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Abstract—Manual batch kitting in pharmaceutical manufac-
turing is labor intensive and prone to quality issues. Automation
can improve productivity and reduce risks, but handling dynamic
warehouse environments is challenging. This paper studies the
feasibility of integrating autonomous industrial mobile manipu-
lators (AIMMs) to enable flexible kitting without infrastructure
changes. We propose an adaptive perception and manipulation
system for localizing and grasping pharmaceutical containers
from variable rack placements. Fiducial markers provide ap-
proximate navigation for the mobile base, then point cloud
processing precisely estimates container poses for manipulation
even under tight spacing and occlusion constraints. The key
technical contribution is a segmentation approach leveraging
the viewpoint to isolate the target container’s front plane for
robust localization. The proposed system was evaluated in a mock
pharmaceutical kitting environment where it localized containers
with an average translation and orientation error of respectively
6mm and 1.6 degree. Finally, it achieved a success rate of 96.66%
for the kitting of individual containers.

Index Terms—robotic kitting, autonomous mobile robots, point
cloud processing, pose estimation

I. INTRODUCTION

The process of kitting has traditionally been highly manual
due to the dynamic conditions it is subject to, both in terms
of the process parameters, e.g., number of components and
combinations, as well as the environment where it takes
place [1]. Kitting areas generally feature various dynamic
aspects such as human and forklift traffic, differing storage
rack types, and containers with varying appearances, shapes
and sizes, all of which must be handled [2].

However, most prior kitting research has focused on struc-
tured bins rather than dynamic environments. Many challenges
persist in flexibly perceiving and manipulating objects from
variable rack storage [3]. This problem is especially perti-
nent in pharmaceutical manufacturing, where kitting provides
critical quality control but incurs high costs from stringent
regulations if done manually [4].

The work presented in this paper was carried out at the
premises of the pharmaceutical company Novo Nordisk, where
kitting of production batches is one of many processes used
to ensure product quality. Components can thereby be stored

Fig. 1. Overview of the experimental setup where the Spot robot collects a
container with injection device components.

in sealed containers right up until the point where they are
fed into production areas, while the constraint of one kit per
batch simplifies line clearance and helps reduce the risk of
cross-contamination. Therefore, heavy emphasis is placed on
documentation and traceability of individual process steps,
often done through scanning of barcodes and manual inputs
to various systems, which prolongs the overall process and
introduces many sources of error. As a result, automation of
such kitting processes is a necessity.

Automation of kitting processes within traditional storage
areas, without requiring extensive and costly restructuring,
requires a complex system that is capable of intelligently han-
dling various problems related to navigation, perception and
manipulation [5]. Autonomous industrial mobile manipulators
(AIMMs) have become indispensable for automating kitting
operations in industrial environments, as they integrate per-
ception, navigation and manipulation capabilities on a system
usually comprised with a mobile platform and an industrial
robotic manipulator [6]–[8].



In this work, we study the feasibility of integrating a
Spot robot from Boston Dynamics (Fig. 1) for autonomous
kitting processes specifically for pharmaceutical production
settings by means of a tailored perception and pose estimation
system. In particular, we examine the complex requirements
surrounding accurate perception and dexterous manipulation
in cluttered, unstructured environments. To robustly handle
occlusion and variability during localization of arbitrarily
placed containers for grasping, we propose a system which
combines fiducial markers for approximate navigation with
point cloud processing for precision pose estimation. The main
contributions of this work are:

• Adaptive localization of pharmaceutical containers under
tight spacing and occlusion constraints.

• Integration of this approach with fiducial marker strate-
gies to avoid expensive infrastructure modifications.

• Experimental validation of autonomous kitting for
streamlining a traditionally manual pharmaceutical pro-
cess.

