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ABSTRACT

In some cases, speech can be a disturbing source of ambient noise.
Active noise control (ANC) systems have difficulties in dealing with
speech due to its non-stationary nature and constraints in the ANC
system, which require the optimal filters to be non-causal. The non-
causality is due to the delay incurred by, e.g., digital processing or
acoustic propagation paths. We propose a fixed-filter feedforward
ANC system, HOSpLP-ANC, which aims at attenuating voiced
speech in, e.g., office environments. It comprises an adaptive high-
order sparse linear predictor (HOSpLP) based on the improved pro-
portionate normalised least mean square algorithm to predict speech
ahead in time, thus overcoming such delay. Notably, HOSpLP pro-
vides high prediction performance of voiced speech by modelling
the joint short- and long-term linear prediction scheme, but without
using pitch estimation. This can be of particular significance in the
case of the complicated multi-pitch estimation scenario. The results
show that HOSpLP-ANC outperforms conventional adaptive feed-
forward ANC for delays in the order of milliseconds in both single-
and multi-speaker environments.

Index Terms— Speech attenuation, ANC causality, IPNLMS.

1. INTRODUCTION

Nowadays, the use of ANC technology spans a wide variety of ap-
plications [1–4]. Specifically, ANC is becoming more prominent
and widespread in consumer electronics, e.g., ANC headphones,
headsets and small wireless earbuds. Among the various ambient
noise sources we are dealing with in everyday life, speech can be a
very disturbing source of ambient noise. For example, in crowded
public spaces or open offices, speech may be even more annoying
than other types of noise, reducing concentration and productivity.
Hence, it is becoming increasingly important that ANC headphones
also attenuate human voices effectively. However, speech attenua-
tion by ANC headphones can be quite limited due to the complex
nature of speech [5] and constraints in the ANC system.

ANC is based on the principle of acoustic superposition, such
that an anti-noise signal with the same amplitude but the opposite
phase is generated by a secondary source (e.g., headphone loud-
speaker) to cancel unwanted noise at the desired cancellation point,
e.g., at the eardrum. To generate an anti-noise signal in adaptive
ANC systems, adaptive algorithms such as Filtered-X least mean
square (FXLMS) or Filtered-X Normalized LMS (FXNLMS) are
commonly used [3, 6–8]. Modern ANC headphones are typically
based on either fixed feedforward (FF) or feedback (FB) ANC filter
or a combination of both (hybrid ANC) [9].

∗The work is supported by the Innovation Fund Denmark, grant no.
9065-00218.
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Figure 1: Simplified modelling block diagram of FF ANC head-
phones with the additional delay D=EDS+ADS−ADP in S(z).

Many factors affect ANC performance in headphones [2,6–16],
one of those factors is the causality constraint. For FF ANC head-
phones, shown in Fig. 1, when the signal propagation delay ADP

between the reference and the error microphone of the primary path
P (z) is less than the electric delay EDS and acoustic propagation
delay ADS in the secondary path S(z), i.e., ADP <EDS+ADS ,
the causality constraint is violated, with the additional delay in S(z)
compared to P (z), D=EDS+ADS−ADP . The causality con-
straint might be violated due to the small size of the headphones,
making ADP smaller compared to the combination of ADS and
EDS . The amount of EDS depends on the ANC processing unit
and its algorithmic design [14–16]. The delay D might also be af-
fected by the direction of the incoming noise [11] and improper
headphone fit on the ear. When the causality constraint is violated,
it creates the need for prediction to compensate for D [10]. In
adaptive ANC, the adaptive algorithm acts as a predictor to find
a causal filter [13]. For a fixed-filter ANC system, the occurrence of
D cannot be compensated for in the fixed-filter design stage, and,
thereby, the performance of such a system will be significantly re-
duced [10–16]. Hence, it is critical to compensate for the delay D.

