

Aalborg Universitet

Volunteer-Based System for classification of traffic in computer networks

Bujlow, Tomasz; Balachandran, Kartheepan; Riaz, M. Tahir; Pedersen, Jens Myrup

Published in:
Proceedings of 19th Telecommunications Forum TELFOR 2011

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bujlow, T., Balachandran, K., Riaz, M. T., & Pedersen, J. M. (2011). Volunteer-Based System for classification of
traffic in computer networks. In Proceedings of 19th Telecommunications Forum TELFOR 2011 (pp. 210-213).
IEEE Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 13, 2024

https://vbn.aau.dk/en/publications/008542dc-3fc6-4dd1-bd1a-7682cc556853

Volunteer-Based System for classification of
traffic in computer networks

Tomasz Bujlow, Kartheepan Balachandran, Tahir Riaz, Jens Myrup Pedersen, Aalborg University

Abstract — To overcome the drawbacks of existing methods
for traffic classification (by ports, Deep Packet Inspection,
statistical classification) a new system was developed, in which
the data are collected from client machines. This paper
presents design of the system, implementation, initial runs
and obtained results. Furthermore, it proves that the system
is feasible in terms of uptime and resource usage, assesses its
performance and proposes future enhancements.

Keywords — computer networks, data collecting,
performance monitoring, volunteer-based system.

I. INTRODUCTION

Monitoring of the data flowing in the network is
usually done to investigate usage of network resources,
and to comply with the law, as in many countries the
Internet Service Providers (ISPs) are obligated to register
users’ activity. Monitoring can be also made for scientific
purposes, like creating realistic models of traffic and
applications for simulations, and to obtain accurate training
data for statistical traffic classifiers.

This paper focuses on the last approach. There are
many existing methods to assign packets in the network
to a particular application, but none of them were capable
of providing high-quality per-application statistics when
working in high-speed networks. Classification by ports
or Deep Packet Inspection (DPI) can provide sufficient
results only for limited number of applications, which use
fixed port numbers or contain characteristic patterns in the
payload. Therefore a system is designed, built and tested,
in which the data are collected directly from the client
machines, where volunteers contribute with traffic data. In
the following available and chosen solutions are described
for particular parts of the system. With relatively long
testing, the system has shown to be feasible in terms of
resource usage, uptime and providing valid results. The
remainder of this paper describes the previous work related
to this research and then focuses on design and the new
implementation of the volunteer-based system. Finally, it
shows the results of 3-months system test and proposes
further enhancements.

II. RELATED WORK

Most of the methods for traffic classification use the
concept of flow, which is defined as a group of packets
having the same end IP addresses, ports, and using the
same transport layer protocol. Flows are bidirectional, so
packets going from the local machine to the remote server
and from the remote server to the local machine belong to
the same flow. In [1] the authors proposed to collect the

The authors work in the Section for Networking and Security,
Department of Electronic Systems, Aalborg University, DK-9220,
Aalborg East, Denmark. Emails: {tbu, kba, tahir, jens}@es.aau.dk

data by Wireshark while running one application per host
at a time, so all the captured packets should correspond
to that application. Nevertheless, this method requires an
application installed on the host, which is run once for each
application where traffic characteristics has to be captured.
This solution is slow and not scalable. Secondly, all
the operating systems have usually background processes,
which damage the clear application traffic image (DNS
requests and responses, system or program upgrades).

DPI solution by a layer-7 filter and statistical
classification solution are proposed in [2]. Using DPI is
much more convenient than the previous method, since
it can collect the data in any point in the network.
Unfortunately existing DPI tools are not able to classify
accurately traffic belonging to some applications, like
Skype (in this case the layer-7 tools rely on statistical
information instead of the real traffic patterns, giving some
false positives and false negatives). Obtaining training data
for statistical classifier basing on statistical classifiers will
not give us a high accuracy of the new classifier. Idea of
using DPI for classification of the training data for Machine
Learning Algorithms was used in [3]. Moreover the DPI
classification is quite slow and requires a lot of processing
power [1], [4]. Furthermore it relies on inspecting the user
data and therefore privacy and confidentiality issues can
appear [1]. Application signatures for every application
must be created outside the system and kept up to date
[1], what can be problematic. Worse, encryption techniques
make DPI in many cases impossible.

