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Abstract—Operational reliability and the decision-making 

process of economic dispatch (ED) are closely related and 

important for power system operation. Consideration of reliability 

indices and reliability constraints together in the operation 

problem is very challenging due to the problem size and tight 

reliability constraints. In this paper, a comprehensive reliability-

constrained economic dispatch model with analytical formulation 

of operational risk evaluation (RCED-AF) is proposed to tackle 

the operational risk problem of power systems. An operational 

reliability evaluation model considering the ED decision is 

designed to accurately assess the system behavior. A computation 

scheme is also developed to achieve efficient update of risk indices 

for each ED decision by approximating the reliability evaluation 

procedure with an analytical polynomial function. The RCED-AF 

model can be constructed with decision-dependent reliability 

constraints expressed by the sparse polynomial chaos expansion. 

Case studies demonstrate that the proposed RCED-AF model is 

effective and accurate in the optimization of the reliability and the 

cost for day-ahead economic dispatch. 

Index Terms—Power system, operational reliability evaluation, 

analytical formulation, reliability-constrained economic dispatch 

(RCED), polynomial chaos expansion (PCE). 

NOMENCLATURE 

Sets and Indices 

i Index of random variables 

j Index of PCE coefficients 

t Index of discrete periods 

g Index of conventional generating units (CGUs) 

s Index of wind power scenario 

k Index of contingency 

T Time horizon of economic dispatch (ED) 

Ωg Sets of CGU  

Ψk,up, 

Ψk,down 

Sets of the available and unavailable components 

corresponding to contingence k  

CPs Collocation points 

Parameters 

𝐾 Contingence level 

𝐹𝑂𝑅 Forced outage rate 
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𝑀 A large constant 

𝑉𝑂𝐿𝐿 Value of load loss, representing the cost 

coefficients of demand curtailment 

𝜋𝑠, 𝜋𝑘 Probability of wind power scenario s, 

contingence k 

𝑁, 𝑁𝐺 , 
𝑁𝑊 , 𝑁𝑠, 
𝑁𝐾 , 𝑁𝑃 

𝑁𝐶𝑃 , 𝑁𝑝𝑓 

Number of random variables, CGUs, wind 

farms, wind power scenario, contingency, PCE 

coefficients for each contingency, CPs, 

deterministic OPF 

Variables 

tx  Vector of stochastic input variable in the 

analytical formulation 

t

W
P , t

G
P  Vector of real-time wind power generation, 

day-ahead CGUs output in period t 

ξ
𝑡,

 Vector of N random variables following known 

probability distribution 

ξ𝑖,𝑡 The ith element of the input vector tξ , a 

standard random variable in period t 

ξ
𝑡,𝑠,�̇�

 Vector of N random variables, denoting the 

wind power scenario s and ED decision �̇� in 

period t 

𝑦𝑘,𝑡,𝑠,�̇� The demand curtailment of contingency k in 

period t, for wind power scenario s and ED 

decision �̇� 

Yk,t NCP×1 PCE output vector 

𝐇𝑘,𝑡 NCP×NP matrix with CPs of the PCE basis 

h0, h1, h2 PCE basis of orders 0,1, and 2 

hj,k,t The jth term of PCE basis in period t under 

contingency k 

Ak,t NP×1 PCE coefficients vector 

aj,k,t Coefficients of analytical formulation 

Pw,t
S,DA

 Day-ahead dispatched power output of wind 

farm w in period t, equal to the forecast value 

Pg,t
S,DA

 Day-ahead dispatched CGU generation 

Rg,t
U,DA

/

Rg,t
D,DA

 

The upward/downward reserves of CGU 

deployed in the day-ahead ED 
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Pl,t
DA Day-ahead power flow of line l in period t 

θn,t
DA

 Day-ahead phase angle of the bus n in period t 

�̇� Day-ahead controllable variables in ED 

decisions that affect system state analysis  

�̇� Day-ahead state variable in ED decision 
T

, ,

R

w t sP  Real-time available wind power in scenario s 
S,RT

, ,w t sP  Real-time wind power of wind farm w in the 

period t, scenario s 
T

, , ,

S,R

g k t sP  Real-time generation of CGUs, in period t, 

scenario s 
de,RT

tP  Real-time total demand in period t 

𝑃
𝑘,𝑡,𝑠,�̇�
𝑑𝑒,𝑅𝑇

 Real-time maximum demand supply capacity 

of contingency k in period t, for the scenario s 

and ED decision �̇� 
RT

, , ,n k t s  Real-time phase angle of the bus n in period t 
RT

, , ,l k t sP  Real-time power flow of line l in period t 

𝑧 Auxiliary binary variable 
RT

,g kz /
RT

,l kz  Availability of CGU g/ line l in the 

contingency k, 
RT RT

, ,, {0,1}g k l kz z   

(𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇�
A ) 

𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇� 

(Analytical formulations of) demand 

curtailment in period t, contingency k and 

scenario s, under ED decision �̇� 

(𝐿𝑘,𝑡,𝑠,�̇�
A ) 

𝐿𝑘,𝑡,𝑠,�̇� 

(Analytical formulations of) binary variable 

denoting whether the demand curtailment 

occurs in contingency k and scenario s 

 

I. INTRODUCTION 

N the past decades, as wind power penetration is growing at 

a fast rate worldwide, the unpredictability and uncertainty of 

power systems are also increasing. One of the most important 

issues due to the operation decision is the reliability of the 

power system [1], owing to the thermal capacity of transmission 

lines, force outages of components, and uncertain generation. 

The increasing uncertainties in power systems have given 

rise to a strong relationship between power system operation 

optimization and reliability evaluation [2]. Recently, reliability 

evaluation has developed a trend of embedding operation 

decision-making for more accurate operation strategies [3].  

Operational reliability should be considered to prevent huge 

curtailment and make the operation decision more acceptable 

[1]. Many efforts have been given to model the uncertainties 

and solve power system scheduling problems with operational 

risk or reliability. Methods such as robust optimization, chance-

constrained programming, and stochastic optimization are three 

popular approaches to deal with the security or reliability-

constrained economic dispatch (RCED) under uncertainty [4].  

The robust optimization based power system reliability 

analysis is used to find more severe contingency. For example, 

a robust contingency constrained unit commitment model 

considering the outage probability of units and transmission 

lines was proposed in [5]. A framework for multi-objective 

robust security-constrained unit commitment in the presence of 

wind farms and gridable vehicles was presented in [6]. A 

resilience-constrained day-ahead unit commitment framework 

was developed for increasing the resilience of a power system 

exposed to an extreme weather event [7]. 

The chance-constrained programming (CCP) has been used 

to minimize the operation cost and limit the operational risk. An 

N-1 security and chance-constrained unit commitment model 

was presented to cope with wind fluctuations and component 

outages [8]. A chance-constrained economic model, which 

optimizes the generation of conventional units and the 

curtailment strategies of renewable energy, was proposed to 

minimize total operational costs and restrict operational risks 

[9]. CCP deals with the uncertainty by integrating the 

probability functions of wind power into the economic dispatch 

(ED). Although the confidence levels of chance constraints can 

be preset to accommodate the operational risk, it is difficult to 

capture the consequences of random failures of components in 

a quantitative manner. Moreover, in the context of increasing 

operational uncertainty, operators must continuously monitor 

and evaluate risk in real time [10]. This makes CCP not suitable 

for the operational reliability evaluation. 

