dependence be-
tween the counts. A simple example of arpermanental random fields is obtained by a
doubly stochastic construction as follows. First, introgl@uxiliary real random variablég
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associated with the sitese S, and assume that = (Y, ..., Ys,) follows a zero-mean mul-
tivariate Gaussian distribution with covariance ma@€ixSecond, conditional ok, indepen-
dently for each sits € S, let Ns be Poisson distributed with mead. ThenIV = (Ng; s€ S)

is ana-permanental random field with = 2, as will be described in more detail in Sec-
tion 3.4.1. The class at-permanental random fields is much more general and cannot be
constructed in such a simple way, but this example illusgrathich type of data the model
class can be used for.

To the best of our knowledge, the statistical and computatiaspects of these models have
so far mainly been unexplored, and many statisticians maynlagvare of the models many
appealing properties and potential applications. Thegmtegaper should provide a useful
basis for discussing the statistical aspectsrgfermanental random fields, and it is based
partly on the above-mentioned references and the seminélbyoGriffiths (1984), Gifiths
and Milne (1987), and in particular Vere-Jones (1997), aantlypon some new results of our
own.

The remainder of this paper is organized as follows. Se&idintroduces some notation, dis-
cusses the definition and existencergbermanental random fields, and presents three specific
examples of model types, which are also discussed in theequbat sections. Section 3.3 re-
views various useful properties @fpermanental random fields. Section 3.4 considers stochas-
tic constructions and simulation afpermanental random fields.

3.2 Preliminaries

3.2.1 Definition and notation

LetS ={sy,..., Sn} be an arbitrary finite set an¥ = (Ns, s € S) a collection of non-negative
integer-valued random variables. This will be@permanental random field with parameter
(a,C)ifforall z = (z5; se S) with |zs| < 1, se S, the probability generating function fav,

¢(2) = p(zs;S€S) = EHZSS
S

is of a particular form specified below. Heaeis a positive number an@ : SxS — R is
a function which satisfy certain conditions such the randiahl exists; these conditions are
also discussed below.

Since S is finite, the functionC can be identified with a reahxm matrix, also denoted
C. WhetherC is considered a function or a matrix will be clear from the teaih and the
two representations are used interchangeably througheupaper. Notationally we write
Cij = C(s,sj). Furthermore| denotes the identity matrix4| is the determinant of a square
matrix A, and we take 9= 1.

Definition 1. We say thatV = (Ns, S € S) is ana-permanental random field with parameter
(a,C)if
o(z) = |l +a(l-2)C| Ve (3.2)
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where Z denotes the diagonal matrix wittzs(s € S) on the diagonal. We then write
N ~ per(,C).

In accordance with the references given at the very beginoirsection 3.1, we call it aa-
permanental random field, while a so-caltedieterminantal random field appeargifs neg-
ative. The reason for the names of these models are partlgiezd by the close connection
betweem-determinants and-permanents and the fact that density and moment exprassion
are given in terms of-determinants oti-permanents, see Section 3.3.

If NV ~ per(e,C) thenl + oC is necessarily non-singular (otherwise (3.2) would not led-w
defined forz = 0), and we can define the matrix
C=aC(l +aC)t=1-(+aC)t. (3.3)

Using this parametrization we can write (3.2) as
~ ~ 11/
o(z) = [I1-Ci/m-z¢| ™. (3.4)
On the other hand, if (3.4) is a probability generating fimrcthen!—-C is necessarily non-

singular, and setting
C= léa -t (3.5)
04

we obtain (3.2). Consequently, we can equally well paraimeeprerg, C) by (a, C).

For notational convenience we sometimes wiriter 5. Using the Schur decomposition ©f
(Golub and Van Loan, 1996), the relation between the eigeesa; of C and the eigenvalues
A; of C is seen to be

A 5 ad;
' 1+ad’

A= i=1...m (3.6)

a—al,
We let||4i|| denote the modulus aolf and define the spectral norm Gfas

ICl| = max{||A4]l, ..., IAmll} (and similarly forC).
Finally, a useful expansion fozg|| < 1,s€ S, is
“log|l - ZC| = itr{(zé)”} /nif 6] < 1. (3.7)
n=1
See e.g. Goulden and Jackson (1983).

3.2.2 Existence of the a-permanental random field

By Definition 1, per, C) exists if and only if (3.2) (or equivalently (3.4)) is a pepprob-
ability generating function. It is clear that this is not tteese for all ¢, C). The problem of
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characterizing the set ofe(C) such that (3.2) is a proper probability generating funci®
treated in detail in Vere-Jones (1997), but no easily véaléimecessary and icient condi-
tion is known. There are however some knowffisient conditions expressed either through
(a,C) or (@, €), and the two most important §icient conditions for the present exposition are
the following.

Condition I: C is a covariance matrix and e (O, Wil) U {n%l 2.0 2}.

Condition Il: € has non-negative entries ajfd|| < 1.

Condition | is a minor extension of the corresponding regulvere-Jones (1997), and it
can be found in e.g. Shirai (2007). It is related to the dowdehastic construction of the
a-permanental random field described in Section 1 and Se@tibrl. The sfliciency of
Condition Il is an immediate consequence of (3.19) in Sec83.3, where the density of
the a-permanental random field is expressed usirgeterminants o€. Note thate can be
any positive number under Condition II.

One important necessary conditi@must satisfy is
C(s,9 =0 forallsesS. (3.8)

This follows later from equation (3.10).

3.2.3 Examples

In this section, our running examples@fpermanental random field models are introduced.

Example |

Let C = «xQ, wherex > 0 andQ is a projection of rank > 0. In this special casé&v
satisfies many striking and unusual properties, and we teé&efore to it as the speciat
permanental random field. In this case it turns out thand C are proportional. More
specificallyC = 1.=-Q, which is verified in the following. From (3.3) we need onlyrife
that

aK
1+ ax

Q = akQ(l + axkQ)™L.
This is equivalent to

akQ + (akQ)? = akQ + ?6*Q,

which clearly is true sinc€ is a projection and consequently idempotent.
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Example Il

If C has rank one it can be written on the for@,; = ab;, i,j = 1,...,m, for some real
vectors @, ...,am) and i,...,by). Assume tha€ is of this form with},"; Ci; > 0. The
matrix A := (1-Z)C appearing in (3.2) has,())'th entry (1-z)ab;. If A is a non-zero ma-
trix, i.e.z # 1 foralli = 1,...,m, thenA has rank one and eigenvaldg", (1-z)C;; with
corresponding eigenvector (flz;)ay, ..., (1 - zn)am)". Consequently, by (3.2),

m -1/
o(z) = (1+ Q{Z(l— z)CUD .
i=1

It follows that the distribution ofV depends only o€ through the diagonal elements. Conse-
quently, we may without loss of generality assutni® be a positive definite symmetric matrix
with non-negative entries of the for@) ; = /GCj for some non-zero vectar = (cy,.. ., Cm),

¢ >0,i =1,...,m Then the only non-zero eigenvalue®fs « := >, ¢, = >, Ci;, and it

is a speciakr-permanental random field as discussed in Example | Qith %C.

Remark. In Example Il it was sgicient to let C be symmetric, but this is not in general
possible for ana-permanental random field where C has rank higher than oneke Hag.
N ~ per(e,C) with C a non-symmetric matrix such that thepermanental random field is
well-defined. Then a corresponding random field parametrizg a symmetric matrix C
would have to be given byi”pz 4/Ci jCj; for the covariances to be the same, but the distri-
bution is in general not the same using C arndsice the corresponding-determinants (and
thereby the factorial moments as considered in Sectior2 Bdyfer when the rank is higher
than one.

Example IlI

In this example, we consider a model for aspermanental random field in the case where
S = {si,..., Sn} is a finite number of sites on the real line wigh< --- < sy,. First a slight
modification of the double stochastic construction™f= (Ns; s € S) as described in Sec-
tion 1 and Section 3.4.1 (Method Il) is considered, where egire thatx = 2/k for some

k € N. Furthermore, for eache S, let z(s) = (zo(s), z(9), . . . , Zp(9)) be given covariates for
Ns, where we letzy(s) = 1 for all s € S such tha, introduced below has the interpretation
of an intercept on the log-scale. Let a random mean fild= (Ms; s € S) be modeled as
Ms = expBTZ(9))(Y;  + - - + YZ), whereY: = (Y15 S€S),..., Yi = (Yks; S€ S) are inde-
pendent zero-mean Gaussian random fields with the expaheotivariance matrix
Cov(Yis, Yit) = 0% 0 < p < 1. Suppose thalV conditioned onM consists of mutually
independent Poisson random variablgsvith meanMg, s€ S. ThenN ~ per(, C), where

Cij = C(s. ) = exp(8"(&s) + As))/2) p1* 3. (3.9)

Using this construction the model is at least well-definedife: 2/k, k € N, but the following
proposition extends the model to alt> 0.
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Proposition 1. Let S ={St,....Sm}, S1 <+ < Sm, 0< p < 1, anda > 0. If Cis given by
(3.9) then all entries of = oC(l + aC)~* are non-negative and pet(C) is thus well-defined.

Proof. We haveC = DBD, where D is a diagonal matrix withD;; = exp(8Tz(s)/2),

i =1,...,m andB is the matrix with entrie®; j = p'S~Sil. Using a notation as in Appendix,
Bis a Green’s matrix witla; = p7!S~5l andb; = p/S~SI. Thus, if the inversé™ = T exists,
T is tridiagonal, and it is straightforward to verify that tiraatrix T given in the following is
indeed the inverse @. The diagonal elements are

. 1-— p2|3+1—571|
"~ (1- p2sash)(1 - pAs—sal)’

Tii =1...,m
where we definey = Sn1 = o0, such thap?S—Sl = =Sl = pASma=sil = p2sma=snal = Q,
The non-zero fi-diagonal elements are

_p|3+1_3|

Tij1 = Tirei = i=1,...,m1

1 - p2|5+1*3| ’
Now, .
C=0+@C)H =0+ DB DY =0aD@D?+T) D,

where the first equality follows by the Woodbury formula (Gmland Van Loan, 1996) since
C is non-singular. Clearly the matrixD? is diagonal and positive definite. The sum of
positive definite matrices is positive definite, stDf + T) is a symmetric positive definite
tridiagonal matrix with non-positive fidiagonal elements. Lemma 1 in Appendix implies
that all elements ofgD? + T)~! are non-negative, and the result follows. o

Remark. Condition Il also require$|(f|| < 1for the a-permanental random field to be well-
defined. However, froif8.6)this is clearly true in the present example where C is a carare
matrix and hence has non-negative real eigenvalues.

Figure 3.1 is inspired by a dataset that fits into this setapr{ts of clover leaves in 200 squares
of size 5x 5 cm along a 10 m transect line, see Augustin et al. (2006) érevthe data can be
viewed as a one-dimensional random field consisting of 2@8 sin the real line with positive
association expected between the counts due to clustefricigwers in patches. Figure 3.1
shows four diferent simulated datasets of this type usingjedent values ofr andp. Since

no covariates are available the only other parameter in theeinis 3y, which controls the
mean value E; = --- = ENygp = expfBo) (as shown in Section 3.3.2 the mean is given by
the diagonal elements &). For diferent values ofd, p), permanental random fields were
simulated using the Poisson randomization described itid®e8.4.2, whergsy = 1og(1.28)

is fixed so that the random fields have the same mean as thedatétigustin et al. (2006).

3.3 Properties of a-permanental random fields

This section reviews various useful propertiesrgiermanental random fields. We will need
various matrices formed fro@ andC. We introduce these fd€ in the following, while the
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Figure 3.1: Realizations of the random field of Example IHddferent values ofr andp.

analogous definitions fo€ simply are obtained by replacing with C. For any multi-set
T ={t1,....ta}, ti € S we letCy denote thenxn matrix with (, j)'th entry C(t;, t;). If T is of
the special form
T = {S_b-'-7313"-’33---339-"73'{]5--~9ST]}7
— ———

—_———
N, ng Nsm

for non-negative integera = (ng; s € S) with n, = Y s Ns > 0 we also writeCr = C[n],
and we define dg€[0] = 1.

