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CONTEXTUALISATION IN UNIVERSITY LEVEL 
PROBLEM-BASED LEARNING 

BETTINA DAHL, HANS HÜTTEL, JAKOB GULDDAHL RASMUSSEN, 
MORTEN GRUD RASMUSSEN 
At many universities, student-centred approaches such as project-based, 
problem-based and challenge-based learning are being implemented into 
curricula. The goal of this article is to conceptualise how university education
in mathematics may take place when applying the principles of problem-
based learning (PBL). PBL is a rather well-known and effective education 
method for K12 education in mathematics (e.g. Merritt, Lee, Rillero & 
Kinach, 2017) and is also applied in postsecondary medical and engineering 
education where students learn to apply their knowledge to real-life problems
and situations. Mathematics is a powerful, unavoidable and useful tool for a 
myriad of disciplines in engineering, economics, science and medicine—but 
also a discipline in its own right. Mathematics is an abstract body of 
knowledge but PBL, as well as project-based learning, etc., builds on 
authentic real-life problems with relevance outside of academia, where 
students show that they understand the context of a problem and are able to 
carry out an analysis of this problem. How does mathematics fit with PBL? 
What might PBL problems in mathematics look like in a higher education 
curriculum? To what extent and how can the abstract part of mathematics 
benefit from a PBL environment?

Our starting point is how PBL is interpreted and implemented at Aalborg 
University (AAU) in Denmark. However, we are dealing with a deeper 
problem, that of how to interpret PBL in abstract disciplines such as 
mathematics, philosophy, or disciplines with major theoretical areas such as 
theoretical physics, or disciplines such as language and literature with 
substantial aspects that are not just concerned with solving real problems or 
societal challenges. So, although we being at AAU, our problem is of a more 
general nature.
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Aalborg University—an example of  PBL
At AAU, PBL is carried out through projects in which a team of students 
collaborate. PBL is implemented at all semesters and in all study programmes
with some variation. PBL projects in each semester are carried out by groups 
of up to eight students taking up half the semester, while the rest of the 
semester contains courses that may or may not support the projects. Each 
group has its own supervisor(s) that act(s) as facilitator and usually produce a
report to document their work. All curricula are situated on six shared general
AAU PBL principles: (1) the problem is the point of departure of the project, 
(2) projects are organised as group work, (3) projects are supported by 
courses, (4) collaboration with a supervisor, external partners and other 
groups, (5) exemplarity (the learning outcomes of the project can be 
transferred to similar problems relevant to the student’s future profession), 
and (6) students’ responsibility for own learning, which includes project 
planning and organising meetings with the supervisor. Students, thus, work in
a problem-based fashion with projects that apply theory to solve or explain 
authentic real-world, exemplary problems from society. As such, problem- 
and project-based learning are applied simultaneously; but in this article, we 
focus on the nature of the problems. 

Generally, students are supposed to find a so-called initiating ill-defined 
problem in society within a given thematic semester framework. This 
expectation of student autonomy is in line with Sierpinska’s 
conceptualisation of an authentic problem as “not one that is given by the 
teacher” (1995, p. 3). Sierpinska further describes the need for students to 
develop into autonomous learners, hence they should choose own solution 
strategies. In PBL, students analyse the problem in its context. This problem 
analysis is an in-depth study of the initiating problem, seeking to answer the 
six W’s (why, what, where, when, whom, how). They ask, for example, “To 
whom is this a problem?”, “When is this a problem?”, etc. leading to a more 
precise and narrow problem statement, which then guides the rest of the work
(see, e.g., Askehave, Prehn, Pedersen & Pedersen, 2015). For example, if the 
initiating problem is transport-logistics, the resulting problem statement 
could be how to optimise the route of a truck picking up eggs at farms. The 
problem analysis would here be a study of various aspects of transport-
logistics, such as economic and environmental issues or transportation time, 
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and would eventually lead to the much more concrete and precise problem 
statement. 