Another approach for operational reliability is to use the 

stochastic optimization (SO) with reliability indices. These 

indices help assess the system behavior under various load 

changes and renewable production. Thus, it could provide 

valuable insights for effective decision-making. In [11], a 

probabilistic framework for scheduling and dispatching 

generation while optimizing reserve needs was proposed. In 

[12], a stochastic risk-constrained framework was developed 

for short-term optimal scheduling of autonomous microgrids to 

evaluate the influence of demand response on reliability and 

economic issues. SO considers not only the constraints under 

normal operation, but also additional steady-state security 

constraints for each contingency [13]. To assess the system’s 

behavior, the expected energy not supplied (EENS) of 

reliability indices are determined based on the real-time system 

states, which encompass renewable scenarios and contingencies. 

Then, the reliability indices can be expressed in the objective 

function or the constraints of SO.  

The problem size of SO increases with the number of system 

states. This makes the analysis of massive system operational 

states in SO time-consuming and causes the computational 

burden. Several methods, such as the double cross-linked lists 

[14], the umbrella contingencies [15], and the universal 

generating functions [16], have been proposed to ease this 

burden by reducing the number of system states in reliability 

evaluation. The computational cost also can be alleviated by 

speeding up the state analysis and improving the SO 

formulation [17]. Many other methods have also been proposed, 

such as the Lagrange multiplier-based state enumeration [18], 

the unnecessary constraints removal [19], multi-parametric 

linear programming [20], machine learning [10], [21], neural 

network [22], stacked-denoising-auto-encoders-based model 

[23], and deep neural network [13].  

However, different from the long-term reliability evaluation 

that is based on the units’ installed capacity, the operational 

reliability indices are dependent on the economic dispatch (ED) 

decisions in the presence of uncertainties. This makes the 

computation complexity for operational reliability higher than 
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that for long-term reliability evaluation. To model the 

operational risk effectively and accurately, it is necessary to 

develop a reliability evaluation model that takes into account 

the decision-making process of ED as well as the uncertainty 

associated with wind power. Furthermore, incorporating ED 

decisions in operational reliability evaluation poses challenges 

due to the demanding computation requirements and the 

complicated RCED problem. The former challenge can be 

partly solved by scenario reduction [24]. However, the scenario 

reduction method may come at the cost of reduced calculation 

accuracy. In addition, due to the need for repeated risk 

evaluation every time the ED decision changes, the efficiency 

of calculating the indices is inevitably lowered. Therefore, the 

challenge lies in achieving an adaptive and accurate update of 

risk indices for each possible economic dispatch decision.  

On the other hand, the RCED problem presents considerable 

difficulties. Solving an RCED problem with all the system 

states is not practical given the tight reliability constraints. The 

outage of components and wind power uncertainty results in a 

huge amount of system states in the RCED modeling, which 

significantly increases the computation complexity [3]. As the 

number of variables and constraints grows, the conventional 

method that solves the monolithic optimization problem by 

making all decisions simultaneously becomes impractical. 

Benders decomposition [25], [26] is one possible strategy to 

solve large-scale RCED problems with reliability indices [8]. 

Since reliability index EENS constraints related to the analysis 

results of all system states cannot be decomposed, EENS can 

only be applied in the objective, not the constraints of the 

Benders decomposition method. Besides, as problem size 

grows, Benders decomposition becomes computationally 

complex, resulting in longer computation times and increased 

resource requirements. In the existing RCED model, EENS is 

incorporated in the objective function to optimize reliability and 

cost. The reliability constraints of EENS are mainly utilized to 

evaluate the feasibility of solutions from a reliability viewpoint 

[1]. Efficient RCED with constraints for both EENS and loss of 

load probability (LOLP) has not been thoroughly explored. This 

leads to a disconnection between the reliability evaluation and 

operation optimization. These highlight the need to efficienctly 

assess the system behavior and optimize decisions with the 

constraints of reliability indices. 

Thus, it would be beneficial to explore an efficient method to 

cope with the computation requirements of reliability-

constrained operation. This paper proposes a comprehensive 

reliability evaluation model with an analytical formulation of 

operational risk/reliability evaluation to tackle the operational 

risk problem of power systems. The analytical formulation 

relating reliability indices to the ED decision and the wind 

power scenario is constructed based on the polynomial chaos 

expansion (PCE). The decision dependency between the 

reliability and operational decision is decoupled so that the 

computation complexity of reliability evaluation is significantly 

reduced. The complexity of RCED also can be reduced by the 

analytical indices. All these will make the proposed method 

suitable for large-scale power systems with renewable energy 

generation. 

The contributions of this paper are summarized below. 

1) Propose a reliability-constrained economic dispatch model 

with an analytical formulation of operational risk/reliability 

evaluation (RCED-AF) that enables efficient optimization of 

the reliability and the cost for day-ahead economic dispatch 

by avoiding the computationally expensive evaluation 

procedure.  

2) Develop an operational reliability evaluation model 

considering the economic dispatch decision to accurately 

assess the system behavior under various renewable 

production changes. The model incorporates the day-ahead 

operational decisions into the reliability evaluation, in 

addition to the conventional assessment factors of wind 

power uncertainty and random failures.  

3) Present a computationally efficient scheme that significantly 

lowers the cost of operational reliability indices calculation, 

while maintains the accuracy. This scheme achieves efficient 

update of risk indices for each ED decision by approximating 

the reliability evaluation procedure with an analytical 

polynomial function. 

The remaining sections of this paper are organized as follows: 

Section II gives a brief introduction to the operational reliability 

evaluation. Section III establishes the analytical formulation of 

power system operational reliability evaluation. Section IV 

presents a mathematical formulation of RCED. Section V 

presents case studies. Section VI concludes and introduces 

recommendations for future work. 

II.  OPERATIONAL RELIABILITY EVALUATION OF POWER 

SYSTEMS WITH WIND POWER PENETRATION 

Power system operational reliability evaluation can be 

described by the flowchart depicted in Fig. 1. Fig. 1(a) shows 

the reliability evaluation process, Fig. 1(b) the wind power 

scenario, and Fig. 1(c) the power system state analysis under  

ED decision. The computation procedure consists of four steps 

[27], [28]. i) Select a system state based on the component 

reliability model and massive wind power scenario, ii) Analyze 

the system state under ED decision, iii) Calculate the reliability 

indices, and iv) Apply the indices in the operation. 

A. Reliability Model of Component 

The component reliability model consists of the reliability 

model for the wind farm and power system components. 