II. BACKGROUND

A. Kitting use case at Novo Nordisk

The process of kitting for production batches at Novo
Nordisk consists of the collection of a number of sealed
containers that must be pulled out from storage racks in a
designated kitting area, carried to, and placed on a pallet or
trolley. Containers are located by a storage rack ID and an
accompanying shelf location, defined as a row-column on the
rack, both of which are indicated by markers and barcodes.
The containers are placed freely within the approximate area
above a shelf location marker, and thus, their exact position
and orientation cannot be determined prior to immediate
handling. It is therefore sufficient for Spot to approximately
reach the area where the container is expected to be, however,
an accurate 6D pose estimate for the desired container must
be computed upon arrival.

B. Localization with occlusion constraints

A core challenge in automating Novo Nordisk’s kitting
process is robustly localizing containers in dynamic environ-
ments where occlusions can create challenges for determine
the right position of boxes in the shelves. While model-
based techniques like RANSAC [9] have been applied in
kitting operations before, assumptions about shelf geometry
and known geometric primitives in the environment are still
needed. Newer learning approaches are promising handling
of incomplete point clouds in dynamic scenes [10] where
advanced neural nets are used to complete shapes from partial
inputs for grasp pose detection. However, large datasets are
often required to train such neural networks and they pose
a great challenge in safety-critical domains such as a phar-
maceutical warehouse where validation of leaned models is
difficult [11].

C. Adaptive perception based on point cloud segmentation

Point cloud processing offers a robust solution for han-
dling unstructured storage environments, with basic geometric
methods such as planar segmentation [12] providing resilience
against missing data due to occlusions. In a recent example,
Liu et al. [13] have used region growing approaches to extract
planar surfaces from noisy point clouds for industrial appli-
cations, and combined RANSAC with Euclidean clustering
to enable robot pick and place in cluttered environments by
extracting key surfaces.

Recent studies have also explored learning-based perception
directly from raw point clouds, such as PointNet [14] and Gnd-
Net [15], containing neural network architectures that utilize
unordered point sets for object classification and segmentation.
However, the same challenge with the localization feature
arises as large labeled datasets are required for training, which
is a major challenge in industrial settings.

D. Autonomous mobile manipulators in kitting operations

As discussed before, automating kitting operations in ware-
houses has been an active area of robotics and vision re-
search [5], [16]. Early efforts focused on structured envi-
ronments with known storage locations like bins and racks.
Martinez et al. [17] developed a system for bin picking using a
fixed robotic arm and a standard gripper which could recognize
industrial parts in random positions. In similar fashion, Olesen
et al. [18] enabled a robotic system to utilize deep learning
policies for the detection of the parts and a multi-gripper
switching strategy to efficiently grasp them. AIMMs such as
Little Helper [19] and its dual arm alternatives [20] integrated
autonomous navigation, flexible perception and adaptive ma-
nipulation in complex industrial environments for kitting and
logistics operations.

The key advantage of AIMMs is that they do not restrict
automation to predefined workcells but can flexibly operate
throughout warehouses. This kind of mobility enables access-
ing items from varied locations and vantage points. This work
in this paper builds upon the strengths of AIMMs for automat-
ing pharmaceutical kitting in dynamic storage environments by
combining an occlusion-resilient localization method with the
flexibility of point cloud segmentation

III. METHODOLOGY

For the localization of individual containers, it is assumed
that the end-effector of the manipulator can be aligned with
and positioned directly in front of respective shelf location
markers to achieve a consistent field of view for containers.

A. Segmentation of point cloud

To estimate the pose of a container, its front plane must
be isolated from the point cloud. The scene is segmented
by iteratively fitting planes with RANSAC [21], removing
inliers, and extracting significant planes above a threshold.
This identifies key surfaces while filtering noise and the planes
are further filtered to remove intersections. As the end-effector
must center on the front plane, it is identified by orientation



Fig. 2. Iterative execution of RANSAC and removal of inliers can segment a large point cloud, such as that seen in the middle, into smaller planes, such as
those seen to the right, while also removing overall noise.

and proximity to the shelf front. The extracted significant
planes are then filtered by a k-nearest neighbor algorithm to
remove potential points from intersections with other planes.

