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Abstract

The field of collaborative industrial robots is currently developing fast both in

the industry and in the scientific community. Where industrial robots tradi-

tionally have been placed behind security fences and programmed to perform

simple, repetitive tasks, this next generation of robots will be able to work side-

by-side with humans and collaborate on completing common tasks. This poses

requirements to the robots within sensing, intelligence, safety, and human-robot

interfaces.

The focus of this thesis is on smart interfaces for such collaborative, indus-

trial robots with advanced sensing capabilities. The work is divided into two

areas: Robot vision for robotic skills and projection mapping interfaces.

Robotic skills are a basis of task-oriented programming. The goal of the

skill concept is to allow humans to instruct new tasks while focusing his or her

attention towards the task at hand rather than on the robot’s capabilities. In

this thesis, it is investigated how a skill based architecture can incorporate ad-

vanced robot vision capabilities while keeping the robot programming fast and

intuitive. A number of skills are developed for object detection, quality control,

etc., and the skills are tested both in laboratories and industrial settings.

Projection mapping is the technique to project information into the real

world. In contrast to projecting from a static projector onto a static screen,

projection mapping warps projected graphics in such a way that it is displayed

geometrically correct in modeled environments, including on walls, ceilings,

objects, etc. It is in this thesis investigated how projection mapping can be

applied as part of human-robot interfaces to simplify and improve human-robot

interaction in scenarios involving robot programming as well as human-robot

cooperation. By projecting text and graphics into the working area, or task

space, humans have access to the relevant information when and where it is

needed. In both programming and cooperation scenarios, projection mapping

is used to project the state and intentions of cooperative robots onto both envi-

ronments and detected and tracked objects. Through a number of user studies

it is shown that it is possible to use projection mapping in these scenarios for

seamless human-robot interaction, and that it in some cases provide significant

advantages when compared to traditional monitor based interfaces.
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Resumé

I disse år er samarbejdende industrirobotter i hastig udvikling såvel i industrien

som i forskningsverdenen. Mens industrirobotter traditionelt skal placeres bag

sikkerhedshegn og typisk programmeres til at udføre simple, repetitive opgaver,

så vil den næste generation af robotter være i stand til at arbejde side om

side med mennesker og samarbejde om fælles opgaver. Dette stiller krav til

robotterne indenfor områderne sansning, intelligens, sikkerhed, og menneske-

robot grænseflader.

Fokus i denne afhandling er på smarte grænseflader for sådanne samarbej-

dende industrirobotter med avancerede sansningsevner. Afhandlingen er opdelt

i to områder: Robot vision til robot-skills og grænseflader baseret på projection

mapping.

Robot-skills er en basis for task-orienteret programmering. Målet med skill-

konceptet er at gøre det muligt for mennesker at instruere nye opgaver ved at

fokusere på den aktuelle opgave i modsætning til robottens evner og funktioner.

I denne afhandling undersøges det, hvordan en skill-baseret arkitektur kan inko-

rporere avancerede funktioner indenfor robot vision, og på samme tid holde fast

i, at skill-baseret robotprogrammering skal være hurtig og intuitiv. Et antal

skills udvikles, som inkorporerer detektion af objekter, kvalitetskontrol, mm.,

og disse skills testes i såvel laboratorie- som industriomgivelser.

Projektion mapping er teknikken at projektere information ind i den virke-

lige verden. I modsætning til projektering fra en statisk projektor op på et

statisk lærred, så forvrænger man med projection mapping den projekterede

grafik på en sådan måde, at den bliver vist geometrisk korrekt på modellerede

omgivelser, inklusiv vægge, lofter, objekter, osv. Det undersøges i denne afhan-

dling, hvordan projection mapping kan anvendes som et delelement i menneske-

robot grænseflader til at simplificere og forbedre menneske-robot interaktionen

i situationer der involverer robotprogrammering og menneske-robot samarbe-

jde. Ved at projektere tekst og grafik ind i arbejdsområdet, også kaldet task

space, kan mennesker få adgang til relevant information når og hvor det er

påkrævet. I såvel programmerings- som samarbejdssituationer, anvendes pro-

jection mapping til at projektere en samarbejdende robots tilstand og inten-

tioner på både statiske omgivelser og detekterede og trackede objekter. Gennem

et antal brugerstudier vises det, at det er muligt at anvende projection map-

ping i sådanne situationer til ukompliceret menneske-robot interaktion, samt

at teknikken i visse tilfælde giver signifikante fordele, når den sammenlignes

med traditionelle skærmbaserede grænseflader.
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Chapter 1

Introduction

1.1 Project Motivation

Globalization has for several decades moved manufacturing jobs from west-

ern countries to low-wage developing countries. This has put pressure on

both wages and productivity in the manufacturing sectors in the industrial-

ized countries. One efficient way of increasing productivity is to increase the

level of automation. A major limitation for increased automation is, however,

the scale of production. Construction of automated production lines are major

investments, and configuration of robots to perform the required operations is

a time-consuming task which must be performed by highly specialized techni-

cians. Thus, installation of new and fully automated production lines can only

be justified if the quantities of identical items to be produced are very large.

Automation has therefore proven to be particularly useful in industries that

produce large numbers of almost identical products. One of the most promi-

nent of these industries is car manufacturing, which has been on the forefront

of automation since the first industrial robot, Unimate, was introduced by Gen-

eral Motors in 1961. Today, car manufacturing plants are heavily automated

and employs a large number of robots, as illustrated in Figure 1.1.

Fig. 1.1: Traditional industrial robots work at fully automated production lines. Human
workers must not enter security zones around the robots during production. The left-most
picture is from a BMW plant in Leipzig and the right-most is from a KIA Motors plant in
Slovakia.
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Chapter 1. Introduction

1.1.1 Challenges for Industrial Robots

Car manufacturing is well suited for automation using industrial robots because

cars are traditionally produced in large quantities with only minor variations.

For many kinds of production, the number of identical items is however not

large enough to justify investment in automated robotic production lines. Much

research has therefore been directed towards developing more flexible types of

automation. In Europe, several Strategic Research Agenda for European Ro-

botics have in recent years been laid forth in an attempt to preempt future

developments and focus research and development in the most promising di-

rections [EUROP, 2009, SPARK, 2014]. The latest SRA was made in 2014 by

SPARK, which is a civilian robotics programme funded by the European Union.

The SRA outlines manufacturing as one of the core application scenarios: “Mid-

to-low volume manufacturing requires low installation and running costs and a

high degree of flexibility, which cannot typically be provided by traditional large

scale manufacturing robotics. ... The merging of smart technologies, trainable

systems, and intuitive user interfaces with compliant robot manipulators cre-

ates an opportunity to make a range of smart manufacturing robots that will

enable automation in small and mid scale companies...”

The SRA further lists a set of abilities, which are relevant for robots in the

near future, including:

Configurability: “The ability of the robot to be configured to perform a task or

reconfigured to perform different tasks...” It must be possible to (re-)con-

figure robots fast and easy to prevent expensive idle time for long periods

between production of (possibly small) production series.

Interaction Ability: “The ability of the system to interact both cognitively

and physically either with users, operators or other systems around it...”

Robots must be able to interact with other machines as well as humans.

The communication between robots and human operators must be in-

tuitive and to an increasing degree use modalities and interaction types

that are natural to humans.

Perception Ability: “The ability of the robot to perceive its environment,”

including “detecting objects, spaces, locations or items of interest in the

vicinity of the system...” Perception is a key element element in robotics

and is a requirement for solving non-trivial tasks, including interacting

with both machines and humans. Perception can include all senses, and

among the most used is vision and force sensing. The SRA states that

“what sets robots apart from other types of machines is their ability to

sense their environment.”

The goal of the European SRA’s to develop robots that make production

more flexible and at the same time highly efficient is visualized in Figure 1.2.

4



1.1. Project Motivation

The figure shows the degree of efficiency versus flexibility in production. The

goal can be approached in two different ways; by equipping human workers with

better tools or by increasing the flexibility of automated production. These ap-

proaches end up in a similar vision for future production. If robots can reach a

sufficient level within configuration, human-robot interaction, and autonomy,

then they can both be regarded as flexible automation as well as highly ad-

vanced tools for human workers.

Fig. 1.2: The production of the future needs to be both very flexible to support smaller
production series with high variability and efficient to keep the cost low. This goal can be
formulated in two distinct ways: Workers can either be equipped with better tools; thereby
increasing their productivity (1), or automated production lines can be made easier and faster
to reconfigure (2).

1.1.2 Collaborative Robots for Future Production

The robotics industry has within the last 5-7 years moved fast towards devel-

oping robots that possess more autonomy, provides better human-robot inter-

action and are easier to reconfigure. This development has spawned a whole

new class of industrial robots, commonly know as collaborative robots. On the

topic on human-robot interaction for collaborative robots, the European SRA

by SPARK sets the following 2020-goals [SPARK, 2014]:

Human Machine Interfaces: “To develop instructable interfaces. To de-

velop physically interactive interfaces for collaborative working...”

Human Robot Collaboration: “To develop low cost safe dependable sys-

tems able to react and interact with people... To develop multi-modal

collaboration.“

Safety: ”To develop robust safety based design processes including inherent

physical robot safety...“

5



Chapter 1. Introduction

Some of the collaborative robots released to the market within the last few

years are listed in Figure 1.3.

(a) UR 3-5-10 (2009-2015) (b) KUKA iiwa (2013) (c) Kawada Nextage (2009)

(d) Rethink Robotics
Baxter (2012)

(e) Kinova Mico
(2015)

(f) ABB YuMi (2015) (g) KUKA KMRiiwa
(2015)

Fig. 1.3: Collaborative robots on the market today.

There exist different types of collaborative robots, but there is at this point

no universal consensus on how to classify them. The following classification is

inspired and expanded from [ROBOTIQ, 2015]:

Force limited robots: Robots with simple interfaces and limited functional-

ity, designed to be usable by non-experts. They distinguish themselves

from traditional industrial robots by having the ability to sense and react

to external forces. This allows them to be able to function safely in a

workspace that is shared with human workers. The force limited robots

are especially intended for small and mid-sized companies (SMEs) which

have not previously been automating production because quantities have

been too small to make traditional automation economically viable. To

this group belongs all robots from the Danish robot manufacturer Uni-

versal Robots, the Kinova Mico, and the KUKA LWR and KUKA iiwa

robots.

Cobots - sensor-equipped robots: These robots are, in addition to being

force limited and therefore safe to work nearby, equipped with a mul-

titude of sensors such as cameras and proximity sensors. The sensors

are integrated directly in a user interface which allows an operator to

program new robot tasks without first modifying hardware and software.
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The sensor-equipped robots are both intended SMEs but also in some

cases larger companies. SMEs use the robots to solve relatively advanced

tasks without having to hire expensive robot integrators, while larger

companies can use them for tasks which could previously not easily be

automated. To this group of robots belong Rethink Robotics’ Baxter,

Kawada’s Nextage and ABB’s YuMi.

AIMMs: AIMM is short for Autonomous Industrial Mobile Manipulator. As

the name suggests, an AIMM includes the ability to move and navigate

autonomously in addition to the abilities of the other robot classes. Au-

tonomous navigation adds a whole new layer of flexibility to the robots

and potential tasks they can carry out. There have been much research

on AIMMs starting in the 80’ths with MORO from Fraunhofer [Schuler,

1987] all the way up to present time [Hvilshøj et al., 2012], including Aal-

borg University’s Little Helper series [Hvilshøj and Bøgh, 2011]. AIMMs

have, however, not yet matured enough to be significantly represented

on the market. Pure logistic robots which can navigate around humans

in semi-structured environments do exists on the market, and examples

include KIVA robots, which are used in Amazon warehouses, and the

Danish startup MIR. Among AIMMs, which combines mobility and ma-

nipulation, KUKA perhaps made the to date most serious attempt at

breaking into the market with their KMRiiawa from 2015 (see Figure

1.3(g)).

Common for all types of collaborative robots is that they are very new

on the market. They are still trying to find their place on different markets,

and much research and development is going into improving their interfaces,

programming architectures, sensors and capabilities in general.

1.1.3 Task Level Programming and the Little Helper Project

At Aalborg University (AAU), research in collaborative industrial robots has

especially been centered around the Little Helper project. This project was

initiated in 2007 at the Department of Mechanical and Manufacturing Engi-

neering at AAU, and it has since then been further developed through both

national and European research projects, including TAPAS, ACAT, CARLoS,

and CARMEN [TAPAS, 2014, ACAT, 2015, CARLoS, 2015]. The goal of the

Little Helpers has since the beginning been to conceptualize and build flexible

mobile robots, AIMMs, for industrial use [Hvilshøj et al., 2009]. The idea is

to combine off-the-shelf building blocks including a mobile platform, a robot

manipulator, one or more tools, and one or more cameras used for vision. The

entire “family” of Little Helper robots is shown in Figure 1.4. All of the robots,

except for Little Helper 1, is still used for robotics research today.
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(a) LH1, 2008 (b) LH2, 2010 (c) LH3, 2012 (d) LH4, 2013 (e) Carmen
platform, 2014

Fig. 1.4: The Little Helper family developed at Aalborg University.

An important focus with the Little Helper projects is to make the robots

flexible; both with regards to being able to handle a large variety of tasks and

also with regards to making it fast and easy to program the robots to perform

new tasks [Hvilshøj and Bøgh, 2011]. To achieve this, a new programming

paradigm has been developed based robotic skills [Bøgh et al., 2012b,Pedersen

et al., 2015]. The programming paradigm is extensively described in Chapter

4. Briefly, a robotic skill describes and wraps the capabilities of a robot in a

generic way and it can be parameterized to perform different tasks. Each skill

has two distinct parts; a teaching part and an execution part. The teaching

part makes it possible for an operator to specify all parameters of the skill

which is then required to execute it subsequently. We denote programming

with skills task-level programming because is can enable an operator to setup

and program new tasks while focusing his attention on the task itself and the

objects that need to be manipulated. Robot-specific parameters are hidden

from the operator and set indirectly through the skills.

1.2 Initiating Problems

At the start of this PhD project, the skill based framework for the Little Helper

robots were non-modular, hardware specific, and supported only relatively sim-

ple skills such as pick-from-location, place-onto, and place-into. Some of these

skills relied on force-torque measurements, but no additional sensing and vision

technologies were used. The initiating research problem of PhD project was

formulated on this basis:

Initiating research problem

How can increasingly complex collaborative robots using advanced vision tech-

nologies be programmed fast, efficiently, and in a controllable manner?

This problem leads to the formulation of two main research objectives. The
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first main objective concerns vision-enabled skills primarily for object manip-

ulation:

Main objective 1: Vision in a User Centered Skill Framework

Investigate if and how a skill-based framework can assist factory workers

without expertise in robotics and computer vision to teach collaborative robots

to recognize, pose estimate, grasp, and quality check objects, after only very

limited training.

The second main objective concerns interaction with collaborative robots in

general, including manual teaching of skills. When humans interact and collab-

orate with collaborative robots, their attention is mostly directed towards the

robot and the task at hand. It is in many situations, however, still necessary to

look at external interaction devices such as monitors or teach pendants to figure

out the exact state and intentions of the robot. This is, for instance, the case

during manual teaching of skills, where the operator has to read teaching in-

structions. It is hypothesized that the usability can be increased if information

is instead projected directly into the working space; the task space:

Main objective 2: Projection Based Interfaces for Task Space Interaction

Investigate if and how the usability of interaction with collaborative robots can

be increased by providing feedback to the operator directly in task space, when

compared to traditional feedback methods (text sheets, teach pendants/tablets,

and monitors).

State of the art on the areas of the two main objectives are presented in

the following chapter. On this basis precise and concrete research objectives

are stated in Section 3.1.

1.3 Reader’s Guide

This thesis is a collection of papers. It consists of three parts. Part I is an intro-

duction to the thesis with a general motivation, presentation of main research

objectives. As part of the introduction, state-of-the-art related research is pre-

sented in Chapter 2. After this, the main research objectives are in Chapter 3

decomposed into a number of more specific objectives.

Part II is a summary report that presents the main results of the thesis.

It starts in Chapter 4 with a general introduction to skills, task level pro-

gramming, and the skill based system that has been developed and used for

experiments throughout the duration of this PhD project. One paper is sum-

marized in this chapter. Chapter 5 and 6 present the main results of the thesis;

each covering one of the main research objectives. They summarize all remain-

ing papers and technical reports that are part of the thesis. Chapter 7 briefly

lists the main contributions of the thesis and recommends future work. The
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remaining part of the thesis, Part III, consists of the full papers and technical

reports. Some of the papers have previously been published while others have

been submitted shortly before this thesis was handed in.
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Chapter 2

State of the Art

State-of-the-art research is presented in two related fields defined by the main

research objectives. First in Section 2.1, research in robotic skills, their origins

from related architectures, and their uses are reviewed. This relates to main

objective 1. Then, human-robot interaction in task space applying projection

mapping is reviewed in Section 2.2. This relates to main objective 2.

2.1 Robot Architectures and Skills

Related research within robotic skills is presented with focus on skills for in-

dustrial use. A background on programming architectures and how skill based

programming relates to the alternatives is first provided, and on this back-

ground, current research in skills and their uses is presented.

2.1.1 Robot Control System Architectures

A traditional and still widely used way of programming robots is the Sense-

Plan-Act (SPA) architecture [Gat, 1998, Nilsson, 1993]. Using this, the state

of the robot changes between sense, plan, and act. In the sensing state, in-

formation from sensors is used to update and maintain a world model. In the

planning state, high-level logic plans on basis of the world model what the

robot has to do to achieve a specified goal. In the acting state, the plan is car-

ried out, typically using control loops. The SPA architecture has, however, two

fundamental limitations: Firstly, planning based on a detailed world is a very

hard problem which in many cases will also be very time consuming. Secondly,

the world may change during the planning process in a way that invalidates the

resulting plan. Researchers will recognize this problem as the running scientist

syndrome, where it becomes necessary to quickly stop the robot after one step

in a larger plan fails.

The shortcomings of the SPA architecture can be addressed through an ap-

proach which is sometimes denoted reactive planning [Gat, 1998]. In reactive

planning, part of the decision-making process is carried out on a lower level

11



Chapter 2. State of the Art

closer to real-time; thereby reducing the risk of acting based on obsolete in-

formation. The most well known of these approaches may be Rodney Brooks’

subsumption architecture [Brooks, 1986]. In this approach, no time consuming

upper planning layer exists. Instead, inputs are connected to outputs through

a network on finite state machines, allowing the robot to act and react very

fast on new sensor inputs.

Subsumption is well suited for relatively simple tasks such as navigating

collision-free in a closed area, but has problems for more complicated tasks

because it is not very modular: Different parts of the system are heavily in-

terconnected, and changes to one subsystem may require other subsystems to

be completely redesigned [Hartley and Pipitone, 1991]. In the 90’th, several

researchers proposed three layered structures where all layers are executing in

parallel [Bonasso, 1991, Connell, 1992, Gat, 1998]. In these approaches, the

lowest level controls the behavior of the robot through real-time control loops.

The behavior(s) is changed according to a plan or reactive in response to sen-

sor inputs. The highest level contains functionality related to the overall task

which can be executed without (hard) time constraints. Most notably the

level includes a (slow) planner. The planner both makes initial plans and re-

plans when the lower levels encounter situations which cannot be handled in

real-time. The middle layer, sometimes denoted the Sequencer, links the other

layers by continuously changing the behavior of the lower level both accord-

ing to expected changes in the world and internal states and in respond to

unexpected contingencies.

2.1.2 Skill Based Programming and Planning

Skill based paradigms apply a three layered architecture similar to Gat et.

al. and attempt to wrap robot functionality inside skills with clearly defined

purposes and interfaces. This serves two purposes: To facilitate modularization

such that functionality from each layer can be reused across different robots

and in different contexts, and to ease the job of planning; autonomous or from

human programmers/instructors. Different definitions and naming conventions

exist throughout literature, but in this thesis, the layers will be referred to as

device primitives, skills, and tasks. A skill is a preprogrammed combination of

device primitives and it requires typically a number of parameters to be

A skill-like concept was originally proposed in 1972 as building blocks for

automatic planning of tasks using their now famous STRIPS planner [Fikes and

Nilsson, 1972]. The STRIPS planner makes it possible to automatically com-

bine a series of predefined actions (or skills) with formalized interfaces in order

to get from a well-known initial state to a goal state. More recently, different

researchers have used full skill architectures for autonomous planning by map-

ping individual skills to actions defined in Planning Domain Definition Lan-

guage (PDDL) [Huckaby et al., 2013,Pedersen and Krüger, 2015]. In [Huckaby
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et al., 2013], skills are combined using SysML; an extension of the well-known

modeling language UML. Skills are defined as atomic operations of a robot

such as pick-up, drill, detect, transport, etc. The STRIPS planner is applied to

generate assembly solution. The solution does not consider how skills are pa-

rameterized to actually perform the correct action, such as picking the correct

object from the correct location. In [Pedersen and Krüger, 2015], the relevant

parameters are provided automatically through a world model. This is possible

because the scenarios are relatively simple. For more complicated scenarios and

tasks, the world will either have to be extensively modeled, or the robot will

have to have access to other sources of information for parameterization of the

skills.

Different groups have proposed to let different robots assist each others in

building comprehensible world models by uploading and downloading informa-

tion to and from a common cloud service. The perhaps most comprehensive

work in this field is the European project RoboEarth which attempts to build

a “Wikipedia for robots” [Waibel et al., 2011,Tenorth et al., 2013]. The focus

here is on sharing information that is learned by each robot connected to a

central server. Several groups have proposed to use skills as a core element

in the reuse of functionality [Bjorkelund et al., 2011,Mae et al., 2011]. Lund

University’s Knowledge Integration Framework (KIF) is targeted manufactur-

ing environments, and the framework makes it possible to share programmed

as well as learned information through a central server [Bjorkelund et al., 2011]

similar to RoboEarth.