Speech tends to be highly non-stationary, and it has a complex
structure [5]. Speech sounds can be broadly divided into voiced and
unvoiced speech. Voiced speech is the main constituent of speech
and normally has higher power than unvoiced speech. Unvoiced
speech has a stochastic nature with low correlations and is there-
fore almost unpredictable [5, 17]. A common approach for speech
prediction is linear prediction (LP), the fundamental idea of which
is that a speech sample can be approximated as a linear combi-
nation of past samples [5]. However, the major contribution to
voiced speech prediction performance is mainly due to the most
recent 10-12 samples (at a sampling frequency, fs=8 kHz), and the
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samples at the pitch period of speech, T [5]. This corresponds to
the short- and long-term correlations of voiced speech, i.e., short-
and long-term LP (STP and LTP), the joint modelling of which,
namely SLTPj, was proposed in [18]. The SLTPj scheme can also
be seen as a high-order sparse filter with the distinguished nonzero
regions of taps corresponding to STP and LTP. This inspired the
idea of modelling SLTPj using high-order sparse linear prediction
(HOSpLP) [19], with the benefit of avoiding pitch estimation re-
quired for LTP. In contrast, high-order LP (HOLP) [20] with the
filter order covering T , without any imposed constraints will have
many non-sparse prediction coefficients, where coefficients apart
from the ones corresponding to STP and LTP might be seen as sub-
optimal, i.e., increasing computational cost and having no or even
negative contribution to prediction performance [5]. Similarly, con-
ventional adaptive ANC algorithms, i.e., FXNLMS, act as an adap-
tive LP to find a causal filter when the causality constraint is vio-
lated [13,21]. Hence, they might have the same problems as HOLP
regarding the filter structure for voiced speech prediction, which
could lead to limited performance for voiced speech reduction.

Since the sparsity measure corresponds to the so-called 0-norm
[22], solutions to which cannot be found in polynomial time, the
proposed block-based solutions to HOSpLP in [20, 22] used 1-
norm regularisation criterion as a convex approximation to the 0-
norm. There also exist different sparsity-aware adaptive algorithms
broadly classified into two categories, namely, zero-attracting and
the proportionate-type algorithms [23,24]. The last, particularly the
improved proportionate NLMS (IPNLMS) algorithm, is a popular
adaptive filter used to identify sparse systems in acoustic echo can-
cellation applications [4, 25, 26]. Also, the proportionate idea of
the IPNLMS algorithm coincides with the idea of SLTPj, which is
based on speech correlations, and as a result, is beneficial for our
application when applied to solve the HOSpLP problem.

In this paper, we propose a fixed-filter FF ANC system for
headphone applications, HOSpLP-ANC, which aims at attenuating
voiced speech. It comprises an adaptive HOSpLP of speech ahead
in time, thus overcoming the delay D, which violates the causal-
ity constraint. More specifically, we propose to apply an adaptive
IPNLMS algorithm for the HOSpLP problem. As HOSpLP models
SLTPj, it is expected that HOSpLP-ANC will outperform FXNLMS
ANC and provide at least comparable performance to SLTPj-ANC,
with the benefit of avoiding pitch estimation and reducing compu-
tational complexity. This is a clear advantage, especially in multi-
speaker environments, e.g., open offices, since multi-pitch estima-
tion is still a complicated problem [27, 28]. Note that the proposed
HOSpLP-ANC is designed to improve voiced speech attenuation.
It is intended to work alongside with, e.g., the conventional ANC
system to attenuate other types of noise, including, e.g., unvoiced
speech. However, this paper focuses only on the HOSpLP-ANC.

The paper is organised as follows. HOSpLP-ANC with residual
error analysis is described in Section 2. Section 3 presents the idea
of HOSpLP and the IPNLMS algorithm to solve it. Simulation re-
sults of voiced speech attenuation in the single and multiple speaker
scenario are presented in Section 4. Section 5 concludes the paper.

2. PROPOSED FIXED-FILTER ANC SYSTEM

The proposed HOSpLP-ANC system, shown in Fig. 2, is for a sin-
gle ear cup, which uses one reference and one error microphone
to measure the incoming disturbance—speech x(n) and the resid-
ual error e(n). Two ear cups are independent in signal processing
and ANC. The optimal transfer function of the FF ANC filter is

cancellation
point  

anti-noise

IPNLMS
algorithm

Figure 2: Simplified diagram of fixed-filter FF HOSpLP-ANC. The
adaptive WHOSpLP(z) compensates for the delay D in S(z).