3.3.1 Relation to the negative binomial distribution

Let N ~ per(@,C). From the form of (3.2) it is clear that for ary’ c S the subfield
Ns = (Ng; s € &) is also aa-permanental random fieldVs, ~ per(,Cs). Particularly,
the probability generating functions of the one dimensianarginalsNs, s € S are of the

form (1+a(1-2)C(s, 9))"*. Hence, ifb~ (k, 7) denotes the negative binomial distribution with
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parameterg > 0 and 0< = < 1, and probability density function

n+«) , B :
n!F(K)ﬂ(l mn n=0,1,...,

we see that

Ns~b‘(1 aC(s 9 ) (3.10)

@’ 1+aC(s 9
Consider the sum\, = 3.5 Ns. By (3.2), the probability generating function N, is
©0x(2 = |l + (1 - 2C[ Y, (3.11)

Rewriting in terms of the eigenvalues ©f (3.11) yields

e@ =[] Q+a@-20)"
ir ieR

x [ (1+20(1- 2Re@) + (1 - 22402) .

i: li¢R

(3.12)

Hence, if Ja is an integer, the distribution &, is of matrix geometrical form, see Asmussen
and O’Cinneide (1998) and the references thereinC bnly has real eigenvalueg > 0,
i=1,...,m, then (3.12) implies that

(1 al (1  adn
Ny ~b™ | = Lok b= . 3.13
* (0/1+a/11)* * (a’1+a//lm) (3.13)

A well-known property for ‘zero-states’ of the negative dnial distribution can be general-
ized as follows concerning the probability

¢«(0)=P(Ns=0forallseS).
From (3.12) follows that
d C2mp+mp 1 2
3 1096.0) = ——>— -3 i%]RnA.n

where my respectiven, denote the number of real respective non-real eigenvaliyes
i=1,...,m Thus, ifC has only real eigenvalueg, (0) is an increasing function af, and
¢«(0) > 1 fora — oo.

3.3.2 Moments

For non-negative integeesandb, leta® = 1, anda® = al/(a-b)! =a(a—1)---(a—b+1)
if a> b > 0. The factorial moments are given by

E 1_[ N = det,C[n] (3.14)
€S
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for non-negative integersi{; s € S). This can be obtained by expanding out the powers of
(zs — 1) in (3.2), cf. Vere-Jones (1997) and Shirai and Takah&db3a). Note that (3.14)
implies that ¢, C) is such that dgC[n] > O for all non-negative integerad s € S).

In general, only the lower dimensional moments are comjmutally tractable. The first and
second order moments are given by

ENs=C(s,5), VarNs=C(s, 5)+aC(s, )2, Cov(Ns, N)=aC(s, 1)C(t, s), if s#t. (3.15)
By (3.15) it is clear that
Ns = 0 (almost surely) ifandonly if C(s,s)=0. (3.16)
If C(s,s) > 0, we obtain from (3.15) the well-known property of the naégabinomial distri-
bution thatNs is over-dispersed. Moreover, (3.15) implies that ®ay({\;) > 0, cf. Vere-Jones

(1997). Note that ifC is symmetric and non-negative, there is a one-to-one quoretence
between ¢, C) and the moments given by (3.15).

If C is a covariance function, consider its correlation functio
R(st) = C(s )/ [C(s, 9C(t. )%, steS (3.17)

where we takdr(s,t) = 0 if C(s, s) = 0 orC(t,t) = 0. Then by (3.15), the correlation between
Ns andN; is

C(s, 9C(t 1) 12
(1+aC(s 9)1+aCt )| °

Corr(Ns, Np) = aR(s, t)? steS. (3.18)

The right hand side in (3.18) is an increasing functiom oénd it tends tdR(s, t)? asa — co.

3.3.3 Probability density function

The probability density function of an-permanental random field can be expressed us-
ing a-determinants oC as follows, see Vere-Jones (1997). For any non-negatiegeéns
n = (Ng; S€ S) with n, = Y o5 Ns,

POV = n) = || - GY2a ™ det,C[n] / [Tns- (3.19)
€S

This can be obtained by expanding out the powerz of (3.4).

As described in Section 3.3.1 the marginal distributionmyflds and possibly also of the ‘mar-
gin’ N, are related to the negative binomial distribution. Howeegen the joint distribution
of two random variable®ls and N; is in general complicated, cf. the discussion infiths
and Milne (1987).
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3.3.4 Independence
Independence properties of infinite divisikblgpermanental random fields have been studied in
Griffiths and Milne (1987), and their results are summarized héheslight generalizations.

Suppose tha® = T U U whereT andU are disjoint and non-empty. Recall that the subfields
Nt and Ny are independent if and only if the probability generatingdtion ¢(zs; s € S) of
N is a product of two functions, one dff s € T) and one of%; s€ U).

It follows immediately from (3.2) thalNt+ and Ny are independent

if C(t,u) = C(u,t) = O whenevet € T andu € U. (3.20)
If Cis symmetric, then by (3.15), CaM{, N,) = aC(t, u)?, and salNT andIVy are independent
if and only if C(t, u) = 0 whenevet €T andu € U. (3.21)

The property ofC in (3.20)-(3.21) means that if we order the element §o that the elements
of T come before those &, thenC restricted tol U U is block-diagonal with respect to the
partition given byT andU. If Cis not symmetric, itis possible that CaNg, N;) = C(t, u)C(u, t)

is zero even ifN; andN, are not independent, and we can not in general replace ‘{8.20)
by ‘if and only if’.

Furthermore, we can repla by € everywhere in (3.20)-(3.21). This follows by similar
arguments as above but using (3.4). In addition, assuméhhaigenvalues df are bounded
strictly in modulus by one, and define a directed grég@) with vertex seS and edgess;, Si)
ifs#s and(f(s, sj) # 0. ThenNt and Ny are independent

if and only if every directed circuit i6(C) contains vertices of eithdF or U,
but not both. (3.22)

This follows by combining (3.4) and (3.7), using similar angents as in the proof of Theo-
rem 3 in Grifiths and Milne (1987).

3.3.5 Thinning

Let0< s < 1,s€ S, be given numbers, and consider a random fi§ifl = (NI"; s € S) so
that conditional oriV, theN!" are mutually independent aid ~ b(Ns, 7). We say thafV®"
is obtained by an independent thinning§fwith retention probabilitieas, s € S. Define

Clh = VasmCst, SteS. (3.23)
It follows immediately from (3.2) that
N < per@, C™M). (3.24)

Suppose tha is a covariance matrix. The®™" given by (3.23) is also a covariance matrix,
and N and N™ share the same correlation matfxgiven by (3.17). By (3.18) we have
0 < Corr(NI, Ni" < Corr(Ns, N), where Corrlif", Ni") is an increasing function ofs and of
Tt
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3.3.6 Convolution

By (3.2), for anya; > 0 anda;, > 0,

1 1\*?
Der(al, @2 C) * per(az, @ C) = per[(— n _) ,C)
a1 + a2 a1+ az 02} s

provided of course that the two firgtpermanental random fields exist. In particular,

per(, C) = per@n,C/n)*"

for anyn € N such that per{n, C/n) exists, wherexn denotes convolution times.

3.3.7 Examples
Example | (continued)

Let the situation be as in Section 3.2.3. Sifckasr non-zero eigenvalues which are all equal
to k, (3.13) reduces to
Ny ~ b~ (r/a, ax/(1 + ax)).

Further,C = (ax/(1+ ax))Q, and we obtain from (3.14) and (3.19) that the expressionthé
factorial moments and the probability density function eosely related, since

k" det,Q[n]

E| | ND = (" de PN =n) = 3.25
[ [N = detQinl. POV =m)= ol mm g oy B29)
wheren, = Y o5 Ne.
Example Il (continued)
Let the situation be as in Section 3.2.3. From (3.13) we have
K
~ 2
b (cx 1+ Q’K) (3.26)

By differentiation of the probability generating function it isagghtforward to find the prob-
ability of NV = n for any vector of non-negative integes= (ny, ..., nym) with 3", nj = n,

F(% +ny) -1 M C
pn) = = —(L+ax) [ [
Combining this with (3.26) yields

p(nin) = n,! ﬁ i C; )" (3.27)
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such thatlV|n, is multinomial with event probabilitie%, cel °7'“

In this setup the random field is parametrized by the me&h,(E., ENy) = (Ca, ..., Cn), and
using the fact thal\,. follows a negative binomial distribution and that|N,. is multinomial
makes a two step simulation scheme straightforward. Theledion betweeN; andN; is

Ci Cj
l/a+¢ l/a+c;

COI’I’(Ni, Nj) = \/

so sites with a large mean is more strongly correlated taladircsites than a site with a smaller
mean. IfIN is homogeneous in the sense thatc - - = ¢, = ¢ the correlation between the
counts at any two sites is CoNi, N;) = ac/(1 + ac). Furthermore, as is the case for
permanental random fields in general, correlation grows aias well.

Figure 3.2 shows four realizations of such a homogeneowporarfield withc = 100 and

a = 1. The figure exemplifies how the correlation in this mod&aively results in very
little variation within a realization of the random field cpared to the large variation between
realizations. Based on 1000 simulations the average ofiy@rigal variance within each
realization was 18 compared to the marginal variance \lg)(= 110,i = 1,...,2500. While
this model is mathematically tractable it seems to be ofilgssest in applications due to low
flexibility, and in spatial applications the model is tii@eted by usual neighborhood relations
based on distances since correlation structures only depethe mean values at any given
given pair of sites.

3.4 Stochastic constructions and simulation

In this section we discuss stochastic constructions andulation algorithms for the
a-permanental random fiel&. To exclude the trivial case wheilds = 0 for all s € S,
we assume that has rankr > 0. Furthermore, we assunme > 1, sinceN just follows a
negative binomial distribution ifn = 1.

3.4.1 Doubly stochastic construction

Assume thatG = (Gg; s € S) is a random field of non-negative real random variables with
Laplace transform (or moment generating function) of thenfo

E exp(z Gszs] =l —azC| Y (3.28)
seS

for zg € [-1,1], s € S, whereZ is the diagonal matrix with diagonats{s € S). This is
a multivariate extension of the gamma distribution, whédrerse-dimensional marginals are
gamma-distributed, but it is an open question to estabksiessary and flicient conditions
on (o, C) for (3.28) to be a Laplace transform of some distribution[@y)™, see Krish-
namoorthy and Parthasarathy (1951) and Vere-Jones (188ppose thalV conditioned on
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Figure 3.2: Four independent realizations of the randord iEExample 1l on a 5& 50 grid
withc, =--- = Cos00 = 10 anda = 1.

G consists of mutually independent Poisson random variditlegith meanGsg, s€ S. Itis
immediately verified that (3.2) is satisfied, b ~ per(, C), cf. Vere-Jones (1997).

By this doubly stochastic construction, if we can geneteve can straightforwardly gener-
ate N. Below two diferent constructions @ are described.

Method I: Assume Condition | (Section 3.2.2) is satisfied. Generaexan Wishart matrix
K with 2/« degrees of freedom and me@nlif G = K;j; thenG has moment generating
function (3.28). Simulation of Wishart distributed maétcis described in e.g. Johnson
(1987).

Method II: Assume Condition | is satisfied arnd = 2/k for somek € N. Generate inde-
pendent zero-mean Gaussian random fi¥gs= (Yis;S€ S),....Yk = (Yks;S€ S)
with covariance functiol€/k. If G = st +o 4 Yﬁs, s € S, thenG has moment
generating function (3.28). Various simulation methods@aussian random fields are
implemented in th& packagekandomFields by Martin Schlather. See also Lantuejoul
(2002), and the references therein.
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Method | corresponds to the extension given in Shirai (208@y the simpler Method Il has
also been considered in Vere-Jones (1997).

3.4.2 Poisson randomization

In the sequel, it seems more natural to work wittrather thanC, where we assume that
Condition Il (Section 3.2.2) is satisfied. The assumpticat € > 0 ensures that the right
hand sides in the density expressions (3.29)-(3.30) ard2)®elow are non-negative. The
a-permanental fieldV can then be constructed by the following five steps of a Poisan-

domization (a similar construction for spatial point preses was introduced in McCullagh
and Mgller (2006)).

