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PROFILE 

I grew up in a small town called Hørning, just 

between Aarhus and Skanderborg, mostly known 

for its annual festival in the woods. Being only four 

years of age, I was diagnosed with diabetes mellitus 

type 1, which perhaps unawarely sparked my earliest 

interest in healthcare, that has later become an integral 

part of my life. I was blessed with great teachers in the 

local primary school that inspired my interest in math, 

physics, and human biology, which came naturally to me. I later attended high school 

in Skanderborg to pursue a growing passion for natural sciences. However, high 

school also taught me a hard-won and valuable lesson from a scattering discipline: 

“hard work beats talent when talent does not work hard”.   

 

My discipline was later refined after a gap year, including responsible full-time 

employment at the local supermarket and a two-month stay in Xiamen, China, where 

I experienced an entirely different work ethic than Danish high school standards. 

Foremost, the gap year allowed me to gain perspective on my passions, making my 

curiosity return to inspirational sources of healthcare, math, and human biology. I, 

therefore, applied for Biomedical Engineering and Informatics at Aalborg University.    

 

I got my Bachelor's degree in Biomedical Engineering and Informatics from Aalborg 

University, which also shaped my earliest academic interest in challenging the status 

quo at a higher level. In my Master's in Biomedical Engineering and Informatics, I 

gained a deeper understanding of how applied math could result in better decisions 

from algorithmic thinking – and why healthcare may benefit from solutions relying 

on, e.g., machine learning.  

In the last four years of my life, I have been employed at the Centre for Clinical 

Research at the Regional Hospital in Hjørring. I have been involved in several projects 

concerning machine learning in healthcare, foremost the pioneering work related to 

my Ph.D. about machine learning and hospital-acquired infections, which included a 

conspicuous collaboration between the regional Business Intelligence Unit, the 

Regional Hospital in Hjørring, Aalborg University hospital, and Aalborg University. 

In my experiences from the academic disciplines, I learned that commitment to 

excellence has an additional dimension to the hard-won and valuable lesson learned 

after high school: “working right beats hard work when hard work is not done right”. 

I firmly believe that this lesson invites a talk about the role of machine learning in the 

future of healthcare. 





 

 
   

PREFACE 

In the eyes of the modern world, the flaming hype of machine learning and artificial 

intelligence appears comprehensive. Naturally, these firey sparks have also reached 

the doorstep of healthcare and infection control. Can we, e.g., predict and avoid an 

adverse event before it would have occurred? Can we assist in the surveillance of risk 

factors, provide decision support for optimal clinical therapy, and increase the chances 

of survival and well-being? Can we, by all means, aim for a better outcome in 

tomorrow's infection control than we were able to reach yesterday? The promises of 

machine learning may invite a solution to these questions. However, they somehow 

struggle to find their way into the clinical routine. As a result, their potentials remain 

unresolved – but also, in many cases, remarkably unexplored. 

I was introduced to machine learning in my master’s program at Aalborg University 

under a different wording, namely pattern recognition, which may reveal my 

background as a Biomedical engineer. However, my academic journey with hospital-

acquired infections began later at the Centre for Clinical Research, where I worked 

alongside other researchers and clinical experts, who also undoubtedly shaped the 

perspectives gained in the research field. For instance, I learned that the bridge 

between machine learning and healthcare is, first and foremost, reliant on the 

perspectives of establishing trust. How can the patient trust that adverse outcomes are 

avoided? How can the clinician trust in being equipped with the best tools and trust 

the assistance provided by such? How can the organizational decision-maker trust that 

therapy does not exceed the expected cost? These perspectives inspired my work to 

explore how machine learning models could be developed to control and manage 

hospital-acquired infections and how they may fit the daily clinical routine. 

Hopefully, after you have read this thesis, you will feel inspired by the perspectives 

and ideas we propose. Perhaps you will also better understand the hype of machine 

learning for the prevention of hospital-acquired infections. While the past four years 

have been a privilege, they have not been without challenges, choices, and 

compromises, but every bit of it has made it a journey for which I am truly grateful. 

Overall, I have, in my own opinion, matured into an independent researcher in the 

cross-disciplinary field of biomedical engineering. In this process, I also gained 

insight, and the most profound respect, into the crossed field of medicine, particularly 

hospital-acquired infection control, and data science, particularly machine learning.  

The Ph.D. dissertation kindly received funding from the North Denmark Regional 

Hospital, the Regional Health Innovation Pool (Regionens 

sundhedsinnovationspulje), Marie Jensen og Jensine Heibergs Foundation, and Niels 

Jensens Foundation. This study would not have been possible without this assistance. 
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ENGLISH SUMMARY 

Background: Hospital-acquired infection (HAI) is a common, yet often preventable, 

complication during hospital admission. They are associated with higher mortality 

rates, prolonged lengths of stay, increased hospital expenditures, and considerable 

patient discomfort. Traditional strategies for HAI rely on, e.g., timely preventive 

measures, thorough surveillance, careful usage of indwelling catheters, and rational 

use of antibiotic therapy. However, recent studies report increased incidences, and 

with the emergence of multi-resistant pathogens, negative consequences of HAI will 

likely remain, or even increase, in the coming years.  

Machine learning (ML) models for early identification of patients at risk of HAI are 

suggested to enable timely and targeted preventive strategies for patients in most need. 

With these perspectives, chances of avoiding HAI in the future may increase with a 

resulting advancement to decreased incidence levels – if we can predict them in the 

first place. However, clinicians are often challenged in the interpretation of the 

predictive outcomes provided by the ML models, which may negatively impact the 

adoption into the clinical routine. 

Aim: To explore how ML models can be developed for risk stratification within 24h 

of admission for HAI and how these may fit the clinical routine. Two studies target 

hospital-acquired urinary tract infections (HA-UTIs), and one targets hospital-

acquired bacteremia (HAB). Study I further elucidated model-specific clinical 

explainability perspectives, whereto Study II explored model-agnostic clinical 

explainable methods. Study III addressed feasibility, including a health-economic 

cost-effective analysis, in ML-guided routine replacement of peripheral venous 

catheters (PVC) to avoid adverse HAB instances.  

 

Materials and methods: The studies investigated patient data representing 138.560 

hospital admissions in the North Denmark Region from 01.01.2017 to 31.12.2018. 51 

health socio-demographic- and clinical features were extracted for the purpose. The 

case definitions of HA-UTI and HAB relied on a national surveillance system to 

monitor the frequency of occurrences, called the Healthcare-Associated Infection 

Database (HAIBA).  

For the first study, Bayesian networks are developed on a full- (51 features) and 

reduced dataset (5 features), selected from a combination of expert knowledge and 

machine suggestions. Four methods are applied to compare different structure 

learning approaches: manual expert knowledge, naïve, automatic tree-augmented-

naïve- and Peter-Clark-algorithm. The expectation-maximization algorithm is applied 

for parameter learning.  

In the second study, seven different ML models are developed over a full- (51 

features) and two reduced datasets (10 features), selected from an automated χ2 test 

and manual expert knowledge, respectively. The seven different ML models are 

logistic regression, neural network, Bayesian network, decision tree, random forest, 

gradient boosting, and AdaBoost. The Shapley Additive explanation (SHAP) method 



 

 
   

is applied to support model-agnostic explainability.  

In the third study for predicting the risk of HAB, five different ML models are applied 

to a dataset with 48 categorical and continuous features. The five ML models are 

logistic regression, neural network, Bayesian network, decision tree, and random 

forest. The numbers needed to harm (NNH) and an incremental cost-effectiveness 

ratio (ICER) is used to address the feasibility of the ML-guided routine replacement 

strategy of PVC for the patients in most need. 

Findings: The first study revealed that the structures developed from expert 

knowledge are associated with better domain representation and reached the best area 

under the curve (AUC) of 0.746. Bayesian networks handle missing data well, rely on 

probabilistic reasoning, and enable inspection of the evidence and dependencies, 

which can be associated with supporting model-specific clinical explainability for 

early risk prediction of HA-UTI.  

The second study brought to light that an automated χ2 test favors laboratory results 

in its feature selection, where manual expert knowledge has a better knowledge 

representation with a mix of health-sociodemographics and clinical features. The best-

performing ML model is a neural network based on the full dataset, reaching an AUC 

of 0.758. Model-agnostic explainability is demonstrated with a SHAP summary- and 

forceplot to how the model weights the features over the population and explain why 

a model reaches a given result for a single risk prediction of HA-UTI.  

Lastly, the third study revealed that a random forest model reached an AUC of 0.82 

in risk-stratifying HAB. From a decision threshold associated with providing routine 

replacement of PVC for 20 % of the cohort, an associated NNH is 766 and an ICER 

of DKK 1,440,495.00 per avoidable HAB-related death is reported. Lowering the 

decision threshold in the ML models will also lower the NNH, but with a resulting 

increase in the ICER and vice versa from an increase of the decision threshold.  

Conclusions: The results indicate that explainable ML can predict HAI risk within 

24h of admission, enabling targeted preventive measures and efficient future HAI 

control strategies for patients in most need. The dissertation shows that varied health 

and clinical data can be effectively used in ML models for these predictions. The 

feasibility of ML-guided strategies, e.g., PVC replacement, can be evaluated through 

cost-effectiveness analysis. The developed ML models support model-specific and 

model-agnostic clinical explainability, and may be considered feasible, potentially 

fitting in the era of responsible ML in healthcare. 

 

 

 



 

 

DANSK RESUME 

Baggrund: Hospitalserhvervede infektioner (HI) er almindelige, men ofte 

forebyggelig, komplikationer under hospitalsindlæggelse. De er forbundet med 

forhøjet dødelighed, forlængede hospitalsophold, øget hospitalsudgifter og er tilmed 

til stor ubehag for patienterne. Traditionelle strategier mod HI inkluderer f.eks. 

rettidig forebyggende foranstaltninger, grundig overvågning, forsigtig brug af 

indlagte katetre og rationel brug af antibiotika. Nylige danske studier har dog 

rapporteret en stadig stigende forekomst af HI, hvortil udfordringer med 

multiresistente patogener også bidrager til et øget pres infektionskontrollen. Som 

følge heraf er det sandsynligt at forvente, at de negative konsekvenser fra et forløb 

med HI vil forblive, eller måske endda stige, i de kommende år. 

Modeller kendt fra maskinlæring (ML) til tidlig genkendelse af patienter med risiko 

for HI kan måske muliggøre rettidig omhu og målrettet forebyggelse for patienter med 

størst behov – hvis vi kan forudsige og finde dem i første omgang. Klinikere er dog 

ofte udfordret i fortolkningen af modellerne og deres prædiktive resultater, hvilket 

medfører, at chancerne for adoptionen i den kliniske hverdag falder drastisk. Denne 

iagtagelse er ikke ny og har ledt til voksende evidens og retningslinjer for fremtidige 

perspektiver for ML sundhedsvæsenet, der efterspørger, at udviklingen af kliniske 

ML-modeller i højere grad tilstræber at inkludere klinisk ekspertviden i den 

overordnede udviklingsproces, samt tilbyder en forklaring på deres ræsonnement i de 

kliniske forudsigelser. 

Formål: At undersøge, hvordan forskellige ML-modeller kan udvikles til 

risikostratificering inden for 24 timer efter indlæggelse for HI, og hvordan disse kan 

passe til den kliniske hverdag. To studier er rettet mod hospitalserhvervede 

urinvejsinfektioner (HUVI)  og et studie er målrettet hospitalserhvervet bakteriæmi 

(HB). Studie I belyser yderligere modelspecifikke kliniske 

forklarbarhedsperspektiver, hvortil Studie II kaster lys over modelagnostiske kliniske 

forklarbare metoder. Studie III omhandler gennemførlighed, herunder en 

sundhedsøkonomisk omkostningseffektiv analyse, i ML-guidet rutinemæssig 

udskiftning af perifere venekatetre (PVK) for at undgå uønskede HB-tilfælde. 
 

Materialer og metoder: Studierne undersøger patientdata, der repræsenterer 138.560 

hospitalsindlæggelser i Region Nordjylland fra 01.01.2017 til 31.12.2018. I alt er 51 

sociodemografiske og kliniske variabler inkluderet til forudsigelse af HI. 

Definitionerne af HUVI og HB er baseret på et nationalt overvågningssystem til 

monitorering af frekvenser for hændelser, kaldt Healthcare-Associated Infection 

Database (HAIBA). 

I første studie bliver forskellige Bayesianske netværk udviklet og sammenlignet, der 

trænes på henholdsvis et fuldt- (51 variabler) og reduceret datasæt (5 variabler), 

udvalgt fra en kombination af ekspertviden og maskinforslag. Fire forskellige metoder 

bliver anvendt til strukturlæring over de to datasæt: manuel ekspertviden, naiv, Tree-

Augmented-naive- og Peter-Clark-algoritmen. Expectation-maximization algoritmen 

bliver anvendt til parameterindlæring. 



 

 
   

I andet studie bliver syv forskellige ML-modeller udviklet over et fuldt- (51 variabler) 

og to reducerede datasæt (10 variabler), udvalgt fra henholdsvis en automatiseret χ2-

test og manuel ekspertviden. De syv forskellige ML-modeller er logistisk regression, 

neuralt netværk, Bayesiansk netværk, beslutningstræ, random forest, gradient 

boosting og AdaBoost. Shapley Additive Explanation (SHAP) metoden bliver 

anvendt til at understøtte modelagnostisk forklaring. 

I tredje studie bliver risikoen for HB bestemt ud fra fem forskellige ML-modeller 

anvendt på et datasæt med 48 kategoriske og kontinuerte variabler. De fem ML-

modeller er logistisk regression, neuralt netværk, Bayesiansk netværk, beslutningstræ 

og random forest. Numbers-needed-to-harm (NNH) og en inkrementelt kost-

effektivitet ratio (IKER) bliver brugt til at adressere gennemførligheden af  ML-guidet 

rutinemæssige udskiftningsstrategi af perifær vene kateter (PVK) for de, procentvise 

del af patienterne, der har størst behov. 

Resultater: Det første studie afslører, at strukturerne udviklet fra ekspertviden er 

forbundet med bedre domænerepræsentation og nåede den bedste area under the curve 

(AUC) på 0,746. Bayesianske netværk håndterer manglende data godt, tillader 

probabilistisk ræsonnement og muliggjorde inspektion af evidens og afhængigheder, 

som kan associeres med at understøtte modelspecifik klinisk forklarbarhed til tidlig 

risikoforudsigelse af HUVI. 

Det andet studie viser, at en automatiseret χ2-test favoriserer laboratorieresultater i 

dens variableudvælgelse, hvor manuel ekspertviden har en bedre videnrepræsentation 

med en blanding af sundheds-sociodemografi og kliniske variabler. Den bedst-

performende ML-model er et neuralt netværk baseret på det fulde datasæt, der nåede 

en AUC på 0,758. Model-agnostisk forklarbarhed bliver demonstreret med et SHAP 

summary- og forceplot til, hvordan modellen vægter variablerne, herved hvorfor en 

model når et givet resultat for en enkelt risikoforudsigelse af HUVI. 

Endeligt afslører det tredje studie, at en random forest model nåede en AUC på 0,82 i 

risiko stratificering af HB. Fra en beslutningstærskel forbundet med at levere 

rutinemæssig udskiftning af PVK for 20 % af kohorten med størst risiko for HB, 

medfølger en NNH på 766 og en ICER på DKK 1,440,495.00 pr. undgået HB-relateret 

dødsfald. Sænkning af beslutningstærsklen i ML-modellerne vil også sænke NNH, 

men med en deraf følgende stigning i IKER, og vice versa fra en stigning af 

beslutningstærsklen. 

Konklusioner: Resultaterne af de tre studier indikerer, at forklarbar ML kan benyttes 

til forudsigelse HI-risiko inden for 24 timer efter indlæggelsen, hvilket muliggør 

målrettede forebyggende foranstaltninger og effektive fremtidige HI-strategier. 

Resultaterne viser dertil, at en blanding af sundhedsrelaterede- og kliniske data 

effektivt kan bruges i ML-modeller til disse forudsigelser. De udviklede ML-modeller 

kunne understøtte model-specifik- og model-agnostisk forklarbarhed, hvilket 

potentielt øger deres tilpasning til en klinisk kontekst. Dertil kunne ML-guidede 

strategier til PVK skift potentielt udfordre eksisterende alternativers 

gennemførlighed. Denne afhandlings resultater og fremgangsmåde passer muligvis 

ind i en æra med ansvarlig ML i sundhedsvæsenet. 
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CHAPTER 1. BACKGROUND 

The chapter introduces the theoretical background of this dissertation. First, an 

introduction to the domain of hospital-acquired infections (HAI) and approaches for 

management and control are presented, followed by outlining risk factors and recent 

measures for improved outcomes. Secondly, the perceptions of machine learning 

(ML) in the management and control of HAI are elucidated, including defining 

clinical explainable ML and the perspectives of responsible ML. Finally, the chapter 

outlines the significant challenges of antimicrobial resistance (AMR), emphasizing 

the need for innovative strategies in the future battle against preventable HAIs. This 

leads to the aim of this dissertation. 