This interpretation of PBL is one of many found in higher education 
institutions throughout the world (see e.g., Andersen & Heilesen, 2015), but 
it is beyond the scope of this article to describe the full range of various PBL 
interpretations in higher education institutions. Moreover, there are other 
curriculum models that are not PBL but strongly resemble PBL, such as 
inquiry-based learning (IL) which are also organised around relevant 
authentic problems. According to Hmelo, Duncan and Chinn (2007), apart 
from their origins, “in practice PBL and IL environments are often 
indistinguishable” (p. 100). Thus, PBL at university level is implemented and
interpreted in different ways and has similarities to other pedagogies. Note 
that we are not talking about the practices of problem-solving (Schoenfeld, 
1985) that relate to the small tasks that students solve in mathematics 
courses. PBL in mathematics concerns teaching through problems. 

Nevertheless, regardless of interpretation, the question remains of how 
basic sciences such as mathematics in which students should be able to both 
carry out theoretical abstract work and be able to apply the discipline, can 
benefit from curricula models that emphasize authentic real-life problems. 
Dahl (2018) argues that mathematics would suffer in a PBL curriculum if 
reduced to being a tool for other sciences, or just applied to solve problems in
society. This would lead to a lack of fundamental and deep understanding of 
mathematics and impede further development of mathematical theories. This 
article aims to provide a taxonomy for how PBL can be applied in degree 
programmes in mathematics—both pure and applied. PBL can be beneficial 
to the learning of both aspects; when students work within PBL, they develop
skills such as collaboration, communication, critical thinking, creativity etc. 
that are also beneficial within an abstract discipline.

What is the problem in mathematics?
Mathematics is a central tool for solving many problems in engineering and 
the social sciences, but it is also a theoretical and abstract science. If students 
study mathematics, they therefore must meet both mathematical worlds, that 
is, applied as well as pure mathematics. But how do you find authentic 
problems with relevance outside academia within an abstract science? At 
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AAU, this is often handled by focusing on specific applications of 
mathematics, such as population growth or optimal route planning, where 
abstract mathematics can be applied to a real-life problem. However, the 
assumption of student autonomy in PBL is at stake here: one cannot expect 
that first-year students are able to find a relevant problem that they can 
formulate precisely and solve with the mathematical competences obtained at
the current semester without significant help from the supervisor. Thus, 
students at AAU are often handed more or less fully formulated project 
descriptions with suggestions for problems, often in the form of a so-called 
project catalogue. The effect of this is often that the process of formulating an
initiating problem and performing a problem analysis are seen as irrelevant 
concepts imposed by the supervisor. It is therefore not always clear to the 
students what exactly a problem analysis is, and why it is necessary. Since 
they have been given a problem by their supervisor, it is by default 
considered to be relevant. So, they immediately start studying the relevant 
mathematical theory, apply it to a relevant practical case and make 
conclusions. In higher semesters, the challenge grows since the contents of 
the studies are becoming increasingly research-based. Our experience stems 
from AAU, however the issue of students being able, or not able, to find 
relevant problems to be solved, within a given semester and learning 
objective requirement, is something we would argue is general to all higher 
education programmes in mathematics.

How should one carry out research-based teaching at a university focused 
on PBL? Mathematical research papers are traditionally only implicitly 
problem-based; there is typically no specific problem statement in the form of
a research question, and the context of the problem is often only briefly 
mentioned or not at all. The structure of a typical research publication in 
mathematics is quite different from that of a typical PBL report. What could 
be interpreted as a problem analysis is often a short description of what 
others have and have not done, and there is often no separate conclusion. 
How does one reconcile these norms of mathematical research with the 
expectations of PBL? In particular: What is a problem in mathematics, and 
how is its context analysed?