W o(z)=P (z)/S(z) [6]. Since P (z) and S(z) include acoustic
propagation paths and S(z) also has the latency of an ANC pro-
cessing unit, they are non-minimum phase and can be expressed as
P (z)=Pmin(z)z

−ADP and S(z)=Smin(z)z
−(EDS+ADS), where

(·)min denotes the minimum-phase part. A causal W o(z) can only
be realized if P (z) contain a delay of at least equal length as S(z).

In the HOSpLP-ANC, the causal FF fixed-filter W (z) is cal-
culated by taking the minimum-phase part of P (z) and S(z), i.e.,
W (z)=Pmin(z)/Smin(z). The delay part z−D is compensated by
the proposed WHOSpLP(z), which predicts xW (n)D samples ahead
in time, resulting in d(n) and x̂′

W (n) being aligned in time at the
cancellation point, with the residual error

E(z)=[P (z)X(z)−W (z)X̂(z)z+DS(z)]=[P (z)X(z)

−Pmin(z)X̂(z)z+(EDS+ADS−ADP )z−(EDS+ADS)]

=[X(z)−X̂(z)]P (z).

(1)

In this case, the performance of the proposed HOSpLP-ANC system
will depend on the accuracy (in terms of phase and amplitude) of
the predicted signal X̂(z) compared to the original signal X(z), i.e.,
connected to the prediction performance. Without compensation
for z−D , i.e., bypassing WHOSpLP(z), it will lead to a significant
decrease in the ANC performance [10–14], with the residual error
given as ED(z)=[P (z)−W (z)S(z)]X(z)=[1−z−D]P (z)X(z).

The work here is focused on the prediction, which compensates
for the delay D. Therefore, other challenges inherent in fixed-filter
ANC design, e.g., the changes in P (z), S(z) and Ŝ(z) due to the
physiology of the ear and their influence on the performance, are not
considered and are beyond the scope of the paper. The performance
of FF ANC system depends on coherence between the reference
and the error microphone [6]. For high ANC performance, it is
necessary to have very high coherence [6]. This can be achieved by
placing the reference microphone close to the dominant noise path,
e.g., a rear vent, which will expand the frequency range where the
coherence is high and will make P (z) independent of the speaker
location. In this paper, we consider such a design of the headphones.

3. HIGH-ORDER SPARSE LINEAR PREDICTION

We consider the following LP model, where a speech sample x(n)
is written as a linear combination of old M samples [21, 22]:

x(n) = aTx(n−D) + r(n), (2)

where a = [a1, . . . , aM ]T is a vector with prediction coefficients,
x(n−D)=[x(n−D), . . . , x(n−D−M+1)]T is a vector of M old
speech samples and r(n) is the prediction error. When D> 1, (2)
becomes multi-step LP, i.e., predicting D samples ahead in time.
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HOSpLP was presented in [19], where the approach was to im-
pose sparsity into the HOLP coefficients by adding a regularisation
criterion with a 1-norm to vector a while retaining a 2-norm minimi-
sation criterion on the prediction error. The obtained convex optimi-
sation problem was solved with iterative interior-point block-based
methods [22] and other fast iterative block-based methods [20].

We propose to solve the HOSpLP problem by applying an adap-
tive IPNLMS algorithm based on the same 2-norm minimisation
criterion on the prediction error, i.e., minimising the mean square
error:

E{|r(n)|2} = E{|x(n)− aTx(n−D)|2}. (3)

However, what helps to create the sparse structure of a, i.e., to ob-
tain a solution corresponding to HOSpLP, is the proportionate idea
of the IPNLMS algorithm. The idea is to update each filter coeffi-
cient independently of the others by adjusting the adaptation step-
size in proportion to the magnitude of the estimated filter coeffi-
cient. In this way, larger coefficients are emphasized and receive a
larger step-size, thus increasing the convergence rate of that coeffi-
cient [25,26]. In the view of HOSpLP, the proportionate idea of the
IPNLMS algorithm is beneficial for our application, such that fil-
ter coefficients with a large magnitude will correspond to the short-
and long-term correlations of voiced speech, i.e., STP and LTP. The
IPNLMS algorithm is summarised by the following equations [25]:

r(n) = x(n)− aT (n− 1)x(n−D), (4)

a(n)=a(n−1)+
µK(n−1)x(n−D)r(n)

xT (n−D)K(n−1)x(n−D)+δ
, (5)