The operational reliability model of a wind farm can be 

represented as an equivalent multi-state wind generation 

provider. The multi-state wind generations are modeled by the 

wind power scenarios for the operational periods, which are 

generated by wind power forecast and forecast error in Monte-

Carlo (MC) simulation. For each wind power scenario s , its 

probability 𝜋𝑠 equals 1 divided by the scenario number 𝑁𝑠. 

A two-state continuous-time Markov model is utilized to 

estimate the random outages of power system components. The 

component states act as stochastic variables, which get an up or 

down state in system contingency enumeration. The 

contingency probability 𝜋𝑘  is settled according to the given 

components’ forced outage rate (FOR), as (1) [29].  



 

, ,

(1 ) .up down

up down
k up k down

k i i
i i

FOR FOR
 

= −     (1) 

where Ψk,up, Ψk,down are the sets of the available and unavailable 

components corresponding to contingence k, respectively.  
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Fig. 1.  Flowchart of power system operational reliability evaluations. (a) 

Reliability evaluation process. (b) Massive wind power scenario. (c) Power 

system state analysis is dependent on ED decisions. 

 

B. Operational Reliability Model of Power Systems 

The operational reliability model of the power system is 

based on the system state analysis at each period. The system 

state consists of wind power scenarios and component 

contingencies.  

In the operation phase, as shown in Fig. 1(c), the outage 

capacity of each CGU equals to its scheduled output, rather than 

its installed capacity. This scheduled output of CGU leverages 

the forward knowledge of day-ahead forecasts for demand and 

wind power. In other words, the day-ahead ED decisions impact 

the system state analysis and further affect the results of 

operational reliability evaluation. Thus, inputs of operational 

system states would include not only the wind power scenarios 

and contingencies, but also the ED decisions. The result of the 

real-time system state analysis, i.e., the demand curtailment, is 

obtained by OPF, as Appendix A. 

C. Operational Reliability Indices  

The explicit reliability indices associated with the analysis of 

all the system states, such as EENS and LOLP, for each 

operational period t , can be acquired by (2)-(5).  

 ,

1 1
, , , ,

.
SK

t k t

NN

k sd ds
k s

EENS t ENS
= =

=      (2) 

 ,, , ,
1 1

,
.

SK NN

k sd dt k t s
k s

LOLP L
= =

=    (3) 

 , .k s k s  =    (4) 

 
, , ,

, , ,

, , ,

0, 0

1, 0.

dk t s

k s t

k dt s

d

ENS
L

ENS


= 



  (5) 

where 𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇� denotes the demand curtailment in period t for 

contingency k and scenario s, under a given ED decision �̇�. △t 

denotes the length of period t.  

In reliability evaluation, the OPF-based calculation of 

𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇� is time-consuming. As there are a huge number of 

contingencies, multiple periods, wind scenarios, and ED 

decisions. Once 𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇� is analytically adaptive to both wind 

power scenarios and operational decisions, the computation 

efficiency could be improved dramatically. 

III. ANALYTICAL FORMULATION FOR OPERATIONAL 

RELIABILITY EVALUATION 

This section presents the procedure of obtaining analytical 

formulation for power system operational reliability evaluation. 

The analytical formulation is constructed based on PCE, whose 

basic idea is to approximate the implicit parameter-output 

function with a globally optimal explicit polynomial function 

[30].  

Steps to construct the analytical formulation are: i) determine 

the input, ii) generate the PCE basis, iii) construct the analytical 

formulation for each contingency, iv) calculate the coefficients 

of the polynomial function, and v) combine the functions of all 

contingencies to find the analytical reliability indices with all of 

system state analysis results. Fig. 2 depicts the schematic 

diagram to construct the analytical formulation for contingency 

k. The state analysis result for contingency k is analytically 

approximated as a polynomial function, which correlates the 

demand curtailment to the wind power and ED decision. 

Optimization-based method 

for system state analysis

Analytical function for system 

state analysis based on PCE

Random variables following 

known probability distribution

, , ,dk t s
yOutput
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tξ

, , ,dk t s
ENS
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time wind power and day-

ahead CGUs generation
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approximation

, , , , ,

0

= ( )
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k t j k t j k t t

j

y a h
=

 ξ
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[ , ]t t t= W G
Px P

State analysis result
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Fig. 2.  Schematic diagram of analytical formulation for contingency k 

A. Input of Analytical Formulation  

As shown in Fig. 2, the input of the analytical formulation is 

expressed by standard random variables 1, 2, ,=[ , , , ]t t t N t  ξ , 

denoting the stochastic variables [ , ]t t t= W G
Px P  of the wind 

power scenario t

W
P  and day-ahead dispatched CGUs output 

t

G
P . Note that the day-ahead dispatched CGU generation is 

included as the input stochastic variables for modelling the ED 

decisions in constructing the analytical formulation. With a 

standard random variable ,i t t ξ  for the analytical 

formulation, a stochastic input variable , ti tx  x  can be 

expressed by (6) [31]. The wind power scenarios and the ED 



decisions coupled with CGU outage capacity are included to 

model the uncertainties, i.e., 
S,DA RT

, ,g t g k tP z  G
P . The wind power 

in each period t is assumed to follow the normal distribution. 

The CGU generation is assumed to follow a uniform 

distribution within the generation limits. 

 
1

, ,Φ( ) , 1, 2, .( )i t i i tx F i N−= =   (6) 

where ,i tx  denotes the ith element of tx . iF  is the cumulative 

probability function of ,i tx . 1

iF −  is the inverse function of iF . 

Φ  denotes the cumulative probability function of ,i t . N  

denotes the number of random variables, and 𝑁 = 𝑁𝑊 + 𝑁𝐺 . 

B. Analytical Formulation and PCE Basis  

In the PCE method, the outputs are represented as a weighted 

sum of orthogonal PCE basis functions, which are constructed 

based on the probability distribution of the input random 

variables [32]. Let 𝑦𝑘,𝑡,𝑠,�̇� denotes the output of state analysis, 

i.e., the demand curtailment. Random variables ξ
𝑡,𝑠,�̇�

 denote the 

possible wind power scenario s and ED decisions �̇�, following 

known probability distribution in period t. Then, the 
, , ,dk t s

y  for 

contingency k can be formulated by a truncated expansion of 

PCE. 

 
, , , ,, , , , ,

0

= ( ).
P

d

N

j k t j k tdk t s t s
j

y a h
=

 ξ   (7) 

where aj,k,t denote the coefficient, hj,k,t(ξ
𝑡,𝑠,�̇�

) denote the PCE 

basis. There are 𝑁𝑃 = (𝑁 + 𝑚)! /(𝑁! 𝑚!) − 1  coefficients, 

with N random variables involved in PCE and maximum order 

m  of PCE basis. 

A set of one-dimensional PCE basis {hj,k,t(ξ), j=0,1,2,…} 

concerning some real positive measure should satisfy (8). 

Similarly, any set of multi-dimensional PCE basis is orthogonal 

to each other concerning their joint probability measure. 