 

1.1. HOSPITAL-ACQUIRED INFECTIONS 

HAI can be defined as the subset of infections acquired in the hospital that become 

evident 48h posterior to admission or shortly after hospital discharge [1–3]. They pose 

a major burden to healthcare providers worldwide [4–7] and are associated with high 

mortality rates, patient discomfort and disabilities, extended hospital stays, and high 

attributable costs [3–10]. The European Centre for Disease Prevention and Control 

(ECDC) estimates an average prevalence of 7.1 % of HAI, resulting from ~4,544,100 

yearly episodes of these adverse instances across all European countries [4,5]. In 

Denmark, with a population of  ~5,900,000  inhabitants [11], the prevalence of HAI 

varied between 6.5% and 9.2% from 2009 to 2014 [8], reaching an estimated annual 

~60,000 episodes of HAI across Danish hospitals [12,13]. Figure 1 presents a map of 

Denmark with the distribution of inhabitants over the five regions, the yearly average 

of how many patients with a hospital visit, and how many of those with a stay ≥12h 

in each region (between 2009-2018) [14]. Figure 1 also presents an estimate of how 

many HAI cases that may be expected in a year, calculated by 7.1 % [4,5] of the 

average hospital stay ≥12h in each region: 
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Figure 1. A map of Denmark with the distribution of inhabitants over the five regions, 

the yearly average of how many patients with a hospital visit, how many of those with 

a stay ≥12h in each region, and an estimate of how many hospital-acquired infections 

cases that may be expected a year.1 

 

 

Although it may seem contradictory, hospitals can sometimes be the origin of adverse 

health outcomes [6]. This may be due to several factors contributing to an elevated 

risk of infection for hospitalized patients, including reduced immunity due to illness, 

exposure to a range of medical procedures, and invasive techniques, which can 

provide an entry point for pathogens [2,6].  

While the notion of hospital-acquired is used interchangeably with nosocomial-, 

healthcare-associated-, or simply hospital infection [4,8], community-acquired 

infections (CAI) are used to describe the remaining subset of infections [15]. The 

distinction between HAI and CAI may guide initial awareness of the origins of the 

infections for preventive purposes and, if necessary, the appropriate therapy [16,17]. 

Notably, at least ~20 % of all HAI may have been avoided, e.g., from proper 

 
1 Map modified from: https://rn.dk/genveje/fakta-om-nordjylland/regioner-i-danmark, seen 

April 2023). Hospital-acquired infection (HAI). Modified figure with numbers are self-made. 

https://rn.dk/genveje/fakta-om-nordjylland/regioner-i-danmark
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preventive strategies, significantly decreasing the burden of these adverse outcomes 

and enhancing patient safety [8,18]. In a 2015 systematic review conducted by Zingg 

et al. [5], ten key components were identified to mitigate HAI. World Health 

Organization (WHO) later refined these components in their eight core components 

for infection prevention and control (IPC) guidelines [19–22], which also applies to 

HAI. These components are grouped into four synergistic clusters in this dissertation 

as follows: 

1. Secure a collaborative and fair hospital environment:  

The first cluster emphasizes the importance of fostering a hospital organization 

encompassing diverse expertise, such as nursing staff, infection control-trained 

physicians, laboratory personnel, and data management staff [5,19–23]. A fair 

distribution of ward occupancy should also be considered, as imbalances may 

result in high workloads among essential experts. Insufficient adherence to, e.g., 

hygienic measures can occur more frequently when understaffed individuals are 

burdened with excessive work hours [5,19–23]. A positive organizational culture 

also promotes a collaborative and fair environment, encouraging transparency 

and effective communication between experts and management levels [5,20,21]. 

Inconsistencies in, e.g., written and verbal communication may lead to negative 

consequences for patient safety [5].  

 

2. Ensure the physical settings of the hospital:  

The second cluster focuses on facilitating access to necessary materials, such as 

hand sanitizers and alcohol swaps, and optimizing ergonomics within the hospital 

setting [5,19–23]. This includes providing customized insertion kits for central 

venous catheters and equipping carts with suitable materials [5]. Easing the 

accessibility of necessary materials promotes best-practices adherence [5,19–23].  

 

3. Educate and rely on best practices:  

The third cluster emphasizes the measures of reaching best practices [5,19–23], 

e.g., the implementation of guidelines for proper hygienic measures [24] and 

antibiotic therapy [5,25–27]. While guidelines may not necessarily lead to 

behavioral changes, they may be implemented at the educational level to align 

ideas of therapies and avoid harmful contributions to, e.g., AMR [5]. In addition 

to providing guidelines, team- and task-oriented education and training for staff, 

including hands-on simulations for procedures, e.g., training in catheter 

replacements, may reduce errors that result in adverse outcomes [5,19–23]. 

Standardizing audit procedures are a core recommendation [5,19–23], where 

peers agree on, e.g., guidelines, education, and specific care bundles for catheter 

insertion for optimal outcomes [5]. 

 

4. Welcome assistance:  

The fourth cluster advocates utilizing multifaceted tools and techniques, e.g., by 

welcoming surveillance and feedback mechanisms to monitor the frequency of 
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occurrences and take appropriate measures for IPR [5,8,28]. Multimodal and 

interdisciplinary approaches to IPR [5,19–23], e.g., to utilize various data 

modalities from a diverse management and control strategy [5]. Finally, engaging 

with ‘champions’ of various processes, such as management experts for optimal 

leadership, developers of new technologies, and various implementation 

specialists, may result in better strategic planning for avoiding HAI [5].  

While HAI encompasses a comprehensive list of infection types [3], this dissertation 

will focus on preventing hospital-acquired urinary tract infection (HA-UTI), the most 

common type of HAI [4,29,30], and hospital-acquired bacteremia (HAB), which is 

associated with high mortality rates [31,32]. 

 

1.1.1. RISK FACTORS FOR HA-UTI AND HAB 

HA-UTIs account for ~40% of all HAIs [4,29,30] and are associated with an 

attributable mortality rate of 9-13% [33,34]. Conversely, HABs have a reported 30-

day mortality rate of 25–28 % [8,35] but are less common, with an incidence of 7.4 

per 10,000 hospital patient days [36]. HA-UTI and HAB are further associated with 

extended hospital stays and heightened healthcare costs [4,37–39]. HAB may even 

originate secondary to an HA-UTI [34]. To enhance understanding and facilitate the 

prevention of HA-UTI and HAB, a wealth of research has been devoted to pinpointing 

risk factors and discerning patterns contributing to their incidence [30,40–42]. 

  

The utilization of urinary catheters has been identified as the most significant risk 

factor for hospital-acquired urinary tract infection (HA-UTI) development [41,43,44]. 

A 2012 review conducted by King et al. [41] suggested that a substantial 79.3% of all 

HA-UTIs might have been averted if urinary catheters had not been employed. 

Additionally, patients of advanced age [30,41,44], female sex [41,44], and those with 

comorbidities, such as diabetes mellitus, heart diseases, or neurological disorders, are 

also subject to a higher risk of HA-UTI [41,43,44]. A history of urinary tract infection 

[41,44] and prolonged hospital admissions [41] may also face an elevated risk of HA-

UTI [30,41,43]. A higher American Society of Anesthesiologists (ASA) score, which 

results from lifestyle and patient condition, is also associated with an enhanced risk 

of HA-UTI [41,44]. The use of antibiotics and surgery are associated with a decreased 

risk [41]. Figure 3 illustrates the multifaceted factors that may affect the risk of HA-

UTI: 
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Figure 2. Risk factors for hospital-acquired urinary tract infection. 

 

 

 

 

 

 

For HAB, the usage of intravenous catheters is a significant risk factor, where up to 

14 % of all HAB cases are associated with using a peripheral veinous catheter (PVC) 

[45,46]. Male gender [26], advanced age [26,47], and vulnerable patients with 

immunosuppressant medication or neutropenia [34], having specific comorbidities 

[26,47], or a urinary tract infection (UTI) [34] are also considered at risk of HAB. 

Surgery or procedures [26,34], such as blood transfusions or mechanical ventilation, 

are also at enhanced risk of HAB [34], whereas antibiotics decrease the risk of HAB 

[34]. Figure 4 illustrates the multifaceted factors that may affect the risk HAB: 
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Figure 3. The risk factors for hospital-acquired bacteremia. 

 

 

 

 

 

1.1.2. SURVEILLANCE SYSTEMS  

The healthcare system has undergone a significant digital transformation in recent 

decades [48], opening up new opportunities for the strategy to counter HAI [49]. One 

remarkable example of such an opportunity is the development of comprehensive 

surveillance systems to monitor incidence rates and enable benchmarking between 

hospitals [8,28]. In a review by Sips et al. [28] on surveillance systems for HAI, it is 

signified that assistance by conveying such an overview would not be any better than 

the case definition of what attempted to be tracked. Relying on stand-alone 

administrative data for case definitions of HAI will not be appropriate, whereas 

strategies combining multiple high-quality administrative and clinical data sources 

revealed more consistent results [28]. In Denmark, for example, a recently 

implemented national surveillance system, called Healthcare-Associated Infections 
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Database (HAIBA) [8], registers an HAI if certain administrative-, microbiological- 

and clinical conditions are met, previously described by Gubbels [8], within >48h 

posterior to admission and <48h after discharge, with no HAI occurring 14 days prior 

to a new case of HAI (Figure 4). 

Figure 4. Timeline with stamps for an infection to be included as a hospital-acquired 

infection in HAIBA2.  

 

The list of monitored types of HAI in HAIBA includes HA-UTI, HAB, Clostridioides 

(former Clostridium) difficile infections (CDI), and prosthetic joint infections 

[8,10,50], making their case definitions and registrations in the database suited for the 

purposes of this dissertation. In this context, Gubbels [8] writes on future perspectives 

in their work on HAIBA: 

(1) “The current case definitions and output models form a good basis to build 

further upon, but have by no means reached the end of their potential.” [8] 

 

1.2. MACHINE LEARNING AND HOSPITAL-ACQUIRED INFECTIONS 

The potential benefits of computational mathematical models in utilizing healthcare 

data are considered extensive [51], holding the promises of a more efficient and 

effective healthcare system with improved patient outcomes in general [48,51,52]. 

Traditionally, various expressions are used to describe these data-driven and 

computational approaches in a larger inter-connected ecosystem, including artificial 

intelligence (AI), machine learning (ML), pattern recognition, deep learning, data 

mining, Big Data, and the list goes on [52,53]. Moreover, by integrating these models 

into the healthcare domain, solutions may relate to the notions of biomedical- or 

healthcare informatics, e.g., in the sense of clinical decision support systems (CDSS) 

[48,51] or predictive analytics monitoring [52]. In the book by Dr. Eric Topol in 2019 

called ‘Deep Medicine: how artificial intelligence can make healthcare human again’, 

 
2 Hospital-acquired infection (HAI). Community-acquired infection (CAI). 
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the term deep medicine was also coined as a hybrid expression between deep learning 

and medicine [54], which may also invite a further future expansion in the palette of 

terms. Broadly speaking, the goal for this inter-connected ecosystem of computational 

mathematical models is: 

(2) “To identify patterns in data, and then learn from the identified.” [48] 

With the increased availability of vast amounts of healthcare data [51,55], and the 

perspectives of identifying patterns and then learning from the identified, new 

opportunities may also arise for timely and targeted management and control of HAI 

[49,56,57]. Dependent on the type of task that needs solving, ML is traditionally 

categorized into three types of learning: supervised-, unsupervised-, and 

reinforcement learning  [53,56,57]. Supervised learning refers to ML models trained 

with a known labeled target (e.g., HA-UTI or HAB), whereas unsupervised learning 

refers to ML models trained without such a labeled target [53]. Reinforcement 

learning refers to ML models that learn to make decisions by interacting with the 

environment, e.g., from rewards [53]. Figure 5 visualizes ML and its categories of 

learning, sub-categories and examples of decision support perspectives of in control 

and management of HAI.
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Despite ML models' perspectives on the management and control of HAI, the cross-

disciplinary role is remarkably unexplored and, as a result, not entirely understood 

[49]. Two systematic reviews for ML for infectious diseases by Peiffer-Smadja et al. 

[56] and Luz et al. [57] includes overlapping 60- and 52 studies, respectively, but from 

a broader scope of infection inclusion criteria. The predominant part relies on 

supervised learning (>90 %); the remaining on unsupervised learning, and only a 

small part on reinforcement learning. Most studies (>60 %) are about bacterial 

infections; the remaining are related to viral infections, tuberculosis, fungi, or others. 

The majority of studies are related to risk assessment or various kinds of therapy 

responses, while other studies are explicitly related to resistance, surgical site 

infections (SSI) and other postoperative infections, or specific to HAI [56,57].  

Tang et al. [58] conducted a systematic review of ML specific to antibiotic resistance, 

including 25 studies on their content, but only one study particularly related to HAI. 

A systematic review specific to HAI by Scardoni et al. [49] includes 27 studies, one-

third on HAI in general and the remaining on a specific type of HAI, including a 

majority of overlapping references to Peiffer-Smadja et al. [56] and Luz et al. [57] on 

SSI and sepsis. Quite remarkably, across all meta-analyses, future directions relate to 

exploring the fit and improving the understanding of adaption into the clinical routine 

[49,56–58]. This may, in particular, relate to addressing dimensions of explainability 

and interpretability to establish trust for clinicians in these new technologies [57]. If 

the clinicians are challenged in interpreting the given model contribution, the models 

remain unlikely to reach the daily clinical routines [49,56,57,59–65]. 

 

Studies specific to ML for HA-UTI and HAB are generally rare. Jeng et al. presented 

an approach to predict recurrent urinary tract infections (UTI) [66] using random 

forest (RF), decision tree (DT), logistic regression (LR), support vector machine 

(SVM), and neural network (NN), suggesting that RF reaches the best performance 

for their purpose. Also,  Møller et al. [67] aimed at early prediction of HA-UTI within 

48h of admission, comparing a selected number of ML approaches of what they called 

easily interpretable and having complex interpretation in early prediction of HA-UTI. 

Their recommended DT reached an area under the curve (AUC) of 0.709, whereto 

their best-performing NN reached an AUC of 0.77. Zhu et al.[68] explored ML in 

predicting poststroke UTI risk in immobilized patients from a pipeline of resampling 

techniques for their imbalanced dataset. They compare the performance of various 

ML models, reporting that RF reaches the best performance with an AUC of 0.82, 

also assessing the feature importance of their models, revealing that risk factors of 

pneumonia, glucocorticoid use, female sex, specific comorbidities, advanced age, 

prolonged hospitalization, and catheterization. Other studies on ML models and UTI 

have also been conducted, including Taylor et al.[69] comparing predictive 

performance between seven algorithms for urinary tract infections in the emergency 

department, suggesting XGboost as the preferred approach due to better performance. 

Yelin et al.[70] also demonstrated XGboost in their work, which is compared to LR, 

but to identify antibiotic resistance for UTI. Lastly, Park [71] developed predictive 

models specific to catheter-associated urinary tract infections, suggesting that DT may 

be a better predictive model than SVM and LR for their purpose, and that female 

gender and advanced age are the most significant risk factors.  
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For HAB, Garnica et al. [72] sought to enable timely and targeted preventive measures 

from ML developed over a relatively sparse dataset, which may reflect their reported 

AUCs above 0.90. Other studies have compared the ML model's performance in 

assessing the risk of central line-associated bacteremia [58,59], predicting bacteremia 

without distinguishing between community- and hospital-acquired cases [72–76], or 

whether the ML model could identify patients with bacteremia who met the systematic 

inflammatory response syndrome criteria [77]. However, despite posing a potential 

for ML models in timely and targeted prevention, no study except Garnica et al. [72] 

is specific to HAB.  

Of notice, studies for HA-UTI and HAB rarely address dimensions of explainability 

or feasibility, leaving these critical perspectives [57] poorly understood. 

 

1.2.1. CLINICAL EXPLAINABILITY 

In recent years, various papers have been published that each tells a story of 

explainable ML [60,63,78–85], e.g., to promote trust [59–61], fairness [59,60,86], 

transparency [59,80], accountability [60,63,86,87], informativeness and functionality 

from robustness, reliability or usability [60,82]. However, to pursue explainability, a 

trade-off may have to be addressed with the model performance [78,86], setting the 

stage for a complex assessment of the model's fit into the clinical routine. 

Furthermore, while explainability, interpretability, understandability, and even 

intelligibility are often used synonymously, a universally accepted definition remains 

elusive, leaving the concept somewhat ill-defined [59,82,86]. This dissertation adopts 

the definition in the book by Shaban-Nejad et al. [80] from 2020 called ‘Explainable 

AI in Healthcare’, and refines it specifically for the medical environment with diverse 

expertise, hence defining clinical explainability in ML as:  

(3) “The capacity of a model to be comprehended by clinicians across 

corresponding hospital wards, either through introspection and/or a 

produced explanation.” 

