

Aalborg Universitet

Software Entrepreneurship: course notes

Rose, Jeremy

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Rose, J. (2012). Software Entrepreneurship: course notes.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 09, 2024

https://vbn.aau.dk/en/publications/e2f12fe9-1075-4599-893f-aab54fe6fa5d

1

Software Entrepreneurship:
course notes, Department of Computer
Science, Aalborg University

Jeremy Rose

Prepared with sponsorship from>

Acknowledgements: Aalborg University Computer Science seventh semester students for help in

preparing these notes.

2

Aalborg University

Department of Computer Science

Selma Lagerløfs Vej 300

Aalborg 9220

Denmark

Creative Commons License - Attribution-NonCommercial-NoDerivs 2.5

You are free to copy, distribute, display, and perform the work under the following conditions:

 ATTRIBUTION. You must attribute the work in the manner specified by the author or
licensor.

 NON-COMMERCIAL. You may not use this work for commercial purposes.

 NO DERIVATIVE WORKS. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work. Any of

these conditions can be waived if you get permission from the copyright holder. Your fair use and

other rights are in no way affected by the above.

Copyright (c) 2012 Jeremy Rose

Whole or partial use of these notes should be attributed (referenced) according to normal academic

practice.

3

Contents

Entrepreneurship and software professionals ... 7

Research method .. 8

Two paradigms, four major themes.. 8

Software and entrepreneurship: some formative questions ... 9

Software (IT applications) and value ... 9

Software business models .. 9

IT and software start-up management ... 10

After the start-up .. 10

You like your existing job .. 11

Sources .. 11

The theoretical landscape: some reference theories ... 12

Business model ... 12

Value Chain ... 13

Resource-based theory of the firm ... 14

Knowledge-based theory of the firm .. 16

Core competences .. 16

Five Forces of Competition ... 16

Theories of change and resistance ... 18

Sources .. 19

The entrepreneurship landscape: themes and issues .. 21

Entrepreneurship and economics ... 21

Entrepreneurship and innovation ... 21

The entrepreneurial type: underlying psychological traits or learned behaviour? 21

Entrepreneurial opportunities: discovered or created? ... 23

High-tech entrepreneurship ... 23

Entrepreneurship and business planning ... 23

Entrepreneurship: myths and fears .. 24

Entrepreneurs are visionaries ... 24

Entrepreneurs are risk takers ... 24

Entrepreneurs are not like us ... 25

You need a brilliant idea ... 25

You need a lot of money ... 25

4

Sources .. 26

Two paradigms for software entrepreneurship ... 27

Why paradigms? ... 27

Two paradigms from entrepreneurship thinking ... 27

ADE: Analyse, Design, Enact .. 27

CDA: Consider, Do, Adjust ... 30

Analyse, Design, Enact in the software context .. 33

Consider, Do, Adjust in the software context ... 35

Paradigm comparison ... 37

Sources .. 39

The software start-up ... 40

Software firm business models ... 42

The software product ... 43

Bringing the first product to market ... 44

Management ... 47

Innovation speed and time-to-market .. 48

Software revenue generation models .. 49

Entry and growth .. 50

Networks, partnerships and alliances ... 50

Internationalisation... 51

Finance: venture capital or bootstrapping ... 53

Sources .. 55

e-Entrepreneurship ... 57

The net economy .. 57

eCommerce business models ... 59

Starting an e-venture .. 62

eCommerce success factors .. 63

Mobile ventures .. 64

Mobile business models .. 65

Mobile service design ... 65

Software focus, with Consider, Do, Adjust ... 67

Sources .. 67

Open entrepreneurship .. 69

Software value .. 69

5

Open business models .. 70

Working with open source .. 73

Open source and the software entrepreneur ... 76

Sources .. 77

Intrapreneurship ... 78

Rational prescriptions (associated with ADE) ... 80

Intrapreneurship as independent action: an empirical view associated with CDA 81

Sources .. 84

Conclusion: motivational questions and answers; two paradigms and four themes revisited 85

What forms of value can software create? ... 85

How do you recognise your intellectual property in your software work and protect it? 85

How do you leverage open source software and the open source development model? 85

How do you make a business out of a software product idea? .. 85

What business models do young software and software-dependent firms use? 86

How do you commercialize and market a new software product? .. 86

How do you understand the market you are in, or create a market if it does not exist? 86

How do you find the necessary resources to develop your firm or product idea? 86

Who becomes a software entrepreneur, and what skills and capabilities do you need? 86

How do you manage a start-up? ... 87

What engineering and development practices do you need to develop software in a very young

firm? .. 87

How do you manage competitors and customers? .. 87

How do young software firms grow through networking and partnering? 87

What is the role of innovation in software entrepreneurship? .. 87

How does a software start-up survive and grow? .. 87

Why do software ventures fail? .. 87

How do you promote a software product or practice from within a software development firm?

 .. 88

Two paradigms for software entrepreneurship ... 88

The software start-up ... 89

E-entrepreneurship ... 90

Open entrepreneurship .. 90

Intrapreneurship ... 90

References .. 91

6

Complete list of sources .. 93

7

Entrepreneurship and software professionals

Every great company started as a new venture, and every great product started as a germ of an idea

in someone’s imagination. By and large we all have good ideas, but relatively few of us have the

drive, energy and skill to promote and develop those ideas and to see them through to commercial

fruition. Entrepreneurship is the science and the art of setting new ventures in motion. Why should

you, as a software (or IT) professional know something about entrepreneurship? The answer has

three parts:

1. Society wants you to be entrepreneurial. Entrepreneurial ventures, particularly high-growth

ventures such as knowledge and technology ventures, are thought to stimulate commerce

and produce new jobs - a classic example in Denmark is the wind technology industry. As

software professionals, you are in a position to be excellent wealth generators - not only for

your own private economy, but also for the companies you work for and the society you live

in.

2. Your employer wants you to be entrepreneurial. They don't necessarily want you to quit

and form your own spin off company in direct competition with them, but software

companies are dependent on innovation and growth for survival and it is the entrepreneurial

spirits (intrapreneurs) that drive this.

3. Do you want to work on someone else's project all your life? As working professionals you

need interesting, stimulating and productive working lives; this means at various points in

your life you will want to set different kinds of ventures in action. Some of you (not many)

will create your own businesses, but all of you will have ideas for software, projects, and

practices that you will want to promote in your work environments.

Entrepreneurship is a relatively young discipline with its roots in management theory and economics;

however there is a considerable literature and the subject figures on most university curricula.

Nevertheless the things that software professionals need to know about entrepreneurship and the

competences that they need to acquire are not necessarily generalized skills and knowledge that

everyone from carpenters to hairdressers to communication consultants need. These notes

therefore identifiy some specific skills and knowledge that are relevant for software and IT

professionals. Whereas entrepreneurship is often taught in a practical way (how do you develop

your idea for a business into a business plan), these are mainly theoretical course notes. They set

out to answer the question: what should you know and understand, rather than how do you develop

a new venture.

We'll understand entrepreneurship as driving (promoting) a software or IT venture, where the

venture might be a new business, software product, service or engineering practice, and the context

might be within an existing firm or the creation of a new one. However this relatively wide focus

area won't disguise the fact that there's a classical or traditional central area of concern to the

subject - the software or IT start-up company. What should you look for in this kind of start-up?

Cusumano answers:

 a strong management team

 an attractive market

 a compelling new product, service or hybrid solution (mixture of both)

 strong evidence of customer interest

8

 a plan to overcome the 'credibility gap' (the fear among customers and investors that the

start-up will fail)

 a business model showing early growth and profit potential

 flexibility in strategy and product offerings (the ability to adapt to changing circumstances)

 the potential for a large payoff to investors.

As with all traditional wisdoms, there are some good reasons why we should look somewhat

critically at this advice. There is a rather glamorous world of venture capital and Silicon Valley, which

you can read about in Cusumano's 'The Business of Software' [1] and Kaplan's 'Start Up' [2] but here

your survival chances are not good. Kaplan's award-winning Go Corporation and their pen operating

system ended, after $75million and six years in a car boot sale, as do about 60% of high tech

companies with venture capital funding [1]. A further 30% end up in mergers and liquidations. We'll

try to keep our feet more firmly on the ground, and we’ll also look at realistic ways of promoting

new ventures with very limited resources; sometimes consisting only of your software competences,

a good product idea and a lot of drive and energy.

Research method

How are the notes put together? It's a literature survey. This means that it is a thematic account of

the relevant published scientific research. Books and articles are identified by querying the known

bibliographical databases with the search terms ‘software,’ ‘information technology’ and

‘entrepreneurship,’ together with some related terms to ensure completeness. A complete list of

sources is given at the end of the notes. In order to be considered, research contributions must

consider both themes: entrepreneurship and software (or IT); in other words we are interested in

literature which is focused on the creation of software ventures, rather than general literatures

about entrepreneurship, IT management or software development. Some other explanatory and

background ideas are taken from the wider entrepreneurship and business literature. The material

in the notes is tested with the help of my computer science students; they have helped to pick and

summarise material which is relevant to them, and reviewed the early drafts. There's a list of

relevant sources (or further reading) at the end of each chapter, and a complete list of references at

the end of the notes.

Two paradigms, four major themes

Within our broad understanding of the topic of software entrepreneurship, the notes are organised

under two paradigms and four major themes. The two paradigms are explained a little later; the

major content of the notes are organised under these headings:

 The Software Start-up takes the most classical view of the subject: here we study starting a

software firm.

 E(M)-entrepreneurship (entrepreneurship for electronic and mobile commerce) investigates

developing a business idea which is software-dependent or software–intensive. These are

often businesses that exist mainly on the net, or operate through various forms of mobile

services. Examples are Facebook and internet gambling. In a software dependent business

the central value proposition is not the construction of software, however the business

model is dependent on tailored software for its execution - this makes it interesting for

software professionals.

9

 Open entrepreneurship looks at a special form of entrepreneurship made possible by the

open source movement, the existence of free software, and value generation based on open

business models. It’s a way of getting started that is becoming more common; current

developments in the software industry suggest that it is likely to be more prevalent in the

future.

 Intrapreneurship involves promoting a new software product, service or practice from within

an existing software firm.

Software and entrepreneurship: some formative questions

What should a software or IT professional know and understand about entrepreneurship? In order

to begin our exploration of these topics we’ll formulate some questions. These represent some

relevant areas that we don’t necessarily expect to know through our professional experience, or

business or engineer educations.

Software (IT applications) and value

Whereas engineers are good at understanding how to build software, and IT managers good at

organizing IT services in companies and government institutions, here we will need to understand

the value of software. This is because our fundamental job as entrepreneurs is to create value. Our

venture must be valuable to our customers and stakeholders otherwise they will not support it by

investing in it or by buying our products and services. Therefore we need to understand

 what forms of value can software create?

The value in software is normally associated with knowledge and knowledge is a form of intellectual

property which can be protected by copyright and other mechanisms. Software not protected by

copyright can be freely copied, which diminishes its value for its developers, so we should ask

 how do you recognise your intellectual property in your software work and protect it?

You can also (paradoxically) create value whilst giving your source code away, so

 how do you leverage open source software and the open source development model?

Software business models

The value of IT applications is articulated in business models – these specify how services and

products are translated into value which can earn income (revenues). We need to understand

 how do you make a business out of a software product idea?

There are many kinds of businesses which create value from software; some of them are software

development companies, but others have different business models which are highly dependent on

software. Think of Facebook (an online social network supported by advertising) and eBay (an online

auction house supported by micro transaction fees). We also need to know

 what business models do young software and software-dependent firms use?

If we build software we usually need to understand our users, but if we create value we need to

understand our customers, collectively known as our market(s), so

10

 how do you commercialize and market a new product?

 how do you understand the market you are in, or create a market if it does not exist?

Creating IT applications is expensive – many developer hours - so we will need to answer the

question

 how do you find the necessary resources to develop your firm or product idea?

IT and software start-up management

Young IT professionals are usually good and building software, and some have managed a few

projects, but the demands of running a small company are many and varied. Salaries must be paid,

the law followed, customers found, services advertised and someone must sweep the office floor.

We should ask

 who becomes a software entrepreneur, and what skills and capabilities do you need?

and

 how do you manage a start-up?

In particular, a young company will need a development practice that works for them, and this will

probably not be the complex methodology and software engineering principles familiar from large

companies, so

 what engineering and development practices do you need to develop software in a very

young firm?

Experience shows that the environment that young companies operate in is rather complex, with

many stakeholders: we should understand:

 how do you manage competitors and customers?

and

 how do young software firms grow through networking and partnering?

Many software companies get started through developing new technologies or finding new twists to

existing ones, and we need to know

 what is the role of innovation in software entrepreneurship?

After the start-up

The survival rate for young IT companies is not good, and a very small company usually wants to

become a medium size company to be able to stabilise, attract investment and develop new

products and services; her we should know

 how does a software start-up survive and grow?

and

 why do software ventures fail?

11

You like your existing job

You work in an interesting position in a good company and you don’t need to start a new company,

you just need to get your colleagues (or maybe the directors) to jump on your idea. You have an

idea for a new software product or IT application, or you would like to change your development

practice (maybe by introducing an agile method such as SCRUM or XP). Now you need to

understand

 how do you promote a software product or practice from within a software development

firm?

These and other questions form the basis for the coming investigation and we will return to them in

the conclusion.

Sources

CUSUMANO, M. (2004) The business of software: What every manager, programmer, and

entrepreneur must know to thrive and survive in good times and bad, New York, Free Press.

KAPLAN, J. (1994) Start Up, London, Warner.

12

The theoretical landscape: some reference theories

In this chapter we will briefly introduce some reference theories. Reference theories are not the

central ideas of software entrepreneurship, but some of the theories that are commonly referred to

by the science. It follows that you can't understand software entrepreneurship science without

some knowledge of these. We'll focus on some here which run though many of the issues discussed

and introduce some others as they are appropriate.

The first group of theories concentrate on how businesses generate value, and how they use their

internal resources to generate sustainable competitive advantage. Software entrepreneurs need to

understand something of how theorists frame the idea of a successful business, because that is what

they are trying to create.

Business model

Business models contribute to software entrepreneurship by helping us think about software

ventures in a business-oriented way. A business model, according to Chesbrough [3]:

 articulates the value proposition of a business (how it generates value for its customers)

 identifies a market segment (the group or groups of customer users who will pay for the

product and use it)

 defines the structure of the firm’s value chain (see below)

 specifies the revenue generation mechanisms (describes what costs should be incurred and

revenues earned)

 describes the position of the firm within the value network (how it interacts with its

suppliers and customers)

 formulates the competitive strategy (how it will remain profitable whist competing with

other firms with similar products)

Business models are sometimes descriptive (explaining how a company works), but Osterwalder [4]

introduces the idea of a business model canvas as a design tool. The business model canvas

encourages an entrepreneur to think about the following areas:

 value propositions (what value do we deliver to the customer? which of our customer’s

problems are we helping to solve? what bundles of products and services are we offering to

each customer segment? which customer needs are we satisfying?)

 customer segments (for whom are we creating value? who are our most important

customers?

 customer relationships (what type of relationship does each of our customer segments

expect us to establish and maintain with them? which ones have we established? how are

they integrated with the rest of our business model? how costly are they?)

 channels (through which channels do our customer segments want to be reached? how are

we reaching them now? how are our channels integrated? which ones work best? which

ones are most cost-efficient? how are we integrating them with customer routines?)

 key activities (what key activities do our value propositions require? our distribution

channels? customer relationships? revenue streams?)

http://www.businessmodelgeneration.com/downloads/business_model_canvas_poster.pdf

13

 key resources (what key resources do our value propositions require? our distribution

channels? customer relationships? revenue streams?

 key partners (who are our key partners? who are our key suppliers? which key resources are

we acquiring from partners? which key activities do partners perform?)

 cost structure (what are the most important costs inherent in our business model? which

key resources are most expensive? which key activities are most expensive?)

 revenue streams (for what value are our customers really willing to pay? for what do they

currently pay? how are they currently paying? how would they prefer to pay? how much

does each revenue stream contribute to overall revenues?) [4]

You can sketch the central ideas of how a business will function by working with the canvas (for

example on post-it stickers distributed round a whiteboard). As engineers and IT managers we have

a wider focus (including the design and programming of software products) so we will think of a

business model as the business logic behind a software venture. It’s not an engineering design for

what we want to do, but the business behind the engineering. It will also make sense to understand

the business behind a new software product or software engineering practice that we wish to

promote.

Generic business models help explain types of businesses (bricks and clicks, direct sale, franchise

etc.). We'll investigate some software business models later.

Several theories (next) contribute by focusing our attention on how a firm generates value, and

creates a sustainable competitive advantage over rival firms.

Value Chain

A firm can be understood as a collection of value-adding activities (Porter [5]), taking inputs such as

raw materials, energy, and human labour and transforming them so that they can later be sold at a

profit.

14

Imagine a car manufacturer: various kinds of resources and ready-made parts come from different

sources, are worked and assembled in a production line, and then sold to distributors. These

primary activites are made possible by support activies, which don’t contribute directly to the

creation of value, but enable it. Primary and support activities create value, which can be expressed

in monetary terms when customes by cars. Manufacturing industry is easily portrayed this way, but

software companies don’t usually have material inputs in the same way. Nevertheless, a software

firm (for instance a traditional consultancy house), understood as a collection of value-adding

activities could be understood something like this:

The primary activities of a traditionally organised software consultancy can be understood as

requirements gathering, analysis and design, construction (programming is the fundamental value-

adding activity, since it is the code that can later be sold), test and maintenance. A variety of

support activities make the primary activities possible. If one takes a purely economic perspective,

both primary and support activities cost money; and the value added is the difference between the

revenues generated from code and services, and the cost of primary and support activities.

Resource-based theory of the firm

A different understanding of a firm is as a collection of resources and capabilities (things the firm can

do especially well). This is known as the resource-based theory of the firm[6]. Resources can cover

employees, offices, machines and products, but also less tangible things such brand (Apple, Google),

vision and market research. Where resources are appropriately combined, they make organisational

capabilities. If an organisation combines some talented people and learning resources with some

funding for innovation, then they might have an organisational capability to innovate quickly.

Where those resources and capabilities are:

 valuable (allow the firm to exploit opportunities or neutralize threats in its external

environment)

 rare (possessed by few, if any, current and potential competitors)

15

 costly to imitate (when other firms either cannot obtain them or must obtain them at a

much higher cost) and/or

 non-substitutable (cannot easily be replaced by an alternative resource)

they can lead to competitive advantage and thus survival in a particular industry and market

Dollinger[7] uses the resource-based theory of the firm as the starting point of his account of

entrepreneurship.

If we think about the software and IT industries, then some resources and capabilities could look like

this:

16

If these resources added up to a capability to (for example) write effective encryption algorithms,

then these might be valuable for some customers, rare, costly to imitate and difficult to find

replacements for.

Knowledge-based theory of the firm

A more attractive, but less well understood way of thinking about a software company is through

the knowledge-based theory of the firm[8]. Software is intangible - only the hardware on which it

runs and is created is a physical resource – so it can easily be understood as the product or

combination of different kinds of knowledge: about programming, engineering techniques,

algorithms, methods, project management, users and their domains, markets, and so on. The

company that is able to combine these different forms of knowledge in a productive way writes

software that is valuable. Knowledge-based companies:

• work proactively with knowledge and learning

• create, transfer and transform knowledge into lasting competitive advantage

• develop an organisational learning culture

• understand the benefits and different uses of both tacit (internalised) and explicit

knowledge

• understand that sticky (difficult to transfer, internalised) knowledge is valuable, rare, hard to

imitate, and hard to substitute.

Core competences

Hamel and Prahalad[9] argue that what makes a business successful is its ability to concentrate on,

and develop its core competences. Core competences

 make a significant contribution to customer perceived value or to the financial health of the

organization.

 are unique or performed in a way that is substantially superior to competitors.

 are capable of being applied to new products and services

 provide access to a variety of markets

 contribute strongly to products and services

 are difficult to imitate

Other, less important aspects of the business can be bought in or out-sourced. Thus a core

competence for a small independent mobile game producer could be its ability to version its

software for many different mobile operating systems, with different hardware abilities and phone

models.

Five Forces of Competition

Another way of understanding the success of a firm is by analysing the industry it must fit into. Thus

a software firm is in competition with other firms; Apple, Microsoft, Google must survive in

overlapping markets where their products partly compete for users (customers). The value of the

software they produce is partly determined by how they compete in the market: thus their

17

competitive advantage. Porter[10] characterises five forces which determine the competitive

structure of an industry (for example, developers of mobile operating systems).

If we analyse the market for mobile operating systems we could look at:

 rivalry among existing firms – that is the competition for market share between Apple (IOS),

Nokia (Symbian), Google (Android) and Blackberry (RIM BlackBerry OS) with their different

strategies (proprietary/open source, own hardware/ manufacturer alliance.

 threat of new entries – Microsoft more or less fell out of this market, but made a re-entry

attempt with Windows mobile 7.

 supplier power – not really an issue in the sense that Porter intended

 buyer power – smartphone buyers in the end determine the relative success of an operative

system, but the decision is heavily influenced by the hardware package: iPhone or HTC or

Blackberry.

 threat of substitute products – mobile operating systems could be challenged by (for

example) cloud-based services run in a browser.

A software entrepreneur making this analysis might conclude that this is an extremely difficult

market to break into.

18

Theories of change and resistance

Theories of change will be important for understanding intrapreneurship because internal

innovation in organisations is dependent on change. Organisations are not necessarily good at

change; this is partly because they are made up of individuals who aren’t good at change either.

Their response to significant change can go something like this:

This could map, for example someone’s response to a relationship breakup; however we should be

careful with the idea that people leave their emotions behind when they go to work. Responses to

change in organisations are characterised by the same kinds of feelings.

In larger organisations an intrapreneur needs to start at the local level, convincing his team and

immediate line manager of the worth of his venture, and later work to change the whole

organisational system.

