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Abstract

The paper presents conception of a soft control structure
based on the time-optimal approach. Its parameters are
selected in accordance with the rules of the statistical de-
cision theory and additionally it allows to eliminate rapid
changes in control values. The object is a basic mechani-
cal system, with uncertain (also non-stationary) mass
treated as a stochastic process. The methodology pro-
posed here is of a universal nature and may easily be ap-
plied with respect to other uncertainty elements of time-
optimal controlled mechanical systems.

1 Introduction

The main constraint of application posdhbili ties of systems
based on the principles of the dassicd optimal control
theory [1] has been their excessive sensitivity to the ob-
jed dynamics modeling inacairacy, identification of ob-
jed parameters, as well as perturbations and noise natu-
rally acompanying red processes. However, the very
ideaof optimal control often turns out to be aproper basis
to design a suboptimal structure in which excessve sensi-
tivity would be diminated.

In this paper, an objed described using the second princi-
ple of Newton's dynamics, i.e. from physicd point of
view, representing mass subjeded to force, will be won-
sidered. Such a mechanicd system is a basic dement ac-
companying all considerations in robatics [4]. The uncer-
tainty problem will be mnsidered on the example of the
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main parameter of such an objed, i.e. the value of mass
(or the moment of inertia). This problem will be solved
here by the introduction of a random fador. Namely, a
mass will be treaed as a redizaion of a stochastic proc-
esswith amost al redizaions being piecewise wntinu-
ous and jointly bounded. The introduction of a random
fador makes it posdble to take into acount errors in the
identification of mass whereas the fluctuations of the
particular redizations describe its changes, including also
those of a discontinuous nature.

A controlling structure based on the time-optimal ap-
proach will be propaosed in this paper. It is of soft a char-
ader, i.e. alows to eliminate diding trajedories, which
should be avoided in contemporary mechanicd systems,
sincethey have negative impad on the endurance of a de-
vice and user comfort. The parameters of the designed
structure ae seleded in acordance with the rules of sta-
tisticd dedsion theory [2]. The conception presented here
is universal and may be supplemented by and generalized
with anumber of various aspeds occurringin such tasks.

The material of this paper will be presented with detailsin
article [13] soon. It carries on research concerning robust
control, published arealy in works[5-10, 12, 16-17].

2 Main Results

Consider a single degree of freedom mechanical system,
whose dynamics are described by the secwond law of
Newtonian mechanics

ms () =a(t) D
where ., s, « mean the load (mass or moment of iner-



tia), position (linear or angular), control (force or torque),
respectively. If the parameter . istreated as arealization
of a stochastic process M, then denoting by wOQ aran-
dom factor, and by X;, X,, U real stochastic processes
which represent the position, velocity and control respec-
tively, the dynamics of the system under consideration
can be now described by the following random differen-
tial equation:

Xy (@) = X, (@) )
X, (wt) = U(wt) , 3
2(wyt) M (@D (w,t) 3
with theinitial condition
T
@) o amostdl w00 (@)
2(w )

given these assumptions

(AL) t,OR, T =[ty,®);

(A2) Xo =[Xo1. X021 OR? and X; =[X¢1,Xs2]" OR?
constitute initial and target states, respedively;

(A3) the values of admissible @ntrols are limited to the
interval [-1,1];

(A4) (Q,Z,P) denotesa mmplete probability space

(A5) M is ared stochastic processwith amost all redi-
zaions being piecewise antinuous and satisfying
the boundary condition M (wt)O[m_,m,] for

tOT,where O<m_<m,.
Introduce dso the foll owing subdvision of the state space
R? into the disoint sets R, , R_, Q,, Q_, {X;}; see

Fig. 1. Firgt, let m and Am>0 be given such that
m,m+AmO[m_,m,]. Let also K,_, K,, denote sets of
al states which can be brought to the target by the control
U=+1,if M=m or M =m+Am, respedively; like-
wise K__ and K_, for U=-1, if M=m or
M =m+Am. Moreover, let:

