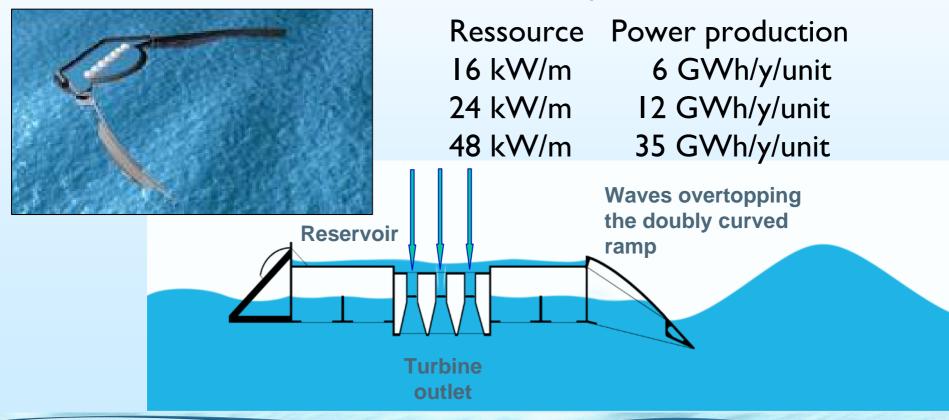


Peter Frigaard¹, James Tedd^{1,2}, Jens Peter Kofoed¹, Erik Friis-Madsen² and others

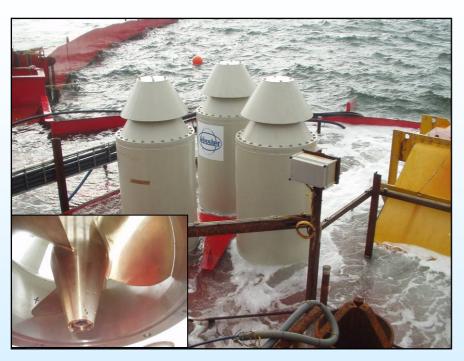
1. Department of Civil Engineering, Alborg University Alborg, Denmark 2. Wave Dragon ApS, Copenhagen Denmark

My story (focus om energy prod.)

- WD Technology
- Proto type testing
- History of operation35 % availability
- Instumentation
- Data analysis
 - Power production
- Yearly energy production 6.5 GWh

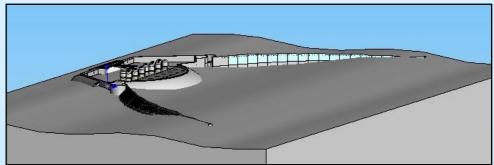


Wave Dragon Technology #1/5


The *Wave Dragon* is a slack-moored overtopping wave energy converter. It can be deployed alone or in parks where there is a sufficient wave climate and a water depth of more than 25 m.

Wave Dragon Technology #2/5

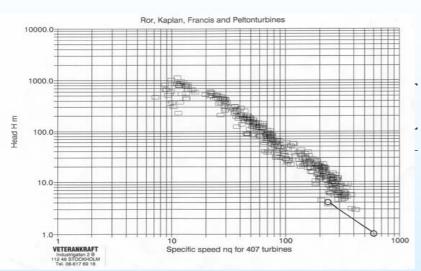
Floating Platform

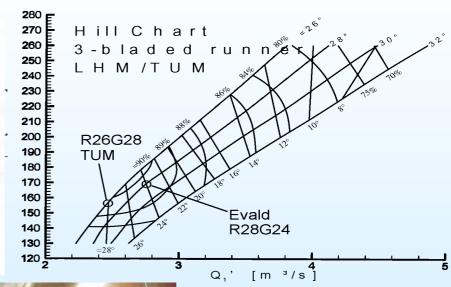

- Double curved ramp,
 crest level variable 1-4 m
- Reservoir storage

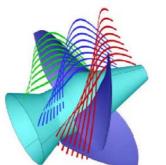
Hydro Turbines

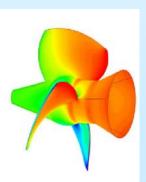
- Propeller turbines to produce electricity
- PM generators

Wave reflectors


Focused waves increase overtopping by up to 100%




Wave Dragon Technology #3/5 Development of Ultra Low Head Propeller Turbine



Wave Dragon Technology #4/5
Optimization of Overtopping Ramp

From single to double curved ramp

+5-15% energi

Wave Dragon Technology #5/5
Structural design – Most important: Survival Testing

Scale 1:50 model in a 100 years storm event (EU CRAFT project, 2001)

