Cellular Automata and Urban Development

Reinau, Kristian Hegner

Published in:
NORDGI : Nordic Geographic Information

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Cellular Automata and Urban Development

Kristian Hegner Reinau
M.Sc. in Geography
Ph.D. student and fixed-term lecturer at Aalborg University

The Nordic GIS Conference in Helsinki
2nd – 4th of October 2006
Sustainable Urban Development
-Where are we going?

"In general, it is presently recognised that, in order to respond to the idea of sustainability, urban areas have to maintain an internal equilibrium balance between economic activity, population growth, infrastructure and services, pollution, waste, noise, etc in such a way that the urban system and its dynamics evolve internally in harmony, limiting, as much as possible, impacts on the natural environment” (Barredo et. al. 2004, p.65)

- How will cities evolve in the future?
 - 1950s: The first mathematical urban models.
 - 1990s: Urban models based on cellular automata.

- Urban models based on Cellular Automata
 - Method tested on more than 50 cases, but applications to real cities are still quite rare. Method mainly tested on relatively large American and European cities, such as San Francisco, Cincinnati and Dublin.
 - Not tested in a Danish context (fall 2005).

- The research question: Can CA based urban models simulate the growth of relatively small Danish cities?
 - Case study Herning (24757 inhabitants).
 - The consequence of scale?
 - Can CA based urban models simulate the dynamics that are the driving forces behind contemporary urban growth in post-industrial and post-modern cities?
What is Cellular Automata?

- Artificial Life
- "An automaton is a machine that processes information, proceeding logically, inexorably performing its next action after applying data received from outside itself in light of instructions programmed within itself" (Torrens 2000, p. 15)

Example: The dynamic simulated in the example is, that if a cell has 1 or more cells in its Moore neighborhood that are alive, then the cell will become alive in the next generation.
The dynamics simulated in the Herning model

- Trigger factors behind urban development:
 - Economy, Technology, Demography, Politics, Society, Culture and Environment

- Which of these “trigger factors” should be simulated?
 - The exemplary model in the CA literature is (White et. al. 1997)’s model of Cincinnati (1840-1960), which simulates dynamics described in classical economic location theory and classic urban theories.

- From an industrial society to an information society!

- Is a model that simulates dynamics describes in classical economic location theory and classical urban theories capable of simulating the development of contemporary Danish cities?

- The CA based model for Herning simulated three dynamics:
 - Buildings are build near existing buildings.
 - Buildings are build near infrastructure.
 - Some barriers have slowed development in some areas.
The CA model of Herning

- Programmed in Modelbuilder in ArcGIS 9.0
- Uses 7 raster models as input: “Herning 1900”, “Road”, “Railway”, “Railway Station”, “Wetlands”, “Lake” and “Stochastic variable”.
The development of Herning

- Bygnings og BoligRegister, BBR (Buildings and housing register)
 - Vector point model containing information about the location of buildings and some of their attributes. Buildings constructed before a given date can be identified.
 - Problem: Demolished buildings “invisible”!
 - Vector point model converted to raster model with 100x100m cells by “features to raster” operation, showing “urban areas”.
The development of Herning

“Holes” in the city model closed with the following Map Algebra expression:

- $\text{Con}(([\text{Rastermodel}] == 1), 1, (\text{Con}((\text{focalsum}([\text{Rastermodel}], \text{rectangle}, 3, 3) > 4), 1, 0)))$
The development of Herning

- Dispersed “urban areas” in the city model deleted with the following Map Algebra expression:
 - $\text{Con}((\text{Rastermodel} == 0), 0, \text{Con}((\text{focalsum}([\text{Rastermodel}], \text{rectangle}, 3, 3) < 5), 0, 1)))$
The development of Herning

Herning illustrated with 100x100m raster cells

Legend
- Green: Land
- Red: City

Without "holes" and dispersed buildings

Copyright: Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The development of Herning
The development of Herning
The development of Herning

Herning 1920

Legend
- Land
- City

Kilometers

Copyright. Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The development of Herning
The development of Herning
The development of Herning
The development of Herning

Legend
- Green: Land
- Red: City

Herning 1960

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The development of Herning

Herning 1970

Legend
- Green: Land
- Red: City

Kilometers

Copyright. Kort & Matrikelstyrelsen 924-98
Danmarks Miljøundersøgelser
The development of Herning
The development of Herning
The development of Herning
CA based model of Herning
- The Road model
CA based model of Herning
- The Railway model
CA based model of Herning
- The Railway Station model
CA based model of Herning
- The Wetlands model
CA based model of Herning
- The Lake model
How does the models work?