Q. ={[ %, %,]" OR? such that there eist

[X,%]" OK,. and [x,x%]" OK,, with
XPSX SX OF X{<X <X} (5)
Q. ={[ %, %,]" OR? such that there eist

[X, %] OK_, and [x],x,]' OK__ with

X SX X OF X SX <X} (6)
R, ={[ X, X,]" OR?\Q such that there exists
[X,%]"0Q with x <x} )

R. ={[ %, X,]" OR?\Q such that there exists
[X,%]"0Q with x<x} , (8)

where Q=Q, O{x;} Q.. Therefore, the sets K__,

K., represent all those states which can be brought to the
target by the mntrol +1, at the minimum and maximum
possble values of amass. The set Q, contains intermedi-
ate points. The sets K_,, K__, and Q_ may be inter-

preted analogoudy for the wntrol —1. For ill ustration,
seeFig. 1.

Ax(t)

Fig. 1. lllustration of introduced notations.

To define the feedbad controller, one should spedfy
rules to cdculate the values of the parameters m and

Am, and define the wntrol for particular sets R, , R_,
Q., Q_, {x;}. Based on the dedicaed mathematicd

theorem and detail ed sensitivity analysis with elements of
the statisticd dedsion theory [2] (in particular Bayes and
minimax rules), the solutions satisfying these goals are
proposed below. Details of this methoddogy can be
found in paper [13].

The cae X;, =0 will be onsidered first.

If over-regulations can be dlowed in the ntrolled ob-
jed, it is worthwhile using the flexible Bayes rule with
the loss function given in the linea and nonsymmetrica
form:

O-p(m-m) if mMm-m<0
Ihm)=0 0 if m-m=0 , 9)
Ha(h-m) if m-m>0

where p,gq>0 and m can be interpreted here & a red

(but unknown) value of a mass Then the parameter m
should be cdculated as a solution of the following equa
tion:



Fiiy=—2 (10)
p+q

where F denotes the distribution function of the random
variable charaderizing a mass The values of such ran-
dom variable can be interpreted here @ the mean values
of particular redizdions of the stochastic processM and
may be estimated on the base of the experimentally ob-
tained values of the mass of an objed. The pradicd ago-
rithm to solve equation (10) is presented in paper [11].
For this purpose, one can also use atificia neura net-
works, acaording to the procedure presented in article
[15].
In turn, if over-regulations are not allowed, this determi-
nation neads to be caried out on the basis of the minimax
rule for the loss function (9) however with p = , red-

ized by

m=m-+ , 11
where m* means maximal experimentally obtained value
of amass.

Let now x;, #0. In this case, the value of the parameter

m should be determined using the minimax rule, i.e. by
dependence (11).

Besides the parameter m, the alditional positive cnstant
Am should be spedfied. The value of the parameter Am
influences the speal of the cntrol fluctuations in the set
Q: the greder the value, the fluctuations are milder. It
should be fixed experimentally acording to needs of par-
ticular problems. To the primary reseaches one @n sug-
gest Am=ny10.

If one possesses the values m and Am, the feadbadk
controll er equations can be defined.

Asbefore, the cae x;, =0 will be mnsidered first. Let a
feedbadk controll er be & foll ows

S -1 it [x (1), %®)]" OR.
(X (1), % (1) i X (), % ()] 0Q_
u(t) =0 0 it [0, %] O{x} (12)
%(xl(t), X (1) if [x (), x®] 0Q,
B +1 it [x (), % 0] OR,

with the function z:R? - R continuously and strictly
increasing from the value -1 onthe sets K__ and K,

to the value +1 on the sets K_, and K,_ (see &so Fig
1). If the solution X(w, 0 is“too close” — with resped to
red value of the mass —to the set K._, then control (12)
is “too grea” and it makes this lution further from the

set K,_ to theinterior of the set Q. . And inversdly, if
the solution is “too far” to the set K, _, then control (12)

is “too small” and brings the trgjedory closer to this st
(seeFigs. 1 and 2). The obtained in such a manner result
is smilar to the effed readed on a bob-ded tradk thanks
to the gpropriate modeling of its dape. It is a fluid
movement, therefore, allowing such a structure to be
named “soft”. The analogous stuation occurs between the
sets K_, and K__.

