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Abstract

Within structural pattern classi�cation the syntactic methods form an impor-
tant subgroup. These methods use formal languages as models for the individual
pattern classes. The languages can be grouped according to the complexity of
the allowed ordering of symbols. The most used types of languages in pattern
recognition and in general are the context-free and the regular languages. The
latter is a subgroup of the former and is computationally simpler. For patterns
subject to natural variations or noise stochastic languages are often used to
provide a statistical description of the variations within the language.

Statistical characteristics of the stochastic languages have a potential use in a
pattern recognition system. The main topic of this thesis is to develop meth-
ods for computing a set of statistical characteristics being independent of the
ordering of symbols in the string for stochastic context-free languages. By
focussing on the order-independent characteristics it is hypothesised that the
computations can be done using the simpler regular language representation of
the context-free language. Another important topic is to exemplify how such
order-independent characteristics can be used within pattern classi�cation.

This dissertation describes the development of the Parikh-Thomason-Larsen

approach to computing order-independent statistical characteristics of stochas-
tic context-free languages. The characteristics are related to the set of strings
in the language or the derivation process of the strings. Since the derivation
process of context-free language is signi�cantly dependent on whether the lan-
guage is expansive or non-expansive, the approach is formulated di�erently for
the two cases.

For the non-expansive case it has been shown that Pilling's Method provides a
useful tool for obtaining a regular language representation, and that a gener-

ating function representation of the obtained regular language can be used for
the computation of statistical characteristics.

For the expansive case methods known from complex function theory have been
applied. The Generalized Lagrange Inversion Formula has been shown to be
applicable to context-free languages in order to obtain a power series represen-
tation of the language. From the series order-independent characteristics can
be computed.

Various ways in which statistical characteristics can be exploited in pattern
recognition have been outlined. To exemplify the potential a two-stage syntactic
classi�cation strategy has been developed and tested experimentally.
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Dansk sammenfatning

Indenfor strukturel m�nstergenkendelse udg�r de syntaktiske metoder en be-
tydningsfuld undergruppe. Disse metoder modellerer de enkelte m�nsterklasser
ved brug af formelle sprog. S�adanne sprog kan inddeles i et hierarki udfra
kompleksiteten af den orden, som symbolerne kan have i forhold til hinanden.
Kontekst-frie og regul�re sprog er de to mest anvendte sprogklasser indenfor
m�nstergenkendelse. Sidstn�vnte klasse er en undergruppe af de kontekst-frie
og er pga. symbolernes simplere orden mindre komplekse at anvende. Ofte vil
m�nstre indenfor en klasse udvise naturlige variationer og/eller v�re p�avirket
af st�j. I s�adanne situationer kan klassi�kationen med fordel g�re brug af
stokastiske sprog, som giver mulighed for at etablere en statistisk beskrivelse of
sprogets variationer.

Statistiske karakteristika for stokastiske sprog har potentielle anvendelser in-
denfor m�nstergenkendelse. Hovedtemaet for denne afhandling er udvikling
af metoder til beregning af statistiske karakteristika for stokastiske kontekst-
frie sprog. Der fokuseres udelukkende p�a karakteristika, der ikke er p�avirket
af den orden, i hvilken symbolerne indg�ar. Derved opn�as, at de egenskaber
ved det kontekst-frie sprog, som er v�sentlige for karakteristikaene, kan mod-
elleres som et simplere regul�rt sprog. Et andet v�sentligt tema er belysnin-
gen af, p�a hvilken m�ade de beregnede karakteristika kan udnyttes indenfor
m�nstergenkendelse.

Denne afhandling beskriver udviklingen af Parikh-Thomason-Larsen metoden
til beregning af ordensuafh�ngige statistiske karakteristika for stokastiske kontekst-
frie sprog. Karakteristikaene vedr�rer strengene i sproget og deres a
edningspro-
ces. Sidstn�vnte er st�rkt afh�ngig af, om sproget er ekspansivt eller non-
ekspansivt, hvilket har givet anledning til, at metoden er formuleret forskelligt
for de to situationer. For de non-ekspansive kontekst-frie sprog er det blevet
vist, at Pillings metode er brugbar til at repr�sentere sproget vha. et regul�rt
sprog samt, at frembringende funktioner kan anvendes til at beregne statistiske
karakteristika udfra det regul�re sprog. For de ekspansive kontekst-frie sprog
er der blevet gjort brug af teknikker kendt fra kompleks funktions teori. Den
generaliserede udgave af Lagranges Inversions Formel danner grundlag for, at
sproget repr�senteres som en potensr�kke, udfra hvilken karakteristika kan
uddrages.

I afhandlingen er der ydermere en overordnet beskrivelse af, hvorledes statistiske
karakteristika for formelle sprog kan udnyttes indenfor m�nstergenkendelse. For
at underst�tte denne er der udviklet en to-trins klassi�kationsstrategi, som er
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blevet eksperimentelt veri�ceret.
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Chapter 1

Introduction and Overview

Ever since the early days of modern computer technology there has been a
signi�cant interest in emulating the intelligent behaviour of human beings by
computers. Such behavior involves human perception of the environment, which
includes the ability to recognise and perceive various 1, 2 and, 3 dimensional
patterns. Especially the perception of acoustic and visual patterns have at-
tracted signi�cant interest in the past 2 decades.

Any pattern recognition system can be in one of two possible modes of opera-
tion: i) Analysis mode (learning), and ii) Recognition mode (application). In the
analysis mode test patterns are analysed in order to learn which information is
relevant for a classi�cation. In the recognition mode new patterns are classi�ed
according to the knowledge obtained in the analysis mode. When the analysis
mode has been executed once on sets of learning patterns, the recognition mode
can be applied to new patterns as often as required.

The techniques for computer based pattern recognition can be grouped into
4 groups, i) statistical, ii) structural, iii) arti�cial intelligence based, and iiii)
arti�cial neural networks.

Statistical methods are based on a pattern description where each sample is
represented by a n-dimensional feature vector. Each feature is a numerical
measure of a characteristic of the sample, e.g., its length or colour. During the
analysis mode the features are chosen, and the statistical variations within each
class are described and evaluated in an attempt to partition the entire feature
space into mutually exclusive regions, with each region belonging to a speci�c
pattern class. Recognition is the process, where it is determined in which region
the unknown sample falls and subsequent to which pattern class it belongs.

Structural methods make explicit use of knowledge about the structure of the
object. It utilize a pattern description where each pattern is divided into sub-
patterns called primitives. Each primitive has no direct relation to the structure
of the pattern. A pattern is represented by knowledge about how sub-patterns
must be combined to make up the entire pattern, and how sub-patterns relate to
each other. The structural techniques can be further subdivided into structural
prototypes and syntactic methods. Only the latter will be described in more
detail. For the syntactic methods the analysis mode consists of constructing
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2 CHAPTER 1. INTRODUCTION AND OVERVIEW

rules for combining primitives in order to obtain the structure of a given object.
The methods are formulated around the concept of formal languages with each
primitive represented as a terminal symbol and a grammar inferred for each
pattern class. The recognition mode consists of checking whether an object
could be constructed using the rules associated with a speci�c object class.
This process is called the syntax analysis or the parsing of a string.

In methods based on arti�cial intelligence, numerical, structural, and other
types of information are used to describe the pattern. The analysis mode con-
sists of, determining the appropriate discriminant information, specifying each
pattern class as a kind of abstract concept, and specifying the conceptual re-
lations between the entities involved in the system. The recognition phase
involves taking observations relating to an object and using an inference engine
to determine whether or not a pattern can be a speci�c instance of an abstract
concept.

The arti�cial neural net approach has many similarities with statistical pattern
recognition concerning both the data representation and the classi�cation prin-
ciples. The practical implementation is, however, very di�erent. The analysis
mode involves the con�guration of a network of arti�cial neurons and the train-
ing of the net to determine how the individual neurons can e�ect each other.
The recognition mode involves sending data through the net and evaluating
which class got the highest score.

Further to the above mentioned \pure" methods, various hybrid methods have
been designed to bring together the power of two or more of the pure methods.

The syntactic pattern recognition methods make up the framework for this
thesis.

1.1 Aspects of syntactic pattern recognition

An important problem for the syntactic methods is their sensitivity to varia-
tions in data. In most real applications variations in the data will exist. This
can be due to natural variations in the data itself, to the acquisition process
required for the computerization of the recognition process, or to the extraction
of primitives. The problem is that the language representing a pattern class
inferred from a set of learning samples is not a�ected by the statistics of the
variations, e.g., one hundred identical strings close to the ideal version of the
object will not add more information concerning the rewriting rules than one
sample with signi�cant variation in relation to the ideal representation. This
is a signi�cant di�erence to statistical methods where such variations are mod-
elled explicitly. If variations in data result in large pattern classes the problem
of overlapping classes might occur. In such cases there is no way to measure
whether the classes overlap because of some wild outliers or because the classes
have some signi�cant similarities.

Stochastic languages have been introduced as a means of modelling the vari-
ations in data. A probability is attached to each rewriting rule denoting how
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likely it is to be used in a generating process of strings in the language. Rewrit-
ings due to outliers will therefore be given a low probability. Based on the
production probability a probability of the existence of each string in the lan-
guage can be computed. Strings caused by outliers will get a relative lower
probability than strings close to the typical pattern. In case of overlapping
classes it is possible to assign the pattern to the class most likely to have gen-
erated it.

Signi�cant work on how to use the statistical information for pattern recognition
purposes has been reported. Three major areas can be de�ned: i) Description
of pattern variations, [5, 9, 13, 12, 19, 16, 17, 21, 20, 51], ii) Classi�cation
strategies for overlapping classes, [7, 9, 19, 17, 31, 32, 51] and iii) Control of
the syntax analysis of strings, [31, 34, 43, 37, 47]. The majority of papers has
focussed on the use of the production probabilities and the string probability
derivable thereof, and only few have used other statistical characteristics.

Stochastic languages serve as a mechanism for getting statistical information
into the structural model, and it thereby makes it possible to compute a variety
of statistical characteristics related to the strings and to the grammar which
describe the process of generating the strings, e.g., mean string length or mean
number of occurrences of a speci�c primitive.

The methods for computing statistical information are based on mathematical
models of the process which create the individual patterns within a pattern
class. Properties of the model can then be given an interpretation in terms of
characteristics of the pattern class, thus without ever generating a single pat-
tern, knowledge about the entire pattern class can be obtained. It is primarily
the mean values of random variables for the entire class which are computable,
e.g., the mean number of symbols in a symbolic representation of all the pat-
terns. One of the models does, however, make a controlled enumeration of
all strings in the language possible, allowing for characteristics other than the
mean values to be computed.

One of the major advantages of syntactic pattern recognition is that it can make
use of the large theoretical and mathematical foundation of formal language
theory. Formal languages are grouped into a hierarchy, Chomsky's hierarchy,
consisting of 4 levels: i) unrestricted , ii) context-sensitive, iii) context-free and
iiii) regular languages. Regular languages form a subgroup of the context-free
which in turn is a subgroup of the context-sensitive language etc..

Choosing a speci�c language type for a given recognition problem is always a
trade-o� between the descriptive power of the type, the computational com-
plexity of the algorithms associated with it, and the amount of properties pre-
cisely de�ned for the type. The �rst two decrease moving down the hierarchy,
the latter increases. Context-free languages are widely used, because they are
su�ciently restricted to allow for a precise de�nition of many properties, the
recognition can be done in low-order polynomial time, and they are powerful
enough to allow for real world applications. Many applications within Natu-
ral language processing and Programming languages have been reported. Also
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most pattern recognition problems addressed by the syntactic approach have
been modelled by regular or context-free languages.

1.2 The motivation and aim of the study

Statistical characteristics contain information which has a potential use in a
pattern recognition system. The characteristics related to the primitives are
relevant for the classi�cation performance. The set of characteristics of a pat-
tern which contains enough discriminative power to separate the classes will
not be known prior to the analysis mode. Therefore all possible characteristics
including the statistical must be processed. Clearly it is of interest to know
the mean number of primitives in a pattern, or to know whether or not one
primitive is more likely than another.

Characteristics related to the derivation process will not directly e�ect the error-
rate of the classi�cation, but can play a role in designing the model/grammar
so it most e�ectively expresses the language of interest. As an example it is of
interest to know the mean number of rewritings required to generate a string
from a given class. This is important since during classi�cation it is necessary
to establish which productions were used to derive the string. The processing
time will therefore be an increasing function of the number of productions used.

Statistical characteristics not related to the ordering of the symbols of the string
form an important subset of characteristics; all those mentioned so far have been
based on order-independent random variables.

Often the high complexity of context-free languages are required in pattern
recognition situations. Such languages are conceptually more di�cult than
regular languages as the ordering of symbols are more complex. Any model for
context-free languages used for computing statistical information will therefore
always be more complex than its regular counterpart. From formal language
theory it is known according to Parikh [35] that it is possible for non-stochastic
languages to represent the information not related to the ordering of symbols
by a simple model, namely a regular language.

It is the primary goal for this study to determine, if the regular language repre-
sentation for non-stochastic languages can be extended to stochastic languages
and if so, which statistical characteristics are computable from the simpler
model.

It is the working hypothesis that:

Statistical characteristics related to order-independent random

variables for stochastic context-free languages can be computed uti-

lizing a regular language representation.

A secondary goal is to gain new insight in how statistical characteristics can be
utilized within the �eld of syntactic pattern recognition.
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1.3 An outline of the dissertation

The thesis comprises 7 chapters and 2 appendices.
Chapter 2 introduces the concept of stochastic languages, and outlines the
mathematical tools for manipulating such languages. It establishes the gen-
eral notation and terminology used in successive chapters. Finally, a set of
characteristics is described and it is shown how expansiveness of a grammar
signi�cantly e�ects the derivation-process for strings in the language. The last
observations result in the design of two separate methods for the computation
of characteristics.
Chapter 3 presents a new method for computing order-independent random
variables for non-expansive stochastic context-free languages and proves why a
direct extension to the expansive case is not possible.
Chapter 4 presents a method for computing the variables for expansive stochas-
tic context-free languages.
Chapter 5 gives an overview of the applicability of the existing and the new
methods to computations of speci�c characteristics.
Chapter 6 is devoted to an application in which statistical characteristics are
used in a syntactic pattern recognition system to allow for 
exible processing
time.
Chapter 7 summarises and concludes the results presented in the thesis and
points in the direction of future work.
Appendices A and B describe in detail how Markov chains and multi-type
branching processes can be used to compute statistical information about reg-
ular and context-free languages respectively. Strong emphasis has been given
to an algorithmic description complementing the traditional description of the
mathematics of the models.



Chapter 2

An Introduction to Stochastic

Languages

As mentioned in the previous chapter one of the advantages of syntactic pat-
tern recognition is that it can make use of the large theoretical foundation of
formal language theory. This chapter gives a very brief review of relevant parts
of formal language theory used in this study. Through a set of de�nitions and
theorems it establishes the general notation and terminology used in successive
chapters. The main emphasis is put on stochastic languages and their represen-
tations in terms of stochastic grammars.

Finally the set of characteristics are described, and it is shown how expansive-
ness of a grammar signi�cantly e�ects the derivation-process for strings in the
language.

2.1 Formal languages

Let there be given an alphabet A = fa; b; c; :::; zg of �nite cardinality and let
A? denote all strings of �nite length which can be build using elements from A.
A formal language L is any �nite or countable in�nite subset of A?. Any formal
language can be de�ned either by i) a listing of all strings in the language, either
explicitly or implicitly using a set-notation, ii) specifying an abstract machine
called an automaton capable of recognizing all strings in L and nothing else,
or iii) specifying a mathematical model called a grammar capable of generating
all strings in the language and nothing else.

In this thesis the languages will be de�ned in terms of grammars.

A grammar can formally be speci�ed as a 4-tuple G = (N;�; P; S) where N
and � are �nite sets of symbols called nonterminals and terminals, respectively
( � is identical to the alphabet of the language). S is a unique starting symbol,
and P is a �nite set of productions or rewriting rules with the general form
�! � where � and � are in (N [ �)?.

By imposing restrictions on how rewriting rules can be composed it is possible to
partition formal languages into a 4 level hierarchy called Chomsky's hierarchy,

6



2.1. FORMAL LANGUAGES 7

Unrestricted languages

Context-sensitive languages

Context-free languages

Regular languages

Figure 2.1: Chomsky's hierarchy of formal languages.

as shown in Figure 2.1. It is called a hierarchy since the regular are subsets
of the context-free languages which in turn are subsets of the context-sensitive
etc. In this thesis only context-free and regular languages are of interest and
their rewritings have the following characteristic forms;

Regular grammars:

Context-free grammars:

A! aA

A! b

for A 2 N and a, b 2 �.

A! �

for A 2 N and � 2 (N [ �)?

The di�erence between regular and context-free productions is that the right-
hand side can consist of any number of terminals and nonterminals for a context-
free production, whereas it is limited to at most one nonterminal and one termi-
nal for regular productions. From this it becomes apparent that the ordering of
symbols in a context-free language can be much more complex than in regular
languages.

De�ne two relations, ) and
?) on (N [�)?. If � and � are strings in (N [�)?

then we use the notation ��� ) ��� to indicate that ��� can be derived from
��� by using a single production, � ! �. If �1; �2; �3; � � � ; �m are strings in
(N [�)?, m � 1 and

�1 ) �2; �2 ) �3; � � � ; �m�1 ) �m

then we use �1
?) �m to denote that zero, one, or multiple rewritings must be

used to derive �m from �1. The sequence �1; �2; � � � ; �m is called a derivation.
The language L(G), generated by grammar G, is the set fw j w 2 �?^S ?) wg.
Strings must only consist of terminals and be derivable from the starting symbol.
A string � of terminals and nonterminals is called a sentential form if S

?) �.

There exist a so-called pumping lemma for regular and for context-free lan-
guages, e.g., see Aho and Ullman [1].
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For regular languages it states: Let L be a regular language. A constant k exist
such that if a string w is in L and jwj � k, then w can be written as xyz, where
0 < jyj � k and xyiz 2 L for all i � 0.
For context-free languages it states: Let L be a context-free language. A con-
stant k exist such that if jzj � k and z 2 L, then z can be written as uvwxy
where jvxj � 1, jvwxj � k, and for all i > 0, uviwxiy is in L.
The lemmas state that for strings above a certain length the derivation process
will contain a loop which will give rise to the repetition of a substring within the
string. Since there is no mechanism for controlling how many times a derivation
goes through a loop, any string resulting from any number of runs through the
loop must be considered a part of the language.

Often it is useful to present a derivation graphically, as done extensively in this
thesis. This is made possible by using derivation trees de�ned by K.S. Fu [18]

as:

De�nition 1 A labeled ordered tree D is a derivation tree for a context-free

grammar G = (N;�; P; S) if:

1. Every node of the tree has a label, which is a symbol in (N [ �).

2. The root of the tree has the label S.

3. If a node has at least one descendant other than itself, and has the label

A, then A 2 N.

4. If nodes n1; n2; : : : ; nm are the direct descendants of node n( with label A)

in the order from the left, with labels A1; : : : ; Am, respectively, then

A! A1A2 : : : Am

must be a production in P.

As an example of derivation trees Figure 2.2 shows the trees for the two strings
aba and ababa generated with a grammar having the productions; S ! aAS,
S ! a, A! bSA, and A! b. To every derivation of a string in a context-free
language there corresponds a derivation tree and vice versa.

In some cases there are di�erent ways to derive a string. A grammar is then
called an ambiguous grammar. The formal de�nition follows Aho [1];

De�nition 2 A context-free grammar G is said to be ambiguous if there is at

least one string w in L(G) for which there is more than one distinct derivation

tree with frontier w.

Two derivation trees are di�erent if the left to right ordering of nodes at any

level of the tree is di�erent.
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S S

a A S

b a

a A S

b a

a b

S A

Figure 2.2: Two derivation trees for the strings aba and ababa.

2.2 Stochastic Languages

A stochastic language is a collection of strings with a probability distribution
de�ned on the set of strings. The formal de�nition follows Booth [6],

De�nition 3 A stochastic language over the alphabet � is a pair (L,p),

where p is a function p : �� ! R. Three restrictions are de�ned on p1;

1. p(x) = 0 for x =2 L:

2. 0 < p(x) � 1 for x 2 L:

3.
P

x2L p(x) = 1:

For a stochastic language it is required that the sum of weights for all strings
equals 1, making p a probability function. Stochastic languages with strings
which has no upper limit on their length constitute a special situation since the
strings will have a very small weight as stated by Wetherell [49] in the following
theorem:

Theorem 1 Let (L,p) be a stochastic language. Then for each � > 0 there is

a number N � 0 such that

jxj � N ) � > p(x)

where jxj denotes the length of string x.

For in�nite languages it is not feasible to check whether the sum of probabilities
equals one, simply by adding the weights, since there will always be strings of
greater length representing a small part of the total probability mass. In such a
situation it is required to obtain a model for the generation process and perform
a test equivalent to evaluate its behaviour in the limit as the processing time
goes to in�nity [25, 6].

1The second restriction di�ers from the formulation by Booth concerning the lower limit
of p(x). Booth de�nes it as 0 � p(x) � 1 for x 2 L.
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Stochastic languages are typically speci�ed by a stochastic automaton or a
stochastic grammar. For a given stochastic language there is a one-to-one cor-
respondence between the strings accepted by the automaton and the strings
generated by the grammar meaning that both models can accept/generate the
same strings with identical probabilities. Any string in a language can be
modelled correctly concerning its syntactic structure by the corresponding au-
tomata/grammar but probabilities might be assigned to a string in such a way
that none of the models can reproduce strings with the correct probability as
stated in the following theorem by Booth [6]:

Theorem 2 There are stochastic languages for which no stochastic grammar

or stochastic automata can reproduce the correct probability for all the individual

strings in the language.

There are several explanations for this. As stated through the pumping lemmas
loops in the derivation process can result in strings di�ering from each other only
on the number of repetitions of a substring. The probabilities of such strings
will be dependent on each other, and they therefore cannot take any arbitrarily
probability. Furthermore a string is the result of a sequence of derivation steps,
each with a prede�ned �xed probability. Therefore the probabilities assigned
to generated strings, come from a discrete set of probabilities, and this fact can
con
ict with the fact that a string according to De�nition 3 can be assigned
any value in the range from 0 to 1.

Due to the inference mechanism creating the grammar the problem arising from
Theorem 2 is of no real concern when using stochastic languages for syntactic
pattern recognition, and most other applications. The grammar is typically
inferred from a �nite set of learning samples, in such a way that it is capable
of generating a set of strings of greater cardinality (possible countable in�nite)
having identical syntactic structure. In such a situation it is not relevant to
maintain the exact probability of individual strings in the learning samples.

2.3 Stochastic Grammars

A stochastic grammar is a 4-tuple Gs = (N;�; P; S) where N and � are �nite
sets of symbols. S is a unique starting symbol and P is a �nite set of productions
with the general form

pi : �! �

where � and � are in (N [�)?. pi is the probability that � is rewritten as � in
the derivation process for all elements in the language generated by Gs, L(Gs).

If the productions in Gs are stripped for the probabilities, the result is a gram-
mar called the characteristic grammar of Gs. The characteristic grammar can
be classi�ed according to Chomsky's hierarchy. A stochastic grammar is named
after the place in Chomsky's hierarchy obtained by its characteristic grammar,
e.g., a stochastic context-free grammar (SCFG) generates a stochastic context-
free language (SCFL).
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The stochastic grammar serves as a stochastic generating mechanism for strings
in a language. To be stochastic every step in the derivation process must be
described by a probability function. This means that a probability function
must control which of the possible production to use when a given nonterminal
is to be rewritten. This leads to the following de�nition;

De�nition 4 Let there be given a grammar G = (N,�,P,S) in which N consist

of n nonterminals. The set of productions can be partitioned in n equivalence

classes C1; C2 : : : ; Cn, each consisting of productions having the same nonter-

minal as the left-hand side. A grammar is proper if

X
pi2Cj

pi = 1

This thesis will concern only proper grammars.

Assuming that the use of one production is independent of which productions
were used earlier in the derivation, a probability for the entire string can be
computed as the product of the individual productions involved.

De�nition 5 Given a derivation � =< i1; : : : ; in > then the probability,

p(�) of a derivation � is

p(�) =
Y

1�k�n

pk

where pk is the probability of the kth production in �.

If a string is ambiguous and therefore can be derived in di�erent ways, the
probability is the sum of probabilities for the individual derivations.

De�nition 6 Given a string of symbols x = (a1a2 : : : an). Let f�ig for 1 � i �
m be the set of derivations giving x, then the probability, p(x) of a string is

p(x) =
X

1�i�m

p(�i)

For the language induced by the grammar to be probabilistic it is required that
the grammar must be proper and consistent.

De�nition 7 Let there be given a grammar G= (N,�,P,S) and let L(G) denote
the set of strings generated by G then if,,

X
x2L

p(x) = 1

the grammar is said to be consistent.

There exist methods to test consistency for regular and context-free stochastic
grammars. For detail see Appendix A and B.
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2.4 Characteristics

Strictly speaking the term \characteristic of a stochastic language" only covers
the information related to strings, as a sequence of primitives, in the language.
There is, however, a very tight connection between the language and the gram-
mar generating strings in the language. Therefore information related to the
grammar and the derivation process described by the grammar will be consid-
ered characteristics of the language in this thesis.

Characteristics can be grouped into the i) non-statistical and the ii) statisti-
cal characteristics. The �rst group covers the information which is available
without the process of counting, e.g., the Chomsky language type, the set of
nonterminals, the set of terminals. The statistical characteristics are by far the
largest group and cover everything which can be asked for by the questions
\How many ...?" and \How often ...?". Each characteristic is related to a ran-
dom variable, e.g., a random variable can be the number of occurrences of all
terminals, and based on that the mean string length can be computed and used
as a characteristic of the language.

In general it is of interest to compute 3 things for each random variable:

� Probability of the random variable taking a speci�c value, e.g., P (x = 4).

� Probability of a random variable being in a given interval, e.g., P (2 �
x � 4).

� Mean and variance of the random variable.

The random variables can be further divided into i) order-dependent and ii)
order-independent random variables. If it is associated with a terminal having a
speci�c position in the string or with a speci�c ordering of two or more terminals
in the string it is order-dependent. Likewise for random variables related to the
nonterminals and the productions. If the variable is only related to how often
things occur independently of where in the string or in the derivation it happens
it is order-independent. Formulated in terms of terminals, nonterminals, and
productions the following list outlines the possible groups of order-independent
random variables for stochastic languages.