Models of organizational change often start with an unfreezing stage – the notion that an

organisation is relatively locked into its routines and practices, and something must be done to

shake this up. They can finish with refreezing phases, were new practices are stabilised again. An

example is Kotter’s[11] eight stage organisational change model:

19

1. establish a sense of urgency (identify potential threats, and develop scenarios showing what

could happen in the future, examine opportunities that should be, or could be, exploited,

start honest discussions, and give dynamic and convincing reasons to get people talking and

thinking, request support from customers, outside stakeholders and industry people to

strengthen your argument)

2. create the guiding coalition (identify the true leaders in your organization, ask for an

emotional commitment from these key people, work on team building within your change

coalition, check your team for weak areas, and ensure that you have a good mix of people

from different departments and different levels within your company)

3. develop a vision (determine the change values, develop a short summary that captures the

future of your organization, create a strategy to execute that vision, ensure that your

change coalition can describe the vision in five minutes or less, practice your "vision speech"

often)

4. communicate the change vision (talk often about your change vision, openly and honestly

address peoples' concerns and anxieties, apply your vision to all aspects of operations, tie

everything back to the vision, lead by example)

5. empower broad-based action (identify, or hire, change leaders whose main roles are to

deliver the change, look at your organizational structure, job descriptions, and performance

and compensation systems to ensure they're in line with your vision, recognize and reward

people for making change happen, identify people who are resisting the change, and help

them see what's needed, take action to quickly remove barriers)

6. generate short-term wins (look for sure-fire projects that you can implement without help

from any strong critics of the change, don't choose early targets that are expensive, reward

the people who help you meet the targets)

7. consolidate gains and produce more change (after every win analyse what went right and

what needs improving, set goals to continue building on momentum, practice continuous

improvement, keep ideas fresh, bring in new change agents)

8. anchor new approaches in the culture (communicate progress, tell success, publicly

recognize key coalition members).

We’ll return to these theories as we discuss intrapreneurship: promoting new ventures from within

the organisation.

 Sources

BARNEY, J. B. (1996) The resource-based theory of the firm. Organization Science, 7, 469-469.

GRANT, R. M. (1996) Toward a knowledge-based theory of the firm. Strategic Management Journal,

17, 109-122.

KOTTER, J. P. (1996) Leading change, Boston, Harvard Business School Press.

PORTER, M. E. (1985) Competitive advantage: creating and sustaining superior performance, New

York, Free Press.

PORTER, M. (2008) The five competitive forces that shape strategy. Harvard Business Review, 86, 78-

86.

20

PRAHALAD, C. & HAMEL, G. (2003) The core competence of the corporation. International Library of

Critical Writings in Economics, 163, 210-222.

21

The entrepreneurship landscape: themes and issues

‘Entrepreneurship is the ability to create and build a vision from practically nothing It is the

knack for sensing an opportunity where others see chaos, contradiction and confusion’[12]

In this chapter we look at some of the themes and issues which are current in entrepreneurship

research and will become relevant to our discussion of software entrepreneurship.

Entrepreneurship and economics

The roots of modern entrepreneurship (from the French: entreprendre, to undertake) theory lie in

economic theory, with Schumpeter[13] as its founding father. He described the entrepreneur as an

innovator engaging in a process of creative destruction by disrupting the circular flow of the market

economics of production and consumption. Whereas these traditional market economics tend

towards price equilibrium, the entrepreneur initiates new products and processes which replace the

existing offerings, starting new firms which replace those that are no longer competitive. He

characterised the entrepreneur as an innovator rather than a profit seeker, as an initiator and agent

of change and a leader characterised by qualities of intellect, will, initiative, foresight and intuition.

Schumpeter takes a form of macro-economic perspective in which the entrepreneur sees

possibilities for new solutions unrecognised by others, and innovates to change the economic shape

of the market. In an alternative view, Kirzner[14] offered a tactical, short-term and streetwise

understanding of entrepreneurial behaviour. The entrepreneur discovers and exploits short-run

price differentials as supply and demand move towards equilibrium. The entrepreneur is an alert

opportunist, motivated by profit and constantly watchful profit opportunities arising from market

disequilibrium, in which speed of movement and shrewd decision-making ability are essential.

Entrepreneurship involves creative acts of discovery and learning, and he suggests that the

entrepreneur outperforms others in the market through a superior ability to perceive opportunities

and act on them. This is derived from the ability to learn faster than competitors.

Entrepreneurship and innovation

Innovation is often considered a vital aspect of entrepreneurship, particularly in high-tech ventures.

Schumpeter, for example develops both themes in his account of macro-level economics. The ability

of an IT firm to develop and sustain a market is often closely related to its ability to innovate[15] – to

develop new products and services, and to learn new technologies. Software technologies develop

at breakneck speed compared to some other fields. New software companies are often based on

one, or few, products, often in niche markets dependent on highly specialised leading edge

technologies – we will meet some examples later. We don’t develop this theme too much because it

is the subject of a companion volume (Software Innovation: eight work-style heuristics for creative

software developers[15]).

The entrepreneurial type: underlying psychological traits or learned

behaviour?

An entrepreneur is a person who creates organisations, or a person who recognises and acts to

exploit an opportunity. This raises two questions

22

 are there are underlying personality traits which define a good entrepreneur?

 how much is entrepreneurship is a learned skill?

A recurring theme in entrepreneurship research has been the attempt to define a particular type of

person who is an entrepreneur; as, for example, a psychological predisposition on the part of an

individual to take a risk in the hope of gain. Need for achievement is claimed as a key motivator for

entrepreneurial performance – dividing people into achievers and non-achievers. Entrepreneurs are

sometimes understood to have a particular locus of control – the desire to control the world around

their lives, rather than have their destinies determined by external factors. Rae[16] offers a list of

entrepreneurial attributes which are typical of those considered in the literature:

 initiative

 strong persuasive powers

 moderate rather than high risk-taking ability

 flexibility

 creativity

 independence/autonomy

 problem-solving ability

 need for achievement

 imagination

 high belief in control of one's destiny

 leadership

 hard work

Personality and trait-based approaches to defining entrepreneurial behaviour have been criticised

for their lack of consistency and inability to connect personality traits with actual performance. It is

also questionable how far entrepreneurs exhibiting these characteristics differ from non-

entrepreneurs - project leaders in software companies, for example. Nor is it clear how much such

characteristics are hard-wired in entrepreneurs’ personalities, and how much these behaviours are

learned. More recent research has focused on how entrepreneurial skills are acquired, and Rae

offers this summary of these trends. Research focuses on

 creative discovery learning that generates alertness to entrepreneurial opportunities

 the value of recent concrete experience (for example an IT project) related to context of use

 acquisition, storage and use of entrepreneurial knowledge as expert resource, for example,

through reading these notes or attending a seminar

 key learning abilities within the small firm - how a start-up learns about its situation,

environment and how to handle it

 the value of experience in entrepreneurial decision-making

 confidence and self-belief connecting learning resources with achievement

 the small firm as a dynamic entrepreneurial learning environment

 rational models of knowledge structures, cognition and decision making applied to stages of

the entrepreneurial process

 dynamic learning processes with phases, processes and characteristics.

23

Entrepreneurship may have something to do with personality, but it’s also clear that entrepreneurs

come from all age ranges and backgrounds, with a wide variety of competences. Formal learning

may play some part, but this is overshadowed by social learning: the ability to learn rapidly from

ones situation, experience and context.

Entrepreneurial opportunities: discovered or created?

The exploration and exploitation of opportunity lies at the heart of entrepreneurial activity. Do

entrepreneurs discover and recognise opportunities which already exist, or do they create and enact

new opportunities? Are opportunities the result of what we see (a potential niche in a market), or

what we do (build an innovative application)? In the first case an entrepreneur should excel at

understanding the markets in which they operate, looking for weaknesses in their competitors’

products and services, recognising unfulfilled customer needs and planning business activities that

realise the discovered opportunities. In the second case they should operate with vision and drive to

develop products and services they believe in and work to create the necessary markets – promoting

their activities and developing their customer base. This discussion is extended later in the paradigm

discussion. Rae concludes that

‘short-term opportunities do exist and await discovery by the alert entrepreneur. However the

circumstances that can give rise to new opportunities may be recognised by people with the

imagination, experience and judgement to do so, and that they can create and enact the

opportunities which they assess as worthwhile. The vital skill lies in recognising the future

opportunities with the greatest long-term potential which the entrepreneur can gather the

resources to exploit.’

However, Sarasvathy’s research into effectuation[17] is heavily based on the premise that we create

our own opportunities and decide our own futures.

High-tech entrepreneurship

The software market is a high-technology market characterized by high levels of market and

technological uncertainty. Convergence of the software, telecommunications and media industries

creates many new opportunities for software firms. There are new types of firms, technological

bases, products and services, and new value propositions for different customer segments[18].

Some special characteristics of high tech firms affecting entrepreneurship are:

 low cost of entry writing software

 virtually free distribution through the internet

 international through English language

 often not necessary to live in a particular place (e.g. close to customers because of high

delivery costs)

Entrepreneurship and business planning

In some accounts of entrepreneurship (not this one) the central activity is business planning[19, 20].

The idea is that the preparation of a new venture, through careful environmental scanning (for

24

example analysing the industry environment with Porter’s five forces model), opportunity analysis,

marketing research, and financial planning (budgeting, break-even analysis) is the keystone of

building a new business. The result of such activities is the business plan, which is the cornerstone

for future activities. There’s nothing wrong with this approach (which reflects business

preoccupations which are also important for software entrepreneurs), but they’re not the things

that usually motivate IT professionals and engineers. We’ll discuss this style of entrepreneurship

thinking further under the heading of Analyse, Design, Enact. There are many practically-oriented

guides for doing this easily available on the net, and if you need to do this you should consult an

appropriate reference from the end of this section.

Entrepreneurship: myths and fears

In this section we tackle some common assumptions about entrepreneurship which are known to be

mistaken, and some widespread fears which are unnecessary.

Entrepreneurs are visionaries

In the IT world, many associate leadership with some extraordinary figures with visionary ideas: Bill

Gates at Microsoft, Steve Jobs at Apple, Pierre Omidyar who founded eBay, Mark Zuckerberg with

Facebook, Jeff Bezos at Amazon, Sergey Brin and Larry Page at Google. All these companies were

once start-ups, and their founders at that time software entrepreneurs. Does this mean you have to

be a visionary to be a software entrepreneur? Not really. Take a look at the structure of the software

industry, the eCommerce landscape and the developing mobile services and applications market.

For each of these hugely successful companies there are a thousand smaller companies, some highly

innovative, some relatively traditional, and each of these was also a start-up with a software

entrepreneur. If you have a good idea and the drive to start a software company you simply don’t

know whether you will be a great visionary, a successful director of a medium sized firm, the leader

of a small highly-focused and innovative firm, a serial entrepreneur (someone who founds several

companies and moves on) or someone with a company that goes bust. You’ll find out whether you

are a visionary later!

Entrepreneurs are risk takers

If you are going to be an entrepreneur you need to mortgage your house to raise money, you will

owe the bank a small fortune, you will work for many years without any real salary and if it goes

wrong you will lose your house and family, be declared bankrupt and be unemployable for the rest

of your life. These are scenarios that can become real for a small number of entrepreneurs, but they

do not match any general empirical picture of how entrepreneurs work and what the outcomes of

their lives are. The majority of successful entrepreneurs end up running small and medium sized

businesses with a comfortable level of risk, have salaries comparable with wage earners with similar

responsibilities, and eventually choose to use their privileged status as owners to generate some

leisure time. Comparative studies of bankers and entrepreneurs show that bankers work with

significantly higher risks, offsetting them with insurance[21]. Entrepreneurs usually choose to work

with comfortable levels of risk, expanding their portfolio of activities to generate opportunities

which offset their risk profiles. Risk and uncertainty are a part of work life (wage earners can be

fired, and their projects can bomb) and need to be understood and managed, but the entrepreneur

is not in a situation of unusually high risk unless they choose themselves to be there.

25

Entrepreneurs are not like us

This myth expresses the idea that entrepreneurs have a particular profile, which no one can really

define, but we are quite sure is different from our own. Actually, as discussed above, this profile

can’t be determined apart from in general terms common to many with some degree of success in

life, and it appears that most of the necessary skills are often learned. It might be the case that

some people are not suited to be entrepreneurs, but if you have an idea you shouldn’t let this myth

put you off. As a software entrepreneur you will statistically have a somewhat better chance of

success after you have some professional experience, but before your life is really settled in a

particular pattern in middle-age. The median age for starting the first business for entrepreneurs

who graduated from MIT is thirty[22]. You shouldn’t let this put you off either, the differences in

outcomes are not that huge.

You need a brilliant idea

A new internet search algorithm (Google), a net-based book retailer (Amazon), a new way of

managing social relationships on the net (Facebook), auctions on the net (eBay), a new PC interface

based on the metaphor of the desktop (Apple); you need a brilliant idea to start a successful

company. What about Twitter? The idea of a short status update was in reality just a limitation

imposed by the prevailing short message service standards and protocols in the mobile industry. It

was at the time technically hard to organize longer messages – but users could see a point in it: the

immediacy of being able to report what they were doing many times a day, wherever they were.

The success of the company is dependent on being able to recognize what their users find important,

not on the original idea. Everyone has ideas; hardly any of them are implemented with enough drive

and conviction to find a market. A good idea is first an idea that has been made a reality; then a

reality that can generate value. Many software entrepreneurs start instead with customers – if you

have someone that asks you to implement their web-site or build them a mobile service, you have

no idea of your own, but you have a business possibility. The ideas can also come later, or not at all.

You can also work with the opportunity and doability[21]. Is my venture

 doable (is it feasible, can it be programmed, will somebody pay for it)?

 worth doing (can it generate an income I can be satisfied with)?

and

 can I do it (do I have the necessary skills and resources?)

 do I want to do it (does it excite and challenge me, can I see a way out if it doesn’t go well)?

You need a lot of money

Zaplet was a Silicon Valley start-up developing dynamic, updateable messages and applications

through email. In 2000 they had 27 product managers and 30 developers and US$90m in venture

capital. GO corporation survived six years and went through US$75m of venture capital developing a

pen operating system. You’ve never heard of these products or companies because they went bust.

If they can’t succeed with all that capital, how can you with those meagre resources you can muster?

Here’s the other side of the story. Dell Corporation was founded in 1994: starting capital US$1,000.

A 2002 survey of the 500 fastest growing companies in 2002 showed that 14% started with less than

US$20,000. 98% of new US businesses start with no venture capital or angel funding[21]. What do

you need to begin writing and selling a smartphone game apps? Some development software and

an emulator (all available free), a laptop to write it on and a smartphone to see if it works (you’ve

26

got these already) and a developer licence (iOS developer license: $99). Oh – and your creativity and

engineer skills. Still think you need a lot of money?

Sources

DOLLINGER, M. J. (1999) Entrepreneurship: strategies and resources, Upper Saddle River, New Jersey,

Prentice hall.

KAPLAN, J. (1994) Start Up, London, Warner.

KIRZNER, I. M. (1978) Competition and Entrepreneurship, Chicago, University of Chicago Press.

KURATKO, D. F. & HODGETTS, R. M. (1995) Entrepreneurship: A contemporary approach, Dryden

Press.

KURATKO, D. & HODGETTS, R. (2004) Entrepreneurship: Theory, Process and Practice, Mason, Ohio,

Thomson.

RAE, D. (2007) Entrepreneurship: from Opportunity to Action, New York, Palgrave.

READ, S., SARASVATHY, S., DREW, N., WILTBANK, R. & OHLSSON, A. (2011) Effectual

Entrepreneurship, London, Routledge.

ROSE, J. (2010) Software Innovation: eight work-style heuristics for creative software developers,

Aalborg, Software Innovation, Dept. of Computer Science, Aalborg University.

SHUMPETER, J. A. (1934) The theory of economic development. Cambridge, MA: Harvard

27

Two paradigms for software entrepreneurship

Why paradigms?

There are three major reasons for adapting a paradigmatic way of thinking about software

entrepreneurship:

1. it helps us structure a complex field and delineate it in a relatively approachable way - with

the risk, of course, of over simplifying

2. it helps us to focus on Sarasvathy's effectuation theory, which has some advantages for

young software and IT professionals (it’s more likely to reflect the ways you do things)

without losing sight of other important parts of the field

3. we can easily relate it to another familiar discussion with which we are familiar and which

we understand quite well - the comparison of agile and traditional development approaches.

Two paradigms from entrepreneurship thinking

We'll develop two paradigms for software entrepreneurship, based on the work of Saras D.

Sarasvathy [17]. She works in the general field of entrepreneurship, so we also need to adapt her

ideas so they have more relevance for software professionals. Her work is interesting because it

provides a very direct challenge to classical ways of thinking about the field. We'll call the two

paradigms 'Analyse, Design, Enact' (ADE) and 'Consider, Do, Adjust' (CDA). ADE reflects the classical

way that entrepreneurship has been researched and taught in business schools as represented by

many of the major textbooks in the area. In common with traditional ways of thinking about

software development, the focus here is on analysis and design - an intellectual process of finding

out about a new venture in an economic and technical environment, and conceptualising it as fully

as possible, before setting it in motion. In CDA the focus is on action: not that you should do things

without sensible consideration, but that action should be taken, a venture set in motion on the basis

of what is currently possible and then adapted according to developing circumstances - an agile way

of thinking. In the following short analysis we'll look at ADE as represented by Kuratko[19, 20] and

Dollinger[7] (leading textbooks), and then follow Sarasvathy's arguments as she outlines the

assumptions in this thinking and contrasts it with her own.

ADE: Analyse, Design, Enact

ADE emphasises an intellectual process which is analytical in respect to the current state of the

world and how it can be understood. Dollinger breaks the process down into scanning, monitoring,

forecasting and assessing, and expects a considerable investment in learning about markets,

economies, technologies and business conditions. The issues that should be analysed include:

• Political and governmental issues

▫ Stakeholder analysis

▫ Global and international issues

 Trade barriers and tariffs

28

 Trade agreements

 Political risk

▫ National issues

 Taxation

 Regulation

 Antitrust legislation

 Patent protection

 Government support

 Legal structures

▫ Regional issues

 Licensing

 Securities and incorporation laws

 Incentives

• Macro-economy issues

▫ Structural industry change

▫ Cyclical change (e.g. financial situation)

• Technology issues

▫ Invention

▫ Process innovation

▫ Trends

• Social demographics issues

▫ Demographics

▫ Social trends and values

• Ecological issues

▫ Sustainable development

• Market issues

▫ Segments

▫ Consumer behaviour

• Industry Competition

▫ Similar services and products

• Opportunity

Analysis is safest where there is a strong theoretical background (this adds a history of practice in

what to look at and how to interpret the results) so many models are presented, mainly from

standard business literatures (for example the work of Michael Porter). It’s usually necessary to

collect empirical data to make the analysis. We looked earlier at the operating system industry with

the help of Porter's five forces model and could easily conclude that this was a difficult market to

break into with the scale of resources at our command.

With an accurate picture of the business conditions, it’s possible to design a response - a venture

which will fit into and match those conditions and therefore be successful. Typical design activities

are:

 Business model

 Marketing strategy

 Financial planning

29

 Organizational design (see for example Mintzberg)

 Legal structure

 Work-practice design

 Product design

 Growth strategy

These can also have a strong theoretical component, for example a business model can be based on

a documented category of business models, such as those described by Rappa. These types of

normative models help rationalise the design process, again using historical examples which are

known to be successful. Design is complemented by planning - so the medium term future of the

venture can be anticipated and the necessary resources obtained, goals and expectations set. The

plan provides a management tool - a way of understanding whether the expected targets are being

met, and what corrective action to take if they are not. The result of the design exercise is a

business plan - a document summarizing the designs and plans. You could think of this as a

specification for the new venture.

The business plan is the basis for enacting the venture: sponsors and investors must be found,

venture capital raised, a legal structure established, premises found and the necessary equipment

bought, staff recruited. The business plan is the primary vehicle for attracting capital. The business

can then be managed according to the plan; once it starts to generate income the investors can be

repaid.

Sarasvathy argues that way of thinking represents a causal logic: to the extent we can predict the

future, we can control it. This is useful when the future is uncertain, but knowable, and goals are

clear, but ways to achieve them are not. Causal logic assumes that the external environment is

reasonably well-structured, but largely outside our control.

http://digitalenterprise.org/models/models.html

30

The vertical axis assesses how predictable the future is; essentially whether it can be modelled by

using contemporary and historical data and a reliable theoretical tool. The horizontal axis assesses

how much the future is under our control: whether we have the potential to determine it to a larger

or smaller degree. The matrix yields four logics of entrepreneurship.

 the causal logic behind the ADE paradigm (we must fit into a market and industry which can

be analysed, but not controlled)

 visionary logic - we can both predict the future and have a high degree of control over it

(Steve Jobs introducing a major new product at Apple; the market gap and technology

trends are known, the market is heavily influenced by Apple’s brand and marketing)

 adaptive logic – low predictability, low control (a start-up with one large industrial customer

and an untried technology)

 effectual logic – non-predictive control (see below)

CDA: Consider, Do, Adjust

In her theory of effectuation (the act of implementing, providing a practical means for accomplishing

something; carrying into effect) she argues for the effectual logic over the causal, showing that it is

more common in (a sample of) successful entrepreneurs. An effectual logic assumes that the future

is created by the actions of people, and cannot necessarily be predicted. Instead the entrepreneur

can take control of their resources and work to influence the future. If there is no product, then the

product can be created, if there is no market, then the market can be created. Effectual logic

suggests that to the extent we can work with things within our control, we don’t need to predict the

future, and is useful when the future is not only uncertain, but also unknowable, goals are

ambiguous (but means are clear and limited), and the environment is unstructured and subject to

shaping by human action. Here it makes less sense to invest in large scale analysis and design, and

more sense to act. Actions are not without reflection, but they take centre stage, and future actions

are in response to those types of future that we were able to create - an iterative cycle: Consider, Do,

Adapt.

