Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

Westermann, Peter; Jørgensen, Betina; Lange, Lene; Ahring, Birgitte Kiær; Christensen, Claus H.

Published in:
International Journal of Hydrogen Energy

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Review

Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

Peter Westermanna, Betina Jørgensenb, Lene Langec, Birgitte K. Ahringa, Claus H. Christensenb

a BioCentrum, Technical University of Denmark, Building 227, DK-2800 Lyngby, Denmark
b Department of Chemistry, Technical University of Denmark, Building 204, DK-2800 Lyngby, Denmark
c Novozymes, Krogshøjvej 36, DK-2880 Bagsværd, Denmark

Received 17 October 2006; revised 14 May 2007; Accepted 19 June 2007. Available online 14 August 2007.

Abstract

Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photofermentative production. Due to these constraints biological hydrogen production from biomass has so far not been considered a significant source in most scenarios of a future hydrogen-based economy.

In this review we briefly summarize the current state of art of biomass-based hydrogen production and suggest a combination of a biorefinery for the production of multiple fuels (hydrogen, ethanol, and methane) and chemical catalytic technologies which could lead to a yield of 10–12 mol hydrogen per mol glucose derived from biological waste products. Besides the high hydrogen yield, the advantage of the suggested concept is the high versatility with respect to input of different types of biological wastes, which are abundant and cheap residues from agricultural production. Also the concept leaves the opportunity to optimize the microbiological and catalytic processes to meet specific needs for fuel flexibility.
Keywords: Fermentative hydrogen production; Biorefinery; Chemical catalysis; Ethanol; Methane

Article Outline

- 1. Introduction
- 2. Biological hydrogen production from biomass
 - 2.1. Dark fermentation
 - 2.2. Integrated photofermentative hydrogen production
- 3. Chemical conversion of biomass to hydrogen
- 4. Biomass conversion in biorefineries
 - 4.1. Energy production in biorefineries
 - 4.2. Bio/catalytic conversion of biomass to bioenergy
- Acknowledgments
- References