The camera’s central position enables identifying the con-
tainer’s front plane. Firstly, the orientation of a plane relative
to the camera frame is used to filter out the planes belonging
to e.g., the shelf where the container sits on or the bottom
of the shelf above it, by removing horizontal planes. Of the
vertical planes, it can be assumed that the one closest to the
camera will be that of the shelf front carrying the shelf location
marker. The remaining are scored by size and proximity to
select the largest nearest plane as the container front. This
leverages the camera viewpoint to reliably segment the target
container from cluttered storage. The segmentation process can
be seen visualized in Fig. 2

B. Estimation of grasp pose

From the plane defining the front of the container, a grasp
pose can be computed that is centered around the top lip of
the containers. The orientation of the end-effector at the grasp
pose will be normal to the front plane, and thus, only a 2D
offset, along the X- and Y-axis of this plane, must be computed
for the grasp pose.

A bounding box and convex hull extract the quadrilateral
shape of the container front. The four points from the convex
hull that are closest to the corners of the bounding box are then
assumed to be the true corners of the container front. The 2D
offset for the grasp pose can then be computed as the halfway
point between the two top corners of the quadrilateral. This
whole process can be seen visualized in Fig. 3.

IV. SYSTEM OVERVIEW

Being able to localize an arbitrarily positioned container
from immediately in front of its respective shelf location
marker, the remaining system must support Spot in reaching
this pose to pick the container and return it to the trolley. This
requires navigation to and from the trolley and storage racks,
along with an alignment procedure at the storage rack to place
the end-effector in position for localizing the container.

A. Hardware setup

Spot features a total of six cameras, five of which are
placed around the body while the last one is placed inside

the end-effector. Each body vision system features a projected
IR stereo camera for depth images and a separate camera for
greyscale images. The end-effector vision system also features
a projected IR stereo camera but instead integrates a separate
4K RGB camera for color images.

A custom end-effector was developed for Spot as the default
claw gripper was not suitable for handling containers. This
end-effector is configured to mechanically interface with the
motors of the existing end-effector thereby replacing the claw
with a parallel mechanism featuring two prongs to provide
vertical support around the lip of containers during grasping
and allow for slipping in between tightly packed containers.
The prongs are chamfered towards the center of the end-
effector to push containers against an overhang to clutch them.

B. Navigation

The requirement to document kitting processes at Novo
Nordisk through scanning of barcodes, presents an opportunity
for combining problems related to navigation with documenta-
tion by adopting a fiducial marker identification system. This
also serves as a better interface for a mobile vision system
such as Spot. Individual sets of markers are used to identify
respectively storage racks and individual shelf locations within
the given storage rack. The pose of fiducial markers, such as
ArUco markers [22], is localized relative to a camera from
single-shot images, assuming intrinsic parameters are known,
while simultaneously conveying binary information through
its internal content. This content can thus be logged by Spot
and images can be stored to document the steps of the kitting
process, while the poses of the marker itself can be used to
guide Spot towards a desired storage rack through relatively
simple logic and point-to-point path planning.

Generally, pose estimates for fiducial markers becomes
more accurate at closer ranges, and therefore the pose estimate
will be refined as Spot approaches a desired target. The
approach will bring Spot towards the target at an angle to
mitigate rotational ambiguities during pose estimation [23],
and once an estimate from a sufficiently close distance is made,
Spot will turn to face the target head-on at a 1m offset directly
in front of the marker.



Fig. 3. Estimation of container front shape. To the left, the container front can be seen projected to 2D. In the middle, a convex hull (red) and a bounding
box (blue) is fitted around this data, and finally combined to the right to determine the overall shape (green). The grasping pose can seen marked by a black
cross to the right.

C. Alignment to shelf location

From this position, an overview image is taken to establish
the present shelf locations. The height of the desired shelf
location marker, relative to the ground, is then determined,
and Spot is moved to position the base of its manipulator
directly in front of the marker, along its Z-axis, with the end-
effector raised to the height of it to ensure it will be visible
from the end-effector camera. The pose is then estimated for
the marker and the end-effector is aligned with it at a 0.3m
offset along its Z-axis. From this pose, Spot is aligned and
ready to localize a given container at the shelf location.

