
 

  

 

Aalborg Universitet

Optimizing Robot-to-Human Object Handovers using Vision-based Affordance
Information

Lehotský, Daniel; Christensen, Albert Daugbjerg; Chrysostomou, Dimitrios

Published in:
IST 2023 - IEEE International Conference on Imaging Systems and Techniques, Proceedings

DOI (link to publication from Publisher):
10.1109/IST59124.2023.10355704

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Lehotský, D., Christensen, A. D., & Chrysostomou, D. (2023). Optimizing Robot-to-Human Object Handovers
using Vision-based Affordance Information. In IST 2023 - IEEE International Conference on Imaging Systems
and Techniques, Proceedings IEEE Signal Processing Society.
https://doi.org/10.1109/IST59124.2023.10355704

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/IST59124.2023.10355704
https://vbn.aau.dk/en/publications/f135c1e5-268b-4854-9e0c-b837c8d18a41
https://doi.org/10.1109/IST59124.2023.10355704


Optimizing Robot-to-Human Object Handovers
using Vision-based Affordance Information

Daniel Lehotsky
Dept. of Architecture, Design and

Media Technology
Aalborg University
Aalborg, Denmark
dale@create.aau.dk

Albert Christensen
Dept. of Materials & Production

Aalborg University
Aalborg, Denmark

Albert.Christensen@agcocorp.com

Dimitrios Chrysostomou
Dept. of Materials & Production

Aalborg University
Aalborg, Denmark

dimi@mp.aau.dk

Abstract—Robotic handovers of objects to humans require
selecting appropriate grasp poses and orientations to enable
efficient subsequent use. We present two methods to compute
suitable handover orientations based solely on object affordances
rather than object categories or predefined object-specific rules.
The first uses human demonstration data to learn average
handover orientations per object directly from affordances. The
second is a rule-based method that orients graspable affordances
towards the receiver. We integrated both approaches into a
robotic system performing task-oriented grasping and handovers
based on affordance segmentation. A user study indicates the
rule-based method produces equally comfortable and natural
handover orientations compared to learning from demonstra-
tion, while being simpler to implement. Further experiments
demonstrate the robot’s ability to successfully hand over objects
with proper orientations. This is the first prototype deriving
handover orientations solely from affordances treated as pixel-
wise semantic segmentation, providing a practical approach
without per-object datasets. https://bit.ly/RobotHandovers

Index Terms—Robotic handover, Handover orientation, Object
affordances, Industry 4.0, Human-robot interaction

I. INTRODUCTION

As robots become more integrated into human workspaces,
the ability to smoothly transfer objects between robots and
humans is critical for seamless collaboration. Unlike humans,
who excel at fluid object handovers, robots require systematic
approaches to perform such dexterous tasks successfully. The
execution of robot-to-human object transfers necessitates over-
coming complex challenges such as object detection, precise
grasping, and contextual trajectory planning across diverse
domains, such as robotic-assisted surgery [1], disassembly
tasks in restricted industrial environments [2] and package
delivery using language interfaces [3], [4]. Object handovers
can be categorized into two types: task-agnostic and task-
oriented [5]. In task-agnostic handovers, the key concern is
simply the success rate of the physical exchange itself. How-
ever, for more natural human-robot collaboration (HRC), we
must also consider the user’s subsequent task after completing
the handover [6]. This involves computing appropriate grasps
and object orientations to enable efficient post-handover object
use, known as task-oriented handovers [7], [8]. For example,
a cup should be grasped and oriented with the handle facing
the human recipient, as illustrated in Fig. 1.

Fig. 1. In our real-world handover experiment, the Kuka LBR iiwa robot arm
delivers an object after computing appropriate handover orientations using
pixel-wise affordance segmentation.

In task-oriented handovers, computing suitable object ori-
entations depends on the object’s inherent functionalities or
affordances [9]. However, current methods for determining
proper orientations rely on predefined rules [10], [11] or
are defined categorically for specific objects [12], [13]. Such
methods scale poorly to a larger set of objects, and furthermore
they either do not consider the inherent functionalities of the
grasped object or only consider them implicitly by knowing
the object class.