Wave Dragon

- A Slack Moored Wave Energy Device of the

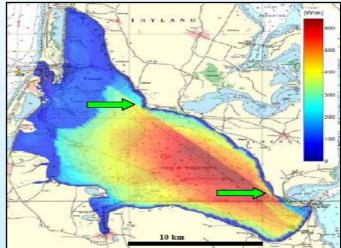
Overtopping Type

www.wavedragon.net

1:50 Model in Wave Tank

1:4.5 Protoype in Nissum Bredning

Full production unit near Wales


Prototype Testing #1/2 – History

- Nissum Bredning (From May 2003)
 - A benign site in Northern Denmark

- 1:4.5 scale prototype. Test Site 1, 2003–2005. Site 2, 2006-
- Grid connected, Full control system, Highly instrumented

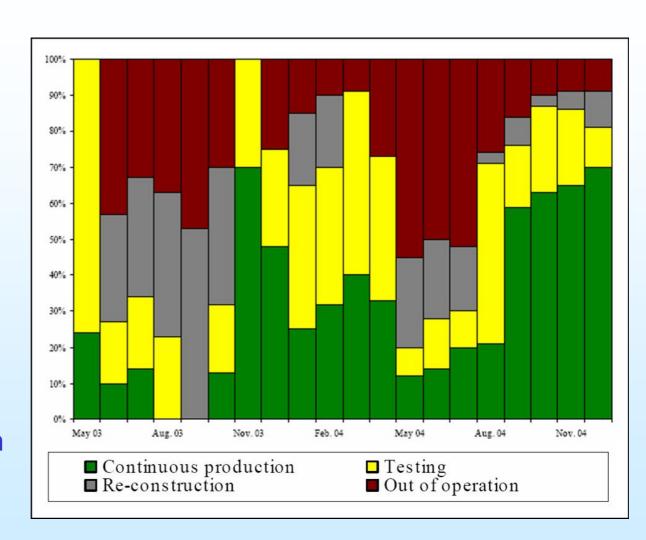
Proto type testing #2/2 Demonstration of operation

History of operation - Availability

Production

Automatic, grid connected

Testing


 Specific test of sub-systems, control/hydraulic response

Re-construction

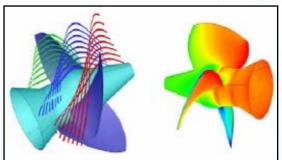
More major work;
 Planned out of operation periods

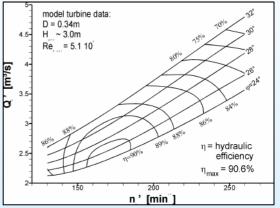
Out of Operation

- Fire safety system out of order
- Holiday Periods and non-planned out of operation.

Instrumentation #1

7 Propeller Turbines

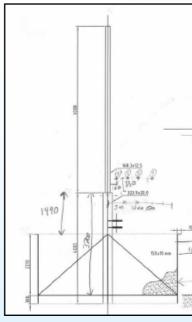

- On/Off controlled by cylider gate or Syphon
- Flow rateQ = Q(n, head)


PM generators

Speed controlled by invertor

3 Dummy Turbines

- Calibrated on/off valve
- Flow rate Q = Q(head)
- Approximately twice the flow capacity of a propeller turbine
- No generator attached


Instrumentation #2

Incoming Waves

- Pressure Transducer mounted at pile
- Time record
- Wave statistics for sample and control of floating levels every 17 min.

Reservoir water level

3 Pressure Transducers on floor of reservoir

Floating level

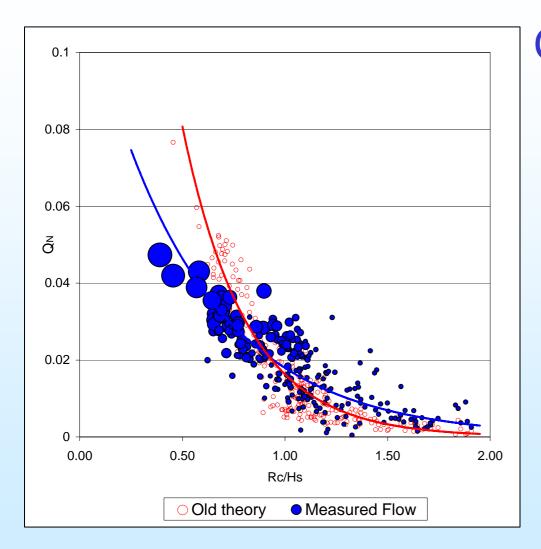
3 Pressure Transducers beneath platform

Turbine Head calculated from water and floating levels

Strain gauges, movementsetc

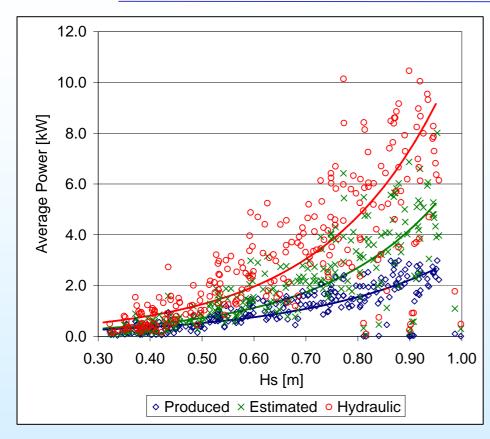
In total approx. 200.000.000.000 numbers plus video and web cameraes