 , , , ,

0  if 
( ) ( )

0  if .
r k t kv t

r v
h h d

r v
  


= 

 =
   (8) 

where λ is a probability measure defined as the cumulative 

probability distribution function of ξ.  is the support of the 

measure λ as shown in Table I. Each distribution is associated 

with a unique orthogonal polynomial. 

A set of multi-dimensional PCE basis can be constructed as 

the tensor product of the one-dimensional PCE basis associated 

with each input random variable, as 

 1, 2, ,( ) ( ) ( ) ( ).t t t N th h h h  =   ξ   (9) 

where ,( )i th   denotes the one-dimensional PCE basis for the 

ith random variable. 
TABLE I 

SOME TYPICAL PROBABILITY DISTRIBUTIONS AND CORRESPONDING 

ORTHOGONAL POLYNOMIALS 

Random variable Orthogonal polynomial Support 

Normal Hermite (-∞,+∞) 

Uniform Legendre [-1,1] 

Gamma Laguerre [0,+∞] 

Beta Jacobi [0,1] 

C. Coefficients of Analytical Formulation  

The coefficients in the analytical formulation are determined 

by OPF and least square estimations. The procedure to calculate 

the coefficients for contingency k and period t is given below. 

1） Construct the PCE basis, as (9) and the typical PCE basis 

in Table I.  

2） Choose appropriate combinations of collocation points 

(CPs). The CPs are finite samples of ,i tξ  that are chosen 

to approximate the PCE coefficients. Every CP satisfies 

, ,= i ti tCP ξ . The elements of CP are obtained using the 

union of zero and the roots of one higher-order one-

dimensional polynomial basis [32]. There are two 

approaches to choose CPs: the efficient collocation (EC) 

method and the regression analysis (RA) method. The 

number of CPs for RA is twice the number of coefficients 

to be determined to reach higher accuracy. 

3） Put the CPs into the coefficient matrix 𝐇𝑘,𝑡  of size 

𝑁𝐶𝑃 × 𝑁𝑃 (such as (25)). 𝐇𝑘,𝑡 consists of all the terms of 

the PCE basis. 

4） Compute the demand curtailment for the selected CPs to 

obtain an output vector Yk,t, expressed as 

 , 1, , 2, , , ,( , , , ).k t k t k t Ncp k ty y y=Y  (10) 

Note that to avoid generating inaccurate estimates of the 

statistical properties under strongly unsmooth conditions 

[33], the demand curtailment is calculated based on the 

maximum demand supply capacity of the power system, 

as in Appendix A. 

5） Calculate the coefficients of the 𝑁𝑃 × 1 vector, Ak,t, based 

on the output Yk,t of selected CPs expressed as 
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D. Analytical Formulation of Operational Reliability Indices 

Based on the PCE basis and coefficients, the analytical 

formulation for demand curtailment of contingency k can be 

constructed as 
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k t s k td ds
ENS y=   (12) 

where 𝑦𝑘,𝑡,𝑠,�̇�  can be obtained from (7). Then, by taking a 

weighted sum of analytical formulations for all contingencies, 

the analytical formulation of EENS can be established as 
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E. Discussion on Probability Distribution of Wind Power 

Forecast Error 

The day-ahead wind power can be forecasted according to 

the ARIMA model. The analytical formulation of power system 

operational reliability constructed in Subsections III-B, III-C, 

and III-D is under the assumption that the forecast error is 



described by a specific probability distribution, e.g., normal 

distribution. If the probability distribution is not known or 

under the distributionally agnostic situations, the proposed 

analytical formulation still can be constructed to obtain the 

operation reliability indices with similar performance. The 

modification lies in Subsection III-B, which generates the PCE 

coefficients and PCE basis.  

PCE coefficients and basis can be generated by applying the 

Stieltjes procedure on the discrete points of wind power forecast 

errors [32], with no knowledge of probability distribution of 

wind power. Note that the PCE basis and coefficients generated 

by the Stieltjes procedure are very close to those by the normal 

distribution. Once the PCE basis and coefficients are generated, 

the analytical formulation of power system operational 

reliability can be constructed following the procedure described 

in Subsections III-C and III-D. 

IV. ANALYTICAL FORMULATION IN RELIABILITY-

CONSTRAINED ECONOMIC DISPATCH  

The analytical formulation of operational risk/reliability 

evaluation is utilized in a stochastic day-ahead RCED-AF 

model to enable the co-optimization of reliability and economy. 

The problem across 24-hour periods corresponds to a one-day 

time horizon, with a 1-hour dispatch time step.  

A. Formulation of RCED-AF 

The mathematical formulation of the presented RCED-AF 

problem consists of the objective function (16) and constraints 

(17)-(19) as follows 

 

ndst 
2  stage: evaluation1 stage: ED

m )in ( ,
GN T T

g

t

t t

f d q VO L EENSL+     (16) 

s.t. 

 ( , )=0d q   (17) 

 ( , ) 0d q    (18) 

 g , .g t T     (19) 

The objective (16) is to minimize the total operating cost of 

the system, including generation and reserve costs of CGUs, 

and expected demand curtailment costs. The RCED problem 

could be split into the first-stage day-ahead ED problem and the 

second-stage reliability evaluation problem. The first-stage 

concerns variables �̇�, �̇�, where �̇� is the day-ahead controllable 

variable that affects the result of system state analysis. �̇� 

indicates the state variables. �̇� = {Pg,t
S,DA

,Rg,t
U,DA

,Rg,t
D,DA|∀g,∀t} , 

where Pg,t
S,DA

, Rg,t
U,DA

, and Rg,t
D,DA

 denote the day-ahead scheduled 

generation, the upward, and downward reserve of the CGU g in 

the period t , respectively. The reserves are assumed the settled 

value, and the Pg,t
S,DA

 is discussed as �̇�  in Section III. �̇� =
{Pw,t

DA,Pl,t
DA,θn,t

DA| ∀w,∀l,∀n,∀t}, where Pw,t
S,DA

 denotes the power 

output of wind farm w  in the period t . Pl,t
DA denotes the power 

flow of line l  in period t. θn,t
DA

 denotes the phase angle of the 

bus 𝑛  in the period 𝑡 . The second stage concerns the state 

analysis of each wind power scenario and each contingency that 

is coupled with the first-stage variables, as in Appendix A. 

The constraints (17)-(19) include power output limits of 

CGUs and wind farms, reserve requirements, power balance 

limits, power flow limit of the transmission lines, limits for the 

phase angles, and so on. The reliability indices EENSt and 

LOLPt are calculated by the second-stage problem that is 

dependent on the first-stage ED decision, and reliability 

constraints (20)-(21) are applied in the RCED. 

 .t tEENS EENS   (20) 

 .t tLOLP LOLP   (21) 

B. Reliability Constraints of RCED-AF 

In general, with a higher order of basis, higher accuracy of 

PCE approximation can be achieved, but the number of PCE 

coefficients and the computational cost also increase. For a 

steady-state problem, a relatively low PCE order, typically 2, is 

sufficient to provide the output results with acceptable accuracy 

[32]. Thus, a 2nd-order PCE expansion is adopted in this paper. 