� The number of occurrences of a speci�c terminal,

� The number of occurrences of a group of terminals,

� The number of occurrences of a speci�c nonterminal,

� The number of occurrences of a group of nonterminals,

� The number of applications of a speci�c production,

� The number of applications of a group of productions,
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The terms single and multiple entity random variable will be used to denote if
the variable only relates to just one terminal, one nonterminal, or one produc-
tion or if it involves two or more. The number of occurrences of terminal a is
a single entity variable, whereas the number of joint occurrences of a's, b's and
c's is a multiple entity variable.

As previously indicated the random variables can either be related to the strings
in the language in which case the variables are based on the terminals or be
related to the grammar and the derivation process based on nonterminals and
productions.

The grouping of random variables for stochastic languages can be summarized
in the following graph

Since the grammar is a generative device it can be used for a probabilistic
enumeration of strings driven by a random-number generator. By computing
frequency counts on the produced strings it would be possible to compute sta-
tistical characteristics for the language. This approach does, however, come up
against two major problems; how many strings should the grammar generate
in order for a su�cient number of di�erent strings to be available for con�dent
estimation of the probabilities, and how to ensure that the random-number
source controlling the derivation process is unbiased. Any bias would directly
e�ect the characteristics.

Another approach would be to use a mathematical model of the derivation pro-
cess. The probabilistic information about the production rules of the grammar
can be converted to information for the model. Statistical properties computed
for the model can then be interpreted as characteristics of the derivation pro-
cess. As described in Chapter 5 and in Appendices A and B, Markov chains

can be used to model the derivation process of stochastic regular languages,
whereas the theory of multi-type branching processes must be used to deal with
the high complexity of stochastic context-free languages.

2.5 Expansive grammars

The concept of expansive grammars play a special role in this thesis.

De�nition 8 A grammar G=(N;�; P; S) is expansive if a derivation in G

exist where

A
�) �A�A


for �; �; 
 in (N [�)?, and A in N.

Whether a language is expansive or not cannot always be detected by inspection
of the productions. It is a characteristic of the derivation process, but it can
always be determined. An algorithm for detection of expansiveness in a context-
free grammars is given by Baron and Kuich [3].
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0 1 2 3 4 5 6 7 8 9

G1 1 1 1 1 1 1 1 1 1 1

G2 1 1 2 5 14 42 132 429 1430 4862

G3 1 1 3 12 55 273 1428 7752 43263 246675

Table 2.1: Number of di�erent strings having the same number of occurrences
of symbols for 3 grammars having di�erent productions. The productions in-
troducing 1, 2, and 3 S's have been used 0 to 9 times each.

The concept of expansive grammars is not speci�cally related to stochastic lan-
guages, but it is a concept uniquely linked with the complexity of the generating
process for the strings. If a nonterminal can reintroduce two occurrences of it-
self in the derivation process, it contains a mechanism by which the number of
nonterminals in a sentential form can grow in an unbounded way. As an illustra-
tion of this consider 3 almost identical grammars Gi = (N;�; P; S), N = fSg,
� = fa; bg. The only di�erence between the grammars is the productions.

G1 :
G2 :
G3 :

S ! aS; S ! b

S ! aSS; S ! b

S ! aSSS; S ! b

G2 and G3 are clearly expansive, whereas G1 is non-expansive. For order-
independent random variables the ordering of symbols is not important, and all
di�erent strings which have an identical number of symbols add to the value of
the random variable. Table 2.1 shows the number of such strings for varying
number of applications of the productions S ! aS, S ! aSS, and S ! aSSS

in the respective grammars. It clearly shows the very rapid growth in strings
having identical number of symbols for the expansive grammars compared with
the non-expansive grammars and the dramatical e�ect it has when three instead
of two occurrences are introduced for each rewriting.

The rapid growth is very important, when a regular language representation
of the context-free language is to be constructed. Due to the signi�cant dif-
ferences in the derivation process for expansive and non-expansive context-free
grammars it is advantageous to verify the working hypothesis of this thesis by
designing 2 di�erent methods each having just the complexity needed for the
situation. The two methods is described in Chapter 3 and 4.



Chapter 3

A method for non-expansive

stochastic context-free

languages

The work described in this thesis aims at determining whether a regular lan-
guage representation can be used for computing order-independent character-
istics for stochastic context-free languages. In Chapter 2 it was shown that the
derivation process for strings for non-expansive and expansive grammars is very
di�erent. It has therefore been suggested that two methods, one for each type of
the derivation process would be required. This chapter develops a new method

applicable to non-expansive stochastic context-free grammars, i.e., the �rst of
the two cases. The method is proposed as an hypothesis, and the following
sections are devoted to verifying the hypothesis and describing how statistical
order-independent characteristics can be computed using the method. At the
end of the chapter it is shown why the method is not directly expandable to
the expansive case.

3.1 The hypothesis

Strings in a context-free language can have a complicated ordering of symbols.
Any model capturing this ordering will be inherently complex. If the infor-
mation of interest is not related to the ordering of symbols, as is the case for
order-independent characteristics, it may be possible to make use of a simpler
language representation. The fundamental idea behind the method is that as
the ordering of symbols has no relevance to order-independent characteristics
a representation in which the symbols are allowed to commute will not put
constraints on the computability of the characteristics. This is of signi�cant
interest, since Parikh [35] has shown that a regular language representation
can indeed be proven to exist for a context-free language in which the non-
terminals and the terminals are allowed to move around and take any posi-
tion in the strings and their intermediate sentential forms. This statement is
only proven for non-stochastic languages. Hence the use of it, in the context
of stochastic languages, requires a change in domain from stochastic to non-

15
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stochastic languages. This may be done by means of a derivation language.
In the new domain the production probabilities play the role of unique labels
and as the only terminals. Based on the context-free derivation grammar a
regular language representation is obtained. Each string in this new language
represents a derivation in the original stochastic language. As the terminals
of the string are production labels every statistical knowledge related to the
stochastic domain can be reintroduced by a proper interpretation of the strings
in the non-stochastic domain.

The above mentioned approach can be stated in a more precise manner by the
following hypothesis1:

Order-independent characteristics for stochastic non-expansive context-free

languages can be computed using the following three-step-procedure:

1. Change the stochastic context-free grammar into a non-stochastic

context-free derivation grammar.

2. Represent the derivation grammar as a set of regular expressions and

solve the set of expression equations.

3. Represent the solution of a set of regular expression equations by means

of generating functions.

The following sections will develop the hypothesis step-by-step and verify its
validity. At the end of the chapter it is shown why this method is limited to
the non-expansive case.

3.2 Step one

In an attempt to utilize existing knowledge and techniques known for non-
stochastic languages it is of interest to make a transformation of the problem of
obtaining the regular language representation of a context-free language from
the stochastic domain to the non-stochastic domain. The minimal information
about the stochastic grammar needed in the non-stochastic domain is that of
the syntactic structure of the productions, and which speci�c stochastic pro-
duction relates to a given non-stochastic production. The syntactic structure is
determined entirely by the con�guration of the nonterminals in the productions.
For the two domains the productions must be in a one-to-one correspondence
with each other.

The above ideas of a transformation are exactly those embodied in the concept
of derivation languages. The de�nition follows from Altman & Banerji [2].

De�nition 9 Let L be any context-free language. The derivation language

DL(L) is de�ned as the set of strings for which there is a one-to-one corre-

spondence between the string and a derivation in L. A grammar DG capable of

generating all strings in DL is called a derivation grammar.

1This hypothesis was initially put forward by Professor Michael G. Thomason, Department
of Computer Science, University of Tennessee, Knoxville, Tennessee, USA.
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ALGORITHM 1. Construct a derivation grammar from a SCFG.

Input:

Output:

Method:
A stochastic context-free grammar G = (N;�; P; S).

A context-free derivation grammar DG = (N 0;�0; P 0; S0).

1)

2)

3)

N 0 = N;S0 = S

�' = fpig, where pi is the production probability for produc-
tions in P, here used as a unique label.

Change a production from G having the form

pi : Ai ! x1A1x2A2 � � �xnAn

where xi 2 � and Ai 2 N , into a production in DG on the
form;

Ai ! piA1A2 � � �An

In order to create a derivation grammar for a context-free grammar it is neces-
sary to assign a unique label to each production in the context-free grammar.
Then a new grammar is constructed having the same set of nonterminals, but
the terminals are being replaced by the set of unique production labels and each
production is altered to contain only one terminal, namely the unique label for
the production that it is associated with.

The work described in this thesis utilizes that the production probabilities of
a stochastic production can be interpreted as a unique label instead of as a
numerical value. The detail about the transformation into a derivation grammar
is described in Algorithm 1.

As the information about the nonterminals is maintained, the syntactic struc-
ture of the strings generated by the two di�erent grammars will be alike. Since
the only terminals in a derivation grammar are production labels, there will be a
one-to-one correspondence between a string generated by a derivation grammar
and a sequence of productions in the original grammar.

Example 1:

Let two grammars G and DG be given, so that DG is a derivation grammar
for G.
G = (fS;Ag; fa; bg; P; S) where P contains the productions,
p1 : S ! aSA, p2 : S ! b, p3 : A! bA, p4 : A! a.
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DG = (fS;Ag; fp1; p2; p3; p4g; P 0; S) where P 0 contains the productions,
S ! p1SA, S ! p2, A! p3A, A! p4.

Consider the following two derivations;

S
p1) aSA

p2) abA
p3) abbA

p4) abba

S ) p1SA) p1p2A) p1p2p3A) p1p2p3p4

The string p1p2p3p4 in L(DG) represents the derivation sequence required to
derive the string abba in L(G).

It is important to note that a stochastic context-free grammar gives rise to a
context-free derivation grammar, so in this thesis it only serves as a mechanism
to change a stochastic grammar into a non-stochastic one.

3.3 Step two

A regular language representation is now to be obtained. Two di�erent ap-
proaches have been advised in formal language theory with one thing in com-
mon that no representation can be found which will give a full representation
of every aspect of the languages and will at the same time be applicable to
the entire class of context-free languages. This is, of course, straight forward
since otherwise Chomsky's hierarchy would be meaningless. One has to choose
between:

� Full representation of all aspects of a language but only applicable to a
subset of the context-free languages.

� A representation of a subset of aspects but applicable to all context-free
languages.

Altman & Banerji [2] have developed a representation limited to the class of
non-expansive grammars. For that subset of the context-free languages a com-
plete representation can be obtained. The basic idea is that the number of
nonterminals used in the sentential forms of a derivation for any string in a
non-expansive language will have an upper bound. Then the total number of
arrangements for these nonterminals for a given sentential form will be �nite.
If each of the arrangements are represented as a state in a �nite state machine,
then the transition between states corresponding to the correct arrangements
will describe a derivation of a string in the context-free language. Since the
machine is a �nite state machine a regular language representation has been
obtained.

Parikh [35] has taken the second approach and proved that any aspect except
those relating to the ordering of the symbols can have a regular language rep-
resentation and that it can be applied to all context-free languages.

Despite the fact that the chapter is concerned with the design of a method for
non-expansive grammars, the approach taken by Parikh will be the one pursued
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in this work. The reason for this apparent paradox is that Altman & Banerji's
method requires a considerable augmentation of the context-free grammar to
make it regular in order to model the ordering of the symbols. Since that
ordering is of no interest for the computation of order-independent random
variables it provides no real and practical alternative to Parikh's approach which
need no augmentation of the grammar and carries no knowledge about the
ordering of symbols.

3.3.1 Parikh's Theorem

To give a more formal description of Parikh's theorem it is required to de�ne
terms like commutative map, letter-equivalence, and semi-linear sets which will
be given below.

Let J denote the non-negative integers and let Jn be a set of n-element vectors,
where each element is from J .

De�nition 10 Let the set of terminals in a language L be denoted by � =
fa1; a2; :::; ang. De�ne a mapping � from �? into Jn by

�(w) = (]a1(w); ]a2(w); ::::; ]an(w))

where ]ai(w) denotes the number of occurrences of ai in a word w from the

language L. For any L � �? de�ne

�(L) = f�(w) j w 2 Lg

�(L) is the commutative map of L.

De�nition 11 Two languages L1 and L2 de�ned on the same alphabet are

letter-equivalent if �(L1) = �(L2).

De�nition 12 A subset Q of Jn is said to be linear if there exists members

�; �1; �2; ::::; �m of Jn, such that

Q = fx j x = �+ n1�1 + n2�2 + :::+ nm�m; ni 2 Jg

Q is said to be semi-linear if Q is a union of a �nite number of linear sets.

To be able to interpret Parikh's theorem it is necessary to have the theorem
below following Harrison [27].

Theorem 3 Let there be given an alphabet �. A set L � �? has a semi-linear

image if and only if L is letter-equivalent to a regular set.

Showing that a language has a regular language representation can be done
by showing that it is a semi-linear set. This is exactly the way Parikh have
addressed the problem [35].

Parikh's Theorem Let G be a context-free grammar generating the language

L. Let �(L) be the commutative map of L. Then �(L) is a semi-linear subset

Q of Jn.
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It is possible to interpret the result of Parikh's Theorem in the following way:
Two strings are letter-equivalent, if they have the same number of occurrences
of each symbol. Parikh's Theorem states that every context-free language is
letter-equivalent to a regular set. As every regular set can be generated by a
regular grammar a regular grammar exists which can generate strings with the
same occurrence of symbols as strings in any context-free language.

3.3.1.1 Why Parikh's theorem works.

To show that the commutative map of a context-free language is a semi-linear
set can be done by making use of the fact that the union of two semi-linear sets
is a semi-linear set. This allows for a partitioning of the set of all strings in the
context-free language into subsets.

First the set of nonterminals, N is partitioned into all possible subsets of N with
the additional constrain that every subset must contain the starting symbol S.
Each subset is called N i. L is partitioned into a set of equivalence classes, Li

each class de�ned using the relation that two elements are in the same class if
and only if, both are using the same set of nonterminals, N i, in the derivation
process. The language L becomes the union of all Li, L =

S
Li.

To show that L is a semi-linear set it requires that Li is a union of linear sets,
and in order to be linear a set has to consist of a �nite set of terms. How is it
possible in a �nite number of terms to represent a possible in�nite set of strings?
This is not possible in general, but the number of occurrences of symbols within
the set of strings can be represented. This can be done by breaking all strings
down into a �nite set of basic building blocks and then counting the number of
times they are used.

The breakdown in a �nite set of building blocks is based on Ogden's lemma or
the pumping lemma for context-free languages, which says that any context-
free language containing strings of length above a certain language dependent
constant n, must contain loops in the derivation process, i.e., the derivation
trees of such strings will contain repetitions of subtrees along at least one path
through the tree. For each Li two sets of basic building blocks RAi

and TS are
created.

RAi
:

TS :

Subtrees which for all Ai 2 N i derive a sentential form Ai
?) w1Aiw2, using

only nonterminals from Ni. The substrings w1 and w2 contain only terminals.
Such subtrees are capable of repeating the roots of the tree. It is argued that
a upper limit for the number of speci�c nonterminals along any path of the
derivation tree exists. Above the limit only repetitions will occur. The upper
limit ensures that the size of the tree is bounded and that the total number
of such trees therefore is limited.

Derivation-trees describing derivations of the form S
?) w, where w contain

no nonterminals and the derivations use only nonterminals from N i. Using
the same arguments as above it is argued that the number of such trees is
�nite.
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It is now argued that based on combinations of the two sets any string in Li

can be constructed. The idea is that any nonterminal in a tree in TS can be
replaced by one of the trees in RAi

and each time a new string z containing the
symbols from w1, w2, and w is obtained.

For each string w in TS we can represent the commutative image of all strings,
Qw, derivable by extensions of the derivation tree of w in the following way;

�(Qw) = �(w) +
X

n1i1V
A1

i1 +
X

n2i2V
A2

i2 + � � �+
X

nninV
An

in

where V Ai

k is the commutative image of the kth derivation tree associated with

Ai
?) w1Aiw2, n

j
i 2 f1; 2; 3; 4; � � �g. �(Qw) is clearly linear and since the set of

strings, wj in TS is �nite then

�(Li) =
[

�(Qwj
)

When �(Li) is a union of linear sets it is per de�nition a semi-linear set, and
it is now the case that

�(L) =
[

�(Li)

which shows that the commutative image of a context-free language is a semi-
linear set.

The general idea behind Harrison's theorem showing that a semi-linear set can
be represented by a regular language/grammar is that a regular grammar which
per de�nition must have a �nite set of terminals can be constructed so there is
a one-to-one correspondence between each terminal symbol ai and each of the
terms �(w) and V Ai

i in �(L) and through self-embedding productions of the

form A) aiA any number, nji , of occurrences of ai can be generated.

For details about the formal proofs the reader is directed to Parikh [35] and
Harrison [27].

3.3.2 Pilling's Method

Parikh's Theorem has been considered one of the most fundamental theorems
of context-free languages [11, 35] due to its theoretical importance. Parikh
was, however, not able to point out an e�cient algorithm to obtain the regular
language representation. Such an algorithm was provided several years later by
Pilling [38]. He provided a new interpretation of Parikh's Theorem, as a theorem
of solution to regular expression equations, and described an e�cient method
for obtaining a regular language representation of a context-free language.

Regular expressions were �rst de�ned by Kleene. The following de�nition is
due to Aho and Ullman [1]:

De�nition 13 Regular expressions over � and the regular sets which they

denote are de�ned recursively as follows:

1. � is a regular expression denoting the regular set f � g.

2. � is a regular expression denoting the regular set f � g.
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3. a in � is a regular expression denoting the regular set f a g.

4. If p and q are regular expressions denoting the regular sets P and Q,

respectively then

� (p+ q) is a regular expression denoting P [Q.
� (pq) is a regular expression denotingPQ.

� (p)? is a regular expression denoting P ?.

5. Nothing else is a regular expression.

Based on regular expressions it is possible to de�ne regular functions, and reg-
ular expression equations.

De�nition 14 A regular function is any function over a set of regular ex-

pressions based on the three operations, previously de�ned; (p+q), (pq) and (p)?,
where p and q are regular expressions.

De�nition 15 Let � = fx1; x2; � � � ; xng be variables representing sets.
Let 	 = fa1; a2; � � � ; ang be regular expressions.
A regular expression equation is an equation over the set of variables � so

that the coe�cients are in 	.

An algorithm for converting from a context-free grammar to a regular expression
equation is given in Algorithm 2.

Before Pilling's Method was published in 1973, methods existed for solving reg-
ular expression equations created from a regular grammar. An extension to
context-free languages would require that two problems were solved; 1) The
ordering of terminals and nonterminals can be arbitrary and 2) multiple occur-
rences of any nonterminal can take place, including the one that the equation
is to be solved for.

The �rst problem is related to the fact that the symbols in an equation must be
ordered in a special way for a solution to be obtainable. The problem can not
be solved in general, but in the case of Parikh's Theorem where commutativity
is assumed, Pilling shows that the commutative map of a language generated by
a grammar G is the same as for the language generated by a commutative set
of symbols, i.e., nonterminals and terminals so that the ordering of symbols is
not �xed. They can then be moved freely around to ensure the special required
ordering.

To address the second problem it is advantageous to view how Pilling describes
an equation. Any equation can be on the form:

A0 = f0(N;�)

where f0 is a regular function on the nonterminals and the terminals, that is, any
number of terminals or nonterminals can occur. He then separates the terms of
the equation into two groups, those involving A0 and those not involving A0.

A0 = E(N n fA0g;�) + F (N;�):A0
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where E is a function describing all terms in which A0 does not take part. F
is a function based on all terms in which A0 occurs at least once. F (N;�):A0

means that F (N;�) is concatenated with A0, where A0 is moved to the right
end of the substring by use of commutativity. According to Pilling the equation
has the solution:

A0 = [F (N;�) jA0=E(NnfA0g;�)]
?E(N n fA0g;�)

In short form it is written as:

A0 = [F (E)]?E

From the solution it is evident that Pilling solves the second problem by con-
sidering nonterminals other than the one for which the equation is to be solved,
A0, as a constant, and all occurrences of A0 are substituted with the set of
terms not directly related to A0.

An algorithm for solving a single equation is given in Algorithm 3.

In the following examples the simplicity and e�ciency of Pilling's Method are
illustrated.

Example 1.

Equation: A = abA+ c

Solution: A = (ab)?c
Where c represents E and ab represents F .

Example 2.

Equation: A = abAAA+ c

Solution: A = (abcc)?c
Where c represents E and abAA represents F .

Example 3.

Equation: A = aABAc+ e+ d

As the alphabet is commutative the equation can be rewrit-
ten.
Equation: A = acBAA+ e+ d

Solution: A = (acB(e+ d))?(e+ d)
Where (e+ d) represents E and acBA represents F .

In most cases where a grammar is used to derive a regular expression equation
more than a single equation exist. There will, in general, be one equation for
each nonterminal in the grammar. It is therefore of interest to see how Pilling's
Method solves a set of equations. The basic idea is that a set of equations can be
solved one equation at a time, treating the other nonterminals as constants. The
system of equations can be solved using the idea of Gauss's elimination known
from traditional systems of equations. An algorithm is given in Algorithm 4.

Example 4:

Let there be given a grammar represented as the following set of equations:
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S = aSSA+ b

A = cAB + d

B = eSB + f

Following Algorithm 4 the equation for S is solved �rst and the result is sub-
stituted in the equations for A and B.

S = (aSA)S + b = (abA)?b
A = cAB + d

B = e(abA)?bB + f

A solution for A is found and inserted in B and B is thereby solved.

S = (abA)?b
A = (cB)A+ d = (cB)?d
B = [e(ab(cB)?d)?b]B + f = [e(ab(cf)?d)?b]?f
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The solution for B is now inserted in A.

S = (abA)?b
A = (c[e(ab(cf)?d)?b]?f)?d
B = [e(ab(cf)?d)?b]?f

The last step is to insert the result for A in S.

S = (ab(c[e(ab(cf)?d)?b]?f)?d)?b
A = (b[e(ab(cf)?d)?b]?f)?d
B = [e(ab(cf)?d)?b]?f

Assuming that S is the starting symbol in the grammar, the solution for equa-
tion S will be a regular language representation of the language from which the
equations are produced.

3.3.3 The requirements

As the basic idea of the regular language representation is to represent a stochas-
tic language it is necessary to investigate, if the strings in the regular language
can still be given the correct probabilistic interpretation. A string in the regular
language representation can represent several strings in the original context-free
language. In order to have a correct probabilistic interpretation the string must
have a probability equal to the probability for all the strings represented by the
string. It is here important to remember that as stated in De�nition 6 in Chap-
ter 2, the probability of a string is the sum of probabilities for all di�erent
derivations of a string.

The problem to address therefore becomes one of determining, given a commu-
tative image of a string, how many di�erent derivations can be generated by
the string and to ensure that they all are accounted for. There are two di�erent
cases:

1. The grammar can be ambiguous so that di�erent derivations lead to the
same non-commutative string.

2. The grammar is un-ambiguous, but properties of the derivation process
can create di�erent trees having identical commutative maps.

3.3.3.1 Case 1.

This case does not constitute a problem as it can be proven that a derivation
language can not be ambiguous as stated in Theorem 4.

Theorem 4 Any derivation sequence language DL(L) of a context-free lan-

guage L is unambiguous.

There is only one string in DL(L) for each production sequence in L, but if L

is ambiguous each of the production sequences will have a string in DL(L).
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Proof:
The idea of the proof is to show that a string which is ambiguous can not be
generated by a derivation language.
Let the string w = a1a2 � � � ak be ambiguous, meaning that at least two di�erent
derivation trees exist for w. For the trees to be di�erent the two trees must have
a di�erent breakdown in subtrees. Let the two subtrees, which are di�erent but
are creating the same string, have a common root denoted Am. If two trees
having Am as the root are to have di�erent con�gurations, Am must have
multiple ways to be rewritten, e.g.,

Am ! aiAi � � �Ak

Am ! ajAj � � �An

where the ordered sequence (Ai � � �Ak) is di�erent from (Aj � � �An). Starting
with Am and using di�erent rewritings to get to the same frontier of the deriva-
tion tree requires that ai = aj . As each production has one unique label being
the terminal symbol, such an requirement can not be ful�lled by a derivation
grammar.

End of proof.

3.3.3.2 Case 2.

For two derivation trees to be di�erent and still have the same commutative
image the situation depicted in Figure 3.1 must occur. Somewhere in the deriva-
tion tree two identical nonterminals A1 and A2 having subtrees T1 and T2 exist,
giving rise to substring w1 and w2. If w1 = w2 it only counts as one tree. If,
however, w1 6= w2 it is possible that T1 and T2 can be interchanged, giving
rise to two di�erent trees having the same commutative image. In general two
ways exist for introducing such multiple occurrences of identical nonterminals,
1) through a derivation like S

?) z1Az2Az3 or 2) through a derivation like
A

?) z1Az2Az3. It is assumed that 1) does not have situation 2) as a subset of
its derivations.

Situation 2) is recognised as the situation characterizing the expansive gram-
mars, and within the scope of this method this situation is of no concern.

For situation 1) it can be shown that it constitute no problem in relation to
Pilling's Method, as stated in Theorem 5.

Theorem 5 All derivation trees for a non-expansive context-free derivation

language leading to strings having identical commutative maps will be accounted

for when Pilling's Method is used to obtain a regular language representation.

Proof:

Consider the situation where the multiple occurrences of a nonterminal is due
to a derivation like S

?) z1Az2Az3. For multiple occurrences to create a special
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problem A must be able to be rewritten in di�erent ways. Let the di�erent
ways be represented by the following equation.

A = aX + bY + � � �+ cZ + dA+ eA

where X;Y; � � � ; Z is in (N n fAg)?. When such an equation is solved using
Pilling's Method the results become:

A = (d+ e)?(aX + bY + � � �+ cZ)

From the de�nition of the union-operator (+) all possible combinations of the
terms will be accounted for, i.e., both (aX; bY ) and (bY; aX). Each of the terms
in a regular expression can be thought of as a sub-derivation tree, which proves
that all con�gurations of subtree are accounted for using Pilling's Method.

End of proof.

It can be concluded that all requirements for a probabilistic interpretation of
the strings in a regular language representation of a non-expansive derivation
language are ful�lled. This is, however, not the case for expansive grammars
which will be discussed i Section 3.6.

3.4 Step three

The last step is to compute the characteristics of interest for the stochastic
language, based on the solution of the set of regular expression equations. In
order to do so it is necessary to 1) change representation for the solution of the
equations and 2) to reintroduce the stochastic interpretation of the production
labels.

