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English abstract

This thesis focuses on exploring the electronic and magnetic properties of nanos-
tructured graphene from a theoretical and computational physics point of view.
Pristine graphene does not have a band gap, making it unsuitable for semicon-
ductor applications such as field effect transistors. The main focus in this work
is calculating the properties of graphene antidot lattices (GALs), which are pe-
riodic perforations in an otherwise pristine graphene sheet, and which open a
tunable band gap in the material. The thesis has a strong focus on simulations
of very large systems in an attempt to reach the point, where the simulated
systems are of comparable size to experiments. To that end, a considerable ef-
fort has been made on formulating methods for calculating electronic structure
and electronic transport in graphene antidot structures based on a low-energy
approximation, known as the Dirac equation (DE). The calculation time of
these methods is scale invariant and thus allows for simulations of arbitrarily
large systems. These DE models are demonstrated to be very accurate in the
absence of localized edge states, which are common for antidots with zigzag
edge chirality. The DE-based models are thus ideal for calculating properties
of very large graphene antidot systems, but only when the effects of edge states
are negligible.

The transport properties of graphene with magnetic impurities and GALs
under a magnetic field have also been investigated. The transport properties
are calculated using the non-equilibrium Green’s function formalism, which is
a very efficient method that makes it possible to handle systems with up to
hundreds of thousands of atoms.

Magnetic fields are often used to characterize transport in nanoscale mate-
rials, which makes it important to understand how an applied magnetic field
affects the transport properties. The presented magnetotransport study of
GALs was inspired by recent experiments, which demonstrated that ballistic
transport is possible in these systems. The presence of magnetic edge states
is demonstrated, which are states that are localized on the periphery of the
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antidots due the presence of a magnetic field. These states are demonstrated
to survive a modest amount of disorder and are therefore expected to be ob-
servable in experiments as well.

Hydrogen adatoms are common magnetic impurities in graphene and it
is therefore important to understand their influence on spin transport for
graphene-based spin devices. The transport calculations show that even a
dilute concentration of hydrogen adatoms is detrimental to the spin relaxation
length, which was found to scale nearly linearly with the hydrogen concentra-
tion. Moreover, the spin relaxation mechanism was found to be Markovian
only near the charge neutrality point or in the highly dilute limit.

Another common magnetic impurity is iron, which typically comes from
leftover residue from a common method used to transfer CVD-grown graphene
from copper to another substrate. Recent experiments have shown that mono-
layer iron membranes can be formed in graphene perforation by e-beam irra-
diation. However, the formation and stability of these membranes are not yet
understood theoretically. The lattice geometry in experiments was found to be
square, while it is predicted to be triangular for freestanding monolayer iron.
The bonds lengths in experiments are also much larger than predicted. In order
to obtain a theoretical understanding of the membrane formation, the stability
of iron membranes in GALs is studied using density functional theory (DFT).
The DFT analysis shows that the reason for the lattice geometry is likely that,
during formation, the square lattice is favored as it has a lower edge formation
energy, which is the energy associated with having an open edge. After for-
mation, the membrane is then kinetically hindered from rearranging into the
triangular lattice. The increased bond lengths occur due to straining of the
iron membrane by the very rigid graphene lattice.
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Danish abstract

Denne tese fokuserer på de elektroniske og magnetiske egenskaber af nanos-
truktureret grafen fra et teoretisk og computerbaseret fysik synspunkt. Ren
grafen har ikke et båndgab, hvilket gør det uegnet til halvlederanvendelser,
såsom felteffekt transistorer. Det primære fokus i dette arbejde er at beregne
egenskaberne af grafen antidotgitre (graphene antidot lattices, GALs), som
er periodiske huller i et ellers rent grafenlag og som giver anledning til et
justerbart båndgab. Der er stor fokus på simuleringer af meget store syste-
mer i et forsøg på at nå systemstørreler, der er sammenlignelige med eksperi-
menter. Til det formål formuleres metoder til at beregne elektronisk struktur
og elektronisk transport i graphene antidot systemer baseret på en lavenergi
tilnærmelse, kendt som Diracligningen (Dirac equation, DE). Udregningstiden
for disse metoder er målestoksuafhængige og giver derfor mulighed for bereg-
ninger på arbitrært store systemer. Det demonstreres at disse DE modeller
er meget nøjagtige, når der ikke er lokaliserede kanttilstande, som er typiske
ved antidots med zigzag kanter. De DE baserede modeller er derfor ideelle til
at beregne egenskaberne af meget store grafen antidotsystemer, mun kun når
effekten af kanttilstande er negligibel.

Transportegenskaberne af grafen med magnetiske urenheder og GAL syste-
mer under et magnetfelt bliver også betragtet. Transportegenskaberne udreg-
nes ved brug af en uligevægts Green’s funktions methode, som er meget effek-
tiv og giver mulighed for at håndtere systemer med op til hundredetusinder af
atomer.

Magnetiske felter bruges ofte til karakterisering af transport i nanoskala
materialer. Dette gør det vigtigt at forstå, hvordan et påtrykt magnetfelt
påvirker transportegenskaberne. Det præsenterede studie af magnetotrans-
port i GAL systemer er inspireret af nye eksperimenter, der demonstrerer at
ballistisk transport er mulig i disse systemer. Forekomsten af magnetiske kant-
tilstande demonstreres, hvilket er tilstande der er lokaliserede på kanten af
antidots grundet det magnetiske felt. Det demonstreres at disse tilstande over-
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lever beskedne mængder af uorden og forventes derfor også at kunne observeres
i eksperimenter.

Hydrogen adatomer er et typisk eksempel på magnetiske urenheder i grafen
og det er derfor vigtigt at forstå deres indflydelse på spin transport i grafen.
Transportberegningerne viser at selv en meget lav koncentration af hydrogen
adatomer er ødelæggende for spin henfaldslængden. Det blev fundet at denne
længe skalerer næsten lineært med hydrogen koncentrationen. Det blev også
fundet at spinhenfaldsmekanismen kun er Markovisk nær ladningsnulpunktet
for grafen, samt ved meget lav hydrogen koncentration.

En anden typisk magnetisk urenhed i grafen er jern, som typisk kommer
fra en overførselsteknik der ofte bruges til af overføre CVD grafen til et andet
substrat. Nye eksperimenter har vist at monolag jernmembraner kan dannes
i grafenhuller ved bestråling med elektronstråler. Dannelsen og stabiliteten
af disse membraner er dog endnu ikke forstået teoretisk. Gittergeometrien i
eksperimenterne blev fundet til at være firkantet, selvom den er forudsagt til
at være triangulær for fritstående jernmembraner. Bindingslængerne i eksper-
imenterne er også meget større end det forudsagte. For at opnå en teoretisk
forståelse af membrandannelsen, analyseres stabiliteten af jernmembraner med
tæthedsfunktionalteori. Analysen viser at gittergeometrien sandsynligvis kom-
mer af at, det firkantede gitter er favoriseret under dannelsen, fordi det har
en lavere kantformeringsenergi, som er den energi det koster at have en åben
kant. Efter dannelsen er gitteret formentligt kinetisk hindret i at omordne
sig til et triangulært gitter. De øgede bindingslænger kommer af tøjring af
jernmembranen af det stærke grafengitter.
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Chapter 1

Introduction

Graphene is a single layer of atomic carbon in a hexagonal lattice configuration
and can as such be viewed as a single layer of graphite. For a long time, this
material was though not to exist, since the brilliant L. D. Landau [1] in 1937
showed theoretically that infinite and purely 2D systems cannot exist1. In an
effort to calculate the properties of graphite, P. R. Wallace [3] calculated the
band structure of a single, decoupled layer of graphite, now known as graphene,
already in 1947. Since graphene was thought not to exist at the time, the theory
of graphene was used only to explain the model of graphite. Wallace, however,
discovered one of the most remarkable features of graphene, namely that it
is a semi-metal with a linear energy dispersion at the Dirac point. The linear
dispersion is exactly what gives rise to the remarkable features of graphene. The
dispersion of light is also linear, thus by having a linear dispersion, electrons
in graphene behave much like light. In essence, electrons in graphene behave
as had they no mass, but move with a velocity about 300 times lower than
that of light in a vacuum [3]. Charge carriers in graphene are therefore often
referred to as massless Dirac fermions. The band structure and density of
states of graphene is shown in Fig. 1.1 calculated using three different levels
of theory, where density functional theory (DFT) is the most accurate, tight-
binding (TB) is less accurate and the Dirac equation (DE) is least accurate.
The figure clearly shows that the band structure is linear around the K point
of the Brillouin zone in all levels of theory and also shows that the two less
accurate models reproduce the DFT result at low energy.

1Specifically, Landau found that the fluctual displacement of atoms in two dimensional
systems at non-zero temperature diverges logarithmically with the area of the system [1, 2].
However, the fluctual displacement in finite 2D systems or 2D systems on 3D substrates could
remain finite, especially due to the very slow divergence of the problem.

1
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Chapter 1. Introduction
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Fig. 1.1: Band structure (left) and density of states (right) of pristine graphene calculated
using density functional theory (DFT), nearest-neighbor tight-binding (TB) and the Dirac
equation (DE). The hopping parameter in TB and DE is taken as γ = 2.7 eV. The atomic
structure of graphene is shown in the inset with the unit cell outlined in red.

Graphene was first isolated by a German group in the early 1960’s [4, 5]
by reduction of graphite oxide. This method is still used today as it is an
affordable method for producing vast amounts of graphene, albeit of inferior
quality to competing methods. Graphene was rediscovered by K. Novoselov
and A. Geim in 2004 [6] by means of mechanical exfoliation of high-quality
graphite, the so-called Scotch tape method, which allows for easy preparation
of very high quality graphene samples. This soon created a boom of graphene-
based research. According to Web of Science, more than 18,000 papers with
’graphene’ in the title was published last year alone. In 2010, the Nobel prize in
physics was awarded to Novoselov and Geim “for groundbreaking experiments
regarding the two-dimensional material graphene” [7]. From a nanoelectronic
standpoint, some of the most interesting features of graphene are its experi-
mentally observed ultrahigh mobility of up to 1 000 000 cm2/Vs [8], ballistic
transport over more than 15 µm [8] and spin relaxation length up to 200 µm
[9].

Pristine graphene is semi-metallic and is therefore not well-suited for semi-
conductor applications, such as field-effect transistors (FETs) and diodes. A
large number of methods for opening a band gap in graphene have been pro-
posed, including graphene nanoribbons (GNRs) [10–13], gated bilayer graphene

2
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Fig. 1.2: Graphene antidot lattices with a) armchair and b) zigzag antidot edge chirality
in a triangular lattice. The unit cell and antidots are outlined in red. The notation {L, S}
is commonly used to refer to an antidot lattice with unit cell side length L and antidot side
length S in units of the graphene lattice constant.

[14–16], gated trilayer graphene [17], periodic electrostatic gating [18], uniaxial
strain [19, 20], patterned hydrogen adsorption [21] and induced by substrate
[22, 23]. The primary focus in this thesis is on another promising method for
opening a band gap, namely by means of creating periodic perforations in an
otherwise pristine graphene sheet, known as graphene antidot lattices (GALs)
or graphene nanomeshes. The structure of two GALs with different antidot
edge chiralities is shown in Fig. 1.2, along with an outline of the unit cell.
GALs were first proposed by Pedersen et al. [24] and has been widely studied
since, both theoretically [25–42] and experimentally [43–57]. One of the ad-
vantages of GALs is that the band gap can be tuned by geometrical factors.
It is therefore possible to envision a nanoelectronic device made completely of
graphene, where metallic regions are made from pristine graphene and semi-
conducting regions are made from GALs.

A universal band gap opening rule for graphene antidot lattices was devel-
oped by Dvorak et al. [40], showing that only one ninth of all possible GAL
configurations are semiconducting while the rest are semi-metallic. An impor-
tant subclass of GALs is one where both lattice vectors are strictly in armchair
directions, which has the remarkable property that they all have (sizable) band
gaps. Of course, this rule only applies for perfect periodic structures. Transport
gaps have been observed several times in experiments [43, 45, 47, 49], where
control of chirality is not so high that it is possible to actively choose among
the one ninth of GALs that should have a band gap.

Several methods have been used to fabricate GALs experimentally, includ-
ing e-beam lithography [44, 45, 47, 58], diblock copolymer templates [43, 46, 49],
anodic aluminum oxide templates [51], nanosphere lithography [50], nanoim-

3
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Chapter 1. Introduction

print lithography [56] and self-assembly of a precurser molecule [57]. The an-
tidots range in size between subnanometer to several hundred nanometers in
diameter, depending on the fabrication method. The antidots synthesized with
top-down methods are often approximately round, but it has been demon-
strated experimentally that armchair and zigzag edges in GALs are stable and
can be synthesized selectively [48, 58–60], which can lead to ordered hexago-
nal or triangular antidots with well-defined edge chirality. Theoretical studies
based on DFT show that the preferred edge chirality of GNRs is armchair in an
oxygen-rich atmosphere and zigzag for water-saturated GNRs [61]. Although
there may still remain some edge roughness, these findings show that the chi-
rality of the edges of GNRs and GALs is controllable. Recent experimental
studies of transport in GAL-based FETs have shown on/off ratios in the range
between 4 and 100 [49, 51, 56]. These values are still too low for logic applica-
tions [62], but the results are important indicators that devices based on GALs
could be used to make efficient transistors.

The electronic transport properties of GALs have also been studied the-
oretically. The transport through graphene antidot barriers (GABs), i.e. 1D
periodic antidot structures in an otherwise pristine sheet of graphene, has pre-
viously been studied for small systems using a TB formalism [29, 37]. These
studies showed that just a few antidots in the unit cell of the GAB is suffi-
cient to suppress the transport within the band gap region. The electronic
transmission of GABs can also be expressed on closed form using the DE [42]
when the band gap is known in advance, which allows for easy calculation of
the transport properties. Suppression of transport in antidot regions has also
been used to model electronic waveguides [28], where a transport channel is
kept pristine, while the rest of the structure is a GAL. Interestingly, their re-
sults show that GAL waveguides have higher conductance than corresponding
graphene nanoribbons. Furthermore, Berreda et al. [63] have simulated three
different graphene FETs based on GALs with band gaps of about 500 meV.
They showed that their simulated devices had on/off ratios as high as 7400,
which is close to that of silicon based MOSFETs that have on/off ratios on the
order of 104 to 107 [62].

The remarkable electronic properties of graphene and its derivatives addi-
tionally make graphene interesting for spintronic applications. Carbon-based
spintronic devices may have a distinct advantage over many other materials
in that carbon has a very low spin-orbit coupling together with an absence
of hyperfine interaction in the predominant 12C isotope. This results in long
spin lifetimes [64–66], as well as large spin relaxation lengths, which have been
found to be on the order of several microns at room temperature [64–67] and

4
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make graphene ideal for ballistic spin transport [68].
Pristine graphene is non-magnetic, but several suggestions on how to

give graphene magnetic properties have been put forward. DFT calculations
have shown that ferromagnetism can be introduced in graphene by e.g. semi-
hydrogenation [69], adding vacancies [70, 71] or adding adatoms [71–76]. Semi-
hydrogenating graphene sheets, where one sublattice is fully hydrogenated,
while the other is not, leads to a sublattice imbalance, which induces a mag-
netic moment of 1 µB per unit cell [69]. Ferromagnetism can also be induced
by transition metal adatoms on graphene or in graphene vacancies. For in-
stance, Fe is a common magnetic impurity in graphene, which is introduced by
left-over Fe residue on the graphene surface after a common process of trans-
ferring CVD-grown graphene from copper to another substrate. The Fe can
then reside on the surface or be incorporated into graphene vacancies or perfo-
rations. Theoretical studies have shown that the spin moment of Fe is greatly
reduced only when the Fe-C distance is short [73–75], but is largely unaffected
by the presence of carbon otherwise [72–75, 77]. Trapping larger Fe clusters
in graphene perforations will lead to a larger spin moment, which combined
with the electrical properties of graphene, might make this a suitable system
for graphene-based spintronics.

Experimentally, trapping of Fe atoms in graphene vacancies [76, 78] or per-
forations [79] have both been achieved by e-beam irradiation. The electron
beam mobilizes Fe atoms on the graphene surface, which move until they are
trapped by a vacancy or a perforation. Zhao et al. [79] showed that Fe atoms
trapped in a graphene perforation form a monolayer Fe membrane with an ap-
proximately square lattice and a lattice constant of about 2.65 Å. This finding
is surprising since the most stable arrangement of freestanding monolayer Fe
is triangular with a lattice constant of about 2.45 Å. Therefore, the observed
square lattice must form due to interaction with the surrounding graphene
lattice.

Spin transport in graphene has attracted a lot of attention in recent years
due to very long spin relaxation times and spin relaxation lengths predicted
for this material [64, 80]. The spin relaxation length λs is related to spin
lifetime τs by λs =

√
Dsτs, where Ds is the spin diffusion coefficient. Theory

predicts the spin lifetime in graphene to be approximately 1 µs [64] and a typical
value of the spin diffusion coefficient in experiments is D & 2 × 10−2 m2/s
[64, 81], which leads to a spin relaxation length of &450 µm. Experimental
values are typically much lower, with values of around 1–4 µm [67, 82–86],
but has been observed as large as around 200 µm in short samples at low
temperature [9] and 12 µm in encapsulated graphene at room temperature
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Chapter 1. Introduction

[65]. It has been ruled out experimentally that this discrepancy is due to
hyperfine interactions with the naturally occurring 13C isotope in graphene [85].
Experimental measurements of graphene in the presence of a strong magnetic
field show that the observed low spin relaxation length is, at least in part, due
to magnetic impurities in graphene [87]. An attempt to explain the effects of
magnetic impurities in graphene has been given by Kochan et al. [88]. They
find that 0.36 ppm coverage of hydrogen adatoms is sufficient to obtain spin
relaxation times that are in agreement with experiments. Their model is based
on the Green’s function of a single hydrogen adatom in an infinite graphene
sheet and multiplying the results with the impurity concentration. In effect,
their model does not include interference effects between scatterers and is thus
only valid in the highly dilute limit. Spin transport in hydrogenated graphene
was also considered by Soriano et al. [89, 90]. Their method is based on a
mean-field Hubbard Hamiltonian and the real space Kubo-transport formalism.
They find that a coverage of 15 ppm hydrogen adatoms gives the correct order
of magnitude of the spin relaxation time [90], which is more than an order of
magnitude larger than the prediction by Kochan et al. Additionally, the energy
dependence of the two theoretical predictions for the spin relaxation time do
not agree with the experimental findings.

Recent magnetotransport experiments have demonstrated that ballistic
transport is possible in GALs [52, 53], which gives rise to interesting phe-
nomena such as magnetoresistance oscillations due to cyclotron orbits that are
commensurate with the antidot lattice. Ballistic transport in pristine graphene
has been demonstrated several times and even at room temperature [8, 91–95],
but ballistic transport in GALs has previously been hindered by defects in-
troduced by top-down fabrication of the antidots. The recent demonstrations
[52, 53] of ballistic transport in GALs were achieved by minimizing interaction
with the substrate by using hexagonal boron nitride (hBN) substrates and by
reducing edge roughness by encapsulating the graphene flake in hBN before
etching the antidot lattice [53].

Previous theoretical studies on nanostructured graphene in magnetic fields
have primarily focused on the DOS and optical properties [33, 96–98]. The DOS
of a structure under a magnetic field reveals a self-similar structure known as
Hofstadter’s butterfly [99]. In particular, Hofstadter butterflies of GALs have
revealed band gap quenching induced by perpendicular magnetic fields [33].
Transport calculations have yet to reveal if band gap quenching also gives
rise to quenching of the transport gap. Using the DE, perforations in a gra-
phene sheet are modeled as local mass terms rather than potentials. Within
this description, it has been demonstrated that a single graphene antidot sup-
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1.1. This thesis

ports localized edge states in the presence of magnetic fields [98]. Magnetic
edge states occur when the electron wave interferes constructively with itself
in a pinned orbit around the antidot, which gives rise to Aharonov-Bohm-type
oscillations. In conventional semiconductors, such as GaAs, Aharonov-Bohm
oscillations due to antidots in two-dimensional electron gases have been stud-
ied theoretically [100–102] and observed experimentally [103–105]. Magnetic
edge states are likewise predicted to be present in GALs and due to the long
phase-coherence length in graphene, these are expected to be observable in ex-
periments as well. Cyclotron orbits were recently imaged in pristine graphene
using cooled scanning probe microscopy [106, 107]. It would be remarkable if
this technique could be used for direct observation of magnetic edge states in
graphene antidots.

1.1 This thesis

The main goal of this thesis is to obtain a theoretical understanding of nanos-
tructured graphene, with a focus on transport properties. In the thesis work,
there has been a great focus on numerical simulations of very large systems in
order to close the gap between experiments and theory. To that end, a con-
siderable effort is made on formulating methods based on the DE, which leads
to calculations times that are scale invariant and as such allows for calcula-
tions on arbitrarily large structures. For the same reason, the computational
complexity of the presented methods will also be discussed.

DFT is used for electronic structure calculations in paper IV and for struc-
tural relaxation of atomic systems in paper III. In DFT, the wave function is
typically written in a basis of plane waves. The wave function is then computed
self-consistently using the Kohn-Sham equations. DFT is an ab initio method,
which means that prior knowledge of the system is, in principle, not necessary
in order to perform the calculations. However, DFT is very computationally
demanding and is therefore only used for relatively small systems in the thesis
work, typically systems with less than 100 atoms.

In order to handle larger systems, TB is used to calculate electronic struc-
ture and electronic transport in papers I, II, IV and V. In the TB approxima-
tion, the wave function is written as a linear combination of atomic orbitals.
Coupling is assumed only between nearby orbitals and it is common to only
include interactions up to 1st nearest or 3rd nearest neighbors. TB is much
faster than DFT, and the resulting Hamiltonian is typically extremely sparse,
which often makes it possible to greatly reduce calculation time by using meth-
ods which utilize this fact. Using such methods, the TB formalism is capable
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Chapter 1. Introduction

of handling systems with hundreds of thousands of atoms. Electronic trans-
port calculations in the TB framework is carried out using the non-equilibrium
Green’s function (NEGF) formalism, which is a widely used method for cal-
culating quantum transport in nanoscale devices [28, 29, 37, 38, 108–113]. In
the thesis work, the NEGF formalism is coupled with the recursive Green’s
function (RGF) method [113], which greatly reduces calculation time, without
sacrificing accuracy.

Experimentally feasible graphene antidot structures are typically too large
to handle with traditional atomistic models, such as TB and DFT. For example,
a 1 µm × 1 µm graphene device contains more than 30 million atoms. Models
based on the DE are in the continuum regime and are therefore able to handle
arbitrarily large structures. The feasibility of DE-based models is explored in
papers I and II by comparing electronic band structures, optical conductivity
and electronic transport in graphene antidot-based systems between the DE
and TB models. In the DE-based models, the graphene antidot systems is
modeled with a spatially varying mass term, which is non-zero only inside
the antidot regions. The mass term makes it unfavorable for charge carriers to
occupy the antidot regions. In order to differentiate between size related effects
and edge chirality effects, the calculations are based on hexagonal antidots with
edge chiralities that are either purely armchair or purely zigzag.

In order to calculate electronic band structures and optical properties in
paper I, the wave function and mass term is written as Fourier series. This
allows for formulating the problem as an eigenvalue problem that can be solved
numerically, which can then be used to calculate electronic band structures,
density of states and optical conductivity. Both the electronic band structure
and the optical conductivity is found to be in good agreement with TB in
absence of localized edge states, which occur for antidots with extended zigzag
edges.

Electronic transport in GALs can be treated as a scattering problem, using
techniques similar to those used in optics, where the scattering of an incident
electron wave on a graphene antidot structure is calculated. This is done in in
paper II by using a Green’s function method, which is a method widely used to
solve similar scattering problems in optics. The DE has previously been used
to calculate scattering of Dirac electrons on a single circular mass barrier [114],
a single circular electrostatic barrier [115] and simple 1-dimensional barriers of
constant and finite mass [42]. The advantages of the presented approach are
that it works for any antidot shape and for any arrangement of antidots, even
periodic. The presented results are based on graphene antidot barriers (GABs),
i.e., GAL barriers of infinite width and finite length, see Fig. 1.3. Calculating
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1.1. This thesis

Fig. 1.3: Graphene antidot barrier, a GAL barrier of infinite width and finite length. All
atoms are carbon. The gray atoms represents the barrier region and the blue atoms represents
semi-infinite pristine graphene regions.

the scattering on a periodic system allows for determining the transmission
probability, which is directly related to the conductance. Not surprisingly, the
electronic transport in the DE is found to be in good agreement with TB in
absence of localized edge states as was also found for the electronic structure.
At the present time, the DE-based method of calculating electronic transport
does include the possibility of an applied magnetic field, nor does it extend to
include impurities. Therefore, the TB approximation is used instead in order
to treat systems with magnetic defects in paper IV or graphene antidot lat-
tices under a magnetic field in paper V. The magnetotransport properties of
GABs in different lattice geometries is studied in paper V. The TB results are
compared to both an ideal Dirac mass barrier (DMB) and a gapped graphene
model. DMBs are found to provide a good description of the transport gap for
GABs with small antidots provided the magnetic field is not too strong. Fur-
thermore, evidence of magnetic edge states on the antidots is demonstrated.
Simple scaling of these states allows for predictions for larger systems. Fi-
nally, the transmittance of disordered GABs is calculated and compared to the
corresponding transmittance in ordered GABs.

The spin relaxation length in graphene is much lower than expected. It
was determined experimentally that the low relaxation length is, at least in
part, due to magnetic impurities. It is therefore important to understand the
spin relaxation mechanism in graphene in the presence of magnetic impurities.
One of the simplest and most common magnetic impurities in graphene are
hydrogen adatoms, which carry a magnetic moment of 1 µB per atom. The
spin-dependent electronic transport of graphene with hydrogen adatom is cal-
culated in paper IV. The calculations are based on hydrogen adatoms, but
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Chapter 1. Introduction

some the findings are expected to be general for magnetic defects in graphene.
Spin relaxation due to random uncorrelated scattering events is referred to
as Markovian spin relaxation and gives rise to an exponentially decaying spin
polarization. It is demonstrated that the spin relaxation is not always Marko-
vian and that inverse spin relaxation length scale nearly linearly with impurity
concentration.

Another common type of magnetic impurities are Fe atoms, which are left
over from the transfer technique commonly used to transfer CVD-grown gra-
phene samples from a copper substrate to another substrate (typically a plastic,
such as PMMA). It was shown experimentally by Zhao et al. that this left-
over Fe can form monolayer membranes embedded in graphene perforations.
A DFT analysis of the structural stability and magnetization of free-standing
and graphene-embedded monolayer Fe is presented in paper III in an attempt
to obtain a basic understanding of these as well as to explain the experimen-
tal findings. In particular, the stability of Fe in square and triangular lattice
configurations is compared for both free-standing monolayer Fe and monolayer
Fe embedded in graphene perforations. The Fe membranes are modeled as
periodic systems, effectively giving rise to GALs, where the antidots are filled
with Fe. It is possible that the embedding of Fe in graphene perforations in
experiments can be scaled up to actual Fe filled GALs. The magnetization of
the iron membranes coupled with the electronic properties of graphene may
make this an interesting platform for spintronics.

10
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Theory and methods

This chapter will introduce the computational methods used in the thesis work,
as well as introduce some of the used theory. The primary focus in this chapter
is theory and methods that are only explained rudimentarily in the papers.
Moreover, previously unpublished analytical approximations to the band gap
and transport gap of graphene antidot lattices (GALs) will be derived. Many of
the published results are based on electronic structure calculations using either
density functional theory (DFT) or tight binding (TB). DFT is in general
more accurate than TB, but the latter allows for calculations for considerably
larger systems. In order to handle even larger systems, methods based on the
Dirac equation are derived. The advantage of doing this is that computational
complexity becomes scale invariant and therefore makes it possible to calculate
properties of arbitrarily large systems.

2.1 Density functional theory

The theory of quantum mechanics was established already in the 1920s. At this
time, the theory was rather limited, since no analytical solutions exist for the
many-body system such as molecules and solid state matter. With the advent
of transistor-based computers in the 1950s and 1960s, the search quickly went
on to finding numerical approximations to this problem. Probably the most
successful ab initio computational quantum mechanics method is DFT owing
to its numerical performance. Ab initio refers to the property that a method
does not depend on any external fitting parameters and therefore does not re-
quire any previous knowledge of the system. The groundwork for DFT was
laid in the 1960s by Kohn and coworkers [116, 117]. First, the dimensionality
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Chapter 2. Theory and methods

of the N -body problem is reduced from 3N to 3 by restating it in terms of the
electronic density instead of the many-body wave function [116]. Second, all
particle-particle interactions are replaced by an exchange-correlation potential
[117], thereby drastically reducing the complexity of the problem. The func-
tional form of the exchange-correlation potential is not known analytically and
is therefore guessed upon and typically fitted to known solutions of the homo-
geneous electron gas. The quality of this functional is therefore paramount to
the accuracy of the solution and it is therefore important to choose it carefully.
The derivation of DFT relies on the variational principle, which means that
only the ground state is accurate. Note that DFT is in principle exact given
that the exact exchange-correlation is used and a self-consistent solution is
found. In the thesis work, the freely available DFT package ABINIT [118, 119]
is used for structural relaxation and electronic structure calculations.