31

Here is Sarasvathy's account of the effectuation cycle:

The starting place is with the entrepreneur’s knowledge and abilities; with their possibilities for

action now (e.g. we have the resources to build an android leisure game, but not to port it to other

platforms). It’s essentially a networking theory of entrepreneurship, emphasising interactions with,

and commitments from others (e.g. we know someone who has some experience working with

iPhone games, maybe they’d come on board). New partnerships create further means (resources)

and new goals and constraints (now we’re a multi-platform leisure game developer, but we still

don’t have the resources to develop large-scale games). She also provides some effectual principles:

 The bird-in-hand principle: start with who you are, what you know, and whom you know

(rather than with pre-set goals expressed in a five-year business plan)

 The affordable loss principle: invest what you can afford to lose – in the extreme case

nothing (rather than borrow a lot of money and calculate the expected return in five years)

 The crazy quilt principle: build a network of self-selected stakeholders (not market analysis

to find out where you fit)

32

 The lemonade principle - when life sends you lemons (unexpected surprises) make

lemonade: embrace and leverage surprises (don’t avoid them and try to stick to the business

plan)

 The pilot-in-the-plane principle: the future comes from what people do (not inevitable

trends in technologies, markets and industries)

Here are the differences summarized:

causal logic effectual logic

goals first design the venture upfront,
specifying what you want to
do and where you want to be

means first let the venture emerge out of
what you are able to do with
the resources you have

maximize return borrow money and use the
venture to increase its value
and leave a profit

control
investment

invest what you are
comfortable with and see what
you can achieve with it

avoid the
unexpected

stick to the plan and
overcome obstacles

leverage the
unexpected

change the direction of the
venture to respond to the
opportunities you meet

think
competition and
market

fit the venture into its niche
in a jigsaw of market and
industry conditions

think pre-
commitment

make partnerships and
alliances with others who are
prepared to commit to you

predict and
control

develop a roadmap and act
according to it

control don’t
predict

use the available resources to
develop achievable results

 If we organise Sarasvathy's thinking as the Consider, Do, Adjust paradigm we get something like this:

We can express the difference between these two paradigms relatively clearly with the help of

Sarasvathy's work, but considerable challenges remain before they can really be meaningful to

software professionals. The first challenge is that they are too generalised - most software

professionals would have good reason to believe that software ventures have special characteristics

33

(high tech, high growth, intellectual property, knowledge intensive and so on) which mean that they

need a specialised form of consideration. The second challenge is that most of the entrepreneurship

literature is written for business people, not for engineers. Engineers build things, and software

professionals are no exception, so we need to find ways to focus on interesting software ideas and

how they are developed. Business is only the vehicle which enables engineers to write interesting

software. We could also add the challenge that software is a strongly innovative industry, and that

many of the forms of entrepreneurship that we are interested in involve an innovative ('interesting')

software product. A final challenge could be to do with the structure of the software industry; we

need to develop entrepreneurship models for consultant- and product-oriented (and other types of)

firms.

In the next section, we’ll adapt these two paradigms to our theme: promoting software and IT

ventures.

Analyse, Design, Enact in the software context

A more software-oriented sketch of the ADE paradigm might look like this. Imagine we want to set

up a company to provide time-stamped databases to industry. The things we might like to analyse

could include:

 software markets

 technology trends, innovation, software process innovation

 competitors in chosen software market with similar products and services

 intellectual property situation (patents and copyrights in similar areas)

 partnership and networking structure in the industry

 open source code in related areas

 our own software competences and any gaps

 market opportunities

 time to market for products or services (estimation of developer hours)

 user profiles (segments, behaviour, demographics, social trends and values)

 the financial opportunities available to us

Then we need to make a business plan in which we design our company; we should specify (for

example):

 our software product(s): low-tech and code prototypes, specifications

 our service offerings (implementation, customization, consultancy)

 own code requirements (what we need to have a functioning product that can be

implemented at a customer)

 developer competence profile (which programming technologies we can work with, which

types of platform and applications we have expertise in) and how we need to build it

 the business model for the venture (how we will earn our revenues)

34

 our intellectual property strategy (closed, open, mixed)

 software management style (what kind of developer culture do we want to encourage at our

company)

 software engineering processes and models (traditional, agile, test and quality approach)

 the legal structure for the company

With our business plan in hand we can go into the enact stage: we should secure capital and look for

offices, register our company, hire some engineers and establish good work practices, build and test

our product(s) and develop the services we will offer. Now we need to market our products and

services in order to find some customers and make sure that we protect intellectual capital.

an
al

yz
e •software markets

•technology trends,
innovation, process
innovation

•competitors

•intellectual
property situation

•partnership and
networking
structure in the
industry

•open source code
in related areas

•software
competences

•market
opportunities

•time to market for
products or
services

•user profile

•financial
opportunities

d
e

si
gn

•software
product(s):

•service offerings

•code requirements

•developer
competence profile

•business model

•intellectual
property strategy

•software
management style

•software
engineering
processes

•legal structure

en
ac

t •secure capital

•look for offices,

•egister company

•hire engineers

•establish good
work practices

•build and test
product(s)

•develop services

•market products
and services

•find customers

•protect intellectual
capital.

35

If we look at the assumptions behind this way of thinking we expect that the software venture will

compete in an existing market (not create a completely new market). We assume that market and

technology developments are foreseeable on the basis of historical evidence (we analyse the past to

predict the future) and that opportunities in these markets can be discovered and exploited. We

assume that a software venture can designed in such a way as to exploit the discovered opportunity

and that our software competences should be developed in line with the design. We assume that

investors will invest on the basis of convincing analysis and design work, and, rather fundamentally,

that the future can be planned for (it is predictable and knowable). We assume we need venture or

loan capital, that the plan is a safe basis for setting things in action (enacting), and that managing the

new venture is primarily controlling that the plan is enacted precisely.

Consider, Do, Adjust in the software context

A more software oriented version of CDE could look like this:

We should consider: which specialised software competences and computer science (or IT) research

interests do we have, what existing code and prototypes do we have lying around? How much of

our time can we use for developing? What programming and project management skills do we have

that customers might want to hire? What services can we offer to our customers? How can we best

improve or differentiate our products with the development time we have available? Can we

improve our engineering practice? How can we involve others with complementary software

competences or code and applications that we need, and will they commit to our projects? Who do

we know that is a potential customer and how can we work with them to improve our products?

We should act (do) to: build software and develop services, actively seek and interact with (potential)

customers (using their skills and domain knowledge to develop better applications). We should

actively seek and interact with (potential) partners and co-operators to develop our mutual

programming and development competences and expand our sellable code-base. We should

expand and diversify revenue generation (more products and services) and employ financial

bootstrapping principles to generate more resources for our projects. We should share our

knowledge and learn from those who are prepared to do the same, and leverage the possibilities of

open source code resources.

We should constantly adjust by: modifying our products and services according to customer

feedback, by identifying new products and services through customer and partner interaction, by

36

dumping dead-end projects and opening new projects as resources allow, and by improving internal

engineering practice as a result of our experience.

In this model we assume that the future software market is unknowable, but created by our current

developments, that market for a software product (especially innovative products) can be created if

it does not exist, and that our environment is too complex to be perfectly analysed. We further

assume that action (developing software) with imperfect knowledge is better than planning, as long

as it is constantly adjusted to fit external customer realities, that developing software is more useful

than business planning, as long as business development is actively considered, and that interactions

with partners and customers are the key to building good software and developing business

potential. We think knowledge sharing promotes mutual learning and this is important because

software is primarily about knowledge, that lean is good, and that managing a young software

company means developing good (appropriate) engineering practice.

CONSIDER: specialised software
competences, existing code,

available developer time,
existing programming and
project management skills,
potential services, product
improvements, engineering

practice improvements,
invoving partners with

complementary software
competences and code,

potential customers

DO: build software, develop
services, seek and interact with
(potential) customers, actively

seek and interact with
(potential), expand and

diversify revenue generation,
employ financial bootstrapping,

share knowledge, leverage
open source code

ADJUST: modify products and
services according to feedback,
add desired new products and

services, dump dead-end
projects, open new projects in
response to markets, improve

internal engineering practice in
the light of experience

37

Case study: Pierre Omidyar on starting eBay

Almost every industry analyst and business reporter I talk to observes that eBay's strength is that its

system is self-sustaining -- able to adapt to user needs, without any heavy intervention from a

central authority of some sort. So people often say to me – ‘when you built the system, you must

have known that making it self-sustainable was the only way eBay could grow to serve 40 million

users a day.’ Well… nope. I made the system self-sustaining for one reason: Back when I launched

eBay on Labour Day 1995, eBay wasn't my business - it was my hobby. I had to build a system that

was self-sustaining because I had a real job to go to every morning. I was working as a software

engineer from 10 to 7, and I wanted to have a life on the weekends. So I built a system that could

keep working - catching complaints and capturing feedback -- even when Pam and I were out

mountain-biking, and the only one home was our cat.

If I had had a blank check from a big VC, and a big staff running around - things might have gone

much worse. I would have probably put together a very complex, elaborate system - something that

justified all the investment. But because I had to operate on a tight budget - tight in terms of money

and tight in terms of time - necessity focused me on simplicity: so I built a system simple enough to

sustain itself. By building a simple system, with just a few guiding principles, eBay was open to

organic growth - it could achieve a certain degree of self-organization. So I guess what I'm trying to

tell you is: whatever future you're building… don't try to program everything. 5 Year Plans never

worked for the Soviet Union - in fact, if anything, central planning contributed to its fall. Chances are,

central planning won't work any better for any of us.

Build a platform - prepare for the unexpected... …and you'll know you're successful when the

platform you've built serves you in unexpected ways. That's certainly true of the lessons I've learned

in the process of building eBay. Because in the deepest sense, eBay wasn't a hobby. And it wasn't a

business. It was - and is - a community: an organic, evolving, self-organizing web of individual

relationships, formed around shared interests

Paradigm comparison

The two paradigms should be understood as the idealised theoretical endpoints of a continuous

spectrum, which is useful for understanding and categorising the literature. In reality most software

organisations will use elements of both. A rigorous planning exercise does not exclude flexibility,

rapid change and iterative learning in implementation, and a bootstrapped iterative growth model

does not exclude some elements of rigorous analysis, for example a thorough market analysis for a

new product. You shouldn’t expect to find real empirical examples which are perfect examples of

one paradigm or the other. In some related areas the 80/20 rule applies - suggesting that you

should be 80% focused on one approach, and that 'stuck in the middle' positions do not work, but

there is no empirical justification for this at the present time in this field. The two paradigms are

compared in various dimensions below[23].

38

 analyse, design, enact consider, do, adjust

theoretical inspiration: standard entrepreneurship literature Sarasvathy: theory of
effectuation

software engineering
inspiration:

traditional development agile development

description: promote a software venture by
understanding the technical and
business environment, designing a
logical response and setting it in
motion

promote a software venture by
taking iterative and incremental
steps forward on the basis of
what is achievable now

process: sequential iterative
understanding of future: predictable, non-controllable – adjust

to the forces of the market
unpredictable, controllable –
create (a small part of) the
future

attitude to market: analyse the market and choose a
position or niche (find opportunity)

avoid or outsmart obvious
competitors and create a new
market (make opportunity)

attitude to technology
development:

understand technology trajectories
and fit software projects into likely
developments

develop the areas of technology
expertise you excel in

role of business
planning:

conceptualise the venture as
completely as possible before starting

take initial business decisions
based on what you can afford
and look out for what you need
to do next

software development
style:

decide software engineering practice
up-front, likely to emphasise the
traditional

improvise engineering practice
and decide according to
circumstance, lean practice,
agility

attitude to change: avoid change as far as possible - stick
to plan to achieve goals

embrace change as opportunity
and act upon new situations and
possibilities

funding approach: attract capital and investors before
start up - fund to maximize return

invest what you can afford
without considering the possible
return and bootstrap

approach to others
working in the same
areas:

avoid competition - consider
competitors a threat to market
position

collaborate with those who
demonstrate commitment and
network with potential
stakeholders

approach to intellectual
property:

protect IP through copyrights and
patents to deter competition,
improve market share

build networks of ideas, sharing,
various business models
including open source, mixed
open and closed code access

partnering and
networking

control collaboration to avoid losing
intellectual property

build a network of committed
stakeholders, collaborators and
partners

time to market long on the basis of venture capital short to maximise returns

39

Sources

CHESBROUGH, H. (2007) Open business models: How to thrive in the new innovation landscape,

Harvard Business Press.

CUSUMANO, M. (2004) The business of software: What every manager, programmer, and

entrepreneur must know to thrive and survive in good times and bad, Free Press.

DOLLINGER, M. J. (1999) Entrepreneurship: strategies and resources, Upper Saddle River, New Jersey,

Prentice hall.

KAPLAN, J. (1994) Start Up, London, Warner.

KURATKO, D. F. & HODGETTS, R. M. (1995) Entrepreneurship: A contemporary approach, Dryden

Press.

KURATKO, D. & HODGETTS, R. (2004) Entrepreneurship: Theory, Process and Practice, Mason, Ohio,

Thomson.

SARASVATHY, S. (2001) Causation and effectuation: Toward a theoretical shift from economic

inevitability to entrepreneurial contingency. Academy of management Review, 26, 243-263.

SARASVATHY, S. (2003) Entrepreneurship as a science of the artificial. Journal of Economic

Psychology, 24, 203-220.

SARASVATHY, S. (2004) Making it happen: Beyond theories of the firm to theories of firm design.

Entrepreneurship Theory and Practice, 28, 519-531.

SARASVATHY, S. (2008) Effectuation: Elements of entrepreneurial expertise, Edward Elgar Publishing.

SARASVATHY, S. & DEW, N. (2005) New market creation through transformation. Journal of

Evolutionary Economics, 15, 533-565.

WILTBANK, R., DEW, N., READ, S. & SARASVATHY, S. (2006) What to do next? The case for non

predictive strategy. Strategic Management Journal, 27, 981-998.

40

The software start-up

Much of the focus of the entrepreneurship literature is on starting a new business, so in this section

we look at software start-ups, companies where the primary value creation is achieved through

writing software.

Giarratana[24] mentions three types of entrepreneurs:

 the innovator creates new products (our software is ground breaking and has not been seen

before)

 the arbitrageur exploits market inefficiencies (there's only one company that provides

ecommerce solutions for local businesses and they're too expensive for the region's small

firms - we can provide a personalized, low-cost alternative)

 the coordinator introduces an alternative use of resources (we will provide weather

presentation software based on open source components where much of the development

effort is free which will compete with the dominant proprietary software providers such as

Metra).

In each case the entrepreneur will have to understand something of the business positioning of the

new company. Cusumano[1] suggests that there are some basic questions that need to be answered:

• do you want to be mainly a products company or a services (consultancy) company?

• do you want to sell to individuals or enterprises, or to mass or niche markets?

• how horizontal (broad) or vertical (specialized) is your product or service?

• can you generate a recurring revenue stream to endure in good times and bad?

• will you target mainstream customers, or do you have a plan to avoid "the chasm" (the gap

between early adopters - the rather few customers with specialised interests who buy

technically innovative products, and the early majority (the many customers who want to

buy a product that is technically sophisticated, but also established and popular)?

• do you hope to be a leader (a company that is an innovator), follower (one that bases its

products on established technologies), or complementor (a company that provides

additional software and services to an established platform)?

• what kind of character (culture, image, brand, working environment) do you want your

company to have?

The answers to these questions may (in an Analyse, Design, Enact perspective), serve to help build

strategies for service and market development[25]. Software firms can be customer-oriented or

competitor oriented[26]. Gathering information on customers, meeting their needs and creating

value for them are essential ingredients for a customer oriented business, which synchronize well

with user-centred forms of software development. Competitor orientation can be understood as

company understandings of strengths, weaknesses, capabilities and strategies of key potential

competitors, including an understanding of the applications they develop and the consultancy

41

services they offer. Mueller[25] finds that competitor orientation has a positive correlation with

technology success for software start-ups, but that customer-orientation should either be taken very

seriously or left out altogether . Start-ups may have both technology and business strategies[25].

Generic technology strategies include:

 leader (building image, innovation skills, coupling technological advances with user needs)

 follower (feature optimization for established product types, design skills)

 exploiter (quality maximisation, modification and re-engineering skills)

 extender (price minimization, vendor skills)

These can be matched with business strategies including

 cost leadership (being able to build software more cheaply than others)

 differentiation (having software products or services which are recognizable unique or

different from standard offerings)

 focus or niche (competing in a specialised area with few competitors)

 speed to market (the ability to innovate and bring applications to the market faster than

competitors

and the development of core competences such as technical expertise, design and innovation

expertise, software engineering expertise, and market understanding.

Malaysia’s government policy for entrepreneurship development, especially in the IT industry, offers

financial and other help for funding new projects, and supporting corporate R+D. However, the

most frequent sources of finance are personal funds of entrepreneurs and venture capital, and less

use is made of loans from the government and commercial banks. Most employees are technically

educated, and a third of the software engineers hold a degree in computer science from developed

countries, such as USA, Australia, New Zealand, Canada and UK. With the help of these foreign-

trained professionals, the firms have acquired the latest software technology from abroad. Sharing

typical characteristics with entrepreneurial firms in other industries, technical and commercial

knowledge is located at the top and concentrated in specialized functions. Management style is

highly dynamic and flexible, and the organizations are structured as open systems: fluid and result-

oriented. Management highly values contributions from individual employees, and the speed of

deciding whether or not to adopt a new idea is fast. In most firms top management continuously

scans the business environment for the latest software and market trends. The start-ups’ main

competitors are domestic companies, but competition also comes increasingly from international

firms. Most software entrepreneurs feel the need for going international as somewhat urgent,

though the Malaysian software market still provides large potential opportunities. Aiming at these

market opportunities, some entrepreneurs explicitly include in-house innovation into their strategic

plans. The entrepreneurs report serious problems in finding technically educated people and have

to bear high costs for qualified personnel. They mainly design customized software to meet the

demand of local customers. Some firms also do business with big international software companies,

either as subcontractors or as distributors. It should be noted that most entrepreneurs started their

businesses as vendors, gathering experience and technological know-how, and later began designing

their own software. Most adopt differentiation as their product strategy, or work in a niche market;

in customized software design they focus on cost leadership. Malaysia’s software market has been

42

strongly influenced by foreign companies, and the start-ups have to compete with high quality

software products. If a firm is unable to differentiate its software in terms of product quality, type

and customer segments, it cannot increase sales. Most ventures adopt a technology exploiter

strategy. The entrepreneurs place highest importance on know-how technology, i.e. human skills

and expertise. Entrepreneurial software firms in Malaysia are competitive in designing high quality

customized software but do not have sufficient resources and capabilities for developing new

software on their own. They face problems with innovation[25].

These considerations hint at different ways of generating value out of software applications, so we

investigate this next.

Software firm business models

If you're starting a software business, what type of business will it be? What will it offer in terms of

products and services and how will it generate value? The most common distinction is between

companies primarily offering products, and those primarily offering services[1]. Product companies

(Microsoft, Adobe, Apple) build packaged proprietary software and sell it to customers on the open

market. Service (consultancy) companies (PricewaterhouseCoopers, Accenture, Cap Gemini Ernst

and Young) contract with customers to develop software tailored to their needs. Many mature

companies develop effective hybrid strategies, but start-ups, according to Cusumano[1] need to

choose and continue to choose in their early growth phase.

According to Rajala [27, 28], a software business model consists of four elements (a somewhat narrow

characterisation compared to other writers on the subject):

 a product strategy (what kind of software and applications do we write)

 a revenue logic (how do we earn money out of them)

 a distribution model (how do we get them to our customers)

 a service and implementation model (how do we keep them working when our customers

are using them)

They develop four generic software business models based on a matrix. The vertical axis specifies

how intensely the IT company collaborates with its customers and users; the horizontal how much

they focus on standardised products rather than software custom-built for a particular situation.

This yields four types of business model:

43

 software tailoring – building tailor-made software for specific customers; example Logica

developing the clearing system (CHAPS) for the British banking system

 applied formats – customized solutions based on common platform; example SAP offering

solutions based on the its Enterprise Resource Planning (ERP) software

 resource provisioning – developing software components or middleware designed to

integrate with other software; example Red Hat developing their own version of Linux and

offering software and services around it

 standard offerings – own products sold widely and used without customization; example

Apple selling integrated hardware and software products direct to private users.

They specify the four generic models in the table below[28]:

Though they are useful to stimulate thinking about different forms of software venture, it’s not clear

these generic business models go to the heart of what leads to competitive advantage in the

software industry. For instance, Google, Microsoft and Apple all fall in the 'standard offerings' group

- but their business models are radically different. A start-up positioning itself in the standardised

offerings group would need a radically different business model, probably with a highly specialised

market niche, in order to survive. Nor is it clear that one business model can describe all the

activities in these companies; they don’t with the four examples I used above.

What is clear is that engineering skills and the ability to develop software is necessary, but not

sufficient for survival as a start-up. Chesbrough[3] argues that new technologies open up many

possibilities for exploitation, and that it is not the technology itself, but the business model that

exploits it which is the key ingredient in success. We’ll look at open software business models later.

New software companies need to develop viable business models relatively quickly; probably by

thinking explicitly and acting proactively. They don’t necessarily need to have a strategy or a

document called a business model, but they need to make an explicit connection between the

software applications and services they develop, and revenue generation and value in the business.

The software product

For many start-ups, the most important element is the software product. The really good product

idea is often the inspiration and primary motivation for starting the company. The product needs to

be differentiated from others in the market - you can't usually make a business by copying an

existing product unless you intend to provide it much cheaper or for free (and derive income from

http://en.wikipedia.org/wiki/Logica
http://en.wikipedia.org/wiki/SAP_AG
http://en.wikipedia.org/wiki/Red_hat
http://en.wikipedia.org/wiki/Apple_Inc.