1. Forn e N, define a probability density function by

1 Me
Pt to) = e 1_1[ Cltitin) (b to) € S, (3.29)

wheret,.1 = t;. Using the Schur decomposition 6f(Gqub and Van Loan, 1996), we
obtain the normalizing constant@{) = >m 71{‘ of this density. It can be viewed as
a Markov random field defined on the graph with vertices 1 n and edgesi, i + 1),

i =1,...,n, with the turn-around edg@, n + 1) = {n, 1}. It reduces to the “Ising model
on the ring” if S = {s,t} andC(s, s) = C(t, t).

2. Define a random variabW& with probability density function

_ tr(C")

3.30
pw(n) = ==, new, (3.30)
where

D = -log|l - Cl. (3.31)
If the eigenvalues of are real with 0< 4 < 1, thenD = — 3", log(1 - ;) andW
follows a mixture of logarithmic distributions with paratees;, i = 1,...,m, where

thei'th logarithmic distribution has weight log(1 - 1;)/D in the mixture distribution.

3. Consider an ordered point proces’,(..,Rw), where conditioned onW =n,
(Ry,...,Ry) follows (3.29). ThusRy, ..., Rw) takes values in the countable s&t | S",
and its probability density functiop(ty, ..., t,) = pw(n)pa(ts, ..., t,)is

1 o«
Pt tn) = —5 DC(ti,ti+1), (t,....,t) €S", n> 1. (3.32)

Moreover, define a random fiell = (Mg; s € S) with Mg = Z\,-Ail I[R; = 5. We call
M acluster and eacR;, i = 1,...,W, a point of the cluster, i.eMg counts how many
points in the cluster are equal $0
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4. LetV be a Poisson random variable with méafw, and conditioned o = n, if n > 0,
let M@, ..., M®™ be mutually independent copies 8. These clusters are ?ener—
ated by correspondlng mutually independent ordered pcrmttqssesR(l),.. !

(R?....R%). ..., which are independent of.

5. The Poisson randomization is given by the random f€le (Ng; s € S) with

\
Ns= > MY
i=1

counting how many points in all thé clusters are equal te(settingNs = 0 if V = 0).
The validity of this Poisson randomization is stated and/@ndoelow.
Proposition 2. Let Condition Il be satisfied. Then the random fié\d given by the Poisson
randomization 5. has a probability generating function of the form (3.4),\e~ per(, C).

Proof. The proof in McCullagh and Mgller (2006) of the validationtbé Poisson random-
ization is based on density calculations. Below we give &r@étive, short, and simple proof
based on the probability generating function.

Letzs € [-1,1], se S. By the construction ofV in the Poisson randomization, and by first
conditioning onV, and next using that is Poisson distributed with medy «, we obtain

E ];S[ s = E[(E 1;8[ zg”)v] = exp[g(El;l Ms — 1)] (3.33)

By the construction oM and (3.32),

]_[233—2 > T127 " ettt

n=1 (t,....tn)eS" s€S

1 (o]
:52 > —naC(t,,tHl)
n=1 (t,....tn)eS" =1
1 ~
= 5(-logll - Z€) (3.34)

where the last identity follows from (3.7). Combining (3)&hd (3.33)-(3.34) yields
1 ~ ~ ~ ~\l/a
E| | z° =exp|—(—log|l - ZC| + log|l — C|)| = (Il - C|/|l —ZC|
[]2 = el = ( )

which agrees with the probability generating function 3.2 |

Incidentally, ifC’ = aC is fixed, thenlV|(Ns, > 0) can be seen to converge in distribution to
M asa — oo, cf. McCullagh and Mgller (2006).
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Remark. The requirement of Condition Il to be satisfied can be repdmeonly requiring the
permanental random field to be infinitely divisible (whiclinplied by Condition I1). Infinite
divisibility has been characterized by @iths and Milne (1987). It implies botfC|| < 1
and that all cyclic products formed usiitgjare non-negative. The latter property ensures the
density(3.32)is well-defined.

3.4.3 Simulation of the Poisson randomization

Let the situation be as in Section 3.4.2. Simulation of aizatibn from the Poisson random-
ization is straightforward if we know how to make a simulatiof a cluster as given in steps
1.-2. This can be done by first generating a realizatds n from (3.30), and then use the
following sequential simulation scheme. From (3.29) fekdy induction that for anp € N,

n-i-1

Eftnity) [ | €t tin). i=01,..n-1,
=1

1

n-i(t1, ..., o) =
P-i(ta ) )

where we sef]?jl*l ---=11if i = n- 1. Hence, first we draw from the probability density
function

pa(ty) o C"(ty, ty)

and second, successively foe 2,...,n, sincetj|(ty, ..., ti_1) ~ t|(ts, 1), we drawt; from
the conditional probability density function

PiLi—1(tilts, tizg) o« €, ) Cltioe, 1)

3.4.4 Examples
Example | (continued)

Let the situation be as in Section 3.2.3. Qfhas non-negative entries, the procedure for
simulation of a cluster (Section 3.4.3) simplifies, sit@e= (ax/(1 + ax))'Q for anyi € N,
and the conditional probability density functions

PijLi-1(tilts, ti—1) o« Q(t, 1) Q(ti—1, ti), 1=2,...,n,

are of the same form.

Example Il (continued)

Let the situation be as in Section 3.2.3. Table 3.1 summaspene characteristics for each
of the simulated models in Figure 3.1. Here the correlatietwben neighboring sites is
straightforward to calculate, and for the real data the eogliestimate is reported. Furth#f,

is the number of clusters in a simulation, and from both itamand its four simulated values
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Table 3.1: Parameter values and characteristics of thesiowlated random fields consid-
ered in Example Ill. The bottom two rows are observed quastior the specific simulation
whereas the other values are calculated theoreticallyriffhemost column shows the empir-
ical mean and lag 1 autocorrelation of one of the real datafs@mh Augustin et al. (2006).

Simulation 1 2 3 4 Real data
(@, p) (1,0.75) (1,0.95) (1Q00.75) (1Q0.95) -
E(Ns) 1.28 128 128 128 128
Corr(Ns,Ns,,)  0.316 Q507 0522 0837 Q508
E(V) 119 63 39 21 -
P(W = 1) 0.627 0563 Q408 0475 -
P(W < 2) 0.793 Q706 Q575 0623 -
P(W < 10) 0980 Q919 0869 0849 -
P(W < 100) 1000 0999 0994 Q975 -
\Y; 130 62 45 20 -
w 2.29 585 818 349 -

it is clear that realizations df tend to be higher for smaller values @fandp. On the other
hand, realizations diV, which denotes the size of a cluster, tends to be larger fgetaralues
of @ andp. This gives an intuitive understanding of how the dependeatizicture is created in
the Poisson randomization: Large valuesdégad to a small number of very large clusters, and
large values op makes the correlation within the cluster high, such thainadese sites are
sampled many times in a cluster. Simulations 1 and 2 () were also done using the double
stochastic construction of Section 3.4.1 to compare sitiomdime of the two algorithms. In
the Poisson randomization the most computer intensiveipadlculating all the necessary
powers ofC used both to simulate the cluster lengthand in the simulation of a cluster, cf.
Sections 3.4.2-3.4.3. After this initialization repeas@dulations of the random field are faster
and 1 000 simulations only take about 20 times longer to genesatieesfirst simulation alone.
It is however much faster to use the double stochastic schetmeh for 1,000 simulations
took only 1/30 of the corresponding simulation time for the Poisson camdation.
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3.A Green’s matrices and tridiagonal matrices

We will need some results on Green’s matrices and trididgoagrices (sometimes called Ja-
cobi matrices). The results presented here are either franink1968) or direct consequences
of results herein.

A Green's matrix is a symmetrimx n matrix G with Gijj = aming, j)Pmaxg,j) for some
a,...,an,b1,...,bh € R. If Gis invertible, then it is a Green’s matrix if and only if the
inverseT = G1 is symmetric and tridiagonal.

For any nxn matrix A and anyl{is,...,im} € {1,...,n} we introduce the minor ofj,
ma(i1,...,im), @s the determinant of the matrix obtained frénby deleting all other rows
and columns thamn, ..., iy, If a symmetric tridiagonal matriX is positive definite, any mi-
nor of T is positive.

The (, j)'th element of the invers& ! is given as the following (due to symmetry we only
need to specify the elements witk j). If i = j, then

1 -
T = mn'TT(l,...,l—l,lJrl,...,n).

If i < j, then

—q1)i+ . .
T = ( |T)| mr(d, ..., i—)TijsaTissisz - Tjoyjmr(j+1,...,n).

Consequently, a sficient condition for all elements af~* to be non-negative is that théfo
diagonal elements are non-positive ani positive definite. This result is summarized in the
following lemma.

Lemma 1. Let T be a symmetric tridiagonal matrix. Tf is positive definite and;j < O for
alli#j, thenTt > O for alli, j.
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Abstract:

This paper considers statistical inference procedures étass of models for positively corre-
lated count variables calledpermanental random fields, and which can be viewed as ajfamil
of multivariate negative binomial distributions. Theirpgaling probabilistic properties have
earlier been studied in the literature, while this is thet Statistical paper or-permanental
random fields. The focus is on maximum likelihood estimatimaximum quasi-likelihood
estimation and on maximum composite likelihood estimaliased on uni- and bivariate dis-
tributions. Furthermore, new results ferpermanents and for a bivariatepermanental ran-
dom field are presented.

Keywords:
a-permanenty-permanental random field; composite likelihood; doubbchgstic construc-
tion; maximum likelihood; quasi-likelihood.

4.1 Introduction

Mgller and Rubak (2010) provided a review of a class of moémigositively correlated
count variablesN = (Ng,..., Ny), which possess a number of appealing properties. This
model class was referred to agpermanental random fields, since it is a special case of the
class of general-permanental point processes which have been the subjeuiaf research
interest in recent years, see Macchi (1971, 1975), ShichTakahashi (2003a,b), Georgii and
Yoo (2005), and McCullagh and Mgller (2006). As each couniatde N; follows a negative
binomial distribution, am-permanental random field may be referred to as a multiariat
negative binomial distribution. The probabilistic profes of these multivariate distributions
have been studied in detail in @tths and Milne (1987), Vere-Jones (1997), and Mgller and
Rubak (2010), but to the best of our knowledge no statistiderence based on the models
have been conducted. In this paper we develop statistifsakeince procedures using the full
likelihood, quasi-likelihood or composite likelihoods.

Section 4.2 introduces the notation and provides the nacessmckground material. Sec-
tion 4.3 describes the inferential procedures, and Sedtidillustrates their use for analyz-
ing two different data sets. Technicalities are deferred to Appendixwihich, among other
things, establishes a new result concerning the joint theasany two count variables\;, N;).

4.2 The a-permanental random field

This section contains a very brief introduction to the neaegbackground material about the
a-permanental random field. We mainly follow the notation &inology of Mgller and
Rubak (2010), and further details can be found therein.

We start by recalling the definition of thepermanent of an x n matrix A with entriesA ;,

per,(A) = Z DAL P22 P

geSy
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whereS,, is the set of all permutations of 1.,n, andc(o) denotes the number of cycles
in o. In a more general setup, it may be convenient to work withréheteda-determinant
det.(A) = a"per,(A) as in Mgller and Rubak (2010), but it is not necessary hergeheral
thea-permanent is very expensive computationally, and apam fa few special cases it can
only be approximated (see Appendix 4.A for details).

The distribution of am-permanental random fiel = (N4, ..., Ny) is specified by a positive
real parametetr and a realm x m matrix C, and we writeN ~ per(, C). Throughout this
paper we assume that the matrix

€ = aC(l +aC)™* (4.1)

exists. As discussed below, further restrictions need tsdbisfied by ¢, C) or by (@, C) to
ensure the existence of the distribution pef§). Then, for

m
n=(Ng,...,Ny) €{0,1,...}™ n*:Zni,
i=1

the probability function is given by

Il - é|1/a/ .
p(n) = mpeﬁ/a(c[n]), (4.2)

whereC[n] is then, x n, block matrix obtained front by repeating théth index n; times

(cf. Section 4.A.2 for further details). Marginally eabh follows a negative binomial dis-
tribution with mean B; = C;; and variance VaY = C;; + aCfi, i =1,...,m. Furthermore,
Cov(Ni, Nj) = aC; ;C;; > Ofori # j, so all correlations are non-negative. The parametar
fluences both the amount of over-dispersion and the strarigthrrelation between variables.
In particular these decrease @agends to zero and the limiting distribution is Poisson with
independent components regardless of the m&triXo combination of parameters,(C) ex-

ists such that the componentsf are Poisson variables with positive correlation. However,
over-dispersion without correlation is possible, in whietse the components are independent
negative binomial variables. In other words, th@ermanental model is such that, if there is
correlation among the counts, over-dispersion will alspiesent. The over-dispersion factor
for eachN; is 1+ aE(N;).