The test results in Section V will demonstrate that the order of 

2 can accurately calculate the demand curtailment and 

reliability indices with relatively high computational efficiency.  

In this study, the sparse expression of PCE approximation is 

used, where the quadratic cross terms and the bi-linear terms in 

(9) are eliminated [34]. Then, the coefficient number Np of the 

sparse 2nd-order expansions is 2N+1.  

The PCE basis for the wind power variable with normal 

distribution can be expressed by the Hermite basis, and that for 

CGU output variable with a uniform distribution is the 

Legendre basis. Eq. (22) gives the 1st- and 2nd-order Hermite 

basis, while Eq. (23) the 1st- and 2nd-order Legendre basis.  
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Substituting these PCE bases into the output of state analysis 

(7), we obtain the 2nd-order sparse PCE expressed as  
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In (24), 
, , ,di t s

ξ  for 𝑖 = 1,2, … , 𝑁𝑊  are the normal random 

variables denoting wind power, while those for 𝑖 = 𝑁𝑊 +
1, 𝑁𝑊 + 2, … , 𝑁 are the uniform variables of  the dispatched 

generation of CGUs. Random variables 
, , ,di t s

ξ  are transferred 

from the variables of the wind power scenario and the ED 

decision, according to (6). 

To calculate the PCE coefficient, the CPs number 𝑁𝐶𝑃 takes 

twice the number Np according to the RA method. Put the CPs 

of the PCE basis into the 𝐇𝑘,𝑡, as (25). Then, the coefficients 

can be obtained according to Section III-C.  
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According to (12) and the sparse expression (24) of 𝑦𝑘,𝑡,𝑠,�̇�,  

the constraints for demand curtailment can be written as  

 {
𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇�

𝐴 ≥ 0

𝐸𝑁𝑆𝑘,𝑡,𝑠,�̇�
𝐴 ≥ 𝑦𝑘,𝑡,𝑠,�̇�(ξ

t,s,ḋ
).

  (26) 

It follows from (13) and (14) that constraints for reliability 

indices (20) and (21) are, respectively, recast as 
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The binary variable 𝐿𝑘,𝑡,𝑠,�̇�
A  in (15), which is piecewise and 

non-convex, can be rewritten in a linear form as 
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C. Solution of RCED-AF 

According to the description above, the RCED-AF model is 

a quadratic programming (QP) problem. The constraints for 

demand curtailment (12) and the reliability indices (27) and (28) 

can be recast as linear constraints, as long as the maximum PCE 

order is 1. In other words, the RCED-AF model can be 

converted into a linear programming (LP) problem and solved 

without using commercial solvers. It can be solved directly 

through modern QP solvers, such as Gurobi and Cplex, to 

obtain the solution.  

The algorithm procedure of the proposed RCED-AF model 

is presented in Fig. 3. The procedure could be divided into two 

parts. The first part is to construct the analytical formulation of 

demand curtailment for the operational time horizon. In the 

second part, operational reliability indices are obtained and the 

RCED-AF is solved. The conventional RCED and the proposed 

RCED-AF are compared in Table II. Optimizing with all the 

wind power scenarios and contingencies leads to a high 

computation burden. However, with the analytical formulation, 

the analysis of the system state is converted from OPF into the 

analytical formulation. This leads to a decreased variable 

number and problem size. Moreover, the number of OPF Npf is 

also independent of wind scenario number and iteration times, 

and then the computation time could be decreased significantly. 

System parameters,  contingency number NK, 

wind scenario number NS

Set CPs of number  Ncp

Transform independent variables in CPs to 

independent stochastic input variables X

Calculate Ncp deterministic power flows

Determine the Hermite and Legendre basis

Determine the coefficients in the formulation

The contingency k

Generate the analytical formulation of 

system state analysis for contingency k

Generate the formulation of operational 

reliability indices LOLPt, EENSt that analytical 

to wind power scenario and ED decision

Kk N

k =k+1

Analytical formulation based    on PCE

The time period t

t =t+1

t T

Generate constraints for demand curtailment 

and operational reliability indices

Solve the RCED-AF model

ED decision and operational reliability indices

Set random variables representing wind 

power uncertainty and ED decision

No

No

Yes

Yes

RCED with analytical reliability   constraints

 
Fig. 3.  Flowchart of the proposed RCED-AF model 

 

TABLE II  
COMPARISON BETWEEN CONVENTIONAL RCED AND RCED-AF  

 Conventional RCED RCED-AF 

Problem type 
Large-scale nonlinear 

programming 
QP (or LP) 

Reliability 

indices 

Only in the objective 

(EENS) 

In the objective and 

constraints (EENS, LOLP) 

Reliability 

constraints 

Non-convex Polynomial formula 

For evaluating the 

feasibility of solutions 
For optimal solutions 



Solve methods  
by decomposition with 

relaxed constraints 
Solve directly or by 

decomposition  

System state 

analysis 

OPF based on the day-

ahead ED decision 

The analytical formulation 

for the ED decision 

Npf NS·NK·iteration NK·2·(2N+1) 

V. CASE STUDY 

In this section, we present the performance evaluation of the 

proposed analytical formulation and RCED-AF model. To 

evaluate the operational reliability, the proposed analytical 

approximation approach is compared with the MC method. 

Moreover, the accuracy and computational efficiency of the 

proposed RCED-AF model are verified by comparing with that 

of the CCP-based ED model, the Benders decomposition with 

relaxed reliability constraints model, and the stochastic 

optimization with scenario reduction model.  

Three test systems are used. Case 1 considers the modified 

RBTS, Case 2 the IEEE RTS-79, and Case 3 the modified IEEE 

118-bus system. All case studies were conducted in MATLAB 

on a PC with an AMD Ryzen 7 4800H 2.9-GHz processor and 

16 GB RAM. The RCED-AF takes advantage of YALMIP [35] 

with solver GUROBI.  

A. Case 1: IEEE-RBTS 

The modified RBTS consists of 6 buses, 9 transmission lines, 

9 CGUs, and 5 demands [36]. Two CGUs are replaced by two 

wind farms (WFs) on buses 1 and 2. The wind penetration is set 

as 30%, namely, 90 MW of total generation capacity 300 MW 

is from wind turbines. The VOLL is $3.85/kWh [36]. The 

electrical and reliability parameters are given in Table III. The 

capacity and reliability parameters are listed in Table IV. 

Historical sequential wind speed data is derived from NREL’s 

Wind Integration Data Sets [37]. The curves of day-head 

forecast wind power and load demand are shown in Fig. 4.  
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Fig. 4.  The curves of day-ahead forecast wind power and load demand. 