While definition (3) focuses on the heterogenous needs and experiences across the 

hospital organization's diverse areas of expertise, it also reflects the critical 

differentiation between model-specific and model-agnostic explainability [60,82,84], 

which can be further categorized into global- or local-level contexts, depending on 

whether they describe the ML model over a population or a single prediction 

[60,84,86].  

Model-specific techniques involve analyzing the internal mechanics (introspection), 

which only applies to a subset of ML models classes, such as Bayesian network (BN), 

LR, and DT, where one can explore the inner mechanics of the model, e.g., by 

inspecting feature dependencies, model parameters, or the rules that define the splits 

in a tree [60,78,84]. This further enables a hands-on assessment of the ML model 

structures, e.g., to incorporate clinical expert knowledge (heterogeneous needs and 

experiences) in the model's design [63] and potentially address the critical dimensions 
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of causalities [59,60,85,86]. Of notice, Rudin et al. [83] describe these model classes 

as inherently interpretable and highlight their use over models that do not meet these 

qualities, hence being black-box, to avoid bad practices by not understanding the inner 

mechanics of the model, despite being provided with an explanation of their clinical 

reasoning. 

Model-agnostic techniques evaluate a given ML model's predictions as ante-hoc to its 

given result (produced explanation) [60,84,88], which can be applied as an extension 

to any ML model class, including NN and ensemble methods. Model-agnostic 

techniques may be associated with assessments of feature importance [82], e.g., from 

SHapley Additive exPlanation (SHAP)-method [89] local interpretable model-

agnostic explanation (LIME)-method [61], or as counterfactual explanations [65,90]. 

Assessing feature importance in model-agnostic explainability gives a sense of which 

feature has the highest impact on the model's predictions, whereas counterfactual 

explanations provide insight into what changes could lead to a different model 

prediction [65]. Of notice, model-agnostic explainability has the advantage of not 

sacrificing performance by relying on less complex, yet easier interpretable, ML 

models [59]. Figure 6 exemplifies the distinction between model-specific and model-

agnostic explainability at local- and global levels.
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While clinical explainability in ML for the sensitive healthcare domain may be 

obvious [60], no studies have been conducted for such approaches in mitigating HA-

UTI or HAB. Moreover, clinicians may lack confidence, experience, and the vital 

aspects of trust in the predictions of these models [64,91]. As a result, the deployment 

into the clinical routine remains challenging in various steps of developing a model 

[64]. The aspects of explainability should be responsibly considered throughout the 

entire lifecycle of the model, encapsulating the concept of responsible ML [64,92]. 

 

1.2.2. RESPONSIBLE MACHINE LEARNING 

To promote chances of adaption into the clinical routine, the realm of responsible ML 

[64,92] has been suggested as the backbone for a process from the cradle to the grave. 

In this scenario, Wiens et al. [64] define a seven-step process in the paper ‘Do no 

harm: A roadmap for responsible machine learning for healthcare’, which also 

applies to responsible ML models for HA-UTI and HAB.  

The first step is establishing common ground and understanding the environment and 

the ideation. While Ribeiro et al. [61] and Gilpin et al. [93] discussed the why-question 

related to explaining a model prediction, the models fit into the clinical routine, hence 

why do we need the model in the first place, should be answered in addition to how, 

who, when, where and what [80,85,94]. The who-question invites an expectation of a 

multidisciplinary approach with several stakeholders, e.g., clinical staff of diverse 

expertise, ML developers, patients, hospital administration, health economists, 

implementation experts, etc. [64]. This is also the second step of the process of 

responsible ML [64]. Of note, in the review by Scardoni et al. [49] on ML for HAI, 

74 % was the product of multidisciplinary approaches between, e.g., clinical and IT 

researchers, but without presenting model designs, ideas of explainability, or 

dimensions of feasibility. The third step is to inspect the data, e.g., in evaluating 

whether the model may conflict with ethical standards or be subject to bias [80]. The 

fourth step invites rigorous evaluation, which includes assessing how to handle, e.g., 

imbalanced data with missingness, the robustness of case definition (e.g., relying on 

HAIBA), validation approach, and how data may be split while avoiding leakage that 

may lead to overfitting [64]. This step may resolve from traditional best practices in 

ML model development [53]. 

The fifth step is carefully deciding how the ML model output may be available to the 

clinician, e.g., choosing performance metric and explainability approach [64]. McCoy 

et al. [95] further emphasize the need to educate staff to comprehend ML models' 

outcomes. The sixth step suggests deploying responsibilities, which also bridges a 

research environment and implementation into the real-world clinical routine. This 

also includes that the multidisciplinary team members identified in step one are 

responsible for ensuring ethical, moral, and legal pipelines so that an ML model fits 

the environment [64]. The seventh step connects the model to the society's 

governmental regolatories and suggests guidelines for maintaining the model and 

correcting possible errors, or how and when a model may be retrained on updated data 

[64]. Figure 7 presents the process of responsible ML for the aims of this dissertation:  
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1.3. GRAND CHALLENGES 

While HAIs are associated with high mortality rates, patient discomfort and 

disabilities, extended hospital stays, and high attributable costs [3–10], they also pose 

severe challenges regarding AMR, an issue that is anticipated to become increasingly 

critical within the coming years [96]. In this context, ECDC sounded an early warning 

in their report in 2009 called ‘The bacterial challenge, time to react’ [33], wherein 

they emphasized the urgent need to address evolving AMR patterns in Europe. The 

urgency of this situation was further underlined in the 2014 report by O’Niell called 

‘Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations’ 

[97] estimated that by the year 2050, 10 million people will die due to bacterial 

infection and AMR. Notably, this figure exceeds the projected number of deaths from 

cancer by two million [97,98]. Moreover, the impact of these challenges is expected 

to extend beyond the medical sector, spilling over into, e.g., social- and economic 

domains [96,99].  

If the premise of at least ~20 % of all HAIs may be prevented [8,18] – a prevention 

not currently being achieved – it may be obvious that innovative tools are needed that 

enhance the capability to mitigate HAI. This sets the stage for ML in the management 

and control of HAI  [48,49,56,57]. However, despite the promising performances of 

the proposed ML models in HAI, they still struggle to find the daily clinical routine.  

Figure 8. AI-generated illustration by DALL.E 2 from the command A doctor relying 

on screens with computer-generated risk scores for a patient in bed, digital art.  

 

This dissertation explores the development of clinical explainable ML models for 

enabling timely preventive measures of HA-UTI, the most common type of HAI 
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[4,29,30], and the feasibility of ML models in HAB prevention, the HAI associated 

with high mortality rates [31,32]. The ML models are developed from data curated 

from the North Denmark Region. At the heart of this dissertation lies the perception 

that if clinicians do not understand the ML model, it remains unlikely that they will 

trust them, resulting in the unlikeliness of reaching the daily clinical routine.  
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CHAPTER 2. AIMS 

In this dissertation, it is hypothesized that  (1) ML models can be developed that reach 

high performances and still support model-specific clinical explainability, (2) model-

agnostic explainability can be supported for different ML models with different 

performances, and (3) ML models can be developed for guided PVC replacement 

strategy, whereto numbers needed to harm (NNH), and cost-effectiveness address 

vital aspects of gaining insight on feasibility. 

Study I: 

The aim of study I is to compare the performance of a single ML model type, being 

BN complemented for model-specific explainability, trained from different methods 

of structure learning for predicting the risk within 24h of admission of HA-UTI. 

Furthermore, to simplify the BN models with fewer features, a feature selection is 

performed by combining clinical expert knowledge and machine suggestions, which 

is compared to BN models developed over a full dataset of 51 features. Model-specific 

explainability is addressed by discussing the ability to find dependencies in data that 

reflect a domain. 

 

 

Study II: 

Study II aims to compare different ML models' performance in predicting the risk 

within 24h of admission of HA-UTI and how model-agnostic explainability may be 

applied to explain the model predictions. The impact on the performance from 

different methods for feature selection prior to model development is also evaluated. 

The SHAP method is used to explore both global- and local levels of model-agnostic 

explainability.  

 

Study III: 

Study III aims to compare different ML models' performance and feasibility in 

predicting the risk within 24h of admission. Patients at risk of HAB may benefit from 

the routine replacement of PVC, which is suggested to prevent more HAB. In contrast, 

patients not at risk of HAB may be subject to clinical indicated replacement strategies, 

which are suggested to be more time-saving. Feasibility is assessed in the associated 

NNH and the incremental cost-effectiveness ratio (ICER) of implementing routine 

replacement of PVC every 96h when guided by ML risk prediction. 
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CHAPTER 3. MATERIALS AND 

METHODS 

This chapter presents the materials and methods used in all three papers. First, an 

introduction to study designs, data sources and participants, definitions of HA-UTI 

and HAB outcomes, discretization, and the model design for enhanced simplicity are 

presented. These topics set the foundation for all three papers. This is followed by an 

introduction to the materials and methods in Study I, where an ML model with 

characteristics of enabling model-specific clinical explainability in risk prediction is 

explored. Study II presents the comparison of different ML models and how clinical 

explainability can be supported in model-agnostic clinical explainability. In study III, 

different ML models were compared to risk stratify HAB and guide the replacement 

strategy for PVC, which includes exploring the feasibility of such a purpose. 

 

3.1. STUDY DESIGNS 

The retrospective studies conducted in this dissertation are in a collaboration between 

the Centre for Clinical Research at the North Denmark Regional Hospital, the 

Business Intelligence and Analysis Unit in the North Denmark Region, and the 

Department of Computer Science at the University of Aalborg in Denmark. For study 

III, a collaboration is also established with the Danish Center for Health Services 

Research at the University of Aalborg and the Department of Clinical Microbiology, 

Aalborg University Hospital. 

Danish legislation requires no approval from an ethics committee or participant 

consent for registry-based studies. 

 

3.1. DEFINITION OF HA-UTI AND HAB OUTCOMES 

The outcome of HA-UTI in Study I and Study II, and HAB in Study III, are binary 

features in the datasets, available through a collaboration with HAIBA [8,10]. The 

HA-UTI- and HAB definitions in HAIBA are based on a combination of time stamps 

and blood culture findings previously described in detail by Gubbels et al. [8,50]. 

Timestamps for HA-UTI and HAB are presented in Figure 4.  
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3.2. SOURCE OF DATA AND PARTICIPANTS 

Adults between 18 and 100 years of age with a length of stay between 0.1 and 365 

day(s) at North Denmark Regional Hospital or Aalborg University Hospital in 

Denmark from 1 January 2017 to 31 December 2018 are included in the three studies. 

Data are linked using the unique civil personal registration (CPR) number issued to 

all Danish citizens and the timestamps for the hospital admission. A patient might be 

included more than once in our dataset if the patient had experienced more admissions 

at different time points during the two-year study period. Statistical Analysis Software 

Enterprise Guide 8.1 is used for data management.  

 

 

In Denmark, the medical condition leading to hospital admission is registered as an 

A-diagnosis, and if another condition occurs, a B-diagnosis is added for each 

additional condition. Since 1994, diagnoses have been registered in accordance with 

the International Classification of Diseases, Tenth Revision (ICD-10). Diagnoses 

registered before 1994 are registered in accordance with -eighth revision (ICD-8). A 

level of three digits in ICD-10 for A-diagnosis is used to construct an admission cause-

feature. Because External causes of morbidity and mortality and Certain conditions 

originating in the perinatal period are not used for primary cause of admission and 

patients in the dataset are > 18 years of age, respectively, these are excluded from the 

dataset. The ICD-10-codes used for admission causes are presented in Table 1. 

 

Table 1. The cause of admissions and the associated International Classification of 

Diseases, Tenth Revision, codes6 

 

 

#            Cause of admission ICD-10 codes 

   
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Certain infectious and parasitic diseases 

Neoplasms 

Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism 

Endocrine, nutritional and metabolic diseases   

Mental and behavioral disorders 

Diseases of the nervous system   

Diseases of the eye and adnexa 

Diseases of the ear and mastoid process   

Diseases of the circulatory system 

Diseases of the respiratory system 

Diseases of the digestive system 

Diseases of the skin and subcutaneous tissue    

Diseases of the musculoskeletal system and connective tissue  

Diseases of the genitourinary system 

Pregnancy, childbirth and the puerperium 

Certain conditions originating in the perinatal period 

A00 – A99, B00 – B99 

C00 – C99, D00 – D49 

D50 – D99 

E00 – E99 

F00 – F99 

G00 –G99 

H00 – H59 

H60 – H95 

I00 – I99 

J00 – J99 

K00 – K93 

L00 – L99 

M00 – M99 

N00 – N99 

O00 – O99 

P00 – P96 

 
6 The International Classification of Diseases, Tenth Revision (ICD-10) 
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17 

18 

19 

20 

21 

Congenital malformations, deformations, and chromosomal abnormalities 

Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified 

Injury, poisoning, and certain other consequences of external causes 

External causes of morbidity and mortality 

Factors influencing health status and contact with health services 

Q00 – Q99 

R00 – R99 

S00 – S99, T00 – T98 

X60 – X98, Y00 – Y09 

Z00 – Z99 

 

 

The selected comorbidities are inspired by the Charlson Comorbidities Index (CCI), 

whereto the associated ICD-10 for CCI [100–102] and the ICD-8 codes for CCI [102] 

are used to define the included comorbidities in the dataset. In addition, a history of 

UTI is also included for Study I and Study II, with the associated ICD-10- [8,103] and 

ICD-8 codes [103]. The human immunodeficiency virus (HIV) is not included due to 

its rare occurrences. The comorbidities and their associated ICD-10 and ICD-8 codes 

are presented in Table 2.  
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3.2.1. DISCRETIZATION 

Discretization of features is performed in Study I and Study II, whereto age, BMI, 

vital parameters, and laboratory results are included as continuous features in Study 

III. Only the worst measure is included in the discretized dataset. However, 

determining the worst measurement may depend on the degree of abnormality for 

certain vital parameters and laboratory results. This introduces complexity in defining 

discrete levels – for example, temperature measurement is two-sided, implying the 

worst measurement could be either abnormally high or low. Consequently, the worst 

measurement is dictated by the level of abnormality (e.g., a discrete level of '< 35°' is 

deemed worse than '38° - 38.9°'). If two measurements are performed within the same 

day – one at discrete level 3 and the other at level 4 – only the measurement from level 

4 is included because it is deemed worst. In this scenario, determining appropriate 

discrete levels in the dataset presents challenges, such as establishing the proper 

quantity of discrete steps and defining thresholds between them. This dissertation 

employs expert-based knowledge to address these issues, incorporating recent 

literature findings that include pre-existing scoring systems used in intensive care 

units [104]. The discrete levels of the features are presented in Table 4. 

 

3.1. MODEL DESIGNS 

In each study, the ML models aim to facilitate patient risk stratification within the first 

24 hours of admission. This approach serves as an alert mechanism to identify patients 

who could benefit from preemptive measures instituted early in their hospital stay. It 

serves as a strategic tool for enhanced awareness. Figure 10 presents an illustration of 

the model designs.
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3.2. STUDY I: HOSPITAL-ACQUIRED URINARY TRACT INFECTIONS, 

MACHINE LEARNING, AND MODEL-SPECIFIC CLINICAL 

EXPLAINABILITY 

This chapter presents the materials and methods of Study I. With the study design, 

data sources and participants, definitions of HA-UTI outcome, and model design as 

the backbone through all studies, Study I presents an idea of combining expert 

knowledge- and machine feature selection and choice of BN models, which enables a 

discussion of model-specific clinical explainability in the ML model.   

 

3.2.1. FEATURE SELECTION 

Expert knowledge draws from recommendations by two infectious disease 

consultants, supplemented by recent findings on HA-UTI risk factors from the 

literature [30,41,43,44,105,106]. Given their specialized medical background in 

microbiology and infectious diseases, these consultants offer essential insights into 

clinical practices, qualifying them as experts in the field. 
 