The change of representation is necessary as the form of the solution is in
set-theoretic terms which is not easy to work with. An obvious choice for a
representation is a generating function, which is known to be a powerful tool
and a natural way of expressing language properties.

De�nition 16 Let a0; a1; a2:::::::: be a sequence of real numbers. The function

F (x) = a0 + a1x+ a2x
2 + � � � =

1X
i=0

aix
i

is called the generating function for the given sequence.

The basic idea is that there will be one generating function for each of the
properties that will be investigated. The dummy-variable x will be associated
with a random variable RV , and the coe�cient to xn will be the probability of
n occurrences of the random variable.

The change in notation is possible, since the following rules for converting
between the set-domain and generating functions exist [28].

In a regular expression like (p1p2 + p4)
?p4, pi will denote the set fpig. There-

fore the generating function for fpig can be found to be pi, so the individual



28 CHAPTER 3. A METHOD FOR NON-EXPANSIVE SCFL

Set Gen. Funct.

Union C = A + B FC = FA + FB
Cartesian prod. C = A�B FC = FAFB
Sequence of C = (A)? FC = 1=(1 � FA)

Table 3.1: Relations between set operators and generating functions.

symbols are generating functions for the set which they represent. The union
of two sets becomes the sum of the generating functions for each of the two
sets. The Cartesian product is the operation, which in regular expression no-
tation is concatenation so the concatenation of two regular expressions can be
represented by the product of the two generating functions. Finally the very
important star operator (A)?, can be represented as 1=(1 � FA), which when
fAg is represented by its generating function A, can be written as

1 +A+A2 +A3 + � � � =
X

An

This shows that any star operation in a solution to a regular expression equation
can be represented as a sum of in�nitely many terms.

Having established a connection between the two domains, it is now necessary
to look at how the new representation is constructed correctly to represent a
speci�c property of the language and to look at how the statistical information
is brought into the representation. The basic idea for each of the symbols
in the solution is to make an inquiry into each production of the stochastic
grammar concerning the number of occurrences that the production gives rise
to regarding the random variable of interest. Let, as an example, the random
variable denote the number of occurrences of terminals in a string. Let there
be given two stochastic productions p1 : S ! aaS, p2 : S ! b, then assign a
x2 to the symbol p1 and a x1 to p2. The power of x represents the number
of occurrences which each production contributes to the random variable; i.e.,
production p1 contributes two terminals and p2 one terminal.

If this procedure is done for every symbol in the generating function represen-
tation of the solution to the system of equations, the result will be a generating
function capable of generating a sequence where the coe�cients to the dummy-
variable xn denote the probability mass associated with the set of strings having
n terminals.

Algorithm 5 describes the conversion from a regular expression to a generating
function.

When the generating function representation is obtained, information about
the mean and the variance for the random variable can be computed as:

E(RV ) = GF 0(x)jx=1 = GF 0(1)

V ar(RV ) = GF 00(1) +GF 0(1)�GF 0(1)2

An example of the use of Algorithm 5 is given in the next section.
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3.5 Computing characteristics

It is very important for understanding the potential and the limitations of the
method to realize that it is an enumerative technique based on a controlled
enumeration of strings in a derivation language, representing strings in the
stochastic language of interest. First, a simple example shows how characteris-
tics for a grammar can be computed, and then some more advanced examples
will be outlined in order to discuss the limitations of the method due to the
ennumerative approach.

3.5.1 A simple example

Let there be given a stochastic context-free grammarG = (fS; Ag; fa; b; c; dg; P; S)
where P has productions:

p1 : S ! aSA p2 : S ! cd

p3 : A! b

Let p1 = 0:7, p2 = 0:3 and p3 = 1.

Using step one G is changed into a non-stochastic derivation grammar
DG = (fS;Ag; fp1; p2; p3g; P 0; S), where P 0 has productions

S ! p1SA S ! p2
A! p3

Using step two the grammar is changed into a set of regular equations. There
is one equation for each nonterminal.

S = p1SA+ p2
A = p3

Substituting the value for A into the equation for S and allowing S to commute
the equation becomes:

S = p1p3S + p2

Using Pilling's Method the solution becomes:

S = (p1p3)
?p2

In step three the solution from step two is represented as a generating function.
There is one generating function for each of the random variables of interest.
In this example the generating function for the length of strings is used. The
variable x in the function denotes the number of occurrences of terminals in-
troduced when a production is used.

Gen:funct:(string length) =
1X
i=0

(p1xp3x)
ip2x

2

= p2x
2 + p1p2p3x

4 + p21p2p
2
3x

6 : : :
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The x's associated with p1 and p3 are raised to power one, since the productions
associated with these symbols only contribute one terminal to the length of
the string. The x associated with p2 is raised to the power of two, since the
production adds two terminals to the string every time it is used.

When the symbols are now given their numerical value the information directly
available from the generating function is:

A string of length 2 exists with probability p2 = 0:3
A string of length 4 exists with probability p1p2p3 = 0:21
A string of length 6 exists with probability p21p2p

2
3 = 0:063

...

Based on the generating function information about the mean and variance can
also be computed , E(string length) = 6.66 and Var(string length) = 31.11.

3.5.2 General considerations

For enumerative techniques it is often the case that the total number of enumer-
ations can be very large and for all enumerative techniques there is a problem
of determining how many enumerations/iterations are required to get the result
with a given accuracy. This is strongly related to the structure of the gram-
mar and therefore related to the structure of the solution obtained by Pilling's
Method. Some typical representative solutions for the generating functions can
be listed,

1)

2)

3)

4)

5)

6)

P1
i=0(p1p2x)

ip3

P1
i=0(p1 + p2x)

ip3

P1
i1=0

(p1p3)
i1
P1

i2=0
(p4p2x)

i2p3

P1
i1=0

(p1p2x)
i1
P1

i2=0
(p4p2x)

i2p3

P1
i1=0

((p1p2x)(
P1

i2=0
(p4p3)

i2))i1p3

P1
i1=0

((p1p2x)(
P1

i2=0
(p4p2x)

i2))i1p3

Case 1: This case contains no enumerative problems as each new step in the
summation gives a new value of some instance of the random variable x. The
enumerations must continue until the instance of interest is reached.

Case 2: This simple case touches upon a fundamental enumerative problem.
Those strings which should be counted are spread out over the entire set of
strings. Let us consider an example.

Let there be given a stochastic context-free grammar G = (fSg; fa; b; cg; P; S)
where P has productions:

p1 : S ! aS p2 : S ! bS

p3 : S ! c
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Let p1 = 0:3, p2 = 0:2 and p3 = 0:5. If we obtain the solution and express it in
terms of a generating function for the number of occurrences of e.g., terminal b
we get the following,

Gen.funct.(number of b's) =
P1

i=0(p1 + p2x)
ip3

Let us consider the situation in which we want to compute the probability of
strings containing one b. Every time we increase the enumeration index i we
derive new strings having one occurrence of a b. To get the correct probability
each new string should be added to the set of strings on which the accumulated
probability of strings having one b is computed. Looking at the added terms
for di�erent values of the enumeration index i we get,

i = 0:
i = 1:
i = 2:
i = 3:
i = 4:
i = 5:

p3
p1p3 + p2p3x

p21p3 + 2p1p2p3x+ p22p3x
2

p31p3 + 3p21p2p3x+ 3p1p
2
2p3x

2 + p32p3x
3

� � � 4p31p2p3x � � �
� � � 5p41p2p3x � � �

Note that as p1; p2; p3 are probabilities they represent values less than 1. There-
fore the resulting new additional term decreases rapidly in numerical value as
the index i increases. Any level of accuracy can be achieved by including more
and more terms. In practice a threshold on the increment in probability mass
achieved by going from i = k to i = k + 1 would be applied. In the example
setting a threshold � = 0:0001, 8 iterations is required. Going from i = 8 to
i = 9 gives an increase of 0.000059. With 8 iteration we get,

P(strings with one b) =0:203993

As can be seen from the listing of the terms the relevant terms in this case can
be expressed as

P(string with one b) =
P1

n=1 np
n�1
1 p2p3

If Maple is used to evaluate the sum from n = 1 to in�nity the correct result can
be found to be 0:204081. This result clearly indicates that good approximations
can be achieved by using a limited number of iterations in the theoretically
in�nite enumeration process.

Case 3 and 5: In these cases the strings are a result of two independent
summations. As the random variable of interest x is related to only one of the
summations, it is possible to evaluate explicitly the probability mass generated
by the other summations and use that result as a constant in the computations
of the random variable. Otherwise these cases follow case 1.

Case 4 and 6: In these cases the random variable of interest is associated with
both summations. Following the line of thoughts of case 2 an approximation
will be the only feasible solution.
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General considerations: It is considered that most real situations will result
in con�gurations of the regular language representation for which an approx-
imation of the values for the random variables is the only realistic result. As
the approximation can be obtained with any accuracy required this is not con-
sidered a signi�cant drawback of the method.

More information on the applicability of the method is given in Chapter 5.

3.6 Expansive grammars and Pilling's Method

The reason why the method presented in this chapter is restricted to the non-
expansive grammars is that expansiveness constitute a very special situation,
and that expansive grammars create situations in which a probabilistic inter-
pretation of the string in the regular language representation is not possible.
The problem is that since a nonterminal Ai can introduce at least two occur-
rences of itself during one or more rewritings, a mechanism exists by which
derivation trees for strings of even moderate size can have occurrences of the
same nonterminal Ai in many di�erent paths in the tree. For each of those
nonterminals subtrees can develop. Since they have a common root Ai, they
can be interchanged and still maintain the same commutative image. As will be
discussed in the next section, there is a fundamental con
ict between the fact
that the regular language representation by Pilling is based on strings where
the ordering of subtrees within the derivation tree is disregarded, and the fact
that the ordering of trees must be known to compute the correct probability of
a string.

To give a few examples of the problem Figure 3.2 shows some general con�gu-
rations having multiple occurrences, and Figure 3.3 shows one of the situations
in detail where it can be seen how di�erent con�gurations give the same com-
mutative map.

3.6.1 Documentation for the problem

It will now be proven that strings in a regular language representation of expan-
sive context-free languages obtained by using Pilling's Method can not directly
be given a probabilistic interpretation. First it is shown in Theorem 6 and 7
that for no expansive grammar the strings can be given a correct probabilistic
interpretation. Theorem 6 states that an equation, which in its right hand side
has multiple occurrences of the variable, for which the equation is to be solved,
always occurs when solving the set of equations for an expansive grammar.
Theorem 7 shows that the count of derivation trees is incorrect, when Pilling's
Method is used to solve an equation with such multiple occurrences. Secondly it
is shown in Theorem 8 that such problems occur only for expansive grammars.
The knowledge is summed up in Theorem 9.

Theorem 6 Let there be given a context-free grammar which is commutative

and expansive for symbol A. Let the grammar be represented as a set of regu-

lar expression equations. Then there will be an equation, either directly or by
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reduction of the set of equations, having the form:

A = F (X; Y; : : : ; Z; A):AA +E(X; Y; : : : ; Z; A)

F and E are regular functions. X,Y,. . . ,Z are nonterminals or terminals. A is

a nonterminal.

Proof: There are 2 cases in which the equation can appear:

� Directly. This is the trivial case where the grammar contains a production
of the form:

A! �AA

� Indirectly. This is the case where a number of productions has to be used
for the grammar to be expansive.

In such a case the equation for A, before any reduction of the set of
equations could be speci�ed as:

A = F (X; Y; : : : ; Z; A) +E(X; Y; : : : ; Z)

Since the grammar is expansive for A, some of (Z; Y; : : : ; Z) must, directly
or through a chain of dependencies, be a function of A.

Pilling [38] proved that a set of regular equations can be solved one equa-
tion at a time, treating the other variables as constants.

The multiple occurrences of A are a result of a sequence of rewritings of
nonterminals:

A) uX1vY1w ) uX2vY2w ) � � � ) uXnvYnw ) uAvAw

Since Xn; Yn can be rewritten as A, A is a part of the equation for Xn and
Yn. While solving those 2 equations A will be kept constant and therefore
becomes a part of the solution for Xn; Yn.

Since Xn�1; Yn�1 can be rewritten as Xn and Yn respectively, Xn; Yn is a
part of the equation for Xn�1; Yn�1. Since Xn; Yn is kept constant, and A
is a part of Xn; Yn, it also becomes a part of the solution for Xn�1; Yn�1.

In a similar way, it is guaranteed that the multiple occurrences of A
become a part of the equation for A. Since the language is commutative,
the symbols can be rearranged giving the equation:

A = F (X; Y; : : : ; Z; A):AA+E(X; Y; : : : ; Z; A)

End of proof.

Theorem 7 Given a regular equation of the form:

A = F (X; Y; : : : ; Z; A):AA +E(X; Y; : : : ; Z; A)

where F and E are regular functions. (X,Y,. . . ,Z) are nonterminals or terminals

of the underlying grammar.

If the equation is solved using Pilling's Method, not all di�erent derivation trees

leading to the same commutative image are detected.
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ALGORITHM 2. Conversion to a Regular Expression Equation.

Input:

Output:

Method:
A context-free grammar G = (N;�; P; S), speci�ed as
N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g

The production must be of the following form:
Ai ! �

A set of regular expression equations. The number of equations
is equal to the number of nonterminals in N .

1)

2)

/ * Computes the equivalence classes */

For all productions P do

if P = Ak ! � then

CAk
= CAk

[ fAk ! �g

End

End

/ * Create the regular exp. equations */

For each CAi
do

For each element in CAi
do

Ai = Ai + �

End

End
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ALGORITHM 3. Solving a single regular expression equation.

Input:

Output:

Method:
A single equation on the form

A = �1 + �2 + � � �+ �k, where �k 2 (N [ �)?.

A = f(�), where f(�) is a regular function on the set of
terminals.

1)

2)

3)

4)

Bring

A = �1 + �2 + � � �+ �k

on the form

A = �A + �,

where � = f(N;�) and � = f(N n fAg;�)

Change the equation into the form

A = �?�

Substitute A in � with �.

Output the resulting equation.
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ALGORITHM 4. Solving a system of regular expression equations.

Input:

Output:

Method:
A set of n equations each on the form
Ai = �1 + �2 + � � �+ �m, where �k 2 (N [�)?.

A set on n solutions each on the form
Ai = f(�), where f(�) is a regular function on the set of terminals.

1)
2)

3)

4)

5)

Set i = 1

If i = n go to step 3

Else

Apply Algorithm 3 to the ith equation and

Substitute the result into the (i+ 1)th .. nth equation.

Increase i and return to step 2.

End

i is now equal to n, move to step 4.

The equation for Ai only contains terminals now.

Output the equation for Ai and substitute the result for Ai

in the remaining equations.

If i = 1 Stop

Else

Decrease i by 1 and return to step 4.

End
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S S

A1

A2 A2

A1

T1 T2 T2 T1

w w w w
1 12 2x y z x y z

Figure 3.1: A situation in which two di�erent derivation trees have identical
commutative maps.

ALGORITHM 5. From a regular expression to a gen. function.

Input:

Output:

Method:
A stochastic context-free grammar G = (N;�; P; S).
E, a solution to the system of regular expression equations for the gram-
mar G.
RV , a random variable of interest in relation to G or L(G).

A generating function GF for the random variable RV .

1)

2)

/* Convert from E to GF */
Change terms like (pi + pj) in E to F (pi) + F (pj) in GF .
Change terms like (pipj) in E to F (pi)F (pj) in GF

Change (pi)
? from E into 1=(1� F (pi)) in GF

Set F(pi) = pi

/* Insert the stochastic information */
For each production in P do

Set � equal to the number of occurrences of the random
variable RV associated with the production.
Substitute pi with pix

� in GF

End
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SS S S

 d  S

S

a S S Ba

a

a A B

S S b S c S

a S B

b C

a S B

b S S

Figure 3.2: Illustrations of 5 situations which cause a grammar to be expansive.
The dots indicate nonterminals from which subtrees can be developed.

S S S S S

aSS aSS aSS aSS aSS

aSS d aSS d aSS aSS aSS aSSdd

aSS

d d

d aSS

d d

d d d d aSS d aSSd

d d d d

d

Figure 3.3: Five derivation trees derived from a grammar with productions
S ! aSS; S ! d. All trees have a3d4 as its commutative image.
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Proof. The equation is changed to �t the description for Pilling's Method.

A = F (X; Y; : : : ; Z; A)A+E(X; Y; : : : ; Z; )

where F (X; Y; : : : ; Z; A) now represent at least one occurrence of A. Using
Pilling's Method will cause a substitution of all the occurrences ofA in F (X; Y; : : : ; Z; A)
with E(X; Y; : : : ; Z).

The individual terms in the equation can be viewed as derivation trees. The
equations can be represented by sets of trees like:

A A

w
.............

a A A

A

a A A A

T T T T T

, , ,

The substitution in Pilling's Method will cause the trees to be changed into:

A A

w
.............

a A A

A

a A A A

w w w

TT

, , ,

The important thing here is that the number of di�erent ways in which subtrees
can be arranged to form a string is limited, since one of the terminals from
which it should develop is changed into a leaf. From the set of reduced trees it
is not possible to account for all di�erent trees leading to the same commutative
image.

End of proof.
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Theorem 8 Let G' = (N,�',P',S) be a derivation grammar for a commutative

context-free language. Let the grammar be represented as a set of equations.

Use Pilling's Method to solve the set of equations. Only if the grammar is

expansive, some of the derivation trees giving the same commutative image will

not be accounted for.

Proof: The problem arises because a commutative string can have di�erent
derivation trees, if the order of symbols is changed. To have di�erent deriva-
tion trees, it is necessary for a string to have multiple occurrences of identical
nonterminals among the leaves of the derivation tree at any given con�guration
of the tree. Such situations can occur in 2 cases:

1. Multiple occurrences without the nonterminals having a common root
with the same label as the nonterminals.

2. Multiple occurrences with a nonterminal of the same kind, being a com-
mon root.

Case 1:This is the situation described in Section 3.3.3, where Theorem 5 show
that it does not constitute a problem.
Case 2: The situation in this case is exactly a situation like the one described
in the de�nition of expansive grammars. From Theorem 6 and 7 it is known
that a solution using Pilling's Method will give an incorrect count of di�erent
derivation trees.

End of proof.

Theorem 9 Let the derivation sequence language for a commutative stochastic

context-free language be represented as a set of regular equations. Use Pilling's

Method to solve the set of equations. If and only if the grammar is expansive

the set of strings can not be given a probabilistic interpretation

Proof: The "if" part is proven by use of Theorem 6 and 7. Since some deriva-
tion trees will not be accounted for, the correct probability can not be derived.
The "only" part is proven by use of Theorem 8, which states that there are two
cases in which a string in a derivation language can have di�erent derivations.
The �rst case can be solved correctly. The second occurs only for the expansive
grammars.

End of proof.

Pilling's Method solves regular expression equations. If the equation has mul-
tiple occurrences of the variable for which it is to be solved, it fails to give
the correct count of derivation trees because, all but one is substituted with a
constant. This can directly be related to the development of derivation trees;
whenever multiple occurrences of the nonterminal take place, all but one is
forced to be rewritten as a terminal. Thereby the tree is only allowed to de-
velop from one nonterminal. This clearly limits the choices of combinations of
productions, and the count of di�erent derivation trees is therefore corrupted.

It is important to note that Pilling's Method counts all strings having di�er-
ent commutative image. This is possible because any tree starting with the
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production, which was forced to terminate, can occur as a subtree within the
subtree derived from the nonterminal which was not forced to terminate. An
illustration is given in Figure 3.4.

S S

aAB aAB

bS cS

aAB

e f

aAB

e f

e cS

aAB

bS f

aAB

e f

(1) (2)

Figure 3.4: Illustration of two derivation trees having the same commutative
image.

Tree no. 1 would not be among those accounted for by Pilling's Method, because
for example the S introduced by production A ! bS would have been forced
to terminate. As shown by tree no. 2 there exists a tree which is accounted
for by Pilling's Method, which has the same commutative image as tree no. 1.
Note that the subtree starting with bS in tree no. 1 can be found as a subtree
derivable from production B ! cS in tree no. 2.

3.7 Summary

The hypothesis proposed in Section 3.1 has been veri�ed. The three-step-
procedure does provide an approach by which statistical order-independent
characteristics can be computed for stochastic regular and non-expansive stochas-
tic context-free languages.

The new method makes use of a derivation grammar in order to map from
the stochastic domain into a non-stochastic (Algorithm 1). In this domain the
context-free grammar is represented as a set of equations and a solution by
Pilling's Method provide a regular language representation (Algorithm 2, 3 and
4). The solution is expressed in terms of a generating function which can be
designed explicitly for each random variable of interest (Algorithm 5). The
output of the generating function can be given a statistical interpretation.

The chapter provides new insight into how regular language representations for
non-stochastic languages can be used in the stochastic domain. This involves
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developing a strategy for changing from the stochastic to the non-stochastic do-
main and back in such a way that some statistical information of the language
can be maintained. Furthermore it has been shown that a regular language rep-
resentation based on Pilling's Method can not handle the complexity of expan-
sive context-free grammars in such a manner that the statistical interpretation
of the obtained results is possible.

By the design of the new method it has been made possible also to use an
enumerative technique for the computations of characteristics. It is based on a
controlled enumeration of strings in the language instead of the random gener-
ation of strings, resulting from using the grammar directly for the enumeration.
Enumerative methods have the advantage of allowing the computation of char-
acteristics related to a subset of strings in the language.



Chapter 4

A method for expansive

stochastic context-free

languages

To ful�ll the goal pointed out in Chapter 1 of designing methods for the com-
putation of order-independent characteristics for the entire class of context-free
languages the interest is now focussed on the expansive context-free grammars.
It is hypothesised that a method indirectly using a regular language repre-
sentation of the stochastic language exists, and this chapter is devoted to the
veri�cation of that hypothesis. The method makes highly use of a power series
representation of the language, and a short introduction to formal power series
is therefore given.

4.1 The hypothesis

The main statement of the hypothesis is that it is possible for any stochas-
tic expansive context-free language to compute the set of order-independent
statistical characteristics pointed out in Chapter 1. Furthermore, this can be
done by utilizing a simpli�cation of the computations equivalent to the one ob-
tained from a regular language representation. The simpli�cation comes from
letting the symbols commute and from working on the commutative map of the
context-free language.

Like in Chapter 3 the hypothesis involves transforming the stochastic gram-
mar into a non-stochastic derivation grammar. The transformed grammar will
remain context-free and expansive. It can then be represented by a set of
functional equations. It is known that expansive context-free grammars can
be mapped into a special form of functional equation for which Lagrange's In-

version Formula (LIF) [27] can provide a power series representation of the
language. LIF is de�ned for the one variable case (one variable = one nonter-
minal), and it is a part of the hypothesis that the generalisation of LIF by Good
[23], which will here be called GLIF, can be used to give a power series repre-
sentation of a language represented as a grammar with multiple nonterminals.

43
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The power series representations will turn out to be a very suitable representa-
tion of the language in terms of computing statistical characteristics, because
it contains the correct count of the di�erent derivation trees of the individual
strings.

In the process of deriving the power series solution, both LIF and GLIF assume
commutativity of the variables, and the solution contains no information about
the ordering of the symbols. The solution will be viewed as a indirect regular
language representation due to the commutativity.

The above mentioned approach can be stated in a more precise manner by the
following hypothesis.

Order-independent characteristics for stochastic expansive context-free lan-

guages can be computed using the following three-step-procedure:

1. Change the stochastic context-free grammar into a non-stochastic deriva-

tion grammar.

2. Represent the derivation grammar as a set of functional equations. Rep-

resent the result in terms of power series by use of the Generalized La-

grange Inversion Formula, (or by use of LIF).

3. Give an interpretation of the power series in terms of statistical charac-

teristics.

The following sections will verify the hypothesis.

4.2 Step one

In step one the stochastic expansive grammar is changed into a non-stochastic
derivation grammar. The situation is completely identical to the one in Chapter
3, so reference is made to Section 3.2.

4.3 Step two

Chomsky and Sch�utzenberger [8] have shown that a context-free language can
be represented as a power series. In this section their ideas will be outlined,
followed by two methods for obtaining a regular language representation of the
expansive language. One method is for grammars with only one nonterminal
and is described in order to establish the foundation, on which the generalization
to multiple variables can be build.

4.3.1 Formal power series for context-free languages

Any context-free grammar can be represented as a set of equations, for which
a solution can be shown to exist [8]. The solution can be expressed as a power
series where the coe�cients represent the number of di�erent ways to derive
a given string [8]. Through a series of de�nitions and theorems this section
outlines their ideas as they have been further developed and formulated by
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Saloma and Soittola [42], Kuich and Salomaa [30], and Salomaa [41]. Both the
case with non-commutative variables and the one with commutative variables
are treated. The outline starts with a few de�nitions concerning algebraic
systems leading to the de�nition of a formal power series.

An algebraic system consists of a set M and some operations o1; o2; � � � ; ol de-
�ned on the set M . The following notation is used M = < M ; o1; o2; � � � ; ol >.
A monoid is an example of a very simple algebraic system.

De�nition 17 A monoid is an algebraic system < M; ? >where ? is a binary

associative operation. It has a unique neutral element denoted e, so that a?e =
e ? a = a, a 2M

Another algebraic system of interest to the formulation of power series is the
semiring.

De�nition 18 A semiring is a system< A; +; � > where,

1. < A; + > is a commutative monoid with 0 as the neutral element for

addition.

2. < A; � > is a monoid with 1 as the neutral element for multiplication.

3. Multiplication is distributive over addition.

4. 0 � a = a � 0 = 0 for every a 2 A.

As examples of semirings can be mentioned N , I and C, denoting the semirings
of the natural numbers, integers and complex numbers respectively. Combining
the two de�nitions it is possible to de�ne a formal power series.

De�nition 19 A formal power series r is any mapping from M? into a

semi-ring A.
r will be an in�nite sum of the form r =

P
w2M?(r; w)w

The term (r; w) will be called the coe�cients of the series, and r is a series with
non-commuting variables in M . The set of all power series based on M and A

is denoted by A << M >>.

De�nition 20 For a given power series r in A << M >> the set of strings

de�ned as

fw j (r; w) 6= 0g
is the support of r and is denoted by supp(r).

A monoid of special interest in language theory is the free monoid �?, de�ned
over an alphabet � and for the operation called catenation. The neutral element
is the empty string �. �? represents all possible combinations of elements from
the alphabet. As stated in Chapter 2 any subset of �? is a language. Consider
now a function r which transforms any element in �? into a number representing
a property of the element. The mapping could be as simple as: assign 1 to w
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if w 2 �? and w 2 L, otherwise assign 0. The language expressed in terms of
the power series is identical to supp(r).