Simple linear trajectories are then computed for the end-
effector to pick the container after localization, which, beyond
the estimated grasp pose, will cycle through an approach pose,
a lift pose, and a retract pose, all of which are computed as
offsets from the grasp pose. Force feedback is used while
the end-effector closes to verify and log whether a grasp is
successful.

D. Alignment to trolley

The trolley has a fiducial marker to aid in navigation and
documentation, and therefore, an almost identical approach
is used for aligning Spot to the trolley before placing the
container on it. However, here the desired pose for the con-
tainer cannot be indicated by another fiducial marker, but must
instead be governed by another system. For this integration, a
simple pre-defined grid layout was used to show the potential
for accurately stacking containers during the kitting.

E. Error handling

To further help mitigate the influence of dynamic conditions
during various localizations, a global philosophy is adopted for
error handling which permits Spot to fail an objective once and
try again, however, failing twice means that an error should
be reported. Some recursive behaviour is therefore triggered

in these cases to retry some of the tasks up until the previous
point of failure. The logic behind this error handling can be
seen mapped out in Figure 4.

F. Safety layer

Dynamic obstacles within the warehouse environment must
still be considered, as particularly human traffic is likely to
occur and their safety must be assured. Some level of obstacle
avoidance is included within Spot off-the-shelf, however, the
potential unpredictable behaviour associated with this may
pose a safety hazard in itself. Therefore, an additional safety
layer is integrated which will cause Spot to stop moving
whenever a human comes closer than 2m. This safety layer
leverages YOLOv5 [24] to recognize humans in images sam-
pled from each body camera continuously, and, if a human is
detected, will then measure the distance to various points from
a region of interest within the fitted bounding box around the
human.

V. EXPERIMENTS

To demonstrate the performance of the proposed kitting
system, we performed two experiments: one to determine how
accurately it can localize desired containers, and another to
determine how successfully it can complete a kitting. These
experiments were carried out in a mock kitting area setup
(Fig. 5), which consists of: a wheeled storage rack featuring
six shelf locations, a wheeled trolley used in the current kitting
process, one set of 15cm ArUco markers for storage racks and
trolley and one set of 5cm ArUco markers for shelf locations.

A. Container Localization Accuracy

This experiment estimates the accuracy by calibrating a
fixed trajectory for Spot to place a container on the storage
rack and store its pose in the world frame as a ground truth.
Adhesive material is added to the bottom of the container
to prevent movement during release. Spot then approaches



Fig. 4. Error handling is included whenever the robot fails to align at a
desired position or when it fails to grasp a container.

Fig. 5. Overview of experimental setup. The trolley and storage rack are
indicated with large ArUco markers, respectively left and right, while shelf
locations for each container within the storage rack are indicated with small
ArUco markers.

the storage rack five times to localize the container. This
test is carried out for three different calibrated trajectories.
The results of each test can be seen summarized in Table I.
Translation error is defined as the Euclidean distance from
the computed translation to the ground truth translation while
orientation error is computed as the angle of the angle-axis
representation of the quaternion difference between the ground
truth quaternion and a given test quaternion. The difference
quaternion, qd, is found through:

qd = q2q
−1
1 (1)

Where q2 is the ground truth quaternion and q1 is a given
test quaternion. From the resulting quaternion, the angle is
recovered through:

θ = 2 atan2
(√

q2dx + q2dy + q2dz, qdw

)
(2)

where qdx, qdy , qdz and qdw are the individual elements of the
difference quaternion.

From Table I, it can be deduced that the localization
algorithm achieved an average translation error of 0.006m, or
6mm, and an average orientation error of 1.6 degree.