An initial feature selection relies on expert-based knowledge, culminating in a full 

feature space that includes admission details, demographics, lifestyle factors, 

comorbidities, vital parameters, laboratory results, and urinary catheters. The fusion 

of expert knowledge with tests of marginal independence between the HA-UTI feature 

and predictive features facilitates the identification of the most significant features 

within the full feature space. Higher p-values indicate a greater likelihood of feature 

independence computed within the Hugin framework, the software for constructing 

the BN models. A feature is included in the reduced feature space if expert knowledge 

deems it significant and the p-value exceeds 0.0005 – a low significance level is 

chosen due to the large dataset size. Otherwise, the feature only remains part of the 

comprehensive feature space. Bayesian Network models 

A BN model, which concisely represents a joint probability distribution, comprises a 

qualitative and quantitative part. The qualitative portion is a directed acyclic graph 

(DAG), with nodes representing random variables and directed edges signifying 

dependency relationships. On the other hand, the quantitative aspect represents the 

dependency strengths via conditional probability tables (CPT) for each variable, 

collectively defining a joint probability distribution. [107] 

 

Eight different BN models are developed and evaluated using four structure learning 

approaches on full- and reduced datasets. The first method utilizes clinical expert 

knowledge, referred to as an expert-based clinical model, while the remaining three 

utilize data learning with varying levels of complexity expressed in terms of allowed 

conditional dependencies. The expectation-maximization (EM) algorithm [108] 

learns the model parameters, i.e., conditional probabilities, in all BN models. This 

involves an expectation step, which includes inference in the underlying model, 

alternated with a maximization step, where intermediate maximum likelihood 

parameter estimates are found based on fractional counts derived from the expectation 
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step [107]. 

 

3.2.2. EXPERT-BASED CLINICAL MODEL STRUCTURE  

The expert-based clinical BN models are built using a three-step process. First, 

clinicians identified dependencies between variables, excluding the HA-UTI target 

node, while adhering to DAG properties. This leads to, e.g., demographics and 

lifestyle factors being linked to comorbidities, which are further associated with 

parents to vital parameters and lab results. For example, BMI is set as a parent to the 

diabetes node and alcohol status to the liver disease node, with diabetes and renal 

disease as parents to blood glucose and creatinine levels, respectively. 

Second, edges from step one are examined for causality. For instance, an edge is 

removed if the edge between nodes is due to another condition (like a worsened triage 

from a disease, which then leads to urinary catheter use, rather than the triage 

worsening which directly causes the catheter use). However,  the edge is kept if it 

correctly depicts the domain knowledge (like GCS influencing the triage). 

Third, a naïve conditional independence assumption is made between predictors and 

the target HA-UTI node for the reduced feature space, and nodes identified as risk 

factors by experts had the edge over HA-UTI in the full feature space model (Table 

4Structure learning from data 

Three approaches for learning BN models from data are compared, whereto the 

underlying algorithms allow increasing levels of complexity in the model structures. 

The three approaches are naïve BN [53,107,109], tree-augmented-naïve (TAN) [110], 

and the PC algorithm [111]. 

 

The naïve BN model assumes conditional independence between all features, given 

the target HA-UTI, resulting in a structure where all edges are directed from the HA-

UTI target node to the remaining nodes in the model [53,107,109].  

The TAN BN extends the naïve BN by introducing a tree structure over the features 

(excluding the HA-UTI target variable), in which each node (apart from the root and 

target node) has two parents [109]. The first step of the TAN algorithm involves 

developing a weighted, fully connected, undirected graph over the features (excluding 

the target, HA-UTI), where the weights of the edges correspond to the mutual 

information between the associated variables, conditioned on the target variable HA-

UTI. Subsequently, a maximum weighted spanning tree is established, preserving the 

edges with the highest conditional mutual information between variables. Since age 

holds the highest mutual information with HA-UTI (Table 3), it is set as the root node, 

and all edges in the spanning tree are directed away from age, thereby producing a 

directed tree structure. Finally, HA-UTI is integrated into the model as a parent to all 

other nodes [110]. 

The PC algorithm [107] is a constraint-based method that relies on local conditional 

independence tests between variables [111]. It starts by forming a fully undirected 

network. In an iterative second step, it conducts conditional independence tests for all 

pairs of features, removing any edges between conditionally independent nodes. 

During this step, it also iteratively searches for V-structures (i.e., a child with two 
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parents) to set as many directions as possible. Finally, in the fourth step, the remaining 

undirected edges are oriented to maintain the properties of a DAG and avoid 

introducing new V-structures [107,111,112]. 
11 

3.2.3. EVALUATING THE MODELS 

To evaluate the performance of the BN models, a Receiver Operating Characteristic 

(ROC) curve, an associated AUC, and a confusion matrix are presented. Model-

specific explainability of the BN models is discussed in the context of simplicity, 

transparency, and the ability to capture clinical conditional dependencies. 

 

3.3. STUDY II: HOSPITAL-ACQUIRED URINARY TRACT INFECTIONS, 

MACHINE LEARNING AND MODEL-AGNOSTIC CLINICAL 

EXPLAINABILITY 

This chapter presents the materials and methods of Study II. With the study design, 

data sources and participants, definitions of HA-UTI outcome, and model design as 

the backbone through all studies, Study II distinguishes by the idea behind the feature 

selection, the training of different ML model types, and the application of SHAP 

summery- and force plots, which enables a discussion of model-agnostic clinical 

explainability in the ML model.   

 

3.3.1. FEATURE SELECTION 

Two feature selection processes are performed to curtail the impact of potentially 

extraneous features and optimize ML models' performance, efficiency, and robustness 

[113], involving both automated χ2-based selection [114] and manual selection guided 

by expert knowledge. The automated feature selection is facilitated using the ML 

environment, scikit-learn (sklearn), version 1.0.2 (https://scikit-learn.org/) [115]. 

Feature selection based on expert knowledge relies on the literature about risk factors 

for HA-UTI [30,41,43,44,105,106] and recommendations by clinical experts. The 

dataset incorporates at least one feature from categories: health socio-demographics, 

 
11 In step 1 of the PC, a fully undirected graph is constructed. In step 2, a conditional 

independence test is iteratively performed for all feature pairs, resulting in an undirected 

network skeleton. In step 3, which happened within the iterating loop in step two, an iterative 

search for V-structures (e.g., a child with two parents) is used to capture as many directions as 

possible. In step 4, if some edges remained undirected, they are directed randomly without 

violating the DAG properties. HA-UTI (hospital-acquired urinary tract infection) and GCS 

(Glasgow Coma Scale) 

https://scikit-learn.org/
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comorbidities, vital parameters, laboratory results, and urinary catheter usage. 

Following feature selection, each of the two pared-down datasets contains ten 

features.  

Finally, the dataset is imputed with the most commonly assessed discrete level for the 

methods that necessitate complete data (NN and LR). The most frequent assessment 

for each metric pertains to the normal/uncomplicated level, e.g., non-smoking, non-

alcoholic, a pulse rate between 50 and 89 beats per minute, an oxygen saturation above 

96%, and P-CRP below 7.99 Mg/L, etc. Missing data are encountered in smoking-, 

alcohol-, and exercise statuses, along with all vital parameters and laboratory test 

results. 

 

3.3.2. MACHINE LEARNING MODELS 

In all, 138,560 unique hospital admissions make up the dataset, which includes 1,877 

instances of HA-UTI. 80% of the dataset is used for training the ML models, 

containing 110,870 (1,484 HA-UTI instances). 20 % of the dataset is used for testing 

the ML models, containing 27,690 (393 HA-UTI instances) unique hospital 

admissions. Data are randomly split between the training- and test sets. 

Seven different ML models are trained, validated, tested, and compared across the full 

dataset and our two reduced datasets (Table 5), culminating in the development of 21 

ML models. Models such as LR, naïve BN, and DT are employed for their model-

specific explainable nature [83]. In addition, a black-box NN and three ensemble 

methods: RF, AdaBoost (AD), and Gradient Boosting (GB), are also examined for 

their potential utility in early risk stratification of HA-UTI. The training of all ML 

models is facilitated by Python's sklearn machine learning package, version 1.0.2 

(https://scikit-learn.org/) [115]. 

The LR models are formulated with L2 regularization, employing the SAGA solver 

and a maximum of 600 iterations. The DT models utilize the Categorical and 

Regression Tree (CART) algorithm [116], utilizing the Gini impurity criterion for 

split quality assessment, optimal split strategy, and an upper limit of eight for tree 

depth. The NN models are built on a feed-forward architecture, trained via the Adam 

solver, and limited to 600 iterations. Each NN is comprised of ten hidden units across 

three hidden layers. The RF models incorporate a maximum of 100 trees (averaging 

used for decision refinement), the Gini impurity criterion for training, and a maximum 

tree depth of eight. The AD models employ the AdaBoost-SAMME.R algorithm for 

boosting, with a limit of 100 trees. The GB models, using the Friedman mean-squared-

error for decision-making, also encompass a maximum of 100 trees. 

 

https://scikit-learn.org/
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3.3.3. MODEL VALIDATION 

A 10-fold cross-validation is performed over the training set for ML model validation 

and parameter tuning. These parameters, guiding the learning process, are adjusted 

according to the mean AUC calculated across the ten folds. 

 

3.3.4. TEST OF PERFORMANCE 

The ROC curve illustrates the trade-off between sensitivity and 1-specificity for the 

ML models. An AUC score is also computed to facilitate a comparative evaluation of 

the model's performance on the test set, which remains concealed during the training 

phase. To supplement the robustness evaluation of the ML models, the mean AUC 

and standard deviation (std) are computed from a 10-fold cross-validation on the 

training set. These results are depicted in parentheses on the ROC curve plots. 

3.3.5. SHAPLEY ADDITIVE EXPLANATION 

The contribution of a feature within SHAP is determined by its corresponding SHAP 

value, a measure utilized to quantify a feature's impact on a specific ML model 

prediction [89]. A summary plot (beeswarm) is used for global model-agnostic 

clinical explainability, whereas a forceplot is employed for local model-agnostic 

clinical explainability. These plots are created using Python's SHAP package, version 

0.41.0. 

The calculation of SHAP values for the models is performed using the 

KernelExplainer, a form of weighted linear regression [89]. Although its application 

may be slower due to the circumvention of model-specific assumptions, 

KernelExplainer serves as a universal explainer, suitable for any ML model type, 

inclusive of naïve BN, which may be incompatible with other explainers [91].  

The summary plot incorporates all 393 admissions wherein patients developed HA-

UTI from the test set. A random selection of one patient with HA-UTI and two without 

HA-UTI is undertaken for the force plot. At the global level, a SHAP summary plot 

delineates the extent of each feature's positive and negative influence across all 

predictions, color-coding high and low values, and ranking feature importance based 

on their contribution. On the local level, a SHAP forceplot elucidates the degree of 

positive and negative impact each feature has on a specific risk prediction. 
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3.4. STUDY III: HOSPITAL-ACQUIRED BACTEREMIA AND 

FEASIBILITY OF MACHINE LEARNING-GUIDED STRATEGY FOR 

REPLACEMENT OF PERIPHERAL VENOUS CATHETERS 

This chapter presents the materials and methods of Study III. With the study design, 

data sources and participants, definitions of outcomes, and model design as the 

backbone through all studies, Study III adds a target feature of HAB, another data 

preprocessing, training of different types of ML models, and addressing the 

multifaceted challenges of feasibility from a paradigm shift in the PVC replacement 

strategy when guided by ML models presented in this study.   

 

3.4.1. DATA PREPROCESSING 

The study cohort is randomly split into 80% for training and 20% for testing. Due to 

the scarcity of HAB cases, oversampling is conducted on the training dataset using 

the RandomOversampler from the imblearn environment [117] version 0.10.1. The 

OneHotEncoder from Python's sklearn ML package version 1.0.2 [115] encodes the 

categorical features in both datasets.  

 

The most frequent discrete levels are imputed for categorical features, while the mean 

value is imputed for all continuous variables. Missing values occur in smoking, 

alcohol, and exercise statuses, as well as in all vital parameters and laboratory results. 

To evaluate the robustness and determine a decision threshold for each ML model, a 

5-fold cross-validation is performed on the training data. 

 

 

3.4.2. MACHINE LEARNING MODELS 

The design of the ML model enables a hybrid solution focused on distinguishing 

patients who might significantly benefit from routine replacement of PVC. In contrast, 

those at a relatively lower risk could proceed with the clinically indicated replacement 

of PVC. The patients that benefit from routine replacement of PVC may be the same 

as being at risk of HAB. 

A NN, LR, BN, DT, and RF are trained for the purpose of this study using sklearn 

[115]. A grid search is performed for all ML models to fine-tune the parameters. The 

NN model, a feed-forward architecture, utilizes the Adam solver, with a hidden layer 

size of 100, an alpha of 4, and a maximum iteration count set to 700. The LR model, 

regularized by l2, employs the saga solver with a maximum iteration count of 700. 

The BN model is trained with the ComplimentNB, which is suitable for a skewed 

dataset [113]. Based on the CART approach [111], the DT model uses the Gini 

impurity criterion, the best splitter, a maximum depth of 5, and a maximum of 5 leaf 

nodes. The RF model, with a maximum of 100 trees that employ averaging to enhance 
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decision-making, utilizes the Gini impurity criterion and forgoes bootstrapping. Each 

tree has a maximum depth of 10, with a minimum of 5 samples required to be in a 

leaf. 

 

In order to enhance the applicability of the ML model by facilitating ML-guided 

routine replacement of PVC for the most vulnerable patients, several decision 

thresholds for pinpointing patient admissions at the highest risk of HAB are assessed. 

Nevertheless, the cost-effectiveness analysis utilizes a decision threshold associated 

with identifying the top 20% of patients at the highest risk as base case values. 

 

 

 

3.4.3. DESCRIPTIVE STATISTICS 

The distribution of hospital admissions with and without HAB for train- and test sets 

are presented. Categorical features are represented in percentages, while continuous 

variables are expressed as a median with corresponding quartiles. 

 

3.4.4. TEST OF PERFORMANCE 

A ROC curve is used to depict the relationship between sensitivity and 1-specificity 

in the ML models, whereto the AUC enables performance comparison between the 

models. The mean AUC and standard deviation over a 5-fold cross-validation are 

included in brackets.  

A confusion matrix disclosing a decision threshold, AUC, TP, FP, TN, and FN for 

decision thresholds identifying 5%, 10%, 15%, 20%, 25%, and 30% of the HAB cases 

is also reported. The NNH, previously outlined by Laupacis et al. [118], is estimated 

for each decision threshold and adapted to the context of ML-guided replacement of 

PVC in preventing HAB. The NNH estimate is calculated by using 70 % of the 

patients that may are expected to have a PVC [119] for the total positive predicted 

cases (TP+FP) divided by the number of expected prevented HAB cases, assuming 

that 14 % of all HAB are related to PVC [45,46], and 86 % of those may be prevented 

by routine replacement of PVC [120]. Additionally, we report on the cost and effect, 

which are affected by the performance of the ML models, and include an ICER for 

each decision threshold. 

 

 

3.4.5. COST-EFFECTIVENESS ANALYSIS 

The construction of a decision tree, distinct from the DT from ML, takes place over 

various clinical scenarios of HAB occurrence, using TreeAge Pro Healthcare 2021 
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(https://www.treeage.com/). This process allows a comparison between ML-guided 

preventive strategy and usual care. The scenarios of the decision tree relying on the 

ML model-guided preventive strategy align with a test-based approach, previously 

described by Tamlyn et al. [121], whereas the counterpart encompassing usual care 

serves as a baseline comparison of the probability of developing HAB.  

The decision tree's population relies partially on the performance test results of the 

ML model with the best performance and partly on estimates accessible from the 

Business Intelligence and Analysis Unit in the North Denmark Region, such as the 

attributable cost of a HAB, and hospital lookups like the cost of a PVC and clinicians' 

salaries. Appendix A presents the methodological considerations in constructing the 

decision tree. Table 6 presents the early cost-effectiveness analysis's probabilities, 

costs, and effectiveness estimates. 

A deterministic one-way sensitivity analysis, represented through a Tornado diagram, 

scrutinizes the impact of variations in input parameter point estimates on the ICER 

[122]. The Tornado diagram orders the inputs based on their effect on the ICER 

outcome. This order depends on the magnitude of the influence on the output measure 

when an input parameter changes, with inputs ranked according to their effect size. A 

red or blue bar signifies the value of one input parameter and how its increase or 

decrease modifies the ICER result. Costs appear in 2022 values in Danish crowns 

(DKK), with future costs discounted annually at 3.5 percent [123].  

 

 

 

 

 

 

 

 

 

 

 

https://www.treeage.com/


 

34 
 

CHAPTER 4. RESULT 

This chapter presents the results of the studies conducted in this dissertation. First, the 

findings of Study I are presented, followed by the findings of Study II and Study III.  

 

4.1. STUDY I: CLINICAL EXPLAINABLE BAYESIAN NETWORK 

MODELS 

Percentages for distributions and missingness for gender, smoking-, alcohol-, and 

exercise status, comorbidities, and urinary catheters, in addition to median and IQR 

for age, BMI, vital parameters, and lab results in training- and test set, respectively, 

for cases with and without HA-UTI, are presented in Table 7 and Table 8.  
The performance from the eight BN models is presented in two ROC curves: one for 

the full feature space and one for the reduced feature space. A confusion matrix is 

presented for comparison of the BN models. Moreover, the BN models are presented 

with nodes and edges, enabling introspection of the BN model



 

3
5
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4.1.1. MODEL PERFORMANCE 

Figure 15 demonstrates the ROC curves over the reduced dataset with only five 

features (Table 4). Figure 16 presents the ROC curves for the BN models developed 

over the full feature space (Table 4). 