- Calculation of potential deriving from each input model, City as example
 - City Zone 1 Map Algebra Expression:
 - focalsum([Input_City], rectangle, 3, 3) * 0.2
 - City Zone 2 Map Algebra Expression:
 - focalsum([Input_City], irregular, D:\CA_GIS\z2kernel.txt) * 0.1
 - City Potential = City Zone 1 + City Zone 2

Extended Moore Neighbourhood
How does the models work?

- Map Algebra expression for calculation of city-cells after 1. generation
 - Con ((([[Input_City] > 0.5) OR (((Random) / 2) + [CityPot] + [RoadPot] + [WetlandsPot] + [LakePot] + [RailwayPot] + [RailwayStationPot]) > 2.0)))}, 1, 0)

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight inner zone of Neighbourhood</th>
<th>Weight outer zone of Neighbourhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>0.3</td>
<td>0.15</td>
</tr>
<tr>
<td>Road</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Railway Station</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Railway</td>
<td>-0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>Barriers with constant effect on development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Lake</td>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>

Size of stochastic variable 0 < X < 0.5
Potential needed for city development: 2.0
Calibration of weights and boarder values
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Green: Land
- Red: CA Model
- Black: Herning
- Herning 1900
- CA Model Generation 0

(North direction indicated)

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1910
- CA Model Generation 1

N

Copyright. Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser

0 1 2 3 4 5 Kilometers
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning

Herning 1920
CA Model Generation 2

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1930
- CA Model Generation 3

Copyright. Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Green: Land
- Red: CA Model
- Black: Herning

Herning 1950
CA Model
Generation 5

North

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser

Kilometers
The simulation of Herning
The simulation of Herning

The real Herning and the simulated Herning

Legend
- \(\text{Land} \)
- \(\text{CA Model} \)
- Herning
- Herning 1960
- CA Model
- Generation 7

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1960
- CA Model Generation 8

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1960
- CA Model Generation 10

Kilometers

Copyright. Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1970
- CA Model Generation 11

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1970
- CA Model Generation 12

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Green: Land
- Red: CA Model
- Black: Herning
- Herning 1970
- CA Model Generation 13

0 1 2 3 4 5 Kilometers

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1980
- CA Model Generation 15

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning

The real Herning and the simulated Herning

Legend
- Land
- CA Model
- Herning
- Herning 1980
- CA Model Generation 16

N

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning
The simulation of Herning

The real Herning and the simulated Herning

Legend
- **Land**
- **CA Model**
- **Herning**

Herning 1990
CA Model
Generation 18

0 1 2 3 4 5 Kilometers

Copyright, Kort & Matrikelstyrelsen G24-98
Danmarks Miljøundersøgelser
The simulation of Herning
The simulation of Herning

Legend
- **Green**: Land
- **Red**: CA Model
- **Black**: Herning

Herning 2000
CA Model
Generation 20

The real Herning and the simulated Herning
Conclusion

- The CA model were able to simulate the development of Herning in the period 1900-1960 relatively precisely.
 - Industrial city?

- After 1960 there is a larger difference between the model and the real city
 - Post-industrial city?
 - Public Planning since the 1970’s, Gullestrup in the case area is one of few totally planned cities in Denmark.

- The three simple dynamics were able to model the development of the city surprisingly well!
 - Buildings are build near existing buildings.
 - Buildings are build near infrastructure.
 - Some barriers have slowed development in some areas.

- CA based urban models can simulate relatively small cities!

- It is worth while to examine wheter it is possible to incorporate planning and new urban dynamics into CA based urban models!
Further Work

- Development of better models
 - Models which simulates more dynamics
 - Models which builds on better data

- Theory of science
 - What is the scientific foundation of simulating future phenomena’s in a societal context?
 - Is it possible scientifically to predict phenomenons in a social context?

- Comment are welcome!
 - reinau@plan.aau.dk
 - Download project in Danish 140 pages from www.plan.aau.dk/~reinau
References