 
TABLE III 

ELECTRICAL AND RELIABILITY PARAMETERS OF THE MODIFIED RBTS 

 

Bus 
Device Type 

Capacity 

(MW) 
FOR 

Ramp rate 

(MW/min) 

Gen. cost 
($/MWh) 

1 CGU 1 thermal 40 0.030 0.4 12 

1 CGU 2 thermal 40 0.030 0.4 14 

1 WF 1 Wind 45 / / / 

2 WF 2 Wind 45 / / / 

2 CGU 3 hydro 5 0.010 2.5 1 

2 CGU 4 hydro 5 0.010 2.5 1 

2 CGU 5 hydro 40 0.020 20 0.5 

2 CGU 6 hydro 20 0.015 10 1 

2 CGU 7 hydro 20 0.015 10 0.6 

2 CGU 8 hydro 20 0.015 10 0.7 

2 CGU 9 hydro 20 0.015 10 0.8 

 
TABLE IV  

CAPACITIES AND RELIABILITY PARAMETERS OF RBTS TRANSMISSION LINES 

Device 
Capacity 

(MW) 
FOR Device 

Capacity 

(MW) 
FOR 

line 1 85 0.0017 line 6 85 0.0017 

line 2 71 0.0057 line 7 71 0.0057 

line 3 71 0.0045 line 8 71 0.0011 

line 4 71 0.0011 line 9 71 0.0011 

line 5 71 0.0011 - - - 

 

1) Accuracy and Computation Time Analysis: First, the 

accuracy and computation time for demand curtailment and 

operational reliability are investigated. Under a given ED 

decision and contingency, the probability distribution of the 

demand curtailment was obtained by the PCE and MC methods. 

In the MC method, the wind power scenarios are obtained by 

the MC simulation while the demand curtailment is obtained by 

the OPF.  

The computation errors of PCE coefficients are compared 

between the RA and EC methods. The probability distribution 

function (PDF) curve and cumulative distribution function 

(CDF) curve of demand curtailment obtained by four methods, 

MC, 1st-order PCE (RA), 2nd-order PCE (RA), and 2nd-order 

PCE (EC) are shown in Fig. 5. Fig. 5(a) and 5(b) are the results 

under the 2-level contingency with outages of line 8 and CGU 

5. Fig. 4(c) and 4(d) show the results under contingency with 

outages of line 1 and CGU 5. According to Fig. 5(a) and 5(b), 

the 2nd-order PCE and the MC methods have almost the same 

PDFs and CDFs of demand curtailment. It can be seen from Fig. 

5(c) and 5(d) that the 2nd-order PCE (RA) method matches the 

MC method in PDFs well, as compared to the 1st-order PCE 

(RA) and 2nd-order PCE (EC) methods.  

According to the demand curtailment results, the operational 

reliability indices are obtained. As presented in Table V, the 

indices of the PCE (RA) method are accurate as those of the 

MC method. There is nearly 0% computation error for indices 

LOLP under different contingency levels and wind power 

scenario numbers. With Ns=10, the EENS computation errors 

of contingency levels 1-4 are 0%, 0.14%, 0.17%, and 0.11%, 

respectively. Besides, with Ns =100, the EENS computation 

errors of contingency levels 1-4 are 0%, 0.19%, 0.15%, and 

0.14%, respectively. Therefore, the PCE has reliable results for 

power system operational risk evaluation. 

The computation times vary with the contingency level and 

wind power scenario number, as shown in Table VI. The time 

of PCE modeling increases with the number of contingencies, 

while it was nearly immune from the wind power scenario 

number. Therefore, the total computation time of analytical 

evaluation is less than MC when there is an increased wind 

power scenario number. For contingency level K=4 and wind 

scenario number Ns=100, the calculation time of the MC 

method is 1,971 s. In contrast, the total calculation time of the 



proposed method is 587 s, with only 0.053 s of evaluation time 

(time for calling the PCE function). In other words, roughly 

30,600 system states are evaluated in less than 0.1 seconds. The 

proposed analytical operational reliability evaluation method 

provides accurate and reliable results with high computation 

efficiency. 
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Fig. 5.  Demand curtailment of PCE and MC method under contingencies. (a) 
PDF with outages of line 8 and CGU 5. (b) CDF with outages of line 8 and 

CGU 5. (c) PDF with outages of line 1 and CGU 5. (d) CDF with outages of 

line 1 and CGU 5. 

 
TABLE V 

COMPUTATION ACCURACY COMPARISON OF DIFFERENT CONTINGENCY 

LEVELS AND WIND POWER SCENARIO NUMBERS 

Ns K 
LOLP- 

PCE 
LOLP- 

MC 
EENS-PCE 

(MWh) 
EENS-MC 

(MWh) 

10 

1 0.100 0.100 0.839 0.839 

2 0.110 0.110  1.039 1.040 

3 0.107 0.107 0.996 0.998 

4 0.109 0.109 1.036 1.037 

100 

1 0.101 0.101 0.845 0.845 

2 0.107 0.107 1.029 1.031 

3 0.109 0.109 1.059 1.060 

4 0.109 0.109 1.093 1.094 

 
TABLE VI 

COMPUTATION TIME COMPARISON OF DIFFERENT CONTINGENCY LEVELS AND 

WIND POWER SCENARIO NUMBERS 

Ns K 
PCE  

Basis (s) 

Calling PCE  

function(s) 

PCE 

total (s) 

MC  

total (s) 

10 

1 4.67 0.003  4.67 1.03 

2 27.56  0.005  27.56 9.34 

3 158.74 0.008  158.75 55.87 

4 609.81 0.014  609.82 219.32 

100 

1 3.17 0.005  3.18 10.13 

2 28.53 0.002  28.54 104.28 

3 150.78  0.010  150.79 508.67 

4 586.76 0.053  586.81  1,971.27 

 

2) Economy and Reliability Comparison: The reliability 

requirements for 𝐸𝐸𝑁𝑆 and 𝐿𝑂𝐿𝑃 are 1 and 0.1, respectively. 

The contingency level is 1 and the wind power scenario number 

is 10. Table VII shows the costs of the proposed RCED-AF 

model and the RCED based on Benders decomposition (RCED-

BD) with relaxed reliability constraints, and chance-constrained 

economic dispatch (CCED) with confidential levels of 0.99 and 

0.999. The RCED-BD is taken as a benchmark. The demand 

curtailment and operational reliability of RCED-BD and 

RCED-AF are evaluated along with decisions, while those of 

CCED are evaluated based on post-contingencies. It can be seen 

from Table VII that the operational costs are the same by the 

proposed RCED-AF and the RCED-BD models, but much 

higher by the CCED models. Main operation costs for the 

CCED models occur at the demand curtailment. Results of the 

operational reliability indices, LOLP and EENS, are displayed 

in Fig. 6. It is observed from Fig. 6 that LOLP and EENS of the 

RCED-AF and RCED-BD match very well. This indicates that 

the RCED-AF model can provide accurate optimization results. 

Fig. 6 also shows that both indices by CCED are higher than 

that by RCED. This implies that CCED models are not suitable 

for reliability evaluation. The RCED-AF and RCED-BD have 

relatively better effects on improving operational reliability.  
 