In this paper we mainly consider the case where the followlimgbly stochastic construction
applies: First, letX = (Xy,..., Xy) follow a certain multivariate gamma distribution denoted
I'm(a, C), where Proposition 4.5 in Vere-Jones (1997) gives fdcgent and necessary con-
dition for the existence of this multivariate gamma disitibn, but the following sfficient
condition (C1) is simpler to use:

(C1) C s a covariance matrix and e (0 2 ] U{ 2 2.1 2}.

> M1 m-2° m-3°
Under (C1),X is distributed as the diagonal of a Wishart matrix wifla 2legrees of freedom
and mearC, soX; is gamma distributed with X = C;; and Covk;, X;) = aC; jCj; (Maller
and Rubak, 2010, Section 4.1). Second, conditionallyXnlet the N;'s be independent
Poisson random variables with&( X;) = X;.
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Under the doubly stochastic scheme, Kot 1, 2, ... and given an observation & = n, the
Bayes estimate of thiéth moment of the unknown meaX is

EC 1) = oo [ Xeptn | 2)p(e) do

~ . 1 X:'1i+k . er"j i J
=(ni+1)---(n+ )p(n) o e ];[[n—”e |p() d
p(n})
= (ni + 1)~ . (ni + k) p(n)
_ perl/a(CN[nik])’ (4.3)
per,,,(C[n])

wheren = (Ny,...,Nm) andnik = (Ng,...,Ni_1, N + K Niyq,...,Ny). Furthermore, iD is a
diagonal matrix with diagonal entrié; = /& whereg; > 0, then

(Xt .., Xm) ~ Tm(@,C) = (a1Xw. ..., 8mXm) ~ [m(e, DCD). (4.4)

As noted in Vere-Jones (1997) the doubly stochastic coctsbruis not necessary for the
existence of ther-permanental random field: there ate €) such that pett, C) exists, but a
corresponding gamma random figlgl(a, C) does not exist. Another ficient condition for
the existence of pag(C) is

(C2) € has non-negative entries and all eigenvalues have modedashan 1

(Vere-Jones (1997); Mgller and Rubak (2010)). When (C1) fisfead, simulation of first
X and secondV is easily done by the doubly stochastic construction. If)(@2 not (C1)

is satisfied, a Poisson randomization can be used for siionl@¥gller and Rubak, 2010,
Section 4.2).

4.3 Inference

4.3.1 Full likelihood

Given arealizatiom of ana-permanental random field with a parametric model for theimat
C = C,, wherey is a reald-dimensional parameter, note tléat= Cy depends ol = (a, ¥),
cf. (4.1). In principle, we can evaluate the log-likelihood

1 ~ ~
f(a,y;n) = ~log|l - G| + log per, (Co[n)) (4.5)

on a grid of , ) in order to obtain the maximum likelihood estimate (MLE) ) (pro-
vided it exists). Further, for each grid point, (), we have access to the log-likelihood ratio
A, v) = 2((&, ¥) - £(a, v)), which may be compared with quantiles of pkﬁql distribution

to find approximate confidence regions.
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However, as mentioned previously and discussed in Appefhdix exact calculation of the
a-permanent is usually not tractable, and in fact even apmabe calculation may be compu-
tationally expensive. Furthermore, the grid evaluatiaqunees some knowledge of the range
of (a, ) values to include in the grid. Therefore we study compdgitdihoods which both
serve as a computationally simple method for inferencesitowtn right and can be used for
initializing the grid evaluation of the full likelihood.

4.3.2 Composite likelihood

Composite likelihoods have been extensively studied inynt@mnections, see e.g. Lindsay
(1988) and Cox and Reid (2004). Here we outline how compdkiééhood methods can be
used for thew-permanental random field model, using either the univargatthe bivariate
distributions.

Given an observation and a parametric model as in Section 4.3.1, we definéingteorder
composite log-likelihooty

0) = > log pi(ni 16), (4.6)
i=1

wherep; is the marginal probability function fax. It corresponds to the log-likelihood for
m independent negative binomial random variables. In thée dikelihood inference can be
done using an iterative Newton-Raphson procedure diiclemt software implementations
are readily available (Venables and Ripley, 2002, Sectidih Depending on the parametric
model forC, some parameters may be unidentifiable using this procedimee only the
diagonal elements o€ enter in the first-order composite log-likelihood, as exéfiegl in
Section 4.4.1. Due to the computational simplicity of thisnposite log-likelihood, it is well
suited for initialization of the parameters in more comaled methods.

In a similar manner as above, we define pladgrwise composite log-likelihookly

m-1 m
@)= > logpi;(n,n;16), 4.7)
i=1 j=i+l

wherep; ; denotes the bivariate probability function fd¥;(N;). These bivariate distributions
have been thought to be quite complicated, cf. the discnseiriffiths and Milne (1987),

and previously it was not possible to use these bivariateildisions in practice. However,
in Appendix 4.A.2 we give a computationally simple formuta €alculation of the relevant
a-permanent. The resulting bivariate probability functisn

(&) (L e +n) YWYy K
pi,j(ni,nj)=(b) (5) : Z(T()(T(J) L) o

3 o, (4.8)
beri!n ! C()I(Z) = r +K
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where
q = az(Ci,iCj,j - ij) +aCjj, aqj = (lz(Ci,iCj,j - ij) + a'Cj,j,
aCi

This makes it practically feasible to implement the paiexd®mposite log-likelihood for sta-
tistical inference.

b= (lz(Ci,iCj,j - Ciz,j) + a'(Cij + Cj,j) +1, c=

In many applications there is a distance function or neightood structure attached to the
domain, or index set, of the field. For example, when moddljpatial regions some regions
will share a boundary and will be called neighbours. In thig/where will also be a natural
notion of higher order neighbours, such that regions naiisga boundary but with a common
neighbour are second order neighbours etc. The part of th@ipa composite log-likelihood
(4.7) corresponding to contributions frasth order neighbours is denoted

@)= > logpi;(m,nl6),
(i.)ePK)

whereP(k) denotes the set of distinct paiisj( that arek'th order neighbours. It may then be
interesting to use thie'th order pairwise composite log-likelihood

k
HNOEDWACE
=1

Note that the pairwise composite log-likelihood defined 4n7) corresponds to including
neighbours of all orders and we may writg6) = £2_(6).

4.3.3 Quasi-likelihood

As an alternative to composite likelihood inference basedow dimensional marginal dis-
tributions as above we may consider inference based on lderanoments. For an-
permanental random field the factorial moments are givempgrmanents and are especially
tractable for low orders (see Vere-Jones, 1997; Mgller anbR, 2010).

The quasi-likelihood as introduced by Wedderburn (1974) been widely used in the liter-
ature and has a well developed asymptotic theory (cf. Me@ull 1983). In the following
we detail how to apply quasi-likelihood methods feipermanental random fields, and only
briefly recall the necessary general results.

As an initial step we construct a vector

.....

and denote the length &f by n. We do not necessarily include products of all pairs of ceunt
N;iN; with j > i; we may only consider a subset based on neighbour relatidoi, that the
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meanu = u(0) = E¢(Y") and the covariance matrx = %, = Coy(Y') can be expressed in
terms of factorial moments of order at most 4, which are gasihluated analytically.

LetD = Dy be thenxd derivative matrix with entrie®;; = du;/06;. Then the quasi-likelihood
estimating function fo® is

U(6;Y) = Dy, (Y - u(0)),

which has zero expectation and covariance matrix Vy = Cov({U) = DT2ID. The quasi-
likelihood estimatop = 6(Y') is the root of the vector equatidii(¢) = 0, which can be found
iteratively. Using a modified Newton-Raphson scheme theectiestimaté() is updated to

A = 50 4 VLU @0; V),

The iterative procedure is stopped once the estimate haggsd within a specified toler-
ance. Under regularity conditions the quasi-likelihootineator is asymptotically Gaussian
with covariance matri¥/~*, which is calculated in each step of the iterative procediités
allows us to attach an asymptotic variar\lgé to the quasi-likelihood estimate.

4.4 Examples

4.4.1 One dimensional example

Figure 4.1 shows counts of clover leaves in 200 squares efssiz5 cm along a 10 m tran-
sect line as detailed in Augustin et al. (2006). This datalmariewed as a realization of a
one-dimensional random field consisting of 200 sites onehéline, with positive association
expected between the counts due to the multiplicity of legar plant and the clustering of
plants in patches. We model the leaf couMNs= (N, ..., Ny as N ~ per(,C), where
Cij = ko' 1l with 0 < p < 1 andk > 0. Then condition (C2) is satisfied (Mgller and Rubak,
2010, Proposition 1). Furthermore, by arguments simildht¢se used in the proof of Propo-
sition 1 in Mgller and Rubak (2010), it can be shown that forat 0, C satisfies a regularity
condition (Vere-Jones, 1997, Proposition 4.5) implying ¢xistence oX ~ I'(a, C) so that
per(, C) has a doubly stochastic construction, cf. Section 4.2.r&fbee, it makes sense to
calculate the Bayes estimatg(K |n) of the conditional intensity for all positive. The
Bayes estimate for the model using the MLE as found below [@$mposed as a line in
Figure 4.1.

As an initial step in the parameter estimation we use thednd¢r composite log-likelihood.
Notice, sincef* (e, «, p) is independent g, it is not possible to estimate this parameter using
£*. Using the iterative Newton-Raphson procedure of VenadiésRipley (2002), the estimate
of log(x) is 0.247 + 0.257 and the estimate of/d is 0.396 + 0.141, where both estimates
are quoted plyminus two standard errors. The point estimates correspmid=t 1.28 and

a = 2.5. For a grid of parameter values evaluation of the full likgilhood yielded the MLE
(a,k,p) = (2.3,1.28,0.860). A three dimensional approximate 95% confidence regam
be found by calculating the likelihood ratife, «, p) = 2(¢(a, k, p) — £(a, k, p)) for all points
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Figure 4.1: Counts of clover leaves in 200 square patchdsBdyes estimate of the random
mean field superimposed as a line.

of the parameter grid and compare with the 95th percentitee)jgg-distribution. Marginal
confidence intervals are .@ 4.4) for a, (0.7,4.7) for «, and (08, 0.95) for p. To visualize
the confidence region in two dimensions Figure 4.2a showstouao plot of (e, k, p) as a
function of (@, p) with « fixed at the MLEx" = 1.28. The contours are based on the 50th,
95th, and 99th percentile of th@-distribution. Figures 4.2b-4.2d are similar contour plot
based orf%, £ and¢Z_, with « fixed at< = 1.28. In these plots the contours are no longer
related to any confidence regions. It is clear ttfam Figure 4.2b determines quite well,
and the higher order neighbour pairs do not contain muchrimdition abouifp. A plot of
the empirical autocorrelation function (not shown) resdalat it is negative for neighbours
of order 9, which explains the shape of the contour plot iruFégt.2c, where the maximum
is atp = 0. The pairwise composite log-likelihood with neighboufsah orders is a sum
of many composite log-likelihoods, whepeis poorly determined for the majority of them,
which causes the shape of the contour plot in Figure 4.2d. edewy the point estimates of
the parameters other thando not change much when inference is basedigrior growing

k. Based ort’i2 the estimates arex(z,p) = (2.5,1.28,0.860) whereag?_, yields the point
estimatesd; k, p) = (2.5,1.28,0.855).

Using the modified Newton-Raphson scheme described ind®eét8.3 the quasi-likelihood
estimates (with corresponding two standard errors) anedtoibea’= 2.2+1.5,k = 1.35+0.7
andg = 0.85+ 0.16 when only first order neighbours are used. The quasitiziet estimates
only change slightly when higher order neighbours are used they are not quoted here.