In our previous work, we demonstrated that affordance
theory framework was well suited for solving task-oriented
grasping [14]. By the term object affordances we defined the
inherent functionalities of an object irrespective of its current
state as similarly defined by Humphreys in [15]. Finding object
affordances was treated as a pixel-wise segmentation problem
based on the visual inputs of RGB cameras capturing the
working environment. In this work, we present two methods
for computing appropriate handover orientations based solely
on detected object affordances rather than categories or heuris-
tics. First, a data-driven approach uses human demonstration
to learn average handover orientations directly from visual



affordances. Second, a rule-based method orients graspable
affordances towards the receiver. We integrate both techniques
into a robotic system performing grasping and handovers based
on affordance segmentation. Experiments indicate that the
rule-based approach produces equally comfortable handover
orientations compared to learning while being simpler to
implement. The quantitative testing resulted in a 75% success
rate for the rule-based and only a 50% success rate for the
observation-based method regarding the ability to handover
items with the appropriate orientations. We also demonstrate
the robot successfully handing over objects with proper orien-
tations. Additionally, our open source code used in this study
is available in our GitHub repository1.

II. RELATED WORK

Early methods for computing handover orientations were
object-specific. These methods required prior knowledge of
objects, and appropriate handover orientations were assigned
manually per object basis [10], [11], [16]. As such, not only
do these methods not scale well, but handover orientations
proposed by a loss function often appear unnatural to hu-
mans as the orientations do not account for the object’s
affordances [10]. On the other hand, orientations learned
from human-to-human handover observations account for an
object’s affordances as humans use their understanding of
the object’s functional properties to perform task-oriented
grasping [17].

Chan et al. [18] studied handover orientations by observing
natural human handovers. They built a knowledge base by
observing how ten different objects were used and extracted
features related to various affordances, i.e., cut, screw, trans-
late, and slide. A database of appropriate object orientations
for the receiver was formed. Using the extracted features, they
could generalize observed orientations to unseen objects. In
their subsequent studies [6], [7], they presented a method to
compute handover orientations without relying on predefined
features or a database. Instead, they directly observed human
handovers, using an ’affordance axis’ for each object at
handover time based on the object’s inherent affordances.

Razalli and Demiris [19] applied a multitask variational
autoencoder to model both the receiver’s and giver’s handover
pose and an appropriate object handover orientation. This
model required three inputs – the initial pose of the receiver,
the initial pose of the giver, and the object label, where the
giver’s and receiver’s initial poses were captured from motion-
captured data.

Ardon et al. [20] proposed a method for computing appro-
priate handover location and robot configuration for people
with limited arm mobility. By doing so, they addressed the
handover orientation problem implicitly. Task-oriented grasps
were selected using object affordances, and the best grasp
was selected on the criteria of appropriateness, safety, and
reachability. In order to maximize these requirements, they

1https://bit.ly/RobotHandovers

inadvertently addressed the issue of the appropriate handover
orientations for people with limited arm mobility.

As shown, most of the research into object handover orien-
tations is object-specific. While some approaches utilize object
affordance to optimize grasp selection, computing appropriate
handover orientations from object affordances rather than
object categories is still an open problem. Furthermore, most
of the related work focused on learning orientations from
observations. However, collecting datasets of human handover
examples is time-consuming and expensive. A set of rules that
are easy to integrate into a robotic handover system and con-
sider object affordances has not been thoroughly investigated.
Therefore, our work introduces a data-driven method to learn
average handover orientations directly from visual affordances
and a rule-based method that orients graspable affordances
towards the receiver.

III. METHODOLOGY

A. Computing object handover orientations

Two methods were implemented for computing object han-
dover orientations. The observation-based method follows the
dataset collection procedure proposed by Chan et al. [6],
[7]. However, collecting and annotating datasets is a tedious
process. Therefore, the affordance-aware rule-based method
was also implemented. This method was inspired by the work
of Ardon et al. [20], but instead of optimizing for their
proposed criteria, we simplify the computational part of the
handover orientation into a single if statement depending on
the detected affordances.

For both implemented methods, twelve object categories
were considered - a bottle, a bowl, a cup, a hammer, a knife,
a ladle, a mallet, a mug, scissors, a scoop, a spatula, and a
spoon. Regarding affordances of these objects, our AffNet-DR
detector [14] can detect seven object affordances, all defined
in the UMD dataset [21]. These are grasp, wide-grasp, cut,
scoop, contain, pound, and support.

1) Observation-based method: In order to learn object
orientations from human-to-human handovers, an annotated
dataset was compiled. Eight participants were asked to hand
over twelve objects to one of the authors. Participants were
instructed to hand over objects with the perceived comfort
of the receiver in mind and using only their right hand. The
handovers were recorded with Kinect V2 as a single clip.
RGB, depth, point cloud and skeleton tracking data were saved
with every clip.