2.2 Tight-binding

The TB model is a relatively simple model for quantum mechanics calculations.
It can be used to extract properties like electronic structure, density of states,
optical properties and electronic transport. It is computationally significantly
faster than ab initio methods like DFT, which makes it possible to calculate
properties of systems with size vastly exceeding what is possible within the
DFT framework. Since TB is not ab initio it relies on external fitting param-
eters, which are often determined by fitting a band structure against DFT.
If experimental data is available, these may also be used to aid the fit. A
well-fitted TB model has a relatively high accuracy. A nearest-neighbor TB
model can, for instance, accurately describe the low-energy electronic structure
of graphene [120].

In the TB model, the molecular wave function is approximated by a linear
combination of atomic orbitals centered around the atomic sites of the lattice.
Most of the interesting properties of a material depend on the electronic states
near the Fermi energy. This can be taken advantage of in TB by only including
atomic orbitals that contribute to the energy spectrum near the Fermi level.
In graphene, this means the model can be restricted to only one atomic orbital
per atomic site, namely a single pz orbital. The reason for this is that the pz
orbital is responsible for most observed quantities and it does not interact with
the px, py and s orbitals due to symmetry.

In TB, the Hamiltonian Ĥ can be written in first quantization notation as
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2.3. Dirac equation-based models

Ĥ =
∑
i<j

tij(|i〉〈j|+ H.c.) +
∑
i

εi|i〉〈i|, (2.1)

where |i〉 is an orbital located on a given lattice site and tij is the hopping
parameter between orbital |i〉 and |j〉, and εi is the on-site potential of orbital
|i〉. In general, the notation |i〉 covers both lattices sites and orbital type. As
stated earlier, the most common choice for graphene is to only take one pz
orbital for each atomic site. The Hamiltonian is inserted in the Schrödinger
equation ĤΨ = EΨ and the eigenvalues are then solutions to the equation
det(H − SE) = 0, where H is the Hamiltonian on matrix form with matrix
elements Hij = 〈i|Ĥ|j〉 and S is the overlap matrix with matrix elements
Sij = 〈i|j〉. In the low-energy regime, it is often sufficient to only let tij be
non-zero for nearest neighbors, letting Sij = δij and letting εi = 0 [120, 121].
Common choices for the nearest neighbor hopping parameter are tij = −3.033
eV [121] and tij = −2.7 eV [120]. The computational complexity of calculating
eigenvalues by direct diagonalization is O(N3), where N is the total number
of orbitals included in the model. This means that the calculation time scales
cubicly with the number of atoms used in the model. However, the complexity
can be decreased by taking advantage of the fact that the TB Hamiltonian
typically is extremely sparse. Among these methods are the Haydock [122],
the kernel polynomial [123, 124] and the recursive Green’s function (RGF)
[113] methods. The RGF method is used extensively in the thesis work and is
described in more detail in Sec. 2.4.

2.3 Dirac equation-based models

In this section, the DE-based models to calculate electronic structure and trans-
port of graphene antidot systems will be introduced. These models are based
on a real-space representation of the Dirac equation, which in turn is based on a
low-energy approximation to the TB Hamiltonian of graphene. The advantage
of the DE models is that the computational complexity turns out to be scale
invariant, thus allowing for calculations of arbitrarily large systems.

2.3.1 Gapped graphene

As mentioned earlier, there are several strategies to open a band gap in gra-
phene. Gapped graphene is a simple mathematical model describing the behav-
ior of graphene with a band gap. This is achieved by introducing a sublattice
imbalance between the two carbon atoms in the graphene unit cell by shifting
the on-site energies of the atoms by ∆ on one sublattice and −∆ on the other.
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In the nearest neighbor tight-binding description, this give rise to the following
Hamiltonian

H =
(

∆ −γh(k)
−γh(k)∗ −∆

)
, (2.2)

where h(k) = eikxa0/
√

3 + 2e−ikya0/2
√

3 cos(kx
√

3a0/2). In the orthogonal ap-
proximation (that is, the overlap integrals are sij = δij), this has eigenvalues

E = ±
√
|h(k)|2γ2 + ∆2. (2.3)

At the K-point of the Brillouin-zone, |h(K)| = 0, so the energies are simply
E(K) = ±∆, and the band gap is therefore Eg = 2∆. In the Dirac approx-
imation, the first order series expansion of γh(k) around K is used, which is
given by γh(k) ≈ ~vF (−kx + iky), where the redefinition k−K → k has been
used on the right-hand side. Here, vF =

√
3a0γ/2~ is the Fermi velocity. The

Hamiltonian then becomes

H =
(

∆ ~vF (kx − iky)
~vF (kx + iky) −∆

)
(2.4)

with eigenvalues
E(k) = ±

√
~2v2

F k
2 + ∆2, (2.5)

where k = |k|. The band gap is obviously still Eg = 2∆. It is straightforward
to show that the density of states of the gapped graphene model is D(E) =
2|E|θ(|E| −∆)/~2v2

Fπ. Due to the simplicity of this model, it is often used for
comparison against more rigorous models.

2.3.2 Electronic structure

As stated above, the gapped graphene model is only a mathematical method for
introducing a band gap. A physical method for introducing a band gap is GALs,
i.e., periodic perforations in an otherwise pristine graphene sheet as shown in
Fig. 1.2. GALs can be modeled in several ways. Here, a continuum model
is presented, where the antidot is taken into account by a spatially varying
mass term, which is non-zero only inside the antidot regions. The mass term
effectively excludes charge carriers from the antidot regions at energies near
the Fermi level, and is thus reminiscent of actual antidots.

The model is based on the Dirac Hamiltonian, Eq. (2.4). Since the mass
term is varying in real space, the Hamiltonian must be converted to real space,
which is done by writing it on differential form

Ĥ =
(

∆(r) −~vF (i∂x − ∂y)
−~vF (i∂x + ∂y) −∆(r)

)
. (2.6)
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L

R

∆(r)

Re

S

∆(r)

Fig. 2.1: The hexagonal unit cell and the antidot are replaced by circles of equivalent areas
with radii of Re and R, respectively.

The wave function must then satisfy the Dirac equation ĤΨ = EΨ. This can
be written on matrix form by writing both the mass term and the wave function
as Fourier series expansions, which gives rise to the equation HΨ = EΨ with
matrix elements

HG,G′ =
(

∆G−G′ TGδG,G′

T ∗GδG,G′ −∆G−G′

)
, (2.7)

where ∆G−G′ are the Fourier coefficients of the mass term and TG = ~vF [kx+
Gx − i(K − y + Gy)]. The Fourier coefficients of arbitrary N -sided polygons
are given in Ref. [125]. For a circular antidots with radius R, the Fourier
coefficients are given by ∆G = 2π∆0RJ1(|G|R)/Auc|G|, where Auc is the area
of the unit cell and J1(x) is the first order Bessel function of the first kind. The
electronic structure, density of states and optical conductivity of GALs can then
be calculated by solving this as an eigenvalue problem. The computational
complexity of the method is O(N3

G), where NG is the number of reciprocal
lattice vectors used in the model. Importantly, the number of reciprocal lattice
vectors needed for convergence does not increase with system size and the
method is therefore scale invariant.

Further, the model is used to derive an analytical expression of the band gap
of graphene antidot lattices. The derivation here is done in a slightly different
way than in Paper I, which leads to a much nicer intermediate result. First,
cylindrical symmetry is obtained by replacing both the unit cell and the antidot
by circles of equivalent areas as shown in Fig. 2.1.

The radii of the unit cell and antidots are denoted Re =
√
Atot/π and

R =
√
Arem/π, respectively. It was found in the paper that the energy (given

by E = ~vF k) should satisfy

J1(kRe)[Y0(kR) + Y1(kR)]− Y1(kRe)[J0(kR) + J1(kR)] = 0 (2.8)
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L

S

x

y∆(r)

Fig. 2.2: Graphene antidot barrier unit cell used when calculating electronic transport with
the DE-based approach. The mass term ∆(r) is set to ∆ in the gray regions and is vanishing
elsewhere. The dashed gray lines show an example of discretization of the system into small
area elements.

at the Γ-point. In the paper, the first order series expansion of each of the
Bessel function is taken individually1. Here, the series expansion of the entire
equation is taken to 2nd order around k = 0, which gives rise to

4R+ 2kR2 − k2R3 − 2kR2
e + k2RR2

e + 2k2RR2
e ln R

Re
= 0. (2.9)

Solving this equation for the band gap Eg = 2~vfk gives

Eg '
8~vFR

R2
e −R2 +

√
5R4 +R4

e − 2R2R2
e(3 + 4 lnR/Re)

(2.10)

= 8~vF
√
πArem

Atot −Arem +
√

5A2
rem +A2

tot − 2AremAtot(3 + 2 lnArem/Atot)
.

(2.11)

This expression turns out to be remarkably accurate, especially for armchair
antidots. In the limit of small R, the expression reduces to

Eg ≈ 4~vF
R

R2
e

= 4~vF
√
π

√
Arem
Atot

, (2.12)

which is the same result found in the paper.

2.3.3 Electronic transport

The idea of using a spatially varying mass term to model graphene antidots
is expanded to include scattering of charge carriers in paper II, with a strong
focus on electronic transport properties of graphene antidot barriers (GABs).
A GAB is a GAL barrier of infinite width and finite length as illustrated in

1giving rise to the equation 4R + 2kR2 − 2kR2
e + k2RR2

e + k2RR2
e(2 + kR) ln R

Re
= 0,

which is third order in k and does therefore not lend itself to an elegant closed-form solution.
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Figs. 1.3 and 2.2. Unlike the eigenvalue method described above, this method
is not restricted to treating periodic systems. The formal theory of the method
is established in the paper, but there is not much attention on how to solve
the equations efficiently. This section will focus on how to solve the equations
efficiently using a numerical method that takes advantage of fast Fourier trans-
forms. The scattering problem is solved by using a Green’s function method,
which is a method often used to solve similar problems in optics [126, 127]. In
this description, the wave function can be calculated as

Ψ(r) = Ψ0(r) +
∫
AUC

∆̃(r′)G(r, r′)σzΨ(r′)d2r′, (2.13)

where Ψ0 is the wave function in the absence of antidots, ∆̃(r) = ∆(r)/~vF
is the reduced mass term and G(r, r′) is the Green’s function of the system.
The mass term is step-wise constant with a value of ∆ inside the antidot and
is vanishing elsewhere. A typical unit cell used for transport calculations is
shown in Fig. 2.2. In the non-periodic case, the Green’s function is given by

G(r, r′) = k

4i

(
H

(1)
0 (kr) −ie−iθH(1)

1 (kr)
−ieiθH(1)

1 (kr) H
(1)
0 (kr)

)
, (2.14)

where H(1)
n is the n’th order Hankel function of the first kind, k = E/~vf ,

r = |r− r′| and θ is the polar angle of r− r′. In the periodic case, the Green’s
function G̃ is given by a sum of contributions from all unit cells

G̃(r, r′) =
∞∑

m=−∞
G(r, r′ −mΛŷ) (2.15)

=
M∑

m=−M
G(r, r′ −mΛŷ) + k

4i

∞∑
n=−∞

inJn(kr)e−inθ
(

Sn −Sn−1

−Sn+1 Sn

)
,

(2.16)

where Jn is the n’th order Bessel function of the first kind and Sn is the lattice
sum given by

Sn =
∞∑

m=M+1
H(1)
n (kmΛ)(eikymΛ + (−1)ne−ikymΛ). (2.17)

This sum is actually very slowly convergent, but it can be solved efficiently by
restating it on integral form [128]. On integral form, it can be solved numer-
ically very efficiently by using, e.g., the adaptive Simpson’s quadrature. The
contribution ofM unit cells on either side of the zeroth unit cell is taken outside
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the lattice sum, as these may not satisfy the condition required by Graf’s the-
orem, which was used to rewrite the problem in terms of lattice sums. Graf’s
theorem is only satisfied when the maximum distance between area elements
inside one unit cell is less than (M + 1)Λ, where Λ is the period.

Equation (2.13) can be solved numerically by discretization of space into
small area elements δAi with centers ri. The integral is then approximated by
assuming that the mass term and wave functions are constant inside each area
element and by approximating the Green’s function between element i and j
as

Gij =
{

1
δAj

∫
δAj

G(ri, r′)d2r′ if i = j

G(ri, rj) if i 6= j
. (2.18)

The equation can then be restated as(
Ψ(A)
ixiy

Ψ(B)
ixiy

)
−
∑
jx,jy

(
G

(11)
ix−jx,iy−jy

G
(12)
ix−jx,iy−jy

G
(21)
ix−jx,iy−jy

G
(22)
ix−jx,iy−jy

)(
Ψ(A)
jxjy

−Ψ(B)
jxjy

)
∆̃jxjy

δA ≈

(
Ψ(A)

0,ixiy
Ψ(B)

0,ixiy

)
.

(2.19)
A typical way of solving a system like this is to write it on matrix form AΨ =
Ψ0 and then simply inverting the matrix to find the self-consistent solution for
Ψ = A−1Ψ0. This certainly works, but the computational complexity is quite
bad. For a regular Nx × Ny grid, the matrix is of size (2NxNy) × (2NxNy)
and the computational complexity is then O(N3

xN
3
y ). In the following, it will

be shown that the complexity of a conjugate gradient (CG) algorithm on this
problem will have complexity of approximately O(NxNy log(NxNy)). There is
a subtle detail to this complexity analysis, namely that the matrix inversion
method only requires sampling of area elements inside the antidots, while the
CG method requires uniform sampling in a rectangular region containing all
the antidots in the unit cell. This means that Nx and Ny are smaller for the
matrix inversion, but it does of course not fundamentally change the scaling
behavior.

Equation 2.19 can be written as a matrix equation on the form Ax = b,
which can be solved iteratively using, e.g., a CG method. Note the plain CG
algorithm only works for real, symmetric matrices, and A in this case is neither.
The specific CG method that will be used here is the BiConjugate Gradient
STABilized (BiCGSTAB) algorithm, which is relatively fast, numerically stable
and works for non-symmetric complex matrices. The algorithm is detailed in
Refs. [129, 130] and will be outlined here. The algorithm starts with an initial
guess x0, setting ρ0 = α = ω0 = 1 and v0 = p0 = 0. Then, the residual of
the initial guess is calculated r0 = b−Ax0. The following equations are then

18



i
i

“master” — 2016/9/9 — 10:09 — page 19 — #31 i
i

i
i

i
i

2.3. Dirac equation-based models

looped until convergence (i = 1, 2, 3, . . .)

ρi = r†0ri−1

β = (ρi/ρi−1)(α/ωi−1)
pi = ri−1 + β(pi−1 − ωi−1vi−1)
vi = Api

α = ρi/(r†0vi)
s = ri−1 − αvi

t = As

ωi = (t†s)/(t†t)
xi = xi−1 + αpi + ωis

ri = s− ωit.

A typical error measure in CG methods is

η = r†i ri

x†ixi
. (2.20)

which is simply the Euclidean norm of the residual divided by the Euclidean
norm of the current approximation to the solution. Convergence is then reached
when η is below some tolerance, which is chosen as 10−6 in the calculations. In a
previous implementation, the incomplete LU decomposition-conjugate gradient
(ILUCG) method [131, 132] was used instead, but the convergence of this
method on this problem was found to be erratic, especially at high energies2.
This shows that the specific CG method used in the implementation can be
very important for convergence speed and there may even exist variations which
converge faster than the BiCGSTAB algorithm.

The best case complexity (convergence reached after one iteration) of this
algorithm is O(N2

xN
2
y ). While this certainly looks better than the matrix in-

version complexity, the CG method may actually not improve a lot on the
calculation time if convergence is slow.

The trick to make computation faster relies on the observation that the sum
in Eq. (2.19) is simply a discrete convolution. A convolution (f ∗ g)(x) can be
computed using Fourier transforms as

(f ∗ g)(x) = F−1{F{f} ◦ F{g}}, (2.21)
2The typical number of iterations of a system with 4 antidots in the unit cell is about 40

– 60 for the BiCGSTAB algorithm and 300 – 5000 for the ILUCG algorithm for an antidot
area fraction of 30 % and 70 – 130 compared to 700 – 35,000 for an area fraction of 50 %.
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Chapter 2. Theory and methods

where F denotes the Fourier transform, F−1 denotes the inverse Fourier trans-
form, “∗” represents a discrete convolution and “◦” represents element-wise
multiplication. The Fourier transform can then be calculated very efficiently
using the fast Fourier transform (FFT).

Equation (2.19) is restated in terms of discrete convolutions

A ∗ (δA∆̃Ψ) = δA

(
A(11) ∗ (∆̃ΨA) A(12) ∗ (∆̃ΨB)
A(21) ∗ (∆̃ΨA) A(22) ∗ (∆̃ΨB)

)
= Ψ0, (2.22)

where

Aix,iy =
(
δixδiy −G

(11)
ix,iy

G
(12)
ix,iy

−G(21)
ix,iy

δixδiy +G
(22)
ix,iy

)
. (2.23)

This means that the matrix-vector products in the CG algorithm can be
computed using discrete convolutions, i.e., Api → A ∗ (δA∆̃pi) and As →
A ∗ (δA∆̃s). A convenient consequence of writing this in terms of convolu-
tions is that the matrix size can be reduced to (2Nx) × (2Ny) instead of the
(2NxNy) × (2NxNy) necessary for matrix inversion. The complexity of com-
puting the 2-dimensional FFT is O(NxNy log(NxNy)). It was found that the
number of iterations needed for convergence does not depend on the number
of area elements used for the discretization and it is therefore concluded that
the complexity of the iterative method is equal to the complexity of computing
the FFT. However, the number of iterations does depend on the area fraction
of antidots, as well as the number of antidots, in the unit cell. Both the num-
ber of area elements and the number of iterations needed for convergence was
not found to increase with system size and it is therefore concluded that the
computational complexity is scale invariant.

2.3.4 Dirac mass barrier

A GAB can also be approximated by a simple one-dimensional mass barrier,
where the the mass term is non-zero only inside the barrier, with a value equal
to half the band gap of the barrier, see Fig. 2.3. This is known as a Dirac mass
barrier (DMB) and has transmittance at ky = 0 given by [29, 42]

T (E) = E2 −∆2

E2 −∆2 cos2

(√
E2 −∆2d

~vF

) , (2.24)

where ∆ = Eg/2 is the mass term and d is the length of the barrier.
It can be useful to calculate the transport gap of a system, which is defined

here as the energy region near the Fermi level, where the transmittance is
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2.4. Non-equilibrium Green’s functions

∆

d

Fig. 2.3: Dirac mass barrier, a one-dimensional mass barrier of length d with a mass term
of ∆ = Eg/2 inside the barrier and vanishing elsewhere.

strictly less than 1/2. In paper II, the transport gap of a DMB was calculated
by solving Eq. (2.24) numerically. However, it is actually possible to derive
an approximate analytical expression of the transport gap. The transmittance
of a DMB can be estimated by the Padé approximant of order [1/1] around
E = ∆ of Eq. (2.24) giving

T (E) ≈ ~2v2
F (15~2v2

F (E − 3∆) + 8d2∆2(∆− E))
15~4v4

F (E − 3∆) + ~2v2
F d

2(7E − 37∆)∆2 + 12d2(E −∆)∆4 . (2.25)

By solving for T (α) = 1/2, the transport gap can be calculated as ET = 2α,
which gives rise to the following expression3

ET ≈

Eg + 30~2v2
F (d2E3

g−4~2v2
FEg)

23~2v2
F
d2E2

g+3d4E4
g−60~4v4

F

, Eg ≥
√

6(
√

4969−53)~vF

6d

0, otherwise
, (2.26)

where the band gap Eg is given by Eq. (2.11). When Eg <√
6(
√

4969− 53)~vF /6d, the transmittance of the barrier never drops below
1/2 and the transport gap is therefore zero. This expression provides a rather
good description of the transport gap, especially for armchair antidots.

2.4 Non-equilibrium Green’s functions

The non-equilibrium Green’s function (NEGF) formalism is a powerful tool for
extracting physical observables from a model. An excellent introduction to the
NEGF formalism is given by Datta [111] and an in-depth description of the
formalism and the related recursive Green’s function (RGF) method as used
in graphene is given by Lewenkopf and Mucciolo [113]. An important reason
for the popularity of the NEGF formalism is that it is often possible to obtain
calculation times that are significantly faster than direct diagonalization by
utilizing the RGF method [113]. As evident by its name, the NEGF formalism

3Amusingly, this only works because the approximation of the transmittance is quite
bad, in the sense that it has a 1/E type singularity near the transport gap. However, the
singularity ensures that the transmittance has a value crossing 1/2 given that T (0) < 1/2.
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Chapter 2. Theory and methods

is based on Green’s functions, which can be thought of as the inverse of an
operator. The Green’s function for the Schrödinger equation (E− Ĥ)Ψ(r) = 0
is the solution to the equation (E − Ĥ)G(r, r′) = δ(r − r′).

On matrix form and for a multilead system, as shown in Fig. 2.4, the Green’s
function is given by G = (E + iε−H −

∑
j Σj)−1, where E is the energy, iε is

a small imaginary factor needed for numerical stability, H is the Hamiltonian
of the system and Σj is known as the self-energy of lead j, which takes into
account the effect of the lead on the system. It is common in the literature
of the NEGF method to drop matrix notation for the symbols, but it should
be understood that all symbols except E represents a matrix in the above
expression. The advantage of taking the leads into account by means of self-
energies makes it possible to describe a system with semi-infinite leads without
having a Green’s function with infinite dimensions. The self-energy of the leads
are calculated using the very efficient decimation technique [113, 133]. In the
thesis work, the NEGF formalism is used with a TB Hamiltonian, but it also
applies, for instance, to DFT Hamiltonians.

Many important parameters can be extracted from the Green’s function.
Firstly, for a single orbital on each atomic site, the local (or atom-projected)
density of states (LDOS) Li(E) on atom i is given by [113]

Li(E) = − 1
π
Im{Gii} (2.27)

and the full density of states (DOS) D(E) is then the sum of all local contri-

Device

Lead
2

Le
ad

3

Lead
4

Lea
d 5

Le
ad
6

Lead
N

Lead 1

Fig. 2.4: A general device that can be modeled using the NEGF formalism, where a device
region coupled to a number of leads.
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2.4. Non-equilibrium Green’s functions

butions [113]
D(E) =

∑
i

Li(E). (2.28)

Further, the conductance between lead i and j of the system is given by the
Landauer-Büttiker formula Gij = 2e2

h Tij(E), where Tij is the transmittance
between lead i and j given by [113]

Tij(E) = Tr{ΓiG†ΓjG}. (2.29)

Here, Γi = i(Σi − Σ†i ) is the level width (or line width) function. For a two-
terminal system with left (L) and right (R) leads, this give rise to a 2 × 2
transmittance tensor

T =
[
TL,L TL,R
TR,L TR,R

]
. (2.30)

The elements of the transmittance tensor has exactly the meaning you would
think: Tij represents the number of the charge carriers injected in lead i which
exists through lead j.

The terminal current at lead p is given by [111]

Ip = 2e
h

∫ ∑
q

[fp(E)− fq(E)]Tpq(E)dE, (2.31)

where fp is the Fermi distribution in lead p. For a two-terminal system, this
simplifies to

I = 2e
h

∫
[fL(E)− fR(E)]TL,R(E)dE. (2.32)

The Fermi function makes sure that there is no current when the applied bias is
zero. Here, it is assumed that the left lead is grounded and there is an applied
bias Va on the right lead, such that fR(E) = fL(E + eVa). Further, for a
two-terminal system, the bond current between site i and j may be calculated
as [134]

Ii→j = −4e
~

∫
[fL(E)− fR(E)]Im

{
Hi,jA

(L)
j,i (E)

}
dE, (2.33)

where H is the Hamiltonian and A(L) = GΓLG† is the left spectral function.
A spin-degeneracy factor of two has been included. In the low temperature
limit, the difference between Fermi functions becomes a top-hat function with
a width of eVa starting at EF . If additionally the bias is low enough that the
spectral function is approximately constant over the integration window, the
bond current becomes

Ii→j ' −
4e2Va
~

Im
{
Hi,jA

(L)
j,i (EF )

}
. (2.34)
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V1,2 VNx−1,Nx
VRVLα α

V †1,2 V †Nx−1,Nx
V †RV †Lα† α†

H
(1)
D H

(2)
D H

(Nx−1)
D H

(Nx)
D HLHLHL HL

Fig. 2.5: Partitioning of the system into Nx slices as used in the RGF method. Each slice
is characterized by a 1) local Hamiltonian (H(i)

D in the device region and HL in the leads)
that only describes couplings within the slice, and 2) coupling matrices Vij that describe the
coupling between slice i and j. The coupling to the leads is given by VL/R and the interlead
coupling is given by α.

Calculating the Green’s function has complexity O(N3), where N is the
number of atomic orbitals used in the model, which in the context of graphene
is typically equal to the number of atoms. For most properties, the entire
Green’s function is actually not needed, just certain submatrices of it. This
fact coupled with the sparsity of the TB Hamiltonian is used to extract different
properties efficiently using the RGF method. Here, the unit cell is divided into
Nx slices along the x-direction withNy atoms in each slice. This is illustrated in
Fig. 2.5 along with the sub-Hamiltonians and coupling matrices of the slices. By
partitioning the system this way, the Hamiltonian becomes block tridiagonal,
which is exactly the fact that is used to write up the RGF algorithms. The only
requirement of the RGF method is that the atoms in each slice only couple to
atoms in the same slice or its nearest neighbors. The complexity of calculating
transmittance and DOS is reduced to O(NxN3

y ) in the RGF method. This
method is thus ideal for systems that are considerably longer (x-direction)
than wide (y-direction). A rigorous description of the RGF method as used in
graphene is given in Ref. [113].

2.5 Magnetotransport

In the presence of a magnetic field, the momentum operator is p̂ → p̂ + eA,
where A is the vector potential of the magnetic field. The vector potential is
related to the magnetic field by ∇ × A = B. Many different choices can be
made for A, which gives rise to the same B and the specific choice of A is
referred to as the gauge. The solution to the Schrödinger equation should of
course be gauge invariant and the gauge is therefore chosen based on simplicity
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2.5. Magnetotransport

of calculations. A common choice is the Landau gauge, which for a magnetic
field pointing the z-direction, B = ẑB, reads A = ŷBx. This gauge has the
advantage that it is invariant in the y-direction, making it straightforward to
treat systems that are periodic along this direction.

In TB, the magnetic field is introduced by the Peierls substitution [33, 99]
tij → eiφij tij , where tij is the hopping parameter between atom i and j, φij =
(e/~)

∫Rj

Ri
A · dl is the Peierls phase and Ri is the position of atom i. Since

the hopping parameters are unchanged compared to the non-magnetic case, it
is straightforward to include an applied magnetic field in a TB Hamiltonian.
Once the Hamiltonian is correctly modified to account for the magnetic field,
it is only a matter of using the NEGF formulas above to extract properties.

For magnetotransport calculations, the magnetic field is only applied in the
device region, and the magnetic field in the leads is thus vanishing. In order
to avoid discontinuities in the vector potential (which would give rise to an
infinite magnetic field), the vector potential in the left (right) lead should be
a constant equal to the vector potential on the left (right) side of the device.
This means that the vector potential cannot be chosen to be zero in both
leads simultaneously. However, since the magnetic field is simply the curl of
the vector potential, a constant vector potential still gives rise to vanishing
magnetic field. This concept is illustrated in Fig. 2.6 along with a unit cell of
a GAB with a triangular antidot lattice.