The full likelihood calculations have been carried out ggtme Monte Carlo (MC) importance
sampling algorithm of Kou and McCullagh (2009), which pes an estimate of both the
a-permanent in (4.5) and the standard error of this estiméte.used 10 samples, giving
an average relative error (ratio of the standard error aacegtimate) of @77. As noted in
Kou and McCullagh (2009), their algorithm is especially Mglited for estimating ratios of
a-permanents as required in the Bayes estimate (4.3). Faraibalation used for obtaining
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Figure 4.2: Contour plot of (a) the full log-likelihoo@(#), compared with contour plots of the
pairwise composite log-likelihood with (b) first order nefmpurs only,ff(e); (c) ninth order
neighbours onlyfg(e); (d) neighbours of all orderg?_(6). For all the plots is fixed at the
MLE k = 1.28.
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Figure 4.1, 16 MC samples were sficient.

It is possible to perform model validation based on simatatising the Poisson randomiza-
tion (Mgller and Rubak, 2010, Section 4.2). We simulated te0izations from the model
using the MLE, and checked some properties of the data @ghasimulated realizations. A
characteristic feature for the data is the large numbermiszeverall and the apparent cluster-
ing of the zeros. For example, the average total number okzarthe simulated realizations
was 111 with the first and third quartile at 103 respectivel®,lwhile data has 114 zeros.
The largest cluster of zeros in data is 13 where the simula@izations have an average of
12 with the first and third quartile at 10 respectively 15. iBes the simulation based vali-
dation we also checked empirical first and second order mtnedrmata with the theoretical
moments of the fitted model, and they also revealed a very fipod

In conclusion any of the proposed estimation methods peoginbd point estimates, but in
particular the composite likelihood based approach inofydeighbours of all orders has a
big information loss about the correlation parameteiVhen it is computationally feasible,
as it was the case here, using the full likelihood is preterre

4.4.2 Disease mapping

Choo and Walker (2008) presented a so-called multivariatesBn-Gamma (MPG) model to
investigate the spatial variations of cases: (ns, ..., Ny) of testis cancer in then = 19 mu-
nicipalities of the county of Frederiksborg in Denmark, wheorresponding expected values
e = (ey,...,em) based on the population and age structures are treatedasates. For illus-
trative purposes, we present another approach usipgrmanental random fields and leading
to the perhaps surprising conclusion that there is littiel@vce in these data of either over-
dispersion or spatial correlation.

The parameters of interest are the incidence ratips = 1,..., m, which indicate whether
municipalityi has an over-representation of testis canger(1) or not (O< y; < 1). Specif-
ically, conditional onl" = (y1,...,ym), We assume the data is a realization of independently
Poisson distributed countg with E(N; |T) = vig, i = 1,...,m. The raw estimates are given
by ¥i = nj/g, which agree with the MLE if" is a deterministic parameter vector. However,
typically I' would be treated as a random field with spatial dependenc€hcfo and Walker
(2008) and the references therein.

Before proceeding any further, some general remarks abodelimg of this type of spatial
epidemiological data are needed. In principle, each chiunan be viewed as the aggregation
over an area of an underlying point process specifying the domestictiooaof each indi-
vidual diagnosed with the disease. It would be natural teifpa Cox point process model
for this underlying data process, where the random intgasiocationx, y(x) has meam(x),
which is the known age-adjusted population density. athen, conditional ory the countsN;
are independent Poisson variables with mflgm(x) dx. The distributional properties of this
integral are usually intractable, and it is a well-known alaed problem in the literature to
specify a point process model where inference based ongaggrbcount data is tractable (see
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Richardson, 2003; Mgller, 2003). A common approach, whiehfellow here, is simply to
specify a model directly in terms of the aggregated dataawitltonsidering a consistent un-
derlying point process model. However, an important pairii¢ derived from this discussion
is that the model should respect geographic integrity, mathat the marginal distribution for
a subset of the aggregated data should belong to the sarse clas

We assum&~I'm(a, R) whereRis a correlation matrix. This ensures thalNg(= E(yie) = &,
as one may naturally require. LE€t= DRD with D diagonal and;; = /. We consider a
doubly stochastic construction as in Section 4.2 Wth= DI'D ~ I'y(a, C) andIN ~ per(, C),
cf. (4.4). Moreover, assuming thate (0, 2| U{:2;. =2;.....2}, condition (C1) is satisfied,
and so the model is well defined.

The final stage of the model is to specify th& diagonal entries oR which determine the
correlation structure of the model. A natural approach isige a neighbourhood relation
when specifyingR, and we assume that

p ifi~]

Rj _{ 0 otherwise, (4.9)
where for the present data,~ j indicates that municipalitiesand j share a border. Care
must be taken to ensuRis indeed semi-definite; we realized empirically tRas only semi-
definite if 0 < p < p¢, Wherep:, < 1 is a critical value depending on the neighbourhood
structure. The critical value can be approximated befoyeirfierence is carried out, e.g. by
using a spectral decomposition, which for the data at havehtedo, ~ 0.416.

In the special case = 0, the model reduces taindependent negative binomial random vari-
ables, and so the full log-likelihood is equivalent to thetfiorder composite log-likelihood.
For this modelr is the only parameter, and it is straightforward to find thgd3aestimates

1+ &ni

E@Giln) = 1rae i=1,...,m

The MLE of 1/« is 362 + 69.2 leading to the point estimate = 0.0277. The large value
of twice the standard error indicates that a negative binbmibdel is not necessary and a
likelihood ratio test against the simpler Poisson null miégsi@erformed. The negative bino-
mial model has-2¢(a¢) = 107.66 whereas the Poisson model (corresponding te 0) has
—2¢(0) = 10544, and the likelihood ratio test yieldspavalue of about 14%. Similarly, the
standard Pearsoft test for over-dispersion yields the test statistiGl§h — 6)?/g = 255 on
18 degrees of freedom, for@value of about 11%. In other words, there is little evideate
either over-dispersion or spatial correlation.

If pisincluded as a parameter in the model, either full, quagpaowise composite likelihood
inference can be used. However, in this example the MC irapog sampling algorithm of
Kou and McCullagh (2009) used to estimate dhpermanent performs poorly; even for a very
large number of MC samples #)the standard error of the estimate is relatively large. On
the other hand, both quasi- and pairwise composite liketihioference is fast and does not
require any approximation (apart from the inherent surt®@gature of these methods).
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For the quasi-likelihood iterative schemejuickly approaches zero at which point the covari-
ance matrix¥ becomes singular, so no standard errors can be given. Howes®bilizes at
0.027+ 0.064 making it clear that = 0 is well within two standard errors of the estimate.
Figure 4.3a shows a contour plot of the pairwise composgdilkelihood based on first order
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Figure 4.3: Contour plots based on pairwise composite ilai#hood using (a) first order
neighbours only (b) neighbours of all orders.

neighbours only, whereas the contour plot in Figure 4.3lageld on neighbours of all orders.
Notice that in both cases the correlation paramgter poorly determined and the maximal
composite likelihood value is attained@t 0 confirming the findings of the quasi-likelihood
method. Furthermore, it appears that Figure 4.3b contasssihformation abouyt than Fig-
ure 4.3a. This is explained by the fact tlabnly enters in bivariate distributions of directly
neighbouring sites, and all the termsZ8f, not appearing inff are independent @f. The esti-
mate ofa is respectively @165 and 0268 when using? and(2,,. Thus, it seems preferable
to usef? , to estimateyr since it yields an estimate close to the MLE fot 0.

For this dataset the main interest is in estimating the smie ratiosy;, which is done by
calculating the Bayes estimategf | n) under the fitted model. Table 4.1 lists these estimates
for each model as well as the estimates for the MPG model inoGimal Walker (2008).
The model witho = p is included for illustrative purposes and for both this maated the
independent negative binomial model wjth= 0 the value ofe is fixed at 00277. The
table reveals that estimates based on the MPG model aretolestimates based on the the
independent negative binomial model lending further supimothe findings that a complex
model is unnecessary for this particular dataset. In camufy it appears that it $ices to use
the model with no spatial dependence between incidenassrathich was not touched upon
by Choo and Walker (2008).
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Table 4.1: Bayes estimates of the incidence ratios for treedvpermanental models with

p = pcandp = 0 compared with raw Poisson estimates and MPG estimates @ &hd
Walker (2008).

N e raw p=0 p=p. MPG

Allered 18 17.61 1.02 1.01 0.97 1.01

Birkergd 17 18.20 0.93 0.98 1.01 1.00

Farum 14 13.65 1.03 1.01 1.02 0.99

Fredensborg-Humlebaek 14 14.29 0.98 0.99 0.97 0.93

Frederikssund 21 13.17 159 1.16 117 114
Frederiksveerk 14 14.63 0.96 0.99 0.99 0.98
Greested-Gilleleje 13 12.38 1.05 1.01 0.98 0.93
Helsinge 8 13.66 059 0.89 0.89 0.86
Helsinger 31 47.18 0.66 0.81 0.81 0.73

Hillered 28 27.23 1.03 1.01 1.00 0.98
Hundested 8 6.44 124 1.04 122 1.03
Hogrsholm 28 17.04 164 1.21 1.03 1.23
Jeegerspris 4 6.05 0.66 0.95 0.98 0.97

Karlebo 12 13.78 0.87 0.96 1.01 0.99

Skibby 6 457 131 1.03 1.10 1.09

Skeevinge 6 4.28 140 1.04 0.98 1.02
Slangerup 3 6.44 047 0.92 1.05 0.95
Stenlgse 13 10.47 124 1.05 095 1.05

DIstykke 14 10.93 1.28 1.06 1.06 1.11

To calculate the Bayes estimates for the model with o, ratios ofa-permanents are again
needed, but this poses no significant problem, since the M@itance sampling algorithm
estimates these well even though the individuglermanents are ficult to estimate.

4.5 Discussion

For the dataset of counts of clover leaves in Section 4.2Xtpermanental random field
model with an exponential covariance matrix provides a gitocEstimation based on both
the full, quasi- and pairwise composite likelihood givesitar point estimates, but the shape
of the pairwise composite likelihood is sensitive to theich@f neighbourhood order included
in the model. This adds the disadvantage of having to chdmsadighbourhood order when
using the pairwise composite likelihood, while the quéstllhood appears to be less sensi-
tive to this choice. In the analysis of this dataset, it iSceztble that the Bayes estimate of
the random mean field in Figure 4.1 is spiky, which may be ahbsgethe choice of covari-
ance model. An immediate advantage of using the exponerti@riance model is that the
a-permanental model is well defined for all valuesxof 0. For a general covariance model
the largest generally admissible valuexak 2. However, it may be possible to find covariance
models allowing forr > 2 as it was the case for the exponential covariance modedrrfst



96 Statistical Inference for a Class of Multivariate Negative Binomial Distributions

tively, it may be possible to obtain a good fit withfixed at 2 using an alternative covariance
model of e.g. polynomial type, which would be expected tddygesmoother Bayes estimate
of the random mean field.

The dataset of testis cancer cases in Section 4.4.2 iltastaesimple yet important fact: There
is little point in using a complicated model with over-disgien and spatial dependence if the
data shows evidence of neither. However, the example BtiWs us to illustrate the potential
use of thex-permanental model for disease mapping.
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4.A Evaluating a-permanents
In this appendix we both present some general resulta-foermanents (Appendix 4.A.1)
and some results on simple patterned matrices (Appendige®-4.A.3) as well as illustrate

how an existing algorithm for approximatingpermanents in some cases may be improved
(Appendix 4.A.4).

4.A.1 Preliminary results

Here we give a few general results feqpermanents, which we will need later.

Expansion by sums of cyclic products

For any positive integen let I, = (1,...,n), and letly denote the “empty subsequence”.

Given a positive integem < n, letl = (i,...,in) be an ordered subsequencd pfmeaning
that1<i; <---<im<n,andletl® = (j,..., jn_m) denote the complementary subsequence
so that{iy,...,im} and{js, ..., jn-m} are disjoint with unior{1, ..., n}. For any sucH we let

I(r,1) denote the class of ordered subsequencdsadflengthr > 0 using the convention
Z(0,1) = {lo}.