A grammar G generating the context-free language L(G) can be represented as
a set of equations for which a solution exists.

De�nition 21 Consider a context-free grammar G = (N,�,P,S) where
N = fA1; A2; : : : ; Am g, � = fa1; a2; : : : ; ak g, and a set of productions of the

form Ai ! �, where � 2 (N [ �)?. An algebraic system of equations is a

set of equations representing G having the form:

A1 = f(A1; A2; : : : ; Am; a1; a2; : : : ; ak)

A2 = f(A1; A2; : : : ; Am; a1; a2; : : : ; ak)

...

Am = f(A1; A2; : : : ; Am; a1; a2; : : : ; ak)

If the grammar does not contain productions of the form Ai ! � or Ai ! Aj

the system of equations is termed proper.

Theorem 10 For each proper algebraic system of equations de�ned as above,

there exist exactly one solution � = (�1; : : : ; �m) for which the empty string is

not included.

There is one solution for the entire set of equations made up of solutions for
each of the nonterminals. When modelling a grammar the only interesting item
is the solution related to the nonterminal, which is the starting symbol. The
solution for a context-free grammar can be expressed as a power series as shown
by the following de�nition and theorem.

De�nition 22 A power series r in A << � >> for which (r; �) = 0 is termed
A-algebraic i� it is a component of the solution of a proper algebraic system

of equations.

Theorem 11 Let there be given a context-free grammar G de�ning a language

L(G), then there exist a N-algebraic series r, for which supp(r) equals L(G).

As N is the set of natural numbers f0,1,2,3, . . . g the theorem says that any
context-free language can be represented as a series with coe�cients from
f0,1,2,3, . . . g. The interpretation of these coe�cients in language theoretical
terms is determined through the next theorem.

Theorem 12 The coe�cient of each word in the N-algebraic series r(G) gen-

erated by a context-free grammar G equals the number of di�erent derivations

of w.
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If the coe�cient is 0 the string is not in the language, if it is 1 the string is
in the language and can be generated unambiguously, if it is 2 two di�erent
derivations trees for the same string exist, etc..

Changing a grammar from having non-commutative symbols to one with com-
mutative symbols will induce some changes on the language generated by the
grammar. These changes can be described as a mapping carrying all strings
having identical commutative images into one string. The sum of di�erent
derivations for this commutative string will then be the sum of the derivations
for the individual trees represented by the string in the commutative language.
Such changes do, of course, not e�ect any of the fundamental theorems just
outlined. It requires, however, a de�nition of a commutative formal power
series.

Let c(M?) be the commutative monoid. Assume that M = fx1; x2; : : : ; xmg,
then c(M?) can be written as

c(M?) = fxn11 � � � xnmm j n1; n2; : : : ; nm � 0g

De�nition 23 A commutative formal power series c(r) is any mapping

from c(M?) into a semiring A. c(r) will be an in�nite sum of the form

c(r) =
X

n1;:::;nm�0

(r; xn11 � � � xnmm )xn11 � � � xnmm

The two de�nitions concerning power series are related in the following way:

c(r) =
X

n1;:::;nm�0

X
c(w)=x

n1
1
;:::;x

nm
m

(r; w)xn11 � � � xnmm

When the commutative monoid is the commutative free monoid �? the theorems
from the non-commutative case can be combined to the following theorem:

Theorem 13 Let G be a grammar generating a context-free language L. Let

c(R(G)) be a mapping from c(�?) into the semiring N . Then the coe�cients

(r; xn11 � � �xnmm ) in c(r(G)) equal the number of di�erent derivation trees in L,

having identical commutative maps.

Proof:
Follow directly from the de�nition of (r; w) for the non-commutative case and
from the de�nition of c(r) for the commutative case.
End of proof.

From the �eld of complex analysis the following de�nition of a power series can
be found [29],

De�nition 24 A power series in powers of z-a is an in�nite series of the

form:
1X

m=0

cm(z � a)m = c0 + c1(z � a) + c2(z � a)2 + � � �

where z is a variable, c0; c1; : : : are coe�cients and a is the center of the series.
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A power series for multiple variables can be obtained in a similar way by treating
m, c, z and a as vectors. Setting a = 0, power series in powers of z can be
obtained.

1X
m=0

cmz
m = c0 + c1z + c2z

2 + � � �

It can be shown that any analytic function can be represented by such a power
series. This means that for a given value of z, the sum of terms on the right
hand side converge to the value of f(z).

The following notation will be used in the remaining chapters of this thesis.
Let r(x) be a power series in powers of x then [xn]r(x) denotes the coe�cient
of xn in power series r(x).

To di�erentiate between the two de�nitions of power series given in this section
the name formal is attached to the series relating to letters from an alphabet.

There is a close relationship between the two representations which will be
discussed and used extensively in the following sections.

4.3.2 Obtaining power series using LIF

It will now be investigated how a power series representation of a language can
be obtained. The presentation will be divided into two parts. In this section
grammars with only one nonterminal will be treated, and in the following section
the generalization to multiple nonterminals are stated.

The non-stochastic derivation grammar for any stochastic context-free grammar
having only one nonterminal will have productions of the following general form,

S ! aiS
i

i.e., it will consist of a �nite number of the following productions.

S ! a0; S ! a1S; S ! a2S
2; : : :

This can be recognized as the Lukaciewicz languages [4]. The languages can
be characterized in the following way. De�ne an injective mapping � : �? ! I,
mapping any terminal symbol of the grammar into an integer in the following
way,

�(ai) = i� 1

and mapping a sequence of terminals,w, into a number by,

�(w) =
X
ai2w

�(ai)

De�nition 25 A Lukaciewicz language is the set of words from �? such

that

� �(w) = -1, and

� �(w0) � 0, where w0 is any pre�x of w.
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Lukaciewicz languages can be represented as an equation on the following form

S = a0 + a1S + a2S
2 + a3S

3 + � � �

which in general is a functional equation of the form S = f(S). A solution to
the functional equation is any string derivable from the initial grammar, i.e.,
any string in the Lukaciewicz language. The set of all solution is the language
itself.

To obtain a representation of the commutative map of the language a mathe-
matical tool called Lagrange's Inversion Formula (LIF) [50, 24] is used. It is
very useful in obtaining solutions to functional equations of the form,

z = �f(z)

The solution will be expressed in terms of power series in powers of t. The
equation of the Lukaciewicz language can easily be changed to �t the require-
ments of LIF, simply by introducing a dummy variable t which will then be
used as a place-holder for the results of LIF, but given no language theoretical
interpretation. It then becomes,

S = tf(S)

LIF can be expressed in the following way, using the formulation by Good.

Lagrange's Inversion Formula Let z= �f(z), where f is analytic in a neigh-

bourhood of the origin and does not vanish there, and suppose h(z) is also an-

alytic in a neighbourhood of the origin. Then z can be expressed in a power

series in � and

[�m]h(z) = m�1[zm�1](h0(z)f(z)m)

where m = 1,2,3,....

LIF is stated for complex analytic functions, and the reader is referred to Har-
rison [27] for a strictly mathematical example, i.e., x = yex. In this thesis a
language theoretical interpretation of LIF will be used. A simple example is
given in Harrison, and a more general discussion has been given by Lothaire
[33] and Raney [39]. The language theoretical interpretation is based on the
following relationship between LIF and the context-free grammar G.

� The equation f(S) obtained from the grammar is the function f(z) in
LIF. The nonterminal of the grammar becomes the variable in LIF.

� A dummy variable t is inserted in the equation f(S), but is given no
language theoretical interpretation.

� For the function h(z) in LIF the following function will be used, h(S) = S.

As can be seen directly from the formula, LIF has the potential of solving
the equation and expressing the solution, not just for u, but for any analytic
function of z, h(z). This will, however, not be used in this formal language
application of the formula.
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Once the relationship between LIF and the grammar G is known, it is possible
to evaluate, if the requirements of LIF is ful�lled by the formal language. The
requirement is that f(S) and h(S) are analytic functions. Previously it was
argued that when a Lukaciewicz language is represented as an equation it will
take the form,

S = a0 + a1S + a2S
2 + a3S

3 + � � �
which is a polynomial in S. It is well known that that any polynomial is an
analytic function, e.g., see Colombo [10]. h(S) can be viewed as a constant
polynomial, and therefore both requirements are ful�lled.

In an attempt to relate the computations performed by LIF to operations on
L, the following theorem from Lothaire [33] based on the work by Raney [39]

is of interest.

Theorem 14 Represent a Lukaciewicz language as a functional equation:

S = tf(S)

then a unique power series solution � exists so that

n[tn]S = [Sn�1]f(S)n
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Proof:

An outline of an combinatorial proof is given, the reader is referred to Lothaire
or Raney for full details.

De�ne a mapping U from �? into an algebraic �eld K so that

� U(ai) = ui, where ai 2 �.

� U(ai ? aj) = U(ai) � U(aj), where ? is catenation and � is multiplication.

� U(B) =
P

w2B U(w), where B is a �nite subset of �?.

Basically the mapping generalize the situation by taking the problem from a
speci�c algebraic system with the catenation-operation to a more general system
with multiplication and addition.

It is argued that the unique solution S of the functional equation has the fol-
lowing property

[tn]S = U(L
\

�n)

The coe�cient to tn in S is related to the words of length n in the Lukaciewicz
language L.

Let ��1(�1) be all strings w in L having �(w) = 1, i.e., all strings ful�lling
the �rst of the two conditions for strings in a Lukaciewicz language. It can be
shown that for each string in L, there are n strings in �? with ��1(�1), which
can be expressed as

n[tn]S = U(�?
\

��1(�1))
By looking at the outcome when the polynomial f(S) is raised to power n the
following observation can be made,

U(�?
\

��1(�1)) = [Sn�1]f(S)n

By combining the statements the required result is obtained.
End of Proof.

Based on the description so far in this chapter it is possible to conclude the
following:

A context-free grammarG, generating L(G), can be represented by a set of algebraic
equations. The equations have a solution which can be expressed as a formal power
series r(L). The commutative map of L can be represented likewise in terms of a
commutative formal power series, c(r(L)).
For the one nonterminal case G can be mapped into a functional equation, for which
a solution, representing the commutative map of L, can be obtained in terms of a
power series.
The commutative formal power series and the power series both representing the
commutative map of L are identical, and the relationship between them can be
expressed as

[tn]S = (r; w)w for (r; w) 6= 0 ^ jwj = n
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To illustrate the language theoretical interpretation of the result from LIF the
following grammar will be used. GLIF = (fSg; fa; bg; P; S) where P contains
the two productions; S ! b; S ! aSS. Written as an equation the productions
look like S = b+ aS2. Using LIF the result becomes:

S = bt+ abbt3 + 2a2b3t5 + 5a3b4t7 + � � �

If the productions are used, the following strings can be generated:

L = fb; abb; aabbb; ababb; aaabbbb; aababbb; aabbabb; abaabbb; abababb; : : :g

The commutative map of L, �(L) becomes:

�(L) = fb; ab2; 2a2b3 + 5a3b4 + � � �g

which is identical to the results generated using LIF when t is considered a
dummy variable.

Some insight into how LIF work on languages can be obtained by looking at
how LIF process f(S). Consider as an example the case where the information
related to strings of length 5 is obtained. For f(S) = b+ aS2 strings with �ve
symbols come from (b+ aS2)5. This expand into a total of 32 terms including
the following:

(b+ aS2)5 = bbbbb+ bbbbaS2 + bbbaS2b+ bbbaS2aS2 + � � �+ aS2baS2bb+ � � �
+aS2a2bbb+ � � �+ aS2aS2aS2aS2aS2

Out of the 32 terms only 2 represent valid strings from L. Only the 10 terms
containing S in power n � 1, i.e., S4, will have the right combinations of a's
and b's to ful�ll the requirement of having �(w) = �1. The coe�cients of those
10 terms are listed below;

bbbaa

bbaba

bbaab

babba

babab

baabb

abbba

abbab

ababb

aabbb

These can easily be identi�ed as all combinations of 2 a's and 3 b's. They
are a result of purely combinatorial considerations without any relation to the
restrictions on the ordering of the symbols put forward by the productions.
Referring to the previous listing of strings in L it can be seen that only the last
2 coe�cients in the above list for (b+aS2)5 are valid strings. Only those two can
be constructed from the productions, i.e., they are the only strings that ful�ll
both of the requirements for Lukaciewicz languages. The last requirement is
that any pre�x w0 of the string w should have �(w0) � 0. As an example bbbaa
has proper pre�x; �, b, bb, bbb, bbba. By de�nition �(�) = 0, but �(b) = �1,
�(bb) = -2, � � � : The valid string ababb has proper pre�x; �, a, ab, aba, abab,
with �(�) =0, �(a) =1, �(ab) = 0, �(aba) =1, �(abab) = 0.
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4.3.3 Obtaining power series using GLIF

LIF can only be used for expansive grammars having one nonterminal, and it is
therefore necessary to look for a more versatile tool for handling all expansive
grammars. In this section a generalization of LIF due to Good is introduced
and its applicability to expansive grammars is documented.

A context-free grammar G = (N;�; P; S) will in general make use of a set
of nonterminals N = fA1; A2; : : : ; Am g and a set of productions of the form
Ai ! �, where � 2 (N [�)?. The set of all productions can be partitioned into
equivalence classes Ci, one for each nonterminal. Ci contains all productions
having Ai as its left-hand side. The grammar can be represented as a system
of equations where each equation will be on the following general form:

Ai = �i1 + �i2 + � � �+ �il

�i1 ; : : : ; �il are all the individual right hand sides in Ci. In the equations the
terminals become constants, and the nonterminals play the role of variables.
For a grammar with k nonterminals it can be represented as a system of k
equations as described in De�nition 21.

The complete solution for equation Ai = f(A1; A2; : : : ; An) is the entire set of
strings from �? which can be derived using the productions from P , having
started the rewriting process with nonterminal Ai. Let AS be the starting
symbol of the grammar. Then only the equation for AS will be of direct interest
since only that solution will be identical to the language generated by G, L(G).

Due to the success of using LIF for the one-variable case it seemed natural to
look for a generalization of LIF in order to derive a power series representation
of the system of equations. Such a generalization exists. It was developed by
Good [23] in 1960. Following the ideas of Good, GLIF can be stated as,

The Generalization of Lagrange's Inversion Formula (GLIF)

Let z = (z1; z2; : : : ; zn ), � = (�1, �2, . . . , �n ), f = ( f1, f2, . . . , fn). Consider

a system of equations each being on the form:

zi = �ifi(z)

If each component of f(z) is analytic at the origin and does not vanish there,

and G(z,�) is meromorphic in the neighbourhood of z = � = 0, then

[�m]G(z(�); �) = [zm]

(
G(z; �(z))f(z)m






�ji � zi

fi(z)

@fi(z)

@zj







)
;

where kaijk denotes the determinant of the matrix (aij) and where i,j = 1, 2,

� � �, n, and the components of m are integers, possibly negative. The notation

implies that G is to be regarded as a function of � on the left of the equation,

and as a function of z on the right.

Similar to the interpretation for LIF it is possible to relate GLIF to languages
represented as grammars. This is done in the following way,
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� Each of the equations of the form Ai = f(A1; A2; : : : ; An) is augmented by
a dummy variable ti to take the form Ai = tif(A1; A2; : : : ; An). Each new
augmented equation will be used as an equation zi = �if(z) in GLIF. The
nonterminals in the grammar thereby become the variables in f(z). The
terminals do not contribute to the derivation process and can therefore
be viewed as constants.

� The function G(z(�); �) in GLIF has the role of specifying which rela-
tionship between the variables of the system, should be expressed by the
resulting power series. From a language theoretical point of view the only
solution of interest is the one for the equation for the starting-symbol AS .
The function G(z(�); �) will therefore be replaced with AS .

It has not been possible to give a combinatorial proof of the generalization from
which documentation of its relation to words(formal language) could have been
taken. Documentation of GLIF's applicability to formal languages is instead
based on proving that the interpretation ful�lls the requirements put forward
by GLIF.

The requirements are that each Ai = f(A1; A2; : : : ; Ak) is analytic and that AS

is meromorphic. Each of the equations are polynomials in several variables. It
is well-known that any polynomial in several variables is an analytic function,
e.g., see Range [40]. A meromorphic function is any function for which it can
be stated that if the function has singularities they are poles [29]. A singularity
at a given point in the plane arises when the function is not analytic in that
point. For a singularity to be a pole the Laurent series representing the func-
tion in the singularity point must contain only a �nite number of terms in its
principal part (terms of the form cn=(z � a)n). Since AS can be viewed as a
constant polynomial it is analytic over the entire plane, and both requirements
are therefore ful�lled.

To develop an understanding of how GLIF works on languages, some of the
di�erences between LIF and GLIF are considered. The di�erences relate to how
the methods process the equations from the grammars, and how the counting
problem look like in terms of derivation trees.

In terms of a language theoretical interpretation the formulation of GLIF must
comprise 3 di�erent mechanisms,

1. Provide all possible combinations of the productions of the grammar.

2. Point out the set of valid strings among all the combinations.

3. Provide the correct coe�cients, i.e., the count of di�erent derivation trees
for all strings having identical commutative maps.

The �rst mechanism is obtained by f(z)m. In a more expanded form it looks
like

fm1
1 (z) � fm2

2 (z) � � � fmn
n (z)
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The integer mi represents the number of times productions from equivalence
class Ci will be used. If in general the subset of L(G) consisting of all strings us-
ing exactly k productions from G is of interest, then the following combinations
should be considered:

X
m1+m2+���+mn=k

fm1
1 � fm2

2 � � � fmn
n

The sum is for all combinations of m1; : : : ;mn so that the sum equals k.

The set of valid strings is determined by

[tm1;:::;mn ] = [Am1
1 � � �Amn

n ]S � f1(N)m1 � � � fn(N)mn

where N is the set of nonterminals. While computing S � f1(N)m1 � � � fn(N)mn

a large number of terms is produced. Each term will during the enumeration
process have picked up speci�c amounts of variables. The number of variables
in a term equals the number of productions which must be used to rewrite all
nonterminals in all of the sentential forms for the derivation process of the string.
Therefore only terms having A

q
i in f(N)mjmi=q

can be valid strings. A special
situation exists for the starting symbol AS . The rewriting process is started
by one occurrence of the starting symbol. This is not introduced through any
production and is therefore terms with A

q�1
S in f(N)mjmS=q

which denote valid
strings. This is identical to what was observed for LIF. This can be realized by
multiplying f(AS)

mS with S and using the terms with AmS

S .

As an example consider the grammar GGLIF = (fA; Sg; fa; b; c; dg; P; S) where
P :

S ! aASS

S ! b

A! cAA

A! d

Consider the case of mS = mA = 3:

(aAS2 + b)3 = a3S6A3 + 3a2bS4A2 + 3ab2S2A+ b3

(cA2 + d)3 = c3A6 + 3c2dA4 + 3cd2A2 + b3

None of the terms resulting from the above calculations are valid strings, i.e, no
terms have S3 in fS(N)3 or A3 in fA(N)3, but by computing S �fS(N)3fA(N)3

the following result appears:

S � fS(N)3fA(N)3 = a3c3S7A9 + � � �+ ab2cd2S3A3 + � � � b6S

where ab2cd2S3A3 is a valid string.

The mechanism for computing the correct coe�cient must take into consid-
eration that the count of di�erent derivation trees is strongly dependent on
how the individual productions are linked together. The grammar used above
can also be used to describe the derivation process which must be modelled by
GLIF. Remember that in the previous section it was stated that a grammar
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S S
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Figure 4.1: The basic structure of the derivation trees for strings with commu-
tative map a2b3c2d4

G = (fA;Bg; fa; bg; P; S) with the equation S = aSS+ b would give rise to the
power series:

S = bt+ ab2t3 + 2a2b3t5 + � � �
Note that there will be two di�erent trees having two a's and three b's.

The power series for GGLIF becomes:

S = btS + ac2dt3StA + ab2cd2t3St
3
A + � � �+ 10a2b3c2d4t5St

6
A + � � �

By looking at the derivation trees the count of 10 trees with yield a2b3c2d4

can be explained. In Figure 4.1 two basic derivation trees for the 10 trees are
shown.

The basic trees re
ect the structure of the two trees from GLIF for a2b3. In each
of the two trees two occurrences of nonterminal A exist. From each of those a
subtree can develop. Call the trees T1 and T2. The occurrences of two c's and
four d's can be distributed between the two trees in di�erent ways. Since no
nonterminal are attached to the d's only the c's are of interest. They can be
distributed with two in T1 and zero in T2 or vice versa, or there can be one in
each of the subtrees. Whenever 2 c's occur in the same tree they can themselves
be con�gurated in two ways (according to GLIF ). For each basic tree the count
becomes 2 + 1 + 2 = 5. The total count becomes 2� 5 = 10.

If the dependencies between the productions are increased by changing the
production S ! aASS to S ! aAASS then the series becomes:

S = btS + ab2d2t2StA + � � �+ 28a2b3c2d6t5St
8
A + � � �

The reason for the increase in di�erent trees is that the two c's and six d's now
can be distributed between 4 di�erent trees.
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The dependencies between nonterminals in the di�erent productions are cap-
tured by GLIF through the determinant




�ji � zi

fi(z)

@fi(z)

@zj







It has, however, not been possible to dissect the computations represented by
the Jacobian determinant so that an explanation of HOW it produces the cor-
rect count can be given a language theoretical interpretation.

Despite the fact that GLIF is a generalization of LIF it does not provide a
usable method for the case of only one nonterminal, due to the formulation of
GLIF in terms of a determinant of a matrix.

4.4 Step three

In step 2 a power series representation should be obtained based on LIF or
GLIF. The preceding sections have shown that such series can be computed for
any context-free grammar, and that the coe�cients of the series represent the
number of di�erent derivation trees for any speci�c string. The algorithm for
obtaining the power series representation is given in Algorithm 6.
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The only thing remaining in order to verify the entire hypothesis is to devise a
way to compute statistical characteristics based on the power series represen-
tation. To do so it is important to remember that the power series represents a
derivation grammar. It is therefore possible to represent any information con-
cerning random variables of the productions for the original stochastic grammar,
in the power series through the unique productions labels of the productions.
Those labels are the terminals of the derivation grammar and appear in the
coe�cients of the series.

To compute information for a speci�c random variable RV it is necessary to
make an inquiry into the original grammar and determine the number of oc-
currences that the production gave rise to of the random variable of interest.
If a production having label pi has k occurrences of the random variable then
pi should be substituted by pix

k in the power series. Once the substitution has
been performed, terms of identical powers of x can be collected and the symbol
pi can be replaced with the production probability of production pi. Setting all
tk equal to 1, the coe�cient of the powers of x can be computed. The coe�-
cients of xk can be interpreted as the accumulated probability mass attached
to strings in L having k occurrences of the variable of interest. Algorithm 7
describes an algorithm for computing the statistical characteristics.

By combining Algorithm 6 and 7 a way has been devised for computing sta-
tistical characteristics for any stochastic context-free language. The hypothesis
from Section 4.1 is therefore considered veri�ed.

4.5 Computing characteristics

As is the case for the method for non-expansive grammars this method is also
an enumerative technique. This means that the same kind of enumerative
problems exists for this method. First an example is given followed by some
general considerations.

4.5.1 An example

Let there be given a stochastic context-free grammarG = (fS; A;Bg; fa; b; cg; P; S),
where P has the productions:

p1 : S ! aSSA

p2 : S ! Ab

p3 : S ! c

p4 : A! aAB

p5 : A! bb

p6 : B ! bABB

p7 : B ! cc

The productions in the non-stochastic derivation grammar look like,

S ! p1SSA

S ! p2A

S ! p3

A! p4AB

A! p5
B ! p6ABB

B ! p7
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A representation of the grammar as a system of equations becomes,

S = p1SSA+ p2A+ p3

A = p4AB + p5

B = p6ABB + p7

Augmenting the equations to �t the requirements of LIF/GLIF,

S = tS(p1SSA+ p2A+ p3)

A = tA(p4AB + p5)

B = tB(p6ABB + p7)

The power series representation of L(G) becomes,

r(S) = p3t3 + p2p5tStA + p2p4p5p7tSt
2
AtB + p2p

2
4p5p

2
7tSt

3
At

2
B + � � �

Let the random variable of interest be the string length. By substituting the
pi's with pix

k where k represents the number of occurrences of symbols in a
string, a new power series in x can be constructed. Setting tS ; tA; tB = 1 the
series becomes;

r(R) = p3x+ p2p5x
3 + p2p4p5p7x

6 + p2p
2
4p5p

2
7x

9 + � � �

Assume that p1 = 0:5, p2 = 0:2, p3 = 0:3, p4 = 0:6, p5 = 0:4, p6 = 0:7, and
p7 = 0:3

Based on the random variable string length it is possible to compute, e.g., the
probability mass associated with the strings in L(G) having a string length less
than 8.

P (w < 8) = 0:3 + 0:08 + 0:01444 = 0:3944:

4.5.2 General considerations

As with all enumerative techniques there is the problem of determining the
number of enumerations required to obtain a result with a given accuracy. As
the previous example showed there are situations where the correct value of the
characteristic can be obtained after only a few iterations of the formula. How-
ever, situations exist for which a larger number of iterations are required and
there even exist situations where all strings in the commutative map should be
considered. To put the problem in its right perspective it must be remembered
that as the production probabilities are numbers less than 1 the probability of a
string rapidly decreases as the length of the string increases. The characteristics
can be determined with any precision required simply by using more and more
strings for the computation. In practice it is advisable to make use of a thresh-
old on the increase in the probability mass for the characteristic of interest as
the number of iterations grows. For more information on the characteristics
computable by LIF and GLIF see Chapter 5.
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4.6 Summary

The hypothesis put forward in Section 4.1 has been veri�ed. A regular language
representation is shown to exist by which order-independent statistical charac-
teristics can be computed for expansive stochastic context-free languages.. The
method makes use of a transformation from the stochastic to the non-stochastic
domain based on a derivation language representation. The grammar is then
represented as a set of equations, and a method called The Generalized La-
grange Inversion Formula known from complex function theory is used to derive
a solution of the system of equation. The result is a formal power series repre-
sentation of derivations in the stochastic language and from that the statistical
characteristics can be computed.

The chapter shows that the strategy for changing from the stochastic to the
non-stochastic domain and back, developed in Chapter 3, also can be applied
to the expansive case.