In order to obtain a periodic Hamiltonian for 2D periodic systems, the
Peierls phase between a pair of neighbors on either side of the unit cell is
required to be an integer multiple of 2π. This limits the possible values of

Ay

x

B

0 d

L

S

x

y

Fig. 2.6: Unit cell of a GAB with a triangular antidot lattice used in transport calculations
and corresponding vector potential and magnetic field. The gray and blue atoms represent the
system and semi-infinite leads, respectively. The dashed red lines outline the corresponding
GAL unit cell.
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b)
a)

c)

a)

Fig. 2.7: Examples of non-chaotic cyclotron trajectories of classical charge carriers in an
antidot lattice. a) pinned orbits, b) magnetic edge state, and c) skipping orbit.

applied magnetic fields toB = nBmin ∝ n/L, whereBmin ∝ 1/L is the smallest
magnetic field that ensures periodicity and L is the length of the unit cell. For
a single unit cell of a graphene antidot lattice, Bmin would be quite large. By
creating a supercell consisting of many replicas of the graphene antidot unit cell,
the value of Bmin can be reduced arbitrarily. Then, by appropriately choosing
the length of the supercell, practically any magnetic field can be used in the
calculations. The calculation time of course increases with increasing unit cell
size and thus leads to the counter-intuitive result that it is computationally
significantly harder to apply a small magnetic field than a large one. Note that
this is only the case for 2D periodic systems and does not apply to transport
in graphene antidot barriers, which are only 1D periodic.

It is well-known that the trajectory of charge carriers is curved in the pres-
ence of a magnetic field due to the Lorentz force. This will often lead to
chaotic trajectories in antidot lattices, due to scattering in seemingly random
directions. However, three different types of non-chaotic cyclotron trajectories
of classical charge carriers can be identified in an antidot lattice, see Fig. 2.7.
First, a pinned orbit can be identified, which is a non-scattering orbit either
around or between antidots, which should give rise to very high resistance.
Next, a magnetic edge state can be identified, where the charge carrier is con-
fined to the periphery of the antidot due to repeated reflection on the antidot
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2.6. Spin transport

edge. Intuitively, this should give rise to increased resistance, as these orbits
are localized to the antidot edge. However, it will be shown that this is not
always the case. Finally, a skipping orbit can be identified, for which each re-
flection on the antidot edge cause movement in the same direction, thus easing
the transport through the system and thereby give rise to to low resistance.
The focus in the thesis is on the magnetic edge states, as these give rise to
periodic features in the transmittance spectrum and are thus easy to identity.

2.6 Spin transport

In TB, the molecular wave function is written as a linear combination of atomic
orbitals. So far, a single non-spin-polarized orbital per atomic site has been
used. In order to include spin effects, two spin-polarized orbitals per atomic
site must be used instead. All the NEGF formulas above also work in the spin-
polarized case, but introducing spin doubles the dimensions of the Hamiltonian
and the Green’s function and thus increases calculation time.

For a perfect graphene lead (with no impurities and thus no spin scattering),
the two spin-channels are completely decoupled in the leads and each spin-
channels can thus be viewed as a separate lead. Therefore, the transmittance
between spin-channel σ in lead i to spin-channel σ′ in lead j can trivially be
written as

Tiσ,jσ′ = Tr{ΓiσG†Γjσ′G}. (2.35)

Spin scattering inside the system is taken into account by the Green’s function.
For a two terminal system with left (L) and right (R) spin-polarized leads, this
gives rise to a 4× 4 transmittance tensor

T =


TL↑,L↑ TL↑,L↓ TL↑,R↑ TL↑,R↓
TL↓,L↑ TL↓,L↓ TL↓,R↑ TL↓,R↓
TR↑,L↑ TR↑,L↓ TR↑,R↑ TR↑,R↓
TR↓,L↑ TR↓,L↓ TR↓,R↑ TR↓,R↓

 . (2.36)

The spin-coherent transmittance is defined as Tsc ≡ T↑↑ + T↓↓ and the spin-
flipped transmittance is defined as Tsf ≡ T↑↓ + T↓↑, where the shorthand no-
tation Tσσ′ ≡ TLσ,Rσ′ has been used.

The spin-dependent transport of hydrogenated graphene is calculated in
paper IV. It is found that graphene systems with hydrogen adatoms can be
accurately described with a remarkably simple model. In particular, the hy-
drogen adatom (H) is coupled to the graphene backbone by allowing only a
spin-independent hopping t′ to the carbon site beneath it (C0). Only the hy-
drogen on-site potential is taken as spin-dependent with of ε↑ and ε↓ for the
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majority and minority spin channels, respectively. In case of a single hydrogen
adatom, this means the Hamiltonian can be written as

Ĥ = Ĥ0 + t′(|C0〉〈H|+ |H〉〈C0|) + |H〉〈H| ⊗ (ε↑|↑a〉〈↑a|+ ε↓|↓a〉〈↓a|), (2.37)

where Ĥ0 is the graphene backbone part, |H〉 and |C0〉 are the orbitals on the
H and C0 atoms, respectively, and |↑a〉 and |↓a〉 are the orthogonal spin basis
vectors along the spin-quantization axis a = [sin θ cosφ, sin θ sinφ, cos θ]. In
this model, the quantization axes of the defect spin moments are considered as
classical vectors that can be rotated individually. In the dilute limit, the inter-
actions between the defects can be assumed small. Then a finite temperature
or other environmental factors can break the magnetic ordering in a system
with many hydrogen adatoms. In such a case, the same spin basis cannot
be chosen simultaneously for all the defect spin moments. Additionally, in the
limit of many nearby defects, frustration can result in a nontrivial spin moment
configuration that can be difficult to estimate without explicitly including the
defect spin-spin interactions.

In order to obtain spin directions that are distributed uniformly random
on the Bloch sphere, it is insufficient to choose angles θ ∈ [0, π] and φ ∈
[0, 2π] uniformly random, as this would lead to an increased probability at the
poles and thus lead to a non-uniform sampling. In order to obtain a uniform
sampling, two numbers u and v are picked uniformly random in the interval
[0, 1]. The angles are then calculated as θ = cos−1(2u− 1) and φ = 2πv. The
difference between these two methods is illustrated in Fig. 2.8.

In the model, the magnetic impurities (in this case H adatoms) are dispersed
randomly across the device, as shown in Fig. 2.9. Electrons have a probability
to flip their spin to the opposite spin channel at the impurity sites. If the prob-
ability of spin flipping does not depend on previous scattering events, the spin
polarization will decay exponentially. This type of spin relaxation mechanism

(a) Uniform sampling (b) Non-uniform sampling

Fig. 2.8: Random points chosen on Bloch sphere. Top- and side-view of (a) uniform and
(b) non-uniform sampling.
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| ↑〉

| ↓〉

↑-channel

↓-channel Spin flip

Fig. 2.9: Unit cell of a graphene device with a number of magnetic impurities scattered
randomly across the device. The gray and blue atoms represent the system and the semi-
infinite leads, respectively, while the red atoms represent the magnetic impurities. The spin
of an electron only flips due to scattering at the magnetic impurities.

is known as Markovian spin relaxation. It is actually quite simple to set up a
classical statistical model of the spin relaxation due to uncorrelated scattering
events. The spin-resolved electron density is denoted as n = (n↑, n↓)T and
assume that the electron density is completely spin polarized in the ↑-channel,
n0 = (n(0)

↑ , 0)T , before any scattering events. Upon encountering impurity m
with probability κ to flip the spin, the electron density is equal to the number
of electrons in the channel minus those that flipped plus those that flipped back
from the other channel

nm = nm−1 − κnm−1 + κ

(
n

(m−1)
↓

n
(m−1)
↑

)
=
(

1− κ κ

κ 1− κ

)
nm−1. (2.38)

By multiple application of this equation, it is easy to relate nm to n0

nm =
(

1− κ κ

κ 1− κ

)m
n0 =

(
n

(0)
↑ /2 (1 + (1− 2κ)m)
n

(0)
↑ /2 (1− (1− 2κ)m)

)
. (2.39)

This is known as a Markov chain and is exactly where this type of spin relax-
ation mechanism derives its name.

The spin polarization is defined as

P = n↑ − n↓
n↑ + n↓

. (2.40)

With this definition, the spin polarization is 1 when the system is fully ↑-
polarized and −1 when the system is fully ↓-polarized. The spin polarization
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after m uncorrelated scattering events is thus

Pm =
n

(m)
↑ − n(m)

↓

n
(0)
↑

= (1− 2κ)m = em ln(1−2κ), (2.41)

where ln(1 − 2κ) < 0 for all κ ∈ [0; 0.5[, which gives rise to a decaying expo-
nential function. It is expected that κ � 0.5. If the scatterers are dispersed
randomly across the device, m can be thought of as representing length L and
the ln factor as representing spin relaxation length λs and as such give rise to
a spin polarization on the form

P (L) = e−L/λs . (2.42)

It can thus be seen that the spin polarization decays exponentially with length.
Markovian spin relaxation is therefore interpreted as classical behavior and
deviations to this is interpreted as due to quantum effects. In the presence
of quantum effects the spin relaxation can be much more complicated. For
instance, a quantum mechanical model by Zurek et al. [135] show that spin
relaxation can either be exponential or Gaussian, depending on the distribution
of spin couplings to an environment. In order to include both cases as well as
any intermediate relaxation mechanism, the spin polarizations obtained in the
simulations are fitted to the following expression

P (L) = Tsc − Tsf
Tsc + Tsf

= e(−L/λs)n

, (2.43)

where Tsc is the spin-conserved transmittance and Tsf is the spin-flipped trans-
mittance. It then follows that the spin relaxation is exponential (Markovian)
when the exponent is n = 1 and Gaussian when the exponent is n = 2.
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Chapter 3

Summary of results

This chapter will present a collection of results from all five papers. First,
results of the Dirac equation (DE) based models from papers I and II are pre-
sented. For these models, the new analytical results discussed in the previous
chapter is additionally shown. Next, the spin- and magnetotransport results
from papers IV and V are presented. Finally, the results of the study of the sta-
bility of Fe membranes in graphene perforations from paper III are presented.

3.1 Dirac equation-based models

In papers I and II the DE models are compared to tight-binding (TB) calcu-
lations. The computational complexity of the DE methods is scale invariant
and as such allows for calculations on arbitrarily large structures. By contrast,
the computational complexity of calculating eigenvalues of an N -atom system
in TB is O(N3). Thus, doubling the simulated area in TB increases the com-
putational time by a factor of (22)3 = 64. The presented DE models use a
spatially varying mass term ∆(r) to model the antidots, with a value of ∆
inside the antidots and vanishing elsewhere. Unless stated otherwise, a value
of ∆ = 170 eV/L is used in the calculations. The papers focuses, in particular,
on the validity of the DE-based models compared to TB.

3.1.1 Electronic structure

A previous model of graphene antidot lattices using the DE with a spatially
varying mass term was put forward by Fürst et al. [35]. In their model the
mass term is explicitly taken to infinity, leading to a boundary condition on
the wave function. This boundary condition becomes undefined in the limit
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Fig. 3.1: Comparison of DE (red) and TB (blue) band structures for different GALs. The
side lengths of the antidots in the DE has been chosen such that the antidot area is the same
as in TB. The band structures of two of the systems is additionally compared to the scissor
shifted DE (green) results by Fürst et al. [35].

of R → 0, which causes the band gap to remain in this limit. They find that
this error can be remedied somewhat by applying a scissor shift of the band
structure of 1.02γ/L.

In Fig. 3.1, the band structures calculated with the DE and TB is compared
for 6 different systems. Here, the notation {L, S} is used to refer to GALs with
unit cell side length L and antidot side length S. Further, the antidot edge
is either purely armchair (A) or purely zigzag (Z). Only positive energies are
shown due to perfect electron-hole symmetry in the models. In the DE method
there is of course no edge chirality, so it seems strange to distinguish between
zigzag and armchair antidots. However, for hexagonal antidots, the chirality
also gives rise to a rotation of 30◦ of the antidots in the unit cell, whereby
antidots in a GAL lattice are either edge-to-edge for zigzag antidots or vertex-
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3.1. Dirac equation-based models

to-vertex for armchair antidots. The orientation of the antidots is opposite for
antidots in the RGAL lattice. For two of the systems, the band structures are
additionally compared to the first two bands of the scissor shifted DE results
by Fürst et al. There is a good agreement between the DE model and TB for
armchair antidots GALs, especially for the lowest lying band. It makes sense
that the accuracy increases with decreasing energy, as the Dirac approximation
on which the model is based, is a low-energy approximation of the full TB
result. The agreement is best when the area of the antidot is small compared
to the total area of the unit cell. Additionally, the agreement is much better
for the presented DE model than the DE model by Fürst and coworkers. For
the systems with zigzag antidots, there is rather poor agreement between the
DE model and TB. The discrepancy between the models turns out to be due
to localized edge states, which occur for extended zigzag edges and which are
absent in the Dirac model. The localized edge state is clearly visible in the band
structure of the Z{10,6} as the near-dispersionless bands, which is the third
conduction band in this case. A comparison of the electron probability density
of the third conduction band between the zigzag and armchair antidot systems
is shown in Fig. 3.2. For the zigzag antidot system, the probability density is
completely confined to the periphery of the antidot. For the armchair antidot
system, however, the probability density is distributed over the entire unit cell.
This edge behavior is found to be common for zigzag antidots. Localized edge
states in graphene due to extended zigzag edges have also been observed by
other authors [136–138]. Since the DE is a continuum model, all atomistic
features, such as chirality, are missing.

A{20,6}GAL Z{20,6}GAL

Fig. 3.2: Electron probability density of the third conduction band in one unit cell calculated
used TB and averaged over the Brillouin zone. The radius of each circle is proportional to
the absolute square of the eigenvector element for that atom.
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Armchair GAL Zigzag GAL Armchair RGAL Zigzag RGAL

Fig. 3.3: Comparison between armchair and zigzag antidots in GAL and RGAL configu-
rations. Notice that the underlying graphene lattice is rotated 30◦ between the GAL and
RGAL lattices.

In order to highlight the accuracy of the DE model, the band gap obtained
in DE is compared to TB in Fig. 3.4 for a large number of different structure re-
alizations. The results are additionally compared to the approximate analytical
expression for the band gap given by Eq. (2.11). The band gaps are shown for
both GAL and rotated GAL (RGAL) lattices, where the underlying graphene
lattice is rotated 30◦ degrees between the two lattice types, see Fig. 3.3. For
armchair antidots in both GAL and RGAL configuration, there is very good
agreement between DE and TB. However, some discrepancies emerge for large
antidots in RGAL configuration. Armchair antidots in RGAL configuration
resemble a connected network of graphene nanoribbons, since the antidots are
oriented edge-to-edge. As the size of the antidot increases, the “nanoribbon
width” decreases. It was noted by Brey and Fertig [137] that the DE band gap
of narrow armchair graphene nanoribbons deviate more from TB than wide
nanoribbons, which is consistent with the observations for armchair antidots in
RGAL configuration. The band gap of zigzag and circular antidots are consis-
tent with TB only when the area fraction of antidots in the unit cell is small,
with large discrepancies emerging for larger antidots. These discrepancies occur
primarily due to the presence of extended zigzag edges on the antidots, which
lead to edge states that are not described in the DE model. It is interesting
that the numerical DE results are almost invariant to the shape of the antidots
even though there is a rather large geometrical difference between circular anti-
dots, hexagonal antidots oriented edge-to-edge and hexagonal antidots oriented
vertex-to-vertex. The largest possible area fraction for edge-to-edge hexagonal
antidots is 1, while it is only 3/4 for vertex-to-vertex antidots and π/2

√
3 ≈ 0.9

for circular antidots. However, results indicate that in the DE model, the over-
whelmingly most important parameter for the band gap is the area fraction of
the antidot, not its shape.

From the band gap analysis, it can be concluded that the presented DE
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Fig. 3.4: Band gap of several different GALs and RGALs for armchair, zigzag and circular
antidots. The points show the TB results and the lines represent the DE results. The solid
green line is based on Eq. (2.11) and the dashed green line is based on Eq. (2.12)

model is in very good agreement with TB in the absence of localized edge
states. It is reasonable to expect that localized edge states contribute very
little to electronic transport, especially in the presence of disorder. Therefore,
for electronic transport calculations, it may not be a major drawback that these
are absent in the DE model.

3.1.2 Electronic transport

A method for calculating the scattering of charge carriers by graphene antidots
was developed in paper II based on the DE using a Green’s function method.
This method is also suitable for calculating scattering of periodic structures,
such as graphene antidot barriers (GABs) as shown in Fig. 2.2. The trans-
mittance can be extracted by calculating the charge current in a GAB. The
calculation time can be reduced significantly by employing an efficient iterative
method, which is outlined in Sec. 2.3. In Fig. 3.5, the transmittance of different
GABs calculated with the presented DE method is compared to the transmit-
tance calculated using a tight-binding method. As with the electronic structure
calculations, it is found that the DE method is in agreement with TB in ab-
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Fig. 3.5: Transmittance of GABs with N rows of antidots in the transport direction calcu-
lated with TB (solid) and the DE (dashed). The antidots are hexagonal with either armchair
or zigzag edge chirality.

sence of localized edge states. Specifically, there is here excellent agreement
between the DE method and TB for the two armchair antidot structures, as
well as reasonable agreement for the system with the small zigzag antidots. For
the structure with the larger zigzag antidots there is poor agreement, again due
to localized edge states. An important thing to note is that, since the localized
edge states are localized in both space and energy, small amounts of disorder
is likely to suppress the electronic transport of these states. In fact, Power
and Jauho [38] subsequently studied the electronic transport of finite graphene
antidot structures and found the transmittance of these localized edge states
to be greatly reduced in the presence of disorder.

A useful measure of a system is its transport gap, which is defined here as the
energy region near the Fermi level, where the transmittance is strictly less than
1/2. It may be thought of as the transport equivalent of a band gap. In fact,
for an infinitely wide and perfectly ordered barrier, the transport gap is equal
to the band gap. Further, the definition of a transport gap makes it possible
to compare the DE method to TB for a large number of structure realizations
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Fig. 3.6: Transport gap of GABs with 4 armchair or zigzag antidots. The mass term used
in the DE is here twice the value used elsewhere, which slightly improves the agreement with
TB near the onset of the transport gap. The Dirac mass barrier (DMB) results are based on
numerical solutions to Eq. (2.24) and the analytical result given by Eq. (2.26).

as was also done for the band gap, see Fig. 3.6. The results are also compared
to the transport gap of a Dirac mass barrier (DMB). The band gap used in the
DMB calculations is taken as the band gap given by Eq. (2.11). The analytical
expression of the band gap is based on the assumption of circular antidots, and
is therefore invariant over edge chirality. As a consequence, the DMB, which
relies on this expression, is also invariant over the edge chirality. As discussed
before, the antidot chirality in the DE model only enters through a 30◦ rotation
of the antidot in the unit cell and is therefore only purely geometrical. As with
the band gap, the figure shows that this rotation makes very little difference on
the results. The figure shows that the transport gap of the armchair antidots
systems is in good agreement between all models. Note that the DMB is
only in agreement with TB near the onset of the transport gap, while the
DE model is in agreement with TB even at significantly higher energies. Of
course, in the context of transport gap, this difference is not so important.
As before, there is poor agreement between TB and the DE models for the
zigzag antidots when the antidots takes up a significant fraction of the unit
cell. However, the discrepancy of the zigzag results in the case of the transport
gap is actually much lower than was the case of the band gap. This fact
may increase the usability of the DE model to predict transport properties of
experimental graphene antidot systems, especially if edge state effects diminish
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Fig. 3.7: Spin-polarized band structure, total DOS and LDOS of an 8×8 graphene supercell
with a single hydrogen adatom. The DFT atom-projected DOS is compared to the TB LDOS
at the hydrogen adatom (H), the carbon atom directly underneath (C0) and its first-, second-,
and third-nearest neighbors C1, C2 and C3, respectively.

in the presence of disorder.

3.2 Spin transport

The spin relaxation mechanism in hydrogenated graphene was studied in paper
IV. It turns out that hydrogen adatoms can be modeled with a remarkably
simple Hamiltonian, where the only spin dependent parameter is the H on-site
energy. The fitted band TB band structure, total density of states (DOS) and
local DOS (LDOS) are shown in Fig. 3.7. The figure shows excellent agreement
between the TB model and the DFT results.

In Fig. 3.8, the spin polarization as a function of device length is shown for
different impurity concentrations. The spin polarization decays rapidly near
the H adatom impurity bands, which are located near the charge neutrality
point (CNP), for all impurity concentrations. As expected, the spin polar-
ization decays faster with increasing impurity concentration. Note that the
spin polarization also decay for energies away from the H defect bands, due
to the small, but finite, spin splitting in the remaining band structure. The
small energy-dependent oscillations in the figure arise due to finite seize effects
originating from the finite width of the unit cell.

The spin polarization is expected to decay as P (L) ' e−(L/λS)n , where L
is the device length, λS is the spin relaxation length and n is an exponent that
depends on the spin relaxation mechanism. For Markovian spin relaxation, the
spin polarization decays exponentially and the exponent is n = 1. λS and n

can be extracted by fitting the spin polarization against this expression. The
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Fig. 3.9: (a) Normalized spin relaxation length η × λS and exponent n (inset) obtained by
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spin relaxation fitting, where the circles are the ensemble averaged spin polarizations and the
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obtained by different authors [82, 88, 90].

39



i
i

“master” — 2016/9/9 — 10:09 — page 40 — #52 i
i

i
i

i
i

Chapter 3. Summary of results

extracted spin relaxation length and exponent is shown in Fig. 3.9. Positive
and negative carrier densities on the axis refer to electron and hole doping,
respectively. The spin relaxation length is very short for energies near the H
defect bands (close to the CNP). At these energies, the spin relaxation mech-
anism is predominantly exponential with an exponent of n ' 1. For higher
energies, the exponent is increased, but it is seen that it converges towards
n ≈ 1, as the impurity concentration is decreased. This demonstrates that the
spin relaxation mechanism is Markovian near the CNP, as well as in the highly
dilute limit. That the spin relaxation mechanism approaches Markovian in
the highly dilute limit is expected, as it intuitively becomes more unlikely that
scattering events are correlated, when the impurities are separated by large dis-
tances. The figure also shows that there is a nearly linear dependence between
the impurity concentration and spin relaxation length λS . Near the CNP, the
spin relaxation length is 1–2 orders of magnitude lower than for other energies.
Due to the nearly linear scaling of the results with the impurity concentration,
the 500 ppm result can be scaled to fit with experimental results by Wojtaszek
et al. [82]. The results are additionally compared to other recent theoretical
calculations on hydrogenated graphene by Soriano et al. [90] and Kochan et al.
[88]. None of the theoretical models are able to fully explain the experimental
result, but the presented model is reasonably close.

3.3 Magnetotransport

In this section, the electronic transport in GALs under the presence of an
applied magnetic field will be described. The magnetic field is only applied in
the device region and is vanishing in the leads. Most of the calculations are
based on a TB description of graphene antidots. The results are compared
to a TB gapped graphene model, where the on-site energy is shifted by ∆ on
one sublattice and −∆ on the other, as well as a Dirac mass barrier (DMB).
The transmittance of a DMB under an applied magnetic field is derived in
paper V and is based on wave function boundary matching. The advantage of
both the DMB and gapped graphene models compared to TB is that they are
much faster: for a barrier of length d (transport direction) and width w, the
computational complexity isO(dw3) for full antidot model, O(d) for the gapped
graphene model and O(1) for the DMB. One of the major problems with the
simplified models is that they depend on knowing the effective band gap of
the barrier, which may not be known in advance. In the DMB calculations, a
look-up table of the band gap of infinite GALs based on the TB results from
paper I has been used. Another approach would be to use an approximate
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Fig. 3.10: Transmission through {10,S} triangular GABs containing 4 rows of armchair
antidots in the transport direction, as well as gapped graphene (GG) and Dirac mass barriers
(DMBs) with the same length and band gaps as the GABs.

band gap obtained by the analytical formula given by Eq. (2.11).
The transmittance obtained with these three models is compared in

Fig. 3.10 for three different GAL barriers and four different values of the ap-
plied magnetic field. At these magnetic fields and especially near the onset of
transmittance, the agreement between the models is quite good for the struc-
ture with the small antidots. The agreement seems to decrease a little with
increasing size of the antidot and for increasing magnetic field. There is more
deviation between the models, when the magnetic field is increased further (not
shown). However, these results suggest that both the DMB and gapped gra-
phene models are sufficient if one is primarily interested in the behavior near
the onset of transport, for instance to determine the transport gap, of smaller
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Fig. 3.11: Comparison between transmittance (left) and DOS (right) of {L,6} GABs with
armchair antidots in different lattice configurations. The value of L was chosen to give all
lattices a neck width of approximately 1.3 nm. For the triangular lattice, this corresponds to
a {10,6} system. The transport calculations are made with 4 rows of antidots in the transport
direction. The dashed lines in the top panels outline the geometric band gap (red) and the
Landau level gap (yellow). The bottom panels show a ∆ = 0.1γ gapped graphene system.
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fermions. For the gapped graphene model, 2× log10(T ) is plotted due to the generally lower
transmittance for this system.
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Fig. 3.12: LDOS (gray shading) and bond current (blue arrows) of a {10,6} triangular GAB
for different B-field strengths at energies of E = 0.2γ (a, d and e) or E = 0.3γ (b and c).
The main panel shows the transmittance of the system. Here,

√
| log10 T | is plotted in order

to enhance the contrast.

antidots under not too strong applied magnetic fields.
It has been known for a long time that the DOS of a system under a mag-

netic field gives rise to a self-similar structure known as a Hofstadter butterfly
[99]. Calculations of Hofstadter butterflies by Pedersen and Pedersen [33] have
shown evidence of magnetically induced band gap quenching in GALs under ap-
plied magnetic fields. It is interesting to examine if this quenching also applies
to the transport gap of GABs in magnetic fields. In Fig. 3.11, the transmittance
and DOS spectra are compared for GABs in four different lattice configurations
and for gapped graphene. It is seen that there is a very high degree of similarity
between transmittance and DOS spectra. However, there are some deviations,
especially near the zero-field band gap. Also, the DOS spectra does not offer
much clue of the actual value of transmittance. Moreover, the magnetically
induced band gap quenching does seem to apply to the transport gap as well.
It is worth to note that the transmittance of these energies is significantly lower
than the transmittance above the Landau level gap (note that the results are
plotted on a log scale). Additionally, quenching does not occur in the gapped
graphene model. This is because the band gap in gapped graphene was opened
by sublattice imbalance rather than by geometrical effects.
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Fig. 3.13: Ensemble averaged transmittance of a) an ordered {10,6} triangular GAB and
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disordered antidots in the two cases is shown as an inset. The dotted red lines are plotted
according to Ei/γ =

√
ai + bΨ/Ψ0, where ai and b were determined by least squares fitting.

An intriguing property of these spectra are the narrow transmittance bands
between the Landau level gap and the geometric band gap. These are examined
further in Fig. 3.12, where the local DOS (LDOS) and the bond current at
selected (E,B) values is plotted. The bond currents and LDOS are confined
near the periphery of the antidots at the narrow bands, while they are not
elsewhere. These narrow bands are therefore identified as magnetic edge states,
which are defined here as states that are confined to the antidot edge by the
presence of a magnetic field, not to be confused with spin-polarized edge states,
such as those observed on extended zigzag edges [32].

There is a very rich substructure in both transmittance and DOS spectra.
The question remains if any of this substructure is retained under the effects
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3.4. Graphene-embedded monolayer Fe

of disorder. This is investigated in Fig. 3.13, which shows the transmittance of
an ordered system, a moderately disordered system and a heavily disordered
system. The disorder is created by removing atoms according to a Gaussian
probability profile, which is why these antidots are more round than hexagonal.
The figure shows that the magnetic edge states survive a moderate degree of
disorder, but are destroyed by a large degree of disorder. Moreover, the figure
shows that some of the substructure above the Landau level gap does survive
both degrees of disorder and is highlighted by the red dotted lines on the figures.

3.4 Graphene-embedded monolayer Fe

In 2014, Zhao et al. [79] demonstrated experimentally that monolayer Fe mem-
branes can be embedded in perforations in graphene. They found that the
embedded Fe membranes form a square lattice with a bond length of about
2.65 Å. This finding was a bit surprising because 1) Fe has 6 valence electrons,
which would tend favor a more tightly packed lattice, and 2) The bond length
is much higher than in their own DTF calculations on free-standing monolayer
Fe, which suggest a bond length of 2.35 Å. Inspired by these finding, a DFT
analysis of the structural stability and magnetization of Fe systems is presented
in an attempt to explain the experimental results, as well as to obtain a basic
understanding of these systems.