For anyn x n matrix A, we defineA, as them x m submatrix ofA with (k,1)'th entry A, ;.
Furthermore, we let cyp() denote the sum of cyclic products of lengith= m formed from
A,. Thus, cypf)) is a sum overr — 1)! terms, and if e.gn = 3 we have

Cyp(A) = Ail,izAiz,isAish + Ai1,i3A53,i2Ai2,i1'

Maybee and Quirk (1969) provides the following formula fataulating the determinant of a
n x n matrix A.

Theorem 1. Forn > 1 and any fixed € 7(n-1,{1,...,n}),

n-2
A= AcrelAl+ DD ST AICYpAY),
r=0 JeI(r,])

where we defingdy| = 1.
This result extends straightforwardly depermanents.
Corollary 1. Foralla € R,n> 1 and any fixed € 7(n-1,{1,...,n}),

per, (&) = aAecper,(A)+ > S aper, (Aeyp(Ar). (4.10)

2
r=0 Jer(r,l)

where we define pe(Ay) = 1.
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Proof. From Theorem 1 we know that the right hand side of (4.10) Hakeah! terms of the
form Ai (1) - - - Anony @and we only need to verify each term is weighted correctlye Titst
term on the right hand side of (4.10) is

n-1
aAccper,(A) = aAc e Z o H(Al)i,a(i),

O’ESn_l i=1

and sinceAc . introduces a new cycle to all terms the weighting wiff)*! is correct. The
rest of the terms are

n-2 n-2 r
D0 D aper(AeypAr) = >0 >0 a > o [(A)noypAr)
r=0 Jer(r,) r=0 Jei(rl) oeS, i=1

and since again exactly one new cycle is introduced by thikcgyoduct the weight is correct.
m]

Expansion by cofactors

Let A be an x n matrix. By isolating a given elemew; s of per,(A) it is obvious that the
codficient of A, s depends only on the elements of the reduced matrix of arded with
row r and columns deleted. However, the cficient is in general not the-permanent of the
reduced matrix, and Vere-Jones (1997) remarks that no singfactor expansion of pgiA)

is known. However, in the following we give a cofactor expgansuy a slight modification of
the recipe for determinants. The §) minor is a square matriA™s of ordern — 1 obtained
from A in two steps as follows: First switch rowsands, then delete columis and rows
(row r from the original matrix). The switching of rows is not a pafthe standard definition
of a minor, but it is needed far # +1 to maintain the cycle structure, and is done prior to
deletion to avoid ambiguity about labelling. if= s, the first step is nugatory; otherwise if
r # sthe symmetrically opposed componeky; occurs on the diagonal ¢¥-%, and every
other element on the diagonal of the minor also occurs onidgodal ofA. The components
of the cofactor matrix cof(A) are defined as

_[oper, (A9 r=s
cofe(A)rs = { per, (A"S) otherwise.

On rowr, the cofactor expansion of thepermanent is

per,(A) = @A per,(AT)+ > A gper,(A)
S#r

2, Avs COfu(A)rs (4.11)
s=1

Although the definition of a minor has been modified to suitgkaeral case, far = —1 this
reduces to the standard cofactor expansion of a determinant
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4 .A.2 Block matrices

Evaluating multivariate negative binomial probabilitiesolves thea-permanent of a block
matrix, which are studied in this appendix. For anx m matrix A and non-negative integers
n = (N,...,Nm), letn, = ¥ n; and define the block matriA[n] as then, x n, matrix
obtained fromA by repeating indekn; times. For example, iin= 4 andn = (2,0, 1, 3)

At Ar Az Ag Ag Ay
At Al Atz Aa Ais Agg
Az1 As1 Asz Ass Ass Ass
Asr A1 Asz Assa Ass Agsl
Asr Asr Asz Ass Ass Ay
Agr Agr Asz Ass Agg Ay

Aln] = A[(2,0,1,3)] =

We call A the generating matrix; the block sizes, anf[n] a m-dimensional block matrix.

One-dimensional block matrices

WhenA s a 1x 1 matrix with elemenga and the block size is we haveA[n] = al,,, wherel,
is then x n matrix whose elements are all one. This matrix figgermanent

per, (1)) = ™ = a(a +1)--- (@ +n-1),

called the ascending factorial function. Furthermore, @&n]) = a"a™.

Block-diagonal matrices

For a general block-diagonal matrix it is easy to verify tthet-permanent is the product of
thea-permanent of the blocks. The special block diagonal matittt constant blocks can be
written asA[n], where the generatdk is a diagonal matrix with diagonady, . .., ay), and in
this case we have

per,(A[n]) = [ [ per,(aily) = [ [ala™.
i=1 i=1

Two-dimensional block matrix

For two-dimensional block matrices we have the followinguteallowing dficient calculation
of thea-permanent.

Proposition 1. Let Abe a 2x 2 matrix and define

o= A1oA21
Ai1Aro
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Then
MNAN2 nll L

per, (A, rel) = A2 ABaT™a™ ) g

L2 4.12
) ~irar (4.12)

where we definea™a™ /o' = 0 when both the numerator and denominator is zero,
n=nn-1)---(n—j+1),n'® = 1anda'® = 1. Thusn!" = 1™ = nl and pef(A[0,0]) = 1
Proof. As a preliminary, we note the following property of the asdieg factorial function:

aT(n+k+1)

T(k+r)
Z oMty = 2 TTEE (4.13)

for non-negative integdesuch thaty +k # 0. If k = 0 the sum is¢ + 1)™/n!, which is readily
established by induction an The result for generd then follows froma ') = o™ (@ +Kk)T".

Any 2 x 2 matrix A can be factorized as

o all 5l <

A=DRD= 0 dzf|p2 0 dyf’

where dy, dp, p1,p2 are the (possibly complex) numbers satisfyidf= Ay1, d2 = Agy,
p1 = A12/(didy), andp, = Ax1/(didy). Then it can be verified that

per, (Alng, ng]) = AP AR per, (RIng, ng)), (4.14)
and therefore to prove (4.12) it isfigient to show that

MAN, nll Li

per,(Ring, ng]) = a™™a ™ " -

=0

U i

W (4.15)

with p = p1p2.

Forny, > 0, let S[ny, ny] be the matrix obtained frorR[ny, np] by replacing the first row by
the last row. Ther® is square but asymmetric, and the cofactor expansion ginebivariate
permanental recurrence relation

per, (Riny + 1, ny]) (@ + ng)per, (R[N, n2]) + nzp1zper, (S[n + 1, Nz — 1]),
per,(S[n1 +1,n]) = (a+ m)parper, (RN, nz]) + ngper, (S[ny + 1, np — 1]).

For successively smaller valuesref, repeated substitution of the second expression into the
first eliminates pey(S[...]), giving the linear recurrence relations

17 .
per, (RN + 1,15]) = (o + ny)per, (R, na]) + p(er +ny) > ny'per, (Ring, np — i]),  (4.16)
i=1
one equation for eaciy, n; > 0. These equations are linearly independent of full rank, an
have a unique solution for any given boundary value (&0, 0]). It follows immediately that
per,(R[n, 0]) = a"per,(R[0, 0]), so the desired boundary value is one.
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On the assumption thab < n;, we now show that (4.15) is a solution of the system of linear
equations (4.16). We start by noticing from (4.16) th&t is a common factor in all terms of
per, (R[n1, nz]) implying per, (R[n1, n2]) = 0 whena is a non-positive integer bigger tham,.
This proves the claim for these valuesaofnd in what follows we consider all other values of
a. After substituting (4.15), the right side of (4.16) became

o il n, Np—i ] Zi)io
aTn1+1aTnzZ nny n2 P pamﬁlzng i Z Ny (2 -7 pl

| il T
ic0 j! i = I @

Ll i
_ aTnlJrla,TnzZ n P +paTn1+1Z Ny Znu o '(n2 |)“
4 JI afT] J TJ

j=0 j=0

On account of the ascending factorial identity (4.13), thalfsum reduces to

n2—j

D ndat™ i — M = oMot /(e + ) = - 1)) = @™y (e + ),
i=1

which simplifies the preceding expression to

ny npo—1 Lj+1 i
aTn1+1aTn2 Z : 2 p +paTn1+1aTn2 2 n_l m -,0 _
i\ j) all i\ j ) (a@+ j)al
j=0 j=0
nij+1pj+l

ny—1
— aTn1+1aTn2 Z n'l n2 p + aTn1+1aTng Z n'l 2 i
J azTJ J ali+l

i=0 i=0

N2 i n i
- QTn1+1aTn2 Z n_l n2 p + aTn1+laTnz Z ) ny n2 p
£ ] all I 1) oti

j=0 =1

i
— aTn1+laTn2 Z nl + 1 2 p ,
J QTJ

j=0

showing that (4.15) satisfies the permanental recurrencatieqs (4.16). Since the recurrence
equations are linear, any solution satisfying the desimebary condition pe(A[0,0]) = 1
is necessarily unique. |

Proposition 1 can be combined with the result on block-diadjonatrices (Section 4.A.2) to
calculate thex-permanent of a block-diagonal matrix where each block ipbsss a two-
dimensional block matrix.

The ordinary permanent (@ = 1)

For a generam-dimensional block matrix we have the following result ire thpecial case
a = 1, for which thea-permanent reduces to the ordinary permanent (Minc, 1978).
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Proposition 2. Let A[n] be am-dimensional block matrix with block sizes = (g, ..., Ny).

.....

column totalsy, ..., Ny, Then

per(Aln]) = > [ [(n)?
T, i=1

m kij
J
l-I

[

i,j=1
Proof. By definition,

pen(Aln]) = Z Aln]1oq) - Alndn, o(n,)-

oeSn,

In each term of the sum thé&h row index must occur exactly; times and thg’th column
index must occur exactly; times. This makes it clear that each term in the sum is of tha fo

m
i—1

J

m m m
A:“j where Z kj=n and Z kij = n;. (4.17)
=1 j=1 i=1

The question is how many times each term of this form occuisgisum over all permutations.
Firstky; Apa's must be chosen frorA[n], which can be done in
ning - (N — 1)(ng — 1)- -~ (g — Kya+1)(Ng — Kyg + 1)
k]_j_!

ways. When these are chosen we must ch&gsé, »'s, which can be done in

(M = Kag)na - (M — kag = 1)(n2 — 1) - - - (g — Kyg — Kgo + 1)(np—kgo + 1)
kqo!

ways. We can continue in this fashion and finally find the nundfevays to choose thkyn,
A1m's. Then we can start a new row and find thatkkeA, ;’s can be chosen in
M2y — Kag) - (N2 = 1)(ng — Ky — 1)+ - (N2 — Koy + 1)(ng — kyg — kog + 1)
k21!

ways. Continuing in this fashion we see thatifoy = 1, ..., mthe number of ways to choose
thekij Ajj's is

(Ni—kia—- - =K j_1)(Nj—kyj— - —ki_y j)- - -(Mi—Kia— - ~—kij +1)(Nj—kKgj— - -—kij +1)

kij! '

To find the coéicient for the term in (4.17) we need to take the product avee 1, ..., mof
(4.18). The product of the numerators simplifies considgraihd we end up with

Hinll(ni!)z
| e HTll kijt’

and so the result follows. O

(4.18)
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In the two-dimensional case Proposition 2 extends to0 as detailed in Section 4.A.2. It is
plausible that this is also the case in thalimensional case. More precisely, if we as in the
proof of Proposition 1 considerrax m matrix R with unit diagonal we conjecture

R’

per,(Rn]) = l_[(ni!a'm) Z 1_[ kT’iP(k’ )

i=1 T ij=1

whereP is a (hopefully simple) rational function kanda necessarily satisfying(k, 1) = 1.
However, we have not yet been able to establish the correat for P even though some
promising patterns have been found in low dimensional exasnp

4.A.3 Penta-diagonal matrices

This section generalizes théfieient algorithm of Sweet (1969) for computing the determtna
of a penta-diagonal matrix to the more general case ofitpermanent. The development
follows the same lines as Sweet (1969).