An alternative to automatic parameterization of skills is to provide an intu-

itive human-robot interface (HRI) that allow operators to supply the required

information. Almost any HRI could in principle be used, including interfaces

based GUI’s, smart remotes, gesture recognition, speech recognition, and any

combination of these methods. In [Archibald and Petriu, 1993], a graphical

drag-and-drop programming interface is proposed for a skills-oriented robot

programming (SKORP) framework, which enables operators to combine skills

manually. This makes it possible to fast try a number different strategies for

solving a task. However, only few “skills” are implemented, and their function-

ality is relatively simple such as approach to touch and align normal.

In [Guerin et al., 2015], a more generic skill-like programming architecture

(CoSTAR) is proposed and tested on a collaborative UR5 robot in industrial

settings. Tasks are programmed in a GUI by combining behaviors in behavior

trees. The tree structure makes it possible to set up parallel behaviors and to

select behavior(s) conditionally based on output of the previous behaviors. A

similar approach is proposed in [Huckaby and Christensen, 2014], where SysML

is used to manually setup assembly tasks. Common for both of these systems

is, however, that no user tests are presented. Presumably, significant robot

expertise is required to program non-trivial tasks.

The problem of either having limited functionality available or having to
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deal with a complicated programming system is in [Muszynski et al., 2012]

proposed solved by letting the level of autonomy for the robot be adjustable.

Adjustable autonomy was originally introduced by [Goodrich et al., 2001] for

navigation and is in [Muszynski et al., 2012] extended to support simple ma-

nipulation. It is proposed to control a robot using a tablet GUI on either body,

skill, or task level. Skills include here navigation to goal and grasp object, and

task level control makes it possible to combine skills into sequences and specify

parameters such as locations and objects. If a piece of information is missing,

e.g. visual information on the object to pick, a lower level of autonomy can be

set. Thus, an adjustable level of autonomy seems promising, but it has yet to

be used for more complicated robot programming.

2.2 Interfaces using Projection Mapping

Traditionally, interfaces for industrial robots are based on either a teach pen-

dant for online teaching or an interface to an external controller for motion

planning. Collaborative robots have included force measurements which makes

kinesthetic teaching possible; the operator can physically move the robot around.

Typically, a teach pendant is still required for feedback though, as is for in-

stance the case with Universal Robots. Rethink Robotics’ robots are a notable

exception. On these robots, feedback is given on a screen mounted on the robot.

This frees the hands of the operator, but still forces his attention to be directed

in one particular direction. This section explores research in human-computer

and human-robot interaction which use projection mapping to enable interac-

tion in task space. Task space denotes the space where a given task must be

carried out.

2.2.1 Projection Mapping in Human-Computer Interfaces

Projection mapping means to pre-warp the projected graphics so that it looks

geometrically correct on arbitrary surfaces in the environment. This makes it

possible to use the real world instead of a specific flat surface as canvas for

projection. Projection mapping can provide information to humans directly in

the task space instead of having to rely in monitors.

In the human-computer interaction (HCI) community, projection mapping

has been extensively studied as a means of providing natural interaction with

objects as well as environments. Overhead projectors mounted in the ceiling

combined with tracking of humans, objects, and/or IMU pointing devices can

make it possible display useful information in a certain room, sometimes de-

noted a smart space. For instance in [Bandyopadhyay et al., 2001], projectors

make it possible to create virtual drawings on objects as well as on the static

environment. Objects are tracked using magnetic trackers fastened to each

14



2.2. Interfaces using Projection Mapping

object and drawings will therefore remain on the objects as they are moved.

Others have proposed to place steerable projectors in smart spaces, either by

using pan-tilt units [Wilson and Pham, 2003,Ehnes et al., 2004] or mirrors [Pin-

hanez, 2001], in order to cover an entire floor and walls with a single projector.

In [Ehnes et al., 2004], AR markers are tracked throughout a room and used

for projecting interactive information such as GUI’s and guidance for drilling.

In [Wilson and Pham, 2003], Microsoft proposes a so called WorldCursor, in

which a cursor can be projected anywhere in a room in line-of-sight from a pro-

jector. The idea is to extend the cursor of the Windows desktop to an entire

room, and the WorldCursor is controlled using Microsoft’s own IMU pointing

device, the XWand [Wilson and Shafer, 2003].

Molyneaux et. al. adds in [Molyneaux and Gellersen, 2009] the the ability

to detect and visually track so-called smart objects. A smart object is an

object which stores information about itself such as current state and visual

appearance, and which can communicate this knowledge to the smart space.

Graphics can then be projected directly onto the tracked objects. This tracking-

and-projection approach is comparable to the magnetic tracking proposed in

[Bandyopadhyay et al., 2001]; however it is much more flexible because only a

camera is used for detection and tracking.

After the launch of the Kinect in 2010, several groups have proposed to use

their depth sensing capabilities to estimate the shape of the environment and

use this for projection mapping. Researchers from Microsoft have presented two

interaction systems themselves; the LightSpace [Wilson and Benko, 2010] and

the RoomAlive [Jones et al., 2014]. LightSpace uses a number of pre-calibrated

Kinect-projector pairs to give all flat surfaces the same interactive capabilities

as Microsoft’s own multimedia table, the Microsoft Surface (not to be confused

with their later tablet computer of the same name). Using LightSpace, users

can “pick” virtual objects from one surface and “place” them on another. Their

RoomAlive can be considered a further development of LightSpace which is

also based on multiple pre-calibrated Kinect-projector pairs. RoomAlive is,

contrary to LightSpace, able to display graphics correctly on arbitrary shapes

in the environment. Microsoft’s primary use case for RoomAlive is real-time

games, but the technology could be used for many other purposes as well.

Xiao et. al. proposes to use Kinect-projector pairs to make it possible to

“draw” on surfaces similar to LightSpace in a system they denote WorldKit

[Xiao et al., 2013]. Contrary to LightSpace, the WorldKit supports creating

custom virtual interfaces to other devices. The system tracks users’ hands and

detects contact between hands and environment surfaces. Users can use this

to draw messages, calendar displays controls for TV volume, etc.

A for mobile way of using projection mapping can be achieved by us-

ing hand-held instead of ceiling-mounted projectors [Cao and Balakrishnan,

2006,Cao et al., 2007, Molyneaux et al., 2012]. Molyneaux et. al. discrim-

inates in [Molyneaux et al., 2012] between infrastructure-based smart spaces
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with ceiling-mounted projectors (such as LightSpace) and infrastructure-less

systems (relying on hand-held projectors). They propose to use Kinects in

both cases. In the smart space approach, Kinects are placed in the ceiling sim-

ilar to Microsoft’s systems. The Kinects are then used to build a model of the

environment and to track the hand-held projector in 3D. In conjunction with

an IMU device fixed to the projector, this allows the system to map graphics

to any surface in a “flashlight” fashion. In the infrastructure-less system, a

Kinect is fixed to the hand-held projector and a SLAM algorithm continuously

builds a model of the room. This approach has the advantage that it enables

projection mapping outside pre-calibrated smart spaces.

2.2.2 Projection Mapping for Human-Robot Interaction

Projection mapping used for human-robot interaction (HRI) is a significantly

newer research area than for HCI. Similar to HCI, projection mapping inside

smart spaces has also been proposed by several researchers for HRI. In [Ishii

et al., 2009], a human-robot interface is proposed that allow humans to instruct

simple logistic tasks to an autonomously moving robot. A human can select

objects and locations by drawing circles around them using an IMU pointing

device and the drawings are visualized by a projector. When the user accepts a

task with the IMU device, the mobile robot drives to the marked object, picks

it up, and transports it to the selected location. In 2008, a similar system was

proposed, but replaced the projector with a laser pointer [Kemp et al., 2008].

The laser dot is detected with an omni-directional camera on the robot, and

a pan-tilt stereo camera on the robot is rotated to accurately determine the

location of the laser dot. The system is like the one from [Ishii et al., 2009]

used for pick-and-place and transport operations. For these simple tasks the

laser pointer works well, but a projector can of course display much richer

information.

Schmidt et. al. also use projection interfaces to control robots, but pro-

pose to use a hand-held projector instead of a projector mounted on the

robot [Schmidt et al., 2012]. Temporal codes are mixed into certain regions

of the projected graphics and these make it possible to transmit data with the

projector. The operator projects patters onto the robot which then receives

and decodes the transmitted data. The principle is used to control moving

robots as well as TVs and other devices. This system does however, as well

as the ones previously described, not pre-warp projections, and larger pieces

of graphics will therefore look distorted if projected onto non-orthogonal or

non-flat surfaces.

In [Choi et al., 2013], pre-warping is used to project graphics so that a

nearby human sees it as if it was projected onto a flat surface. A projector is

mounted on a mobile robot, and (taking the position of the human into account)

a chessboard pattern is iteratively adjusted to look correct from position of the
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human. While this is definitely an interesting problem, actual use cases for a

system that compensates and attempts to hides structure in the environment

seem limited; especially for typical industrial tasks.

More recent work explore how complex robot information can be visualized

in human environments. Several research groups have designed smart spaces

specifically for robotics research with a number of projectors mounted in the

ceiling covering a large floor area [Omidshafiei et al., 2015,Ghiringhelli et al.,

2014]. For instance, the MAR-CPS system presented in [Omidshafiei et al.,

2015] combines a ceiling-to-floor projection system with a motion capture sys-

tem that is capable of tracking flying drones as well as driving robots. This is

used for different research areas, including surveillance coverage, path planning,

and to identify robot states and error messages in general. Common for setups

such as this is, however, that they are mainly intended for research purposes

and not for end-users.

One type of robot intended for end-users for which projection mapping has

been proposed is guide robots. In [Stricker et al., 2015], a robot guides a human

by projecting arrows onto detected nearby walls. Both the position of the walls

as well as the human into account. In [Coovert et al., 2014], it is proposed

to use a projector mounted on a similar mobile robot to visualize its intended

future movements. A comparative user study shows that arrows projected on

the floor in front of the robot in general are understandable by humans and

that they significantly improve the ability of humans to interpret the robot’s

intended actions. A similar user study is presented in [Chadalavada et al.,

2015], where the robot’s intended path is projected a few meters ahead. In

this study, test persons are asked to walk towards and pass the robot with and

without projection enabled. If the robot moves in a straight line, projection

increases the average user rating 53%. If the robot takes a sudden turn, the

rating increases by 65%.

The studies presented in [Coovert et al., 2014] and [Chadalavada et al.,

2015] suggest that direct visual feedback in a common space in general can be

advantageous - even though they concern very specific scenarios with limited

scope and can not directly be generalized to other domains. Specifically for

industrial robots, not much research exist in projection mapping interfaces.

One exception is [Leutert et al., 2013], where it is proposed to use a projection

based interface for assisting disabled people in handling and processing wooden

pallets with industrial robots. An external projector and a flange-mounted

projector are combined to project various data onto the static environment.

The information that is projected includes floor images of the intended future

pose of the robot as well as instructions given by the user. Instructions are

given to the robot using a tracked pointing device and they are projected in

real-time. The system seems promising, but it is difficult to conclude anything

with regards to the usability of the different parts of the system since no user

study is presented.
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Common for existing work in projection mapping for robots is that the

proposed systems are either only intended for research laboratory or that the

projected information is simple and the interaction with the surrounding envi-

ronment is very limited.

18



Chapter 3

Research Objectives and Methods

3.1 Specific Objectives

Two main research objectives were stated in Section 1.2 and are repeated below.

The main objectives have been decomposed into a number of specific objectives

which are also stated here. The research objectives provide the basis for the

research contributions of this thesis.

Main objective 1: Vision in a User Centered Skill Framework

Investigate if and how a skill-based framework can assist factory workers

without expertise in robotics and computer vision to teach collaborative robots

to recognize, pose estimate, grasp, and quality check objects, after only very

limited training.

Specific research objectives related to main objective 1:

1.1 Develop and implement a modular and flexible system for task level skill-

programming using manual, kinesthetic teaching. Analyze how advanced

vision capabilities can best be integrated into a skill based framework.

1.2 Develop skills that integrate vision capabilities such as recognition, pose

estimation, and quality check, and which are easy and intuitive to pro-

gram.

1.3 To support objective 1.2, evaluate the performance of affordable off-the-

shelf depth cameras, which are compact enough to fit on industrial, col-

laborative robots. Evaluate and compare their performance specifically

for reliable detection of small, industrial objects, which can be metallic

as well as reflective.

1.4 Also to support objective 1.2, investigate fast and (to the operator) simple

methods for calibrating depth cameras to robots.
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Main objective 2: Teaching Skills in Task Space

Investigate if and how the usability of the teaching part of skills can be in-

creased by providing feedback to the operator directly in task space during

teaching, when compared to traditional feedback methods (text sheets, teach

pendants/tablets, and monitors).

Specific research objectives related to main objective 2:

2.1 Investigate how projection mapping can be used to make the intentions

and the internal state of robots clear to humans, and which advantages

it provides w.r.t. usability when compared to traditional interfaces.

2.2 Implement task space interfaces for specific skills and evaluate their us-

ability.

2.3 Implement a generic system for skill based programming with feedback in

task space. Evaluate its usability when compared to traditional interfaces.

3.2 Research Methodologies

The methodology of this project is based on the critical rationalistic approach.

In this approach, hypotheses are proposed and attempted proven or disproven.

With each verification and falsification, additional knowledge is acquired, and

this allows proposal of new and improved hypotheses in later iterations. As

is often the case for robotics research, this project has required significant

amounts of development and implementation. Proof-of-concept experiments

have been used to test and verify the performance of major new developments.

The project is predominantly focused on human-robot interaction (HRI)

and user experiments therefore play an essential role in evaluating research

hypotheses. When applicable, the ISO standard on usability, 9241-11 (1998)

[ISO, 1998], has been used to guide user experiments. Usability is here defined

as a combination of three factors:

Effectiveness: The accuracy and completeness with which users achieve spec-

ified goals.

Efficiency: The spent resources in relation to the accuracy and completeness

with which users achieve specified goals.

Satisfaction: The freedom from discomfort and positive attitudes towards the

use of the product.

Effectiveness and efficiency can typically be evaluated from objective mea-

sures whereas satisfaction must be evaluated through qualitative and quantita-

tive subjective methods such as questionnaires. For user experiments, a diverse

user base has been used whenever possible to best reflect expected end-users.
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The project has initially been coupled closely to European research projects

including TAPAS [TAPAS, 2014] and CARLoS [CARLoS, 2015], and interna-

tional cooperation has therefore been possible and necessary. The European

projects have provided the opportunity to test functionality in actual indus-

trial production environments in addition to the more traditional laboratory

experiments. Tests in industrial scenarios are valuable because they provide a

more realistic evaluation of robots intended for industrial use. Both for user

experiments and proof-of-concept experiments, realistic settings are beneficial

for getting reliable results.
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Chapter 4

A Framework for Skill Based Pro-

gramming

This chapter describes task level programming using robotic skills. First,

robotic skills and skill based programming are introduced on a conceptual level

in Section 4.1. Then, the skill based framework and implementation used for

most of the scientific results in this thesis, Skill Based System (SBS), is pre-

sented in Section 4.2. On this basis, in Section 4.2.3 analyzed how vision

capabilities are best integrated, in response to research objective 1.1. Finally,

Section 4.3 summarizes a published journal paper which presents a proof-of-

concept experiment in which SBS is used in a real-world industrial manufac-

turing setting.

The implementation of SBS is a joint work between the current author,

Casper Schou, and Jens S. Damgaard.

4.1 Skill Based Programming

The conceptual skill based architecture is presented in the paper Robot skills

for manufacturing: From concept to industrial deployment [Pedersen et al.,

2015]. This section summarizes the central, conceptual parts of the paper.

Additionally, the architecture is expanded with online manual teaching, which

makes use of kinesthetic teaching to enable operators to intuitively program

tasks while carrying them out.

4.1.1 Conceptual Architecture for Skill Based Program-

ming

We propose a skill based architecture with three layers of abstraction: Tasks,

skills, and device primitives. Device primitives are functions provided by a

single device such as a robot arm, a gripper, a camera, or a force/torque sen-

sor. In traditional programming for industrial robots, programs are created

by combining multiple device primitives directly, and this requires a significant
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level of robot expertise. In skill based programming, device primitives are used

by the skill programmer to design skills, which encapsulates robot knowledge

and provides functionality to the end-user on a higher level. The purpose of

skills is to enable shop floor workers on factories to fast and efficiently pro-

gram robots to solve new tasks. Tasks can be programmed by sequencing and

parameterizing a number of skills. The three layers can be defined as:

1. Device primitives: A robot is regarded as a composition of a number

of devices; typically including a robot arm, a gripper, cameras, sensors,

and possibly a mobile platform. Each of these devices provides func-

tionality denoted device primitives. Device primitives are in most cases

generic functions such as move arm to Cartesian pose X, open gripper,

and capture image. This means that different devices often provide the

same primitives. Programming based on device primitives can therefore

be independent of specific hardware components.

2. Skills: A generic skill is a composition of sensing and manipulation prim-

itives which together perform an object centered change to the world. A

skill has a number of parameters which must be specified during program-

ming. This parameterization makes the generic skill specific in the sense

that it now performs one specific change to the world when executed.

Skills depend on device primitives and not on specific devices. They are

therefore decoupled from the hardware layer of the robot.

3. Tasks: A robot task can be specified as a desired transformation from an

initial world state to a goal state. Tasks are set up and programmed by

end-users such as shop floor workers by combining skills. Tasks are re-

sponsible for achieving the overall goals of the robot. The task layer is de-

coupled from the internals of the robot, and parts of the robot can there-

fore in principle be replaced without replacing the programmed tasks, as

long as the new robot provides the same device primitives and therefore

also skills.

Figure 4.1 illustrates functionality in the three layers. The “Pick object”

skill is a sequence of device primitives including robot arm movements, gripper

movements, and sensing. The sequence is constructed by a skill programmer.

Contrary, the specific tasks such as “Fetch rotor cores” are programmed by end

users by combining and parameterizing skills.

4.1.2 Definition of a Robotic Skill

Skills are high-level building blocks that can be combined to form a complete

robot program given as one or more tasks. From the robot’s point of view, skills

are “effectuating a change in a set of state variables, describing the knowledge
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Fig. 4.1: The three abstraction layers: Task, skill, and device primitive.

the robot has of its surroundings” [Pedersen et al., 2015]. In the physical world,

a skill constitutes an intuitive object-centered robot action which performs a

state change to the world. This means that skills include both sensing and

manipulation in the same skill. For instance, a pick skill must have a way of

finding the object to pick; either from a world model stored by or available

to the robot or through sensors from the external world. A “detect object”-

function cannot be a skill because it does not perform a change to the world.

Instead, this will be a device primitive or, if more devices are used for detection,

a service. Services can be considered higher level device primitives, and are

discussed further in Section 4.2.1.

In order to support intuitive task level programming, skills must be self-

sustained. This means that they must hold all information necessary for them

to be used. This includes:

• Parameterization: It must be possible to modify the action that a skill

performs though simple parameters. However, no matter the parameters,

the skill must perform the same type of action.

• Preconditions: A skill must be able to determine if it can be executed

correctly and safely before execution starts.

• Continuous evaluation: During execution, the skill must be stopped

if unexpected and/or dangerous situations occur.

• Postconditions: After execution, a skill must be able to determine

whether it’s operation has been completed as expected.

This leads to the generic skill model illustrated in Figure 4.2. The skill

transforms the world from an initial state to a goal state based on parameters

that have been specified previous to execution. The light green blocks ensure

that the skills can only be executed in a safe and predictable manner. Execution

together with the safety functions is denoted operation.

Similar to skills, all robot tasks can be specified as a transformation from

an initial world state to a goal state. For non-trivial tasks, a single skill is not
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Fig. 4.2: The general model of a skill. The central part of the skill is the execution block
which performs the desired manipulation of the world. The light green blocks make sure that
the skill can only be executed in a safe and predictable manner. This is done by comparing
the world and the world model against information from the blue blocks.

sufficient. Instead, a number of skills must be required. The operation part of

the skill model also can intuitively be concatenated as shown in Figure 4.3.
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Fig. 4.3: The operation part of skills can directly be concatenated. The output state of one
skill then becomes the initial state of the following skill.

4.1.3 Manual Parameterization

Different methods can be used for parameterization of skills including planner

based approaches [Pedersen and Krüger, 2015, Rovida et al., 2014, Pedersen

et al., 2015] and manual approaches [Schou et al., 2012, Schou et al., 2013].

The planner based approaches formalize world states and skill actions in PDDL

(Planning Domain Definition Language) and employ STRIPS-like planners to

combine skills into a program that can perform the requested state transforma-

tion. The manual approaches allow operators program on task level through

an intuitive GUI and kinesthetic teaching. Planning based approaches have

the advantage that no operator is required at all. They do, however, depend

heavily on a comprehensive world model. Manual approaches instead keep

humans-in-the-loop and take advantage of their knowledge of the world.
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4.2. The Skill Based System

For the current thesis, a manual approach is used. The approach is illus-

trated in Figure 4.4. For each skill, a number of parameters need to be specified

during task programming. Some of these can be specified offline in a GUI. This

can for instance be robot velocity and the object type(s) to look for. Other

parameters can intuitively be specified online through kinesthetic interaction

with the robot. This can for instance be Cartesian positions and trajectories.
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Fig. 4.4: Manual parameterization of skills. The skills are concatenated similar to the
operation part of the skills in Figure 4.3. Teaching must be done in the correct order because
teaching changes the world state in the same way as skill operation. Offline specification
does on the other hand not affect the world and does therefore necessarily have to be done in
order. Specification is only required to be completed before teaching of the same skill. Thus,
all skills can (but are not required to) be parameterized before teaching begins.