The free-standing monolayer Fe system must be understood before it makes
sense to try to understand the graphene-embedded Fe systems. The total en-
ergy and magnetization of free-standing monolayer Fe in ferromagnetic and
antiferromagnetic ordering is shown in Fig. 3.14 for three different lattice con-
figurations. The figure shows that ferromagnetic ordering is generally favored
against antiferromagnetic ordering and that the triangular lattice is energet-
ically favored at equilibrium, but with a crossover to square for compressive
strain. At equilibrium, the bond lengths are 2.33 Å for the square lattice and
2.44 Å for the triangular lattice, both of which are significantly smaller than
the experimental observation of 2.65 Å in graphene-embedded Fe membranes.
Moreover, at tensile stress, the triangular lattice is even more energetically fa-
vored than at equilibrium. So what is happening in the experiments? Fe on
the graphene surface is mobilized by e-beam irradiation. The Fe move until
it is trapped in a perforation, thus forming the Fe membrane essentially one
atom at a time. This means that during formation of membrane, the edge for-
mation energy is very important. The edge formation energy is the energy cost
of having an edge compared to being in bulk and can essentially be thought
of as the energy cost of fracturing the membrane. The edge formation energy

45



i
i

“master” — 2016/9/9 — 10:09 — page 46 — #58 i
i

i
i

i
i

Chapter 3. Summary of results

−3

−2.75

−2.5

−2.25

−2

B
in

d
in

g
en

er
g
y

[e
V

/
a
to

m
]

2.1 2.2 2.3 2.4 2.5 2.6
0

0.5

1

1.5

2

2.5

3

3.5

4

Bond length [Å]
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Fig. 3.14: Binding energy (upper panel) and spin moment (lower panel) of monolayer Fe as a
function of bond length. The black and red lines are for ferromagnetic and antiferromagnetic
ordering, respectively. The magnitude of the spin is shown in case of antiferromagnetic
ordereing, as it has zero net spin. The dashed gray line indicates the spin of free Fe.

can be calculated by finding the total energy of an Fe nanoribbon Eribbon and
use the formula Eedge = (Eribbon − NEmonolayer)/2l, where l is the length of
the unit cell in the direction of the ribbon edge, N is the number of atoms in
the unit cell and Emonolayer is the energy per atom of the monolayer system.
The factor of 1/2 comes from the fact that a nanoribbon has two edges. The
edge formation energy of two rotations of both a square lattice and a triangular
lattice is shown in Fig. 3.15b. The figure shows that the edge formation energy
is significantly lower for the square lattice compared to the triangular lattice.
At the start of the membrane formation, the edge constitutes a large part of
the Fe, and it is therefore likely that the membrane is forced into a square
lattice during formation and is then kinetically hindered to rearrange into a
triangular lattice.

The formation of the square lattice is now more or less understood. The sec-
ond issue was the bond length. In order to examine this, structural relaxation
calculations are performed on small iron membranes embedded in graphene an-
tidot lattices. The {4,2} and {5,3} GAL unit cells are used in the calculations,
which should be large enough that the Fe membranes do not significantly inter-
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act with each other. The structurally relaxed structures of 4 different structures
are shown in Fig. 3.16. The relaxation was started with a symmetric square or
triangular lattice. The symmetry of the unit cell is preserved during relaxation,
which means that the relative stability of the square and triangular lattices in
these antidots can be compared. The triangular lattice is energetically favored
in the {4,2} unit cell and the square lattice is energetically favored in the {5,3}
unit cell. The fact that the square lattice is favored in the large antidot, despite
conforming worse to the graphene lattice, indicates that the square lattice has
a larger binding energy to graphene than the triangular lattice. It is therefore
assumed that the square lattice will have a greater advantage in larger anti-
dots, where it conforms better to the graphene lattice. However, when the Fe
membrane grows too large, the “bulk” 2D behavior should overcome edge or
interface effects, which should lead to formation of the triangular Fe lattice.
For the {5,3} unit cells, the average bond lengths are 2.7 Å and 2.6 Å for the
square and triangular lattices, respectively. These bond lengths are quite close
to the experimentally observed bond length of about 2.65 Å.

For magnetic applications, it is interesting to see how the magnetic moment
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Fig. 3.16: Top and side view of structurally relaxed graphene antidots with embedded Fe.
The relaxation was started with a symmetric square or triangular lattice. The symmetry of
the unit cell is preserved under relaxation.
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of the Fe is affected by the proximity to carbon. The integrated spin moment
per Fe atom is shown in Fig. 3.17 for a number of different embedded struc-
tures. Interestingly, the spin moment is always larger than for bulk Fe. In
fact, the spin moment can even become larger than the freestanding monolayer
system, due to the increased bond lengths in the membranes. The large mag-
netic moment coupled with the high conductivity of graphene as well as the
experimental realization of these systems, could mean that these systems will
be ideal for spintronic applications.
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Conclusions

Continuum models based on Dirac equation (DE) has been presented, which
describes the electronic, optical and transport properties of graphene antidot
lattices and graphene antidot barriers. The major advantage of the DE mod-
els are that the computational complexity is scale invariant, which allows for
calculations on arbitrarily large geometries. The DE models are compared to
tight-binding (TB) calculations of the corresponding atomistic structures in
order to assess their accuracy. Comparisons of band structures, optical spectra
and transport spectra show that the DE models are in quantitative agreement
with TB for structures in the absence edge states, e.g., antidots without ex-
tended zigzag edges. The presented DE models are unable to predict edge
states as they are continuum models and are therefore not able to distinguish
between subtle atomistic features such as zigzag and armchair edge chirality.
The presented DE models are very general as they do not impose any sym-
metry restrictions on the antidots. In addition, the transport model does not
even require the system to be periodic; it can calculate the scattering of any
arrangement of antidots. An analytical expression of the band gap of a gra-
phene antidot lattice was derived from the DE and a linearization of this result
reveals a scaling constant in good agreement with previously obtained values
obtained from atomistic models. The analytic result provides a very fast way
of estimating the band gap of a graphene antidot lattice without edge states,
even if the antidot makes up a large fraction of the unit cell. Additionally,
an analytical expression of the transport gap of graphene antidot barriers has
been derived from the DE. In conclusion, the DE-based models are ideal for
calculating the properties of arbitrarily large structures, but only when the
effects of edge states is negligible.
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It was just concluded that a DE method is able to accurately describe the
electronic transport for graphene antidot systems in the absence of localized
edge states. However, due to the limitations of the Dirac equation method, the
TB approximation is used instead to treat systems with magnetic defects or
graphene antidot lattices under a magnetic field, respectively.

Electronic transmission of graphene antidot barriers and density of states of
graphene antidot lattices under an applied magnetic field have been calculated.
There is, in general, a high degree of similarity between the electronic trans-
mission and density of states spectra. However, the density of states does not
offer much clue with regard to the magnitude of transmittance. Additionally,
an expression of the transmittance of Dirac mass barriers in magnetic fields
has been derived. It is found that this is in good agreement with TB near
the onset of the transport gap of graphene antidot barriers for small antidot
sizes and low to moderate field strengths. It is found that antidots support
magnetic edge states, which are states that are confined to the periphery of the
antidot due to an applied magnetic field. These states are found to be robust
against variations in lattice configuration, antidot edge chirality, periodicity
and number of antidots. Moreover, it is observed that the edge states survive
a modest degree of disorder. The robustness of these states suggests that they
will also be observable in experiments even in the presence of disorder. Re-
cent experiments have found that it is possible to image electron trajectories
in graphene-based systems under a magnetic field using cooled scanning probe
microscopy [106, 107]. It would be remarkable if this technique could be used
for direct observation of magnetic edge states. Moreover, it was found that the
results scale in a simple manner with system size, thus allowing calculations on
small structures to generalize to larger structures.

Spin-dependent transport of hydrogenated graphene has also been studied
in the TB approximation. Hydrogen adatoms are magnetic and carries a mag-
netic moment of 1 µB per adatom. A simple model is used to describe hydrogen
adatoms on graphene, where the only spin-dependent parameter is the on-site
energy of the H adatom. As the model is simple, some of the results are ex-
pected to extend qualitatively to other magnetic impurities in graphene. By
calculating the spin-dependent transmittance as a function of device length,
properties such as spin relaxation length, localization length and sheet resis-
tance can be extracted. It is demonstrated that the spin relaxation length is
very short for energies around the hydrogen-induced defect bands and that the
spin relaxation mechanism is exponential (Markovian) near the charge neutral-
ity point and non-exponential (non-Markovian) otherwise. It is additionally
demonstrated that the inverse spin relaxation length scale nearly linearly with
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impurity concentration.
Hydrogen adatoms are only one possibility for magnetic impurities in gra-

phene. Another common magnetic impurity is Fe, which comes from leftover
residue from a common transfer process used in CVD-grown graphene. Recent
experiments have shown that monolayer Fe membranes can be formed in gra-
phene perforations. The stability of free-standing monolayer Fe and graphene-
embedded Fe membranes has been studied through ab initio calculations in
an attempt to understand the experimental results. It is found that the most
stable configuration of monolayer Fe is the ferromagnetic triangular lattice
with a lattice constant of 2.44 Å. This is in contrast to experimental results of
graphene-embedded Fe, which show that these structures have a square lattice
configuration with a bond length of 2.65 Å. However, the calculations show
that the square lattice has a lower edge formation energy, which means that,
during formation, it might be favorable to form the square lattice and the
structure may then be kinetically hindered from subsequently rearranging to
the triangular lattice. Furthermore, the stability of the square and triangular
Fe lattices embedded in two different graphene antidot lattices has been com-
pared. In the larger one of these, the square lattice is, in fact, more stable than
the triangular lattice, with a mean Fe-Fe bond length of 2.7 Å. This result is in
very close agreement with the experimental results. The results show that both
monolayer Fe and graphene embedded Fe membranes have a larger magnetic
moment per Fe than does bulk Fe. This observation, along with electronic
properties of graphene, could make iron-filled GALs interesting for spintronic
applications.
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1. Introduction

Graphene has been the subject of intense research since it 
was discovered a decade ago [1]. This novel two-dimensional 
material has remarkable electronic [2, 3], optical [4] and 
mechanical [5] properties. Consequently, it finds potential 
applications within e.g. electronics and optoelectronics [6]. 
The excellent electronic properties of graphene, especially its 
very high mobility, make it ideally suited for new smaller and 
faster nanoelectronic devices [1–3]. Due to its semi-metallic 
nature, pristine graphene is not well-suited for semiconductor 
applications. Several strategies for introducing a band gap 
have been proposed, including graphene nanoribbons (GNRs) 
[7–9], gated bilayer graphene [10] and periodic gating [11]. 
Alternatively, an energy gap may be created using graphene 
quantum dots, or graphene nanodisks, which also show prom-
ising results as hosts for spin qubits [12–15]. Another method 
is to introduce perforations in a periodic pattern, called a 
graphene antidot lattice (GAL) [16, 17]. This provides a 

controllable band gap that depends on the geometry of the 
antidot lattice [16]. Previously, tight-binding (TB) calcula-
tions have been made for relatively small unit cells [16–18]. 
Trolle et al [19] have used density functional theory (DFT) 
and Hubbard TB to show that localized edge states emerge 
in GALs containing hexagonal antidots with zigzag edges. 
However, realistic structures are typically much larger than 
the ones studied theoretically, and the calculation time scales 
badly with the size of the structures. Fürst et al [18] have pre-
viously presented an analysis based on the Dirac equation 
(DE), in which they used finite-element analysis to calculate 
the electronic properties of GALs with circular antidots. The 
computational time of their method depends only on the ratio 
between the radius of the antidot and the size of the unit cell, 
but their method only qualitatively predicts the band structure.

Recently, GALs with circular antidots have been fabricated 
by several groups [20–23]. Such structures are fabricated either 
by e-beam lithography [20, 21] or using diblock copolymer tem-
plates [22, 23]. Moreover, Oberhuber et al [24] have fabricated 
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GALs with hexagonal antidots. They used an etching technique 
that selectively etches armchair edges, which produces hex-
agonal antidots with zigzag edges. Xu et al [25] have demon-
strated that it is possible to create antidots with diameters down 
to 2 nm using a scanning transmission electron microscope. 
When subsequently heating the sample, the curved edges of the 
antidots were observed to reconstruct into armchair edges. It 
has also been shown that Joule heating reconstructs graphene 
edges into zigzag or armchair configurations [26]. Theoretical 
studies based on DFT show that the preferred edge chirality 
of GNRs is armchair in an oxygen-rich atmosphere and zigzag 
for water-saturated GNRs [27]. Although there may still remain 
some edge roughness, these findings show that the chirality of 
the edges of GNRs and GALs is controllable.

In this paper, we present a continuum model of GALs 
based on the DE. In this method, the antidot lattice is mod-
elled by a spatially varying mass term that is only nonzero 
inside the antidots. This makes the antidot regions increas-
ingly unfavourable for electrons as the mass term increases. 
The major advantage of the Dirac model is that the calculation 
time does not depend on the size of the structure that is being 
studied. In fact, for energies much smaller than the mass term, 
the results are scalable. This means that, for example, a given 
band structure can be used to describe a geometry where all 
lengths are scaled by some factor if the energies are divided by 
the same factor. The Dirac model is compared with nearest-
neighbour TB in order to assess its accuracy. The two models 
will mainly be compared for GALs containing hexagonal anti-
dots with zigzag or armchair edges. Furthermore, the DE is 
used to derive an approximation of the band gap of GALs, 
which is compared with TB for a wide range of structures. We 
demonstrate that the Dirac model is in quantitative agreement 
with TB for GALs containing antidots with armchair edges. 
However, for other antidot geometries, the models only agree 
for small antidots. We use TB to calculate the band gap of a 
large range of geometries, and obtain gaps ranging between 
practically zero and 2.25  eV. However, experimentally fea-
sible structures result in a band gap on the order of 100 meV.

2. Theory and methods

In the present work, we will model GALs using the DE and 
compare the results with nearest-neighbour TB. We use the 
notation GAL to describe structures where the antidot lattice 
vectors are parallel to the carbon–carbon bonds. By rotating 
the lattice π/6, the antidot lattice vectors are perpendicular to 
the carbon–carbon bonds. These structures will be denoted 
rotated GALs (RGALs) as in [28]. We will focus on GALs 
containing hexagonal antidots with zigzag and armchair 
edges, which we will refer to as zigzag and armchair antidots 
throughout the paper. Figure 1 shows examples of GALs with 
zigzag and armchair antidots used in TB and the Dirac model. 
GALs with circular antidots and RGALs with armchair anti-
dots will also be considered. The structures are described 
by the side length L of the unit cell and the side length S of 
the antidot, where all distances are in units of the graphene 
lattice constant a. Circular antidots are correspondingly 

characterized by the radius R. The unit cells for TB are 
generated by removing all atoms within the antidot region 
and subsequently removing dangling bonds. The notations  
Z{L, S}GAL and A{L, S}GAL will be used to describe the 
geometry of GALs with zigzag and armchair antidots, respec-
tively. Furthermore, the notations C{L, R}GAL and A{L, S} 
RGAL will describe GALs with circular antidots and RGALs 
with armchair antidots, respectively.

The Dirac Hamiltonian for a graphene lattice with a spa-
tially varying mass term Δ r( ) has the form [18]

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Δ

Δ
=

−ℏ ∂ −∂

−ℏ ∂ + ∂ −
( )

( )
v

v
H

r

r

( ) i

i ( )
,

x y

x y

F

F

 (1)

where the mass term has a constant value of Δ0 inside the 
antidot and is vanishing elsewhere. The wave function Ψ will 
satisfy the Bloch condition if Ψ = · ur r( ) e ( )k ri , where the 
function u r( ) is a lattice-periodic spinor containing the com-
ponents u r( )A  and u r( )B . We then express Δ r( ) and u r( ) as 
Fourier series, as they are both periodic with the antidot lattice

∑ ∑Δ Δ= =e u ur r( ) · , ( ) e · ,
G

G
G r

G

G
G ri i

 (2)

where uG is a spinor containing the Fourier coefficients u A
G 

and u B
G, = +p qG g g1 2 is the reciprocal lattice vector, p and 

q are integers, and g1 and g2 are the primitive reciprocal lat-
tice vectors of the antidot lattice. The geometry of the antidot 
is then solely described by the Fourier coefficients ΔG and 
the geometry of the unit cell is solely described by g1 and g2.  
The expression for ΔG for an arbitrary N-sided polygon was 
derived in [29]. Inserting the expressions for Δ r( ) and Ψ r( ) in 
the Dirac equation Ψ Ψ= EH  leads to the expression

∑ =
′

′ ′u EuH ,
G

G G G G, (3)

Figure 1. Unit cells used in TB (left) and DE (right) for hexagonal 
antidots with zigzag (top) and armchair (bottom) edges in triangular 
antidot lattices. The atomic structures shown are Z{8, 5}GAL and 
A{8, 5}GAL.
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⎛
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⎠
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Δ δ
δ Δ
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H ,G G

G G G G G

G G G G G
,

,

,
 (4)

where = ℏ + − +T v k G k G[ i( ) ]x x y yG F . This may be set up as a 
matrix equation and solved as an eigenvalue problem through 
numerical diagonalization. Electrons are excluded more and 
more from the antidot region as the mass term increases, and in 
the limit of an infinite mass term, the electrons are completely 
excluded. Therefore, convergence is obtained by using a suf-
ficiently large mass term. However, convergence must also be 
ensured by choosing a basis that is large enough. Throughout 
the paper we use a mass term given by Δ0 = 170 eV L−1. The 
reciprocal lattice vectors used for the basis are created by let-
ting p, q ∈ [−N, N], where we use N = 20 and N = 16 for hex-
agonal and circular antidots, respectively. These parameters 
were found to provide adequately converged results.

Our method is different from the one used by Fürst et al 
[18], who studied GALs with circular antidots using the 
DE. They used the commercially available finite-element 
solver COMSOL Multiphysics for their calculations. They 
studied the case of an infinite mass term by imposing the 
boundary condition that the current normal to the edge of 
the antidot is vanishing. This method was shown to provide 
results that agree qualitatively, but not quantitatively, with 
TB. Their boundary condition states that Ψ Ψ= ϕ−r r( ) ie ( )A B

i ,  
where Ψ r( )A B/  are the two spinor components of the wave 
function and ϕ is the polar angle of the normal vector at 
a given point on the edge of the antidot. This was shown 
to be problematic in the limit of vanishing antidots where 
the angle ϕ becomes completely undetermined. In this case, 
the band gap was non-vanishing and approached a value 
of approximately 1.02γ/L, where γ is the transfer integral 
of nearest-neighbour TB. Our method uses a finite mass 
term. However, in the limit of an infinite mass term, the 
two approaches should be equivalent, and in this case our 
method should also show a finite band gap in the limit of 
vanishing antidots. In practice, we cannot use an infinite 
mass term, as this would require an infinite basis. Because 
our model uses a finite mass term, we do not encounter the 
same problem in the limit of vanishing antidots.

We have focused our attention on hexagonal antidots, 
although other geometries may easily be considered by 
adjusting the Fourier coefficients of the mass term accord-
ingly. An approximation of the band gap of a GAL is derived 
in appendix A from the DE by assuming cylindrical symmetry 
in the unit cell.

The atomistic model used for comparison is nearest-
neighbour TB in the orthogonal approximation (assuming no 
overlap between atomic wave functions) with a transfer inte-
gral of γ = 3.033 eV.

3. Results

In this section, we present the results of our Dirac model and 
compare them with TB. Only positive energies of band struc-
tures will be shown, as the valence bands follow from exact 
electron-hole symmetry. We will present results for GALs 

with zigzag and armchair antidots, as well as GALs with cir-
cular antidots and RGALs with armchair antidots.

Band structures calculated using the DE and TB are com-
pared in figure 2 for four different geometries. The geometries 
used for the Dirac model are created such that the area of the 
antidot equals the total area of the removed atoms. For all four 
geometries shown, a band gap opens up at the Γ-point both 
for the DE and TB calculations. In the case of zigzag anti-
dots, the Dirac model agrees well with the band structure from 
TB when the antidot is very small, e.g. for the Z{20, 3}GAL 
geometry. However, large discrepancies are observed for the 
Z{20, 6}GAL geometry. The band structures agree much 
better for armchair antidots. For the A{20, 3}GAL geometry, 
the DE band structure almost coincides with the TB band 
structure, and the two models are in excellent agreement in 
this case. Even the band structures for the A{20, 6}GAL with 
a larger antidot agree very well. This tendency continues for 
larger antidots, where the band structures from the two models 
remain very similar.

The lowest bands of the Z{20, 6}GAL geometry are very 
flat, especially the third conduction band near 0.09 eV, which 
is almost completely dispersionless. For larger zigzag anti-
dots, even more bands become dispersionless, and the band 
structures agree even worse. Dispersionless bands are asso-
ciated with localized states. The localization of the electrons 
may be visualized by plotting the electron probability density 
on each atom in the unit cell. Figure 3 shows the probability 
density of the third conduction band for the Z{20, 6}GAL and 
A{20, 6}GAL geometries within one unit cell. The plots are 

Figure 2. Comparison of DE (red) and TB (blue) band structures for 
GALs with zigzag and armchair antidots.
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generated by averaging over the Brillouin zone. It is clear that 
the electrons of the Z{20, 6}GAL are confined to the edge 
of the antidot, whereas the electrons in the A{20, 6}GAL are 
generally spread out over the entire unit cell and only slightly 
localized in the corners of the antidot. Such localized edge 
states are generally observed when the antidot contains long 
zigzag regions. The existence of localized edge states was 
studied by Fujita et al [30], who showed that edge states 
appear for semi-infinite graphene with zigzag termination, 
whereas armchair termination does not lead to edge states. 
Brey and Fertig [31] have used the DE to study the electronic 
states of GNRs, and by using appropriate boundary condi-
tions, they arrived at the same conclusion. Localized edge 
states in GALs have previously been studied by Vanević et al 
[32]. They showed that triangular antidots with zigzag edges 
lead to dispersionless bands where the electrons are local-
ized at the edge of the antidot, which is in good agreement 

with our results. Recently, Trolle et al [19] used DFT and 
Hubbard TB to investigate localized edge states in GALs with 
zigzag antidots. Furthermore, they showed that the edge states 
become spin polarized when S ⩾ 6. Edge states have also been 
observed experimentally using scanning tunnelling spectros-
copy on GNRs fabricated by ‘unzipping’ carbon nanotubes 
[33]. Edge states modify the electronic properties of GNRs 
and figure 2 shows that they also modify the electronic proper-
ties of GALs. As the size of the antidot increases, edge states 
appear for zigzag antidots and the electrons become more and 
more confined to the edges of the antidot. The Dirac model is 
a continuum model, and consequently all atomistic features 
are missing. With no boundary conditions, the Dirac model 
is unable to predict the localized edge states appearing for 
zigzag edges.

The size of the band gap is highly dependent on the lat-
tice geometry. Generally, the band gap increases as the ratio 
of antidot to unit-cell area (fill factor) increases. A linear 
scaling law for GALs with circular antidots was proposed 
by Pedersen et al [16] suggesting that the band gap scales as 

≈ ·E K N N/g removed
1/2

total for small values of N N/removed
1/2

total, where 
Nremoved is the number of removed atoms and Ntotal is the total 
number of atoms in the unit cell before the antidot was cre-
ated. They determined the scaling constant as K  ≃  25  eV, 
whereas a more exact quasiparticle TB model has revealed a 
slightly larger constant of K ≃ 29 eV [34]. The DE band struc-
tures in figure 2 show that the band gap increases as the size 
of the antidot increases, which is expected from the scaling 
law. The size of the band gap may be estimated by replacing 
the hexagonal unit cell with an approximated unit cell with 
full cylindrical symmetry and by assuming an infinite mass 
term. This means that both the unit cell and the antidot are 
replaced by circles of equivalent areas, see appendix A for a 
derivation. The band gap then only depends on the total area 
of the unit cell Atotal and the area of the antidot Aremoved. The 
approximation of the band gap (given by equation (A.6)) may 
be used to calculate the band gap scaled by Atotal

1/2  as a function 
of A A/removed

1/2
total
1/2 , which becomes the universal curve shown 

in figure 4. The scaling law predicts a linear correlation on 
these axes, and a linear approximation of equation (A.6) 
(given by equation (A.8)) is also shown in the figure. The 
scaling constant for the DE, obtained from equation (A.8), 
is π γ= · ≃K 4 3 28.31/4  eV, which is very close to the scaling 
constants determined from atomistic models.

Band gap energies of a wide range of structures have been 
calculated using TB and are compared with the results of 
the Dirac model in figure 4. The approximation of the band 
gap using the DE is also included in the figure. The values of 
Atotal and Aremoved in TB are calculated directly from Ntotal and 
Nremoved, respectively. The approximated band gap is seen to 
be a very good estimate as it is very close to the curve obtained 
from the numerical diagonalization method. Furthermore, the 
Dirac model predicts that the band gap increases linearly in 
the regime <A A/ 0.4removed

1/2
total
1/2 . For GALs with zigzag anti-

dots, the TB results are close to the results from the Dirac 
model when the antidots are fairly small. However, edge states 
appear for larger antidots, which cause the band gap to shrink. 
Furthermore, the band gaps from TB for zigzag antidots are 

Figure 3. Electron probability density of the third conduction band 
in one unit cell. The radius of each circle is proportional to the 
absolute square of the eigenvector element for that atom and chosen 
such that the radius of the largest circle is the same in both plots.
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always lower than the linear Dirac result. For the A{L, S} 
GAL structures, the band gaps calculated from TB are all very 
close to the curves from the DE. Moderate deviations are only 
observed in the region >A A/ 0.8removed

1/2
total
1/2 . The absence of 

localized edge states in the case of armchair edges means that 
the band gap does not vanish for large antidots. The inset in 
the figure shows a zoom, where it is seen that the approxima-
tion of the band gap from the DE serves as an upper limit for 
the TB band gap calculations. The band gap obtained from the 
numerical diagonalization method shows lower values than 
the approximated version. This is partly because the numerical 
diagonalization uses a finite mass term, and partly because the 
approximated band gap is calculated using an approximate 
geometry (assumes cylindrical symmetry). Clearly, the results 
of figure 4 show that the DE is able to accurately predict the 
band gap of GALs with armchair antidots.

The band gaps in figure 4 are scaled by the area of the unit 
cell. To provide values of achievable gaps in absolute units, 
we convert the gaps of armchair and zigzag GALs in figure 4 
to eV and compare them in figure 5. It is expected that the 
band gap of armchair GALs is generally larger than that of 
zigzag GALs. Figure 5 shows that this is true for all values 
of N N/removed

1/2
total, and it is seen that the approximate band gap 

from the DE is close to being a separation line between the 

band gaps of the two types of GALs. At present, state of the art 
fabrication, using diblock copolymer templates, has resulted 
in GALs with circular antidots arranged in a triangular pat-
tern with a diameter of 18.7 nm and a period of 36.4 nm [22]. 
Using these parameters, our Dirac model predicts a band gap 
of 66  meV, which is close to the measured effective trans-
port gap of 102 meV. This level of discrepancy is reasonable 
bearing in mind that the transport gap of a disordered structure 
is expected to deviate somewhat from the band gap of a per-
fectly periodic model.

The approximation of the band gap using the DE seems to 
be the better choice, as it is computationally much faster than 
numerical diagonalization. However, the numerical diagonali-
zation method is necessary in order to calculate band struc-
tures and may also be used to calculate other properties such 
as the density of states and optical conductivity. A comparison 
of the optical conductivity calculated using the DE and TB is 
shown in figure 6 for four GALs. The method for calculating 
the optical conductivity was adopted from [17]. We reach the 
same conclusion as for the band structures in figure 2. The 
optical conductivity from the Dirac model agrees very well 
with the TB results for armchair antidots. For zigzag antidots, 
the results agree for low energies when the antidot is small, but 
the optical spectra are very different for larger antidots, e.g. 
the Z{20, 6}GAL. The optical properties of gapped graphene, 
i.e. using a spatially invariant mass term, have previously been 
presented in a closed-form expression and compared with TB 
[35]. The conductivity spectra σ(ω) were shown to always 
increase abruptly at the band gap energy to σ(ωg) = 2σ0, where 
σ0 = e2/4ℏ is the conductivity of pristine graphene. Gapped 
graphene was shown to be a good approximation at energies 
near the band gap for a GAL with a small circular antidot. 
The spectra from our Dirac model follow the spectra from TB 
very well in the case of armchair antidots, and even capture 
features at energies far from the band gap.

Until now, we have only considered GALs with hexagonal 
antidots, but other geometries may easily be compared with 
the Dirac model. Figure 7 shows a comparison of the band 
gap calculated using the DE and TB for GALs with circular 

Figure 4. Band gap of GALs with zigzag and armchair antidots 
calculated using TB and the DE. The green dashed line is a 
linearization of the approximated Dirac curve. The inset shows a 
zoom of the linear region.
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antidots and RGALs with armchair antidots. The edge of cir-
cular antidots will consist of both zigzag and armchair edges 
when the antidot is not very small. The zigzag parts of the edge 
will support localized edge states when the antidot is large, 
which cause the band gap to shrink as observed in the figure. 
However, for small antidots (R ⩽ 5), the Dirac model predicts 
the band gap reasonably well, as the localization is weak.