Let A be an x n penta-diagonal matrix (i.é4 j = O for |i — j| > 2) and letn > 3. By applying
Corollary 1 withl =1, =(1,...,n-1) we have
n-2
per,(A) = aAnnper,(Ar,) + D > aper,(A)cyp(Ax).
r=0 Jei(r,ln-1)

Note that ford € 7(r, I,_1) the subsequenc¥ always contains. If |J° > 3 (i.e.r < n-3)the

only subsequences)® giving rise to non-zero cyclic products are of the form
J=If=(r+1,....,n). This can be seen by considering a subsequence of the form
J=(@,....r+j-1r+j+1,...,n). In order to make a cyclic produe;, ;, - -- A, j, hon-

Zero using]~ as index set, we have to choose the element 1, .1, but then we have no way

of connecting the upper and lower end of the index set witlhawing a dfference of more
than two in the indices leading to one of the elements being ze

Whenr = n—2 such thatJ®| = 2 the only non-zero two-cycles clearly arise whiénr= (n-1, n)
andJ® = (n - 2,n). Consequently we have

n-2
D aper,(A)cypAr)

r=0 Jer(r,ln-1)

n-3

+ > aper, (A, )eyp(Ar).

r=0

.....
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Finally we need to analyze the sum of cyclic products gyg(when 0< r < n— 3. In this
case whem — r is even the only two non-zero terms in the sum are

Cyp(r, n) = Ar+l,r+2Ar+2,r+4 T An—Z,nAn,n—lAn—l,n—S t Ar+5,r+3Ar+3,r+1,

Cypt(r» I’l) = Ar+1,r+3Ar+3,r+5 t An—3,n—lAn—l,nAn,n—2 T Ar+4,r+2Ar+2,r+1a

and whem —r is odd
Cyp(F, n) = Ar+1,r+2Ar+2,r+4 e An—S,n—lAn—l,nAn,n—Z e Ar+5,r+3Ar+3,r+l,

Cyfj(r, n) = Ar+1,r+3Ar+3,r+5 e An—2,nAn,n—1An—1,n—3 e Ar+4,r+2Ar+2,r+1-

To ease the notation we let

a=A; i=1...,n

bi = AijaAig, i=1...,n-1
Bi = Aijs2A2i, i=1...,n-2
P’ =per,(A;), i=0,...,n,

when stating the formula in the following corollary.

Corollary 2. Let A be an x n penta-diagonal matrix with > 3. Then, using the notation
from above,

n-3

B = aBaPf s+ abn 1 PYp+ 0B 28 1Pf_g* 0B aBn-sPi 4 + . P (cyp(, n)+cyp (r, n)).
r=0

This gives an easy way to recursively calculate dhgermanent of a penta-diagonal matrix,
and if we also assume thbt+ 0,i = 1,...,n -1, we can simplify the calculations further.
This follows the exact same lines as for the regular deteantim Sweet (1969), and we leave
out the details in the following. The key idea is that the wyproducts of length greater than
three can be written in terms of shorter cyclic productsngshe notation

G = Ai,i+1Ai+l,i+2'A‘i+2,i,
t
G = Aji2A2i1 A
fori=1,...,n—-2 we have that
Cr1C, o Cn-3Ch »

— bobg--by
cyp(r, n) = { cchi:mc:,fc}Fscn,g
b2b3-+-bn-2

forn—r even
forn-r odd.

The recursive algorithm for calculating thepermanent is then:
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Setp.1=0,pp=1,p1 =aay1, P2 = azal,lag,z + aby, €.1 = e.1 = 0, and compute

Pk=2 = A-1Pk-3 + Pr-3Pk-4
\y
B C-3
€k-3 = Pk-3 + — 64,
2

Ck-3
&-3 = Pk-3 + T €k-4,

2 t
Pk = @aPk-1 + b1 Pk-2 + @ Pk-20k-2 + ACk_26k-3 + AC,_,E 3.

4.A.4 Approximating the a-permanent

As mentioned previously, the exact calculation of th@ermanent is in general computa-
tionally intractable apart from the special cases treatdtie previous sections, but it can be
approximated using the importance sampling scheme of KduMaCullagh (2009). Using
this method approximation of the.permanent in e.g. the log-likelihood (4.5) is feasible for
datasets with a moderate total number of coumtgof the order a couple of hundreds). In
the following we will discuss how the introduction of a casitvariate (see Hammersley and
Handscomb (1964)) potentially can improve the performani¢he algorithm.

To approximate pgfA) for a given nxn matrix A the algorithm uses permutations
o1,...,0N € Sy independently sampled from a certain probability distiitou f (o) on Sy,
as detailed in Kou and McCullagh (2009). The unbiased estilsaghen

N
1 1

X=9(o1,...,on;A Q) = — E ———a" AL A2 Pro(n)-
N - f(o) (1M2,0i(2) (n)

Now let A’ approximateA in some sense and have a form such thaf @€y can be calcu-
lated dficiently (e.g. a block-diagonal or penta-diagonal appr@tion as detailed in Sec-
tions 4.A.2-4.A.3). Then we use the same set of permutatmfem the zero mean random
variableY = g(o1, ..., on; A, @) — per,(A’), and introduce the control variate corrected unbi-
ased estimate of pgiA) asZ = X — SY. Notice that

o-% = O'i +,820'$ — 2Bpoxoy,
whereo? = Var(X), o2 = Var(Y), o2 = Var(Z) andp = Corr(X, Y). Hereby, the optimal value
of 8 minimizing the variance of is
B=p—, (4.19)
which changes the variation in the estimate of 0&) by a factoro2 /0% = 1 - p?. In Ham-
mersley and Handscomb (1964) the suboptimal fixed valye-ol is used, but we prefer the

optimal value (4.19), which only requires the additiondcatation of an estimate gf. We
exemplify the use of control variates in what follows below.
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Example using control variates

Consider a multivariate negative binomial distributiordohensionm = 10 parametrized by

a = 1 andC with entriesC; j = xpo!~Il, wherex = 2 andp = 0.5. The probability of observing
any given outcome is given by (4.2), which depends on thepermanent of the block matrix
C[n]. We have approximated thispermanent for dferent outcomes using either a penta-
diagonal control variate or a block-diagonal control vieiaThe penta-diagonal matrix is
obtained simply by truncatinG[n] to be penta-diagonal (i.e. all entries not on the diagonal
or the two first super- or sub-diagonals are set to zero). Todekkliagonal matrix is obtained
by only retaining the five two-dimensional block matricessifesnyi_; + ny, i = 1,...,5
along the diagonal cf[n] and setting all other entries to zero. Table 4.2 shows tlimated
probability for three dierent outcomes plyminus two standard errors. Results are shown for
both types of control variates as well as with no controlai@using 500 MC samples.

(11,111,11,11,1) (1313131313 (338383333
B=0 3731+134x10° 3885:387x101°0 1388+221x 101
B=1 3770+104x10% 4019+240x10%0 1448+194x1011
B=pB 3755+0.75x108 3993+228x101° 1439+193x10
B=1
B=B

3816+ 0.02x 108 4081+245x 101 1329+200x 1011
3816+ 0.02x 108 4041+232x101° 1337+199x 107!

Table 4.2: Comparison of control variates






CHAPTER D

Work in progress

This chapter contains joint work with Jesper Mgller and AdrBaddeley, which has been
initiated during the PhD study, but at this time is not depeld enough to be published.

5.1 A model class for spatial point patterns with real marks

This section contains work on a model class for spatial poatiterns with real marks, which

we mainly have studied for their possible use in the modeadirfgrest stands. A typical forest

stand dataset consists of the location of trees in a giveareation area and usually also a
list of marks associated with each tree. Examples of suclksrame the height of the tree,

the diameter at breast height (DBH) of the tree, the speditsedree, etc. Here we focus on
datasets with one non-negative real mark which can be takergress the size of the tree,
whether it be the height, the DBH, or some other measure efdie. For such a dataset we
model the distribution of trees conditionally on the looatand size of all bigger trees using
a modification of theconditional intensity functiarwhich is commonly used when the marks
correspond to time.

5.1.1 Conditionally specified models

In this section we firstly review some theory for specifyingaint process model through the
conditional intensity functio*, which can be found in more detail in Daley and Vere-Jones

109
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(2003). Secondly, we study how this theory can be used foretimggiforest stand data with
marks corresponding to tree size.

We consider a general setting of a finite marked point pro&ésgith locations in a planar
Borel setW c R? of finite area)W| > 0 and non-negative real marks. A realization}ofis
denotedy = {y1,...,Yn} = {(X1, M), ..., (X, M)}, wherex; andm respectively denote the
location and mark of the marked poipt i = 1,...,n. At first we assume a classical setup
where the markn correspond to the time of observation of the locatkan

The conditional intensity function far” is a function1* : W x R, , which heuristically has the
meaning
A (X, m) dxdm = E(N(dx x dm)|Hm(y)),

whereHm(y) = {(yi) € y : m < m}is the history of the process, ah{-) counts the number
of points of the process falling in the specified space-tieggan. If we need to stress the his-
tory of the process in the conditional intensity we may alsem*(x, m) = A*(x, MHm(y)).
The conditional intensity function determines the poimqass completely and therefore a
parametric point process model can be constructed by gpegid parametric model for the
conditional intensity function. The essential assumpfmrthis type of model to be reason-
able is that the distribution of new points is determinedrfrihe distribution of the points in
the history. When the marks correspond to time, the causadtitin of time makes the valid-
ity of this model type obvious. However, this conditioningynalso be appropriate in other
circumstances. Here we exemplify this situation by modglire position and size (DBH) of
trees. In this setup it may be a reasonable approximationoeithe distribution of trees
with a given DBH conditional on all trees with a larger DBH.implies the history should
be modified toHy(y) = {yi € y : m > m} and corresponding minor changes have to be made
to the theoretical development of models specified via timelitimnal intensity, which we will
not detail here.

The process is typically only observed for marks in a boundestval M = (Mpin, Mmax),

0 < Mpin < Mpmax < 0. E.g. for marks corresponding to time we only observe thatpoi
process over some finite period of time. The likelihood of alglavith conditional intensity
A, parametrized vid given a realizatioy c W x M is

M

L(Oly) = exp(— fﬁ’;éx m) dx dm) 1:[ A (%, my).

However, for some datasets we do not have information abbuand the endpoints are
then parameters that have to be estimated from data. Themetmaspace foM is denoted
IT={(ab):0<a<b< o} and the parameter space fois denotedd. We assume the pa-
rameters are variation independent such that the combiaegineter space is the product
space an® x I1. The highest likelihood is then obtained by minimizing tieesof the inter-
val M, i.e. we estimate the endpoints by the minimal and maximséonked mark.

To conduct statistical inference for conditionally spexifmodels we need a parametric model
for the conditional intensity. We consider a log-linear rabaf the form

A*(x, m) = explf(X) + ng(m) + 6h*(x, m)],
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where the functiond, g, h* (and their corresponding parameters) are allowed to beidiult
mensional. The function$ andg respectively model thefiect of location and mark inde-
pendently of the history, where#s is allowed to depend on the history of the process, and
models the ffect of the history on the current location and mark. The stinecof the like-
lihood and the log-linear form of* for known f, g, h* allows us to use the Berman-Turner
device (Berman and Turner, 1992; Baddeley and Turner, 2@0fi)d the maximum likeli-
hood estimate4( 7, §).

5.1.2 Example

Here we study pairwise interaction processes, meaninditfatm) = (h;(x,m),..., hi(x, m))
is assumed to be of the form

hieem) = > gi(Ix = Il mm)

irm<m
forall j =1,...,k wherekis the dimension ofi*.

For forest stand data with the DBH as marks we consider a fg@nnteraction model where
h* is 3 dimensional with

pr(lIx = xill, mymy) = [Ix = x|
é2(lIx = x|l m.m) = (m — my’
¢a(llx = xill,m m) = [[x = x[I*(m — my’,
wherea, 8 € R are parameters to be estimated. In this example we will assuspatially

homogeneous model by settigg= 0, and we assumg(m) = (gi(m), ..., gn,(M)) is of the
form

gj(m) =I(Mj < m< Mj;1),

whereMy, ..., My ;1 is a set of break points covering the mark range. Furthernvegen-
troduce the hardcore conditidim + my < 2||x — x||foralli : m > m] to avoid physical
impossibilities meaning that the disbgx;, m /2) are not allowed to overlap. That is we use
the model

A (% m Hn(y) =1m+m < 2|x — x| foralli:m >m] x
exp|ng(m) =61 D IX=X[I" =62 > (M —mf =65 > lIx=x"(m - my’
i:m<m im<m i:m<m

It is noted that the Berman-Turner device only can find MLEs#f® for fixed «, 8, which
can be viewed as nuisance parameters in this context. Thaseastimated by some other
method.
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5.1.3 Future work

Simulation from the model suggest that it is possible to poedmarked point patterns, which
resemble forest stand data well, and inference based ondhad®-Turner device appears
to work well for simulated datasets. However, it still rengto investigate how the model
works on real datasets, and possibly come up with otheraati®n functions allowing for
more complicated interactions between trees.