During online teaching, the world gets transformed in the same way as

during operation. Teaching of a pick skill, for instance, actually picks up an

object and ends with the object being held by the robot. Therefore, teaching of

skills must be done in the same order as during operation. Offline specification,

on the other hand, does not transform the world and can therefore be carried

out independently for each skill.

A combined model of skills can now be constructed with both an operation

part and a manual parameterization part. This is illustrated in Figure 4.5. The

model shows the parallelism between the two parts; teaching and execution,

which transform from and to the same world states. They can therefore also

be combined; e.g. for extending an existing task.

This ends conceptual introduction of robotic skills and task level program-

ming. A skill model has been proposed which combines operation with manual

parameterization including online teaching for intuitive robot programming.

The following section presents an implementation of these concepts, SBS, which

has been developed throughout this PhD project.

4.2 The Skill Based System

Two systems for skill based programming have been designed in coopera-

tion with other PhD students during this project: The Skill Based System

(SBS) [Schou et al., 2013] and the Skill-based Robot Operating System (SkiROS)

[Rovida et al., 2014]. SkiROS is designed for automatic task planning and does

not focus on human-robot interaction. SBS, on the other hand, implements
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Fig. 4.5: Skill model including both operation and manual parameterization.

manual parameterization as introduced in the previous section, and is used for

most of the scientific work in this thesis and it presented in the following. SBS

is presented in the following.

4.2.1 Skill Based System Architecture

The conceptual architecture of SBS is illustrated in Figure 4.6, where the layers

refer to the task/skill/device primitive layers in Figure 4.1. SBS is developed

for the widely used Robot Operating System (ROS)1, and all solid lines in the

figure are ROS interfaces based on topics, services, and action servers. All

overlapping circles are major classes in the same ROS node.

The central control keeps track of the current state and the world model

during all stages of skill programming and operation. When skills are initially

selected and specified offline, central control manages an internal, simulated

world model which, based on preconditions and prediction of each skill, makes

sure that only legal skills and parameters can be selected. During operation

the same world model is being managed, but now compared to actual sensing

data.

Each level (device primitive, skill, and task) has its own manager. The

purpose of the managers is to decouple the functionality in each level from

the other levels. In addition to these three managers, a UI-manager provides

functionality to different user interfaces. The purpose is also for this manager

to decouple the individual interfaces from specific functionality in the internal

system. Currently, two user interfaces have been developed as part of the

system and limited functionality is being provided to external interfaces using

TCP/IP from rosbridge.

1Robot Operating System (ROS) [Quigley et al., 2009]. Refer to http://www.ros.org/

for more information.
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Fig. 4.6: The architecture of Skill Based System (SBS). Connected circles are different
classes part of the same program and solid lines indicate communication via ROS.

Some functionality depends on multiple devices but does not perform an

object-oriented an independent skill on its own. This can for instance be motion

planning and in some cases object detection. Such functionality should be

implemented as services. Services can, similar to device primitives, be used by

different skills. Currently, the services are used directly by the relevant skills.

As the as the system expands in the future, a dedicated service manager could

keep track of existing services and standardize their interfaces seen from the

remaining part of the system similar to the other managers.

4.2.2 User Interface

Two interfaces are part of SBS; the Textual User Interface (TUI) and the

Graphical User Interface (GUI). The TUI is intended for fast prototyping while

the GUI is intended for non-expert end users. Different parts of the GUI is

shown in Figure 4.7.

The typical program-and-execute process follows the images in 4.7(a)-(e).

In (a), the user has access to different parts of the system. In (b), a new task

is setup by selecting a sequence of skills. Is skill has to be parameterized, first

offline and then online using manual, kinesthetic teaching. Figure (c) shows

offline specification of a pick skill, and Figure (d) shows one step of guidance for

online teaching. The top-left image in the figure provides direct instructions

as to which inputs are required while the larger image gives an overview of

the current teaching step. According to instructions in (d), the operator must
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(a) Main window (b) Skill selection

(c) Specification (offline) (d) Teaching (online)

(e) Operation (f) Robot control

Fig. 4.7: SBS GUI with offline selection of skills (b), offline specification of parameters (c),
online teaching (d), and operation (e). The robot control in (f) provides direct control of the
robot.
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choose a direction to approach a particular location. The operator chooses by

applying force in the desired direction. Figure (f) shows the robot control,

which offers direct control over different parts of the robot.

A number of external graphical interfaces has been developed for specific

purposes in addition to the integrated GUI. One of these is shown in Figure 4.8.

This interface is developed as part of the CARLoS project [CARLoS, 2015]. It

can be used to program and control stud welding operations both on Little

Helper 3 using SBS and on a dedicated robot for the project which runs a

different robot control system.

Fig. 4.8: External interface used with SBS on Little Helper 3 as well as with the CARLoS
robot [CARLoS, 2015].

4.2.3 Vision Functionality in Skills

Vision functionality is relevant both for skill operation and for certain methods

for online teaching. In Figure 4.9, various relevant vision functionality is listed

against a number of developed skills as well as against different methods for

online teaching. The figure should not be interpreted as giving indisputable

answers as to what functionality should be included in which skills, but it

does propose relevant functions for different stages of various skills as well as

for teaching methods. Parentheses in the figure indicate that the function is

relevant but not essential.

As is clear from the figure, many functions are relevant for several skills. The

functions could therefore be integrated as device primitives. This would make

the same function available for several skills, and it would support hardware

independence seen from the skill layer. It is, however, a problem that many
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Fig. 4.9: Proposed vision and sensing functionality for different developed skills and methods
for online teaching. For the operation parts of skills, it is listed in which part of the operation
that the specific functionality is most relevant. Parentheses indicate that the function is
relevant but not essential.

(if not all) of the functions could benefit from using multiple devices. For

instance “Error detection” and “Pose estimate object” might have to move an

eye-in-hand camera to get a better view of an object. A device primitive in the

skill based framework should never depend on another device, and this would

therefore not be possible.

An alternative is to implement all functionality as unique skills. Functions

like “Recognize object” and “Pose estimate object” could then be selected during

task programming similar to “pick”. This, however, contradicts the definition of

a skill, that it should “perform an object centered change to the world” as stated

in Section 4.1.1. It would require more robot specific knowledge of operators

to utilize such low-level skills.

Instead it is proposed to implement these functions as services as shown

in Figure 4.6. Services can use device primitive, but are not available to op-

erators directly. Instead, they provide functionality to skills similar to device

primitives.

4.2.4 Integration with External Systems

The tight integration between SBS and ROS allows easy integration with sys-

tems developed by external partners. During this PhD project, a number of

external systems have been integrated, including:

• Object tracking software [Choi et al., 2010] from the Georgia Institute of

Technology where part of this PhD project was made.

• Pose estimation software from SDU2 [Kiforenko et al., 2015] as part of

the ACAT project [ACAT, 2015].

2University of Southern Denmark (SDU), http://www.sdu.dk/
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• Motion planning software from the Austrian company CIT3as part of the

TAPAS project [TAPAS, 2014].

• A remote tablet interface developed in HTML5 to work in SBS as well as

for a partner’s system as part of the CARLoS project [CARLoS, 2015].

A snapshot of interface is shown in Figure 4.8.

• A large number of publicly available ROS packages including drivers,

navigation software, etc.

Some external systems have been integrated as services while others have

been integrated directly into the relevant skill(s).

4.3 Paper A: Industrial Application of Skill Con-

trolled Robots

To test and verify the functionality of the collaborative AIMM robots devel-

oped at Aalborg University as well as the skill based system SBS, a major

real-world experiment was carried out spanning 10 days in an industrial man-

ufacturing scenario at the Danish pump manufacturer Grundfos. Two Little

Helper AIMM robots were used in the experiment, and the tasks of the robots

cover the main application areas for AIMMs, ranging from logistic tasks to

machine tending and assembly [Bøgh et al., 2012a]. The scenario can thus be

considered a typical scenario for collaborative mobile robots, where fast and

intuitive programming is essential. The contribution of the experiment is a

proof-of-concept integration of skill based AIMM robots into real-world indus-

trial manufacturing settings originally designed for human use. SBS is used for

programming and execution, and the experiment thus partly answers research

objective 1.1. The experiment is extensively described in the paper Integration

of Mobile Manipulators in an Industrial Production [Madsen et al., 2015] and

summarized here.

Figure 4.10 illustrates one of the robots in use (a), a machine tending station

(b), and an assembly station (c) used during the experiment.

In the scenario, pump rotors are assembled from a rotor cap, a rotor core,

a pressure ring, and eight magnets. Little Helper 3 (LH3) in Figure 4.10(a)

first attempts to fetch rotor caps from the conveyor belt in Figure 4.10(b).

This requires navigation, starting and stopping the conveyor belt, and picking

rotor cores using vision. If no rotor caps are available, LH3 fetches them from

a nearby warehouse station instead. LH3 then navigates to the assembly and

press station in Figure 4.10(c), assembles the all the parts inside the press, and

activates the press. The final part is picked from the press and placed in the

kanban box left of the press. During assembly, LH3 communicates with an

3Convergent Information Technologies (CIT), http://www.convergent-it.at/

35

http://www.convergent-it.at/


Chapter 4. A Framework for Skill Based Programming

(a) Little Helper 3 (b) Rotor cap production (c) Assembly and press
station

Fig. 4.10: One of the Little Helper robots uses in the experiment and two of stations. Both
of these stations are build for manual use, but in this experiment slightly modified and used
by two Little Helper robots.

external vision system and uses this to verify that critical assembly steps are

completed satisfactorily. After assembly of a number of rotors, Little Helper

2 (LH2) picks up the kanban box and replaces it with an empty box from a

warehouse station.

A total of 13 generic skills where used by LH3 at the stations during the

experiments. The skills can be divided into 4 versions of pick, 4 of place, 2 for

robot-workstation calibration, 1 for rotating objects, and one for performing

quality control. One task, operation of the press, could not be carried out using

generic skills. Instead, a specific activate-press skill had to be programmed from

low-level device primitives.

The cycle time for production of one rotor was approximately 15 minutes

divided into 5 minutes for fetching a rotor cap and 10 minutes for assembly. In

comparison, the assembly operation can be carried our by a human worker in

approximately 30 seconds. The task will therefore have to be sped up before

it can be feasible from an economic perspective. However, it is an important

contribution in itself to automate a task designed for human use, as well as

using skill based programming program each task.

4.4 Conclusion

This chapter has presented robotic skills and extended the concept to include

manual parameterization. An implementation of the concept, SBS, has been

presented, and it has been analyzed and proposed how advanced vision func-

tionality can be integrated in a modular manner that enables both reuse in

different skills, hardware independence, and simplicity towards the end-user.

Finally, an experiment has been presented where SBS is used for solving lo-

gistic tasks, machine tending, and assembly in a real-world setting. This an-

swers research objective 1.1 and lays the ground for further development of
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vision-enabled skills as specified in objective 1.2. Vision skills are proposed

and presented in the following chapter.
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Chapter 5

Vision in a User Oriented Skill Frame-

work

This chapter summarizes the part of the PhD project that concerns integration

of vision functionality in the skill based framework. The chapter is based on

three published conference papers, one presented extended abstract, and one

technical report, which is synthesized from a peer-reviewed deliverable in the

TAPAS project [TAPAS, 2014].

5.1 Paper B: Vision Skills

As part of the experiment at Grundfos presented in [Madsen et al., 2015], three

skills were developed which directly use computer vision functionality. The

experiment at Grundfos serves as a first proof-of-concept integration of vision

functionality in a skill based system and thus a partial answer to research

objective 1.2. The skills are described in detail in the paper Human Assisted

Computer Vision on Industrial Mobile Robots [Andersen et al., 2013b] and

summarized here:

Vision pick: The vision pick skill in SBS enables LH3 to detect objects with

a camera mounted on the end-effector and to pick them based on taught

parameters. The skill works for objects that are close to rotational invari-

ant and located on a surface of fixed height. Although these requirements

are quite limiting, they are in fact fulfilled by many items in a manufac-

turing plant. This is not least the case for pump parts, which by nature

often are rotationally symmetric.

The setup and teaching parameters are shown in Figure 5.1. The locations

of objects are detected using visual features such as edges. Which exact

features to use are first specified manually on an external computer using

a dedicated vision program based on Vision Builder in LabView. This

program is currently in use throughout Grundfos’ factories, and shop floor

workers are able to configure it after very little training. In SBS, the name
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of the object class to pick is simply entered during offline parameterization

of the vision pick skill. During operation, this name is used by the robot

to request object detection over TCP/IP from the vision system.

(a) Setup (b) Teaching parameters

Fig. 5.1: Vision-pick-skill using external vision system.

Referring to Figure (b), the vision system detects objects in 2D in the

image plane. During online teaching, the operator teaches how the ob-

ject is grasped, primarily through three parameters: The height of the

detected feature(s), the grasping height, and the grasping orientation.

These features are taught using kinesthetic teaching. During operation,

the 3D position of the detected feature can be found by extending the

vector from the camera through the image plane to the detection height

plane. The object is then picked using the taught grasping orientation

in the taught grasping height. If no object is detected, the camera is

moved along a taught line and it is attempted to detect objects every few

centimeters.

During the experiment, the same skill with different parameters was used

to pick objects from two locations; the conveyor belt in Figure (a) and a

warehouse location.

Quality control: The vision system used for object detection is also used for

binary success/failure quality control. In SBS, quality control is imple-

mented as a skill with only one parameter being the name of the test in

the remote vision system. From the skills concept, such quality control

functionality should actually not constitute a skill on its own because its

execution does not change the state of the world. Instead, a final system

could implement this functionality as an optional post condition check

for other skills.

During the assembly operation in the experiment, quality control was

used for five different tests. In Figure 5.2(a) and (b) one example is shown

where is is verified that a magnet has been placed correctly at the rotor

core inside the press. The distance and angle between the magnet and
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the rotor core are measured and compared the pre-specified thresholds.

In the example in the figure, the magnet passes the test.

(a) Setup (b) Detection

Fig. 5.2: Quality control was used for five different tests. In this example, the position of
the magnet in the green box in (b) is verified.

Fast calibration: Whenever an AIMM has driven to a new workstation it

needs to determine it’s exact position relative to the station. A function

is developed for this based on an RGB-D camera mounted on the robot

and QR codes fixed on the stations and implemented as a skill. During

both teaching and operation, the pose of a fixed QR code is determined.

Whenever the robot parks at a workstation, the pose of the fixed QR

code is used to adjust for errors in the parking position and orientation.

No formal accuracy evaluation is presented in this paper, but preliminary

tests indicate that the accuracy is at least ±10 mm. The skill is used for

calibration to the conveyor belt station which is shown in Figure 5.3.

Fig. 5.3: QR calibration setup.

To sum up, three skills using vision were developed and applied successfully

as part of a larger experiment in a real-world industrial setting. The skills were

evaluated through the proof-of-concept experiment and no formal performance

evaluation was carried out. The contribution is to describe how vision skills

can be seamlessly integrated into a skill based framework, including how they

can be parameterized by non-experts to solve new tasks.

41



Chapter 5. Vision in a User Oriented Skill Framework

5.2 Paper C: Fast Robot-Workstation Calibra-

tion

The QR calibration method presented in [Andersen et al., 2013b] is thoroughly

described and evaluated in the paper Fast Calibration of Industrial Mobile

Robots to Workstations using QR Codes [Andersen et al., 2013a]. The method

supports camera-to-robot as well as robot-to-workstation calibration, and it is

deeply integrated into the skill based framework. The contribution of the paper

is a formal evaluation of the method and comparison with state-of-the-art. The

main results are listed in Table 5.1.

Method Duration Precision Source

Haptic 30-45 sec ±1.0 mm [Pedersen, 2011]
High speed 10 sec ±1.0 mm [Hvilshøj et al., 2010]
High precision 60 sec ±0.1 mm [Hvilshøj et al., 2010]
Proposed method <1 sec < ±4.0 mm [Andersen et al., 2013a]

Table 5.1: Comparison of calibration methods. For the proposed method, the precision is
estimated by repeated calibration and moving to the same measurable positions. Between
each calibration, the platform is moved slightly (up to ±15 cm and ±10◦).

While the proposed method is not the most precise in the literature, and is

significantly faster than comparable methods. This is especially advantageous

for AIMMs that carry out logistic tasks and therefore need to move frequently

between stations.

5.3 Paper D: Flexible Pick Skill using Depth Sens-

ing

The paper Using Robot Skills for Flexible Reprogramming of Pick Operations

in Industrial Scenarios [Andersen et al., 2014b] dives deeper into the skill based

architecture and presents a more generic pick skill including full on-robot pa-

rameterization. Objects are detected using a point cloud from a depth camera

as shown in Figure 5.4. Objects are segmented from the supporting plane,

and containing cylinders are fitted around each valid object as shown in Figure

5.4(c). Objects are picked based on the position and size of this cylinder.

The contribution of the paper is to describe in full detail how the skill-

based framework is used to develop a flexible vision-based pick skill, which fast

and easily can be reprogrammed by non-experts. All necessary parameters are

specified during parameterization, including the size of the object, where to look

for objects, how to grasp the object, etc. Figure 5.5 shows the parameterization

steps where parameters are specified and the operation steps where the same

parameters are later used. Manual teaching is done solely using kinesthetic
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(a) Setup (b) Test objects (c) Detection

Fig. 5.4: Objects are detected by segmenting a point could and thereafter picked using
taught parameters. The skill is designed for close-to-cylindrical objects is tested successfully
on the objects in (b). Figure (c) illustrated detection of the most skewed cylinder in (b).

Fig. 5.5: Parameterization with manual teaching and operation of the pick skill. In the
offline specification, the velocity of the robot is specified. It is also specified whether the
same approach and leaving vector will be used. If that is the case, the “approach pose”
is skipped during online teaching. The “object diameter” is blue because this is used for
post-condition check. The remaining parameters are used for execution. Manual teaching is
entirely performed by the operator using kinesthetic teaching.
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teaching.

The figure also illustrates how parameterization and operation are parallel

in the sense that the world is transformed in the same way. This makes it

possible to continue teaching another skill, for instance a place skill, imme-

diately after this skill has been taught. The skill is specifically designed for

close-to-cylindrical objects, and tests show that it works with all objects shown

in Figure 5.4(b).

The paper partially answers research objective 1.2 by presenting an ad-

vanced vision skill which is deeply integrated into the skill based system.

5.4 Report E: Adaptive Model Based Quality In-

spection

Human workers naturally perform a visual inspection of all tasks that they carry

out. This is also necessary for a flexible collaborative robot if more advanced

tasks are to be carried out. In [Andersen et al., 2013b], we integrated quality

control into the skill based system by allowing the robot to communicate with

an external intuitive vision system. This approach allows a wide variety of tests

to be used, but it does require a human to explicitly choose and set up tests in

each scenario.

As part of the TAPAS project [TAPAS, 2014], a fully autonomous quality

inspection skill was developed in cooperation with the partner company CIT1.

It is described in detail in the attached report E, which is a synthesis of de-

liverable 3.8 in the TAPAS project. The skill enables a robot to detect errors

using a depth camera mounted on the end-effector, only based on a CAD model

and an approximate position of the object to inspect. It combines motion and

next-best-view planning developed by CIT with error detection developed as

part of this PhD project.

The purpose of the skill is to detect shape errors in the industrial objects

handled in the TAPAS scenario. What characterizes these objects is that they

are made of metal, their sizes range from 7 to 25 cm on the longest side, and

they are reflective to a various degree. This is challenging characteristics to

handle for most vision system. While large and expensive vision systems for

object scanning do exist, typically based on laser scanning, the goal here is

to fit a small system onto a collaborative robot. Small, off-the-shelf depth

cameras, on the other hand, are not normally used for detecting reflective

objects. Therefore, a number of small depth cameras were tested on one of the

most reflective objects in the scenario. The evaluation criteria were:

1. They should be able to detect as much of the surface as possible on

distances up to 50 cm, which is reachable by typical collaborative robots,

1Convergent Information Technologies (CIT), http://www.convergent-it.at/
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and

2. The shape of the detected surface should not have large errors.

The tested cameras were: PrimeSense Carmine 1.09, Microsoft Kinect 2, Asus

Xtion, Mesa SwissRanger 4000, Intel RealSense R200, and Bumblebee XB3

using narrow-view and the Triclops stereo algorithm which comes with the

camera. The Carmine 1.09 clearly outperformed the other cameras. The test

object and results for the Carmine is shown in Figure 5.6.

(a) Test ob-
ject

(b) 30 cm (c) 50 cm (d) 70 cm

Fig. 5.6: Tests of the PrimeSense Carmine 1.09 depth camera on a metallic, reflective test
object. The bottom pictures are depth images of the test object on different distances. The
top images are the same depth images seen as point clouds obliquely from above.

It is clear from the figure that the camera is able to detect the surface on

50 cm and above. However, the surface reconstruction is not perfect and some

surface is not detected, especially near the borders. The quality control skill

must able to handle these limitations. This is done by designing the system

to be able to attempt re-detection of parts of the surface which could not be

detected in the first iteration.

The error detection algorithm is illustrated in Figure 5.7. The objects in

Figure 5.7(a) are used for testing, and the purpose is to detect the cavity error

in the right-most object. The number of viewpoints which together makes it

possible to detect the entire surface are first determined. The robot moves

to all of them and captures depth images. The top image in Figure 5.7(b)

shows the point cloud from one viewpoint. The object is segmented from its

supporting surface. Point clouds of the object from multiple views are then

45



Chapter 5. Vision in a User Oriented Skill Framework

merged into a single point cloud, and this is shown in the bottom image in red.

The is matched to the expected point cloud which is shown in green.