where µ is the normalized step-size and δ is the regularization. The
diagonal matrix K(n−1) = diag([k1(n−1), . . . , kM (n−1)]) ad-
justs the step-sizes of the individual prediction coefficient [25], with

km(n) =
1− α

2M
+ (1 + α)

|am(n)|
2∥a(n)∥1 + ε

, (6)

where −1≤α<1, ε is a small positive number to avoid a division by
zero. For α=−1, the IPNLMS and NLMS algorithms are identical
[26], which makes the switch between the algorithms quite easy and
might be beneficial for real-time applications, e.g., transforming the
system from improved voiced speech attenuation to the conven-
tional FXNLMS ANC attenuating other types of noise. As can be
seen in (6), the l1 norm is used in the IPNLMS algorithm to exploit
the sparseness of a, with ∥a∥1=

∑M
m=1 |am|. The regularization

δ for the IPNLMS algorithm is δ=δNLMS(1−α)/(2M) [25]. The
complexity of the IPNLMS algorithm is twice that of NLMS [26].

4. SIMULATION RESULTS

4.1. Simulation conditions

For the following simulations, P (z) and S(z) shown in Fig. 3 were
measured on a Jabra headphone prototype with a head and torso
simulator in an anechoic chamber with a point source represent-
ing the ambient noise to have high coherence in P (z), with S(z)
excluding the ANC processing unit. Depending on the factors dis-
cussed in Section 1, e.g., due to the latency of the ANC processing
unit, which is a very device-dependent parameter [15], the causal-
ity constraint might be violated, with the amount of D affected by
those factors. Therefore, the ANC performance of the proposed sys-
tem will be investigated as a function of the additional delay D in
S(z). In this regard, for the simulations, ADP =0, thereby P (z)=

Pmin(z), while S(z) = Smin(z)z
−D and Ŝ(z) = Ŝmin(z)z

−D .

Figure 3: Measured P (z), S(z) and their minimum-phase parts.

The corresponding minimum-phase parts, shown in Fig. 3, were
calculated with the real cepstrum method [29]. As an ambient noise
input to the system, i.e., x(n) in Fig. 2, we used speech examples
from the TIMIT database [30] resampled at 8 kHz. The database
contains clean speech signals from speakers with different charac-
teristics (gender, age, pitch). In particular, we used 27, 28 and 20
seconds of concatenated speech signals for simulations with single,
two and three speakers, respectively. The amount and possible com-
binations of male and female speech are balanced throughout the
single and multi-speaker cases. We estimated performance on sam-
ples where at least one talker’s speech was detected as voiced. For
this, the voicing-unvoicing speech detection from [31] was used.

The impulse response length for P (z), S(z) and Ŝ(z) is 100.
The order of W (z) is 128. It was trained on white Gaussian noise
with the FXNLMS algorithm. Other prediction-based fixed-filter
FF ANC systems used for comparison, namely, HOLP-ANC and
SLTPj-ANC, based on the structure in Fig. 2 but using the relevant
prediction scheme. HOLP-ANC is obtained by setting α=−1 in
(6). SLTPj-ANC was implemented using an adaptive NLMS algo-
rithm, similar to [32]. The conventional adaptive FF ANC system,
FXNLMS ANC [6], is also used for comparison. The simulation
parameters listed below were found empirically. They determine
the best possible performance of the systems under the given con-
ditions. The order of HOSpLP, HOLP, and FXNLMS ANC is 100,
which covers female and male pitch periods for the used test signals
and in general [5]. The order of STP and LTP in SLTPj is 10 and
11, respectively. For all the systems δNLMS =10−3. For HOSpLP
α = 0.85, ε = 10−2. Step-size µ for HOSpLP, HOLP, FXNLMS
ANC is 0.17, for SLTPj it is 0.05. For SLTPj, T was estimated with
the single pitch estimator from [31] every 10 ms on a 25 ms speech
segment. For performance evaluation, the attenuation metric A, in
(7), was calculated on voiced speech samples over a sliding window
of 10 ms. The higher the A, the better the ANC speech attenuation.