We wish to argue that research in mathematics has always been ‘problem-
based’, even though the theoretical problem which a article sets out to give 
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the answer to is not explained in many details. Usually, the readers are other 
researchers who are perfectly aware of the existence and relevance of the 
problem. This is also seen historically. One example is the Dedekind cut 
which defined and proved the existence of the real numbers. This happened 
towards the end of the nineteenth century, but what might be considered 
strange here is that we saw the first proof of the existence of irrational 
numbers from the Pythagoreans during the sixth century BCE—which more 
than 2500 years earlier. Why was Dedekind’s cut necessary then? This means
that a PBL-problem for students in mathematical analysis could be why 
Dedekind’s work was necessary, which theoretical problems did his definition
and proof solve? Digging into this would turn the learning process ‘upside 
down’ and not just teach them about the Dedekind cut but make them 
understand its importance.

What is mathematics?
Though mathematics is often considered a natural science it is fundamentally 
different. Mathematics is not empirical in nature and does not apply the 
scientific method fundamental to (other) natural sciences. Instead, it is 
abstract and axiomatic-deductive in nature. Mathematical results are products
of deductive reasoning using accepted rules of inference on basic postulates. 
This is the ‘pure’ aspect of mathematics: theory-building, including 
definitions and stating and proving theorems, as opposed to the ‘applied’ 
aspect of model-building and calculations using models. Applications in other
disciplines have been essential for the development of mathematical theories 
but these resulting theories are ‘pure’. Dealing with authentic problems only 
is not an obvious way of learning both aspects of mathematics. We may learn 
to apply mathematics and to model something mathematically, but the 
abstract and deductive nature of mathematics is not learned through such 
endeavours. However, there is more to the theory-building aspect of 
mathematics than applying inference rules to basic postulates or already 
established results. Any working mathematician relies heavily on 
mathematical intuition when understanding and developing new theories, and
in conjecturing and proving new theorems. Mathematical intuition may be 
even harder to define succinctly but it has to do with understanding the ideas 
and concepts of mathematics, and with having a feeling of how ‘things 
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behave’ in mathematics. To attain this intuition, or “mathematical foresight” 
(Maciejewski & Barton, 2016), about a particular mathematical topic, one 
must gain experience with the topic. It is not difficult to imagine that 
mathematical models inspired by authentic problems could be a playground 
for such experience, but this still leaves out the question about the 
relationship between the problem and the mathematics: Should the problem 
guide what kind of mathematics one learns, or should the mathematics in the 
curriculum dictate the nature of the ‘authentic’ problem? Also, can problem-
based learning be applied (interpreted?) in such a way that the student also 
gains competences in the theory-building aspect of mathematics? In order for
PBL to be truly relevant to higher education curricula, the last question must 
be answered by a yes. Otherwise, students will miss out on central parts of 
mathematics. Dahl (2018) argues that although mathematics is a body of 
abstract knowledge, PBL is still a fitting curriculum for developing higher-
level mathematics if students can experience the processes of (re)inventing 
mathematical knowledge, and if PBL also includes problems relevant to a 
theory-building research community. 

External and internal contextualisation: three types of  PBL 
problems
Some problem settings encountered in mathematics degree programmes 
involve the use of mathematical theories in an application domain outside 
mathematics itself—a concrete problem setting that needs to be analysed 
using mathematics or one within another academic discipline, say, physics, 
computer science or sociology. We shall refer to this is as external 
contextualisation, as it involves putting the mathematical theory into a 
context external to mathematics itself.

However, a particular characteristic of mathematical problems is that some 
of them are internal to the subject area, since an important aspect of any 
degree programme in mathematics is that of being able to understand how 
mathematical theories are built—their internal structure, including 
definitions, theorems and valid principles of reasoning as well as connections 
to other mathematical theories. This is what we call internal 
contextualisation, as it involves a context within mathematics. 
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The analysis of a problem in the realm of pure mathematics should contain 
this kind of internal contextualisation where the focus becomes that of the 
surrounding theory, its structure and development. This focus always 
involves students making choices regarding what to focus on. Understanding 
how and why these specific choices are made is part of the general 
understanding of the subject area that a mathematician must master.

