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Abstract—Energy storage systems (ESSs) have proved to be
efficient in frequency regulation by providing flexible charg-
ing/discharging powers. This paper presents a model predic-
tive control (MPC) with feedback correction (FC) to provide
the ESS with control signals to be efficiently involved in the
frequency regulation in a power system with renewable power
generation. The FD is introduced to improve the accuracy of
the prediction in the MPC. An approach based on the artificial
neural network (ANN) is presented for optimal design of the
weighting coefficients appearing in the MPC objective function.
The controller performance is compared with an MPC without
feedback correction, a fuzzy-PD control, and a scheme with no
support from the ESS. A comparison is also made to examine
the effect of weighting coefficients tuned by the ANN with those
tuned by a fuzzy intelligent method and a sine-cosine algorithm.
Real-time validations are provided to demonstrate the proposed
method’s effectiveness.

Index Terms—Energy storage system, Artificial neural net-
work, load frequency control, model predictive control.

I. INTRODUCTION

Renewable Energy Sources (RESs) have been consistently
advancing globally to tackle energy deficits and promote low-
carbon initiatives. The RESs such as the photovoltaic and
wind generations, are largely dependent on environmental
conditions and exhibit intermittent and uncertain behavior.
Integrating these generations can, therefore, raise severe sta-
bility concerns, including frequency regulation issues [1, 2].
Consequently, more operating reserves and complex con-
trol methods will be required in power systems with high
integration of RESs. Energy Storage Systems (ESSs) offer
promising solutions for providing such additional reserves.

This work was supported by the Reliable Power Electronic-Based Power
Systems (REPEPS) project at the AAU Energy Department, Aalborg Uni-
versity, as a part of the Villum Investigator Program funded by the Villum
Foundation.

Due to the quick response and high ramp rate, the ESS can
improve the controllability of the system and provide energy
management solutions [3]. The utility grid commonly owns
large-scale ESSs and offers capacities of up to tens of MWh
in a few facilities. On the other hand, small-scale ESSs are
distributed throughout the power systems. The small-scale
ESSs commonly offer capacities up to hundreds of kWh in
many facilities. The distributed ESSs located at the demand
side are, however, usually more extensive in number but more
minor in capacity. Hence, their individual contributions to the
network are relatively minimal [4].

The ESSs can provide ancillary services, including fre-
quency and voltage regulation, through controlled discharg-
ing/charging of power to/from the system. Nowadays, this
appears as the main function of utility-scale batteries. The
ESS provides primary frequency regulation reserves in [5]
and [6]. The State of Charge (SoC) limit appears as a severe
constraint of the actual applications of ESS [7]. In [8], a
comprehensive review is provided for the participation of the
ESS in frequency regulation regarding design considerations,
connection requirements, and real implementation. A load
frequency control (LFC) strategy is suggested in [9] based
on the droop control and SoC feedback to make coordination
between the ESS and the conventional unit. A control scheme
is developed in [10] based on adaptive dynamic programming
to use ESS during frequency excursion events efficiently. A
finite-time consensus method is also used in [11] to generate
the control commands for the ESSs participating in the reg-
ulation service. A centralized, coordinated control for ESSs
and heat pump water heaters participating in LFC is presented
in [12]. The stability considerations associated with the time
delay caused by the propagation channels in the ESS control
have garnered minimal focus in the published research.. The



sensitivity of the frequency response to the ESS contribution
in LFC also received little attention. Model Predictive Control
(MPC), as a far-reaching methodology in controlling modern
power systems, is primarily used in LFC studies [13]. The
MPC is suggested in [14] to enhance the frequency response
of a microgrid with electric vehicles serving as storage ap-
pliances. A robust MPC is presented in [15] to control the
distributed ESSs in a system with uncertain wind generations.
Although these studies prioritize the development of prediction
models, cost functions, and computational efficiency to achieve
satisfactory performance for a wide range of applications, they
tend to overlook the impact of model mismatches. Hence,
a modeling error compensation method is required in the
MPC structure to compensate for prediction error, which is
addressed in this paper.