For each video clip, the handover frame was manually an-
notated using labelCloud2. The handover frame was identified
as the point when the distance between the giver and receiver
was minimal, calculated using the skeleton tracking data. Prior
to data collection, each object was assigned a predefined
coordinate frame. The handover orientation was annotated by
aligning a 3D bounding box to the object’s coordinate frame
in the handover frame, as illustrated in Fig. 2. This process

2https://github.com/ch-sa/labelCloud



Fig. 2. The annotation procedure of the handover frame, where a 3D bounding
box is aligned with the object.

Fig. 3. A giver is assigned a coordinate frame with the x-axis (red) pointing
towards the receiver and the z-axis (blue) pointing from the giver’s torso
to the giver’s head. The y-axis (green) is inserted to complete the right-
handed coordinate system. Afterwards, the recorded handover orientations are
transformed from the Kinect’s recording frame to the giver’s frame.

was repeated for every video to create a dataset of handover
orientations.

After annotating the orientation data, the coordinates were
transformed from the Kinect sensor’s reference frame into a
standardized ”giver’s frame” to enable more straightforward
implementation on the robot system. The giver’s frame origi-
nates at the torso with the x-axis pointing towards the receiver,
the z-axis pointing upwards along the spine towards the head,
and the y-axis determined by the cross product to complete
a right-handed coordinate system, as visualized in Fig. 3.
By converting all annotations into this standardized frame,
the robotic system can more efficiently utilize the handover
orientation data regardless of the sensor’s original reference
frame.

With all the clips annotated, a mean handover orientation q̄
was computed for each object. We cast the computation of q̄
as a minimisation problem defined as follows:

q̄ = argmin
q′

∑
i

dist(q′ − qi)

where

dist(q′ − qi) = min{||q′ − qi||2, ||q′ + qi||2}

where q′ is the initial solution being minimised and qi are
the observed orientations for the given object. q′ is defined
as q′ = [x, y, z, w], where {x, y, z, w} are randomly initiated
such that q′ is a valid quaternion. The distance function was
chosen as suggested by Hartley et al. [22].

The minimisation problem was implemented in Python
using the scipy3 library. The function was restarted 50 times,
each time with a new initial solution q′. All computed solu-
tions were normalized. After 50 iterations, the solution that
produced the minimum sum of distances to all observations
for a given object was selected, as the true mean handover
orientation q̄.

2) Rule-based method: The rule-based method computes
object handover orientations using only the knowledge of
object affordances. Our solution is based on two rules. The
first one applies to objects with the grasp affordance, which
is associated with the handle part of the object. Therefore, if
the grasp affordance is detected, the robot should grasp the
non-handle parts associated with the utility affordance and
orient the handle towards the receiver. The utility affordance
is a general term that describes the object’s functionality and
is associated with parts not meant to be grasped, like a knife
blade or hammerhead. This rule applies to objects with distinct
handles, including hammers, knives, ladles, mallets, scissors,
scoops, spatulas, and spoons. This rule aligns with findings
from Ray et al. [23] and Cini et al. [24] who showed that hu-
mans tend to orient handles towards receivers during human-
to-human handovers. The second rule applies to cups, mugs,
bowls, and bottles. These objects offer wide-grasp affordance
for containing liquids or other objects. These objects should
be oriented vertically when handed to the receiver to avoid
spillage.

Analysis of computed mean handover orientations con-
firmed that these rules match human behavior. Objects with
handles showed minor variations but were consistently ori-
ented with the handle pointed towards the receiver. Objects
with wide-grasp affordance were oriented with their openings
upwards. This vertical orientation minimises spillage risk,
aligning with the second proposed rule.

B. A robotic system capable of task-oriented handovers

We implemented a robotic system designed to facilitate task-
oriented handovers while optimizing both the receiver’s ease
of grasping and the object’s usability. Illustrated in Fig. 4,
the system is designed to ensure an unhindered grip for the
receiver while orienting the object appropriately according to
either the rule-based or observation-based method introduced
earlier. The system was implemented on a KUKA LBR iiwa
7 R800 7-DOF manipulator equipped with a Robotic 3-finger
gripper combined with an Intel RealSense D435i RGB-D
sensor and a Hokuyo URG-04LX-UG01 2D laser scanner.