A(n)=10 log10

(∑I
i=−I d(n+ i)2∑I
i=−I e(n+ i)2

)
. (7)

4.2. Results

1) Speech prediction. Fig. 4 shows an example of voiced speech
prediction coefficients for two speakers, where HOLP has a non-
sparse filter structure, while the proposed HOSpLP filter is sparse
with nonzero coefficients corresponding to the short- and long-term
correlations. The latter, e.g., can be seen in Fig. 4(b) at the female
pitch period Tf =29 samples, male pitch period Tm =67 samples,
and around integer multiples of Tf . The SLTPj filter is composed
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Figure 4: Example of the prediction coefficients for 2 speakers: fe-
male and male, and for the delay D of 1 (a) and 10 (b) samples.

Figure 5: Mean attenuation of voiced speech for 1 (a), 2 (b) and 3
(c) speakers as a function of D for HOSpLP-ANC, other LP-based
fixed-filter ANC, FXNLMS ANC and (d) ANC without predictor.

of the first 10 coefficients and 11 coefficients at the estimated pitch
period. Since the used estimator from [31] is for the single pitch,
the estimated T in SLTPj for the example in Fig. 4 corresponds to
male speech. Comparing the first ten coefficients in Figs. 4(a) and
4(b), we can see that with increasing D, the short-term correlations
are becoming weak, while the long-term are more pronounced.

2) Speech attenuation. Fig. 5 compares voiced speech attenua-
tion performance of HOSpLP-ANC with different prediction-based
fixed-filter ANC systems and the conventional adaptive FXNLMS
ANC system. The causal ANC system, i.e., when D=0, shows
quite high mean attenuation for voiced speech which is up to 24
dB and 35 dB for the fixed-filter and the adaptive FXNLMS ANC
systems, respectively. Since the latter takes into account the in-
put signal when modelling and updating the ANC filter, it provides
higher attenuation. With a delay of 1 sample, the performance drops
significantly for all the cases, and without compensating for D in
fixed-filter ANC, as seen in Fig. 5(d), reaching even negative mean
attenuation at D = 3, meaning speech amplification. Integrating a
predictor in the fixed-filter ANC allows to compensate for the delay
D with the attenuation performance depending on the type of LP.

For the single-speaker case in Fig. 5(a), the proposed HOSpLP-
ANC provides almost the same attenuation as SLTPj-ANC while
avoiding pitch estimation. Compared to HOLP-ANC and FXNLMS
ANC, HOSpLP-ANC has higher attenuation for D>2, outperform-

Figure 6: PSD of e(n) for 1-speaker voiced speech from different
ANC systems compensating for the delay D of 10 samples.

ing HOLP-ANC on average by 1.4 dB and up to 1.8 dB at high
D. As can be noticed, FXNLMS ANC follows HOLP-ANC with
slightly higher attenuation. This behaviour is expected since they
are both based on the NLMS algorithm resulting in lower perfor-
mance than HOSpLP-ANC based on the IPNLMS algorithm. From
the power spectral density (PSD) plot of e(n) for D=10 samples
in Fig. 6, we can see that, on average, all ANC systems are effec-
tive for voiced speech attenuation with delay compensation up to
1.5 kHz. HOSpLP-ANC outperforms FXNLMS ANC mostly at the
frequency range of 650-1000 Hz for the given example in Fig. 6.
At higher frequencies, i.e., around 2.7 kHz, FXNLMS ANC and
SLTPj-ANC amplify speech slightly rather than attenuate it.

For the multi-speaker case in Figs. 5(b) and 5(c), the perfor-
mance is lower for all the systems. As can be seen, HOSpLP-
ANC still provides higher voiced speech attenuation than HOLP-
ANC and FXNLMS ANC for two speakers and D>3, but the per-
formance difference becomes less pronounced, especially for the
three-speaker case, where HOSpLP-ANC has slightly higher atten-
uation for D≥10 and comparable performance to HOLP-ANC and
FXNLMS ANC for 2<D<10. This might be explained by the
more complex and less sparse structure of the required prediction
filter to be. Note that since SLTPj here is based on the single-pitch
estimator, it has a relatively low but non-zero performance for the
multi-speaker case. Multi-pitch estimation is still a complicated and
challenging task [27, 28], requiring computationally demanding al-
gorithms which are unsuitable for current headphones. In this re-
gard, the advantage of HOSpLP avoiding pitch estimation can be of
particular significance in the multi-speaker case.