TABLE VII 
COST COMPARISON BETWEEN CASES (K=1, Ns=10) 

Cost  

Case 
Total 

CGU  

generation 

CGU  

reserve 

Demand  

curtailment 

RCED-AF $33,453 $10,568 $244 $22,641 

RCED-BD $33,453 $10,568 $244 $22,641 

CCED (0.99) $96,890 $8,059 $244 $88,587 

CCED (0.999) $85,696 $8,132 $244 $77,320 
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Fig. 6.  Operational reliability indices comparison by RCED-AF, RCED-BD 

and CCED. (a) LOLP. (b) EENS. 

 

3) Computation Efficiency Analysis for RCED: The number of 

OPF Npf and computation time are shown in Table VIII, 

respectively. With contingency level 1 and wind power scenario 

number 10, the computation time of analytical formulation for 

24 h is 145.11 s, while solving the RCED cost only 4.46 s. The 

total computation time of RCED-AF is 149.78 s, which is only 

8.7% of the RCED-BD, 1,658.72 s. The total solution time is 

significantly reduced in the proposed RCED-AF model. 

The OPF for RCED-AF is only required in the approximation 



of polynomial coefficients. The number of contingencies is 19. 

Each contingency requires OPF of the number of collocation 

points NCP, 46. Therefore, the number of OPFs for RCED-AF 

is 874. The RCED-BD, however, requires OPF for each 

contingency and wind power scenario, under each Benders 

decomposition iteration. This leads to 41,420 times OPF and a 

higher computation burden.  

 
TABLE VIII 

COMPUTATION EFFICIENCY COMPARISON (K=1, Ns=10) 

RCED-AF RCED-BD 

Npf Time (s) Npf Time (s) 

874 149.78 41420 1658.72 

 

4) Reliability Constraints Analysis for RCED: Fig. 7 illustrates 

the demand curtailment cost and total cost corresponding to 

various EENS requirements. The curves show that as the 

reliability requirement 𝐸𝐸𝑁𝑆  decreases, the demand 

curtailment cost associated with EENS increases. The total 

operation cost generally decreases as 𝐸𝐸𝑁𝑆  decreases. 

Moreover, higher reliability requirements may not be met, as it 

is not feasible when 𝐸𝐸𝑁𝑆 less than 0.8112 MWh. The lower 

reliability requirements can always be met as the reliability 

constraints are inactive for 𝐸𝐸𝑁𝑆 greater than 0.8142 MWh. 

Fig. 8 illustrates the demand curtailment cost and total cost 

corresponding to various LOLP requirements. Similar to EENS 

requirements, it is not feasible when 𝐿𝑂𝐿𝑃 less than 0.05, and 

the total operation cost generally decreases as 𝐿𝑂𝐿𝑃 decreases. 

However, reducing the requirement for LOLP may not directly 

result in a decrease in the demand curtailment cost associated 

with EENS. When the 𝐿𝑂𝐿𝑃 is set to 0.1, the minimum demand 

curtailment cost is $ 22,641. Therefore, the proposed RCED-

AF can help achieve reliability requirements and find the 

reliability boundaries by different reliability constraints. 
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Fig. 7.  Operation costs under different EENS requirements. (a) Demand 

curtailment cost. (b) Total cost. 
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Fig. 8.  Operation costs under different LOLP requirements. (a) Demand 

curtailment cost. (b) Total cost. 

 

5) Wind Penetration Level Analysis: In this section, four wind 

penetration (WP) levels, 6.7%, 15.5%, 30.0%, and 46.2% are 

considered. The total capacity of wind farms is set as 15 MW, 

30MW, 90MW, and 180 MW for WP1, WP2, WP3, and WP4, 

respectively. The reliability indices for various wind 

penetration levels are shown in Fig. 9. Note that for high-

penetrate wind power systems, the CGUs operate at their 

minimum generation limitation. Therefore, the downward 

reserve requirements are removed in this section, to ensure the 

consumption of wind power.  

The results of RCED-AF and RCED-BD match very well, 

which indicates that the RCED-AF model can provide accurate 

optimization results for different WP levels. Reliability indices 

LOLP and EENS of WP1 are larger than those of WP2, while 

WP2 is larger than WP3. This phenomenon occurs because the 

influence of CGUs outages diminishes with higher wind power 

levels, while the outages of wind turbines are disregarded. 

However, during some periods, such as periods 10 and 15, the 

indices of WP4 are larger than WP1, WP2, and WP3. The 

results denote that the reliability of extremely high-penetrate 

wind power systems, such as WP4, could be reduced due to the 

inherent uncertainty of wind power. 
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Fig. 9.  Operational reliability indices under wind penetration. (a) LOLP. (b) 
EENS. 

 



6) Demand Uncertainty in RCED: To model the demand 

uncertainty, the real-time demand scenarios t

D
P  are 

incorporated into the stochastic input variables as 

[ , , ]t t t t= W G D
Px P P , assuming the real-time demand follows the 

normal distribution, and the standard deviation is 5% of the 

forecast value. According to the procedure of the RCED-AF, 

the operational reliability is optimized considering demand 

uncertainty. The total cost of the system with demand 

uncertainty is $ 39,613 for both RCED-BD and RCED-AF. This 

cost is higher compared to the system with no demand 

uncertainty, $32,307. The results demonstrate that power 

systems experience a decrease in both reliability and economic 

performance in the presence of demand uncertainty.  

The reliability indices considering the demand uncertainty 

are compared in Fig. 10. The LOLP for the systems with 

demand uncertainty tends to be higher compared to systems 

with no demand uncertainty. Besides, the EENS for the systems 

with demand uncertainty is larger compared to those with no 

demand uncertainty. This is because the demand uncertainty 

increases the risk of demand curtailment. The computation time 

of RCED-BD is 3,902 s, while the proposed RCED-AF method 

takes 146 s. 
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Fig. 10.  The operational reliability indices considering demand uncertainty. 

(a) LOLP. (b) EENS. 

 

B. Case 2: IEEE RTS-79 System 

The performance of the RCED-AF, RCED-BD, and 

stochastic optimization method (RCED-SO) with scenario 

reduction is compared on the IEEE RTS-79. The RTS-79 

consists of 32 generating units, 33 transmission lines, and 5 

transformers with an installed capacity of 3,405 MW and a peak 

load of 2,850 MW. Two CGUs on buses 18 and 21 are replaced 

by WFs with the same capacity, respectively. The reliability and 

operation parameters of the test system can be found in [38]. 

The wind scenario number is set to 50, and NK=31 with K=1. 

The RCED-AF is based on the 1-order PCE (RA) to transfer the 

SCED-AF to LP programming. The number of wind power 

scenarios in RCED-SO is reduced to 10 by k-means clustering. 

The constraints for indices EENS and LOLP are relaxed. 

1) Economy and Reliability Comparison: The system total 

costs of the proposed RCED-AF model, RCED-BD model, and 

RCED-SO are shown in Table IX, respectively. The system 

total costs, unit generation cost, reserve cost, and demand 

curtailment cost of RCED-AF closely match those of RCED-

BD, with relative errors of 0.005%, 0%, 0%, and 0.013% 

respectively. Besides, the values of RCED-SO are with relative 

errors of 1.25%, 0.13%, 0%, and 3.39% respectively. Therefore, 

the proposed RCED-AF is more accurate than the RCED-SO 

with scenario reduction.  

