Fatigue Life of High Performance Grout for Wind Turbine Grouted Connection in Wet or Dry Environment
Sørensen, Eigil Verner; Westhof, Luc; Yde, Elo; Serednicki, Andrzej

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Fatigue life of high performance grout for wind turbine grouted connection in wet or dry environment

Egil V. Soerensen 1 *, Luc Westhoff 2, Elo Yde 3, Andrzej Serednicki 4
1 Aalborg University, Aalborg, Denmark; 2 BASF, Augsburg, Germany; 3 BASF, Roedekro, Denmark; 4 DNV, Oslo, Norway

Abstract
Grouted connections of monopile supported offshore wind turbine structures are subjected to loads leading to very high oscillating service stresses in the grout material.

The fatigue capacity of a high performance cement based grout was tested by dynamic compressive loading of cylindrical specimens at varying levels of cyclic frequency and load. The fatigue tests were performed in two series: one with the specimens in air and one with the specimens submerged in water during the test.

The fatigue life of the grout, in terms of the number of cycles to failure, was found to be significantly shorter when tested in water than when tested in air.

Introduction and Objective
The figure to the right shows the principle of a grouted connection, i.e. a grout filled annular space connecting the supporting monopile to the transition piece which is then bolted to the tower of the offshore wind turbine.

Recently it was found that grouted connections tend to have their load carrying capacity reduced with time when subjected to alternating dynamic bending moments from wind and waves acting on the structure [1]. Such action induces high periodic stresses locally at the grout ends which may lead to local fracture and crumbling of the grout. Furthermore, it has been found that the fatigue capacity of concrete is reduced when the concrete is tested in water rather than in air [1].

The objective of the present study was to investigate the fatigue capacity of a high performance grout material designed for grouted connections, in air as well as in water.

Grout Material
The investigated grout was a commercially available product based on a high performance cementitious binder material, containing microsilica and other mineral additions, and being prepared at an ultra-low water to cementitious material ratio using superplasticizing admixture. The aggregate was natural sand (0 - 4 mm).

Mechanical properties of the grout were measured after 28 days curing in water at 20°C [2] with the following results:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength (Cubes, 100 mm)</td>
<td>141 MPa</td>
</tr>
<tr>
<td>Flexural Strength (Mortar Bars, 40x40x160 mm)</td>
<td>18.4 MPa</td>
</tr>
<tr>
<td>Splitting Tensile Strength (Cylinders, ø100x200 mm)</td>
<td>8.6 MPa</td>
</tr>
<tr>
<td>Modulus of Elasticity (Cylinders, ø100x200 mm)</td>
<td>50.9 GPa</td>
</tr>
<tr>
<td>Poisson's Ratio (Cylinders, ø100x200 mm)</td>
<td>0.199</td>
</tr>
</tbody>
</table>

Fatigue Test Procedure
Cylindrical specimens, 60 mm in diameter and 120 mm high were cast and stored in water at 20°C until testing. First, the static compressive strength was determined using 6 specimens. Then another 6 specimens were tested in cyclic compressive loading, force controlled, with a minimum force of 20 kN, corresponding to a stress of 7.1 MPa, and the specified maximum force/stress, applied sinusoidally at a constant frequency. The cyclic loading was continued until the specimen broke, or until it had passed 2 million loading cycles.

During the test the free (curved) surface of the specimen was surrounded by either the ambient air or by water held in a container surrounding the specimen. Tests were run at constant frequency at three levels: 0.35 Hz (simulating real-time wave action), 5 Hz, and 10 Hz, and at three load levels: 45%, 60%, and 76% of the static compressive strength. At the time of test the specimens were between 4 and 26 months old and had a static compressive strength of about 170 MPa.

Results and Discussion
The result for each individual specimen is shown in the table below. In general, each test series comprised 6 specimens. However, at 0.35 Hz it takes more than two months to reach two million cycles, for which reason such test series were limited to a few specimens.

At the 60% stress level all combinations of test environment and load frequency were investigated.

When the general scatter of fatigue results is taken into account the figure below shows that the results for the specimens tested in air (shown in black colour) are in agreement with similar results for ordinary concrete which in turn are well represented by the relationship proposed by Aas-Jakobsen [5].

Conclusions
When tested in air it has been found that the high performance cement based grout investigated had a fatigue life comparable to that of ordinary concrete. When tested in water, however, the grout exhibits drastically shorter fatigue life at stress levels of 60% of the static compressive strength and above.

In air, the frequency of the loading (0.35 Hz, 5 Hz, and 10 Hz) has no influence on the fatigue strength.

In water, however, the fatigue capacity is substantially lower at 0.35 Hz than at either 5 Hz or 10 Hz. Thus, the reduction of the fatigue life by testing in water is particularly severe at the lowest frequency of 0.35 Hz. It is suggested that the reduced fatigue capacity is due to water being trapped during the cyclic loading, exerting pressures high enough to cause progressive crack formation. This effect is more pronounced at low loading frequency with longer time available for water ingress and pressure build-up in each load cycle.

The fatigue life reduction in water was not observed at the lowest stress level investigated (45% of the static compressive strength).

References