Expanding on our earlier work in task-oriented robotic
grasping based on object affordance segmentation with
our synthetically-trained affordance predictor named AffNet-
DR [14], the current approach further incorporates computing
appropriate handover orientations. As shown in Fig. 4, the
system uses an RGB-D sensor to capture scene images, which
are analyzed by AffNet-DR to generate a detailed affordance
segmentation map (Fig. 4 - Steps 1 and 2). A suitable grasp is

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Fig. 4. An overview of the proposed robot-to-human handover system. Step 1: An RGB sensor captures the work environment. Step 2: Pixel-wise object
affordances are found in the RGB image using AffNet-DR. Step 3: Grasps that facilitate smooth transition of the object from the robot to an operator are
computed from the affordance segmentation map. Step 1-3 are covered more in depth in our previous work [14]. Step 4 computes a handover orientation
based on the observation-based or rule-based method, before performing the robot-to-human handover with the appropriate orientation.

calculated to make the object’s handle accessible to the human
receiver (Fig. 4 - Step 3) and the object’s pose is determined
based on a modified ICP algorithm that computes the nearest
neighbour only within same affordances (Fig. 4 - Step 4).

The affordances segmented by our AffNet-DR are used as
features for selecting a source point cloud suitable as an input
to the ICP algorithm. Once the ICP algorithm converges, ob-
ject rotation is computed using singular value decomposition.
With the affordance and pose of the object computed, it is
possible to grasp the object by a specific affordance and move
it to the handover location with the desired orientation.

Next, the position of the receiver in relation to the robot
must be determined. The receiver’s 2D position is derived from
the laser line scan data using a basic pass through filter. Using
the polar coordinates of the receiver, a ”giver’s frame” at the
robot’s base rotated to face the receiver is computed. Both
the handover location and orientation are defined within this
frame (Fig. 4 - Step 5). The handover location is identified as
the midpoint between the giver and receiver, as noted by [25].
Finally, the system can efficiently estimate and redetermine
the most suitable handover orientation by relying solely on
affordance segmentation (Fig. 4 - Step 6). This orientation is
computed using either the proposed rule-based or observation-
based methods.

The key distinction between the rule-based and observation-
based methods is in data requirements. The rule-based method
requires only two source point clouds - a generic cup point
cloud and a generic grasp point cloud. The observation-based
method needs seven point clouds to encompass all object-
specific affordance combinations AffNet-DR can detect. The
second distinction lies in how affordances are used to compute
appropriate handover orientations. With the observation-based
method, affordances are encoded in a one-hot vector, which is
then used as the input to the k-nearest algorithm that identifies
the closest computed mean handover orientation. With the
rule-based method, the segmented affordances are used to
distinguish which of the two proposed rules should be applied.

IV. EXPERIMENTS

To evaluate the two different approaches of robot-to-human
handovers we conducted a series of experiments. First, we
present a user study with six participants aimed at under-
standing preferences between the observation-based and rule-
based handover orientation methods. The participants were
researchers and students recruited from the university campus
- 4 males, 2 females, ages 20-40. Some had experience with
robotic applications, but none had prior experience with robot-
to-human handovers. The goal was to evaluate their subjective
impressions of handovers generated using each orientation
method.

The second experiment was a full system test of the com-
plete robotic handover pipeline with the aim of evaluating its
overall performance and ability to achieve appropriate object
orientations. This system-focused test provided an objective
assessment to complement the user study’s subjective ratings.
The full pipeline was systematically tested under controlled
conditions rather than with human participants.

A. User study on handover orientations preference

During the experiments, objects were always placed in
their pre-determined poses on the work table. Using the pre-
determined poses allowed for computing grasp poses, affor-
dance segmentation, and object pose estimation in advance,
which in turn allowed participants to concentrate and evaluate
purely the effect of the handover orientation. The participants
were not notified that certain parts of the pipeline were pre-
computed.

In the study, participants experienced five handovers - one
each for a cup, bowl, mallet, spoon, and spatula. The order of
objects was consistent across users. Three orientation methods
were tested: random baseline, rule-based, and observation-
based. The methods were presented as Method A, B, or C
to avoid bias. After all five objects were handed to the par-
ticipant, they were asked to evaluate the handover experience
by completing a 7-item questionnaire rating safety, comfort,
agreement, understanding, naturalness, appropriateness and
preference on 5-point Likert scales. This was repeated for



TABLE I
RESULTS OF THE USER STUDY WHERE THE AVERAGE RATINGS ARE SHOW. THE STUDY WAS EVALUATED ON THE 5-POINT LIKERT SCALE WITH 1 BEING

”STRONG AGREE” AND 5 BEING ”STRONG DISAGREE”. RANDOM-BASED METHOD WAS USED AS A BASELINE. BOLD INDICATE THE BEST SCORE.