TABLE I
CONTAINER LOCALIZATION ACCURACY

No. Translation
error (m)

Orientation
error (deg)

1 0.0058 0.3329
2 0.0112 0.3320

Experiment 1 3 0.0151 0.3026
4 0.0074 0.3060
5 0.0058 0.3139
6 0.0075 2.2610
7 0.0024 2.2845

Experiment 2 8 0.0067 2.2643
9 0.0037 2.2724

10 0.0036 2.2887
11 0.0041 2.2617
12 0.0035 2.2696

Experiment 3 13 0.0041 2.2785
14 0.0058 2.2932
15 0.0037 2.2927

B. Kitting Success Rate

This experiment will evaluate the overall robustness of the
kitting system by having Spot attempt to complete ten full
kitting processes, each of which consists of six containers.
Kitting of a given container is considered successful if it has
been picked from the storage rack and moved to the trolley,
however, failing to kit a single container means that the overall
kitting operation was not successful.

Results from these tests are shown in Table II. It can be
deduced that the kitting success rate of individual containers is
96.66% on average, however, as two overall kitting operations
failed their success rate is only 80%.

TABLE II
SUCCESS RATE OF THE KITTING OPERATION

No. Success/fail Rate
1 ✓ ✓ ✓ ✓ ✓ ✓ 100%
2 ✓ ✓ ✓ ✓ ✓ ✓ 100%
3 ✓ ✓ ✓ ✓ ✓ ✓ 100%
4 ✓ ✓ ✓ ✓ ✓ ✓ 100%
5 ✓ ✓ ✓ ✓ × ✓ 83.33%
6 ✓ ✓ ✓ ✓ ✓ × 83.33%
7 ✓ ✓ ✓ ✓ ✓ ✓ 100%
8 ✓ ✓ ✓ ✓ ✓ ✓ 100%
9 ✓ ✓ ✓ ✓ ✓ ✓ 100%

10 ✓ ✓ ✓ ✓ ✓ ✓ 100%

VI. DISCUSSION & FUTURE WORK

The experimental results validate the proposed system can
reliably automate pharmaceutical kitting operations. The inte-
gration of mobility, perception, and manipulation technologies
enabled flexible pick and place and automatic kitting in
dynamic warehouse environments in a pharmaceutical context.
Additionally, plane segmentation of point cloud data demon-
strated highly accurate localization of containers despite tight
spacing and occlusion on shelves.

Approximate positioning using fiducial markers proved ef-
fective for the navigation of Spot scoring an accuracy within
6mm and 1.6 degrees which is on par with state-of-the-art



results for warehouse kitting operations. While system perfor-
mance exceeded 95% container-wise success, overall kitting
completion was 80% due to plane segmentation failures. This
highlights limitations in the perceptual pipeline which could
be improved with the application of a more selective feature
extraction methodology and higher resolution imaging sensors.

The current system performs with high success rate in a
small warehouse area. Naturally, larger-scale replication could
reveal additional challenges. Factors like sensor noise and
calibration errors emerge in long-term robotic deployments so
robust mechanisms for error detection and recovery will be im-
portant for maintaining the desired reliability and robustness.
Enhanced planning and control methods could also make the
system more reactive when failures occur.

VII. CONCLUSION

This paper presents an AIMM for pharmaceutical kitting au-
tomation. The robot leverages fiducial markers for approximate
navigation and point cloud processing to accurately localize
arbitrarily placed containers. This facilitates reliable grasping
and kitting through integration of mobility, perception, and
manipulation technologies. Extensive experiments with our
system validated system performance where the robot achieved
highly precise 6D pose estimation within 6mm and 1.6 degrees
for successful container localization and grasping exceeding
96%. Tests in a mock warehouse environment emulated real-
world challenges like cluttered shelves and dynamic environ-
ments.

The results comprehensively validate the feasibility of using
AIMMs to provide automation benefits in pharmaceutical fa-
cilities without expensive infrastructure changes. In particular,
plane segmentation enabled robust perception despite tight
container spacing and complex occlusions. The integrated sys-
tem adapts to variable container placements and confirms that
the key technical challenges surrounding unstructured naviga-
tion, perception, and manipulation in automating pharmaceu-
tical kitting can be addressed successfully. In conclusion, this
work establishes AIMMs as a viable approach for increasing
quality and productivity in pharmaceutical manufacturing by
automating critical warehousing functions such as kitting with
high success rate.
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