(a) Test objects (b) Segmentation (top) and
matched point clouds (bot-
tom)

(c) Error detection

Fig. 5.7: In (a) two test objects are show, one of which has an obvious cavity error. In
(b) (top), one of the objects is detected and segmented from the supporting plane. In (b)
(bottom), segmented point clouds from multiple views have been combined into the red point
cloud. This is matched against the green point cloud, which is the points that the system
expected to see. In (c), the error detection pipeline is shown for a single view. In this case,
a large error is detected and highlighted red.

One way of detecting errors from the point clouds would be to take all points

in the expected point cloud and determine the nearest point in the captured

point cloud. If the distance is larger than a threshold, it should count as an

error. A problem with such an approach is that is cannot easily distinguish

between surfaces that the sensor failed to detect and actual errors. Therefore,

the point clouds are instead projected to the camera views, as shown in the

two top images in Figure 5.7(c). The third image in the figure shows surface

that is missing in the captured point cloud. This cannot be used to conclude

that there is an error in the object, but another iteration can instead try to

get better data for these parts. The fourth and fifth image shown areas, where

data is present but different in both point clouds. This cannot be due to sensor

failures. If more surface than a predefined threshold is inconsistent, the quality

check concludes that there is an error in the object. In the last image, the

cavity error is detected and highlighted in red.
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The contribution of the work is twofold: Firstly, the performance of different

commercially available depth cameras is evaluated on short distances for de-

tecting metallic, reflective objects. PrimeSense’s Carmine 1.09 performs best,

and this answers research objective 1.3. Secondly, it is shown how production

errors can be detected fully autonomously and how feedback from the vision

system can be used to compensate for imperfect sensing data. This functional-

ity is integrated into a skill based architecture, and it the developed skill partly

answers research objective 1.2.

5.5 Abstract F: Hand-Eye Calibration of Depth

Cameras

For the adaptive quality control to provide good results, an accurate calibration

between the robot’s end-effector and the mounted depth camera is required.

A typical way of calibrating RGB-D cameras such as the Carmine 1.09 used

for the quality control is to calibrate the RGB camera and rely on the fac-

tory calibration between the RGB and depth cameras. This is a problem for

two reasons. First, the VGA resolution of the RGB camera is not ideal for

making an accurate calibration. Second, the factory calibration might not be

completely accurate.

Instead, a dedicated method for hand-eye calibration of depth cameras is

proposed in the extended abstract Hand-Eye Calibration of Depth Cameras

based on Planar Surfaces [Andersen et al., 2014a]. This relates directly to

objective 1.4. It is proposed to capture a series of point clouds of the same

planar surface from different viewpoints. The situation is illustrated in Figure

5.8.

Fig. 5.8: The hand-eye calibration detects the same planar surface from multiple views.
The figure illustrates all coordinate frames involved in the calibration.

For each view, an equation for the dominant plane is found using RANSAC
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[Fischler and Bolles, 1981] followed by least squares fitting to all inliers. Two

equations are now formulated, Equation (5.1) using the plane normal and Equa-

tion (5.2) using the point-to-plane distance:

cam−→
n plane = cam

toolT · tool
baseT ·

base−→
n plane (5.1)

D =

base−→
n plane ·

base
Pcam + dplane

|
base−→

n plane|
(5.2)

where the blue variables are unknowns,
cam−→

n plane is the estimated plane

normal in each camera view,
base−→

n plane is the constant normal of the plane

in the base frame, base
Pcam is the position of the camera in each view, dplane

is the unknown but constant distance between the plane and the base, and D

is the measured distance in each view. Note that Equation (5.1) is actually

three equations, so in total four equations are used to estimate 12 unknowns.

Therefore, as expected, more views are required.

The equations are combined into a single multivariate minimization func-

tion, G(
−→
θ ). A cost function can then be constructed as GT(

−→
θ )G(

−→
θ ), and

this is minimized using gradient descent. To speed up the convergence rate, in-

ertia is applied; meaning that a large fraction of the parameter update for each

step is added to the update of the next. Also, the learning factor is increased

gradually by a certain percentage. Both of these techniques risk causing serious

overshoot, and if this happens, the update step is re-calculated with the inertia

reset and the learning factor reduced by 50%.

The calibration algorithm is implemented in Matlab, and it has proven to

work in simulated examples. For practical calibrations, surfaces which are hor-

izontal relative to the base have been used. When the surfaces can be assumed

to be horizontal, the minimization problem is reduced from 12 to 9 degrees of

freedom. With this assumption, the algorithm converges in approximately 140

iterations for with real data.

5.6 Conclusion

In this chapter, a total of five vision-enabled skills have been presented. Two of

these rely on an external system to perform image processing on monochrome

images. The three remaining skills use depth sensing to detect and pick objects,

perform quality control based on a CAD model, and to calibrate an AIMM to

a workstation. Together these five skills answer research objective 1.2.

To support the skills that use depth-sensing, the performance of six com-

mercially available depth cameras has been compared on short distances for

detecting metallic, reflective objects. The best performing camera is the Prime-

Sense Carmine 1.09, and this answers research objective 1.3.
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5.6. Conclusion

Finally, an algorithm has been developed for performing automatic hand-

eye calibration of depth cameras to a robot end-effector. This answers research

objective 1.4.
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Chapter 6

Projection Based Task Space

Interfaces

This chapter summarizes the part of the PhD project concerning projection

based human-robot interaction. The chapter is based on two submitted con-

ference papers and one previously unpublished technical report. Additionally

one paper, [Andersen et al., 2015], has been published within the area. This

is not included because it presents preliminary results which are included and

expanded in [Andersen et al., 2016a].

6.1 Paper G: Intention Projection for Human-

Robot Collaboration

Modern, collaborative industrial robots have the potential to function as co-

workers to humans and collaborate on solving common tasks. For such collab-

oration to be fluent and seamless, it must be easy and intuitive to figure out

the state and intentions of the robot. Compared to human co-workers, robots

lacks abilities to signal intentions efficiently through body language, speech,

and gestures. Instead, dedicated interfaces can be used. Traditional graphical

interfaces do, however, require humans to focus attention on external monitors

instead of the task at hand. The paper Projecting Robot Intentions into Human

Environments [Andersen et al., 2016b] introduces the idea of enabling collab-

orative robots to project their intentions directly into the common workspace,

the task space, using projection mapping. With information available to the

human co-worker directly in task space, he can focus his attention solely to-

wards this space, instead of being forced to continuously look at an external

interface.

The main contribution of the paper is a human-robot interaction approach

for collaborative industrial robots which uses projection mapping onto both

tracked objects and static environments to indicate a robot’s state and inten-

tions.
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A secondary contribution is a proposed pose estimation algorithm which is

robust to different on-object projections. A robust pose estimation algorithm is

necessary for continuous on-object projection. Figure 6.1 shows two use cases

where the system has been tested. In (a), a car door is being tracked while

a human moves it around. A wireframe projected onto the car door makes

it visible to the human whether the door is being tracked correctly. In (b),

warning signs are being projected onto an object that the robot intends to

manipulate.

(a) Tracking visualized using a wireframe (b) On-object warning

Fig. 6.1: Interaction with tracked objects while information is being projected onto the
objects in real-time. In (a), a wireframe is being projected onto a car door while it is being
moved by a human. In (b), a sign warns a user that a robot intends to interact with the
particular object.

The proposed pose estimation algorithm uses distance transformation to

compare edges generated from an object model with edges detected in the

camera frame. It is compared to an initialization algorithm based on SURF

features by repeatedly estimating the pose of the car door in Figure 6.1(a)

with a wireframe projected on top. The SURF based pose estimation (pro-

posed by Choi and Christensen in [Choi et al., 2010]) has shown to perform

very well when no graphics is being projected onto the object. However, the

local SURF features are highly obscured by the graphics, even if different color

channels are projected and captured, respectively. The tests documented in

the paper show that the proposed method based on edges is significantly more

robust to graphics projected onto the object, both with regards to accuracy

and reliability.

The proposed interaction approach based on projection mapping is evalu-

ated against traditional interaction approaches in a comparative usability study

with 14 test persons. The test persons are asked to complete a task consisting

of a series of subtasks in collaboration with a robot. Each subtask consists of

either moving or rotating the object shown in Figure 6.1(b). Some subtasks

are carried out by the robot and other must be carried out by the test person.
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For each subtask, the test persons are either informed of what he has to do, or

he is informed that the robot intends to manipulate the object. Three media

are compared for providing the information: Text sheet, monitor, and projec-

tor. With the projector approach, information is projected onto the sides of

the object as shown in Figure 6.1(b). With the monitor approach, the same

information is provided on a monitor located next to the robot. With the text

based approach, all subtasks are listed on numbered on a sheet of paper.

The usability is evaluated according to ISO 9241-11 (1998) [ISO, 1998],

which defines usability as a combination of effectiveness, efficiency, and sat-

isfaction. Effectiveness is in this study measured as the number of prob-

lems/questions. Because the task is relatively simple, only few problems and

questions arose during the experiment. There is a tendency, though, that pro-

jection is most effective while text is least effective.

The efficiency is measured as the duration to complete the task, and this is

almost identical for all methods. The satisfaction is evaluated through Lewis’

After Scenario Questionnaire (ASQ) [Lewis, 1991]. The averaged and normal-

ized scores place the projector interface best with a score of 14.3% (where 0%

is optimal), monitor scores 16.7%, and text scores 21.8%.

To conclude, the paper and study answer research objective 2.1 by using

projection mapping to communicate the state and intentions of a collaborative

robot to human co-workers. It is showed that it is possible to combine real-time

tracking of objects with projection onto the same objects, and an edge based

method for pose estimation is proposed which is relatively robust to changing

projections. The results of the user study show that the usability of projection

based instructions for human-robot collaboration on average is higher than

other methods on effectiveness and satisfaction and similar on efficiency. The

results are, however, within the statistical uncertainty, and more research is

required to draw definitive conclusions.

6.2 Paper H: Task Space HRI for Stud Welding

Robots

The paper Task Space HRI for Cooperative Mobile Robots in Fit-Out Operations

Inside Ship Superstructures [Andersen et al., 2016a] takes the idea of interacting

with robots through projection based interfaces and applies it for a real task:

Interacting with and programming of an autonomous stud welding robot. The

welding operation is implemented as a robotic skill with online teaching, and

projection mapping is used to program new and modify existing tasks. By

implementing a task space interface for a weld skill, research objective 2.2 is

answered.

Stud welding operations inside ship superstructures are today carried out

manually. In the CARLoS project, it is proposed to automate part of the
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stud welding task with a mobile, autonomous robot [CARLoS, 2015]. The

contribution of the work presented in [Andersen et al., 2016a] is an intuitive

interaction approach for programming stud welding tasks. Projection mapping

is used for providing information in task space, a Wii remote as IMU pointing

device for modifying tasks, and a tablet for providing a high-level overview of

the robot’s state. The approach allows an operator to visually see and modify

welding tasks of a robot while focusing his attention towards the task space.

Figure 6.2 shows the system in use at the Valiña shipyard in La Coruña, Spain.

(a) Instruction (b) Welding

Fig. 6.2: Instruction of welding operations using an IMU pointing device and projection
mapping. Welding positions are shown as red crosses and obstacles such as the fire extin-
guisher can also be shown. Stud positions can be added, deleted, and moved using a cursor
controlled by the pointing device.

In Figure 6.2(a), the current task is being projected onto a wall segment.

The task consists of welding positions and possibly obstacles; in the figure a

fire extinguisher. The operator can move a projected cursor on the by wall the

Wii remote. The cursor makes it possible to interact with the projected task

information. Stud positions can be added, deleted, and moved, and obstacles

can be deleted or moved as well if required. Additionally, the can be used to

move the robot arm and thus enable the projector to project onto different

parts of the wall. The initial task information can be loaded from a model

file describing the compartment. If this is not available, a new task can be

programmed online.

The interaction approach is evaluated in a laboratory usability study. A

total of 17 test persons with diverse backgrounds participated in the study.

The test persons were asked first to correct an erroneous stud distribution

and second to instruct a new, specific stud welding task. In general, all test

persons were able to carry out the tasks. The usability is evaluated according

to ISO 9241-11 (1998) [ISO, 1998], which defines usability as a combination of

effectiveness, efficiency, and satisfaction. The effectiveness and efficiency are

here measured as the accuracy of the welding positions and the time for carrying

54



6.3. Report I: Teaching Robotic Skills by Projecting into Task Space

out the tasks, respectively. The mean error is 14.7 mm and all errors are within

22 mm, which is acceptable for stud welding task. The time consumption is

on average just above one minute for each task. It is difficult to compare these

numbers to the manual process, though, since several independent steps are

involved in this, including marking before welding can begin.

Satisfaction is evaluated through a custom questionnaire. Generally, all

parts of the proposed system score very high, including projection of task in-

formation and the Wii remote interface. Some test persons suggested that

additional step-by-step task information could be provided to assist novices.

Parts of these results were published in the paper Intuitive Task Pro-

gramming of Stud Welding Robots for Ship Construction in the Proceedings

of the 2015 International Conference on Industrial Technology (ICIT) [Ander-

sen et al., 2015]. This paper focuses on the skill implementation of the stud

welding process. The newer paper, [Andersen et al., 2016a], instead includes

more details on the system architecture, the usability study, and real-world

tests from an actual shipyard.

6.3 Report I: Teaching Robotic Skills by Pro-

jecting into Task Space

The papers which are summarized in Chapter 4 and 5 present a skill based

framework for manual programming of collaborative robots with various vision

equipped skills. The papers presented in the current chapter propose to use

projection mapping for interacting with robots; first for solving common tasks,

and second for instructing welding tasks. In the latter case, projection mapping

is used for instructing a particular robot skill; the weld skill. The technical

report Teaching Robotic Skills by Projecting into Task Space merges the two

research directions and presents a complete integration of a projection mapping

in the skill based system as a replacement for the traditional monitor based

GUI. This answers research objective 2.3.

The report proposes to project teaching instructions and additional required

and helpful information into task space during manual, kinesthetic teaching

robot skills. The hypothesis is that information in task space will increase the

usability when compared to similar information being shown on a monitor. A

secondary purpose of the report is to investigate the intuitiveness and usabil-

ity of skill based teaching of relatively advanced vision skills such as object

recognition and detection for pick. This is related to objective 1.2.

Figure 6.3 shows the proposed projection based interface on the Little

Helper 3 robot. Teaching instructions are continuously projected onto mod-

eled surfaces directly below the robot’s end-effector, or as close as possible

on an unoccupied surface. Also additional information is projected, including

markings around detected objects, instructions on where to place objects, and
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warning areas which ask operators to stand clear. In Figure 6.3(b), the oper-

ator is for instance instructed to place a particular object in the circle so that

the robot can learn it’s appearance.

(a) Projected instructions (b) Setup

Fig. 6.3: The projection based interface displays information, which would otherwise be
displayed on a remote monitor, near the robot’s end-effector. The setup shown in (b) is used
in a user study. The projector is placed near the camera used for taking the image, and it
can project onto the two metallic surfaces below.

To evaluate the usability of the system, a comparative user study has been

carried out where test participants after a short introduction to the system

were asked to teach the same task online using 1) the projection based inter-

face and 2) the monitor based interface. The task consisted of teaching three

concatenated skills, which had been selected beforehand:

1. Recognize: The skill distinguishes between object classes using a dis-

criminative model which is learned during teaching of the skill. The classi-

fication method is a bag-of-words approach based of SIFT features [Lowe,

1999]. During teaching, a number of monochrome images are captured

of an object from each class, and SIFT features are extracted from the

images. A vocabulary is constructed from all extracted features using K-

means clustering with 20 bins. A classifier is then trained using a support

vector machine (SVM).

During execution, an object is classified by capturing and classifying three

images. If the classifier does not predict the same class, more images are

captured until at least 80% predict the same class. If this cannot be

achieved, the skill fails. The skill accepts a specified class, and if another

class is detected it is ignored.

2. Pick-with-vision: The skill uses a depth camera to detect objects on

surfaces, fit a cylindric model around them, and pick them up. The skill

is described in-depth in [Andersen et al., 2014b].
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3. Place-onto: A previously grasped object is placed onto a surface using

force sensing on a taught location. The skill has previously been presented

in in [Schou et al., 2013].

A total of 20 persons participated in the study, and the usability is evaluated

according to [ISO, 1998] as effectiveness, efficiency, and satisfaction.

Effectiveness: Measured as the average amount of assistance required for

solving the tasks. This is reduced from 2.38 questions with the monitor

system to 2.03 questions with the projection system on a scale weighted

for seriousness in the required assistance. The difference is within the

statistical uncertainty of the experiment.

Efficiency: Measured as the average time used to solve the tasks. This is

reduced from 5:24 minutes with the monitor system to 5:20 questions

with the projection system. This difference is also within the statistical

uncertainty of the experiment.

Satisfaction: Measured subjectively through Lewis’ ASQ questionnaire [Lewis,

1991] and specific questions concerning teaching as well as execution. The

satisfaction measured as an average of all questions in the ASQ question-

naire increased from 5.60 with the monitor interface to 5.80 with the

projection interface on a Likert scale from 1-7. This difference is within

the statistical uncertainty. However, all specific questions which compare

the two systems clearly favor the projection system to a statistically sig-

nificant degree with a 95% significance level. This includes the preferred

location of the information, the preferred method for indicating detected

objects and instructed positions, and the projected warning area.

To conclude, the projection system scores on average slightly better on all

usability factors, but both systems generally score very high. The differences

between the systems are not statistically significant on most factors, and a

larger study would be required to determine if there is an actual difference.

Specifically on questions that compare elements of the interfaces directly, there

is however a large and statistically significant advantage to the projection based

interface. Most notably this includes the preferred position of the teaching

information and instructions.

It is concluded that both interfaces have a high degree of usability for teach-

ing a relatively advanced task including object recognition, detection, pick, and

place. It can not be concluded from the user study that any interface is sig-

nificantly better than the other in general. However, some elements of the

projection based interface are clearly preferred by the test participants, includ-

ing the position of teaching instructions in task space. As one test participant

noted after the test, maybe a combination of the two interfaces would be better

than any of the individual interfaces.
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6.4 Conclusion

In this chapter, projection mapping has been proposed for improved interaction

with industrial collaborative robots for collaborating on common tasks and for

programming and teaching new tasks. First, a combined system of object

detection, tracking, and projection mapping has been proposed for projecting

intentions directly into a common workspace, the task space. Second, projection

mapping has been proposed for instructing skills in task space; both a specific

weld skill and a generic interface supporting all skills in the skill based system,

SBS. Together with user studies of each suggested system this answers research

objective 2.1, 2.2, and 2.3.

Three user studies have been carried out for evaluating the usability of pro-

jection based interfaces. In general, all studies showed that the tested interfaces

had a high usability on all three usability factors; effectiveness, efficiency, and

satisfaction. Comments from the test participants indicate that most partici-

pants found it easy to relate to information being projected into the real world.

In two of the studies, projection based interaction is compared to traditional

interfaces based on monitors or text, and on most factors, projection performed

slightly better on average. The studies are not large enough to provide statisti-

cally significant conclusions on most factors, but on certain factors, projection

is preferred to a significant degree. This includes for instance the preferred

location of information during teaching of skills, where task space is clearly

preferred compared to an external monitor.

A general conclusion is that the test participants appreciated information

that provide an overview over the task contrary to only seeing the current step.

A possibility can be to combine monitor and projector interfaces. Information

that is required immediately can be projected while a monitor can be reserved

for overview information which does not change frequently.
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Chapter 7

Conclusions

This chapter sums up the main contributions of this thesis and suggests on this

basis of the thesis relevant future research.

7.1 Contributions

The contributions of the thesis are listed below and numbered according to the

research objectives stated in Section 3.1.

Vision in a user centered skill framework

1.1 Task level programming with manual teaching of skills: Chapter 4 intro-

duces robotic skills and a skill based architecture which support manual

parameterization. The Skill Based System is a modular implementation

of a skill based architecture which has been developed as joint work be-

tween the current PhD, Casper Schou, and Jens S. Damgaard. The skill

based architecture is presented in general and it is proposed specifically

how advanced vision and sensing capabilities can be incorporated.

1.2a Vision functionality as skills: The papers A, B, C, and D together present

a set of skills that includes vision functionality within the areas object

picking, robot-workstation calibration, and quality control. All the skills

can easily be parameterized using an intuitive GUI and online kinesthetic

teaching. All skills have been tested in a laboratory and most of the skills

have additionally been put into production in a factory.

1.2b Autonomous quality inspection: Paper B presents a quality control skill

that relies on vision tests which are manually chosen in an external pro-

gram. Contrary to this, Section 5.4 proposes to enable a robot to detect

errors based autonomously solely on an object model. Next-best-view

planning is combined with depth sensing to autonomously inspect object

surfaces for inconsistencies between model and the physical object.

59



Chapter 7. Conclusions

Depth cameras for industrial collaborative robots

1.3 Evaluation of Depth Cameras: To support objective 1.2, the performance

of six commercially available compact depth cameras is evaluated for

detecting reflective metallic objects on short ranges in Section E.2. It is

concluded that the PrimeSense Carmine 1.09 performs best.

1.4 Hand-eye calibration of depth cameras: The extended abstract F pro-

poses a method for performing hand-eye calibration of depth cameras

based on planar surfaces. A preliminary Matlab implementation is pre-

sented, while a full integration in a robot control system is left as future

work.

Projection Based Interfaces for Task Space Interaction

2.1 Intention projection on environments and tracked objects: Paper G pro-

poses to make robots project their intentions onto both tracked objects

and static environments in a workspace that is shared between human

workers and robots. The idea to use a combination projection mapping

and object tracking for collaborating with robots is novel. A user study

indicates that the usability is higher for task space projection based in-

terfaces than for traditional comparable interfaces.