44

another source). In many cases the product will be innovative, maybe a spin-off from university

collaboration or industry experience[15]. Often the survival of the firm is dependent, at least initially,

on the success of the product. Heirman and Clarysse [29] argues that delivery of the first product is

important for

 early revenues, improved cash flow and greater financial independence

 building a customer base

 engineering experience, and

 visibility in the market.

This also means that innovation speed - time to market - is important, especially where the company

is heavily indebted to banks and venture capitalists. The longer a start-up works without income,

the more difficult it is to achieve financial stability.

Case: Checkpoint

Checkpoint created an innovative process to build firewalls, security products that could go directly

off the shelf to a customer and that enforce the boundaries between different networks and protect

firms against unauthorised users. Checkpoint’s programmers introduced a new language, Inspect,

specifically for directing the rapid inspection of communication packets and a compiler to translate

policy rules written in Inspect into assembly language. The program opens data packets, checks the

content and quickly inspects each data packet. The innovation is that the program sends along the

data in parcels after they are checked, rather than waiting to reassemble them before the entire

transmission. This methodology increased dramatically the speed of data transmission, with the

same level of security.[24]

Bringing the first product to market

How do you arrive at the first product? Companies typically start with an idea or concept, a

software prototype or, more rarely, a finished product awaiting commercialisation. You'd imagine

that starting with a lot of working code and a large amount of venture capital would be an

advantage, but this turns out not necessarily to be the case. Software firms starting with a

prototype often meet costly demands for redesign when they eventually meet with customers and

users. Engineers preoccupied with software design often neglect market involvement and real

experiences with customers. Those that are more successful involve customers from the beginning

and this improves speed to market[29]. Neither is it automatic that having a large bag of money helps

- this encourages gold-plating and lack of focus. Lean may be just as good. A good experienced

partnership behind the software collaboration also improves speed to market. However Heirmann

also points out that many software inventors have difficulty with shifting their mental models and

adapting their brainchild to changing needs and conditions. Sometimes it may be important to

believe in the original product concept and work at creating the market for it, but at other times

flexibility is required to meet practical demands of users and customers, or react to competitor's

products. Newly created small firms hardly ever have the resources and experience to operate

traditional standardised development methods and are dependent on their ability to move flexibly

forward through improvisation and bricolage[30]. Both the venture and its mode of working need to

be agile. The first customer can be a really important link in developing a marketable product,

providing much needed domain knowledge, input into requirements, cash injections (sometimes)

45

and the necessary motivation to finish a working application. De Haan and Cohen[30] point out that

the traditional Systems Development Lifecycle (SDLC) is impossible to follow in entrepreneurial

development. They suggest a 12 step process for off-the-shelf business software incorporating the

first customer, which they call Lead-Driven Development. In this model the real development of the

software is undertaken in cooperation with the first customer, whilst the development firm also

identifies the kernel of the system which will be sold to a wider market. It is best-suited for the

applied formats and resource provisioning styles of software company.

46

step description

initiation – informal: structuring the will and intent to begin the project, giving
the go-ahead, providing limited resources for exploring the
idea

high level concept development: basic idea and scope, business value, developed in spare
time sometimes with academic partners help, some code,
no documentation or testing

demonstration prototype: important milestone – partly functional prototype with
good interface clearly addressing the problem that should
be solved, many missing features, many bugs and
engineering problem,

minor testing in non-profit
environments, academic demo and
use:

exploiting opportunities for showing and communicating
application in non-commercial situations to achieve
feedback on features, bugs and use

market introduction, benefit oriented
demonstrations and mini pilots:

demonstrations at potential customers – customer
specific: the development team tries to pick up as much
information about the potential customer as possible and
codes extra targeted features for their sales meetings. no
documentation or test

offer product + implementer: when a customer wishes to buy (first sale) they offer both
the product and an implementer who will supervise the
installation and train users

bug fixing: the product is improved to a commercially useable ‘non-
frustrating’ version targeted at the first customer’s
baseline requirements - many unresolved bugs remain

constrain features, further commercial
releases, and support plan:

the development team identify a core set of features
which will form the basis for further commercial releases
(and attracting new customers) and develop a support plan
for the software

develop complexity management
tools, establish interface with
customer's software, find additional
benefit oriented projects, embed
within
organizational deliverables:

address complexity issues with first customer’s work,
synchronize software with customers’ business goals,
interface with other organizational systems, find additional
customer problems to solve

second sale – licenses: second sale to the same organisation and move to
licensing arrangement indicates that the customer has
moved beyond the learning stage and is ready to adopt the
software

maintenance, begin user training,
tutoring, software support:

here the customer begins to deal with the software
without intensive support from the developers, who put
more conventional training, maintenance and support
processes in place

third sale, support customer has moved beyond independently using the
software and has realised the benefits of the product and
committed to long term use

This kind of process will obviously not work for some other forms of software entrepreneurship

where there is a software tailoring (pure consultancy) or standard offerings (generalized products for

a broad market) business model.

47

Management

A business is also a leadership and management challenge. Running a business involves all kinds of

housekeeping activities such as paying salaries and taxes, keeping accounts and customer

information, and getting the building cleaned. You can easily end up doing some or all of these

things because of the cost of employing others to do them. Past experience of management

(finance, sales, technology, logistics, marketing, and selling, negotiating, leading, planning, decision

making, problem solving, organizing, and communicating) is thought to be an advantage in a start-

up[31]. As a software professional you possibly have no interest in many of these things, and no

training in how to do them, which doesn't improve the chances of them being done well. Many of

them can be outsourced. However, the team interaction of start-up founders in terms of leadership,

interpersonal flexibility, team commitment and helpfulness are known to be important, and

communication, cohesion, work norms, mutual support, coordination and conflict resolution are

good predictors of technology venture success. Software development is characterized by a need to

coordinate the work of individuals on day-to-day bases and cooperating teams achieve a higher level

of integration of their individual interests and accomplish jointly the goals of the venture team[26].

The management of a small firm’s software process is further question which can’t be outsourced

and is often neglected. Chenoweth[32] comments on the lack of conventional software engineering

processes in start-up software companies. A freewheeling style may be inherent to software culture.

He reflects that

‘industry is motivated primarily by profit, and processes tend to be ignored by industrial

organizations which are in a hurry. Start-ups in particular are creative, flexible and able to

move quickly into opportunities because they are unencumbered by stifling layers of

management. They have to move fast. Due to their lack of a customer base, knowledge about

requirements does not come into a start-up in an orderly manner. As a result of this chaotic

flow of requirements, any of the deliberate processes of software engineering can seem off-

track in regard to keeping the new enterprise moving with that flow’.

Chenoweth saw this lack of process in his industrial experience (technical diligence studies for a

computer vendor and a telecom vendor) acquiring smaller software companies. Commonly, the

winners in a first-to-market race had little documentation. Their requirements, designs and

processes were largely in the heads of key people. Nevertheless he concludes that ‘even in small

start-up software businesses, experience, skills and methods are as important as new ideas in

generating success.’ A great idea cannot compensate for the absence of sound, appropriate

engineering thinking about software development processes. He also characterises differences

between the attitudes of young entrepreneurs in their first start-up and more experienced

developers:

‘start-up entrepreneurs we interviewed were characteristically impatient with even agile

software engineering processes. This impatience was very clearly stated by the entrepreneurs

as being due to their need to be first into the market, or to meet the needs of a key customer.

The new businesses all added or changed processes during development as they became

aware of issues. They especially changed how things were done in hopes of meeting their

aggressive time-to-market expectations. The entrepreneurs’ bias for action perhaps translated

into the following logic: What has to be accomplished in order to reach the market? The most

48

crucial ingredient, without which they have nothing, is the code itself. Everything else,

therefore, is secondary in value. In contrast to the new entrepreneurs, discussions with the

more established business people who had worked with these students showed a different

attitude about process. A typical concern of the established businesses was that the processes

and tools used on a new project at the incubator be like those used in other projects by that

company. One established company brought-in their own on-site project manager to the

incubator, specifically to help students use their processes and tools. Another company was

there in order to use well-defined processes to reverse-engineer their existing, successful

system which they had created without much process as a start-up, so as to begin building its

successor’.[32]

These difficulties highlight the value of being able to learn rapidly from experience in order to

combat the start-up’s liabilities of newness and smallness [31].

Innovation speed and time-to-market

Time to market is a crucial factor for new ventures. The sale of the first product is a major milestone

since it helps to gain early cash flow for greater financial independence, external visibility and

legitimacy, to develop an early market share and increases the likelihood of survival[29]. Innovation

speed is the time elapsed between initial development (including the conception and definition of

the software or application), and ultimate commercialization, which is the introduction of a new

product into the marketplace. Heirman[29] investigates several factors which are understood to

increase innovation speed including: the starting resources of the company (which may be cash or

specialist expertise), existing code or a prototype at company launch, the company’s innovation

processes, the experience and complementary skills (cross-functionality) of the development team

and alliances with universities and R+D departments in industry. Surprisingly they found that

‘starting with a beta version leads to significantly longer development efforts for software

start-ups. Software firms starting with a beta version often face considerable reengineering

issues that delay the launch of the first product. These software entrepreneurs developed their

prototypes in the absence of—or at least a lack of—market information and lost precious time

developing bells and whistles that customers do not want. Reengineering a beta prototype

often takes longer than developing a software product from scratch, but right from the start.

Software entrepreneurs should start their ventures early in the product development cycle,

which enables them to freeze the concept in close interaction with the market.’[29]

My fellow entrepreneurs and I had been working in the graphical sector for a number of years. Two

of us worked several years as software developers and the other one had many years of experience

as sales representative. We worked for a company developing workflow automation systems for the

graphical industry. When this firm was acquired, we felt unhappy with the new strategy and we

talked about starting our own company. We brainstormed about potential business ideas for a

couple of months. Our gut feeling was that printers needed software to automate their pre-press

activities. We visited several printers and found out that they indeed were looking for tools to

automate their pre-press activities and that none of the big players was focusing on this niche at the

time. During these first meetings we let the customers explain what they exactly needed and how

they wanted the product to look like. We said that we had a product on the shelf that could do

49

about half of that. With hindsight we took big risks, because we actually sold our first product before

we developed it. We were not even sure that we could do it. We also promised that we would work

on the other features they wanted if other companies had similar requests. We worked very hard to

develop the software system that did the 50% job. We implemented this product with several

customers. Later, we developed new versions including more features on customer’s request.[29]

Software revenue generation models

If you want to survive as a software business you will need to generate some income. Many IT

professionals imagine that this is quite simple – you write some software then you sell it, but the

revenue generation models of many software companies are actually rather complex, often built up

of many different income sources. You need to understand the value of your software for different

groups of users, and structure your revenue generation strategies accordingly. Here are some of the

major mechanisms:

 license revenue involves a contract to supply software for a predetermined number of users

for a predetermined period of time. A license can be one-off and pay up front, upgrades can

be free or paid for and in many situations there can be supplementary fees for

implementation, tailoring and consultancy

 subscription revenue focuses on a time-boxed right to use software which expires if the

subscription is not renewed: the payment can be expected to recur annually, quarterly or

monthly

 shareware usually includes the right to trial the software (or a limited version of it) for a

limited period, after which some form of license or subscription is required.

 freeware is available at no cost, or with an optional payment which is sometimes user

determined. It should not be confused with free software because the copyright normally

remains with the developers. Revenue is generated through a range of other mechanisms

including advertising (which is sometimes targeted at particular user profiles), selling

additional services (e.g. business analysis), tailoring, training and support. A short

examination of free net-based applications and services (Google, Facebook, Wikipedia,

MySpace) reveals many different related revenue generation mechanisms which become

available where there are many ‘eyes’ (users)

 the freemium (free/premium) model usually offers a free starting pack, with a license or

subscription for extra features and service levels

 software as a service (SaaS) involves the hosting of software and hardware facilities (with

accompanying support services) for rent to customers – now often as cloud software

delivered through thin clients or browsers. Payment is usually through some form of

licensing or subscription agreement.

 consultancy fees are earned for delivering software made or tailored for specific situations,

typically with accompanying implementation and support services

 patent licensing - revenue from the licensing of patents obtained

 open revenue models – concern the generation of revenue from open source software

 platform access fees are charged by companies that control a particular platform such as the

IPhone apps market

50

This list covers some of the major ways of generating revenues from software, but there are many

variations, and mature software firms’ revenues are typically built up of many different revenue

generation mechanisms. Start-ups need to be clear where they will begin.

Entry and growth

An existing industry, in Porter's characterisation, provides barriers to entry. This means that your

competitors do not intend to let you take some of their customers and will work hard to avoid it.

Start-ups have the disadvantages of smallness and newness: few engineers with many tasks, little

experience, no existing products, reputation, brand or customers and so on. Established firms

already have these things, plus easier access to capital to invest in new projects, the robustness and

cash flow that allows them to survive the occasional fiasco, mature engineering practice and wider

skills profiles (they don't have to find out about good accounting practice). This means that entry

into an industry can be a problem. Ojala and Tyrväinen[33] argue that the drivers of software start-up

entry are

 innovation (the software product, algorithm or technique at the leading edge)

 capabilities of entrepreneurs (including both their specialised engineering competences, and

their entrepreneurship abilities)

 patents (protected intellectual capital)

 specialization in a specific market niche

Giarattana[24] argues that the drivers of start-up growth are primarily product differentiation and

international expansion. Software is a universal language with many shared elements in hardware

platforms, and expansion to other markets can be as simple as translating the interface. Heavily

customized products can be harder to internationalise, because they relate to particular cultures and

work practices.

 Ojala and Tyrväinen consider entry into new markets abroad and argue that the choice of entry

mode for a software start-up is connected to their business model and primarily to the product

strategy.

Networks, partnerships and alliances

Another important component of growth is the development of networking and partnerships

(technological alliances). Studies of start-ups and of spinoffs show extremely complex patterns of

relationships and contacts between software firms. Giarratana shows a network of 256 partnerships

and alliances between firms during the birth of the encryption software industry in Silicon Valley[24].

Small firms typically have specialised competences and have difficulty acquiring the skills necessary

to stay abreast of technology developments and to bring finished products to market. They may

choose to outsource software development which is not in their core competence area (such as

interface design, mobile programming or usability testing). Technological alliances bring

complementary expertise and existing code bases, and can help determine the innovativeness of

products. For start-ups, an alliance with an established IT partner can greatly simplify the process of

entering a market.

51

Heirman suggests that collaborations with universities help start-ups to stay at the technological

leading edge, whilst collaboration with industry partners open up resources and new markets.

Universities are often fertile grounds for entrepreneurship, where new ideas are developed through

classroom projects[34] and research, without the additional risk of commercial failure. Many

universities also have well-developed systems for moving ideas into the commercial arena through

incubators and university-sponsored companies.

Case study: Certicom

Certicom’s Elliptic Curve Cryptography is a technology especially useful in “small-footprint

environments” such as smart cards or wireless communications devices, where space is the scarcest

resource. If the standard string of computer bits necessary to encode or decode an encrypted

message needs about 1,024 bits, Certicom’s system accomplishes in 160. The difference is rooted in

mathematics. In fact while the standard cryptographic systems are based on integer calculus, the

elliptic curve cryptosystem uses equations that can be calculated more easily and faster.[29]

Shane[35] points out that venture capitalists are heavily influenced by social network connections

(particularly direct social ties) and the personal reputations of the entrepreneurs that come to them

with proposals. It’s said that an entrepreneur should never eat dinner alone:

‘I had met [ENTREPRENEUR] in the 1970s when I got involved in financing some technology

start-ups in Israel. I ended up funding [ENTREPRENEUR’s] company and I joined the board. I

worked very closely with [ENTREPRENEUR] and his staff and we became close personal

friends ... I sold my stock when he left because my relationship was with him personally. We

stayed in touch and remained good, close, personal friends. When he came to the United

States, we started to discuss his ideas for [COMPANY]; [ENTREPRENEUR] asked me to be a

founding investor of the company. So I put in some money and joined the board.’[35]

Hung[36] reinforces the value of social capital in helping the entrepreneur, whether it results from

family connections or earlier business relationships. This way of thinking is also central to

Sarasvathy’s thinking and the Consider, Do, Adjust paradigm with its focus on building new

relationships and commitments.

Steve Chang founded Trend Micro using funding from family group members. He had little prior

business experience but a strong network of family and friends with similar backgrounds in the local

community, who supported him.

Morris Chang (the founder of TSMC Taiwan Semiconductor Manufacturing Company) possessed

international human relations from his extensive international business experience. This dominated

TSMC's development. The original capital of TSMC was sourced from governmental financial

support and other domestic and large-scale overseas companies’ investments. Moms Chang’s social

relations derived from an extensive array of contacts with past colleagues, experts and advisers;

many derived from past commercial relations with customers, suppliers and banks.[36]

Internationalisation

New high technology venture benefit from internationalisation (expanding to foreign markets)

through learning about new technologies, combatting fiercely competitive home markets,

52

commercialising their products and maximising profitability[37]. Internationalisation gives new

ventures access to valuable resources, solidifies their competitive positions and improves their

performance, though success is limited by various constraints, including personnel and production

capability, insufficient knowledge about markets and customers, weak financial resources to support

growth, and poor skills in internationalization and marketing[18]. Software innovations diffuse rapidly,

partly because of piracy in countries with weak intellectual property laws, and the benefits to the

original innovator developers are lost.[37] Another challenge facing high-technology firms is the

decrease in the length of the technological life cycle, and the necessity to get their products and

services into global distribution within a limited window of opportunity. Start-ups usually have the

disadvantages of smallness and newness to overcome, but software is innately international, both

because programming languages are based on English-like constructions and are commonly

understood, and because the mechanism of distribution (chiefly the internet) is extremely cheap. If

you are starting a software company you should have a very good reason not to think internationally.

The potential user market for a Danish language mobile application is about five million; the market

for the same application with an English language interface is 95m in the US alone. The cost of

translating the interface is negligible. China now has 900 million mobile users and in 2020 the

number of English-speaking Chinese mobile users is expected to roughly equal all other English-

speaking mobile users.

Partnering is important for making international progress, and partners can fulfil various roles,

including

 system integrator - provides consultation for the end-users (defines their needs) and designs

custom solutions

 solution provider - work is based on the end-user’s definition of needs

 (value added) reseller - provides products with configuration and integration, turn-key

projects

 volume distributor - distributor in the chain, mostly usable for packaged goods/software

products

 retailer - business front-end sales partner

 sales agent/representative - third-party software vendor, revenues based on fees from the

actual sales

 independent software vendor software provider without contractual relationship with you

 influencer, consultant etc. companies that comment, evaluate, and give guidance and advice

to end-users

 original/own equipment manufacturer - normally provides privately labelled product.[18]

SOFTPRO (a fictitious name) started as a product development unit of a parent corporation (a

Finnish telecommunications company) before starting to sell its products to external customers. The

product of the company is a systemic software product for business customers with a standardized

core suitable for international customers. However, the products require adaptation and integration

- normally carried out by local partners. The company operates worldwide using partners in the

implementation, installation and customization of its products, which is typical of solution-provider

businesses. It has traditionally used external partners in its internationalization process as a channel

to new markets. Half a dozen value-added resellers form a core network for the company’s

international operations, and new partners are sought in the established partner-choice process.

53

Operations started in 1990 when the first version of the software was released. The first

international sales occurred in 1994 and the software is now licensed to more than 250 customers

around the world, Germany and France being the key markets. The company also has a value-added

reseller in Australia, and some operations in the US. Its business-communication solution covers

most industry sectors and most of the end-customers are in retailing, transportation and logistics.

The firm relies strongly on its partners and has concentrated its own efforts on product development,

as well as on partner training and support. The selling, the consultancy work, the integration of the

software into customers’ other applications and the customer training are normally done by the

partners. Several key players in the network create value for the end-user, and the success of the

product in general depends on the co-operation of all the members in the network. Partnering is

seen as a fast and efficient way of doing business; sales go through partners with local knowledge

and contacts.

SOFTPRO has well-defined partner-selection processes with written criteria including (1) business

criteria, (2) marketing criteria, (3) partner-potential criteria and (4) technical criteria. The partnering

process includes discussions in which it is defined how well a channel partner candidate matches the

profile. The screening process is demanding, and finding a good partner is difficult. Their willingness

to develop their business is also discussed. In partner evaluation the fit of the potential partner is

evaluated on four dimensions: (1) product and service, (2) customer, (3) marketing and sales and (4)

business potential. The most important aspect is the ability to offer a complete chain of customer-

service[18].

Finance: venture capital or bootstrapping

In the glamorous world of Silicon Valley, the primary source of finance for software start-ups is

venture capital. In the Analyse, Design, Enact paradigm the turning point in starting a business is

raising the capital to finance it. This involves convincing an experienced banker to bet on the success

of the venture. Kaplan describes a dizzying series of meetings and telephone calls with potential

backers, demonstrations with hardly functioning handwriting recognition software, and brilliantly

improvised presentations, before Go Corporation raised their initial funding of $6M (about DK 100M

in today's money). Six years later they had spent $75M, without selling a single copy of their

software, or generating any return for their investors. However the conventional tool of persuasion

is the business plan, and the need to raise capital is the single compelling reason for developing an

effective one. Most entrepreneurs will want to raise loan capital at some point, because this

investment greatly increases the range of actions that can be taken to develop the business (new

software projects, new engineers, professional business guidance, marketing etc.)[35]. It often

significantly reduces the entrepreneur’s stake in the company as venture capitalists take large stock

holdings to offset their risk. However, there are other ways of getting a software firm off the ground.