Power production - data analysis



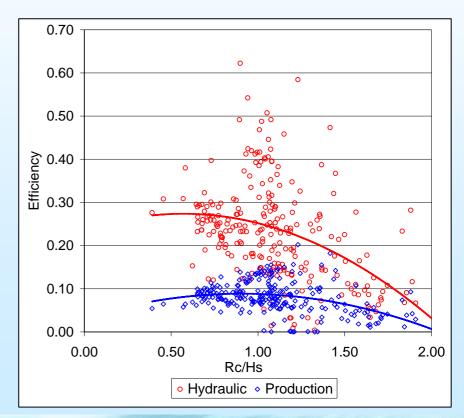
- Selection of good data sets
 - 4800 x 30 minute records taken over three months
 - 247 records chosen when high quality measurements,
 and enough waves to give some power production
- The results I will present today are:
 - Overtopping flow to compare to the model results
 - Hydraulic energy the potential energy of the water passing through the turbines
 - Actual Electricity generated by turbines
 - Estimated electricity if dummy turbines produced as the propeller turbines
 - Estimated electricity if PM-generators had had a decent efficiency (They have been working very badly)

Overtopping


Comparison Tank to Prototype

- Good agreement at higher relative floating levels
- A lot of spill in lower floating level
- Lack of capacity
 due to faults in
 turbines

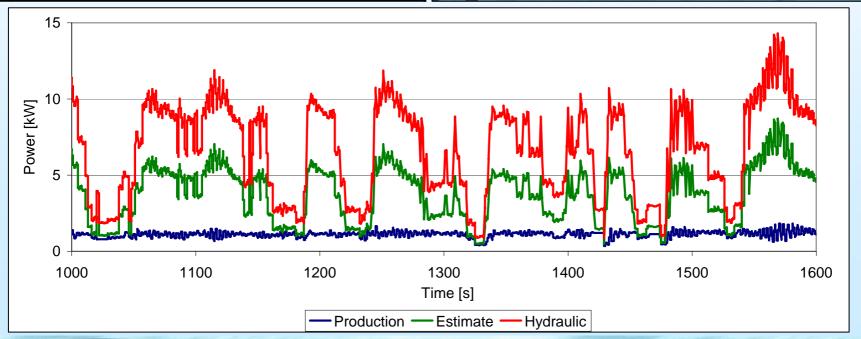
Power and Efficiency



Efficiency relative to incoming wave energy toward width of ramp
Scatter due to different operation conditions, turbine control etc...

Optimal working point where Rc/Hs ≈ 0.7 not 1.0 as shown.

- Dummy turbines not included
- Low capacity gives considerable spill



Typical Record

Date	16/12/2004, 9:00
Hs	0.62 m
Flow	3730 m ³ /hr
Ave Elec Power	0.97 kW
Estimate Power	2.5 kW
Hydraulic Power	4.6 kW

Some conclusions

- Overtopping as predicted in tank tests. Maybe even slightly more in the Nissum Bredning
- Realised efficiency of reservoir plus PMgenerator in the order of 0.2-0.4. Our guess (based on measurements) is an efficiency of the reservoir approx. 0.55, and an efficiency of the PM-generators approx 0.5.
- Availibility approx 35%
- Realised power more smooth than expected.

Yearly energy production ©

- In 1 year the Wave Dragon Nissum Bredning has produced slightly less than 6.0 MWh Value approx. 250 euro ©
- Scaling to North Sea conditions this means that we have produced approx. 1.1 GWh in 1 year
- Now, adjusting for the 35% availibility we find a yearly production approx. 3.2 GWh
- Assuming (indicated by tests) that the efficiency of generators and turbines can be increased to 60-80% we find an yearly production of 6.5 GWh. ☺
 Value off the Portuguise coast approx. 1.3 mill euro.

Conclusion

We believe (hope ©) that a North Sea scale Wave Dragon placed in a wave climate with an average energy density of 16 kw/m will be able to produce 6.5 Gwh/year