2.2 Instructing stud welding in task space: The papers H and [Andersen et al.,

2015] apply the idea of using projection mapping for human-robot inter-

action for instructing stud welding tasks inside ship superstructures. Stud

welding is traditionally done manually, so automating the task is in itself

novel. The contribution from the current PhD is to use projection map-

ping and an IMU pointing device to instruct and modify stud welding

tasks. A user study shows that operators are able to quickly learn to use

the system.

2.3 Task space programming: When an operator teaches skills he needs to

understand the teaching steps. Report I proposes to use projection map-

ping to provide information directly in task space during teaching. A

usability study shows that a projection based interface on average per-

forms slightly better than a monitor interface on all usability measures

(but within statistical uncertainties). On specific points, projection is

strongly and significantly preferred. The users did for instance prefer

to get teaching instructions near the robot’s end-effector instead of on a

remote monitor.
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7.2 Concluding Remarks and Future Research

Since the beginning of this PhD project in 2012, collaborative robots have

experienced nothing short of a boom in popularity, and it is impossible to

predict exactly what the future holds. Robots such as Rethink Robotics’ Baxter

and and Sawyer, Universal Robots’ newest variant UR3, and KUKA’s iiwa help

pave the way for new types of robots. Logistic robots such as Kiva Systems’

warehouse solutions and MiR’s ROS-based general purpose MiR100 transport

robot are becoming more and more common, and combined industrial robots

for both manipulation and logistics are beginning to move from research to

industry with robots such as KUKA’s KMRiiwa.

In this PhD project, various vision functionality has been developed and

implemented in a user-friendly and hardware-independent skill based frame-

work for collaborative robots. Rather than attempting to select every function

and specify every parameter automatically, humans are kept in the loop dur-

ing setup of new tasks. It has proven to be possible for robot experts as well

as non-experts to use the developed vision skills, and some of the skills have

additionally been put into experimental production at an industrial plant.

In a skill based framework, all skills should be on as high a level as possible

and have a clear object and task oriented purpose for skills based programming

to be easy. This PhD has suggested to implement vision and sensing function-

ality as services and make them available to the skill programmer and not to

the end user as individual skills. This has the potential to facilitate both soft-

ware and hardware modularization, and could make it feasible to develop even

more advanced skills. For instance, it could be possible to develop a generic

pick skill which incorporates detection, recognition, grasp planning, and pick-

ing, and which still is easy to setup using kinesthetic teaching and/or other

intuitive interfaces. More research in this direction would be highly relevant.

Projection mapping interfaces have been implemented and tested in dif-

ferent scenarios in this PhD, and it is clear that projecting information into

task space has advantages over traditional interfaces. Projection based inter-

faces can, however, also have disadvantages such as a lack of flat surfaces to

project onto, objects and parts of the environment which have not been cor-

rectly modeled, etc. It would be relevant to investigate how an interface could

be designed to take advantage of projection mapping and monitors or tablets

most efficiently.

For the projection mapping interfaces themselves, there are several possi-

bilities for improvements. One is to include a full model of the robot arm and

end-effector. Thereby situations where the robot blocks projections could be

avoided. A slightly more challenging improvement would be to integrate person

tracking in the framework. This would enable better placement and orientation

of projected information. Also, a single projector can only cover a relatively

small working area. This area could be significantly increased if the projector
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was mounted on a calibrated pan-tilt unit.

The calibration issue leads to yet another path for future studies. There

exist several solutions for fast calibration of one or more RGB cameras to

each other and to a robot. In this PhD, easy and fast calibration routines

have been investigated and developed for depth cameras in specific situations.

Development of a general system for calibrating all elements in a setup with

RGB cameras, depth cameras, projectors, and a robot would be highly relevant.
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A.1. Introduction

Integration of mobile manipulators in an
industrial production

Ole Madsen, Simon Bøgh, Casper Schou, Rasmus Skovgaard Andersen, Jens Skov Damgaard,

Mikkel Rath Pedersen and Volker Krüger

Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark

Abstract
Purpose – The purpose of this study has been to evaluate the technology of autonomous mobile manipulation in a real world industrial
manufacturing environment. The objective has been to obtain experience in the integration with existing equipment and determine key challenges
in maturing the technology to a level of readiness suitable for industry. Despite much research within the topic of industrial mobile manipulation,
the technology has not yet found its way to the industry. To mature the technology to a level of readiness suitable for industry real-world experience
is crucial. This paper reports from such a real-world industrial experiment with two mobile manipulators.
Design/methodology/approach – In the experiment, autonomous industrial mobile manipulators are integrated into the actual manufacturing
environment of the pump manufacturer Grundfos. The two robots together solve the task of producing rotors; a task constituted by several sub-tasks
ranging from logistics to complex assembly. With a total duration of 10 days, the experiment includes workspace adaptation, safety regulations,
rapid robot instruction and running production.
Findings – With a setup time of less than one day, it was possible to program both robots to perform the production scenario in collaboration.
Despite the success, the experiment clearly demonstrated several topics in need of further research before the technology can be made available
to the industry: robustness and cycle time, safety investigations and possibly standardization, and robot and workstation re-configurability.
Originality/value – Despite the attention of research around the world, the topic of industrial mobile manipulation has only seen a limited number
of real-world integrations. This work reports from a comprehensive integration into a real-world running production and thus reports on the key
challenges identified from this integration.

Keywords Robotics, Automatic assembly, Man machine interface (MMI), Cooperative robots, Autonomous robots, Flexible manufacturing

Paper type Research paper

1. Introduction

Autonomous mobile manipulators that can be quickly moved

and adapted to varying industrial needs to provide drastically

new possibilities to manufacturing industries (Bøgh et al., 2011).

Contrary to the traditional stationary and pre-programmed

production robots, mobile manipulators can provide assistance at

multiple locations. They are able to provide highly flexible

logistic possibilities and they can improve productivity by

providing assistance in time-consuming, dangerous or straining

situations. This constitutes a very different use case for mobile

manipulators than the one known from traditional fixed robots.

Thus, several new challenges arise indirectly from the increased

flexibility and mobility; for instance, safety, navigation in human

environments, programming complexity and time, and

adaptability, to mention a few (Hepping et al., 2007; Brogårdh,

2007; EUROP, 2009).

Research within the field of autonomous mobile

manipulators goes almost 30 years back, and has the attention

of many research groups around the world. In our previous

work, we have studied the field of mobile manipulators for

industrial purposes (Hvilshøj et al., 2012b). We found that

much research has gone into evolving the various aspects and

capabilities of the mobile manipulator. Several researchers

have conducted experiments with industrial components in

industrial-like settings (Stopp et al., 2002; Jamisola et al.,

2002; Früh et al., 2007; Hamner et al., 2010; Stolt et al., 2011;

Wang et al., 2011). However, despite the large amount of

research and the industrial needs and interest in the area, there

are only few examples of implementation of mobile

manipulators in real manufacturing environments (Datta

et al., 2008; Katz et al., 2006; Helms et al., 2002; Hentout

et al., 2010; Hvilshøj et al., 2012a).

Hence, as part of the European Union-funded project

TAPAS (FP7-260026), which aims at developing mobile

manipulators, a number of experiments have been conducted

with mobile manipulators in real-world industrial settings

(TAPAS, 2010). The objective of these experiments is to

analyze the gap between user needs and the developed
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solutions in terms of performance, user-friendliness and

cost-effectiveness.

This paper documents one such experiment where two

Little Helper robots from Aalborg University have been

implemented on the shop floor at the Danish pump

manufacturer Grundfos.

2. The Little Helper robot

The Little Helper robot is a modular mobile manipulator

intended for industrial use (Hvilshøj and Bøgh, 2011). It is

designed as a re-configurable platform allowing for a variety of

hardware to be mounted, as long as it complies with the

general architecture. The Robot Operating System (ROS;

ROS, 2014) is used as the software infrastructure to allow for

distributed software nodes. Thus, ROS is used to connect the

various drivers for each hardware component to the central

software nodes handling the skill-based task programming and

execution along with mission control and navigation.

In this experiment, two Little Helper robots are used, both

with a similar hardware setup. They both consist of a differential

drive mobile platform (Neobotix MP-655) with onboard sensors

(laser range, ultrasonic and motor encoders) used for motor

control, navigation and safety. The manipulator used on both

robots in this experiment is the seven-degree-of-freedom (DOF)

KUKA Light Weight Robot (LWR). The KUKA LWR has, in

our previous work, proven to be well suited for complex

mechanical assembly tasks due to its force control, active

compliance and seven-DOF. The extra DOF also provides

improved manipulation flexibility in the logistic and machine

tending tasks. The Little Helper robot is equipped with a

tool-mounted FireWire camera with motorized zoom and focus.

This camera is used for both object localization and quality

control. Furthermore, an Asus Xtion RGB and depth camera is

mounted on the robot platform and used to perform

three-dimensional (3D) workstation calibration.

In this experiment, one Little Helper robot performs a

complex assembly task, including quality control and part

fetching logistic. The other robot performs logistic tasks

supporting the assembly task. For further elaboration of the

scenario, see Section 3. For clarification purposes, the two

robots will be referred to as “LH1” (assembly) and “LH2”

(logistics). LH1 is equipped with a Schunk WSG50 electric

parallel gripper. This gripper provides full control of finger

width and grasping force along with the ability to sense

grasped objects. The jaws of the gripper have been designed

for both rectangular-shaped objects and with a slot for

providing a sufficient grip on cylindrical objects (when grasped

from the side). This design has been found through empirical

studies. LH2 has a passive tool specially designed for

manipulating small-load carriers (SLC); hence, a type of

plastic box. Figure 1 presents an outline of the LH1

architecture. Further information about the Little Helper

concept can be found in (Hvilshøj and Bøgh, 2011).

2.1 Skill-based task programming

To enable an easy and operator-based setup of Little Helper for

a particular production task a skill-based programming system

has been designed. A skill is a (manipulating) action performed

by the robot on an object using primitive functionalities of the

different hardware components. It can be conceived as a building

block with a predefined functionality that can be adapted to a

specific task through a series of parameters. Thus, skills represent

functionalities of the Little Helper as a whole. Skills can be

instantiated and combined to solve complex robot tasks. A skill

encapsulates robot knowledge, enabling the use of advanced

robotics to non-robot experts. As a result, shop floor workers are

able to instruct the robot and still solve complex assembly tasks

(Bøgh et al., 2012).

The skill-based system implemented on the Little Helper

consists of a graphical human–robot–interface (HRI), which is

accessible through both a laptop on Little Helper and a tablet.

This HRI allows the operator to setup the robot to a workstation,

instruct new tasks and execute already instructed tasks.

Programming a new task is done in two phases: a specification

phase and a teaching phase. During the specification phase, a

sequence of skills (e.g. Move �platform� to station �A�, Pick

�Object�; Place �Object� into �workstation�) is chosen and

partly parameterized. In the subsequent teaching phase,

locational parameters are obtained through direct interaction

with the manipulator.

During the specification phase, each skill in the skill sequence

is chosen from a library of skills and several parameters (e.g. arm

velocity) are provided through user input. While the specification

phase is completely done through the Graphical User Interface

(GUI), the teaching phase requires direct interaction with the

manipulator of the Little Helper and is meant to provide the skills

with location information. The teaching phase is done

sequentially skill-by-skill so that the teaching sequence

corresponds directly to the execution sequence, and thus creates

a clear overview of the progress and outcome.

Taking a pick skill as an example, it has a predefined motion

template. However, the motions are parametric and thus can

be configured for the specific task through a set of parameters.

For a pick skill, the motion template is to move to an approach

location, move to the object location, close the gripper, enter

compliance control mode and move to a depart location. The

parameters are:
● Object (object type and location).
● Velocity.
● Compliance parameters.

Figure 1 Outline of the Little Helper robot
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● Approach direction and distance.
● Depart direction and distance.

The object parameters are either retrieved from the systems

world model or provided by the operator through the teaching

phase.

The production tasks in this experiment have been

programmed using this skill-based programming framework.

The programming time for setting up the experiment at the

shop floor was less than 8 hours. Additionally, it was

demonstrated that non-experts could perform the

programming. More details about the skill-based

programming framework including various user tests can be

found in Schou et al. (2013).

3. The industrial setup

3.1 The production task

The task in the experiment was to produce rotor

sub-assemblies for the Grundfos SQFlex pump. The

rotor sub-assembly consists of a number of components (1 �

rotor shaft, 1 � pressure ring, 8 � magnets and 1 � rotor cap),

which are assembled in a fixture and pressed together to form

the final product (see Figure 2).

3.2 The production scenario

The experiment takes place at the production facility of the

SQFlex submersible pump; specifically in the area of rotor

production. The rotor is the rotating part of the electric motor

driving the pump. A sketch of the production layout with the

respective workstation marked is shown on the left of Figure 3.

The right side of this figure shows the corresponding navigation

map obtained using the laser scanners on the platform.

The tasks of the two robots are as follows:

1 Little Helper 1 (LH1) – Assembly and quality control
● LH1 moves to Station 1: Rotor cap production [or

Station 1a (Rotor cap warehouse) if there are no rotor

caps at Station 1].
● LH1 picks up N rotor caps at Station 1 (or Station 1a).
● LH1 moves to Station 2: Assembly station.
● LH1 assembles N rotors at Station 2.

● LH1 puts finished rotor assemblies in an SLC at

Station 2.

2 Little Helper 2 (LH2) – Logistics and transportation
● LH2 picks up the full SLC with finished rotors at Station

3: Finished SQFlex rotors.
● LH2 moves the full SLC to the warehouse system at

Station 4: Warehouse for SQFlex rotors.
● LH2 inserts the SLC in the shelf system at Station 4.
● LH2 picks up an empty SLC from the shelf system at

Station 4.
● LH2 moves to Station 3.
● LH2 places an empty SLC at Station 3.

The digital map for navigation is learned during the initial task

setup. The robot is jogged around the production area by a

joystick, and the onboard laser range scanners acquire data about

the surrounding area. The ROS GMapping library is used to

create a two-dimensional (2D) map of the environment from the

acquired laser data. The later autonomous navigation is

performed by the Adaptive Monte Carlo Localization (AMCL)

library based on the constructed map and live data from the laser

scanners. Both the ROS GMapping and the AMCL have been

adapted to the Neobotix mobile platform of Little Helper. This

includes fusing the two point clouds from the laser scanners.

A central mission planner monitors the two robots and

schedules them to the various tasks (Dang et al., 2013). In this

scheduling, the mission planner attempts to prohibit

simultaneous navigation of both robots. This is done as the two

robots must travel along intersecting routes and the interference

of the laser scanners could cause undefined behavior.

3.2.1 Station 1: rotor cap production

At Station 1 LH1 will collect a number of rotor caps, a

component used later in the assembly task at Station 2. These

Figure 2 Overview of the components used in the assembly of the
SQFle � rotor. 1 � rotor shaft, 1 � pressure ring, 8 � magnets
and 1 � rotor cap are assembled into the SQFlex rotor

Figure 3 (Left) layout of SQFlex rotor factory with workstations
and travel routes marked; green � LH1, blue � LH2, red �

charging station. (Right) ROS SLAM navigation map obtained using
the laser scanners on the Neobotix platform
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rotor caps are produced in an enclosed spin cell, exit on a

conveyor belt and by the end they drop into a bin. The rotor

caps are picked directly from the conveyor before they drop

into the bin. A small mechanical switch is implemented to

pause the conveyor and stop the rotor caps from moving (see

Figure 4).

When arriving at the station, LH1 calibrates relatively to the

workstation using a vision-based calibration skill. This skill

uses the Asus Xtion camera mounted on the platform and a

Quick Response (QR) marker on the workstation to perform a

3D vision calibration. This calibration skill including the 3D

pose estimation of the QR marker is described in (Andersen

et al., 2013b). After calibrating, the robot activates the

mechanical switch on the conveyor to pause the conveyor.

Locating the rotor caps is done using a static 2D image

captured with the tool camera. Hereby, the rotor caps are

located in the horizontal plane by template matching

(Andersen et al., 2013a). The height of the rotor caps is

instructed by the operator during the teaching phase. The

location of the rotor cap is used by the robot to pick it up and

place it in a fixture on the robot platform. After collecting the

desired number of rotor caps, the robot re-activates the switch

so that the operation of the conveyor, and inherently the spin

cell, resumes. The task takes approximately 50 seconds to

execute and is realized by four unique skills configured in a

sequence of eight steps.

3.2.2 Station 1a: rotor cap warehouse

If there are not enough rotor caps available at Station 1, LH1

will move to Station 1a (rotor cap warehouse) and retrieve

additional rotor caps. The object localization, pick-up and

placing operations here are similar to the ones used at

Station 1.

3.2.3 Station 2: assembly station

Figure 5 shows the assembly station at Grundfos. The

components needed (see Figure 2) are all assembled in a

fixture inside the housing of a hydraulic press. Upon assembly,

the press is activated and the components are joined, thus

becoming a finished rotor. The rotor shaft is picked from a

trolley located next to the workstation. The trolley contains up

to 96 rotor shafts, and in this experiment, it is brought to the

workstation by a human operator. The rotor caps are collected

by the robot itself at Stations 1 or 1a. Two feeders have been

specially designed to hold the magnets and pressure rings.

These feeders are designed for the robot to actuate (by pulling

a lever/pushing a button) to extract a part. Using the robot to

actuate the feeders has a negative effect on the cycle time, but

it removes the need for electrical and communicational

integration of the feeders. Decreasing the complexity of

workstation adaptation complies with the scope of the TAPAS

project. The finished rotors are put in an SLC located to the

right of the press. When full, this SLC will be replaced by

LH2.

Figure 4 Station 1: rotor cap production. Rotor caps come from a
spin cell on a conveyor. It is possible to grasp 7-8 rotor caps on the
conveyor. The rotor caps are located using the onboard vision and
lighting system. There is a small switch/sensor (lower) on the
conveyor which the robot can turn on/off to pause the conveyor

Figure 5 Station 2 consists of the sub-assembly depicted in Figure 2.
In the middle, the press for the assembly operation is located. To the
right is Station 3 with a trolley for finished assembled parts

Integration of mobile manipulators

Ole Madsen et al.

Industrial Robot: An International Journal

Volume 42 · Number 1 · 2015 · 11–18

76



A.3. The Industrial Setup

Upon arrival at the station, LH1 autonomously calibrates to

the workstation using a haptic calibration skill. After

calibration, the robot activates the pressure ring feeder to

extract a ring, which is put into the fixture. Afterwards, the

rotor shaft is picked and placed into the fixture. The magnet

feeder is actuated to extract eight magnets, which afterwards

are placed accurately into the fixture one by one. In between

each magnet, the robot rotates the rotor shaft by 45 degrees.

Finally, the rotor cap is picked from the robot platform and

carefully placed in the fixture. After finishing the assembly, the

robot closes a mechanical safety gate in front of the press to

activate the hydraulic press. When the operation is finished,

the robot opens the gate and moves the finished rotor to an

SLC.

The safety gate has been designed for the experiment by

Grundfos and was a strict requirement prior to the experiment

for safety reasons. During human operation, the hydraulic

press is operated by a two-hand activation mechanism.

An external 2D vision camera is mounted inside the press

housing for acquiring images for quality control purposes.

This camera is connected to a vision system developed by

Grundfos. This vision system is designed for use by the

operators on the shop floor, and thus complies well with

the scopes of TAPAS. At certain steps in the assembly task,

the Little Helper robot will request the vision system to

perform a given quality check; for instance, check that the

magnet has been properly inserted. Performing these quality

checks has a negative effect on the cycle time, but is essential

to ensure correct assembly, and thus the quality, of the final

product. The tool-mounted camera is used for a single quality

check outside the press housing. The Grundfos vision system

interface is shown on the computer screen on Figure 6.

The assembly task at Station 2 takes approximately 10

minutes to complete with a skill sequence containing 118 steps

(skills). The number of unique skills used in the task is 13 in

total.

3.2.4 Station 3: finished SQFlex rotors

Little Helper 2 (LH2) moves to Station 3, calibrates using a

QR marker, picks up the full SLC and places it on the mobile

platform (see Figure 7). Afterwards, the SLC is transported to

Station 4 (warehouse), where it is exchanged with an empty

SLC. The robot returns to Station 3 with the empty SLC,

which is placed next to the assembly station for LH1 to fill

with finished rotors.

3.2.5 Station 4: warehouse for final SQFlex rotors

At Station 4 (see Figure 8), the finished rotors are stored in a

shelf system for later use in the final pump assembly. At

Station 4, LH2 inserts the full SLC retrieved from Station 3

Figure 6 Vision system at Station 2 for process and quality control
of the assembly process carried out by LH1

Figure 7 Station 3 is a pick-up area for the produced SQFlex rotors
ready to be transported to the warehouse at Station 4

Figure 8 The Station 4 warehouse shelf system for finished SQFlex
rotors. The shelf system has capacity for both SLCs containing
finished rotors and empty SLCs for Station 3. LH2 handles the
logistical challenge of SLC handling between workstations
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into the shelf system and extracts an empty SLC. The boxes

and the shelf slots are located and identified via QR codes (see

Figure 8).

3.3 Safety measures

The following safety measures were implemented at the

SQFlex production facility in the duration of the experiment

to protect people working in or near the testing area:
● Clearly marking the experiment area;
● Blocking the area with warning tape;
● Warning signs and instructions;
● Safety shoes; and
● Safety gate on the press.

Additionally, procedural, informational and personal

protective measures including functional measures according

to the industrial partners internal safety protocol were

implemented. The Little Helpers were enhanced with the

following safety measures (see also Figure 9):
● Industrial grade wireless emergency stop.
● Signal indicators – Yellow light indicators.
● Reduction of speed, torque and force.

The safety measures were implemented, but cannot be

regarded as certified measures. This would require further

analysis.