5. CONCLUSION

We proposed a fixed-filter FF ANC system for headphone appli-
cations, HOSpLP-ANC, which aims at attenuating voiced speech
and comprises high-order sparse linear prediction, exploiting the
adaptive IPNLMS algorithm, to overcome the delay D which vi-
olates the causality constraint. Notably, HOSpLP provides high
prediction performance of voiced speech by modelling the SLTPj
scheme while avoiding pitch estimation. This can be of particular
significance in the case of the complicated multi-pitch estimation
scenario. Simulations show that HOSpLP-ANC outperforms con-
ventional adaptive FF FXNLMS ANC in single and multi-speaker
environments at a wide range of D, which is 3≤D≤20 samples
(0.375 to 2.5 ms) and 4≤D≤20 samples (0.5 to 2.5 ms), respec-
tively, at a sampling frequency of 8 kHz. Future work should focus
on conducting subjective tests and experiments on a prototype.
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M. Marković, Robust Digital Processing of Speech Signals,
Springer International Publishing AG, Cham, 2017.

[18] R. P. Ramachandran and P. Kabal, “Joint optimization of lin-
ear predictors in speech,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 5, pp. 642–650, 1989.

[19] D. Giacobello, M. G. Christensen, M. Murthi, S. H. Jensen,
and M. Moonen, “Joint estimation of short-term and long-
term predictors in speech coders,” in Proc. IEEE ICASSP,
2009, pp. 4109–4112.

[20] T. L. Jensen, D. Giacobello, T. van Waterschoot, and M. G.
Christensen, “Fast algorithms for high-order sparse linear pre-
diction with applications to speech processing,” Speech Com-
munication, vol. 76, pp. 143–156, 2016.

[21] P. Diniz, Adaptive Filtering: Algorithms and Practical Imple-
mentation, Springer Nature Switzerland AG, Cham, 2020.

[22] D. Giacobello, M. G. Christensen, M. Murthi, S. H. Jensen,
and M. Moonen, “Sparse linear prediction and its applica-
tions to speech processing,” IEEE Audio, Speech, Language
Process., vol. 20, no. 5, pp. 1644–1657, 2012.

[23] S. S. Bhattacharjee, D. Ray, and Nithin V. George, “Adap-
tive modified Versoria zero attraction least mean square algo-
rithms,” IEEE Trans. Circuits Syst. II, vol. 67, no. 12, pp.
3602–3606, 2020.

[24] R. L. Das and M. Chakraborty, “Improving the perfor-
mance of the pnlms algorithm using l1 norm regularization,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 24,
no. 7, pp. 1280–1290, 2016.

[25] J. Benesty and S. L. Gay, “An improved PNLMS algorithm,”
in Proc. IEEE ICASSP, 2002, vol. 2, pp. 1881–1884.

[26] C. Paleologu, J. Benesty, and S. Ciochina, “Sparse adaptive
filters for echo cancellation,” Synthesis Lectures on Speech
and Audio Processing, vol. 6, no. 1, pp. 1–124, 2010.

[27] M. Wohlmayr, M. Stark, and F. Pernkopf, “A probabilistic
interaction model for multipitch tracking with factorial hidden
markov models,” IEEE Trans. Audio, Speech, and Language
Process., vol. 19, no. 4, pp. 799–810, 2011.

[28] X. Li, Y. Sun, X. Wu, and J. Chen, “Multi-speaker pitch track-
ing via embodied self-supervised learning,” in Proc. IEEE
ICASSP, 2022, pp. 8257–8261.

[29] DSP Committee, Programs for digital signal processing,
IEEE ASSP. IEEE Press, New York, 1979.

[30] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and
D. S. Pallett, “DARPA TIMIT acoustic-phonetic continous
speech corpus CD-ROM. NIST speech disc 1-1.1,” Tech.
Rep., NASA STI/Recon, 1993.

[31] L. Shi, J. K. Nielsen, J. R. Jensen, M. A. Little, and M. G.
Christensen, “Robust Bayesian pitch tracking based on the
harmonic model,” IEEE Audio, Speech, Language Process.,
vol. 27, no. 11, pp. 1737–1751, 2019.

[32] Y. Iotov, S. M. Nørholm, V. Belyi, M. Dyrholm, and M. G.
Christensen, “Computationally efficient fixed-filter ANC for
speech based on long-term prediction for headphone applica-
tions,” in Proc. IEEE ICASSP, 2022, pp. 761–765.