Using application ports [5], [6] is a very simple idea,
widely used by network administrators to limit traffic
generated by worms and other unwanted applications. This
method is very fast, and can be applied to almost all
the routers and layer-3 switches existing on the market.
Apart from its universality, it is very efficient to classify
some protocols operating on fixed port numbers. Using it,
however, gives very bad results in detection of protocols
using dynamic port numbers, like P2P and Skype [1],
[4], [7]. The second drawback is not less severe: many
applications try to use well-known port numbers to be
treated in the network with priority.

III. VOLUNTEER-BASED SYSTEM

A system is developed based on volunteers, which
collects internet traffic data in flows together with the
information, what application they belong to. A prototype
version of a volunteer based system and its architecture
were described and analyzed in [8] and [9]. Design and
implementation of the prototype had numerous weaknesses
and stability issues. Therefore a new reimplemention
of system has been made, later called Volunteer-Based
System (VBS). Both the prototype as the VBS were

developed in Java, using Eclipse environment, resulting
in a cross-platform solution. Currently only Microsoft
Windows (XP and newer) and Linux (all versions) are
supported because of used third-party libraries and helper
applications. The system consists of clients installed on
volunteers’ computers, and of a server responsible for
storing the collected data.

The task of the client is to register information about
each internet traffic data packet passing the Network
Interface Card (NIC), and categorize them into flows, with
the exception of traffic to and from the local network
(file transfers between local peers are filtered out). The
following flow attributes are captured: start and end time of
the flow, number of packets, local and remote IP addresses,
local and remote ports, used transport layer protocol, name
of the application and client, which the flow belongs to.
The client collects also information about all the packets
associated with each flow: direction, size, TCP flags, and
relative timestamp to the previous packet in the flow.
Information is then transmitted to the server, which stores
all the data for further analysis. The client consists of
4 modules running as a separate thread: packet capturer,
socket monitor, flow generator and data transmitter.

Both VBS client and server are designed to run in
the background and start automatically with the operating
system (as Windows service or Linux daemon). The
prototype uses a free community version of Tanuki Java
Service Wrapper [10], which provides support only for
32-bit JVMs and requires special packaging of the Java
application and placement of the libraries. To avoid these
limitations, this has been replaced with YAJSW [11], an
open-source project providing support for both 32-bit and
64-bit versions of Windows and Linux.

A. Packet capturer

External Java libraries for collecting packets from
the network rely on the already installed Winpcap (on
Windows) or libpcap (on Linux), making the operating
system issue transparent to the application. The Jpcap [12]
library used in the prototype is not suitable for processing
packets from high-speed links, because transfers above
3 MBs cause Java Virtual Machine (JVM) to crash.
Moreover, the loopPacket and the processPacket functions
are broken causing random JVM crashes, so the only
possibility is to process packets one by one using getPacket
(this bug is fixed in a new project called Jpcapng [13]
evolved from Jpcap). Jpcap is not developed since 2007
and Jpcapng since 2010, so there is no chance to get the
bugs corrected. Therefore jNetPcap [14] is chosen, as it
contains even more useful features than Jpcap offered, like
detecting and stripping different kinds of headers (data-
link, IP, TCP, UDP) in processed packets. It allows the
client to capture packets on all the interfaces, not only on
the Ethernet ones like in the prototype, where the client
needed to know number of stripped bytes. jNetPcap is also
able to filter out the local subnet traffic on the Pcap level
by compiling dynamically Pcap filters, what saves system
memory and CPU power.

B. Socket monitor

The socket monitor executes external socket monitoring
tool every second, to ensure that even very short flows
are noticed. In the prototype the built-in Windows or
Linux Netstat was used, but it takes up to 20 seconds for
Windows Netstat on some machines to display the output.
This issue was tried to be solved with CurrPorts [15] on
Windows instead of Netstat. Unfortunately the only way
to export the socket information was to write it to a file
on the harddisk. It resulted in poor performance due to
excessive disk reads and writes when executing CurrPorts
each second. Finally tcpviewcon was chosen, a console
version of TCPView [16]. Tcpviewcon displays socket
information in the console in a Netstat-like view, allowing
us to process this information in the same manner. Using
the external tools brings some licensing issues. These third-
party applications must not be redistributed along the VBS,
but they need to be downloaded by the installer on the
users’ computer after accepting their license agreement.