4. Experimental results

The experiment was carried out during a period of four

production days, including hardware setup, workstation

adaptation, robot programming, functionality tests, use case

tests with shop-floor workers and integrated demonstrations in

the live running production. The cycle time for production of

one SQFlex rotor was approximately 15 minutes, including

fetching one rotor cap at workstation 1, performing the

assembly at Station 2 and the intermediate navigation between

the workstations. A human worker performs the assembly in

30 seconds; however, this is excluding the part fetching. All

tasks at the various workstations were programmed using the

skill-based programming tool described in Section 2.1. In

total, 13 different skills were used in the experiments (see

Table I).

The main benchmark of the system was a four-hour

consecutive operation to simulate half a workday of

production. During this experiment, 26 errors occurred in

total for both robots; resulting in a total downtime of 58

minutes combined for both robots. These errors were of

various severities; however, three main errors were identified:

1 Errors in the navigation;

2 Errors in the assembly process; and

3 Errors in the communication with the central mission

planner.

The errors in the navigation mainly occurred due to the

navigation goals at the workstation being too close the

production equipment. Errors in the assembly process were

caused by too high tolerances in some of the feeding fixtures,

resulting in improperly grasped objects. Other errors in the

assembly process were also encountered. The communication

with the mission planner experienced trouble because of two

reasons; firstly, when one robot failed and was restarted, it

could occasionally assume operation from the wrong step,

thus confusing the mission planner. Secondly, much noise was

experienced in the wireless communication between mission

planner and robots occurring from manufacturing machines.

Figure 9 Yellow light indicators on the side of Little Helper flash
during autonomous operation. Wireless emergency stop is
implemented for the system

Table I Skills used in the experiment

Skill Short description

Pick Pick up an object
Place Place an object

PlaceInto Place an object into another object

PegInHole Place an object into a hole (different approach

than PlaceInto)

PickFromTrolley Pick object from a trolley (several similar

objects ordered in a pattern)

PickFromPlatform Pick object from fixture on robot (several

objects in pattern)

PlaceOnPlatform Place object in fixture on robot

Rotate Rotate an object

QCvision Requests Grundfos vision system to perform a

quality control

VisionPick Use vision to locate and pick object

HapticCalibration Calibrate to workstation using a haptic

calibration

QRcalibration Calibrate to workstation using 3D vision and a

QR code

ActivatePress Move gate on Workstation 2 to activate

hydraulic press
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5. Conclusions

In this paper, we have presented the results from

implementing two mobile manipulators in a real-world

manufacturing environment. The two robots have performed

real-world manufacturing tasks using the actual equipment

and workstations at the production facility. Smaller

adaptations were made to the human-intended environment

to enable the automation of these tasks; however, the

workstation remained accessible and fully operational for

human operators. Despite several errors during the four-hour

scenario, the two robots successfully produced rotors and thus

maintained the production area. Additionally, the experiment

has shown that the task-level programming concept is

applicable in real-world manufacturing tasks. The choice of

tasks for this experiment has been done from a scientific

perspective. Thus, the tasks are selected to provide a feasible

yet challenging scenario for the robots. The assembly task has

a cycle time more than 20 times longer than that of a human

worker, which is considered too long; even though the robot

does not need to be as fast as a human. As a result, the task is

not feasible from an economical perspective. However, other

aspects and benefits of automating the task might come into

account. For instance, ergonomically issues in the manual

task.

There are several reasons for the more than 20 times longer

cycle time than that of a human worker. Firstly, the scenario

and utilization of the robots could be improved, but the

scenario was defined from a scientific desire. Secondly, the

comparison does not take breaks, working hours, distractions,

etc. into account. Thirdly, the human worker has two arms,

very complex dexterous hands, complex and very fast

compliant motions, and simultaneous performs quality

control with the sight; the Little Helper robot only has a single

robot arm, limited dexterity in grasping and slower compliant

and force-controlled motions. Thus, the bottleneck in the

robot task becomes the need to take the parts one by one and

place them carefully and precisely in the fixture. We estimate

that using a dual-arm setup for the assembly task could

provide a significant increase in speed. Finally, the navigation

speed, docking procedure and the subsequent calibration of

the mobile manipulator all provide an increased cycle time

compared to a human worker.

The experiment has shown that the technology of

autonomous mobile manipulators can be implemented in

real-world industrial manufacturing settings. Yet, the

experiment has also clarified several challenges that still need

to be solved to mature the technology to a level suitable for

large-scale industrial implementation. Together with earlier

real-world and laboratory experiments conducted in TAPAS

(Hvilshøj et al., 2012a), this experiment has indicated the

following:

1 A number of relevant real-world industrial tasks can be

solved with the existing technology, especially logistic

tasks and assistive tasks, e.g.:
● Continuous part feeding.
● Simple assemblies/sub-assemblies.
● Continuous quality and process control.

2 A skill-based programming methodology can be used for

faster and more intuitive robot programming in industrial

settings.

3 Integration into the surrounding manufacturing system is

possible, but is a time-consuming task.

4 Adapting the robot to new tasks involves a number of

hardware setup tasks; both intrinsic on the robot and

extrinsic in the workstation (e.g. setup of feeders, grippers

and access to machines). These tasks are quite

time-consuming compared to the needed re-programming

of the robots. In the experiments, the programming time

was less than a day, whereas the hardware setup task was

several weeks.

5 Many problems could be solved if the potential use of the

mobile manipulator is built into the production system

from the beginning, i.e. as part of the production system

design.

6 Before a large commercial impact can be achieved, the

following RTD areas have to be handled:
● Robustness and processing speed must be increased.
● Safety has to be solved, both through standardization

and through new technologies.
● System flexibility, re-configurability and usability

must be improved/implemented.
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ABSTRACT

Much research is directed at developing increas-
ingly efficient and flexible production, and one
important potential advancement is Autonomous
Industrial Mobile Manipulators (AIMM’s). The
idea behind AIMM’s is to have robots that have
the ability to perform a wide variety of tasks,
and which can easily and efficiently be recon-
figured when the requirements changes. In this
paper, the paradigm of skill based programming
is investigated, and in particular how computer
vision abilities can be integrated in this. Three
applications of computer vision developed in a
skill based framework are presented; namely vision
pick, quality control, and fast calibration. All three
are implemented on Aalborg University’s AIMM,
Little Helper, and tested in a real-life industrial en-
vironment at the Danish company Grundfos A/S.

1. INTRODUCTION

The globalization has for several decades moved manufac-
turing jobs from western countries to low-wage developing
countries. This has put pressure on both wages and the
productivity of production in the industrialized countries.
One efficient way of increasing productivity is to automate
production by using robots. A major limitation for the
application of robots is, however, the scale of production.
Construction of an automated production line is a major
investment, and configuration of robots to perform the
required operations is a time consuming task, that must
be performed by highly specialized engineers. Thus, in-
stallation of a new, fully automated production line can
only be justified if the quantity of identical items to be
produced is very large. Robots have therefore proven to
be particularly useful in industries such as in the car
manufacturing industry, where a large quantity of identical
products have to be produced.

For many kinds of production, the amount of identical
items is, however, not large enough to justify investment in
automated robotic production lines. Much research have
therefore been directed towards developing more flexible
types of automation. The organization European Robotics

⋆ This research was partially funded by the European Union project
TAPAS under the Seventh Framework Programme.

Technology Platform (EUROP) published in 2009 a Strate-
gic Research Agenda for European Robotics (SRA), which
outlined areas that European robotics research should
focus on as well as metrics for each area EUROP (2009a,b).
The core requirements for future robotics include:

• Reconfigurability: It must be possible to reconfigure
both robots and other production hardware fast and
easy, to prevent expensive idle time for long periods
between production of (possibly small) production
series.

• Human Robot Interaction: The communication be-
tween robot and human operators must be intuitive
and to an increasing degree use languages and inter-
faces that are natural to humans.

• Autonomy (ability to function in less structured en-
vironments): On a car manufacturing plant, robots
work in highly structured environments, virtually
without any human presence at all. This approach
is not sufficient for smaller production series. Thus,
the robots must have a larger degree of autonomy,
enabling them to perform tasks in dynamic envi-
ronments, that cannot be precisely modeled before
production begins.

One type of industrial robot that is well suited for such a
production scenario, is the Autonomous Industrial Mobile
Manipulator (AIMM). Although AIMM’s are not yet in
industrial use, they are already able to move autonomously
around in changing environment and perform a wide vari-
ety of tasks. Since AIMM’s must be designed to function in
less than fully structured environments, they depend very
much on their ability to sense both objects and the world
around them. The focus of this paper is to investigate
methods to do such sensing by using computer vision in a
fast and easily reconfigurable way.

1.1 Related Research

Ordinary RGB cameras are used to give vision functional-
ity to robots in various fields, including navigation, object
manipulation, and interaction with humans, cf. Hvilshøj
et al. (2009); Guizzo and Ackerman (2012); Nava et al.
(2011). The human visual system includes additionally
information about depth, and several approaches have
been taken to provide this information to robots also,
including stereo vision (Murray and Little, 2000), time-
of-flight (TOF) depth cameras (Klank et al., 2009), and
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depth cameras based on structured light (Siegwart and
Nourbakhsh, 2004). While stereo vision is the closest ana-
logue to the human visual system, it is far simpler to
use active technologies such as TOF or structured light.
With the launch of the Microsoft Kinect in 2010, which
combines an ordinary RGB camera with a depth camera
based on structured light, the price and accessibility of
quality depth video imaging was all of a sudden reduced
dramatically (Shotton et al., 2011; El-laithy et al., 2012).
This dramatically increased the scientific interest in taking
advantage of depth information in combination with RGB
images for all areas, where RGB images was also previ-
ously used Tölgyessy and Hubinskỳ (2010); Benavidez and
Jamshidi (2011); León et al. (2011). Recently, the smaller
but equally powerful competitor Asus Xtion Pro Live was
launched.

Since AIMM’s must have the ability to move between
workstation, calibration to new workstations is a partic-
ular useful aspect, which has also received some attention
in the literature. In 2000, a general method for camera cal-
ibration was developed by Zhang (2000). This has later be-
come extremely popular, due to implementations provided
both for C/C++ in OpenCV and for Matlab in the Matlab
camera calibration toolbox. This is designed specifically
for estimating parameters, intrinsic as well as extrinsic,
for cameras, and not directly applicable for calibration of
robots. Another approach by Alici and Shirinzadeh (2005)
calibrates industrial robots with very high precision, but
this require a laser tracker to be located close to the
calibration point. Thus, it is not suitable for AIMM’s,
which should be able to work in industrial environments
without requiring extensive and/or expensive changes.

Two approaches from Hvilshøj et al. (2010) are specifically
developed to AIMM’s. A fast approach use in addition to
a camera a laser for distance measurements, and a slower
but very precise method makes only use of a camera on the
tool. Both methods have, however, disadvantages: The fast
approach requires that a laser is mounted on the tool of
the robot. More equipment on the tool means less possible
payload, and must therefore be avoided if possible. In
the more precise approach, a large number of images are
captured of a calibration board, and the execution time
is about 60 seconds. If the robot is moving frequently
between workstations, such non-productive time must be
minimized.

A last approach, described in Pedersen (2011), applies
haptic rather than vision based calibration. This approach
is a able to calibrate very precisely in about 30 seconds
by measuring locations on the workstation in three or-
thogonal directions. The disadvantage with this method
is, in addition to the relatively long execution time, that
the workstation must be have large surfaces in all three
directions. Also, it is only applicable on robots with force
feedback control.

1.2 Skill Based Computer Vision

A traditional and widely used way of programming robots
is the Sense-Plan-Act (SPA) paradigm (Nilsson, 1993).
Using this, the robot moves between the three states:
Sense, plan and act. In the sensing state, information from
sensors are used to update and maintain a world model.

In the planning state, high level logic plans on basis of this
world model what the robot has to do, and in the acting
state the plan is carried out, typically using control theory.
Two limitations of the SPA paradigm is that it does not
well support reusability of code, and that the complexity
of maintaining a complete world model can be very high.

The paradigm of robot skills attempts to counter both
limitations of the SPA paradigm by introducing a layered
architecture, where each layer executes its own SPA loop.
The idea of using layers to provide better possibilities for
reusing code was presented as early as in 1986 by Brooks
(1986), but research to provide even more reusable and
more generic solutions continue, cf. Gat (1998); Bjorkelund
et al. (2011). In the skill paradigm, programming is divided
in three layers. Different naming conventions exist, and
here the layers are named device primitives, skills, and
tasks. The purpose of the layered programming structure
is to wrap the difficult and low level robotic knowledge
in the lower levels, allowing non-expert users to focus on
teaching tasks on a much higher level.

In the ongoing research project ’Little Helper’ at Aalborg
University, AIMM’s have been developed on the basis of
the skill paradigm since 2008. In close collaboration with
both academic and industrial partners, it is attempted to
make the technology ready for industrial use.

In this paper, the integration of computer vision in the skill
based framework is presented. The vision algorithms are
implemented using a commercial computer vision system
based on Labview as well as the open source library
zbar, and the focus here is on how to integrate and use
this in the skill based robotic framework. First, the skill
paradigm and the vision system applied are described
in detail. Subsequently, three developed applications of
computer vision are described: A generic pick skill using
vision, quality control integration, and a fast calibration
based on recognizing QR codes. Finally it is discussed how
the results can be generalized, and where future research
should be directed. The results presented in the paper are
from a midway demonstration in the EU project TAPAS,
performed in a factory owned by the Danish company
Grundfos A/S.

2. METHODS

2.1 The Concept of Robot Skills

The architecture in the skill paradigm used here consists
of three layers:

(1) Device primitives: Basic functions of one device,
such as the robot, tool or a camera. Example: Open
gripper.

(2) Skills: A predefined sequence of device primitives,
that form a coherent action. In Björkelund et al.
(2011), a skill is defined as “productive sensor-based
robot motions”. Example: Pick up object O1.

(3) Tasks: Responsible for achieving the overall goals of
the robot, while at the same time completely decou-
pled from the internals of the robot. The robot itself
can thus in principle be replaced without replacing
the task layer, as long as the new robot provides the
same skills. Example: Pick up 10 units of object O1 at
location L1, and place them in a bin at location L2.
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It does only make sense to execute a place skill, if the robot
is holding an object. This means that a precondition for a
place skill is, that an object is held. In general a skill has
both pre- and post-conditions, and the skill only functions
if these are met. This property is in general called that
skills are situated.

In the skill paradigm, each skill has a teach and an execute
phase. If the user wants the robot to pick up an object of
type O1 from location L1, a pick is chosen and taught.
After teaching is completed, the robot is able to execute
the same skill, thus picking a new object of the same type
from location L1 on its own. Prerequisites include here
include that the robot is already located at (or close to)
location L1, and that an object of type O1 is present at
the location.

2.2 Flexible Setup with External Computer Vision System

The computer vision system used here is based on the
Vision Builder software in Labview. It is able to perform a
large number of 2D vision tests, and it employs an intuitive
interface, allowing non-experts to configure it with very
little training. A screen image is shown in Figure 1.

This paper is, however, not concerned with the vision
system itself, but with the integration and use of vision
systems in general in the skill based robotic framework.
The vision system is not installed on the robot itself.
Instead, a protocol based on TCP/IP has been developed,
which allows the robot to communicate with an external
vision system. To be able to integrate the robot in different
kinds of production lines, support for both local camera
(mounted on the robot) as well as external cameras has
been included in the protocol. For the experiments using
the vision system that are described here, two cameras
are used; one placed on the tool of the robot, and one
fixed at an assembly cell. Both cameras are of the type
DMK 31BF03-Z2, which have motorized zoom and a
resolution of 1024×768. The first camera is used to detect
and pose estimate rotor caps to be able to pick them
up, while the fixed camera is used to perform quality
control during assembly. Each of these cases are presented
in the following subsections, along with the remaining
experiment; providing fast calibration by pose estimation
of QR codes.

2.3 Generic Vision Pick

The developed vision pick skill consists like all skills of a
training and an execution phase. In the training phase, the
following parameters are taught:

Fig. 1. Vision detection system in execution mode.

Start and end position of camera: These positions de-
fine both the route the camera will take when searching
for an object to pick up, as well as an acceptance region
for objects. During execution, the robot will move the
camera from the start towards the end position. With
short intervals, the robot will stop and grab an image
in search of an object to pick up. Whenever an object
has been found, it is calculated if the object is located
in the acceptance region; between the two points. If this
is the case, the robot cancels the movement towards the
endpoint and picks up the object instead.

Detection height: Height of the feature, that the vision
system is able to detect.

Grasping height: Appropriate height for grasping the
object.

All the required parameters are taught by manually mov-
ing the robot arm around, and thus no programming skills
are required. The parameters are illustrated in Figure 2.
The principle for execution is to first capture an image,
and then try to detect the location of a particular feature
on the object to pick up in this image. This 2D position
can be transformed into a 3D vector from the camera’s
focal point to the image plane, by applying the intrinsic
parameters of the camera. By extending this vector, it will
ultimately intersect the plane with the (taught) detection
height, as illustrated in Figure 2. If this 3D intersection
point is located in the acceptance region, the object can be
picked. An additional height; the grasping height, is taught
during training, and this enables the robot to grasp the
object on a suitable position. The algorithm for execution
of the vision pick skill is described in detail in Table 1.

Fig. 2. Execution of the vision pick algorithm require
the parameters pcam,start, pcam,end, hdetect, and hgrasp

which are shown in the figure. All the parameters are
specified during teaching.

The setup is shown in Figure 3 for two different locations.
The Figures 3(a) and 3(c) show the robot searching for
rotor caps, while Figure 3(b) and 3(d) show the robot
actually picking up a robot cap. Note that the same skill
is used at the different locations; only the parameters that
are set during teaching differ.

2.4 Quality Control

As with the vision pick skill, also the quality control
is developed by utilizing the vision system described in
Section 2.2. Thus, both cameras on the robot as well as
external cameras can be used. Configuring quality control
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(1) Move camera to (taught) start position, pcam,start.

(2) Capture image and send it to the vision system.

(3) Vision system detects object in the (2D) image, and

returns this position to the AIMM.

(4) IF the AIMM does not receive a valid position

THEN

• Move camera one step along the line from pcam,start

to pcam,end.

• IF the camera already was at pcam,end

THEN the skill has failed

ELSE continue at 2.

(5) Calculate a 3D line from the camera through the

(undistorted) image location, received from the vision

system.

(6) Calculate the intersection point between the line and

the horizontal plane with the (taught) height hdetect.

This gives the 3D position of the object in camera

space.

(7) Transform the object position from the camera space to

the robot’s base space.

(8) Replace the height of the position with the (taught)

value, hgrasp, to make the robot grasp the object at a

suitable location.

(9) Project the object position on the line between

pcam,start and pcam,end.

(10) IF the projected object position is between pcam,start

and pcam,end

THEN pick up the object at the calculated 3D position

ELSE the object position is not in the acceptance

region, continue at 2.

Table 1. Algorithm for execution of vision
based pick skill.

(a) Search for rotor caps (b) Pick up of rotor cap

(c) Search for rotor caps (d) Pick up of rotor cap

Fig. 3. Execution of vision pick skill. The robot captures
images while moving in (a). The images are send to
the quality control system shown in Figure 1, and
whenever a rotor cap is detected, the robot picks it
up, as shown in (b). Figures (c) and (d) show the same
skill executed at a different location.

is mainly done at the vision system, and the robot itself
only needs to know the name of the particular test to
perform. In the skill framework, quality control can in
general be viewed as a post-condition check, and if this
fails, appropriate handling must be implemented. For the
tests described here, this can either be to report an error,
or to wait a short while and try again. The algorithm for
execution of the developed quality control skill is shown in
Table 2.

(1) The AIMM signals to vision system to perform (taught)

quality control.

(2) Vision system performs control, and replies

success/failure.

(3) IF success

THEN the AIMM continues

ELSE perform appropriate error handling (wait and try

again, or call operator).

Table 2. Algorithm for execution of quality
control skill.

2.5 Fast calibration

As mentioned in the introduction, the purpose of this
skill is to provide calibration in three dimensions, faster
than the existing calibration approaches developed by
Hvilshøj et al. (2010), which have durations of 10 seconds
and above. This is attempted by using the Kinect-like
camera Asus Xtion Pro Live, that provides calibrated
and undistorted images in both RGB and depth. In our
approach, the calibration is implemented as a unique skill,
thus having both a teaching and an execution phase. The
phases are, however, almost identical. The purpose of both
teaching and execution is to find the coordinate system
of the (fixed) QR code; the QR frame. Subsequently all
locations must be given relative to this frame.

When initiating the calibration skill, the RGB images from
the Xtion camera are searched for QR codes. There are
several libraries available that provide this functionality,
and here zbar is chosen, because this directly provide the
location of the corners in the images. When a QR code
has been found, the depth at each corner of the QR code
is averaged over a number of images, and the QR code’s
coordinate system can then be calculated as:

x =
c0 − c3

|c0 − c3|
(1)

y =
c2 − c3

|c2 − c3|
(2)

z =
x× y

|x× y|
(3)

where cn is the location of the n’th corner of the QR code,
and the corners are numbered clockwise.

To be able to work in this coordinate system it must be
converted into a complete transformation matrix. This
is done by calculating a translation and a rotation. The
translation tQR is defined by the center of the QR code,
and is thus calculated as the mean of the corners:

tQR =

3∑

n=0

cn

4
(4)
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The rotation rQR is best defined as Euler angles, which can
be calculated directly from the axes. The transformation
from the QR code to the camera, C

QRT , can be determined
by combining the translation and rotation. The desired
transformation is between the robot’s base and the QR
code, B

QRT , and this is computed as:
B

QRT = B
CT · C

QRT (5)

where B
CT is the (fixed) transformation from the camera

to the robot’s base.