Some entrepreneurs make a conscious choice to avoid or delay raising venture capital in order to

preserve the value of their equity stake [38]. Most are simply unable to raise finance from external

sources due to:

 lack of innovative or original ideas

 limited industry and management experience

 inability to convince investors that the business concept can make a profit

54

In these cases entrepreneurs use bootstrapping: 'imaginative and parsimonious strategies for

marshalling and gaining control of resources' [38]. These are more likely to be associated with a

Consider, Do, Adjust paradigm approach to building the start-up. The resource-base of the firm can

be understood as:

 human capital - the software professionals (and others) involved

 intellectual capital - the specialised competences of these professionals

 social capital - the commitments that start-up members make to each other through the

resources they invest

 physical capital - primarily hardware and development environment software

 financial capital - the funds needed to initiate and grow the business

Bootstrapping strategies can help with most of these. A common strategy is using consultancy work

to finance own product development and other aspects of developing a start-up. Many other

strategies focus on securing resources at little or no cost:

 investing your own time (for instance developer hours)

 using open source code instead of writing your own

 working with university incubators and greenhouses

 using social contacts, for instance getting someone to help who owes you a favour

 lean management and development techniques

 informal collaborations (swap software components, shared development)

 borrow office space

 use of free software tools (subversion, SCRUMdo, Google docs) to save resources

 research collaborations for knowledge generation

 combining forming a company and developing a product with study.

Bootstrapping techniques for product development include: special deals for access to hardware,

development in the evenings and weekends alongside a day job, research grants, customer-funded

research and development, commercializing university-based research, commercializing public

domain software, porting fees to transfer software from one platform to another, free or subsidized

access to hardware, commercializing an existing shareware product, turning a consulting project into

a commercial product and using public domain development tools.

Bootstrapping techniques for business development include:

 delaying payments to suppliers

 barter arrangements

 personal credit cards & home equity/mortgage loans

 discounted advance payments from customers

 below market or very low rent space

 deals with professional service providers at below competitive rates

 leasing vs. purchasing assets

 purchasing used vs. new equipment

 working out of home

 gifts or interest-free loans from relatives

 unpaid family member working as an assistant

 severance and parachute payments

55

 personal savings

 reduced compensation

 forgone or delayed compensation

 special terms with customers, including discounted advances, pre-payments and larger than

normal deposits

 outsourcing key parts of the business

 shareware revenue stream [38]

Harrison suggests that growth-oriented and growth-achieving software firms will be more likely to

use extended value chain collaborative relationships as bootstrapping techniques rather than cost-

reduction relationships.

Bootstrapping and venture capital do not necessarily need to be alternatives – bootstrapping is

sometimes necessary to support the early development of a venture before it can be attractive for

investors. The angels and venture capitalist investment can come later.

Sources

DE HAAN, U. & COHEN, S. (2007) The role of improvisation in Off-the-Shelf software development of

entrepreneurial vendors. 2007 International Conference on Systems Engineering and Modeling,

Proceedings, 85-92.

GIARRATANA, M. S. (2004) The birth of a new industry: entry by start-ups and the drivers of firm

growth - The case of encryption software. Research Policy, 33, 787-806.

HARRISON, R., MASON, C. & GIRLING, P. (2004) Financial bootstrapping and venture development in

the software industry. Entrepreneurship & Regional Development, 16, 307-333.

HEIRMAN, A. & CLARYSSE, B. (2007) Which tangible and intangible assets matter for innovation

speed in start-ups? Journal of Product Innovation Management, 24, 303-315.

HUNG, S. & HSIAO, Y. (2004) Mobilizing social capital to pursue entrepreneurship.

IGEL, B. & ISLAM, N. (2001) Strategies for service and market development of entrepreneurial

software designing firms. Technovation, 21, 157-166.

MANN, R. & SAGER, T. (2007) Patents, venture capital, and software start-ups. Research Policy, 36,

193-208.

MUELLER, T. & GEMUNDEN, H. (2009) Founder team interaction, customer and competitor

orientation in software ventures. Management Research News, 32, 539-554.

OJALA, A. & TYRVÄINEN, P. (2006) Business models and market entry mode choice of small software

firms. Journal of International Entrepreneurship, 4, 69-81.

PAULI, J. W., LAWRENCE, T. E. & BROWN, B. F. (2008) Development of a new software product from

a classroom project. Proceedings of the Fifth International Conference on Information Technology:

New Generations, 97-100.

56

RAJALA, R., NISSILÄ, J. & WESTERLUND, M. (2007) Revenue models in the open source software

business. Handbook of Research on Open Source Software: Technological, Economic, and, 541.

RAJALA, R., ROSSI, M. & TUUNAINEN, V. (2003) A framework for analyzing software business models.

Citeseer.

RAJALA, R. & WESTERLUND, M. (2007) Business models a new perspective on firms' assets and

capabilities: observations from the Finnish software industry. The International Journal of

Entrepreneurship and Innovation, 8, 115-126.

ROSE, J. (2010) Software Innovation: eight work-style heuristics for creative software developers,

Aalborg, Software Innovation, Dept. of Computer Science, Aalborg University.

VARIS, J., KUIVALAINEN, O. & SAARENKETO, S. (2005) Partner selection for international marketing

and distribution in corporate new ventures. Journal of International Entrepreneurship, 3, 19-36.

YINGYU, D. & YE, W. (2008) The Mechanisms of Learning and the Survival of New Ventures.

ZAHRA, S., MATHERNE, B. & CARLETON, J. (2003) Technological resource leveraging and the

internationalisation of new ventures. Journal of International Entrepreneurship, 1, 163-186.

57

e-Entrepreneurship

Whereas the business model of a software start-up is primarily concerned with writing software,

many other entrepreneurial opportunities exist for software professionals in the net economy. Here

we will consider other forms of business which are enabled by software. Classic examples are

Facebook, eBay, Amazon. Here the business models revolve around social networking, auctions and

book-selling, and the products are information products. However they are net-companies enabled

by its software - without software they doesn't exist and their engineering teams deal with complex

software issues, particularly scaling issues. They are therefore software dependent. These

platforms have mobile extensions, and there are also emerging mobile businesses; these two

markets are heavily interrelated and many similar entrepreneurial opportunities arise. Most

businesses (and public administration) are supported to some extent by software, so dependence is

a question of degree. Software dependent start-ups are also suitable ventures for software

professionals. Here you have, or can acquire the software competencies; what's missing is the

business idea. It's not really necessary to be entirely located in the net-economy to be software

dependent, many information-rich kinds of businesses such as banks and insurance companies are

also software dependent.

Many of the big net-economy players began as a start-up, with an entrepreneur or entrepreneurial

team composed of engineers with computer science degrees and backgrounds as engineers in

software companies (many of them have histories as software developers and experience as

entrepreneurs before the major companies that they are associated with):

 Pierre Omidyar - Ebay

 Jeff Bezos - Amazon

 Mark Zuckerberg -Facebook

 Chad Hurley, Steve Chen, Jawed Karim - YouTube

 Evan Williams -twitter

The developing mobile services market shares many of these characteristics. Nor is it clear that there

are strict boundaries between being a software start-up and being part of the net-economy. A

company developing iPhone apps earns a living by writing software, but each of the apps must have

a separate value proposition for the user that means that they will pay for it.

The net economy

The net-economy has some special characteristics which distinguish it from the conventional

economy, for which many of the reference theory models presented earlier were developed.

Kollman[39] argues that it has three building blocks: information, communication, transaction. There

are several forms of electronic commerce including eProcurement, eShop, eMarketplace,

eCommunity, and eCompany. Kollman contrasts the value chain of the conventional economy (best

suited for conceptualising the transformation of physical raw materials into valuable products) with

the information transformations of the net economy value chains. The less involvement with

physical products and their manipulation and logistics, the more software dependent is the company.

Companies which have only digitalised information products (including, for example a net bank) are

fully software dependent. Basic value chain activities include collecting, systemising, selecting,

58

combining, distributing, exchanging, evaluating and offering information. However Kollman’s use of

the word information is too restricting in this context; anything that can be digitalised, represented

as bits, stored on a computer and transferred over a network is part of the net economy. This

includes picture, music and video files and streaming services (and many other things that we don’t

normally call information).

Value creation takes place through:

 Overview: the structuring of large amounts of digital information.

 Selection: the ability to locate desirable information (e.g. the product you wish to buy)

 Transacting : enacting an agreement between two parties, for instance a purchase between

buyer and seller

 Cooperation: the online linking and matching of products and services (buy a flight and book

a hotel at your destination).

 Exchange: consumer information exchange and communication (e.g. customer review, rating

and recommendation)

Ziinga.com is a commercial internet-based business using the penny-auction model. Attractive

prizes are offered, many of them desirable high-tech artefacts such as iPads and iPhones. Users

register and are them allowed to bid for the products using a specialised auction model. Bids are not

expensive (hence the ‘penny’ title) and are placed in fixed time intervals – usually between 20

seconds and two minutes. A visible clock counts the time period and the bidder with the last bid if

the clock hits zero without a competing bid coming in wins. The price of the prize starts very low

and increases in rather small increments at each new time period – the winner pays only the

indicated auction price and the cost of their bids. The business is primarily digital, the only physical

processes concern transferring prizes to the winners.

59

The value proposition for users is the opportunity to win a desirable prize at a fraction of its normal

retail value. An element of skill is involved: many will bid when the price is low and fewer when it

gets too high so a bidder must know (guess) when it is optimal to bid, and bidding can be automated

with a bot to help this process. If the user gets tired of bidding they can buy the product at market

price, offsetting the cost of their bids. A variety of devices are used to make winning seem easier

than it really is; for instance is not evident that the bidder is competing internationally with many

other bidders in many countries. A penny auction provider can easily manipulate the auction with

its own bots, but this is illegal in many countries. Revenue is generated primarily by ensuring that

the cost of the bids purchased by many users is greater than the costs of buying and transporting the

prizes and all the associated business costs: this can be actuarially determined.

eCommerce business models

Michael Rappa http://digitalenterprise.org/models/models.html has done quite a lot of work on

generic business models for eCommerce (see insert). These can help with structuring thinking about

e-business ventures. His categorization scheme is included for completeness, but you should notice

that it includes things which overlap with discussions elsewhere in the notes (for instance software

start-ups, revenue generation models and open source business models). It illustrates how many

different types of opportunities are available in this field.

business model Type description

brokerage marketplace
exchange

full range of services covering the transaction process, from
market assessment to negotiation and fulfilment - exchanges
operate independently or are backed by an industry
consortium

http://digitalenterprise.org/models/models.html

60

buy/sell
fulfilment

takes customer orders to buy or sell a product or service,
including arranging terms (e.g. price and delivery)

demand
collection system

the patented ‘name-your-price’ model pioneered by
priceline.com - prospective buyer makes a (binding) bid,
broker arranges completion

auction broker conducts auctions for sellers (individuals or merchants) -
broker charges the seller a listing fee and commission based
on the value of the transaction – many forms of auctions with
different offering and bidding rules

transaction
broker

provides a third-party payment mechanism for buyers and
sellers to settle a transaction

distributor catalogue operation that connects a large number of product
manufacturers with volume and retail buyers - broker
facilitates business transactions between franchised
distributors and their trading partners

search agent software agent used to search for the price and availability of
goods or a service specified by the buyer or to locate hard-to-
find information

virtual mall a hosting service for on-line merchants that charges setup,
monthly listing, and/or transaction fees - may also provide
automated transaction and relationship marketing services

advertising

portal usually a search engine that may include varied content or
services - high volume of user traffic makes advertising
profitable and permits further diversification of site services
– can be personalised

classifieds list of items for sale or wanted for purchase - listing fees,
sometimes membership fee

registered user content-based sites that are free to access but require users
to register - registration allows inter-session tracking of user
surfing habits and thereby generates data for targeted
advertising campaigns

query-based paid
placement

sells favourable link positioning (i.e., sponsored links) or
advertising keyed to particular search terms in a user query

contextual
advertising

freeware developers who bundle ads with their product e.g.
browser extension that automates authentication and form
fill-ins may also deliver advertising links or pop-ups as the
user surfs the web

content-targeted
advertising

identifies the content of a web page and then automatically
delivers relevant ads when a user visits that page - pioneered
by Google

ultramercials interactive online ads that require user interaction to reach
the intended content

information
intermediary

advertising
networks

service feeding banner ads to a network of member sites,
thereby enabling advertisers to deploy large marketing
campaigns – collect data about web users that can be used to
analyse marketing effectiveness

audience
measurement
service

on-line audience market research

incentive customer loyalty programs providing incentives to customers

61

marketing such as redeemable points or coupons for making purchases
from associated retailers - data collected about users are sold
for targeted advertising

merchant

virtual merchant a retail merchant that operates solely over the web (‘e-
tailer’)

catalogue
merchant

mail-order business with a web-based catalogue which
combines mail, telephone, and on-line ordering

click and mortar traditional brick-and-mortar retail establishment with a web
storefront

bit vendor merchant who deals strictly in digital products and services
and, in its purest form, conducts both sales and distribution
over the web

manufacturer
direct

purchase model manufacturer that sells its products or services directly to the
consumer

lease model manufacturer that finances the sale or rental of its products
directly to the consumer

licensing model manufacturer, such as a software maker, that licenses its
product directly to the consumer

brand-integrated
content

created by the manufacturer for the sole purpose of product
placement

affiliate

banner exchange trades banner placement among a network of affiliated sites

pay-per-click site that pays affiliates for a user click-through

revenue sharing offers a percent-of-sale commission based on a user click-
through in which the user subsequently purchases a product

community open source software developed voluntarily by a global community of
programmers who share code openly - instead of licensing
code for a fee, open source relies on revenue generated from
related services like systems integration, product support,
tutorials, and user documentation

 public
broadcasting

user contributor model used by not-for-profit radio and
television broadcasting extended to the web. the model is
based on the creation of a community of users who support
the site through voluntary donations

 knowledge
networks

discussion sites that provide a source of information based
on the sharing of expertise among professionals

subscription content service provides text, audio, or video content to users who subscribe
for a fee to gain access to the service

 person-to-person
networking
service

conduit for the distribution of user-submitted information,
for example, individuals searching for former schoolmates

 trust service membership association that abides by an explicit code of
conduct and to which members pay a subscription fee

 internet service
provider

provides network connectivity and related services

utility

metered usage measures and bills users based on actual usage of a service

 metered
subscription

allows subscribers to purchase access to content in metered
amounts (e.g. numbers of pages viewed)

62

Many ecommerce business models have grown out of pre-internet ways of doing business; for

instance Amazon is a net-economy version of the traditional book-selling industry. The bricks and

mortar high-street retailers are removed from the traditional supply chain, making the eCommerce

value chain cheaper to operate than the traditional. Removing a link from the value chain is known

as disintermediation.

The transformation of the publishing industry: Lulu.com

The traditional publishing industry relies on highly professional authors who submit their work to

publishing houses who carefully screen and select. The editing and printing and promotion

processes are expensive and time-consuming and the publisher is dependent upon selling relatively

large numbers of books to retailers and bookstores to make a profit.

Lulu.com turned the traditional bestseller-centric publishing model on its head by making it possible

for anyone to publish. Niche and amateur authors can bring their work to market, using their own

word-processors. It eliminates traditional entry barriers by providing authors with the tools to craft,

print, and distribute their work through an online marketplace. Physical copies are printed on-

demand as they are ordered, e-books are simply downloaded. Lulu generates micro revenues from

each sale and provides value-added services, such as tailored help with editing, distribution and

marketing. The failure of a particular title to sell is irrelevant to Lulu, because such a failure incurs

no costs[4].

Starting an e-venture

Kollman provides the following framework identifying three stages of e-venture development[39].

Three stages of growth are conceptualised: early, expansion, late. The activities in each stage are

characterized, some building blocks specified and prioritised for the stages, (management, product

development, finance generation, market access, establishing business processes) together with a

focus on the economic aspects of entrepreneurship (financing steps, tools, sources).

63

eCommerce success factors

Kollman identifies success factors for e-ventures as[39]:

64

Koller’s model for e-venture development is both located in the analysis-heavy ADE tradition, and

primarily business-focused. The skills of the software engineer are not really mentioned or

prioritised and it seems as though he assumes that producing and maintaining the software platform

which will underpin the net business is a trivial task hardly worthy of mention.

Mobile ventures

Mobile (-m) entrepreneurship share many of the characteristics of e-entrepreneurship; for example

the principles of working with digital products and services which can be delivered direct to the

device they will run on.

‘the nature of the mobile applications market provides ample opportunities for entrepreneurial

activity. To exploit these opportunities mobile application developers must generate successful

market entry strategies, and among them a niche market strategy is considered the first step

towards financial gain. Almost all entrants pointed to the unique space, market position, and

requirement they had carved out for engaging in business…………… in order to be able to reap

the benefits of economies of scale application deployment has to cater to a broad variety of

devices, operating systems, and networks’[40]

There are also some special considerations. The structural conditions of the market dictate that new

entrants must

 cope with heterogeneous platforms (the considerable challenges of delivering products to

many different hardware platforms with somewhat different capabilities, served by different

operating systems where at least one of the OS’s (Android) has many variants, and

 comply with proprietor market standards (making sure that products satisfy the conditions

set by the market operator (e.g. Apple’s app market).

65

Mobile business models

It’s also clear that, in the same way that the business models of eCommerce emerge from those of

bricks and mortar commerce, many mobile applications and service reflect the trends of the

eCommerce world. Thus it’s not easy to build a mobile social network service from scratch, because

it must compete with a Facebook smartphone application which couples the mobile network

together with the many millions of existing users on the conventional internet.

Nokia Maps

Nokia Maps is a service for selected Nokia handsets. It offers free mapping and routing services for

mobile device users to find the way to their destinations. Besides, it provides information about

points of interest like tourist interest, restaurant and hotels. In addition to these free services,

premium services including city guide and voice navigation are available for handsets with GPS

capabilities.

Maps doesn’t currently generate any revenue for Nokia (if the navigation service is not taken into

account). According to Nokia, however, there are three potential sources of future revenue for its

location based services besides navigation. It could serve as an advertising channel a la Google Maps,

or charge referral fees from businesses which connect to Nokia users through the handset vendor.

Another possibility is to sell premium contents (e.g. GPS waypoint coordinates, point of interest

location information) to Maps users.

Mobile software products and services are not simply cut down versions of eCommerce applications

and services and it’s not yet really clear whether there are specialised mobile business models. In

any case products must

 recognise the limitations of mobile applications (small screen, memory limits, relatively high

costs of data exchange………………), and

 exploit mobility features (e.g. context awareness) and smartphone hardware technologies

(GIS, touch screen, motion sensors magnetometer............)

Recent research into common mobile business models[41] is summarised in the following table:

mobile business model service examples

Timeliness stock information, news, sports information

remote access intranet access, integrated messaging, banking/trading, reservation, sales
support

remote control information appliances, automobile application, navigation tracking,
emergency service

location-based traffic information, weather information, vehicle location, entertainment

personal
communication

messaging, personal directory, chat, email community

mobile commerce ticketing, usage fee, banking/trading, auction

business application conference support, intranet access, file transfer, database access

Entertainment music, game, graphic, video, TV

Mobile service design

According to Faber[42], there are four components of designing a mobile service:

66

 service design describes a firm’s service offering to specific customers/end users in a

particular market segment with a focus on intended and perceived value

 organisation design describes the configuration of actors (value network) possessing certain

resources and capabilities, which together perform value activities to create value for the

customer

 finance design describes how a company intends to generate revenues from a particular

service offering including: financial arrangements, revenues, costs, risks and investments

 technology design describes the technical architecture and functionality that is needed to

realise a certain service offering.

Since the business elements have been in focus earlier in this section we’ll have a look in more detail

at technical requirements for mobile services. The important technical design considerations

described by Faber are summarised in the following table.

component description design considerations

technical
architecture

overall architecture of the components
listed below

centralised or distributed

open or closed

interoperable or non-
interoperable

backbone
infrastructure

long- and medium range backbone
network infrastructure

high or very high bandwidth

future-proof or non-future-proof

access networks first and second mile network
infrastructure

fixed or wireless

high or low bandwidth

universally available or deployed
in hotspots

scalable or non-scalable

service platforms middleware platforms enabling
different functions (e.g. billing,
customer data management, location
information)

centralised or distributed

personalised or non-personalised

secure or non-secure

legacy or new

open or closed

devices end-user devices providing access to
services

multi-purpose or single-purpose

‘network intelligent’ or ‘dumb
interface’

storage facilities or no storage
facilities

embedded software or open
terminal

applications the user applications running on the
technological system

communication or content

always on or time-critical

personalised or non-personalised

secure or non-secure

data data streams transferred over networks bursty or real-time

high volume or low volume

technical
functionality

functionality offered by the
technological system

always on or time-critical

personalised or non-personalised

secure or non-secure

67

Mobile entrepreneurs often have to adapt to the demands of micro-development (many small apps

adapted to different hardware and software platforms) where the average return is relatively low.

Real hits (Angry Birds) with six-figure sales are rare, and a high proportion of downloaded apps are

only ever used once. Thus means that mobile entrepreneurs may have to build their businesses on

portfolios of micro product revenues. On the positive side, the entry barriers for mobile

entrepreneurs are extremely low – you cam programme your first apps in your living room in your

spare time after work. It’s also becoming clear that the mobile phone is the communication devise

of choice in developing countries where there is no conventional internet infrastructure.

Infrastructure development can simply hop over the conventional PC internet browser and go

straight to the mobile device. As more smartphones become available the potential markets are

enormous.

Software focus, with Consider, Do, Adjust

E-and m-entrepreneurship are often discussed in the literature with a business focus, and in the light

of the huge successes (Facebook, eBay, Amazon) where an Analyse, Design, Enact perspective is

assumed. However Omidyar makes it clear in his comments on the founding of eBay that this

assumption is not necessarily correct:

‘If I had had a blank check from a big VC, and a big staff running around - things might have

gone much worse…………… I had to operate on a tight budget…………necessity focused me on

simplicity: eBay was open to organic growth ………….whatever future you're building… don't try

to program everything…………. build a platform…………. prepare for the unexpected’

His account is both effectual (CDA) and focused on building software. The attraction for software

and IT professionals lies in the relatively easy start-up options. If you have a true software-

dependent idea for a digital business or product and you can write software and manage a software

platform, then start-up costs can be quite low. For some mobile opportunities the entry barriers are

extremely low – just write your app. Engineers have wide experience with software products and a

good instinctive understanding of technology trajectories and what certain (young, tech-oriented)

market segments could find interesting. However the problem here may be generating or

recognising the business idea; there's not much in an engineer's education that encourages these

skills. A further challenge lies in evolving the business model aspects of the idea so that the product

or service can establish itself as financially viable.