VBS monitors both TCP and UDP sockets, contrary to
the prototype, which was able to handle only TCP sockets.
TCP sockets include information about both end-points
(local and remote) because the connection is established,
and UDP sockets provide information only about the local
node. Since only one application can listen on a given
UDP port at a time, information about local IP address
and local port are fully sufficient to obtain the application
name for the given flow. Nevertheless, it is not possible
to use the UDP socket information to terminate the flow,
because many flows to different remote points can coexist
using one UDP socket. Therefore, UDP flows are always
closed based on timeout. TCP sockets are created one-per-
connection, so it is possible to precisely assign a socket
to a flow, and close the flow, when the matching socket is
closed.

C. Flow generator

Collected packets are grouped into flows. If the
application name can be received from the matching
socket, it is assigned to the flow. When the flow is closed
(matched socket is closed or time-out appears in case if
the flow is not mapped to any socket), it is stored in the
memory buffer. The prototype treated the flow and packet
data as raw byte arrays and stored them as binary files.
Unfortunately, it was impossible to detect file corruption
or to look into the file to see what went wrong without
binary file parsers. Therefore it is decided to use SQLite
[17], which uses the proper data types (like integer, double,
string) for all the information captured.

D. Data transmitter

Before transmitting the data the client authenticates
to the server using hardcoded plain-text pass-phrase and
obtains an identifier. Communication between clients and
the server uses raw sockets. Node authentication and
data transmission require separate connections between the
clients and the server. When sufficient number of flows are
stored in the local database (the database exceeds 700 kB),
the SQLite database file is transmitted and stored on the
VBS server. The transmitted database file includes also

client identifier and information about operating system
installed on the client machine.

E. Implementation of the server

The prototype server is based on threads and received
the binary files and stored them in a separate directories
for each client. The VBS server is also based on threads,
however stores the collected data differently. The first
thread authenticates the clients and assigns identifiers to
them. The second thread receives files from clients and
stores them in a common folder, which is periodically
checked by the third thread. The files are checked for
corruption and the proper SQLite database format, then
they are extracted into the database. To avoid a situation
where the third thread tries to process a file, which was
not transferred completely, synchronization is used where
the file extension is changed after the file transfer is
successfull. The server uses a Non-commercial MySQL
as the database, as it is quite fast and reliable for storing
a significant amount of data.

IV. INITIAL RUNS

The system was implemented and tested over a 3 month
period, to test its feasibility and usefulness in collecting
valid data. The server was installed at Aalborg University
on a PC, equipped with an Intel Core i3 550 / 3.2 GHz
processor, 4 GB of DDR3 SDRAM memory, and 70 GB
hard disk and using Ubuntu 11.04 as OS. The clients
were installed on 16 computers, equipped with different
hardware and operating systems, placed in private houses
as well as in an educational institution in Poland. The
objective was to prove that the system has high uptime,
collects data from remotely located clients, and does not
consume too much resources. The CPU usage of the VBS,
fluctuates with the average of around 6 % depending on
the current network traffic. It was observed that during
high-speed transfers (50 Mbit/s or faster) VBS starts to use
100 % of the CPU time. Results of CPU usage tests on two
computers with different hardware and OS configurations
are shown on Fig. 1. Sampling was performed on each
3 seconds during 76 minutes. CPU usage on the first
machine (Intel Core 2 Duo 7250 @ 2.0 GHz, Kubuntu
11.04) is higher than on the second (Intel Core i3 550
@ 3.2 GHz, Windows 7) because the processing power
of the first machine is significantly lower. During the 3
month experiment no JVM errors occurred about exceeding
the default allocated memory size, so it is assumed that
the VBS is free from memory leaks. Average memory
usage on all the tested machines was below 5 % of
installed system memory. The minimum required amount
of system memory is 64 MB because of requirements of
the Java service wrapper YAJSW. Disk space usage varied
depending on the scheduling.