This paper proposes a control method based on the MPC
with feedback correction to adjust the ESS output power in an
isolated power system. The frequency dynamics are obtained
in an isolated power system with ESS to calculate the closed-
loop and open-loop transfer functions. A feedback correction
is designed to be included with the MPC in the ESS control
loop to improve the MPC prediction accuracy and create dis-
turbance rejection ability in the MPC structure. An intelligent
method based on the Artificial Neural Network (ANN) learn-
ing features is used to obtain optimal weighting coefficients for
the MPC with feedback correction. The controller performance
is evaluated by comparing it to various other control schemes.
These include an MPC without feedback correction, a fuzzy-
PD control, and a scheme that does not utilize the support of
the ESS. Additionally, a comparison is conducted to analyze
the impact of the weighting coefficients tuned by an ANN in
contrast to those tuned by a fuzzy intelligent method and a
sine-cosine algorithm.

II. SYSTEM MODELING

The bidirectional power exchange capability of the ESS
makes it an efficient back-up for the frequency support. The
control center of ESS submits the ESS capacity available for
the frequency regulation to the transmission system operator.
Based on the frequency deviation and the available capac-
ity, the operator provides the control center with a dispatch
command. The control center subsequently issues a regulation
signal to the ESS. In response to this control instruction, the
ESS charges or discharges power to or from the system, but
only if the frequency deviation surpasses a dead zone defined
by a positive upper limit and a negative lower threshold. The
schematic representation of the ESS control used for frequency
regulation can be seen in Fig. 1. As can be seen, the ESS
control includes two functional parts of primary and secondary
controls.

The ESS is assumed to be connected to an isolated power
system. The system comprises a reheated thermal generator,
a renewable energy production, an ESS unit together with
the load demand. The production of the wind farm as the
renewable unit is assumed to be the source of uncertainty

Fig. 1. Frequency response model of the isolated power grid.

in the system. The dynamics of frequency deviation can be
characterized by the subsequent differential equation:

d(∆f)

dt
=−D

M
∆f+

1

M
(∆PG +∆Pw +∆PESS −∆PL) ,

(1)
where ∆PG, ∆Pw, ∆PESS , and ∆PL represent the variation
in the output power of the thermal generator, wind farm, ESS,
and in load value, respectively; M is the inertia constant of
the thermal generator; and D represents the load damping
coefficient. The injected power of the ESS is assumed to be
positive when the ESS is in discharging mode and negative
when in charging mode. The nonlinear feature pertaining to
the Governor Dead Band (GDB) is integrated into the model
and can be represented as:

Ug(t) = max(0, U ′
g − U ′

g0) + min(0, U ′
g + U ′

g0) (2)

where the operators max and min yield the largest and smallest
values among their inputs, respectively; ±U ′

g0 define the limits
of the dead zone; and U ′

g is the signal designated for the
governor, computed as:

U ′
g = Ucg − ∆f

R
(3)

where Ucg represents the signal generated by the controller,
and R is the speed regulation coefficient. The coefficients
αG and αE are distribution coefficients for the contribution
of the generator and the ESS unit in frequency regulation,
respectively. The coefficients add up to unity. The effect of
the Generation Rate Constraint (GRC) on turbine power can
be represented with the following model:

Pt =

∫
[min

(
max(0,

dP ′
t

dt
), λ

)
+max

(
min(0,

dP ′
t

dt
),−λ

)
]dt

(4)
where P ′

t is the input signal directed to the GRC block, and
±λ establish the upper and lower permissible values for the
generation rate.

It should be noted that the steady-state deviation in the ESS
power will ultimately dissipate. This indicates that as system
frequency is restored, the steady-state deviation in the ESS
power converges to zero. In other words, when the frequency
deviation returns to zero, the embedded controller removes
the ESS from the regulation mechanism. Subsequently, the
generator takes on the role of responding to steady-state load
variations.