The chapter provides new insight into how methods from complex function
theory can be applied to the �eld of language theory. It appears to be the �rst
time the Generalized Lagrange Inversion Formula has been used to represent
grammars.

By the design of the method it has become possible to use an enumerative
technique for the computation of order-independent random variables, which is
not based on the generation of all ordered strings in the language. Instead only
those with di�erent commutative maps will be generated.



4.6. SUMMARY 61

ALGORITHM 6. Create a power series representation of the SCFL

Input:

Output:

Method:
A stochastic context-free grammar G = (N;�; P;AS).

A power series, r(S) of L(G).

1)

2)

3)

4)

5)

Apply Algorithm 1 to get a non-stochastic derivation gram-
mar DG.

Apply Algorithm 2 to represent DG as a set of equations.

Augment each equation from
Ai = f(A1; : : : ; An)

to
Ai = tif(A1; : : : ; An)

If number of nonterminals in N = 1 then
For m = 0 to In�nity do

[tm]r(S) = m�1[Am�1
S ]fS(N)m

End

If number of nonterminals in N � 2 then
Compute � =




�ji � zi
fi(A1���An)

@fi(A1���An)
@zj





where i; j = 1:::n.

For (m1;m2; : : : ; mn) = 0 to In�nity do

[tm1;:::;mn ]r(S) = [Am1
1 � � �Amn

n ]AS � f1(N)m1 � � � fn(N)mn

where (m1 � � �mn) = k denotes all combinations of m1 to
mn so that their sum is k. The coe�cients will be sequences
of terminals from the derivation grammar.
End
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ALGORITHM 7. Computing statistical characteristics based on a power
series representation of a SCFL.

Input:

Output:

Method:
A random variable RV .
A stochastic context-free grammar G = (N;�; P; S).
A power series r(S) representing a SCFL. The coe�cients of r(S) are se-
quences of production labels pi for productions from G.

A power series r(RV ) in powers of x. The coe�cient to xk is the proba-
bility of k events of the variable RV .

1)

2)

3)

/* Insert the stochastic information */
For each production in P do

Set k equal to the number of occurrences of the random
variable RV associated with the production.
Substitute pi with pix

k in GF

End

Collect all terms of identical powers of x.

Substitute the symbol pi with the probability of production pi
and compute the coe�cients of the new power series r(RV ).



Chapter 5

Existing and new methods {

An overview

As pointed out in Chapter 1 methods exist for computing a variety of character-
istics of a stochastic context-free language. The derivation process of stochastic
linear and context-free languages can be modelled by a Markov chain and a
multi-type branching process, respectively. Based on these models statistical
characteristics can be computed. For both models a large variety of information
can be computed. This chapter does not claim completeness in the description
of what can be computed for the models. Emphasis has been put on the general
computations with relevance for the application to stochastic languages. To put
the methods developed in this thesis in perspective this chapter gives a very
brief outline of these models and their use in relation to grammars. For more
details about the models the reader is referred to Appendix A and B.

The methods developed in Chapter 3 and Chapter 4 will be given a common
name: The Parikh-Thomason-Larsen approach to computing statistical order-
independent characteristics for stochastic context-free languages, in short the
PTL-approach.

After the outline of the 3 methods now available an overview will be given of
which statistical characteristics can be computed.

5.1 The Markov chain model of stochastic linear lan-

guages

A linear grammar G = (N;�; P; S) has productions of the following forms, A!
aAb, A! a, for A 2 N and a; b 2 �. A subset of the linear grammars is the set
of regular grammars. For a linear grammar each application of a production-rule
introduces at most one new nonterminal in the sentential form. Therefore each
sentential form leading to a terminated string contains exactly one nonterminal.
The sequence of such nonterminals beginning with the starting symbol describes
the derivation process of a string in the language. Such a sequence can be
modelled by a Markov chain [22, 44, 46]. A more detailed description is given
in Section A.1.

63
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The derivation process of the grammar relates to the Markov chain in the fol-
lowing way; one state exists for each nonterminal in the grammar. Furthermore
a special �nal state, F , is added to represent the termination of a derivation.
Starting with the start state, S, which relates to the starting symbol of the
grammar, transitions can be made between the individual states representing,
that one nonterminal is being rewritten as another nonterminal, or the deriva-
tion process has ended with a string of only terminals. The states are connected
together and a transition probability exists re
ecting the possible rewritings of
the grammar [46].

The Markov chain capable of modelling the derivation process can be char-
acterised as a discrete parameter, time homogeneous, �nite state stochastic
process having 1st order Markov property.

5.1.1 Converting from a grammar to a Markov chain

To model the derivation process of a language L(G) generated by a grammar G,
it is necessary to convert the grammar into a Markov chain. The information
required to specify the chain is a set of states fXng, a probability mass function
for the start con�guration and a conditional probability mass function [36,
15]. Appendix A provides an algorithm for the conversion and gives examples
of this.

The probability mass function

pj(n) = P [Xn = j]

denotes the unconditional probability of being in state j after n transitions.
pj(0) denotes the probability of starting in state j. If there are n states a
n-dimensional initial probability vector p(0) can be constructed,

p(0) = (p1(0); p2(0); : : : ; pn(0))

The conditional probability mass function is de�ned as

pj;k(m;n) = P [Xn = k j Xm = j]

pj;k(m;n) gives the probability of being in state k after n transitions conditioned
on being in state j after m transitions. If the chain is stationary, the notation is
pj;k(n). For n = 1 it is called the one-step transition probability. For notational
simplicity pj;k(1) will be written pj;k.

If there are n states in the chain, there will be n� n one-step transition prob-
abilities. They can be arranged in a matrix P so that each entry in P(1) is a
one-step transition probability. For a Markov chain with state space f1,2,...,ng
the matrix looks like

P(1) =

0
BBBB@

p1;1 p1;2 � � � p1;n
p2;1 p2;2
...

pn;1 � � � � � � pn;n

1
CCCCA
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The matrix is called the transition matrix.

The transition matrix can easily be established by inspection of the linear gram-
mar. Let the set of nonterminals be fA1; : : : ; Ang then the set of states become
fA1; : : : ; An; Fg. For all productions on the form, pi : Ai ! akAjam update
Pi;j with pi. For all productions of the form, pi : Ai ! ak update Pi;F with pi.

The Markov chain model contains information about the nonterminals. Since
one nonterminal might, in di�erent productions, introduce di�erent terminals,
it will become necessary to augment the chain, if explicit information about the
terminals should be available. The augmentation should ensure a unique link
between states and terminals in the grammar.

All information about the status of the process after n transitions is stored in
the unconditional probability vector

p(n) = (p1(n); p2(n); :::; pm(n))

which can be computed as

p(n) = p(0)P(n)

The set of n-step transition probabilities can be determined by multiplying the
one-step transition matrix with itself n times.

P(n) = Pn

A state can be classi�ed as either recurrent or non-recurrent. If it is recurrent
the probability of ever returning to the state is one. The �nal state is recurrent.
If the probability is less than one, it is a non-recurrent state.

De�ne mj to be the mean time to absorption given that the chain started in
state j. mj can be computed as the solution to the set of linear equations:

mj = 1 +
X
k2T

pj;kmk

for j 2 T , the set of non-recurrent states. By letting m denote a column vector
whose probabilities are mj the mean time to absorption can be computed as:

m = N1

where N=(I�Q)�1 , and Q = fpj;kg for j; k 2 T . N is called the fundamental
matrix of an absorbing Markov chain. The element in the matrix ni;j is the
mean number of occurrences of state j assuming that the process started in
state i.

5.2 Characteristics based on the Markov chain Model

Having a Markov chain representation of the grammar and using well-known
properties of the chain it is possible to determine order-independent single entity



66 CHAPTER 5. EXISTING AND NEW METHODS { AN OVERVIEW

characteristics both for the derivation process and the language, without ever
generating one string. Algorithm A.4 in Appendix A speci�es the details of
the computation. The mean string length, mean number of occurrences of
terminals and nonterminals can be computed, by looking at the mean number
of times the chain occupies the individual states. The information can be
obtained by computing the fundamental matrix of the chain [22, 46]. Each of
the entries NS;Ai

contains information about the mean number of occurrences
of Ai in the derivation process. When the chain has been augmented, a speci�c
nonterminal uniquely represents one or two terminals, and by keeping track of
which nonterminals are associated with a speci�c terminal the mean number
of times the terminal occurs in the strings can be computed. The sum of the
mean values for all terminals gives the mean string length.

Information about the probability of terminating the derivation process, i.e.,
how often does the process terminate a string can be obtained by computing
the stationary distribution of the chain. This can be done by changing the
recurrent �nal state into a non-recurrent state by inserting a transition from
the �nal state back to the starting state and then computing P(n) for n going
toward the upper limit [46]. With this approach both the mean and the variance
can be computed. Another approach would be to use an augmented chain with
a special non-recurrent state indicating termination for the computation of the
fundamental matrix. For more details see Appendix A.

The Markov chain representation is not capable of handling multiple entity
random variables, as it does not enumerate strings explicitly, and furthermore
only looks at each rewriting at a time without reference to other rewritings
which have taken place previously. This also shows that characteristics related
to a speci�c value or interval for the random variable can not be computed.

Markov chains have the capability of computing some order-dependent single
entity random variables related to the derivation process and the language (only
for regular languages). By computing P(n) it is possible to characterize the
derivation process after n derivations which relate to a speci�c position in the
strings or the derivation process.. PS;F (n) denotes the accumulated probability
mass for all the terminated strings and PS;Ai

(n) denotes the probability that
nonterminal Ai is in the sentential form at this speci�c point in the derivation
process. Algorithm A.3 speci�es the details of the computations.

5.3 The branching process model of stochastic context-

free languages

If the grammar is no longer linear, the number of nonterminals in a sentential
form will not be limited to one. For context-free grammars in general the
number can grow and become very large at times during the derivation process
but will eventually reach zero, when the derivation terminates. Such a process
cannot be modelled by a Markov chain with only a �nite number of states, so
instead a branching process model is used [44, 45]. Such a model is capable
of describing the evolution taking place, when a group of objects reproduces
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as itself or other objects. The evolution can be broken down in a number of
generations, and the model can describe how the size of the generations evolve
[26].

Let the generations be numbered 0,1,2 ... and let Zn be the size of the nth
generation, meaning the number of objects in the generation. The following
assumptions are made,

� the �rst generation consists of exactly one object Z0 = 1 indicating that
the process has a unique starting situation.

� the reproduction process is governed by a probability function p for each
object, where pk is the probability that an object existing in the nth gen-
eration will have k children in the (n+1)th generation. It is required thatP

k pk = 1. It is assumed that the probability distribution is independent
of n.

� di�erent objects reproduce independently of one another. The number
of children that a given object can produce is not dependent on e.g., the
total number of objects in the generation.

If only one type of objects exists the process is called a single-type branching

process otherwise a multi-type branching process.

The generating process of a stochastic context-free grammar can in general
be modelled as a multi-type branching process, where the nonterminals act
as the object capable of reproduction. Strings in the individual generations
can consist of both nonterminals and terminals. The derivation process of a
grammar relates to a multi-type branching process in the following way. The
unique starting symbol of the grammar is the zeroth generation. The strings
in the �rst generation come from rewriting the starting symbol in all possible
ways according to the grammar. Strings in the second generation comes from
rewriting all nonterminals in all the strings in the �rst generation, in all possible
ways. Furthermore it contains the strings without nonterminals for the �rst
generation. In general, the nth generation contains the new strings coming
from rewritings of nonterminals in the (n�1)th generation and strings without
nonterminals in generation 1 to (n � 1). An example of how the derivation
process of a context-free language can be modelled by a branching process is
given in Appendix B.

The derivation process of a stochastic context-free grammar with only one type
of nonterminal can be modelled by a single type branching process [44, 45].

5.3.1 Converting from a grammar to a branching process

The information required for the branching process to model the derivation
process of a grammar can be speci�ed partly as generating functions and partly
as matrices [26].

Two di�erent types of generating functions are used. The �rst is called fobject

and describes how an object of type object produces children. There exists,



68 CHAPTER 5. EXISTING AND NEW METHODS { AN OVERVIEW

one such generating function for each nonterminal in the grammar. The second
type is called Fgeneration and there exists such one for each generation.

The generating function for an object of type i in a process having k di�erent
types is written as:

f i(s1; : : : ; sk) =
1X

r0;:::;rk=0

pi(r1; : : : ; rk)s
r1
1 : : : srkk

f i(s1; :::; sk) describes the probability that one object of type i produces children
of type 1 to k. pi(r1; ::::rk) is the probability that an object of type i has r1
o�spring of type 1, ..., rk children of type k. s can be regarded as a dummy
variable. The sum is over all combinations for r1; r2; : : : ; rk.

There will be a generating function for each nonterminal in the grammar. The
function for Ai is a sum of n terms, if there are n productions having Ai as
the left hand side. Each production will be of the form pi : Ai ! �, where
� 2 (N [ �)?, and it will give rise to a term of the form pis

]A1

A1
: : : s

]Ak

Ak
, where

]Ai denotes the number of occurrences of nonterminal Ai in the right hand side
of the production.

The unique starting symbol As of the grammar will ensure that the zeroth
generation is uniquely de�ned as F0 = sAs . The rest of the generating functions
for the size of generations can be derived based on the information described
so far. It is then possible to express the generating function for n � 1 as:

Fn+1(s1; : : : ; sk) = Fn[f
1(s1; : : : ; sk); : : : ; f

k(s1; : : : ; sk)]

The computation of expected values for the entire branching process can bene�t
from a matrix representation of the relationship between individual nontermi-
nals and between nonterminals and terminals. A grammar with n nonterminals
and m terminals will have a n� n �rst moment nonterminal matrix B, where
bi;j is the expected number of nonterminal Aj directly introduced, as nontermi-
nal Ai is rewritten. For each production which will be on the form pi : Ai ! �

the entry bi;j should be updated as bi;j = bi;j + pi� ]Aj , where ]Ai denotes the
number of nonterminal Aj in the right-hand side.

There also exists a n�m �rst moment terminal matrix D, where di;j represents
the expected number of terminal aj introduced, as Ai is rewritten. The entries
should be updated in a way similar to the one for B, with the only di�erence
that it is the number of terminals which is of interest.

5.4 Characteristics based on the branching process

model

The branching process model can be used as an enumerative technique to derive
both single and multiple entity random variables related to terminals, nonter-
minals, and productions.
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Algorithm B.1 in Appendix B states the details about the conversion to a
branching process.

By computing Fn it is possible to describe the situation for the nth generation.
By letting n approach in�nity the entire language will be generated. Since the
probability of a string decreases as the length increases a number m exists so
that the statistics of Fm approximate that of F1 with an error less than some
small number �.

For the nonterminals the information can be extracted directly from the gener-
ating function Fn. Any term of the form qis

]A1

A1
� � � s]An

An
expresses the informa-

tion that a sentential form with ]Ai number of occurrences of nonterminal Ai

occurs with probability qi. Multiple terms containing s
]Ai

Ai
can exist, and the

correct results will be the sum of the coe�cients for each term.

To get information on terminals the (n� 1)th generation should be computed
and extra information incorporated into the generating function while going to
the nth generation [45]. The extra information must relate to which terminals a
nonterminal introduces. A similar strategy must be taken, if information about
speci�c production are to be computed.

Algorithm B.2 in Appendix B states the details about computing characteristics
for the nth generation.

By adding extra dummy variables to the generation function which does not
become rewritten during the derivation process, it is possible to compute the
accumulated information for the �rst n generations. The issues of interest are
the same as for the nth generation. This can also be done by de�ning a special
generating function covering the total progeny up to the nth generation [26].

The mean and the variance of any generating function can be computed using
standard techniques, based on a di�erentiation of the generating function [45].

Branching processes can also be used to compute mean values of single entity
random variables directly using the matrix formulation of the relations between
the elements of the grammar without generating one string in the language [44,
45].

By computing the largest eigenvalue � of the �rst moment matrixB it is possible
to determine if the grammar is consistent. If � > 1 then the grammar is
inconsistent, meaning that the probability mass for all strings does not sum to
1. If � � 1 it is a consistent grammar [22].

If the grammar is consistent a nonterminal expectation matrix B1 can be
computed as B1 = (I �B)�1. Bi;j denote the mean number of times Aj has
been rewritten if the derivation started with Ai. The sum of elements in the
row associated with the starting symbol gives the expected derivation length.
Multiplying B1 with D the expected string length can be computed as the sum
of elements in the row for the starting symbol [22]. The individual elements
in the �rst row of B1D is the mean number of occurrences of the individual
terminals. Algorithm B.3 in Appendix B states the computations in details.

Mean values of multiple entity random variables can not be computed directly
since the contextual information are not perceived in the matrix formulation.
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5.5 The PTL approach

This approach is somewhat di�erent from the previous two methods. It does
not explicitly model the derivation process of the strings. Instead it directly
models the derivation sequence being the result of the derivation process. This
can be achieved, if a transformation of the original grammar G into a derivation
grammarDG is performed. The terminals in the derivation grammar are unique
production labels which ensure that strings in the derivation language represent
derivations in the original grammar.

By designing the derivation grammar in such a way that it uses the production
probabilities, interpreted as a symbol, as unique production labels it becomes
possible to change the domain from stochastic to non-stochastic. By the change
in domain the very large amount of theoretical knowledge from formal language
theory becomes applicable to this situation.

The derivation grammar is represented as a set of equations, one for each dif-
ferent nonterminal. From language theory methods exist to solve such systems
of equations. Since the grammar and thereby the system contain information
about the entire language, a solution to the set of equations represents the
derivations for all strings in the language, L(G).

Since the PTL-approach utilize a regular language representation of a context-
free language, the solution of the equations therefore represents equivalence
classes in L(G). Each class consists of the set of strings having an identical
commutative map.

For non-expansive grammars a closed form solution for the system of equations
can be obtained. By changing the solution into a generating function, a very
compact generator of derivations in L(G) exists.

In the more general case including expansive grammars a closed form solution
cannot be obtained, instead the solution is the complete enumerated list of
derivations for strings in L(G).

No matter which type of solution is obtained the stochastic information has to
be re-incorporated. This is done by giving the production labels their original
interpretation as numerical probabilities.

5.6 Characteristics based on the PTL-approach

The PTL-approach is an enumerative approach capable of computing both sin-
gle and multiple entity order-independent random variables related to the ter-
minals, nonterminals and the productions.

For non-expansive grammars a special generating function can be established
for each of the characteristics of interest. In the general case of expansive
grammars no speci�c generating function can be designed, instead the set of
derivations for strings in L(G) can be enumerated. For both expansive and
non-expansive grammars the characteristics are marked by dummy variables.
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Characteristic Linear Context-free Context-free
non-expansive expansive

Single entity

Markov
ppp

Markov � Markov �
Mean no. of ai, Ai, pi Branch

p
Branch

ppp
Branch

ppp

PTL
pp

PTL
p

PTL
p

P(speci�c value) Markov � Markov � Markov �
P(interval) Branch

pp
Branch

pp
Branch

p

PTL
ppp

PTL
ppp

PTL
ppp

Multiple entity

Markov � Markov � Markov �
Mean no. of ai, Ai, pi Branch

p
Branch

pp
Branch

p

PTL
ppp

PTL
ppp

PTL
ppp

P(speci�c value) Markov � Markov � Markov �
P(interval) Branch

pp
Branch

pp
Branch

p

PTL
ppp

PTL
ppp

PTL
ppp

Table 5.1: Indications of the applicability of three methods for computing order-
independent statistical characteristics for stochastic grammars. There are four
di�erent kinds of indications: Not possible(�), possible but not advisable(p),
acceptable solution(

pp
) and recommendable solution(

ppp
).

Any term in the generated solution of the form qix
n denotes that the set of

strings having n occurrences of random variable x has a probability qi.

As for the branching processes it will often be advantageous to enumerate only
strings until the numerical value of the characteristic has become stable within
a small margin of tolerance.

For non-expansive grammars the generating functions can be used as a means
of obtaining mean and variance of the random variable of interest. This is,
however, not possible for the power-series representation.

5.7 An overview

From the description of the three di�erent methods for computing character-
istics it is clear that they are competing approaches in the sense that more
than one approach can be used in a given situation. Table 5.1 outlines which
approach can be used to compute a given characteristic.

The general impression which the table is supposed to convey is that even
though the methods are competing they complement each other quite well.

For stochastic linear languages, including the stochastic regular languages, the
Markov chain representation would be the best choice of model when computing
mean values of single entity random variables. The Markov chain does, however,
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not contain any enumerative element which would allow for the registration of
strings with speci�c characteristics, and therefore the method is not applicable
for the computation of the probabilities of a random variable having a speci�c
value or being in a speci�c interval. The same arguments explain why the
chain is not applicable for the computation of multiple entity variables. In the
situations where Markov chains cannot be used both the branching process and
the PTL-approach are applicable. The PTL-approach has been recommended
due to its simpler enumerative mechanism and because of its ability to form
generating functions targeting directly the speci�c characteristic.

For non-expansive and expansive context-free languages only branching pro-
cesses or the PTL-approach can be used. There is a general pattern for the two
methods in both cases. Branching processes should be used when the mean
values of single entity random variables are of interest. Such values can be
computed using the matrix formulation of the grammar and do not involve any
enumeration. The matrix formulation does, however, not allow for the compu-
tation of single entity characteristics related to a speci�c value or an interval
for the random variable or of multiple entity mean values. Branching processes
would therefore have to be used as a enumerative technique. The high level of
complexity that characterizes the branching process, and which is necessary to
be able to compute the characteristics for the entire language without generat-
ing a string, is not a bene�t, when it comes to enumerations of a large number
of generations. For non-expansive grammars the enumerative complexity is lim-
ited and does not impose any signi�cant di�erence between the two methods,
but still PTL is recommended due to its ability to form generating functions
targeting directly speci�c characteristics. For expansive grammars the enumer-
ative complexity increases, and it now becomes signi�cant that PTL works on
equivalence classes of strings having identical commutative maps and therefore
has a reduced set of strings to enumerate.

0 1 2 3 4 5 6 7

0 1 1 2 5 14 42 132 429
1 1 3 10 35 126 462 1716 6435
2 1 6 30 140 630 2772 1.20e+04 5.14e+04
3 1 10 70 420 2310 1.20e+04 6.00e+04 2.91e+05
4 1 15 140 1050 6930 4.20e+04 2.40e+05 1.31e+06
5 1 21 252 2310 1.80e+04 1.26e+05 8.16e+05 4.98e+06
6 1 28 420 4620 4.20e+04 3.36e+05 2.45e+06 1.66e+07
7 1 36 660 8580 9.00e+04 8.16e+05 6.65e+06 4.98e+07

Table 5.2: Number of di�erent derivation trees for di�erent applications of
individual productions for a system with the equation of the form S = aSS +
bS + c. All values in the tables expressed as exponentials are truncated values
to �t the table. Therefore the values are not the exact number of trees, but
they indicate the size of the count.
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To get an idea of the explosion which takes place in the number of strings
having identical commutative map for even a very simple grammar consult
Table 5.2 which complement Table 2.1 in Chapter 2. For a grammar which
can be represented as the equation S = aSS + bS + c the number of di�erent
trees was computed for various combinations of uses of the productions. The
table describes the number of trees for all combinations of between 0 and 7
rewritings of S ! aSS and S ! bS. Within one row the number of rewritings
of S ! aSS is �xed and the number of the other production is varied.

The table clearly shows the rapid growth in the number of trees having the
same commutative map. This is used as an argument for recommending the use
of the PTL-approach for the computation of statistical characteristics, where
enumerations are required and where the ordering is not important, i.e., for
order-independent characteristics.



Chapter 6

An application within

Syntactic Pattern Recognition

The attention is now changed from the development and description of methods
for computing statistical characteristics to the use of such characteristics in pat-
tern recognition. This chapter gives an overview of the di�erent ways in which
characteristics can be exploited in pattern recognition and speci�cally develops
a two-stage classi�er where the characteristics are used in a pre-classi�cation.
The information from the pre-classi�cation is then exploited in the following
syntactic classi�cation in an attempt to control the recognition time and thereby
possibly reduce the time. The theoretical description of the two-stage classi�er
will be followed by a description of an application using the classi�er.

6.1 The use of statistical characteristics in pattern

classi�cation

There are various ways in which the statistical characteristics can be exploited
in pattern classi�cation. They can be grouped into two main groups:

� Methods using the characteristics in combination with a syntactic classi-
�er.

� Methods using the characteristics for purely statistical classi�cation.

For the latter the idea is that the structural information of the objects can be
projected onto a set of statistical characteristics, which then indirectly represent
the discriminative structural information. This information can then be used
in a purely statistical classi�er. It is possible to compute for each language the
probability that strings exist with characteristics identical to those measured
for the speci�c input. This information for each class can be exploited in a
maximum likelihood classi�cation determining the most likely class.

Another approach would be to consider each of the characteristics as a feature
in a n-dimensional feature space, i.e., one feature could be the number of oc-
currences of terminal ai. From the grammar it will be possible to compute the

74
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distribution of the characteristics for each class, and thereby providing su�cient
information for the large set of standard statistical classi�ers to be used.

For a m-class classi�cation problem it will also be possible to de�ne a m-
dimensional feature space where P (inputstring j grammari) for i = 1; 2:::m,
will be used as the m features. This approach would be of interest if discrim-
inant information for each class was available from the relationship existing
between one class and all others. As an example consider a situation where
strings in a class are characterised by having characteristics very similar to one
speci�c class and very dissimilar to another speci�c class.

For the case where the characteristics are used in combination with the syn-
tactic classi�er two situations exist depending on whether the characteristics
are used before or after the syntactic classi�er. The latter case relates to those
situations where a syntactic classi�cation initially is performed for each gram-
mar, but before making the �nal decision numerical information in terms of
the characteristics is used in addition. This follows, to some extend, the idea
behind attribute grammars [48] where numerical information is processed si-
multaneously as the syntactic classi�cation is performed, and the decision is
taken based both on the result of the syntactic analysis and on how close the
numerical values �t the numerical description of the class. In case of statistical
characteristics the idea would be to use the syntactic classi�er to point out the
possible class and for that class to compute the probability of generating strings
with characteristics similar to those of the input string. Using both types of in-
formation would make it possible to create a less detailed (and therefore faster)
syntactic classi�er.

The characteristics can also be used before the syntactic classi�er. By measur-
ing how well the characteristics of the input string match each of the grammars,
it is possible to make some kind of sorting of the grammars, so only the most
likely ones are being chosen for syntactic classi�cation. This allows for control
over the classi�cation time and thereby has the potential for approaching the
traditional problem within any classi�cation of lowering the processing time
without signi�cant decrease in classi�cation performance. The problem will be
further speci�ed in relation to syntactic classi�cation in the following sections
and a solution to the problem will be developed.