We now describe a taxonomy, three archetypes of PBL problems, and give 
concrete examples based on existing degree programmes in mathematics at 
AAU as to where these problems appear or can appear. However, the 
examples are also applicable to other institutions and countries.

Type 1: the purely external context
The primary learning goal of a Type 1 problem is to develop competences in 
the area of model-building: formulating a mathematical model for analysing a
problem setting external to mathematics and using this mathematical model 
to solve this problem. In this setting, the problem becomes a mathematical 
version of an external problem. The main driver of the work is the desire to 
solve the external problem and to find a good mathematical model of it. In 
relation to mathematical modelling, this is applied in much mathematics 
education including non-PBL curricula. 

An example of an initiating Type 1 problem is the construction of a 
statistical model for predicting house prices in future sales using a dataset 
containing the prices of houses sold during a given period together with other
data on the houses (size in square metres, number of bedrooms, etc.). While 
the aim of creating a good model for predicting house prices will guide the 
work, the curriculum may dictate that the class of models used for this is that 
of linear regression models. This would typically be the case in the early 
stages of an undergraduate degree programme, where it is often important to 
ensure that students learn about a specific mathematical theory through the 
project work. Although the class of models is restricted to that of linear 
regression models, the students must still choose which part of the theory to 
apply to the data, for example by choosing methods for estimation, model 
checking and model selection, as well as choosing one or more particular 
linear regression models for the data.
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The same data concerning house prices may also be used at a later 
semester, for example for a Master’s thesis that usually allows substantial 
freedom of choice with regard to mathematical theory. In this version of a 
Type 1 problem, the focus may be to pick an appropriate statistical model for 
predicting house prices without being restricted to linear regression models. 
The student may choose to use other generalised linear models or to use 
mixed models—depending on which class of models best solves the problem.

Type 1 problems allow for many ways in which the external problem can 
direct the choice of mathematical theory. In particular, the first version 
illustrates an inherent dilemma that every degree programme including Type 
1 problems must handle. On one hand, students must be able to choose 
appropriate tools for their mathematical model, as this is an important 
competence for an applied mathematician. On the other hand, the choice of 
model needs to be one involving a field of mathematics which is part of the 
curriculum, so the choice cannot be entirely open. Either the learning goals 
must be less restrictive, or one should ensure (by the choice of external 
problem) that a suitable field of mathematics will be chosen. As we noted 
earlier, a central characteristic of PBL is that students need some degree of 
autonomy in finding, selecting, and refining the problem. To some extent this 
contradicts the PBL principle of exemplarity: for professional 
mathematicians, the problem completely directs the choice of theory—we 
might term these Type 0 problems—but such problems would in our opinion 
not be seen in a degree programme in mathematics, which is always 
restrained by either local curricula or national requirements. 

Type 2: an internal problem setting motivated by an external context
The primary learning goal of a Type 2 problem is one of being able to 
understand a mathematical theory, but an important part of the work is a 
concrete, external case that uses model-building as a means to understand 
theory-building. The construction and analysis of a model is used to obtain a 
more precise understanding of and (re)construction of aspects of the theory 
used in the model.

An example of a Type 2 problem is a project about the Travelling Salesman
Problem. The outset would be that of optimising the route for a salesman 
given a set of customers with specified addresses. Students would then in a 
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problem analysis discuss the relevant mathematical model for such a 
problem, leading to the study of graph theory. Methods for optimising graphs 
could be developed, and various toy problems solved. The original problem 
would also be solved but only be of secondary importance. It could have been
solved simply by guessing, by asking an experienced salesman or by 
inspection (such a problem might in a concrete setup have an ‘obvious’ 
solution that is clearly optimal), but this would not be satisfactory in terms of 
curricular guidelines. The actual goal is to learn graph theory and 
optimisation methods related to graphs, but the Travelling Salesman Problem 
is used as a motivation and to illustrate the abstract concepts from graph 
theory. 

