Potential Usage of Thermoelectric Devices in a HTPEMFC System

Two Case Studies

Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Potential Usage of Thermoelectric Devices in a HTPEMFC System: Two Case Studies
Xin Gao*, Min Chen, Sören Juhl Andreasen and Søren Knudsen Kær
Department of Energy Technology, Aalborg University, Denmark

Introduction

Methanol fuelled high temperature polymer membrane fuel cell (HTPEMFC) power systems are promising as new generation vehicle engines, efficient and environmental-friendly. But a large amount of system waste heat is still exhausted unused. And by now, they still cannot get rid of large Li-ion batteries for system startup. System dynamic performance is also unsatisfactory. Because heat flux is uncontrollable during working condition fluctuating.

In this work, possibly useful waste heat from a HTPEMFC system under normal operating conditions and during system startup has been assessed separately for TEG heat recovery. To further optimize the TEG heat recovery system, a finite-difference model has been established and validated later in this paper. Finally, the use of TECs to improve system dynamics and reduce the heat loss in methanol evaporator is envisaged.

Objectives

• To improve the transient performance of methanol evaporator and SMR reformer with TECs.
• To reduce heat loss inside methanol evaporator during system startup.
• Using TEG heat recovery for electricity to improve system efficiency under normal working conditions and to reduce the system dependence on Li-ion battery during startup.

Methods

Finite-difference Model

To optimize the TEG heat recovery system, a finite-difference model has been built in engineering equation solver (EES) software. It is inspired by Espinosa's work and takes Smith's model for reference. Main equations are as follows.

• TEG properties

\[\sum n_i - n_d = \sum R_i - R_{d,i} = \sum k_i - k_{d,i} \]

• TEG power output

\[I = 0.5 \alpha (T_{TEG} - T_{HEX}) / R_p \]

\[n_{max} = n_j (T_{TEG} - T_{HEX}) / T_j \]

• Heat transfer

\[n_{h,i} (T_{i} - T_{i+1}) = \Delta P_{HEX} / (T_{i} - T_{i+1}) \]

\[n_{h,i} (T_{i} - T_{i+1}) = \Delta P_{HEX} / (T_{i} - T_{i+1}) \]

\[\Delta P_{HEX} = \int (1 - \exp(-NTU)) \cdot \Delta T_{i} / \Delta T_{i} \]

Emulation Experiments

Recent Results

• Heat recovery potentials and model validation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot gas flow rate [kg/s]</td>
<td>0.1 0.2 0.3 0.4</td>
<td>Flow rate through the system.</td>
</tr>
<tr>
<td>Pressure drop [Pa]</td>
<td>0 5000 10000 15000 20000 25000</td>
<td>Pressure drop across the system.</td>
</tr>
</tbody>
</table>

• Sensitivity analysis: Through the sensitivity study, it is found that the hot fluid temperature contributes 73.98% of the system power output sensitivity. When temperature goes down, TEG power output decreases sharply and vice versa.

• Influences of TEG heat recovery system parameters

Conclusions

• TEGs and TECs are of great potentials in improving the HTPEMFC power system.
• Various parameters of the TEG system influence its maximum power output: TEG electric connection, size, exchanger type and configuration.

Acknowledgements

The sources of my funding are Aalborg University and China Scholarship Council.

*xga@et.aau.dk