6.2 The problem

As stated in Chapter 1 a pattern recognition system can be in one of two
di�erent modes. In the analysis mode information about the classes is gathered
and in the recognition mode this information is used in order to classify some
unknown input data. The problem of interest here is related to the recognition
mode.

During recognition it is often possible to devise a procedure which, when fol-
lowed, will lead to a optimal classi�cation. This typically includes measuring
some kind of distance between the input string x and each of the potential
classes. Consider a syntactic recognition system having n di�erent classes. The
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set of classes is described by a set of grammars, G1; G2; : : : ; Gn. To achieve
optimal classi�cation a total of n syntax analyses must be performed giving
p(x j Gi) for i = 1; 2:::n. These n probabilities can be used for maximum likeli-
hood classi�cation assigning x to grammar Gi if p(x j Gi) = maxGj

fp(x j Gj)g.
If the a priori probability P (Gi) is known, the a posteriori probability P (Gi j x)
can be computed using Bayes Rule, and a classi�cation according to Bayes De-
cision Rule[14] can be performed.

The optimal procedure might, however, be time consuming. The problem ad-
dressed in this chapter concerns possible improvements regarding execution
time for syntactic classi�ers. The problem will be approached via the following
formulation:

Consider a recognition system with n classes. Let the time

for obtaining an optimal solution be toptimal.

The system is asked to classify some input called DATA in

a given time frame treal, treal is less than toptimal.

Which procedures can be taken to insure that the sub-optimal

classi�cation of DATA performed within treal, is the best pos-

sible solution given the time-frame?

To give an example of a situation, where the problem stated above is important,
consider a dynamic vision system. Such a system could be attached to a mobile
robot providing the robot with an ability to visually perceive the environment,
i.e., provide the robot with information about free space or obstacles along the
route while the robot is performing a transportation task. A dynamic system
is one which can work in an environment which changes as time evolves, as op-
posed to a system requiring a �xed, never changing, environment, e.g., obstacles
can move around as the robot is moving towards the goal. A dynamic vision
system consists of many modules working together each performing di�erent
tasks. One of these modules will be a recognition module. To enable such a
system to adapt to dynamic changes in the scene, the system must have con-
trol over its computational resources. Thereby it can focus its attention, and
allocate resources toward speci�c subtasks. The time available for classi�cation
of one object will therefore vary constantly, and a procedure to ensure the best
possible use of the resources available is required.

To specify the problem of interest it is important to note that it is the time
spent in the recognition mode which is of interest and not so much the time
spent in the analysis mode, while establishing the system. In other words it
is considered acceptable to spent extra time in the analysis mode to prepare
further information about the classes if this can reduce the recognition time.

6.3 A solution

One possible solution to the previously stated problem would be to introduce
a fast pre-classi�cation procedure by which it is possible to rank the potential
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classes according to how likely they are to have generated strings with statistical
characteristics identical to those of the input string. The syntactic classi�er
could then begin with the highest ranked grammars for the syntax analysis.
The size of the sub-set of classes eventually analysed will be determined by the
available processing time.

The following sections will present the theoretical development of the outlined
approach for the problem, and �nally present experimental results providing
numerical support for the approach.

6.3.1 The proposed approach

The approach uses a two-stage classi�er. For each grammar the �rst stage,
the pre-classi�er, involves computing the probability by which strings exist in
the language having the statistical characteristics of the input string. This is
done in the recognition mode so for the pre-classi�er to be fast it has to exploit
information of the probability distribution for the characteristics obtained dur-
ing the analysis mode.Those distributions can be computed using the methods
described in Chapter 5. The output of the pre-classi�er is a ranking of the gram-
mars according to the obtained probabilities. The second stage, the syntactic
classi�er, can then use the ranking to control the order in which the syntax
analyses are performed and thereby exploit that the most likely grammar can
be tested �rst.

In situations in which the available processing time is very limited, only the
most likely or a few of the most likely can be selected for further classi�ca-
tion. This might give sub-optimal classi�cation performance, but it will be the
best achievable in the given time frame. The system can, however, also ensure
optimal classi�cation, if time allows for all ranked grammars to be analysed.
The fact that the same approach can give both sub-optimal and optimal per-
formance only depending on the time available is considered important. It is
not required in advance to specify a �xed time reduction for the system, which
otherwise would result in a sub-optimal solution even in those situations where
time was not limited.

To evaluate the performance of a system based on the above approach it would
be necessary to address the following issues:

1. The decrease in classi�cation performance which necessarily will occur
since it is a sub-optimal method. This also includes the sensitivity of
the system to small changes in the statistics, i.e., how di�erent are the
probabilities used in the ranking for di�erent classes.

2. The amount of time saved by using only a subset of the grammars for the
syntax analysis.

The classi�cation performance will be highly dependent on how well the sta-
tistical characteristics represent the classes and the amount of discriminant
information contained in them. Two extreme situations can be identi�ed:
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1. The classes can be discriminated syntactically and there are large varia-
tions in the statistics of the characteristics.
The statistical information will be discriminative, if the probability distri-
butions for the characteristics vary signi�cantly from one class to another.
It would be even more discriminative, if certain primitives only appear in a
limited sub-set of the classes. In either case the probabilities obtained are
expected to be very di�erent making the pre-classi�er a reliable estimator
of correct classi�cation labels.

2. The classes can be discriminated syntactically, but there is only minor
variations in the statistics.
If the primitives have an almost identical distribution for each class the
rank values will be quite similar and the ranking based on those values
will appear almost stochastic.

It is possible to get an estimate of the discriminative power of the primitives by
doing simple symbol counting and frequency estimation based on the learning-
data. This can, however, only serve as a rough estimate. The correct result
can only be computed based on the grammar inferred from the strings in the
learning-set. Through inference the grammar will be able to describe a much
larger set of strings, having a syntactic structure similar to that of the learning-
strings. The statistics of the primitives will therefore not necessarily be identical
for the learning-set and the language. As the recognition process is based on
the language, the statistics hereof should be used.

The amount of time saved using the proposed approach is, of course, dependent
on how many of the ranked grammars are selected for further classi�cation. It
is furthermore dependent on the total number of classes and the mean string
length for the di�erent classes.

Clearly the processing time spent on parsing is proportional to the number of
classes. It is, however, not possible to quantify the proportionality, because for
n classes only one parse is expected to take full time (the one class for which it
belongs) and the remaining n� 1 parses will only take a fraction of the parse
time. The exact time used on the last group of parses is not easy to estimate,
as it depends on how long each parse must proceed, before the string can be
rejected. The consequence of this is that going from n to n=2 grammars does
not necessarily mean that the processing time will be cut to half the time. It
will all be depending on the timing of those taken out.

The pre-classi�er should be designed so that it is fast, but still for a given
application there will be a break-even point, where the time saved by lowering
the number of parses performed just balance the extra time used to perform
the ranking.

The parsing time for context-free languages typically has a time complexity
of O(n2), so clearly the length of the string will e�ect the amount of process-
ing time saved. Again it is di�cult to clearly quantify the e�ect, since it is
dependent on at which point in the string it is rejected.
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It is believed that for the number of applications, where the problem stated in
6.1 is relevant, a signi�cant subset exists having both 1) a signi�cant number
of classes and ii) discriminative information related to the occurrences of the
primitives. For those cases the two-stage classi�er is expected to be useful. The
following sections will therefore be devoted to developing the classi�er in more
details.

6.3.2 System outline

Figure 6.1 gives an outline of the two-stage recognition system. If a set of
characteristics can be de�ned, a database can be built containing information
about the characteristics for each grammar. Let, as an example, a characteristic
be the number of occurrences of terminal a in a string. Then the database
will contain information like the probability of one a in the string, pa(1), the
probability of two a's, pa(2), etc.. Establishing the database belongs to the
analysis mode of the system and does not add to the recognition time.

During recognition an input string is examined to compute the characteristics
for the string. Once it is computed a similarity measure between the charac-
teristics of the string and of each of the grammars can be established. The
one having characteristics most similar to the input string is considered the
most likely grammar to have generated the string and is given the highest rank.
The grammar having the second highest similarity measure is given the second
highest rank. Every grammar is ranked following this procedure.

Based on the ranking by the pre-classi�er the syntactic classi�cation module
can �rst perform an analysis with the highest ranked grammar, and if time
permits continue with the others according to their rank.

6.3.3 Computing the rank

The e�ciency of the new classi�cation procedure depends on a fast computa-
tion of the rank. The characteristics are therefore chosen to be the number of
occurrences of the individual terminals. Since the characteristics are indepen-
dent of the order of symbols in the string, they can be determined by a simple
counting procedure. The characteristics are furthermore independent of each
other, which allows for the joint probability of the mutual existence of the char-
acteristics in a string to be computed simply as the product of the individual
probabilities.

Let the input string be any string de�ned on the alphabet � = fa1; a2; � � � ; amg,
and let ]ai denote the number of terminal ai. Then the ranking can be per-
formed by the following 4 step procedure:
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Counting symbols
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Database 1
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Figure 6.1: An outline of a pattern recognition system utilizing statistical char-
acteristics during the classi�cation.

1.

2.

3.
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For each input string a random variable vector Vinput is computed.
Vinput = (]a1, ]a2, � � � , ]am).

For each of the n grammars a vector of probabilities V n
prob is computed.

V n
prob = ( P(]a1), P(]a2), � � �, P(]am)).

The element P(]ai) in V n
prob represents the probability of the event of the ran-

dom variable ai in Vinput given grammar n.

For each Vinput the joint probability of grammar n generating a input with
identical occurrences of primitives is computed.
Ln
input =

Qc
i=1 V

n
prob;i where c denotes the number of random variables taken

into account, c = m+ 1.

The rank of grammar n given the speci�c input is set to Ln
input.

It is important to note that joint probability in those cases where the number
of occurrences of one or more primitive for the string is incompatible with a
given grammar can be zero. In those cases there is no need to start any syntax
analysis as it is known in advance that the string will be rejected.

Computing the individual probabilities might be time consuming, and it is
therefore essential that the computations are done once and then stored in a
database. Thereby only a look up in the database should be executed during
classi�cation.

If a grammar G is self-embedding then L(G) contains in�nite many strings.
For such a language an in�nite number of probabilities exist for the string
length and for the number of occurrences of the terminal being repeated. It
is, however, a fact that the input string is �nite and that very long strings
have very small probabilities. It therefore seems appropriate to de�ne a small
number � and discard characteristics having a probability below �. This limit
will be application dependent.

6.4 Experimental design

A way to test the proposed approach is implementation, and a syntactic pat-
tern recognition system using the two-step classi�er has therefore been devel-
oped. Experiments performed on the system will provide numerical support for
quantifying to which extent a time reduction is possible, and the reduction in
classi�cation performance resulting from the time reduction.

The results obtained will be application dependent and the generality of the
results should therefore be subjected to a critical evaluation.

6.4.1 From objects to strings

As objects 5 di�erent types of industrial made tools; cutting nippers, 
at-nose
pliers, screwdriver, adjustable spanner and �xed spanner have been chosen. The
tools are shown in Figure 6.2.
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a b c

d e f

Figure 6.2: Samples of 5 tools. a) cutting nippers, b) 
at-nose pliers, c) screw-
driver, d) adjustable spanner, e) �xed spanner, f) boundary of �xed spanner.

For each tool a test set and a learning set each comprising 50 samples were
obtained. Due to di�culties in getting a large number of di�erent tools within
each class the natural variations within a class has been simulated by varying
some important parameters during data acquisition. Data has been acquired
through digital images and for each image taken, the tool was relocated in the
image giving di�erent orientations. The distance to the camera has been varied
to simulate objects of di�erent size. For the tools containing adjustable parts,
i.e., cutting nippers, 
at-nose pliers and adjustable spanner, the adjustments
were changed from image to image. Furthermore the light conditions were
varied, although the general type i.e., back lighting, was used all the time.

For each image the object was segmented based on a global threshold and the
contour of the segmented object was approximated by a polygon. Each object
was represented by close to 70 polygon-segments (straight lines) of identical
length. The length varied from object to object depending on the size of the
object, but the di�erence in length never exceeded a factor of 2. The high
number of segments was necessary to obtain su�cient resolution in the struc-
tural description. The tools had a large perimeter, but important changes in
the structure took place within a small percentage of the total perimeter. The
starting point of the boundary description was automatically chosen as the
point on the contour farthest away from the center of mass of the object. The
number of possible starting points was thereby limited. The inferred grammar



6.4. EXPERIMENTAL DESIGN 83

a: b: c: d:

d: e: f: h:

Figure 6.3: The 2D interpretation of the primitives. The shaded area repre-
sents the object, and the arrow indicates the direction in which the contour is
processed.

is hereby required to handle more than one starting point.

A symbolic representation of the polygon has been obtained by assigning a
letter from fA,B,C,D,E,F,G,Hg to each segment denoting the angle � between
the segment and its successor. Thereby the description becomes invariant to
the actual orientation of the objects.

A = 337.5 < � � 22.5
B = 22.5 < � � 67.5
C = 67.5 < � � 112.5
D = 112.5 < � � 157.5

E = 157.5 < � � 202.5
F = 202.5 < � � 247.5
G = 247.5 < � � 292.5
H = 292.5 < � � 337.5

6.4.2 From symbols to characteristics

The initial symbols were, however, not suitable as primitives, since the individ-
ual symbols contain too detailed information about the contour of the object.
Grammars based on such a detailed description tend to be very large. In-
stead the segments were collected and grouped into 7 primitives as shown in
Figure 6.3. Changing from the initial symbolic description to the primitive
description was realized by using the standard Unix-tool called LEX. Below,
examples are given of symbolic representations before and after the primitive
conversion for both cutting nippers and adjustable spanners.

Three cutting nippers in the initial representation:
EEEEEEEEEEEEFDEFFHDDEDCHFFFCEEEEEEEEEEEEEHEEEEEEEEEEEDDEDEEEEEEEEEEEEH

EEEEEEEEEEEEDDDDEEEEEEEEEEEEHEEEEEEEEEEEEEEDFFHDDECCHFFFDEEEEEEEEEEEEEEH

EEEEEEEEEEEEDDDDEEEEEEEEEEEHFEEEEEEEEEEEEDFFFHDCEDCHFFFDEEEEEEEEEEEEEEH

Same cutting nippers in their primitive representation:
hdfabbafdhahbha
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hchaheabbaeha
hchaheabbaeha

Three adjustable spanners in the initial representation:
FFEEEEEEEEEEEEEEEEEEEEEEEEEEEFEEGFDDEDDEGFEEEFFDEEEEEEEEEEEEEEEEEEEEEEFFF
FFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEGEEDEDDEGFEEEEHDDEEEEEEEEEEEEEEEEEEEEEEFFF

FFEEEEEEEEEEEEEEEEEEEEEEEEEEFEEEFHEEDDDDEGFEEEFFDEEEEEEEEEEEEEEEEEEEEEEFFF

Same adjustable spanners in their primitive representation:
fhheebbeehhf
fhhacehabhhf
fhheaceehhf

Based on the string representations of all the 50 samples of a tool in the learning
set a context-free grammar was constructed by hand for each class. It was
constructed in such a way that the number of strings in each of the 5 languages
would be �nite making completely sure that they ful�lled the requirement of
being non-expansive, i.e., expansive languages will always contain in�nitely
many strings.

The production probabilities of the grammar were estimated based on the fre-
quency of occurrences during a parse of all strings in the sample set[18]. The
probability pi;j for the production Ai ! �j was obtained as,

pi;j =
ni;jP
j ni;j

where ni;j is the number of times production Ai ! �j is used for all the samples.P
j ni;j is the number of times any production having Aj as its left-hand side

was used.

As an example the stochastic grammar for the class of screwdrivers is given
below.

1.00 : S ! KLM
1.00 : K ! NRN
0.39 : N ! eh
0.59 : N ! h
0.02 : N ! hh
0.88 : R ! F
0.12 : R ! FF
0.36 : F ! e
0.59 : F ! d
0.03 : F ! de
0.02 : F ! be
1.00 : M ! HQH

0.62 : Q ! T
0.38 : Q ! TT
0.48 : T ! e
0.40 : T ! d
0.10 : T ! fd
0.02 : T ! a
0.50 : H ! h
0.50 : H ! ha
1.00 : L ! PP
0.78 : P ! f
0.22 : P ! e

In this experiment it was chosen to use the number of occurrences of each of
the 7 primitives as characteristics. Using the algorithms from Chapter 3 and
implementing them in Maple V the probability function associated with the
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occurrences of primitives for each of the tools was computed, and is represented
in Table 6.1.

By inspection of Table 6.1 it can be seen that in general the primitives are
well represented in all classes. The worst situation exists for the 
at-nose pliers
where primitive c and f do not exist in the learning data.

Due to its generality the system was implemented based on Earley's parser.
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Cutting nippers

p0 p1 p2 p3 p4 p5 p6 p7 p8

a 0.0 0.0 0.0 0.060000 0.940000 0.0 0.0 0.0 0.0

b 0.018144 0.179568 0.506432 0.295856 0.0 0.0 0.0 0.0 0.0

c 0.440000 0.560000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.174060 0.363805 0.301890 0.127521 0.029123 0.003433 0.000164 0.0 0.0

e 0.143126 0.368583 0.336512 0.130378 0.020537 0.000861 0.0 0.0 0.0

f 0.378431 0.423314 0.168538 0.028053 0.028053 0.001662 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Flat-nose pliers

p0 p1 p2 p3 p4 p5 p6 p7 p8

a 0.0 0.0 0.002816 0.086530 0.738351 0.161094 0.010976 0.000224 0.0

b 0.015784 0.195745 0.788468 0.0 0.0 0.0 0.0 0.0 0.0

c 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.954314 0.044590 0.001093 0.0 0.0 0.0 0.0 0.0 0.0

e 0.880140 0.115513 0.004344 0.0 0.0 0.0 0.0 0.0 0.0

f 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

h 0.0 0.0 0.002058 0.000554 0.049625 0.208015 0.255009 0.238093 0.26633

Screwdriver

p0 p1 p2 p3 p4 p5 p6 p7 p8

a 0.243138 0.493100 0.256824 0.069000 0.000038 0.0 0.0 0.0 0.0

b 0.977216 0.022304 0.000480 0.0 0.0 0.0 0.0 0.0 0.0

c 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.142449 0.419732 0.353168 0.080267 0.004382 0.0 0.0 0.0 0.0

e 0.053992 0.201695 0.312909 0.261308 0.127207 0.036488 0.005909 0.000475 0.0

f 0.041904 0.303453 0.571689 0.080639 0.002311 0.0 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 0.960400 0.039200 0.000400 0.0 0.0

Adjustable spanner

p0 p1 p2 p3 p4 p5 p6 p7 p8

a 0.383367 0.423164 0.152152 0.033309 0.007221 0.000783 0.0 0.0 0.0

b 0.655600 0.284000 0.060000 0.0 0.0 0.0 0.0 0.0 0.0

c 0.084000 0.916000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.976000 0.024000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.003324 0.045613 0.207051 0.381906 0.267742 0.062769 0.031589 0.0 0.0

f 0.0 0.120000 0.880000 0.0 0.0 0.0 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 0.600000 0.400000 0.0 0.0 0.0

Fixed spanner

p0 p1 p2 p3 p4 p5 p6 p7 p8

a 0.0 0.0 0.0 0.060000 0.940000 0.0 0.0 0.0 0.0

b 0.435600 0.448800 0.115600 0.0 0.0 0.0 0.0 0.0 0.0

c 0.115600 0.448800 0.435600 0.0 0.0 0.0 0.0 0.0 0.0

d 0.960000 0.040000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.053856 0.392508 0.399488 0.130302 0.021714 0.002023 0.000101 0.0 0.0

f 0.009676 0.116044 0.419804 0.413546 0.040924 0.0 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Table 6.1: The probability distribution for the primitives. pi denotes the prob-
ability of having i occurrences of a given primitive.
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6.5 Results and discussion

Six di�erent sets of tests were performed, one using all parsers without any
ranking, being the optimal classi�er, four tests using di�erent numbers of ranked
grammars, 4, 3, 2 and 1 respectively and one using only the rank values without
performing any syntax analysis. Each test was performed for each tool and the
amount of CPU time used and the classi�cation results for the pre-classi�er and
the two-stage classi�er were recorded.

The results for the pre-classi�er are shown in Table 6.2. They show a very strong
correlation between the class given �rst rank and the correct class. The mean
classi�cation percentage is 98, with three classes as high as 100%. The strong
correlation could be the result if the primitives have been partitioned between
the classes, but as shown in Table 6.1 the primitives are well represented in all
classes. The correlation must therefore be due to the individual distribution of
primitives within each class. This distribution must therefore have contained
discriminative information.

Table 6.2 also shows that in most cases only the �rst and second ranked gram-
mar could be identi�ed. This indirectly shows that often the input string was
found incompatible with a grammar. The e�ect of the reduced number of ranked
grammars on the processing time will be discussed later. The table furthermore
shows that the rank values indicate similarities between the tools which are dif-
ferent from the one intuitively estimated based on the structure of the objects,
i.e., the cutting nippers have characteristics more similar to the screwdriver
than with the 
at-nose pliers. This just shows that the characteristics measure
something di�erent from the structure of the objects.

By a close inspection of the probabilities used for the ranking (not shown here)
it can be seen that the distance between the probabilities is great. Usually in
the range of a factor of 100 or 1000. Two probabilities were never closer than
a factor 10. This is a strong indication that minor changes in the probabilities
associated with the occurrences of the primitives will not e�ect the �nal ranking.

The results for the 2-stage classi�er is given in Table 6.3. The timing was done
using the Unix command time. To simplify the process of generating testre-
sults all samples for each tool were processed in one job. The time measured is
therefore the accumulated time for processing 50 strings. To reduce the in
u-
ence of normal variations in the processing time an average from 10 runs was
obtained for each timing result.

The results show that a time reduction can be achieved. Going from all parsers
to the two most likely reduces the time by 44% and using only the most likely
parser gives a 52% reduction. The classi�cation performance was in average
reduced by 0.4% and 1.2% for the two cases.

One should be very cautious when interpreting these results. As regards both
the timing and the performance results it is the relative di�erence between the
results for the three tests which is of interest more than the speci�c results of
each test.
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Tool 1. rank 2. rank 3. rank 4. rank
Tool % Tool % Tool % Tool %

Cutting nippers Cut. nip. 100 Screw. 54 Not def. 84 Not def. 100
Not def. 30 Screw. 10

Flat. 10 Adj. span. 4
Fix. span 6 Fix. span. 2

Flat-nose pliers Flat. 100 Screw. 56 Not def. 100 Not def. 100
Not def. 44

Screwdriver Screw. 100 Not def. 58 Not def. 100 Not def. 100
Adj. span. 42

Adjust. spanner Adj. span. 94 Not def. 88 Not def. 100 Not def. 100
Screw. 6 Screw. 8

Adj. span. 4

Fixed spanner Fix. span. 96 Not def 68 Not def. 86 Not def. 100
Cut. nip 2 Cut. nip 28 Adj. span 8

Adj. span. 2 Adj. span. 2 Cut. nip. 4
Fix. span. 2 Screw. 2

Table 6.2: Distribution of the rank values for each of the 5 tools. Not def.
means that the rank-value was zero.

Tool 5 parsers 4 parsers 3 parser 2 parser 1 parser Only rank
sec % sec % sec % sec % sec % sec %

Cutting nippers 9.42 94 5.77 94 5.93 94 5.50 94 4.47 94 0.91 100

Flat-nose pliers 9.17 98 5.60 98 5.60 98 5.53 98 4.62 98 0.89 100

Screwdriver 9.13 98 5.20 98 5.09 98 5.20 98 4.42 98 0.94 100

Adj. spanner 9.07 88 4.62 88 4.66 86 4.67 88 4.41 86 0.96 94

Fixed spanner 9.31 100 5.15 98 4.95 98 4.94 98 4.37 96 0.99 96

Average 9.22 95.6 5.27 95.2 5.25 95.2 5.17 95.2 4.46 94.4 0.94 98

Table 6.3: Timing and classi�cation results for the six systems using 5,4,3,2,1
parser(s) or using only the rank values. The sec parameter represents the time
used to parse 50 samples measured in seconds of CPU time.

The results also show that if only the results from the pre-classi�er were used
a reduction in time close to 90% could be obtained. At the same time the
performance surprisingly would increase by 2.4%.

The processing time is proportional to the number of syntax analyses performed.
As discussed in Section 6.2.1 it can be di�cult to quantify the proportionality.
This is also clear from the results. Going from 5 to 1 or from 2 to 1 does not
reduce the time with a factor of 5 or 2, respectively. The reason for this is that
only one parser requires full time and the rest stops further processing as soon
as it is detected that it can not have generated the string.

The test shows a signi�cant drop in processing time from using no rankings
at all to using the four most likely parsers. On the other hand no further
decrease seems to take place reducing the number to 3 or 2 parsers. This
somewhat unusual result is due to the fact that even though the system was
set up to perform 4 syntax analyses, they were not all performed if the ranking
did not �nd 4 rank values greater than zero. The timing results remain almost
constant for 4, 3 and 2 parser because as shown in Table 6.2 in most cases only
two grammars was chosen by the ranking.
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The length of the strings in each test has been as low as 10 to 15 symbols. Since
the time complexity of the parser is at least of the order O(n2) whereas the
ranking is O(n), the relative time spent on the ranking decreases as n increases.
For the many possible applications, in which the string length exceeds 15, the
time reduction would therefore exceed the one reported in this test.

6.6 Summary

This chapter has discussed various ways of exploiting statistical characteristics
within pattern classi�cation, and one has been developed, tested and discussed
in details.

A two-stage syntactic pattern recognition strategy has been presented. It fo-
cuses on reducing the time spent on the syntax analysis. Optimal classi�cation
for a n-class problem requires that all n parsers are used for each input string.
It has been shown that it is possible to rank a stochastic context-free grammar
according to how likely it is to generate a string with the speci�c number of
occurrences of speci�c terminals as observed from the input string.

A recognition system for 5 industrially made tools has been designed as a test-
bed for a comparison of the optimal and this sub-optimal procedure. Going
from 5 parsers to only the most likely reduces the processing time by 52% and
decreases the classi�cation by 1.2%.

The two-stage classi�cation strategy is not claimed to be applicable to every
syntactic pattern recognition system, but should be thought of as an additional
tool in the large tool-box from which the system designer gets inspiration during
the creation of a classi�cation system.