III. DESIGN OF MODEL PREDICTIVE CONTROL WITH
FEEDBACK CORRECTION FOR ESS

A. Overall Description

MPC is a type of closed-loop optimal control method over
a finite time horizon. The controller produces control signals
at a sampling interval Ts by optimizing a cost function,
which encompasses the system model and both the present
and past system signals. MPC provides the dual advantage of
integrating an optimization process and managing constraints.
In this paper, the constraints range from device-specific lim-
itations like ESS output power to broader system restrictions
such as permissible frequency deviation. The proposed MPC
is segmented into three components: rolling optimization,
predictive modeling, and feedback adjustment.

B. Prediction Model and Feedback Correction

The ESS’s frequency deviation signal can be discretized
from equation (1) employing the first-order Euler discretiza-
tion, as detailed at the beginning of Page 4, where ∆f(k+1|k)
is the frequency deviation at sample k + 1 provided that it
is preceded by sample k. As figured out earlier, the ESS is
supplied with a fraction of the frequency deviation ∆f as
follows:

∆fESS(k + 1|k) = αE∆f(k + 1|k) (6)

Due to diverse issues, the actual value of ∆fESS may
differ from the predicted signal. In order to have an improved
prediction accuracy, a feedback correction is proposed to
modify the predicted value of frequency deviation as follows:

∆fESS,m(k + 1|k) = ∆fESS(k + 1|k) + P (k) (7)

where P (k) represents a correction term, which is given as
follows:

P (k) = γ [∆fESS(k)−∆fESS,m(k|k − 1)] (8)

where γ is the correction factor. A too small or too large
correction factor will give rise to a poor prediction of ∆fESS .
The correction factor in this paper is considered equal to 0.2.

C. Rolling Optimization

The MPC is furnished with the observed value of ∆fESS,m.
It then imparts the control signal Ue to the system model such
that the resultant output closely approximates the reference
output ∆f∗

ESS , all while ensuring minimized control effort.
The generation of the control signal is designed to optimize
the subsequent objective function:

P (k) = Q [∆fESS,m(k + 1|k)−∆f∗
ESS(k + 1)]

2
+RU2

e (k)
(9)

where Q and R serve as the weighting coefficients for the
MPC’s input and output, respectively. The reference output
∆f∗

ESS is set to zero. At time k + 1, the optimization
procedure is iterated using the principal data from time k. The
comprehensive MPC control framework for the ESS system is
depicted in Fig. 2.

As pointed out, the control signal is required to satisfy
physical and operational constraints as follows:

∆fESSmin
≤∆fESS ≤ ∆fESSmax

Uemin
≤Ue ≤ Uemax

∆PESSmin
≤∆PESS ≤ ∆PESSmax

.

(10)

The constraint associated with the SoC should be taken in
consideration in producing the control commands. The ESS
charge and discharge cause the SoC to vary as follows:

SoC(t)=


SoC0 −

∫
Pc(t)dt if SoCmin<SoC(t)<SoCmax

SoC0 −
∫
Pc(t)dt if SoC(t) = SoCmax, Pc(t)>0

SoC0 −
∫
Pc(t)dt if SoC(t) = SoCmin, Pc(t)<0

SoC0 otherwise
(11)

where SoC0, SoCmin, and SoCmax denote the initial SoC,
and the minimum and maximum allowed values of SoC, re-
spectively; and Pc(t) represents the ESS charging/discharging
power, which is expressed as follows:

Pc(t) =

{
PESS(t)/β if 0 ≤ PESS(t) ≤ PESSmax

βPESS(t) if PESSmin
< PESS(t) ≤ 0

(12)

where β represents the charging-discharging efficiency.