5.2 Determinantal point processes

This section contains work on determinantal point procgsahich have been extensively
studied from a purely probabilistic point of view, but to dutowledge the literature contains
no treatment of the statistical aspects of these proceasesxcellent survey of the probabilis-
tic properties can be found in Hough et al. (2006), and in thewing we only give a short
introduction to the processes, and outline how Markov Civddmte Carlo (MCMC) based
Bayesian inference can be carried out.

5.2.1 Definitions and some basic properties

Let S c RY be a Borel set with Lebesgue meas|Bee (0, ). AssumeC : SxS — Cis
given by

C(xY) = " Aty
k=1

for real Ax € [0,1] such that}; Ak < c and orthonormalized functiong : SxS — C,
meaning

— 1 ifk=I
JLoosmma={ 5 HeZ)
fork=1,2,....

Let [C](X1, ..., X)) denote ther x n matrix with @, j)'th entry C(x;, ;). Then a point process
X onS is called adeterminantal point processith kernelC if the n'th order product density
function for X is given by

PV(Xa, ..., %) = detlCl(Xa, ..., %), (Xa,...,%) € S", (5.1)

for all n € N. This is denote ~ determinantalf).

Note that the intensity function for a determinantal poirdqgess is

P =C(xX) = ) Alt(¥)F. xeS.
k=1
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Hence, iflgk(X)] = 1 as e.g. for the Fourier basis on a rectangular region, tlemsity is
constanp(x) = >, ; . Furthermore, the pair-correlation function is

e P
C(x, X)C(Y,y)’

making it clear that a determinantal point process modeglsisé/e interactions.

gxy) =1

It follows immediately from (5.1) that iiX, ~ determinantalfy) and X is obtained as an
independent thinning ofy with retention probabilitiep(x), x € S, thenX ~ determinantalf)

with C(x,y) = v/p(X)Co(x.Y) v PY).

Fork =1,2,..., let Bx be independent Bernoulli variables with mean Define the random
orthogonal projection kernéd : Sx S — C hy

K(xY) = > Bih(0o)-
k=1

Then
determinantaK) ~ determinantalt), (5.2)

in the sense that if we first generate the independent Bdrnvatibhbles, and second indepen-
dently generate a determinantal point process with kdtné¢hen the resulting point process
is determinantal with kerneC. Note that}, 1k < oo implies ), By < oo with probability
one. Thus, to simulate an arbitrary determinantal pointgss it is sfficient to be able to
simulate a determinantal point process where the kernetetfefin orthogonal projection of
finite rankn € N. An algorithm for producing such a simulation and a prooftefalidity is
given in Hough et al. (2006) in a very general setup. In thiofdghg we explain and prove
the algorithm using mainly linear algebra, which may malacitessible for a wider range of
statisticians.

A projection kernel is of the form
n —
K(xy) = D" ¢u(¥dey) = v()v(y)’
k=1

where we le(X) = (#1(X), ..., ¢n(X)) for all x € S and* denotes the conjugate transpose of a
vector or matrix. A realization of determinantdl(is generated by the following procedure.

Algorithm 1. Fori=n,...,1:

e Let Vi be the (—i)xn matrix with rowsv(X,), ..., v(X+1) and define the orthogonal
projection matrices

Q=ViViV)'Vi and P =1,-Q,

where we tak&), as thenxn zero matrix.
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e Generateq from the distribution ors with density

P = ToIPIL(" 53)

Note that fori < n, we suppress in the notation thag(x) = pi(X[Xn, ..., Xit1),
Qi = Qi(Xn, ..., Xs1), and P; = Pi(Xy, ..., X+1) depend on the previously generated points

Xns o oos Xig1
Proposition 1. The random vectorx, ..., X,) generated by Algorithm 1 is distributed as a
random numbering of the points of determinarial(

Proof. First, we show that iP; is an orthogonal projection of rarikthen
1
P = 0P (¥’

is indeed a proper probability density. Sireeis an orthogonal projection of rankwe have
Pi = UA;jU*, whereU is unitary with row vectorsus, ..., u, andA; is diagonal with the first
i diagonal elements equal to one and the rest zero. Then

P9 = TOUAU ()" = T

i i
v(ujuip(x)’ = = ) (ujl.
j=1 j=1

which is non-negative for alt € S. For each term in the last sum we have

fs lo(X)uj[? dx = fs Zn: Zn: Uk i(X)Thj 1 (X) dx = Zn: Zn: UijUij fsqbk(x)m dx

k=l =1 kel =1
n
2 2 2
= Y lugl [ 1600 dx = g7 = 1
k=1 S

TherebyfS pi(X)dx = 1, and so the assertion is verified.

Next, we show thaP; is almost surely an orthogonal projection of rankClearly, this is
true forP, = I,. Fori = n-1,...,1, itis clear from the definition tha®; is the orthogonal
projection ontoH; = sparfv(Xi1), ..., v(X,)}, andP; is the orthogonal projection ontd;*;

for later use, leH, = {0} andH;; = R". Since rank®;) = dim(H:") = n—dim(H;), we need to
show fori < n that then—i vectors spanning; are linearly independent. Linear dependence
would only be introduced if we at th&h step generat&’ € {x|v(X) € H;}, but then

P(X) = To()Prw(X)" =0,

sinceP; is the orthogonal projection ontd:". Thus dim@;) = n—i with probability one.

The density of the random vectaoXy, .. ., X,) which the algorithm produces a realization of
is derived in the following. Note that

p(x) = TIvOPIP
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and therefore | .
1
whwm=nnm=ﬁnwmmm
1= =

Thei'th term in the last product is the squared lengthuvk;)’s projection ontoH;*. This
product is exactly the square of the volume of the parallpkgp determined by the vectors
v(X1),...,v(Xy). Itis well known that the squared volume of the parallgbepi can be calcu-
lated as the determinant of the Gram ma@iwvith entries

Gij = ’U(Xi)'l)(Xj)* = K(X@,Xj).
Thus, .
P04 - %) = = detK](xa, ..., X). (5.4)

Viewed as a point proce$Xs, .. ., Xn}, the number of points is fixed and equaht@and hence
by definition ofp(™,

PV, .. %) = NPp(Xe, .., %) = det[K] (X, . . ., Xn).
Consequently, the point process is determinantal withedd¢n O

As noticed this simulation procedure always producgthe rank of the projection) points.
This implies that

n(x) ~ i Bx,
i

for independent Bernoulli variabld as defined above. In particular,

EN(O] = ) A Varn(X)] = ) A1~ 4.
k=1 k=1

5.2.2 Modeling and inference

Letgy : SxS — C,k=12,... be orthonormalized functions as in Section 5.2.1, and let
Ak = A(k; 6) be determined by a (possibly multidimensional) paramgtérhese choices are
of course of great importance in regards to which types adrd@hantal point processes that
can be modeled with this approach. Once these have beemdheseain interest is to make
inference about the parametgisince it completely determines the process.

In the following, we assume = {Xy, ..., Xy} IS an observed point pattern, and use a Bayesian
approach based on MCMC, where the unobserved Bernoulibi@s B = {By}kay are in-
cluded in the posterior density

p(0, Blx) o< p(X1, ..., |0, B)p(B|6) p(h).

Note that the ordering of the points plays no role. Furthermore, we make the natural as-
sumption thap(xs, ..., X,l0, B) = p(X1,. .., X,|B) does not depend ah
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The posterior density in only non-zero whéhBx = n. We introducek = {ki,..., kn} to
denote theBy’s that are non-zero. Then the posterior density becomes

p(b, klz) o« p(z|k)p(kl6) p(6).

By (5.2),
p(kio) = | ] J@- ),
kek ke¢k
and by (5.4),
p(Xq, ..., Xlk) = det[Ke](Xq, . .., Xn),
where

Ki(xy) = D 6gk).

kek
From a computational point of view it is worth noting that

detKe](Xa, - - -, Xn) = [detAg(Xq, ..., X2,

whereA, (X1, . . ., %n) is thenxn matrix with (, j)'th entry ¢y (X;).

To sample from the posterior we construct a Metropolis-wiHBibbs (or hybrid Metropolis-
Hastings) algorithm with equilibrium distributiop(6, k|x). The scheme for proposing up-
dates of) andk must be decided based on the specific choice of parametrielm@cd) and
orthonormal functiongy, k= 1,2, ....

In the following, we assume an update lofis proposed with probability,, and an update
of 0 is proposed with probability + pg. For the update ok we assume an update of each
ki,i = 1,...,nis proposed sequentially. The Hastings rdtiorelated to a proposed update
ki — ki from the proposal density, (k'; ki) is

b ldetAw (xa,. . x)? A 6)( — A(ki; 6)) atki; K)
U detAr(Xe, - .., Xo)2 Ak 0)(1 - (K 0)) ok k)

wherek’ = k' U {K'} with k' = k \ {ki}.The Hastings ratid4, related to a proposed update
0 — @ from the proposal density,(¢’; 6) is

_ P(kI') p(e") a(8; &)
p(kld) p6) a(¢’;6)

[4

5.2.3 Example

SupposeS = [0, A] x [0, B]. For ¢x we will use the Fourier functions 08§, i.e., all places
above we replace the indéx= 1,2,... by the indexk = (ki, ko) € {0,1,...}2, and for all
X = (X1, %) € S,

Pk (%) = s expl2ri(ki + ko 2]
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For any parametric modalk; 8) = A(kq, ko; 6) such that

i i A(ky, ko; 0) < oo,

k1=0ko=0

the procesX ~ determinantally), with

Coey) = Y D" Ak, ko; 0) ko (Vi )

k1=0 k2:0
is well-defined.

For practical reasons we would often consider a truncatedeisuch thati(ky, ky; 6) = 0 for
(ky, ko) € {(ky, ko)lky > N1 Vv ko > No} whereN; andN, are fixed. To simulate such a process
we first generatdy, x, ~ Bernoulli(d(ky, kz; 6)) for k; = 0,...,N;—1 andk, = 0,...,Ny-1
and then generate the point patternsing Algorithm 1.

The algorithm requires that we can generate S with density (5.3). In the present example
we havev(X)v(X)* = [[v(X)|]? = ag for all x e S, and the density is given by

Bi(x) = %(% - [(QI7).

Consequently, firsk, is drawn from the uniform distribution o8. Then fori = n-1,...,1,
X is drawn from a non-uniform distribution with a density ttetains the maximal value
pi(X) = ri—‘AiB on the sefxjv(x) € H;*} and the minimal valug;(x) = 0 on the setx|v(x) € H;},
where as in the proof of Proposition 1 we kt= spafv(X;1),...,v(Xn)}.

Since we have;(x) < ’T‘A—lB for all x € S, we can use rejection sampling to generate a realiza-
tion x; with densityp; is the following way. First generatefrom the uniform distribution on

(0, 1) andx from the uniform distribution oi%. If u < ABrl] pi(X) thenxis retained as a realiza-
tion x; = x from p; otherwise new realizations x are generated until a proposal is accepted.
Notice that the acceptance probabilityijs, making it clear that it becomes progressively
harder to generate a realization frgmasi decreases fromto 1. This is very much in line

with the inhibited nature of the determinantal point praces

A simple example of a parametric model is
RN
/l(k]n k2! 9) - pl pz El

whered = (o1, p2) € (0, 1)%, and to make the inference likelihood driven the pg@#) = 1 can
be used.

5.2.4 Future work

Initial experiments with inference for data simulated frtime model described in 5.2.3 sug-
gests that the Bayesian MCMC approach works, but much moreulgh investigations are
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needed to evaluate the method properly. A main issue thalsrteebe addressed is the prob-
lem of slow mixing of the MCMC scheme, which has been obsemesbme of the initial
experiments. Furthermore, it remains to investigate bugHlexibility of determinantal point
process models and which type of real data sets they are@immodels for.
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