Chapter 7

Summary

This chapter will summarize the work presented in the previous chapters, dis-
cuss the perspectives of the results obtained and �nally touch upon some issues
open for further research.

7.1 Summary of the Dissertation

As described in Chapter 1, the aim of the work presented has been:

� to determine the possibilities of using a regular language representation
of a stochastic context-free language for the computation of the set of
order-independent characteristics related to the strings in the language or
the derivation process of this.

� to gain new insight in how such characteristics can be made useful in a
syntactic pattern recognition system.

To conclude on the work described in the previous chapters the following results
have been obtained:

� A three-step Parikh-Thomason-Larsen approach (PTL-approach) has been
developed. It serves as a tool for computing order-independent statistical
characteristics based on order-independent random variables associated
with strings in a stochastic context-free language and the derivation pro-
cess of this. The approach utilizes a regular language representation of
the context-free language.

� Various ways in which statistical characteristics can be exploited in pat-
tern classi�cation have been outlined. To exemplify the potential a two-
stage syntactic classi�cation strategy has been developed and tested ex-
perimentally.

The theoretical foundation for the PTL-approach was layed out by Parikh,
when he proved that the commutative map of any context-free language can
be represented by a regular language. In a commutative map no information
about the ordering of the strings is maintained, but since order-independent

90
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characteristics are not based on such information, Parikh theorem shows that
the necessary information of the characteristics is expressible as a regular lan-
guage.

The PTL-approach describes that 1) the stochastic context-free grammar should
be changed into a non-stochastic context-free derivation grammar using the pro-
duction probabilities as unique production labels, 2) the derivation grammar
should be represented as a system of equations for which a regular language
solution can be obtained, 3) the solution should be used to compute statistical
characteristics of the original stochastic grammar. The approach has been sup-
ported by exact algorithms for all the detailed steps involved in the computation
of characteristics.

The complexity of derivations of a stochastic context-free language is very de-
pendent on whether the grammar is expansive or not. Therefore it was necessary
to approach the two cases di�erently giving rise to two di�erent implementa-
tions of step 2 and 3 in the PTL-approach.

For the non-expansive case it has been shown that Pilling's Method is appli-
cable in order to obtain a solution of the system of equations representing the
derivation grammar. It has furthermore been documented that the method
cannot cope with the increased complexity of expansive languages. It has been
shown that order-independent random variables can be computed by using a
generating function representation of the solution obtained by Pilling's Method.
Examples have been given showing how a generating function can be tailored
to compute each characteristic of interest.

For expansive context-free languages, meaning context-free languages in general,
attention was focussed on methods capable of handling the increased complex-
ity of expansive grammars. In formal language theory a few examples exist
where Lagrange's Inversion Formula, known from complex function theory, has
been used to derive a solution of an equation representing a one-nonterminal
grammar. Searching the literature a generalization of Lagrange's Inversion for-
mula (GLIF) for complex functions of more than one variable was discovered.
It has been shown in this thesis how GLIF can be used to derive a solution to
a set of equations representing an expansive context-free grammar. The solu-
tion obtained by using GLIF is given in form of a power series in commutative
variables and it has been shown how statistical characteristics can be obtained
based on this representation of the stochastic context-free language.

Markov chains and multi-type branching processes can be used to model the
derivation process of stochastic regular and stochastic context-free languages
respectively. These models also serve as means of computing some characteris-
tics of the languages. The thesis outlines the models and their use in relation
to a derivation process. It gives an overview of the applicability of the existing
methods and the PTL-approach to computations of speci�c characteristics.

Di�erent ways of exploiting statistical characteristics in pattern classi�cation
have been outlined. To exemplify the potential of statistical characteristics
within syntactic pattern recognition a new two-stage classi�cation strategy has
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been formulated. It ensures that the best possible classi�cation is performed
even in situations, where time restrictions does not allow for the usual optimal
classi�cation strategy. The strategy uses a pre-classi�er to rank the grammars
according to their probability of generating strings with statistical characteris-
tics similar to those of the input string. The syntactic classi�er in stage two
can then ensure that the most likely grammar is tested �rst. To provide numer-
ical support for the strategy a syntactic pattern recognition system has been
designed to work on �ve di�erent industrially made tools. Results show that us-
ing the two-stage strategy can decrease the processing time signi�cantly giving
only a minor decrease in classi�cation performance. These results are, however,
application dependent.

7.2 Perspectives of the results

The increased possibilities for computing statistical characteristics have very
naturally put forward the question of the potential applications of those char-
acteristics. Some obvious choices can be listed:

1. to design new classi�cation strategies where the new and additional infor-
mation provided by the statistical characteristics is exploited to advance
the classi�cation performance. Various possibilities exist including the
formulation of a hybrid recognition system, where structural information
is integrated in a statistical framework.

2. to use characteristics during an inference procedure to ensure that the
inferred grammar possess characteristics similar to those which can be
extracted from the set of learning samples. This also opens up for new
interesting possibilities in terms of using the characteristics to de�ne a
metric by which the di�erence between the learning data and the set of
strings genereted by the inferred grammar can be measured.

3. to use the characteristics to guide a non-deterministic parser. Due to the
non-determinism the parser must, during the processing of a string, take
decisions on which rewriting to apply. Statistical characteristics related
to the mean number of applications of productions, or nonterminals can
possibly guide the parser towards taking the best decision.

The work presented in this thesis should be seen as one step on the road which
eventually leads to a greater awareness of the signi�cant potential of stochastic
languages as models for complex patterns.

7.3 Future work

Some issues for further research can be identi�ed.
A more in-depth analysis of the accuracy of the approximation for the ran-
dom variables would be valuable for a better understanding of the practical
limitations of the theoretical formulated method.
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Likewise a more detailed analysis of the trade-o� between the amount of com-
putations used and the accuracy of the results obtained for Markov chains,
multiple branching processes, and for the PTL-approach.

The complexity of computing characteristics for context-free languages is clearly
higher than for regular languages, especially in the expansive case. It would
therefore be of interest to develop a regular language approximation to the
context-free language, which would allow characteristics to be computed and
would keep the inherent error below some threshold.

Even though it is not documented in this thesis, work has been conducted in an
attempt to generalize the Pilling Method to be applicable even in the expansive
situation. This has so far not been successful, but it de�nitely still has its
relevance on a list of future research areas.



Appendix A

The Markov chain model for

stochastic linear languages

This appendix gives a description of how the derivation process of stochastic
linear languages can be modelled by a Markov chain, and how the model can
be used for computations of statistical characteristics of the language.

A.1 The Markov chain model

For a linear grammar each application of a production-rule introduces at most
one new nonterminal in the sentential form. Therefore each sentential form
leading to a terminated string contains exactly one nonterminal. The sequence
of such nonterminals beginning with the starting symbol describes the deriva-
tion process of a string in the language. Such a sequence can be modelled by a
Markov chain. Based on such a representation it is possible to compute char-
acteristics as the status after n derivations and the mean values for the entire
derivation process.

A Markov chain is a Markov process whose state space (set of possible states)
is �nite or countable. A Markov process is a stochastic process fX(t); t � 0g
where for any t1 < t2 < ::: < tn in the index set the conditional distribution of
X(tn) depends only on X(tn�1). A Markov chain can be speci�ed by stating the
set of possible events fXng, some starting event X0, and the conditional prob-
abilities P (Xt = i j Xt�1 = j), being the conditional probability of observing
Xj followed by Xi.

A convenient way of representing a Markov chain is by its transition diagram.
It consists of states representing the events Xn and arcs labelled with the prob-
ability pi;j representing the probability of making a transition from state i to
state j. An example is given in Figure A.1. The chain in the �gure consists of
4 states fS;A;B; Fg. fSg is a starting state indicated by the small arrow and
a �nal state fFg indicated by the double circle. A realization of the chain is
any sequence going from the starting state to the �nal state.

The Markov chain capable of modelling the derivation process can be charac-
terised as a discrete parameter, time homogeneous, �nal state stochastic process

94
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Figure A.1: An example of a Markov chain.

having the 1st order Markov property. This should become clear after the fol-
lowing arguments.

The derivation process of a string is clearly a stochastic process since the rewrit-
ings are governed by the production probabilities.

The rewriting of a speci�c nonterminal depends only on its presence in the
sentential form and not on which production rule that introduced it. Decisions
about the next sentential form can therefore be taken based only on the present
form without knowledge of the previous forms, which is equivalent to the 1st
order Markov property.

The chain represents a sequence of nonterminals coming from a �nite set. Asso-
ciating one state with each of the nonterminals the state space becomes �nite.

Each derivation can be broken down into a set of discrete steps, one step for
each rewriting. If the parameter of the chain is associated with derivation steps,
the parameter becomes discrete.

Since the set of probabilistic productions and the conditions for rewritings re-
main the same throughout a derivation, and from one derivation to the next,
the chain representing the derivation can be assumed time homogeneous.

A.2 Converting from a grammar to a Markov chain

To model the derivation process of a language L(G) generated by a grammar G
it is necessary to convert the grammar into a Markov chain. The information
required to specify the chain is a set of states fXng, a probability mass function
for the start con�guration and a conditional probability mass function.

The probability mass function

pj(n) = P [Xn = j]

denotes the unconditional probability of being in state j at time tn, or being
in state j after n transitions. A special situation exists for n = 0 where pj(0)
denotes the probability of starting in state j. If there are n states f1; 2; 3; :::; ng,
a n-dimensional initial probability vector p(0) can be constructed,

p(0) = (p1(0); p2(0); : : : ; pn(0))



96 APPENDIX A. THE MARKOV CHAIN MODEL

The conditional probability mass function is de�ned as

pj;k(m;n) = P [Xn = k j Xm = j]

pj;k(m;n) gives the probability of being in state k at time tn conditioned on
being in state j to time tm. If the chain is stationary, the notation is pj;k(n). For
n = 1 it is called the one-step transition probability and in general the n-step
transition probability. For notational simplicity pj;k(1) will be written pj;k.

If there are n states in the chain there will be n � n one-step transition prob-
abilities. They can be arranged in a matrix P so that each entry in P(1) is a
one-step transition probability. For a Markov chain with state space f1,2,...,ng
the matrix looks like

P(1) =

0
BBBB@

p1;1 p1;2 � � � p1;n
p2;1 p2;2
...

pn;1 � � � � � � pn;n

1
CCCCA

The matrix is called the transition matrix. Note that the elements of the tran-
sition matrix have the following properties:

pj;k � 0 for all j, kP
k pj;k = 1 for all j

The required information can be extracted from the grammar using Algorithm
A.1. An example of using the algorithm is given in Example A-1.
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ALGORITHM A.1. Conversion to a Markov chain.

Input:

Output:

Method:
A stochastic linear grammar G = (N;�; P; S), speci�ed as

N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g

The production must be of the following form:

pi : Ai ! akAjam or pi : Ai ! ak

A Markov chain represented as fXng, p(0), P(1).

1)

2)

3)

fXng = N [ fFg. The new state F is the �nal state.

Initialize p(0) with zeros.
Set pA1

to one.

Initialize P(1) with zeros,
For all productions do,

If pi : Ai ! akAjam
Set Pi;j = Pi;j + pi

If pi : Ai ! ak
Set Pi;F = pi

End

Example A-1:

Consider a stochastic linear grammar G = (N;�; P; S), N = fS;A;Bg, � =
fa; b; c; dg
P :

0:7 : S ! aA 0:4 : A! dA

0:3 : S ! bAa 1:0 : B ! c

0:6 : A! cB

The set of states in the chain becomes:

fXng = fS;A;B; Fg

If the elements of the vector p(0) are arranged in order of the states, S, A, B ,
F , and likewise for the rows and columns of P(1), the following result appears,
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p(0) = [1; 0; 0] P(1) =

0
BBB@

0 1:0 0 0
0 0:4 0:6 0
0 0 0 1
0 0 0 1

1
CCCA

The transition diagram for this Markov chain is the one shown in Figure A.1.

Algorithm A.1 converts all information about the derivation process of the
grammar into the chain. The knowledge about the terminals is, however, not
directly available from the chain. Some information is available through the
nonterminals, but unless each nonterminal uniquely represents one terminal
(or two in a �xed combination due to a production like A ! a1Ba2), some
information will be lost through the conversion. As an example consider two
productions A ! aS and B ! bS. Information about e.g., the number of
occurrences of nonterminal S is not su�cient to say anything about the occur-
rences of terminal a or b. It is necessary to augment the productions with new
nonterminals to ensure uniqueness; A ! aS1 and B ! bS2. This, however,
requires that all productions having S on the left hand side must be changed to
include the new nonterminals. If the grammar has a production like S ! aC,
it must be replaced by 2 new productions, S1 ! aC and S2 ! aC. The same
kind of problems exist for the terminating productions, e.g., B ! d and B ! e.
In the chain di�erent states must be de�ned for the two productions. An al-
gorithm for augmenting a linear grammar to ensure uniqueness in the relation
between nonterminals and terminals in the grammar and afterwards converting
the augmented grammar to a chain is given in Algorithm A.2. To record the
relationship between the original and the augmented chain a number of sets
must be computed during the augmentation process. CAi

is the set containing
the new states that nonterminal Ai gives rise to. Cai is a set of 2-tuples (Ai; ]ai)
containing the states in the augmented chain associated with ai and a count of
occurrences of terminal ai associated with Ai. Cterm contains the new states
representing terminating productions in the grammar.

Example A-2 shows how Algorithm A.2 augments a grammar and in Figure A.2
the transition diagram for the augmented chain is shown.

Example A-2:

Consider a stochastic linear grammar G = (N;�; P; S), N = fS;A;Bg, � =
fa; b; c; d; eg,
P :

0:7 : S ! aA 0:4 : A! dA

0:3 : S ! bAa 1:0 : B ! e

0:6 : A! cB

This is the grammar from Example A-1 but it is replicated for ease in comparing
with the augmented grammar G0 given below.

G0 = (N;�; P; S), N = fS;A1; A2; A3; B; Tg. � = fa; b; c; d; eg, P :
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Figure A.2: The transition diagram for the augmented grammar.

0:7 : S ! aA1 0:4 : A1 ! dA3

0:3 : S ! bA2a 0:4 : A2 ! dA3

0:6 : A1 ! cB 0:4 : B ! eT

0:6 : A2 ! cB 1:0 : T ! f

The connection between the original and the augmented grammar is described
in the following sets;
CS = fSg, CA = fA1; A2; A3g, CB = fBg.
Ca = f(A1; 1)g , Cb = f(A1; 1); (A2; 1)g, Cc = f(B; 1)g, Cd = f(A3; 1)g
Cterm = fTg.
It should be noted that the new terminal f in the augmented grammar is not a
valid symbol in the strings, it serves the purpose of interfacing with Algorithm
A.1 for changing the result into a chain. The augmented grammar should be
viewed as an intermediate result, and not as the �nal result of some process.
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ALGORITHM A.2. Augmentation and conversion to a Markov chain.

Input:

Output:

Method:
A stochastic grammar G = (N;�; P; S), speci�ed as
N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g

The production must be of the following form:
pi : Ai ! akAjam or pi : Ai ! ak

A Markov chain represented as fXng, p(0), P(1),
CAi

, Cai and Cterm.

1)

2)

3)

For all nonterminals Ai do

Find all productions with Ai in the right hand side
e.g., Aj ! a1Aia2

Set DiffAi
equal to the number of di�erent combinations

of terminals for these productions.

For each production do

Substitute Ai with a new unique nonterminal Ai;k

N = (N n fAig) [ fAi;kg

CAi
= CAi

[ fAi;kg

Cai = Cai [ f(Ai;k; ]ai)g
End

For all productions containing Ai in the left hand side do
Copy each production DiffAi

times
Substitute Ai with a new nonterminal Ai;k

End

End

For all terminating productions do
Set DiffTerminating to the number of di�erent terminals
in these productions.

For each di�erent terminal do
Substitute Ai ! ai with Ai ! aiTk
N = N [fTkg

Add DiffTerminating new productions Tk ! f

� = � [ ffg

End

End

Apply Algorithm A.1 to the augmented grammar.
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A.3 Computing the status after n transitions

By observing the chain after n transitions it is possible to compute the accumu-
lated probability mass for all the strings terminated after n derivations, and the
probability that nonterminal Ai is in the sentential form at this speci�c point
in the derivation process.

All information about the status of the process after n transitions or derivation
steps is stored in the unconditional probability vector

p(n) = (p1(n); p2(n); :::; pm(n))

which can be computed as

p(n) = p(0)P(n)

It can be shown by using the Chapman-Kolmogorov Equation that the set of
n-step transition probabilities can be determined by multiplying the one-step
transition matrix with itself n times.

P(n) = Pn

An example of using the transition matrix and initial probability vector to
describe the derivation process is given in Example A-3. This simple procedure

for obtaining the status after n derivations is summarized in Algorithm A.3.

Example A-3:

A stochastic regular grammar G = (N;�; P; S) is given with productions:

0:3 : S ! aS

0:7 : S ! bA

0:4 : A! dS

0:6 : A! c

By inspection of the grammar the transition matrix can be initiated.

P(1) =

0
B@ 0:3 0:7 0

0:4 0 0:6
0 0 1

1
CA

The matrix is formed by arranging the rows and columns in the order of the
states S, A, F . The starting state is always the �rst and the absorbing state
the last one. After some matrix computations:

P(2) =

0
B@ 0:37 0:21 0:42

0:12 0:28 0:60
0 0 1

1
CA

P(3) =

0
B@ 0:19 0:26 0:55

0:15 0:08 0:77
0 0 1

1
CA
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The matrix multiplications account for all the combinations of productions in
the grammar.

pS;S in P(2) represent the probability that any sentential form, after two rewrit-
ings, contains a nonterminal S , having started with S. pS;F represent the
accumulated probability of terminated strings after two rewritings. How the
values relate to the actual derivations in the grammar is shown by listening
some derivations of strings.

S
0:7) bA

0:6) bc [0:42]

S
0:3) aS

0:7) abA
0:6) abc [0:13]

S
0:7) bA

0:4) bdS [0:28]

S
0:3) aS

0:3) aaS [0:09]

The number in the square brackets is the total probability of the string, com-
puted by multiplying the probabilities for all the rewritings used to form the
string. Note that the sum of the 2 terminated strings is 0.55 which is equal to
pS;F in P(3).

It can be shown that any stochastic linear grammar is consistent. Therefore
the value of PS;F should approach 1 as n goes toward in�nity. The grammar
is, however, only consistent if no useless nonterminals exist in the grammar. A
nonterminal A in a grammar G is useless in generating terminal strings in L(G)
if

1. A is not in any sentential form derivable from S, or

2. A itself does not yield any terminal string.

Useless nonterminals introduce absorbing states in the chain, in addition to the
�nal state. These new states serve as a kind of trap state; once the process
reaches the state, it remains there, unable to terminate the string. Inspection
of the value of PS;F as n grows can detect the presence of unwanted useless
nonterminals.

A.4 Computing the mean values for all derivations

Having a Markov chain representation of the grammar and using well-known
properties of the chain it is possible to determine characteristics for the entire
set of strings without ever generating one string. The mean string length, mean
number of occurrences of terminals and nonterminals can be computed, as well
as the probability of terminating the derivation process(How often does the
process terminate a string?).

Information about mean values for the number of times a nonterminal or a
terminal has been incorporated in a sentential form can be found by looking
at the mean number of times the chain occupies the individual states. A state
can be classi�ed as either recurrent or non-recurrent. It is recurrent if the
probability of ever returning to the state is one. The �nal state is recurrent. If
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ALGORITHM A.3. Status after n derivations.

Input:

Output:

Method:
n: the number of derivations after which the status will

be computed.

A stochastic grammar G = (N;�; P; S), speci�ed as

N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g

The production must be of the following form:

pi : Ai ! akAjam or pi : Ai ! ak

The status represented by P (Ai), P (terminating).

1)

2)

3)

Apply algorithm A.1.

Compute Pn, where P is the output from Algorithm A.1.

P (Ai) = Pn
S;Ai

and P (terminating) = Pn
S;F

the probability is less than one, it is a non-recurrent state. Let N 0 denote the
time the chain spends among the non-recurrent states until it �nally is absorbed
in the recurrent �nal state. The total time from the start until absorption is
N 0 = N + 1.

De�ne mj to be the mean time to absorption given that the chain started in
state j.

mj = E[N j X0 = j] = E[N 0 j X0 = j] + 1

mj can be computed as the solution to the set of linear equations:

mj = 1 +
X
k2T

pj;kmk

for j 2 T , the set of non-recurrent states. The problem is usually transformed
into matrix notation. Let Q be the matrix

Q = fpj;kg

for j, k 2 T . For a chain with one absorbing state F , the Q matrix is the
transition matrix stripped for the last row and column since they are related
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to the recurrent absorbing state. By letting m denote a column vector whose
probabilities are mj the expression for the mean time to absorption becomes:

Im = 1+Qm

1 is a column vector where all the components are 1.
Rewriting the above and de�ningN=(I�Q)�1 enables us to write an equation
like

m = N1

N is called the fundamental matrix of an absorbing Markov chain. The element
in the matrix ni;j is the mean number of occurrences of state j assuming that
the process started in state i.

Since N is multiplied with 1, mj becomes a sum of all elements in row j in N.
Since the starting symbol is unique and associated with the �rst row/column
in the underlying transition matrix, only m1 is of interest when using Markov
chains to model the derivation process of a stochastic regular grammar.

If the grammar has been augmented, the coe�cients in the fundamental ma-
trix contain all the the information required to compute mean values of oc-
currences for nonterminals and terminals and the termination rate. The aug-
mentation ensures that each state is uniquely related to a terminal and that
special states are related to the terminating productions. Using the set CA,
e.g., CA = fA1; A2g the mean number of occurrences of nonterminal A in all
the sentential forms is N1;A1

+N1;A2
, likewise for all nonterminals. Using as an

example Cb = f(A1; 2); (B; 1)g the mean number of occurrences of terminal b
is (2 � N1;A1

+ N1;B). Based on Cterm the number of occurrences of a termi-
nating state can be computed in a similar way. Based on the ratio between the
number of occurrences of terminating states and the occurrence of all states,
the probability of terminating a derivation P(terminating) can be computed.
The mean string length can easily be computed as the sum of occurrences for
each of the terminals.

The computations required to derive the characteristics are summarized in Al-
gorithm A.4, and an example of using the algorithm is given in Example A-4.

Example A-4:

Consider a stochastic linear grammar G = (N;�; P; S), N = fS;A;Bg, � =
fa; b; c; d; eg,
P :

0:7 : S ! aA

0:3 : S ! bAa

0:6 : A! cB

0:4 : A! dA

1:0 : B ! e

The results achieved by applying Algorithm A.2 to this grammar are given in
Example A-2. The information of interest for this example is only the aug-
mented set of nonterminals and the relation between the augmented and the
original chain.
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N = fS;A1; A2; A3; B; Tg.

CS = fSg, CA = fA1; A2; A3g, CB = fBg.

Ca = f(A1; 1)g , Cb = f(A1; 1); (A2; 1)g, Cc = f(B; 1)g, Cd = f(A3; 1)g,
Ce = f(T; 1)g.

Cterm = fTg.

The fundamental matrix N of the augmented chain is the following;

N =

0
BBBBBBB@

1:00 0:70 0:30 0:67 1:00 1:00
0 1:00 0 0:67 1:00 1:00
0 0 1:00 0:67 1:00 1:00
0 0 0 1:67 1:00 1:00
0 0 0 0 1:00 1:00
0 0 0 0 0 1:00

1
CCCCCCCA

Using CAi
, Cai and Cterm the following characteristics can be computed.

Mean occ(a) = 1.00 Probability(a) = 0.252
Mean occ(b) = 0.30 Probability(b) = 0.076
Mean occ(c) = 1.00 Probability(c) = 0.252
Mean occ(d) = 0.67 Probability(d) = 0.168
Mean occ(e) = 1.00 Probability(e) = 0.252

Mean occ(S) = 1.00 Probability(S) = 0.214
Mean occ(A) = 1.67 Probability(A) = 0.358
Mean occ(B) = 1.00 Probability(B) = 0.214
Mean occ(T) = 1.00 P(Terminating) = 0.214

Mean string length = 3.967

If the grammar has not been augmented only the mean number of occurrences
for the nonterminals could have been computed by using this approach. It
would however have been possible to compute the probability of terminating a
derivation by looking at the stationary distribution or the long-run distribution
of the Markov chain. Due to the absorbing �nal state the process will in the long
run occupy only the �nal state. By changing the �nal recurrent state to a non-
recurrent state by allowing a transition back to the starting state a non-trivial
distribution can be computed. This can be done by computing limn!1P(n),
where P(n) is the n-step transition matrix for the new chain without absorbing
states. This technique can be used unless the chain is periodic, because then
the values in P(n) will not converge.
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A.5 Sensitivity analysis

As a hopefully illustrative example of what a stochastic grammar and character-
istics computed by a Markov chain representation can be used for, the concept
of sensitivity analysis for a stochastic grammar is introduced. The general idea
is to measure the range of change of a speci�c characteristic, giving a change in
the production probabilities of the grammar. This can be done using di�erent
approaches. The one taken here is to compute the sensitivity of each produc-
tion based on an initial setting of the probabilities for all the productions. The
approach is chosen because the result is easy to interpret. Had the sensitivity
measure been conditioned on the individual settings of all the individual pro-
ductions, no clear interpretation could easily be given. Di�erent initial setting
will, however, usually give di�erent sensitivity measures. For each nonterminal
Ai in the grammar it is possible to de�ne a class ClassAi

, consisting of all the
productions having Ai as the left hand side of the production rule. Within each
class the sum of productions are 1. Once a production with probability, say,
pi is analysed, pi is varied from 0.05 to 0.95. The reason for not using the full
range from 0 to 1 is that applying the extreme values of such a range might in-
troduce absorbing states in the Markov chain. It has been chosen to distribute
the probability mass (1 - pi) evenly among the rest of the productions within a
class of productions.

A more formal de�nition is given below,

De�nition 26 The sensitivity of a production pi : Ai ! aiAjaj with re-

spect to a given characteristic C is de�ned as

�C

�pi
=

C0:05 � C0:95

0:9

where C0:05 and C0:95 are the values of characteristic C computed for pi having

the value of 0.05 and 0.95 respectively.

All productions not in Classai must be kept to their initial distribution.

The probability mass (1 - Pi) should be distributed evenly among the other pro-

duction within CAi
.

Determining the consequences of changes in the probability distribution for
at speci�c class of productions would be very di�cult if it were based on an
inspection of the grammar. To demonstrate this some results are given in
Example A-5 for a grammar of moderate size.