 

The reduced expert-based clinical BN model is the best-performing model with an 

AUC of 0.746. The full naïve BN and the reduced TAN BN models follow closely, 

each achieving an AUC of 0.735. Notably, the reduced expert-based clinical and the 

full TAN BN models record the least error rates of 32.29 and 29.70 for the decision 

threshold, respectively (Table 7). It is also worth noting that a model categorically 

predicting no patient at risk of HA-UTI would have a minimal error rate of 1.37%, as 

it would correctly identify all non-HA-UTI cases. Nevertheless, such a model would 

hold no clinical value. 

 

Of the 402 HA-UTI cases in the test set, the reduced naïve BN model identifies 284 

risk patients correctly within 24h of admission, achieving the highest TP rates. 

However, it also records the second-highest false FP, implying a propensity towards 

aggressive risk classification of patients, accounting for its high error rate of 43.55. 

Despite reaching the second-highest TP rate, the full expert-based clinical model 

avoids this high error rate from an elevated FP rate (Table 7). The reduced expert-

based clinical and full TAN BN models resulted in the highest TN rates of 18,294 and 

19,012 and the lowest FP rates of 8,694 and 8,007, which aligns with their high AUCs 

(Table 7). The reduced naïve BN model demonstrates the lowest FP-rate of 77, 

succeeded closely by the full expert-based clinical BN model, which presents an FP-

rate of 93. It may be vital to consider that an FN – not initiating preventive strategies 

for a patient at risk of HA-UTI – is perceived as more critical than an FP, where an 

unneeded preventive strategy is initiated. 

 

The reduced PC BN model has a fair performance with an AUC of 0.720 (Table 7). 

However, it is still second-last in the ranking of BN models. The full PC BN model 

shows a failing performance with an AUC of 0.537, potentially explained by its 

inability to capture vital HA-UTI dependencies, like age and admission cause. The 

PC algorithm may be better suited for disease-specific applications, which also 

impacts the explainability of the BN models, a subject for discussion in the succeeding 

chapter. 

 

4.1.2. MODEL-SPECIFIC CLINICAL EXPLAINABILITY 

BN models have been suggested to convey model-specific clinical explainability by 

introspection, which unfolds in an inspection of the evidence, the graph, and the 

reasoning behind the obtained results [62,126].  
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The naïve BN models do not capture the correct clinical conditional dependencies, 

which is a direct consequence of conditional independence given the target HA-UTI 

variable.  

Despite the TAN BN model capturing edges from the age node to the admission cause-

node, and from the admission cause node to the triage node, the orientation of these 

edges is dictated by the structure of the tree, which directs all edges away from the 

root node (Figure 12). Notably, both the naïve- and the TAN BN models reflect 

simplicity due to the conditional independence assumption (Figure 17 and Figure 18) 

and because they are restricted to one or two parents, respectively. 

The PC algorithm over the reduced feature space (Figure 17) recognizes the admission 

cause, GCS, and urinary catheter node as parents to the HA-UTI node. This could be 

because certain admission causes, such as neurological or renal diseases, can be 

associated with decreased bladder function (increasing the risk of recurrent urine), 

which may elevate the risk of HA-UTI. Severe admissions may also correlate with an 

adverse GCS and an increased likelihood of using a urinary catheter to monitor urine 

output, potentially heightening the risk of acquiring an HA-UTI. However, over the 

full feature space, the PC algorithm fails to capture edges to more essential features 

of age and admission cause, as well as the features of triage and urinary catheter, 

which only form a part of the Markov blanket of the full PC BN model. 

Furthermore, the dependencies within the model do not match the relationships 

expected in the underlying domain, which subsequently affects both the model's 

explainability and performance (Table 7). For instance, according to d-separation in 

the full PC BN model, all comorbidities would be excluded from the risk stratification 

of acquiring HA-UTI if no evidence is provided about the patient's age. This could 

incorrectly imply that all comorbidities are irrelevant if the age is unknown. A 

potential explanation for the PC algorithm's inability to capture correct conditional 

dependencies over the full feature spaces could be attributed to how the admission 

cause was modeled in our study. General algorithms, including the PC algorithm, for 

structure learning in infectious domains, may benefit from having a disease-specific 

dataset for each admission cause. 

 

4.2. STUDY II: PROVIDING INSIGHT OF THE REASONING IN A 

MACHINE LEARNING MODEL 

The performance from the 21 different ML models is presented in three ROC curves: 

one for the expert-knowledge reduced-, one for the χ2
 reduced-, and one for the full 

feature space. Moreover, A SHAP summary- and force plot is presented to 

demonstrate global- and local model-agnostic explainability. 
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4.2.1. MODEL PERFORMANCE 

The ROC curves over the 21 ML models (including their respective AUCs from the 

test and the mean AUC±std resulting from the 10-fold CV) are presented in Figure 

19. 

Figure 19: The Receiver Operating Characteristic curves for the machine learning 

models developed over the three datasets12 

 

 

 
12 Logistic regression (LR), Bayesian network (BN), and decision tree (DT), Neural Network 

(NN), Random Forrest (RF), AdaBoost classifier (AD), and Gradient-Boosting classifier (GB), 

based on the full-, χ2-, reduced-, and expert knowledge-reduced-dataset.  
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The best-performing ML model on the full dataset (51 features), is the NN, achieving 

an AUC of 0.758 (0.756,±0.019). Among the models trained on the reduced datasets, 
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the best-performing is again the NN, based on the χ2-feature selection method, which 

achieved an AUC of 0.746 (0.742±0.023). 

Regarding ML models that may support model-specific explainability, the best 

performance is from the full dataset and the LR, reaching an AUC of 0.752 (0.750, 

±0.018). In contrast, on the reduced datasets, the best-performing model is the LR, 

again based on the χ2-feature selection method, which reached an AUC of 0.74 (0.739 

±0.023). Nevertheless, among all ML models that support model-specific 

explainability, the BN model trained on the dataset reduced by expert knowledge 

shows the best performance. Notably, the BN trained from the dataset reduced via 

expert knowledge, which is associated with superior knowledge representation amid 

the reduced datasets, presents the best performance among all ML models supporting 

model-specific explainability for this dataset. This BN achieves an AUC of 0.735 

(0.747±0.021). Consequently, the BN from the dataset reduced through expert 

knowledge demonstrates the SHAP methods intended for model-agnostic 

explainability. 

 

4.2.2. GLOBAL MODEL-AGNOSTIC CLINICAL EXPLAINABILITY 

Figure 20 illustrates the SHAP summary plot, using the BN model trained over the 

expert knowledge-reduced dataset, for the 393 admissions with patients developing 

HA-UTI.  

Figure 20. A summary plot from SHapley Additive exPlanation of the 393 hospital 

admissions that experienced a hospital-acquired urinary tract infection (using the 

Bayesian Network model trained from the expert knowledge-reduced dataset) in 

Study II13 

 
13 The features in the plot are arranged from top to bottom based on their level of contribution 

to the prediction. A red dot indicates a high feature value, while a blue dot signifies a low feature 

value. The influence each feature value has on the prediction from a specific hospital admission 

is plotted on the x-axis, representing each feature's SHAP value. 
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The feature importance is delineated in a top-down manner, which indicates plasma 

(P)-albumin as the most essential feature in predicting the risk within 24h of admission 

of HA-UTI. This is followed by P-creatinine, P-CRP, and age. Notably, using a 

urinary catheter greatly contributes to the likelihood of HA-UTI development. 

Conversely, diabetes and a history of UTI are found to be the least significant features 

in estimating HA-UTI risk, despite the slightly heightened probability of HA-UTI in 

patients with these conditions. Moreover, within the context of the BN model, lower 

discrete levels of P-albumin are linked with an increased likelihood of HA-UTI. 

Concurrently, both high and low discrete levels of P-CRP and P-creatinine are 

associated with a higher risk of HA-UTI. Interestingly, moderately elevated discrete 

levels of P-CRP and slightly higher levels of P-creatinine seem to mitigate the 

probability of HA-UTI. Lower age is associated with a lower risk of HA-UTI, while 

higher age corresponds to an increased risk. The risk of HA-UTI is slightly higher in 

females compared to males. Finally, high discrete levels of GCS (implying lower 

actual GCS scores), diabetes, and a history of UTI might slightly elevate the risk of 

HA-UTI, albeit these features typically provide minimal contributions. 

 

4.2.3. LOCAL MODEL-AGNOSTIC CLINICAL EXPLAINABILITY 

The SHAP forceplot for a trio of patients – two without HA-UTI and one with HA-

UTI – selected randomly, with their respective data processed through the BN model 

derived from the expert knowledge dataset, are presented in Figure 21. 
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Figure 21. Forceplots from SHapley Additive exPlanation of the three randomly 

chosen patients, two without- and one that experienced a hospital-acquired urinary 

tract infection (using the Bayesian Network model trained from the expert knowledge-

reduced dataset), in Study II14 

 

 

 

 

In the SHAP forceplot, the base value represents the model's output when no feature 

information is available. SHAP values, on the other hand, indicate how each feature 

influences the predicted outcome (f(x)) based on observed data. Features that increase 

the predicted value f(x) are depicted in red, whereas those that decrease f(x) are in 

blue. The bar size in the forceplot corresponds to each feature's SHAP value and is 

arranged according to its contribution, which relies on the specific discrete level 

 
14 Case #1, a female patient in her 50s. At admission, high P-glucose, normal kidney function, 

moderate P-CRP elevation, and absence of a urinary catheter contributed to a lowered HA-UTI 

risk of 1.0% (compared to a 2.40% baseline). The Bayesian Network (BN) model correctly 

predicted actual absence of HA-UTI, marking a true negative. 

Case #2, a male patient in his 40s with diabetes. Moderately high P-glucose and P-CRP levels 

at admission led the BN model to predict an elevated HA-UTI risk of 6.0%, compared to a 2.4% 

baseline. Normal P-albumin level, male gender, normal GCS score, proper kidney function, and 

absence of a urinary catheter helped lower this risk. The BN model accurately predicted clinical 

HA-UTI presence, marking a true positive. 

Case #3, a male patient in his 70s. Despite high age, the BN model predicted a 0.0% HA-UTI 

risk, lower than the 2.4% baseline. High P-glucose and elevated P-CRP levels at admission, 

alongside a high P-albumin level, likely initiated an antibiotic treatment, preventing HA-UTI 

development. The absence of a urinary catheter further reduced the risk. The BN model 

correctly predicted clinical HA-UTI absence, marking a true negative. 

Case #1 

Case #2 

Case #3 



 

43 
 

(Table 3). Only the features with SHAP values exceeding a predetermined threshold 

(set by SHAP) are displayed in the SHAP forceplot. 

 

4.3. STUDY III: FEASIBILITY OF MACHINE LEARNING-GUIDED 

REPLACEMENT STRATEGY OF PERIPHERAL VENOUS CATHETER 

Descriptive statistics present the distributions of cases with- and without HAB 

between the training- and test sets. The performance of the different ML models is 

presented in ROC curves, whereto a confusion matrix also describes the NNH and 

ICER resulting from different decision thresholds, hence assessing different 

feasibility scenarios. 

 

4.3.1. DESCRIPTIVE STATISTICS 

Out of 138,588 hospital admissions that met the inclusion criteria, only 367 (0.26 %) 

resulted in a HAB. After dividing the data, the training set consisted of 110,871 

admissions, including 298 HAB cases, while the test set consisted of 28,017 

admissions, including 69 HAB cases,. 

In the training set, the 30-day mortality rate for patients who did experience a HAB is 

5.32%, while for those who did experience HAB, it is significantly higher at 26.89%. 

The median length of stay for non-HAB patients is 2.2 days [1.0 - 4.8]. Conversely, 

for patients with HAB, the median stay extended to 21.2 days [11.0 - 37.7]. The 

distribution of admission causes, triage, and season for both HAB and non-HAB cases 

in the training and test sets is presented in Tables 8, -9, and -10, respectively. 



 

44 
 

4.3.2. MODEL PERFORMANCE 

The RF model outperformed the others, achieving an AUC of 0.820. Table 11 

provides the confusion matrix for several decision thresholds—5%, 10%, 15%, 20%, 

25%, and 30%. This allows for a comparative analysis of these thresholds, considering 

the AUC, TP, TN, FP, FN, NNH, cost, effect, and ICER across the five ML models.
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The study shows that as more patients are tagged as at risk, the NNH rises linearly, 

reflecting the growth in FP compared to TP. Conversely, the ICER follows a 

logarithmic trend, with high ICER for low decision thresholds reducing for higher 

thresholds. This might be due to the high cost of not preventing HAB, indicating that 

the effect gained outweighs the associated costs when routinely replacing PVC. 

Therefore, balancing NNH and ICER may optimize the practicality and benefits of 

ML risk prediction and PVC replacement every 96 hours. A threshold of 20% may 

strike a reasonable balance in identifying patients who might benefit from routine 

PVC replacement. 

 

4.3.3. FEASIBILITY AND COST-EFFECTIVENESS 

The ML model is more effective at reducing HAB-related deaths per patient, 

averaging a death probability of 0.000629 compared to 0.000041 for standard care. 

Nevertheless, it is also more costly per patient, with an average cost of DKK 4,009.49 

against DKK 3,950.60 for standard care. The ICER translates to DKK 1,440,495.00 

per preventable HAB-related death using the RF model and a 20% risk threshold. 

The Tornado diagram shows that ICER is most sensitive to the number of patients 

screened annually, the anticipated duration of ML model use, and the upfront costs 

(purchase, implementation, development, maintenance, training) of the ML model. 

The Tornado diagram is shown in Figure 4. 
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CHAPTER 5. DISCUSSION 

This chapter presents discussions of the findings of this dissertation. First, the findings 

of Study I are discussed, followed by a discussion of the findings of Study II and Study 

III. The last section of the chapter describes the limitations and strengths of the three 

studies. 

 

5.1. STUDY I: ENABLING MODEL-SPECIFIC EXPLANATION  

The BN models over the reduced feature space aim to promote simplicity by fewer 

nodes and edges than models over the full feature space. Of notice, integrating expert-

based knowledge in both feature selection and model development may promote the 

adaption of the applications of ML models in a daily clinical routine [63,64], in 

addition to enhancing the BN model performance. BN models convey explainability 

by allowing introspection of the evidence, the graph, and the probabilistic reasoning 

behind the obtained results [62,127], which may be further associated with promoting 

transparency, hence model-specific clinical explainability.  

 

5.1.1. INSPECTION OF THE EVIDENCE, THE GRAPH, AND THE 

REASONING BEHIND THE OBTAINED RESULTS 

Study I compared BN structures developed from manual expert knowledge, naïve, 

TAN- and the PC algorithm. However, other approaches could also have been 

considered. For instance, Jakobsen et al. [128] trained the structure of a BN from the 

Greedy-search-and-score algorithm [129] for predicting mortality rates for patients 

with diabetes in the intensive care unit and compared the performance to existing 

Acute Physiology And Chronic Health Evaluation II [130]. While the greedy-search-

and-score algorithm reached remarkable performances in mortality prediction [128], 

the TAN algorithm has traditionally reached great performances within the infectious 

domain [109], favoring this approach for Study I. Also, the perspectives of finding V-

structures in the PC algorithm [111] were considered prone to capture correct 

dependencies with proper inference in the structure, whereto this was also the method 

of choice for Study I. However, the PC algorithm over the full feature space reached 

a structure associated with a failing performance (Tale 7) with an unfortunate large 

CPTs, e.g., the age node with many parents (Figure 18). In this scenario, a greedy-

search-and-score algorithm would have allowed for setting a constraint of maximum 

parents for the nodes, which would solve the issues of large CPTs from the PC 

algorithm.  
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Drawing from studies that highlight causality as a critical factor for explainability in 

ML[59,62,85,131], BN models may be a proper model choice to represent accurate 

conditional dependencies, thereby enhancing model-specific explainability. However, 

a small trade-off persisted between achieving explainability and reaching optimal 

performance for the expert-derived clinical BN. For instance, the nodes for age, triage 

level, and urinary catheter usage were initially expected to be parents of the HA-UTI 

node (not the other way around). In this scenario, higher age may be associated with 

a weakened immune response; adverse triage indicates severe patient condition, and 

urinary catheter use is linked to a higher risk of HA-UTI. However, reversing the edge 

between age, the most significant predictive feature for HA-UTI (Table 4), and the 

HA-UTI node reduced the AUC to 0.743 from 0.746 (Table 5). When all edges 

between the predictive features and the target HA-UTI node were reversed, aligning 

with anticipated domain relationships, the AUC in the performance test of the reduced 

expert-based clinical model dropped significantly to 0.697. These results suggested 

that our expert-based clinical BN model's performance depended on the naive 

assumption of independent relationships between predictive features and the target 

HA-UTI node. This understanding would limit the utility of techniques such as Noisy-

or and divorcing [107], which aim to reduce the number of parents but would not 

change the orientation of the edges. Consequently, we accepted a trade-off between 

performance and model-specific explainability for our expert-based clinical models 

to reach higher AUC with the price of not reflecting entirely accurate dependencies to 

the target node. Of notice, this introspection was possible for BN models, hence 

supporting model-specific explainability.  