Question Random-based Rule-based Observations-based

How safe did you feel during the handover? 2 1.83 2.67

The objects were oriented in a way that
was comfortable for me when grasping. 2.5 2 2

I would orient the objects similarly when
performing handovers. 3.33 2 2

I agree with the way the objects were oriented. 3.5 1.83 1.83

How well would you say you understood
the handover process? 1.5 1.33 1.67

How natural did you find the object
orientations when you grasped the objects? 3.17 1.83 1.83

How appropriate did you find the object
orientations when you grasped the objects? 3.5 1.83 1.83

TABLE II
INDICATED USER PREFERENCES FOR HANDOVER METHODS

Random-based Rule-based Observation-based

0% 66.67% 33.33%

TABLE III
FULL HANDOVER SYSTEM SUCCESS RATE

Rule-based Observation-based

Failure to grasp 8.33% 6.67%
Failure to gen. trajectory 0.00% 15.00%
Success rate 91.67% 78.33%
Success rate w. correct orientation 75.00% 50.00%

all three methods. Finally, participants selected their preferred
overall method. The questions of the questionnaire along with
the average scores of the responses can be seen in Table I and
the respective user preference are shown in Table II.

B. Robotic task-oriented handover system

A systematic test was conducted to evaluate the end-to-
end performance of the robotic handover system using both
the rule-based and observation-based orientation methods.
For each configuration, the robot performed a total of 60
handovers, attempting ten trials for each of the six household
objects: mallet, ladle, spatula, knife, bowl, and mug.

During each handover trial, the robot autonomously exe-
cuted object grasping, orientation, and handing to a human
receiver. Trials were conducted in a controlled lab environment
with consistent conditions. The handover success rate was
recorded based on whether the human receiver was able to
obtain the object. The ability to perform the handover with

the appropriate object orientation is reported along with the
overall handover success rates in Table III.

A chi-squared test found no significant difference in over-
all handover success rate between the rule-based (91.7%)
and observation-based (78.3%) configurations (p=0.057). This
robot setup demonstrated high handover success rates with
both methods. However, the rule-based orientation approach
enabled significantly higher orientation accuracy (75.0%) com-
pared to the observation-based method (50.0%) while main-
taining comparable handover success.

V. DISCUSSION

The user study found that rule-based and observation-
based methods produced equally comfortable, appropriate, and
human-like handover orientations. This indicates orientations
can be generated from object affordances rather than human
demonstrations, aligning with previous findings [7].

As Table II shows, the participants of the user study
preferred the rule-based and observation-based methods over
the random-based method, Interestingly, random-based method
would occasionally provide the user with the properly oriented
object. Despite that, none of the participants preferred the
random-based method, suggesting that orientation consistency
can affect user perception and overall handover experience.

When comparing the rule-based and observation-based
methods, several findings were evident. Firstly, the rule-
based method outperformed its observation-based counterpart.
However, both methods exhibited issues related to grasping,
primarily due to faulty pose estimation. This suggests the need
for either refining the ICP algorithm further or substituting it
with another technique. Uniquely for the observation-based
method was a trajectory generation failure. While both meth-
ods employ XYZ coordinates to define the goal handover pose,
their approaches to orientation differ. The observation-based



method precisely defines the target orientation, whereas the
rule-based method offers flexibility in orientation as long as
the given rule is met. This advantage arises because certain
rotations do not alter the handle’s orientation in relation to the
receiver or the container’s orthogonality relative to the ground.

Furthermore, while both the rule-based and observation-
based methods scored almost identically on the 5-point Likert
scale, the rule-based method still shows as the preferred
method. We theorize this clear preference relates to the
way robot achieved handover orientations computed by the
observation-based method, particularly the robot’s trajectory.

VI. CONCLUSION

This work represents the first derivation of handover orien-
tations directly from object affordances treated as pixel-wise
segmentation. We introduced and evaluated two affordance-
based methods for robot-to-human handover orientation gen-
eration. User studies demonstrated a strong preference for the
rule-based method, while system testing showed it achieved
higher orientation accuracy compared to the observation-based
approach. By linking visual affordances to orientation rules,
consistent and natural human-like handovers were achieved.
The practical viability of the rule-based method was confirmed
in a full robot-to-human handover system that achieved a
success rate with correct object orientations of 75.0%.

Future work could explore more robust pose estimation
methods like dense fusion or point cloud registration for im-
proved accuracy. Additionally, as the current receiver detection
approach lacks robustness, predicting the receiver pose through
skeleton tracking or wearable movement tracking suit could
optimize handover locations. Finally, further training of the
AffNet-DR to handle grasping of unseen objects will certainly
extend the capabilities of this work and move a step closer to
enable seamless HRC in everyday environments.
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