The band gap calculations of A{L, S}RGAL structures 
show the same tendency as the A{L, S}GAL structures in 
figure 4. RGALs were found to provide a band gap only for 
every third value of L. This is consistent with previous find-
ings [28], and also obeys a universal band gap opening rule 
by Dvorak et al [36]. The Dirac model predicts that the band 
gap increases dramatically for >A A/ 0.8removed

1/2
total
1/2 . TB shows 

somewhat lower values of the band gap in this region, but 
these also increase dramatically as for the Dirac model. Again, 
the inset shows that the approximation of the band gap from 
the DE seems to be the upper limit of TB.

It should be noted that while all structures considered 
in this paper are perfectly ordered, realistic structures from 
experiments will to some extent contain disorder. Theoretical 
studies have shown that the band gap of GALs is robust against 
a considerable amount of disorder [37]. The band gap was 
found to initially shrink and eventually vanish as the amount 
of disorder increased. Other calculations have shown that the 
properties of graphene waveguide structures based on GALs 
are also robust against structural disorder [38].

We have shown that the Dirac model is in good agreement 
with TB in the absence of edge states. However, in the case of 
zigzag or circular antidots, edge states cause the band gap to 
shrink. If the electrons of edge states are completely confined 
to the edges of the antidot, they will not be able to contribute 
to the electronic transport of the GAL. The lowest conduc-
tion bands of GALs with large zigzag antidots are almost 

completely dispersionless, which suggests that the transport 
gap in such cases may be larger than the band gap.

4. Conclusion

We have presented a continuum model based on the Dirac 
equation, which describes the electronic and optical proper-
ties of graphene antidot lattices. The major advantages of the 
Dirac model are that the computational time does not depend 
on the size or geometry of the structures, and that the results 
are scalable. The Dirac model is compared with tight-binding 
calculations of the corresponding atomistic structures in order 
to determine its accuracy. A comparison of band structures 
shows that the Dirac model is in quantitative agreement with 
tight-binding for structures with no edge states, e.g. antidots 
with armchair edges. The present Dirac model is unable to 
predict edge states as it does not distinguish between zigzag 
and armchair edges. Comparing band gap calculations and 
optical spectra also shows quantitative agreement between the 
models for structures with no edge states.

An approximation of the band gap of a graphene antidot 
lattice was derived from the Dirac equation. A linearization 
revealed a scaling constant in good agreement with previ-
ously suggested values obtained from atomistic models. The 
approximation provides a very fast way of estimating the band 

Figure 6. Optical conductivity in units of the pristine graphene 
conductivity σ0 = e2/4ℏ calculated using the DE (red) and TB (blue) 
for the GALs shown in figure 2.
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gap of a graphene antidot lattice with no edge states even if the 
antidot makes up a large part of the unit cell.
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Appendix A. Estimate of band gap

In this appendix, we present an approximation of the band 
gap of GALs derived using the DE. The hexagonal unit cell 
is replaced by one with full cylindrical symmetry, i.e. a circle 
of radius Re, see figure A1. This approach is inspired by [39]. 
The area of the circle is equal to the area of the hexagonal unit 
cell, such that π=A Retotal

2. If the antidot is not circular, this is 
also replaced by a circle with radius R of equivalent antidot 
area, Aremoved = π R2.

The Dirac Hamiltonian in cylindrical coordinates is

Δ

Δ
= ℏ
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 (A.1)

where Δ Δ Δ=
ℏ

− = −∼ ∼
r

v
H R r H R r( ) ( ) ( )0

F
0  and H is the 

Heaviside step function. The wave function is of the form

⎛

⎝
⎜

⎞

⎠
⎟Ψ θ =

θ

θ+ +r
f r

g r
( , )

1

2

i ( ) e

i ( ) e
,

m m

m m

i

1 i( 1) (A.2)

which is inserted in the DE together with the Hamiltonian. For 
a piecewise constant mass term, the solutions for f and g are

⎧
⎨
⎩

=
+ >

<f r
J kr B Y kr r R
C I qr r R

( )
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,m m m

m m
 (A.3)
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1 1
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 (A.4)

where Jm and Ym are the m'th order Bessel functions of the 
first and second kind, respectively, Im is the m'th order 
modified Bessel function of the first kind, k  =  E/ℏ vF and  

Δ= −∼
q k( )0

2 2
1/2

. Both f and g must be continuous at r  =  R, 

which is used to determine Bm and Cm. For the lowest state 
(m = 0) and in the limit of large Δ∼0, the coefficients become

≈− +
+

≈B
J kR J kR

Y kR Y kR
C

( ) ( )

( ) ( )
, 0.0

0 1

0 1
0 (A.5)

This derivation is generally carried out using a finite mass 
term, and the band gap may also be calculated in this case. 
The wave functions inside and outside the antidot are matched 

at the edge of the antidot in the case of a finite mass term, 
which is used to determine Bm and Cm. Subsequently the limit 
of a large mass term is applied for which the coefficients listed 
above are valid. This approach does not lead to boundary con-
ditions that cause problems in the limit of small antidots as 
observed in [18].

We restrict our analysis to the Γ-point of the Brillouin 
zone, as this is where the band gap opens. We still require that 
the wave function is Bloch-periodic when using the approxi-
mated geometry. However, at the Γ-point it is merely periodic. 
Periodicity implies a vanishing derivative of f at the outer 
boundary (r = Re), meaning that J1(kRe)+B0Y1(kRe) = 0. This 
yields the equation

+ − + =J kR Y kR Y kR Y kR J kR J kR( ) [ ( ) ( ) ] ( ) [ ( ) ( ) ] 0,e e1 0 1 1 0 1 
(A.6)

which may be solved numerically for k to obtain the band gap 
given by Eg = 2ℏvFk. f is used to solve for the lowest energy of 
the conduction bands. Equivalently, g may be solved for nega-
tive energies using m = −1 which leads to the highest energy 
of the valence bands. The Bessel functions in equation (A.6) 
are approximated by assuming small k, such that the equation 
becomes

⎛
⎝
⎜

⎞
⎠
⎟+ − + + + =

kR
kR

R

R

R

R
kR kR

R

R

4 2 2
(2 ) ln 0.

e
e

e

e
e

e
 (A.7)

In the limit of small R, the solution becomes the simple 
expression ≈k R R2 / e

2, meaning that

π= ℏ = ℏE v
R

R
v

A

A
4 4 .g

e
F 2 F

removed
1/2

total
 (A.8)

This shows that at small k, the band gap is directly propor-
tional to the square root of the removed area and inversely 
proportional to the area of the unit cell, which is consistent 
with previously suggested scaling laws [16, 34].
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Abstract
In order to use graphene for semiconductor applications, such as transistors with high on/off
ratios, a band gap must be introduced into this otherwise semimetallic material. A promising
method of achieving a band gap is by introducing nanoscale perforations (antidots) in a
periodic pattern, known as a graphene antidot lattice (GAL). A graphene antidot barrier (GAB)
can be made by introducing a 1D GAL strip in an otherwise pristine sheet of graphene. In this
paper, we will use the Dirac equation (DE) with a spatially varying mass term to calculate the
electronic transport through such structures. Our approach is much more general than previous
attempts to use the Dirac equation to calculate scattering of Dirac electrons on antidots. The
advantage of using the DE is that the computational time is scale invariant and our method may
therefore be used to calculate properties of arbitrarily large structures. We show that the results
of our Dirac model are in quantitative agreement with tight-binding for hexagonal antidots with
armchair edges. Furthermore, for a wide range of structures, we verify that a relatively narrow
GAB, with only a few antidots in the unit cell, is sufficient to give rise to a transport gap.

Keywords: graphene, antidot, dirac equation, electronic transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene has been the subject of intense research since its
discovery in 2004 [1]. Especially the ultrahigh mobility
[2–4] of pristine graphene makes it a promising platform
for novel nanoelectronic devices. Pristine graphene does not
have a band gap, which makes it ill-suited for semiconductor
applications, such as transistors with high on/off ratios for logic
applications. Band gaps in graphene have been demonstrated
experimentally in graphene nanoribbons [5], gated bilayer
graphene [6, 7] and patterned adsorption of hydrogen on
graphene [8]. Another promising method for creating a tunable
band gap in graphene is by introducing nanoscale perforations
in a periodic fashion, known as graphene antidot lattices
(GALs) or graphene nanomeshes [9–11]. The magnitude of
the band gap depends on the size of the antidots, size of the unit
cell and on edge chirality [9, 12–15]. It has been shown that
the band gap of GALs with relatively small antidots follows a
simple scaling rule proposed by Pedersen et al [9].

Several methods have been used to produce GALs
experimentally, including e-beam lithography [16–18],
diblock copolymer templates [19–21], anodic aluminum oxide
templates [22], nanosphere lithography [23] and nanoimprint
lithography [24]. The antidots range in size between a
few nanometers and several hundred nanometers, depending
on the fabrication method. The antidots synthesized with
these methods are often round, but it has been demonstrated
experimentally that armchair and zigzag edges in GALs are
stable and can be synthesized selectively [25–27]. Recent
experimental studies of transport in GALs have shown on/off
ratios in the range between 4 and 100 [19, 22, 24]. These
values are still too low for logic applications [28], but the results
are important indicators that devices based on GALs could be
used to make efficient transistors. The electronic transport
properties of GALs have also been studied theoretically. The
transport through graphene antidot barriers (GABs), i.e. 1D
periodic antidot structures in an otherwise pristine sheet of
graphene, has previously been studied for small systems using

0953-8984/14/335301+08$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK
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a tight-binding (TB) formalism [29, 30]. These studies showed
that just a few antidots in the unit cell of the GAB is sufficient to
suppress the transport within the band gap region. Suppression
of transport in antidot regions has also been used to model
electronic waveguides [31], where a transport channel is kept
pristine, while the rest of the structure is a GAL. Their results
show that GAL waveguides have higher conductance than
corresponding graphene nanoribbons. Furthermore, Berreda
et al [32] have simulated three different graphene field-effect
transistors based on GALs with band gaps of about 500 meV.
They showed that their simulated devices had on/off ratios as
high as 7400, which is close to that of silicon based MOSFETs
that have on/off ratios on the order of 104 to 107 [28].

Experimentally feasible GALs are typically too large to
handle with traditional atomistic models, such as TB and
DFT. However, models based on the Dirac equation (DE)
are in the continuum regime and are therefore able to handle
arbitrarily large structures. In this paper, we will use the
Dirac equation (DE) with a spatially varying mass term to
calculate the scattering of Dirac electrons in GABs that are
periodic in one dimension. It has previously been shown
that the DE on this form can be used to calculate the band
structure of GALs [11, 12]. In addition, the DE has previously
been used to calculate scattering of Dirac electrons on a single
circular mass barrier [33], a single circular electrostatic barrier
[34] and simple barriers of constant and finite mass [35].
The advantages of our approach are that it works for any
antidot shape and for an arbitrary arrangement of antidots.
Furthermore, our method can easily be extended to a 1D
periodic case. Another advantage that arises from using the
DE is that all results are scalable, i.e., the results are invariant
when all lengths are scaled up by some factor and all energies
are scaled down by the same factor. We use a Green’s tensor
area integral equation method (AIEM) in order to solve the
DE. We will focus on the transport of a plane electron wave
through GABs with two different types of hexagonal antidots,
namely antidots with zigzag edges and antidots with armchair
edges. We compare the results of our Dirac model with results
obtained with TB.

2. Theory and methods

In this section, we will set up a Green’s tensor AIEM
to calculate the scattering of Dirac electrons on arbitrary
graphene antidot structures, where an electron wave is incident
on the structure and the resulting total wave function is
calculated. Once this general method has been set up, we
will specialize to scattering of Dirac electrons on GABs as
shown in figure 1(b). The idea of using an AIEM to solve
inhomogeneous differential equations is not new. In fact,
it has been used extensively to solve scattering problems in
optics [36, 37] and we utilize several of the same techniques to
calculate scattering of electron waves in graphene.

The DE for a graphene sheet with a spatially varying mass
term �(�r) has the form [11]

(vFσ · �p + �(�r)σz − IE)� = 0, (1)

(vFσ · �p − �(�r)σz − IE)� ′ = 0, (2)

Figure 1. Unit cells of a GAB with four rows of armchair antidots.
(a) Geometry used in TB. (b) Geometry used with the DE, where
the mass term has a constant value of �0 inside the shaded areas and
is vanishing elsewhere. (c) Dirac mass barrier (DMB) with height �
and width w.

where � = {ψA, ψB} and � ′ = {ψ ′
B, ψ ′

A} are the wave
functions associated with the K and K ′ valleys, respectively,
σ = {σx, σy} and σz are the Pauli matrices, p = {p̂x, p̂y} is
the momentum operator, and vF is the Fermi velocity. The
mass term has a constant value of �0 inside the antidots and is
vanishing elsewhere. This effectively makes electrons massive
inside the antidots, making it energetically unfavorable to enter
them. The mass term should be sufficiently large in order
to model actual holes in graphene. It should generally be
much larger than the electron energy �0 � |E|. We use
�0 = 170 eV/L in all our calculations, which is identical to
the value used in [12]. Due to the similarity of the K and
K ′ equations, we can restrict our analysis to one of them. The
wave function of the incident wave �0 must be a solution to the
case without a scatterer (pristine graphene), i.e. the case where
�(�r) = 0 everywhere. This simply reduces equation (1) to the
DE without a mass term. We will use incident plane waves on
the form �0 = 2−1/2(1, eiϕ)T ei�k·�r , where ϕ is the polar angle
of �k.

The Green’s tensor G between an observation point �r and
a source point �r ′ is defined as the solution to the equation

(vFσ · �p − IE)G(�r, �r ′) = −Iδ(�r − �r ′). (3)

The solution must obey the radiation condition, which states
that the solution should asymptotically tend towards an
outward propagating wave proportional to eikr/

√
kr . This

uniquely specifies the Green’s tensor as

G(�r, �r ′) = k

4i

(
H

(1)
0 (kr) −ie−iθH

(1)
1 (kr)

−ieiθH
(1)
1 (kr) H

(1)
0 (kr)

)
, (4)

where H(1)
n is the n’th order Hankel function of the first kind,

k = E/h̄vF , r = |�r − �r ′| and θ is the polar angle of �r − �r ′.
By subtracting the DE without a mass term from equation (1)
we get

(vFσ · �p − IE)(� − �0) = −�(�r)σz�, (5)
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which has the solution

�(�r) = �0(�r) +
∫

�̃(�r ′)σzG(�r, �r ′)�(�r ′)d2r ′, (6)

where �̃(�r) = �(�r)/h̄vF . This is the central equation for
the Green’s tensor AIEM, which we will use to calculate the
scattering of Dirac electrons on antidot structures. It can be
demonstrated that the equation is invariant when all lengths are
scaled up by some factor and all energies and mass terms are
scaled down by the same factor. This effectively means that
the computational time is scale invariant.

The main advantage of this approach is that we only
need to consider points �r ′ where �(�r ′) �= 0, i.e. inside the
antidot. Once we know the wave function inside the antidot,
it is a simple matter to use equation (6) to calculate the wave
function at any other position. We solve this self-consistently
by discretizing the area inside the antidots into a number of
small areas δAi with centers �ri . The integral is then completed
by assuming that the mass term and the wave function are
constant inside each area element and by approximating the
Green’s tensor between element i and j as

Gij �
{
(δAj )

−1
∫
δAj

G(�ri, �r ′)d2r ′ if i = j

G(�ri, �rj ) if i �= j.
(7)

The self-interaction element i = j may be calculated by
approximating the area element with a circle, with radius req,
of equivalent area, i.e. δAj = πr2

eq, and integrating in polar
coordinates

Gii � [1/(πr2
eqk) − iH

(1)
1 (kreq)/(2req)]I. (8)

We now have all the ingredients necessary to solve the
scattering problem. It is then a simple matter of using matrix
inversion or some efficient iterative scheme to solve for the
wave function inside the antidots.

We will specialize to the case of GABs, where the antidot
structure is periodic along the y-direction with period 	 as
shown in figure 1(b). We will focus on hexagonal antidots
arranged in a GAL configuration, meaning that the antidot
lattice vectors are parallel to the carbon-carbon bonds of the
graphene lattice as shown in figure 1(a). The antidots are
chosen, such that they have either armchair edges (denoted
armchair antidots) or zigzag edges (denoted zigzag antidots).
The structures are described by the side length L of the GAL
unit cell, the side length S of the antidot and the number
of antidots N in the GAB unit cell, see figure 1(b). All
distances are in units of the graphene lattice constant a. The
notation N−A{L, S}GAL and N−Z{L, S}GAL will be used
to describe barriers with N armchair and zigzag antidots,
respectively, in GAL a configuration.

In the periodic case, the scattered part of the wave function
is given by an infinite sum of integrals over unit cells. By
shifting all integrals to the zeroth unit cell, we can take the sum
inside the integral and, thus, only integrate over the area of the
zeroth unit cell A0. All shifted wave functions are related to
the wave function in the zeroth unit cell by the Bloch condition
�(�r + m	ŷ) = �(�r)eimky	, where m is an integer, 	 = √

3L

is the period, ky = k sin(ϕ) and ϕ is the angle of incidence.
We may then write the wave function as

�(�r) = �0(�r) +
∫

A0

�̃(�r ′)σzG̃(�r, �r ′)�(�r ′)d2r ′, (9)

where G̃ is a modified Green’s tensor given by

G̃(�r, �r ′) =
∞∑

m=−∞
G(�r, �r ′ − m	ŷ)eikym	. (10)

This sum is extremely slowly convergent. However, once it
has been determined, the problem of finding the wave function
is no harder than in the non-periodic case. Using Graf’s
theorem [38] the Green’s tensor may be restated as

G̃(�r, �r ′) =
M∑

m=−M

G(�r, �r ′ − m	ŷ)

+
k

4i

∞∑
n=−∞

inJn(kr)e−inθ

(
Sn −Sn−1

−Sn+1 Sn

)
, (11)

where Jn is the n’th order Bessel function of the first kind and
Sn is the n’th order lattice sum given by

Sn =
∞∑

m=M+1

H(1)
n (km	)

(
eikym	 + (−1)ne−ikym	

)
. (12)

We have taken the contribution of M unit cells on either side
of the zeroth unit cell outside the lattice sum as they may not
satisfy the condition for using Graf’s theorem. In fact, Graf’s
theorem is only satisfied when the largest distance between
area elements within one unit cell is smaller than (M + 1)	.
Therefore, M is chosen to be the smallest integer that satisfies
this condition. The lattice sum is actually also extremely
slowly convergent, but there are two advantages of writing
G̃ using the lattice sum: 1) The lattice sum does not depend
on the observation point, so it needs only be calculated once
for a given choice of k	 and angle of incidence ϕ, and 2) it
can be calculated efficiently using the integral representation
described in [39].

The transmittance T (E) of an electron with energy E

through the barrier is simply the transmitted current I (E) at
that energy divided by the incident current I0. The current
is calculated by integrating the x-component of the current
density over one period I = ∫

uc
jx dy, where the current

density is given by jx = �†ĵx� using the current density
operator ĵx = −evF σx . The experimentally relevant quantity
is the total current I expressed as a function of bias voltage VB

given by [40]

I (VB) = 2e

h

∫ ∞

−∞
T (E)[f (E, EF + eVB) − f (E, EF )] dE,

(13)

where f (E, EF ) = (1 + exp[(E − EF )/kT ])−1 is the
Fermi-Dirac distribution. The only unknown quantity
in this expression is the transmittance function T (E).
The transmittance function has more distinct features
than the current and we therefore show this quantity instead

3
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of the current in most cases. In the limit of vanishing bias,
the conductance is G = G0T , where G0 = 2e2/h is the
conductance quantum.

In order to assess the accuracy of our model, we compare
our results with spectra calculated using the Landauer approach
with a nearest-neighbor TB Hamiltonian, as outlined in [29].
We use a hopping integral of γ = 3.033 eV and, for numerical
stability, we add a small imaginary part to the energy, such that
E → E + iε, where we use ε = 10−5 eV. In the Dirac models,
we average over valleys in order to obtain the transmittance
per valley. All TB spectra are therefore divided by a factor of
two in order to directly compare with the DE.

In order to make a quantitative comparison between the
models for a wide range of structures, we define a transport gap
using the lowest positive energy, at which the transmittance
rises above 1/2. Due to exact electron-hole symmetry, the
transport gap will then be twice this energy. Long zigzag edges
give rise to very localized states in TB. However, in a real
device with even a small amount of disorder, we do not expect
these states to support electronic transport. This effect can be
introduced heuristically by convolving the TB transmittance
spectra with a Gaussian or by using a larger imaginary part of
the energy iε. Therefore, in our calculations of the transport
gap we convolve with a Gaussian having a full width at half
maximum of 0.1 eV/L.

The transport gap of a GAB may be approximated by
replacing the actual structure with a simple barrier as shown in
figure 1(c). This type of barrier is referred to as a Dirac mass
barrier (DMB) and was shown by Pedersen et al to be in good
agreement with tight-binding in the gap region [29]. In this
approach, we define the width of the barrier as w = N(3L/2)

and take the barrier height � to be half the band gap of the
fully periodic case. We use the approximation of the band gap
given by equation A6 in [12]. This approach thus offers a
quick way to estimate the transport gap.

3. Results and discussion

In this section, we present the results of our Dirac model and
compare them with TB. Furthermore, we compare transport
gap spectra with the DMB model. Results are presented for
both armchair and zigzag antidots. The geometries used in our
Dirac model are created such that the total area of the antidots
equals the total area of the removed atoms of the corresponding
structure used in TB.

3.1. Armchair antidots

We start out by considering GABs in GAL configuration
containing armchair antidots. The transmittance spectra of two
different barriers with armchair antidots is shown in figure 2.
The results are only displayed for positive energies, as the
results for negative energies follow from exact electron-hole
symmetry in the models. There is excellent agreement between
TB and our Dirac model. Furthermore, it is seen that there are
always N − 1 subpeaks in the transmittance peak, which is
consistent with previous calculations for graphene nanoribbons
with antidot arrays [41]. This means that as the number of

Figure 2. Transmittance of GABs with armchair antidots calculated
with TB (solid) and the DE (dashed).

antidots in the unit cell increases, the subpeaks will come
closer to each other and eventually merge into a single step-like
plateau.

In order to gain insight into the electronic transport
through a GAB, we compute the electron probability density
for a 4−A{20, 6}GAL barrier at two different electron
energies, as shown in figure 3. The two lowest bands in the
electronic band structure for the fully periodic structure have
energies in the intervals [0.09; 0.24] eV and [0.31; 0.50] eV as
given in [12]. We expect low transmittance in the band gap
regions of the fully periodic structure and high transmittance
elsewhere. At E = 0.15 eV, the electron has an energy within
the first band, and the probability density inside the barrier is
therefore quite high, which results in a very high transmittance
of T � 0.91. However, at E = 0.3 eV, the electron has an
energy within a band gap, and the probability density inside
the barrier is therefore rather low, which results in a much lower
transmittance of T � 0.02. This means that the transmittance
is low for energies at which the barrier region does not support
any electron states.

Armchair antidots do not support localized edge states,
which means that, in the limit of very wide barriers, the
transport gap should equal the band gap of the fully periodic
structure. It is interesting, however, to see if a barrier with
only a few antidots in the unit cell is able to block electron
transport in the band gap region. Figure 4 shows the transport
gap of a large range of GABs with just 4 antidots in the unit
cell. In accordance with [12], the results are scaled with
the total area of the GAL unit cell Atot = 3

√
3L2/2 and the

area of a single antidot Arem. It is seen that the transport

4
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Figure 3. Probability density of electrons in a 4−A{20,6}GAL
barrier calculated using the DE. The probability density is measured
relative to the incident wave.

Figure 4. Transport gap of 4−A{L, S}GAL barriers calculated
using TB, the DE and the DMB model.

gap opens up for antidots with a size (Arem/Atot)
1/2 > 0.07.

The transport gap is exactly zero for small antidots, as the
transmittance is higher than 1/2 at vanishing energy. The
abrupt opening of the transport gap is due to the horizontal
slope of the transmittance as a function of energy at small
energies. This means that as soon as the structure is large
enough for the transmittance at vanishing energy to fall below
1/2, the transport gap will increase rapidly. The exact location
of the onset of the transport gap is, thus, sensitive to the choice
of transport gap definition. However, the remaining values are
not too sensitive to the exact definition of the transport gap,
since the slope of the transmittance spectrum is typically very
large near the transport gap. It is seen that both Dirac models
are in excellent agreement with TB.

3.2. Zigzag antidots

Transmittance spectra calculated with our Dirac model for two
different barriers with zigzag antidots are shown in figure 5 and
compared to TB. There is a fairly good agreement between
the models for the smaller antidots, but the agreement is very
poor for the larger structure. These deviations arise due to the

Figure 5. Transmittance (top) and current density (bottom) of
GABs with zigzag antidots calculated using TB (solid) and the DE
(dashed).

highly localized state in the TB spectrum near 0.09 eV, which
is a result of the long zigzag edges. The deviations between TB
and the DE have also been observed in the calculation of the
band gap of fully periodic GALs [12]. The current density as
a function of bias voltage can be calculated from equation (13)
by dividing the current with the period of the unit cell. It
follows from the equation that the current densities will be
similar for similar transmittance functions. This is the case
for GABs with armchair antidots. However, for structures
like the 4-Z{20,6}GAL, where there is poor agreement of
the transmittance function between TB and DE, the current
densities will also be in poor agreement. This is illustrated
in figure 5, where the current density has been calculated
assuming a temperature of 30 K.

5
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Figure 6. Transport gap of 4−Z{L, S}GAL barriers calculated
using TB, the DE, and the DMB model.

It has previously been shown that the band gap shrinks
substantially, compared to simple scaling laws, for structures
with large zigzag antidots due to the presence of edge states
[12]. The shrinking of the band gap is only predicted by the
TB model, as the DE with a mass term does not distinguish
between zigzag and armchair edges. In the calculation of
the transport gap, we overcome some of the effects of very
localized edge states in our TB calculations by convolving
all TB transmittance spectra with a Gaussian. This smears
out very narrow features of the transmittance spectra, while
preserving those that are not. We compare the transport
gap calculated with the DE with those calculated with TB
and the DMB model in figure 6. The Dirac models are in
fairly good agreement with TB for small antidots with size
(Arem/Atot)

1/2 < 0.15. However, for larger antidots, there
is generally a poor agreement. This is again due to the
presence of localized states in the TB spectra. An interesting
aspect of the TB transport gap, however, is that it is generally
much higher than the TB band gap, which is given in [12].
TB predicts that the band gap almost closes for large zigzag
antidots, whereas the TB transport gap does not. In fact, the
TB transport gap is often higher than the one predicted by the
Dirac models. This means that the transport gap of zigzag
antidots can be higher than that of similarly sized armchair
antidots, which contradicts the behavior of the band gap [12].
This is in good accordance with recent studies that showed
that localized states in non-commensurate antidot lattices do
not contribute to electronic transport [42]. Since the localized
edge states typically lie beneath non-localized states, they will
generally increase the transport gap. This also agrees with the
results of Jippo et al [43] who calculated the transport gap for
irregularly shaped antidots. They showed that the transport
gap generally increases with the length of consecutive zigzag
regions in the antidot. The transport gap of armchair antidots is
highly predictable, as it follows the simple result from the DMB
very accurately, whereas the transport gap of zigzag antidots
is much less predictable. Therefore, even though the transport
gap can be higher in some cases for zigzag antidots compared
to armchair antidots, it may be an advantage to use armchair
antidots in an experimental setup.

Brey and Fertig [44] have shown that by using appropriate
boundary conditions in the DE, it is possible to obtain an
accurate description of edge states in graphene nanoribbons
with zigzag edges. They find that the A spinor element of the
wave function must vanish on A-terminated edges, while the
B spinor element must vanish on B-terminated edges. We can
approximate the boundary conditions in the DE by introducing
separate mass terms for the two sublattices and then letting the
A/B mass term be non-zero only on A/B-terminated edges.
Indeed, we find that this gives rise to localized states for
fully periodic GALs using the method in [12]. However, the
exact energies of the localized states are very sensitive to the
magnitude of the mass term. It is therefore only possible to
obtain a qualitative description of zigzag antidots with this
approach. Unfortunately, implementing mass terms that are
localized to the edges is complicated in the present area-based
approach. We therefore restrict calculations to simple uniform
mass terms.