 

5.1. STUDY II: PROVIDING A MODEL-AGNOSTIC EXPLANATION  

This study delves into the training, validation, testing, and comparison of various ML 

models for identifying patients within 24h of admission at risk of HA-UTI. 

Additionally, the SHAP analysis facilitated clinical explainability in these ML 

models.  

The NN training over the full dataset was the best-performing ML model. ML models 

were also trained over two reduced datasets, one from manual expert knowledge and 

one automated data-driven method, reaching fair performances while only relying on 

the ten most significant features. The SHAP-method further amplified the BN model's 

global- and local model-agnostic explainability, providing clinical reasoning behind 

the ML model's risk prediction. 

 

 

5.1.1. THE IMPORTANCE OF THE CLINICAL FEATURES 

The two feature selection methods (manual and automatic) agreed on the following 

four features as most essential for risk stratifying within 24h of admission for HA-
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UTI: age, urinary catheter, P-CRP, and P-albumin (Table 5). While age and urinary 

catheter are well-established HA-UTI risk factors [41,43], the inclusion of P-CRP and 

P-albumin may reflect the generic clinical nature of these features and the ML model 

design. For instance, P-CRP [106] and P-albumin [105,106,132] are broad 

biomarkers, indicating both chronic and acute diseases, thus suggesting a connection 

to the patient's general health status at admission, contributing to the HA-UTI risk 

assessment within 24h of admission (Figure 10). 

In the χ2-based feature selection, high χ2values for features such as cause of admission, 

a total of comorbidities, and B-lactate suggest a significant difference between 

expected and observed counts. This implies that these features have a greater 

dependence and may be better predictors of HA-UTI.  

On the other hand, the expert knowledge-reduced dataset includes gender, diabetes, 

UTI history, GCS, and P-glucose, which are absent in the χ2-reduced datasets (Table 

5). Each of these features is associated with recognized risk factors for HA-UTI 

[41,43,133]. High P-creatinine levels, indicative of impaired kidney function, are also 

recognized as a UTI risk factor [105,134]. The GCS assesses the patient's mental status 

and may be influenced by chronic or acute conditions [135] associated with an 

increased risk of UTIs. P-glucose levels can indicate diabetes, stress-induced 

conditions, insulin sensitivity influenced by fever, or kidney damage, which could 

elevate the risk of HA-UTI. Proper glycemic control may be crucial for preventing 

HA-UTI [136]. It is worth noting that while the χ2-reduced datasets lean towards 

laboratory results, the expert knowledge dataset incorporates a broader range of health 

socio-demographic and clinical data (Table 5). 

 

5.1.2. THE BALANCE OF PERFORMANCE AND CLINICAL 

EXPLAINABILITY 

In comparison to study II, Møller et al. [67] reported that their highest-performing ML 

model for predicting HA-UTI risk within 48 hours of admission was a NN model, 

achieving an AUC of 0.770. However, because of the opaque nature of NN models, 

they advocated for the more interpretable DT model, which attained an AUC of 0.709. 

The best-performing DT model in Study II was derived from the χ2-reduced dataset 

and achieved an AUC of 0.716. However, LR- and BN models,- associated with 

supporting model-specific explainability, outperformed DTs on all datasets (Figure 

19). Model-agnostic explainability at both global- and local levels was demonstrated 

to enhance the clinical explainability of the ML models further.  

The approach in Study II aligns with the approach of Deshmukh et al. [137] and 

Stenwig et al. [91], who utilized SHAP forceplots and SHAP summary plots for local 

and global model-agnostic interpretability in predicting mortality in intensive care 

units. Moreover, a recent Danish study by S. Lauritsen et al. [138] employed the same 

SHAP methods for the early detection of acute illness. Notably, the SHAP library 

provides many visualization techniques, offering various visual explanations for 
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global and local model-agnostic approaches. Future research could explore how 

different plots contribute to the comprehension of clinical reasoning behind ML 

models' outputs or how SHAP explanations might differ from other model-agnostic 

methods, such as Local Interpretable Model-Agnostic Explanations (LIME) [61]. 

Finally, the SHAP method can be instrumental in assessing the potential clinical 

implications of a machine learning model's recommendations. For instance, in the case 

of patient 3 (Figure 21), a high P-CRP level results in a blue bar in the SHAP forceplot, 

indicating a negative influence on the prediction of HA-UTI risk. This may imply that 

the patient underwent some form of treatment, such as antibiotic therapy, during their 

hospital stay. Therefore, a high P-CRP level might be construed as a surrogate marker 

for 'administered antibiotic therapy' rather than indicative of a 'higher risk of 

infection', which would explain the negative impact manifested in the SHAP 

forceplot. Of note, the data on antibiotic treatment was not available. 

 

5.1. STUDY III: A HYBRID REPLACEMENT STRATEGY FOR 

PERIPHERAL VENOUS CATHETER  

The ML models in this study were able to predict the risk of HAB within 24 hours of 

admission. By setting a decision threshold to identify the top 20% of patients at the 

highest risk of HAB, 72.46% (sensitivity) of all HAB cases were identified within the 

first 24h of admission using an RF model (AUC of 0.820). Suppose these 20 % of the 

cohort were identified to benefit from routine replacement of PVC to avoid HAB, then 

the NNH was 766 for avoiding one HAB. Of notice, this was significantly better than 

recent research suggesting an NNH of approximately 3500 for a strategy entirely 

dependent on routine replacement of PVC for HAB prevention [120].  

Considering the costs, the difference between standard care (DKK 3,950.60) and the 

ML-guided routine replacement of PVC every 96 hours [9] (DKK 4,009.49) is a minor 

increase of DKK 60.13 per admission. The cost-effectiveness analysis demonstrated 

an ICER of DKK 1,440,495.00 per avoidable HAB-related death for the RF model, 

given the decision threshold that labels the top 20 % as HAB-risk patients. Ultimately, 

the cost-effectiveness of this ML model hinges on decision-makers willingness to pay 

for each avoided HAB-related death. 

Patients who were male or of an older age were found to have an increased risk of 

developing hospital-acquired bacteremia (HAB). Those admitted due to neoplasms or 

diseases of the digestive system also had a higher percentage of HAB occurrences. 

This could potentially reflect the higher percentages of patients with comorbidities, 

e.g., cancer, leukemia, and lymphoma, amongst those who developed HAB. Triage 

indicated that patients who developed HAB had a higher severity of illness than those 

without HAB. Seasonality also appeared to play a role, with slightly increased risks 

observed for patients admitted during the fall or winter compared to those admitted in 

spring or summer. Regarding clinical measures, P-creatinine and P-CRP levels 
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showed a significantly higher median (and quartiles) for HAB cases, indicating that 

these measures may be key risk indicators. 

 

5.1.1. RISK STRATIFICATION OF HOSPITAL-ACQUIRED BACTEREMIA 

The ML models in this study were designed to support decision-making within the 

first 24 hours of hospital admission, enabling the early implementation of preventive 

strategies against HAB. This approach aligns with the work of Parreco et al. [139], 

who used LR, GB, and NN to predict central line-associated bloodstream infection 

based on socio-demographic and clinical features from the MIMIC-III database [140]. 

While their LR model had the highest AUC of 0.722, it lacked sensitivity, a limitation 

they acknowledged. Furthermore, they did not discuss how the model's low sensitivity 

might affect clinical intervention or cost-effectiveness. 

Meanwhile, Mahmoud et al. [69] used several ML models, including NN, LR, BN, 

DT, RF, and SVM, for the early identification of bacteremia. Their LR model, using 

Synthetic Minority Over-sampling Technique for imbalanced data, achieved the 

highest sensitivity at 31%, with a specificity of 73%. The RF model in Study III, in 

contrast, achieved a sensitivity of 72.46% and a specificity of 76.34% when using a 

decision threshold to identify the top 20% of patients at high risk for HAB and 

applying random oversampling. 

Garnico et al. [72] achieved an impressive AUC of 0.93 with a sensitivity of 87.4% 

using SVM, RF, and k-nearest neighbor in their work predicting HAB. However, their 

dataset was relatively small and consisted of 117 features, potentially making it 

susceptible to overfitting. Despite recognizing the potential cost benefits of ML for 

predicting HAB, they did not consider cost-effectiveness in their model. 

Finally, Beeler et al. [141] trained an LR and an RF for real-time prediction of 

CLABSI, providing a new daily prediction and achieving an AUC of 0.79 for LR and 

0.82 for RF. While their work specifically targeted CLABSI rather than HAB, the 

concept of providing updated risk predictions every 24 hours could potentially be 

incorporated into our models. However, within 24 hours of admission, predisposing 

factors for HAB, such as male gender, higher age, or admission due to neoplasms or 

diseases of the digestive system, would already be captured, with only clinical features 

subject to real-time updates.  

 

5.1.2. CLINICAL INDICATED- AGAINST ROUTINE REPLACEMENT 

STRATEGIES 

Whether to replace PVC based on clinical indication or a routine basis is widely 

debated in the clinical context [119,125,142–146]. Some traditional, often older, 

studies suggest that replacement based on clinical indication is superior, as it does not 

significantly alter the incidence of HAB while reducing economic cost, e.g., being 

less time-consuming [119,142,143]. However, more recent studies suggest a shift in 
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the best-practices, proposing that routine replacement may prevent more cases of 

HAB [125,146]. Nonetheless, the feasibility of routine replacement may be 

questioned due to the associated increase in time and cost and the challenge of 

implementing this in clinical practice, especially considering the low incidence of 

HAB [125,146]. A study by Meirson et al. [120] estimated an NNH of around 3500 

for a strategy that relies entirely on routine PVC replacement to prevent HAB. 

Interestingly, Study III proposes a hybrid solution that can significantly reduce the 

NNH by targeting only those patients at high risk of HAB who might benefit from 

routine PVC replacement, a strategy enabled by ML risk prediction. 

The estimated cost of an admission involving HAB in the North Denmark Region was 

DKK 57,542 (€7,692.78), compared to the usual cost of an admission without HAB 

at DKK 3,782 (€505.61), resulting in an attributable HAB-related cost of 

approximately DKK 53,760 (€7,187.17). This was notably lower than the mean costs 

reported by Riu et al. [36] in a 2016 study from Spain, which were DKK 193,664.68 

(€25,891) for admissions with HAB and DKK 50,490 (€6,750) for usual care, leading 

to a higher attributable cost of approximately DKK 143,174.68 (€19,141). Other 

studies have estimated even higher HAB-related costs, ranging from DKK 197,789 

($29,000) [35,147] to DKK 327,360 ($48,000) [148]. The lower estimated costs in 

this study could lead to underestimating the potential savings from initiating routine 

replacement of PVC guided by ML risk prediction. Moreover, it may lead to 

overestimating the ICER of avoiding a HAB-related death due to the low attributable 

cost of HAB. 

The three main factors influencing the overall cost were the number of patients 

screened each year, the time frame from which the model is expected to be used, and 

the estimated costs of implementing the ML model (Figure 24). The annual cost of 

implementing, maintaining, and training staff for the ML model was estimated to be 

DKK 750,000 (€100,267.38), an estimate with considerable uncertainty. Higher 

estimated costs would result in higher attributable costs and hence a higher ICER, 

whereas lower costs would result in the opposite. Notably, factors such as increased 

time consumption, higher salaries, and using more PVCs did not significantly impact 

the ICER. Also interestingly, the number of FN cases had a greater influence on the 

ICER than the number of FP cases, indicating that the sensitivity of the ML model has 

a more significant effect on the cost-effectiveness than the specificity (Figure 24). 

 

5.2. STUDY LIMITATIONS AND STRENGTHS 

In Study I, only one type of ML model was explored for risk stratification of HA-UTI, 

yet from different structure learning methods, and for the additional purpose of 

elucidating model-specific clinical explainability. Study II presented a horizontal 

view of evaluating different types of ML models in risk stratification of HA-UTI and 

described both global- and local model-agnostic clinical explainability, but did not 

delve into model-specific explainability like Study I. Study III changed its purpose to 

risk stratification of HAB, also from different ML models, but without considering 
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expert knowledge or explainability, yet to provide insight on cost-effectiveness and 

feasibility. While each study was limited to its respective purpose, they may 

complement each other by shedding light on clinical explainability for risk 

stratification of HAI, which also includes an assessment of the feasibility for such a 

purpose. Also, they were subject to a similar model design, which intends to promote 

simplicity. In this scenario, predicting adversities that happen >48h after admission 

within the first 24h can be challenging as various factors might influence the outcome 

between prediction and the occurrence of the adverse event (Figure 10). However, 

promptly identifying patients who are at risk is of substantial clinical importance, 

enabling immediate preventive actions, such as reducing the length of potential 

catheterization or assisting in the early suspicion of HA-UTI, or deciding on 

replacement strategies for PVC in avoiding HAB. Notably, the early guidance by risk 

assessments in the studies presented in this dissertation may be close in spirit to the 

purpose of MiBAlert in Denmark, suggesting that a patient who has experienced a 

multi-resistant pathogen within a particular time window (varying between 

pathogens) could be subject to isolation [149]. Providing these early risk assessments 

may enable timely and targeted preventive measures for HAI in the future. 

 

While the HA-UTI- and HAB case definitions utilized in this research are deemed 

highly reliable [26], the included comorbidities rely solely on ICD-8 and ICD-10 

codes (Table 2), sometimes used for reasons other than recording disease history. 

Consequently, the dataset may occasionally encounter a negative case, such as 

diabetes or a history of UTI, that should have been identified as positive. This 

oversight could have improved performance or explained a more accurate underlying 

pattern. Additionally, the dataset did not incorporate information regarding antibiotic 

therapy, an established risk factor for HA-UTI [41] and HAB [34]. Other therapies, 

like PVC for Study III, could have also influenced the outcomes. For instance, whether 

patients had PVC could have reduced the dataset by approximately 30% [119]. 

However, it might have also eliminated patients that could introduce noise to the data. 

If these data become available in the future, the performance of the ML models 

presented in this dissertation may likely improve. 

For the NN and LR models in Study II, which require a complete dataset, missing data 

were handled by imputing the most frequent value for each feature. For Study III, 

mean values were imputed for the continuous variables. However, in a scenario where 

clinical justification is required, this approach could result in faulty conclusions for 

HA-UTI risk prediction, as it relies more on approximations than precise clinical 

measurements. This shortcoming could, e.g., affect the results of the SHAP analysis 

of Study II. Conversely, the BN and tree-based ML models are not dependent on 

datasets with imputed values. Clinicians should judiciously interpret future 

applications of clinical explainable ML models in infection control, as they may 

suggest decisions from another underlying and clinically relevant pattern than those 

initially intended. 

 

In Study III, the feasibility of ML models was assessed in an early cost-effectiveness 

analysis. However, feasibility can be a multifaceted challenge that extends beyond 
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purely economic considerations and NNH. For instance, the time required for routine 

replacement of PVC might correlate to allocating staff hours from a constrained time 

resource in a high-pressure clinical environment. This allocation could even differ 

between hospitals. In such circumstances, changing preventive strategies might not be 

feasible due to insufficient staff hours, even if the overall cost is not a problem. A 

potential solution to this challenge might involve lowering the decision threshold of 

the ML models highlighted in this study, such as 5-10% (Table 11). This would mean 

fewer patients would be designated at-risk, reducing the associated NNH. As a result, 

the number of TP might decrease due to a less time-consuming strategy, but with a 

higher number of FN and an increased ICER for preventing HAB-related deaths. This 

flexibility in setting different decision thresholds in a clinical context could potentially 

enhance the feasibility of an ML-guided strategy for preventing HAB. 

 

Lastly, while the ML models presented in Study I, -II, and -III may potentially 

enhance timely and targeted preventive measures of HAI in the future, they might 

only be considered in balance with the remaining eight core components of IPC 

guidelines suggested by WHO [19–22]. This perception is core to understanding the 

ML models fit into the clinical routine. 
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CHAPTER 6. CONCLUSIONS  

This dissertation evaluates the use of clinical explainable ML models for risk 

stratification within 24h of admission for HA-UTI and the feasibility of an ML-guided 

replacement strategy of PVC in avoiding HAB. This enables timely and targeted 

preventive and therapeutic strategies for patients in most need.  

 

Study I and -II presented seven different types of ML models in risk stratification of 

HA-UTI. Predictive features include data on admission detail, demographics, lifestyle 

factors, comorbidities, vital parameters, laboratory results, and procedures. 