Finally, the coordinate system given by this transforma-
tion is applied to the robot. The exact sequence of execu-
tion of the calibration skill is given in Table 3.

(1) WHILE correct QR code not found

• Search for QR code in RGB images

• Read QR code

• IF the text of the QR code matches taught string

THEN exit while loop

(2) Capture a number of depth images.

(3) FOR each corner of the QR code

• At the location of the corner, calculate the mean

of the depth values (ignore 0-values).

(4) IF one or more corners have no depth values

THEN the skill has failed. Exit.

(5) Define a coordinate system at the QR code as in

Equations (1)-(3).
(6) Calculate the translation of the QR code tQR as the

mean of the corners.

(7) Calculate the rotation of the QR code’s coordinate

system rQR in Euler angles.

(8) Combine translation and rotation into a transformation

matrix, C
QRT.

(9) Calculate the transformation from the QR code’s

coordinate system to the robots base coordinate

system, B
QRT, as in Equation (5).

(10) Set the robots frame base to B
QRT.

Table 3. Algorithm for execution of calibration
skill based on QR codes. The Asus Xtion Pro
Live was used for capturing RGB and depth

images.

3. RESULTS

The three applications of computer vision have all been
implemented on Aalborg University’s AIMM Little Helper,
and tested in a real-life industrial environment at a Grund-
fos factory. The vision pick skill was able to successfully
pick an arbitrary number of rotor caps from two different
locations, as shown in Figure 3. The precision was within
±5 mm, which was sufficient to correctly place the rotor
caps at the desired locations afterwards.

The quality control was used for a variety of different
tests. The application of this integration is only limited
by the capabilities of the vision system itself, which is not
described here. An example is shown in Figure 4, where it
is detected that a magnet has been correctly placed beside
the rotor core.

The setup for using the calibration skill is shown in Figure
5. The switch in the Figure is used to enable and disable
the conveyor belt. The purpose of the calibration is here
to make it possible for the robot to operate the switch,

(a) Assembly (b) Quality control

Fig. 4. Quality control setup. The robot is performing
assembly tasks to the left in (a), while the quality
control system is running externally, shown on the
screen to the right. Figure (b) shows a close up of the
result. The green box is the region of interest (ROI),
and the red marking is the detected magnet.

and the position of the switch can thus be considered as a
position of interest. The position of the QR code relative
to the position of interest of course affects the calibration
precision, and especially three factors affect the overall
precision:

(1) The position estimate of the corners of the QR code
the the cameras RGB image. These positions can be
determined with sub-pixel accuracy, and at a distance
of about 1 m as used in this setup, the precision of
the corners is within ±1 mm.

(2) The relative error in the depth values at the corners
for repeated measurements. The depth sensor in the
Asus Xtion is the same as in the Kinect, and the
absolute precision of the depth values provided by
the Kinect has been shown to be within ±10 mm for
distances between 0.8 m and 3.5 m when used indoor
(El-laithy et al., 2012). No data are available on the
relative repeatability error, but it has proven to be
significantly smaller.

(3) The relative error in the depth values between the
corners. No data are available on this precision, but
this has also proven to be significantly less that the
absolute error.

Especially the third factor; the relative error between
the corners, is of interest, because this will cause the
coordinate system at the QR code to have a slightly
wrong orientation. A wrong orientation makes the error
increase the longer the distance between the QR code and

Fig. 5. Fast calibration using the Asus Xtion camera
featuring calibrated RGB and depth images. The
camera detects the pose of the fixed QR code, and
subsequent movements with the robot are corrected
accordingly.
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the position of interest, and this is also what was found
to be the case in the test scenario. Although no formal
measurement of the precision has been carried out, visual
inspection has shown that the precision is at least ±10
mm at any position. This precision proved to be sufficient
to make it possible to operate the switch. In Table 4, the
proposed calibration is compared to existing methods.

4. DISCUSSION

Integration of computer vision abilities into a skill based
framework proved to be possible, and in this paper, three
applications were successfully implemented. In particular
the implemented quality control is very generic, and using
the developed TCP/IP based protocol, the vision system
could be changed without making any changes to the robot
itself. This is also the case for the pick skill; however
this has in the current implementation some limitations.
It is currently assumed that the items to pick up are
approximately placed in a line, as is for instance the case
on a conveyor belt. Thus during teaching, the start and end
location of the camera are taught. A further development
should make it possible to define an arbitrary search region
during teaching of the skill. For this, an optimal search
pattern should automatically be calculated by the robot,
taking into account that objects closest to the robot must
be picked first. Positions and orientations of the camera
during search should also be automatically determined.

The implemented calibration skill makes it possible to
perform a very fast calibration compared to existing meth-
ods. This is especially important for industrial robots that
are moving frequently between workstations. The precision
was sufficient to perform the experiments described here,
but for high-precision tasks it will be insufficient. There
are two obvious ways of doing this:

• The Asus Xtion camera used, does in principle sup-
port RGB images with a 1280 × 960. A bug in the
available open source drivers limited, however, the
available resolution in our implementation to 640 ×
480. Use of the full resolution images will definitely
increase the precision of the QR code detection.

• From the depth image, only the four corner points
were used. A better performance could be achieved by
using the entire surface of the QR code, for instance
by applying the RANSAC algorithm to filter out
outliers.

It is impossible to say how much the precision can be
improved. However, an experiment should be carried out
to determine the precision exactly.

Method Duration Precision

Haptic1 30-45 sec ±1.0 mm
High speed2 10 sec ±1.0 mm
High precision2 60 sec ±0.1 mm
Proposed method <1 sec < ±10 mm

Table 4. Comparison of calibration methods. 1
are from Pedersen (2011); 2 are from Hvilshøj

et al. (2010).
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Adaptive Model Based Quality Inspection

E.1 Introduction

Human workers naturally perform a visual inspection of all tasks that they

carry out. This is also necessary for a flexible collaborative robot if more

advanced tasks are to be carried out. In [Andersen et al., 2013], quality control

is integrated into the skill based system by allowing the robot to communicate

with an external vision system which itself is designed with a simple, intuitive

interface. This approach allows a wide variety of tests to be used, but it does

require a human to explicitly choose which test to use in each scenario.

As part of the TAPAS project [TAPAS, 2014], a fully autonomous quality

inspection skill was developed in cooperation with the partner company CIT1.

The skill detects errors based on a CAD model and an approximate position

of the object to inspect only. The system combines motion and next-best-view

planning developed by CIT with error detection developed as part of this PhD.

It is designed to inspect industrial objects in the TAPAS scenario presented in

Paper A [Madsen et al., 2015]. The scenario is shown in Figure E.1. Specifically

the requirements are:

• Inspection of texture-free shiny metal objects

• Flexibility to handle a large variety of objects

• Feedback-control to adjust for its own limitations

E.2 Evaluation of Depth Cameras

To compare an object to its model, the object shape must be acquired. Large

and expensive systems for object scanning, typically based on laser scanning,

do exist and are in use in the industry. However, these cannot easily be fitted

onto a collaborative robot. Instead, the performance of cheaper off-the-shelf

depth sensors is tested and compared on the metallic rotor in Figure E.2.

1Convergent Information Technologies (CIT), http://www.convergent-it.at/

http://www.convergent-it.at/
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(a) Simulation (b) Actual

Fig. E.1: Simulated and actual capturing of point clouds from different angles.

Fig. E.2: All the objects used for assembly in the TAPAS project at Grundfos A/S. In
industrial scenarios such as this, many objects are metallic and shiny. The cameras used for
inspection must therefore be able to detect such surfaces. The assembled rotor to the right
in the image is used as test objects for comparing cameras.

For the inspection task, the camera must be able to detect the metallic

surfaces. This must be possible on distances short enough to allow a robot

arm holding the camera to capture views from multiple angles. The robot arm

used for the experiment is the KUKA LWR 4 which has a reach of 1.178 m.

Therefore, the surfaces should preferably be clearly detectable on distances of

0.5 m or shorter. The necessary accuracy depends on the size of production

errors that should be detected, and no absolute number has been specified for

the current project. However, the more accurate that the shape of the surface

can be estimated the better.

Figure E.3 shows three test images from each tested camera and the per-

formance of the cameras is assessed in Table E.1.
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Fig. E.3: Depth maps from different cameras of a metallic and reflective object. As test
object, an assembled rotor of the Grundfos SQFlex pump is used (see Figure 5.4(b) top-left).
Depth maps are shown for each camera with the rotor placed in 30 cm, 50 cm, and 70 cm
away. For the PrimeSense Carmine 1.09, point clouds are also shown seen inclined from
above.
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Camera Dist/m Res Assessment
S
tr

u
c
tu

re
d

li
g
h
t Asus Xtion 0.8-3.5 320x240

(640x480)
The sensor is actually able to get data from
a closer distance than the specified 0.8 m as
seen on the table surface. The metallic sur-
face is not detected properly, though, at any
distance.

PrimeSense
Carmine 1.09

0.35-
1.4

320x240
(640x480)

The sensor provides valid object data on 50
and 70 cm and even some data on 30 cm. The
rounded shape is correctly detected, except
for the sides with high surface angles relative
to the viewpoint of the camera.

Intel Real-
Sense R200

0.5-3 640x480 On 70 cm, data is acquired that is compara-
ble to the Carmine 1.09. On closer distances,
the object is, however, not detected.

T
im

e
-o

f-
F
li
g
h
t Mesa Swiss-

Ranger 4000
0.8-5
(0.1-5)

176x144 Data is acquired on all distances, but the
depth values are highly dependent on the sur-
face angle seen from the camera. This is es-
pecially pronounced in the center part of the
rotor cap on 70 cm and on the top corners on
both 50 and 70 cm.

Kinect 2 0.5-8 512x424 The images are generated by taking the least
significant bit in the depth values, and this
causes increasing depths to be shown as re-
peated patterns of black-to-white. Data is
acquired on 50 and 70 cm, but the same is-
sue with the surface angle is present as with
the SwissRanger. The border regions have
wrong depth values while the center region
on 70 cm is not registered.

S
te

re
o

Bumblebee
XB3 (narrow
view)

— 1280x960 A baseline of 12 cm has been used with the
Triclops stereo algorithm that comes with the
Bumblebee camera. Data is acquired on all
distances and although there are holes in the
depth map, the density on the object surface
is acceptable.

Table E.1: Comparison of cameras. Resolutions in parenthesis are upscaled and distances
in parenthesis are specified as non-optimal.

The quality of the depth maps is best for the PrimeSense Carmine 1.09 and

the Bumblebee XB3. The remaining cameras are either unable to detect the

rotor on short distances, or show artifacts when the surface angle is either very

large or very small seen from the camera. The resolution of the Bumblebee

camera is higher than that of the Carmine, but the Carmine, on the other

hand, produces depths almost without holes on the surface of the rotor. Also,

the Carmine is significantly smaller and therefore fits better on a robot. The

PrimeSense Carmine 1.09 is therefore chosen for the quality inspection system.
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E.3 Point Cloud Acquisition and Matching

Figure E.4 shows images of the test objects used for the quality inspection taken

with the PrimeSense camera. The goal for this object is to autonomously detect

the cavity error present in the right-most object.

(a) RGB image (b) Depth map

Fig. E.4: Test objects without/with a cavity production error. The images are captured
with a PrimeSense Carmine 1.09.

As seen in Figure E.4(b), the error is clearly detectable by the depth cam-

era. However, not all visible parts of the surface are detected. It cannot be

predicted exactly which surfaces that will be detected, and several iterations

of capturing images might therefore be necessary. Figure E.5 illustrates the

vision-and-planning flow through the system. The inspection skill needs to be

parameterized with the object type, surfaces to inspect, and approximate ex-

pected location of the object. The object type and surfaces to inspect can be

chosen by an operator through a GUI. The inspection surfaces can either be all

outer surfaces or a subset of these. Next, the operator teaches the robot where

to look for the object and this concludes the parameterization.
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Fig. E.5: Adaptive planning for quality control.

When the skill is executed, the robot first estimates the exact pose of the
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object. The pose is then used to plan an inspection of the selected surfaces,

including viewpoints, trajectories between viewpoints, and expected surfaces at

each viewpoint. The vision system captures a point cloud from every viewpoint

and uses these to estimate both whether there are errors and whether the entire

specified surface has been successfully detected. If a large area could not be

detected, a new inspection can be planned to cover the remaining parts of the

surface. When the specified surface has been detected to a sufficient degree,

the model is analyzed from each viewpoint to determine if significant errors are

present.

The point cloud segmentation and matching is illustrated in Figure E.6.

In (a), the object is detected and segmented from the dominant plane in the

scene. The reader is referred to Paper D for a more thorough description of

the segmentation algorithm.

(a) Segmentation. (b) Registration (top)
and matching (bottom).

(c) Expected (green)
and detected (red) point
clouds with normals.

Fig. E.6: Object segmentation, pose estimation, and matching against expected point
clouds.

The segmented object point clouds are combined into a single denser point

cloud in Figure E.6(b) (top). This point cloud registration uses the pose of the

camera at each viewpoint for an initial estimate and translates the point clouds

for a better accuracy using translational ICP (Iterative Closest Point) [Besl

and McKay, 1992]. The merged detected point cloud is shown in the bottom

image in Figure E.6(b) (in purple) matched against the model (in red). This

matching step utilizes surface matching from the commercial computer vision
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library HALCON 2.

E.4 Error Detection

For each view, the inspection planner generates an expected point cloud of the

object to inspect. The point cloud generated based on an error-free model.

Figure E.6(c) shows the expected point cloud in green for two different views.

The captured and segmented point clouds are shown in red.

The goal of the error detection algorithm is to determine significant differ-

ences between the simulated and the captured point clouds. There can be (at

least) two types of differences:

1. Areas of the object that could not be detected. This can be caused by

limitations of the sensor.

2. Areas of the object where the two point clouds differ, which can only

be caused by actual differences between the object and the model, i.e.

production errors.

For the first differences of type 1, a re-inspection can be necessary to better

inspect the problematic areas. Differences of type 2, on the other hand, will

count as detected errors if their area exceeds a predefined threshold.

If the point clouds were compared directly point-to-point in 3D space, there

would not be any way to determine if missing detected points were caused by

object or sensing errors. That is, it would not be possible to distinguish between

the two types of differences. Therefore, both point clouds are instead projected

to the image plane of the camera to form depth maps. This is illustrated in

the first two columns of Figure E.7. No information is lost in this projection

because the point clouds where both simulated and captured from this exact

viewpoint. Type 1 differences can now be detected as areas of the captured

depth maps with no data, while type 2 errors will show as areas with different

values when compared to the simulated depth maps.

Type 2 differences are shown in the two last columns of the Figure. The

first of these show absolute depth differences between points, which are present

in both the simulated and captured view. In the last column, these values

are thresholded. Large errors are detected through a connected component

analysis. In the Figure, a significant error is detected for view 2 of object 1.

Type 1 differences are shown in the middle column. A significant number

of these differences will make it necessary to perform a re-inspection. This is

done by first constructing a point cloud from the pixels and feed this back to

the inspection planner as a new surface to inspect. The planner then generates

2HALCON is a commercial machine vision library and IDE developed by MVTec Software
GmbH.
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Fig. E.7: Results of adaptive quality inspection. The top two rows are with the erroneous
object in Figure E.4 and the bottom two rows are with the error-free object. For both
objects, two camera views were planned by the inspection planner. The first column shows
the simulated point cloud projected to a depth image, and the second column shows the
corresponding captured point cloud. The middle column shows the points that are missing
in the captured point clouds but present in the simulation. The last two columns show the
points that are present in both point clouds; with the depth differences shown as intensity or
thresholded to a specific value, respectively. Connected regions larger that a certain threshold
are considered as errors. This is the case for view 2 of object 1.

new camera views, and all the steps in the vision system are repeated with only

these remaining points taken into account. This process can be repeated until

either:

• An error is detected.

• No errors are detected and the entire surface could be detected (possibly

excluding patches smaller than a predefined threshold). The product is

concluded to be error-free.

• A large part of the surface could not be detected, even after re-inspections.

In the two first situations, the object is successfully inspected. In the last

situation, the vision system has failed, and the product will have to be inspected

by a human.
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E.5 Conclusion

A fully autonomous quality inspection system has been developed by combining

model-based error detection developed as part of the current PhD project with

motion and next-best-view planning developed at the company CIT. The sys-

tem is able to detect relatively large errors such as the cavity production error

shown in Figure E.4. The contribution of the work is to show how production

errors can be detected fully autonomously and how feedback from the vision

system can be used to compensate for imperfect sensing data. Additionally, it

is shown how this functionality can be integrated into a human-centered skill

based architecture.

Errors significantly smaller than the one in Figure E.4 cannot currently be

detected due to limitations of the used depth camera. However, the proposed

methods can be used directly with any depth camera, and commercial depth

cameras are at the moment improving fast. Significantly better cameras must

be expected to be available within few years which will improve the capabilities

of the system.
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1 INTRODUCTION

For robots to be able to perform advanced tasks, it is

a necessary to use various sensors. This is the case

both for industrial tasks (pick-and-place operations,

bin-picking), for home service robots (identification

of humans, navigation), and for military robots (lo-

cal/global navigation, obstacle identification). There

are three typical ways to mount sensors relative to the

robot:

1. Mounted on the robot in a fixed or movable posi-

tion (pan/tilt).

2. Mounted in the environment in a fixed or movable

position.

3. Mounted on the end-effector of the robot arm, that

is supposed to interact with the environment.

The calibration between the sensor and the robot is

essential for all of these mountings. In this work

we focus on calibrating a depth camera to the end-

effector; also known as hand-eye calibration. Hand-

eye calibration is necessary for all sensors mounted

on an end-effector. The most popular sensor type

to mount on end-effectors is visible light cameras,

and calibration of these have therefore been investi-

gated thoroughly. Depth cameras is another popu-

lar choice, which have also been used on robots for

several decades. Especially since the launch of Mi-

crosoft’s Kinect in 2010, their popularity have in-

creaed (El-laithy et al., 2012). The depth sensor in the

Kinect works by projecting infrared structured light

onto the scene. The depth is measured by captur-

ing the known projected pattern, and based on this

compute the depth. Other technologies for capturing

depth images include Time-of-Flight (ToF) (Fuchs,

2012) and stereo vision.

1.1 Existing Methods

The problem is illustrated in Figure 1. The unknown

transformation is the one between tool and camera,

while the transformation between the base and tool is

assumed to be known.

Figure 1: Coordinate systems involved in the hand-eye cal-
ibration.

Several approaches to depth camera hand-eye cal-

ibration exist. One popular approach is the Turtle-

Bot calibration algorithm, which is available through

ROS. This works specifically for Kinect-like cameras

by first pose estimating a calibration board using the

RGB/D sensors, and afterwards localizing it in the

base frame by moving the robot tool to the four cor-

ners on th board. The problems with this approach

include that is relies both on the imperfect internal

RGB-D calibration of the Kinect and of the model of

the tool.

Use of the tool can in some cases be avoided

when using a calibration board (Tsai and Lenz, 1989;

Hvilshøj et al., 2010). For the Kinect, a transforma-

tion between the depth camera and a visible light cam-
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era is known beforehand. Thus, the visible light cam-

era can be calibrated first and used to indirectly cali-

brate the depth camera. This approach ofcourse relies

on a transformation, which is not perfectly known.

Another approach that can be used for a Kinect is to

directly calibrate the internal infrared camera using an

infrared light source and a calibration board. A prob-

lem with this is that the internal depth computations

of the Kinect are circumvented. Also, it only works

for depth cameras that is based on an infrared camera.

A few methods focus specifically on depth cam-

eras. In (Pomerleau et al., 2011) the motion of the

depth camera is continuously logged based on ICP.

The hand-eye transformation can then be computed

by comparing to the movement of the end-effector. A

problem with this approach is the matches do even-

tually drift, causing the calibration to be less precise.

In (Kahn et al., 2014) it is instead suggested to de-

sign a 3D shape to be optimal for 3D pose estimation

from a point cloud, and use this to find the camera

pose. The pose of the object relative to some world

frame (such as the robot’s base frame) must however

be known beforehand. This is a severe limitation for

general purpose hand-eye calibration.

1.2 Suggested Approach

The approach that we suggest here is to do calibra-

tion of depth cameras using only the point clouds as

in (Kahn et al., 2014), but to estimate equations for

a simple planar surface instead of carefully designed

3D shapes. The advantage is that planes can be found

in point cloud very fast and reliably using standard

techniques such as RANSAC. Also, a sufficiently pla-

nar surface is nearby in most locations. A plane is es-

timated for the same surface from multiple positions,

and using these, the tool-camera transformation can

be found by minimizing an overdetermined system of

non-linear equations. A total of 10 parameters are es-

timated; 6 for the tool-camera transformation and 4

for the plane. The idea is illustrated in Figure 1.

2 METHOD

The system of equations is based on both the plane

normal and the distance between the estimated plane

and the base origin (refer to Figure 1). These are de-

rived in the following subsections.

2.1 Plane Normal

The transformation between the estimates plane nor-

mal in each depth image and the plane normal in the

base coordinate system is given by:

cam−→n plane =
cam
toolT · tool

baseT ·
base−→n plane ⇔







0

0

0

0






= cam

toolT · tool
baseT ·

base−→n plane −
cam−→n plane (1)

The unknowns are the transformation cam
toolT and

the plane normal
base−→n plane, which in total have 15

unknowns. This is not the case for the problem

though; this has only 6 degrees of freedom for the

transformation and 3 degrees of freedom for the plane

normal. Here it is chosen to use ZYX Euler an-

gles for the rotational degrees of freedom, and thus

the unknown parameter vector to be optimized is
−→
θ = [A,B,C,x,y,x,a,b,c]T, where [a,b,c]T is the nor-

mal vector of the unknown plane. When minimizing

Equation (1), each value in cam
toolT is therefore replaced

by the corresponding equation based on
−→
θ .