The bulk of the work would follow a typical mathematical structure with 
definitions, theorems, and proofs within the topics of graph theory. The actual
problem is motivational and illustrative, but its details are less important. It 
could have concerned a paperboy and readers, a nurse visiting patients, or a 
biologist with field observation stations. Hence, although students have a 
real-world problem at the outset and use real data, the project is a 
mathematics project. Type 2 often involves some aspects of an analysis of 
why and how the mathematics works, the choice of mathematical theory and 
the simplifications needed. The actual data is used as a means to learn the 
subject of graph theory and how to apply it in concrete settings. Naturally, the
students would be motivated by the actual problem, but the direction of the 
project, from formulation of an initiating problem to the actual problem 
formulation, would be heavily guided in a direction that would make it 
possible for the students to both give an answer to the initiating problem and 
make it possible for them to learn mathematical theory. It is this guiding of 
the problem analysis that distinguishes Type 2 problems from the others. 
However, it still leaves plenty of room for students to target their work. The 
competences in understanding a mathematical theory are therefore at the 
forefront, while the modelling aspect is of secondary importance. 

We would also like to note that a similar initiating problem asked of 
engineering students might lead them in a completely different direction. 
Even if engineering students ended up with a similar problem formulation, 
their actual report and work would look completely different and most likely 
not contain mathematical proofs.
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Type 3: a purely internal context 
Type 3 has as its primary learning goal to develop competences in the areas 
of understanding connections between and limitations of mathematical 
theories. In this setting, the problem must be formulated as a question 
concerning how mathematical theories or aspects of a single mathematical 
theory are related or how and why limitations arise within a theory. This 
could for instance be the example mentioned above about the Dedekind cut. 
The main driver of the work is the desire to obtain a precise and rational 
(re)construction of (parts of) a mathematical theory. The student report must 
do more than simply present the context of justification, that is, to present the 
theory in a structured fashion (the usual definition-theorem-proof(-example(-
counterexample)) structure); it must also present the aspect of the internal 
context that is the context of discovery. This includes an account of 
motivating counterexamples and reflections on the definitions and conjectures
that were rejected or revised in the development of the theory under 
consideration, and while the account of the context of justification focuses on
the product (a mathematical theory), the account of the context of discovery 
must include reflections on the process that led to the product and the 
structure of the internal context that constitutes the problem setting. The 
context of discovery resembles the proof-and-refutation process presented in 
Lakatos (1976), in which pupils in a fictional classroom debate the proof of 
Euler’s formula V – E + F = 2 for regular polyhedra and the process shows 
how definitions and proofs developed through different types of 
counterexamples. The real history of Euler’s formula is seen in footnotes, and
the pupils’ process is to some extent a replica of the history. 

An example of Type 3 is one of students working with the theoretical 
problem of the existence and uniqueness of solutions to ordinary differential 
equations (ODEs) and algorithms for finding solutions. The resulting report 
presents the theory of ODEs including theorems about existence and 
uniqueness of solutions and algorithms for finding solutions. The outcome is 
a precise, structured presentation of part of the theory of ODEs and its 
limitations. This includes describing and discussing the main obstacles that 
have arisen in the development of the topic and the attempts to deal with 
them that contributed to the development of the mathematical theory. This is 
the context of discovery. The benefit of approaching the topic of ODEs via 
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Type 3 is that ODEs appearing in real-world problems are typically very 
restricted in type by the given problem, and the specific type of ODEs can be 
solved concretely in a given setup (either numerically or analytically). This is
completely unproblematic from the point of view of the real-world problem 
but will not give much insight into the general theory. 