3.3. Disorder

Up to now, the effect of disorder has been taken into account
by convolving the TB spectra with a Gaussian. In reality,
the effect of disorder is of course much more complex and
needs to be studied in more detail. Ouyang et al [45] have
shown that GALs with even neck widths, i.e. number of zigzag
rows between neighboring antidots, are semiconducting, while
those with odd neck widths are semimetallic. This means
that randomization of antidot placement may lead to a local
closing of the band gap and thus lead to local conduction
channels in a GAB. Liu et al [46] have demonstrated that
randomly oriented fullerene adsorption on pristine graphene
gives rise to sizable band gaps on the order of 0.35 eV, due to
the breaking of the sublattice symmetry. This indicates that
a band gap, which has closed due to disorder, may recover in
the presence of adsorbates. Our Dirac model is able to model
any distribution of antidots, and we can thus introduce disorder
by e.g. introducing randomization of antidot center location.
We set up the displacement of the antidots to follow a normal
distribution with a certain choice of standard deviation σ .
All displacements are then mapped to the nearest graphene
hexagon center in order to preserve the shape of the antidots
in TB. A property of the normal distribution is that the mean
displacement is given by σ

√
2/π . In figure 7, we show the

effect of disorder for different values of σ for a 4-A{20,6}GAL
barrier. As there are only 4 antidots in the unit cell, we
average over transmittance spectra of several structures until
the resulting spectrum does not change significantly. Figure 7
shows that the effect of disorder is more pronounced in TB
than in our Dirac model. In fact, the DE spectra are almost
unchanged in the presence of these amounts of disorder. In
contrast, the TB transmittance maxima generally decrease with
increasing disorder and new transmission peaks appear in the
spectrum. For instance, a new transmission channel opens up
at low energies with a peak at approximately 0.05 eV. This
new channel may open due to the presence of odd neck widths
between some of the antidots after random displacement,
which, according to the results of Ouyang et al, could lead

6
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Figure 7. Average transmittance spectra of 4-A{20,6}GAL barriers for different degrees of disorder calculated with the DE (red) and TB
(blue). Disorder was introduced by randomly displacing the center of the antidots according to a normal distribution.

to semimetallic regions in the barrier. The DE is a continuum
model and can therefore not distinguish between the atomistic
details of even and odd neck widths, and is therefore unable
to predict the difference between them. It should be noted
that a proper analysis of the effects of disorder requires one
to construct a large supercell consisting of several disordered
subcells. However, this quickly becomes very time consuming
and we therefore use the original disordered GAB unit cell and
then average over the results.

4. Conclusions

We use a Green’s tensor area integral equation method to solve
the Dirac equation with a spatially varying mass term. In this
way, we are able to calculate the scattering of Dirac electrons
on arbitrary graphene antidot structures. We use this method
to calculate the transmittance of graphene antidot barriers with
hexagonal antidots and compare them with results obtained
using tight-binding. Our approach is much more general
than previous attempts to use the Dirac equation to calculate
scattering of Dirac electrons on antidots. The computational
time of our Dirac model is scale invariant, which means that we
are able to calculate properties of arbitrarily large structures.
We show that our Dirac model is in excellent agreement with
tight-binding for antidots with armchair edges. We also show
that a simple Dirac mass barrier is able to predict the transport
gap with high accuracy for antidots with armchair edges.
Tight-binding predicts very localized edge states for large
zigzag antidots, whereas the Dirac models do not. Therefore,
the agreement between the Dirac models and tight-binding is
generally poor when the barrier contains antidots with long
zigzag edges. We show that the tight-binding transport gap
for zigzag antidots is larger than for armchair antidots with

equivalent size for some geometries, while it is lower for others.
However, since the transport gap for armchair antidots is much
more predictable, it may still be an advantage to use armchair
antidots in an experimental setup. Furthermore, we show that
a relatively narrow GAB, with only a few antidots in the unit
cell, is sufficient to give rise to a transport gap. Finally, we
have used our Dirac model to study disordered systems and
find that it is not accurate for modeling systems with a large
degree of disorder, but remains robust against relatively small
amounts of disorder.
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Stability and magnetization of free-standing and graphene-embedded iron membranes

M. R. Thomsen, S. J. Brun, and T. G. Pedersen
Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg Øst, Denmark

and Center for Nanostructured Graphene (CNG), DK-9220 Aalborg Øst, Denmark
(Received 19 November 2014; revised manuscript received 13 March 2015; published 30 March 2015)

Inspired by recent experimental realizations of monolayer Fe membranes in graphene perforations, we perform
ab initio calculations of Fe monolayers and membranes embedded in graphene in order to assess their structural
stability and magnetization. We demonstrate that monolayer Fe has a larger spin magnetization per atom than
bulk Fe and that Fe membranes embedded in graphene exhibit spin magnetization comparable to monolayer Fe.
We find that free-standing monolayer Fe is structurally more stable in a triangular lattice compared to both square
and honeycomb lattices. This is contradictory to the experimental observation that the embedded Fe membranes
form a square lattice. However, we find that embedded Fe membranes in graphene perforations can be more
stable in the square lattice configuration compared to the triangular. In addition, we find that the square lattice
has a lower edge formation energy, which means that the square Fe lattice may be favored during formation of
the membrane.

DOI: 10.1103/PhysRevB.91.125439 PACS number(s): 75.75.−c, 61.48.Gh, 75.50.Bb, 75.70.Ak

I. INTRODUCTION

In recent years, there has been a tremendous interest
in graphene and its derivatives, owing to their remarkable
electronic properties, such as ultrahigh mobility of 1 000 000
cm2/Vs at low temperature [1]. These properties make
graphene interesting for electronic and spintronic applications.
Carbon-based spintronic devices may have a distinct advantage
over many other materials in that carbon has a very low
spin-orbit coupling together with an absence of hyperfine
interaction in the predominant 12C isotope. This results in long
spin lifetimes [2–4], as well as large spin relaxation lengths,
which have been found to be on the order of several microns at
room temperature [2–5] and make graphene ideal for ballistic
spin transport [6].

Pristine graphene is nonmagnetic, but several suggestions
on how to give graphene magnetic properties have been put
forward. Density functional theory (DFT) calculations have
shown that ferromagnetism can be introduced in graphene by,
e.g., semihydrogenation [7], adding vacancies [8,9], or adding
adatoms [9–14]. Semihydrogenating graphene sheets, where
one sublattice is fully hydrogenated while the other is not,
leads to a sublattice imbalance, which induces a magnetic
moment of 1μB per unit cell [7]. Monovacancies in graphene
have also been demonstrated to have a magnetic moment
between 1.04μB [8] and 1.48μB [9]. Lehtinen et al. [8] find
that the spin-polarized state may be unstable, and find that it
can be stabilized by adsorption of two hydrogen atoms in
the vacancy, with a resulting magnetic moment of 1.2μB .
The spin of a vacancy generally increases with the number
of missing carbon atoms, except for the divacancy where
the magnetic moment is vanishing [9]. Ferromagnetism can
also be induced by transition metal adatoms on graphene or
in graphene vacancies. Transition metal adatoms in graphene
and single-walled carbon nanotubes were studied by Zanella
et al. [10] and Fagan et al. [15], respectively. In particular,
they find that the spin moment of Fe adatoms is largely
unaffected by the presence of carbon. Zanella et al. find that
the spin moment of Fe adsorbed on graphene is either 2 or
4μB depending on the adsorption site, while Fagan et al. find

that the spin moment of Fe adsorbed on a carbon nanotube is
about 3.9μB independent of adsorption site. DFT calculations
show that a single Fe adatom on a graphene monovacancy
is nonmagnetic [11–13]. However, by adding a Hubbard U
term to the GGA functional, Santos et al. [12] showed that
this state may, in fact, be magnetic with a spin moment of
1μB , and that the nonmagnetic properties predicted by the
GGA calculation is a consequence of the limitations of the
functional itself. Nevertheless, the spin moment of a single
Fe adatom on a graphene monovacancy is strongly decreased
compared to free Fe, due to the Fe-C interaction. A single Fe
adatom in a graphene divacancy, however, has a spin moment
of about 3.2μB according to Krasheninnikov et al. [11], and
3.55μB according to He et al. [13]. The reason for the increased
spin is quite obvious; the larger vacancy increases the Fe-C
distance and thus decreases the interaction between Fe and C.
As the interaction between Fe and C seems to decrease the spin
moment of Fe, we expect Fe-C systems to have decreased spins
compared to a pure Fe system. Trapping larger Fe clusters in
graphene perforations will lead to a larger spin moment, which
combined with the electrical properties of graphene, might
make this a suitable system for graphene-based spintronics.

Trapping of metal atoms, such as Fe and Mo, in graphene
and carbon nanotube vacancies have been achieved experi-
mentally in transmission electron microscopy (TEM) [14,16].
Vacancies are created under e-beam irradiation, after which
mobile metal atoms on the surface move to the vacancy,
where they are trapped. These trapped metals are stable for
some time, but detrapping of some of the atoms has been
observed over time [14,16], which is thought to occur due
to weak bonding, e-beam irradiation, or high temperature
during the experiments. Recent experimental results by Zhao
et al. [17] show that monolayer Fe membranes can be grown
in graphene perforations. These monolayer membranes both
form and collapse under e-beam irradiation in TEM. The Fe
is provided via leftover residue from the transfer process,
where graphene is transferred from growth substrate to target
substrate. Electron energy loss spectroscopy (EELS) and high-
angle annular dark-field (HAADF) measurements suggest that
the embedded membranes are composed of pure Fe. They find

1098-0121/2015/91(12)/125439(7) 125439-1 ©2015 American Physical Society
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that the embedded Fe membranes form a square lattice with
a lattice constant of about 2.65 Å. Through density functional
theory (DFT) calculations, Zhao et al. find that monolayer Fe
is most stable in a square configuration with a lattice constant
of 2.35 Å. They argue that the difference between observed and
calculated lattice constant may be a result from straining due
to lattice alignment and mismatch between the Fe membrane
and graphene.

In this paper, we present a DFT analysis of the structural
stability and magnetization of Fe systems in an attempt to
obtain a basic understanding of these systems, as well as
to explain the experimental results by Zhao et al. [17]. In
particular, we compare the stability of Fe in square and
triangular lattice configurations for both monolayer Fe, mono-
layer Fe carbide and Fe embedded in graphene perforations.
We model embedded Fe membranes as a periodic system,
effectively giving rise to graphene antidot lattices (GALs),
where the antidots are filled with Fe. GALs, which are periodic
perforations in an otherwise pristine graphene sheet, can
be produced experimentally by, e.g., e-beam lithography on
pristine graphene [18,19]. It is possible that the embedding
of iron in graphene perforations can be scaled up to actual
Fe-filled GALs. GALs have tunable band gaps that depend
on geometric factors [20,21], which make them interesting
for electronic and optoelectronic applications. It has been
shown that a narrow slice of GAL with just a few rows
connected to graphene sheets on either side is sufficient to
block electron transport in the energy gap of the GAL [22,23].
By omitting antidots in some regions of such a GAL barrier,
electrons can be guided through the unpatterned part, giving
rise to an electronic waveguide [24], reminiscent of a photonic
waveguide in a photonic crystal.

II. THEORETICAL METHODS

Spin-polarized DFT calculations were performed using the
ABINIT package [25–28], which uses a plane-wave basis set
to expand the wave function. We have used the Perdew-
Burke-Ernzerhof GGA (PBE-GGA) exchange and correlation
functional [29] in all calculations. We use a plane-wave cutoff
energy of 435 eV combined with the projector-augmented
wave (PAW) method [30]. It has previously been demonstrated
that the PAW method is able to accurately describe magnetism
in transition metal systems [30,31]. We use a Fermi smearing
of 0.27 eV in order for a 16 × 16 × 1 Monkhorst-Pack k-point
grid to be adequate. The Fermi smearing has the effect of
slightly lowering the magnetic moment as electrons will have
a probability to occupy states above the Fermi level. An
interlayer spacing of 10 Å was used in all calculations. Full
relaxation of all atoms in the unit cells were made for all
structures, in addition to relaxation of the unit cell size in the
case of free-standing monolayer Fe and iron carbide. Atomic
coordinates were optimized until the maximum force on atoms
was smaller than 0.05 eV/Å. These parameters have previously
been shown to be adequate for modeling transition metal
adatoms on graphene vacancies [8,11]. The same parameters
are used when calculating the edge formation energy, except
the k-point sampling is reduced to 16 × 1 × 1, due to a lateral
distance between ribbons of 10 Å.

III. FREE-STANDING MONOLAYER SYSTEMS

A. Monolayer iron

In order to obtain an understanding of iron membranes
embedded in graphene perforations, we first determine the
stability of free-standing monolayer iron in different lattice
configurations. Then, we calculate the edge formation energy
of monolayer iron, in order to obtain an understanding of the
formation kinetics of iron membranes. Lastly, we determine
the stability of iron membranes embedded in graphene antidots
for certain hole sizes.

The binding energy and magnetization of free-standing
monolayer iron in square, triangular, and honeycomb lattice
configurations are shown in Fig. 1. The antiferromagnetic
square and honeycomb lattices are made such that each atom
only has nearest neighbors with opposite spin. This is not
possible in the triangular lattice, so we chose an antiferromag-
netic lattice that essentially consists of spin-polarized lines,
where each atom has opposite spin to four of its six nearest
neighbors. We do not expect this configuration to be physically
sound, but we include it in order to compare with the other
lattice configurations. We use the smallest possible unit cells,
which means that the ferromagnetic unit cells of the square
and triangular lattice contain one atom and the honeycomb
lattice contains two. In the antiferromagnetic case, all three unit
cells contain two atoms. The figure shows that ferromagnetic
ordering is generally favored over antiferromagnetic ordering,
consistent with earlier results which show that monolayer Fe
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FIG. 1. (Color online) Binding energy (upper panel) and spin
moment (lower panel) of monolayer Fe as a function of bond length.
The black and red lines are for ferromagnetic and antiferromagnetic
ordering, respectively. The magnitude of the spin is shown in case of
antiferromagnetic ordering, as it has zero net spin. The dashed gray
line indicates the spin of free Fe.
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in the square lattice favors ferromagnetic ordering [32]. The
figure also shows that the honeycomb lattice is unfavored
compared to the square and triangular lattices. We therefore
exclude antiferromagnetic ordering as well as the honeycomb
lattice in the remaining calculations. In addition, the figure
shows that the most stable configuration is the ferromagnetic
triangular lattice, as it has the lowest binding energy at
equilibrium. However, it is seen that, under compressive
strain, the ferromagnetic square lattice eventually becomes
favored. The spin moments per atom at equilibrium are
2.73μB and 2.68μB for the square and triangular lattice,
respectively, which is significantly larger than the bulk spin
moment of 2.22μB [33]. Our results for the spin of the
ferromagnetic triangular lattice are in good agreement with
previous results [34,35].

As expected, we see that the spin moment increases with
increasing distance between the Fe atoms, as the spin tends
towards 4μB for free Fe. We notice that the bond length
at equilibrium of the square lattice is 2.33 Å, which is
significantly lower than the experimental results of 2.65 Å by
Zhao et al. [17], suggesting that the Fe membranes are strained
by the surrounding graphene. In addition, it is seen that the
energy cost of straining the square lattice to 2.65 Å is only
about 0.2 eV per atom. Our predictions of the lattice constant
and energy cost of straining for the square monolayer Fe lattice
are very close to the theoretical results by Zhao et al. The major
difference between the results is that we find the triangular
lattice to be more stable, whereas Zhao et al. find that the square
lattice is more stable, in agreement with their experimental
observations that Fe embedded in graphene perforations forms
a square lattice. The differences in the calculations are that we
use a plane wave basis set and a 16 × 16 × 1 k-point sampling,
whereas Zhao et al. use a localized basis and a 3 × 3 × 1
k-point sampling. The elementary unit cells for monolayer Fe
are very small, and we find that a 3 × 3 × 1 k-point sampling
is insufficient for obtaining converged spin magnetization and
total energy. We therefore believe that the discrepancy arises
due to the different k-point sampling.

B. Edge energy of monolayer iron

We have demonstrated that the triangular lattice is energeti-
cally favored over the square lattice, so in order to explain why
the square lattice is formed experimentally, we now analyze
the edge formation energy by comparing the energy of an Fe
nanoribbon and monolayer Fe. The edge formation energy per
length is given by Eedge = (Eribbon − NEmonolayer)/2l, where l

is the length of the unit cell in the direction of the ribbon edge,
Eribbon is the total energy of the nanoribbon unit cell, N is the
number of atoms in the unit cell, and Emonolayer is the energy
per atom of the monolayer system. The factor of 1/2 is due to
the fact that a nanoribbon has two edges. For both the square
and the triangular lattice, we examine two different rotations
of the edges, as shown in Fig. 2.

In Fig. 3(a) we observe that the triangular lattice has a larger
edge formation energy than the square lattice for both rotations
of both lattices. This means that, during formation of the
membrane, the square lattice may be favored due to the lower
edge formation energy. The membrane may then be kinetically
hindered from subsequently rearranging into the triangular

Triangular Rotated triangular

Square Rotated square

FIG. 2. (Color online) Geometries used for evaluation of edge
energies.

lattice. It is seen in Fig. 3(b) that the bond length contracts
on the edges of the ribbon, while the remaining structure is
almost unchanged. This indicates that the large experimentally
observed lattice constant is not due to formation kinetics.

C. Iron carbide

Another possibility is that the experimentally observed
structure is, in fact, an iron carbide. Zhao et al. state that
relatively small amounts of carbon may lie beyond the

0 0.5 1 1.5 2 2.5 3
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
(a)

Nanoribbon width [nm]

E
d
g
e
en

er
g
y
[e
V
/
n
m
]

Triangular

Rotated triangular

Square

Rotated square

0 2 4 6 8 10 12 14
2.25

2.35

2.45

2.55
(b)

Bond

B
o
n
d
le
n
g
th

[Å
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FIG. 3. (a) Edge formation energy for square and triangular Fe
nanoribbons as a function of nanoribbon width. (b) Bond lengths
through a 16-atom-wide Fe nanoribbon with different orientations
and edge rotations.
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Square Honeycomb

FIG. 4. (Color online) Iron carbides with square and honeycomb
arrangements. The gray balls are C and the orange balls are Fe.

detection limits of their EELS setup and therefore cannot
exclude the possibility that the membrane is made of iron
carbide. It is also very difficult to observe C atoms near
Fe in TEM due to the large difference in contrast. The iron
carbides shown in Fig. 4 have binding energies per unit cell
of −9.91 eV and −9.49 eV for the square and honeycomb
lattice, respectively. The square lattice is thus the most stable
configuration. The sum of the binding energy of separate
monolayer Fe and graphene systems is −10.37 eV. The energy
difference between the separate systems and the iron carbide
is just 0.46 eV, which suggests that the iron carbide in square
arrangement could be metastable. In particular, it is interesting
to note that the lattice constant, i.e., the Fe-Fe distance, of the
square iron carbide is 2.66 Å, which is extremely close to
the experimentally observed value. However, since we find
the structure to be, at best, metastable and no carbon signal
was observed in EELS experiments, we are still skeptical that
the observed structure is, in fact, iron carbide. More accurate
measurements are needed in order to exclude the possibility
of the membranes consisting of iron carbide.

IV. EMBEDDED IRON

We will now study the structural stability and magnetization
of Fe membranes embedded in graphene perforations. In
order to model this with DFT, we impose periodic boundary
conditions, which means we effectively have a graphene
antidot lattice (GAL), where the antidots are filled with Fe.
We use the conventional {L,S} notation to denote GALs with
unit cell side length L and antidot side length S, both in units of
the graphene lattice constant, consistent with earlier work [36].
By filling a given antidot with the same amount of Fe atoms in
the square and triangular configurations, we can make a direct
comparison of the stability of the two systems by comparing
their binding energies. In particular, we compare 12 and 21
Fe atoms embedded in a {4,2} and a {5,3} antidot lattice
with hexagonal hole geometry, respectively. These antidot
lattices are chosen because both square and triangular lattice
configurations with an equal amount of Fe atoms can be found
that conform fairly well with the antidots. Figure 5 shows the
structures after relaxation of all atoms in the unit cell.

The figure shows that the surrounding graphene is almost
unaffected by the presence of Fe, due to the large in-plane
strength of graphene. It is also seen that the Fe bulges out-
of-plane for the small antidots, especially for Fe in square
arrangement. This indicates that the square lattice does not
conform as well to the graphene lattice as the triangular lattice

Square Triangular

{4
,2
}

{5
,3
}

FIG. 5. (Color online) Top and side view of structurally relaxed
graphene antidots with embedded Fe.

does for the small antidot. In the larger antidot, the Fe is seen
to be mostly co-planer with the graphene, which indicates
that both lattice configurations conform better to the graphene
lattice. The Fe still bulges slightly out-of-plane in the square
lattice configuration, which indicates that the square lattice
still conforms worse to the graphene lattice than the triangular
lattice. By comparing the binding energies of the two systems,
we can determine which of the Fe configurations is more stable.

The unit cells we consider are probably too small for the
spins to be decoupled between neighboring cells. This means
that the magnitude of the magnetic moment may differ for
isolated Fe membranes in graphene. However, due to the high
strength of the supporting graphene lattice, we expect that
structural properties will be in quantitative agreement with
isolated Fe membranes.

We find that the triangular lattice is favored in the {4,2}
antidot lattice with a binding energy difference of 2.31 eV,
while the square lattice is favored in the {5,3} antidot lattice
with a binding energy difference of 1.37 eV. The fact that
the square lattice is favored in the large antidot, despite
conforming worse to the graphene lattice, indicates that the
square lattice has a larger binding energy to graphene than
the triangular lattice. We therefore presume that the square
lattice will have a greater advantage in larger antidots, where
it conforms better to the graphene lattice. However, when the
Fe membrane grows too large, the “bulk” behavior should
overcome edge or interface effects, which should lead to
formation of the triangular Fe lattice. Moreover, there is
still the possibility that a 3D nanocrystal could form instead
of the triangular monolayer membrane as the 3D structure,
in principle, has lower energy than the 2D counterpart for
sufficiently large structures. We thus speculate that there is an
antidot size regime, where the square Fe lattice is favored, but
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FIG. 6. (Color online) Top and side view of structurally relaxed
{4,2} graphene antidot lattices with 11 (left) and 13 (right) Fe atoms.

when the antidots become too large, either the triangular
monolayer Fe lattice or a 3D nanocrystal will be formed
instead. However, we cannot investigate the extent of this
regime further, due to the computational complexity of the
DFT calculations.

In the analysis of the {4,2} unit cell, the choice of 12
Fe atoms was made to ensure a symmetric structure in both
triangular and square arrangements. In order to substantiate
our conclusions regarding the relative stability of these
arrangements, we now investigate the {4,2} unit cell with a
varying number of Fe atoms. In this case, we place the Fe
atoms asymmetrically in the unit cell to obtain convergence to
the global structural minimum. For the structure with 12 Fe
atoms, the fully relaxed structure is the triangular one shown
in the top right in Fig. 5. We find that a structure with 11 Fe
atoms is more stable than the structures with either 12, 13,
or 14 Fe atoms. The difference in binding energy per atom
between the structure with 11 and 12 Fe atoms is only 30 meV,
however, which is much smaller than the difference in binding
energy obtained by changing the lattice configuration between
square and triangular. The relaxed structures in the cases of 11
and 13 Fe atoms are shown in Fig. 6. The figure shows that the
structure with 11 Fe atoms approximately forms a triangular
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FIG. 7. (Color online) Fe-Fe bond lengths of the two {5,3}
structures shown in Fig. 5.
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FIG. 8. (Color online) Integrated spin moment per atom for Fe
membranes embedded in graphene antidots.

lattice, which is however a bit distorted because there is no
longer any symmetric way to arrange the atoms. Furthermore,
we see that the structure with 13 Fe atoms forms a square
lattice, but it is no longer planar, simply because there is not
enough room in the antidot to support a planar structure with
this many Fe atoms. The conclusion that the triangular lattice
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FIG. 9. (Color online) Projected spin moment for a {5,3}
graphene antidot lattice with 21 Fe atoms in a hexagonal antidot
in (a) square arrangement and (b) triangular arrangement.

125439-5



i
i

“master” — 2016/9/9 — 10:09 — page 92 — #104 i
i

i
i

i
i

M. R. THOMSEN, S. J. BRUN, AND T. G. PEDERSEN PHYSICAL REVIEW B 91, 125439 (2015)

is stable in the {4,2} unit cell is thus unchanged when varying
the number of Fe atoms by a few units.

We saw previously that there was a rather large discrepancy
between the bond lengths of the bulk monolayer Fe and the
one measured in the experiments. To further investigate this
discrepancy we have counted all the Fe-Fe bond lengths in
the two {5,3} antidot structures in Fig. 7. The figure shows
that the Fe-Fe bond length inside the graphene antidots is
generally quite close to the one measured experimentally, with
a mean value of 2.7 Å and 2.6 Å in the square and triangular
cases, respectively. The square lattice is thus strained by about
16% on average compared to the bulk monolayer value. By
comparison, the mean C-C bond length is almost unaffected
by the interface with a mean value of 1.43 Å in both cases.

Figure 8 shows that the spin moment per Fe atom embedded
in graphene antidots is around the value of monolayer Fe
even for very few embedded Fe atoms. In contrast to Fe in a
graphene monovacancy, where the spin moment is vanishing,
the spin moment is only weakly affected by the presence of
carbon on the edge. In fact, the spin moment may in some cases
even exceed the monolayer value, due to the increased bond
lengths. This is consistent with the result for Fe in a graphene
divacancy, where the spin moment is also only weakly affected
by the presence of carbon. This effect can be seen directly in
Fig. 9, which shows the projected spin moment as a function
of distance from the center of the antidot for a {5,3} graphene
antidot lattice with 21 Fe atoms. The projected spin moment
is calculated by integrating the difference in spin-up and spin-
down electron densities inside the Voronoi volume associated
with each atom. The figure shows that there is, in fact, an
enhanced spin moment on nearly all Fe atoms in this case.

V. CONCLUSIONS

We have studied the stability of monolayer Fe and graphene-
embedded Fe through ab initio calculations. We find that the
most stable configuration of monolayer Fe is the ferromagnetic
triangular lattice with a lattice constant of 2.44 Å. This is
in contrast to experimental results of graphene-embedded
Fe, which shows that these structures have a square lattice
configuration with a bond length of 2.65 Å. However, we
find that the square lattice configuration has a lower edge
formation energy. This means that, during formation, it might
be favorable to form the square lattice and the structure could
then be kinetically hindered from subsequently rearranging
to the triangular lattice. Furthermore, we have compared the
stability of the square and triangular Fe lattices in two different
graphene antidot lattices. In the larger one of these, the square
lattice is, in fact, more stable than the triangular lattice, with a
mean Fe-Fe bond length of 2.7 Å. This result is in very close
agreement with the experimental results. Our results show that
only a few Fe atoms in the graphene antidots are sufficient to
give rise to magnetic moments, which are comparable to the
magnetic moment of monolayer Fe.
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We calculate the spin transport of hydrogenated graphene using the Landauer-Büttiker formalism with a spin-
dependent tight-binding Hamiltonian. Hydrogen adatoms are a common defect and they carry a finite magnetic
moment, which makes it important to understand their influence on spin transport for graphene-based spin devices.
Our tight-binding model accurately reproduces the density-functional theory band structure and atom-projected
density of states. The advantages of using the Landauer-Büttiker formalism are that it simultaneously gives
information on sheet resistance and localization length as well as spin relaxation length. Furthermore, the
transport can be computed very efficiently using this method by employing the recursive Green’s function
technique. Here, we study hydrogen adatoms on graphene with randomly aligned magnetic moments, where
interference effects are explicitly included. We show that a 5 ppm hydrogen defect density is sufficient to reduce
the spin relaxation length to 2 μm and that the inverse spin relaxation length and sheet resistance scale nearly
linearly with the impurity concentration. Moreover, the spin relaxation mechanism in hydrogenated graphene is
Markovian only near the charge neutrality point or in the highly dilute impurity limit.