2.2 Plane Distance

The general equation for point-plane distances is

given by:

D =
ax0 + by0+ cz0 + d

√
a2 + b2 + c2

where the plane equation is ax + by + cz + d = 0,

[x0,y0,z0]
T is an arbitrary point, and D it the shortest

distance between the point and the plane. Inserting

the plane parameters and the camera position in the

base coordinate system (basePcam) gives:

0 =
base−→n plane ·

basePcam + dplane

|
base−→n plane|

−D (2)

where dplane is the actual distance between the plane

and the base (and thus constant for all camera posi-

tions), and D is the measured distance. The norm of

the normal vector below the fraction line is 1 for the

normalized case, and can thus be removed.

2.3 Cost Function and Optimization

Combining Equation (1) and (2) we get the complete

system of equations:

G(
−→
θ ) =

[

cam
toolT · tool

baseT ·
base−→n plane −

cam−→n plane
base−→n plane ·

basePcam + dplane−D

]

(3)

where the first line holds three independent equations

and the second line one. Since the problem to be min-

imized has of 12 parameters, at least three measure-

ment points is required, giving three sets of four equa-

tions.
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The cost function is constructed by squaring and

dividing by the number of equations:

F(
−→
θ ) =

1

2n
·GT(

−→
θ )G(

−→
θ ) (4)

where n is the number of measurement points. The

optimization can then be done using gradient descent:

−→
θ

i+1 =
−→
θ

i −α
−→
∇ F(

−→
θ

i) (5)

To speed up the descend, a momentum approach

is applied, where the learning factor α is gradually in-

creased as long as the cost function F(
−→
θ ) is decreas-

ing.

3 PRELIMINARY RESULTS AND

CONCLUSIONS

An initial implementation has been tested using 12

measurement points. In this it is assumed, that the

plane normal is known to be vertical, and thus only

9 degrees of freedom is estimated. For each point,

RANSAC has initially been used to estimate the

plane, followed by least squares regression on in-

liers to increase precision. The learning process was

stopped when ∆θ

θ
got below a predefined threshold.
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Figure 2: Coordinate systems involved in the hand-eye cal-
ibration.

In this extended abstract, a hand-eye calibration

for depth cameras has been presented that is based on

estimating a plane for the same surface from multiple

positions. This gives an overdetermined non-linear

system of equations with 12 parameters, that is min-

imized using standard least squares gradient descent.

A preliminary implementation has proven the solution

is feasible with a realistic guess for the parameters as

a starting point for optimization. Our next step is to

develop a full implementation and to evaluate its per-

formance both with regards to precision and speed.

We intend to publish the implementation as a publicly

available ROS package.
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Teaching Robotic Skills by Projecting into Task Space

I.1 Introduction

Skill based robot programming has the potential to allow users which are

not experts in robotics to program a robot to solve new simple tasks fast

and efficiently. This has been shown in several user studies, both for generic

tasks [Schou et al., 2012, Schou et al., 2013, Pedersen et al., 2015] and (as

part of this PhD) for the more specialized task stud welding [Andersen et al.,

2015,Andersen et al., 2016]. For instance Schou et. al. presents a skill based

programming system for the Little Helper 3 AIMM robot in [Schou et al.,

2013], where a graphical user interface is combined with kinesthetic teaching.

The system is tested in a user study where nine test persons with varying expe-

rience with robotics program the robot. All test persons managed to program

the robot to perform two different pick-and-place tasks after having received

only a short introduction and with minimal help. The programming time is

approximately double for non-experts compared to experts familiar with the

system. It is concluded that such a system is feasible; however it is noted

that “The tests revealed that the interface still requires better instructions to

support the operator during the teaching phase“.

Manual kinesthetic teaching of skills makes it possible to program a task by

performing the task. The operator directly interacts with the robot instead of

programming an external interface on a stationary monitor or teach pendant.

However, it is still necessary to pay attention to an external monitor to know the

state of the robot and how to teach each step. The current report investigates

if teaching can be improved by completely removing any external monitor and

instead project the required information directly into task space. The idea is

that projection mapped information allows the operator to focus all attention

on the task space where the task is carried out instead of dividing it to a

stationary monitor or teach pendant.

To evaluate the usability of the approach, a user study is carried out where

users teach a relatively advanced series of skills involving object recognition,

pose estimation, pick, and place. The applied pose estimation and pick is



Paper I.

combined into a single vision-pick-skill which has previously been presented

in [Andersen et al., 2014]. The study compares the usability of the approach

directly to a slightly improved version of the graphical teaching interface pre-

sented by Schou et. al. in [Schou et al., 2013]. The main contribution of

this report is a projection based interface for manual kinesthetic teaching of

skills and a comparative evaluation of its usability. Secondary contributions

are the presentation of an object recognition skill as well as a general usability

evaluation of both the vision pick skill and the object recognition skill.

This report is structured as follows: The proposed projection based inter-

action system is first presented in Section I.2. In Section I.4, results from the

comparative user study is presented. Finally, conclusions are drawn in Section

I.5.

I.2 Projection Mapping Interface and Methods

Figure I.1 shows the prototype of the projection based teaching system. A

projector can project guidance and graphics onto the surfaces below. The

environment is modeled, and this makes it possible for the graphics to be pre-

warped to look correct on any surface. In the current setup, the projector is

fixed. This limits the field which are covered by the projector. However, the

field could easily be extended if needed by either mounting more projectors or

by mounting the projector on a calibrated pan-tilt unit. The various elements

in the system are described in the following.

I.2.1 Skill Teaching Instructions

The skill based programming method makes it possible to program a robot in

the following steps:

1. Selection of a sequence of skills

2. Offline parameterization; for instance velocities and object types to han-

dle

3. Online manual kinesthetic teaching

The first two steps have to be performed offline and a projection system is

not relevant for those. The projection based teaching system instead replaces a

monitor based system specifically in the online step. The online step contains,

for instance for a pick-with-vision skill, the following instructed steps:

1. Press Y -> Move tool to camera position

A position where the 3D camera in use can see the object and surround-

ings
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Fig. I.1: Setup of the projection based teaching system. A pole-mounted projector can
project instructions and assisting graphics onto the surfaces below. The cameras are used
for recognizing and pose estimating objects.

2. Press Y -> Move tool to via position, with the flat side down

A position where the robot is ”ready to grasp“

3. Press Y -> Move tool to grasp location

A position where the object is in the middle of the open tool

4. Press X/Y/Z -> Select approach point

Force input selects the approach direction and the desired distance is then

moved manually

The action instructions (”Press Y“) and the following contextual instructions

are provided to the operator during teaching (the italic text is not part of the

instructions). An example is shown in Figure I.2 for both the monitor and

projection based systems. The tool image and the nearby text in the image

informs the operator that the robot can now be moved in all degrees of freedom

while the above text instructs the operator in what to do. When the tool is

held stationary for a short duration, the position is stored. The tool image and

nearby text will then change to indicate that the operator has to apply a force

in the tools’ Y-direction (”Press Y“) to continue.

In the projection based system, the graphics is shown on the surface per-

pendicular beneath the end-effector. When the end-effector is moved, that

graphics is also moved in real-time. If the end-effector is moved close to or
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(a) Monitor (b) Projector

Fig. I.2: Teaching instructions are displayed directly below the robot’s end-effector. If this
area is occupied or outside the field of projection, the instructions are displayed as close as
possible.

beyond the surface edges, the graphics is shown on the surface as close to the

end-effector as possible. Whenever the robot is aware of objects occupying

parts of the surface, the graphics is moved away from these. Similarly, when

the end-effector is very close to the surface, it itself is considered an obstacle,

and the graphics is shown in front of the end-effector instead.

I.2.2 Projection-Supported Skills

The projection based system is fully integrated into the skill based system used

for previous experiments at Aalborg University. It supports therefore a diverse

range of skills. This includes the 13 skills which are presented and used for

logistic tasks, machine tending, and assembly in [Madsen et al., 2015] and [Bogh

et al., 2014]. The only requirement is that surfaces in the environment suitable

for projection are modeled beforehand.

The projection system has been deeper integrated particularly in the skills

used in the user study included in this report. The skills are:

Pick-with-vision: The skill uses a depth camera to detect objects on surfaces,

fit a cylindric model around them, and pick them up. The teaching

sequence was described in Section I.2.1. The skill has previously been

presented in [Andersen et al., 2014], and a full description is outside the

scope of this report.

Place-onto: The skill uses force sensing to place a previously grasped object

onto a surface on a taught location. The skill has previously been pre-

sented in [Schou et al., 2013], and a full description is outside the scope

of this report.

Recognize: The skill distinguishes between object classes using a discrimina-
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tive model which is learned during teaching of the skill. The classification

method is a bag-of-visual-words approach based of SIFT features [Lowe,

1999]. During teaching, a number of monochrome images are captured

of an object from each class, and local features are extracted from the

images. The features are extracted as SIFT features, but detected as

STAR (or CenSurE) features [Agrawal et al., 2008]. This combination

is chosen because it produces reliable classification results in practice. A

vocabulary is constructed from the features extracted from all images by

applying K-means clustering with 20 bins (or visual words). The classifier

is then trained using a support vector machine (SVM).

During execution, an object is classified by first capturing three images

and extract features in each, similar to during teaching. Each image is

then classified based on the trained model. If the images are classified in

the same class, this is chosen as the outcome. In case of disagreements,

more images are captured until 80% predict the same class. If this cannot

be achieved, the skill fails.

The skill can be set up to only accept a single class. Thus objects of

a particular class can be picked, for instance, while other objects are

ignored.

For these three skills, additional information is projected at specific times

during both teaching and later during execution. The specific information is

shown in Figure I.3. For I.3(a) and I.3(c), the projected information replaces

similar information shown by the robot and on the monitor. For I.3(b) and

I.3(d), the projected information cannot be indicated with the monitor based

interface.

I.3 Evaluation Methods and Metrics

The projection and monitor based interaction systems are evaluated in a user

study. The purpose of the study is to evaluate and compare the usability of

each method.

I.3.1 Task

The test participants are asked to teach a sequence of three skills online with

each system:

1. Recognize an object in a predefined area

2. Pick-with-vision: Detect the precise location of the object and pick it

up
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(a) Recognition: “Place ’Nescafé at the po-
sition” for capturing images. With the
monitor interface, the position is indicated
by pointing with the end-effector.

(b) Recognition: “Stay out of area” while
the robot captures images. This is not
available with the monitor interface.

(c) Pick-with-vision: “Detected object” be-
fore teaching how to grasp. With the mon-
itor interface, this is shown in a pop-up
window.

(d) Place-onto: “Place position” when ob-
ject is placed. This is not available with
the monitor interface.

Fig. I.3: Projected information during teaching of skills. The information in (c) and (d) are
also shown during execution.

3. Place-onto: Place the object onto a surface at a new location (of the

test participant’s choice)

The order in which the test participants use the two systems is changed

for each participant to eliminate bias. Before the test persons are asked to

teach the tasks themselves, they are introduced to the first system, they have

to use. All of the required skills are demonstrated. After a test participant

has tested the first system, the differences to the second system is verbally

highlighted. They are not given a full introduction to the second system to

reduce the time requirement. Execution of the taught tasks is demonstrated

to the test participants immediately after teaching each system. If the task

that the test participant has taught cannot be executed due to errors in the

teaching, a pre-taught sequence is executed instead.
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I.3.2 Usability Measures

The usability evaluation is based on ISO 9241-11 (1998) which defines usability

as a combination of effectiveness, efficiency, and satisfaction [ISO, 1998]. The

usability of each system is evaluated individually as:

Effectiveness “The accuracy and completeness with which users achieve spec-

ified goals”

Measured as the ability of the test participant to complete the teaching

without assistance. Assistance requirements are divided into groups of

increasing seriousness:

1. The test participant requests confirmation of his/her intended ac-

tion. If a more thorough explanation than yes/no is required, the

situation is counted as 2).

2. The test participant is in doubt on how to move forward and actively

requests assistance.

3. The test participant makes an error during teaching which will make

execution impossible or unreliable. If the test leader actively has to

intervene to avoid such error, it is also counted.

When summing up the assistance requirements, they are weighted as 1/2,

1, and 11/2.

Efficiency “The spent resources in relation to the accuracy and completeness

with which users achieve specified goals”

Measured objectively as the time spent to complete the task.

Satisfaction “The freedom from discomfort and positive attitudes towards the

use of the product”

Measured subjectively through the Lewis’ ASQ questionnaire [Lewis,

1991] and comparative questions on specific parts of the teaching. The

Lewis’ ASQ evaluates satisfaction with three Likert-scale questions (eval-

uated from 1-7):

1. Overall, I am satisfied with the ease of completing the tasks in this

scenario

2. Overall, I am satisfied with the amount of time it took to complete

the tasks in this scenario

3. Overall, I am satisfied with the support information (projections,

display on monitor) when completing the tasks

The systems are compared directly through the following specific ques-

tions:
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1. The robot indicated the teaching steps by showing an image (of the

tool) as well as text instructions. Where did you prefer to get this

information?

Refer to Figure I.2.

2. During teaching of OBJECT RECOGNITION, the robot indicated

which object that should be placed at which location. With projec-

tor, projected circles were used. With monitor, the robot moved to

the location. Which did you prefer?

Refer to Figure I.3(a).

3. During teaching of OBJECT PICKING, the robot indicated which

objects it had detected. With projection, using circles around the

objects. With monitor, using a pop-up window. Which did you

prefer?

Refer to Figure I.3(c).

4. During teaching of OBJECT RECOGNITION, the robot took a

number of pictures of each object. The area around the object was

clearly marked with projection to help users staying clear of the

robot and the images. Did you find this useful? (Where 1 is “Very

useful” and 7 is “Not useful at all”.)

Refer to Figure I.3(b).

Question 1-3 is evaluated on a Likert scale from 1: “Clearly prefer pro-

jected” to 7: “Clearly preferred monitor”.

Finally, the test participants are asked to also evaluate the interfaces dur-

ing execution. There are, however, no interaction between to robot and

the operator while execution is ongoing. Therefore, the test participants

are instead asked to evaluate how safe they felt with each system and

how well they understood what the robot was doing; also on a Likert

scale from 1-7.

I.4 Results

The results for each of the systems in effectiveness, efficiency, and satisfaction

respectively are presented in this section. The results are based on a total

of n = 20 persons who participated in the experiment. The test participants

had diverse backgrounds in robotics as well as in computers and IT in general.

Their self-evaluated expertise in these fields are shown in Figure I.4.

I.4.1 Results on Effectiveness and Efficiency

The effectiveness results are shown in Figure I.5(a). The average number of

errors was 1.65 for projection and 2.15 for monitor. When weighted for serious-
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Fig. I.4: Test persons divided by self-estimated expertise in computers/IT and robotics.

ness, the numbers were 2.03 and 2.38, respectively. On average, the projection

based interface thus caused the test participants to require less assistance.

Confirmations Questions Errors Weighted tot
0

0.5

1

1.5

2

2.5

Q
ue

st
io

ns
/e

rr
or

s 
pe

r 
pe

rs
on

 

 
Monitor
Projector
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(b) Efficiency measured as the time used for
teaching. The middle horizontal lines are the
means, the next lines are the 95% confidence
intervals, and the top and bottom lines are
the maximum and minimum values.

Fig. I.5: Effectiveness (required assistance) and efficiency (time consumption).

The results on effectiveness, the time required for teaching the task, are

listed in Figure I.5(b). The average time was 5:20 minutes for projection and

5:24 for monitor. This covers over large differences in time consumption from

person to person, as is evident from the Figure.

The results for both effectiveness and efficiency indicate that the projec-

tion based interface is better that the monitor interface. The differences are,

however, too small to be statistically significant, and more research would be

required to draw final conclusions.
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I.4.2 Results on Satisfaction

The satisfaction of each interface is first evaluated though the three questions

from Lewis’ ASQ [Lewis, 1991] which are written in full in Section I.3.2. The

test participants estimate their satisfaction with the ease of using the system,

the time to complete the task, and the information offered by the system.

The results are shown as T1-T3 in Figure I.6. There is a tendency that the

projector interface is rated higher, except for the satisfaction with the provided

information which is practically equal. None of the questions show statistically

significant differences between the interfaces. It must be noted, however, that

both systems receive very high satisfaction scores between 5.5 and 6.0 on the

scale from 1-7.
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Fig. I.6: Satisfaction during teaching (T1-T3) and feeling of safety and understanding of the
robot during execution (E1-E2). The teaching questions are from Lewis’ ASQ and written in
full in Section I.3.2. For all questions, the mean and the 95% confidence interval are shown.
Also for all questions, higher scores indicate agreement and is considered better.

The evaluation of the test participants’ feeling of safety and understanding

of the robot’s actions is included as question E1-E2 in Figure I.6. Similar to

the teaching results, the projector interface is on average slightly better that

the monitor interface. The differences are, however, not large enough to be

statistically significant with a significance level of 95% in a 2-sided t-test.

The results of the direct comparison of different elements in the interfaces

are shown in Figure I.7. The full questions are listed in Section I.3.2 as the

second enumeration under satisfaction. Also, the “info position” refers to the

placement of the graphics shown in Figure I.2 and the remaining questions to

Figure I.3.

The test participants clearly preferred the projected interface for question

1-3 which compare the two interfaces directly. A score of 4 corresponds to

the two interfaces being equally preferred. The null hypothesis that the actual

means are 4 can be rejected in a 2-sided t-tests with a significance level of 95%.

This is also the case for question 4 on the usefulness of the warning area. The
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Fig. I.7: Teaching specifics.

p-values are below 0.02 for all questions. The projected interface can thus be

concluded to be preferred in these specific areas to a statistically significant

degree.

I.4.3 Discussions on the User Study

For both effectiveness and efficiency, the projection interface gave a slight im-

provement. The differences are, however, not large enough to be statistically

significant. For satisfaction, projection also scored slightly better on all ques-

tions except for satisfaction with the information placement, where the monitor

where marginally preferred. During teaching, the projection system on average

increased the feeling of safety and the understanding of the robot’s actions.

None of these differences were, however, statistically significant. From the test

participants’ comments, it is clear that many felt it as a nuisance to contin-

uously look away from the robot with the monitor based interface while they

generally liked the projection based interface. A drawback with this was, how-

ever, that the robot arm occasionally blocked the projections, which could

make it difficult or impossible to read the instructions. The projection system

could therefore probably get a higher usability score by handling such situa-

tions. Or, as another test participant suggest, the two systems could be used

simultaneously and benefit from each other’s strengths.

The user test also compared different specific parts of the teaching sys-

tems, including the position of the information, the highlighted locations for

instructed and detected objects, and a warning area requesting the operator

to stand clear while the robot captured images. For all of these, projection

was clearly preferred to a statistically significant degree with 95% significance

levels.

It is particularly curious that the satisfaction with the provided support in-

formation (“T3: Info” in Figure I.6) is practically identical for the two systems,
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while the projected vs. monitor placement of the information (“Info position”

in Figure I.7) shows a clear preference for the projector. One reason for this

might be that many test persons are highly satisfied with both systems, and

that no clear difference therefore emerges. When asked to compare the position

directly, the projected position in task space is generally preferred.

I.5 Conclusion

This report proposes using projection mapping to improve human-robot inter-

action during programming of a task in a skill based system. Manual kinesthetic

teaching enables an operator to program a robot to solve a task while actually

solving the task. No complex programming system is required. The addition

of projection mapping makes it possible for the operator to focus only on the

area where the task is carried out and not on external interfaces.

The projection system projects information onto modeled surfaces directly

below the end-effector of the robot or on the closest unoccupied area on the

closest surface. The projection system has been integrated into an existing skill

based programming system, enabling online projection based teaching of more

than 13 skills. For three skills; recognize, pick-with-vision, and place-onto, the

interface has been further improved by adding additional information which

cannot be provided using a monitor.

The projection based interface has been compared to a monitor based inter-

face in a user study with 20 participants. The study evaluates the usability as a

combination of effectiveness, efficiency, and satisfaction, as it is defined in ISO

9241-11 (1998) [ISO, 1998]. It must be concluded that both approaches have a

high usability after only a short introduction. Even tasks that require relatively

complex computer vision such as recognizing and distinguishing between ob-

ject classes and pose estimating for grasping could be taught by persons which

were non-experts in robotics. The projection based interface performs slightly

better than the monitor interface on all usability measures. The differences are

too small to be statistically significant, though, and more research will be re-

quired to make a final conclusion. However, when the test persons compare the

interfaces directly, the projection based interface is clearly preferred in every

case to a statistically significant degree.
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The field of collaborative industrial robots is currently developing fast 
both in the industry and in the scientific community. Companies such 
as Rethink Robotics and Universal Robots are redefining the concept 
of an industrial robot and entire new markets and use cases are becom-
ing relevant for robotic automation. Where industrial robots tradition-
ally are placed behind security fences and programmed to perform sim-
ple, repetitive tasks, this next generation of robots will be able to work 
side-by-side with humans and collaborate on completing common tasks. 
 
This thesis investigates methods for fast and intuitive programming and in-
teraction with collaborative, industrial robots. The work is divided into two 
areas: Vision-enabled robotic skills and projection mapping interfaces. The 
purpose of robotic skills in general is to allow non-experts in robotics to pro-
gram robots in an intuitive manner. It is investigated how a skill based archi-
tecture can incorporate advanced robot vision capabilities while keeping the 
robot programming fast and intuitive. Projection mapping, on the other hand, 
is the technique to project information onto the real world. It is investigated 
how projection mapping can be applied as part of human-robot interfaces to 
simplify and improve human-robot interaction in scenarios involving robot 
programming as well as human-robot cooperation.
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