In practice, a Type 3 project on ODEs could work as follows: The students 
are presented with an introduction document explaining some of the basics 
on ODEs including concrete examples of different types of ODEs and known
results on ODEs, finishing with listing some different possible directions to 
explore. The task of the students is then to choose a direction and make a 
coherent, mathematical presentation of the chosen topic(s) including all the 
necessary mathematics needed to fill the gap between what the students 
already know and what is needed for a presentation of the topic, including its 
context of discovery. In other words, students at the same level with no 
additional knowledge of ODEs should be able to learn the selected topic(s) 
within the theory of ODEs by reading the report as if it were a tailor-made 
textbook. The list of possible directions in the introduction document is of 
course not exhaustive, but it is important to realise that the scope of any 
direction chosen for the project must be limited with the aid of a supervisor, 
since the students, being non-experts, will have no chance of knowing 
whether a topic can realistically be covered within the time frame of a single 
semester. Some almost identically looking mathematical questions may vary 
extremely in how extensive their answers are, even ranging from one being 
easily solved and another still being an open problem to the mathematical 
community.

In a sense, a Type 3 project is one big problem analysis that ends with 
stating a problem (and often a result) internal to mathematics. The challenge 
within the PBL perspective is that problems in PBL are required to be 
authentic and relevant outside of academia. Here it can be argued that the 
fundamental sciences are of course relevant outside of academia, even if 
some of the problems that they consider may not appear relevant to the rest of
society in the short term. Fundamental science is part of a food chain that will
often have consequences appreciated by those outside the subject area. A 
Type 3 project may contain reflections on how the theory could be applied 
outside the internal context, but such reflections are not essential in these 
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projects. The importance of Type 3 projects is that they contribute to a deeper
understanding of the internal structure of a fundamental scientific theory and 
how such a theory arises.

Discussion
In this article we have discussed the role of PBL in mathematics degree 
programmes based on our experiences from AAU and on the dual nature of 
mathematics: its ‘applied’ aspect of model-building and analysis and its 
‘pure’ aspect of theory-building. We identify three archetypes of problems 
that can be used to understand the role of PBL in degree programmes in 
mathematics.

Central to this taxonomy is the notion of contextualisation. Making internal
contextualisation explicit is important for projects in pure mathematics. We 
believe that for PBL to be truly fitting to mathematics and to bring forward 
the fact that mathematics is indeed a problem-based science, this exploration 
and understanding of the context of discovery ought to be a goal of such 
projects. Otherwise, we cannot truly answer yes to the question stated above: 
if problem-based learning can be carried out in such a way that the student 
also gains competences in the theory-building side of mathematics. 
Furthermore, we also find that these three archetypes are not only relevant to 
curricula defined around the principles of PBL but can provide useful 
inspiration for any other degree programmes in higher education 
mathematics, as these will most often comprise both pure and applied 
elements. 

The overall question here, of course, is if it is better for students if they 
learn to work in a problem-based manner with all three types of problems—
particularly those of Type 3. One might argue that since research 
mathematicians do not make explicit problem statements, then why should 
the students? As stated at the beginning, PBL is considered to be an effective 
method in K12 teaching and also develop competences and skills that are 
highly appreciated by future employers. But even more important, the extent 
to which the students are consciously aware of what they are actually doing 
in Type 3 projects makes it possible for them to understand and reflect more 
deeply on the mathematics than they can when their work is only implicitly 
problem-based.

projects. The importance of Type 3 projects is that they contribute to a deeper
understanding of the internal structure of a fundamental scientific theory and 
how such a theory arises.

Discussion
In this article we have discussed the role of PBL in mathematics degree 
programmes based on our experiences from AAU and on the dual nature of 
mathematics: its ‘applied’ aspect of model-building and analysis and its 
‘pure’ aspect of theory-building. We identify three archetypes of problems 
that can be used to understand the role of PBL in degree programmes in 
mathematics.

Central to this taxonomy is the notion of contextualisation. Making internal
contextualisation explicit is important for projects in pure mathematics. We 
believe that for PBL to be truly fitting to mathematics and to bring forward 
the fact that mathematics is indeed a problem-based science, this exploration 
and understanding of the context of discovery ought to be a goal of such 
projects. Otherwise, we cannot truly answer yes to the question stated above: 
if problem-based learning can be carried out in such a way that the student 
also gains competences in the theory-building side of mathematics. 
Furthermore, we also find that these three archetypes are not only relevant to 
curricula defined around the principles of PBL but can provide useful 
inspiration for any other degree programmes in higher education 
mathematics, as these will most often comprise both pure and applied 
elements. 