The test results were obtained during around 3 months,
and in this time the clients analysed 121.21 GB of
internet traffic data (accumulated data from all clients).
On the server side 7.4 GB of statistical data was
collected, consisting of 637.8 MB of flows data (3,506,201
records), and 6.8 GB of packets data (175,970,365 records).
Communication between the VBS client and the server
passes the network adapter as an ordinary remote

Fig. 1. CPU usage by VBS client on two computers

connection, so it appears also in the database and is
a subject to be included in the classification. During
the test period 5 % of the collected data correspond the
communication data between the client and server of
the VBS. Around 14 % of flows were collected without
associated application name. Flows without application
name contains 5 packets in average comparing to flows
with application name containing 49 packets in average. It
means, that the matching sockets for short flows were not
noticed by the socket monitor due to very short opening
time.

Example of the stored flows data is shown in Table 1.
IP addresses were hidden for the privacy reason, start
and end time of the flow (stored as Unix timestamps)
were cut due to their length. This table also depicts a
very interesting behavior of Skype – while the main voice
stream is transmitted directly between the peers using UDP,
there are plenty of TCP and UDP conversations with many
different points (originally it was found to be around 50).
The reason for this could be that the Skype user directory
is decentralized, and distributed among the clients.

Together with each flow, information about every packet
belonging to this flow is registered. One TCP conversation
is presented in Table 2, some non-relevant packets are
omitted to save the space. This example shows that all the
parameters are correctly collected. Thanks to such detailed
flow description, it can be used as a base for creating
numerous different statistics, which can then be used as
an input for Machine Learning Algorithms. Moreover,
presence of packet size and relative timestamp enables
us to re-create characteristics of this traffic, and therefore
also behavior of the application associated with the flow.
Relative timestamp shows, how much time passed from
the previous packet in the flow.

V. CONCLUSION

The paper presents a novel volunteer-based system for
collecting network traffic data, which was implemented and
tested on 16 volunteers during around 3 months. Obtained
results proved that the system is feasible, and capable
of providing detailed information about the network
traffic. Therefore, it can be useful for creating different
applications traffic profiles. VBS is a field for constant
improvements, like implementing sufficient security in
the system, as for now only plain-text pass-phrase is
used for authentication, and raw sockets are used for

TABLE 1: EXAMPLE OF THE STORED FLOWS DATA

flow id client
id

start
time

end
time

no. of
packets

local IP remote IP local
port

remote
port

protocol
name

socket name

1 1 13. . . 13. . . 40 192.x.x.x 213.x.x.x 1133 110 TCP thebat.exe
6 1 13. . . 13. . . 10 192.x.x.x 74.x.x.x 1151 80 TCP opera.exe
7 1 13. . . 13. . . 10 192.x.x.x 91.x.x.x 1138 80 TCP opera.exe
46012 1 13. . . 13. . . 20 192.x.x.x 85.x.x.x 23399 45527 TCP Skype.exe
46013 1 13. . . 13. . . 20 192.x.x.x 78.x.x.x 23399 3598 TCP Skype.exe
46014 1 13. . . 13. . . 11 192.x.x.x 41.x.x.x 23399 10050 TCP Skype.exe
46015 1 13. . . 13. . . 15 192.x.x.x 41.x.x.x 23399 10051 TCP Skype.exe
46016 1 13. . . 13. . . 207457 192.x.x.x 62.x.x.x 23399 14471 UDP Skype.exe
46021 1 13. . . 13. . . 3 192.x.x.x 183.x.x.x 23399 33033 UDP Skype.exe

TABLE 2: CHOSEN PACKETS FROM ONE STORED TCP CONVERSATION

flow
id

direct. packet
size

SYN ACK PSH FIN RST CWR ECN URG relative
timestamp

18 OUT 48 1 0 0 0 0 0 0 0 0
18 IN 48 1 1 0 0 0 0 0 0 134160
18 OUT 40 0 1 0 0 0 0 0 0 200
18 OUT 105 0 1 1 0 0 0 0 0 20262
18 IN 77 0 1 1 0 0 0 0 0 79654
18 OUT 43 0 1 1 0 0 0 0 0 1651
18 IN 58 0 1 1 0 0 0 0 0 66950
18 OUT 40 0 1 0 0 0 0 0 0 175472
18 OUT 40 0 1 0 1 0 0 0 0 1031011
18 IN 40 0 1 0 0 0 0 0 0 69279
18 IN 40 0 1 0 1 0 0 0 0 250
18 OUT 40 0 1 0 0 0 0 0 0 25

communication. An intelligent transfer protocol should
be developed and implemented, which allows negotiation
of some link parameters, and scheduling transfers to
effectively use the link capacity.