DOI: 10.1103/PhysRevB.92.195408 PACS number(s): 72.25.−b, 72.10.Fk, 72.80.Vp

I. INTRODUCTION

Spin transport in graphene has attracted a lot of attention
in recent years due to very long spin relaxation times and spin
relaxation lengths predicted for this material [1,2]. The spin
relaxation length in graphene has been predicted theoretically
to be at least 20 μm [1] for experimentally realistic device
parameters, whereas experimental values are about an order
of magnitude lower, typically around 1–4 μm [3–8], but has
been observed as large as around 200 μm in short samples at
low temperature [9] and 12 μm in encapsulated graphene at
room temperature [10]. It has been ruled out experimentally
that this discrepancy is due to hyperfine interactions with the
naturally occurring 13C isotope in graphene [7]. Experimental
measurements of graphene in the presence of a strong magnetic
field show that the observed low spin relaxation length is, at
least in part, due to magnetic impurities in graphene [11].
Magnetic impurities are very common in graphene and may,
for instance, be hydrogen adatoms [12], vacancies [12,13], or
embedded metal atoms [14,15] in graphene pores. An attempt
to explain the effects of magnetic impurities in graphene has
been given by Kochan et al. [16]. They find that 0.36 ppm
coverage of hydrogen adatoms is sufficient to obtain spin
relaxation times that are in agreement with experiments. Their
model is based on the Green’s function of a single hydrogen
adatom in an infinite graphene sheet and multiplying the results
with the impurity concentration. In effect, their model does not
include interference effects between scatterers and is thus only
valid in the highly dilute limit. Spin transport in hydrogenated
graphene was also considered by Soriano et al. [17,18]. Their
method is based on a mean-field Hubbard Hamiltonian and
the real space Kubo-transport formalism. They find that a
coverage of 15 ppm hydrogen adatoms gives the correct order
of magnitude of the spin relaxation time [18], which is more
than an order of magnitude larger than the prediction by
Kochan et al. Additionally, the energy dependence of the two
theoretical predictions for the spin relaxation time do not agree

with the experimental findings. A recent ab initio study of
the spin scattering of hydrogen adatoms on narrow armchair
graphene nanoribbons by Wilhelm et al. [19] has shown that
spin scattering off a single hydrogen adatom with defect spin
oriented perpendicular to the electron spin is sufficient to
obtain spin-flip conductance on the same order of magnitude
as the spin-conserved conductance. They also showed spin-
orbit interactions to be negligible compared to exchange
interactions in the context of spin scattering on hydrogen
adatoms.

The spin relaxation length is determined by the decay rate
of spin polarization. Zurek et al. [20] have found through a
phenomenological spin interaction Hamiltonian that the spin
relaxation decay rate depends on the distribution of coupling
strengths between a spin system and an environment with many
independent spins. In particular, they find that a Gaussian
distribution of couplings leads to Gaussian decay of the
spin polarization with respect to time, whereas a Lorentzian
distribution leads to exponential decay. It is straightforward
to demonstrate that the spin relaxation of scatterers on a
classical Markovian chain is also exponential. Therefore, the
exponential decay of spin polarization is typically referred to
as Markovian behavior [21].

In this paper, we calculate the spin-dependent elec-
tron transport on graphene with hydrogen adatoms using
the Landauer-Büttiker formalism, which is a widely used
method for calculating quantum transport in nanoscale devices
[19,22–27]. We use hydrogen adatoms as they are very
common magnetic defects on graphene. Each defect has a
finite magnetic moment of 1μB . Additionally, due to local
sp3 hybridization, heavily hydrogenated graphene has an
energy gap [28]. In particular, we will demonstrate that the
Landauer-Büttiker formalism can be used to extract the spin
relaxation length of a system. We will demonstrate that the
spin relaxation is not always Markovian and that inverse spin
relaxation length and sheet resistance scale nearly linearly with
impurity concentration.

1098-0121/2015/92(19)/195408(8) 195408-1 ©2015 American Physical Society
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II. THEORETICAL METHODS

We start by simulating a hydrogen adatom on graphene in a
supercell geometry using density-functional theory (DFT) as
implemented in the FHI-AIMS package [29]. It is an all-electron
code with numerical atom-centered basis functions. We use the
default tight basis set for each atom type in a spin-polarized
calculation. The electron-electron interactions are treated at
the level of the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [30]. The hydrogen adatom on graphene
is relaxed in a supercell with 2 × 8 × 8 = 128 carbon atoms,
until the forces between the atoms are smaller than 10−3 eV/Å.
We expect the supercell to be large enough for finite size effects
to be negligible to describe hydrogen adatoms in the dilute
limit. Moreover, the DFT self-consistency cycle is considered
converged if, among other things, the total energy changes by
less than 10−6 eV. We use an 8 × 8 × 1 k-point Monkhorst-
Pack grid during relaxation. The final band structure and
density of states (DOS) calculations use �-centered grids of
15 × 15 × 1 k points, whereas the atom-projected partial DOS
(PDOS) calculation uses a grid of 12 × 12 × 1 k points.

The DFT band structure, DOS, and PDOS of a system with a
hydrogen adatom are shown in Fig. 1. There are spin-polarized
impurity bands on both sides of the Fermi energy that also
appear as peaks in the total DOS. The occupied impurity band
of the majority spin component results in a spin moment of
1.0μB . The states corresponding to the impurity band, and the
resulting spin density thereof, are localized at the hydrogen
atom (H) and at the sublattice neighboring the carbon atom
(C0) underneath the hydrogen atom. Other models, such as
Ref. [17], remove the H and C0 atom sites, such that the
vacancy in the lattice results in a similar spin density profile.

We fit tight-binding (TB) models to the DFT band structures
and PDOS in order to simulate systems with a large number
of hydrogen adatoms in the dilute limit. We start with a tight-
binding model of graphene, written as

Ĥ0 =
∑
i,j

tij |i〉〈j |, (1)

where |i〉 is a state localized at the lattice site i, and tij
are hopping parameters between the lattice sites. The carbon
on-site energy is taken as the energy zero point. We take
hoppings up to third-nearest neighbors, and we denote the
first-, second- and third-nearest-neighbor hopping elements as
t1, t2, and t3, respectively. By fitting to the pristine graphene
DFT band structure, we find the C-C hopping parameters
t1 = −2.855 eV, t2 = −0.185 eV, and t3 = −0.190 eV. The
t1 and t2 parameters are fitted freely, and t3 is included by
assuming that t3 = t1(0.18/2.7), where the factor is motivated
by earlier models [31].

It turns out that the systems with a hydrogen adatom can
be accurately described with remarkably simple models, at
least in the dilute limit. Namely, we introduce a new site
corresponding to the hydrogen adatom (H), and we couple it to
the graphene backbone by allowing only a spin-independent
hopping t ′ to the carbon site beneath it (C0). Moreover, the
hydrogen on-site potential is taken as spin dependent with
values of ε↑ and ε↓ for the majority and minority spin channels,
respectively. The model Hamiltonian in the case of a single

hydrogen adatom is written as

Ĥ = Ĥ0 + t ′(|C0〉〈H| + |H〉〈C0|)
+ |H〉〈H| ⊗ (ε↑|↑a〉〈↑a| + ε↓|↓a〉〈↓a|), (2)

where the spin-independent parts are shortened as Ĥ0 ⊗ 1 =
Ĥ0, and |↑a〉 and |↓a〉 are the orthogonal spin basis
vectors along the spin-quantization axis a = (sin θ cos φ,

sin θ sin φ, cos θ ), such that |↑a〉 = cos(θ/2) |↑〉 + eiφ

sin(θ/2) |↓〉 and |↓a〉 = e−iφ sin(θ/2) |↑〉 − cos(θ/2) |↓〉,
where we have used the shorthand notation |↑〉 = |↑ẑ〉 and
|↓〉 = |↓ẑ〉. The spin-quantization axis for the charge carriers
is chosen to be ẑ in all calculations.

We fit the tight-binding model to the DFT band structure and
PDOS. Specifically, we compare the six lowest unoccupied and
six highest occupied bands, and fit the two-dimensional band
energies in the first Brillouin zone. The DFT PDOS is fitted
to the TB local DOS (LDOS) in the defect neighborhood up
to the fourth-nearest carbon atoms surrounding the hydrogen
adatom. We find that the C-H hopping is t ′ = 9.475 eV, and
the hydrogen on-site potentials have values ε↑ = 1.853 eV
for the majority spin component and ε↓ = 4.689 eV for the
minority spin component. The fitted TB band structure, total
DOS, and LDOS are shown in Fig. 1, where they are compared
to the DFT calculations. The figure shows excellent agreement
between the TB model and the DFT results. One should note
that the model parameters depend slightly on the number of
energy bands and PDOS atoms, and the corresponding weights
for these in the cost function, but this will only have a marginal
effect on the obtained results.

We consider the quantization axis of the defect spin
moments as classical vectors that can be rotated individually,
and eventually ensemble average results over different rotation
angles and defect position realizations. To do this, we write
the spin-dependent part of the model Hamiltonian, Eq. (2), as

ε↑|↑a〉〈↑a| + ε↓|↓a〉〈↓a| = ε↑ + ε↓
2

1 + ε↑ − ε↓
2

σ̂a, (3)

where 1 = |↑a〉〈↑a| + |↓a〉〈↓a| is the identity matrix and σ̂a =
|↑a〉〈↑a| − |↓a〉〈↓a| is the Pauli z matrix in the given basis. For
each defect, we define the rotation angles θ and φ on the Bloch
sphere. As the only spin-dependent parameter is the hydrogen
on-site potential, spin flipping only occurs at these sites when
the charge carrier spin is not aligned with the defect spin. In
the {|↑〉 , |↓〉} basis, σ̂a is given by

σ̂a = cos θ |↑〉〈↑| − cos θ |↓〉〈↓|
+ e−iφ sin θ |↑〉〈↓| + eiφ sin θ |↓〉〈↑|. (4)

The rotation of the defect spins is similar to the method used in
Ref. [19], except that we rotate each defect spin individually.
The reasons why we do this are the following: In the dilute
limit, the interactions between the defects can be assumed
small. Then a finite temperature or other environmental
factors, e.g., local Zeeman terms originating from the graphene
curvature or substrate, can break the magnetic ordering in
a system with many hydrogen adatoms. In such a case, we
cannot choose the same spin basis simultaneously for all
the defect spin moments. Instead, the defect spin moments
can be at least partly uncorrelated, pointing to somewhat
random directions. On the other hand, in the limit of many
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FIG. 1. (Color online) Spin-polarized band structure, total DOS, and PDOS of an 8 × 8 supercell with a hydrogen adatom for both the
majority and minority spin components. The DFT PDOS is compared to the TB LDOS at the hydrogen atom (H), the carbon atom underneath
the hydrogen atom ( C0), and its first-, second-, and third-nearest neighbors C1, C2, and C3, respectively.

nearby defects, frustration can result in a nontrivial defect spin
moment configuration that can be difficult to estimate without
explicitly including the defect spin-spin interactions.

The transmittance between any two leads p and q of a
multiterminal system can be calculated using the Landauer-
Büttiker formula [24] Tpq = Tr{�pG�qG

†}, where G =
[(E + iε)I − H − ∑

n �n]−1 is the retarded Green’s function.
�n and �n are the self-energy and linewidth functions,
respectively, of lead n. The leads are modeled here as pristine
graphene ribbons with the same unit cell width as the device
region and the electronic transport is in the zigzag direction
(see Fig. 2). A small imaginary part ε = 10−5 eV is added to
the energy for numerical stability. If the spins are decoupled
in the leads, it is easy to demonstrate that the spin-channel
resolved transmittance between the leads of a spin-dependent
two-terminal system becomes [19,32]

Tσ,σ ′ = Tr
{
�(L)

σ G�
(R)
σ ′ G†}, (5)

where �(L)
σ (�(R)

σ ′ ) is the linewidth function of the left (right)
lead with spin σ (σ ′). The transmittance on this form can
be computed efficiently using the recursive Green’s functions
(RGF) technique (as outlined in Refs. [25,33]). All calculations
are performed on unit cells with a relatively large width of

FIG. 2. (Color online) Unit cell of width W and length L as used
in the simulations. The unit cell is repeated periodically transverse to
the leads. The spin-dependent transport is equivalent to having two
separate channels that couple only at magnetic impurity sites.

12.8 nm in order to minimize finite size effects. Furthermore,
the calculations are performed using periodic boundary con-
ditions transverse to the transport direction and the results are
averaged over 29 k points. Exactly at the charge neutrality point
(CNP), the only propagating mode in the leads is at k = 0 and
it is therefore important to ensure that this is included.

The spin-conserved transport is defined as Tsc = T↑↑ + T↓↓
and the spin-flipped transport is defined as Tsf = T↑↓ + T↓↑.
We expect the total transport T = Tsc + Tsf to be either Ohmic
or localized. For Ohmic transport the resistance per unit cell
is R(L) = Rc + RsL/W , where Rc is the contact resistance,
Rs is the sheet resistance, L is the device length, and W is the
width of the unit cell. In the localization regime, the resistance
is R(L) = Rc exp(L/ξ ), where ξ is the localization length. By
fitting the total transport to a compound expression

R(L) = h

2e2T
= Rc exp(L/ξ ) + RsL/W, (6)

we obtain both localization length and Ohmic resistance. In
the limits ξ → ∞ and Rs → 0, this expression reduces to the
Ohmic and localization regimes, respectively.

We can use the spin polarization P to obtain the spin
relaxation length λS . According to Zurek et al. [20], the
spin relaxation mechanism can be either exponential or
Gaussian, depending on the distribution of spin couplings
to an environment. In order to include both cases as well
as any intermediate relaxation mechanism, we fit the output
spin polarization of a device with length L according to the
following expression,

P (L) = Tsc(L) − Tsf (L)

Tsc(L) + Tsf (L)
= e−(L/λS )n . (7)

It follows that the spin relaxation behavior is exponential when
n = 1 and Gaussian when n = 2.

III. RESULTS

The output spin polarization of a system containing a
single H adatom is shown in Fig. 3. When there is only
a single defect, the transport properties do not depend on
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FIG. 3. (Color online) Spin polarization as a function of energy
and angle of a graphene system with a single H adatom. The inset
shows an illustration of the device.

the azimuthal defect spin angle φ. Therefore, only the polar
angle θ and the energy E are varied. The figure shows
that the spin scatters very strongly near the CNP, E 
 0,
resulting in a significantly decreased spin polarization. This
is a consequence of scattering on H adatoms, which have
defect bands that span approximately ±0.1 eV around the
CNP (cf. Fig. 1). This means that a single H adatom with defect
spin perpendicular to the charge carrier spin is able to destroy
almost half of the spin polarization for energies near the CNP.
This is in good agreement with Wilhelm et al. [19], who found
that an N = 11 armchair graphene nanoribbon with a single
H adatom can have spin-flip transmittance that can surpass the
spin-conserved part.

In order to obtain information on the interference effects
on spin flipping, we calculate the output spin polarization
of a system with two H adatoms separated by a distance of
2.21 nm parallel to the transport direction [see Fig. 4(b)].
The output spin polarization is evaluated at the CNP and
the orientations of the defect spins have been chosen to be
(θ1,φ1) = (90◦,0◦) and (θ2,φ2), respectively. The figure shows
that the output spin polarization is minimal when the defect
spins are perpendicular to the charge carrier spin and point in
the same direction, whereas it is maximal, when the spins are
perpendicular to the charge carrier spin and point in opposite
directions. In Fig. 3, we saw that a single defect with spin
perpendicular to the charge carrier spin could flip almost half
of the electron spin to the opposite channel. Now we see
that by having two defects with oppositely oriented spins, the
second can almost completely negate the first spin flip. When
the two defect spins point in opposite directions, the phase
change associated with spin flipping will have equal size and
opposite sign. This means that the electron spin will be in
phase with the charge carrier spin after the second spin flip,
leading to constructive interference. This is not necessarily
the case when the defect spins point in the same direction. The
interference between defects is thus very important and should
not be ignored. Furthermore, the spin-scattering strength
depends strongly on the relative position of the two defects,
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FIG. 4. (Color online) Spin polarization of a system with two H
adatoms at an energy of E = 0.0 eV. The H adatoms are placed on a
line parallel to the transport direction and the defect spin angles are
(θ1,φ1) = (90◦,0◦) and (θ2,φ2), respectfully. (a) The distance between
the defect is varied and θ2 has been fixed to 90◦. (b) The defects are
placed 2.21 nm apart.

which is illustrated in Fig. 4(a), where the spin polarization
is calculated as a function of distance between them. The
figure shows that at the CNP, the output spin polarization is
periodic with the distance between them with a period of three
graphene lattice constants. Presumably, the periodicity arises
due to the same quantization phenomenon that causes every
third armchair graphene nanoribbon to be metallic, and the
remaining nanoribbons to be semiconducting.

We now turn to calculating the effects of multiple magnetic
hydrogen adatoms on graphene. We place hydrogen adatoms
at random positions uniformly distributed across the device
according to a predefined impurity concentration η. We wish
to keep the device nonmagnetic in order to isolate spin
relaxation from other magnetic effects. Therefore, we choose
the directions of the defect spins at random, uniformly
distributed on a Bloch sphere. The transport is calculated
for very long devices of 147.5 nm, which contain a total of
72 000 carbon atoms in the unit cell. Using the RGF method,
we can extract the transport after each slice of the device,
allowing us to obtain the transport results for all device lengths
until the chosen maximum length. In order to minimize the
effects of the finite width of the unit cell, we average over an
ensemble of 150 device realizations. The spin polarization as
a function of device length and energy for different impurity
concentrations is shown in Fig. 5 as well as an example of
transmittance and spin polarization as a function of device
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FIG. 5. (Color online) (a) Ensemble-averaged transmittance and
spin polarization as a function of device length for a system
with impurity concentration η = 500 ppm calculated at the CNP.
(b) Ensemble-averaged spin polarization as a function of energy and
device length for different impurity concentrations. The dashed lines
show the spin relaxation length.

length for a single energy and impurity concentration. We show
the logarithm of the spin polarization in the range between −1
and 0 in order to highlight the spin relaxation length, which
is defined as the device length at which ln[P (L)] = −1. The
figure shows that the spin polarization decays very fast for
energies close to the H adatom defect bands (cf. Fig. 1). As
expected, the spin polarization decays faster with increasing
impurity concentration. Note that the spin polarization also
decays for energies away from the H defect bands, due to the
relatively small, but finite, spin splitting in the remaining band
structure. The small energy-dependent oscillations in Figs. 5
and 6 are due to finite size effects originating from the finite
width of the unit cell.

Equation (7) with two fitted parameters captures the
simulated spin polarization as a function of device length very
accurately. The fitted parameters are the spin relaxation length
λS as well as the exponent n, which provides information
on the spin relaxation mechanism [see Fig. 6(a)]. A few
examples of the fitting procedure are included in Fig. 6(b) in
order to illustrate the excellent quality of the fits. The carrier
concentration in the figure is computed at Fermi energies
corresponding to the energy axis. Positive and negative carrier
densities refer to electron and hole doping, respectively. The
spin relaxation length is very short for energies near the
H defect bands. For the same energies, the spin relaxation
mechanism is predominantly exponential with an exponent
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FIG. 6. (Color online) (a) Normalized spin relaxation length η ×
λS and exponent n (inset) obtained by fitting against Eq. (7). The spin
relaxation lengths are normalized with the defect concentration in
order to illustrate that their inverse scale nearly linearly with respect
to it. (b) Examples of fitting the spin relaxation against Eq. (7) of a
system with 5000 ppm H adatoms for different energies. The energies
are between 0.0 eV (fastest decay) and 1.0 eV (slowest decay) in steps
of 0.2 eV. The circles are the ensemble averaged spin polarizations
and the lines are the corresponding fitted functions. For visualization
purposes, only every fourth data point is shown.

of n 
 1. For energies further away from the CNP, the spin
relaxation length increases. We note that λS has two minima
near the CNP, which are correlated with the large spin splitting
of the H adatom defect bands. Exactly at the CNP, the spin
splitting of the defect bands is vanishing, resulting in a local
maxima. The figure shows that there is an almost linear
scaling of the inverse spin relaxation length λ−1

S with respect
to impurity concentration η, especially near the CNP. Away
from the CNP we observe that n decreases with decreasing
impurity concentration. This suggests that the spin relaxation
mechanism tends toward exponential (Markovian) behavior
in the highly dilute impurity limit. Importantly, we see that
the decay of the spin polarization as a function of device
length need not be exponential nor Gaussian, which means
that a more complete theory on spin relaxation should not
presume anything about the spin relaxation behavior, except
in the limit of very dilute systems, where the approximation of
exponential decay seems to be valid. For energies near the CNP,
the normalized localization length is η × λS ≈ 0.01 nm. In
order to obtain experimentally observed spin relaxation length
of about λS 
 2 μm [3], the impurity concentration should be
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FIG. 7. (Color online) Comparison of spin relaxation lengths
obtained by different authors.

η ≈ 5 ppm, which is more than an order of magnitude larger
than the prediction by Kochan et al. [16] of 0.36 ppm. We
expect our model to be more accurate as it is based on a full
transport calculation and therefore takes interference effects
into account. Our prediction of the impurity concentration is,
however, in closer agreement with Soriano et al. [18], who
found that an impurity concentration of 15 ppm gives spin
relaxation times in agreement with an experiment based on
time propagation of the spin polarization operator using a
self-consistent Hubbard model.

A comparison of spin relaxation lengths obtained by the
current model and those obtained by other theoretical methods
and experiments is presented in Fig. 7. We have scaled our
500 ppm result to 5 ppm by multiplying it by a factor of
100. The two other theoretical methods [16,17] give the spin
relaxation time τS , which is related to the spin relaxation length
by λS = vSτS in the ballistic regime and by λS = √

DSτS in
the diffusive regime, where vS is spin carrier velocity and and
DS is the spin diffusion constant. In the low-defect-density
case, we expect to be in the ballistic regime. Therefore, we
compare results that are all obtained in the low-defect-density
case. We obtain a velocity vS = 1.65 × 104 m/s by a least
squares fitting between our result and the analytic result
obtained by Kochan et al. [16]. We observe that the result
by Kochan et al. is in fairly good agreement with ours
regarding the location of the two minima near the CNP
and in quantitative agreement further away from the CNP.
However, their result predicts variations over several orders
of magnitude near the CNP, whereas our result predicts a
variation of only about a factor of 2. In fact, their result is
singular exactly at the CNP, because it is neither broadened
by the self-energy due to leads or by finite geometry effects.

Furthermore, we compare with the experimental results of
hydrogenated graphene obtained by Wojtaszek et al. [3]. Note
that the experimental results were obtained without detailed
knowledge of the defect concentration. However, the authors
estimated the concentration to be around 200 ppm. Lastly, we
compare our results to the theoretical result by Soriano et al.
[17]. The figure shows that their result is neither in qualitative
agreement with our model nor the analytic result by Kochan
et al. or experiment. We speculate that the deviation arises from
the fact that Soriano et al. uses vacancies in graphene to model
hydrogen adatoms, whereas both our model and the model
used by Kochan et al. employ a parametrization of hydrogen
on graphene. Theoretical predictions [16,18,34], including our
own, show that the spin relaxation time (or spin relaxation
length) decreases with increasing impurity concentration.
However, experimental work on hydrogenated graphene shows
that the spin relaxation time (or spin relaxation length) actually
increases with increasing impurity concentration [3]. The
origin of this discrepancy remains elusive, but could stem
from interactions between graphene and the substrate, as this
has not been included in any of the theoretical models. Another
possibility is that the hydrogen plasma used in the experiments
was additionally cleaning the graphene surface, thus increasing
the spin relaxation time. Finally, a recent paper by Idzuchi
et al. [35] discusses the possibility that details of the Hanle
measurements were not taken into account in the data analysis.

By fitting the total transmittance against Eq. (6) we obtain
the Ohmic sheet resistance as well as the localization length
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FIG. 8. (Color online) (a) Normalized Ohmic sheet resistance
Rs/η and (b) inverse localization length 1/ξ obtained by fitting
against Eq. (6).
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(see Fig. 8). We observe localization near the H defect bands
(cf. Fig. 1) and vanishing localization elsewhere. Additionally,
the figure shows that the sheet resistance scales linearly with
respect to impurity concentration. However, the scaling of the
localization length is far from linear, which shows that the in-
duced localization per atom decreases with increasing impurity
concentration. Furthermore, as the impurity concentration is
decreased, the energy window at which there is localization,
narrows.

IV. CONCLUSIONS

In this work, we study spin-dependent transport of hy-
drogenated graphene. We use a simple model with only a
spin-dependent on-site potential at the defect site to describe
hydrogen adatoms on graphene. As the model is simple, some
of the results are expected to extend qualitatively to other sys-
tems as well. We have demonstrated that the Landauer-Büttiker
formalism can be used to calculate spin-dependent transport of
systems with magnetic impurities with individually oriented
magnetic moments. In this work, we study hydrogen adatoms
on graphene. By calculating the spin-dependent transport as
a function of device length, we can extract properties such as
spin relaxation length, localization length, and sheet resistance.
We have shown that there is strong localization for energies

around the hydrogen-induced defect bands, which also lead to
a very high sheet resistance. Away from the defect bands there
is vanishing localization. Furthermore, we have demonstrated
that the spin relaxation length is very short for energies around
the hydrogen-induced defect bands and that the spin relaxation
mechanism is exponential (Markovian) near the CNP and
nonexponential (non-Markovian) otherwise. Additionally, we
have shown that the inverse spin relaxation length and sheet
resistance scale nearly linearly with impurity concentration,
whereas the localization length does not.
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Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport
experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These
experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We
calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged
periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Büttiker formula.
We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and
demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due
to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust
against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance
of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long
phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be
observable in experiments as well.

DOI: 10.1103/PhysRevB.94.045438

I. INTRODUCTION

Graphene antidot lattices (GALs), which are periodic
perforations in a graphene sheet, may open a band gap in the
otherwise semimetallic material [1–7]. An advantage of GALs
is that the size of the band gap can be tuned by geometrical
factors. Recent magnetotransport experiments have demon-
strated that ballistic transport is possible in GALs [8,9], which
gives rise to interesting phenomena such as magnetoresistance
oscillations due to cyclotron orbits that are commensurate with
the antidot lattice. Ballistic transport in pristine graphene has
been demonstrated several times and even at room temperature
[10–15], but ballistic transport in GALs has previously been
hindered by defects introduced by top-down fabrication of the
antidots. The recent demonstrations [8,9] of ballistic transport
in GALs were achieved by minimizing interaction with the
substrate by using hexagonal boron nitride (hBN) substrates
and by reducing edge roughness by encapsulating the graphene
flake in hBN before etching the antidot lattice [8].

Previous theoretical studies on nanostructured graphene
in magnetic fields have primarily focused on the density of
states and optical properties [16–19]. The density of states of a
structure under a magnetic field reveals a self-similar structure
known as Hofstadter’s butterfly [20]. In particular, Hofstadter
butterflies of GALs have revealed band-gap quenching induced
by perpendicular magnetic fields [16]. Transport calculations
have yet to reveal if band-gap quenching also gives rise to
quenching of the transport gap. Using the Dirac approximation,
perforations in a graphene sheet are modeled as local mass
terms rather than potentials [7]. Within this description, it
has been demonstrated that a single graphene antidot supports
localized edge states in the presence of magnetic fields [19].
Conceptually, one may think of these as edge states due to
repeated reflections of electrons on the antidot edge provided
the radius of the cyclotron motions is small compared to the
antidot radius. We will refer to these as “magnetic edge states,”

not to be confused with spin-polarized edge states, such as
those observed on extended zigzag edges [21]. Hence, by such
states, we simply mean states that are localized near an antidot
due to the magnetic field.

Magnetic edge states occur when the electron wave inter-
feres constructively with itself in a pinned orbit around the
antidot, which gives rise to Aharonov-Bohm-type oscillations.
In conventional semiconductors, such as GaAs, Aharonov-
Bohm oscillations due to antidots in two-dimensional electron
gases have been studied theoretically [22–24] and observed
experimentally [25–27]. Additionally, a theoretical study
predicts the presence of Aharonov-Bohm-type oscillations
in graphene nanorings [28]. We likewise predict magnetic
edge states to be present in GALs and due to the long
phase-coherence length in graphene, we expect these to be
observable in experiments as well. Cyclotron orbits were
recently imaged in pristine graphene using cooled scanning
probe microscopy [29,30]. It would be remarkable if this
technique could be used for direct observation of magnetic
edge states in graphene antidots.

In the present work, we study the transport properties of
graphene antidot barriers (GABs), i.e., finite rows of antidots in
an otherwise pristine graphene sheet, in the presence of perpen-
dicular magnetic fields. In our transport calculations, we use
the Landauer-Büttiker formalism with a tight-binding model,
which is widely used for calculating the quantum transport
in nanoscale devices [31–39]. The magnetic field is included
in the Hamiltonian by a Peierls substitution. The calculations
utilize the recursive Green’s function (RGF) method, which
greatly reduces the calculation time, while retaining accuracy.
Furthermore, we compare the tight-binding results to both an
ideal Dirac mass barrier and a gapped graphene model. We
find that Dirac mass barriers provide a good description of
the transport gap for GABs with small antidots provided the
magnetic field is not too strong. Furthermore, we find evidence
of magnetic edge states on the antidots and demonstrate simple

2469-9950/2016/94(4)/045438(11) 045438-1 ©2016 American Physical Society
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scaling of these, allowing predictions for larger systems.
Finally, we calculate the transmittance of disordered GABs
and compare this to the corresponding transmittance in ordered
GABs.

