Analysis of Pitch Gear Deterioration using Indicators
Nielsen, Jannie Sønderkær; Sørensen, John Dalsgaard

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Analysis of Pitch Gear Deterioration using Indicators
Jannie J. Nielsen, John D. Sørensen
Aalborg University (DK)

Abstract
This work concerns a case study in the context of risk-based operation and maintenance of offshore wind turbines. For turbines with electrical pitch systems, deterioration can generally be observed at the pitch gear teeth; especially at the point the blades are located during normal production. This deterioration is expected to cause larger loads, because increased play causes dynamic loads. At some point, the increased loads can be expected to cause a failure somewhere in the pitch system. If the loads increase with the size of the damage, the loads can be used as indicators of the size of the damage. This hypothesis was supported by results from a measurement campaign where measurements were available both before and after maintenance was performed. The loads dramatically decreased after the maintenance. However, after a few more months of measurements, and by including data from the SCADA system, it became obvious that seasonal changes in the temperature were the primary cause of the decrease. A model was established to remove the effect of the explained variation, and see if deterioration can be detected in the peak torque.

Data

The data used for this analysis comes from a commercially available multi-megawatt wind turbine on which ECN has performed measurements. For this turbine, deterioration of the pitch gear was observed, and preventive repair was performed in May 2010. Measurements were available from the period October 2009 to April 2011, but the system was not maintained after August 2010. SCADA data was available from April 2005 to February 2008.

The idea is to use the peak pitch motor torque, when the turbine went from running to idling, as damage indicator. This peak torque is approximately proportional to the peak pitch motor current, which is part of the SCADA data. Therefore, the peak pitch motor current, when going from running to idling is used in the following.

Model

This model is developed to investigate if the pitch motor current is a usable indicator of damage. This is a first step to create a model for risk-based maintenance planning:

Find usable indicator → Develop indicator model → Bayesian updating of damage model → Risk-based planning of maintenance

For a perfect linear indicator, the indicator is a linear function of the size of the damage D:

\[\text{current}(i) = c_2 + c_1 \cdot \text{time}(i) \]

(1)

For a linear damage model, where the load causing the damage is evenly distributed with time, the following damage model can be assumed:

\[\text{D}(i) = k_2 + k_1 \cdot \text{time}(i) \]

(2)

Therefore, if the current is a valid indicator, and the damage is increasing linearly with time, i.e. \(c_2 \) is different from 0 in the following model which combines (1) and (2): \n
\[\text{current}(i) = c_2 + c_1 \cdot \text{time}(i), \]

where \(c_2 = k_2 \) and \(c_1 = k_1 \cdot k_2 \)

(3)

The following model is used, where the constants, \(c_2 \) and \(c_1 \) have different values before and after maintenance, and all constants are modeled as stochastic variables to include uncertainties:

\[\text{current}(i) = c_2 + c_1 \cdot \text{time}(i) + c_3 \cdot \text{temp}(i) + c_4 \cdot \text{temp}(i)^2 + c_5 \cdot \text{stilltime}(i) + c_6 \cdot \text{stilltime}(i)^2 + c_7 + \epsilon(i) \]

(4)

The model was built in the program OpenBUGS, a program for Bayesian analysis of complex statistical models using Markov Chain Monte Carlo techniques [3]. Non-informative priors were used for the constants. The data, consisting of coherent values of time, pitch motor current, temperature, and still time was loaded into the model, and the posterior distributions for the constants were found. The data for the first year of operation (magenta) was discarded after initial analyses, because a large instantaneous increase was observed; probably caused by a system update.

Results

Blue: measured values; Red: predicted values from deterministic model with mean values.

Contributions to the total current from time, still time, and temperature. The contribution from time shows a change after the maintenance. S denotes standard deviation.

Conclusions

There is a clear difference on the mean value for the constants \(c_2 \) and \(c_1 \) before and after the maintenance. Before the maintenance, no significant increase can be seen (\(c_1 \) not significantly different from 0), but after the maintenance there was a small reduction followed by an increasing trend. However, it is not obvious whether the increase is caused by deterioration of the pitch gear. The standard deviation of the measurements of the current is 11.03, and for the residuals it is 7.65. This confirms that the model explains some of the variation. The terms including temperature and still time explains most of the variation.

Acknowledgements

The work presented on this poster is part of the project “Reliability-based analysis applied for reduction of cost of energy for offshore wind turbines” supported by the Danish Council for Strategic Research, grant no. 2104-080014. The financial support is greatly appreciated. Further acknowledgements goes to Energy research centre of the Netherlands (ECN) for collaboration on this work and for supplying data and pictures.

References