The detailed operational reliability indices are shown in Fig. 

11. The indices LOLP and EENS of the RCED-AF and RCED-

BD match very well, which indicates that the RCED-AF model 

can deliver accurate optimization results. In the RCED-SO with 

the reduced scenario, higher errors in the indices are observed 

in certain periods, particularly periods 12-18 and 21-22. 
 

TABLE IX  
COST COMPARISON BETWEEN CASES  

Cost  

Methods 
Total 

CGU 

generation 

CGU 

reserve 

Demand 

curtailment 

RCED-AF $988,212 $595,100 $6,357 $386,755 

RCED-BD $988,262 $595,100 $6,357 $386,804 

RCED-SO $1,000,643 $594,359 $6,357 $399,927 
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Fig. 11.  Operational reliability indices of RCED-AF, RCED-BD, and RCED-

SO. (a) LOLP. (b) EENS. 

 

2) Computation Efficiency Analysis: Fig. 12 compares the 

computation times of RCED-AF, RCED-BD, and RCED-SO 

models as the number of wind power scenarios increases. With 

Ns=10, the total computation times of RCED-AF and RCED-

SO are close but lower than that of RCED-BD. With Ns=50, the 

total computation time of RCED-AF is 528 s, of which the 

solution time is 5.53 s. In other words, the RCED-AF can be 

solved in seconds after constructing an analytical formulation. 

However, the computation time of RCED-BD is 8,889 s, and 

the RCED-SO is unsolved after 16,230 s calculation as out of 

memory. Thus, the RCED-AF significantly enhances efficiency, 

particularly in situations involving a large number of wind 

power scenarios. 
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Fig. 12  The computation time of different Ns. The computation times of the 

proposed RCED-AF (green) are less than 10 seconds. 

 

C. Case 3: Scalability Test on the IEEE 118-bus System 

The RCED-AF is also conducted and compared with RCED-

BD with relaxed reliability constraints, on the modified IEEE 

118-bus system. The parameters of the test system can be found 

in [5]. Detailed operation data of the CGUs are derived from the 

previous study [39]. The CGUs at buses 10, 12, 49, 54, and 59 

are replaced by wind turbines with the same capacity. The total 

installed capacity of CGUs and the wind are, respectively, 

1,300 MW and 5,920 MW. The peak demand is 3,668 MW. 

In this system, Ns=10, and NK=50 with K=1. The system costs 

of the RCED-AF and RCED-BD model are shown in Table X. 

The system total costs, unit generation cost, reserve cost, and 

demand curtailment cost of RCED-AF closely match those of 

RCED-BD, with relative errors of 0.08%, 0.001%, 0%, and 

1.85%, respectively. 

The computation time of the proposed RCED-AF and that of 

RCED-BD are shown in Table XI. Each contingency requires 

OPF of the collocation points number 218. The number of OPF 

for RCED-AF is 10,900, while RCED-BD requires 608,000 

times OPF, which significantly increases the computation cost. 

It is observed from Table XI that the total computation time for 

running RCED-AF is 1,970 s, which is 9.8% of 20,038 s for the 

RCED-BD. 
TABLE X 

COST COMPARISON BETWEEN CASES (K=1, S=10) 

Cost  

Case 
Total 

CGU  

generation 

CGU  

reserve 

Demand  

curtailment 

RCED-AF $825,208 $536,859 $252,829 $35,519 

RCED-BD $824,557 $536,865 $252,829 $34,863 

 
TABLE XI 

COMPUTATION EFFICIENCY COMPARISON 

RCED-AF RCED-BD 

Npf Time (s) Npf Time (s) 

10,900 1,970 608,000  20,038  

VI. CONCLUSION 

This paper presented a reliability-constrained economic 

dispatch model with an analytical formulation of reliability 

constraints to deal with the time-varying behavior of wind-

integrated power systems. This model considers the day-ahead 

decision-making process of economic dispatch as well as the 

uncertainty associated with the wind power. The proposed 

method can be used for wind power variables with specific 

probability distributions and those under the distributionally 

agnostic situations.  

Simulation results have demonstrated that the proposed 

analytical approximation scheme is very effective in accurately 

capturing the operational reliability of power systems. 

Moreover, the proposed RCED-AF model significantly 

enhances the efficiency for power system operational decision-

making, particularly in situations involving a large number of 

wind power scenarios. Further research is needed to expand the 

time frame for the day-ahead optimization and to improve the 

computation efficiency for offline calculation of analytical 

formulation. In addition, other operation decisions, such as 

demand response, storage, and network restructure could be 

incorporated into the RCED-AF model to improve the system 

cost and reliability performance. 

APPENDIX A 

FULLY EXPANDED FORMULAS OF THE OPF MODEL FOR 

SYSTEM STATE ANALYSIS 

The real-time maximum demand supply capacity 𝑃
𝑘,𝑡,𝑠,�̇�
de,RT

 for 

contingency k  can be calculated based on the wind power 

scenario s , under a given ED decision d  at period t . The 

optimal demand curtailment 
, , ,dk t s

ENS  can be acquired by 

 
de,RT de,RT U

,

,D

,

A

,, , ,,
( ) }.max{0, t gdk t s

g

td k t s
P PE RNS −= −    (A1) 

The upward reserve is assumed available and its total amount 

equals 3% of the forecast demand plus 5% of the forecast wind 

generation [40]. 

The mathematical formulation of the system state analysis 

consists of the demand-supply capacity maximization objective 

function (A2) and the constraints (A3)-(A8). 

 
de,RT

, , ,
max

k t s d
P   (A2) 

s.t. 

 TS,RT S,DA R

, , , ,

R

, , , ,

T

g g t g k g k t s g t g t g kP u z P P u z        (A3) 

 
S,RT RT

, , , , ,0 w k t s w t sP P    (A4) 

 
G W shed ft RT de de

, , , , , , , , , ,

S

,

,RT T

,

R

,

S,( )g t s w k t s w k t s l t s k t s d
C P C P P C P C P +  − −  = 

 (A5) 

 
RT RT

, , , , , , /l k t s l k t s lP X=    (A6) 

 
RT RT RT

, , , , ,l l k l k t s l l kP z P P z      (A7) 

 
RT

, , .k t s     (A8) 

The real-time generation of CGUs should consider the 

commitment ,g tu , the day-ahead dispatch decision 
S,DA

,g tP , and 

the availability of CGUs in the contingency k , as (A3). Real-

time wind power in scenario is limited by the available wind 

power, as (A4). The power balance with wind shedding 
shed

, , ,w k t sP  

for each bus is presented as (A5), with a bus-generator 

connection matrix 
GC , bus-WPGs connection matrix 

WC , 



bus-line connection matrix ftC , and bus-demand connection 

matrix deC . The power flow of lines and phase angles for each 

scenario is limited as (A6)-(A8). 
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