IV. INTELLIGENT TUNING OF MPC WEIGHTING FACTORS

The performance of an MPC is highly influenced by
the magnitude of the weighting coefficients. An ANN-based
methodology is proposed in this paper for optimal tuning of
the weighting coefficient appearing in (9). The schematic of
the ANN supervisory control for optimal tuning of the MPC
weights is shown in Fig. 3. Three main steps are depicted in
the figure. In the first step, the Root Mean Square (RMS) of the
frequency deviation and its derivative are computed for each
combination of the inputs Q and R. The weighting coefficients
are chosen from 0 to 5 with an interval step of 0.5, thus 11
values for each weighting coefficient and 121 combinations
of weighting coefficients. This range is chosen to sweep the
combinations that give a satisfactory operation conditions. The
RMS of the frequency deviation and its derivative can be
simply obtained from power system dynamics model results
described in Fig. 1. The trained ANN can provide accurate
estimations of frequency deviation and its derivative for the
given Q and R combinations. It is to be noted that the first
two steps are conducted only once for a given ESS topology
and given operating conditions. The learning procedure deals
with the minimization of the mean squared error as follows:

min
1

2
(∆frms −∆frms,d)

2
+

1

2

(
∆f ′

rms −∆f ′
rms,d

)2
(13)

where ∆frms and ∆f ′
rms refer to the RMS of the frequency

deviation and its derivative, and ∆frms,d and ∆f ′
rms,d are the

corresponding RMSs for the training data. After completing
the learning process, in the final step, the obtained ANN is
used to evaluate the cost function so as to identify the optimal
weighting coefficients. The cost function is defined as the
RMS of the frequency deviation over the simulation period. As



∆f(k + 1|k) =
(
1− DTs

M

)
∆f(k) +

Ts

M
(∆PG(k) + ∆PESS(k) + ∆Pw(k)−∆PL(k)) (5)

Fig. 2. Block diagram of the proposed MPC-FC for the ESS.

TABLE I
GENERATOR PARAMETERS

Parameters Value Parameter Value
Tg 0.08s M 0.1667 pu MW/Hz
Tt 0.3s D 0.0084 pu MW/Hz
Tr 10s R 5.6 Hz/pu MW
Kr 0.5 B 0.425 pu MW/Hz
KI -0.033

the figure implies, the designed ANN comprises two neurons
in the input layer corresponding to the parameters Q and
R, five neurons in the hidden layer, and two neurons in the
output layer corresponding to the two performance indices the
frequency deviation and its derivative. The weights of the ANN
are updated based on the supervised feedback approach in
which the back-propagation algorithm is used for the learning
procedure [16].

V. SIMULATION RESULTS AND DISCUSSIONS

The simulation studies are conducted on an isolated power
system. The generator and ESS parameters are shown in Tables
I and II, respectively. The generation rate of governor is
assumed to be constrained by rising/falling slew rates of 10%
per minute (0.0017 p.u. MW/s). A wind farm is assumed to be
connected to the system. The variation of the wind farm gener-
ation is shown in Fig. 4. The frequency deviation is distributed
between the generator and ESS using distribution coefficients
of 0.7 and 0.3, respectively. The upper and lower bounds of the
dead zone for the ESS are assumed to be ±0.003 Hz. In the
design process of the MPC, the prediction and control horizons
are assumed equal to 10 and 3, respectively, with a sampling
interval time of 0.1 s. The suggested LFC system is evaluated
using the OPAL-RT real-time (RT) simulator. The power grid
model created in MATLAB/SIMULINK is compiled with RT-
LAB software to translate the model to C language for the RT
simulation. Fig. 5 shows the real-time experimental setup.

A. Dynamic performance of the proposed control strategy

The efficacy of the ESS control method is assessed by
initiating a step load increase of 15 MW at t = 5 s, succeeded

TABLE II
ESS PARAMETERS

Parameter Value Parameter Value
SoC0 65% ∆PESSmax 0.01 pu

SoCmin 30% ∆PESSmin
-0.01 pu

SoCmax 90% QESS 25 kWh
Te 0.5s β 0.9

by a 10 MW load reduction at t = 50 s. Fig. 6 displays
the associated frequency fluctuations. The results include the
frequency responses associated with the MPC with feedback
correction, a conventional MPC, a fuzzy-PD control, and a
scheme with no support from the ESS. The fuzzy controller
is provided with ∆fESS and its derivative. A PD controller
is employed to provide the ESS with control commands. The
parameters of the PD controller are tuned online during the
disturbance by using the designed fuzzy controller. As the
results imply, without the ESS, for a 0.015 pu load change
at 5 s, ∆f will reach -0.143 Hz, whereas with the ESS, with
all the controllers examined, the frequency deviation remains
below -0.13 Hz and below -0.1 Hz by using the MPC-FC,
which demonstrates the superior performance of the MPC-
FC in comparison to the other ones. The regulating power
provided by the generator and by the ESS with the examined
methods are shown in Figs. 7 and 8, respectively.