Probabilistic BN models were used to delve further into model-specific clinical 

explainability, and the SHAP method was used to elucidate model-agnostic clinical 

explainability. Three types of feature selections were conducted, one with 

concatenating expert-based knowledge and p-values on the test of marginal 

independence, one with automated χ2, and one relying solely on expert knowledge.  

All feature selection approaches recognized age and urinary catheter as essential 

features for risk stratification of HA-UTI within 24h of admission. Two feature 

selection approaches identified admission cause, GCS, P-albumin, and P-CRP as the 

most essential features. One feature selection approach recognized gender, triage 

level, diabetes, History of UTI, B-thrombocytes, P-glucose, B-hemoglobin, P-

creatinine, P-lactate, and P-monocytes as most important for risk stratification of HA-

UTI within 24h of admission. 

Seven out of eight BN models in Study I reached a fair AUC between 0.720 and 0.746 

while supporting model-specific. The reduced expert-based clinical BN model 

reached the highest AUC in Study I and was further associated with the best reflection 

of dependencies in the domain. The different ML models in Study II reached an AUC 

between 0.707 and 0.758. The NN over the full feature space reached the highest 

AUC. However, to promote simplicity with fewer features from a reduced dataset 

associated with better knowledge representation and from an ML model that enables 

model-specific explainability, the BN model developed over the expert-knowledge 

reduced feature space was suggested for further SHAP analysis (AUC of 0.735). The 

SHAP summary plot visualized a ranked contribution of each feature, dependent on 

the feature values, for the part of the cohort that experienced an HA-UTI.  The SHAP 

forceplot visualized the impact of the features of the risk stratification of a single 

patient. 

Study I and -II contributes to the ongoing debate on the balance between performance 

and explainability between ML models [62,78,84,86,89,137,150,151] – at least for 

model-specific explainability for risk stratification within 24h of admission for 

acquiring HA-UTI. Interestingly, no significant compromise in performance was 

found between ML models that support model-specific explainability and those that 

do not. This aligns with the recommendation of Rudin [83] of using ML models that 

facilitate model-specific explainability, particularly in sensitive healthcare 

applications. 
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Study III, which shares the model design with Study I and -II, introduced five ML 

models that identify patient admissions with the highest risk of HAB within the first 

24h of admission. These patients are most likely to benefit from the routine 

replacement of PVC. The remaining cohort may continue with usual care based on 

clinical indications, which could be a slightly more time-saving approach [142]. The 

ML models reached AUCs between 0.69 and 0.82 in the test, with the best-performing 

ML model being the RF. From a decision threshold that labels the top 20 % as HAB-

risk patients, the NNH of relying on a routine replacement strategy for these risk 

patients of PVC was 766 (compared to the literature suggested 3500 over the entire 

cohort), with an ICER of DKK 1,440,495.00 for avoiding a HAB-related death. 

Notably, the concepts put forward in Study III could suggest a potentially significant 

shift in the traditional debate of routine versus clinically indicated replacement of 

PVC. Instead, we might move towards a risk-dependent clinical strategy to prevent a 

higher number of HABs, guided by the data-driven mechanisms of ML models. This 

method may also be feasible when considering the associated NNH and costs. 
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CHAPTER 7. FUTURE PERSPECTIVES  

The future direction for this dissertation's clinical explainable ML models could be to 

reach implementation. Inspiration for this could be taken from the realm of 

responsible ML in healthcare [64,92]. However, further research is required to fully 

grasp the role of ML, its clinical explainability, and its feasibility in future infection 

control for HA-UTI and HAB. Ultimately, the aim is to benefit future patients by 

mitigating these adverse outcomes. 

Perspectives of not restricting the model design to a simple risk stratification approach 

within 24h of admission may invite ideas of dynamic BN models to capture a potential 

development in some features over time. It would also be interesting to see how this 

may impact the model-specific clinical explainability when the model complexity 

may increase from multiple time slices in a dynamic setting. Also, other model-

agnostic approaches, e.g., LIME or counterfactual explanations, may be explored and 

compared to SHAP at a research level, but also how these explanations may – or may 

not – assist the clinical in interpreting the suggestions for their given daily routine. 

  

The costs associated with HAB are based on Danish data from the Business 

Intelligence and Analysis Unit in the North Denmark Region and hospital lookups, 

and they might be underestimated. This was, e.g., due to considering only within-

hospital costs and not accounting for readmission costs, potential rehabilitation, etc. 

Likewise, the effect was based on avoiding HAB death, but other effects could also 

have been encountered, such as HAB-related ventilator dependence and renal failure 

[152] or quality-adjusted life years (QALY). Future studies on the cost-effectiveness 

of preventing HAB could benefit from more comprehensive definitions of what 

should be included in assessing HAB costs. For instance, it might consider types of 

antibiotic therapy, more medical staff involvement leading to increased salary costs, 

potential rehabilitation, etc. This broader approach might also help elucidate why the 

costs in this study could be underestimated. 

 

Lastly, the processes of developing and implementing clinically explainable ML 

models for HAI could draw inspiration from other fields, e.g., the interplay between 

innovation, strategic idea portfolios, and XAI. In this scenario, inspiration may be 

found in the work of Jakobsen et al. [153]. For instance, while strategic idea portfolios 

relate to ensuring the innovation process of constructing the best ideas, ensuring 

absorptive capacity and pursuing blindspotting, these perspectives may be similar to 

the hopes of ensuring the process by the steps of responsible ML. Also, similarities 

between strategic planning- and explainability methods, such as the Forcefield [154] 

and SHAP summary plots [89], may inspire how others use the weights of feature 

contributions to reach informed decision-making. Future studies on clinical 

explainable ML for HAI may benefit from pursuing multidisciplinary approaches 

across different fields of expertise to explore how ML models may fit the remaining 
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eight core components of the IPC guidelines proposed by the WHO [19–22], hence 

increasing our understanding of how ML models may fit the daily clinical routine.  
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Summary 

Background: Machine learning (ML) models for early identification of patients at risk of hospital-acquired urinary tract 

infections (HA-UTI) may enable timely and targeted preventive and therapeutic strategies. However, clinicians are often 

challenged in the interpretation of the predictive outcomes provided by the ML models, which often reach different 

performances. 

Aim: To train ML models for predicting patients at risk of HA-UTI using available data from electronic health records at 

the time of hospital admission. We focused on the performance of different ML models and clinical explainability. 

Methods: This retrospective study investigated patient data representing 138.560 hospital admissions in the North 

Denmark Region from 01.01.2017 to 31.12.2018. We extracted 51 health socio-demographic and clinical features in a 

full dataset and used the χ2 test in addition to expert knowledge for feature selection, resulting in two reduced datasets. 

Seven different ML models were trained and compared between the three datasets. We applied the SHapley Additive 

exPlanation (SHAP) method to support population- and patient-level explainability. 

Findings: The best-performing ML model was a neural network based on the full dataset, reaching an area under the 

curve (AUC) of 0.758. The neural network was also the best-performing ML model based on the reduced datasets, 

reaching an AUC of 0.746. Clinical explainability was demonstrated with a SHAP summary- and forceplot. 

Conclusion: Within 24h of hospital admission, the ML models were able to identify patients at risk of developing HA-

UTI, providing new opportunities to develop efficient strategies for the prevention of HA-UTI. Using SHAP, we 

demonstrate how risk predictions can be explained at individual patient level and for the patient population in general.  

 

Introduction 

Hospital-acquired urinary tract infection (HA-UTI) is a common yet often preventable complication during hospital 

admission [1]. HA-UTI can lead to prolonged length of stay [2], has an attributable mortality estimated to be 9–13% [3,4], 

and is associated with increased hospital expenditures [2]. Different strategies for control and management of HA-UTI 

have been widely implemented [5], e.g., preventive hygienic measures [6], urinary catheter care bundles [7], and rational 

use of antibiotics [8]. However, the incidence of HA-UTI remains continuously high, and the negative consequences of 

HA-UTI will likely increase in the coming years due to the emergence of multi-resistant urinary tract pathogens [9,10]. 

The need for new tools in the control of HA-UTI is obvious. 
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With the digitalization of the healthcare system, machine learning (ML) models provide new opportunities to develop 

efficient strategies for the prevention of Hospital-associated infections, e.g., aiming at early prediction of patients at risk 

of HA-UTI [9,11]. However, clinicians may lack experience, confidence, and trust in the predictions of these models 

[12,13]. This situation may negatively impact the adoption into the clinical routine. Future development of clinical ML 

models should strive to include clinical expert knowledge in the overall development process and provide an explanation 

of the ML models' clinical prediction [12–17]. 

Integration of clinical explainability in relation to the development of ML models in the healthcare sector is a many-faced 

challenge traditionally categorized into model-specific or model-agnostic techniques, which can be further categorized as 

population-level (global) and patient-level (local) explainability [16,18]. Model-specific explainability techniques refer 

to ante-hoc evaluations in specific classes of ML models, which may be performed for specific ML model classes, e.g., 

logistic regression (LR), Bayesian network (BN), and decision trees (DT), where the inner mechanics of the model can 

be examined by, e.g., inspecting internal model parameters, dependencies, the rules for the splits in a tree, etc. [16,18]. 

On the other hand, model-agnostic explainability refers to a post hoc evaluation of the predictions of a given ML model 

[16,19], enabling support for explainability of any ML model class, including black-box neural network (NN) or ensemble 

models, such as random forest (RF), Adaboost (AD), and gradient boosting (GB). In this scenario, Stenwig et al. [13] and 

Deshmukh et al. [20] recently demonstrated the use of the model-agnostic SHapley Additive exPlanation (SHAP)-method 

[21] and its applicability to a clinical dataset [22]. The SHAP method calculates Shapley values (known from game 

theory) and visualizes the contribution of each feature to the prediction of a given target, supporting reasoning about the 

predictions obtained from an ML model. To the best of our knowledge, no previous work has compared performances 

and evaluated the explainability of ML models for the prediction of patients at risk of HA-UTI using the model-agnostic 

SHAP method.  

We aim to train, test, and compare different ML models and demonstrate how the SHAP method can support both 

population- and patient-level explainability in the risk prediction of HA-UTI. Moreover, in the training of our explainable 

ML models, we identify the most clinically meaningful features for predicting HA-UTI.  

Methods 

Study design 

This retrospective study is conducted in collaboration between the Centre for Clinical Research at the North Denmark 

Regional Hospital, the Department of Computer Science at the University of Aalborg in Denmark, and the Business 

Intelligence and Analysis Unit in the North Denmark Region. Danish legislation requires no consent from participants or 

approval from an ethics committee for registry-based studies.  

Participants 

We include data from electronic patient health records on all hospitalized adult persons age >18 years with a hospital 

admission between 1 January 2017 and 31 December 2018 at North Denmark Regional Hospital or Aalborg University 

Hospital.  

 

Hospital-acquired urinary tract infections 

Statens Serum Institut in Denmark provide data on HA-UTI from their national surveillance system, called the Hospital-

Acquired Infections Database (HAIBA) [23,24]. The definition of HA-UTI in HAIBA is based on a combination of the 

following information: urine culture findings, a diagnosis code indicating UTI, and a relevant course of antibiotic 

treatment. The case definition has previously been described in detail by Condell et al. [23]. HA-UTI is included as a 

binary target feature in our dataset. 

Model design  

The ML models seek to enable stratification of patients within the first 24h of admission according to the risk of 

developing HA-UTI. The approach can be considered a warning system for the identification of patients who may benefit 

from early-onset preventive measures and, thereby, a tool for guided awareness, e.g., deciding which patients need 

targeted urinary catheter care bundles to prevent HA-UTI. 
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 Predictive features 

We grade the severity of each feature in discrete levels using clinical expert knowledge and include only the worst-graded 

measure within 24h for each predictive feature of each admission in our dataset.  Supplementary A presents our complete 

set of 51 health socio-demographic and clinical features and their graded discrete levels.  
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The International Classification of Diseases, version 10 (ICD-10), is used for categorizing admission causes, where a 

primary diagnosis is registered for each admission. We exclude External causes of morbidity and mortality because it is 

not used for reporting primary diagnosis, in addition to Certain conditions originating in the perinatal period, as patients 

in our dataset were > 18 years of age. Supplementary B presents the 19 admission causes and their associated ICD-10 

codes for the admission cause feature. 
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ICD-10 and version 8 (ICD-8), respectively, are used for comorbidities according to the Charlson Comorbidities Index 

(CCI). The selection of relevant ICD-10 codes for CCI is inspired by the work of Sundararajan et al. [25], Hansen et al. 

[26], and Christensen et al. [27], while the selection of ICD-8 codes for CCI is influenced by the research of Christensen 

et al. [27]. The ICD-10 codes for a history of urinary tract infection (UTI) are inspired by the studies of Nielsen et al. [28] 

and Gubbels et al. [24], while the ICD-8 codes for a history of UTI are influenced by the research of Nielsen et al. [28]. 

However, one predictor, human immunodeficiency virus (HIV), with a frequency of less than 50 occurrences in the 

dataset, is excluded from the model as there are no HA-UTI cases in the study population with this comorbidity. 

Supplementary C presents the selected comorbidities and their associated ICD-10 and ICD-8 codes. 
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To reduce the noise from potentially less meaningful features and achieve faster, more robust, and more efficient ML 

models [29], we perform an automated feature selection based on automated χ2 [30] and a manual feature selection based 

on expert knowledge. The scikit-learn (sklearn) machine learning environment version 1.0.2 (https://scikit-learn.org/) 

[31] is used for the automated feature selection. We use suggestions on risk factors for HA-UTI from the literature [32–

36] and suggestions from clinical experts for the expert knowledge dataset, where at least one feature within each of the 

following categories is represented: health socio-demographics, comorbidities, vital parameters, laboratory results, and 

urinary catheter usage. After the feature selection, the two reduced datasets each include ten features. Table 1 presents 

the selected features for our full-, χ2-, and expert knowledge datasets. 

Table 1: Predictive features included in each dataset for predicting the risk of hospital-acquired urinary tract 

infection.  

 

Features 

Full χ2 Expert 

knowledge 

Admission details 

Admission cause 

Triage 

Season 

 

✓  

✓  

✓  

 

✓  

 

 

Health socio-demographics 

Age 

Gender 

Body Mass Index (BMI) 

Smoking  

Alcohol  

Exercise  

 

✓  

✓  

✓  

✓  

✓  

✓  

 

✓  

 

 

✓  

✓  

 

Comorbidities 

Number of comorbidities 

Acute myocardial infarction 

Congestive heart failure 

Peripheral vascular disease 

Cerebral vascular accident 

Dementia 

Pulmonary disease 

Connective tissue disorder 

Peptic ulcer 

Liver disease 

Diabetes 

Diabetes complications 

Paraplegia 

Renal disease 

Cancer 

Metastatic cancer 

Leukemia 

Lymphoma 

Severe liver disease 

History of urinary tract infection 

 

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

 

✓  

 

 

 

 

 

 

 

 

 

 

 

✓  

 

 

 

 

 

 

 

 

✓  

Vital parameters 

Temperature 

Glasgow Coma scale (GCS) 

Respiratory rate 

Pulse 

Systolic blood pressure 

Diastolic blood pressure 

Oxygen saturation 

 

✓  

✓  

✓  

✓  

✓  

✓  

✓  

  

 

✓  

 

 

 

 

Laboratory results 

B-thrombocytes 

B-erythrocytes 

P- partial pressure of oxygen 

 

✓  

✓  

✓  

 

✓  

 

 

 

 

 

 

https://scikit-learn.org/
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P- C-reactive protein (CRP) 

B-hemoglobin 

P-albumin 

P-creatinine 

P-bilirubin 

P-glucose 

P-pH 

P-lactate 

B-leucocytes 

B-neutrofilocytes 

B-monocytes 

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

✓  

 

 

 

 

✓  

 

 

✓  

✓  

 

✓  

✓  

 

✓  

 

 

 

 

 

Procedure 

Urinary catheter 

 

✓  

 

✓  

 

✓  

 

Lastly, we impute the most frequently graded discrete level in our dataset for the methods relying on complete data (NN 

and LR, respectively). The most frequent grading for each measure is the normal/uncomplicated level, e.g., not smoking, 

non-alcoholic, a temperature between 36 ad 37.9, a Glasgow Coma Scale (GCS) of 15, a P-glucose between 4 and 7.99, 

etc. Missing values occur for smoking-, alcohol-, and exercise status, in addition to all vital parameters and laboratory 

results. 

Machine learning models 

The dataset contains 138.560 unique hospital admissions (1877 cases of HA-UTI), which is randomly split into 80 % 

training- and 20 % test sets containing 110.870 (1484 cases of HA-UTI) and 27.690 (393 cases of HA-UTI) unique 

hospital admissions, respectively. 

Seven ML models are trained on the full dataset and our two reduced datasets (Table 1), respectively. As a result, we 

train, test, and compare 21 ML models (seven ML models for three datasets) for the prediction of patients at risk of HA-

UTI. We use LR, naïve BN, and Ds, which support model-specific explainability [37]. We also use a black-box NN in 

addition to three ensemble methods: RF, AD, and GB. Python's sklearn machine learning package version 1.0.2 

(https://scikit-learn.org/) [31] is used to train all our ML models. 