The overall question here, of course, is if it is better for students if they 
learn to work in a problem-based manner with all three types of problems—
particularly those of Type 3. One might argue that since research 
mathematicians do not make explicit problem statements, then why should 
the students? As stated at the beginning, PBL is considered to be an effective 
method in K12 teaching and also develop competences and skills that are 
highly appreciated by future employers. But even more important, the extent 
to which the students are consciously aware of what they are actually doing 
in Type 3 projects makes it possible for them to understand and reflect more 
deeply on the mathematics than they can when their work is only implicitly 
problem-based.



References
Andersen, A.S. & Heilesen, S. (Eds.) (2015) The Roskilde Model: Problem-Oriented 

Learning and Project Work. Springer.
Askehave, I., Prehn, H.L., Pedersen, J. & Pedersen, M.T. (Eds.) (2015) PBL: Problem-

Based Learning. Aalborg University. 
Dahl, B. (2018) What is the problem in problem-based learning in higher education 

mathematics. European Journal of Engineering Education 43(1), 112–125.
Hmelo-Silver, C.E., Duncan, R.G. & Chinn, C.A. (2007) Scaffolding and achievement 

in problem-based and inquiry learning: a response to Kirschner, Sweller, and Clark 
(2006) Educational Psychologist 42(2), 99–107.

Lakatos, I. (1976) Proofs and Refutations. Cambridge University Press.
Maciejewski, W. & Barton, B. (2016) Mathematical foresight: thinking in the future to 

work in the present. For the Learning of Mathematics 47(3), 31–37.
Merritt, J., Lee, M., Rillero, P. & Kinach, B.M. (2017) Problem-based learning in K–8 

mathematics and science education: a literature review. Interdisciplinary Journal of 
Problem-Based Learning 11(2), article 3.

Schoenfeld, A. (1985) Mathematical Problem Solving. New York: Academic.
Sierpinska, A. (1995) Mathematics: “in context”, “pure”, or “with applications”? A 

contribution to the question of transfer in the learning of mathematics. For the 
Learning of Mathematics 15(1), 2–15.

References
Andersen, A.S. & Heilesen, S. (Eds.) (2015) The Roskilde Model: Problem-Oriented 

Learning and Project Work. Springer.
Askehave, I., Prehn, H.L., Pedersen, J. & Pedersen, M.T. (Eds.) (2015) PBL: Problem-

Based Learning. Aalborg University. 
Dahl, B. (2018) What is the problem in problem-based learning in higher education 

mathematics. European Journal of Engineering Education 43(1), 112–125.
Hmelo-Silver, C.E., Duncan, R.G. & Chinn, C.A. (2007) Scaffolding and achievement 

in problem-based and inquiry learning: a response to Kirschner, Sweller, and Clark 
(2006) Educational Psychologist 42(2), 99–107.

Lakatos, I. (1976) Proofs and Refutations. Cambridge University Press.
Maciejewski, W. & Barton, B. (2016) Mathematical foresight: thinking in the future to 

work in the present. For the Learning of Mathematics 47(3), 31–37.
Merritt, J., Lee, M., Rillero, P. & Kinach, B.M. (2017) Problem-based learning in K–8 

mathematics and science education: a literature review. Interdisciplinary Journal of 
Problem-Based Learning 11(2), article 3.

Schoenfeld, A. (1985) Mathematical Problem Solving. New York: Academic.
Sierpinska, A. (1995) Mathematics: “in context”, “pure”, or “with applications”? A 

contribution to the question of transfer in the learning of mathematics. For the 
Learning of Mathematics 15(1), 2–15.