Another quite important drawback is inability to
distinguish between different types of traffic generated by
the same application. For instance, web browser deals
with various content: web requests, flash movies, radio
transmissions, FTP file transfers. All of them are treated
now in the same manner. The solution can be to look into
dynamic linking issues, and try to get information about
the library, which directly deals with the flow.

VBS requires a valid IPv4 address to listen on the
network interface, but also IPv6 is planned to be supported.
Another issue arises when an encapsulation, data tunneling
or network file systems (like SAMBA, NFS) are used.
Then, only the most outer IP and TCP/UDP headers are
inspected. The next issue consider lack of application
name for the short flows, Volunteers’ privacy also must be
protected in a better way, for example by avoiding to store
IP addresses in a clear text. An upgrade system should be
developed to support automatics upgrades of VBS when a
new version is available.

Another concern is about finding a large enough group
of participating volunteers to be able to receive data for all
the relevant applications because of privacy issues. This
issue is not resolved so far, but suspect to convince the
users to install the software if it can provide some useful
information to the user, like statistics about amount of
traffic belonging to particular group of applications.

REFERENCES

[1] Jun Li, Shunyi Zhang, Yanqing Lu, Junrong Yan, Real-time P2P
traffic identification, IEEE GLOBECOM 2008 PROCEEDINGS.

[2] Riyad Alshammari, A. Nur Zincir-Heywood, Unveiling Skype
encrypted tunnels using GP, IEEE 2010.

[3] Wei Li, Andrew W. Moore, A Machine Learning approach for
efficient traffic classification, Proceedings of the Fifteenth IEEE
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems (MASCOTS’07), IEEE
2008, pp. 310–317.

[4] Ying Zhang, Hongbo Wang, Shiduan Cheng, A Method for Real-
Time Peer-to-Peer Traffic Classification Based on C4.5, IEEE 2010,
pp. 1192–1195.

[5] Riyad Alshammari, A. Nur Zincir-Heywood, Machine Learning
based encrypted traffic classification: identifying SSH and Skype,
Proceedings of the 2009 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2009).

[6] Sven Ubik, Petr Žejdl, Evaluating application-layer classification
using a Machine Learning technique over different high speed
networks, 2010 Fifth International Conference on Systems and
Networks Communications, IEEE 2010, pp. 387–391.

[7] Jing Cai, Zhibin Zhang, Xinbo Song, An analysis of UDP traffic
classification, IEEE 2010, pp. 116–119.

[8] Kartheepan Balachandran, Jacob Honoré Broberg, Kasper
Revsbech, Jens Myrup Pedersen, Volunteer-based distributed
traffic data collection system, Feb. 7-10, 2010 ICACT 2010,
pp. 1147–1152.

[9] Kartheepan Balachandran, Jacob Honoré Broberg, Volunteer-based
distributed traffic data collection system, Master Thesis at Aalborg
University, Department of Electronic Systems, June 2010.

[10] Java Service Wrapper – Tanuki Software, 2011. [Online]. Available:
http://wrapper.tanukisoftware.com/doc/english/download.jsp

[11] YAJSW – Yet Another Java Service Wrapper, 2011. [Online].
Available: http://yajsw.sourceforge.net/

[12] Jpcap – a Java library for capturing and sending network packets,
2007. [Online]. Available: http://netresearch.ics.uci.edu/kfujii/Jpcap/
doc/index.html

[13] Jpcapng – fork of Jpcap, aka Jpcap 0.8, 2010. [Online]. Available:
http://sourceforge.net/projects/jpcapng/

[14] jNetPcap OpenSource — Protocol Analysis SDK, 2011. [Online].
Available: http://jnetpcap.com/

[15] CurrPorts, Monitoring opened TCP/IP network ports / connections,
2011. [Online]. Available: http://www.nirsoft.net/utils/cports.html

[16] TCPView for Windows, 2011. [Online]. Available: http://technet.
microsoft.com/en-us/sysinternals/bb897437

[17] SQLite, Self-contained, serverless, zero-configuration, transactional
SQL database engine, 2011. [Online]. Available: http://www.sqlite.
org/