II. THEORY AND METHODS

A. Tight-binding model

In this section, we will use the RGF method with a tight-
binding model in order to calculate transmittance of electrons
through GABs in a magnetic field. The barrier regions are
periodic perpendicular (y direction) to the transport direction
(x direction). We also calculate the density of states (DOS) of
fully periodic GALs and compare these to the transmittance
of GABs.

In the nearest-neighbor orthogonal tight-binding model, the
Hamiltonian can be written as

Ĥ =
∑
i<j

tij ĉ
†
i ĉj + H.c., (1)

where the hopping parameter tij is taken as −γ for nearest
neighbors and vanishing otherwise. The magnetic field is
included by performing the Peierls substitution tij → tij e

iφij ,
where φij = (e/�)

∫ rj

ri
A · dl is the Peierls phase, A is the

vector potential, and ri is the position of atom i. The magnetic
field in the leads is taken to zero, which means the vector
potential in the Landau gauge is given by

A(r) = ŷBx̄, x̄ =
⎧⎨
⎩

0, x < 0
x, 0 � x � d

d, x > d,

(2)

where d is the width of the barrier; see Fig. 1. Note that the
vector potential cannot be set to zero in the x > d region,
as this would imply an infinite magnetic field at the x = d

interface. In this gauge, the Peierls phase becomes

φij = eB

2�
(yj − yi)(x̄i + x̄j ). (3)

We present calculations for triangular, rotated triangular,
rectangular, and honeycomb GALs in the notation of Ref. [2].
We will use hexagonal antidots with armchair edges and denote
the antidot lattices by {L,S}, where L and S are the side
lengths, in units of the graphene lattice constant a = 0.246 Å,
of the GAL unit cell and the antidot, respectively; see Fig. 1.
For rectangular lattices, we use Lx and Ly to denote the
side lengths in the x and y directions, respectively. In our
calculations, we chose Ly ≈ Lx = L in order for the unit
cell to be approximately square. Unless stated otherwise,
calculations are made on triangular GABs and assume periodic
boundary conditions along the y direction. Calculations on
GALs also assume periodic boundary conditions along the
x direction and the results are k averaged in the periodic
directions. The number of k points in each direction is taken
as the odd integer closest to 400/L.

We also perform calculations on a gapped graphene model
where, instead of introducing antidots, a band gap is opened
by using a staggered sublattice potential of � on one sublattice
and −� on the other, opening a band gap of Eg = 2� [40].
The advantage of this method compared to using the actual

L

Ay

x

B

0 d

L

Triangular

Rotated triangular

Rectangular

Honeycomb

S

Ly

Lx

L

L

x

y

FIG. 1. GAB unit cells used in transport calculations and corre-
sponding vector potential and magnetic field. The unit cells shown
here all have four rows of antidots in the transport direction, the
same antidot size, and similar neck widths. The gray and blue atoms
represent the system and semi-infinite leads, respectively. The dashed
red lines outline the corresponding GAL unit cells.

antidot geometry is that it is computationally much faster due
to the reduced width of the unit cell in the y direction.

We use the RGF method to extract properties such as
transmittance and DOS. This method has the same accuracy
as direct diagonalization, but is considerably faster. The
method is outlined in Refs. [41,42] and relies on calculating
certain block elements of the retarded Green’s function G =
[(E + iε)I − H − �L − �R]−1 by slicing the system into
smaller cells, which only couple to themselves and their nearest
neighbors. H is the Hamiltonian matrix and �L and �R are
the self-energies of the semi-infinite pristine graphene left
and right leads, respectively. Also, iε is a small imaginary
factor added to the energy. While ε should, in principle, be
infinitesimal, we apply a finite but small value for numerical
stability and, in practice, take ε = γ 10−4 in all calculations.
The lead self-energies are omitted when calculating the DOS
of the GALs, as these are additionally periodic along the
x direction. Moreover, in the absence of leads, the vector
potential in the Landau gauge simply reduces to A = ŷBx.
The GAL unit cells are indicated by the dashed red lines in
Fig. 1. The RGF algorithms require the Hamiltonian to be
block tridiagonal. In the case of GABs, the Hamiltonian is
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TABLE I. The B field is written as B = nBmin, where Bmin =
h/(edymin) is the minimal B field that satisfies periodicity of
the Peierls phase, with ymin = a/2

√
3 for transport in the zigzag

direction. The n at which the relative flux is unity is given by
nmax = 2h/(

√
3ea2Bmin).

Lattice configuration d Bmin (2h/
√

3ea2)

Triangular 3LNa 1/LN

Rotated triangular LNa 3/LN

Rectangular LxNa 3/LxN

Honeycomb 3LNa 1/LN

block tridiagonal by construction, but in the case of GALs, it
is not, due to periodicity in the x direction coupling the first
cell to the last (N th) one. In this case, the Hamiltonian can
easily be made block tridiagonal by merging cells such that
cells 1 and N are merged, 2 and N − 1 are merged, and so
forth. The result is that the diagonal blocks double in size, but
the resulting matrix is block diagonal.

Due to the additional periodicity of the system in the x

direction for GALs, we require the Peierls phase to be an
integer multiple of 2π for a pair of neighbor sites on either
end of the unit cell in order for the Hamiltonian to be periodic.
This limits the B fields that can be used in a calculation, but
is remedied by creating a supercell consisting of several unit
cells, as was also done in Ref. [16]. The minimal B field
which ensures periodicity is denoted Bmin. The B field is
then written as B = nBmin, where n is an integer. When the
magnetic flux � = B

√
3a2/2 through a graphene unit cell

equals one flux quantum �0 = h/e, the energy spectrum is
restored. Therefore, we only let the relative magnetic flux
density �/�0 ∈ [0; 1]. The n at which the relative flux is
unity is denoted nmax. The minimal field is summarized for the
different lattice configurations in Table I. In practice, we take
advantage of the fact that a given B field can be obtained by
several supercell sizes and then always choosing the smallest,
as was done in Ref. [16].

The local DOS (LDOS) on atom i is proportional to the
diagonal element of the Green’s function,

Li(E) = − 1

π
Im{Gii}, (4)

and the full DOS is then the sum of all local contributions,

D(E) =
∑

i

Li(E). (5)

The conductance of the system is given by the Landauer-
Büttiker formula G = 2e2

h
T , where T = Tr{	LG†	RG} is the

transmittance. Finally, the bond current between atoms i and
j at low temperature and low bias Va can be calculated as
[32,43]

Ii→j (E) = −4e2Va

�
Im

{
HijA

(L)
ji

}
, (6)

where A(L) = G	LG† is the left-lead spectral function.

C

Rc

FIG. 2. Magnetic edge state with cyclotron radius Rc for an
antidot with circumference C.

B. Magnetic edge states

A prominent feature of GALs is the presence of magnetic
edge states. Semiclassically, a magnetic edge state is a state
which is confined to the antidot due to repeated reflections
off the antidot due to the presence of an applied magnetic
field, as illustrated in Fig. 2. In this section, we derive an
approximate condition for the occurrence of magnetic edge
states. To this end, we will rely on a simple continuum (Dirac)
model of gapped graphene. In this model, the energy is given
by E = ±

√
�2v2

F k2 + �2, where vF = √
3aγ /2� � 106 m/s

is the Fermi velocity.
The cyclotron radius is given by Rc = m∗v/eB [44], where

v is the speed of the electron and m∗ is the cyclotron effective
mass (or dynamical mass), which is semiclassically given by
[44–46]

m∗ = �2

2π

[
∂A(E)

∂E

]
E=EF

. (7)

Here, A(E) is the area enclosed by the orbit in k space and
given by A(E) = πk2(E) for rotationally symmetric band
structures. In the gapped graphene model, we can write
�vF k(E) = √

E2 − �2, and so

A(E) = π (E2 − �2)

�2v2
F

, |E| � �. (8)

The cyclotron effective mass is then

m∗ = E

v2
F

, |E| � �, (9)

which is exactly the same result as for pristine graphene
[29,45]. The cyclotron effective mass is thus independent of
band gap, given by Eg = 2�. It therefore does not change
between the pristine graphene in the leads and the antidot
regions as long as the energy satisfies |E| � �. The cyclotron
radius is then given by

Rc = E

evF B
. (10)

In order to have a magnetic edge state, the electron must
form a stationary wave on the periphery on the antidot. As
an approximation, we analyze the case where the electron
is reflected off a straight line with length equal to the
circumference of the antidot C. In order to form a stationary
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wave, there must be an integer multiple of cyclotron diameters
along the length of the line, as illustrated in Fig. 2, which is
equivalent to 2nRc = C, where n is an integer equal to the
number of reflections for a complete circuit of the antidot. The
B fields that satisfy this requirement with n reflections are then
Bn = 2nE/evF C. In addition, we require the electron wave
function to be in phase after one orbit. The electron gains a
phase on one orbit of φ = ∫

P
k · dl = kD, where P is the path

traveled by the electron and D = nπRc = πC/2 is the total
distance traveled. We thus require kD = m2π , where m is an
integer. Here, we use the approximation �vF k = √

E2 − �2 ≈
E, which is a good approximation when E � �. The energies
that satisfy the phase requirement are then E = 4m�vF /C and
we may finally write the B-field requirement as

Bn = 8mn�
eC2

. (11)

The oscillation period of magnetoresistance caused by mag-
netic edge states is then given by �B = 8m�/eC2. We see that
doubling the antidot circumference, equivalent to quadrupling
the area, decreases the oscillation period by a factor of four.

III. RESULTS

Previous transport calculations of GABs without a magnetic
field have found their transport gap to be in good agreement
with those predicted for Dirac mass barriers (DMBs) [33,38].
These are modeled using the Dirac approximation with a local
mass term in order to open a band gap in the barrier region.
A derivation of the transmittance of a DMB in a magnetic
field is included in the appendix. Figure 3 shows a comparison
between the transmittance of GABs with that of DMBs and
gapped graphene with similar gap sizes. Note that care must
be taken in the DMB model in the B → 0 limit, as the
magnetic length then tends to infinity. We note that our B = 0
T results are consistent with the nonmagnetic DMB expression
in Ref. [38]. An excellent qualitative match is seen between
the DMB and the gapped graphene barrier in almost all cases.
The match between these simplified models and GABs is
quite good near the onset of the transport gap, particularly for
smaller antidots. However, discrepancies appear as the energy
is increased towards higher-order GAB features, as the antidot
size increases, and as the field is increased further (not shown).
The DMB and gapped graphene models are therefore good for
approximating the transport gap given that the magnetic field
is not too large.

A. Comparison with DOS

Figure 4 shows a comparison between DOS and transmit-
tance of {L,6} GABs for four different lattice configurations as
well as for a gapped graphene model. L was chosen such that
the neck widths were approximately the same (�1.3 nm) for all
lattices. The transport calculations were performed with four
rows of antidots in the transport direction. The figure shows
that the transmittance spectra retains most of the features of
the DOS for all lattice configurations and for gapped graphene.
The gapped graphene model shows no transmittance between
the band gap and first Landau level. A similar situation arises
in the GABs, where we can identify a geometric band gap
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B
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FIG. 3. Transmission through {10,S} triangular GABs containing
four rows of antidots in the transport direction, as well as gapped
graphene (GG) barriers and Dirac mass barriers (DMBs) with
the same length (d = 16.5 nm) and band gaps as the GABs.
All calculations were made for ky = 0. The tight-binding (TB)
calculations are divided by two for comparison with the single valley
Dirac result.

and a Landau-level gap, which are outlined for the triangular
lattice (top panels in Fig. 4) with dashed red and yellow lines,
respectively. The differences between the spectra are greatest
for small fields. Notice that transport is not fully suppressed
in the band-gap regions, due to the finite width of the barrier.
We observe rather high transmittance in the geometric energy
gap regions of the rotated triangular lattice, while the transport
gap appears larger than the band gap for the rectangular lattice.
Additionally, there is rather high transmittance in the band-gap
region of the honeycomb lattice, and the secondary band gap
is completely invisible in transport.

A striking similarity between all GAB lattice configurations
is the narrow bands in the Landau-level gap region. We will
demonstrate that these are due to magnetic edge states, i.e.,
states that are localized on the periphery of the antidots
by the magnetic field, as illustrated in Fig. 2. According to
Eq. (10), the edge states here all have cyclotron radii which
are smaller than the antidot radius. The similarity between the
panels of the figure demonstrates that the magnetic edge states
are robust against lattice configuration. The reason for the
relatively high transmittance of these states is that the antidots
are close enough to their neighbors that the states couple
between antidots. Magnetically induced band-gap quenching

045438-4
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FIG. 4. Comparison between transmittance (left) and DOS (right) of {L,6} GABs in different lattice configurations. L is chosen to give the
systems approximately the same neck width (�1.3 nm). For the triangular antidot lattice, this corresponds to a {10,6} system. The transport
calculations are made with four rows of antidots in the transport direction. The dashed lines in the top panels outline the geometric band gap
(red) and the Landau-level gap (yellow). The two bottom panels show a � = 0.1γ gapped graphene system. The dashed red lines in the bottom
panels show the first 10 Landau levels of massive Dirac fermions, En = ±

√
�2 + 2v2

F �eBn [16]. For the gapped graphene model, we plot
2 × log10(T ) due to the generally lower transmittance for this system.
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is observed both in the DOS and in transmittance. The
quenching seems to be due to magnetic edge states as the
magnetic edge state bands begin to form at the quenched
band gap. Band-gap quenching may therefore disappear if the
distance between antidots is increased sufficiently or if a large
degree of disorder is introduced.

Since magnetic edge states are localized on the antidot
edge, these are of course absent in the gapped graphene model.
The gapped graphene model in Fig. 4 has approximately the
same band gap as the {10,6} triangular GAB. However, at
these B-field values, there is little resemblance between their
transmittance spectra. For instance, in the GAB, the transport
gap is quenched by the magnetic field, while the transport gap
is retained in the gapped graphene model. It was argued in
Ref. [16] that band-gap quenching occurs when the magnetic
length become sufficiently small that the eigenstates do not
sample the lattice sufficiently for the band gap to be fully
resolved. In gapped graphene, however, the band gap is not
introduced by geometrical effects and is therefore retained.
Another notable difference between the gapped graphene
model and the GAB is that practically all transmittance, except
for the Landau levels, is suppressed in the gapped graphene
model for large magnetic fields, which is not the case for the
GAB. The gapped graphene result is consistent with results
by De Martino et al. [47], who showed that Dirac electrons
incident on a wide magnetic barrier (i.e., either wide spatial
region or large magnetic field) will be totally reflected by

the barrier independent of the angle of incidence. The GAB
result is also consistent with the results by Xu et al. [31]
that magnetic barriers in graphene nanoribbons are unable
to completely suppress electron transport due to successive
reflections on the nanoribbon edge. GALs can be viewed as a
connected network of graphene nanoribbons, so the similarity
to the nanoribbon case is expected.

The periodic features in the transmittance of the gapped
graphene model are Fabry-Pérot-type oscillations, which are a
result of the additional phase factor that comes from the mag-
netic field. Additional calculations show that the oscillations
double in frequency when the device length is doubled, hence
demonstrating the Fabry-Pérot-type nature of the oscillations.
This type of oscillations in transmittance has previously been
observed in graphene nanoribbons in a magnetic field [31].
Additionally, we observe excellent agreement between the
gapped graphene model and the predicted Landau levels.

B. Magnetic edge states

In order to show that the narrow bands in transmittance
are indeed edge states, we show the bond current and LDOS
of a {10,6} triangular GAB at different magnetic fields and
at different energies in Fig. 5. It is clear that the bond
currents at these bands are localized around the antidots,
whereas the bond currents elsewhere are not. The shown
bond currents are averaged over small area elements, which is
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FIG. 5. LDOS (gray shading) and bond current (blue arrows) of a {10,6} triangular GAB for different B-field strengths at energies of
(a),(d),(e) E = 0.2γ or (b),(c) E = 0.3γ . The main panel shows the transmittance of the system. Here, we plot

√|log10(T )| in order to enhance
the contrast.
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FIG. 6. Transmittance as a function of applied magnetic field at
an energy of E = 0.2γ for four different rectangular antidot lattice
systems with Na antidots in the transport direction.

why bond currents appear inside some of the antidots. This
averaging may also give rise to a visual artifact, where it
can appear as if the Kirchoff’s current law is not obeyed on
small scale. However, we have verified that the bond currents
themselves do satisfy the current law. Additionally, the lengths
of the arrows are scaled such that the longest arrow in all
plots have the same length. In the case of circular current
paths or large transverse currents, this can make it appear
as if the current does not propagate through the barrier and
therefore make it seem like the transmittance should be lower
than it is.

According to Eq. (11), the oscillation period of the
transmittance with respect to the B field only depends on
the circumference of the antidot. This is in agreement with the
observation that the energies of the edge state bands are nearly
linearly dependent on the B field, thus giving rise to the same
oscillation period for all energies. Increasing the magnetic field
corresponds to decreasing the cyclotron radius, which in turn
should decrease the average electron distance from the antidot.
This is indeed the case, which is apparent when comparing
Figs. 5(d) and 5(e). According to Eq. (11), the oscillation
period is independent of lattice configuration (as confirmed by
Fig. 4), number of antidots, and whether the system is periodic
or nonperiodic, i.e., a graphene nanoribbon. In Fig. 6, we show
the transmittance of GABs and nanoribbons with one and four
rows of antidots in the transport direction. We find indeed
that the oscillation period is unaffected by both the number of
antidots and periodicity, supporting the validity of Eq. (11).
For the GABs, we see increased transmittance on the edge
state resonances, due to these being the only available states.
However, for the nanoribbons, we see decreased transmittance
on the edge state resonances. In the nanoribbon case, there is
transmission along the edges of the system at these energies
without the antidot. Introducing the antidots then gives the
electrons a possibility to couple to the antidot magnetic edge
states and backscatter. This explains the increased (decreased)
transmittance at the edge state resonances for the GAB
(nanoribbon) case. Additional calculations show that zigzag
antidots with similar circumference have approximately the
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FIG. 7. Transmittance of {10,6},{15,9}, and {20,12} triangular
GABs in scaled units.

same oscillation period as armchair antidots (not shown). This
demonstrates that the magnetic edge states are additionally
robust against antidot edge chirality.

In Fig. 7, we compare the transmittance of different
{L,0.6L} triangular GABs, where the energy and magnetic
field axes have been scaled with L and L2, respectively. We
see that by plotting on scaled axes, the spectrum is very nearly
conserved. The scaling with respect to the B-field is consistent
with Eq. (11), which states that the oscillation period due to
magnetic edge states is inversely proportional to the square
of the circumference. It is remarkable that Eq. (11) correctly
predicts (i) the periodicity of the edge state bands, (ii) the
insensitivity to the lattice arrangement of the antidots, and
(iii) the behavior under uniform geometry scaling. Addi-
tionally, the geometry scaling shows that even though the
structures we consider here are probably too small for current
experimental realization, our conclusions should hold for
larger structures at smaller magnetic fields and energies.
Finally, Fig. 7 shows that the transmittance of the magnetic
edge states decreases as the distance between antidots is
increased, which is expected as these states are localized to
the edges of antidots.

C. Disorder

The systems we have considered until now have been fully
ordered. However, experimental samples tend to have varying
degrees of disorder. It is therefore important to understand
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FIG. 8. Ensemble-averaged transmittance of (a) an ordered
{10,6} triangular GAB and of disordered systems with (b) σ = 0.5
and (c) σ = 1. The area of the antidots is on average the same in
the disordered and ordered systems. An example of the disordered
antidots in the two cases is shown as an inset. In order to highlight
the features in the plot, we plot T above and log T below the
dashed green line. The dotted red lines are plotted according to
Ei/γ = √

ai + b�/�0, where ai and b ≈ 31.668 were determined
by least-squares fitting.

the effects of disorder and find out which features of the
transmittance remain. The effects of disorder are investigated
by ensemble averaging transmittance over different realiza-
tions of unit cells with disordered antidots. The antidots were
created by first removing six carbon atoms at the locations of
the antidots and then iteratively removing edge atoms accord-
ing to a Gaussian weight profile w(r) = 1

N

∑N
i e−|r−ri |2/(2σ 2a2),

where r is the position of the atom, ri are the centers of the anti-
dots in the ordered system, and σ is the standard deviation mea-
sured in graphene lattice constants a. A large (small) σ gives
rise to a large (small) degree of disorder. This creates antidots
that are roughly centered at the position of the ordered system
but with disordered edges. In order to decrease the effects of
periodicity, the unit cells are doubled in size in the periodic
direction such that there are eight antidots in the unit cells in-
stead of four. The ensemble size is determined by convergence
testing, and is about 50–100 in the cases we study here.

The ensemble-averaged transmittance of two disordered
systems with σ = 0.5 and σ = 1, respectively, is shown in
Fig. 8 where it is compared to the ordered system. The figure
shows that as the amount of disorder is increased, the rich
substructure in transmittance observed in the ordered system is
almost completely washed out. However, some of the features
of the ordered system do remain. These features form narrow
transmittance bands that are highlighted by the fitted red
curves in the figure. They are also present in the ordered
system, but here they are almost completely disguised by the
rich substructure in the transmittance, which is absent in the
disordered systems.

Both the Landau levels of pristine graphene, En =√
2v2

F �eBn [16], and the energy levels of a single graphene

antidot in a magnetic field [19] scale as
√

B. Therefore, we
fit the features in the transmittance spectrum to an expression
of the form Ei/γ = √

ai + b�/�0, where ai and b are fitting
parameters, which are determined by least-squares fitting. In
all cases, we find b ≈ 31.668 although no explanation for this
observation has been found. The fitted curves are shown as the
dotted red lines on the plots. The fit shows that these features
do indeed scale approximately as

√
B, albeit with an offset.

Both magnetically induced band-gap quenching and mag-
netic edge states in the Landau gap are present for the σ = 0.5
disordered system. However, compared to the ordered system,
the initial band gap is decreased and the magnetic edge
state bands are broadened. For the σ = 1 disordered system,
the edge state bands are broadened sufficiently so that they
are almost impossible to identify. Additionally, the band-gap
quenching for this system is less pronounced. The broadening
of the magnetic edge state bands is expected as the antidot
circumference now differs between individual perforations
and, according to Eq. (11), a variation in circumference of 5%
will lead to a 10% change in the magnetic edge state band
position. Hence, transmittance features within the Landau
gap may be difficult to observe experimentally in disordered
samples. In contrast, the robustness of the features above the
Landau gap, combined with the long phase-coherence length
in graphene, suggests that these states will also be observable
in experiments even in the presence of disorder.

IV. CONCLUSIONS

Using a recursive Green’s-function method, we have calcu-
lated electronic transmission and density of states of graphene
antidot barriers and graphene antidot lattices, respectively, in
magnetic fields. We find, in general, electronic transmission
and density of states spectra to be in good agreement. We
have additionally derived an expression for the transmittance
of Dirac mass barriers in magnetic fields and found that this
provides a good description of the transport gap of graphene
antidot barriers for small antidot sizes and low to moderate
field strengths. Calculations of gapped graphene barriers, i.e.,
graphene with a staggered sublattice potential, are in good
agreement with the Dirac mass barrier, and therefore show the
same limitations.

We find that antidots support magnetic edge states, which
are robust against variations in lattice configuration, antidot
edge chirality, periodicity, and number of antidots. Moreover,
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we observe that these edge states survive a modest degree
of disorder. The robustness of these states suggests that they
will also be observable in experiments even in the presence
of disorder. Furthermore, we find that our results scale in a
simple manner with system size, thus allowing calculations on
small structures to generalize to larger structures. Additionally,
we observe magnetically induced band-gap quenching in both
density of states and transmittance due to magnetic edge states.
In the presence of mild disorder, some fine structure is washed
out, but several characteristic and prominent transmission
bands are found to survive.
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APPENDIX: DIRAC MASS BARRIER

We can estimate the transmittance through a GAB in a mag-
netic field by using the Dirac equation with mass term and mag-
netic field. The mass term and magnetic field are nonzero only
in the barrier region, thereby creating a magnetic Dirac mass
barrier (DMB). We calculate the transmission through this
system by matching wave functions at the interfaces on either
side of the barrier at x = 0 and x = d. We denote the regions
where x < 0, 0 � x � d, and x > d as region I, II, and III, re-
spectively. The wave functions are given by the eigenstates of a
generalized Dirac equation, which arises from the substitution
p → π , where π = p + eA is the generalized momentum,(

�̃(x) 1
�π

ξ
−

1
�π

ξ
+ −�̃(x)

)(
ψ1

ψ2

)
= k

(
ψ1

ψ2

)
. (A1)

Here, �̃(x) = �(x)/�vF , where �(x) is a mass term, which
we set equal to � inside the barrier to open a band gap of 2�,
and vanishing elsewhere. k = E/�vF is the magnitude of the
wave vector corresponding to energy E in graphene in the
absence of a B field or mass term. Also,

π
ξ
± = ξπx ± iπy (A2)

are the standard linear combinations of the x and y components
of momenta that occur in the Dirac equation for graphene
charge carriers in the ξ = ±1 valley. From now on, we shall
assume identical contributions from the valleys and drop the
ξ index. To set a constant magnetic field of strength B in
the ẑ direction in the barrier, we choose a Landau gauge;
see Eq. (2). Since this gauge, and the system in general, is
invariant along ŷ, we can write the spinor components of the
wave function in terms of Bloch functions,(

ψ1

ψ2

)
=

(
f (x)
g(x)

)
eikyy . (A3)

Region I. As the vector field is zero in region I, the wave
functions here are identical to those in pristine graphene. The
total wave function can be written as a sum of an incoming

(right-going) component of unit amplitude and a reflected (left-
going) component, giving

�I = 1√
2

[(
1

eiθk

)
eikxx + r

(
1

−e−iθk

)
e−ikxx

]
eikyy,

(A4)

where θk = tan−1(ky/kx) and r is the reflection coefficient.
Region II. In region II, the wave functions are solutions

of Eq. (A1) with nonzero mass and B field. Making the
substitutions px → −i�∂x and py → �ky and rearranging
gives [−∂2

x + W+(x)
]
f (x) = k2f (x),

(A5)[−∂2
x + W−(x)

]
g(x) = k2g(x),

where

W±(x) = �̃2 ± 1

l2
B

+
(

ky + x

l2
B

)2

, (A6)

where lB = √
�/eB is the magnetic length.

By using the substitutions z = √
2(kylB + x/lB) and ν =

(k2 − �̃2)l2
B/2 − 1, the expression for f (x) becomes the

Weber differential equation,(
∂2
z + ν + 1

2
− z2

4

)
f (x) = 0, (A7)

which has solutions in the form of parabolic cylinder functions
Dν(±z). This allows us to write

f (x) = 1√
2

[αDν(z) + βDν(−z)]. (A8)

Moreover, g(x) can be related to f (x) using Eq. (A1), and
using the identity ∂zDν(z) = z

2Dν(z) − Dν+1(z), we find

g(x) = i

lB(k + �̃)
[αDν+1(z) − βDν+1(−z)]. (A9)

The full wave function in region II is then

�II = 1√
2

(
αDν(z) + βDν(−z)√

2i

lB (k+�̃)
[αDν+1(z) − βDν+1(−z)]

)
eikyy .

(A10)

Region III. In region III, the magnetic field and mass terms
are set to zero again. However, unlike, e.g., Klein tunneling
problems where the wave function has a similar form to
region I, here we must account for the constant vector potential
remaining in this region. The vector potential cannot be set to
zero in this region, as this would imply an infinite magnetic
field in the interface between regions II and III. We define a
wave vector,

K = Kx x̂ +
(

ky + eB

�
d

)
ŷ, (A11)

in this region, and enforcing conservation of energy, which is
equivalent to conservation of the magnitude of the momentum
K = k, gives

Kx =
√

k2
x − d2

l4
B

− 2
d

l2
B

ky. (A12)
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The wave function in region III is then

�III = t√
2

(
1

eiθK

)
ei(Kxx+kyy). (A13)

Boundary matching. Continuity of the spinor wave function
components at the interfaces gives the following set of
simultaneous equations, which can be solved for r,α,β,
and t :

1 + r = αDν(z0) + βDν(−z0),

teiKxd = αDν(zd ) + βDν(−zd ),

eiθk − re−iθk =
√

2i

lB(k + �̃)
[αDν+1(z0) − βDν+1(−z0)],

tei(θK+Kxd) =
√

2i

lB(k + �̃)
[αDν+1(zd ) − βDν+1(−zd )].

(A14)

These four equations are all linear in the coefficients, which
makes it straightforward to formulate them as a matrix
problem and solve for the coefficients numerically. We can
then calculate the reflectance and transmittance as R = |r|2
and T = |t |2Re{Kx/kx} = 1 − R. The Kx/kx factor is
necessary in order to account for the change in longitudinal
momentum. Note that the expressions for R and T are exactly
the same as those used in optics.
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