Having the value m following the ideas presented above,
and assuming the mnstant Am, one can caculate the
equation of theset K, _

xlzgx22+xf1—e for x,0(=,00  (13)
and for theset K,

m+Am
X1 =

Xo2 +xXip+e  for X, O(-0,0) , (14)

where the alditional parameter € >0 is closer (but is not
greder than) to predse positioning (i.e. assumed in prac-
tice predsion of reading the target state) and has been
introduced to avoid the over-increasing of the function z
nea the axis X;. The function z can be proposed in the

following manner:

2(xq, X2) = (X)X —c(X2)]? =1 for X, 0(~,0)

(15
with
4
a(xp) = ————— (16)
AmXZ +4¢
olxp) = T AN 2y ve (17

while the value of the positive parameter d presents a
compromise between speed o adion of the time
suboptimal control system and its robustness Namely,
d =1 can be treaed as neutral; the values d <1, results
in making the solutions nearer to the aurves K_, or K,
that which slows down the process but increases robust-
ness; the inverse when d >1. For primary experimental
reseach d =0.25 ispropased.

The analogous dependencies are outlined in the sets K __
and K_,, respedively

Xl:_gX22+Xf1+€ for X2 D(O,oo) (18)



AR
Xl:_mzAmx22+xf1—s for x5, 0(0,00) . (19

The function zis proposed here &

z(xl,xz):a(xz)[xl—c(xz)]]/GI -1 for X, 0(0, )

(20)
with
-4
a(xp) = — > (21
AmXZ +4¢
() == %% +Xp1te (22)

Let now X;, #0. The mncept introduced in the precal-
ing paragraph should be transferred in a natural way. For
simplicity of notation, the cae x;, >0 will be investi-
gated below; if xs, <O considerations are symmetrical.

A feadbadk controller is also defined in this case by for-
mula(12).

The sets K,_ and K., in the part between the target
and the ais x,, should be both defined by the equation

X1:m+Am(X22—Xf22)+Xf1 for  x O[O, x¢7)
(23
with
Z(Xq,X2) =1 for x,0[0,X¢p) . (29

For the part lying in lower haf-plane, the set K., isde
fined by

m+Am
X1:

(x22—xf22)+xf1 for X, 0(-,0)
(29
and theset K,_ by

2 m+Am
2

xf22+xf1—s for x5 0(=,0) .

(26)

x—mx
1= 5 %2
2

Thefunction zisgiven as

2(xq, Xp) = a(Xp)[xq ~C(x2)]? =1 for xp [(~0,0)
(27)

with

a(xp) = ————— (29)
Amx,~ +4¢

m+Am 2 2
(X" =X2%) +Xf1 +E (29

c(x2) =
Finaly, thesets K__ and K_, aredefined by
__m. 2
Xl__E(XZ =X )+ Xgp+e  for Xp U(Xgp,0)
(30)

_M+Am
2

X1 =

(X2 =X§2%)+X¢1 =€ for xp 0(X2,%),
(31

respedively, and the function zis given as

2(xq, %2) =a(Xp)[Xq ~c()Y9 =1 for x, O(X;,)

(32
with
-4
a(x2) =—— 5 (33
Am(xp" —Xf") +4€
M
c(x2)=—5(x22—xf22)+xf1+e. (34)

An illusgtration of the ntrol structure thus obtained,
along with the trgjedories it generates, is provided in
Fig. 2. Rapid changes in control values have been eimi-
nated, acording to the assumed goal of the soft structure.
The oontrol changes its value fluently in full range of the
interval [-11].

) XA1)

o iW N\
1l 2
‘ ‘ ‘ ‘ \ X

Fig. 2. Soft structure (12) and the trgjedories it generates.