Sources

FABER, E., BALLON, P., BOUWMAN, H., HAAKER, T., RIETKERK, O. & STEEN, M. (2003) Designing

business models for mobile ICT services. 16th Electronic Commerce Conference. Bled, Slovenia.

KOLLMANN, T. (2006) What is e-entrepreneurship? - fundamentals of company founding in the net

economy. International Journal of Technology Management, 33, 322-340.

LEEM, C. S., SUH, H. S. & KIM, D. S. (2004) A classification of mobile business models and its

applications. Industrial Management & Data Systems, 104, 78-87.

68

TARNACHA, A. & MAITLAND, C. F. (2006) Entrepreneurship in mobile application development. 2006

ICEC: Eighth International Conference on Electronic Commerce, Proceedings, 589-593

69

Open entrepreneurship

Open entrepreneurship has become an interesting topic after the success of many companies (Red

hat, Canonical, Mandriva) and the widespread incorporation of open source development into

mainstream companies business models (Sun, Microsoft, Apple). The open source movement is

itself interesting because making source code freely available contradicts a standard premise of

conventional software business models - that you should protect your code to prevent other

companies copying it and thereby gaining access to your markets.

"What has startled programmers and academics alike is the surprising success of OSS projects

such as Linux, Apache, Sendmail, or Jabber. These publicly and freely available software

packages have reached wide diffusion as they are of high quality, despite the fact that they

were, at least initially, not supported by any commercial company. Rather, they grew out of

geographically dispersed communities of developers collaborating over the internet. The

process these communities use to develop OSS – the so-called ‘open source process’ –

contradicts most textbook-knowledge on software engineering, but proved very successful. Its

power derives from the openness and public availability of the code, which allows any

interested programmer to use, inspect and improve the code. Furthermore, comments, error

corrections (‘bug fixes’) and additional code can be sent to the maintainer of the OSS project at

very low cost." [43, p. 360].

A theoretical explanation of the success of open source is given by von Hippel and von Krogh[44].

Whereas the private sector (commercial R+D, software development) creates innovation by

investing in development and withholding intellectual property rights in order to be able to able to

exploit their innovations commercially, the state funds collectively funds research through

universities, where the expectation is that new knowledge created through innovation will be made

publically available. Open source operates a new private (not supported by the state) collective

(open access) model.

The attraction of open source for software developers is that it shortcuts the development process;

here are very many programs with many different functionalities already running and debugged.

Why should you duplicate writing this code if you can get it for free? This can speed up time to

market and allow you to get some products released and thus generate income. A second attraction

is ease of integration with other open source software. There are also drawbacks - it's not always

easy working with code you've not written yourself, and some types of OS licence stipulate that you

also release your own code.

Software value

At the centre of every software venture is the generation of value, most commonly understood as a

profit in a commercial venture. Because open sources initiatives involve both working for free, and

giving code away, it's important to examine where the value of software lies. Software is generally

understood to be a form of intellectual property: that is that writing software is a creative form of

encoding knowledge, both technical (about how computer hardware and interacting software work)

and situational (about the practice of the user and what can add value for them). Therefore the

result is intellectual property to which the rights can be protected by law. Software is exceptionally

70

easy to copy, and is widely copied, so without the protection of the law it would be difficult to

continue to sell a software product. Various forms of protection are available, without much

international standardisation, so the area is a complex minefield:

 patent

 copyright

 trademark

 industrial design right

 trade secret

 licensing

 non-disclosure agreement

The most traditional model for working with software value is practised by product-oriented

companies such as Microsoft and Apple - you develop a product which is protected by copyright and

you then sell or licences that product. You hold the intellectual property as secret as possible to

avoid you competitors duplicating it and thereby eroding your market. A consultancy software

company sells its development services and makes closed source software for a client, who often

then owns the copyright. An extension of this principle is the patent system, where innovative and

non-obvious technical advances can obtain further legal protection. These are typically granted for

the mathematical or technical principle behind the software (for instance a new encryption

algorithm), rather than the software itself. Thus, patents protect general-purpose technologies

which can be used in a number of different products (Giarratana). The closed source or proprietary

strategy, which exploits this protection) has dominated the market for many years. However there

are many signs that this model has partially broken down in the last fifteen years. Internet routing is

dominated by open source software, Linux is a competitor in the operating systems market, internet

service companies such Google make software which is free to use and make money by other means.

There are a variety of value proposition strategies open to It professionals and software

entrepreneurs, where the traditional strategies are only part of the picture. The traditional value

propositions are also heavily populated by established companies, implying that an alternative value

proposition can be a way to break into an existing market. This is what Google do when they offer

calendar, spreadsheet and word-processing software as free internet services.

It follows that software entrepreneurs need to understand the relative advantages of protecting

their intellectual property and of sharing it through the various General Public and Creative

Commons licences, and various different income generation strategies which are consequent upon

these choices. Giarratana[24] for example shows how patent protection in the encryption industry

led to two income sources: from off-the-shelf software products and from licensing the patents to

other software companies.

Open business models

Chesbrough’s account of open innovation (using openness principles to generate innovation) and

open business models (generating value by sharing parts of your intellectual property) help us to

understand a wider variety of value generation strategies. He contrasts closed and open innovation

principles like this[45]:

71

closed innovation principles open innovation principles

the smart people in our field work for
us

not all the smart people work for us - we need to work
with smart people inside and outside our company

to profit from R+D. we must discover it,
develop it, and ship it ourselves

external R+D can create significant value - internal R+D is
needed to claim some portion of that value

if we discover it ourselves, we will get it
to market first

we don't have to originate the research to profit from it

the company that gets an innovation to
market first will win

building a better business model is better than getting to
market first

if we create the most and the best ideas
in the industry, we will win

if we make the best use of internal and external ideas, we
will win

we should control our IP, so that our
competitors don't profit from our ideas

we should profit from others' use of our IP, and we should
buy others' IP wherever it advances our own business
model

If we translate these principles into closed and open value generation for software companies we

get:

closed (proprietary) open and mixed source

we have the ideas ourselves we develop some of the ideas with others

we write the code ourselves we write those parts of the code which add value

we sell the code we give away some of our code, and have other revenue generation
strategies

we protect our intellectual
capital

we share some of our intellectual property

Open source companies employ these open and mixed business models. Often they provide both a

free and a revenue generating version of what is essentially the same software, with a variety of

different value-adding services.

company/organisation open source/free revenue generation

Canonical Ubuntu Technical support

Red Hat Fedora (project) Red Hat Enterprise Linux (RHEL)

Novell openSUSE (project) SUSE Linux Enterprise (SLE)

Sun Microsystems OpenOffice.org StarOffice

Adobe Flex Flash Builder IDE

Apple Darwin Mac OS X

Francisco Burzi PHP-Nuke v.n-1 PHP-Nuke v.n

Ingres Ingres database Subscription for service and support, Ingres
Icebreaker Appliance database

MySQL MySQL MySQL enterprise (subscription, support and
additional features)

Linspire Inc. Freespire Linspire

Mandriva Mandriva Linux, Mandriva
Linux One

Mandriva Linux 2008

Mozilla Foundation Firefox Google

72

There are various advantages in the open strategies. There is a value in community (for example

shared knowledge, better feedback processes and dissemination, and free marketing) which are also

typical in open source communities. Integrated user communities offer domain knowledge, design

input, feedback, innovation and future work. Colleague developers share code, provide quality

assurance (for example de-bugging), exchange knowledge and develop future co-operations. IT and

software firms with complementary expertise co-operate on projects to reduce development costs.

Software innovators co-operate with researchers to have access to leading edge technical advances

and funding though research projects. Software entrepreneurs co-operate with business people to

improve their management skills and win investment.

Collabra

Collabra developed collaborative work tools which competed in the 1990’s with the dominant

product Lotus Notes. The company was started in stealth mode because they were afraid that Lotus

would use its dominant market position to put them out of business. They were, however, relatively

open, revealing many of their code secrets to their customers and third-party software developers,

under non-disclosure agreements (totalling 195). This helped them to build a significant knowledge

and code base, together with a good reputation in the business. These were attractive to Microsoft

who lagged behind in this software type and need to compete with Lotus. They made a partnering

agreement and developed joint marketing strategies with them which allowed them to achieve a

significant share of the market. They were eventually sold to Netscape for $107m.[3]

However the classic dangers of sharing intellectual property to not disappear with open business

strategies, and some degree of care is needed to avoid putting yourself at a disadvantage with larger

and much more powerful competitors in the market.

Go Corporation

Go Corporation developed PenPoint, an operating system for pen computing, they went through six

years of development with several hundred developers, and $750m venture capital. They were

careful to protect their intellectual property, operating a commercial secrecy policy, and obtained

several patents. They shared some of their technical knowledge with Bill Gates, being careful to get

him to sign a non-disclosure agreement, designed to protect their IP. They were later acquired by

AT+T where PenPoint ran on some personal communicators (none of which were a commercial

success) but their operating system was completely eclipsed by Microsoft’s PenWindows.

PenWindows was later the subject of a Federal Trade Commission investigation and patent violation

suits by GO, but these were not upheld. The company was divested and disbanded by AT+T.

Chesbrough[3] classifies open source business models as follows

 selling installation, service and support (Red Hat)

 versioning the software with free version as entry level (MySQL)

 integrating software with other parts of a customer’s IT infrastructure (IBM with Linux and

Java)

 providing proprietary complements – building software based on, or in conjunction with the

open source code.

73

Red Hat

Red Hat is an S+P 500 (major stock market index) company in the free and open source software

sector, and a major Linux distribution vendor. Founded in 1993, Red Hat has its corporate

headquarters in Raleigh, North Carolina with satellite offices worldwide. Red Hat has become

associated to a large extent with its enterprise operating system Red Hat Enterprise Linux and with

the acquisition of open-source enterprise middleware vendor JBoss. Red Hat provides operating-

system platforms along with middleware, applications, and management products, as well as

support, training, and consulting services. Red Hat creates, maintains, and contributes to many free

software projects and has also acquired several proprietary software packages and released their

source code under mostly GNU/GPL, while holding copyright under single commercial entity and

selling looser licenses. As of February 2009, Red Hat was the largest corporate contributor to the

Linux kernel. Red Hat sponsors the Fedora Project, a community-supported open-source project

which aims to promote the rapid progress of free and open-source software and content. Fedora

aims for rapid innovation using open processes and public forums. The Fedora Project Board, which

comprises community leaders and representatives of Red Hat, leads the project and steers the

direction of the project and of Fedora, the Linux distribution it develops. Red Hat employees work

with the code alongside community members; many innovations within the Fedora Project make

their way into new releases of Red Hat Enterprise Linux. Red Hat partly operates on a professional

open-source business model based on open code, development within a community, professional

quality assurance, and subscription-based customer support. They produce open-source code, so

more programmers can make further adaptations and improvements. Red Hat sells subscriptions for

the support, training, and integration services that help customers in using open-source software.

Customers pay one set price for unlimited access to services such as Red Hat Network and up to

24/7 support. (Wikipedia)

Working with open source

The 451 group of consultants[46] argue that open source is not in itself a business model but

'development and distribution model that is enabled by a licensing tactic.' As such it can be part of a

business strategy. They identify five stages in the evolution of these strategies.

74

Although the widely held image of open source is of dedicated independent developers fighting a

valiant battle against big software corporations to protect the ideal of free software, this is no longer

the case. Vendors, often the big software corporations, have understood the benefits of open

source and involved themselves to the point where many developments are vendor-dominated. The

elements of an open source business strategy[46] follow here:

software license (which type of
open source license is used)

reciprocal (requires that modifications must be licensed using
the same license as the original)

permissive (enables redistribution under a small set of rules)
development model (how a
vendor collaborates with the
community to produce code)

vendor open source - the software is distributed using an open
source license; all contributions are public, development
dominated by vendor developers
community open source - distributed using an open source
license, developed in public by a community of individuals
and/or vendors
mixed open source - based on a combination of projects using
open source software developed publicly by multiple vendors
and/or communities
hybrid - underlying project distributed using an open source
license, some functionality developed behind closed doors

vendor licensing strategy (how the
software is licensed to the end-
user)

dual licensing - single code base is licensed to different users
using either an open source or a commercial license
open core - core code available through open source license,
enterprise or professional versions include open source code
and closed source extensions, licensed commercially
open-and-closed - open source products complemented by
separate closed source products, developed and sold
separately under a commercial license
single open source - single code base with a single, open
source license
assembled open source - code from multiple open source
projects
closed - based on open source code but not available under an
open source license

revenue triggers (how income is
generated)

commercial license
subscription
service/support
embedded hardware - open source software distributed as
part of a hardware appliance
embedded software - open source software embedded within
larger commercial software package
software as a service (SaaS) - users pay to access the software
via the internet
advertising - the software is free and funded by associated
advertising
custom development - customers pay for the software to be
customized to meet their requirements
other products and services - open source software not used to
directly generate revenue, complementary products provide

75

the revenue

Software entrepreneurs should choose complementary development, licensing and revenue

strategies in order to maximize revenue-generation opportunities.

‘it is easy to understand why vendors believe a combination of open source and proprietary

models can provide the best of both worlds. The open source development and distribution

models can increase the quality of the code developed, lower development and marketing

costs, and increase opportunities for vendors to attract new potential customers. Meanwhile,

commercial licensing is the tried-and-true method that software vendors use to build a

commercial relationship with a customer. Most vendors generating revenue from open source

software are trying to balance the benefits of open source development and commercial

licensing.’ [46]

MySQL

The MySQL development project has made its source code available under the terms of the GNU

General Public License, as well as under a variety of proprietary agreements. MySQL was owned and

sponsored by a single for-profit firm, the Swedish company MySQL AB, now owned by Oracle

Corporation. Free-software-open source projects that require a full-featured database management

system often use MySQL. For commercial use, several paid editions are available, and offer

additional functionality. Applications which use MySQL databases include: TYPO3, Joomla,

WordPress, MyBB, phpBB, Drupal and other software built on the LAMP software stack. MySQL is

also used in many high-profile, large-scale World Wide Web products, including Wikipedia, Google

(though not for searches), Facebook, and Twitter. As of April 2009, MySQL offered MySQL 5.1 in two

different variants: the open source MySQL Community Server and the commercial Enterprise Server.

MySQL 5.5 is offered under the same licences. They have a common code base.

76

MySQL’s business strategy looks like this:

software license reciprocal

development model vendor open source

vendor licensing strategy dual licensing

revenue triggers commercial license

subscription

service/support

Open source and the software entrepreneur

Open source helps with liabilities of newness (few resources, no reputation, poorly established

engineering practice, expertise gaps) and smallness (few developers, long time to market). It is

therefore a possible solution to the challenges of market entry for start-ups. According to Gruber

and Henkel[43], participation in OS projects contributed to embedded Linux software start-ups

through:

 reputation-building (as additions to the project are accepted) and networking (connections

with other developers and potential customers)

 OS projects act as marketing channel for the new companies

 acceptance of code by the community is a stamp of quality

77

 OS allows them to take advantage of previously written code (e.g. device drivers) and

contributes to development speed and code quality

 gives access (entry wedge) to markets dominated by large players (e.g. embedded operating

systems) where a small company cannot reproduce the necessary development effort to

compete

 code can be extensively tested and improved by other participants

 the costs of switching for customers are reduced - it runs on Linux which is free and the

customer is not locked in to expensive version updates and service as they are with Apple or

Microsoft.

 the cost of entering the market is reduced.

‘I once published an article in a relatively high ranking publication……. addressing higher

management …….that was relatively expensive and yielded exactly zero responses. My job is

not only to read mailing lists every day, but to respond also to really stupid beginner’s

questions ……. These are the things by which I have massively acquired new projects.’

(embedded Linux software firm entrepreneur EU[43])

‘It’s hard to write device drivers. It’s hard to write good application programs…….the more you

can take advantage of ones that already exist, the more quickly you can get to focusing on

what differentiates your product or your service from everyone else’s product and their service’

‘I know that our version of Linux is going to be extensively tested with both MySQL and with

Oracle………….that would be something far beyond our ability ……. it would be an enormous

financial burden for a company like QNX [vendor of proprietary embedded operating

system]…………but I get it for nothing, or for my participation in Linux.’ (embedded Linux

software company, USA[43])

Sources

ASLETT, M. (2008) Open Source is not a Business Model. the 451 Group.

GRUBER, M. & HENKEL, J. (2006) New ventures based on open innovation - an empirical analysis of

start-up firms in embedded Linux. International Journal of Technology Management, 33, 356-372.

CHESBROUGH, H. (2003) Open innovation: The new imperative for creating and profiting from

technology, Harvard Business Press.

CHESBROUGH, H. (2007) Open business models: How to thrive in the new innovation landscape,

Harvard Business Press.

LERNER, J. & TIROLE, J. (2002) Some simple economics of open source. The journal of industrial

economics, 50, 197-234.

WEST, J. (2003) How open is open enough?: Melding proprietary and open source platform

strategies. Research Policy, 32, 1259-1285.

78

Intrapreneurship

Intrapreneurship involves effecting change from within a company: promoting a product idea, a new

work practice, or a move into working with new technologies. In the entrepreneurship literature a

variety of topics are discussed under this and related headings including

 organisational transformation or renewal (very important in the software field where

technologies can change at breakneck pace)

 frame-breaking or discontinuous change (radical changes which involve many upheavals)

 corporate entrepreneurship (leading to new business ventures, the development of new

products, services or processes and the renewal of strategies and competitive positions)

 corporate venturing (investment in other companies with complementary goals)

 spin off (initiatives leading to the formation of new companies, with or without the support

of the parent company)

 spin in (incorporation of external companies)

‘Engineers’, argues Menzel

‘take up a strong position in innovation activities since they contribute to an important role in

the creation, development and generation of new (technical) knowledge. Their technical

expertise and skills are an important source for new technical ideas that might turn into new

entrepreneurial opportunities. Engineers can be seen as a mixture of builders, adventures and

problem-solvers and their objectives is to create technical artefacts and provide services to

society[47]’

The ability to change, innovate and develop has been associated with economic success, both at the

firm level and at the level of society since Schumpeter first pointed out the connections. Menzel

argues that ‘entrepreneurship within existing organizations and its role in organizational renewal,

innovation, and the creation of new businesses ………… [is] a subject of interest because of its effect

on revitalization and performance of the firm’[47]. However organisational change is not necessarily

easy to achieve and the change theories we investigated earlier point out why. Organisations are

complex, made up of individuals with opinions and feelings, political, and necessarily bound into

some degree of traditional practice in order to make things work reliably. A larger software

organisation may develop tendencies such as these: standard development procedures and quality

standards are enforced to reduce mistakes; projects are managed for efficiency and return on

investment, large projects are plan-driven and controlled against the plan; management avoids

moves (such as learning a new programming technology) that risk the base competences and

business and protects these at all costs, new projects grow mainly out of prior experience;

developers are compensated uniformly according to the company schemes and promoted if they fit

in well. In these situations ‘innovations just do not happen unless someone takes on the

intrapreneurial role[48]’.

When innovation fails: how IBM missed the personal computer explosion

In the late 1970’s, 8IBM, completely dominant in the mainframe market, were watching the growing

home computer market. Though they firmly believed that the future lay in mainframe computing,

they decided to enter it. Their first attempt, the IBM 5100, was a dismal failure. They considered

http://inventors.about.com/od/computersandinternet/a/Ibm-Pc.htm

79

buying the fledgling game company Atari, but decided to develop their own personal computer line,

with a new operating system. The secret plans were referred to as Project Chess and the code name

for the new computer was Acorn (not so convincing a nickname – they might have gone for apple).

Twelve engineers, led by William C. Lowe, assembled in Boca Raton, Florida, to design and build the

Acorn. On August 12, 1981, IBM released their new computer, re-named the IBM PC. The PC stood

for personal computer, making IBM responsible for popularizing the term PC. They made the

architecture open and it quickly became the international standard.

However, the previous year (1980), IBM approached Bill Gates to discuss the state of home

computers and what Microsoft products could do for IBM’s project. Gates suggested that Basic

should be written into the ROM chip. Microsoft had already produced several versions of Basic for

different computer system beginning with the Altair, so Gates was more than happy to write a

version for IBM. IBM then decided to outsource the OS for the new IBM PC and asked Gates. Since

Microsoft had never written an operating system before, Gates first suggested that IBM investigate

CP/M (Control Program for Microcomputers), written by Gary Kildall of Digital Research. Kildall,

however, refused to sign a non-disclosure agreement and IBM gave Microsoft the contract to write

the new operating system, MS-DOS. Gates based the new OS on QDOS, the "Quick and Dirty

Operating System" written by Tim Paterson of Seattle Computer Products, buying the rights for

$50,000 (whilst keeping the IBM/Microsoft deal a secret). Bill Gates then talked IBM into letting

Microsoft retain the rights to market MS-DOS separately. The rest, as they say, is history. With an

open architecture and Microsoft owning the rights to MS-DOS, the PC market eventually took off,

but with Microsoft, not IBM as the big winner.