The LR models are l2 regularized with the saga solver, with a maximum number of iterations set to 600. The DT models 

use the categorical and regression tree (CART) [38] and are trained with the Gini impurity criterion (measure for quality 

of split), best splitter, and a maximum depth of eight. The NN models are a feed-forward architecture, trained using the 

adam-solver with a max iteration set to 600. Each NN has ten hidden units and three hidden layers in their architecture. 

The RF models have a maximum of 100 trees (using averaging to improve the decision), are trained with the Gini impurity 

criterion, and each tree has a maximum depth of eight. The AD models use the Adaboost-SAMME.R algorithm for 

boosting and a maximum of 100 trees. The GB models uses the Friedman mean-squared-error as the criterion and a 

maximum of 100 trees.  

Model validation  

A 10-fold cross-validation is applied over the training set to validate our models and to tune the parameters, whose values 

are used to control the learning process, based on a mean area under the curve (AUC) over the ten folds.  

Test of performance 

A receive-operating curve (ROC) is used to analyze the relationship between sensitivity and 1-specificity in the ML 

models. We also calculate an AUC to compare the performance of our ML models on the test. The test set, unseen for the 

training phase, is used to test performance. For comparison, we also report on the mean AUC and standard deviation (std) 

from the 10-fold cross-validation over the training set in soft brackets. 

SHapley Additive exPlanation  

https://scikit-learn.org/
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The feature contribution in SHAP is determined by its associated SHAP value, a measure for determining the effect of a 

feature in a given model prediction [21]. We used a summary plot (beeswarm) for population-level model-agnostic 

explainability and a forceplot for patient-level model-agnostic explainability, available within the SHAP package version 

0.41.0 in Python. The KernelExplainer, a weighted linear regression, is used to compute the SHAP values for our models 

[21]. While the KernalExplainer works without any model-specific assumptions, making it slower than other methods, it 

is also a generic explainer that works for any ML model type, including naïve BNs, that does not work with other 

explainers [13]. We include all 393 admissions with patients developing HA-UTI from the test set to produce the summary 

plot. For the forceplot, we chose randomly one patient with HA-UTI and two without HA-UTI. In population-level model-

agnostic explainability, a SHAP summary plot visualizes the extent of each feature's positive- and negative contribution 

across all predictions, colors their high or low value, and sorts the importance of the features dependent on their 

contribution. For patient-level explainability, a SHAP forceplot visualizes the extent of each feature's positive- and 

negative impact on a unique given risk prediction. 

Results 

Model performance 

Figure 1 presents the ROC curves of our 21 ML models, the associated AUC from our test, and the mean AUC ±std 

resulting from the 10-fold cross-validation over the training set.  

Figure 1: Receiver-operating characteristic curves for the seven ML models over the three different datasets (full, 

Chi2 and expert knowledge, respectively)1

17 

 

 
17The receiver-operating characteristic (ROC)-curves for the logistic regression (LR), Bayesian network (BN), and 

decision tree (DT), Neural Network (NN), Random Forrest (RF), AdaBoost classifier (AD), and Gradient-Boosting 
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classifier (GB), based on the full-, χ2-, reduced-, and expert knowledge-reduced-dataset. The LR, NN, RF, AD and GB 

models have a slight decrease in area under the curve (AUC) between the full dataset and reduced dataset, whereas the 

DT models seems to reach higher AUC from our feature selection. In addition, the BN reach a higher AUC from the 

feature selection using expert-knowledge.  
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The best-performing model is the NN over the full dataset with the 51 features, reaching an AUC of 0.758 (0.756±0.019), 

whereto the best-performing model over the reduced datasets is the NN based on the χ2-feature selection, reaching an 
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AUC of 0.746 (0.742±0.023). The best-performing ML model that supports model-specific explainability is the LR over 

the full dataset, reaching an AUC of 0.752 (0.75±0.018), whereto the best-performing model over the reduced datasets is 

the LR based on the χ2-feature selection, reaching an AUC of 0.74 (0.739±0.023). However, the BN from the dataset 

reduced by expert knowledge, which is associated with better knowledge representation between the reduced datasets, 

has the best performance among all ML models that support model-specific explainability for this dataset, reaching an 

AUC of 0.735 (0.747±0.021). Therefore, the BN from the dataset reduced by expert knowledge is used to exemplify the 

SHAP methods for model-agnostic explainability. 

Population-level explainability 

Figure 2 illustrates the SHAP summary plot for the 393 admissions with patients developing HA-UTI using the BN model 

trained on the expert knowledge dataset.  

Figure 2: SHapley Additive exPlanation summary plots for 393 hospital admissions in which a hospital-acquired 

urinary tract infection occurred, using the Bayesian Network model based on the expert knowledge-reduced 

dataset18  

 

 

 

The contribution of the features is listed from the top down, suggesting that plasma (P) -albumin is the most important 

feature for predicting patients at risk of HA-UTI, followed by P-creatinine, P-CRP, and age. Urinary catheter has the 

 
18 The features are ordered from top-down dependent on their contribution. A red dot indicate a high feature value and blue dot indicate 

a low feature value. The contribution on the prediction is plotted against the x-axis, which is the SHAP value for each feature value 

from a given hospital admission. 
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highest contribution on the probability of experiencing HA-UTI while having diabetes, and a history of UTI is the least 

important features for predicting the risk of HA-UTI, yet with an elevated predicted probability if having these conditions. 

Moreover, low-graded discrete levels of P-albumin (Supplementary A) are associated with increased probability, whereto 

high- and low-graded discrete levels of P-CRP and P-creatinine are associated with an increased risk of HA-UTI in the 

BN model. Moderately increased graded discrete levels of P-CRP and slightly increased graded discrete levels of P-

creatinine decrease the probability of HA-UTI. Low age was associated with a lower probability- and higher age was 

associated with a higher probability of HA-UTI. Female gender slightly increases the risk of HA-UTI, in comparison with 

the male gender. High-graded discrete levels of GCS (meaning lower scores on the GCS), having diabetes, and a history 

of UTI may slightly increase the risk of HA-UTI, but these features are often associated with sparse contribution. 

Patient-level explainability 

Figure 3 presents the SHAP forceplot for the two randomly selected patients without HA-UTI and one randomly selected 

patient with HA-UTI, using the BN model trained on the expert knowledge dataset.  

Figure 3: SHapley Additive exPlanation forceplots for three randomly selected individual patients using the 

Bayesian Network model based on the expert-knowledge reduced dataset 
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The base value in the forceplot is the output if nothing is known for the model, whereto the SHAP values reflect how each 

feature contributes to reaching the predicted value (f(x)), given the observations. If a feature increases the predicted value 

f(x), it is colored red in the forceplot. If a feature decreases the predicted value f(x), it is colored blue. The size of each 

bar in the forceplot results from its SHAP value for the given feature ordered by its contribution, which depends on the 

graded discrete level (Supplementary A). Only features with a SHAP value above a predefined threshold (by SHAP) are 

displayed in the SHAP forceplot.  

Discussion 

In this study, we trained, tested, and compared different ML models for the early identification of patients at risk of HA-

UTI, and further supported the explainability of the ML models using the SHAP analysis. We have demonstrated that it 

is possible to stratify patients within 24h of hospital admission from clinical explainable ML.  

The best-performing ML model is based on a NN trained on the full dataset consisting of 51 features. After an automated 

data-driven- and manual feature selection using expert knowledge, we obtained a high performance of the ML models 

based on only the ten most meaningful features. Furthermore, we exemplified how the explainability of the BN model 

was further promoted at both individual patient-level and population-level by the model-agnostic SHAP-method. As a 

result of this, we provide clinical reasoning of why the ML model reached the given risk prediction.  

Meaningfulness of the clinical features 

The two different feature selection methods both include age, urinary catheter, P-CRP, and P-albumin as predictors for 

HA-UTI (Table 1). While age and urinary catheter are well-known risk factors for HA-UTI [32,33],  we believe that the 

agreement between the automated- and manual feature selection on P-CRP and P-albumin reflects the clinical nature of 

our features, in addition to the ML model design (risk prediction within 24h of admission). For instance, P-CRP [36] and 

P-albumin [35,36,39] have a broad indication area, being biomarkers for assessing both chronic and acute diseases (such 

as inflammatory- or malign diseases), which may imply an essential correlation to the patient's more general health status 

at hospital admission, hence contributing with clinical information in risk assessment in relation to HA-UTI. 

For the χ2 based feature selection, higher χ2 values are reached for admission cause, the number of comorbidities, and B-

lactate. This reflects a higher difference between expected and observed counts, meaning that higher χ2 values are reached 

for these features, associated with greater dependence and, as a result, the suggestion of these features as better for 

predicting HA-UTI. For our expert knowledge-reduced dataset, we also include gender, diabetes, and history of UTI, 

GCS, and P-glucose, which is not included in the χ2-reduced datasets (Table 1). We associate gender, diabetes, and history 

of UTI with well-known risk factors for HA-UTI [32,33,40]. High P-creatinine levels may occur if the patient has impaired 

kidney function, a well-established risk factor for UTI [35,41]. GCS describes the mental status of the patient, which may 

be explained by chronic conditions (e.g., mental or behavioral disorders, neoplasms, dementia, or diseases of the nervous 

system) or acute clinical conditions (e.g., head trauma, cerebral infection, and cardiovascular collapse), which is 

associated with an elevated risk of urinary tract infections [42]. The P-glucose level may relate to diabetes or being stress-

induced, but also as a result of the insulin sensitivity that may be implicated by a fever or as a descriptor for kidney 

damage, which may consequently increase the risk of experiencing an HA-UTI. Glycemic control for the patient may be 

critical in preventing HA-UTI [43]. Notably, the χ2-reduced datasets tend to favor laboratory results, whereto the expert 

knowledge dataset includes different types of health socio-demographic and clinical data (Table 1).  

Balancing performance and clinical explainability  

This study adds to the literature's commonly debated trade-off between ML models' performance and explainability 

[16,17,20,21]. However, we report no significant difference in performance while also pursuing model-specific 

explainability. This is close in spirit to the suggestions by Rudin [37], who highlights the use of ML models that supports 

model-specific explainability in the high-stakes healthcare domain and only include the most meaningful clinical features 

for their purpose. In comparison, the best-performing ML model from Møller et al. [9] in predicting risk within 48h of 

admission of HA-UTI is their NN model with an AUC of 0.770. However, due to the black-box nature of these models, 

they recommend the interpretable DT for their prediction of risk, which reached an AUC of 0.709. Our best-performing 

DT is from the χ2-reduced dataset reaching an AUC of 0.716. We also consider LR and BN suited for supporting model-

specific explainability, which performed better on all datasets compared to the DTs (Figure 1). To further support the 

explainability of the ML models presented in this study, we demonstrate how to support model-agnostic explainability at 

the population- and patient-level. A similar approach is found by Deshmukh et al. [20] and Stenwig et al. [13], who 
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demonstrate the SHAP forceplot and SHAP summary plots for local and global ML model-agnostic explainability in 

predicting mortality in the ICU. A recently published Danish study by S. Lauritsen et al. [44] also demonstrates the same 

SHAP methods for the early identification of an acute illness. The SHAP library offers a palette of different visualization 

techniques and, therefore, different visual explanations for both population- and patient-level model-agnostic approaches. 

Future studies may explore how different plots contribute differently to the clinical reasoning of the ML models' given 

result or how the SHAP explanations may differ from other model-agnostic methods, such as the local interpretable 

model-agnostic explanation (LIME)-methods [45].  

Lastly, the SHAP method may be used to inspect and assess the potential clinical implications of the suggestions from an 

ML model. For instance, when a high P-CRP level for patient 3 (Figure 3) results in a blue bar (negative impact of 

prediction of risk for HA-UTI) in the SHAP forceplot, it may indicate that some treatment, such as antibiotic therapy, has 

been given sometime within the hospital admission. Therefore, a high P-CRP level may be a measure for ‘given antibiotic 

therapy’ rather than ‘higher risk of infection’, resulting in the negative impact in the SHAP forceplot. We did not have 

access to data on antibiotic treatment, which also limits the dataset. We emphasize that future explainable ML models in 

infection control should still be interpreted with care by the clinician as they may reflect other underlying and clinically 

significant patterns than perhaps intended. 

Study limitations 

While the case definition of HA-UTI used in this study is considered remarkably robust [46], the included comorbidities 

are only based on ICD-8 and ICD-10 codes (Supplementary C), which are sometimes collected for purposes other than 

documenting disease history. As a result, we may sometimes encounter a negative case of, e.g., diabetes or a history of 

UTI that should have been detected as a positive, which otherwise could have resulted in better performance or explained 

a more accurate underlying pattern. For instance, in the summary plot, having diabetes or a history of UTI sometimes 

increases HA-UTI risk, which is only captured if the comorbidity is included as a positive case in the dataset. If better 

case definitions for comorbidities become available in the future, the performance test and SHAP methods presented in 

this study readily apply to such a dataset. Also, as a limitation of our dataset, we impute the most frequently used value 

for each feature if missingness occurred for the NN and LR because these ML models rely on a complete dataset. 

However, in an explainable clinical context, this may lead to wrong reasoning for the prediction of risk for HA-UTI, as it 

may be based on an estimate rather than an actual clinical measure, which may also be reflected in the SHAP analysis. 

The BN and tree-based ML models do not rely on the imputed dataset. 

Perspective 
The next step for the clinical explainable ML models presented in this study may be to reach implementation, where 

clinical experience, confidence, and trust in using ML models for early prediction of patients at risk of an HA-UTI may 

be gained. In doing so, inspiration may be found in the field of responsible ML in healthcare [12], where the deployment 

of the ML models is unfolded through various steps with different essential stakeholders, e.g., clinicians, ML developers, 

lawyers, implementation- and maintenance experts. However, more research is necessary to fully understand the role of 

ML and explainability in future infection control for HA-UTI to ultimately benefit future patients by avoiding these 

adverse outcomes.  
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APPENDIX A 

THE METHODOLOGICAL CONSIDERATIONS FOR CONSTRUCTING 

THE DECISION TREE 

An early cost-effectiveness analysis compares the ML model's cost-effectiveness with 

standard care. The decision tree portion containing the ML model follows a test-based 

approach by Tamlyn et al. [121]. First, the ML model divides into two paths, reflecting 

the model's probability of predicting high HAB risk. The tree further splits into TP 

and FP cases for high-risk predictions, acknowledging prediction errors. It then 

branches into scenarios of PVC initiation during admission. If PVC is initiated, the 

tree explores the likelihood of preventive treatment by the physician, reflecting the 

reality that not all patients will receive such care. If preventive treatment is provided, 

the tree splits again to reflect the probability of HAB from PVC use and whether HAB 

develops despite the treatment. This process repeats for FP cases. The tree is 

simplified for usual care to represent the probability of PVC initiation and subsequent 

HAB development during hospital admission. 

 

PROBABILITIES 

The performance test probabilities for the ML model were determined based on the 

best-performing model's TP, TN, FP, and FN rates. The probability of initiating 

preventive treatment was set at 99% for both TP and FP, anticipating that physicians 

would typically follow ML recommendations. Approximately 14% of all HAB cases 

can be linked to the use of PVC [8,21], and around 70% of all hospital admissions 

involve a PVC [119]. The probability of contracting HAB under usual care is 

equivalent to that under the ML model. 

 

COSTS 

The ML model is expected to be relevant to approximately 69,280 patients per year, 

half the study cohort over a two-year period. From a Danish hospital sector 

perspective, the analysis considers costs related to ML model development, 

implementation, maintenance, staff training, preventative treatment, frequent PVC 

changes, PVC replacements during admission, HAB treatment, and general admission 

costs. Initial and capital costs were spread across the total annual patient count, with 

the ML model expected to be in service for five years. 

 

Preventative treatment costs factored in physician and nurse salaries, their time spent 

evaluating high-risk patients and changing PVC, the price of catheters, and catheter 

replacement frequency. The monthly effective working hours for nurses and 
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physicians were assumed to be 94, consistent with recommendations from The Danish 

National Health Technology Council [124]. Based on estimates from the Business 

Intelligence and Analysis Unit in North Denmark Region, a cumulative cost estimate 

was used for HAB occurrences during hospital stays. 

 

EFFECTIVENESS 

The effectiveness measure was determined by integrating the probability of death 

from a HAB infection into the terminal nodes of the decision tree, where HAB 

development was indicated. This approach facilitated the computation of the expected 

effectiveness, representing the average likelihood of dying from a HAB-related 

infection under the ML model and usual care alternatives. In the study cohort, the 

probability of mortality due to a HAB infection was 26.89%. This effect measure was 

inversed in the ICER, considering death from HAB as unfavorable.  
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