Example A-5:

Consider a stochastic linear grammar G = (N;�; P; S), N = fS;A;B;C;Dg,
� = fa; b; c; eg, P :
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0:4 : S ! aB 0:6 : B ! cAc

0:4 : S ! aBa 0:4 : B ! cD

0:2 : S ! cS 0:3 : C ! eS

0:3 : A! bAc 0:7 : C ! bCa

0:2 : A! cB 0:8 : D ! aB

0:5 : A! bCa 0:2 : D ! b

Computing the sensitivity for the mean string length gives the following results,
where Sen(production) denotes the sensitivity of the speci�ed production;

Sen(S ! aB): 1.081491
Sen(S ! aBa): 0.000008
Sen(S ! cS): 6.278671
Sen(A! bAc): 14.814831
Sen(A! cB): 6.645400
Sen(A! bCa): 4.093569

Sen(B ! cAc): 48.736336
Sen(B ! cD): 48.735985
Sen(C ! eS): 10.581993
Sen(C ! bCa): 10.582031
Sen(D ! aB): 16.596167
Sen(D ! b): 16.596138

The results show signi�cant di�erences in the sensitivity from one production
class to another. For classes with more than 2 productions, large di�erences can
be observed within a class. A detailed study of the structure of the grammar
might have given an indication of some of the di�erences, but some numerical
analysis like this sensitivity analysis is required if the di�erences should be
quanti�ed.
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ALGORITHM A.4. Mean values for all derivations.

Input:

Output:

Method:
A stochastic grammar G = (N;�; P; S), speci�ed as

N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g

The production must be of the following form:

pi : Ai ! akAjam or pi : Ai ! ak

Mean occ(ai), Mean occ(Ai), Mean string length, P(terminating)

1)

2)

3)

4)

5)

6)

7)

Apply Algorithm A.2.

Create Q as the transition matrix stripped for the entries
relating to the recurrent �nal state.

Compute the fundamental matrix N as N = (I�Q)�1.

Compute the mean number of occurrences of terminal ai as
Mean occ(ai) =

P
Ai

N1;Ai
� ]ai ,

where ] comes from Cai = fAi; aig.

Mean string length =
P

ai
Mean occ(ai).

Mean occ(Ai) =
P

k2CA
i

N1;Ak
.

Compute the probability of terminating a derivation as:
Mean occ(terminating) =

P
Ak2Cterm

N1;Ak
.

Mean occ(all states) =
P

allstatesN1;Ak
.

P(terminating) = Mean occ(terminating)/Mean occ(all states).



Appendix B

The branching process model

for stochastic context-free

languages

This appendix describes how the derivation process of any stochastic context-
free language can be modelled by a multi-type branching process. It shows
how the model can be used for computations of statistical characteristics of the
language.

B.1 The branching process model

If the grammar is no longer linear, the number of nonterminals in a sentential
form will not be limited to one. For context free grammars in general the
number can grow and become very large at times during the derivation process
but will eventually reach zero when the derivation terminates. To model such a
derivation process by a Markov chain would require one state for each possible
con�guration of nonterminals in the sentential form. In general the number can
be in�nite and the model becomes an in�nite state Markov chain. Such a model
is considered of only very little practical interest for the problem addresses there.

Instead of modelling the sequence of the nonterminals in the sentential form
the focus is changed toward a more general model capable of describing the
evolution taking place when a group of objects reproduces as itself or other
objects. The evolution can be broken down in a number of generations, and
the model can describe how the size of the generations evolves. Such a model
is termed a branching process model.

Let the generations be numbered 0,1,2 ... and let Zn be the size of the nth
generation, meaning the number of objects in the generation. A branching
process can be described as a Markov chain fZn;n = 0; 1; 2::g for the size of
the individual generations. The following assumptions are made,

� the �rst generation consists of exactly one object Z0 = 1 indicating that
the process has a unique starting situation.

109
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� the reproduction process is governed by a probability function p for each
object, where pk is the probability that an object existing in the nth gen-
eration will have k children in the (n+1)th generation. It is required thatP

k pk = 1. It is assumed that the probability distribution is independent
n.

� di�erent objects reproduce independently of each other. The number of
children that a given object can produce is not dependent on e.g., the
total number of objects in the generation.

If only one type of objects exists the process is called a single-type branching

process otherwise a multi-type branching process.

The generation process of a stochastic context-free grammar can in general be
modelled as a multi-type branching process, where the nonterminals acts as the
object capable of reproduction. The derivation process of a grammar relates
to a multi-type branching Process in the following way. The unique starting
symbol of the grammar is the zeroth generation. The strings in the �rst gen-
eration come from rewriting the starting symbol in all possible ways according
to the grammar. Strings in the second generation comes from rewriting all
nonterminals in all the strings in the �rst generation in all possible ways. Fur-
thermore it contains the strings without nonterminals for the �rst generation.
In general, the nth generation contains the new strings coming from rewritings
of nonterminals in the (n � 1)th generation and strings without nonterminals
in generation 1 to (n� 1). This is illustrated in Example B-1.

Based on the following arguments it can be shown that the derivation process of
a stochastic context free grammar ful�lls the formal requirements of a branching
process.

A grammar has a unique starting nonterminal which can play the role of the
zeroth generation.

Under the assumption that the grammar is proper, the rewritings of nontermi-
nals are governed by a probability function.

A rewriting of a nonterminal is only dependent on the existence of that non-
terminal in the sentential form, and not on any other nonterminal which might
exist in the sentential form. Therefore rewritings are independent of each other
and di�erent occurrences of the same type.

The size of a generation is the number of nonterminals in all of the sentential
forms present in that generation. Any change in the number of nonterminals in
a sentential form is related only to a di�erence in the number of nonterminals
in the left and the right hand side of the production used to create the new
sentential form. The use of a production is related only to the occurrence of
nonterminal in the form and not on how it were introduced into the form.
Therefore the size of the sentential forms makes up a 1st order Markov process.
It is furthermore a chain since the size of a generation can be described by a
set of discrete values, the set of non-negative integers.
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From the branching process model at least three types of information can be
obtained.

� The status for the nth generation.

� Accumulated information for generation 0; 1; 2; :::; n.

� Information about the entire process.

The information for the entire process can immediately be interpreted in terms
of the entire derivation process for all strings in the language, but otherwise
caution should be shown in the interpretation since there is no one-to-one cor-
respondence between elements in the nth generation and the set of sentential
forms after n rewritings. The following section describes how the information
about the grammar is converted into a branching process, and how the above-
mentioned information can be computed.

B.2 Converting from a grammar to a branching pro-

cess

The information required for the branching process to model the derivation
process of a grammar can be speci�ed partly as generating functions and partly
as matrices.

Two di�erent types of generating functions are used. The �rst is called fobject

and describes how an object of type object produces children. There exists such
a generating function for each nonterminal in the grammar. The second type
is called Fgeneration, and there exists such one for each generation.

The generating function for an object of type i in a process having k di�erent
types is written as:

f i(s1; : : : ; sk) =
1X

r0;:::;rk=0

pi(r1; : : : ; rk)s
r1
1 : : : srkk

f i(s1; :::; sk) describes the probability that one object of type i produces chil-
dren of type 1 to k. pi(r1; ::::rk) is the probability that an object of type i has
r1 o�spring of type 1, ..., rk children of type k. s can be regarded as a dummy
variable. The sum is over all combinations for r1; r2; : : : ; rk. Theoretically the
number of combinations can be very large but in any practical situation mod-
elling stochastic grammars, the limited number of nonterminals in a grammar
and the limited number of nonterminals in the right hand side of a production
will ensure a limited number of combinations. The generating function is cre-
ated by �rst forming equivalence classes, CAi

, on the set of productions. Class
CAi

contains all the productions having Ai as the left hand side. Each class
gives rise to a generating function. It consists of a sum of elements, each carry-
ing the information from one production about the production probability and
the number of occurrences of the individual nonterminals. Information about
the terminals not represented in the generating function.
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The unique starting symbol As of the grammar will ensure that the zeroth
generation is uniquely de�ned as F0 = sAs . The rest of the generating functions
for the size of generations can be derived based on the information described so
far, using one of the fundamental theorems of branching processes [26] which
state;

Fn+N (s1; : : : ; sk) = Fn[FN (s1; : : : ; sk)]

which implies that the generating function for one generation can be computed
as iterates of the previous generations generating functions. It is then possible
to express the generating function for n � 1 as:

Fn+1(s1; : : : ; sk) = Fn[f
1(s1; : : : ; sk); : : : ; f

k(s1; : : : ; sk)]

The computation of expected values for the entire branching process can bene�t
from a matrix representation of the relationship between individual nontermi-
nals and between nonterminals and terminals. A grammar with n nonterminals
andm terminals will have a n�n �rst moment nonterminal matrix B, where bi;j
is the expected number of nonterminal Aj directly introduced as nonterminal
Ai is rewritten. There also exist a �rst moment terminal matrix D, where di;j
represents the expected number of terminal aj introduced, as Ai is rewritten.
Each row in the 2 matrices contains information from a speci�c equivalence
class for the productions.

A detailed description for creating the generating functions and the �rst mo-
ment matrices is given in Algorithm B.1, and some results obtained using the
algorithm are given in Example B-1.

Example B-1

Consider a grammar G = fN;�; P;Ag with productions

p1 : A! aAB p4 : B ! bBB

p2 : A! d p5 : B ! aA

p3 : B ! c

The grammar contains 2 classes of productions. For each of those a generating
function is created using Algorithm B.1.

fA(sA; sB) = p1sAsB + p2

fB(sA; sB) = p4s
2
B + p5sA + p3

Based on the generating functions it is possible iteratively to compute the gen-
erating functions for the individual generations.

F0 =
F1 = fA(sA; sB) =

F2 = F1[f
A(sA; sB); f

B(sA; sB)] =
=

sA
p1sAsB + p2
p1(p1sAsB + p2)(p4s

2
B + p5sA + p3) + p2

p21p4sAs
3
B + p21p5s

2
AsB + p1p2s

2
B +

p21p3sAsB + p1p2p5sA + p1p2p3 + p2
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The relationship between the content of the generating function and strings
in the language becomes clear when observing some sentential forms of the
language. Below is listed the forms accounted for in the second generation.

A) d

A) aAB ) adB ) adc

A) aAB ) adB ) adbBB

A) aAB ) adB ) adaA

A) aAB ) aaABB ) aaABc

A) aAB ) aaABB ) aaABbBB

A) aAB ) aaABB ) aaABaA

Going from one generation to the next all nonterminals are rewritten simultane-
ously. For linear grammars only the content of the nth generation is sentential
forms after n individual rewritings. In general more than n rewritings are re-
quired to produce sentential forms in the nth generation.
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ALGORITHM B.1. Conversion to a branching process.

Input:

Output:

Method:
A stochastic context free grammar G = (N;�; P; S),
speci�ed as N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g
The production must be of the following form:
pi : Ai ! � , where � 2 (N [ �)?

A branching process represented as a set of generating functions
ffA1 ; fA2 ; :::; fAng and the nonterminal and the terminal �rst moments
matrices B and D.

1)

2)

/ * Computes the generating functions */
For all productions P do

if P = pi : Ak ! � then

CAk
= CAk

[ fpi : Ak ! �g
End

End

For each CAi
do

For each production pi : Ai ! � do

fAi
part = pis

]A1

A1
s
]A2

A2
� � � s]Ak

Ak
,

where ]A1 denotes the number of occurrences
of A1 in the right-hand side, etc..

fAi = fAi [ fAi
part

End

End

/* Computing the matrices */
For each CAi

do

For each production pi : Ai ! � do

bi;j = bi;j + pi � ]Aj ,
where ]Aj denotes the number of nonterminals Aj

in the right-hand side.
di;j = di;j + pi � ]termj,
where ]termj denotes the number of occurrences of
terminals termj in the right-hand side.

End

End
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From the previous listing string d is represented in the process as p2, the prob-
ability of using the production rewriting A as d. Likewise string adc is repre-
sented as p1p2p3. The sentential form aaABbBB is represented as p21p4sAs

3
B ,

because 3 productions have been used to create the form, p1 twice, p4 once,
and the form contains one A and three occurrences of B. The �rst moment
matrices can be found to have the following content,

B =

 
p1 p1
p5 2� p4

!

D =

 
p1 0 0 p2
p5 p4 p3 0

!

For B the rows and columns are ordered as A, B. For D the rows are ordered
as A, B and the columns as a, b, c, d. The coe�cient bB;B is 2 times p4 since
a production with probability p4 introduces two occurrences of B.

B.3 The status for the nth generation

For both nonterminals and terminals it is possible to compute statistical infor-
mation such as the probability of a speci�c symbol occurring a speci�c number
of times, the mean and the variance for the occurrence of a symbol, but it
requires di�erent techniques.

For the nonterminals the information can be extracted directly from the gen-
erating function Fn. Any term of the form qis

]A1

A1
� � � s]An

An
expresses the infor-

mation that a sentential form with ]Ai number of occurrences of nonterminal
Ai occurs with probability qi. Multiple terms containing s

]Ai

Ai
can exist and

the correct results will be the sum of the coe�cients for each term. The mean
and the variance can be computed using a well-known property for generating
functions[26]; for a random variable RV with generating function F (s), the
mean is the �rst derivative F 0(s) evaluated at s = 1,

E(RV ) = F 0(s) js=1= F 0(1)

and the variance is computed as,

V ar(RV ) = F 00(1) + F 0(1)� F 0(1)2

To incorporate information about the terminals an additional set of generating
functions must be created. There should be one function for each nonterminal,
and it must contain the probability of occurrence of a speci�c terminal and the
number of occurrences given that the nonterminal was rewritten in all possible
ways. The basic idea is then to iterate the generating function for the size of the
generation up to the (n�1)th generation and then to take the last step into the
nth generation using the new additional generating functions. If we let f (Ai;ai)

denote the generating function for occurrences of terminal ai introduced while
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rewriting nonterminal Ai, and let Fn;ai denote the function for the number of
terminal ai introduced in the nth generation then it can be computed as,

Fn;ai = Fn�1(sA1
; � � � ; sAn) jsAi=f(Ai;ai)

The method used for incorporating information about the terminals can also
be used to incorporate information about the production, the only di�erence is
the property that is associated with the dummy variable s.

The methods available to compute statistical information for the nth generation
is described in details in Algorithm B.2, and an example of results obtained
applying the algorithm to the grammar from the previous example is given in
example B-2.

Example B-2

Given the grammar from Example B-1 it might be interesting to compute,
Prob2(B; 1), the probability of sentential forms in the second generation having
one occurrence of nonterminal B. In the previous example we found that

F2(s) = p21p4sAs
3
B + p21p5sAsB + p1p2s

2
B + p21p3sAsB + p1p2p5sA + p1p2p3 + p2

By summing the coe�cients of the terms including one occurrence of sB we get

Prob2(B; 1) = p21p3 + p21p5

Clearly any type of occurrence of symbols can be computed in a similar way e.g.,
the probability of having at least one occurrence of B, or the joint probability
of having one A and one B, and so on. The mean value for occurrences of B in
the second generation can be computed as

Mean(B) = F 0
2(s) js=1= 3p21p4 + p21p5 + 2p1p2 + p21p3 + p1p2p5

The variance can be computed as,

V ar(B) = F 00
2 (s) js=1 +Mean(B)�Mean(B)2 =

6p21p4 + 2p21p2 + 3p21p4 + p21p5 + 2p1p2 + p21p3 + p1p2p5 �Mean(B)2

If it is of interest to compute probabilities for e.g., terminal a in the second
generation, 2 new generating functions must be established. fA;a(sa) = p1sa
for introducing terminal a from nonterminal A and fB;a = p1sa for nonterminal
B.

If these are inserted in F1(f
A; fB), we get the following results

F1(sa) = p1p1sap5sa = p21p5s
2
a + p2

from which we can compute
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Prob(a; 2) =
Mean(a) =
V ar(a) =

=
p21p5
2p21p5
2p21p5 + 2p21p5 � 4p21p

2
5

4p21p5 � 4p21p
2
5

A similar approach can be taken to compute information on the use of the
productions.



118 APPENDIX B. THE BRANCHING PROCESS MODEL

ALGORITHM B.2. Information for the nth generation.

Input:

Output:

Method:
A stochastic context free grammar G = (N;�; P; S),
The symbols of interest and the number of occurrences (Ai; ]Ai); (ai; ]ai).

Prob(Ai; ]Ai), Mean(Ai), Var(Ai)
Prob(Ai; ]ai), Mean(ai), Var(ai)

1)

2)

/ * Information about nonterminals */
Apply Algorithm B.1 to get fA1 ; � � � ; fAn .
Set F1 = fA1 , assuming that A1 is the starting symbol.
Iterate n times;

Fn = Fn�1(f
A1 ; � � � ; fAn)

Represent Fn as Fn = �0 + �1s
]Ai

Ai
+ � � �+ �ks

]Ai

Ai

where �i 2 (pi [ (N n Ai))

Prob(Ai; ]Ai) =
P

k=1 �k jsAj=1;Aj 6=Ai

Mean(Ai) =
@Fn(fA1 ;���;fAn )

@Ai
jA1;���;An=1

Var(Ai)=
@2Fn(f

A1 ;���;fAn)
@Ai

jA1;���;An=1 +Mean(Ai)�Mean(Ai)
2

/ * Information about terminals */
Compute the equivalence classes CAi

for the productions.
For each CAi

do

For each production pi : Ai ! � do

f
(Ai;ai)
part = pis

]ai
ai
,

where ]ai denotes the number of occurrences
of a1 in the righthandside.

f (Ai;ai) = f (Ai;ai) + f
(Ai;ai)
part

End

End

Iterate n� 1 times to create Fn�1
De�ne Fn;ai to be the generating function for the number of ter-
minal ai introduced in the nth generation,

Fn;ai = Fn�1(s
A1 ; � � � ; sAn) jsAi=f(Ai;ai)

Prob(ai; ]ai), Mean(ai), Var(ai) can be computed following the
principles given in 1)
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B.4 Accumulated information for the �rst n genera-

tions

In situations where it is of interest to accumulate information as the process
develops, it is necessary to attach new dummy variables to the existing gen-
erating functions to capture the property of interest. The reason for this is
partly that the dummy variable for the nonterminals, sAi

does not contain info
about properties occurring when the nonterminal is rewritten, and partly that
the variable disappears when the nonterminal is rewritten. A terminated string
is represented in the process as a coe�cient being the probability of the string,
but no knowledge about the string is attached to the coe�cient.

Augmenting the generating function from example 6 to contain accumulated
information about e.g., the terminal a, it will take the following form, where z
is the new dummy variable,

fA;a(sA; sB) = p1sAsBz + p2

fB;a(sA; sB) = p4s
2
B + p5sAz + p3

The generating functions F0; � � � ; F2 would then look like,

F0 =
F1 = fA(sA; sB) =

F2 = F1[f
A(sA; sB); f

B(sA; sB)] =
=

sA
p1sAsBz + p2
p1(p1sAsBz + p2)(p4s

2
B + p5sA + p3)z + p2

p21p4sAs
3
Bz

2 + p21p5s
2
AsBz

3 + p21p3sAsBz
2 +

p1p2p4s
2
Bz + p1p2p5sAz

2 + p1p2p3z + p2

From this function it is possible to compute the probability of terminal a occur-
ring a speci�c number of times in terminated and nonterminated strings up to
the nth generation. By setting s1; � � � ; sn = 0 the probability for occurrences of
a's in only the terminated strings can be computed. Clearly the mean and the
variance can be computed using z as the variable for the di�erentiation.

B.5 Information about the entire derivation process

The most important information about the entire process is whether or not
the process eventually will terminate which can be formulated in terms of a
probability of extension. If the probability of extension is one, the process will
terminate, if it is less than one, there will be a non-zero probability that the
generation process continues forever.

In terms of grammars the problem is about �nite or in�nite strings, and about
being consistent or not. Recall from Chapter 2 that a grammar is consistent
if
P

x2L p(x) = 1. If a process has a probability of extension less than one, it
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means that the derivation process always contain sentential forms with non-
terminals which can be rewritten, and therefore no terminated string can be
produced. If so, the sum of probabilities for the set of terminated strings can
never fully reach one which is necessary for the grammar to be consistent. Con-
sider a grammar having only the 2 following productions, p1 : S ! aS and
p2 : S ! b. The non-stochastic characteristic, grammar for this grammar will
generate an in�nite number of strings. For the stochastic version of this gram-
mar the situation is di�erent, only for the trivial case when p1 = 1; p2 = 0, the
number of strings will be in�nite, otherwise the process is guaranteed to stop,
because eventually p2 : S ! b will be used to terminate a string. The situation
described here is that of a linear grammar and it can be shown in general[22]

that stochastic linear grammars are consistent.

Consider a non-linear grammar having the following 2 productions, p1 : S !
aSS and p2 : S ! b. Only for speci�c values of p1 the grammar will be
consistent. Since the grammar has only one nonterminal, it can be modelled
by a single type branching process. For those it is very easy to determine
consistency. It can be shown [22] that consistency occurs if F 0(1) � 1. In this
situation we get the following results,

fS(sS) = p1s
2 + p2

F 0(1) = 2p1 < 1) p1 < 1=2

As long as p1 lies in the range from 0 to 0.5, the process will be guaranteed to
terminate.

In the more general case of multi-type branching processes consistency can be
determined by evaluation of the largest eigenvalue of the �rst moment nontermi-
nal matrix. Let q be the vector of extension probabilities. qi is the probability
of extension, given that the process starts with an object of type i. If all the
�rst moments are nonnegative and �nite, and B is positively regular (There
exist a positive integer k such that Bk has only non-zero values), then B will
have a characteristic eigenvalue �, which has a greater absolute value than any
other eigenvalue. It can be shown [26] that if � � 1 then q = (1,1,. . . ,1). If
� > 1 then (0; 0; : : : ; 0) � q < (1; 1; : : : ; 1) and q satis�es the equation:

q = f(q)

If � > 1, q can be found by simultaneously solving a system of equations.
The value of qi for i being the starting symbol can be interpreted as a relative
frequency of the long-term rate of derived terminal strings.

When using multi-type branching processes to model the derivation process of
a stochastic context-free language the values of B will always be nonnegative
and �nite because they are products of production probabilities and number
of occurrences of nonterminals. Each individual grammar has to be checked to
see if it is positively regular.
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Example B-3.

Consider a grammar G = (N;�; P; S) with productions:

0:60 : S ! aSbS 0:45 : A! aSbBb 0:6 : B ! BabB

0:40 : S ! bAb 0:50 : A! AbAb 0:40 : B ! abA

0:05 : A! aba

By using Algorithm B-1 and B-3 to determine the �rst moment nonterminal
matrix and to compute the eigenvalues we get the result:

B =

0
B@ 1:20 0:40 0:00

0:45 1:00 0:45
0:00 0:40 1:20

1
CA

The eigenvalues of B is 1.6. Since the eigenvalue is greater than 1, the grammar
is inconsistent. Let us see what happens when the probabilities are adjusted in
order to make the productions supporting termination more likely

0:20 : S ! aSbS 0:10 : A! aSbBb 0:20 : B ! BabB

0:80 : S ! bAb 0:10 : A! AbAb 0:80 : B ! abA

0:80 : A! aba

The matrix becomes,

B =

0
B@ 0:4 0:8 0:0

0:1 0:2 0:1
0:0 0:8 0:4

1
CA

The eigenvalue of B is now 0.71 and the grammar therefore consistent.

Each element in Bk contains a mean value of occurrences of nonterminals after
k derivations. A nonterminal expectation matrix B1 is de�ned as:

B1 =
X
k�0

Bk

Since Bk is summed for all k � 0, all derivations have been taken into account
in B1. If the grammar is consistent it can be computed as:

B1 = (I�B)�1

The mean number of nonterminals rewritten in deriving a terminal string equals
the sum of each element in the row of B1 for the starting symbol for the
grammar. This value is called the expected derivation length.

The product B1D gives the terminal expectation matrix. An element with
index (i,j) denotes the expected number of occurrences of terminal aj in all
derivations starting with nonterminal Ai. The mean number of terminals in
a string equals the sum of each element in the row of B1D for the starting
symbol. This value is also called the expected string length.
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Example B-4:

Consider a grammar G4 = fN;�; P; Sg with productions:

0:7 : S ! aBB 0:5 : A! Bb 0:6 : B ! aB

0:1 : S ! bA 0:1 : A! cA 0:6 : B ! bB

0:2 : S ! c 0:4 : A! c 0:3 : B ! cc

By applying Algorithm B-1 the matrices can be obtained:

B =

0
B@ 0 0:1 1:4

0 0:1 0:5
0 0 0:6

1
CA

D =

0
B@ 0:7 0:1 0:2

0 0:5 0:5
0:6 0:1 0:6

1
CA

For B the rows and columns are ordered as S, A, B. ForD the rows are ordered
as S, A, B and the columns as a, b, c.

B1 and B1D can be computed.

B1 =

0
B@ 1:0 0:1 4:8

0:0 1:1 1:8
0:0 0:0 3:3

1
CA

B1D =

0
B@ 3:6 5:0 3:1

1:1 0:7 1:6
2:0 0:3 2:0

1
CA

The expected derivation length is 1.0 + 0.1 + 4.8 = 5.9. The expected string
length is 3.6 + 5.0 + 3.1 = 11.7.

The methods available to compute statistical information for the entire deriva-
tion process is summarized, on the next page, in Algorithm B-3.
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ALGORITHM B.3. Information for the entire derivation process.

Input:

Output:

Method:
A stochastic context free grammar G = (N;�; P; S),
speci�ed as N = fA1; A2; � � � ; Ang , � = fa1; a2; � � � ; amg, S = fA1g
The production must be of the following form:
pi : Ai ! � , where � 2 (N [ �)?

Consistency (True/False)
Mean occ(ai), Expected string length.
Mean occ(Ai), Expected derivation length.

1)

2)

3)

Apply Algorithm B.1 to obtain the nonterminal and terminal
�rst moment matrices B and D.

/ * Check consistency */
If B is positive regular then

Compute the greatest eigenvalue � of B
End

If � � 1 then
Consistent = TRUE

Else

Consistent = FALSE
End

/* Computing the mean values */
If B is consistent then

Compute B1 = (I�B)�1

Mean occ(Ai) =B
1
1;Ai

Expected derivation length =
P

Ai
B1
1;Ai

Compute B1D

Mean occ(ai) = (B1D)1;ai
Expected string length =

P
ai
(B1D)1;ai

End
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