You, the intrapreneur, may have some special psychological characteristics (vision and creativity,

initiative, internal motivation, autonomy, risk taking, internal control, commitment and persistence,

market knowledge and customer orientation, knowledge of organizational structures and willingness

to cross functional borders[47]); it’s not clear that these amount to much more than being competent,

experienced and having your own ideas. However your individual intrapreneurial behaviour may be

somewhat different from standard organisation behaviours[20].

typical intrapreneurial behaviours standard organizational behaviours

exploration of new business opportunities exploitation of existing business activities

deflection from the present practice reinforcement of the present practice

revolutionary change evolutionary change

uncertainty acceptance uncertainty avoidance

long-term (future) orientation short-term orientation

flexibility, room to manoeuvre planning and formalization of activities

visionary and intuitive decision-making decision -making influenced by politics

holistic approach functional expertise

fair compensation depending on venture
success

traditional compensation independent of venture
success

Let us say you are experienced in agile development, you move to a company with a more

traditional development style and you want you introduce some agile practices. This is included

under my definition of 'promoting a software venture.' If you are the managing director you at least

have the authority to decide this; if you are less senior you have an intrapreneurial task to achieve.

It's possible that you have some good arguments and will be listened to, but it’s more likely that

80

your organisation has good reasons for its traditions and is quite resistant to change. We’ll

investigate two schools of thought about how you can achieve this: one based on some rational

prescriptions from the theorist, and one based on some harder lessons from practice.

Rational prescriptions (associated with ADE)

In this version of intrapreneurship, good innovative ideas eventually win through, but the need some

determination, perseverance and skill from the intrapreneur and the correct organisational

conditions (which are assumed to be set by senior managers). According to Kotter, you should:

1. establish a sense of urgency (point out how the company’s development style leads to poor,

overpriced software and unhappy customers)

2. create the guiding coalition (align yourself with others that believe the same)

3. develop a vision (articulate how projects will run more effectively with an agile method)

4. communicate the change vision (explain and practise agile ways)

5. empower broad-based action (partner with a senior project manager who agrees with you)

6. generate short-term wins (find a small and easy project where you can experiment with the

agile method of your choice)

7. consolidate gains and produce more change (move on to some larger and more complex

projects)

8. anchor new approaches in the culture (gain senior management approval and alter the

company’s standard procedures).

This plan enables you to operate some features of the Analyse, Design, Enact (ADE) paradigm.

However, if organisational conditions are against you (your IT company is characterised by tradition,

history, vested interests, authority patterns, internal politics, common practice, conservatism and

risk avoidance), you may still fail. Barriers to innovation may include overt non-constructive criticism

of new ideas, lack of team work in new product development, the practice of copying competitors

ideas, and poor links with knowledge institutions (such as universities). Therefore managers of

engineering companies have a special responsibility to maintain conditions where intrapreneurs can

flourish. Menzel[47] argues that five factors are particularly important:

 a physical environment which stimulates creativity, allowing spaces both for private

reflection and different types of interactions (e.g. Microsoft where corporate headquarters

resemble a college campus with high social integration and dynamics)

 reduction of hierarchy and bureaucracy (flat structures without too much hierarchical

control and the avoidance of too much routine work)

 top management encouragement (‘it is top management’s task to communicate and fill with

life the organization’s vision, goals, and strategy`……… based on clear commitment to

intrapreneurship initiatives……..a strategy of innovation …….. setting goals for innovators to

achieve ……..leave the people free to innovate…….. use the goals and values of the

organization to guide behaviour, not rules, procedures or reward and punishment[47]’

 advocates/champions who are prepared to support intrapreneurs

 resources including time (often a percentage of the engineer’s work time) and access to

capital including ‘patient’ money which is not withdrawn at the first sign of a problem

81

Kuratko and Hodgetts[20] summarize the problems inherent in established companies, the adverse

effects these create on intrapreneurship and recommended actions for responsible managers:

traditional management
practices

adverse effects recommended actions

enforce standard procedures to
avoid mistakes

innovative solutions blocked,
funds misspent

make ground rules specific to each
situation

manage resources for
efficiency and return on
investment

competitive lead lost, low
market penetration

focus effort on critical issues (e.g.
market share)

control against plan facts ignored that should
replace assumptions

change plan to reflect new
learning

plan for the long term nonviable goals locked in,
high failure costs

envision a goal, then set interim
milestones, reassess after each

manage functionally entrepreneur failure and/or
venture failure

support entrepreneur with
managerial and multidiscipline
skills

avoid moves that risk the base
business

missed opportunities take small steps, build out from
strengths

protect the base business at all
costs

venturing dumped when
base business is threatened

make venturing mainstream, take
affordable risks

judge new steps from prior
experience

wrong decisions about
competition and markets

use learning strategies, test
assumptions

compensate uniformly low motivation and
inefficient operations

balance risk and reward, employ
special compensation

promote compatible
individuals

loss of innovators accommodate ‘boat rockers’ and
‘doers’

Intrapreneurship as independent action: an empirical view associated with

CDA

Another way of characterising intrapreneurship, assuming that organisational conditions are not

always perfect for innovation, is as independent, iterative and unconventional action. Abetti's case

study at Toshiba[49] shows an example of intrapreneurial subterfuge, where much of the action

(developing the company's highly successful PC's and laptops) is conducted 'under the table'

(underground) though skunk works and a variety of actions hidden from the senior managers who

repeatedly veto the project.

Laptop intrapreneurship at Toshiba

In the 1980’s and 90’s Toshiba developed highly successful lines of PC’s and became one of the

leading manufacturers of high quality laptops; however this was in spite of, rather than because of

the strategies of senior managers. The success was attributed to the intrapreneurial actions of a

senior engineer, Mizoguchi and his champions Koga and Nishida. Here is the story, summarised in

nine phases by Abetti[49]

82

Phase 1 - latency. Toshiba, primarily a manufacturer of electrical equipment struggled to enter the

mainframe market but could not compete with IBM. In 1978 they withdrew but kept their computer

engineer group to preserve the core competencies.

Phase 2 - stillbirth. Mizoguchi developed the first Japanese PC but headquarters vetoed its

commercialisation in Japan. Some collaborations in the US were launched, but failed.

Phase 3 - second stillbirth. In 1979-81 NEC succeeded with the first Japanese PC. Mizoguchi obtained

permission to develop Pasopia 7 (Toshiba’s response) but this failed miserably both in the Japanese

and US markets. It arrived too late and was not IBM compatible.

Phase 4 - conception. In 1983 Mizoguchi with five teams of engineers visited the US and conceived a

portable fully IBM-compatible PC (using the well-known ‘back to the future’ design approach,

another innovation).

Phase 5 - gestation. All requests for development funds and transfer of staff were denied by

headquarters and Mizoguchi, protected by Koga, stared a covert ‘under the table’ laptop project,

siphoning funds and personnel from other projects.

Phase 6 - birth of laptop. Mizoguchi built seven prototypes one of which was seen by the VP of

marketing in Europe. He sold 14,000 in fourteen months and the laptop won the ‘king of laptops’

award. Despite this, headquarters refused to commit funds for attacking the US market. Nishida

instead used the European profits to do this.

Phase 7 - adolescence. In 1987-88 Mizoguchi’s team was re-incorporated into the mainstream

business in a new unit managed by Mizushima. They developed a Japanese version of the laptop

and a corporate committee successfully marketed it

Phase 8 - birth of notebook. Many competitors emerged in the laptop market and Toshiba lost

market share. Mizoguchi (under the table) developed a smaller, lighter notebook.

Phase 9 - adulthood. Between 1990 and 1996 the contributions of Mizoguchi, Koga and Nishidi were

acknowledged with promotions - (Koga to senior VP and member of the board). Development of

subnotebook, palmtop and multimedia PC’s was established in a corporate project called Advanced

1.

The intrapreneur therefore can have something of a rebel role in relation to the organisation they

work in. According to Harrison[38], the role of the corporate entrepreneur to ‘corral resources, steal

personnel time, conceal development activities, and curry personal favours to secure the resources

needed for their new ventures.’ Pinchot[48] offered ten commandments for the effective

intrapreneur:

1. come to work each day willing to be fired

2. circumvent any orders aimed at stopping your dream

3. do any job needed to make your project work, regardless of your job description

4. network with good people to assist you

5. build a spirited team; choose and work only with the best

6. work underground for as long as you can - publicity triggers the corporate immune

mechanism

83

7. be loyal and truthful to your sponsors

8. remember it is easier to ask forgiveness than permission

9. be true to your goals, but be realistic about the ways to achieve them

10. keep the vision strong

The role of champion in relation to the new venture is important, especially in larger organisations.

Changing things in a large machine where you are a small cog is difficult and you are often reliant on

the support of a senior colleague who believes in you and will protect you and help to spread the

message. Day[50] offered three hypotheses:

 the lower the principal champion's hierarchical level, the more innovative the venture

will be.

 in general, principal champions from corporate headquarters, particularly from staff

positions, will be negatively associated with innovativeness.

 as retroactive legitimizers, top managers enforce only those ventures that are proven

successes, and then only after they have established themselves as such.

We should conclude that, in many situations, top managers are not necessarily the source of much

innovation and need to be coaxed into co-operation. Abetti[49] suggests that four kinds of

championing phases are critical if new venture ideas are to survive: idea generating, opportunistic

behaviour, resource gathering and incorporation into the mainstream business.

phase champion role

ideas Mizoguchi develop back to the future approach and gain acceptance by
engineering team

opportunistic
behaviour

Koga continuously probe markets in the US and Europe; condone rule
bending and protect team from interference by headquarters

resources Koga maintain profitability of computer business and divert resources to
entrepreneurial team; keep the team small to conserve resources;
enlist the support of Europe and US marketing

incorporation Mizushima obtain corporate acceptance of the new venture; legitimize the new
venture as part of mainstream; marshal extraordinary corporate
resources for rapid growth

If we return to your problem of introducing some agile development practices into a traditional

company, then we might now understand that the rational prescriptions offered by Kotter and

others may not always work in every situation. A more flexible, adaptive, improvisatory and

sometimes subversive approach may be better; this we can align with Consider, Do, Adjust (CDA).

Where an intrapreneurial venture is successful it is rather common for others (often senior

managers) to take the credit, but many, maybe most, fail. What are the options if your venture is

intimately rejected? You may leave the company and pursue your venture, perhaps in the form of a

start-up. You may display loyalty to your employers and swallow your disappointment. You can

complain loudly, or you can resort to subterfuge.

84

Sources

ABETTI, P. A. (1997) The birth and growth of Toshiba's laptop and notebook computers: A case study

in Japanese corporate venturing. Journal of Business Venturing, 12, 507-529.

DAY, D. (1994) Raising radicals: Different processes for championing innovative corporate ventures.

Organization Science, 5, 148-172.

HARRISON, R., MASON, C. & GIRLING, P. (2004) Financial bootstrapping and venture development in

the software industry. Entrepreneurship & Regional Development, 16, 307-333.

KURATKO, D. & HODGETTS, R. (2004) Entrepreneurship: Theory, Process and Practice, Mason, Ohio,

Thomson.

MENZEL, H. C., AALTIO, I. & ULIJN, J. M. (2007) On the way to creativity: Engineers as intrapreneurs

in organizations. Technovation, 27, 732-743.

PINCHOT, G. (1985) Intrapreneuring: why you don't have to leave the corporation to become an

entrepreneur, Harper & Row New York, NY.

WEST, J. (2003) How open is open enough?: Melding proprietary and open source platform

strategies. Research Policy, 32, 1259-1285.

85

Conclusion: motivational questions and answers; two paradigms and

four themes revisited

What forms of value can software create?

Software should be understood as the translation of various forms of related knowledge into code;

this is a complex intellectual activity so software should be understood as a form of intellectual

property. You can’t unfortunately pay your developers in IP or feed your family with it, so IP has to

be further translated into economic rewards: revenues which hopefully outstrip costs. This second

translation is the task of a business model; these are many, varied, sometimes complex, and a

software firm can operate many business models simultaneously - building its total revenue in

different ways. A software start-up will need explicit thinking about these translations, even if it

doesn’t choose to call that thinking by the name ‘business model´.

How do you recognise your intellectual property in your software work and protect it?

Protection for intellectual capital is built into the legal structure of modern market economies, as

patent, copyright, trademark and so on. Software is easily copied so these protections are necessary

to prevent theft. A historical way of thinking jealously guards intellectual property: proprietary

software is built, the source code is completely closed, and licenses are sold. However the modern

industry has also learned how to make money by giving away the intellectual property that software

represents. In between the closed and the open models is every degree of shading (for example

over seventy different kinds of reciprocal and permissive OS licences). Many strategies are possible;

the historical style is not necessarily the best when trying to enter the modern market.

How do you leverage open source software and the open source development model?

Open source provides (sometimes) free code: operating systems, device drivers, middleware,

network software, various standard applications, business software. Most young companies don’t

have the resources to build these themselves and if they did they would not be able to easily derive

revenues from them. There are also network and reputation advantages. On the debit side, it’s a

more complex approach to building IP and translating it into revenue. The various open source

business strategies are beginning to be better understood (judicious combinations of revenue

triggers, development strategies, licensing options) but there is always room for innovation.

How do you make a business out of a software product idea?

Many It professionals start a new company because they know they have a good idea for an

innovative software product; sometimes they have developed the science behind the software;

sometimes they also have a prototype. The paths to developing a business out of the idea are many

and varied, and there are many issues to consider. In one strategy the innovators can develop a

fully-fledged business plan and seek venture capital to put it into practice (Analyse, Design, Enact).

Ina second they can bootstrap their business, looking for collaborators with commitment, writing

software as they able and being very flexible in responding to the opportunities they recognise

(Consider, Do, Adjust). There are many variations and you can start in CDA mode and become more

analytical and design oriented later in the search for capital to stimulate business growth. IT and

software professionals have the most important skills (writing software) for these businesses, but

there are a variety of other business skills and competences that must be learned or acquired.

However we don’t agree with the opinion often expressed in business literatures that business skills

86

are the really important ones. Look at the great entrepreneurs in software and software-intensive

businesses: they were trained to write code, even if they don’t do it anymore.

What business models do young software and software-dependent firms use?

The most basic distinction is between companies offering finished software products and companies

providing various kinds of software services (the most important of which is writing tailor-made

software for clients). A more detailed classification is:

 software tailoring – building tailor-made software for specific customers

 applied formats – customized solutions based on common platform

 resource provisioning – developing software components or middleware designed to

integrate with other software

 standard offerings – own products sold widely and used without customization

in addition to these there are a variety of open business models, generic models for (non-

software)businesses and a variety of generic models for e and m commerce. However it’s not really

a question of copying an existing model; more of understanding the various different models,

tailoring, adapting and innovating. There are as many successful software business models as there

are successful software firms.

How do you commercialize and market a new software product?

We didn’t investigate this question in depth, but one answer is: in collaboration. The first customer

is often very important for refining the first product, and other better established firms as partners

help with marketing and distribution problems, as well as internationalisation and breaking into new

markets.

How do you understand the market you are in, or create a market if it does not exist?

The strength of the ADE paradigm is analysis; there are a variety of conventional business models

(for example Porter’s model of competitive forces) that will help you to understand your business

environment and find the niche that you want to occupy, or the opportunity that other software

competitors have not yet exploited. If you are more confident in your business idea, more action-

oriented (or perhaps a genuine visionary) then you will assume that your product or service is

innovative and that no market exists just now, but that it can be created by your actions. This is an

assumption of Sarasvathy’s theory of effectuation. Now you must build a market, customer by

customer, adapting and learning as you go.

How do you find the necessary resources to develop your firm or product idea?

Venture capital, or an angel is the ADE answer. Bootstrapping is the CDA alternative, and also the

most common way for young software entrepreneurs. Partnership and mutual knowledge sharing

provide the necessary intellectual resources. But what resources do you really need? the most

important resource (the ability to write effective code) you have already. Get started and at the

appropriate time sorry about growth.

Who becomes a software entrepreneur, and what skills and capabilities do you need?

At one time researchers believed that entrepreneurs had particular character traits which made

them different from other competent professionals (for example software engineers and managers

working in companies). This is not really the case; a software entrepreneur is a competent IT

87

professional who has chosen to start a company. Perhaps more important is the match of relevant

experiences, knowledge and the ability to learn fast and adapt.

How do you manage a start-up?

Young companies take time to develop standardised management practices, so the answer is flexibly,

adaptively and in a learning mode. Ask for advice, outsource business functions that are not core

where you have little expertise (accounting, marketing), and practice mutual engagement: very good

and intense dialogue with your colleagues. If you’re a real engineer type how primarily enjoys

building software, consider recruiting someone with complementary business skills.

What engineering and development practices do you need to develop software in a very

young firm?

The type of traditional software engineering practice which suits mature companies can’t be

achieved in accompany that is small, so the answer is informal agile practice. User/customer focus is

also important for consultant-type software firms. Rigorous adherence to agile principles is also

demanding, so small companies improvise their way to new products. However development

practice rapidly becomes an issue in all software development work, so engineering practice also

needs to develop quickly. Good practices with respect to testing, project management and a range

of other issues need to be shared and incorporated in work routines.

How do you manage competitors and customers?

Product-oriented firms need to keep an eye on their competitors, adjusting their own products to

remain innovative and competitive in relation to their competitors’. Sometimes there will be

partnering and knowledge-sharing, but this need to be managed carefully. Service-style companies

need to develop close relationships with their customers; understanding not only their software

needs, but what drives their businesses and enterprise.

How do young software firms grow through networking and partnering?

Young firms suffer the disadvantages of smallness and newness and lack many kinds of resources,

the most important of which is often knowledge. Partnering offers access to more development

resources, previously developed code, other kinds of complementary skills and knowledge, and new

financing sources. Partnering and networking often provide a wider customer-base, new markets,

the chance to become international and better distribution channels.

What is the role of innovation in software entrepreneurship?

Innovation and entrepreneurship are closely linked in the IT world. Often a start-ups key to survival

is the innovation in their first product, and their innovation speed: the ability to continue to innovate

and to bring their products to market before their competitors. However innovation is not a

necessary component for software entrepreneurship; a service-oriented company can also survive

on good customer relations, efficiency, and cost leadership

How does a software start-up survive and grow?

Nobody really knows the answer to this question. If they did there would be many fewer failures.

Many factors contribute, in sometimes unpredictable patterns.

Why do software ventures fail?

The shallow answer is that they run out of money; however the causes of this may be many. The

innovative product wasn’t so innovative, or a major competitor immediately imitated it. The market

88

collapsed as a result of a substitute product. A large competitor practised price-undercutting. There

were technical difficulties and development delays, or arguments with customers and partners. The

bank lost confidence. The founders ran out of steam and got stressed. A hundred other reasons, in

any combination. Many start-ups fail, in the sense that the company ceases to exist. However the

outcomes for the individual entrepreneur(s) are not necessarily bad unless they have been unusually

naïve. The company is bought by a larger rival, or they merge with a partner. The founder moves on

to a new start-up or is attractive to another company because of their management experience or

specialised knowledge.

How do you promote a software product or practice from within a software development

firm?

This is the important practice of intrapreneurship, without which every company (with the possible

exception of Apple when run by Steve Jobs) will eventually die. There are some rational models for

making this happen, but as often as not the pattern is adapt and survive in the face of managerial

indifference or hostility.

Two paradigms for software entrepreneurship

We developed two paradigms for software entrepreneurship: Analyse, Design, Enact:

and Consider, Do, Adjust:

Here they are, summarised, again:

 analyse, design, enact consider, do, adjust

theoretical inspiration: standard entrepreneurship literature Sarasvathy: theory of
effectuation

software engineering
inspiration:

traditional development agile development

description: promote a software venture by
understanding the technical and

promote a software venture by
taking iterative and incremental

89

business environment, designing a
logical response and setting it in
motion

steps forward on the basis of
what is achievable now

process: sequential iterative
understanding of future: predictable, non-controllable – adjust

to the forces of the market
unpredictable, controllable –
create (a small part of) the
future

attitude to market: analyse the market and choose a
position or niche (find opportunity)

avoid or outsmart obvious
competitors and create a new
market (make opportunity)

attitude to technology
development:

understand technology trajectories
and fit software projects into likely
developments

develop the areas of technology
expertise you excel in

role of business
planning:

conceptualise the venture as
completely as possible before starting

take initial business decisions
based on what you can afford
and look out for what you need
to do next

software development
style:

decide software engineering practice
up-front, likely to emphasise the
traditional

improvise engineering practice
and decide according to
circumstance, lean practice,
agility

attitude to change: avoid change as far as possible - stick
to plan to achieve goals

embrace change as opportunity
and act upon new situations and
possibilities

funding approach: attract capital and investors before
start up - fund to maximize return

invest what you can afford
without considering the possible
return and bootstrap

approach to others
working in the same
areas:

avoid competition - consider
competitors a threat to market
position

collaborate with those who
demonstrate commitment and
network with potential
stakeholders

approach to intellectual
property:

protect IP through copyrights and
patents to deter competition,
improve market share

build networks of ideas, sharing,
various business models
including open source, mixed
open and closed code access

partnering and
networking

control collaboration to avoid losing
intellectual property

build a network of committed
stakeholders, collaborators and
partners

time to market long on the basis of venture capital short to maximise returns

They serve as a pedagogical and analytical devise to understand the way researchers write about

entrepreneurship, and to adapt these ideas to the software and IT arena. Next we will consider the

four major themes (the software start-up, e(m)Entrepreneurship, open entrepreneurship and

intrapreneurship) in the light of the two paradigms.

The software start-up

Much of the standard textbook literature promotes the ADE approach to starting a business, but this

is largely because it reflects a heavily analysis-biased mode of thinking common to the scientists who

90

do the research and write the books. This bias is also reflected in the research articles we read.

Case studies written by practitioners of practice-oriented commentators reveal a more mixed

picture. There are many elements of CDA in (for instance) Kaplan's account of Go Corporation

besides the glamorous venture capital rationalistic large scale approach. For many young software

entrepreneurs Sarasvathy's model and CDA will be more appropriate, because resources for analysis

and planning are not available, the likelihood of obtaining venture capital small, and events are too

unstable and fast moving. Bootstrapping is an alternative means of raising limited amounts of

capital, and affordable loss a useful principle.