When the load increases and the ESS perceives a frequency
deviation signal surpassing the established dead-bands, it
raises its output power by curtailing its charging capacity.
In each controller considered, the ESS’s power increase is
notably sharper compared to that of the generator. As the
system frequency realigns, the regulating power of the ESS
demonstrates a decremental trajectory, settling eventually at
zero. The graphical representation highlights the promptness
of the ESS’s response; facilitated by the proposed controller,
it enables greater power interchange with the grid, hence
emphasizing the mitigation of frequency deviation. Due to the
sufficient reserve capacity that the generator offers, the ESS
mainly contributes to the regulation service in the first seconds,
and phases out with the power system recovering to the steady
state. Fig. 9 illustrates the SoC fluctuations under the use of
the proposed MPC-FC controller. The ESS’s engagement in
frequency regulation is ensured, given the SoC remains within
prescribed boundaries.

B. Efficiency of the proposed ANN-based fine tuner approach

Error assessment metrics are detailed and displayed in Table
III to compare the proposed ANN-based MPC-FC with MPC-
FC methods tuned by fuzzy intelligent method and by a sine-
cosine algorithm. These criteria are the root mean square
value of deviation, the absolute maximum deviation, and



Fig. 3. Proposed ANN structure for tuning weighting coefficients.

TABLE III
PERFORMANCE INDICES BY USING ANN PREDICTION, FUZZY LOGIC, AND SINE-COSINE ALGORITHM

3*Tuning method ∆f
Absolute maximum deviations (Hz) RMS value of deviations (Hz) |ROCOF|(Hz/s)

Sine cosine algorithm [15] 0.1556 0.0425 0.1352
Fuzzy logic 0.1297 0.0354 0.1127

ANN prediction 0.1037 0.0283 0.0901

Fig. 4. Fluctuation in wind farm power.

Fig. 5. Real-time experimental setup.

ROCOF. As indicated by the table, the ANN prediction method

Fig. 6. Frequency response with various control methods.

Fig. 7. Generator output power.

yields the lowest values in the given error criteria. Figure 10
shows the plot of the cost function (colored bars) for various
combinations of weighting coefficients. The optimal weighting
coefficients are obtained equal to Q = 2.7 and R = 1.26. The
simulation with the obtained weighting coefficients results in



Fig. 8. ESS Regulating power.

Fig. 9. Variation in the SOC of ESS with the proposed controller.

Fig. 10. Cost function in (13) for various combinations of weighting
coefficients.

an RMS of 0.0265 Hz, which is indicated by a red dot. The
figure also indicates that an increased weighting coefficient R
with the weighting coefficient Q between 1.25 and 2.4 gives
rise to poor cost function values (yellow colored).

VI. CONCLUSION

In this paper, a model predictive control approach with
feedback correction is proposed to regulate the ESS charg-
ing/discharging power to participate in the frequency regu-
lation of an isolated power system. A model is developed
to deal with the uncertainties introduced by the wind power
generation and loads, and the capability of the presented
feedback-correction control is demonstrated in providing an
improved frequency deviation prediction with the concerned
uncertainties. The findings suggest that the suggested approach

produces more efficient charging/discharging commands in
comparison to the other methods examined. The method also
proves efficient in satisfying the constraint in the maximum
deliverable power by the ESS. The results also indicate that
the ESS output power rises more steeply than the generator
power. It is illustrated that the steady state ESS power vanishes
with the recovery of system frequency. An ANN supervisory
method is developed for tuning the MPC weighting coef-
ficients. The results demonstrate that tuning the weighting
coefficients by the ANN offers advantages over the fuzzy logic
and the sine-cosine algorithm.
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