3 Final Suggestions and Remarks

The subjed presented in this paper is of auniversal nature
and owing to its clea interpretation it may be eaily sup-



plemented by a number of auxiliary aspects frequently
occurring in robust control tasks. As a representative ex-
ample, the problem of velocity limitation, described by
the condition

Xa(@t)<sw (35)
for amost every wOQ and every tO[ty(w),ts (W)],

while w>0and -w<x¢o <w, will be investigated. Let

also an auxiliary parameter Aw, such that O<Aw<w
and AwW-w< X5, <W-Aw, be introduced. By defining

the function v:R? - R (similar to the function 2z) con-

S -1 if
0 V(x (), % (1) if
0 min{v(x, (1), %, (), 2040, X ()} if
0 204 (1), X (1) if
uit)=0g 0 if
5 2(% (1), %, (1)) if
(a0 ()% (1), 2006 @) i
0 V(= (1), % (1)) it
H +1 if

For interpretation of the above formula, see Fig. 2.

The presented concept can aso be applied for many other
similar issues appearing in optimal control, e.g. modeling
of motion resistance [5-9]. As an example, consider initial
system (1) supplemented with the discontinuous model of
motion resistance —4 sgn(s(t)),i.e.

mes'(t) =w«(t) =4 gn(s (1)) (38)

where 4 0[0,1) ; then under- or overestimating the value

of the parameter 4 will entail similarly raising or lower-
ing the parameter .., and further considerations are
analogousto that presented above.

The orred functioning of the suboptimal structure inves-
tigated in this paper has been verified by numericd
simulation [6]. The objed is a mechanicd system (1) with
unknown (random) and/or varying mass. In the cae
Xio =0, if it is asuumed that over-regulations are unde-

sirable, then they did not occur in the controlled ohjed.
Rapid changes in control values, in particular switchings
along sliding trajedories, were mmpletely eliminated in
the objed controlled by soft structure.

tinuously and strictly increasing from the value -1 on the
set Rx{w} tothevaue +1 onthe set R x{w—Aw} , with

the formula

V(X1,Xo) =2 -1 for X, O[w-=-Aw,w] ,
(X, %) @N—AW g 2 O ]

(36)

where the parameter D >0 plays the same role like d in-
troduced in dependence (15), one can obtain soft structure
(12) supplemented with the problem of velocity limita-
tion:

[ (). (O] O R O{Rx (w,e)}
[0, %O O R, 0 {Rx[w-Aw,w]}
[x(0) % (O] 0 Q n{Rx[w-Aw,w]}

D (®, %01 0 Q_ n{Rx(Aw-w,w-Aw)}

DX (), %2 (01" 0%} : (37)

Da (), %] 0 Q. n{Rx(Aw-w,w-Aw)}

[%(t), %] 0 Q, n{Rx[-w,Aw-w]}
[% (1), % 17 O R_ n{Rx[-w, Aw-w]}
[%, (1), %, ()]7 O R, O{R*(-o0,~W)}

Typicd trgedories generated by control structure (12) are
shown in Fig. 2. Tables 1 and 2 show times to read the
target set when X5, =0 and x5 #0, respedively. The

results are shown for the optimal control (under pradi-
cdly unredistic sssumption that the true value of the
mass m is known exadly) and the suboptimal structures:
hard (hypothetically obtained for Am=0, with posshil-
ity of commonness existence of diding trgjedories) and
soft ones. It is not surprising that the shortest times to
read the target were obtained for optimal control (owing
to hypothetical assumption of exadly known masg, fol-
lowed by the hard structure (although at the aost of fre-
guent and arduous switches on dliding trgjedories), while
the longest times for the soft structure, inversely propar-
tional to the value of the parameter d. If, however, eah
value of m was supplemented by perturbation, with the
value of 0.5msin(25t), the results favored the soft struc-

ture & small values of the parameter d, as the most robust.
Note that in the cae of the soft structure, the results were
satisfying even when temporarily mO[m_, m,].

The material of this paper will be presented with detailsin
article [13] soon.
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