E-entrepreneurship

The picture is the same as for software start-ups. Koller's research-oriented account promotes a

ADE approach, whereas descriptive accounts by entrepreneurs (e.g. Omidyar) lean in another

direction. There don't seem to be any intrinsic reasons why this kind of start-up should be different

and the emerging market for mobile services and apps seems to be rich in opportunity for engineers

without many resources employing the CDA approach.

Open entrepreneurship

Working with open source and open business models is a more modern and less conventional

approach to software entrepreneurship. Most of the ADE way of thinking is based on historical

traditions of protecting innovation and intellectual capital - this is built into the analysis tradition

(analyse the past to predict the future). CDA is better positioned to work with fast changing types of

value propositions where there is no stable precedence.

Intrapreneurship

The literature we learn some rational models for how to promote a new venture from inside an

existing company, together with suggestions for what managers should do to organise a culture

where intrapreneurship is accepted, since this is clearly beneficial for the company in the longer run.

However empirical accounts describe a somewhat cynical view of organisations and organisational

change, where the rational (ADE) approach is unlikely to be successful. However Sarasvathy's

account of opportunism, experimentation and commitment building (CDA) matches the case study

accounts from Toshiba rather well. This style of intrapreneurship is also supported in Pinchot’s ten

commandments.

91

References

1. Cusumano, M., The business of software: What every manager, programmer, and
entrepreneur must know to thrive and survive in good times and bad. 2004, New York: Free
Press.

2. Kaplan, J., Start Up. 1994, London: Warner.
3. Chesbrough, H., Open business models: How to thrive in the new innovation landscape. 2007:

Harvard Business Press.
4. Osterwalder, A. and Y. Pigneur, Business Model Generation. 2010, Hoboken, New Jersey:

Wiley.
5. Porter, M.E., Competitive advantage: creating and sustaining superior performance. 1985,

New York: Free Press.
6. Barney, J.B., The resource-based theory of the firm. Organization Science, 1996. 7: p. 469-469.
7. Dollinger, M.J., Entrepreneurship: strategies and resources. 1999, Upper Saddle River, New

Jersey: Prentice hall.
8. Grant, R.M., Toward a knowledge-based theory of the firm. Strategic Management Journal,

1996. 17: p. 109-122.
9. Prahalad, C. and G. Hamel, The core competence of the corporation. International Library of

Critical Writings in Economics, 2003. 163: p. 210-222.
10. Porter, M., The five competitive forces that shape strategy. Harvard Business Review, 2008.

86(1): p. 78-86.
11. Kotter, J.P., Leading change. 1996, Boston: Harvard Business School Press.
12. Cougar, D., L. Higgins, and S. McIntyre. ``Differentiating creativity, innovation, and

entrepreneurship for information service products and processes''. 1990.
13. Shumpeter, J.A., The theory of economic development. Cambridge, MA: Harvard Economic

Studies, 1934.
14. Kirzner, I.M., Competition and Entrepreneurship. 1978, Chicago: University of Chicago Press.
15. Rose, J., Software Innovation: eight work-style heuristics for creative software developers.

2010, Aalborg: Software Innovation, Dept. of Computer Science, Aalborg University.
16. Rae, D., Entrepreneurship: from Opportunity to Action. 2007, New York: Palgrave.
17. Sarasvathy, S., Effectuation: Elements of entrepreneurial expertise. 2008: Edward Elgar

Publishing.
18. Varis, J., O. Kuivalainen, and S. Saarenketo, Partner selection for international marketing and

distribution in corporate new ventures. Journal of International Entrepreneurship, 2005. 3(1):
p. 19-36.

19. Kuratko, D.F. and R.M. Hodgetts, Entrepreneurship: A contemporary approach. 1995: Dryden
Press.

20. Kuratko, D. and R. Hodgetts, Entrepreneurship: Theory, Process and Practice. 2004, Mason,
Ohio: Thomson.

21. Read, S., et al., Effectual Entrepreneurship. 2011, London: Routledge.
22. Hsu, D.H., E.B. Roberts, and C.E. Eesley, Entrepreneurs from technology-based universities:

evidence from MIT. Research Policy, 2007. 36(5): p. 768-788.
23. Aaen, I. and J. Rose. A Software Entrepreneurship Course: between two paradigms. in 15th

Annual Interdisciplinary Entrepreneurship Conference. 2011. St. Gallen and Zurich.
24. Giarratana, M.S., The birth of a new industry: entry by start-ups and the drivers of firm

growth - The case of encryption software. Research Policy, 2004. 33(5): p. 787-806.
25. Igel, B. and N. Islam, Strategies for service and market development of entrepreneurial

software designing firms. Technovation, 2001. 21(3): p. 157-166.
26. Mueller, T. and H. Gemunden, Founder team interaction, customer and competitor

orientation in software ventures. Management Research News, 2009. 32(6): p. 539-554.
27. Rajala, R., M. Rossi, and V. Tuunainen. A framework for analyzing software business models.

2003: Citeseer.

92

28. Rajala, R. and M. Westerlund, Business models a new perspective on firms' assets and
capabilities: observations from the Finnish software industry. The International Journal of
Entrepreneurship and Innovation, 2007. 8(2): p. 115-126.

29. Heirman, A. and B. Clarysse, Which tangible and intangible assets matter for innovation
speed in start-ups? Journal of Product Innovation Management, 2007. 24(4): p. 303-315.

30. de Haan, U. and S. Cohen, The role of improvisation in Off-the-Shelf software development of
entrepreneurial vendors. 2007 International Conference on Systems Engineering and
Modeling, Proceedings, 2007: p. 85-92.

31. Yingyu, D. and W. Ye. The Mechanisms of Learning and the Survival of New Ventures. 2008.
32. Chenoweth, S. Undergraduate Software Engineering Students in Startup Businesses. 2008:

IEEE.
33. Ojala, A. and P. Tyrväinen, Business models and market entry mode choice of small software

firms. Journal of International Entrepreneurship, 2006. 4(2): p. 69-81.
34. Pauli, J.W., T.E. Lawrence, and B.F. Brown, Development of a new software product from a

classroom project. Proceedings of the Fifth International Conference on Information
Technology: New Generations, 2008: p. 97-100.

35. Shane, S. and D. Cable, Network ties, reputation, and the financing of new ventures.
Management Science, 2002. 48(3): p. 364-381.

36. Hung, S. and Y. Hsiao. Mobilizing social capital to pursue entrepreneurship. 2004.
37. Zahra, S., B. Matherne, and J. Carleton, Technological resource leveraging and the

internationalisation of new ventures. Journal of International Entrepreneurship, 2003. 1(2): p.
163-186.

38. Harrison, R., C. Mason, and P. Girling, Financial bootstrapping and venture development in
the software industry. Entrepreneurship & Regional Development, 2004. 16(4): p. 307-333.

39. Kollmann, T., What is e-entrepreneurship? - fundamentals of company founding in the net
economy. International Journal of Technology Management, 2006. 33(4): p. 322-340.

40. Tarnacha, A. and C.F. Maitland, Entrepreneurship in mobile application development. 2006
ICEC: Eighth International Conference on Electronic Commerce, Proceedings, 2006: p. 589-
593.

41. Leem, C.S., H.S. Suh, and D.S. Kim, A classification of mobile business models and its
applications. Industrial Management & Data Systems, 2004. 104(1): p. 78-87.

42. Faber, E., et al. Designing business models for mobile ICT services. in 16th Electronic
Commerce Conference. 2003. Bled, Slovenia.

43. Gruber, M. and J. Henkel, New ventures based on open innovation - an empirical analysis of
start-up firms in embedded Linux. International Journal of Technology Management, 2006.
33(4): p. 356-372.

44. von Hippel, E. and G. von Krogh, Open Source Software and the “Private-Collective”
Innovation Model: Issues for Organization Science. Organization Science, 2003. 14(2): p. 209-
223.

45. Chesbrough, H., Open innovation: The new imperative for creating and profiting from
technology. 2003: Harvard Business Press.

46. Aslett, M., Open Source is not a Business Model. 2008, the 451 Group.
47. Menzel, H.C., I. Aaltio, and J.M. Ulijn, On the way to creativity: Engineers as intrapreneurs in

organizations. Technovation, 2007. 27(12): p. 732-743.
48. Pinchot, G., Intrapreneuring: why you don't have to leave the corporation to become an

entrepreneur. 1985: Harper & Row New York, NY.
49. Abetti, P.A., The birth and growth of Toshiba's laptop and notebook computers: A case study

in Japanese corporate venturing. Journal of Business Venturing, 1997. 12(6): p. 507-529.
50. Day, D., Raising radicals: Different processes for championing innovative corporate ventures.

Organization Science, 1994. 5(2): p. 148-172.

93

Complete list of sources

Abetti, P.A., The birth and growth of Toshiba's laptop and notebook computers: A case study in

Japanese corporate venturing. Journal of Business Venturing, 1997. 12(6): p. 507-529.

Aslett, M., Open Source is not a Business Model. 2008, the 451 Group.

Baron, J.N. and M.T. Hannan, Organizational Blueprints for Success in High-Tech Start-Ups: LESSONS

FROM THE STANFORD PROJECT ON EMERGING COMPANIES. California Management Review, 2002.

44(3): p. 8-36.

Bilen, S.G., et al., Developing and assessing students' entrepreneurial skills and mind-set. Journal of

Engineering Education, 2005. 94(2): p. 233-243.

Brem, A., The boundaries of innovation and entrepreneurship: conceptual background and essays on

selected theoretical and empirical aspects, Ch 1. 2008: Gabler Verlag.

Chenoweth, S. Undergraduate Software Engineering Students in Startup Businesses. 2008: IEEE.

Chesbrough, H., Open innovation: The new imperative for creating and profiting from technology.

2003: Harvard Business Press.

Chesbrough, H., Open business models: How to thrive in the new innovation landscape. 2007:

Harvard Business Press.

Companys, Y.E. and J.S. McMullen, Strategic entrepreneurs at work: The nature, discovery, and

exploitation of entrepreneurial opportunities. Small Business Economics, 2007. 28: p. 301-322.

Cougar, D., L. Higgins, and S. McIntyre. ``Differentiating creativity, innovation, and entrepreneurship

for information service products and processes''. 1990.

Cusumano, M., The business of software: What every manager, programmer, and entrepreneur

must know to thrive and survive in good times and bad. 2004: Free Press.

Cusumano, M.A., Software in Ireland: A balance of entrepreneurship and... lifestyle management?

Communications of the ACM, 2005. 48(10): p. 25-27.

Day, D., Raising radicals: Different processes for championing innovative corporate ventures.

Organization Science, 1994. 5(2): p. 148-172.

de Haan, U. and S. Cohen, The role of improvisation in Off-the-Shelf software development of

entrepreneurial vendors. 2007 International Conference on Systems Engineering and Modeling,

Proceedings, 2007: p. 85-92.

Doboli, A., S. Doboli, and E. Currie. Preparing computer engineers for a global economy: a study on

effective collaboration practices in global student teams. 2009: IEEE Press.

Dollinger, M.J., Entrepreneurship: strategies and resources. 1999, Upper Saddle River, New Jersey:

Prentice hall.

Fitzgerald, B., The transformation of open source software. MIS Quarterly, 2006. 30(3): p. 587-598.

94

Fortune, A. and H. Aldrich, Acquiring competence at a distance: Application service providers as a

Hybrid Organizational Form. Journal of International Entrepreneurship, 2003. 1(1): p. 103-119.

Gary, K., et al. Work-in-progress: Embedding entrepreneurship in the computing curricula. 2008.

Giarratana, M.S., The birth of a new industry: entry by start-ups and the drivers of firm growth - The

case of encryption software. Research Policy, 2004. 33(5): p. 787-806.

Giuri, P., F. Rullani, and S. Torrisi, Explaining leadership in virtual teams: The case of open source

software. Information Economics and Policy, 2008. 20(4): p. 305-315.

Gruber, M. and J. Henkel, New ventures based on open innovation - an empirical analysis of start-up

firms in embedded Linux. International Journal of Technology Management, 2006. 33(4): p. 356-372.

Harrison, R., C. Mason, and P. Girling, Financial bootstrapping and venture development in the

software industry. Entrepreneurship & Regional Development, 2004. 16(4): p. 307-333.

Heirman, A. and B. Clarysse, Which tangible and intangible assets matter for innovation speed in

start-ups? Journal of Product Innovation Management, 2007. 24(4): p. 303-315.

Hsu, D.H., E.B. Roberts, and C.E. Eesley, Entrepreneurs from technology-based universities: evidence

from MIT. Research Policy, 2007. 36(5): p. 768-788.

Hung, S. and Y. Hsiao. Mobilizing social capital to pursue entrepreneurship. 2004.

Igel, B. and N. Islam, Strategies for service and market development of entrepreneurial software

designing firms. Technovation, 2001. 21(3): p. 157-166.

J, K., Start Up, London: Warner.

Janson, M.A. and S. Wrycza, Information technology and entrepreneurship: three cases from Poland.

International Journal of Information Management, 1999. 19(5): p. 351-367.

Kaganer, E., S.D. Pawlowski, and S. Wiley-Patton, Building Legitimacy for IT Innovations: The Case of

Computerized Physician Order Entry Systems. Journal of the Association for Information Systems.

11(1): p. 1-33.

Kaplan, J., Start Up. 1994, London: Warner.

Kirsch, D., B. Goldfarb, and A. Gera, FORM OR SUBSTANCE: THE ROLE OF BUSINESS PLANS IN

VENTURE CAPITAL DECISION MAKING. Strategic Management Journal, 2009. 30(5): p. 487-515.

Kollmann, T., What is e-entrepreneurship? - fundamentals of company founding in the net economy.

International Journal of Technology Management, 2006. 33(4): p. 322-340.

Kuratko, D. and R. Hodgetts, Entrepreneurship: Theory, Process and Practice. 2004, Mason, Ohio:

Thomson.

Latham, S., Contrasting Strategic Response to Economic Recession in Start-Up versus Established

Software Firms. Journal of Small Business Management, 2009. 47(2): p. 180-201.

95

Lechner, C., M. Dowling, and I. Welpe, Firm networks and firm development: The role of the

relational mix. Journal of Business Venturing, 2006. 21(4): p. 514-540.

Lee, R. and O. Jones, Networks, communication and learning during business start-up - The creation

of cognitive social capital. International Small Business Journal, 2008. 26(5): p. 559-594.

Lehrer, M., Science-driven vs. market-pioneering high tech: comparative German technology sectors

in the late nineteenth and late twentieth centuries. Industrial and Corporate Change, 2005. 14(2): p.

251-278.

Lerner, J. and J. Tirole, Some simple economics of open source. The journal of industrial economics,

2002. 50(2): p. 197-234.

Lettl, C., K. Rost, and I. von Wartburg, Why are some independent inventors 'heroes' and others

'hobbyists'? The moderating role of technological diversity and specialization. Research Policy, 2009.

38(2): p. 243-254.

Liberman-Yaconi, L., T. Hooper, and K. Hutchings, Toward a Model of Understanding Strategic

Decision-Making in Micro-Firms: Exploring the Australian Information Technology Sector. Journal of

Small Business Management. 48(1): p. 70-95.

Lockett, N., et al., The influence of co-location in higher education institutions on small firms'

perspectives of knowledge transfer. Entrepreneurship and Regional Development, 2009. 21(3): p.

265-283.

Mangan, A. and S. Kelly, Information systems and the allure of organisational integration: a

cautionary tale from the Irish financial services sector. European Journal of Information Systems,

2009. 18(1): p. 66-78.

Mann, R. and T. Sager, Patents, venture capital, and software start-ups. Research Policy, 2007. 36(2):

p. 193-208.

McQuaid, R.W., Entrepreneurship and ICT industries: Support from regional and local policies.

Regional Studies, 2002. 36(8): p. 909-919.

Menzel, H.C., I. Aaltio, and J.M. Ulijn, On the way to creativity: Engineers as intrapreneurs in

organizations. Technovation, 2007. 27(12): p. 732-743.

Mourmant, G., M.J. Gallivan, and M. Kalika, Another road to IT turnover: the entrepreneurial path.

European Journal of Information Systems, 2009. 18(5): p. 498-521.

Mueller, T. and H. Gemunden, Founder team interaction, customer and competitor orientation in

software ventures. Management Research News, 2009. 32(6): p. 539-554.

Mustonen, M., Copyleft--the economics of Linux and other open source software. Information

Economics and Policy, 2003. 15(1): p. 99-121.

Nambisan, S., Software firm evolution and innovation-orientation. Journal of Engineering and

Technology Management, 2002. 19(2): p. 141-165.

96

Ojala, A. and P. Tyrväinen, Business models and market entry mode choice of small software firms.

Journal of International Entrepreneurship, 2006. 4(2): p. 69-81.

O'Mahony, S., Guarding the commons: how community managed software projects protect their

work* 1. Research Policy, 2003. 32(7): p. 1179-1198.

Osterwalder, A. and Y. Pigneur, Business Model Generation. 2010, Hoboken, New Jersey: Wiley.

Parthasarathy, B. and Y. Aoyama, From software services to R&D services: local entrepreneurship in

the software industry in Bangalore, India. Environment and Planning A, 2006. 38(7): p. 1269-1285.

Pauli, J.W., T.E. Lawrence, and B.F. Brown, Development of a new software product from a

classroom project. Proceedings of the Fifth International Conference on Information Technology:

New Generations, 2008: p. 97-100.

Pinchot, G., Intrapreneuring: why you don't have to leave the corporation to become an

entrepreneur. 1985: Harper & Row New York, NY.

Plant, R., S. Wills, and C. Valle, Creative Entrepreneurship at Iconstruye: A Pan Andean e-

Procurement Market Maker. Entrepreneurship Theory and Practice, 2008. 32(3): p. 575-588.

Rae, D., Entrepreneurship: from Opportunity to Action. 2007, New York: Palgrave.

Rajala, R., J. Nissilä, and M. Westerlund, Revenue models in the open source software business.

Handbook of Research on Open Source Software: Technological, Economic, and, 2007: p. 541.

Rajala, R., M. Rossi, and V. Tuunainen. A framework for analyzing software business models. 2003:

Citeseer.

Rajala, R. and M. Westerlund, Business models a new perspective on firms' assets and capabilities:

observations from the Finnish software industry. The International Journal of Entrepreneurship and

Innovation, 2007. 8(2): p. 115-126.

Read, S., et al., Effectual Entrepreneurship. 2011, London: Routledge.

Rusu, A. and R. Elliott, Work in progress: Smoothing the border between academic and professional

software engineering environment through entrepreneurship. 36th Annual Frontiers in Education,

Conference Program, Vols 1-4, 2006: p. 1591-1592.

Saee, J. and F. Benli, The role of marketing knowledge for Australian ICT based entrepreneurs in

terms of their internationalization strategy. Proceedings of the 8th European Conference on

Knowledge Management, Vol 1 and 2, 2007: p. 829-834.

Sambamurthy, V., A. Bharadwaj, and V. Grover, Shaping agility through digital options:

Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 2003.

27(2): p. 237-263.

Sarasvathy, S., Causation and effectuation: Toward a theoretical shift from economic inevitability to

entrepreneurial contingency. Academy of management Review, 2001. 26(2): p. 243-263.

97

Sarasvathy, S., Entrepreneurship as a science of the artificial. Journal of Economic Psychology, 2003.

24(2): p. 203-220.

Sarasvathy, S., Making it happen: Beyond theories of the firm to theories of firm design.

Entrepreneurship Theory and Practice, 2004. 28(6): p. 519-531.

Sarasvathy, S., Effectuation: Elements of entrepreneurial expertise. 2008: Edward Elgar Publishing.

Sarasvathy, S. and N. Dew, New market creation through transformation. Journal of Evolutionary

Economics, 2005. 15(5): p. 533-565.

Shane, S. and D. Cable, Network ties, reputation, and the financing of new ventures. Management

Science, 2002. 48(3): p. 364-381.

Skinner, G., Investigation of technology-based entrepreneurship and issues with ICT innovation in

Australia. Mmactee' 08: Proceedings of the 10th Wseas International Conference Mathermatical

Methods and Computational Techniques in Electrical Engineering, 2008: p. 179-185.

Tarnacha, A. and C.F. Maitland, Entrepreneurship in mobile application development. 2006 ICEC:

Eighth International Conference on Electronic Commerce, Proceedings, 2006: p. 589-593.

Varis, J., O. Kuivalainen, and S. Saarenketo, Partner selection for international marketing and

distribution in corporate new ventures. Journal of International Entrepreneurship, 2005. 3(1): p. 19-

36.

Vissa, B. and A. Chacar, Leveraging ties: the contingent value of entrepreneurial teams' external

advice networks on Indian software venture performance. Strategic Management Journal, 2009.

30(11): p. 1179-1191.

Waguespack, D.M. and L. Fleming, Scanning the Commons? Evidence on the Benefits to Startups

Participating in Open Standards Development. Management Science, 2009. 55(2): p. 210-223.

Wang, P. and E. Swanson, Launching professional services automation: Institutional

entrepreneurship for information technology innovations. Information and organization, 2007. 17(2):

p. 59-88.

West, J., How open is open enough?: Melding proprietary and open source platform strategies.

Research Policy, 2003. 32(7): p. 1259-1285.

Wiltbank, R., et al., What to do next? The case for non predictive strategy. Strategic Management

Journal, 2006. 27(10): p. 981-998.

Yingyu, D. and W. Ye. The Mechanisms of Learning and the Survival of New Ventures. 2008.

Zackariasson, P. and T. Wilson. Game on: Competition and competitiveness in the video game

industry. 2008.

Zahra, S., B. Matherne, and J. Carleton, Technological resource leveraging and the

internationalisation of new ventures. Journal of International Entrepreneurship, 2003. 1(2): p. 163-

186.

98

Zahra, S.A. and W.C. Bogner, Technology strategy and software new ventures' performance:

Exploring the moderating effect of the competitive environment. Journal of Business Venturing,

2000. 15(2): p. 135-173.

